

Zabbix	Network	Monitoring	Essentials

Table	of	Contents

Zabbix	Network	Monitoring	Essentials

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Installing	a	Distributed	Zabbix	Setup

Zabbix	architectures

Understanding	Zabbix	data	flow

Understanding	the	Zabbix	proxies’	data	flow

Installing	Zabbix

Installing	from	packages

Setting	up	a	Zabbix	agent

Creating	a	Zabbix	agent	package	with	CheckInstall

Server	configuration

Installing	a	database

Considering	the	database	size

MySQL	partitioning

Installing	a	Zabbix	proxy

Installing	the	WebGUI	interface

Summary

2.	Active	Monitoring	of	Your	Devices

Understanding	Zabbix	hosts

Hosts	and	host	groups

Host	interfaces

Host	inventory

Going	beyond	Zabbix	agents

Simple	checks

Keeping	SNMP	simple

Getting	SNMP	data	into	Zabbix

Finding	the	right	OIDs	to	monitor

Mapping	SNMP	OIDs	to	Zabbix	items

Getting	data	types	right

SNMP	traps

Snmptrapd

Transforming	a	trap	into	a	Zabbix	item

Getting	netflow	from	the	devices	to	the	monitoring	server

Receiving	netflow	data	on	your	server

Monitoring	a	log	file	with	Zabbix

Summary

3.	Monitoring	Your	Network	Services

Monitoring	the	DNS

DNS	–	response	time

DNSSEC	–	monitoring	the	zone	rollover

Apache	monitoring

NTP	monitoring

NTP	–	what	are	we	monitoring?

Squid	monitoring

Summary

4.	Discovering	Your	Network

Finding	hosts	the	Zabbix	way

Defining	action	conditions

Choosing	action	operations

Remote	commands

Low-level	discovery

Summary

5.	Visualizing	Your	Topology	with	Maps	and	Graphs

Creating	custom	graphs

Maps	–	a	quick	setup	for	a	large	topology

Maps	–	automating	the	DOT	creation

Drafting	Zabbix	maps	from	DOT

Putting	everything	together	with	screens

Summary

A.	Partitioning	the	Zabbix	Database

MySQL	partitioning

The	partition_maintenance	procedure

The	partition_create	procedure

The	partition_verify	procedure

The	partition_drop	procedure

The	partition_maintenance_all	procedure

Housekeeping	configuration

B.	Collecting	Squid	Metrics

Squid	metric	script

Index

Zabbix	Network	Monitoring	Essentials

Zabbix	Network	Monitoring	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1210215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-976-4

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Andrea	Dalle	Vacche

Stefano	Kewan	Lee

Reviewers

Ravi	Bhure

Nicholas	Pier

Nicola	Volpini

Commissioning	Editor

Amarabha	Banerjee

Acquisition	Editor

Nikhil	Karkal

Content	Development	Editor

Siddhesh	Salvi

Technical	Editor

Humera	Shaikh

Copy	Editor

Sarang	Chari

Project	Coordinator

Kranti	Berde

Proofreaders

Simran	Bhogal

Linda	Morris

Indexer

Hemangini	Bari

Graphics

Disha	Haria

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Authors
Andrea	Dalle	Vacche	is	a	highly	skilled	IT	professional	with	over	14	years	of	experience
in	the	IT	industry	and	banking.	He	graduated	from	Università	degli	Studi	di	Ferrara	with
an	information	technology	certification.	This	laid	the	technology	foundation	that	Andrea
has	built	on	ever	since.	Andrea	has	acquired	various	industry-respected	accreditations,
which	include	Cisco,	Oracle,	RHCE,	ITIL,	and	of	course,	Zabbix.	Throughout	his	career,
he	has	worked	in	many	large-scale	environments,	often	in	roles	that	have	been	very
complex,	on	a	consultant	basis.	This	has	further	enhanced	his	growing	skill	set,	adding	to
his	practical	knowledge	base	and	increasing	his	appetite	for	theoretical	technical	studying.

Andrea’s	love	for	Zabbix	came	from	his	time	spent	in	the	Oracle	world	as	a	database
administrator/developer.	His	time	was	spent	mainly	on	reducing	ownership	costs,
specializing	in	monitoring	and	automation.	This	is	where	he	came	across	Zabbix	and	the
flexibility	it	offered,	both	technically	and	administratively.	With	this	as	a	launch	pad,
Andrea	was	inspired	to	develop	Orabbix,	the	first	open	source	software	to	monitor
Oracle’s	complete	integration	with	Zabbix.	He	has	published	a	number	of	articles	on
Zabbix-related	software,	such	as	DBforBIX.	His	projects	are	publicly	available	at
http://www.smartmarmot.com.	Currently,	Andrea	is	working	as	a	senior	architect	for	a
leading	global	investment	bank	in	a	very	diverse	and	challenging	environment.	He	deals
with	many	aspects	of	the	Unix/Linux	platforms	as	well	as	many	types	of	third-party
software,	which	are	strategically	aligned	to	the	bank’s	technical	roadmap.	In	addition	to
this	title,	Andrea	Dalle	Vacche	is	a	coauthor	of	Mastering	Zabbix,	Packt	Publishing.

Stefano	Kewan	Lee	is	an	IT	consultant	with	more	than	12	years	of	experience	in	system
integration,	security,	and	administration.	He	is	a	certified	Zabbix	specialist	in	large
environments	holds	a	Linux	administration	certification	from	the	LPI	and	a	GIAC	GCFW
certification	from	SANS	Institute.	When	he’s	not	busy	breaking	websites,	he	lives	in	the
countryside	with	his	two	cats	and	two	dogs	and	practices	martial	arts.	In	addition	to	this
title,	Stefano	Kewan	Lee	is	a	coauthor	of	Mastering	Zabbix,	Packt	Publishing.

http://www.smartmarmot.com

About	the	Reviewers
Ravi	Bhure	is	basically	an	IT	engineer	with	niche	skills,	such	as	Chef,	Cloud	Ansible,
SaltStack,	Python,	Ruby,	and	Shell/Bash.	He	also	writes	code	for	infrastructure,	daily	IT
operations,	and	so	on.	In	short,	he	is	fond	of	using	his	skills	and	knowledge	of	fault-
tolerant	solutions	for	the	day-to-day	maintenance	of	mission-critical	production
infrastructure.

Ravi	started	interacting	with	computers	since	1996	when	he	got	his	first	computer	at
home.	Things	changed	very	fast,	and	in	1998,	he	entered	the	magical	world	of	the	Internet
☺	for	the	first	time	ever,	which	changed	his	life!	He	started	his	own	cyber	cafe	in	1999.	In
2004,	he	got	his	first	job	as	a	field	engineer,	hired	to	maintain	and	support	VRI	UFO
systems.	After	2	years,	he	moved	to	Pune	and	worked	with	many	organizations,	such	as
Vyom	Labs,	Glam	India,	Symphony,	and	Dhingana.

The	most	happening	and	interesting	fact	about	his	diverse	exposure	is	that	he	is	from	an
arts	background.	Yes,	he	holds	a	bachelor’s	degree	in	arts	from	SRTM	University,	Nanded,
Maharashtra,	India.	And	we	all	will	have	to	agree	that	he	has	the	art	to	solve	problems	☺,
a	great	inspiration	for	people	who	are	non	engineers!

Currently,	Ravi	is	associated	with	OpexSoftware	as	a	senior	DevOps	engineer.

Nicholas	Pier	is	a	network	engineer	in	the	managed	services	/	professional	services	field.
His	experience	includes	designing	data	center	network	infrastructures	with	virtualization
and	SAN	solutions,	web	development,	and	writing	middleware	for	business	applications.
At	the	time	of	writing	this,	Nicholas	holds	a	number	of	industry	certifications,	including
the	Cisco	CCNP,	VMware	VCP5-DCV,	and	various	other	Cisco	and	CompTIA
certifications.	In	his	free	time,	he	indulges	in	his	passion	for	craft	beer,	distance	running,
and	reading.

I’d	like	to	thank	Packt	Publishing	for	this	opportunity!

Nicola	Volpini	has	been	playing	with	technology	from	a	young	age,	having	a	hard	time
resisting	the	urge	to	disassemble	complex	toys	or	kitchen	appliances.

The	love	for	computers	originated	around	his	tenth	birthday,	when	he	accidentally	toasted
his	first	CPU.	This	episode	only	increased	his	fascination	for	computers,	and	the
accidents,	fortunately,	stopped.

For	the	past	10	years,	he’s	been	working	as	an	IT	professional,	specializing	in	enterprise
networking	and	system	administration.	Experimenting	with	the	most	diverse	technologies
in	the	field	and	being	an	avid	fan	of	the	FOSS	philosophy,	Linux,	and	*BSD,	he	dreams	of
seeing	the	collaborative	thinking	of	the	FOSS	movement	help	inspire	the	world.

He’s	currently	working	at	Stockholm,	Sweden,	where	he	resides	with	his	girlfriend.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Network	administrators	are	facing	an	interesting	challenge	these	days.	On	the	one	hand,
computer	networks	are	not	something	new	anymore.	They	have	been	around	for	quite	a
while:	their	physical	components	and	communication	protocols	are	fairly	well	understood
and	don’t	represent	a	big	mystery	to	an	increasing	number	of	professionals.	Moreover,
network	appliances	are	getting	cheaper	and	easier	to	set	up,	to	the	point	that	it	doesn’t	take
a	certified	specialist	to	install	and	configure	a	simple	network	or	connect	it	to	other
networks.	The	very	concept	of	networking	is	so	widespread	and	ingrained	in	how	users
and	developers	think	of	a	computer	system	that	being	online	in	some	form	is	expected	and
taken	for	granted.	In	other	words,	a	computer	network	is	increasingly	seen	as	a
commodity.

On	the	other	hand,	the	very	same	forces	that	are	calling	for	simpler,	easier,	accessible
networks	are	the	ones	that	are	actually	pushing	them	to	grow	more	and	more	complex
every	day.	It’s	a	matter	of	both	quantity	and	quality.	The	number	of	connected	devices	on	a
given	network	is	almost	always	constantly	growing	and	so	is	the	amount	of	data
exchanged:	media	streams,	application	data,	backups,	database	queries,	and	replication
tend	to	saturate	bandwidth	just	as	much	as	they	eat	up	storage	space.	As	for	quality,	there
are	dozens	of	different	requirements	that	factor	in	a	given	network	setup:	from	having	to
manage	different	physical	mediums	(fiber,	cable,	radio,	and	so	on),	to	the	need	to	provide
high	performance	and	availability,	both	on	the	connection	and	on	the	application	level;
from	the	need	to	increase	performance	and	reliability	for	geographical	links,	to	providing
confidentiality,	security,	and	data	integrity	at	all	levels,	and	the	list	goes	on.

These	two	contrasting,	yet	intertwined,	tendencies	are	forcing	network	administrators	to
do	more	(more	services,	more	availability,	and	more	performance)	with	less	(less	budget,
but	also	less	attention	from	the	management	compared	to	newer,	flashier	technologies).
Now,	more	than	ever,	as	a	network	admin,	you	need	to	be	able	to	keep	an	eye	on	your
network	in	order	to	keep	it	in	a	healthy	state,	but	also	to	quickly	identify	and	resolve
bottlenecks	and	outages	of	any	kind—or	better	yet,	find	ways	to	anticipate	and	work
around	them	before	they	happen.	You’ll	also	need	to	integrate	your	systems	with	different
tools	and	environments	(both	legacy	and	strategic	ones)	that	will	be	out	of	your	direct
control,	such	as	asset	databases,	incident	management	systems,	accounting	and	profiling
systems,	and	so	on.	Even	more	importantly,	you’ll	need	to	be	able	to	show	your	work	and
explain	your	needs	in	clear,	understandable	terms	to	nontechnical	people.

Now,	if	we	were	to	say	that	Zabbix	is	the	perfect,	one-size-fits-all	solution	to	all	your
network	monitoring	and	management	problems,	we	would	clearly	be	lying.	To	this	day,	no
such	tool	exists	despite	what	many	vendors	want	you	to	believe.	Even	if	they	have	many
features	in	common,	when	it	comes	to	monitoring	and	capacity	management,	every
network	has	its	own	quirks,	special	cases,	and	peculiar	needs,	to	the	point	that	any	tool	has
to	be	carefully	tuned	to	the	environment	or	face	the	risk	of	becoming	useless	and
neglected	very	quickly.

What	is	true	is	that	Zabbix	is	a	monitoring	system	powerful	enough	and	flexible	enough

that,	with	the	right	amount	of	work,	can	be	customized	to	meet	your	specific	needs.	And
again,	those	needs	are	not	limited	to	monitoring	and	alerting,	but	also	to	performance
analysis	and	prediction,	SLA	reporting,	and	so	on.	When	using	Zabbix	to	monitor	an
environment,	you	can	certainly	create	items	that	represent	vital	metrics	for	the	network	in
order	to	have	a	real-time	picture	of	what’s	happening.	However,	those	same	items	can	also
prove	very	useful	to	analyze	performance	bottlenecks	and	to	plan	network	expansion	and
evolution.	Items,	triggers,	and	actions	can	work	together	to	let	you	take	an	active	role	in
monitoring	your	network	and	easily	identify	and	pre-empt	critical	outages.

