Zabbix Network
Monitoring Essentials

Your one-stop solution to efficient network monitoring with Zabbix

PACKT :

Z.abbix Network Monitoring Essentials

Table of Contents

Zabbix Network Monitoring Essentials

Credits
About the Authors

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions
1. Installing a Distributed Zabbix Setup

Zabbix architectures

Understanding Zabbix data flow

Understanding the Zabbix proxies’ data flow

Installing Zabbix
Installing from packages
Setting up a Zabbix agent

Creating a Zabbix agent package with ChecklInstall

Server configuration

Installing a database

Considering the database size
Installing a Zabbix proxy
Installing the WebGUI interface
Summary

2. Active Monitoring of Your Devices

Understanding Zabbix hosts
Hosts and host groups

Host interfaces

Host inventory

Going beyond Zabbix agents

Simple checks

Keeping SNMP simple
Getting SNMP data into Zabbix
Finding the right OIDs to monitor
Mapping SNMP OIDs to Zabbix items
Getting data types right

SNMP traps

Snmptrapd
Transforming a trap into a Zabbix item

Getting netflow from the devices to the monitoring server

Receiving netflow data on your server

Monitoring a log file with Zabbix

Summary

3. Monitoring Your Network Services

Monitoring the DNS

DNS — response time

DNSSEC — monitoring the zone rollover

Apache monitoring

NTP monitoring

NTP — what are we monitoring?

Squid monitoring
Summary

4. Discovering Your Network

Finding hosts the Zabbix way
Defining action conditions
Choosing action operations

Remote commands

Low-level discovery

Summary
5. Visualizing Your Topology with Maps and Graphs
Creating custom graphs
Maps — a quick setup for a large topology
Maps — automating the DOT creation
Drafting Zabbix maps from DOT
Putting everything together with screens
Summary
A. Partitioning the Zabbix Database
MySQL partitioning

The partition_maintenance procedure

The partition_create procedure

The partition_verify procedure

The partition_drop procedure

The partition_maintenance_all procedure

Housekeeping configuration

B. Collecting Squid Metrics

Squid metric script

Index

Z.abbix Network Monitoring Essentials

Z.abbix Network Monitoring Essentials
Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015
Production reference: 1210215
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-976-4

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Andrea Dalle Vacche
Stefano Kewan Lee
Reviewers

Ravi Bhure

Nicholas Pier

Nicola Volpini
Commissioning Editor
Amarabha Banerjee
Acquisition Editor
Nikhil Karkal

Content Development Editor
Siddhesh Salvi
Technical Editor
Humera Shaikh

Copy Editor

Sarang Chari

Project Coordinator
Kranti Berde
Proofreaders

Simran Bhogal

Linda Morris

Indexer

Hemangini Bari
Graphics

Disha Haria
Production Coordinator
Aparna Bhagat

Cover Work

Aparna Bhagat

About the Authors

Andrea Dalle Vacche is a highly skilled IT professional with over 14 years of experience
in the IT industry and banking. He graduated from Universita degli Studi di Ferrara with
an information technology certification. This laid the technology foundation that Andrea
has built on ever since. Andrea has acquired various industry-respected accreditations,
which include Cisco, Oracle, RHCE, ITIL, and of course, Zabbix. Throughout his career,
he has worked in many large-scale environments, often in roles that have been very
complex, on a consultant basis. This has further enhanced his growing skill set, adding to
his practical knowledge base and increasing his appetite for theoretical technical studying.

Andrea’s love for Zabbix came from his time spent in the Oracle world as a database
administrator/developer. His time was spent mainly on reducing ownership costs,
specializing in monitoring and automation. This is where he came across Zabbix and the
flexibility it offered, both technically and administratively. With this as a launch pad,
Andrea was inspired to develop Orabbix, the first open source software to monitor
Oracle’s complete integration with Zabbix. He has published a number of articles on
Zabbix-related software, such as DBforBIX. His projects are publicly available at
http://www.smartmarmot.com. Currently, Andrea is working as a senior architect for a
leading global investment bank in a very diverse and challenging environment. He deals
with many aspects of the Unix/Linux platforms as well as many types of third-party
software, which are strategically aligned to the bank’s technical roadmap. In addition to
this title, Andrea Dalle Vacche is a coauthor of Mastering Zabbix, Packt Publishing.

Stefano Kewan Lee is an IT consultant with more than 12 years of experience in system
integration, security, and administration. He is a certified Zabbix specialist in large
environments holds a Linux administration certification from the LPI and a GIAC GCFW
certification from SANS Institute. When he’s not busy breaking websites, he lives in the
countryside with his two cats and two dogs and practices martial arts. In addition to this
title, Stefano Kewan Lee is a coauthor of Mastering Zabbix, Packt Publishing.

http://www.smartmarmot.com

About the Reviewers

Ravi Bhure is basically an IT engineer with niche skills, such as Chef, Cloud Ansible,
SaltStack, Python, Ruby, and Shell/Bash. He also writes code for infrastructure, daily IT
operations, and so on. In short, he is fond of using his skills and knowledge of fault-
tolerant solutions for the day-to-day maintenance of mission-critical production
infrastructure.

Ravi started interacting with computers since 1996 when he got his first computer at
home. Things changed very fast, and in 1998, he entered the magical world of the Internet
© for the first time ever, which changed his life! He started his own cyber cafe in 1999. In
2004, he got his first job as a field engineer, hired to maintain and support VRI UFO
systems. After 2 years, he moved to Pune and worked with many organizations, such as
Vyom Labs, Glam India, Symphony, and Dhingana.

The most happening and interesting fact about his diverse exposure is that he is from an
arts background. Yes, he holds a bachelor’s degree in arts from SRTM University, Nanded,
Maharashtra, India. And we all will have to agree that he has the art to solve problems ©,
a great inspiration for people who are non engineers!

Currently, Ravi is associated with OpexSoftware as a senior DevOps engineer.

Nicholas Pier is a network engineer in the managed services / professional services field.
His experience includes designing data center network infrastructures with virtualization
and SAN solutions, web development, and writing middleware for business applications.
At the time of writing this, Nicholas holds a number of industry certifications, including
the Cisco CCNP, VMware VCP5-DCYV, and various other Cisco and CompTITA
certifications. In his free time, he indulges in his passion for craft beer, distance running,
and reading.

I’d like to thank Packt Publishing for this opportunity!

Nicola Volpini has been playing with technology from a young age, having a hard time
resisting the urge to disassemble complex toys or kitchen appliances.

The love for computers originated around his tenth birthday, when he accidentally toasted
his first CPU. This episode only increased his fascination for computers, and the
accidents, fortunately, stopped.

For the past 10 years, he’s been working as an IT professional, specializing in enterprise
networking and system administration. Experimenting with the most diverse technologies
in the field and being an avid fan of the FOSS philosophy, Linux, and *BSD, he dreams of
seeing the collaborative thinking of the FOSS movement help inspire the world.

He’s currently working at Stockholm, Sweden, where he resides with his girlfriend.

www.PacktPub.com

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[@ PACKT! i 1°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com

Preface

Network administrators are facing an interesting challenge these days. On the one hand,
computer networks are not something new anymore. They have been around for quite a
while: their physical components and communication protocols are fairly well understood
and don’t represent a big mystery to an increasing number of professionals. Moreover,
network appliances are getting cheaper and easier to set up, to the point that it doesn’t take
a certified specialist to install and configure a simple network or connect it to other
networks. The very concept of networking is so widespread and ingrained in how users
and developers think of a computer system that being online in some form is expected and
taken for granted. In other words, a computer network is increasingly seen as a
commodity.

On the other hand, the very same forces that are calling for simpler, easier, accessible
networks are the ones that are actually pushing them to grow more and more complex
every day. It’s a matter of both quantity and quality. The number of connected devices on a
given network is almost always constantly growing and so is the amount of data
exchanged: media streams, application data, backups, database queries, and replication
tend to saturate bandwidth just as much as they eat up storage space. As for quality, there
are dozens of different requirements that factor in a given network setup: from having to
manage different physical mediums (fiber, cable, radio, and so on), to the need to provide
high performance and availability, both on the connection and on the application level,;
from the need to increase performance and reliability for geographical links, to providing
confidentiality, security, and data integrity at all levels, and the list goes on.

These two contrasting, yet intertwined, tendencies are forcing network administrators to
do more (more services, more availability, and more performance) with less (less budget,
but also less attention from the management compared to newer, flashier technologies).
Now, more than ever, as a network admin, you need to be able to keep an eye on your
network in order to keep it in a healthy state, but also to quickly identify and resolve
bottlenecks and outages of any kind—or better yet, find ways to anticipate and work
around them before they happen. You’ll also need to integrate your systems with different
tools and environments (both legacy and strategic ones) that will be out of your direct
control, such as asset databases, incident management systems, accounting and profiling
systems, and so on. Even more importantly, you’ll need to be able to show your work and
explain your needs in clear, understandable terms to nontechnical people.

Now, if we were to say that Zabbix is the perfect, one-size-fits-all solution to all your
network monitoring and management problems, we would clearly be lying. To this day, no
such tool exists despite what many vendors want you to believe. Even if they have many
features in common, when it comes to monitoring and capacity management, every
network has its own quirks, special cases, and peculiar needs, to the point that any tool has
to be carefully tuned to the environment or face the risk of becoming useless and
neglected very quickly.

What is true is that Zabbix is a monitoring system powerful enough and flexible enough

that, with the right amount of work, can be customized to meet your specific needs. And
again, those needs are not limited to monitoring and alerting, but also to performance
analysis and prediction, SLA reporting, and so on. When using Zabbix to monitor an
environment, you can certainly create items that represent vital metrics for the network in
order to have a real-time picture of what’s happening. However, those same items can also
prove very useful to analyze performance bottlenecks and to plan network expansion and
evolution. Items, triggers, and actions can work together to let you take an active role in
monitoring your network and easily identify and pre-empt critical outages.

In this book, we’ll assume that you already know Zabbix as a general-purpose monitoring
tool, and that you also used it to a certain extent. Specifically, we won’t cover topics such
as item, trigger, or action creation and configuration with a basic, step-by-step approach.
Here, we want to focus on a few topics that could be of particular interest for network
administrators, and we’ll try to help them find their own answers to real-world questions
such as the following:

¢ [have a large number of appliances to monitor and have to keep monitoring data
available for a long time due to regulatory requirements. How do I install and
configure Zabbix so that it is able to manage effectively this large amount of data?

e What are the best metrics to collect in order to both have an effective real-time
monitoring solution and leverage historical data to make performance analysis and
predictions?

e Many Zabbix guides and tutorials focus on using the Zabbix agent. The agent is
certainly powerful and useful, but how do I leverage in an effective and secure way
monitoring protocols that are already available on my network, such as SNMP and
netflow?

¢ [.oad balancers, proxies, and web servers sometimes fall under a gray area between
network and application administration. I have a bunch of web servers and proxies to
monitor. What kind of metrics are most useful to check?

¢ [have a complex network with hosts that are deployed and decommissioned on a
daily basis. How do I keep my monitoring solution up-to-date without resorting to
long, error-prone manual interventions as much as possible?

e Now that I have collected a large amount of monitoring and performance data, how
can I analyze it and show the results in a meaningful way? How do I put together the
graphs I have available to show how they are related?

In the course of the next few chapters, we’ll try to provide some pointers on how to
answer those questions. We discuss as many practical examples and real-world
applications as we can around the subject of network monitoring, but more than anything,
we wanted to show you how it’s relatively simple to leverage Zabbix’s power and
flexibility to your own needs.

The aim of this book is not to provide you with a set of prepackaged recipes and solutions
that you can apply uncritically to your own environment. Even though we provided some
scripts and code that are tested and working (and hopefully you’ll find them useful), the

real intention was always to give you a deeper understanding of the way Zabbix works so

that you are able to create your own solutions to your own challenges.

We hope we have succeeded in our goal, and that by the end of the book, you’ll find
yourself a more confident network administrator and a more proficient Zabbix user. Even
if this will not be the case, we hope you’ll be able to find something useful in the
following chapters: we touch upon different aspects of Zabbix and network monitoring
and also discuss a couple of less known features that you might find very interesting
nonetheless.

So, without further ado, let’s get started with the actual content we want to show you.

What this book covers

Chapter 1, Installing a Distributed Zabbix Setup, teaches you how to install Zabbix in a
distributed setup, with a large use of proxies. The chapter will guide you through all the
possible setup scenarios, showing you the main differences between the active and passive
proxy setup. This chapter will explain how to prepare and set up a Zabbix installation,
which is ready to be grown within your infrastructure, ready to support you, and monitor a
large environment or even a very large one.

Chapter 2, Active Monitoring of Your Devices, offers you a few very useful examples of
the different monitoring possibilities Zabbix can achieve by relying on different methods
and protocols. You’ll see how to query your network from the link level up to routing and
network flow using ICMP, SNMP, and log-parsing facilities to collect your measurements.
You will also learn how to extract meaningful information from the gathered data using
aggregated and calculated items, and configuring complex triggers that will alert you
about real network issues while minimizing signal noise and false positives.

Chapter 3, Monitoring Your Network Services, takes you through how to effectively
monitor the most critical network services, such as DNS, DHCP, NTP, Apache proxy /
reverse proxies, and proxy cache Squid. As it is easy to understand, all of them are critical
services where a simple issue can affect your network setup and quickly propagate the
issue to your entire network. You will understand how to extract meaningful metrics and
useful data from all the listed services, being able then not only to monitor their own
reliability, but also to acquire important metrics that can help you to predict failures or
issues.

Chapter 4, Discovering Your Network, explains how to deeply automate the monitoring
configuration of network objects. It will massively use the built-in discovery feature in
order to keep the monitoring solution up-to-date within an evolving network environment.
This chapter is divided into two core parts that cover the two main levels of Zabbix’s
discovery: host discovery and low-level discovery.

Chapter 5, Visualizing Your Topology with Maps and Graphs, shows you how to create
complex graphs from your item’s numerical values, automatically draw maps that reflect
the current status of your network, and bring it all together using screens as a tool to
customize monitoring data presentation. This chapter also presents a smart way to
automate the initial startup of your Zabbix’s setup, making you able to draw network
diagrams using maps in a fully automated way. You will then learn a production-ready
method to maintain maps while your network is growing or rapidly changing.

Appendix A, Partitioning the Zabbix Database, contains all the required software and
stored procedures to efficiently partition your Zabbix database.

Appendix B, Collecting Squid Metrics, contains the software used to monitor Squid.

What you need for this book

The software that has been used and is necessary for this book is:

Linux Red Hat Enterprise Linux 6.5 or higher
Zabbix 4.2

Apache HTTPD 2.2

MySQL Server-5.1

Netflow 1.6.12

Nmap

This book also requires an intermediate experience in shell scripting, a basic-to-
intermediate knowledge of Python, and an intermediate knowledge of Zabbix.

Anyway, all the examples discussed and proposed in this book are explained well and
commented upon. The same approach has been applied even to the software used on this
book where it is explained, with a reasonable level of detail, how to set up and configure
each software component.

Who this book is for

This book is intended for experienced network administrators looking for a comprehensive
monitoring solution for their networks. The reader must have a good knowledge of
Unix/Linux, networking concepts, protocols, and appliances and a basic-to-intermediate
knowledge of Zabbix. The reader will be guided step by step to manage and lead all the
important points you will have to deal with. You will then be able to start up an effective
and large-environment-ready Zabbix monitoring solution that will be a perfect fit within
your network.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “On the
Zabbix server-side, you need to carefully set the value of StartTrappers=.”

A block of code is set as follows:

#First of all we need to import csv and Networkx

import csv

import networkx as nx

#Then we need to define who is our zabbix server and some other detail to
properly produce the DOT file

zabbix_service_ipaddr = "192.168.1.100"

main_loop_ipaddr = "10.12.20.1"

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

we can open our CSV file
csv_reader = csv.DictReader(open('my_export.csv'), \
delimiter=",", \
fieldnames=("ipaddress", "hostname", "oid", "dontcare", "neighbors"))
Skip the header
csv_reader.next()

Any command-line input or output is written as follows:

chkconfig --level 345 zabbix-server on

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “There is a clear
warning on the website that warns us with this statement: The Appliance is not intended
for serious production use at this time.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. Installing a Distributed Zabbix
Setup

Most likely, if you are reading this book, you have already used and installed Zabbix as a
network monitoring solution. Now, in this chapter, we will see how to install Zabbix in a
distributed setup, eventually moving on to a large use of proxies. The chapter will take
you through all the possible scenarios and explain the main differences between the active
and passive proxy setup. Usually, the first Zabbix installation is done as a part of the
concept to see whether the platform is good enough for you. Here, the common error is to
start using this setup on a large production environment. After reading this chapter, you
will be ready to install and set up a large environment ready infrastructure.

In this chapter, we will explain how to prepare and set up a Zabbix installation, which is
ready to be grown within your infrastructure, and ready for a large to a very large
environment. This book is mainly focused on Zabbix for network monitoring. This chapter
will quickly take you through the installation process, emphasizing on all the most
important points you need to consider. In the next chapter, we will spend more time
describing a better approach to monitor your network devices and how to retrieve all the
critical metrics from them. After reading this chapter, you will become aware of the
communication between server and proxies being able to mix the active and passive setup
in order to improve your infrastructure. You can extend the strong central Zabbix core
setup with many lightweight and effective Zabbix proxies acting as a satellite inside your
network to improve your monitoring system.

Z.abbix architectures

Zabbix was born as a distributed network monitoring tool with a central web interface
where you can manage almost everything. Nowadays, with Zabbix 2.4, the number of
possible architectures has been reduced to a single server setup and a Zabbix-proxies
distributed setup.

Note

From Zabbix 2.4, the node-setup was discontinued. More information is available at
https://www.zabbix.com/documentation/2.4/manual/introduction/whatsnew240#node-

based_distributed monitoring_removed.

Now, the simplest architecture (which is ready to handle large environments successfully)
that you can implement composes of three servers:

e Web server
e RDBMS server
e Zabbix server

To prepare this simple setup for a large environment setting, it’s better to use a dedicated
server for each one of these components.

This is the simplest setup that can be easily extended and is ready to support a large
environment.

The proposed architecture is shown in the following diagram:

T
-'I-p.'.-_.
3 A

fal
x

-—-._,____E\ .lr_-_\. ._-/ i

5:;:1-=-'.-.;|'

Web server Zabhbix server Database server

This kind of setup can be extended by adding many Zabbix proxies resulting in a proxy-
based setup. The proxy-based setup is implemented with one Zabbix server and several
proxies: one proxy per branch, data center or, in our case, for each remote network
segment you need to monitor.

This configuration is easy to maintain and offers the advantage to have a centralized
monitoring solution. This kind of configuration is the right balance between large
environment monitoring and complexity.

https://www.zabbix.com/documentation/2.4/manual/introduction/whatsnew240#node-based_distributed_monitoring_removed

=/l “|"'-

Server| Server

1

/1

—
e —
—
—

Server |Server

T in]es

= W =
Lo {35 . [‘_—-
Web|serer -

l Zabhix[pmxg-‘ [passive)

Labbix server

Server Server Server Server

The Zabbix proxy, like a server, is used to collect data from any number of hosts or
devices, acquiring all the metrics requested and acting as a proxy. This means that it can
retain this data for an arbitrary period of time, relying on a dedicated database to do so.
The proxy doesn’t have a frontend and is managed directly from the central server.

Note
The proxy limits itself to data collection without trigger evaluations or actions; all the data
is stored in its database. For this reason, it’s better to use an efficient robust RDBMS that

can prevent data loss in case of a crash.

All these characteristics make the Zabbix proxy a lightweight tool to deploy and offload
some checks from the central server. Our objective is to control and streamline the flow of
monitored data across networks, and the Zabbix proxy gives us the possibility to split and
segregate items and data on the different networks. The most important feature is that the
acquired metrics are stored in its database. Therefore, in case of a network loss, you will

not lose them.

Understanding Zabbix data flow

The standard Zabbix data flow is composed of several actors that send data to our Zabbix
server. Of all the sources that can send data to our Zabbix server, we can identify three
main data sources:

e Zabbix agent
e Zabbix sender
e Other agents (external scripts or components built in house)

The other agents represented in the next diagram can be of two main types:

e Custom and/or third-party agents
e Zabbix proxy

ZBX
agent

ZBX

sender

i Other

agents

Zabbix server

As the diagram displays the data that gets acquired from many different sources in the
form of items. At the end of the diagram, you see the GUI, which practically represents
the users connected and the database that is the place where all the values are stored.

In the next section, we will dive deep into the Zabbix proxies’ data flow.

Understanding the Zabbix proxies’ data
flow

Zabbix proxies can operate in two different modes, active and passive. The default setup is
the active proxy. In this setup, the proxy initiates all connections to the Zabbix server, the
one used to retrieve configuration information on monitored objects, and the connection to
send measurements back to the server. Here, you can change and tweak the frequency of
these two activities by setting the following variables in the proxy configuration file:
/etc/zabbix/zabbix_proxy.conf:

ConfigFrequency=3600
DataSenderFrequency=1

Values are expressed in seconds. On the Zabbix server-side, you need to carefully set the
value of StartTrappers-=.

This value needs to be greater than the number of all active proxies and nodes you
deployed. The trapper processes, indeed, manage all the incoming information from the
proxies.

Note

Please note that the server will fork extra processes as required, if needed, but it is
strongly advisable to prefork all the processes that are needed during the startup. This will
reduce the overhead during the normal operation.

On the proxy side, another parameter to consider is:

HeartbeatFrequency

This parameter sets a sort of keep alive, which after the defined number of seconds, will
contact the server although it doesn’t have any data to send. The proxy availability can be
easily checked with the following item:

zabbix[proxy, "proxy unique name'", lastaccess]

Here the proxy unique name, of course, is the identifier you assigned to the proxy during
deployment. The item will return the number of seconds as the last time that the proxy was
contacted, a value you can then use with the appropriate triggering functions.

Tip

It’s really important to have a trigger associated to this item, so you can be warned in case
of connection loss. Looking at the trend of this trigger, you can learn about an eventual
reaping time set on the firewall. Let’s look at a practical example: if you notice that after 5

minutes your connections are dropped, set the heartbeat frequency to 120 seconds and
check for the last access time above 300 seconds.

In the following diagram, you can see the communication flow between the Zabbix server
and the proxy:

Zabbix active proxy data flow

Config. change
Zabbix reguest

server

As you can see from the diagram, the server will wait to receive requests from the proxy
and nothing more.

Note

The active proxy is the most efficient way to offload duties from the server. Indeed, the
server will just sit here waiting to be asked about changes in configuration, or to receive
new monitoring data.

On the other side, proxies are usually deployed to monitor secure network segments with
strict outgoing traffic policies, and are usually installed on DMZs. In these kind of
scenarios, normally, it is very difficult to obtain permission for the proxy to initiate the
communication with the server. Unfortunately, it’s not just due to policies. DMZs are
isolated as much as possible from internal networks, as they need to be as secure as they
can. Generally, it’s often easier and more accepted from a security point of view to initiate
a connection from the internal network to a DMZ. In this kind of scenario, the passive
proxy is very helpful. The passive proxy is almost a mirrored image of the active proxy
setup, as you can see in the following diagram:

Zabbix passive proxy data flow

Config. change
send

Iltems request

With this configuration, the Zabbix server will contact the proxy periodically to deliver the
configuration changes and to request the item values the proxy is holding.

This is the proxy configuration to enable the proxy you need to set:

ProxyMode=1

This parameter specifies the passive proxy, you don’t need to do anything else. Now, on
the server side, you need to set the following parameters:

e StartProxyPollers=

This will set the number of processes dedicated to the passive proxies

Note

The StartProxyPollers parameter should match the number of passive proxies you
have deployed.

® ProxyConfigFrequency=

This value expresses the frequency with which the server sends the configuration to
its proxy

e ProxyDataFrequency=

This is the interval parameter that expresses the number of seconds between two
consecutive requests to get the acquired metrics from the proxy

The item used to check a passive proxy’s availability is as follows:
zabbix[proxy, "proxy unique name'", lastaccess]
This is exactly the same as the active one.

The passive proxy enables us to gather monitoring data from otherwise closed and locked
down networks with a slightly increased overhead.

Note

You can mix as many active and passive proxies as you want in your environment. This
enables you to expand your monitoring solution to reach each part of the network and to
handle a large number of monitored objects. This approach keeps the architecture simple
and easy to manage with a strong central core and many simple, lightweight satellites.

If you would like to keep track of all the remaining items that the proxy needs to send, you
can set up the proxy to run this query against its database:

SELECT ((SELECT MAX(proxy_history.id) FROM proxy_history)-nextid) FROM ids
WHERE field_name='history_lastid'

Tip
Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

This query will return the number of items that the proxy still needs to send to the Zabbix

http://www.packtpub.com
http://www.packtpub.com/support

server. Considering that you are using MySQL as a database, you need to add the
following user parameter in the proxy agent configuration file:

UserParameter=zabbix.proxy.items.sync.remaining, mysql -u <your dbname
here> -p '<your password here>' -e 'SELECT ((SELECT MAX(proxy_history.id)
FROM proxy_history)-nextid) FROM ids WHERE field_name=history_lastid' 2>&1

Now, all you need to do is set an item on the Zabbix server side and you can see how your
proxy is freeing its queue.

Installing Zabbix

Zabbix, like all the other software, can be installed in two ways:

1. Download the latest source code and compile it.
2. Install it from packages.

Actually, there is another way to have a Zabbix server up and running: using the virtual
appliance. The Zabbix server appliance will not be considered in this book as Zabbix itself
defines this virtual appliance as not ready for productive environments. This virtual
appliance is not a production ready setup for many reasons:

e It is a monolith where everything is installed on the same server.

e There is no separation from the database layer and the presentation layer. This means
that each one of these components can affect the performance of the other.

e There is a clear warning on the website that warns us with this statement: The
Appliance is not intended for serious production use at this time.

On the other hand, the installation from packages gives us some benefits:

e The packages make it easy to upgrade and update
e Dependencies are automatically sorted out

The source code compilation also gives us some benefits:

e We can compile only the needed features
e We can build the agent statically and deploy on different Linux flavors
e Complete control on update

It’s quite usual to have different versions of Linux, Unix, and Microsoft Windows on a
large environment. This kind of scenario is quite diffused on a heterogeneous
infrastructure, and if we use the Zabbix’s agent distribution package on each Linux server,
we will have different versions of the agent for sure, and different locations for the
configuration files.

The more the things are standardized across our server, the easier it will become to
maintain and upgrade the infrastructure. The - -enable-static option gives us a way to
standardize the agent across different Linux versions and release, which is a strong
benefit. The agent, statically compiled, can be easily deployed everywhere and, for sure,
we will have the same location (and we can use the same configuration file apart from the
node name) for the agent and his/her configuration file. The only thing that might vary is
the start/stop script and how to register it on the right init runlevel, but at least the
deployment will be standardized.

The same kind of concept can be applied to the commercial Unix, bearing in mind to
compile it on the target environment so that the same agent can be deployed on different
Unix releases of the same vendor.

Installing from packages

The first thing to do to install Zabbix from repo is to add the yum repository to our list.
This can be done with the following command:

$ rpm -Uvh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-
2.4-1.el6.noarch.rpm

Retrieving http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-
2.4-1.el6.noarch.rpm

warning: /var/tmp/rpm-tmp.dsDB6k: Header V4 DSA/SHA1 Signature, key ID
79ea5ed4: NOKEY

Preparing.. HUHHHU BB BUBHBHBHBHHH R [100%]
1:zabbix-release HUHHHU R RYRUBHBHBHBH G H R [100%]

Once this is done, we can take advantage of all the benefits introduced by the package
manager and have the dependencies automatically resolved by yum.

To install the Zabbix server, you simply need to run:

$ yum install zabbix-server-mysql zabbix-agent zabbix-javagateway

Now, you have your server ready to start. We can’t start it now as we need to set up the
database, which will be done in the next heading, anyway, what you can do is set up the
start/stop runlevel for our zabbix_server and zabbix_agent daemons:

$ chkconfig --level 345 zabbix-server on
$ chkconfig --level 345 zabbix-agent on

Please double check if the previous command ran successfully with the following:

$ chkconfig --list | grep zabbix
zabbix-agent 0:off 1:0ff 2:0ff 3:on 4:on 5:o0n 6:o0ff
zabbix-server 0:off 1:off 2:0ff 3:on 4:on 5:o0n 6:0ff

Setting up a Zabbix agent

Now, as usually happens in a large server farm, it is possible that you have many different
variants of Linux. Here, if you can’t find the package for your distribution, you can even
think to compile the agent from scratch. The following are the steps for the same:

1.
2. Unpack the software.

3.

4. Run the following command: $./configure --enable-agent.

Download the source code from the Zabbix website.

Satisfy all the software dependencies, installing all the related -devel packages.

Tip
Here, you can statically link the produced binary with the - -enable-static option.

With this, the binary produced will not require any external library. This is really
useful to distribute the agent across different versions of Linux.

Compile everything with $ make.

Now, before you run $ make install, you can decide to create your own package to
distribute with ChecklInstall.

Creating a Zabbix agent package with CheckInstall
The advice is to not run make install, but use ChecklInstall to produce the required
package for your Linux OS from http://asic-linux.com.mx/~izto/checkinstall/.

Note

We can also use a prebuilt ChecklInstall; the current release is checkinstall-1.6.2-
20.2.1686.rpm on Red Hat / CentOS. The package will also need the rpm-build package:

rpm-build yum install
Also, we need to create the necessary directories:
mkdir -p ~/rpmbuild/{BUILD, RPMS, SOURCES, SPECS, SRPMS}

This software enables you to create a package for many different versions of the package
manager, namely, RPM, deb, and tgz.

Note

ChecklInstall will produce packages for Debian, Slackware, and Red Hat, helping us to
prepare the Zabbix’s agent package (statically linked) and distribute it around our server.

Now, we need to switch to the root account using $ sudo su - . Also, use the
checkinstall followed by these options:

$ checkinstall --nodoc --install=yes -y

If you don’t face any issue, you should get the following message:

khkhkhkkhkhkhkhkhkhkhhhkhkhkhkhhkhhhkhhhkhhhkhhhhhkhhhkkhhkhhkhhhhkhkhhhhkhhkhkkhkhhkkhkkikkk*k*%

Done. The new package has been saved to

/root/rpmbuild/RPMS/1i386/zabbix-2.4.0-1.1386.rpm

You can install it in your system anytime using:
rpm -i zabbix-2*.4.0-1.i386.rpm

khkhkhkhkkhkhkhkhkhkhkhhkkhkhhkhhkhhkhhhhkhkhkhkhkhhkhkhhkkhhkhhhhhkkhhkhkhkhkhhkhkhkkhkkhkikkk*k*%

Remember that the server binaries will be installed in <prefix>/sbin, utilities will be in
<prefix>/bin, and the main pages under the <prefix>/share location.

Tip
To specify a different location for Zabbix binaries, we need to use - -prefix on the
configure options (for example, - -prefix=/opt/zabbix).

http://asic-linux.com.mx/~izto/checkinstall/

Server configuration

For the server configuration, we only have one file to check and edit:
/etc/zabbix/zabbix_server.conf

All the configuration files are contained in the following directory:
/etc/zabbix/

All you need to change for the initial setup is the /etc/zabbix/zabbix_server.conf
configuration file and write the username/password and database name here.

Note

Please take care to protect the access to the configuration file with chmod 400
/etc/zabbix/zabbix_server.conf.

The default external scripts location is:
/usr/lib/zabbix/externalscripts

Also, the alert script directory is:
/usr/lib/zabbix/alertscripts

This can be changed by editing the zabbix_server.conf file.

The configuration on the agent side is quite easy; basically, we need to write the IP address
of our Zabbix server.

Installing a database

The database we will use on this book, as already explained, is MySQL.

Now, considering that you have a Red Hat server, the procedure to install MySQL from
the RPM repository is quite easy:

$ yum install mysql mysqgl-server
Now, you need to set up the MySQL service to start automatically when the system boots:

$ chkconfig --levels 235 mysqld on
$ /etc/init.d/mysqld start

Tip
Remember to set a password for the MySQL root user

To set a password for the root, you can run these two commands:

/usr/bin/mysqladmin -u root password 'new-password'
/usr/bin/mysqladmin -u root -h hostname-of-your.zabbix.db password 'new-
password'

Alternatively, you can run:

/usr/bin/mysql_secure_installation

This will also help you to remove the test databases and anonymous user data that was
created by default. This is strongly recommended for production servers.

Now, it’s time to create the Zabbix database. For this, we can use the following
commands:

$ mysql -u root -p

$ mysql> CREATE DATABASE zabbix CHARACTER SET UTFS8;

Query OK, 1 row affected (0.00 sec)

$ mysql> GRANT ALL PRIVILEGES on zabbix.* to 'zabbixuser'@'localhost'
IDENTIFIED BY 'zabbixpassword';

Query OK, 0 rows affected (0.00 sec)

$ mysql> FLUSH PRIVILEGES;

$ mysql> quit

Next, we need to restore the default Zabbix MySQL database files:

$ mysql -u zabbixuser -pzabbixpassword zabbix< /usr/share/doc/zabbix-
server-mysql-2.4.0/create/schema.sql

$ mysql -u zabbixuser -pzabbixpassword zabbix < /usr/share/doc/zabbix-
server-mysql-2.4.0/create/images.sql

$ mysql -u zabbixuser -pzabbixpassword zabbix < /usr/share/doc/zabbix-
server-mysql-2.4.0/create/data.sql

Now, our database is ready. Before we begin to play with the database, it’s important to do
some consideration about database size and heavy tasks against it.

Considering the database size

Zabbix uses two main groups of tables to store its data:

e History
e Trends

Now, the space consumed by these tables is influenced by:

e Items: This is the number of items you’re going to acquire
¢ Refresh rate: This is the mean average refresh rate of our items
e Space to store values: This depends on RDBMS

The space used to store data can vary due to the database, but we can resume the space
used by these tables in the following table:

Type of measure||Retention in days||Space required

History ||30 ||10.8 G |
Events ||1825 (5 years) 15.7 GB |
Trends ||1825 (5 years) ||26.7 GB |
Total ||NA ||53.2 GB |

This calculation is, of course, done considering the environment after 5 years of retention.
Anyway, we need to have an environment ready to survive this period of time and retain
the same shape that it had when it was installed. We can easily change the history and
trends retention policy per item. This means that we can create a template with items that
have a different history retention by default. Normally, the history is set to 30 days, but for
some kind of measure (such as in web scenarios) or other particular measures, we need to
keep all the values for more than a week. This permits us to change this value on each
item.

MySQL partitioning

Now that we are aware of how big our database will be, it’s easy to imagine that
housekeeping will be a heavy task and the time, CPU, and resource consumed by this one
will grow together with the database size.

Housekeeping is in charge to remove the outdated metrics from the database and the
information deleted by a user, and as we’ve seen the history, trends, and events tables are,
after some time, huge tables. This explains why the process is so heavy to manage.

The only way we can improve performances once we have reached this volume of data is
by using partitioning and disabling the housekeeper altogether.

Partitioning the history and trend tables will provide us with many major benefits:

e All history data in a table for a particular defined window time are self-contained in
its own partition. This allows you to easily delete old data without impacting the
database performance.

e When you use MySQL with InnoDB, and if you delete data contained in a table, the
space is not released. The space freed is marked as free, but the disk space consumed
will not change. When you use partition, and if you drop a partition, the space is
immediately freed.

¢ Query performance can be improved dramatically in some situations, in particular,
when there is heavy access to the table’s rows in a single partition.

e When a query updates a huge amount of data or needs access to a large percentage of
the partition, the sequential scan is often more efficient than the index usage with a
random access or scattered reads against this index.

Unfortunately, Zabbix is not able to manage the partitions. So, we need to disable
housekeeping, and use an external process to accomplish housekeeping.

What we need to have is a stored procedure that does all the work for us.

The following is the stored procedure:

DELIMITER $$
CREATE PROCEDURE “partition_maintenance (SCHEMA_NAME VARCHAR(32),
TABLE_NAME VARCHAR(32), KEEP_DATA_DAYS INT, HOURLY_INTERVAL INT,
CREATE_NEXT_INTERVALS INT)
BEGIN

DECLARE OLDER_THAN_PARTITION_DATE VARCHAR(16);

DECLARE PARTITION_NAME VARCHAR(16);

DECLARE LESS_THAN_TIMESTAMP INT,

DECLARE CUR_TIME INT,

Until here, we have declared the variable we need after. Now, on the next line, we will call
the stored procedure responsible to check whether a partition is already present and if not,
we will create them:

CALL partition_verify(SCHEMA_NAME, TABLE_NAME, HOURLY_INTERVAL);
SET CUR_TIME = UNIX_TIMESTAMP(DATE_FORMAT(NOW(), '%Y-%m-%d
00:00:00"));

IF DATE(NOW()) = '2014-04-01' THEN
SET CUR_TIME UNIX_TIMESTAMP (DATE_FORMAT (DATE_ADD(NOW(),
INTERVAL 1 DAY), '%Y-%m-%d 00:00:00'));
END IF;
SET @__interval = 1;
create_loop: LOOP
IF @ interval > CREATE_NEXT_INTERVALS THEN
LEAVE create_loop;
END IF;
SET LESS_THAN_TIMESTAMP = CUR_TIME + (HOURLY_INTERVAL * @__interval
* 3600);
SET PARTITION_NAME = FROM_UNIXTIME(CUR_TIME + HOURLY_INTERVAL *
(@__interval - 1) * 3600, 'p%Y%m%d%HOO');

Now that we have calculated all the parameters needed by the create_partition
procedure, we can run it. This stored procedure will create the new partition on the defined
schema:

CALL partition_create(SCHEMA_NAME, TABLE_NAME,
PARTITION_NAME, LESS_THAN_TIMESTAMP);
SET @__interval=@__interval+1;
END LOOP;
SET OLDER_THAN_PARTITION_DATE=DATE_FORMAT (DATE_SUB(NOW(), INTERVAL
KEEP_DATA_DAYS DAY), '%Y%m%d0000');

The section that follows is responsible to remove the older partitions, using the
OLDER_TAN_PARTITION_DATE procedure, which we have calculated on the lines before:

CALL partition_drop(SCHEMA_NAME, TABLE_NAME,
OLDER_THAN_PARTITION_DATE);
END$$
DELIMITER ,;

This stored procedure will be the core of our housekeeping. It will be called with the
following syntax:

CALL partition_maintenance('<zabbix_db_name>', '<table_name>"',
<days_to_keep_data>, <hourly_interval>, <num_future_intervals_to_create>)

The procedure works based on 1 hour intervals. Next, if you want to partition on a daily

basis, the interval will be 24 hours. Instead, if you want 1 hour partitioning, the interval
will be 1.

You need to specify the number of intervals that you want created in advance. For
example, if you want 2 weeks interval of future partitions, use 14. If your interval is 1 (for
hourly partitioning), then the number of intervals to create is 336 (24*14).

This stored procedure uses some other stores procedures:

e partition_create: This creates the partition for the specified table

e partition_verify: This checks whether the partition is enabled on a table, if not,
then create a single partition

e partition_drop: This drops partitions older than a timestamp

For all the details about these stored procedures, see Appendix A, Partitioning the Zabbix

Database.

Once you’ve created all the required stored procedures, you need to change two indexes to
enable them in order to be ready for a partitioned table:

mysql> Alter table history_text drop primary key, add index (id), drop
index history_text_2, add index history text_2 (itemid, id);

Query OK, 0 rows affected (0.49 sec)

Records: 0 Duplicates: 0 Warnings: 0

mysql> Alter table history_log drop primary key, add index (id), drop index
history_log_2, add index history_log_2 (itemid, id);

Query OK, 0 rows affected (2.71 sec)

Records: 0 Duplicates: 0 Warnings: 0

Once this is done, you need to schedule the partition_maintenance_all stored
procedure with a cron job. For more details about the partition_maintenance_all
procedure, please check the instructions contained in Appendix A, Partitioning the Zabbix
Database. The cron job needs to execute the following command:

mysql -h <zabbix_db_host> -u<zabbixuser> -p<zabbixpassword> zabbixdatabase
-e "CALL partition_maintenance_all('zabbix');"

Once this has been set, you need to bear in mind to disable the housekeeping for history
and trends. Verify that the Override item <trend/history> period Zabbix configuration is
checked for both history and trends. Here, you need to set the Data storage period (in
days) box for history and trends to the value you’ve defined in your procedure, our
example in Appendix A, Partitioning the Zabbix Database is of 28 and 730.

Installing a Zabbix proxy

Installation of the Zabbix proxy from packages is a quite simple task. Once you’ve added
the Zabbix repository, you only need to run the following command:

$ yum install zabbix-proxy-mysql
This will install the required packages:

Installation:

zabbix-proxy-mysql x86_64 2.4.0-1.el6 zabbix 390 k
Installing for dependencies:

zabbix-proxy x86_64 2.4.0-1.el6 zabbix 21 k

The Zabbix proxy installation is quite similar to the server one. Once you’ve installed the
server, you need to install MySQL, create the database, and import the DB schema:

$ mysql -u root -p

$ mysql> CREATE DATABASE zabbix CHARACTER SET UTFS;

Query OK, 1 row affected (0.00 sec)

$ mysql> GRANT ALL PRIVILEGES on zabbix.* to 'zabbixuser'@'localhost'
IDENTIFIED BY 'zabbixpassword';

Query OK, 0 rows affected (0.00 sec)

$ mysql> FLUSH PRIVILEGES;

$ mysgl> quit

Next, we need to restore the default Zabbix MySQL database files:

$ mysql -u zabbixuser -pzabbixpassword zabbix < /usr/share/doc/zabbix-
proxy-mysql-2.4.0/create/schema.sql

Now, we need to start the database, configure the proxy, and start the service. In this
example, we have considered to use a Zabbix proxy that relies on a MySQL with InnoDB
database. This proxy can be performed in two different ways:

e Lightweight (and then use SQLite3)
e Robust and solid (and then use MySQL)

Here, we have chosen the second option. In a large network environment where the proxy,
in case of issue, needs to preserve all the metrics acquired until the server acquires the
metrics, it’s better to reduce, at the minimum, the risk of data loss. Also, if you consider
this scenario in a large network environment, you most likely will have thousands of
subnetworks connected to the Zabbix server with all the possible network devices in-
between. Well, exactly, this is necessary to use a database that can prevent any data
corruptions.

Installing the WebGUI interface

The WebGUI interface will be done once more using the RPMs.

To install the web interface, you need to run the following command:

$ yum install zabbix-web-mysql

Yum will take care to resolve all the dependencies. Once you’re done, the process of this
component is quite easy: we need to open a web browser, point at the following URL:
http://your-web-server/zabbix, and follow the instructions.

On the standard Red Hat system, you simply need to change these parameters on your
/etc/php.ini file:

php_value max_execution_time 300
php_value memory_limit 128M
php_value post_max_size 16M
php_value upload_max_filesize 2M
php_value max_input_time 300

Also, set your time zone on the same file (for example, php_value date.timezone
Europe/Rome).

Now, it’s time to start up Apache, but before this, we need to check whether we have
SELinux enabled and on which mode? To check your SELinux status, you can run:

sestatus

SELinux status: enabled
SELinuxfs mount: /selinux
Current mode: permissive
Mode from config file: permissive
Policy version: 24

Policy from config file: targeted

Now, you need to check whether you have the httpd daemon enabled to use the network
with the following command:

getsebool httpd_can_network_connect
httpd_can_network_connect --> off

Most likely, you will have the same kind of result, then all we need to do is enable the
httpd_can_network_connect option using the next command with -P to preserve the
value after a reboot:

setsebool -P httpd_can_network_connect on
getsebool httpd_can_network_connect
httpd_can_network_connect --> on

Now, all that we still have to do is enable the httpd daemon and start our httpd server:

service httpd start
Starting httpd: [OK]

Next, enable the httpd server as a service:

chkconfig httpd on

We can check the change done with the next command:

chkconfig --1list httpd
httpd 0:off 1:off 2:0n 3:on 4:0n 5:0n 6:off

Once you’ve done this, you only need to follow the wizard, and in a few clicks, you will
have your web interface ready to start up.

Tip
If you know that the load against the web server will be high, due to a high number of

accounts that will access it, probably, it’s better to consider using Nginx.

Now, you can finally start your Zabbix server and the first entry in the
/var/log/zabbix/zabbix_server.log file will look something like the following code:

37909:20140925:091128.868 Starting Zabbix Server. Zabbix 2.4.0 (revision

48953).

37909:20140925:091128.868 ****** Enpabled features ******
37909:20140925:091128.868 SNMP monitoring: YES
37909:20140925:091128.868 IPMI monitoring: YES
37909:20140925:091128.868 WEB monitoring: YES
37909:20140925:091128.868 VMware monitoring: YES
37909:20140925:091128.868 Jabber notifications: YES
37909:20140925:091128.868 Ez Texting notifications: YES
37909:20140925:091128.868 ODBC: YES
37909:20140925:091128.868 SSH2 support: YES
37909:20140925:091128.868 IPv6 support: YES

37909:20140925:091128.868 I EEEEEEEEEEEEEEE R E R E R ERE R ERE RS
37909:20140925:091128.868 using configuration file:
/etC/ZabbiX/ZabbiX_Servel’.COhf******************************

Next, you can start to implement and acquire all the items critical for your network.

Summary

In this chapter, we covered a large number of components. We started with defining what
a large environment is. We also saw how the network setup can be designed and how it
can evolve within your infrastructure. We saw the heaviest task on the server side
(housekeeping) and how to avoid performance degradation due to this. We discussed
MySQL partitioning in-depth. We also briefly discussed the differences between active
and passive proxies; you will now be able to decide how to set them up and which one to
choose once you know your network topology. Also, we saw how to acquire some critical
metrics to monitor the Zabbix proxy connection and the amount of items that it still needs
to send us.

As you can see, we covered a lot of arguments in just one chapter; we did this because we
would like to use more space in the upcoming chapters. In the next chapter, we will
explore the different appliances and protocols at layer 2 and layer 3 of the ISO/OSI stack.
Also, you will see how to best extrapolate meaningful monitoring data from the collected
measure for the protocol layers 2 and 3.

Chapter 2. Active Monitoring of Your
Devices

Now that you have a working Zabbix setup, it’s time to take a look at your network and
figure out the components that you want to monitor, the kind of data you want to collect,
and the conditions under which you want to be notified about problems and state changes.

It would be impossible for any book on this topic to fully cover all the different kinds of
network appliances and topologies and all the different monitoring scenarios that a
network administrator might need as every environment has its own specific quirks that a
good monitoring solution has to account for. This chapter will offer you a few examples of
the different monitoring possibilities Zabbix can achieve by relying on different methods
and protocols. You’ll see how to query your network from the data link layer up to routing
and network flow using ICMP, SNMP, and log parsing facilities to collect your
measurements.

You’ll learn how to extract meaningful information from the data you gathered using
aggregated and calculated items and how to configure complex triggers that will alert you
about real network issues while minimizing uninteresting or nonrelevant data.

By the end of the chapter, you’ll have a good overview of Zabbix’s network monitoring
possibilities, and you’ll be ready to adapt what you learned for your specific requirements.
But let’s first have a quick overview of how Zabbix organizes monitoring data with hosts,
templates, items, and triggers.

Understanding Zabbix hosts

One of Zabbix’s great strengths is its flexibility when it comes to organizing monitoring
data. Even without considering its powerful templating and discovery features, which will
be covered in Chapter 4, Discovering Your Network, there is a lot that you can do with
standard hosts, items, and triggers. Here are a few tips on how you can use them
effectively.

Hosts and host groups

Zabbix hosts usually represent a single, specific box or appliance in your network. They
can also be a part of one or more host groups.

Host groups are very useful as they make it easy to navigate Zabbix’s interface, separating
hosts into categories and allowing you to organize and manage a huge amount of
appliances without having to deal with impossibly long lists of hostnames. The same host
can be part of different host groups, and this can be very useful as you might want, for
example, to have a group for all your routers, a group for all your switches, and a group
for every subnet you manage. So, a single router will be part of the routers group and all
the subnet groups it has an interface on, while a switch will be part of the switches group
and of the subnet it’s part of, and so on.

While this is certainly a good way to organize your hosts, both to visualize and to manage
your monitoring data, there are a couple of not-too-obvious pitfalls you should be aware of
if you decide to put the same host in multiple groups:

e (alculated items show aggregate monitoring data based on host group membership.
If you configure an aggregated item that uses more than one calculated item from
different host groups, you can end up using the same host’s data more than once,
introducing a significant error in your calculations.

e Actions are usually filtered based on host groups. This means that the same trigger
event could fire up more than one action if the host is part of more than one host
group, leading to potentially duplicate messages and alerts.

e User access permissions are host-group-based. This means that some users could be
able to see more hosts and monitoring data than they actually need to if a host ends
up in a host group they have access to.

This is by no means an attempt to discourage the practice of assigning multiple host
groups to the same host. Just be aware of the ramifications of such a practice and don’t
forget to take into consideration the added complexity when you configure your items,
actions, and access permissions.

Host interfaces

Each host is composed of a collection of items that represent the raw monitoring data, and
triggers, which represent Zabbix’s monitoring intelligence based on the data gathered. It’s
also composed of a series of interfaces that tell the Zabbix server or proxy how to contact
the host to collect the aforesaid monitoring data. Most network appliances have more than
one interface, so you would want to make sure that all hosts that represent routers,
firewalls, proxies, gateways, and whatnot, are listing all those appliances’ interfaces and
their addresses. The advantages are obvious:

e You’ll be able to quickly review what addresses are configured on a specific host
while looking at monitoring data

e You’ll be able to differentiate your checks by querying different addresses or ports of
the same host based on your needs

¢ Your maps and topologies will be more consistent with what’s actually deployed

Adding interfaces to a host is fairly straightforward. All you need to do is navigate to
Configuration | Hosts and then select the host you want to edit. The interfaces section is
in the main configuration tab, as shown in the following screenshot:

Host name | 11-1758-11
Visible name figld offices mouter
Groups |n groups Cither gnoups
[<] Discovered hosts =
Hype rasors
Linux servers
Templates
Virual machines
Zabbix servers
New group
fone A
Agent interfaces IP addrness DMS name Connect o Part Cefault
10.10.1.254 I-17EE-rl example . nel P NS 10050 E

1 172 16.7.254 4] IS 10050 ;j _Remove

1 192 168 1.254 IP DMS 10080 C‘ e move

Al

SHNMP interfaces i 192 168.1.254 IP DME 161 = Re mo
[+] Use bulk requests
Add
IMY interfaces Al
IPMI inte rfaces _-'- _I-:

As you can see in the above example, there are three agent interfaces that show all the
networks the router is connected to and just one SNMP interface. Agent interfaces are
used not only for Zabbix agent items, but also for simple and external checks. On the other
hand, you’ll use SNMP interfaces to send SNMP queries to your host. The preceding
example assumes that you’ll only use SNMP on the router’s interface that is connected to
a management network (192.168.1.0 in this example), while you’ll also use ICMP, TCP,
and external checks on its two production interfaces. Of course, you are free to configure
different IP addresses for Agent and SNMP interfaces depending on what protocols and
checks you plan to activate on which interfaces.

Host inventory

Having inventory data directly available in your monitoring solution has a lot of obvious
advantages when it comes to attaching useful information to your alerts and alarms.
Unfortunately, the more hosts you have to manage, the more essential it is to have up-to-
date inventory information, and the harder it is to maintain the aforesaid information in a
reliable and timely manner. Manually updating a host’s inventory data can quickly become
an impossible task when you have tens or hundreds of hosts to manage, and it’s not always
possible to write automated scripts that will do the job for you. Fortunately, Zabbix offers

an automatic inventory feature that can at least partially fill in inventory data based on
actual monitoring data. To activate this feature, first you’ll need to select Automatic in the
Host inventory tab of a host configuration page and then move to the items that you’ll use
to populate the inventory data.

When configuring an item, you should assign its data to a specific inventory field so that
the aforesaid field’s value will be set and automatically updated based on the item’s
measurements, as shown in the following screenshot:

Mame Device locaton
Type SHNMPZ agent
Key sysLocation
SNMPOID SNMPy2-MIB: sysLocation.0
SMMP community | [FSNMP_COMMUNITY}
Port
Type of information Character
Update interval (in sec) 3600
Flexible inervals

Interval Period Action

No flexible intenals defined

Mew flexible interwal Ineral (in sec) 50 Period | 1-7 0000-24:00 A
ri

Hiztory storage period [in days)

Showvalue Asis o vallue Mappings

New application

Applicatons | -hone- 'J
General |

Inte rfaces |

pulates host imveniory fiehd | Locaton j

Description The physical location of this node (e.g., welephone closel, Jd

flooe'). I the location is unknown, the value is the zenc-length
siring

Enabled [+]

As you can see in the preceding example, a host’s location inventory value will be
populated based on the corresponding SNMP query. This means that if you change a
device’s location information, that change will be reflected in Zabbix as soon as the item’s
value is polled on the device. Depending on the data available on the device, you’ll be
able to populate only a few inventory fields or most of them, while falling back on manual
updates of the fields that fall outside of your device’s reporting possibilities.

Speaking of items, let’s now focus on the different monitoring possibilities that Zabbix
items offer and how to apply them to your environment.

Going beyond Zabbix agents

There are certainly many advantages in using Zabbix’s own agents and protocol when it
comes to monitoring Windows and Unix operating systems or the applications that run on
them. However, when it comes to network monitoring, the vast majority of monitored
objects are network appliances of various kinds, where it’s often impossible to install and
run a dedicated agent of any type. This by no means implies that you’ll be unable to fully
leverage Zabbix’s power to monitor your network. Whether it’s a simple ICMP echo
request, an SNMP query, an SNMP trap, netflow logging, or a custom script, there are
many possibilities to extract meaningful data from your network. This section will show
you how to set up these different methods of gathering data, and give you a few examples
on how to use them.

Simple checks

Let’s start with the simplest case. At first glance, simple checks don’t look that interesting:
excluding all the VMware Hypervisor checks that are included in this category, simple
checks are reduced to a couple of generic TCP/IP connection checks and three ICMP echo
checks, as follows:

Check name Description

Icmpping This returns 1 if the host responds to an ICMP ping; 6 otherwise
Icmppingsec This returns the ICMP response time in seconds

Net.tcp.service

Icmppingloss ||This returns the percentage of lost ICMP ping packets |
||This returns 1 if the host accepts connections on a specified TCP port; 0 otherwise |

Net.tcp.service.perflIThis returns the number of seconds spent to obtain a connection on a specified TCP port

Generally speaking, these checks prove more useful as the distance between the
monitoring probe and the monitored host increases, both in terms of physical distance (a
geographical link to another city for example) and in terms of hops a packet has to go
through. This means that if you are interested in your network’s performance, it would
make sense to assign hosts with simple checks to Zabbix proxies that are not in the same
subnet, but are situated where they will mimic as closely as possible your actual network
traffic. Net. tcp.service is particularly useful from this point of view, not just to check
the status of the availability of specific services when you cannot use Zabbix agents, but
also to check general host availability across restrictive firewalls that block ICMP traffic.

Tip
In order to reduce network traffic and to make more efficient ICMP checks, Zabbix uses

fping instead of the regular ping when executing icmpping, icmppingloss, and
icmppingsec item checks.

Make sure you have fping installed on your Zabbix server and also on all the Zabbix
proxies that might need it. If you don’t have it, a simple yum install fping will usually
be enough for the Zabbix daemons to find it and use it.

While both net.tcp.service and net.tcp.service.perf do support some well-known
protocols, such as SSH, FTP, HTTP, and so on, these two items’ most useful option is
probably the one that allows you to perform a simple TCP handshake connection and
check whether a specific IP is reachable on a specific port. These kind of checks are useful
because, just like ICMP pings, they will mostly involve the network stack, reducing
application overhead to a minimum, thus giving you data that more closely matches your
actual network performance. On the other hand, unlike ICMP pings, they will allow you to
check for TCP port availability for a given host. Obvious use cases include making
lightweight service checks that will not impact very busy hosts or appliances too much,

and making sure that a given firewall is allowing traffic through.

A slightly less obvious use case is using one or more net.tcp.service items to make sure
that some services are not running on a given interface. Take for example, the case of a
border router or firewall. Unless you have some very special and specific needs, you’ll
typically want to make sure that no admin consoles are available on the external
interfaces. You might have double-checked the appliance’s initial configuration, but a
system update, a careless admin, or a security bug might change the aforesaid
configuration and open your appliance’s admin interfaces to a far wider audience than
intended. A security breach like this one could pass unobserved for a long time unless you
configure a few simple TCP/IP checks on your appliance’s external interfaces and then set
up some triggers that will report a problem if those checks report an open and responsive
port.

Let’s take the example of the router with two production interfaces and a management
interface shown in the section about host interfaces. If the router’s HTTPS admin console
is available on TCP port 8000, you’ll want to configure a simple check item for every
interface:

Item key |

Item name

management_https_console|lnet.tcp.service[https,192.168.1.254,8000]

zoneA_https_console

net.tcp.service[https,10.10.1.254,8000] |

zoneB_https_console net.tcp.service[https,172.16.7.254,8000]

All these checks will return 1 if the service is available, and 0 if the service is not
available. What changes is how you implement the triggers on these items. For the
management item, you’ll have a problem if the service is not available, while for the other
two, you’ll have a problem if the service is indeed available, as shown in the following
table:

Trigger name ||Trigger expression |

Management console down {it-1759-r1:net.tcp.service[http,192.168.1.254,8000].last()}=0

Console available from zone AJl{it-1759-r1:net.tcp.service[http,10.10.1.254,8000].last()}=1

Console available from zone B|l{it-1759-r1:net.tcp.service[http,172.16.7.254,8000].last()}=1

This way, you’ll always be able to make sure that your device’s configuration when it
comes to open or closed ports will always match your expected setup and be notified when
it diverges from the standard you set.

To summarize, simple checks are great for all cases where you don’t need complex
monitoring data from your network as they are quite fast and lightweight. For the same
reason, they could be the preferred solution if you have to monitor availability for
hundreds to thousands of hosts as they will impart a relatively low overhead on your

overall network traffic.

When you do need more structure and more detail in your monitoring data, it’s time to
move to the bread and butter of all network monitoring solutions: SNMP.

Keeping SNMP simple

The Simple Network Monitoring Protocol (SNMP) is an excellent, general purpose
protocol that has become widely used beyond its original purpose. When it comes to
network monitoring though, it’s also often the only protocol supported by many
appliances, so it’s often a forced, albeit natural and sensible, choice to integrate it into
your monitoring scenarios. As a network administrator, you probably already know all
there is to know about SNMP and how it works, so let’s focus on how it’s integrated into
Zabbix and what you can do with it.

First of all, we’ll need to talk about SNMP gets and SNMP traps in two different
discussions as they are implemented and used in different ways by Zabbix. The reason for
this separation is in the very nature of SNMP gets as opposed to SNMP traps. An SNMP
get represents a single, discrete piece of information that represents the current status of a
metric, and it’s not tied to any specific event. Whether it’s a counter with the total number
of bytes that passed through an interface, a Boolean value that will tell if a link is up or
down, or a string with an appliance’s location or contact information, an SNMP value will
be available at any moment, and it will be possible to poll it with an arbitrary frequency.

This maps nicely to Zabbix items. Just like SNMP get values, they also represent single,
discrete values that can be polled with arbitrary frequency. This makes it really
straightforward to use regular SNMP queries to populate Zabbix items since the only
things you have to worry about are the SNMP OID, the data type, and the community
string or authentication information. We’ll see a few examples in the next paragraph.

An SNMP trap represents a specific event that happens at a specific point in time. It might
represent a link state change, a reboot event, or a user login. In any case, you cannot query
the state of an SNMP trap; you just have to wait to receive one, and it will not represent a
single, discrete value but a change from one value to another. They resemble, in many
ways, Zabbix events instead of raw data. This complicates things a little since Zabbix
events are the result of evaluating triggers against collected data, while SNMP traps can
only enter Zabbix as item values, that is, as collected data. So we’ll need to resolve this
apparent mismatch in order to fully leverage the information contained in SNMP traps.
We’ll see how in a short while, but first let’s look at a few details concerning regular
SNMP queries executed from Zabbix.

Getting SNMP data into Zabbix

A Zabbix server usually comes with good SNMP support out of the box. Not only does it
support the querying protocol natively, but it also comes equipped with a number of
SNMP templates that can get you started in the right direction. This means that for most
devices you only have to link the Template SNMP Device template, and you’ll
immediately be able to get some basic information about it, as shown in the following
screenshot:

Template: Template SMMP Device Applications (2) Items () Triggers (0) Graphs (0) Screens (0) Discovery rules (1) Web scenarios (0)

Name + Triggers Key Interval History Trends Type

Template SNMP Generic: Device contact details sysContact 600 T SMNMPv2 agent
Te mplate SNMP Generic: Device description sysDescr 3600 T SHMPv2 agent
Template SNMP Generic: Device location sysLocation 3600 7 SNMPv2 agent
Template SMMP Generic: Device name syshame 3600 T SHNMPv2 agent
Template SNMP Generic: Device uptime sysLipTime [=1] ¥ 365 SMNMPv2 agent
Te mplate SNMP |nterfaces: Number of network interfaces ifNumber 3600 T 365 SNMPv2 agent

We’ve already seen how the Device location item can be used to populate a host’s
inventory location record, but there are a couple of other useful bits of information in the
above picture.

First of all, there’s a low-level discovery rule to explore. We’ll delve more deeply into
discovery rules in Chapter 4, Discovering Your Network, but for now, we’ll just see that
it’s about dynamically creating network interface items:

Item prototypes of Network interfaces
Displaying 1 to 8 of 8 found

« Template list Template: Template SNMP Device « Discovery list Discovery: Network interfaces [tem prototypes (8) Triooer prototypes (1) Graph prototypes (1) Host prototypes (0)

O Key Interval History Trends Type

D [ces: Admin status of inte rface {#SNMPVALUE}Y ifAdmin Status [f#SNMPVALUE] 60 7 365 SMMPv2 agent
O Template SMMP Interfaces: Alias of inte rface {#SNMPVAL LIE} it lias [{# SMMPVALLIE] 3600 T SMMPv2 agent
D Template SMMP Interfaces: Description of inte rface {#SNMPVALUE} ifDescr{#SMMPVALLUE] 3600 7 SMMPv2 agent
D Template SMMP Interfaces: Inbound errors on inte rface [#SMMPWVALLUE} iflnErrors[{#SMMPVALUE] 60 7 365 SMMPv2 agent
D aces: Incoming traffic on interface {#SNMPVALUEL iflnCetets [[# SMMPVALUEY] 60 7 365 SMMPv2 agent
D Template SMIP Infe rfaces: Operational status of inte rface {#SNMPVALLUE} ifOpe rStatus [{#SNMPVALUE] 60 7 365 SMMPv2 agent
D Template SMMP Inte rfaces: Qutbound errors on interface {#SMMPVALUE} ifOutErrors [{# SMMPVALLE] 60 7 365 SMNMPv2 agent
D Template SMMP Interfaces: Cutgoing traffic on inte rface {#SNMPVALLE} ifoutCetets [f# SMMPVALLUEY 60 7 365 SMMPv2 agent

For every interface, eight items will be created, including the interface name, operational
status, incoming and outgoing traffic, and so on. This means that the same template will be
useful for the basic monitoring of network appliances with any number of network
interfaces.

The second thing to notice, looking at both images, is the update interval, and history and
trend retention periods for the items. Zabbix tries to set some sensible defaults, but you’ll
probably need to update some of those values based on the number of monitored hosts you
have in your environment, your storage space availability, and the network load of your
monitoring traffic.

Note

Another parameter that is related to Zabbix’s performance is the initial (and minimum)
number of pollers that the server keeps active at any given time. If you find that your
polling queue is getting longer, you might want to increase the number of pollers in
zabbix_server.conf. The available default options are:

StartPollers=5
StartIPMIPollers=0
StartPollersUnreachable=1
StartTrappers=5
StartPingers=1
StartDiscoverers=1
StartHTTPPollers=1

e 6 o o o o o
H OH OHF OH HF OH H

Work your way up slowly, or you’ll just end up with unnecessary processes being created
when Zabbix is started.

If you have hundreds of hosts to monitor, and for every host, you collect tens of single
measurements every minute, you would reach a point where your Zabbix server’s network
load or CPU load will start to impact on the server’s performance, leading to delays in
item polling or dropped connections. If you cannot just upgrade to more powerful
hardware, you might have to tweak the polling interval of your templates so that they
strike a good balance between granularity of detail and performance.

A device’s name, contact details, description, location, and such like, will rarely change
once the device has been deployed, so it would be a waste to poll for those values every
hour (3,600 seconds). By changing the interval to 6 hours or even a day, you’ll
automatically reduce your network traffic related to essentially fixed information by a
factor of 6, up to 24.