In	this	book,	we’ll	assume	that	you	already	know	Zabbix	as	a	general-purpose	monitoring
tool,	and	that	you	also	used	it	to	a	certain	extent.	Specifically,	we	won’t	cover	topics	such
as	item,	trigger,	or	action	creation	and	configuration	with	a	basic,	step-by-step	approach.
Here,	we	want	to	focus	on	a	few	topics	that	could	be	of	particular	interest	for	network
administrators,	and	we’ll	try	to	help	them	find	their	own	answers	to	real-world	questions
such	as	the	following:

I	have	a	large	number	of	appliances	to	monitor	and	have	to	keep	monitoring	data
available	for	a	long	time	due	to	regulatory	requirements.	How	do	I	install	and
configure	Zabbix	so	that	it	is	able	to	manage	effectively	this	large	amount	of	data?
What	are	the	best	metrics	to	collect	in	order	to	both	have	an	effective	real-time
monitoring	solution	and	leverage	historical	data	to	make	performance	analysis	and
predictions?
Many	Zabbix	guides	and	tutorials	focus	on	using	the	Zabbix	agent.	The	agent	is
certainly	powerful	and	useful,	but	how	do	I	leverage	in	an	effective	and	secure	way
monitoring	protocols	that	are	already	available	on	my	network,	such	as	SNMP	and
netflow?
Load	balancers,	proxies,	and	web	servers	sometimes	fall	under	a	gray	area	between
network	and	application	administration.	I	have	a	bunch	of	web	servers	and	proxies	to
monitor.	What	kind	of	metrics	are	most	useful	to	check?
I	have	a	complex	network	with	hosts	that	are	deployed	and	decommissioned	on	a
daily	basis.	How	do	I	keep	my	monitoring	solution	up-to-date	without	resorting	to
long,	error-prone	manual	interventions	as	much	as	possible?
Now	that	I	have	collected	a	large	amount	of	monitoring	and	performance	data,	how
can	I	analyze	it	and	show	the	results	in	a	meaningful	way?	How	do	I	put	together	the
graphs	I	have	available	to	show	how	they	are	related?

In	the	course	of	the	next	few	chapters,	we’ll	try	to	provide	some	pointers	on	how	to
answer	those	questions.	We	discuss	as	many	practical	examples	and	real-world
applications	as	we	can	around	the	subject	of	network	monitoring,	but	more	than	anything,
we	wanted	to	show	you	how	it’s	relatively	simple	to	leverage	Zabbix’s	power	and
flexibility	to	your	own	needs.

The	aim	of	this	book	is	not	to	provide	you	with	a	set	of	prepackaged	recipes	and	solutions
that	you	can	apply	uncritically	to	your	own	environment.	Even	though	we	provided	some
scripts	and	code	that	are	tested	and	working	(and	hopefully	you’ll	find	them	useful),	the
real	intention	was	always	to	give	you	a	deeper	understanding	of	the	way	Zabbix	works	so

that	you	are	able	to	create	your	own	solutions	to	your	own	challenges.

We	hope	we	have	succeeded	in	our	goal,	and	that	by	the	end	of	the	book,	you’ll	find
yourself	a	more	confident	network	administrator	and	a	more	proficient	Zabbix	user.	Even
if	this	will	not	be	the	case,	we	hope	you’ll	be	able	to	find	something	useful	in	the
following	chapters:	we	touch	upon	different	aspects	of	Zabbix	and	network	monitoring
and	also	discuss	a	couple	of	less	known	features	that	you	might	find	very	interesting
nonetheless.

So,	without	further	ado,	let’s	get	started	with	the	actual	content	we	want	to	show	you.

What	this	book	covers
Chapter	1,	Installing	a	Distributed	Zabbix	Setup,	teaches	you	how	to	install	Zabbix	in	a
distributed	setup,	with	a	large	use	of	proxies.	The	chapter	will	guide	you	through	all	the
possible	setup	scenarios,	showing	you	the	main	differences	between	the	active	and	passive
proxy	setup.	This	chapter	will	explain	how	to	prepare	and	set	up	a	Zabbix	installation,
which	is	ready	to	be	grown	within	your	infrastructure,	ready	to	support	you,	and	monitor	a
large	environment	or	even	a	very	large	one.

Chapter	2,	Active	Monitoring	of	Your	Devices,	offers	you	a	few	very	useful	examples	of
the	different	monitoring	possibilities	Zabbix	can	achieve	by	relying	on	different	methods
and	protocols.	You’ll	see	how	to	query	your	network	from	the	link	level	up	to	routing	and
network	flow	using	ICMP,	SNMP,	and	log-parsing	facilities	to	collect	your	measurements.
You	will	also	learn	how	to	extract	meaningful	information	from	the	gathered	data	using
aggregated	and	calculated	items,	and	configuring	complex	triggers	that	will	alert	you
about	real	network	issues	while	minimizing	signal	noise	and	false	positives.

Chapter	3,	Monitoring	Your	Network	Services,	takes	you	through	how	to	effectively
monitor	the	most	critical	network	services,	such	as	DNS,	DHCP,	NTP,	Apache	proxy	/
reverse	proxies,	and	proxy	cache	Squid.	As	it	is	easy	to	understand,	all	of	them	are	critical
services	where	a	simple	issue	can	affect	your	network	setup	and	quickly	propagate	the
issue	to	your	entire	network.	You	will	understand	how	to	extract	meaningful	metrics	and
useful	data	from	all	the	listed	services,	being	able	then	not	only	to	monitor	their	own
reliability,	but	also	to	acquire	important	metrics	that	can	help	you	to	predict	failures	or
issues.

Chapter	4,	Discovering	Your	Network,	explains	how	to	deeply	automate	the	monitoring
configuration	of	network	objects.	It	will	massively	use	the	built-in	discovery	feature	in
order	to	keep	the	monitoring	solution	up-to-date	within	an	evolving	network	environment.
This	chapter	is	divided	into	two	core	parts	that	cover	the	two	main	levels	of	Zabbix’s
discovery:	host	discovery	and	low-level	discovery.

Chapter	5,	Visualizing	Your	Topology	with	Maps	and	Graphs,	shows	you	how	to	create
complex	graphs	from	your	item’s	numerical	values,	automatically	draw	maps	that	reflect
the	current	status	of	your	network,	and	bring	it	all	together	using	screens	as	a	tool	to
customize	monitoring	data	presentation.	This	chapter	also	presents	a	smart	way	to
automate	the	initial	startup	of	your	Zabbix’s	setup,	making	you	able	to	draw	network
diagrams	using	maps	in	a	fully	automated	way.	You	will	then	learn	a	production-ready
method	to	maintain	maps	while	your	network	is	growing	or	rapidly	changing.

Appendix	A,	Partitioning	the	Zabbix	Database,	contains	all	the	required	software	and
stored	procedures	to	efficiently	partition	your	Zabbix	database.

Appendix	B,	Collecting	Squid	Metrics,	contains	the	software	used	to	monitor	Squid.

What	you	need	for	this	book
The	software	that	has	been	used	and	is	necessary	for	this	book	is:

Linux	Red	Hat	Enterprise	Linux	6.5	or	higher
Zabbix	4.2
Apache	HTTPD	2.2
MySQL	Server-5.1
Netflow	1.6.12
Nmap

This	book	also	requires	an	intermediate	experience	in	shell	scripting,	a	basic-to-
intermediate	knowledge	of	Python,	and	an	intermediate	knowledge	of	Zabbix.

Anyway,	all	the	examples	discussed	and	proposed	in	this	book	are	explained	well	and
commented	upon.	The	same	approach	has	been	applied	even	to	the	software	used	on	this
book	where	it	is	explained,	with	a	reasonable	level	of	detail,	how	to	set	up	and	configure
each	software	component.

Who	this	book	is	for
This	book	is	intended	for	experienced	network	administrators	looking	for	a	comprehensive
monitoring	solution	for	their	networks.	The	reader	must	have	a	good	knowledge	of
Unix/Linux,	networking	concepts,	protocols,	and	appliances	and	a	basic-to-intermediate
knowledge	of	Zabbix.	The	reader	will	be	guided	step	by	step	to	manage	and	lead	all	the
important	points	you	will	have	to	deal	with.	You	will	then	be	able	to	start	up	an	effective
and	large-environment-ready	Zabbix	monitoring	solution	that	will	be	a	perfect	fit	within
your	network.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“On	the
Zabbix	server-side,	you	need	to	carefully	set	the	value	of	StartTrappers=.”

A	block	of	code	is	set	as	follows:

#First	of	all	we	need	to	import	csv	and	Networkx

import	csv

import	networkx	as	nx

#Then	we	need	to	define	who	is	our	zabbix	server	and	some	other	detail	to	

properly	produce	the	DOT	file

zabbix_service_ipaddr	=	"192.168.1.100"

main_loop_ipaddr	=	"10.12.20.1"

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

#	we	can	open	our	CSV	file

csv_reader	=	csv.DictReader(open('my_export.csv'),	\

				delimiter=",",	\

				fieldnames=("ipaddress",	"hostname",	"oid",	"dontcare",	"neighbors"))

#	Skip	the	header

csv_reader.next()

Any	command-line	input	or	output	is	written	as	follows:

#	chkconfig	--level	345	zabbix-server	on

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“There	is	a	clear
warning	on	the	website	that	warns	us	with	this	statement:	The	Appliance	is	not	intended
for	serious	production	use	at	this	time.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Installing	a	Distributed	Zabbix
Setup
Most	likely,	if	you	are	reading	this	book,	you	have	already	used	and	installed	Zabbix	as	a
network	monitoring	solution.	Now,	in	this	chapter,	we	will	see	how	to	install	Zabbix	in	a
distributed	setup,	eventually	moving	on	to	a	large	use	of	proxies.	The	chapter	will	take
you	through	all	the	possible	scenarios	and	explain	the	main	differences	between	the	active
and	passive	proxy	setup.	Usually,	the	first	Zabbix	installation	is	done	as	a	part	of	the
concept	to	see	whether	the	platform	is	good	enough	for	you.	Here,	the	common	error	is	to
start	using	this	setup	on	a	large	production	environment.	After	reading	this	chapter,	you
will	be	ready	to	install	and	set	up	a	large	environment	ready	infrastructure.

In	this	chapter,	we	will	explain	how	to	prepare	and	set	up	a	Zabbix	installation,	which	is
ready	to	be	grown	within	your	infrastructure,	and	ready	for	a	large	to	a	very	large
environment.	This	book	is	mainly	focused	on	Zabbix	for	network	monitoring.	This	chapter
will	quickly	take	you	through	the	installation	process,	emphasizing	on	all	the	most
important	points	you	need	to	consider.	In	the	next	chapter,	we	will	spend	more	time
describing	a	better	approach	to	monitor	your	network	devices	and	how	to	retrieve	all	the
critical	metrics	from	them.	After	reading	this	chapter,	you	will	become	aware	of	the
communication	between	server	and	proxies	being	able	to	mix	the	active	and	passive	setup
in	order	to	improve	your	infrastructure.	You	can	extend	the	strong	central	Zabbix	core
setup	with	many	lightweight	and	effective	Zabbix	proxies	acting	as	a	satellite	inside	your
network	to	improve	your	monitoring	system.

Zabbix	architectures
Zabbix	was	born	as	a	distributed	network	monitoring	tool	with	a	central	web	interface
where	you	can	manage	almost	everything.	Nowadays,	with	Zabbix	2.4,	the	number	of
possible	architectures	has	been	reduced	to	a	single	server	setup	and	a	Zabbix-proxies
distributed	setup.

Note
From	Zabbix	2.4,	the	node-setup	was	discontinued.	More	information	is	available	at
https://www.zabbix.com/documentation/2.4/manual/introduction/whatsnew240#node-
based_distributed_monitoring_removed.

Now,	the	simplest	architecture	(which	is	ready	to	handle	large	environments	successfully)
that	you	can	implement	composes	of	three	servers:

Web	server
RDBMS	server
Zabbix	server

To	prepare	this	simple	setup	for	a	large	environment	setting,	it’s	better	to	use	a	dedicated
server	for	each	one	of	these	components.

This	is	the	simplest	setup	that	can	be	easily	extended	and	is	ready	to	support	a	large
environment.

The	proposed	architecture	is	shown	in	the	following	diagram:

This	kind	of	setup	can	be	extended	by	adding	many	Zabbix	proxies	resulting	in	a	proxy-
based	setup.	The	proxy-based	setup	is	implemented	with	one	Zabbix	server	and	several
proxies:	one	proxy	per	branch,	data	center	or,	in	our	case,	for	each	remote	network
segment	you	need	to	monitor.

This	configuration	is	easy	to	maintain	and	offers	the	advantage	to	have	a	centralized
monitoring	solution.	This	kind	of	configuration	is	the	right	balance	between	large
environment	monitoring	and	complexity.

https://www.zabbix.com/documentation/2.4/manual/introduction/whatsnew240#node-based_distributed_monitoring_removed

The	Zabbix	proxy,	like	a	server,	is	used	to	collect	data	from	any	number	of	hosts	or
devices,	acquiring	all	the	metrics	requested	and	acting	as	a	proxy.	This	means	that	it	can
retain	this	data	for	an	arbitrary	period	of	time,	relying	on	a	dedicated	database	to	do	so.
The	proxy	doesn’t	have	a	frontend	and	is	managed	directly	from	the	central	server.

Note
The	proxy	limits	itself	to	data	collection	without	trigger	evaluations	or	actions;	all	the	data
is	stored	in	its	database.	For	this	reason,	it’s	better	to	use	an	efficient	robust	RDBMS	that
can	prevent	data	loss	in	case	of	a	crash.

All	these	characteristics	make	the	Zabbix	proxy	a	lightweight	tool	to	deploy	and	offload
some	checks	from	the	central	server.	Our	objective	is	to	control	and	streamline	the	flow	of
monitored	data	across	networks,	and	the	Zabbix	proxy	gives	us	the	possibility	to	split	and
segregate	items	and	data	on	the	different	networks.	The	most	important	feature	is	that	the
acquired	metrics	are	stored	in	its	database.	Therefore,	in	case	of	a	network	loss,	you	will
not	lose	them.

Understanding	Zabbix	data	flow
The	standard	Zabbix	data	flow	is	composed	of	several	actors	that	send	data	to	our	Zabbix
server.	Of	all	the	sources	that	can	send	data	to	our	Zabbix	server,	we	can	identify	three
main	data	sources:

Zabbix	agent
Zabbix	sender
Other	agents	(external	scripts	or	components	built	in	house)

The	other	agents	represented	in	the	next	diagram	can	be	of	two	main	types:

Custom	and/or	third-party	agents
Zabbix	proxy

As	the	diagram	displays	the	data	that	gets	acquired	from	many	different	sources	in	the
form	of	items.	At	the	end	of	the	diagram,	you	see	the	GUI,	which	practically	represents
the	users	connected	and	the	database	that	is	the	place	where	all	the	values	are	stored.