Raising the polling interval for some of the interface counters can have an even more
dramatic impact on your system and network load. While you’ll probably want to check
the admin and operational status of an interface as often as possible—otherwise you run
the risk of not getting notified about possible problems in a timely manner—on the other
hand, you’ll probably be able to live with polling incoming and outgoing traffic and errors
every five minutes (300 seconds) instead of every minute. Your graphs will still be very
detailed, but your network will be much less flooded with SNMP requests. Keep in mind
that changes like these might not seem much when referred to a single host, but as the
number of your monitored objects grow, you can very quickly run up to hundreds or even
thousands of new monitoring values per second coming into your Zabbix server.

The same can be said when it comes to retention periods and storage space. In this case,
keep in mind that trends store about three values per hour (min, max and average) over the
time range specified, while history stores all values collected in the specified time range.
This means that based on your polling interval, it’s usually cheaper to extend a trend
retention value than a history one. This is, of course, valid only for numerical values as
string ones can’t really have trends, just history.

One last thing to notice in the above images is that the monitoring protocol for all items is
set to SNMPv2. Just like SNMPv1, SNMPv2 doesn’t offer real security for the monitoring
data that crosses the network between an appliance and the monitoring server: all traffic is
sent and received in the clear, and the SNMP community is just a string, easily parsable
from intercepted traffic. While it’s certainly true that a few network appliances don’t
support SNMPv3 because either they are too old or they are too simple, It’s also true that

the new version of the protocol has been around for quite a while now and a number of
appliances do support it. The main advantages of SNMPv3 are its authentication and
encryption capabilities. These can help make sure that all monitoring traffic is not bogus
or corrupted, and that it’s kept confidential from prying eyes. This is particularly important
if you need to monitor some hosts over a network link you have no real control over, such
as a WAN connection through a third-party provider. It would always be nice to use
SNMPv3 across your network, but in cases like these, you are strongly encouraged to do
so as there’s a real possibility that your traffic can be indeed intercepted and tapped into.

Let’s take the example of a Cisco router, and let’s see how to configure SNMPv3 on it
before moving on to the Zabbix side.

First of all, let’s create a monitoring group. This is used to define access to the device’s
MIBs. On the Cisco router, open a console session and go into configuration mode. Then
issue the following command:

Ri1(config)#snmp-server group MonitoringGroup v3 priv

The v3 keyword specifies that we want to use SNMPv3, while the priv keyword specifies
that we want to use both authentication and encryption. It’s possible to pass more options
to the preceding command in order to define an access list if you want to limit access to
specific MiBs, but we’ll keep things simple here and let our Zabbix probe access all MIBs.

Now that we have a group, we can create a user, as follows:

Ri1(config)#snmp-server user zabbix MonitoringGroup v3 auth sha zbxpass priv
aes 128 zbxpriv

As you can see, we assigned the Zabbix user to the previously created group and defined
the authentication and encryption passphrases. Take note of all these elements as you’ll
need to specify all of them on Zabbix’s side and they will need to match what you used
here. To summarize, here is what you’ll input later when configuring an SNMPv3 Zabbix
item:

Field Value
User zabbix
Authentication protocol |[sha |
Authentication passphrase|[zbxpass
Privacy protocol aes |
Privacy passphrase zbxpriv

Note

Please don’t use the passphrases shown here. These are intentionally weak, and we used
them for illustration purposes only.

This is all there is to it. Later, we’ll add some information about telling the appliance

where to send SNMP traps, but for now you’re ready to get SNMP values from your
appliance, so let’s focus on that for a while.

Finding the right OIDs to monitor

While Zabbix’s default SNMP templates will help you get started with basic monitoring,
you’ll soon find the need to poll your devices for more information. To do that, you’ll
need to know the OID of the metric you want to monitor as well as the data type it will
yield. A first option is to consult your vendor’s documentation on the device and find out
which MIBs and OIDs are exposed by the SNMP agent. Another, more interactive, option
is to find them using the snmpwalk utility and directly asking your device for them.

Note

If you don’t already have snmpwalk (and the other SNMP utilities for Linux) installed, you
can quickly do so with a simple command:

#yum install net-snmp-utils

OIDs are sent and received by SNMP agents and servers as dotted sequences of numbers.
Just like IP addresses, this is convenient for machine-to-machine communication, but hard
to read for humans. In order to make the most from the exploration of your device using
snmpwalk, make sure you have all the MIBs you need installed. MIBs essentially map
OIDs to readable and understandable descriptions of themselves. In other words, they take
output like this one:

INTEGER:
INTEGER:
INTEGER:
INTEGER: 5

STRING: lo

STRING: eth1l

STRING: tap0

STRING: bro

INTEGER: softwareLoopback(24)
INTEGER: ethernetCsmacd(6)
INTEGER: ethernetCsmacd(6)
INTEGER: ethernetCsmacd(6)
INTEGER: 16436

INTEGER: 1500

INTEGER: 1500

INTEGER: 1500

Gauge32: 10000000

Gauge32: 1000000000

Gauge32: 10000000

Gauge32: 0

STRING:

STRING: 0:c:29:24:15:50
STRING: 2:10:f7:72:77:50
STRING: 0:c:29:24:15:50
INTEGER: up(1)

INTEGER: up(1)

INTEGER: up(1)

INTEGER: up(1)

WN PR

RRRRPRRRPRRPRRPRERRRRRRRPRPRPRBRBRRBRRRRRRRRR
WWWWWWowowowowowewewewaewaowaowaowowowowwowowoewowowow

DO OO OO O

RRRRRRRRRRRRERRRRRRERRRRRRRBRRERRRR
NMNNNNNNMNNNNNNMNNNNNNMNNNNNNNNNNNNDN

RRRRRRRRRRRRERRRRRRRRRRRRBRRERRRRR
NNNMNNRNNNNRNRNNNNRNRNNNNRNNNNRNRNNNNRN
NNNNNNNNNRNNNNNRNNNNRNNNNNRNNNNN
FRRRRRRRRRRRRRRRRBRBRBRBRBRBRBRRERRERRERRRR
NNNNOOODOUNURNRARDRWWWWNNNNRRR R
NWNRUOWNFROWONROWNROWNROWNR O ®N R

R R RR
Wwww
o0 0o
R RRR
NNNN
RRRR
NNNN

1.8.1 = INTEGER: up(1)
1.8.2 = INTEGER: up(1)
1.8.3 = INTEGER: up(1)
1.8.5 = INTEGER: up(1)

Then, they turn it into a much more readable form:

IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:

:ifIndex.1 = INTEGER: 1

:ifIndex.2 = INTEGER: 2

:ifIndex.3 = INTEGER: 3

:ifIndex.5 = INTEGER: 5

:ifDescr.1 = STRING: lo

:ifDescr.2 = STRING: eth1l

:ifDescr.3 = STRING: tap0

:ifDescr.5 = STRING: bro0

:ifType.1 INTEGER: softwareLoopback(24)
:ifType.2 = INTEGER: ethernetCsmacd(6)
:ifType.3 = INTEGER: ethernetCsmacd(6)
:ifType.5 = INTEGER: ethernetCsmacd(6)
:ifMtu.1 = INTEGER: 16436

:ifMtu.2 = INTEGER: 1500

:ifMtu.3 = INTEGER: 1500

:ifMtu.5 = INTEGER: 1500

:ifSpeed.1 = Gauge32: 10000000

:ifSpeed.2 = Gauge32: 1000000000
:ifSpeed.3 = Gauge32: 10000000

:ifSpeed.5 = Gauge32: 0

:ifPhysAddress.1 = STRING:
:ifPhysAddress.2 = STRING: 0:c:29:24:15:50
:ifPhysAddress.3 = STRING: 2:10:f7:72:77:50
:ifPhysAddress.5 = STRING: 0:c:29:24:15:50
:ifAdminStatus.1 = INTEGER: up(1)
:ifAdminStatus.2 = INTEGER: up(1)
:ifAdminStatus.3 = INTEGER: up(1)
:ifAdminStatus.5 = INTEGER: up(1)
:ifOperStatus.1 = INTEGER: up(1)
:ifOperStatus.2 = INTEGER: up(1)
:ifOperStatus.3 = INTEGER: up(1)
:ifOperStatus.5 = INTEGER: up(1)

If you have the right MIBs, you won’t have to guess the meaning of each OID from its
value as most of the time, it will be clear enough from its name. To add a new MIB to
your SNMP tools, you have to obtain it from the vendor of your device and then install it
on your system. Vendors usually make their MIBs freely available, so you shouldn’t have
any problems finding them.

Here are some of the major vendors of MIB sources, compiled at the time of writing:

Vendor "hdIBs
Cisco ||http://www.cisco.Com/public/sw-center/netrngmt/cmtk/mibs.shtrnl|
Juniper ||http://www. juniper.net/techpubs/software/index mibs.html |

Barracuda networks

https://techlib.barracuda.com/search/go/global?q=MIB |

http://www.cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml
http://www.juniper.net/techpubs/software/index_mibs.html
https://techlib.barracuda.com/search/go/global?q=MIB

Note
A very useful resource is OIDView’s free MIB database that you can find here:

http://www.oidview.com/mibs/detail.html

At the time of writing this, the database had more than 7,000 MIBs, so chances are you’ll
be able to find a MIB for the most obscure network device you might have to monitor.

MIBs are plain text files, so if you have a compressed archive, you will need to unpack it
before you can install its contents. Once you have the plain text MIBS, it’s a simple matter
of copying them into /usr/share/snmp/mibs and then using the -m option to the SNMP
commands to specify which MIB you want to load in addition to the default ones.

Should your MIBs collection become too big and you wanted to organize them in different
directories, then you’ll need to tell your tools where to find them. You have two options:
either specify from the command line the directories you want your command to search
for MIBs, or put this information in a configuration file so that your commands always
know the MIBs’ location. The options are discussed as follows:

e The first option is useful if you’re just trying out a new MIB and seeing whether
that’s the one you need. Every Net-SNMP-based command will take a -m option that
you can use to specify a specific MIB to load from the mibs directory. Here’s a
command for example:

$snmpwalk -m +CISCO-STUN-MIB -v 3 -u zabbix -a SHA -A zbxpassword -1
AuthPriv -x AES -X privpassword 10.10.1.9

This command will use SNMPv3 to contact the SNMP agent at 16.10.1.9 with the
specified credentials and will load the CISCO-STUN-MIB that it will find in the
/usr/share/snmp/mibs directory, in addition to those already loaded as default.

e The second option is more permanent and involves editing (or creating, if it’s not
already there) the /etc/snmp/snmp.conf file. Just add a line with the list of
directories to search for mibs and another line that specifies which MIBs the
commands should actually load (in this case, we’ll load all of them), as follows:
mibdirs
/usr/share/snmp/mibs:/usr/share/snmp/mibs/cisco:/usr/share/snmp/mibs/ju

niper:/mnt/remote/shared_mibs/
mibs +ALL

As you can see, even if you keep your subdirectories in /usr/share/snmp/mibs, you’ll
have to specify each one you want automatically included. Once you have your MIBs
installed and loaded, you’ll be ready to fully explore your devices’ SNMP agents. To
perform a complete snmpwalk on a device can take quite a lot of time and produce a lot of
output depending on how many OIDs it exposes. A router can have thousands of them, so
it’s advisable to redirect the command’s output to a file so that you are able to reference it
and explore it at any time you want without having to perform a complete walk on the
device itself, as follows:

$snmpwalk -v 3 -u zabbix -a SHA -A zbxpassword -1 AuthPriv -x AES -X

http://www.oidview.com/mibs/detail.html

privpassword 10.10.1.9 > router-R1-snmp_baseline. txt

Another advantage of having the MIBs you need is that it’ll be easier to create new SNMP
items in Zabbix as you’ll be able to specify the string version of an OID and not only its
numerical value. Zabbix relies on the Net-SNMP library, so it will also reference any
MIBs installed in your system’s default directories.

So let’s see how you can use the output of snmpwalk to create new Zabbix items.

Mapping SNMP OIDs to Zabbix items

An SNMP value is composed of three different parts: the OID, the data type, and the value
itself. When you use snmpwalk or snmpget to get values from an SNMP agent, the output
looks like this:

SNMPv2-MIB: :sysObjectID.0® = OID: CISCO-PRODUCTS-MIB::cisco03640
DISMAN-EVENT-MIB: :sysUpTimeInstance = Timeticks: (83414) 0:13:54.14
SNMPv2-MIB: :sysContact.® = STRING:

SNMPv2-MIB: :sysName.0 = STRING: R1

SNMPv2-MIB: :sysLocation.® = STRING: Upper floor room 13

SNMPv2-MIB: :sysServices.0® = INTEGER: 78

SNMPv2-MIB: :sysORLastChange.® = Timeticks: (0) 0:00:00.00

STRING: c4:1:22:4:f2:f
STRING:

STRING: c4:1:1e:¢c8:0:0
INTEGER: up(1)

INTEGER: down(2)

IF-MIB: :ifPhysAddress.24
IF-MIB: :ifPhysAddress. 26
IF-MIB::ifPhysAddress.27
IF-MIB::ifAdminStatus.1
IF-MIB::ifAdminStatus.2

And so on.

The first part, the one before the = sign is, naturally, the OID. This will go into the SNMP
OID field in the Zabbix item creation page and is the unique identifier for the metric you
are interested in. Some OIDs represent a single and unique metric for the device, so they
are easy to identify and address. In the above excerpt, one such OID is DISMAN-EVENT -
MIB::sysUpTimeInstance. If you are interested in monitoring that OID, you’d only have
to fill out the item creation form with the OID itself and then define an item name, a data
type, and a retention policy, and you are ready to start monitoring it. In the case of an
uptime value, time-ticks are expressed in seconds, so you’ll choose a numeric decimal
data type. We’ll see in the next section how to choose Zabbix item data types and how to
store values based on SNMP data types. You’ll also want to store the value as is and
optionally specify a unit of measure. This is because an uptime is already a relative value
as it expresses the time elapsed since a device’s latest boot. There would be no point in
calculating a further delta when getting this measurement. Finally, you’ll define a polling
interval and choose a retention policy. In the following example, the polling interval is
shown to be 5 minutes (300 seconds), the history retention policy as 3 days, and the trend
storage period as one year. These should be sensible values as you don’t normally need to
store the detailed history of a value that either resets to zero, or, by definition, grows
linearly by one tick every second.

The following screenshot encapsulates what has been discussed in this paragraph:

SNMP OID

Context name

Pnivacy passphrase

Store value
Show value

MNew applcation

Name |uptime
Type | SNMFPv3 agent v
Key |snmp.sys.upbime

DISMAN-EVENT-MIB: :sysUpTimelnstance

Security name |zabbix
Secunty level | authPriv v
Authentication protocol MD5 SHA
Authentication passphrase |authprnv
Privacy protocol DES AES

privpassword

Port
Type of information | Numenc {(unsigned) ¥
Data type | Deamal ¥
Units | seconds
Use custom multiplier
Update interval (in sec) 300
Flexible intervals ppterval Period Action

MNo flexible intervals defined.

Mew flexible interval Interval (in sec) 50| Period | 1-7,00:00-24:00 Add
History storage period (in days) 3
Trend storage period (in days) 365

I=
[t
n

A5 15

Applications |=MNones
General
Populates host inventory field | -None- v

Remember that the item’s key value still has to be unique at the host/template level as it
will be referenced to by all other Zabbix components, from calculated items to triggers,
maps, screens, and so on. Don’t forget to put the right credentials for SNMPv3 if you are
using this version of the protocol.

Many of the more interesting OIDs, though, are a bit more complex: multiple OIDs can be
related to one another by means of the same index. Let’s look at another snmpwalk output
excerpt:

IF-MIB: :ifNumber.® = INTEGER: 26
IF-MIB::ifIndex.1 = INTEGER: 1
IF-MIB::ifIndex.2 = INTEGER: 2
IF-MIB::ifIndex.3 = INTEGER: 3

1 STRING: FastEthernet0/0

IF-MIB: :ifDescr.

IF-MIB:
IF-MIB:

IF-MIB:
IF-MIB:
IF-MIB:

IF-MIB:
IF-MIB:
IF-MIB:

IF-MIB:
IF-MIB:
IF-MIB:

IF-MIB:
IF-MIB:
IF-MIB:

IF-MIB:
IF-MIB:
IF-MIB:

IF-MIB:
IF-MIB:
IF-MIB:

IF-MIB:
IF-MIB:
IF-MIB:

IF-MIB:
IF-MIB:
IF-MIB:

IF-MIB:
IF-MIB:
IF-MIB:

IF-MIB:
IF-MIB:
IF-MIB:

IF-MIB:
IF-MIB:
IF-MIB:

:ifDescr.
:ifDescr.

:ifType.1
:ifType.2
:ifType.3

:ifMtu.1
:ifMtu.2
:ifMtu.3

2
3

=S
=S

TRING: Serial06/0
TRING: FastEthernet6/1

INTEGER: ethernetCsmacd(6)
INTEGER: propPointToPointSerial(22)
INTEGER: ethernetCsmacd(6)

INTEGER: 1500
INTEGER: 1500
INTEGER: 1500

:ifSpeed.1 = G
:ifSpeed.2 = 6
:ifSpeed.3 = G

:ifoperStatus.
:ifOoperStatus.
:ifoperStatus.

:ifLastChange.
:ifLastChange.
:ifLastChange.

:ifInOctets.1
:ifInOctets.2
:ifInOctets.3

:ifInErrors.1
:ifInErrors.2
:ifInErrors.3

:ifoutOctets.1
:ifoutOctets.2
:ifoutOctets.3

a
a
a

:ifPhysAddress.
:ifPhysAddress.
:ifPhysAddress.

:ifAdminStatus.
:ifAdminStatus.
:ifAdminStatus.

WN PR

WN PR
nmnn

u
u
u

1
2
3

Y

w

ge32: 10000000
ge32: 1544000
ge32: 10000000

STRING: c4:1:1e:¢c8:0:0
STRING:
STRING: c4:1:1e:c8:0:1

INTEGER: up(1)
INTEGER: down(2)
INTEGER: down(2)

INTEGER: up(1)
INTEGER: down(2)
INTEGER: down(2)

Timeticks: (1738) 0:00:17.38
Timeticks: (1696) 0:00:16.96
Timeticks: (1559) 0:00:15.59

Counter32: 305255
Counter32: 0
Counter32: 0

:ifInDiscards.1 = Counter32: 0
:ifInDiscards.2 = Counter32: 0
:ifInDiscards.3 = Counter32: 0

Counter32: 0
Counter32: 0
Counter32: 0

Counter32: 347968
Counter32: 0
Counter32: 0

As you can see, for every network interface, there are several OIDs, each one detailing a
specific aspect of the interface: its name, its type, whether it’s up or down, the amount of
traffic coming in or going out, and so on. The different OIDs are related through their last
number, the actual index of the OID. Looking at the preceding excerpt, we know that the
device has 26 interfaces, of which we are showing some values for just the first three. By
correlating the index numbers, we also know that interface 1 is called FastEthernet0/0,
its MAC address is c4:1:1e:c8:0:0, the interface is up and has been up for just 17

seconds, and some traffic already went through it.

Now, one way to monitor several of these metrics for the same interface is to manually
correlate these values when creating the items, putting the complete OID in the SNMP
OID field, and making sure that both the item key and its name reflect the right interface.
This process is not only prone to errors during the setup phase, but it could also introduce
some inconsistencies down the road. There is no guarantee, in fact, that the index will
remain consistent across hardware or software upgrades or even across configurations
when it comes to more volatile states like the number of VLANS or routing tables instead
of network interfaces. Fortunately Zabbix provides a feature, called dynamic indexes, that
allows you to actually correlate different OIDs in the same SNMP OID field so that you
can define an index based on the index exposed by another OID.

This means that if you want to know the admin status of FastEthernet0/0, you don’t
need to find the index associated with FastEthernet©/0 (in this case it would be 1) and
then add that index to IF-MIB: : ifAdminStatus of the base OID, hoping that it won’t ever
change in the future. You can instead use the following code:

IF-MIB: :ifAdminStatus["index", "IF-MIB::ifDescr", "FastEthernet0/0"]

Upon using the preceding code in the SNMP OID field of your item, the item will
dynamically find the index of the IF-MIB::ifDescr OID where the value is
FastEthernet®/0 and append it to IF-MIB::ifAdminStatus in order to get the right status
for the right interface.

If you organize your items this way, you’ll always be sure that related items actually show
the right related values for the component you are interested in and not those of another
one because things changed on the device’s side without your knowledge. Moreover, we’ll
build on this technique to develop low-level discovery of a device as we’ll see in Chapter
4, Discovering Your Network.

You can use the same technique to get other interesting information out of a device.
Consider, for example, the following excerpt:

ENTITY-MIB: ::entPhysicalVendorType.1
MIB: :cevChassis3640

ENTITY-MIB: :entPhysicalVendorType.2
MIB: :cevContainerSlot

ENTITY-MIB: :entPhysicalVendorType.3
MIB: :cevCpu37452fe

OID: CISCO-ENTITY-VENDORTYPE-OID-

OID: CISCO-ENTITY-VENDORTYPE-OID-

OID: CISCO-ENTITY-VENDORTYPE-OID-

ENTITY-MIB: :entPhysicalClass.1
ENTITY-MIB: :entPhysicalClass.?2
ENTITY-MIB: :entPhysicalClass.3

INTEGER: chassis(3)
INTEGER: container(5)
INTEGER: module(9)

ENTITY-MIB: :entPhysicalName.1
ENTITY-MIB: :entPhysicalName.2
ENTITY-MIB: :entPhysicalName.3
Ethernet on Slot 0

STRING: 3745 chassis
STRING: 3640 Chassis Slot 0
STRING: c3745 Motherboard with Fast

ENTITY-MIB: :entPhysicalHardwareRev.1
ENTITY-MIB: :entPhysicalHardwareRev.2

STRING: 2.0
STRING:

ENTITY-MIB: :entPhysicalHardwareRev.3 = STRING: 2.0

STRING: FTX0945WOMY
STRING:
STRING: XXXXXXXXXXX

ENTITY-MIB: :entPhysicalSerialNum.1
ENTITY-MIB: :entPhysicalSerialNum.2
ENTITY-MIB: :entPhysicalSerialNum.3

It should be immediately clear to you that you can find the chassis’s serial number by
creating an item with:

ENTITY-MIB: :entPhysicalSerialNum["index", "ENTITY-MIB::entPhysicalName",
"3745 chassis"]

Then you can specify, in the same item, that it should populate the Serial Number field of
the host’s inventory. This is how you can have a more automatic, dynamic population of
inventory fields.

The possibilities are endless as we’ve only just scratched the surface of what any given
device can expose as SNMP metrics. Before you go and find your favorite OIDs to
monitor though, let’s have a closer look at the preceding examples, and let’s discuss data

types.
Getting data types right

We have already seen how an OID’s value has a specific data type that is usually clearly
stated with the default snmpwalk command. In the preceding examples, you can clearly see
the data type just after the = sign, before the actual value. There are a number of SNMP
data types—some still current and some deprecated. You can find the official list and
documentation in RFC2578 (http://tools.ietf.org/html/rfc2578), but let’s have a look at the
most important ones from the perspective of a Zabbix user:

e Store value as is

SNMP
type Description Suggested Zabbix item type and options
. . . e Numeric unsigned, decimal
This can have negative values and is usually used for o
INTEGER) 8 y e Store value as is
enumerations . .
e Show with value mappings
L . . . e Text
STRING This is a regular character string and can contain new lines .
e Store value as is
- N . e Character
01D |ThlS is an SNMP object identifier

IpAddress [|IPv4 only e Store value as is

e Numeric unsigned, decimal
e Store value as delta (speed per
second)

Counter32|IThis includes only non-negative and nondecreasing values

e Numeric unsigned, decimal

Gauge32 |IThis includes only non-negative values, which can decrease .
e Store value as is

“ e Character

http://tools.ietf.org/html/rfc2578

Counter64IThis includes non-negative and nondecreasing 64-bit values Numeric unsigned, decimal
Store value as delta (speed per

second)

Numeric unsigned, decimal

TimeTicks [IThis includes non-negative, nondecreasing values .
Store value as is

First of all, remember that the above suggestions are just that—suggestions. You should
always evaluate how to store your data on a case-by-case basis, but you’ll probably find
that in many cases those are indeed the most useful settings.

Moving on to the actual data types, remember that the command line SNMP tools by
default parse the values and show some already interpreted information. This is especially
true for Timeticks values and for INTEGER values when these are used as enumerations. In
other words, you see the following from the command line:

VRRP-MIB: :vrrpNotificationCntl.0 INTEGER: disabled(2)

However, what is actually passed as a request is the bare OID:

1.3.6.1.2.1.68.1.2.0
The SNMP agent will respond with just the value, which, in this case, is the value 2.

This means that in the case of enumerations, Zabbix will just receive and store a number
and not the string disabled(2) as seen from the command line. If you want to display
monitoring values that are a bit clearer, you can apply value mappings to your numeric
items. Value maps contain the mapping between numeric values and arbitrary string
representations for a human-friendly representation. You can specify which one you need
in the item configuration form, as follows:

Authentication passphrase

APC Battery Replacement Status

Privacy protocol
APC Battery Status
Privacy passphrase
Dell Open Manage System Status
Port

Haost status
Type of mformation

1 t Susta &
Data type HP Insight System Status

Units | Maintenance status

Use custom multipher | Serwice state

Update interval (in sec) | SNMP device status (hrDeviceStatus

Flexible intervals | gymp interface status (fAdminStatus) Action

SNMP interface status (ifOperStatus)

VMware status

MNew flexible interval p0-24:00

History storage penod (in days)

Trend storage period (in days)

VMware VirtualMachinePowerState
Windows service state

Zabbix agent ping status

As is ¥ | show v

alus mappings

Zabbix comes with a few predefined value mappings. You can create your own mappings
by following the show value mappings link and, provided you have admin roles on
Zabbix, you’ll be taken to a page where you can configure all value mappings that will be
used by Zabbix. From there, click on Create value map in the upper-right corner of the
page, and you’ll be able to create a new mapping. Not all INTEGER values are
enumerations, but those that are used as such will be clearly recognizable from your
command-line tools as they will be defined as INTEGER values but will show a string label
along with the actual value, just as in the preceding example.

On the other hand, when they are not used as enumerations, they can represent different
things depending on the context. As seen in the previous paragraph, they can represent the
number of indexes available for a given OID. They can also represent application or
protocol-specific values, such as default MTU, default TTL, route metrics, and so on.

The main difference between gauges, counters, and integers is that integers can assume
negative values, while gauges and counters cannot. In addition to that, counters can only
increase or wrap around and start again from the bottom of their value range once they
reach the upper limits of it. From the perspective of Zabbix, this marks the difference in
how you’ll want to store their values.

Gauges are usually employed when a value can vary within a given range, such as the
speed of an interface, the amount of free memory, or any limits and timeouts you might
find for notifications, the number of instances, and so on. In all of these cases, the value
can increase or decrease in time, so you’ll want to store them as they are because once put
on a graph, they’ll draw a meaningful curve.

Counters, on the other hand, can only increase by definition. They are typically used to
show how many packets were processed by an interface, how many were dropped, how
many errors were encountered, and so on. If you store counter values as they are, you’ll
find in your graphs some ever-ascending curves that won’t tell you very much for your
monitoring or capacity planning purposes. This is why you’ll usually want to track a
counter’s amount of change in time, more than its actual value. To do that, Zabbix offers
two different ways to store deltas or differences between successive values.

The delta (simple change) storage method does exactly what it says: it simply computes
the difference between the currently received value and the previously received one, and
stores the result. It doesn’t take into consideration the elapsed time between the two
measurements, nor the fact that the result can even have a negative value if the counter
overflows. The fact is that most of the time, you’ll be very interested in evaluating how
much time has passed between two different measurements and in treating correctly any
negative values that can appear as a result.

The delta (speed per second) will divide the difference between the currently received
value and the previously received one by the difference between the current timestamp
and the previous one, as follows:

(value - prev_value)/(time - prev_time)

This will ensure that the scale of the change will always be constant, as opposed to the
scale of the simple change delta, which will vary every time you modify the update
interval of the item, giving you inconsistent results. Moreover, the speed-per-second delta
will ignore any negative values and just wait for the next measurement, so you won’t find
any false dips in your graph due to overflowing.

Finally, while SNMP uses specific data types for IP addresses and SNMP OIDs, there are
no such types in Zabbix, so you’ll need to map them to some kind of string item. The
suggested type here is character as both values won’t be bigger than 255 characters and
won’t contain any newlines.

String values, on the other hand, can be quite long as the SNMP specification allows for
65,535-character-long texts; however, text that long would be of little practical value.
Even if they are usually much shorter, string values can often contain newlines and be
longer than 255 characters.

Consider, for example, the following Sysbescr OID for this device:

NMPv2-MIB::sysDescr.0® = STRING: Cisco IOS Software, 3700 Software (C3745-
ADVENTERPRISEK9_SNA-M), Version 12.4(15)T14, RELEASE SOFTWARE (fc2)AM
Technical Support: http://www.cisco.com/techsupport/M

Copyright (c) 1986-2010 by Cisco Systems, Inc.”M

Compiled Tue 17-Aug-10 12:56 by prod_rel_tea

As you can see, the string spans multiple lines, and it’s definitely longer than 255
characters. This is why the suggested type for string values is text as it allows text of
arbitrary length and structure. On the other hand, if you’re sure that a specific OID value
will always be much shorter and simpler, you can certainly use the character data type
for your corresponding Zabbix item.

Now, you are truly ready to get the most out of your devices’ SNMP agents as you are now
able to find the OID you want to monitor and map them perfectly to Zabbix items, down
to how to store the values, their data types, with what frequency, and with any value
mapping that might be necessary.

It’s now time to explore the other aspect of SNMP: traps.

SNMP traps

SNMP traps are a bit of an oddball when compared to all the other Zabbix item types.
Unlike other items, SNMP traps do not report a simple measurement, but an event of some
type. In other words, they are the result of some kind of check or computation made by the
SNMP agent and sent over to the monitoring server as a status report. An SNMP trap can
be issued every time a host is rebooted, an interface is down, a disk is damaged, or a UPS
has lost power and is keeping servers up using its battery.

This kind of information contrasts with Zabbix’s basic assumption that an item is a simple
metric not directly related to a specific event. On the other hand, there’s no other way to
be aware of certain situations if not through an SNMP trap either because there are no
related metrics (consider, for example, the event the server is being shut down) or because
the appliance’s only way to convey its status is through a bunch of SNMP objects and
traps.

So traps are of relatively limited use to Zabbix as you can’t do much more than build a
simple trigger out of every trap and then notify about the event (not much point in
graphing a trap or building calculated items on it). Nevertheless, they might prove
essential for a complete monitoring solution.

To manage SNMP traps effectively, Zabbix needs a couple of helper tools: the snmptrapd
daemon to actually handle connections from the SNMP agents and some kind of script to
correctly format every trap and pass it to the Zabbix server for further processing.

Snmptrapd

If you have compiled SNMP support into the Zabbix server, you should already have the
complete SNMP suite installed, which contains the SNMP daemon and the SNMP trap
daemon along with the utilities we have used in the previous section.

Just as the Zabbix server has a bunch of daemon processes that listen on TCP port 10051
for incoming connections (from agents, proxies, and nodes), snmptrapd is the daemon
process that listens on UDP port 162 for incoming traps coming from remote SNMP
agents.

Once installed, snmptrapd reads its configuration options from an snmptrapd.conf file
that can be usually found in the /etc/snmp/ directory. The bare minimum configuration
for snmptrapd requires the definition of a user and a privacy level for SNMP v3, as
follows:

createUser zbxuser SHA auth AES priv
authUser log, execute,net zbxuser

Tip
The above configuration will enable snmptrapd to receive SNMPv3 INFORM packets.
These are just like regular SNMP traps, with two differences: the first one is that while an

agent won’t expect a response after sending a trap, INFORM packets are acknowledged, so
snmptrapd will send a response for every trap received. But the most important difference

is that with INFORM packets, the authoritative EnginelD will be that of the receiving
party and not the sending party as with regular traps. This means that you’ll have to
specify your server’s EnginelD to every device that will send SNMPv3 INFORM packets.
Since you’ll have to configure them to send packets to the server anyway, this won’t mean
too much work. Many agents automatically discover a peer’s EnginelD before sending an
INFORM, but if you need to set it yourself, you can discover your server’s EnginelD
using snmpget and asking for the snmpEngineID.o OID.

If you want to use regular SNMP traps, you’ll have to insert a new createUser line for
every agent that will send traps to the server, with each one specifying the correct
EnginelD of the agent sending traps.

With this minimal configuration, snmptrapd will limit itself to log the trap to syslog.
While it could be possible to extract this information and send it to Zabbix, it’s easier to
tell snmptrapd how it should handle traps. While the daemon has no processing
capabilities of its own, it can execute any command or application either using the
trapHandle directive, or leveraging its embedded Perl functionality. The latter is more
efficient as the daemon won’t have to fork a new process and wait for its execution to
finish, so it’s the recommended one if you plan to receive a significant number of traps.
Just add the following line to snmptrapd.conf:

perl do "/usr/local/bin/zabbix_trap_receiver.pl";

Tip

You can get the zabbix_trap_receiver script from the Zabbix sources. It’s located in
misc/snmptrap/zabbix_trap_receiver.pl.

Be sure to check that you also have the Net-SNMP Perl module installed. If you need it, a
simple yum install net-snmp-perl command should take care of everything.

Once restarted, the snmptrapd daemon will execute the Perl script you specified to process
every trap received, translating it into a format that can be easily parsed by the Zabbix
server. In the following section, we’ll see how an SNMP trap is translated and used by
Zabbix.

Transforming a trap into a Zabbix item

The Perl script included in the Zabbix distribution works as a translator from an SNMP
trap format to a Zabbix item measurement. For every trap received, it will format it
according to the rules defined in the script and will output the result in a log file. By
default, the log file is called /tmp/zabbix_traps.tmp. You need to make sure that the
same file is read by Zabbix by setting the following parameters in
/etc/zabbix/zabbix_server.conf:

Option: StartSNMPTrapper
If 1, SNMP trapper process is started.

Range: 0-1

#

#

Mandatory: no
#

Default:

StartSNMPTrapper=1

Option: SNMPTrapperFile

Temporary file used for passing data from SNMP trap daemon to the
server.
Must be the same as in zabbix_trap_receiver.pl or SNMPTT

configuration file.
SNMPTrapperFile=/tmp/zabbix_traps.tmp

The log file will have a format similar to the following example:

03:47:10 2014/12/09 ZBXTRAP 127.0.0.1

PDU INFO:
notificationtype TRAP
version 0
receivedfrom UDP: [127.0.0.1]:34373->[127.0.0.1]
errorstatus 0
messageid 0
community public
transactionid 3
errorindex 0
requestid 0

VARBINDS:

DISMAN-EVENT-MIB: :sysUpTimeInstance type=67 value=Timeticks: (55)
0:00:00.55

SNMPv2-MIB: :snmpTrapOID.0O type=6 value=0ID: IF-MIB::linkDown.0.33

IF-MIB: :1linkDown type=4 value=Hex-STRING: E2 80 9C 54 45
53 54 4D 45 4E 4F 57 E2 80 9D

SNMP-COMMUNITY-MIB: :snmpTrapCommunity.® type=4 value=STRING: "public"

SNMPv2-MIB: :snmpTrapEnterprise.0@ type=6 value=0ID: IF-MIB::linkDown

The ZBXTRAP followed by the IP address will mark the start of a new log stanza. The
rest of the log will contain all details about the trap, so you’ll be able to act on any of
those.

The Zabbix server will in turn monitor the aforesaid log file and process every new line as
an SNMP trap item, basically matching the content of the log to any trap item defined for
the relevant host.

As you’ve already seen, the first part of the log line is used by the Zabbix trap receiver to
match a trap with its corresponding host. The rest is matched to the aforesaid host’s SNMP
trap item’s regexp definitions and its content added to every matching item’s history of
values. This means that if you wish to have a 1inkDown trap item for a given host, you’ll
need to configure an SNMP trap item with an snmptrap["1inkDown"] key, as follows:

NMame Link Down trap
Type SNMP trap r
Key snmptrap[linkDown] Select
Host interface | 127.0.0.1 : 161
Type of information Log
History storage period (in days) 90 Overridden by global housekeeping settings (90 days)
Log time format hh:mm:ss yyyy/MM/dd
Mew application

Applications =MNane-
CPU
Filesystems
General
ICMpP
Memory

You might need to make sure that the log time format you specify in the item’s
configuration will match the one used by the Perl script. You’ll also have to check that the
host’s interface will match the one logged by snmptrapd because it’s the one piece of data
Zabbix will use to match traps to hosts.

From now on, you’ll be able to see the contents of the trap in the item’s data history.

Moving on from SNMP, there are still other data sources that you can rely on to get
monitoring data into Zabbix; for the purposes of this book, the most interesting ones are
log files. Compared to SNMP, they can be tricky to work with, but they do have their uses,
so let’s explore them for a while.

Getting netflow from the devices to the monitoring server

Netflow is a protocol originally developed by Cisco to collect and monitor statistics of
network traffic on a device. After the initial release, many vendors started providing their
own implementation of the protocol. In 2008 IETF standardized netflow and published
Internet Protocol Flow Information eXport (IPFIX) based on netflow v9 with some
extensions. However, netflow somehow remains the existing name of the protocol in fact
but not necessarily by legal right, so that’s the one we’ll use here.

A netflow record contains information about a single network flow. A flow is a sequence
of packets that share some common properties:

[P protocol

Source IP address

Source port (for TCP and UDP)
Destination IP address

Destination port (for TCP and UDP)
Input interface

Type of service

For each flow, a record exposes many different values, which change with netflow

versions and implementations. Here are the most common ones:

Input interface of the device
Output interface of the device
Flow start time

Flow end time

Number of bytes in the flow
Number of packets in the flow
Source IP address

Source IP port

Source IP mask

Destination IP address
Destination IP port
Destination IP mask

ICMP type and code

TCP flags

IP address of the immediate next-hop

It should be immediately clear to you that this type of information can be extremely useful
to a network administrator as it allows you to build a picture of all the traffic traversing
your network. It can also be used to identify anomalous traffic and traffic to and from IP
addresses or ports that should not be there, or as forensic evidence after an incident.
Moreover, it can be used as a source for capacity-planning analysis to identify bottlenecks
in your network, periods of peak use, and top talkers among your servers and devices.

Finally, as we were explaining previously, it’s a good candidate for a Zabbix log item as
flow data is useful even if it is not directly related to the host that generated it (even if it’s
still useful to track that piece of information whenever possible).

So, let’s see how to get netflow data into Zabbix.

First of all, you’ll have to configure your device to send flow data to a server. In the case
of a Cisco device, here are the configuration commands that you need to issue (remember
to substitute all references to the example Zabbix server with the real ones that apply to
your environment):

Ri(config)#ip flow-export destination 192.168.234.131 9995
Ri(config)#ip flow-export version 9

Ri1(config)#interface f0/0

Ri(config-if)#ip flow ingress

Ri(config-if)#ip flow egress

Rl(config-if)#exit

In the first line, we specify the IP address of our Zabbix server and the UDP port the
device should send netflow information to.

The second line sets the netflow version.

In the third line, we go into interface f0/0 mode. Please note that you’ll have to explicitly
enable netflow for every interface you are interested in. This is usually not a problem

because if you configure netflow on the right interfaces of your routers, you’ll see most, if
not all of your traffic anyway; you won’t need to enable netflow on every interface of
every network device you have.

The fourth line enables netflow monitoring for incoming traffic on interface fo/0, while
the fifth line enables netflow monitoring for outgoing traffic on the same interface. If you
want to enable netflow on other interfaces, you’ll need to repeat lines 3 to 5 for every
interface you are interested in.

Repeat the whole process for all the routers you want to get flow information from, and
once you are done, you are ready to turn to your Zabbix server.

Receiving netflow data on your server

To actually receive and process netflow packets on a server, you need a daemon that will
listen on a specified UDP port, and that will understand the netflow protocol. On Linux,
such daemons and associated tools are contained in the nfdump package.

Nfdump is a collection of tools that will enable you to capture netflow data, store it on
disk, filter it, and analyze it. The most important components are:

e nfcapd: This is the daemon component that listens for incoming netflow data and
stores it on disk in binary format

e nfdump: This is similar to tcpdump; it reads and filters nfcapd files, and outputs
readable data

So the basic dataflow will be similar to this one:

1. Arouter sends netflow data to the server.

2. On the server, nfcapd captures the data and stores it in binary files.

3. A scheduled nfdump process will read the binary files and populate a human readable
log with netflow information.

4. A Zabbix agent will read the log and send data to the Zabbix server according to the
item’s configuration.

We have already taken care of point 1, so let’s see how to install and configure the nfdump
package, before looking into the Zabbix side.

Unfortunately, there are no readymade rpm packets for nfdump, so we’ll need to find the
source code, compile it, and install it. This is usually a straightforward process. First of all,
let’s install some required dependencies for nfdump:

yum install rrdtool rrdtool-devel rrdtool-doc perl-rrdtool

Then, we’ll need to download the latest sources. At the moment of writing this, the latest
available version is 1.6.12. You can download the package from
http://sourceforge.net/projects/nfdump/ and then transfer it to your server. Once you have
tar.gz ready, unpack it:

$ tar xvzf nfdump-1.6.12.tar.gz

http://sourceforge.net/projects/nfdump/

Then move into the nfdump-1.6.12 directory and run the usual configure, make, and
make install sequence. If you want to install nfdump in the main directories instead of the
/usr/local tree, just pass the -prefix option to the configure script. In the following
example, that’s what we’ll use:

$ cd nfdump-1.6.12

$./configure -prefix=/usr --sysconfdir=/etc
$ make

$ su root

make install

Once installed, you can add a dedicated user for nfcapd so that it doesn’t have to run as
root and set a working directory for it:

useradd -s /sbin/nologin netflow
mkdir -p /var/nfdump/nfcapd

mkdir -p /var/nfdump/logs

chown -R netflow /var/nfdump

When you run nfcapd, it will create its binary files under /var/nfdump/nfcapd. Nfcapd
files are rotated, by default, once every five minutes and can be separated into one dump
collection (current and rotated files) per sending host or a single collection for all sending
hosts. They can also be expired after a set amount of time. You are now ready to wait for
netflow data and transform it into a log file. To do that, you’ll need to pass the right option
to nfcapd. Since there are quite a few options to pass, let’s build the command line little
by little. Please don’t run the intermediate commands, but only the final one; nfcapd will
complain about missing options and refuse to run.

First of all, we’ll pass some options that will instruct nfcapd to go into daemon mode (-D),
to compress output (-z), to run as user netflow (-u), and to listen on port 9995 (-p):

nfcapd -D -z -u netflow -p 9995

Then, we’ll need to add some options about data sources. The accepted current method is
to use the -n switch. We’ll also instruct nfcapd to create additional subdirectories to store
the cap files to better organize them (-S):

nfcapd -D -z -u netflow -p 9995 -n R1,192.168.11.9, /var/nfdump/nfcapd -n
R2,10.10.1.254, /var/nfdump/nfcapd -S2

As you can see, you’ll have to specify a different -n option for every source you
configure. If you have many netflow sources, it might be better to run different instances
of nfcapd on different UDP ports so as to share the load between different processes. In
that case, just remember to configure your devices accordingly so that they send their
traffic to the correct UDP port. The -S2 option will create additional year/month/day/hour
directories under /var/nfdump/nfcapd to store current and rotated files.

Nfcapd files are rotated every five minutes, and if your network has a lot of traffic, your
nfcapd directory can become huge. You could schedule a separate job to clean them up,
but with the -e option, nfcapd will be able to also take care of that. Just set the expiration
parameter with nfexpire and nfcapd will pick them up:

nfexpire -u /var/nfdump/nfcapd -s 15G -t 90d
nfcapd -D -z -u netflow -p 9995 -n R1,192.168.11.9, /var/nfdump/nfcapd -n
R2,10.10.1.254, /var/nfdump/nfcapd -S2 -e

In the above example, we set the size limit of the directory to 15 gigabytes, and the cap
(maximum) file age to 90 days. Files will be deleted by nfcapd whenever one of these
limits is reached. The last line in the preceding command now contains all the parameters
we need for basic netflow dumping. If you run it (don’t forget the nfexpire command too)
or put it into a startup script, nfcapd will listen on the specified network port for incoming
netflow data and write it to the directories you specified.

Once you have some data in, you can read it with nfdump and output a human-readable set
of records:

$ nfdump -r /var/nfdump/nfcapd/2014/10/29/02/nfcapd.201410290250 -0
extended

Date flow start Duration Proto Src IP Addr:Port Dst IP
Addr :Port Flags Tos Packets Bytes pps bps Bpp Flows
2014-10-29 02:51:53.160 63.545 TCP 10.13.27.151:80 ->
123.43.98.124:6523 .AP.SF 0 128 8412 0 550 56
1

2014-10-29 02:53:13.370 23.135 TCP 64.76.73.121:25 ->
10.138.41.151:7643 .AP.SF 0 51 2450 0 551 56

1

Time window: Oct 29 2014 02:50:00 - Oct 29 2014 02:54:56

This is getting closer to our objective. If you run nfdump and redirect its output to a file
instead of the screen, there you have the log file we’ve been talking about in the last
several pages. To do that, you are probably thinking of setting up a cron job that will find
the latest nfcapd files that weren’t already parsed by nfdump, make nfdump read them
while specifying a time window so that your log file won’t contain duplicated data, and
add the aforesaid output to a log file that will be monitored by Zabbix. This can be a
nontrivial exercise when you consider that nfcapd will continually produce new files and
will put them in new directories all the time. Moreover, you’ll need to keep some kind of
execution state with the timestamp of the last time nfdump was run in order to avoid the
aforesaid duplicates.

It turns out that you’ll be able to avoid all this work, thanks to a nice option for nfcapd,
the -x option. So let’s rewrite the nfcapd command one last time:

nfcapd -D -z -u netflow -p 9995 -n R1,192.168.11.9, /var/nfdump/nfcapd -n
R2,10.10.1.254, /var/nfdump/nfcapd -S2 -e -x 'nfdump -q -o extended -r %d/%f
>> /var/nfdump/logs/zabbix_netflow.log'

The -x command executes an arbitrary command every time a dump file is rotated. You
can reference the dump file and the base directory with the %d/%f macros. This means that
nfdump will always be executed on new data and only once per dump file. Suddenly, you
won’t need to schedule any complicated cron job to generate the final, human-readable
netflow log file. We also added a -q option to suppress the header and statistics printing to
keep the log file clean.

Note

You might still want to configure some log rotation for the
/var/nfdump/logs/zabbix_netflow.log file. If you let it grow unchecked, it will fill up
your disk space in due time!

It’s finally time to make Zabbix aware of the netflow log file.

Monitoring a log file with Zabbix

As already explained, log file monitoring needs a Zabbix agent. For illustration purposes,
we will assume that you have installed nfdump on the same box as the Zabbix server, and
that the log file is thus locally available. It goes without saying that you could also install
nfdump, along with a Zabbix agent, on a separated, possibly dedicated machine. It won’t
make any difference from Zabbix’s perspective.

Basic item creation is fairly straightforward, just point the item key to the correct file path
and you’re good to go. Please note, in the following example, the timestamp parsing field:

Mame |Ne_tﬂn-.f-.' complete log| |

Type | Zabbix agent (active) ¥

Key |log[/var/nfdump/logs/zabbix_netflow.log] Select
Type of information | Log T
Update interval (in sec) 600
History storage period {in days) go | Overridden by = (90 days)

Log time format |yyyy-MM-dd hh:mm:ss
Mew application

&pplications | -MNone-
CPU
Filesystems
General
ICHMP
Memory il

Description

Enabled ¥

This is all you need for basic log file monitoring. For further explorations, the log key
accepts different options, among which the most interesting are those related to regular
expression filtering and output so that you can also create additional items that will only
extract the exact information you need (for instance, bytes per second of a flow) and use it
as raw data, just as you would use any other Zabbix item. Zabbix’s own official
documentation is excellent in this respect, so you are encouraged to find out more at
https://www.zabbix.com/documentation/2.4/manual/config/items/itemtypes/log_items.

https://www.zabbix.com/documentation/2.4/manual/config/items/itemtypes/log_items

On the nfdump side, there are many more options and features available to nfdump, we’ve
really only scratched the surface to keep things simple. We don’t have the space to fully
explore it here, but if you’re willing to spend some time exploring the tool, you’ll find that
nfdump is not only capable of powerful traffic filtering, just as tcpdump is, but it can also
create statistics and aggregated data on virtually every aspect of a flow, from network
ports to packet sizes, and so on. Combine this with Zabbix’s powerful external script
items, and you can easily see that you can slice and dice your data; however, if you want,
bring it into Zabbix for further processing, graphing, and alarming. Really, the sky is the
limit when you learn to combine these tools together.

Summary

In this chapter, you have learned the different possibilities Zabbix offers to the enterprising
network administrator.

You should now be able to choose, design, and implement all the monitoring items you
need, based on the methods illustrated in the preceding paragraphs: simple checks that are
more useful and powerful than the name implies; the all-powerful SNMP protocol, both as
get values and as traps; log files in general; and the infinitely useful netflow protocol

The next chapter will build on the information exposed in this chapter and will focus more
on server monitoring and how to extract information from DNS servers, web servers,
proxies, and other appliances. These are important, if often overlooked, components of a
network even from the perspective of a network administrator, and you’ll find many useful
tips on how to monitor them.

Chapter 3. Monitoring Your Network
Services

In every environment, especially in a large one, there are many network critical services
that are directly tied on the network infrastructure. Many of them can be monitored by the
system administrators, but the core critical services for the whole network are better if
they are monitored directly by the network administrator.

Between those critical services, we can find the following:

DNS

DHCP

NTP

Apache proxy / reverse proxies
Proxy cache Squid

As it is easy to understand, even if those services are provided from some dedicated server
and not network devices, the metrics that you are acquiring from them are fundamental.
Those metrics, indeed, play a critical role when you would like to set up a proactive alarm.

An example of a service that can cause a lot of confusion in your network can be the DNS,
the DHCP, or even the NTP. In an ideal environment, all those services need to be
responsive, and even the response time is crucial; if each one of those components
becomes unresponsive, they will act as the weakest link of your infrastructure, causing a
lot of problems that will be quickly propagated to the whole network. A simple NTP
server can introduce confusion in the logs of your systems or even cause an issue in your
connections. Working on a practical example, try to imagine that you have all your
accounts stored in an LDAP. Well, if the LDAP takes too much time to resolve the
UID/GID of your account, you can have issues propagated to all your systems. An
unresponsive LDAP can cause filesystem issues and even NAS issues, and if all your
accounts are stored there, even an Is can literally take ages, with a big impact on the whole
infrastructure. Here, we are not considering the DNS, where a dysfunction can be even
worse.

Also, those services need to be taken under surveillance as, if they become unresponsive,
quite soon they will accumulate requests to serve, and if the environment is not ready, they
will be flooded by their own queries in a queue, with a global impact on our infrastructure.

In this chapter, we will go through all the main services that a network admin should
monitor to avoid these kinds of issues. Then, the reader will learn and understand the
importance of an effective proactive alarm to avoid a quick escalation of issues across the
network.

Monitoring the DNS

The first network component we will analyze and see how to monitor is the DNS.

The most popular DNS server is BIND, which is also one of the oldest packages produced.
Here, in the next example, we assume you have BIND 9.6 or later.

Starting with version 9.6, there is a brand new feature that is not even mentioned in the
main page (of Red Hat Linux at least). This feature is a built-in web server that provides
statistics about BIND in a very simple way thought HTTP. To enable this feature, it is
enough to add those lines to your BIND9 configuration file, /etc/named.conf:

statistics-channels {
inet 127.0.0.1 port 8053 allow { 127.0.0.1; };

i
The line we have just added is a good example as the statistics’ access is controlled and
restricted to the localhost.

Tip
BIND, by default, will use the standard 8@ HTTP port if you don’t specify the port. Also

please take care to limit the access to the statistic channel; to do so, you can use this
clause:

allow { address_match_list }

If you don’t specify the allow clause, BIND will accept connections from any address.
This needs to be avoided.

Once this is done, all you have to do is restart your service with:

$ service named restart
Stopping named: [OK]
Starting named: [OK]

Now, you can even use curl to call your web server and have delivered to you all the
statistics:

curl http://127.0.0.1:8053
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="/bind9.xsl"?>
<isc version="1.0">
<bind>
<statistics version="2.2">
<views>
<view>
<name>_default</name>
<zones>

<summary>
<TotalUse>5965501</TotalUse>
<InUse>1502936</InUse>
<BlockSize>4718592</BlockSize>

<ContextSize>3595936</ContextSize>
<Lost>0</Lost>
</summary>
</memory>
</statistics>
</bind>
</isc>

Now, we have two ways to retrieve the statistics:

e Configure BIND to write the statistics in the stat file (old method)
e Configure BIND to use the built-in HTTP web service

The first and old method can be used for servers that are not under a heavy load; the new
method using the statistics-channels is on the other hand lightweight and very easy to
manage. Nowadays this one is the preferred method to use.

Note

Starting from BIND 9.10, the statistics can be delivered in either the XML or the JSON
format. The previous version of BIND offered only statistics on XML v2 or V3. Starting
with BIND 9.10, the XML statistics are available only in V3 format. Anyway, the JSON
format is significantly faster than XML and even lightweight to provide.

Now, to filter the output obtained by curl, there is an interesting utility that unfortunately
is not a standard RPM distributed by Red Hat. The tool we are going to use on those
examples is xml2.

This xml2 is an XML processing tool that can be used to parse and read the XML
envelopes and rewrite them as a flat format. The flat format is really useful to be
manipulated with shell scripts. Then, first of all, you need to download this utility (the
source code is available at http://download.ofb.net/gale/xml2-0.5.tar.gz). Here’s the output
summary:

wget http://download.ofb.net/gale/xml2-0.5.tar.gz

--2014-11-01 10:43:44-- http://download.ofb.net/gale/xml2-0.5.tar.gz
Resolving download.ofb.net.. 64.13.131.34

Connecting to download.ofb.net|64.13.131.34]:80.. connected.

HTTP request sent, awaiting response.. 200 OK

Length: 86318 (84K) [application/x-gzip]

Saving to: "xml2-0.5.tar.gz"

100%[===================================>] 86, 318 155K/s in 0.5s
2014-11-01 10:43:45 (155 KB/s) - "xml2-0.5.tar.gz" saved [86318/86318]
Perform the following steps to obtain the results set out in the preceding paragraph:

1. Explode the package, as follows:

tar -zxvf xml2-0.5.tar.gz
xml2-0.5/
xml2-0.5/configure.ac
xml2-0.5/aclocal.m4

http://download.ofb.net/gale/xml2-0.5.tar.gz

xml2-0.5/csv2.c
xml2-0.5/xml2.c

2. Step into the directory, as follows:

cd xml2-0.5

3. Run the usual ./configure followed by make and make install, as follows:

./configure && make

Then, as root, you can now run the following command:

#make install
Once all this has been completed, you are ready to run the utility.

To make you better understand what this tool exactly does, you can run the following
command:

curl http://localhost:8053/ 2>/dev/null | xml2 | grep -Al queries
/isc/bind/statistics/server/queries-in/rdtype/name=A
/isc/bind/statistics/server/queries-in/rdtype/counter=11230
/isc/bind/statistics/server/queries-in/rdtype
/isc/bind/statistics/server/queries-in/rdtype/name=AAAA
/isc/bind/statistics/server/queries-in/rdtype/counter=1112

Now, the output is finally very easy to manipulate with a standard utility like sed or
awk.

4. Then, the next step to enquire from the locally installed agent is to add these two
lines:

UserParameter=bind.queries.in[*],curl http://localhost:8053/
2>/dev/null | /usr/local/bin/xml2 | grep -Al
"/isc/bind/statistics/server/queries-in/rdtype/name=1" | tail -1 |
cut -d= -f2

UserParameter=bind.queries.out[*],curl http://localhost:8053/
2>/dev/null | /usr/local/bin/xml2 | grep -Al
"/isc/bind/statistics/views/view/rdtype/name=1" | tail -1 | cut -d= -
f2

Using the preceding command as an example, you can run the standard queries, such as A,
AAAA, CNAME, ANY, MX, NS, PTR, SOA, and TXT records in/out.

Now, on the Zabbix server side, you need to configure all your items just as the one shown
in the screenshot following the upcoming list, taking care to create the same kind of item
for A as well:

AAAA
CNAME
ANY
MX

NS
PTR

® SOA
e TXT

Narme

Type

Key

Type of information

Data type

Use custormn multiplier

Update interval (in sec)

New flexible interval

History storage period (in days)
Trend storage period (in days)
Store value

Show value

Applications

Populates host inventory field

Flexible intervals [

: Queries in &
Zabbix agent L

bind_.quenes.in[A]

Mumeric {unsigned) E

| Decimal v

Units _

]
30|
Interval Period

Mo flexible intervals defined.

Interval (in sec)
20
365
Delta (simple change) E]

_Aﬁ s

New application |

-None-

-None-

o

50 Perod 1-7,00:00-24:00

Select

Action

Add

Once you’ve added all your items in a graph, the final result will be just like the one
shown in the next screenshot. Now, you’re acquiring all the queries done for the most
important DNS fields.

DNS Server: Queries IN (1h)

LTETTITTO
RIEr
L1544
rTET
ETTT
CTTT
1T
DTIT
B1:ZZ
BLZE
irze
1844
STEE
FLEE
ET-ZT
IIr
TIET
D1ZT
oz
BOEE
LOEE
90°ZL
S0EL
FO-ZE
EDZT
T0-TT
toEe
onEL
BSLE
BSIIE
Fiied
oL
CCTE
rS Iz
(11144
TRTE
I8tz
(15 ¢4
ErLE
Briz
Wiz
o1z
SFTE
WLE

J etz
| vtz

e

ortz

| BETZ

BETZ
LETE
SETT

|| s€1T

BK
20K
15K
10K

5K

30K

FETE
EELE
IETE
143144
DETE
6T
BTIT
LETTITTIO

cokRooooo
=

¥¥oo Foose o

w
=

MKS ® WD
AMCMNWSW 7]
EEEEEEEEEE
WA N A BN
I T T
o = b il e
FEr T T T T
2F2azzaa
(efefejefofe o fofe o}
EEEEEOOEEE

DNS - response time

Now, we are monitoring all queries done against all the main DNS records, but actually
we need to check how our DNS is working and then how much time is required to have
the response back.

On the Zabbix how-to, there is an example to do what’s available here:
https://www.zabbix.com/wiki/doku.php?
id=howto/monitor/services/monitor_dns_and_ntp_services_on_your_network.

The problem with this example is that the script and code proposed simply returns a 0 or 1
depending on the DNS response or DNS timeout.

Well, that example is not good enough for us; we are looking for numbers like response
time, and over those numbers we can implement a trigger. The trigger needs to go on fire
when the time needed by DNS to give us back a response is higher than a value that we
can consider acceptable. In a complex network, you can have a DNS query where you can
tolerate a slow response (the entire development network segment, for instance, is not as
critical as the production segment). Then, the solutions we propose here give us the
response time. We can build our trigger over the response time unlike the other way,
which is a lot less flexible.

We can see the script step by step; first of all, we need to acquire the response time. This
can be done using dig, as follows:

#dig mydomain.com
Note
NOTE

dig is part of the bind-utils package. If you don’t have it installed in your system, you
need to run as root the following command:

yum install bind-utils

Anyway, dig uses the local resolver, and then if you run the same query again, you’ll see
that the time spent to acquire the DNS record is 0 minutes. This is clearly a false value! To
avoid any cached response and to measure the real time, we need to use the +trace option.
When tracing is enabled, dig makes iterative queries to resolve the name; practically, dig
will follow referrals from the root servers, showing the answer from each server that was
used to resolve the lookup.

Here, we need to have the total time spent for the query and not the time consumed by
every server. To do that, we can use the following syntax:

$(time dig ©@127.0.0.1 mydomain.com +trace)
real om1.376s
user 0moe.010s
sys 0mo.012s

Now that we have understood the logic, here is the full script we will use:

https://www.zabbix.com/wiki/doku.php?id=howto/monitor/services/monitor_dns_and_ntp_services_on_your_network

cat test_dns.sh
#!/bin/sh
if test -z "$1" ; then
echo "You need to supply a DNS entry to check. Quitting"
exit 01;
fi
DOMAIN=$1
MYTIME=$((time dig $DOMAIN +trace) 2>&1| grep real | awk -F'[m,s]' '{print
$2}')
if [$? -eq 0]; then
echo $MYTIME
else
echo 0
fi

This script requires a $1 parameter, which is the domain to check. Now, we need to enable
this script on the agent’s side with UserParameter on the agent configuration file, thus
adding:

UserParameter=dns.responsetime[*], test_dns.sh $1

The script we just created needs to placed in a valid runtime agent’s path, or we need to
use the fully qualified path in UserParameter, as follows:

UserParameter=dns.responsetime[*], /full/path/of/test_dns.sh $1

Note

This method is really useful as you can deploy the script on different network segments,
like for instance, the application server zone, and have a real value of the time needed to
resolve a DNS host from that network segment.

As the last step, create the relative item on the Zabbix server side, where you will pass the
DNS name to check, as shown in the following screenshot:

Name |DNS mydoamin.com response time

Type | Zabbix agent .
Key |dns.responsetime[mydomain.com] Select
Type of information | Numeric (float) W
Units | mMs

Please bear in mind that this script, if executed continuously, can hammer your DNS
exactly because it avoids using the cache of the local resolver and even one of the
intermediate segments.

Then, as we have explained, we need to schedule our script with a reasonable period that
can be for an instance of 1 minute. Please consider your network segments from which
you’re running this check, for both the quantity of scripts that are running and frequency.

Note

Here, you can create a trigger based on the zone, bearing in mind that you’re monitoring
the DNS response time directly from the hosts that require those DNS entries resolved.
Here, it is important to tune your trigger based on the response time you consider
acceptable from the point of view of the zone.

When you’re creating your trigger, it is important to consider that this plugin provides you
with the real DNS response time, which is the worst-case scenario. Here, we avoid using
any caching systems, which is not the real case but a pessimistic one. That said, if you
notice some spikes of high response time, those can be ignored as those spikes can’t
impact your system. Considering that, the trigger needs to be tuned to spot the response
time that is still there for two or three item cycles (or even more—this depends on the
frequency at which you run the check) and avoid considering single spikes.

DNSSEC — monitoring the zone rollover

Here, we don’t have enough pages to explain all the features added by DNSSEC or a
complete setup guide of it. Anyway, it is important to know that the best way to avoid
issues like a DNS cache poisoning attack is to use DNSSEC. DNSSEC does a deep usage
of cryptographic keys and digital signatures to ensure that lookup data is correct and
connections are legitimate. Then, in a secure environment, you’re supposed to use mainly
DNSSEC, and then it is important to monitor the critical DNSSEC parameters; those items
can be resumed, as follows:

e The zonefile’s validity
e The zones’ rollover status
e The DNS response time

Currently, there are two plugins available to implement checks against the DNSSEC zone
rollover:

e Rollstate
e /onestate

The first one checks the zone managed by the daemon rollerd; the second one checks the
validity of DNS zones.

Note

The full code is available at https://github.com/hardaker/dnssec-tools/tree/master/dnssec-
tools/apps/zabbix, and the package is available at http://www.dnssec-

tools.org/download/dnssec-tools-2.1.tar.gz.

One of the requirements to properly set up this plugin is that you need to be aware of the
frequency of your rollover actions to tune the Zabbix item; please be aware that a little
latency is normal here. Anyway, as long as you don’t rollover zones every few minutes
(TTL is set to a few minutes), this lag will not be an issue.

Now, before you can run the plugin, you need to have installed a few required Perl
modules:

perl -MCPAN -e shell
cpan> install Net::DNS
cpan> install Net::DNS::SEC

We are supposing that you already have cpan installed; if you don’t have it installed in
your system, please install it with the following line of code:

yum install cpan

Now, once you have installed the required module, you need to install the openssl-devel
package with the following command:

yum install openssl-devel.x86_64

Now, you can finally uncompress the software with the following code:

https://github.com/hardaker/dnssec-tools/tree/master/dnssec-tools/apps/zabbix
http://www.dnssec-tools.org/download/dnssec-tools-2.1.tar.gz

tar -zxvf ./dnssec-tools-2.1.tar.gz
cd ./dnssec-tools-2.1
./configure && make && make install

Now in /dnssec-tools-2.1/apps/zabbix/, we have all the needed software. Here are the
pieces of software available in /dnssec-tools-2.1/apps/zabbix/:

1s -1

total 40

-rwxrwxr-x. 1 1274 1274 768 Jan 2 2013 backup-zabbix
-rw-rw-r--. 1 1274 1274 1706 Jan 2 2013 item.fields
-rw-rw-r--. 1 1274 1274 2878 Jan 2 2013 README

-rwxrwxr-x. 1 1274 1274 6763 Feb 15 2013 rollstate
-rwxrwxr-x. 1 1274 1274 7720 Feb 15 2013 uemstats
-rw-rw-r--. 1 1274 1274 1329 Oct 19 2011 zabbix_agentd.conf
-rwxrwxr-x. 1 1274 1274 6314 Feb 15 2013 zonestate

Finally, we can try our new plugins, as follows:

./rollstate mydomain.com
ZSK phase 3

./zonestate mydomain.com
zone file valid

Now, it’s time to enable our new plugins; to do this, we need to define a couple of new
entries of UserParameter on the agent side’s /etc/zabbix/zabbix_agentd.conf:

UserParameter=dnssec-tools.rollover.status[*],rollstate $1
UserParameter=dnssec-tools.rollover.statusnum[*],rollstate -numeric $1

Even here, you need to place the rollstate plugin in a directory contained in the path or
use the fully qualified path for our plugin. Also, once you have added UserParameter, you
need to restart the agent with:

service zabbix-agent restart
Shutting down Zabbix agent: [OK 1]
Starting Zabbix agent: [OK 1]

The rollstate plugin provides two different outputs with the -numeric option specified.
It provides positive numbers for the ZSK phases and negative numbers for the KSK
phases. This enables us to produce a graph that represents all the phases of DNSSEC.