In	the	next	section,	we	will	dive	deep	into	the	Zabbix	proxies’	data	flow.

Understanding	the	Zabbix	proxies’	data
flow
Zabbix	proxies	can	operate	in	two	different	modes,	active	and	passive.	The	default	setup	is
the	active	proxy.	In	this	setup,	the	proxy	initiates	all	connections	to	the	Zabbix	server,	the
one	used	to	retrieve	configuration	information	on	monitored	objects,	and	the	connection	to
send	measurements	back	to	the	server.	Here,	you	can	change	and	tweak	the	frequency	of
these	two	activities	by	setting	the	following	variables	in	the	proxy	configuration	file:
/etc/zabbix/zabbix_proxy.conf:

ConfigFrequency=3600

DataSenderFrequency=1

Values	are	expressed	in	seconds.	On	the	Zabbix	server-side,	you	need	to	carefully	set	the
value	of	StartTrappers=.

This	value	needs	to	be	greater	than	the	number	of	all	active	proxies	and	nodes	you
deployed.	The	trapper	processes,	indeed,	manage	all	the	incoming	information	from	the
proxies.

Note
Please	note	that	the	server	will	fork	extra	processes	as	required,	if	needed,	but	it	is
strongly	advisable	to	prefork	all	the	processes	that	are	needed	during	the	startup.	This	will
reduce	the	overhead	during	the	normal	operation.

On	the	proxy	side,	another	parameter	to	consider	is:

HeartbeatFrequency

This	parameter	sets	a	sort	of	keep	alive,	which	after	the	defined	number	of	seconds,	will
contact	the	server	although	it	doesn’t	have	any	data	to	send.	The	proxy	availability	can	be
easily	checked	with	the	following	item:

zabbix[proxy,	"proxy	unique	name",	lastaccess]

Here	the	proxy	unique	name,	of	course,	is	the	identifier	you	assigned	to	the	proxy	during
deployment.	The	item	will	return	the	number	of	seconds	as	the	last	time	that	the	proxy	was
contacted,	a	value	you	can	then	use	with	the	appropriate	triggering	functions.

Tip
It’s	really	important	to	have	a	trigger	associated	to	this	item,	so	you	can	be	warned	in	case
of	connection	loss.	Looking	at	the	trend	of	this	trigger,	you	can	learn	about	an	eventual
reaping	time	set	on	the	firewall.	Let’s	look	at	a	practical	example:	if	you	notice	that	after	5
minutes	your	connections	are	dropped,	set	the	heartbeat	frequency	to	120	seconds	and
check	for	the	last	access	time	above	300	seconds.

In	the	following	diagram,	you	can	see	the	communication	flow	between	the	Zabbix	server
and	the	proxy:

As	you	can	see	from	the	diagram,	the	server	will	wait	to	receive	requests	from	the	proxy
and	nothing	more.

Note
The	active	proxy	is	the	most	efficient	way	to	offload	duties	from	the	server.	Indeed,	the
server	will	just	sit	here	waiting	to	be	asked	about	changes	in	configuration,	or	to	receive
new	monitoring	data.

On	the	other	side,	proxies	are	usually	deployed	to	monitor	secure	network	segments	with
strict	outgoing	traffic	policies,	and	are	usually	installed	on	DMZs.	In	these	kind	of
scenarios,	normally,	it	is	very	difficult	to	obtain	permission	for	the	proxy	to	initiate	the
communication	with	the	server.	Unfortunately,	it’s	not	just	due	to	policies.	DMZs	are
isolated	as	much	as	possible	from	internal	networks,	as	they	need	to	be	as	secure	as	they
can.	Generally,	it’s	often	easier	and	more	accepted	from	a	security	point	of	view	to	initiate
a	connection	from	the	internal	network	to	a	DMZ.	In	this	kind	of	scenario,	the	passive
proxy	is	very	helpful.	The	passive	proxy	is	almost	a	mirrored	image	of	the	active	proxy
setup,	as	you	can	see	in	the	following	diagram:

With	this	configuration,	the	Zabbix	server	will	contact	the	proxy	periodically	to	deliver	the
configuration	changes	and	to	request	the	item	values	the	proxy	is	holding.

This	is	the	proxy	configuration	to	enable	the	proxy	you	need	to	set:

ProxyMode=1

This	parameter	specifies	the	passive	proxy,	you	don’t	need	to	do	anything	else.	Now,	on
the	server	side,	you	need	to	set	the	following	parameters:

StartProxyPollers=

This	will	set	the	number	of	processes	dedicated	to	the	passive	proxies

Note
The	StartProxyPollers	parameter	should	match	the	number	of	passive	proxies	you
have	deployed.

ProxyConfigFrequency=

This	value	expresses	the	frequency	with	which	the	server	sends	the	configuration	to
its	proxy

ProxyDataFrequency=

This	is	the	interval	parameter	that	expresses	the	number	of	seconds	between	two
consecutive	requests	to	get	the	acquired	metrics	from	the	proxy

The	item	used	to	check	a	passive	proxy’s	availability	is	as	follows:

zabbix[proxy,	"proxy	unique	name",	lastaccess]

This	is	exactly	the	same	as	the	active	one.

The	passive	proxy	enables	us	to	gather	monitoring	data	from	otherwise	closed	and	locked
down	networks	with	a	slightly	increased	overhead.

Note
You	can	mix	as	many	active	and	passive	proxies	as	you	want	in	your	environment.	This
enables	you	to	expand	your	monitoring	solution	to	reach	each	part	of	the	network	and	to
handle	a	large	number	of	monitored	objects.	This	approach	keeps	the	architecture	simple
and	easy	to	manage	with	a	strong	central	core	and	many	simple,	lightweight	satellites.

If	you	would	like	to	keep	track	of	all	the	remaining	items	that	the	proxy	needs	to	send,	you
can	set	up	the	proxy	to	run	this	query	against	its	database:

SELECT	((SELECT	MAX(proxy_history.id)	FROM	proxy_history)-nextid)	FROM	ids	

WHERE	field_name='history_lastid'

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

This	query	will	return	the	number	of	items	that	the	proxy	still	needs	to	send	to	the	Zabbix

http://www.packtpub.com
http://www.packtpub.com/support

server.	Considering	that	you	are	using	MySQL	as	a	database,	you	need	to	add	the
following	user	parameter	in	the	proxy	agent	configuration	file:

UserParameter=zabbix.proxy.items.sync.remaining,	mysql	-u	<your	dbname	

here>	-p	'<your	password	here>'	-e	'SELECT	((SELECT	MAX(proxy_history.id)	

FROM	proxy_history)-nextid)	FROM	ids	WHERE	field_name=history_lastid'	2>&1

Now,	all	you	need	to	do	is	set	an	item	on	the	Zabbix	server	side	and	you	can	see	how	your
proxy	is	freeing	its	queue.

Installing	Zabbix
Zabbix,	like	all	the	other	software,	can	be	installed	in	two	ways:

1.	 Download	the	latest	source	code	and	compile	it.
2.	 Install	it	from	packages.

Actually,	there	is	another	way	to	have	a	Zabbix	server	up	and	running:	using	the	virtual
appliance.	The	Zabbix	server	appliance	will	not	be	considered	in	this	book	as	Zabbix	itself
defines	this	virtual	appliance	as	not	ready	for	productive	environments.	This	virtual
appliance	is	not	a	production	ready	setup	for	many	reasons:

It	is	a	monolith	where	everything	is	installed	on	the	same	server.
There	is	no	separation	from	the	database	layer	and	the	presentation	layer.	This	means
that	each	one	of	these	components	can	affect	the	performance	of	the	other.
There	is	a	clear	warning	on	the	website	that	warns	us	with	this	statement:	The
Appliance	is	not	intended	for	serious	production	use	at	this	time.

On	the	other	hand,	the	installation	from	packages	gives	us	some	benefits:

The	packages	make	it	easy	to	upgrade	and	update
Dependencies	are	automatically	sorted	out

The	source	code	compilation	also	gives	us	some	benefits:

We	can	compile	only	the	needed	features
We	can	build	the	agent	statically	and	deploy	on	different	Linux	flavors
Complete	control	on	update

It’s	quite	usual	to	have	different	versions	of	Linux,	Unix,	and	Microsoft	Windows	on	a
large	environment.	This	kind	of	scenario	is	quite	diffused	on	a	heterogeneous
infrastructure,	and	if	we	use	the	Zabbix’s	agent	distribution	package	on	each	Linux	server,
we	will	have	different	versions	of	the	agent	for	sure,	and	different	locations	for	the
configuration	files.

The	more	the	things	are	standardized	across	our	server,	the	easier	it	will	become	to
maintain	and	upgrade	the	infrastructure.	The	--enable-static	option	gives	us	a	way	to
standardize	the	agent	across	different	Linux	versions	and	release,	which	is	a	strong
benefit.	The	agent,	statically	compiled,	can	be	easily	deployed	everywhere	and,	for	sure,
we	will	have	the	same	location	(and	we	can	use	the	same	configuration	file	apart	from	the
node	name)	for	the	agent	and	his/her	configuration	file.	The	only	thing	that	might	vary	is
the	start/stop	script	and	how	to	register	it	on	the	right	init	runlevel,	but	at	least	the
deployment	will	be	standardized.

The	same	kind	of	concept	can	be	applied	to	the	commercial	Unix,	bearing	in	mind	to
compile	it	on	the	target	environment	so	that	the	same	agent	can	be	deployed	on	different
Unix	releases	of	the	same	vendor.

Installing	from	packages
The	first	thing	to	do	to	install	Zabbix	from	repo	is	to	add	the	yum	repository	to	our	list.
This	can	be	done	with	the	following	command:

$	rpm	-Uvh	http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-

2.4-1.el6.noarch.rpm

Retrieving	http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-

2.4-1.el6.noarch.rpm

warning:	/var/tmp/rpm-tmp.dsDB6k:	Header	V4	DSA/SHA1	Signature,	key	ID	

79ea5ed4:	NOKEY

Preparing…									###	[100%]

1:zabbix-release			###	[100%]

Once	this	is	done,	we	can	take	advantage	of	all	the	benefits	introduced	by	the	package
manager	and	have	the	dependencies	automatically	resolved	by	yum.

To	install	the	Zabbix	server,	you	simply	need	to	run:

$	yum	install	zabbix-server-mysql	zabbix-agent	zabbix-javagateway

Now,	you	have	your	server	ready	to	start.	We	can’t	start	it	now	as	we	need	to	set	up	the
database,	which	will	be	done	in	the	next	heading,	anyway,	what	you	can	do	is	set	up	the
start/stop	runlevel	for	our	zabbix_server	and	zabbix_agent	daemons:

$	chkconfig	--level	345	zabbix-server	on

$	chkconfig	--level	345	zabbix-agent	on

Please	double	check	if	the	previous	command	ran	successfully	with	the	following:

$	chkconfig	--list	|	grep	zabbix

zabbix-agent				0:off			1:off			2:off			3:on					4:on			5:on			6:off

zabbix-server			0:off			1:off			2:off			3:on			4:on			5:on			6:off

Setting	up	a	Zabbix	agent
Now,	as	usually	happens	in	a	large	server	farm,	it	is	possible	that	you	have	many	different
variants	of	Linux.	Here,	if	you	can’t	find	the	package	for	your	distribution,	you	can	even
think	to	compile	the	agent	from	scratch.	The	following	are	the	steps	for	the	same:

1.	 Download	the	source	code	from	the	Zabbix	website.
2.	 Unpack	the	software.
3.	 Satisfy	all	the	software	dependencies,	installing	all	the	related	-devel	packages.
4.	 Run	the	following	command:	$./configure	--enable-agent.

Tip
Here,	you	can	statically	link	the	produced	binary	with	the	--enable-static	option.
With	this,	the	binary	produced	will	not	require	any	external	library.	This	is	really
useful	to	distribute	the	agent	across	different	versions	of	Linux.

Compile	everything	with	$	make.

Now,	before	you	run	$	make	install,	you	can	decide	to	create	your	own	package	to
distribute	with	CheckInstall.

Creating	a	Zabbix	agent	package	with	CheckInstall
The	advice	is	to	not	run	make	install,	but	use	CheckInstall	to	produce	the	required
package	for	your	Linux	OS	from	http://asic-linux.com.mx/~izto/checkinstall/.

Note
We	can	also	use	a	prebuilt	CheckInstall;	the	current	release	is	checkinstall-1.6.2-
20.2.i686.rpm	on	Red	Hat	/	CentOS.	The	package	will	also	need	the	rpm-build	package:

rpm-build	yum	install

Also,	we	need	to	create	the	necessary	directories:

mkdir	-p	~/rpmbuild/{BUILD,RPMS,SOURCES,SPECS,SRPMS}

This	software	enables	you	to	create	a	package	for	many	different	versions	of	the	package
manager,	namely,	RPM,	deb,	and	tgz.

Note
CheckInstall	will	produce	packages	for	Debian,	Slackware,	and	Red	Hat,	helping	us	to
prepare	the	Zabbix’s	agent	package	(statically	linked)	and	distribute	it	around	our	server.

Now,	we	need	to	switch	to	the	root	account	using	$	sudo	su	–	.	Also,	use	the
checkinstall	followed	by	these	options:

$	checkinstall	--nodoc	--install=yes	-y

If	you	don’t	face	any	issue,	you	should	get	the	following	message:

**

	Done.	The	new	package	has	been	saved	to

	/root/rpmbuild/RPMS/i386/zabbix-2.4.0-1.i386.rpm

	You	can	install	it	in	your	system	anytime	using:

						rpm	-i	zabbix-2*.4.0-1.i386.rpm

**

Remember	that	the	server	binaries	will	be	installed	in	<prefix>/sbin,	utilities	will	be	in
<prefix>/bin,	and	the	main	pages	under	the	<prefix>/share	location.