Once you have created the Zabbix agent item on your template and your script is running,
the output will be like the next screenshot.

In the example and the relative graph, we have a highly frequent rollover. In a real-life
scenario, the time required to go through all the different statuses will be longer.

DNSSEC Numeric Rollover Group [DNS ¥ | llost DNS Server ¥ | Graph [DNSSCC Numeric Rollover ¥ |

Hide filter

Zoom: 1h zh 3h sh 12h 1d Al 2014-11-03 15:28 - 2014-11-03 16:28 (nowl
<) 1>
<= 1d 12h 1h | 1h 12h 1d se 1h (fixed)
DNS Server: DNSSEC Numeric Rollover (1h)
4
3 | et e e B e e B T s DR S e R e e E
° |
1 sl o Sl kel Laiel ol B et o f pe i ot § Uit BN B BSOSl] || 2R Pkl 8 550m] | i | A
3 [t aa i 4 SRS e IR S PR S eee B [l Mame ees (DR B PR e ARl SRS SR PRI BEes, SR [EEe B PR B B
-4 £
L 522 RN NAIRANRA RN ARAR R RRSIY323583 R0 RARAGERAS508333585883349313334
W B 8555555585858 5585585858888858E888888888888888885555 8538888888 LgELLE8s
a a
~ -
o (=]
last min avg max
B DNSSEC Numeric Rollover mydomain.com [avg] =T -3 00338 3

The details of the DNSSEC rollover in text mode, useful to keep track of all the status
changes, will be contained in a text item. An example of the latest data is shown in the
next screenshot:

'DNS Server: DNSSEC Rollover Status - mydomain.com

Zoom: 1h 2h 3h 6h 12h 1d Al
<
«e¢ 1d 12h 1h | 1h 12h 1d ==

Timestamp Value
2014-11-03 21:39:52 KSK phase 1
2014-11-03 21:39:50 KSK phase 3

2014-11-03 21:39:47 KSK phase 2

Zabbix 2.4.0 Copyright 2001-2014 by Zabbix SIA Convected 25 Adirin’

As you can see, you will have a historical status of all the steps crossed during the
rollover, and you will have a clear track of the steps performed.

Note

This item will be precious if your process gets stuck on a step, especially if this happens
periodically.

In the next screenshot, you can see the zonestatus plugin at work:

Values v | s plain text |12t

Zoom: 1h 2h 3h Al
<l
«« 1h | 1h »»

Timestamp Value

2014-11-03 21:33:42 zone file valid
2014-11-03 21:33:12 zone file valid
2014-11-03 21:32:42 zone file valid
2014-11-03 21:32:12 zone file valid

2014-11-03 21:31:42 zone file valid

Now, the only thing you still have to do is create a trigger based on the information we’re
acquiring. Here, it is important to bear in mind that a little lag is normal during the zone
transfer process; this lag needs to be considered when you set up the trigger.

Apache monitoring

Most of the reverse proxies are nowadays implemented using Apache. Apache, other than
being a web server, is quite useful as a reverse proxy as it includes some powerful
modules:

® mod_proxy
e mod_proxy_http
e mod_proxy_ftp

Other than as a reverse proxy, it can be used as a load balancer thanks to:
® mod_proxy_balancer

Now, unfortunately, there isn’t a valid method to acquire the metrics strictly related to the
module used, but anyway, we can acquire quite a few metrics from Apache itself.

The first thing you have to do before you can acquire the statistics is enable them. To do
this, you need to put the following lines in your Apache configuration file:

<Location /server-status>
SetHandler server-status
Allow from 127.0.0.1
Order deny,allow
Deny from all
</Location>

Also, you can optionally add the following line to your global Apache configuration file:

ExtendedStatus On

Here, we are configuring the module with the ExtendedStatus On option. With this
setting, Apache keeps track of extended status information for each request. This
collection can slow down the server, and if you notice performance issues, it can be
disabled with the ExtendedStatus Off keyword.

Tip

Please keep restricted, as much as you can, the access to the /server-status location. In
our case, it is allowed only from 127.0.0.1. This means that you need to collect the
statistics from the agent installed locally on your Apache host. It is important to know that
if mod_status is compiled into the server, then its handler is available in all configuration

files, including per-directory files, like htaccess. This can have security-related
ramifications for your site.

Now, all you have to do is restart your Apache and check whether you can retrieve the
statistics running the following command:

[root@localhost ~]# curl http://127.0.0.1/server-status
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html><head>

<title>Apache Status</title>

</head><body>

<hi>Apache Server Status for 127.0.0.1</h1>

<dl><dt>Server Version: Apache/2.2.15 (Unix) DAV/2 PHP/5.3.3</dt>
<dt>Server Built: Jul 23 2014 14:17:29

</dt></d1l><hr /><dl1>

<dt>Current Time: Monday, 03-Nov-2014 19:48:11 PST</dt>
<dt>Restart Time: Monday, 03-Nov-2014 19:48:00 PST</dt>
<dt>Parent Server Generation: 0</dt>

<dt>Server uptime: 11 seconds</dt>

<dt>Total accesses: 9 - Total Traffic: 0 kB</dt>

This Apache module’s output is really full of useful information; looking at the output in
detail, you can see that it provides the information shown in the following screenshot:

Server Version: Apache/2.2.15 (Unix) DAV/2 PHP/5.3 .3
Server Built: Oct 16 2014 14:48:21

Current Time: Friday, 07-Nov-2014 14:32:23 PST
Restart Tume: Friday, 07-Nov-2014 14:30:17 PST
Parent Server Generation: ()

Server uptime: 2 minutes 5 seconds

Total accesses: 647 - Total Traffic: 2.2 MB

CPU Usage: ud7.6 540.99 cud ¢z0 - 70.9% CPU load
518 requests/sec - 18.2 kB/second - 3603 Birequest
2 requests currently being processed, 55 1dle workers

Scoreboard Key:

" Waitting for Connection, "s" Starfing up. "R" Reading Request,
"W" Sending Reply, "K" Keepalive (read). "0" DNS Lookup.

""" Closing connection, "L" Logging. "6" Gracefully finishing,
"1" Idle cleanup of worker, "." Open slot with no current process

Srv PID Acc M CPU 88 Req Conn Child Slot Client VHost Request
0-0 4928 0/32/32 _ 386 3 189400 0.10 0.10127.0.0.1 localhost.localdomain GET /zabbix/ HTTP/1.1
10 49290/31/31 _ 367 2 1054 0.0 0.10 010 127.0.0.1 localhostlocaldomam GET /zabbi/ HTTP/1.1
20 ST660/3/29 062 3 132100 001 0.09127.0.0.1 localhostlocaldomain GET /zabbix/ HTTP/1.1

Here, you have a view that is split into four main sections, which are as follows:

The Apache version data, module started, and server build details

The Apache server status that provides you the uptime, CPU, number of access,
number of request/sec, and some more information about its status

The Apache scoreboard

A section with all the details of the connection served

Here, retrieving the statistics is not as easy as you would imagine. The first and second
sections are quite verbose, and it is easy to extract the required information from them
once you’ve obtained the web page. The third section is a little more complex as it is the
Apache scoreboard. The scoreboard is a representation of Apache’s workers and their
relative status. The workers are Apache’s request-handler status. The keys used on the
scoreboard are the following:

Scoreboard Key:"_" Waiting for Connection, "S" Starting up, "R" Reading
Request, "W" Sending Reply, "K" Keepalive (read), "D" DNS Lookup,"C" Closing
connection, "L" Logging, "G" Gracefully finishing, "I" Idle cleanup of
worker, "." Open slot with no current process

Then, to retrieve and analyze the status, we need to use a slightly different URL:
http://localhost/server-status?auto.

We can try the output produced by this URL using curl, as follows:

curl http://127.0.0.1/server-status?auto
Total Accesses: 1334
Total kBytes: 2163
CPULoad: 5.20713
Uptime: 2776
RegPerSec: .480548
BytesPerSec: 797.879
BytesPerReq: 1660.35
BusyWorkers: 1
IdlewWorkers: 10
Scoreboard:

Now, it’s easy to retrieve the CPULoad value, for instance:

curl -s http://127.0.0.1/server-status?auto | awk '/ACPULoad:/ {print
$2}'

5.15882

With the same method, we can acquire all the metrics, for example, the number of
IdlewWorkers will be:

curl -s http://127.0.0.1/server-status?auto | awk '/AIdleWorkers:/
{print $2}'

10

Parsing the scoreboard is a little different as we need to count the number of _ if we are
looking at all the workers that are waiting for a connection instead of counting all the
occurrences of W to check all the workers that are sending replies. To address this
requirement, you can use the following command:

curl -s http://127.0.0.1/server-status?auto | awk '/AScoreboard:/
{print $2}' | awk 'BEGIN { FS = "_" }; { print NF-1 }'

10

The first awk command identifies the Scoreboard: section, the second awk command
counts all the occurrences of _ in the line, defining a field separator, and then counting all
the matched fields.

Currently, there are three prebuilt plugins to do this:

e zapache: This is a shell script called via UserParameter
e ZabbixApacheUpdater: This is a Python software that needs to be scheduled on

crontab
e query_apachestats.py: This is a Python software triggered by UserParameter

In this section, we will analyze zapache as it uses the same method described to acquire
metrics from mod_status of Apache. The script is available for download at

https://github.com/lorf/zapache.

All you have to do is download zapache from that location, copy zapache under
/home/zabbix/bin/ with the relative template, and then configure UserParameter in the
agent configuration file /etc/zabbix/zabbix_agentd.conf, as shown here:

UserParameter=zapache[*], /home/zabbix/bin/zapache $1

Now, on the GUI, you have to create your template or import the one distributed with
zapache. Then, navigate to Configuration | Template | Import and select the zapache-
template.xml template if you want the item as Zabbix agent or the zapache-template-
active.xml template if you prefer the items managed as Zabbix agent (active).

If you take a look at the zapache source code, you will notice that it can run as Zabbix
agent’s mode or as an external script, which means that you can use it to acquire the
Apache statistics locally on the same server or remotely.

Here is the code section that manages this kind of behavior:

if [[$# == 1]];then
#Agent Mode
STATUS_URL="http://127.0.0.1/server-status?auto"
CASE_VALUE="3$1"
elif [[$# == 2]];then
#External Script Mode
STATUS_URL="$1"
case "$STATUS_URL" in
http://*|https://*) ;;
*) STATUS_URL="http://$STATUS_URL/server-status?auto";;
esac
CASE_VALUE="32"

As you can see, you can run the script with only one parameter, which represents the
metric you would like to acquire, or two parameters, specifying even the remote IP
address of your Apache reverse proxy or web server. Here, in order to keep things easy,
we avoid mod_status from being accessed externally using a UserParameter. Anyway, it
is better to be aware that you can even centralize statistic acquisition thanks to this code
section.

The final result of our setup and Apache’s metric acquisition is shown in the next
screenshot:

https://github.com/lorf/zapache

HTTPD server: Apache Thread Scoreboard (1h 23m 19s)

last min avg max
B Apache/OpenSlotwithNoCurrentProcess [avg] 198 28 19478 237
M Apache/Logging [avg]
W Apache/ClosingConnection [avg] 1 0 03188
[E Apache/KeepAlive [avg]
[Apache/ReadingRequest [avg]
B ApachefidleCleanupOfiNorker [avg]
B Apache/GracefullyFinishing [avg]
[l Apache/DNSLookup [avg]
M Apache/StartingUp [avg]
Apache/SendingReply [avg]
W Apache/WaitingForConnection [avg]

~N~OCcOoOoCOrRO
o
o
e
=
]
o
o

o

Now, it is time to discuss triggers related to this Apache monitoring. First of all, you need
to create a trigger based on the last value of zapache ping, as follows:

{Template App Apache Web Server zapache:zapache[ping].last(0)}=0

Of course, if the zapache ping fails, returning 0, you have an issue. Some other parameters
that are critical for server status and on which you can create triggers are:

e WaitingForConnection: This indicates that the number of processes are waiting for a
connection

e RegPerSec: This indicates the number of requests per second

e CPULoad: This indicates the amount of CPU consumed by Apache

Those values are strictly dependent on the server you’re using, the number of clients you
are serving, and most importantly, what exactly and how you are serving the request.
About what and how you are serving the request, you can have some very complex
rewriting and reverse rules that can make a group of URLs more complex to manage.
Here, the best thing to do is try to find out your Apache’s limit using some tools that are
able to produce a lot of concurrent connections and then workload, for instance, you can
try Siege.

Note

More information about Siege is available here: http://www.joedog.org/siege-home/.

Once you’ve tested and found the maximum number of clients you can serve per URL and
you’ve seen the web server limits, you can create and tune your custom triggers.

http://www.joedog.org/siege-home/

NTP monitoring

The system clock is something you should keep monitoring because if, for some reason,
your system suffers a system clock drift, this can become a big issue.

Performing a practical example of heavy drift on the system clock will cause issues. The
DNSSEC zone replication, your FTP service, the IMAP service, and many other services
will be affected, making your server unstable and unusable.

To keep your system clock in sync with the remote NTP, you can use and install the NTP
daemon that will take care of the system clock.

To install NTP, you can use yum as usual:

yum install ntp

. output removed here..
Installed:

ntp.x86_64 0:4.2.6p5-1.el6
Complete!

Once you’ve installed the NTP, you need to find the server that is closer to you using the
website http://www.pool.ntp.org/en/.

From this website, you need to choose the server that is better for you and then change the
/etc/ntp.conf configuration file.

Also, it is a good practice to add the log file directive at the end of the ntp.conf
configuration file, as follows:

echo "logfile /var/log/ntp.log" >> /etc/ntp.conf

Then start or restart the service, as follows:

service ntpd stop

Shutting down ntpd: [OK]
service ntpd start
Starting ntpd: [OK]

Now, you need to consider that you can have one central server used as a primary ntpd
server for your network and propagate the system time from there; in this case, you need
to change the /etc/ntp.conf configuration file a bit:

Hosts on local network are less restricted.
restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap

Now finally, you can attach all the hosts of your network to this ntpd server and then
monitor this NTP and the client’s time.

Tip
If you are protecting a server with a firewall, you need to enable the UDP on port 123 on

both directions. If you’re using iptables to enable the client and the server
communication, you need to add the following rules to the ouTPUT and INPUT chains:

http://www.pool.ntp.org/en/

iptables -A INPUT -p udp --dport 123 -j ACCEPT
iptables -A OUTPUT -p udp --sport 123 -j ACCEPT

Now, to retrieve metrics, we need to query ntpd. For this operation, we can use ntpq,
which will show all the statistics. From a monitoring perspective, we’re looking for the
offset, jitter, and delay.

In the next example, we see the complete output of ntpg, as follows:

ntpq -pn 127.0.0.1
Remote refid st t when poll reach delay offset jitter

+91.247.253.152 191.241.139.137 3 9 64 1 35.276 29.492 9.791
+217.147.208.1 194.242.34.149 2 8 64 1 19.617 30.912 11.497
*192.33.214.47 129.194.21.195 2 7 64 1 25.581 32.157 11.007
+195.141.190.190 212.161.179.138 2 6 64 1 20.739 31.143 10.983

Please note that this server is suffering a big drift and the trigger is already on fire.

To acquire the metric then, we can use a command like this one:

ntpq -pn 127.0.0.1 | /usr/bin/awk 'BEGIN { offset=0 } $1 ~/*/ {
offset=$9 } END { print offset }'
32.157

This command retrieves the offset between the system clock and the NTP server.

Note

We are using the -p and -n options together; with the -n option, we are avoiding the name
resolution, and then the DNS query. This is done in order to keep the item as lightweight
as we can.

Now, we can quickly set up NTP monitoring using UserParameter on the agent side with:

UserParameter= ntp.jitter, ntpq -pn 127.0.0.1 | /usr/bin/awk 'BEGIN {
offset=0 } $1 ~/*/ { offset=$9 } END { print offset }'

This will set UserpParameter to retrieve the jitter value; anyway, we can even do
something a little more complex and then produce a script like the following:

#!/bin/bash
VERSION="1.0"
function usage()

{
echo "ntpcheck version: $VERSION"
echo "usage:"
echo " $0 jitter - Check ntp jitter delay"
echo " $0 offset - Check ntp offset"
echo " $0 delay - Check ntp delay"
3
HHAHAAHHE
Main
HHAHHAHHE
if [[$# '= 1]],;then

#No Parameter
usage

exit O

fi
case "$1" in
'jitter')

value="'ntpg -pn 127.0.0.1 | /usr/bin/awk 'BEGIN { jitter=0 } $1
~/*/ { jitter=%$10 } END { print jitter }''"

rval=$7?;;
'offset')

value="'ntpg -pn 127.0.0.1 | /usr/bin/awk 'BEGIN { offset=0 } $1
~/*/ { offset=$%$9 } END { print offset }''"

rval=$7?;;
'delay')

value="'ntpg -pn 127.0.0.1 | /usr/bin/awk 'BEGIN { delay=0 } $1
~/*/ { delay=$8 } END { print delay }''"

rval=$?;;
*)

usage

exit 1;;
esac

if ["$rval" -eq 0 -a -z "$value"]; then
rval=1
fi

if ["$rval" -ne 0]; then
echo "ZBX_NOTSUPPORTED"
fi

echo $value

Then, on the agent side, we can deploy this script called ntpcheck. sh in the
/home/zabbix/bin directory:

1ls -la /home/zabbix/bin/ntpcheck.sh
-rwxr-xr-x 1 zabbix zabbix 781 Nov 9 03:23 /home/zabbix/bin/ntpcheck.sh

Once this is done, all we have to do is create UserParameter, as follows:
UserParameter=ntp[*], /home/zabbix/bin/ntpcheck.sh $1

Then, restart the agent:

service zabbix-agent restart
Shutting down Zabbix agent: [OK 1]
Starting Zabbix agent: [OK 1]

Test our new items:

zabbix_get -s 127.0.0.1 -k ntp[jitter]

2.273

zabbix_get -s 127.0.0.1 -k ntp[offset]
-6.696

zabbix_get -s 127.0.0.1 -k ntp[delay]
18.956

And in the end, create our three new items on the Zabbix GUI, as shown in the following
screenshot:

« Template list Template: NTP Applications (1) Items (3) Triggers (0) Graphs (1) Screens (0) Discovery rules (0) Web scenarios (0)

g Wizard Mame Trggers _____ Applications
NTP Delay

ntp[delay] 30 365 Zabbix agent NTP Enabled
LJ NTP Offset ntploffset] 30 90 365 Zabbix agent NTP Enabled
U NTP Jitter ntp[itter] 30 365 Zabbix agent
T I | R,

NTP — what are we monitoring?

Now, even if those item names appear as something easy to understand, it is better to
know what we are monitoring. First of all, we need to clarify that we’re acquiring values
for the current time source, hence we are taking the values in the line that begins with a *
from the ntpq output. For convenience, the ntpq output is reported here:

ntpgq -pn 127.0.0.1
Remote refid st t when poll reach delay offset jitter

+91.247.253.152 191.241.139.137 3 9 64 1 35.276 29.492 9.791
+217.147.208.1 194.242.34.149 2 8 64 1 19.617 30.912 11.497
*192.33.214.47 129.194.21.195 2 7 64 1 25.581 32.157 11.007
+195.141.190.190 212.161.179.138 2 6 64 1 20.739 31.143 10.983

As you can see, the lines of this output are not ordered, and they begin with + and * (in
this example). We are interested in the one that begins with *. The reason is that the line
that begins with * represents the preferred and current time source.

We can even have a prefix like the following:

e +: This sign indicates that the peer is a good, preferred remote peer or server
e (space), x, -, #, and .: These indicate that this peer is not being used for
synchronization

Now, we have clarified the reason why we are running this awk command:

ntpq -pn 127.0.0.1 | /usr/bin/awk 'BEGIN { delay=0 } $1 ~/*/ { delay=$8
} END { print delay }'

Now, to have some more details about what we’re acquiring, we can define them as:

e Delay: This is the current estimated delay. It is the transit time between remote peers
or servers in milliseconds.

e Offset: This is the current estimated offset. It is the time difference between remote
peers in milliseconds.

e Jitter: This is the current estimated dispersion, or better, the variation in delay
between these peers in milliseconds.

Note

If you’re monitoring a server that is running in a virtual environment, you need to be
aware that practically all the virtualization software suffers from system clock drift.
Then check the vendor-specific best practice to reduce the NTP drift.

Now it’s time to change the script a little as we can check the NTP health status by adding
the following case statement:

case "$1" in
'"health'")

primary="'ntpq -pn 127.0.01 | grep A* |grep -v grep | wc -1'"
rval=$?

if ["${primary}" -eq "1"] ; then

value="1"
else

value="0"
fi
H

esac

Now, we can check whether we have at least one primary preferred source defined to get
the NTP sync in a good shape. We need to then add a new item and a related trigger that
will go on fire if the value returned is 0. Other than this trigger, we can even have a trigger

that will go on fire if the clock drift is bigger than 50 milliseconds for instance, or even
less.

In the next screenshot, you see the interaction between the Jitter, Offset, and Delay on a
Linux virtual server (that suffer from big system clock drifts):

Linux Server; NTP Details (1h 6m 20s)
30 ms

25 ms

\

20 ms ’ e
15 ms
10 ms

sms P |

EIEEE TR N T

last min avg max
B NTP Delay [avg] 19.56 ms 192ms 1977 ms 20.56 ms
W NTP jitter [avgl 132ms 037ms 647 ms 2576 ms
M NTP Offset [awg]l -073ms -702ms -125ms -0.19ms

Squid monitoring

Squid is the most diffused caching proxy for the Web. Squid supports HTTP, HTTPS, FTP,
and many more protocols. This proxy software reduces a lot of the bandwidth required to
serve its clients and improves the response time, implementing a very good caching
system. For all those reasons, it is quite evident why you should have Squid to monitor
inside your network.

There are two primary ways to acquire data and metrics from Squid:

e Using SNMP
e Using squidclient

If you’re curious about the SNMP setup on the Squid server, you can have a look at the
official documentation, in particular the section available at http://wiki.squid-

cache.org/Features/Snmp.

We should avoid enabling SNMP on our Squid as it has been affected in the past by many
overflows and issues. The last security issue, at the time of writing this, caused by SNMP

enabled on Squid, is available at http://www.squid-cache.org/Advisories/SQUID-

2014 _3.txt, and as you can see, it is a really recent issue.

Fortunately, the client is really powerful and this permits us to implement a good
monitoring solution without enabling SNMP.

Type the following command:
squidclient mgr:info

In response to the preceding command, Squid will print out the entire statistic domain
acquired until now:

HTTP/1.0 200 OK

Server: squid/3.1.10

Mime-Version: 1.0

Date: Sun, 09 Nov 2014 17:23:25 GMT
Content-Type: text/plain

Expires: Sun, 09 Nov 2014 17:23:25 GMT
Last-Modified: Sun, 09 Nov 2014 17:23:25 GMT
X-Cache: MISS from localhost.localdomain
X-Cache-Lookup: MISS from localhost.localdomain:3128
Via: 1.0 localhost.localdomain (squid/3.1.10)
Connection: close

Then, as you can understand, it will be quite easy to retrieve some important items from
this kind of output. Trying out an example, if you would like to acquire the CPU Usage,
you can simply run:

squidclient mgr:info|grep 'CPU Usage:'
CPU Usage: 0.01%

Of course, this kind of output needs to be a little shaped to be usable for our work, the next

http://wiki.squid-cache.org/Features/Snmp
http://www.squid-cache.org/Advisories/SQUID-2014_3.txt

command will be a UserParameter ready command:

squidclient mgr:info|grep 'CPU Usage:'|cut -d':' -f2|tr -d '%'|tr -d '
\t'

0.01

Now, we have two ways of doing this:

e We create a long list of UserParameter on the agent side
e We create just a one-user UserParameter and call it using a parameter

The second way is the preferred approach as if you need to add an item to acquire, you
don’t need to restart the agent. Here due to space constraints, we will not comment all the
script; for the complete script, please refer to Appendix B, Collecting Squid Metrics.

You need to create UserParameter:
UserParameter=squid[*], /home/zabbix/bin/squidcheck.sh $1

Now, you need to restart the agent, and you can check whether you’re able to acquire the
metrics with the following command:

zabbix _get -s 127.0.0.1 -k squid[icp_sent]
12

If you can retrieve the metrics, the configuration is fine.

Now, on the server side, you need to create your items, as shown in the following
screenshot:

Wizard Name Triggers Key Interval History JTrends Type Applications Status &

Sguid: Process memaory usage squid[process_mem)] 60 30 365 Zabbtx agent Squid ;

Squid: Reguest disk hit ratic S mins squid[request_disk_hit_ratio_5] &0 30 365 Zabbix agent Squid Enabled
squid[mean_ob]_sire] &0 30 365 Zahbix agent Squid Er
squid[icp_sent] G0 30 365 Zabbix agent Squid Enabled
squid[icp_recerved] 23] 10 365 Zabbix agent Squid
squid[request _hit_ratio] (=11 30 365 Zahbix agent Squid Enabl
squid[request_mem_hit_ratio_5] B0 30 365 Zabbix agent Sauid Enal
squid[request_mem_hit_ratia_60] 60 30 365 Zabbix agent Squid Enabled
squid[byte_hi_ratio_60] &0 30 365 Zabbix agent Squid Enablad

Squid: Request k hit ratio 60 mins squid[request_disk_hit_ratio_&0] B0 30 365 Zahbix agent Squid Enabled

Squid: Service time all HTTP requests squid[servicetirme _httpreg] {=14] 30 365 Zabbix agent Squid Enab
squid[req_fail_ratio] G0 30 365 Zabbtx agent Squid Engbled

sSguid: Number of [CP messages gueued squid[icp_queued] B0 30 365 Zabbix agent Squid

of HTTP requests receved/sec squid[http_requests] {=14] 30 365 Zahbix agent Sauid Enable
squid[cache_size_disk] &0 30 365 Zabbix agent Squid Enabil
squid[cache_size_mem] (=] 30 IG5 Zabbix agent Squid
squid[byte_hk_ratio_5] (] 30 365 Zebbix agent Squid
d: Average IOP messages per minute squid[avg_icp_msg_per_min] &0 30 365 Zabbix agent Squid
age HTTP requests per minute squid[avg_http_req_per_min] &0 30 365 Zabbix agent Squid
£ connected clienis squid[chents] 60 0 365 Zabbix agent Squid
squid[cpu_usage] 60 30 365 Zabbix agent Squid
of HTCP messages sent squid[htcp_sent] &0 30 365 Zabbix agent Squid

Sqauid: Mumber of HTCP messages received squid[htcp_received] =14) 30 365 Zabbix agent Squid

Squid: File descriptors configured &0 o 365 Zabbix agent Squid

Squid; Flle desc avalable Triggers (1) 30 365 Zabbix agent Squid

Triggers (1) proc.num[squid] &0 30 365 Zabbix agent Squid Enabled

Now that we are finally acquiring all the metrics, it is important to define at least two

triggers:

¢ One tied to the number of Squid processes running that should never be 0
¢ One tied to the number of available file descriptors; if this number is less than 100,
we need to have a trigger on fire

This is shown in the following screenshot and is the minimum number of triggers you
should have:

Severity pame T Expression Status
High Squid: Process not running {Template Sguiddene:proc.numlsguid].last{0)}=0

Average Squid: Running out of file descriptors {Template Squiddone:squidifiledeser availl.last(0)} <100

To close the Squid monitoring, we can tell that you are now able to acquire at least 22
items using the script available on GitHub at
https://github.com/smartmarmot/zabbix_network_monitoring/tree/master/Chapter3; you
can now set many other triggers depending on your setup, server capacity, number of
clients to serve, and the mean of the number of pages required by your client network.

Among the most important parameters to monitor, we have:

e The byte hit ratio over 5 and 60 minutes
e The request disk hit ratio over 5 and 60 minutes
e Request failure ratio

All the hit ratios need to be as close to 100 percent as possible. Every value of caching
under 70 percent should make a trigger go on fire, and even the request failure ratio, if it
is higher than 30, should trigger an alarm as it is telling us that our system is not
responding properly.

https://github.com/smartmarmot/zabbix_network_monitoring/tree/master/Chapter3

Summary

In this chapter, we covered a large number of components. We started our discussion from
the most used and even very critical network service: DNS. Going ahead on the same way,
we discussed DNSSEC; then, we moved on to Apache, the most used and effective reverse
proxy; walked through NTP; and closed the chapter with Squid, the most installed and
used proxy service. For all the systems and services analyzed, you’re now able to acquire
the most critical metrics, and you know how to create effective triggers.

Triggers here are covering the most critical role and hence your experience within your
network is the truly added value. You, with the knowledge acquired from this chapter and
your environment experience, will be the key to creating effective and proactive triggers.
This chapter has covered all the critical services you can find in a network, and now you
can easily provide a heavy added value, creating proactive checks and installing an
effective, tailor-made monitoring solution. In the next chapter, you will learn how to
automate the discovering of your network’s elements and how to apply a template to the
discovered item. Also, you have to adapt your monitoring system within your
environments, and this kind of task is the typical boring and time-consuming task that a
network admin doesn’t like to do. The chapter will provide you with all the necessary
information to use the host discovery and the low-level discovery in an effective way. You
will be guided through the difficult way to automate the item discovery: this will heavily
reduce the time needed to start up your monitoring solution but will impact and reduce the
time needed to maintain your growing and dynamically moving setup.

Chapter 4. Discovering Your Network

In the previous chapters, we’ve seen how to get different metrics from quite a few
different sources, using different methods. What we haven’t covered yet, is how to easily
get all this data into Zabbix when you have a great number of monitored objects.

Manually creating hosts, items, and triggers is an excellent exercise to get the hang of how
things work in Zabbix, but it can quickly become a repetitive, boring, error-prone activity.
In other words, they are the kinds of tasks computers were made for in the first place.

What if your monitoring solution could just find the hosts and devices you want to
monitor, add them as Zabbix hosts, apply a template, and start monitoring them? And
what if it didn’t just limit itself to finding hosts to monitor, but it also found out whether
your switch has 24 or 48 ports, how many disks your web server has attached, and what
ports are open on a certain host? After some initial configuration, you would not have to
bother with adding or removing things to monitor. It would certainly be great, but the
problem with automated discovery is that it often has to come to terms with the reality of a
real-world network, which is often full of exceptions and special rules. In such cases, you
could find yourself spending a lot of time trying to adapt your monitoring system to your
environment in order to catch up with an automated discovery that might be just a little
too automatic.

Luckily, Zabbix can support many different discovery strategies, mix them up with regular
host and item creation, and generally provide a good balance between the need to have a
fully automated system and the need do have a monitoring solution that matches as closely
as possible the environment it has to monitor, with all its exceptions and special cases that
are impossible to capture with just a discovery strategy.

This chapter will be divided into two main parts that mirror the two main levels of
discovery that Zabbix supports: network discovery and low-level discovery. The former
is used to find out which hosts are in your network, and the latter is used to find out what
facilities and components are featured in a given host.

Let’s start with finding out how network discovery works and how to make the most out
of it.

Finding hosts the Zabbix way

Zabbix’s discovery facilities consist of a set of rules that periodically scan the network,
looking for new hosts, or disappearing ones, according to predetermined conditions.