Tip
To	specify	a	different	location	for	Zabbix	binaries,	we	need	to	use	--prefix	on	the
configure	options	(for	example,	--prefix=/opt/zabbix).

http://asic-linux.com.mx/~izto/checkinstall/

Server	configuration
For	the	server	configuration,	we	only	have	one	file	to	check	and	edit:

/etc/zabbix/zabbix_server.conf

All	the	configuration	files	are	contained	in	the	following	directory:

/etc/zabbix/

All	you	need	to	change	for	the	initial	setup	is	the	/etc/zabbix/zabbix_server.conf
configuration	file	and	write	the	username/password	and	database	name	here.

Note
Please	take	care	to	protect	the	access	to	the	configuration	file	with	chmod	400
/etc/zabbix/zabbix_server.conf.

The	default	external	scripts	location	is:

/usr/lib/zabbix/externalscripts

Also,	the	alert	script	directory	is:

/usr/lib/zabbix/alertscripts

This	can	be	changed	by	editing	the	zabbix_server.conf	file.

The	configuration	on	the	agent	side	is	quite	easy;	basically,	we	need	to	write	the	IP	address
of	our	Zabbix	server.

Installing	a	database
The	database	we	will	use	on	this	book,	as	already	explained,	is	MySQL.

Now,	considering	that	you	have	a	Red	Hat	server,	the	procedure	to	install	MySQL	from
the	RPM	repository	is	quite	easy:

$	yum	install	mysql	mysql-server

Now,	you	need	to	set	up	the	MySQL	service	to	start	automatically	when	the	system	boots:

$	chkconfig	--levels	235	mysqld	on

$	/etc/init.d/mysqld	start

Tip
Remember	to	set	a	password	for	the	MySQL	root	user

To	set	a	password	for	the	root,	you	can	run	these	two	commands:

/usr/bin/mysqladmin	-u	root	password	'new-password'

/usr/bin/mysqladmin	-u	root	-h	hostname-of-your.zabbix.db	password	'new-

password'

Alternatively,	you	can	run:

/usr/bin/mysql_secure_installation

This	will	also	help	you	to	remove	the	test	databases	and	anonymous	user	data	that	was
created	by	default.	This	is	strongly	recommended	for	production	servers.

Now,	it’s	time	to	create	the	Zabbix	database.	For	this,	we	can	use	the	following
commands:

$	mysql	-u	root	-p

$	mysql>	CREATE	DATABASE	zabbix	CHARACTER	SET	UTF8;

Query	OK,	1	row	affected	(0.00	sec)

$	mysql>	GRANT	ALL	PRIVILEGES	on	zabbix.*	to	'zabbixuser'@'localhost'	

IDENTIFIED	BY	'zabbixpassword';

Query	OK,	0	rows	affected	(0.00	sec)

$	mysql>	FLUSH	PRIVILEGES;

$	mysql>	quit

Next,	we	need	to	restore	the	default	Zabbix	MySQL	database	files:

$	mysql	-u	zabbixuser	-pzabbixpassword	zabbix<	/usr/share/doc/zabbix-

server-mysql-2.4.0/create/schema.sql

$	mysql	-u	zabbixuser	-pzabbixpassword	zabbix	<	/usr/share/doc/zabbix-

server-mysql-2.4.0/create/images.sql

$	mysql	-u	zabbixuser	-pzabbixpassword	zabbix	<	/usr/share/doc/zabbix-

server-mysql-2.4.0/create/data.sql

Now,	our	database	is	ready.	Before	we	begin	to	play	with	the	database,	it’s	important	to	do
some	consideration	about	database	size	and	heavy	tasks	against	it.

Considering	the	database	size
Zabbix	uses	two	main	groups	of	tables	to	store	its	data:

History
Trends

Now,	the	space	consumed	by	these	tables	is	influenced	by:

Items:	This	is	the	number	of	items	you’re	going	to	acquire
Refresh	rate:	This	is	the	mean	average	refresh	rate	of	our	items
Space	to	store	values:	This	depends	on	RDBMS

The	space	used	to	store	data	can	vary	due	to	the	database,	but	we	can	resume	the	space
used	by	these	tables	in	the	following	table:

Type	of	measure Retention	in	days Space	required

History 30 10.8	G

Events 1825	(5	years) 15.7	GB

Trends 1825	(5	years) 26.7	GB

Total NA 53.2	GB

This	calculation	is,	of	course,	done	considering	the	environment	after	5	years	of	retention.
Anyway,	we	need	to	have	an	environment	ready	to	survive	this	period	of	time	and	retain
the	same	shape	that	it	had	when	it	was	installed.	We	can	easily	change	the	history	and
trends	retention	policy	per	item.	This	means	that	we	can	create	a	template	with	items	that
have	a	different	history	retention	by	default.	Normally,	the	history	is	set	to	30	days,	but	for
some	kind	of	measure	(such	as	in	web	scenarios)	or	other	particular	measures,	we	need	to
keep	all	the	values	for	more	than	a	week.	This	permits	us	to	change	this	value	on	each
item.

MySQL	partitioning
Now	that	we	are	aware	of	how	big	our	database	will	be,	it’s	easy	to	imagine	that
housekeeping	will	be	a	heavy	task	and	the	time,	CPU,	and	resource	consumed	by	this	one
will	grow	together	with	the	database	size.

Housekeeping	is	in	charge	to	remove	the	outdated	metrics	from	the	database	and	the
information	deleted	by	a	user,	and	as	we’ve	seen	the	history,	trends,	and	events	tables	are,
after	some	time,	huge	tables.	This	explains	why	the	process	is	so	heavy	to	manage.

The	only	way	we	can	improve	performances	once	we	have	reached	this	volume	of	data	is
by	using	partitioning	and	disabling	the	housekeeper	altogether.

Partitioning	the	history	and	trend	tables	will	provide	us	with	many	major	benefits:

All	history	data	in	a	table	for	a	particular	defined	window	time	are	self-contained	in
its	own	partition.	This	allows	you	to	easily	delete	old	data	without	impacting	the
database	performance.
When	you	use	MySQL	with	InnoDB,	and	if	you	delete	data	contained	in	a	table,	the
space	is	not	released.	The	space	freed	is	marked	as	free,	but	the	disk	space	consumed
will	not	change.	When	you	use	partition,	and	if	you	drop	a	partition,	the	space	is
immediately	freed.
Query	performance	can	be	improved	dramatically	in	some	situations,	in	particular,
when	there	is	heavy	access	to	the	table’s	rows	in	a	single	partition.
When	a	query	updates	a	huge	amount	of	data	or	needs	access	to	a	large	percentage	of
the	partition,	the	sequential	scan	is	often	more	efficient	than	the	index	usage	with	a
random	access	or	scattered	reads	against	this	index.

Unfortunately,	Zabbix	is	not	able	to	manage	the	partitions.	So,	we	need	to	disable
housekeeping,	and	use	an	external	process	to	accomplish	housekeeping.

What	we	need	to	have	is	a	stored	procedure	that	does	all	the	work	for	us.

The	following	is	the	stored	procedure:

DELIMITER	$$

CREATE	PROCEDURE	`partition_maintenance`(SCHEMA_NAME	VARCHAR(32),	

TABLE_NAME	VARCHAR(32),	KEEP_DATA_DAYS	INT,	HOURLY_INTERVAL	INT,	

CREATE_NEXT_INTERVALS	INT)

BEGIN

		DECLARE	OLDER_THAN_PARTITION_DATE	VARCHAR(16);

		DECLARE	PARTITION_NAME	VARCHAR(16);

		DECLARE	LESS_THAN_TIMESTAMP	INT;

		DECLARE	CUR_TIME	INT;

Until	here,	we	have	declared	the	variable	we	need	after.	Now,	on	the	next	line,	we	will	call
the	stored	procedure	responsible	to	check	whether	a	partition	is	already	present	and	if	not,
we	will	create	them:

								CALL	partition_verify(SCHEMA_NAME,	TABLE_NAME,	HOURLY_INTERVAL);

								SET	CUR_TIME	=	UNIX_TIMESTAMP(DATE_FORMAT(NOW(),	'%Y-%m-%d	

00:00:00'));

								IF	DATE(NOW())	=	'2014-04-01'	THEN

										SET	CUR_TIME	=	UNIX_TIMESTAMP(DATE_FORMAT(DATE_ADD(NOW(),	

INTERVAL	1	DAY),	'%Y-%m-%d	00:00:00'));

								END	IF;

								SET	@__interval	=	1;

								create_loop:	LOOP

										IF	@__interval	>	CREATE_NEXT_INTERVALS	THEN

												LEAVE	create_loop;

										END	IF;

								SET	LESS_THAN_TIMESTAMP	=	CUR_TIME	+	(HOURLY_INTERVAL	*	@__interval	

*	3600);

								SET	PARTITION_NAME	=	FROM_UNIXTIME(CUR_TIME	+	HOURLY_INTERVAL	*	

(@__interval	-	1)	*	3600,	'p%Y%m%d%H00');

Now	that	we	have	calculated	all	the	parameters	needed	by	the	create_partition
procedure,	we	can	run	it.	This	stored	procedure	will	create	the	new	partition	on	the	defined
schema:

																CALL	partition_create(SCHEMA_NAME,	TABLE_NAME,	

PARTITION_NAME,	LESS_THAN_TIMESTAMP);

																SET	@__interval=@__interval+1;

								END	LOOP;

								SET	OLDER_THAN_PARTITION_DATE=DATE_FORMAT(DATE_SUB(NOW(),	INTERVAL	

KEEP_DATA_DAYS	DAY),	'%Y%m%d0000');

The	section	that	follows	is	responsible	to	remove	the	older	partitions,	using	the
OLDER_TAN_PARTITION_DATE	procedure,	which	we	have	calculated	on	the	lines	before:

								CALL	partition_drop(SCHEMA_NAME,	TABLE_NAME,	

OLDER_THAN_PARTITION_DATE);	

END$$

DELIMITER	;

This	stored	procedure	will	be	the	core	of	our	housekeeping.	It	will	be	called	with	the
following	syntax:

CALL	partition_maintenance('<zabbix_db_name>',	'<table_name>',	

<days_to_keep_data>,	<hourly_interval>,	<num_future_intervals_to_create>)

The	procedure	works	based	on	1	hour	intervals.	Next,	if	you	want	to	partition	on	a	daily
basis,	the	interval	will	be	24	hours.	Instead,	if	you	want	1	hour	partitioning,	the	interval
will	be	1.

You	need	to	specify	the	number	of	intervals	that	you	want	created	in	advance.	For
example,	if	you	want	2	weeks	interval	of	future	partitions,	use	14.	If	your	interval	is	1	(for
hourly	partitioning),	then	the	number	of	intervals	to	create	is	336	(24*14).

This	stored	procedure	uses	some	other	stores	procedures:

partition_create:	This	creates	the	partition	for	the	specified	table
partition_verify:	This	checks	whether	the	partition	is	enabled	on	a	table,	if	not,
then	create	a	single	partition
partition_drop:	This	drops	partitions	older	than	a	timestamp

For	all	the	details	about	these	stored	procedures,	see	Appendix	A,	Partitioning	the	Zabbix

Database.

Once	you’ve	created	all	the	required	stored	procedures,	you	need	to	change	two	indexes	to
enable	them	in	order	to	be	ready	for	a	partitioned	table:

mysql>	Alter	table	history_text	drop	primary	key,	add	index	(id),	drop	

index	history_text_2,	add	index	history_text_2	(itemid,	id);

Query	OK,	0	rows	affected	(0.49	sec)

Records:	0		Duplicates:	0		Warnings:	0

mysql>	Alter	table	history_log	drop	primary	key,	add	index	(id),	drop	index	

history_log_2,	add	index	history_log_2	(itemid,	id);

Query	OK,	0	rows	affected	(2.71	sec)

Records:	0		Duplicates:	0		Warnings:	0

Once	this	is	done,	you	need	to	schedule	the	partition_maintenance_all	stored
procedure	with	a	cron	job.	For	more	details	about	the	partition_maintenance_all
procedure,	please	check	the	instructions	contained	in	Appendix	A,	Partitioning	the	Zabbix
Database.	The	cron	job	needs	to	execute	the	following	command:

mysql	-h	<zabbix_db_host>	-u<zabbixuser>	-p<zabbixpassword>	zabbixdatabase	

-e	"CALL	partition_maintenance_all('zabbix');"	

Once	this	has	been	set,	you	need	to	bear	in	mind	to	disable	the	housekeeping	for	history
and	trends.	Verify	that	the	Override	item	<trend/history>	period	Zabbix	configuration	is
checked	for	both	history	and	trends.	Here,	you	need	to	set	the	Data	storage	period	(in
days)	box	for	history	and	trends	to	the	value	you’ve	defined	in	your	procedure,	our
example	in	Appendix	A,	Partitioning	the	Zabbix	Database	is	of	28	and	730.

Installing	a	Zabbix	proxy
Installation	of	the	Zabbix	proxy	from	packages	is	a	quite	simple	task.	Once	you’ve	added
the	Zabbix	repository,	you	only	need	to	run	the	following	command:

$	yum	install	zabbix-proxy-mysql

This	will	install	the	required	packages:

Installation:

	zabbix-proxy-mysql		x86_64		2.4.0-1.el6		zabbix		390	k

Installing	for	dependencies:

zabbix-proxy		x86_64		2.4.0-1.el6		zabbix		21	k

The	Zabbix	proxy	installation	is	quite	similar	to	the	server	one.	Once	you’ve	installed	the
server,	you	need	to	install	MySQL,	create	the	database,	and	import	the	DB	schema:

$	mysql	-u	root	-p

$	mysql>	CREATE	DATABASE	zabbix	CHARACTER	SET	UTF8;

Query	OK,	1	row	affected	(0.00	sec)

$	mysql>	GRANT	ALL	PRIVILEGES	on	zabbix.*	to	'zabbixuser'@'localhost'	

IDENTIFIED	BY	'zabbixpassword';

Query	OK,	0	rows	affected	(0.00	sec)

$	mysql>	FLUSH	PRIVILEGES;

$	mysql>	quit

Next,	we	need	to	restore	the	default	Zabbix	MySQL	database	files:

$	mysql	-u	zabbixuser	-pzabbixpassword	zabbix	<	/usr/share/doc/zabbix-

proxy-mysql-2.4.0/create/schema.sql

Now,	we	need	to	start	the	database,	configure	the	proxy,	and	start	the	service.	In	this
example,	we	have	considered	to	use	a	Zabbix	proxy	that	relies	on	a	MySQL	with	InnoDB
database.	This	proxy	can	be	performed	in	two	different	ways:

Lightweight	(and	then	use	SQLite3)
Robust	and	solid	(and	then	use	MySQL)

Here,	we	have	chosen	the	second	option.	In	a	large	network	environment	where	the	proxy,
in	case	of	issue,	needs	to	preserve	all	the	metrics	acquired	until	the	server	acquires	the
metrics,	it’s	better	to	reduce,	at	the	minimum,	the	risk	of	data	loss.	Also,	if	you	consider
this	scenario	in	a	large	network	environment,	you	most	likely	will	have	thousands	of
subnetworks	connected	to	the	Zabbix	server	with	all	the	possible	network	devices	in-
between.	Well,	exactly,	this	is	necessary	to	use	a	database	that	can	prevent	any	data
corruptions.

Installing	the	WebGUI	interface
The	WebGUI	interface	will	be	done	once	more	using	the	RPMs.

To	install	the	web	interface,	you	need	to	run	the	following	command:

$	yum	install	zabbix-web-mysql

Yum	will	take	care	to	resolve	all	the	dependencies.	Once	you’re	done,	the	process	of	this
component	is	quite	easy:	we	need	to	open	a	web	browser,	point	at	the	following	URL:
http://your-web-server/zabbix,	and	follow	the	instructions.

On	the	standard	Red	Hat	system,	you	simply	need	to	change	these	parameters	on	your
/etc/php.ini	file:

php_value	max_execution_time	300

php_value	memory_limit	128M

php_value	post_max_size	16M

php_value	upload_max_filesize	2M

php_value	max_input_time	300

Also,	set	your	time	zone	on	the	same	file	(for	example,	php_value	date.timezone
Europe/Rome).

Now,	it’s	time	to	start	up	Apache,	but	before	this,	we	need	to	check	whether	we	have
SELinux	enabled	and	on	which	mode?	To	check	your	SELinux	status,	you	can	run:

#	sestatus

SELinux	status:																	enabled

SELinuxfs	mount:																/selinux

Current	mode:																			permissive

Mode	from	config	file:										permissive

Policy	version:																	24

Policy	from	config	file:								targeted

Now,	you	need	to	check	whether	you	have	the	httpd	daemon	enabled	to	use	the	network
with	the	following	command:

#	getsebool	httpd_can_network_connect

httpd_can_network_connect	-->	off

Most	likely,	you	will	have	the	same	kind	of	result,	then	all	we	need	to	do	is	enable	the
httpd_can_network_connect	option	using	the	next	command	with	–P	to	preserve	the
value	after	a	reboot:

#	setsebool	–P	httpd_can_network_connect	on

#	getsebool	httpd_can_network_connect

httpd_can_network_connect	-->	on	

Now,	all	that	we	still	have	to	do	is	enable	the	httpd	daemon	and	start	our	httpd	server:

#	service	httpd	start

Starting	httpd:																														[OK]

Next,	enable	the	httpd	server	as	a	service:

#	chkconfig	httpd	on

We	can	check	the	change	done	with	the	next	command:

#	chkconfig	--list	httpd

httpd							0:off			1:off			2:on				3:on				4:on				5:on				6:off

Once	you’ve	done	this,	you	only	need	to	follow	the	wizard,	and	in	a	few	clicks,	you	will
have	your	web	interface	ready	to	start	up.

Tip
If	you	know	that	the	load	against	the	web	server	will	be	high,	due	to	a	high	number	of
accounts	that	will	access	it,	probably,	it’s	better	to	consider	using	Nginx.

Now,	you	can	finally	start	your	Zabbix	server	and	the	first	entry	in	the
/var/log/zabbix/zabbix_server.log	file	will	look	something	like	the	following	code:

37909:20140925:091128.868	Starting	Zabbix	Server.	Zabbix	2.4.0	(revision	

48953).

37909:20140925:091128.868	******	Enabled	features	******

	37909:20140925:091128.868	SNMP	monitoring:											YES

	37909:20140925:091128.868	IPMI	monitoring:											YES

	37909:20140925:091128.868	WEB	monitoring:												YES

	37909:20140925:091128.868	VMware	monitoring:									YES

	37909:20140925:091128.868	Jabber	notifications:						YES

	37909:20140925:091128.868	Ez	Texting	notifications:		YES

	37909:20140925:091128.868	ODBC:																						YES

	37909:20140925:091128.868	SSH2	support:														YES

	37909:20140925:091128.868	IPv6	support:														YES

	37909:20140925:091128.868	******************************	

37909:20140925:091128.868	using	configuration	file:	

/etc/zabbix/zabbix_server.conf******************************

Next,	you	can	start	to	implement	and	acquire	all	the	items	critical	for	your	network.

Summary
In	this	chapter,	we	covered	a	large	number	of	components.	We	started	with	defining	what
a	large	environment	is.	We	also	saw	how	the	network	setup	can	be	designed	and	how	it
can	evolve	within	your	infrastructure.	We	saw	the	heaviest	task	on	the	server	side
(housekeeping)	and	how	to	avoid	performance	degradation	due	to	this.	We	discussed
MySQL	partitioning	in-depth.	We	also	briefly	discussed	the	differences	between	active
and	passive	proxies;	you	will	now	be	able	to	decide	how	to	set	them	up	and	which	one	to
choose	once	you	know	your	network	topology.	Also,	we	saw	how	to	acquire	some	critical
metrics	to	monitor	the	Zabbix	proxy	connection	and	the	amount	of	items	that	it	still	needs
to	send	us.

As	you	can	see,	we	covered	a	lot	of	arguments	in	just	one	chapter;	we	did	this	because	we
would	like	to	use	more	space	in	the	upcoming	chapters.	In	the	next	chapter,	we	will
explore	the	different	appliances	and	protocols	at	layer	2	and	layer	3	of	the	ISO/OSI	stack.
Also,	you	will	see	how	to	best	extrapolate	meaningful	monitoring	data	from	the	collected
measure	for	the	protocol	layers	2	and	3.

Chapter	2.	Active	Monitoring	of	Your
Devices
Now	that	you	have	a	working	Zabbix	setup,	it’s	time	to	take	a	look	at	your	network	and
figure	out	the	components	that	you	want	to	monitor,	the	kind	of	data	you	want	to	collect,
and	the	conditions	under	which	you	want	to	be	notified	about	problems	and	state	changes.

It	would	be	impossible	for	any	book	on	this	topic	to	fully	cover	all	the	different	kinds	of
network	appliances	and	topologies	and	all	the	different	monitoring	scenarios	that	a
network	administrator	might	need	as	every	environment	has	its	own	specific	quirks	that	a
good	monitoring	solution	has	to	account	for.	This	chapter	will	offer	you	a	few	examples	of
the	different	monitoring	possibilities	Zabbix	can	achieve	by	relying	on	different	methods
and	protocols.	You’ll	see	how	to	query	your	network	from	the	data	link	layer	up	to	routing
and	network	flow	using	ICMP,	SNMP,	and	log	parsing	facilities	to	collect	your
measurements.

You’ll	learn	how	to	extract	meaningful	information	from	the	data	you	gathered	using
aggregated	and	calculated	items	and	how	to	configure	complex	triggers	that	will	alert	you
about	real	network	issues	while	minimizing	uninteresting	or	nonrelevant	data.

By	the	end	of	the	chapter,	you’ll	have	a	good	overview	of	Zabbix’s	network	monitoring
possibilities,	and	you’ll	be	ready	to	adapt	what	you	learned	for	your	specific	requirements.
But	let’s	first	have	a	quick	overview	of	how	Zabbix	organizes	monitoring	data	with	hosts,
templates,	items,	and	triggers.

Understanding	Zabbix	hosts
One	of	Zabbix’s	great	strengths	is	its	flexibility	when	it	comes	to	organizing	monitoring
data.	Even	without	considering	its	powerful	templating	and	discovery	features,	which	will
be	covered	in	Chapter	4,	Discovering	Your	Network,	there	is	a	lot	that	you	can	do	with
standard	hosts,	items,	and	triggers.	Here	are	a	few	tips	on	how	you	can	use	them
effectively.

Hosts	and	host	groups
Zabbix	hosts	usually	represent	a	single,	specific	box	or	appliance	in	your	network.	They
can	also	be	a	part	of	one	or	more	host	groups.

Host	groups	are	very	useful	as	they	make	it	easy	to	navigate	Zabbix’s	interface,	separating
hosts	into	categories	and	allowing	you	to	organize	and	manage	a	huge	amount	of
appliances	without	having	to	deal	with	impossibly	long	lists	of	hostnames.	The	same	host
can	be	part	of	different	host	groups,	and	this	can	be	very	useful	as	you	might	want,	for
example,	to	have	a	group	for	all	your	routers,	a	group	for	all	your	switches,	and	a	group
for	every	subnet	you	manage.	So,	a	single	router	will	be	part	of	the	routers	group	and	all
the	subnet	groups	it	has	an	interface	on,	while	a	switch	will	be	part	of	the	switches	group
and	of	the	subnet	it’s	part	of,	and	so	on.

While	this	is	certainly	a	good	way	to	organize	your	hosts,	both	to	visualize	and	to	manage
your	monitoring	data,	there	are	a	couple	of	not-too-obvious	pitfalls	you	should	be	aware	of
if	you	decide	to	put	the	same	host	in	multiple	groups:

Calculated	items	show	aggregate	monitoring	data	based	on	host	group	membership.
If	you	configure	an	aggregated	item	that	uses	more	than	one	calculated	item	from
different	host	groups,	you	can	end	up	using	the	same	host’s	data	more	than	once,
introducing	a	significant	error	in	your	calculations.
Actions	are	usually	filtered	based	on	host	groups.	This	means	that	the	same	trigger
event	could	fire	up	more	than	one	action	if	the	host	is	part	of	more	than	one	host
group,	leading	to	potentially	duplicate	messages	and	alerts.
User	access	permissions	are	host-group-based.	This	means	that	some	users	could	be
able	to	see	more	hosts	and	monitoring	data	than	they	actually	need	to	if	a	host	ends
up	in	a	host	group	they	have	access	to.

This	is	by	no	means	an	attempt	to	discourage	the	practice	of	assigning	multiple	host
groups	to	the	same	host.	Just	be	aware	of	the	ramifications	of	such	a	practice	and	don’t
forget	to	take	into	consideration	the	added	complexity	when	you	configure	your	items,
actions,	and	access	permissions.

Host	interfaces
Each	host	is	composed	of	a	collection	of	items	that	represent	the	raw	monitoring	data,	and
triggers,	which	represent	Zabbix’s	monitoring	intelligence	based	on	the	data	gathered.	It’s
also	composed	of	a	series	of	interfaces	that	tell	the	Zabbix	server	or	proxy	how	to	contact
the	host	to	collect	the	aforesaid	monitoring	data.	Most	network	appliances	have	more	than
one	interface,	so	you	would	want	to	make	sure	that	all	hosts	that	represent	routers,
firewalls,	proxies,	gateways,	and	whatnot,	are	listing	all	those	appliances’	interfaces	and
their	addresses.	The	advantages	are	obvious:

You’ll	be	able	to	quickly	review	what	addresses	are	configured	on	a	specific	host
while	looking	at	monitoring	data
You’ll	be	able	to	differentiate	your	checks	by	querying	different	addresses	or	ports	of
the	same	host	based	on	your	needs

Your	maps	and	topologies	will	be	more	consistent	with	what’s	actually	deployed

Adding	interfaces	to	a	host	is	fairly	straightforward.	All	you	need	to	do	is	navigate	to
Configuration	|	Hosts	and	then	select	the	host	you	want	to	edit.	The	interfaces	section	is
in	the	main	configuration	tab,	as	shown	in	the	following	screenshot:

As	you	can	see	in	the	above	example,	there	are	three	agent	interfaces	that	show	all	the
networks	the	router	is	connected	to	and	just	one	SNMP	interface.	Agent	interfaces	are
used	not	only	for	Zabbix	agent	items,	but	also	for	simple	and	external	checks.	On	the	other
hand,	you’ll	use	SNMP	interfaces	to	send	SNMP	queries	to	your	host.	The	preceding
example	assumes	that	you’ll	only	use	SNMP	on	the	router’s	interface	that	is	connected	to
a	management	network	(192.168.1.0	in	this	example),	while	you’ll	also	use	ICMP,	TCP,
and	external	checks	on	its	two	production	interfaces.	Of	course,	you	are	free	to	configure
different	IP	addresses	for	Agent	and	SNMP	interfaces	depending	on	what	protocols	and
checks	you	plan	to	activate	on	which	interfaces.

Host	inventory
Having	inventory	data	directly	available	in	your	monitoring	solution	has	a	lot	of	obvious
advantages	when	it	comes	to	attaching	useful	information	to	your	alerts	and	alarms.
Unfortunately,	the	more	hosts	you	have	to	manage,	the	more	essential	it	is	to	have	up-to-
date	inventory	information,	and	the	harder	it	is	to	maintain	the	aforesaid	information	in	a
reliable	and	timely	manner.	Manually	updating	a	host’s	inventory	data	can	quickly	become
an	impossible	task	when	you	have	tens	or	hundreds	of	hosts	to	manage,	and	it’s	not	always
possible	to	write	automated	scripts	that	will	do	the	job	for	you.	Fortunately,	Zabbix	offers

an	automatic	inventory	feature	that	can	at	least	partially	fill	in	inventory	data	based	on
actual	monitoring	data.	To	activate	this	feature,	first	you’ll	need	to	select	Automatic	in	the
Host	inventory	tab	of	a	host	configuration	page	and	then	move	to	the	items	that	you’ll	use
to	populate	the	inventory	data.