The three methods Zabbix can use to check for new or disappeared hosts, given an IP
range, are:

e The availability of a Zabbix agent
e The availability of an SNMP agent
e The response to simple external checks (FTP, SSH, and so on)

These checks can also be combined, as illustrated in the following example:

ZABBIX

Host groups Templates Hosts Maintenance Actions Soeens Slide shows Maps Discovery IT services
History: Configuration of templates » Configuration of hosts » Configuration of items » Dashboard » Configuration of discovery rules
CONFIGURATION OF DISCOVERY RULES

Mame |network &

Discovery by prosxy | No proxy v

1P range |192.168.1.1-254

Delay (in sec) | 3600

Checks = sNMPY3 agent "SNMPv2-MIB::sysDescr.0" Edit Remove

SSH Edit Remove |
HTTPS (8000) Edit Remove |
New

Device uniqueness criteria | (® [p address i
! SNMPv3 agent "SNMPv2-MIB::sysDescr.0" |

Enabled ¥

Update | Clone] Delete I Cancel

Zabbix 2.4.0 Copyright 2001-2014 by Zabbix SIA

As you can see, when enabled, this rule will check every hour, in the IP range
192.168.1.1-254, for any server that:

e Returns an SNMPv3 value for the SNMPv2-MIB: : sysDescr.0 OID
¢ s listening to and accepting connections via SSH
e Has an HTTPS server listening on port 8000

Be aware that a discovery event will be generated if any one of these conditions is met.

So, if a discovery rule has three checks defined and a host in the network responds to all
three checks, three events will be generated, one per service.

As usual with all things Zabbix, a discovery rule will not do anything by itself, except
generate a discovery event. It will then be the job of Zabbix’s actions facility to detect the
aforesaid event and decide whether and how to act on it.

Discovery event actions are very similar to regular trigger event actions, so you’ll
probably be already able to make the most out of them. The main thing to remember is
that with Zabbix, you cannot act directly on an event to create or disable a host: you need
to either copy the event data by hand somewhere and then proceed with all the manual
operations needed based on that data, or you need to properly configure some actions to
do that work for you. In other words, without a properly configured action, a discovery
rule will not add by itself any discovered host to the list of monitored ones.

Every action has a global scope: it’s not tied to any particular trigger, host, or host group
by default. This means that when you create an action, you’ll need to provide some action
conditions in order to make it valid only for certain events and not others. To access the
discovery actions section in the web UlI, head to Configuration | Actions and then select
Discovery from the Event source drop-down menu, just under the Create action button.

When you create an action, you’ll start with giving it a name and defining a default
message in the action definition section. You’ll then move to the action conditions
section to provide filtering intelligence, before finishing with the action operations
section to provide the action’s core functionality. Action definitions are pretty simple as
you’ll just need to provide a unique name for the action and a default message, if you need
one. So, let’s move straight to the interesting sections of action configuration: conditions
and operations.

Defining action conditions

The action conditions section lets you define conditions based on the event’s reported
host IP address, service status and reported value, discovery rules, and a few others:

Action Conditions Operations

Type of calculation = And/Or Y AandB
Conditions Label Name Action
A Discovery status = Up Remove
B Host IP = 192.168.11.1-127,192.168.2.1 Remove

New condition | pacaived value | = v |C3745
Discovery check
Discovery object
Update Discovery rule Cancel
Discovery status
Haost IP
Proxy
Service port
Service type

Uptime/Downtime

The Received value condition is of particular interest, as it allows you to do things like
differentiating between operating systems, application versions, and any other information
you could get from a Zabbix or SNMP agent query. This will be invaluable when defining
action operations, as you’ll see in the next paragraph. A received value depends on the
discovery rule and on the output of the discovery event that triggers the action. For
example, if a discovery rule is set to look for hosts responding to an SNMP Get for the
SNMPv2-MIB: :sysDescr .0 OID, and that rule finds a router that has c3745 as the value of
that OID, then the discovery event will pass €3745 to the action as the received value.

Single conditions can be combined together with logical operators. There’s not much
flexibility in how you can combine them though.

You can either have all AND, all OR, or a combination of the two where conditions of
different types are combined with AND, while conditions of the same type are combined
with OR.

Choosing action operations

Discovery actions are somewhat simpler than trigger actions as there are no steps or
escalations involved. This doesn’t mean that you don’t have quite a few options to choose
from:

Dl_]l_‘fﬂlir“ %
Action operations Details Action
Add host Edit Remove
Add to host groups: Routers Edit Remoy
Link to templates: Template SHNMP Device Edit Remove

Operation details o o4on tvpe Send message v

Remote command

Add host
Send to Users Remove host ction

Add to host group

Remove from host group
Send only to Link to template
Default message Unlink from template
Add Cancel Enable host

Disable host

Update Clone Delete Cancel

Please note that even if you defined a default message, it won’t be sent until you specify
the recipients in this section using the Send message operation. On the other hand, if
adding (or removing) a host is a quite self-explanatory action, when it comes to adding to
a host group or linking to a template, it becomes clear that a good set of actions with
specific received value conditions and template-linking operations can give a high level of
automation to your Zabbix installation.

Note

This high level of automation is probably more useful in rapidly changing environments
that still display a good level of predictability, for example, the kind of hosts you can find,
such as fast-growing grids or clusters. In these kinds of environments, you can have new
hosts appearing on a daily basis, and maybe old hosts disappear at almost the same rate,
but the kind of host is more or less always the same. This is the ideal premise for a small
set of well-configured discovery rules and actions, so you don’t have to constantly and
manually add or remove the same types of hosts. On the other hand, if your environment
is quite stable or you have a very high host type variability, you might want to look more
closely at which, and how many hosts, you are monitoring as any error can be much more
critical in such environments.

Also, limiting discovery actions to sending messages about discovered hosts can prove

quite useful in such chaotic environments or where you don’t control directly your
systems’ inventory and deployment. In such cases, getting simple alerts about new hosts,
or disappearing ones, can help the monitoring team keep Zabbix updated despite any
communication failure between IT departments, accidental or otherwise.

Moreover, you are not stuck with e-mails and SMSes for notifications or logging. In an
Action operation form, you can only choose recipients as Zabbix users and groups. If the
users don’t have any media defined, or they don’t have the right media for the action
operation, they won’t receive any message. Adding media to users is done through the
Administration tab of the Zabbix frontend, where you can also specify a time window for
a specific media to be used (so that you won’t get discovery messages as an SMS in the
middle of the night for example). Speaking of users and media types, you can also define
custom ones, through the Media types section of the Administration tab in Zabbix’s
frontend. New media types will be available both in the Media section of the user
configuration and as targets for message sending in the Action operations form.

An interesting use for new media types is to define custom scripts that can go beyond
simple email or SMS sending.

A custom media script has to reside on the Zabbix server, in the directory indicated by the
AlertScriptsPath variable, in the zabbix_server.conf configuration file. When called
upon, it will be executed with three parameters passed by the server and taken from the
action configuration in the context of the event that was generated:

e $1: This is the recipient of the message
e $2: This is the subject of the message
e $3: This is the main message body

The recipient’s address will be the one defined for the new media type in the
corresponding media property for the user specified in the action operation step. The
subject and the message body will also be passed according to the action operation step, as
shown in the preceding list. This is all that Zabbix needs to know about the script.

The fact is, a custom script can actually do many different things with the message:
logging to a local or remote directory, creating an XML document and interacting with a
log manager web services API, printing on a custom display—just as with every custom
solution, the sky’s the limit with custom media types.

Here is a simple, practical example of such a custom media type. Let’s say that your IT
department has implemented a self-provisioning service for virtual machines so that
developers and system admins can create their own VMs and use them for a limited
amount of time before they are destroyed and the resources recycled. This laboratory of
sorts has been put in a separate network, but users still have to gain access to it, and they
are also administrators of those VMs, so there’s very little control over what gets installed,
configured, or uninstalled on those machines. In other words, while you could provision
the VMs with a preinstalled Zabbix agent, you can’t really rely on the fact that your users,
whether inadvertently or for specific reasons, would not disable it, or would not install
services that should really not be there, like a DHCP server for example. So, you decide to

keep an eye on those machines directly from the Zabbix server (or a suitable proxy) and
implement a simple discovery rule that will generate a discovery event for every host that
responds to an ICMP echo request and nothing more, as follows:

Mame |simple icmp
Discovery by proxy | No proxy ¥

IP range | 192.168.11.1-254

Delay (in sec] &0
Checks gcMp ping Edit Remove
Device uniqueness criteria @ 1p address
Enabled '+

Update Clone Delete Cancel

Based on that rule, you’ll want to configure an action that, for every host in that subnet,
will perform a port scan and report the results via mail to you.

To do that, you’ll first need to have a custom media type and the corresponding script. So,
you head to Administration | Media types and click on Create media type. Once there,
you assign a suitable name, select Script as a type and provide Zabbix with the name of
the script to execute. Here, you just need to define the script name, as shown in the
following screenshot. You’ll find out later in the chapter in what directory the actual script
should be placed:

Mame |port scan
Type | Script r
Script name |JGI'T_‘_5!.:§|!'|_.5|‘||

Enabled

Add Cancel

Just adding a media type is not enough though, you’ll have to enable it for the user you
intend to send those reports to. Just head to Administration | Users and select the user
you want to add the new media type to. Quite predictably, the tab you want is called
Media. Add the media you just created and remember to also add a way to tell the script

where it should send the results. Since you are interested in receiving an e-mail address
after all, that’s what we’ll tell Zabbix, as follows:

Type port scan ¥ |

Send to ladmin@zbx-net.test |

When active 1-7,00:00-24:00
¥ Not classified
Information
#I Warning

v Average

¥ High

Disaster
Status Enabled 7 |

Use if severity

The Send to parameter will be the first argument passed to port_scan.sh, followed by the
subject and the body of the message to send. So, before actually deploying the script, let’s
define the subject and the body of the message. To do that, you’ll need to create an action
for the discovery event, as follows:

CONFIGURATION OF ACTIONS

Action Conditions Operations

Name |Port scan host

Default subject | {DISCOVERY.DEVICE.IPADDRESS}

Default message |Discovery rule: {DISCOVERY.RULE.NAME}

Device IP:{DISCOVERY,DEVICE,IPADDRESS}
Device DNS: {DISCOVERY.DEVICE.DNS}
Device status: {DISCOVERY.DEVICE.STATUS}
Device yptime: {DISCOVERY.DEVICE,UPTIME}

Device service name: {DISCOVERY.SERVICE.NAME}
Device service status: {DISCOVERY.SERVICE.STATUS}

Device service uptime: {DISCOVERY,SERVICE UPTIME}

Enabled #

Add Cancel

For the purposes of the script, all you really need is the IP address of the host you are
going to scan, but it certainly wouldn’t hurt to add some more information in the final
message.

The next step is to define some conditions for the action. Remember that actions are
global, so the first condition you want to set is the IP range on which this action will be
performed, otherwise you’d run the risk of performing a port scan on every discovered
host in your network.

You might also want to limit the action as a consequence for the discovery rule you
created, independent of any other rules you might have on the same network.

Finally, you should make a decision about the discovery status. If you want a periodic
update of what ports are open on a discovered host, you’ll also need to define a condition
for the host to be Up: in other words, for the host to be reported as live for at least two
consecutive checks.

For as long as the host stays up, a port scan will be executed and reported according to the
discovery interval of the rule you defined earlier. If you just want a port scan for a new
host or for a host that has been reported as down for a while, you’ll just need to fire the
action on the condition that the host is Discovered; that is, it is now being reported up,
while it was down before. What is certain is that you’ll want to avoid any action if the host
is down or unavailable.

The following screenshot encapsulates the discussion in this paragraph:

Action Conditions Operations

Type of calculation And/Or *Aand Band C
Conditions Label MName Action
A Host IP = 192, 168.11.1-255 Remove
B Discovery rule = simple icmp Remove
Discovery status = Discovered Remove

New condition Discovery status vi= *|lup

v
Down
Discovered

Lost

The last step is to define the action operation that is sending the message via the
port_scan custom media type to the user you want, as follows:

Aclion Conditions Operalions

Action operations | Datails

Send message to users: Admin {Zabbix Admimistrator] via port scan

Operation details | o aeation type Send message .

Send to LUser qroups -
Lok arouf User group Action

Add

Send to Users User Action
Admin (Zabbix Administrator) Remaove
Al

Send anly te | port scan *

Default message - All -
Frnail

Update Cancel

Hpoate Cofcel yubber

Add Cancel SMS

Once done with this, you are finally ready to create the port_scan.sh script. So, head to
the AlertScriptsPath directory as configured in your zabbix_server.conf (it’s usually
defined as /usr/1lib/zabbix/alertscripts) and create the following script there:

#!/bin/bash

RECIPIENT=$1
IPADDRESS=$2
MESSAGE=$3

SCAN="nmap -AT5 -sT"
RESULT=$($SCAN $IPADDRESS)

(echo "Scan results for IP $IPADDRESS";

echo "$RESULT";

echo "",;

echo "$MESSAGE") | mailx -s "Scan results for $IPADDRESS" $RECIPIENT

Note
Don’t forget to set the correct ownership and permissions for the script once you are done:

chown zabbix port_scan.sh
chmod 755 port_scan.sh

As you can see, the program that will perform the actual port scan is Nmap, so make sure
you have it installed. In case you don’t have it installed, a simple yum install nmap will
take care of that. The options passed to Nmap are just the basics: -sT performs a simple

connect () scan. It’s not the fanciest one, but it’s the only one available to non-root users,

and the script will be executed by Zabbix as the zabbix user. -A turns on traceroute, OS,
and service detection so that the output is as complete as possible. Finally, -T5 forces
Nmap to execute the port scan in as little time as possible. Once the script has the results
of the port scan, it will just construct the message and send it to the recipient defined in the
action.

This is, of course, a very basic script, but it will get the job done, and you’ll soon receive a
port scan report for every new VM created in your self-provisioning lab. To keep things
simple and clear, we did not include any consistency checking or error reporting in case of
problems, so that’s certainly a way you can improve on this example. You could also try to
send the results to a log file (or a log directory) instead of a mail address, or even to a
database, so that other automation components can pick up the reports and make them
available via other media such as web pages. What you’ll probably want to avoid is to
directly change the host’s configuration, or Zabbix’s own one, through this script.

Even if no one will prevent you from doing so, it’s probably best if you avoid using all this
power to execute complex scripts that might change your network configuration, such as
enabling interfaces, adding rules to a firewall, and such like. While this is perfectly
possible using a custom media script, this should be the domain of remote commands.
These will take center stage in the next paragraph.

Remote commands

There are quite a few options available to you when it comes to executing remote
commands as an action operation.

You can define a list of IPMI commands to be run on the target host or a series of SSH
commands that connect to a box and perform various operations there. A remote command
could even be a simple wrapper for a remote script deployed on a Zabbix agent, or a
custom script that will be run either on an agent or on the Zabbix server itself.

The truth is, sometimes, remote commands can be just a little too powerful. You can start
and stop services, deploy or provision software, make configuration changes, open or
close firewall ports, and everything else you can possibly imagine, as long as you can
write a script for it. While this can sound fascinating and promising, we have found over
the years that these solutions tend to be fragile and unpredictable. One of the reasons is
that Zabbix doesn’t warn you if a remote command fails. More importantly, environments
tend to change faster than these automation tools so that you can quickly find yourself
dealing with the unintended consequences of a remote command running where it should
not run, or not running when it should run.

The more of these you add, the more it will be hard to keep track of them, and the more
one can be lured into a false sense of security, counting on the fact that remote commands
are taking care of things, while, in fact, they may be contributing to the chaos instead of
taming it.

That said, it’s certainly undeniable that remote commands can be useful. Let’s see an
example that is both helpful for your Zabbix configuration and also fairly safe.

In Chapter 2, Active Monitoring of Your Devices, we’ve seen how it’s possible to use some
of the measurements, as reported by a host’s items, to populate the same host’s inventory
fields. This is a great solution for the fields that can be filled this way, but what about the
other ones? Things like POC details, maintenance dates, installer name, installed software,
and such like can’t always be extrapolated from monitoring metrics as they may simply
not be available on the monitored host itself.

They usually are available, though, on asset inventory systems that IT departments use to
keep track of available resources.

In the following example, you’ll create an action operation that will execute a remote
command on the Zabbix server, fetch some inventory information from an asset database,
and fill up or update the host’s inventory details.

Before proceeding with the command, let’s make an assumption and some preparations.

There are many asset inventory systems available, some proprietary and some open
source. All of them have different database schemas and different ways to expose their
data. Moreover, an inventory database structure depends as much on the actual
environment it’s put into, and the processes that govern the aforesaid environment, as it is
on its internal specifications. So, we decided to use a dummy asset management tool that
will return, given an IP address, a simple JSON object containing all the inventory data
you need for the task at hand. The assumption is that you’ll be able to put the example into
your context and figure out how to extract the same information from your own inventory
management system, and that you will also know what authentication scheme you will
rely on if you need to make just one request or multiple related requests, and so on.

Secondly, for practical reasons we are going to use Python as the language of the
command script, so you’ll want to make sure that it’s installed and available on your
Zabbix server. If it’s not there, you can install it, and the related utilities, quite easily using
yum:

yum install python

yum install python-setuptools

easy_install pip

Finally, we are going to interact with Zabbix’s configuration not through direct queries to
its database, but through its API. In order to do that, we’ll use a very useful Python library,
called pyzabbix. You can find it at https://github.com/lukecyca/pyzabbix, but since you
installed pip, it will be extremely easy to make it available to your Python installation.
Just run the following command:

pip install pyzabbix
The Python package manager will download and install it for you.
Now we are ready to configure the discovery action and write the actual command script.

You can choose to reuse an existing discovery rule, such as the simple ICMP rule you used
in the previous paragraph, you can create a new one specific to a single network to scan, a
single TCP port that has to be available, or the presence of a Zabbix agent. We won’t go

https://github.com/lukecyca/pyzabbix

into any more details here, as you’ve already learned how to configure one earlier in the
chapter. Similarly, we can safely skip any detail about the action conditions as they might
also be entirely similar to those shown earlier. What changes is, of course, the action
operation. The following screenshot will give you a better idea of what we have been
talking about in this paragraph:

15 Operations
Action operations patails Action
No operations defined,
Operation details goaration type Remote command
Target list 2
PRkl Target Action
Current host Remaove
MNew
Typs Custom script -
Execute on Zabbix agent
* Zabblx server
Commands Jusr/lib/zabblx/extarnalzcripts/get_Inventory.py (DISCOVERY.IFADDRESS)
Add, Cancel
Add Cancel

The important elements here are the fact that the script should be executed on the Zabbix
server, the fact that we specified the full path for the script, and the fact that we are using
the {DISCOVERY.IPADDRESS} macro as the argument.

Once the action is configured, you are ready to prepare the actual script. Let’s see how it
would look:

#!1/usr/bin/python

import sys

import json

from pyzabbix import ZabbixAPI
import dummy_inventory_api

ipaddr = sys.argv[1]

hostinfo_json = dummy_inventory_api.getinfo(ipaddr)

hostinfo_json will contain a JSON string similar to this one:
{ "hostip" : "172.16.11.11",

"hostname" : "HostA",

"inventory" : {

"asset_tag" : "12345678",

"install_date" : "31-11-2014",
"installer_name": "SKL"

}

}

hostinv = json.loads(hostinfo_json)['inventory']

zbx = ZabbixAPI(http://127.0.0.1/zabbix/)
zbx.login("admin", "zabbix")
hostinfo = zbx.host.get(output=['hostid'], filter={'ip': ipaddr})
hid = hostinfo[0]['hostid]
zbx_inventory = {
'date_hw_install': hostinv['install_date'],

'"installer_name' : hostinv['installer_name'],
'asset_tag' : '12345678"
add other fields you may be interested in..
}
zbx.host.update(hostid=hid, inventory=zbx_inventory)

sys.exit()

As you can see, the script is fairly straightforward and simplistic, but it can be used as a
starting point for your own inventory-updating scripts. The main thing that you need to
take care of is to figure out how to get your inventory data from your asset database. You
might need to connect to a REST API, or get an XML document via a web service, or
even perform some queries via ODBC. What matters is that you end up with a Python
dictionary or list containing all that you need to update the relevant host in Zabbix.

The second part of the script first of all shows you how to connect to the Zabbix API using
the ZabbixAPI constructor. It then proceeds with the login method, where you’ll need to
provide the credentials you configured earlier.

All get methods accept a filter parameter that you can use to retrieve a single object or a
list of objects that satisfy certain conditions. In this case, we used it to get the hostid of
the host that is associated with a specific IP address.

Pay attention to the next line as the value returned by all get methods is always a list, even
if it contains only one element. That’s why we need to reference the first element of
hostinfo, element 0, before referencing the inventory dictionary key.

We only showed three inventory fields here, but there are many more available in Zabbix,
so it may be a good idea to build a dictionary with all Zabbix inventory fields as keys and
the retrieved values as values.

Now that we have the hostid and the inventory information at our disposal, we can
proceed with the actual inventory update. The update method is fairly straightforward: you
specify the hostid of the host you want to update and the new values for the fields that
you need to update.

And that’s it, with a script like this configured as a remote command for a discovery
action, you can keep your Zabbix inventory data in sync with whatever asset management
system you may have.

As you might have realized, host discovery can be quite a complex matter because of the
sheer number of variables you need to take care of, and because it’s not always easy, in a
real-world network, to identify a clear logic for host creation, template assignment, and
other monitoring parameters, based on discovery data.

Low-level discovery, by contrast, is much more simple, given its power to dynamically
create specific items as a host’s available resources are discovered. So, let’s use the
remaining pages of this chapter to explore a few aspects of this extremely useful feature.

Low-level discovery

An extremely useful and important feature of Zabbix templates is their ability to support
special kinds of items called low-level discovery rules. Once applied to actual hosts, these
rules will query the host for whatever kind of resources they are configured to look for:
filesystems, network interfaces, SNMP OIDs, and more. For every resource found, the
server will dynamically create items, triggers, and graphs according to special entity
prototypes connected to the discovery rules.

The great advantage of low-level discovery rules is that they take care of the more variable
parts of a monitored host, such as the type and number of network interfaces, in a dynamic
and general way. This means that, instead of manually creating specific items and triggers
of every host’s network interfaces or filesystems, or creating huge templates with any
possible kind of item for a particular operating system and keeping most of these items
disabled, you can have a reasonable number of general templates that will adapt
themselves to the specifics of any given host by creating on the fly any entity required,
based on discovered resources and previously configured prototypes.

Out of the box, Zabbix supports four discovery rules:

Network interfaces

Filesystems’ types

SNMP OIDs

CPUs and CPU cores (as of version 2.4)

As discovery rules are effectively special kinds of items, you can create your own rules,
provided you understand their peculiarity compared to regular items.

You need to create and manage low-level discovery rules in the Discovery rules section of
a template configuration and not in the usual Items section, even if the discovery rules end
up creating some kind of items. The main difference between discovered and regular items
is that, whereas a regular item usually returns a single value, a discovery item always
returns a list, expressed in JSON, of macro value pairs. This list represents all the
resources found by the discovery items, together with a means to reference them.

The following table shows Zabbix’s supported discovery items and their return values,
together with a generalization that should give you an idea of how to create your own
rules:

Discovery item key Item type | Return values

{"data": [

{"{#FSNAME}":<path>", "{#FSTYPE}":"<fstype>"},

. . {"{#FSNAME}":<path>", "{#FSTYPE}":"<fstype>"},

vfs.fs.discovery Zabbix agent {"{#FSNAME}": <path>", "{#FSTYPE}":"<fstype>"},

13

{"data":[

{"{#IFNAME}":"<name>"},

{"{#IFNAME}":"<name>"},

net.if.discovery Zabbix agent {"{#IFNAME}":"<name>"},

1}

{"data":[

{"{#SNMPINDEX}":"<idx>", "{#SNMPVALUE}":'"<value>},
{"{#SNMPINDEX}":"<idx>", "{#SNMPVALUE}":'"<value>},
{"{#SNMPINDEX}":"<idx>", "{#SNMPVALUE}":"<value>},

1}

snmp.discovery SNMP (v1, v2, or v3) agent

{"data":[

{""{#CPU.NUMBER}": "<idx>", "{#CPU.STATUS}":"<value>},
{"{#CPU.NUMBER}": "<idx>", "{#CPU.STATUS}":"<value>},
{"{#CPU.NUMBER}": "<idx>", "{#CPU.STATUS}":"<value>},

1}

system.cpu.discovery||Zabbix agent

{"data":[

{"{#CUSTOM1}":"<value>", "{#CUSTOM2}" :"<value>"},
{"{#CUSTOM1}":"<value>", "{#CUSTOM2}" :"<value>"},
{"{#CUSTOM1}":"<value>", "{#CUSTOM2}" :"<value>"},

13

custom.discovery Any

Tip

Just as with all SNMP items, the item key is not really important as long as it is unique.
It’s the SNMP OID value that you ask an agent for that makes the difference: you can
create different SNMP discovery rules that look for different kinds of resources by

changing the item key and looking for different OID values. The custom discovery
example is even more abstract as it will depend on the actual item type.

As you can see, a discovery item always returns a list of values, but the actual contents of
the list change, depending on what resources you are looking for. In the case of a
filesystem, the returned list will contain values like {#FSNAME}:"/usr",

{#FSTYPE}: "btrfs", and so on for every discovered filesystem. On the other hand, a
network discovery rule will return a list of the names of the discovered network interfaces.
This is the case for the default SNMP network interfaces template. Let’s see in detail how
it works.

The template has a discovery rule called network interfaces. It looks just like a regular
item as it has a name, a type, an update interval, and a key. It’s an SNMP type, so it also
has an SNMP OID, 1F-M1B: :ifDescr. This is a discovery rule, so instead of a single
value, it will return a list of all the OIDs that are part of the IF-MIB: : ifDescr subtree for
that particular device. This means that it will return the OID and its value for all the
network interfaces present on the device. Every time the discovery rule is executed on a
host (based on the update interval, just like any other item), it will return a list of all
interfaces that are available at that particular moment. If the device had four network
interfaces, it could return something similar to this:
{"data" : [

{ "{#SNMPINDEX}" : "1",

"{#SNMPVALUE}" : "FastEthernet0/0"},
{ "{#SNMPINDEX}" : "2",

" {#SNMPVALUE}"

{ "{#SNMPINDEX}"
" {#SNMPVALUE}"
{ "{#SNMPINDEX}"
" {#SNMPVALUE}"

1}

"FastEtherneto/1"},
ll3|l’
"FastEthernet1/0"},
ll4|l’
"FastEthernet1/1"},

The discovery rule will then proceed to apply the list to the item and trigger prototypes it

has configured, as follows:

Item prototypes of Network interfaces

Displaying 1 to 8 of 8 found

« Template list Template: Template SNMP Interfaces « Discovery list Discovery: Network interfaces Item prototypes (8) Trigger prototypes (1)

Name *
Admin status of interface {#SNMPVALUE}
Alias of interface {#SNMPVALUE}

Description of interface {#SNMPYALUE}

Inbaund errors on interface { #SNMPVALUE}

Incoming traffic on interface {#SNMPVALUE}

Operational status of interface {#SNMPVALUE}
Quthound errors on interface {2SNMPYALUEY

Outgeing traffic on interface {#SNMPYVALUE}

Key

ifAdminStatus[{ #SNMPVALUE}]
ifAlias[{#SNMPVALUE}]
ifescr { #SNMPVALUE}]
iflnErrors[{ #SNMPVALUE}]
ifinOctets[{ #SNMPVALUE}]
ifOperStatus] { #SNMPVALUE}]
ifOutErrors[{ #SNMPVALUE}]

ifoutOctets[{ #SNMPVALUE}]

Interval History = Trends

&0 Fg 365
3600 7

3600 7

60 T 365
60 7 365
60 7 365
60 I 365
&0 7 365

Taking the Incoming traffic on interface {#SNMPVALUE} item prototype as an
example, you can see how it all comes together:

e el it
1 aroto [

Name

Type

Key

SNMP OID

Context name
Security name
Security level

Port

Type of information
Data type

Units

Use custom multiplier

Update interval (in sec)

Incoming traffic on interface $1

SNMPv3 agent ¥
ifinOctets[{ #SNMPVALUE}]
IF-MIB: :ifInOctets.{ #SNMPINDEX}

noAuthNoPriv

Numeric {unsigned) -

Decimal v
bps
td 8
60

The {#SNMPVALUE} macro is used in the item’s key and, therefore, in the item’s name as
well (look at the $1 macro that references the first argument of the item’s key).

On the other hand, the {#SNMPINDEX} macro will be used by Zabbix to actually get the
incoming traffic value for that specific interface as it should be clear by now if you
observe the value in the SNMP OID field.

When configuring a template’s discovery rules, you don’t need to care about the actual
values returned in their lists, nor the lists’ length. The only thing you have to know is the
name of the macros that you can reference in your prototypes. These are to be referenced
in the second half of the low-level discovery mechanism, object prototypes. You create
them as regular template entities, making sure you use the discovery item macros where
needed, and Zabbix will take care of the rest for you, creating for each item prototype as
many items as there are elements in the list returned by the discovery rule, for each trigger
prototype as many triggers as there are elements in the list returned, and so on.

So, when you apply the template to a host, it will create items, triggers, and graphs based
on the resources discovered by the discovery items and configured according to the
discovery prototypes.

Custom discovery rules, from this point of view, work exactly in the same way as custom
items, whether you decide to use agent-side scripts (thereby using a custom zabbix.agent
item key), external scripts, database queries, or anything else. The only things you have to
make sure of is that your custom items return keys/values that follow the JSON syntax, as
shown in the preceding table, and that you reference your custom macros in the entities
prototypes that you will create.

Let’s see an example of a custom discovery rule using again Nmap and its output to
dynamically create some items for a host, representing the open port it has, and the kind of
services that are listening. Why would you want to use Nmap and a port scan? The device
you need to monitor maybe doesn’t support the Zabbix agent, so if you just ask for the
output of netstat, you might not be able to install the agent for administrative reasons, or
you might have to make sure that the services are also available from another network, so
checking them from afar, instead of directly on the host, will enable you to also verify
your firewall rules, killing two birds with one stone.

Either way, we’ll create an external check item per open TCP port, configured as a
character-type item. Each item will contain the name of the service that was found
listening, if any, as reported by Nmap’s service discovery facilities.

Start by creating the discovery rule as an external check that will call a port-mapping
script, as follows:

Discovery rule Filters

Mame |port mapping
Type External check \d
Key |port_map.sh[{HOST.CONNY]
Update interval (in sec) 3600
Flexible intervals pnterval Period Action

Mo flexible intervals defined.

Mew flexible interval Interval (in sec) 50 Period |1-7,00:00-24:00

Keep lost resources period (in days) 30

As you can see, the script will receive the host’s IP as the only argument, and it will run
once an hour for every host that has this discovery rule configured and is active.

The script itself is very simple and is based on NMAP’s XML output coupled with the
nifty xml2 tool you already used in Chapter 3, Monitoring Your Network Services, as
follows:

#!1/bin/bash

IPADDR=$1
#store ports as array
PORTS=($(nmap -sV -oX - ${IPADDR} | xml2 | grep portid | cut -d'=' -f2))

#count elements of the array and use as counter for later processing
COUNTER=${#PORTS[@]}

#open JSON
echo '{"data":['
#loop through ports and print key/value
for PORT in "${PORTS[@]}"; do
COUNTER=$((COUNTER - 1))
if [$COUNTER -ne 0]; then
echo "{\"{#PORTID}\" : \"${PORT}\"}",
else
#it's the last element. To have valid JSON We don't add a trailing comma
echo "{\"{#PORTID}\" : \"${PORT}\"}"
fi
done

#close JSON

echo]}

#exit with clean exit code
exit 0

The line starting with nmap is the heart of the script. The -oX option enables XML output,
which is more stable and easy to manage compared to the normal one. The dash after -ox
specifies stdout as the output instead of a regular file, so we can pipe the result to xml2
and then take only the lines that contain portid, that is, the open port numbers for that
host.

As a result, the script just outputs a simple JSON object. Here’s an example of what the
discovery rule will get, as shown from the command line:

./port_map.sh '127.0.0.1'

{"data":[
{"{#PORTID}" : "22"},
{"{#PORTID}" : "25"},
{"{#PORTID}" : "80"},
{"{#PORTID}" : "631"},
{"{#PORTID}" : "3306"}
1}

It’s now time to define the item and trigger prototypes, based on the open port that you
found. We’ll show here an example of an item prototype that will return the name and
version of the daemon listening on the port, as returned, once again, by Nmap:

Mame |Port {#PORTID} service version
Type | External check v
Key |port_service sh[{HOST.CONN}, {#PORTID}]
Type of information | Text v
Update interval (in sec) 3600
Flexible intervals | ynterval Period Action

Mo flexible intervals defined.

The external check will call a script that is even simpler than the previous one, as follows:

#!/bin/bash

IPADDR=$1

PORT=$2

nmap -sV -oX - -p ${PORT} ${IPADDR} | xml2 | grep 'port/service/@\
(product\|version\|extrainfo\)'

Compared to the previous Nmap command, we added a -sV option to make NMAP run a
series of probes in order to find out what service is running behind that open port and a -p
option to specify a single port to scan.