When	configuring	an	item,	you	should	assign	its	data	to	a	specific	inventory	field	so	that
the	aforesaid	field’s	value	will	be	set	and	automatically	updated	based	on	the	item’s
measurements,	as	shown	in	the	following	screenshot:

As	you	can	see	in	the	preceding	example,	a	host’s	location	inventory	value	will	be
populated	based	on	the	corresponding	SNMP	query.	This	means	that	if	you	change	a
device’s	location	information,	that	change	will	be	reflected	in	Zabbix	as	soon	as	the	item’s
value	is	polled	on	the	device.	Depending	on	the	data	available	on	the	device,	you’ll	be
able	to	populate	only	a	few	inventory	fields	or	most	of	them,	while	falling	back	on	manual
updates	of	the	fields	that	fall	outside	of	your	device’s	reporting	possibilities.

Speaking	of	items,	let’s	now	focus	on	the	different	monitoring	possibilities	that	Zabbix
items	offer	and	how	to	apply	them	to	your	environment.

Going	beyond	Zabbix	agents
There	are	certainly	many	advantages	in	using	Zabbix’s	own	agents	and	protocol	when	it
comes	to	monitoring	Windows	and	Unix	operating	systems	or	the	applications	that	run	on
them.	However,	when	it	comes	to	network	monitoring,	the	vast	majority	of	monitored
objects	are	network	appliances	of	various	kinds,	where	it’s	often	impossible	to	install	and
run	a	dedicated	agent	of	any	type.	This	by	no	means	implies	that	you’ll	be	unable	to	fully
leverage	Zabbix’s	power	to	monitor	your	network.	Whether	it’s	a	simple	ICMP	echo
request,	an	SNMP	query,	an	SNMP	trap,	netflow	logging,	or	a	custom	script,	there	are
many	possibilities	to	extract	meaningful	data	from	your	network.	This	section	will	show
you	how	to	set	up	these	different	methods	of	gathering	data,	and	give	you	a	few	examples
on	how	to	use	them.

Simple	checks
Let’s	start	with	the	simplest	case.	At	first	glance,	simple	checks	don’t	look	that	interesting:
excluding	all	the	VMware	Hypervisor	checks	that	are	included	in	this	category,	simple
checks	are	reduced	to	a	couple	of	generic	TCP/IP	connection	checks	and	three	ICMP	echo
checks,	as	follows:

Check	name Description

Icmpping This	returns	1	if	the	host	responds	to	an	ICMP	ping;	0	otherwise

Icmppingloss This	returns	the	percentage	of	lost	ICMP	ping	packets

Icmppingsec This	returns	the	ICMP	response	time	in	seconds

Net.tcp.service This	returns	1	if	the	host	accepts	connections	on	a	specified	TCP	port;	0	otherwise

Net.tcp.service.perf This	returns	the	number	of	seconds	spent	to	obtain	a	connection	on	a	specified	TCP	port

Generally	speaking,	these	checks	prove	more	useful	as	the	distance	between	the
monitoring	probe	and	the	monitored	host	increases,	both	in	terms	of	physical	distance	(a
geographical	link	to	another	city	for	example)	and	in	terms	of	hops	a	packet	has	to	go
through.	This	means	that	if	you	are	interested	in	your	network’s	performance,	it	would
make	sense	to	assign	hosts	with	simple	checks	to	Zabbix	proxies	that	are	not	in	the	same
subnet,	but	are	situated	where	they	will	mimic	as	closely	as	possible	your	actual	network
traffic.	Net.tcp.service	is	particularly	useful	from	this	point	of	view,	not	just	to	check
the	status	of	the	availability	of	specific	services	when	you	cannot	use	Zabbix	agents,	but
also	to	check	general	host	availability	across	restrictive	firewalls	that	block	ICMP	traffic.

Tip
In	order	to	reduce	network	traffic	and	to	make	more	efficient	ICMP	checks,	Zabbix	uses
fping	instead	of	the	regular	ping	when	executing	icmpping,	icmppingloss,	and
icmppingsec	item	checks.

Make	sure	you	have	fping	installed	on	your	Zabbix	server	and	also	on	all	the	Zabbix
proxies	that	might	need	it.	If	you	don’t	have	it,	a	simple	yum	install	fping	will	usually
be	enough	for	the	Zabbix	daemons	to	find	it	and	use	it.

While	both	net.tcp.service	and	net.tcp.service.perf	do	support	some	well-known
protocols,	such	as	SSH,	FTP,	HTTP,	and	so	on,	these	two	items’	most	useful	option	is
probably	the	one	that	allows	you	to	perform	a	simple	TCP	handshake	connection	and
check	whether	a	specific	IP	is	reachable	on	a	specific	port.	These	kind	of	checks	are	useful
because,	just	like	ICMP	pings,	they	will	mostly	involve	the	network	stack,	reducing
application	overhead	to	a	minimum,	thus	giving	you	data	that	more	closely	matches	your
actual	network	performance.	On	the	other	hand,	unlike	ICMP	pings,	they	will	allow	you	to
check	for	TCP	port	availability	for	a	given	host.	Obvious	use	cases	include	making
lightweight	service	checks	that	will	not	impact	very	busy	hosts	or	appliances	too	much,

and	making	sure	that	a	given	firewall	is	allowing	traffic	through.

A	slightly	less	obvious	use	case	is	using	one	or	more	net.tcp.service	items	to	make	sure
that	some	services	are	not	running	on	a	given	interface.	Take	for	example,	the	case	of	a
border	router	or	firewall.	Unless	you	have	some	very	special	and	specific	needs,	you’ll
typically	want	to	make	sure	that	no	admin	consoles	are	available	on	the	external
interfaces.	You	might	have	double-checked	the	appliance’s	initial	configuration,	but	a
system	update,	a	careless	admin,	or	a	security	bug	might	change	the	aforesaid
configuration	and	open	your	appliance’s	admin	interfaces	to	a	far	wider	audience	than
intended.	A	security	breach	like	this	one	could	pass	unobserved	for	a	long	time	unless	you
configure	a	few	simple	TCP/IP	checks	on	your	appliance’s	external	interfaces	and	then	set
up	some	triggers	that	will	report	a	problem	if	those	checks	report	an	open	and	responsive
port.

Let’s	take	the	example	of	the	router	with	two	production	interfaces	and	a	management
interface	shown	in	the	section	about	host	interfaces.	If	the	router’s	HTTPS	admin	console
is	available	on	TCP	port	8000,	you’ll	want	to	configure	a	simple	check	item	for	every
interface:

Item	name Item	key

management_https_console net.tcp.service[https,192.168.1.254,8000]

zoneA_https_console net.tcp.service[https,10.10.1.254,8000]

zoneB_https_console net.tcp.service[https,172.16.7.254,8000]

All	these	checks	will	return	1	if	the	service	is	available,	and	0	if	the	service	is	not
available.	What	changes	is	how	you	implement	the	triggers	on	these	items.	For	the
management	item,	you’ll	have	a	problem	if	the	service	is	not	available,	while	for	the	other
two,	you’ll	have	a	problem	if	the	service	is	indeed	available,	as	shown	in	the	following
table:

Trigger	name Trigger	expression

Management	console	down {it-1759-r1:net.tcp.service[http,192.168.1.254,8000].last()}=0

Console	available	from	zone	A {it-1759-r1:net.tcp.service[http,10.10.1.254,8000].last()}=1

Console	available	from	zone	B {it-1759-r1:net.tcp.service[http,172.16.7.254,8000].last()}=1

This	way,	you’ll	always	be	able	to	make	sure	that	your	device’s	configuration	when	it
comes	to	open	or	closed	ports	will	always	match	your	expected	setup	and	be	notified	when
it	diverges	from	the	standard	you	set.

To	summarize,	simple	checks	are	great	for	all	cases	where	you	don’t	need	complex
monitoring	data	from	your	network	as	they	are	quite	fast	and	lightweight.	For	the	same
reason,	they	could	be	the	preferred	solution	if	you	have	to	monitor	availability	for
hundreds	to	thousands	of	hosts	as	they	will	impart	a	relatively	low	overhead	on	your

overall	network	traffic.

When	you	do	need	more	structure	and	more	detail	in	your	monitoring	data,	it’s	time	to
move	to	the	bread	and	butter	of	all	network	monitoring	solutions:	SNMP.

Keeping	SNMP	simple
The	Simple	Network	Monitoring	Protocol	(SNMP)	is	an	excellent,	general	purpose
protocol	that	has	become	widely	used	beyond	its	original	purpose.	When	it	comes	to
network	monitoring	though,	it’s	also	often	the	only	protocol	supported	by	many
appliances,	so	it’s	often	a	forced,	albeit	natural	and	sensible,	choice	to	integrate	it	into
your	monitoring	scenarios.	As	a	network	administrator,	you	probably	already	know	all
there	is	to	know	about	SNMP	and	how	it	works,	so	let’s	focus	on	how	it’s	integrated	into
Zabbix	and	what	you	can	do	with	it.

First	of	all,	we’ll	need	to	talk	about	SNMP	gets	and	SNMP	traps	in	two	different
discussions	as	they	are	implemented	and	used	in	different	ways	by	Zabbix.	The	reason	for
this	separation	is	in	the	very	nature	of	SNMP	gets	as	opposed	to	SNMP	traps.	An	SNMP
get	represents	a	single,	discrete	piece	of	information	that	represents	the	current	status	of	a
metric,	and	it’s	not	tied	to	any	specific	event.	Whether	it’s	a	counter	with	the	total	number
of	bytes	that	passed	through	an	interface,	a	Boolean	value	that	will	tell	if	a	link	is	up	or
down,	or	a	string	with	an	appliance’s	location	or	contact	information,	an	SNMP	value	will
be	available	at	any	moment,	and	it	will	be	possible	to	poll	it	with	an	arbitrary	frequency.

This	maps	nicely	to	Zabbix	items.	Just	like	SNMP	get	values,	they	also	represent	single,
discrete	values	that	can	be	polled	with	arbitrary	frequency.	This	makes	it	really
straightforward	to	use	regular	SNMP	queries	to	populate	Zabbix	items	since	the	only
things	you	have	to	worry	about	are	the	SNMP	OID,	the	data	type,	and	the	community
string	or	authentication	information.	We’ll	see	a	few	examples	in	the	next	paragraph.

An	SNMP	trap	represents	a	specific	event	that	happens	at	a	specific	point	in	time.	It	might
represent	a	link	state	change,	a	reboot	event,	or	a	user	login.	In	any	case,	you	cannot	query
the	state	of	an	SNMP	trap;	you	just	have	to	wait	to	receive	one,	and	it	will	not	represent	a
single,	discrete	value	but	a	change	from	one	value	to	another.	They	resemble,	in	many
ways,	Zabbix	events	instead	of	raw	data.	This	complicates	things	a	little	since	Zabbix
events	are	the	result	of	evaluating	triggers	against	collected	data,	while	SNMP	traps	can
only	enter	Zabbix	as	item	values,	that	is,	as	collected	data.	So	we’ll	need	to	resolve	this
apparent	mismatch	in	order	to	fully	leverage	the	information	contained	in	SNMP	traps.
We’ll	see	how	in	a	short	while,	but	first	let’s	look	at	a	few	details	concerning	regular
SNMP	queries	executed	from	Zabbix.

Getting	SNMP	data	into	Zabbix
A	Zabbix	server	usually	comes	with	good	SNMP	support	out	of	the	box.	Not	only	does	it
support	the	querying	protocol	natively,	but	it	also	comes	equipped	with	a	number	of
SNMP	templates	that	can	get	you	started	in	the	right	direction.	This	means	that	for	most
devices	you	only	have	to	link	the	Template	SNMP	Device	template,	and	you’ll
immediately	be	able	to	get	some	basic	information	about	it,	as	shown	in	the	following
screenshot:

We’ve	already	seen	how	the	Device	location	item	can	be	used	to	populate	a	host’s
inventory	location	record,	but	there	are	a	couple	of	other	useful	bits	of	information	in	the
above	picture.

First	of	all,	there’s	a	low-level	discovery	rule	to	explore.	We’ll	delve	more	deeply	into
discovery	rules	in	Chapter	4,	Discovering	Your	Network,	but	for	now,	we’ll	just	see	that
it’s	about	dynamically	creating	network	interface	items:

For	every	interface,	eight	items	will	be	created,	including	the	interface	name,	operational
status,	incoming	and	outgoing	traffic,	and	so	on.	This	means	that	the	same	template	will	be
useful	for	the	basic	monitoring	of	network	appliances	with	any	number	of	network
interfaces.

The	second	thing	to	notice,	looking	at	both	images,	is	the	update	interval,	and	history	and
trend	retention	periods	for	the	items.	Zabbix	tries	to	set	some	sensible	defaults,	but	you’ll
probably	need	to	update	some	of	those	values	based	on	the	number	of	monitored	hosts	you
have	in	your	environment,	your	storage	space	availability,	and	the	network	load	of	your
monitoring	traffic.

Note
Another	parameter	that	is	related	to	Zabbix’s	performance	is	the	initial	(and	minimum)
number	of	pollers	that	the	server	keeps	active	at	any	given	time.	If	you	find	that	your
polling	queue	is	getting	longer,	you	might	want	to	increase	the	number	of	pollers	in
zabbix_server.conf.	The	available	default	options	are:

#	StartPollers=5

#	StartIPMIPollers=0

#	StartPollersUnreachable=1

#	StartTrappers=5

#	StartPingers=1

#	StartDiscoverers=1

#	StartHTTPPollers=1

Work	your	way	up	slowly,	or	you’ll	just	end	up	with	unnecessary	processes	being	created
when	Zabbix	is	started.

If	you	have	hundreds	of	hosts	to	monitor,	and	for	every	host,	you	collect	tens	of	single
measurements	every	minute,	you	would	reach	a	point	where	your	Zabbix	server’s	network
load	or	CPU	load	will	start	to	impact	on	the	server’s	performance,	leading	to	delays	in
item	polling	or	dropped	connections.	If	you	cannot	just	upgrade	to	more	powerful
hardware,	you	might	have	to	tweak	the	polling	interval	of	your	templates	so	that	they
strike	a	good	balance	between	granularity	of	detail	and	performance.

A	device’s	name,	contact	details,	description,	location,	and	such	like,	will	rarely	change
once	the	device	has	been	deployed,	so	it	would	be	a	waste	to	poll	for	those	values	every
hour	(3,600	seconds).	By	changing	the	interval	to	6	hours	or	even	a	day,	you’ll
automatically	reduce	your	network	traffic	related	to	essentially	fixed	information	by	a
factor	of	6,	up	to	24.

Raising	the	polling	interval	for	some	of	the	interface	counters	can	have	an	even	more
dramatic	impact	on	your	system	and	network	load.	While	you’ll	probably	want	to	check
the	admin	and	operational	status	of	an	interface	as	often	as	possible—otherwise	you	run
the	risk	of	not	getting	notified	about	possible	problems	in	a	timely	manner—on	the	other
hand,	you’ll	probably	be	able	to	live	with	polling	incoming	and	outgoing	traffic	and	errors
every	five	minutes	(300	seconds)	instead	of	every	minute.	Your	graphs	will	still	be	very
detailed,	but	your	network	will	be	much	less	flooded	with	SNMP	requests.	Keep	in	mind
that	changes	like	these	might	not	seem	much	when	referred	to	a	single	host,	but	as	the
number	of	your	monitored	objects	grow,	you	can	very	quickly	run	up	to	hundreds	or	even
thousands	of	new	monitoring	values	per	second	coming	into	your	Zabbix	server.

The	same	can	be	said	when	it	comes	to	retention	periods	and	storage	space.	In	this	case,
keep	in	mind	that	trends	store	about	three	values	per	hour	(min,	max	and	average)	over	the
time	range	specified,	while	history	stores	all	values	collected	in	the	specified	time	range.
This	means	that	based	on	your	polling	interval,	it’s	usually	cheaper	to	extend	a	trend
retention	value	than	a	history	one.	This	is,	of	course,	valid	only	for	numerical	values	as
string	ones	can’t	really	have	trends,	just	history.

One	last	thing	to	notice	in	the	above	images	is	that	the	monitoring	protocol	for	all	items	is
set	to	SNMPv2.	Just	like	SNMPv1,	SNMPv2	doesn’t	offer	real	security	for	the	monitoring
data	that	crosses	the	network	between	an	appliance	and	the	monitoring	server:	all	traffic	is
sent	and	received	in	the	clear,	and	the	SNMP	community	is	just	a	string,	easily	parsable
from	intercepted	traffic.	While	it’s	certainly	true	that	a	few	network	appliances	don’t
support	SNMPv3	because	either	they	are	too	old	or	they	are	too	simple,	It’s	also	true	that

the	new	version	of	the	protocol	has	been	around	for	quite	a	while	now	and	a	number	of
appliances	do	support	it.	The	main	advantages	of	SNMPv3	are	its	authentication	and
encryption	capabilities.	These	can	help	make	sure	that	all	monitoring	traffic	is	not	bogus
or	corrupted,	and	that	it’s	kept	confidential	from	prying	eyes.	This	is	particularly	important
if	you	need	to	monitor	some	hosts	over	a	network	link	you	have	no	real	control	over,	such
as	a	WAN	connection	through	a	third-party	provider.	It	would	always	be	nice	to	use
SNMPv3	across	your	network,	but	in	cases	like	these,	you	are	strongly	encouraged	to	do
so	as	there’s	a	real	possibility	that	your	traffic	can	be	indeed	intercepted	and	tapped	into.

Let’s	take	the	example	of	a	Cisco	router,	and	let’s	see	how	to	configure	SNMPv3	on	it
before	moving	on	to	the	Zabbix	side.

First	of	all,	let’s	create	a	monitoring	group.	This	is	used	to	define	access	to	the	device’s
MIBs.	On	the	Cisco	router,	open	a	console	session	and	go	into	configuration	mode.	Then
issue	the	following	command:

R1(config)#snmp-server	group	MonitoringGroup	v3	priv

The	v3	keyword	specifies	that	we	want	to	use	SNMPv3,	while	the	priv	keyword	specifies
that	we	want	to	use	both	authentication	and	encryption.	It’s	possible	to	pass	more	options
to	the	preceding	command	in	order	to	define	an	access	list	if	you	want	to	limit	access	to
specific	MiBs,	but	we’ll	keep	things	simple	here	and	let	our	Zabbix	probe	access	all	MIBs.

Now	that	we	have	a	group,	we	can	create	a	user,	as	follows:

R1(config)#snmp-server	user	zabbix	MonitoringGroup	v3	auth	sha	zbxpass	priv	

aes	128	zbxpriv

As	you	can	see,	we	assigned	the	Zabbix	user	to	the	previously	created	group	and	defined
the	authentication	and	encryption	passphrases.	Take	note	of	all	these	elements	as	you’ll
need	to	specify	all	of	them	on	Zabbix’s	side	and	they	will	need	to	match	what	you	used
here.	To	summarize,	here	is	what	you’ll	input	later	when	configuring	an	SNMPv3	Zabbix
item:

Field Value

User zabbix

Authentication	protocol sha

Authentication	passphrase zbxpass

Privacy	protocol aes

Privacy	passphrase zbxpriv

Note
Please	don’t	use	the	passphrases	shown	here.	These	are	intentionally	weak,	and	we	used
them	for	illustration	purposes	only.

This	is	all	there	is	to	it.	Later,	we’ll	add	some	information	about	telling	the	appliance

where	to	send	SNMP	traps,	but	for	now	you’re	ready	to	get	SNMP	values	from	your
appliance,	so	let’s	focus	on	that	for	a	while.

Finding	the	right	OIDs	to	monitor
While	Zabbix’s	default	SNMP	templates	will	help	you	get	started	with	basic	monitoring,
you’ll	soon	find	the	need	to	poll	your	devices	for	more	information.	To	do	that,	you’ll
need	to	know	the	OID	of	the	metric	you	want	to	monitor	as	well	as	the	data	type	it	will
yield.	A	first	option	is	to	consult	your	vendor’s	documentation	on	the	device	and	find	out
which	MIBs	and	OIDs	are	exposed	by	the	SNMP	agent.	Another,	more	interactive,	option
is	to	find	them	using	the	snmpwalk	utility	and	directly	asking	your	device	for	them.

Note
If	you	don’t	already	have	snmpwalk	(and	the	other	SNMP	utilities	for	Linux)	installed,	you
can	quickly	do	so	with	a	simple	command:

#yum	install	net-snmp-utils

OIDs	are	sent	and	received	by	SNMP	agents	and	servers	as	dotted	sequences	of	numbers.
Just	like	IP	addresses,	this	is	convenient	for	machine-to-machine	communication,	but	hard
to	read	for	humans.	In	order	to	make	the	most	from	the	exploration	of	your	device	using
snmpwalk,	make	sure	you	have	all	the	MIBs	you	need	installed.	MIBs	essentially	map
OIDs	to	readable	and	understandable	descriptions	of	themselves.	In	other	words,	they	take
output	like	this	one:

.1.3.6.1.2.1.2.2.1.1.1	=	INTEGER:	1

.1.3.6.1.2.1.2.2.1.1.2	=	INTEGER:	2

.1.3.6.1.2.1.2.2.1.1.3	=	INTEGER:	3

.1.3.6.1.2.1.2.2.1.1.5	=	INTEGER:	5

.1.3.6.1.2.1.2.2.1.2.1	=	STRING:	lo

.1.3.6.1.2.1.2.2.1.2.2	=	STRING:	eth1

.1.3.6.1.2.1.2.2.1.2.3	=	STRING:	tap0

.1.3.6.1.2.1.2.2.1.2.5	=	STRING:	br0

.1.3.6.1.2.1.2.2.1.3.1	=	INTEGER:	softwareLoopback(24)

.1.3.6.1.2.1.2.2.1.3.2	=	INTEGER:	ethernetCsmacd(6)

.1.3.6.1.2.1.2.2.1.3.3	=	INTEGER:	ethernetCsmacd(6)

.1.3.6.1.2.1.2.2.1.3.5	=	INTEGER:	ethernetCsmacd(6)

.1.3.6.1.2.1.2.2.1.4.1	=	INTEGER:	16436

.1.3.6.1.2.1.2.2.1.4.2	=	INTEGER:	1500

.1.3.6.1.2.1.2.2.1.4.3	=	INTEGER:	1500

.1.3.6.1.2.1.2.2.1.4.5	=	INTEGER:	1500

.1.3.6.1.2.1.2.2.1.5.1	=	Gauge32:	10000000

.1.3.6.1.2.1.2.2.1.5.2	=	Gauge32:	1000000000

.1.3.6.1.2.1.2.2.1.5.3	=	Gauge32:	10000000

.1.3.6.1.2.1.2.2.1.5.5	=	Gauge32:	0

.1.3.6.1.2.1.2.2.1.6.1	=	STRING:

.1.3.6.1.2.1.2.2.1.6.2	=	STRING:	0:c:29:24:15:50

.1.3.6.1.2.1.2.2.1.6.3	=	STRING:	2:10:f7:72:77:50

.1.3.6.1.2.1.2.2.1.6.5	=	STRING:	0:c:29:24:15:50

.1.3.6.1.2.1.2.2.1.7.1	=	INTEGER:	up(1)

.1.3.6.1.2.1.2.2.1.7.2	=	INTEGER:	up(1)

.1.3.6.1.2.1.2.2.1.7.3	=	INTEGER:	up(1)

.1.3.6.1.2.1.2.2.1.7.5	=	INTEGER:	up(1)

.1.3.6.1.2.1.2.2.1.8.1	=	INTEGER:	up(1)

.1.3.6.1.2.1.2.2.1.8.2	=	INTEGER:	up(1)

.1.3.6.1.2.1.2.2.1.8.3	=	INTEGER:	up(1)

.1.3.6.1.2.1.2.2.1.8.5	=	INTEGER:	up(1)

Then,	they	turn	it	into	a	much	more	readable	form:

IF-MIB::ifIndex.1	=	INTEGER:	1

IF-MIB::ifIndex.2	=	INTEGER:	2

IF-MIB::ifIndex.3	=	INTEGER:	3

IF-MIB::ifIndex.5	=	INTEGER:	5

IF-MIB::ifDescr.1	=	STRING:	lo

IF-MIB::ifDescr.2	=	STRING:	eth1

IF-MIB::ifDescr.3	=	STRING:	tap0

IF-MIB::ifDescr.5	=	STRING:	br0

IF-MIB::ifType.1	=	INTEGER:	softwareLoopback(24)

IF-MIB::ifType.2	=	INTEGER:	ethernetCsmacd(6)

IF-MIB::ifType.3	=	INTEGER:	ethernetCsmacd(6)

IF-MIB::ifType.5	=	INTEGER:	ethernetCsmacd(6)

IF-MIB::ifMtu.1	=	INTEGER:	16436

IF-MIB::ifMtu.2	=	INTEGER:	1500

IF-MIB::ifMtu.3	=	INTEGER:	1500

IF-MIB::ifMtu.5	=	INTEGER:	1500

IF-MIB::ifSpeed.1	=	Gauge32:	10000000

IF-MIB::ifSpeed.2	=	Gauge32:	1000000000

IF-MIB::ifSpeed.3	=	Gauge32:	10000000

IF-MIB::ifSpeed.5	=	Gauge32:	0

IF-MIB::ifPhysAddress.1	=	STRING:

IF-MIB::ifPhysAddress.2	=	STRING:	0:c:29:24:15:50

IF-MIB::ifPhysAddress.3	=	STRING:	2:10:f7:72:77:50

IF-MIB::ifPhysAddress.5	=	STRING:	0:c:29:24:15:50

IF-MIB::ifAdminStatus.1	=	INTEGER:	up(1)

IF-MIB::ifAdminStatus.2	=	INTEGER:	up(1)

IF-MIB::ifAdminStatus.3	=	INTEGER:	up(1)

IF-MIB::ifAdminStatus.5	=	INTEGER:	up(1)

IF-MIB::ifOperStatus.1	=	INTEGER:	up(1)

IF-MIB::ifOperStatus.2	=	INTEGER:	up(1)

IF-MIB::ifOperStatus.3	=	INTEGER:	up(1)

IF-MIB::ifOperStatus.5	=	INTEGER:	up(1)

If	you	have	the	right	MIBs,	you	won’t	have	to	guess	the	meaning	of	each	OID	from	its
value	as	most	of	the	time,	it	will	be	clear	enough	from	its	name.	To	add	a	new	MIB	to
your	SNMP	tools,	you	have	to	obtain	it	from	the	vendor	of	your	device	and	then	install	it
on	your	system.	Vendors	usually	make	their	MIBs	freely	available,	so	you	shouldn’t	have
any	problems	finding	them.

Here	are	some	of	the	major	vendors	of	MIB	sources,	compiled	at	the	time	of	writing:

Vendor MIBs

Cisco http://www.cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml

Juniper http://www.juniper.net/techpubs/software/index_mibs.html

Barracuda	networks https://techlib.barracuda.com/search/go/global?q=MIB

http://www.cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml
http://www.juniper.net/techpubs/software/index_mibs.html
https://techlib.barracuda.com/search/go/global?q=MIB

Note
A	very	useful	resource	is	OIDView’s	free	MIB	database	that	you	can	find	here:

http://www.oidview.com/mibs/detail.html

At	the	time	of	writing	this,	the	database	had	more	than	7,000	MIBs,	so	chances	are	you’ll
be	able	to	find	a	MIB	for	the	most	obscure	network	device	you	might	have	to	monitor.

MIBs	are	plain	text	files,	so	if	you	have	a	compressed	archive,	you	will	need	to	unpack	it
before	you	can	install	its	contents.	Once	you	have	the	plain	text	MIBS,	it’s	a	simple	matter
of	copying	them	into	/usr/share/snmp/mibs	and	then	using	the	-m	option	to	the	SNMP
commands	to	specify	which	MIB	you	want	to	load	in	addition	to	the	default	ones.