The output was kept simple on purpose to show you an example of xml2’s output. You
can, of course, slice it and dice it to suit your own needs:

./port_service.sh 127.0.0.1 80
/nmaprun/host/ports/port/service/@product=Apache httpd
/nmaprun/host/ports/port/service/@version=2.2.15
/nmaprun/host/ports/port/service/@extrainfo=(Cent0S)

Note

The amount of information Nmap will be able to get from a network service depends very

much on how much and on what kind of data the service is configured to expose. This
might depend on built-in parameters or security considerations on the part of the service
owner. Compared to the previous example, your mileage can vary.

This is what will appear as the value of the item once the discovery rule is activated.

Summary

In this chapter, you learned how to use Zabbix’s discovery facilities to automate its
configuration as much as possible. It should also be clear to you why it’s important to
minimize the difference between what is configured in Zabbix and what is actually out
there on the wire. Keeping track of everything that can appear or disappear on a busy
network can be a fulltime job and one that is better suited to automated monitoring
facilities like this one. You now have all the skills needed to actually do it, and you are
ready to apply them in your real-world environment.

In the next chapter, we’ll wrap things up by showing you how to leverage Zabbix’s
presentation power to create and manage graphs, dynamic maps, and screens.

Chapter 5. Visualizing Your Topology
with Maps and Graphs

As you probably already know, Zabbix’s approach to monitoring is based on separating
data gathered from trigger logic and event logging. On the one hand, this means that you
are able to reference any measurement, present and past, in your triggers, making them all
the more powerful. On the other hand, it also means that you have direct access to all your
measurement history for all your items.

While sorting through all of your historical data to look for a specific value can certainly
be useful, the real advantage here is to leverage Zabbix’s graphing and mapping
functionalities to aggregate and visualize data in meaningful ways.

In this chapter, you’ll see how to create complex graphs from your items’ numerical
values, how to automatically draw maps that reflect the current status of your network,
and how to bring it all together using screens as a tool to customize monitoring data
presentation.

Creating custom graphs

Basic graphical data representation comes for free for any item that has a numeric data
type. You just need to go to Monitoring | Latest Data, select the host you are interested
in, find the relevant item, and click on Graph in the last column on the right-hand side.
You’ll get a line graph with a time slider that you can use to change the timeframe of the
graph itself; widen it to cover a longer amount of time, or shorten it to focus on a specific
point in time.

Since Zabbix 2.4, you can also compare different items on the fly with ad hoc graphs.
These are a direct extension of simple graphs: from Monitoring | Latest Data, you just
need to mark the checkbox on the left-hand side of every item that you want to graph and
select Display stacked graph or Display graph from the drop-down menu at the bottom
of the page, as follows:

= Network interfaces (2 Ttems)
Incoming network traffic on ethi 2014-12-11 17:53:32 3.14 Kbps +648 bps Graph
L Outgning netwark traffic an ethl 2014-12-11 17:53:33 34.18 Kbps +14.17 Kbps Graph
T 05 (8 lems)
+ Performance (13 Items)
+ Processes (I Items)
Security (2 Items)
Zabbix agent (3 Ttems)
+ Zabbix scrver {30 Items)

| Display stacked graph + || Go (2] |
Display stacked graph
Display graph 1 f |

The result is pretty much the one you expect. You also don’t have to worry too much
about choosing between a normal graph and a stacked graph as you’ll be able to switch
between the two from the graph itself, as follows:

Zoom: 1h #h th 6h 17h g & FDE4-12-11 1B:16 2014-12-11 19: 16

<] il
«« 14d 12h ih 1h 12h 14 ww 1h e

Graph typer | Mormal stacked

Item values (1h)
500 Kbps

400 Kbps

300 Kbps

200 Khps

100 Kbps

0 bps

last min avg
B Cutgoing netwerk raffic en ethl [awg] 17.33Kbps 119 Kbps 10.25 Kbps 46.77 kKbps
H incoming network traffic on ethl [awg] 269 Kbps 108 Kbps 1461 Kbps 49377 kbps

max

These quick, ad hoc graphs can really cover most of your visualization needs, especially
for values that you don’t consult that often or if you need to compare items that you

normally don’t have to, as part of a new analysis or to investigate a new class of problems.

On the other hand, if you need to compare the same types of items over and over, and for
different hosts, you’ll need a way to save your selections so that you are able to access
your aggregated graphs without having to specify every time what items need to be
graphed. You can achieve all this with custom graphs.

Note

If you like to visualize your percentile data with pie charts, you’ll also need to create
custom graphs as they’re currently the only way to create pie charts in Zabbix.

Custom graphs can be created as part of a host, or better yet as part of a template, or a
low-level discovery rule, so that any host inheriting the template or discovery rule will
automatically also inherit the custom graph.

To create one, you need to go to Configuration | Templates, choose the template you
want to put your graph into, select Graphs, and click on Create graph. This will bring
you to the graph creation form. For convenience, the following example will show you
some items already added to the item list and some other options already selected instead
of an empty form, but you’ll easily be able to add your own items by following the add
link at the bottom of the item list, as follows:

Mame | Mysgl gueries

Width 900
Helght 200
Graph type Mormal
Show legend |+
Show warking time 1+
Show triggers ¥
Percentile line [l=ft)
Percentile line (right)
¥ axis MIN value Calculated -

¥ axis MAX value Calculated -

Tterns MName Function Draw style Y axis side Colour Action

1: Template App MySOL: MySOL bacin operations par vy v Lifa v Lafe -+ OOC200 il Remave
second

$ 2: Template App MySQL; MySQl selectk operations per avg * Lina . Left C8C300 —_l Remave

seco

$ 3: Templatz App MySOL: MySQL commit operations per avg - Lin= o left - CEA000 . Remave

T 4 Template App MyS0L: MyS0QL delete operations per avg T Line i Left v Cooocs . Remave
sacond

I 5: Template App MySOL: MySOL update aperatlons per avg T Line v Left - cacecs :| Remaove
second

I 5: Template App MySOL: MySOL insert aperations per avg v Lina v Laft - CB00CE . Remave
zecond

f 7: Template App MySQL: MySOQL quaries per second avg Gradient line * Right ooCECE E Remave

oy

As you can see, there are a few options worth noting. First of all, you can select the graph
type between Normal, Stacked, Pie, and Exploded (that is, a pie chart with all slices
separated instead of close together). Next, if you select the Show triggers checkbox, the
graph will include a horizontal line for every trigger that has any of the items present in

the graph’s item list in its expression. You don’t have to specify the trigger or find them
manually; Zabbix will take care of finding all relevant triggers and show them on the
graph.

You can also specify the range of y axis values either as fixed values or calculated based
on the data you have. You’ll normally want to set them as calculated as this option will
usually show the clearest and best-looking graphs, but sometimes, you might want to set
them to a fixed value to have a better understanding of how the values change, especially
if they fluctuate a lot between very big and very small values, and the item expresses a
percentile range.

Moving to the item list, you can order the items by dragging and dropping the blue arrows
on the left-hand side of the item’s name and change their color by either specifying an
RGB value or choosing from a color palette.

The draw style can be quite useful if you want a specific item to stand out from the rest.
There are quite a few styles available for a normal graph, while this option is not available
for stacked and pie charts.

The Function drop-down menu enables you to choose how the item should be graphed for
every tick in the x axis: you can choose between the minimum value, the maximum one,
and the average. Keep in mind that the x-axis tick density will change dynamically with
the time scale of the graph (you can select different timeframes while looking at a graph;
you don’t have to specify them in advance): for timeframes up to an hour, it will show
every sample collected, depending on the items’ sample frequency; for larger timeframes,
you’ll have x-axis ticks proportional to the timeframe selected, which is a few minutes if
the global timeframe is a few hours, to days or weeks if you select months’ or years’ worth
of monitoring data. For every tick, Zabbix will use the function you selected here to plot
the item value either by selecting the maximum, the minimum, or the average value for
that time tick.

Finally, you can choose whether the y axis for an item will be shown on the left-hand side
or the right-hand side. One of the reasons to separate different items on different y-axis
sides is that maybe you are plotting on the same graph items that have absolute values
together with items that express a percentile value. In this case, it makes sense to show the
absolute scale on one side and the percentile one on the other side of the graph.

Another reason might be that you are plotting together items that will show, on average,
very big or very small values, and you can predict ahead of time the ones that will
gravitate towards the bottom of the scale, and the ones that will make the scale go up with
big values. In that case, you might want to separate the two; otherwise, the items with big
values will make the others look very flat and not very informative on the chart. This is
the case illustrated in the preceding graph: we predicted that the total number of queries
would be much bigger (by definition) compared to all the others, so we moved its y axis to
the right-hand side. Here’s the result of the graph we created:

Enm: ih 2h 2h Sh 12b 1d Al 2014-13-14 18:36 - 2014-12-14 19:36 [nuw!}

:

|== id 12h ib | b 120 1d == 1h

Zabbix server: Mysgl quernes (1h)
14 gps § £ 35 qps

12 gps 30 gps
10 gps 25 qps
8 gps
& gps o 1 A £ 3 15 gps
4 qps R N .':...............................-_';....: = .

2 qus [

O gp= +

last min avg max

B MySOL bagin operations per second [avg] 10z gps 0.8805 gps 121 gqps 3.51 gps
B MySQL select operations per second [avgl 5.52 qps 2.65 qps 452 gps 12.35 gps
B MysSOL commit operations per second [avg] lgps 0.8808 gps 1.21 gps 3.34 gps
W MySOL delete eperations per second [avg] 0 gps Ogps 0003gps 0.0997 gps

O MySQL update operabions per second [avg] 0.284 gps 0.0997 gps 0.2555gps 0.6651 gps
B MySQL insert operations per second [awg] 04062 gps 0.2996 gps 04056 gps 0.6934 gps
B MySGOL queries per second [avgl 9.3%9 qps 589 qps 9.16 gps 19.51 gps
O Trigger: Too many queries per second [> 10]

What we haven’t shown here, but you can easily imagine, is that as with almost everything
in Zabbix, you are not limited to graphing items from the same host: you can just as easily
graph the same item from different hosts, or even different items from different hosts. You
might be interested, for example, in tracking network traffic from a bunch of different
routers and looking at how this traffic changes in time, which machines are the busiest and
when, which ones are not as busy as you expected compared to the overall traffic you
have, and so on. To do that, you can easily create a graph following the guidelines above,
only selecting the relevant network interfaces inbound and outbound items from the
different appliances and putting them all on the same item list.

You can use Zabbix’s custom graph creation facilities to explore your data in very
meaningful ways that can be hard to achieve otherwise: don’t be fooled by the fact that it’s
all mainly time-based (you can’t put custom values on the x axis). You’ll soon find that the
ability to correlate different items from different sources is a very powerful tool for both
troubleshooting and capacity planning.

Another powerful tool is Zabbix’s mapping facility. We’ll explore a few interesting
aspects of map creation and maintenance in the following section.

Maps — a quick setup for a large topology

Creating complex maps is the kind of job that can take a lot of time. While doing a
practical example, if you would like to design a map of 20-30 elements, it is easy to spend
up to 2 hours even if you already know the job.

To manually produce a map, you need to:

¢ Add all the items on the map
e Move the items around until you see a nice-looking disposition

Every time you need to add in a map one host, you need to repeat many times the same
steps as aforementioned, which will become a boring and complex task. Currently, there
are many open-feature requests that can facilitate this kind of task; unfortunately, they
have been open for a long time, even years.

The issues you can face are:

¢ You can’t move multiple elements at the same time, something that can be found at

https://support.zabbix.com/browse/ZBXNEXT-161
e You can’t add hosts in a bulk way, something that can be found at

https://support.zabbix.com/browse/ZBXNEXT-163
* You can’t clone any existing map element, something that can be found at

https://support.zabbix.com/browse/ZBXNEXT-51
e When you are using icons, you can’t select them automatically, so you need to check
their size and see whether they fit on your map, something that can be found at

https://support.zabbix.com/browse/ZBXNEXT-1608

For all those issues, we need to find a different way to automate this long and slow
process. Clearly, this is the kind of task that needs to be automated as much as possible.

https://support.zabbix.com/browse/ZBXNEXT-161
https://support.zabbix.com/browse/ZBXNEXT-163
https://support.zabbix.com/browse/ZBXNEXT-51
https://support.zabbix.com/browse/ZBXNEXT-1608

Maps — automating the DOT creation

What is missing here is something that can process our information and produce as output
something usable by Zabbix. To automate this task, there is one library that can help us
—NetworkX—which is available at http://networkx.github.io/.

NetworkX is a Python software library tailor-made for the creation, manipulation, and
study of dynamic network structures.

In this example, we assume that you’re using Cisco Prime, which is a vendor-specific tool
to export a discovered topology.

Anyway, this concept is still valid as here we are going to use an export file obtained,
which is in CSV. This kind of CSV can be obtained as an export from many other vendors
software and can be easily produced from any third-party software.

b

The file that we are going to parse is in the following form:
IP address, System name, SysObjectID, Found by modules, Neighbors, Status

As you can see, it contains the IP address of the device discovered, the system name, the
OID of the system, the module that found the device, a list of all the neighbors that are
connected to it, and it ends with the status.

The following is an example of the line that we are expecting to see:

10.12.50.1,main.example.com, .1.3.6.1.4.1.9.1.896,System, "10.12.2.1,
10.12.2.2, 10.12.3.1, 10.12.4.1, 10.12.5.1",Reachable

We are mostly interested in the following fields:

e [P address
e System name
e SysObjectID
e Neighbors

Then, what we can do is write some Python lines that can read this file, identify all the
required information, and write in the output a DOT file.

Here, I am going to spend a few words about the DOT notation, performing an example in
order to clarify how this notation is done.

First of all, I would like to explain why we are going to have a Graphviz DOT file.

The Graphviz DOT file is really easy to read, maintain, and update, and nevertheless, it
can be stored in a CVS or SVN.

Something that is really important to have is a file that can be quickly used to spot all the
differences between versions and is easy to maintain. Also, we are considering using it as
it is a standard language and a good starting point, on which we can transform all our
acquired data from all the different versions of export.

Indeed, some other vendor-specific software can export the same data but in a different
form, so it is important to normalize all our data in a common language.

http://networkx.github.io/

This common language file will be the file to use to populate our Zabbix map.

This section, as you probably already have understood, will be a large usage of the
Graphviz’s packages.

The easiest way to install and maintain Graphviz on Red Hat Enterprise Linux is to use the
dedicated yum repository. To set up yum, first of all, you need to download the graphviz-
rhel. repo file and save it (as root) in /etc/yum.repos.d/, as follows:

cd /etc/yum.repos.d

wget http://www.graphviz.org/graphviz-rhel.repo

--2014-11-27 02:52:17-- http://www.graphviz.org/graphviz-rhel.repo
Resolving www.graphviz.org.. 204.178.9.49

Connecting to www.graphviz.org|204.178.9.49|:80.. connected.

HTTP request sent, awaiting response.. 200 OK

Length: 1138 (1.1K) [text/plain]

Saving to: "graphviz-rhel.repo"

100%[======================================>] 1,138 --.-K/s in Os
2014-11-27 02:52:17 (134 MB/s) - "graphviz-rhel.repo" saved [1138/1138]

1ls -la graphviz-rhel.repo
-rw-r--r--. 1 root root 1138 Feb 16 2012 graphviz-rhel.repo

Then, you can finally list all the Graphviz packages as root:

yum list available 'graphviz*'

Install them, as follows:
yum install 'graphviz*'

Now that we’ve clarified the reason why we’re doing those steps, it is important to walk
through the DOT language. The DOT language is a language made to represent objects
connected between each other.

While performing a practical example, if we want to define two connected nodes with the
Graphviz DOT language, we can do as follows:

graph {
A-B

}

This is a very easy-to-understand language; we are now representing two nodes connected
to each other.

To see the graphical result, we can use a simple Python program xdot . py available for
download here:

https://github.com/jrfonseca/xdot.py

All you have to do is download the program, write a file with the Graphviz DOT content
that we showed previously, and then run the program, as follows:

xdot.py example.dot

https://github.com/jrfonseca/xdot.py

The result is the DOT expressed topology visualized, as follows:

A

Using the same grammar, we can define three nodes connected, as follows:

graph {
A-B—C

}

Using the same xdot . py used previously, the result is the following:

Writing a couple of lines more, we can even avoid using long names using the following
grammar:

graph {

//We can create aliases to avoid to use very long names on the dependency
definition

Andrea [hostname="andrea.dalle.vacche.example.com"]

Stefano [hostname="stefano.kewan.lee.example.com"]

router [label="Our network router" zbximage="router"]

//now it's time to define connections between the nodes

//This notation allows for multiple edges from "router" in one go
router—{ Andrea Stefano }

And the result is shown here:

Our network router

For a detailed documentation of this grammar, please refer to the official documentation
available at http://www.graphviz.org/content/dot-language.

Until now, we’ve covered all that is needed to know for our small application.

Now, we can come back to our CSV file we extracted from Cisco Prime.

Here is the CSV of a very simple network, but it can be applied on very complex network
topologies, as well:

[root@localhost graphs]# cat my_export.csv
IP Address,System Name, SysObjectID, Found By Modules, Neighbors,Status
10.12.20.1,main.example.com, .1.3.6.1.4.1.9.1.896,System, "10.12.2.1,

10.12.2.
10.12.2.
192.168.
10.12.1.
10.12.2.
192.168.
10.12.3.

achable

10.
10.
10.
10.
10.
10.
10.
10.
10,
10,
10.
10.
10.
10.
10.

e

10.
10.
10.
10.

12.
12.
12.
12.
12.
12.
12.
12.
12.
12,
12.
12.
12.
12.
12.

12.
12.
12.
12.

4.
.42, 10.12.4.47, 10.12.4.48, 10.12.4.49",Reachable

(2 @2 I @2 I @2 BN @2 I @2 B @ I @ 2 BN @ 5 BN SN SR SRR SN AN

o oo o

2, 10.12.3.1, 10.12.4.1, 10.12.5.1",Reachable
1,clusterl.example.com, .1.3.6.1.4.1.9.1.634,System, "10.12.2.2,
99.1", Reachable
1,london.example.com, .1.3.6.1
2,cluster2.example.com, .1.3.6.
99.1", Reachable
1,switchl.example.com,.1.3.6.1.4.1.9.1.503,System, "192.168.99.1",Re

.4.1.9.1.503,System, "",Reachable
1.4.1.9.1.634,System, "10.12.2.1,

1,4.example.com,.1.3.6.1.4.1.9.1.502,System, "192.168.99.1,

.45,4d.example.com, .1.3.6.1.4.1.9.1.503,System, "10.12.4.1",Reachable
.46, 4e.example.com, .1.3.6.1.4.1.9.1.502,System,"10.12.4.1",Reachable
.47,4f .example.com, .1.3.6.1.4.1.9.1.503,System, "10.12.4.1",Reachable
.48,4g.example.com, .1.3.6.1.4.1.9.1.503,System,"10.12.4.1",Reachable
.1,5.example.com, .1.3.6.1.4.1.9.1.502,System, "192.168.99.1,

.45, 10.12.5.43, 10.12.5.44, 10.12.5.46, 10.12.5.47, 10.12.5.48,
.1",Reachable
.44,5c.example.com,.1.3.6.1.4.1.9.1.503,System,"10.12.5.1",Reachable
.45,5d.example.com, .1.3.6.1.4.1.9.1.503,System, "10.12.5.1", Reachable
.46,5e.example.com, .1.3.6.1.4.1.9.1.502,System, "10.12.5.1", Reachable
.47,5f .example.com, .1.3.6.1.4.1.9.1.503,System, "10.12.5.1", Reachable
.48,5g.example.com, .1.3.6.1.4.1.9.1.503,System,"10.12.5.1", Reachable

.155,5i.example.com, .1.3.6.1.4.1.9.1.634,System, "10.12.5.1",Reachabl

.1,6.example.com,.1.3.6.1.4.1.9.1.502,System," 10.12.6.45,

.46, 10.12.6.47, , 10.12.5.1",Reachable

.45,6d.example.com, .1.3.6.1.4.1.9.1.503,System,"10.12.6.1", Reachable
.46, 6e.example.com, .1.3.6.1.4.1.9.1.502,System,"10.12.6.1", Reachable

http://www.graphviz.org/content/dot-language

10.12.6.47,6f.example.com, .1.3.6.1.4.1.9.1.503,System, "10.12.6.1",Reachable

From this file, we see that all the relations between neighbors are already contained in the
CSV, and that we only need to convert them into DOT notation using the node notation.

Here, we can start coding a few Python lines to produce our desired output:

#First of all we need to import csv and Networkx

import csv

import networkx as nx

#Then we need to define who is our zabbix server and some other detail to
properly produce the DOT file

zabbix_service_ipaddr = "192.168.1.100"

main_loop_ipaddr "10.12.20.1"

main_vlan_ipaddr "149.148.56.1"

Now we can finally create our graph
G=nx.Graph()
we can open our CSV file
csv_reader = csv.DictReader(open('my_export.csv'), \
delimiter=",", \
fieldnames=("ipaddress", "hostname", "oid", "dontcare", "neighbors"))
Skip the header
csv_reader.next()

for row in csv_reader:
neighbor_list = row["neighbors"].split(",")

for neighbor in neighbor_list:
Remove spaces
neighbor = neighbor.1lstrip()

Add neighbors,and here we've decided to ignore isolated nodes
if neighbor != "":
G.add_edge(row["ipaddress"], neighbor)

Add additional information to nodes or edges here
G.node[row["ipaddress"]]["hosthame"] = row["hostname"]
Cisco Prime doesn't export all IP addresses of a device
but only the first for each network, Here we merge hosts with
multiple IP addresses
mapping = {main_vlan_ipaddr: main_loop_ipaddr}
G = nx.relabel nodes(G, mapping)

Remove cluster connection not needed in our map
G.remove_edge("10.12.2.1", "10.12.2.2")

Adding connection between Zabbix server and main switch
G.add_edge(zabbix_service_ipaddr, main_loop_ipaddr)
main_neigh_list = G.neighbors(main_loop_ipaddr)

finally write out our file

nx.draw_graphviz(G)

nx.write_dot(G, "/tmp/total.dot")

Now, if you run this small software against the CSV file we have shown before you see
our DOT file generated on /tmp/total.dot. Now, it is interesting to see how our DOT file

is represented on XDot. Here, in the next diagram, we see the representation of our DOT
file:

L Dot Gl e e
Conery Commrin
wsay Conse) Couse) Cowsad Conse) Conami)

Now, all that we have to do is produce the map starting from the DOT file we just
generated.

Drafting Zabbix maps from DOT

Having arrived at this point, we have our Graphviz DOT file that is waiting to be used. As
you can see from the previous image, thanks to Graphviz, we already have a ready-to-go
image to use. Then, all we need to do is:

Read out the DOT file.

Generate the topology using Graphviz.

Acquire all the coordinates from our topology generated.
Use pyzabbix to connect to our Zabbix server.

Generate our topology in a fully automated way.

ARE IR e

It’s now time to write some lines of Python; the following example is similar to something
presented by Volker Frohlich. Anyway, the code here has been changed and fixed (it did
not work well with Zabbix 2.4).

As the first thing, we need to import the zabbixApi and networkX libraries:

import networkx as nx
from pyzabbix import ZabbixAPI

Then, we can define the Graphviz DOT file to use as a source; a good example is the one
we just generated:

dot_file="/tmp/total.dot"

In the next few lines, we define our username, password, map dimension, and relative map
name:

username="Admin"
password="zabbix"

width = 800
height = 600
mapname = "my_network"

What follows is a static map to define the element type:

ELEMENT_TYPE_HOST = 0
ELEMENT_TYPE_MAP = 1
ELEMENT_TYPE_TRIGGER =
ELEMENT_TYPE_HOSTGROUP
ELEMENT_TYPE_IMAGE = 4
ADVANCED_LABELS = 1
LABEL_TYPE_LABEL = 0

2
=3

Then, we can define the icons to use and the relative color code:

icons = {
"router": 23,
"cloud": 26,

"desktop": 27,
"laptop": 28,
"server": 29,
"sat": 30,

"tux": 31,
"default": 40,
}

colors = {
"purple": "FFOOFF",
"green": "QOFF0O",
"default": "OOFF0O",

}

Now, we define some functions that we can reuse. The first one is to manage the login,
and the second one is to define a host lookup, as follows:

def api_connect():
zapi = ZabbixAPI("http://127.0.0.1/zabbix/")
zapi.login(username, password)
return zapi

def host_lookup(hostname):
hostid = zapi.host.get({"filter": {"host": hostname}})
if hostid:
return str(hostid[0@]['hostid'])

The next thing to do, is read our DOT file and start converting it into a graph:
G=nx.read_dot(dot_file)

Then, we can finally open our graph, as follows:

pos = nx.graphviz_layout(G)

Note

Here, you can select your preferred algorithm. Graphviz supports many different kinds of
layout, and then you can change the look and feel of your map as you prefer. For more
information about Graphviz, please check the official documentation available at
http://www.graphviz.org/.

Then, as the graph is already generated, the next thing to do is find the maximum
coordinates of the layout. This will enable us to scale better our predefined map output
size.

positionlist=1list(pos.values())
maxpos=map(max, zip(*positionlist))
for host, coordinates in pos.iteritems():

pos[host] = [int(coordinates[0]*width/maxpos[0]*0.95-
coordinates[0]*0.1), int((height-
coordinates[1]*height/maxpos[1])*0.95+coordinates[1]*0.1)]
nx.set_node_attributes(G, 'coordinates', pos)

Note

Graphviz and Zabbix use two different data origins: Graphviz starts from the bottom-left
corner, and Zabbix works starting from the top-left corner.

Then, we need to retrieve the selementids as they are required for links and even for the
node data coordinates, as follows:

http://www.graphviz.org/

selementids dict(enumerate(G.nodes_iter(), start=1))
selementids dict((v,k) for k,v in selementids.iteritems())
nx.set_node_attributes(G, 'selementid', selementids)
nx.set_node_attributes(G, 'selementid', selementids)

Now, we define the map on Zabbix, the name, and the relative map size:

map_params = {
"name": mapname,
"label_type": 0,
"width": width,
"height": height
}
element_params=[]
link_params=[]

Finally, we can connect to our Zabbix server:
zapl = api_connect()

Then, prepare all the node information and the coordinates and then set the icon to use, as
follows:

for node, data in G.nodes_iter(data=True):
Generic part
map_element = {}
map_element.update({
"selementid": data['selementid'],
"x": data['coordinates'][0],
"y'": data['coordinates'][1],
"use_iconmap": 0O,

1)

Check whether we have the hostname, as follows:

if "hostname" in data:
map_element.update({
"elementtype": ELEMENT_TYPE_HOST,
"elementid": host_lookup(data['hostname'].strip('""')),
"iconid_off": icons['server'],
})
else:
map_element.update({
"elementtype'": ELEMENT_TYPE_IMAGE,
"elementid": O,

1)

We set labels for images, as follows:

if "label" in data:
map_element.update({
"label": data['label'].strip('"")
1)
if "zbximage" in data:
map_element.update({
"iconid_off": icons[data['zbximage'].strip('""')],

)

elif "hostname" not in data and "zbximage" not in data:
map_element.update({
"iconid_off": icons['default'],

i)

element_params.append(map_element)

Now, we need to scan all the edges to create the element links based on the element we
identified, as follows:

nodenum = nx.get_node_attributes(G, 'selementid')
for nodea, nodeb, data in G.edges_iter(data=True):
link = {}
link.update({
"selementidl": nodenum[nodea],
"selementid2": nerodenum[nodeb],

1)

if "color" in data:
color = colors[data['color'].strip('""')]
link.update({
"color": color

i)

else:
link.update({
"color": colors['default']

1)

if "label" in data:
label = data['label'].strip('"")
link.update({
"label": label,

1)

link_params.append(link)

Join the prepared information
map_params['"selements"] = element_params
map_params["1links"] = link_params

Now, we have populated all map_params, and now we need to call Zabbix’s API with this
data:

map=zapi.map.create(map_params)

The program is now complete, and we can let it run! In a real-world case, the time spent to
design a topology of more than 2,500 hosts is only 2—3 seconds!

We can test the software here, proposed against the DOT file we generated before:

[root@localhost]# time ./Generate_MyMap.py
real 0mo.005s
user 0moe.002s
sys 0m0.003s

As you can see, our software is really quick... but let’s check what has been generated. In

the next screenshot, you can see the map that is generated automatically in 0.005 seconds:

my_network

Putting everything together with screens

Unlike any other Zabbix feature we described in this chapter, screens don’t actually give
you new or improved information about your monitored data. Pretty much anything that
you can decide to put on a screen can be found somewhere else in Zabbix.

From maps and graphs, to trigger status and item data, all of this and more can be easily
found by exploring the Monitoring tab of the web frontend.

But the point of gathering existing data on a Zabbix screen is precisely that you bring
together related data, or different views of the same data so that you don’t have to look for
it around the frontend, and so that you can have a good overview of the status of your
systems and see at a glance whether there are any problems within your infrastructure.

When you create a screen (Configuration | Screens | Create screen), you give it a name
and a starting number of rows and columns. Don’t worry too much about how many rows
and columns you assign to a screen as you will be able to change them during screen
configuration.

Once you have the screen created, you can go ahead and configure it by selecting its name
in Configuration | Screens.

A screen is basically a table with rows and columns that identifies cells. Every cell can
contain different types of data:

Cell type Description
Action lo This shows a log of the latest actions executed by Zabbix. You can configure how many actions you
& want to see in the cell.
Clock ||This shows an analog clock with the current time.
Data . . ope
. This shows the latest item data for a specific group of hosts.

overview

Graph ||This shows an existing custom graph.

Graph . .
This shows a custom graph created from a low-level discovery rule prototype.

prototype

History of This shows a log of the latest events (these don’t necessarily lead to actions). You can configure how

events many events you want to see in the cell.

Host group . . Lp

csues This shows the current issues for a specific host group.

Host issues ||This shows the current issues for a specific host.

Host’s info This shows a summary of host availability for a specific group, such as the one you find in Monitering
| Overview.

Map ||This shows an existing map.

) This shows the plain text history of a specific item together with the timestamp for each measurement.
Plain text 'You can configure how many entries you want to see in the cell.
Screen ||This shows an existing screen. Yes, you can embed a screen into another screen if you want.
Server info This shows a summary of the monitoring status for the Zabbix server, such as DB connectivity, number
of hosts, items and triggers, new values per second, and so on.
. This shows the graph for a single item, such as the ones you can see in Latest data without creating a
Simple graph

custom graph.

Simple graph [|This is like a simple graph, but is for items created automatically from a low-level discovery rule
prototype prototype.

System status ||This shows a summary of the current issues, divided into host groups and severity.

Trigger This shows a summary of triggers currently in a problem state, divided by severity. You have to specify
information |[la host group.

oxl;legr%(iw This shows every trigger status for every host in a specific host group (and optionally, application).
URL ||This shows the content of an arbitrary web page, given its URL.

Every cell is also independent from the others: you can bring together data belonging to
the same host as well as belonging to different hosts and hosts’ groups, depending on how
you want to organize your screen.

Finally, for every cell, you can specify how many rows and columns it should span, and
for graphic cell types (maps, graphs, and so on), you can also define how much space they
should take by specifying the width and height in pixels.

All this flexibility is certainly powerful but can be a bit overwhelming, so here are some
general guidelines that you can refer to when you create your own screens.

A very useful type of screen brings together data from a single host so that you can see at a
glance its overall performance. You’ll typically want to see some graphs in a screen like
this, such as network and CPU performance, disk usage, and any application-specific
graph or item summary you might need, such as database performance graphs, application
server statistics, and so on.

In the following example, we’ve kept things simple due to space constraints, but you can
see how even four graphs can prove useful when put together this way:

Zabbix server: Network traffic on ethl (1h)

150 Kbps | 3 :
ps Zabbix server: Disk space usage / (1h)

100 Kbps

50 Kbps

Zabbix server: Disk space usage /boot (1h)

o RAAAAN : AN AAdEdEH | AR y
i i
last min El max

: : g
W Incoming network traffic on ethl [avg] 7.05 Kbps 122 Kbps 298 Kbps 128 Kb
W Cutgoing network traffic on ethl [avg] 5594 Khps 122 Kbps 1987 Kbps 11554 Kb

Zabbix server: CPU load (1h)
s
0.12

0.10 Zabbix server: Zabbix server performance (1h)

140 20
0.08

135 15
0.06

130 10

0.04

0.02

A A A s hoag
8 2 % 87 32 :

o

o

21:35
2150

w a n
o = =
fi I ol
0

2225

2140
22:20
222

22:20
22:25
2

2
22:05
22:10
22:15 |

= last min avg max

last min avg Wl Values processed by Zabbix server per second [avg] 125 121 123 14
M Processor load (1 min average per core) [avg] 0.01 0 00185 B Zabbix queue [avg] 0 0 0 0
B Frocessor load (5 min average per core) [avg] 0.015 0 00148
B Processor load (15 min average per core) [avg] 0015 o0 00031

O Trigger: Processor load is too high on Zabbix server [= 5]

An interesting feature of screen cells is that you can make the content dynamic by flagging
the aptly named checkbox. Dynamic cells will refer the same type of content to different
hosts depending on the context.

This means that you can create a screen at the template level, flag all cells as dynamic, and
just like that, every host inheriting the template will also inherit a personalized screen,
with all graphs and tables referencing the aforesaid host. This way, you won’t have to
manually create a specific screen for every host.

In another type of screen, you might want to focus on group triggers and issues. In this
kind of screen, a typical cell’s contents will be some maps, with hosts and links that
change color based on trigger status, some trigger information and trigger overview
cells, and possibly a log of the latest events and actions.

Finally, you might want to create specific screens that bring together historical data from
different items, such as application-specific log files, output from external commands,
such as Nmap, Windows update status for a host, and so on. As usual, the sky’s the limit
here.

Tip
Keep in mind that the preceding screen types are merely examples that barely scratch the
surface of what’s possible with Zabbix’s screen. You are by no means limited to these

types; on the contrary, you are encouraged to mix and match the different cells to suit your
own needs. Don’t let us stop you from creating awesome screens!

Once you have created a few screens, the next logical step is to find a way to bring them
together in an organized way. Slide shows serve this purpose in an interesting and useful
way. You can create a slide show by going to Configuration | Slide shows and clicking

on Create slide show. The creation form is pretty self-explanatory:

Name
Default delay (In seconds) 30
Slides Screen Delay Action
1 Zabbix server Ramaove

2 router issues 40 Remove

Much like adding items to a custom graph, by clicking on the Add link at the bottom of
the Slides list, you can add existing screens to the slide show, and you can reorder them by
dragging and dropping the blue arrows near the screen name in the list. The result will be,
quite predictably, a slide show of all the screens you have put in the list. It will run over
and over cycling through all the elements. Each slide will have the focus for the number of
seconds equal to the default delay if you don’t specify anything in the slide’s Delay field.

Slide shows are very useful when shown on a big screen in a datacenter, but you need to
be careful when creating screens that you know will end up in a slide show. Slides don’t
scroll vertically, so if a screen is bigger than the browser window used to show the slides,
you’ll never be able to see some of the data. A possible workaround is to create screens
that will take up the whole window size, but nothing more. This way, you’ll be sure that
all relevant data will always show up on the slide show that you play on that big screen
you put on the wall for monitoring purposes.

Another workaround is to make sure that for each screen bigger than the window size, you
put all important data at the top of the screen. This way, some of the screen’s data will
show up on the slides, while you’ll still be able to access all of it when accessing the
screen on its own and not as part of the slideshow.

Summary

In this chapter, you explored Zabbix’s visualization features and learned how to use them
to get the most out of your monitoring data. Sometimes, the value of a measurement
doesn’t lie in the events and actions that it can trigger, but in its correlation with other
measurements, both in time (graphs) and instantly (maps). This is especially true with
network monitoring, where the ability to predict the future needs of a network, and adapt
to them, is just as important as acting on contingent issues.

We have reached the end of our brief journey through Zabbix’s configuration and use.
Now, you should be able to correctly size a Zabbix installation based on you environment;
find the best and most appropriate tools and protocols to monitor your data; automate
device discovery and monitoring as much as possible (and when not to automate it); and
move beyond actions and triggers and visualize all your data in meaningful ways.

With all these skills under your belt, we are confident that you’ll be able to adapt a
powerful and flexible tool like Zabbix to your own network and not be confined to default
templates that may, or may not, reflect your actual monitoring needs.

Monitoring a computer network is often also a discovery journey, where you can gain
unexpected wisdom from apparently dry and uninspiring data, such as SNMP values and
server logs. With this short book, we hope we have shown you how Zabbix can be an
excellent means to gain such wisdom if you are willing to play with it for a while and put
to good use all its powerful features.

Appendix A. Partitioning the Zabbix
Database

MySQL partitioning

Here are all the stored procedures you need to create to properly handle database
partitioning with MySQL.

You need to create all of them in your Zabbix database.

Note that all the procedures described here are also available at

https://github.com/smartmarmot/zabbix_network monitoring/tree/master/Chapter1.

https://github.com/smartmarmot/zabbix_network_monitoring/tree/master/Chapter1

The partition_maintenance procedure

This is the most important procedure, which will manage all the other stored procedures
involved in the creation/drop and verification of partitions, as follows:

DELIMITER $$
CREATE PROCEDURE ‘“partition_maintenance (SCHEMA_NAME VARCHAR(32),
TABLE_NAME VARCHAR(32), KEEP_DATA_DAYS INT, HOURLY_INTERVAL INT,
CREATE_NEXT_INTERVALS INT)
BEGIN

DECLARE OLDER_THAN_PARTITION_DATE VARCHAR(16);

DECLARE PARTITION_NAME VARCHAR(16);

DECLARE LESS_THAN_TIMESTAMP INT;

DECLARE CUR_TIME INT,

CALL partition_verify(SCHEMA_NAME, TABLE_NAME, HOURLY_INTERVAL);
SET CUR_TIME = UNIX_TIMESTAMP(DATE_FORMAT(NOW(), '%Y-%m-%d
00:00:00"));
IF DATE(NOW()) = '2014-04-01' THEN
SET CUR_TIME = UNIX_TIMESTAMP (DATE_FORMAT (DATE_ADD(NOW(),
INTERVAL 1 DAY), '%Y-%m-%d 00:00:00'));
END IF;
SET @__interval = 1;
create_loop: LOOP
IF @__interval > CREATE_NEXT_INTERVALS THEN
LEAVE create_loop;
END IF;

SET LESS_THAN_TIMESTAMP = CUR_TIME + (HOURLY_INTERVAL *
@__interval * 3600);

SET PARTITION_NAME = FROM_UNIXTIME(CUR_TIME +
HOURLY_INTERVAL * (@__interval - 1) * 3600, 'p%Y%m%d%HOO');

CALL partition_create(SCHEMA_NAME, TABLE_NAME,
PARTITION_NAME, LESS_THAN_TIMESTAMP);

SET @__interval=@__interval+1;

END LOOP;

SET OLDER_THAN_PARTITION_DATE=DATE_FORMAT (DATE_SUB(NOW(), INTERVAL
KEEP_DATA_DAYS DAY), '%Y%m%doeoo');

CALL partition_drop(SCHEMA_NAME, TABLE_NAME,
OLDER_THAN_PARTITION_DATE);

END$$
DELIMITER ;

This stored procedure will be the core of our housekeeping. It will be called with the
following syntax:

CALL partition_maintenance('<zabbix_db_name>', '<table_name>"',
<days_to_keep_data>, <hourly_interval>, <num_future_intervals_to_create>)

The partition_create procedure

This procedure is responsible for creating new partitions across your schema. What
follows here is the procedure itself:

DELIMITER $$
CREATE PROCEDURE ‘"partition_create (SCHEMANAME VARCHAR(64), TABLENAME
VARCHAR(64), PARTITIONNAME VARCHAR(64), CLOCK INT)
BEGIN
/*
SCHEMANAME = The DB schema in which to make changes
TABLENAME = The table with partitions to potentially delete
PARTITIONNAME = The name of the partition to create
*/
/*
Verify that the partition does not already exist
*/

DECLARE RETROWS INT,;

SELECT COUNT(1) INTO RETROWS

FROM information_schema.partitions

WHERE table_schema = SCHEMANAME AND TABLE_NAME = TABLENAME AND
partition_name = PARTITIONNAME;

IF RETROWS = 0 THEN
/*
1. Print a message indicating that a partition was
created.

N

Create the SQL to create the partition.
Execute the SQL from #2.

w

*/

SELECT CONCAT("partition_create(", SCHEMANAME, ",6",
TABLENAME, ",", PARTITIONNAME, ",", CLOCK, ")") AS msg;

SET @SQL = CONCAT('ALTER TABLE ', SCHEMANAME, '.',

TABLENAME, ' ADD PARTITION (PARTITION ', PARTITIONNAME, ' VALUES LESS THAN

(', CLOCK, "));"');
PREPARE STMT FROM @SQL;
EXECUTE STMT;
DEALLOCATE PREPARE STMT;
END IF;
END$$
DELIMITER ;

The partition_verify procedure

This partition is responsible for verifying whether a partition is already present, and if it
isn’t, partition_verify will create them, as follows:

DELIMITER $$
CREATE PROCEDURE “partition_verify' (SCHEMANAME VARCHAR(64), TABLENAME
VARCHAR(64), HOURLYINTERVAL INT(11))
BEGIN
DECLARE PARTITION_NAME VARCHAR(16);
DECLARE RETROWS INT(11);
DECLARE FUTURE_TIMESTAMP TIMESTAMP;

/*
* Check if any partitions exist for the given
SCHEMANAME . TABLENAME .
*/
SELECT COUNT(1) INTO RETROWS
FROM information_schema.partitions
WHERE table_schema = SCHEMANAME AND TABLE_NAME = TABLENAME AND
partition_name IS NULL;

/*
* If partitions do not exist, go ahead and partition the table
*/

IF RETROWS = 1 THEN

/*
* Take the current date at 00:00:00 and add HOURLYINTERVAL
to it. This is the timestamp below which we will store values.
* We begin partitioning based on the beginning of a day.
This is because we don't want to generate a random partition
* that won't necessarily fall in line with the desired
partition naming (ie: if the hour interval is 24 hours, we could
* end up creating a partition now named "p201403270600"
when all other partitions will be like "p201403280000").
*/
SET FUTURE_TIMESTAMP = TIMESTAMPADD(HOUR, HOURLYINTERVAL,
CONCAT(CURDATE(), " ", '00:00:00'));
SET PARTITION_NAME = DATE_FORMAT(CURDATE(), 'p%Y%m%d%HOO');

—Create the partitioning query
SET @__PARTITION_SQL = CONCAT("ALTER TABLE ", SCHEMANAME,
".", TABLENAME, " PARTITION BY RANGE(clock)");
SET @__PARTITION_SQL = CONCAT(@__PARTITION_SQL, "(PARTITION
", PARTITION_NAME, " VALUES LESS THAN (", UNIX_TIMESTAMP(FUTURE_TIMESTAMP),

"))

—Run the partitioning query
PREPARE STMT FROM @__PARTITION_SQL;
EXECUTE STMT,;
DEALLOCATE PREPARE STMT,;
END IF;
END$$
DELIMITER ;

The partition_drop procedure

This stored procedure is responsible for dropping the partitions older than a given period,
as follows:

DELIMITER $$
CREATE PROCEDURE ‘partition_drop (SCHEMANAME VARCHAR(64), TABLENAME
VARCHAR(64), DELETE_BELOW_PARTITION_DATE BIGINT)
BEGIN
/*
SCHEMANAME = The DB schema in which to make changes
TABLENAME = The table with partitions to potentially delete
DELETE_BELOW_PARTITION_DATE = Delete any partitions with names
that are dates older than this one (yyyy-mm-dd)
*/
DECLARE done INT DEFAULT FALSE;
DECLARE drop_part_name VARCHAR(16);

/*
Get a list of all the partitions that are older than the date
in DELETE_BELOW_PARTITION_DATE. All partitions are prefixed
with
a "p", so use SUBSTRING TO get rid of that character.
*/
DECLARE myCursor CURSOR FOR
SELECT partition_name
FROM information_schema.partitions
WHERE table_schema = SCHEMANAME AND TABLE_NAME = TABLENAME
AND CAST(SUBSTRING(partition_name FROM 2) AS UNSIGNED) <
DELETE_BELOW_PARTITION_DATE,
DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

/*
Create the basics for when we need to drop the partition. Also,
create
@drop_partitions to hold a comma-delimited list of all
partitions that
should be deleted.

*/
SET @alter_header = CONCAT("ALTER TABLE ", SCHEMANAME, ".",
TABLENAME, " DROP PARTITION ");
SET @drop_partitions = "";
/*
Start looping through all the partitions that are too old.
*/

OPEN myCursor;
read_loop: LOOP
FETCH myCursor INTO drop_part_name;
IF done THEN
LEAVE read_loop;

END IF;
SET @drop_partitions = IF(@drop_partitions = "",
drop_part_name, CONCAT(@drop_partitions, ",", drop_part_name));

END LOOP;

IF @drop_partitions != "" THEN

/*
1. Build the SQL to drop all the necessary partitions.
2. Run the SQL to drop the partitions.
3. Print out the table partitions that were deleted.

*/

SET @full_sgl = CONCAT(@alter_header, @drop_partitions,

Il;ll);

PREPARE STMT FROM @full_sql;

EXECUTE STMT,;

DEALLOCATE PREPARE STMT,

SELECT CONCAT(SCHEMANAME, ".'", TABLENAME) AS “table’,
@drop_partitions AS “partitions_deleted;
ELSE
/*

No partitions are being deleted, so print out "N/A" (Not
applicable) to indicate
that no changes were made.
*/
SELECT CONCAT(SCHEMANAME, ".", TABLENAME) AS "table’, "N/A"
AS “partitions_deleted’;
END IF;
END$$
DELIMITER;

The partition_maintenance_all procedure

This procedure calls the partition_maintenance procedure for each history/trend table.
Please note that for all the history tables, we are applying the same intervals, which are
730 days of trend data and 28 days of history data. Here’s how this procedure works:

DELIMITER $$

CREATE PROCEDURE ‘partition_maintenance_all (SCHEMA_NAME VARCHAR(32))

BEGIN

CALL
14);

CALL
24, 14);

CALL
24, 14);

CALL
24, 14);

CALL
24, 14);

CALL
14);

CALL
24, 14);
END$$

DELIMITER;

partition_maintenance(SCHEMA_NAME,
partition_maintenance(SCHEMA_NAME,
partition_maintenance(SCHEMA_NAME,
partition_maintenance(SCHEMA_NAME,
partition_maintenance(SCHEMA_NAME,
partition_maintenance(SCHEMA_NAME,

partition_maintenance(SCHEMA_NAME,

"history', 28, 24,
'"history_log', 28,
"history_str', 28,
'history_text', 28,
"history_uint', 28,
'"trends', 730, 24,

"trends_uint', 730,

Housekeeping configuration

As per our example, the housekeeping needs to be configured, as shown in the following
screenshot, with a history data storage period of 730 days and a trend data storage period
of 28 days. Here, you can change those values bearing in mind that you also need to
change the parameter passed to the stored procedures.

To change the housekeeping setting in the web interface, you simply need to go to
Administration | General | Housekeeping (from the drop-down list), and here is the
configuration:

Events and alerts Enable internal housekeeping &
Tngger data storage penod (in days) 365
Internal data storage period (in days) 365
MNetwork discovery data storage period (in days) 365
Auto-registration data storage period (in days) 365

IT services Enable internal housekeeping o
Data storage peried (in days) 365

Audit Enable internal housekeeping o
Data storage period (in days) 365

User sessions Enable internal housekeeping &
Data storage period (in days) 365

History Enable internal housekeeping

Overnide item history penod (&

Data storage period (in days) 28

Trends Enable internal housekeeping
Owernide item trend penod &

Data storage penod (n days) 730

Update Resel defaults

Appendix B. Collecting Squid Metrics

Squid metric script

Here, you can find the script we discussed in Chapter 3, Monitoring Your Network
Services, and create the script in the usual location, that is, at

/home/zabbix/bin/squidcheck. sh.
Create the script with the following content:

cat squidcheck.sh
#!/bin/bash
VERSION="1.0"

function usage()

{
echo "squidcheck version: $VERSION"
echo "usage:"
echo " $0 http_requests
echo " $0 clients

cache"
echo " $0 icp_received
echo " $0 icp_sent
echo " $0 icp_queued
echo " $0 htcp_received
echo " $0 htcp_sent
echo " $0 req_fail_ratio

echo " $0 avg_http_req_per_min
since start"

echo " $0 avg_icp_msg_per_min
since start"
echo " $0 request_hit_ratio

echo " $0 byte_hit_ratio_5
echo " $0 byte_hit_ratio_60

echo " $0 request_mem_hit_ratio_ 5
echo " $0 request_mem_hit_ratio_60
mins"
echo " $0 request_disk_hit_ratio_5
echo " $0 request_disk_hit_ratio_60
echo " $0 servicetime_httpreq
echo " $0 process_mem
sbrk"
echo " $0 cpu_usage
echo " $0 cache_size_disk
echo " $0 cache_size_mem
echo " $0 mean_obj_size
echo " $0 filedescr_max
descriptors"
echo " $0 filedescr_avail
descriptors"
}
HHtHHHHHH
Main

HEHHH AR

Number of HTTP requests received"
Number of clients accessing

Number of ICP messages received"
Number of ICP messages sent"
Number of queued ICP replies"
Number of HTCP messages received"
Number of HTCP messages sent"
Request failure ratio"

Average HTTP requests per minute

Average ICP messages per minute

Request Hit Ratios"

Byte Hit Ratio 5 mins"

Byte Hit Ratio 60 mins"

Request Memory Hit Ratios 5 mins"
Request Memory Hit Ratios 60

Request Disk Hit Ratios 5 mins"
Request Disk Hit Ratios 60 mins"
HTTP Requests (All)"

Process Data Segment Size via

CPU Usage"

Storage Swap size"
Storage Mem size"

Mean Object Size"
Maximum number of file

Available number of file

if [[$# '= 1]],;then
#No Parameter
usage
exit 0
fi
case $1 in
"http_requests")
value=""squidclient mgr:info|grep 'Number of HTTP requests

received:'|cut -d':' -f2| tr -d " \t'™"
rval=$7?;;
"clients")
value=""squidclient mgr:info|grep 'Number of clients accessing
cache:'|cut -d':' -f2| tr -d " \t'™"
rval=$?;;

"icp_received")
value=""squidclient mgr:info|grep 'Number of ICP messages

received:'|cut -d':' -f2| tr -d " \t'™"

rval=$?;;
"icp_sent")

value=""squidclient mgr:info|grep 'Number of ICP messages
sent:'|cut -d':"'" -f2|] tr -d ' \t'™"

rval=$?;;

"icp_queued")

value=""squidclient mgr:info|grep 'Number of queued ICP
replies:'|cut -d':' -f2| tr -d ' \t'™"

rval=$?;;
"htcp_received")

value=""squidclient mgr:info|grep 'Number of HTCP messages

received:'|cut -d':' -f2| tr -d " \t'™"

rval=$7?;;
"htcp_sent")

value=""squidclient mgr:info|grep 'Number of HTCP messages
sent:'|cut -d':' -f2| tr -d ' \t'™"

rval=$7?;;

"reqg_fail_ratio")

value=""squidclient mgr:info|grep 'Request failure ratio:'|cut -
d':" -f2| tr -d ' \t'™"

rval=$7?;;
"avg_http_req_per_min")

value=""squidclient mgr:info|grep 'Average HTTP requests per minute
since start:'|cut -d':' -f2| tr -d " \t'™"

rval=$7?;;
"avg_icp_msg_per_min'")

value=""squidclient mgr:info|grep 'Average ICP messages per minute
since start:'|cut -d':' -f2| tr -d " \t'™"

rval=$7?;;
"request_hit_ratio")

value=""squidclient mgr:info|grep 'Request Hit Ratios:'|cut -d':' -
f3|cut -d',"' -f1|tr -d ' %' "

rval=$?;;
"byte_hit_ratio_5")

value=""squidclient mgr:info|grep 'Hits as % of bytes sent:'| awk
-F'[:,%]' '"{print $10}'| tr -d ' \t'™"

rval=$?;;

"byte_hit_ratio_60")
value=""squidclient mgr:info|grep 'Hits as % of bytes sent:'| awk

-F'[:,%]' "{print $15}'| tr -d
rval=$?;;
"request_mem_hit_ratio_5")

value=""squidclient mgr:info|grep 'Hits as %

awk -F'[:,%]' '"{print $10}'|
rval=$7?;;
"request_mem_hit_ratio_60")

tr

value=""squidclient mgr:info|grep 'Hits as %

awk -F'[:,%]' '"{print $15}'|
rval=$?;;
"request_disk_hit_ratio_5")

tr

value=""squidclient mgr:info|grep 'Disk hits
"{print $11}'|

requests:'|awk -F'[:,%]'
rval=$?;;
"request_disk_hit_ratio_60")

value=""squidclient mgr:info|grep 'Disk hits
"{print $16}'|

requests:'|awk -F'[:,%]'
rval=$?;;

"servicetime_httpreq")
value=""squidclient mgr:

-f2|tr -s ' '|awk '{print $1}'""
rval=$?;;

"process_mem")
value=""squidclient mgr:

sbrk'|cut -d':"'" -f2|lawk '{print
rval=$?;;

"cpu_usage")

value=""squidclient mgr:
l%lltr _d 1 \tl‘ll

rval=$7?;;
"cache_size_disk")

value=""squidclient mgr:
f2lawk '{print $1}'""

rval=$7?;;
"cache_size_mem")

value=""squidclient mgr:
f2lawk '{print $1}'""

rval=$7?;;
"mean_obj_size")

value=""squidclient mgr:

f2lawk '{print $1}'""
rval=$7?;;
"filedescr_max")
value=""squidclient mgr
descriptors:'|cut -d':' -f2|awk
rval=$7?;;
"filedescr_avail")
value=""squidclient mgr:

descriptors:'|cut -d':' -f2|awk
rval=$7?;;

*)
usage
exit 1;;

esac

if ["$rval" -eq 0 -a

1 \tl‘ll

-d

1 \tl

-d " A\t!

-z "$value"]; then

tr -d '

tr -d '

of all requests:' |

of all requests:' |

as % of hit
\tl‘ll

as % of hit
\tl‘ll

info|grep 'HTTP Requests (All):'|cut -d':'
info|grep 'Process Data Segment Size via
$1}| ~n

info|grep 'CPU Usage:'|cut -d':' -f2|tr -d
info|grep 'Storage Swap size:'|cut -d':' -
info|grep 'Storage Mem size:'|cut -d':' -
info|grep 'Mean Object Size:'|cut -d':' -
:info|grep 'Maximum number of file

"{print $1}'""

info|grep 'Available number of file
"{print $1}'""

rval=1
fi

if ["$rval" -ne 0]; then
echo "ZBX_NOTSUPPORTED"
fi

echo $value

Index
A

action conditions section / Finding hosts the Zabbix way
action definition section / Defining action conditions

action operations section / Finding hosts the Zabbix way
Apache

o modules / Apache monitoring
e Apache monitoring
o about / Apache monitoring

o performing / Apache monitoring
¢ architectures, Zabbix

o about / Zabbix architectures

C

e complex maps

o issues / Maps — a quick setup for a large topology
e CPULoad parameter / Apache monitoring
e custom graphs

o creating / Creating custom graphs

D

e database

installing / Installing a database
size, considering / Considering the database size
items / Considering the database size
refresh rate / Considering the database size
space / Considering the database size
MySQL partitioning / MySQL partitioning
e data flow, Zabbix

o about / Understanding Zabbix data flow
e data types, SNMP
about / Getting data types right
URL / Getting data types right
INTEGER / Getting data types right
STRING / Getting data types right
OID / Getting data types right
IpAddress / Getting data types right
Counter32 / Getting data types right
Gauge32 / Getting data types right
Counter64 / Getting data types right
TimeTicks / Getting data types right

O O O O O

(e]

(e]

O 0O 0O o o o o o o

e dig
o about / DNS — response time
discovery items
o about / Low-level discovery
discovery rules
o about / Low-level discovery
DNS monitoring
o about / Monitoring the DNS
o performing / Monitoring the DNS
o response time, monitoring / DNS — response time
o DNSSEC zone rollover, monitoring / DNSSEC — monitoring the zone rollover
DNSSEC parameters
o about / DNSSEC — monitoring the zone rollover

G

e graph
o putting, on screen / Putting everything together with screens

e host groups

about / Hosts and host groups
o routers group / Hosts and host groups
o switches group / Hosts and host groups
o subnet group / Hosts and host groups

e hosts
o about / Understanding Zabbix hosts
o interfaces / Host interfaces
o inventory / Host inventory

¢ housekeeping configuration

o about / Housekeeping configuration

(e]

I

e [ICMP echo checks
o about / Simple checks
¢ interfaces / Host interfaces
¢ Internet Protocol Flow Information eXport (IPFIX) / Getting netflow from the
devices to the monitoring server

L

¢ low-level discovery

e}

o
o
o

about / Low-level discovery
advantage / Low-level discovery
rules, creating / Low-level discovery
rules, managing / Low-level discovery

M

® maps
o complex maps / Maps — a quick setup for a large topology
o DOT creation, automating / Maps — automating the DOT creation
o drafting, from DOT / Drafting Zabbix maps from DOT
o putting, on screen / Putting everything together with screens
e MIBs
o about / Finding the right OIDs to monitor
e MySQL partitioning
o about / MySQL partitioning
benefits / MySQL partitioning
stored procedures / MySQL partitioning
partition_maintenance procedure / The partition_maintenance procedure
partition_create procedure / The partition_create procedure
partition_verify procedure / The partition_verify procedure
partition_drop procedure / The partition_drop procedure
partition_maintenance_all procedure / The partition_maintenance_all procedure

O O O O O o o

netflow
o about / Getting netflow from the devices to the monitoring server
o data, getting into Zabbix / Getting netflow from the devices to the monitoring
server
o data, receiving on server / Receiving netflow data on your server
network discovery
o hosts, finding / Finding hosts the Zabbix way
o action conditions, defining / Defining action conditions
o action operations, selecting / Choosing action operations
o remote commands, executing / Remote commands
network interfaces
o about / Low-level discovery
network services
o DNS, monitoring / Monitoring the DNS
o Apache, monitoring / Apache monitoring
o NTP, monitoring / NTP monitoring
o Squid, monitoring / Squid monitoring
NetworkX
o URL / Maps — automating the DOT creation
o about / Maps — automating the DOT creation
Nfdump
o about / Receiving netflow data on your server
nfcapd / Receiving netflow data on your server

nfdump / Receiving netflow data on your server
URL, for nfdump package / Receiving netflow data on your server

Nmap / Choosing action operations

NTP monitoring

about / NTP monitoring

performing / NTP monitoring, NTP — what are we monitoring?
Delay / NTP — what are we monitoring?

Offset / NTP — what are we monitoring?

Jitter / NTP — what are we monitoring?

(e]

(e]

(e]

(e]

O O O o

O

e OIDs

o finding, for monitoring / Finding the right OIDs to monitor
o about / Finding the right OIDs to monitor
o mapping, to Zabbix items / Mapping SNMP OIDs to Zabbix items

partition_create procedure
o about / The partition_create procedure
partition_drop procedure

o about / The partition_drop procedure
partition_maintenance procedure

o about / The partition_maintenance procedure
partition_maintenance_all procedure

o about / The partition_maintenance_all procedure
partition_verify procedure

o about / The partition_verify procedure
Perl modules

o about / DNSSEC — monitoring the zone rollover
proxies data flow, Zabbix

o about / Understanding the Zabbix proxies’ data flow
ProxyConfigFrequency= parameter

o about / Understanding the Zabbix proxies’ data flow
ProxyDataFrequency= parameter

o about / Understanding the Zabbix proxies’ data flow
pyzabbix

o about / Remote commands

o URL / Remote commands

Q

e query_apachestats.py / Apache monitoring

R

e ReadingRequest parameter / Apache monitoring
e ReqgPerSec parameter / Apache monitoring
¢ rollstate plugin
o about / DNSSEC — monitoring the zone rollover

screen

about / Putting everything together with screens
creating / Putting everything together with screens
o maps, putting on / Putting everything together with screens
o graph, putting on / Putting everything together with screens
Siege
o URL / Apache monitoring
simple checks
o about / Simple checks
Icmpping / Simple checks
Icmppingloss / Simple checks

Icmppingsec / Simple checks
Net.tcp.service / Simple checks

Net.tcp.service.perf / Simple checks
o configuring / Simple checks

(e]

(e]

O O O O O

slide show
o creating / Putting everything together with screens
SNMP

o about / Keeping SNMP simple
o data, getting into Zabbix / Getting SNMP data into Zabbix
o OIDs, finding for monitoring / Finding the right OIDs to monitor
o OIDs, mapping to Zabbix items / Mapping SNMP OIDs to Zabbix items
o data types / Getting data types right
o netflow data, receiving on server / Receiving netflow data on your server
o log file, monitoring with Zabbix / Monitoring a log file with Zabbix
SNMP gets
o about / Keeping SNMP simple
snmptrapd
o about / Snmptrapd
SNMP traps
o about / Keeping SNMP simple, SNMP traps
o snmptrapd / Snmptrapd
o transforming, into Zabbix item / Transforming a trap into a Zabbix item
o netflow, getting from devices / Getting netflow from the devices to the

monitoring server

Squid

o about / Squid monitoring

o URL / Squid monitoring
Squid metric script

o about / Squid metric script
Squid monitoring

o performing / Squid monitoring

e StartProxyPollers= parameter
o about / Understanding the Zabbix proxies’ data flow

T

e TCP/IP connection checks

o about / Simple checks
e trigger information cell / Putting everything together with screens
e trigger overview cell / Putting everything together with screens

\Y

e value maps
o about / Getting data types right

W

e WaitingForConnection parameter / Apache monitoring
e WebGUI interface

o installing / Installing the WebGUI interface

X

e xdot.py
o URL / Maps — automating the DOT creation
e xml2

o about / Monitoring the DNS

Z.abbix

e}

O O O O O

e}

architectures / Zabbix architectures

data flow / Understanding Zabbix data flow

proxies data flow / Understanding the Zabbix proxies’ data flow
installing / Installing Zabbix

database, installing / Installing a database

hosts / Understanding Zabbix hosts

host groups / Hosts and host groups

Zabbix agent package, for Linux OS

e}

URL / Creating a Zabbix agent package with ChecklInstall

Zabbix agents

e}

e}

e}

e}

about / Going beyond Zabbix agents
simple checks / Simple checks

SNMP / Keeping SNMP simple
SNMP traps / SNMP traps

ZabbixApacheUpdater plugin / Apache monitoring
Zabbix installation

(¢]

e}

about / Installing Zabbix

installing, from packages / Installing from packages

Zabbix agent, setting up / Setting up a Zabbix agent

Zabbix agent package, creating with ChecklInstall / Creating a Zabbix agent

package with ChecklInstall
server configuration / Server configuration

Zabbix proxy

e}

installing / Installing a Zabbix proxy

zapache plugin / Apache monitoring

e}

URL / Apache monitoring

zonestate plugin

e}

about / DNSSEC — monitoring the zone rollover

	Zabbix Network Monitoring Essentials
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Installing a Distributed Zabbix Setup
	Zabbix architectures
	Understanding Zabbix data flow
	Understanding the Zabbix proxies' data flow
	Installing Zabbix
	Installing from packages
	Setting up a Zabbix agent
	Creating a Zabbix agent package with CheckInstall
	Server configuration
	Installing a database
	Considering the database size
	MySQL partitioning
	Installing a Zabbix proxy
	Installing the WebGUI interface
	Summary
	2. Active Monitoring of Your Devices
	Understanding Zabbix hosts
	Hosts and host groups
	Host interfaces
	Host inventory
	Going beyond Zabbix agents
	Simple checks
	Keeping SNMP simple
	Getting SNMP data into Zabbix
	Finding the right OIDs to monitor
	Mapping SNMP OIDs to Zabbix items
	Getting data types right
	SNMP traps
	Snmptrapd
	Transforming a trap into a Zabbix item
	Getting netflow from the devices to the monitoring server
	Receiving netflow data on your server
	Monitoring a log file with Zabbix
	Summary
	3. Monitoring Your Network Services
	Monitoring the DNS
	DNS – response time
	DNSSEC – monitoring the zone rollover
	Apache monitoring
	NTP monitoring
	NTP – what are we monitoring?
	Squid monitoring
	Summary
	4. Discovering Your Network
	Finding hosts the Zabbix way
	Defining action conditions
	Choosing action operations
	Remote commands
	Low-level discovery
	Summary
	5. Visualizing Your Topology with Maps and Graphs
	Creating custom graphs
	Maps – a quick setup for a large topology
	Maps – automating the DOT creation
	Drafting Zabbix maps from DOT
	Putting everything together with screens
	Summary
	A. Partitioning the Zabbix Database
	MySQL partitioning
	The partition_maintenance procedure
	The partition_create procedure
	The partition_verify procedure
	The partition_drop procedure
	The partition_maintenance_all procedure
	Housekeeping configuration
	B. Collecting Squid Metrics
	Squid metric script
	Index