Should	your	MIBs	collection	become	too	big	and	you	wanted	to	organize	them	in	different
directories,	then	you’ll	need	to	tell	your	tools	where	to	find	them.	You	have	two	options:
either	specify	from	the	command	line	the	directories	you	want	your	command	to	search
for	MIBs,	or	put	this	information	in	a	configuration	file	so	that	your	commands	always
know	the	MIBs’	location.	The	options	are	discussed	as	follows:

The	first	option	is	useful	if	you’re	just	trying	out	a	new	MIB	and	seeing	whether
that’s	the	one	you	need.	Every	Net-SNMP-based	command	will	take	a	-m	option	that
you	can	use	to	specify	a	specific	MIB	to	load	from	the	mibs	directory.	Here’s	a
command	for	example:

$snmpwalk	-m	+CISCO-STUN-MIB	-v	3		-u	zabbix	-a	SHA	-A	zbxpassword	-l	

AuthPriv	-x	AES	-X	privpassword	10.10.1.9

This	command	will	use	SNMPv3	to	contact	the	SNMP	agent	at	10.10.1.9	with	the
specified	credentials	and	will	load	the	CISCO-STUN-MIB	that	it	will	find	in	the
/usr/share/snmp/mibs	directory,	in	addition	to	those	already	loaded	as	default.

The	second	option	is	more	permanent	and	involves	editing	(or	creating,	if	it’s	not
already	there)	the	/etc/snmp/snmp.conf	file.	Just	add	a	line	with	the	list	of
directories	to	search	for	mibs	and	another	line	that	specifies	which	MIBs	the
commands	should	actually	load	(in	this	case,	we’ll	load	all	of	them),	as	follows:

mibdirs	

/usr/share/snmp/mibs:/usr/share/snmp/mibs/cisco:/usr/share/snmp/mibs/ju

niper:/mnt/remote/shared_mibs/

mibs	+ALL

As	you	can	see,	even	if	you	keep	your	subdirectories	in	/usr/share/snmp/mibs,	you’ll
have	to	specify	each	one	you	want	automatically	included.	Once	you	have	your	MIBs
installed	and	loaded,	you’ll	be	ready	to	fully	explore	your	devices’	SNMP	agents.	To
perform	a	complete	snmpwalk	on	a	device	can	take	quite	a	lot	of	time	and	produce	a	lot	of
output	depending	on	how	many	OIDs	it	exposes.	A	router	can	have	thousands	of	them,	so
it’s	advisable	to	redirect	the	command’s	output	to	a	file	so	that	you	are	able	to	reference	it
and	explore	it	at	any	time	you	want	without	having	to	perform	a	complete	walk	on	the
device	itself,	as	follows:

$snmpwalk	-v	3		-u	zabbix	-a	SHA	-A	zbxpassword	-l	AuthPriv	-x	AES	-X	

http://www.oidview.com/mibs/detail.html

privpassword	10.10.1.9	>	router-R1-snmp_baseline.txt

Another	advantage	of	having	the	MIBs	you	need	is	that	it’ll	be	easier	to	create	new	SNMP
items	in	Zabbix	as	you’ll	be	able	to	specify	the	string	version	of	an	OID	and	not	only	its
numerical	value.	Zabbix	relies	on	the	Net-SNMP	library,	so	it	will	also	reference	any
MIBs	installed	in	your	system’s	default	directories.

So	let’s	see	how	you	can	use	the	output	of	snmpwalk	to	create	new	Zabbix	items.

Mapping	SNMP	OIDs	to	Zabbix	items
An	SNMP	value	is	composed	of	three	different	parts:	the	OID,	the	data	type,	and	the	value
itself.	When	you	use	snmpwalk	or	snmpget	to	get	values	from	an	SNMP	agent,	the	output
looks	like	this:

SNMPv2-MIB::sysObjectID.0	=	OID:	CISCO-PRODUCTS-MIB::cisco3640

DISMAN-EVENT-MIB::sysUpTimeInstance	=	Timeticks:	(83414)	0:13:54.14

SNMPv2-MIB::sysContact.0	=	STRING:

SNMPv2-MIB::sysName.0	=	STRING:	R1

SNMPv2-MIB::sysLocation.0	=	STRING:	Upper	floor	room	13

SNMPv2-MIB::sysServices.0	=	INTEGER:	78

SNMPv2-MIB::sysORLastChange.0	=	Timeticks:	(0)	0:00:00.00

...

IF-MIB::ifPhysAddress.24	=	STRING:	c4:1:22:4:f2:f

IF-MIB::ifPhysAddress.26	=	STRING:

IF-MIB::ifPhysAddress.27	=	STRING:	c4:1:1e:c8:0:0

IF-MIB::ifAdminStatus.1	=	INTEGER:	up(1)

IF-MIB::ifAdminStatus.2	=	INTEGER:	down(2)

…

And	so	on.

The	first	part,	the	one	before	the	=	sign	is,	naturally,	the	OID.	This	will	go	into	the	SNMP
OID	field	in	the	Zabbix	item	creation	page	and	is	the	unique	identifier	for	the	metric	you
are	interested	in.	Some	OIDs	represent	a	single	and	unique	metric	for	the	device,	so	they
are	easy	to	identify	and	address.	In	the	above	excerpt,	one	such	OID	is	DISMAN-EVENT-
MIB::sysUpTimeInstance.	If	you	are	interested	in	monitoring	that	OID,	you’d	only	have
to	fill	out	the	item	creation	form	with	the	OID	itself	and	then	define	an	item	name,	a	data
type,	and	a	retention	policy,	and	you	are	ready	to	start	monitoring	it.	In	the	case	of	an
uptime	value,	time-ticks	are	expressed	in	seconds,	so	you’ll	choose	a	numeric	decimal
data	type.	We’ll	see	in	the	next	section	how	to	choose	Zabbix	item	data	types	and	how	to
store	values	based	on	SNMP	data	types.	You’ll	also	want	to	store	the	value	as	is	and
optionally	specify	a	unit	of	measure.	This	is	because	an	uptime	is	already	a	relative	value
as	it	expresses	the	time	elapsed	since	a	device’s	latest	boot.	There	would	be	no	point	in
calculating	a	further	delta	when	getting	this	measurement.	Finally,	you’ll	define	a	polling
interval	and	choose	a	retention	policy.	In	the	following	example,	the	polling	interval	is
shown	to	be	5	minutes	(300	seconds),	the	history	retention	policy	as	3	days,	and	the	trend
storage	period	as	one	year.	These	should	be	sensible	values	as	you	don’t	normally	need	to
store	the	detailed	history	of	a	value	that	either	resets	to	zero,	or,	by	definition,	grows
linearly	by	one	tick	every	second.

The	following	screenshot	encapsulates	what	has	been	discussed	in	this	paragraph:

Remember	that	the	item’s	key	value	still	has	to	be	unique	at	the	host/template	level	as	it
will	be	referenced	to	by	all	other	Zabbix	components,	from	calculated	items	to	triggers,
maps,	screens,	and	so	on.	Don’t	forget	to	put	the	right	credentials	for	SNMPv3	if	you	are
using	this	version	of	the	protocol.

Many	of	the	more	interesting	OIDs,	though,	are	a	bit	more	complex:	multiple	OIDs	can	be
related	to	one	another	by	means	of	the	same	index.	Let’s	look	at	another	snmpwalk	output
excerpt:

IF-MIB::ifNumber.0	=	INTEGER:	26

IF-MIB::ifIndex.1	=	INTEGER:	1

IF-MIB::ifIndex.2	=	INTEGER:	2

IF-MIB::ifIndex.3	=	INTEGER:	3

…

IF-MIB::ifDescr.1	=	STRING:	FastEthernet0/0

IF-MIB::ifDescr.2	=	STRING:	Serial0/0

IF-MIB::ifDescr.3	=	STRING:	FastEthernet0/1

…

IF-MIB::ifType.1	=	INTEGER:	ethernetCsmacd(6)

IF-MIB::ifType.2	=	INTEGER:	propPointToPointSerial(22)

IF-MIB::ifType.3	=	INTEGER:	ethernetCsmacd(6)

…

IF-MIB::ifMtu.1	=	INTEGER:	1500

IF-MIB::ifMtu.2	=	INTEGER:	1500

IF-MIB::ifMtu.3	=	INTEGER:	1500

…

IF-MIB::ifSpeed.1	=	Gauge32:	10000000

IF-MIB::ifSpeed.2	=	Gauge32:	1544000

IF-MIB::ifSpeed.3	=	Gauge32:	10000000

…

IF-MIB::ifPhysAddress.1	=	STRING:	c4:1:1e:c8:0:0

IF-MIB::ifPhysAddress.2	=	STRING:

IF-MIB::ifPhysAddress.3	=	STRING:	c4:1:1e:c8:0:1

…

IF-MIB::ifAdminStatus.1	=	INTEGER:	up(1)

IF-MIB::ifAdminStatus.2	=	INTEGER:	down(2)

IF-MIB::ifAdminStatus.3	=	INTEGER:	down(2)

…

IF-MIB::ifOperStatus.1	=	INTEGER:	up(1)

IF-MIB::ifOperStatus.2	=	INTEGER:	down(2)

IF-MIB::ifOperStatus.3	=	INTEGER:	down(2)

…

IF-MIB::ifLastChange.1	=	Timeticks:	(1738)	0:00:17.38

IF-MIB::ifLastChange.2	=	Timeticks:	(1696)	0:00:16.96

IF-MIB::ifLastChange.3	=	Timeticks:	(1559)	0:00:15.59

…

IF-MIB::ifInOctets.1	=	Counter32:	305255

IF-MIB::ifInOctets.2	=	Counter32:	0

IF-MIB::ifInOctets.3	=	Counter32:	0

…

IF-MIB::ifInDiscards.1	=	Counter32:	0

IF-MIB::ifInDiscards.2	=	Counter32:	0

IF-MIB::ifInDiscards.3	=	Counter32:	0

…

IF-MIB::ifInErrors.1	=	Counter32:	0

IF-MIB::ifInErrors.2	=	Counter32:	0

IF-MIB::ifInErrors.3	=	Counter32:	0

…

IF-MIB::ifOutOctets.1	=	Counter32:	347968

IF-MIB::ifOutOctets.2	=	Counter32:	0

IF-MIB::ifOutOctets.3	=	Counter32:	0

As	you	can	see,	for	every	network	interface,	there	are	several	OIDs,	each	one	detailing	a
specific	aspect	of	the	interface:	its	name,	its	type,	whether	it’s	up	or	down,	the	amount	of
traffic	coming	in	or	going	out,	and	so	on.	The	different	OIDs	are	related	through	their	last
number,	the	actual	index	of	the	OID.	Looking	at	the	preceding	excerpt,	we	know	that	the
device	has	26	interfaces,	of	which	we	are	showing	some	values	for	just	the	first	three.	By
correlating	the	index	numbers,	we	also	know	that	interface	1	is	called	FastEthernet0/0,
its	MAC	address	is	c4:1:1e:c8:0:0,	the	interface	is	up	and	has	been	up	for	just	17

seconds,	and	some	traffic	already	went	through	it.

Now,	one	way	to	monitor	several	of	these	metrics	for	the	same	interface	is	to	manually
correlate	these	values	when	creating	the	items,	putting	the	complete	OID	in	the	SNMP
OID	field,	and	making	sure	that	both	the	item	key	and	its	name	reflect	the	right	interface.
This	process	is	not	only	prone	to	errors	during	the	setup	phase,	but	it	could	also	introduce
some	inconsistencies	down	the	road.	There	is	no	guarantee,	in	fact,	that	the	index	will
remain	consistent	across	hardware	or	software	upgrades	or	even	across	configurations
when	it	comes	to	more	volatile	states	like	the	number	of	VLANs	or	routing	tables	instead
of	network	interfaces.	Fortunately	Zabbix	provides	a	feature,	called	dynamic	indexes,	that
allows	you	to	actually	correlate	different	OIDs	in	the	same	SNMP	OID	field	so	that	you
can	define	an	index	based	on	the	index	exposed	by	another	OID.

This	means	that	if	you	want	to	know	the	admin	status	of	FastEthernet0/0,	you	don’t
need	to	find	the	index	associated	with	FastEthernet0/0	(in	this	case	it	would	be	1)	and
then	add	that	index	to	IF-MIB::ifAdminStatus	of	the	base	OID,	hoping	that	it	won’t	ever
change	in	the	future.	You	can	instead	use	the	following	code:

IF-MIB::ifAdminStatus["index",	"IF-MIB::ifDescr",	"FastEthernet0/0"]

Upon	using	the	preceding	code	in	the	SNMP	OID	field	of	your	item,	the	item	will
dynamically	find	the	index	of	the	IF-MIB::ifDescr	OID	where	the	value	is
FastEthernet0/0	and	append	it	to	IF-MIB::ifAdminStatus	in	order	to	get	the	right	status
for	the	right	interface.

If	you	organize	your	items	this	way,	you’ll	always	be	sure	that	related	items	actually	show
the	right	related	values	for	the	component	you	are	interested	in	and	not	those	of	another
one	because	things	changed	on	the	device’s	side	without	your	knowledge.	Moreover,	we’ll
build	on	this	technique	to	develop	low-level	discovery	of	a	device	as	we’ll	see	in	Chapter
4,	Discovering	Your	Network.

You	can	use	the	same	technique	to	get	other	interesting	information	out	of	a	device.
Consider,	for	example,	the	following	excerpt:

ENTITY-MIB::entPhysicalVendorType.1	=	OID:	CISCO-ENTITY-VENDORTYPE-OID-

MIB::cevChassis3640

ENTITY-MIB::entPhysicalVendorType.2	=	OID:	CISCO-ENTITY-VENDORTYPE-OID-

MIB::cevContainerSlot

ENTITY-MIB::entPhysicalVendorType.3	=	OID:	CISCO-ENTITY-VENDORTYPE-OID-

MIB::cevCpu37452fe

ENTITY-MIB::entPhysicalClass.1	=	INTEGER:	chassis(3)

ENTITY-MIB::entPhysicalClass.2	=	INTEGER:	container(5)

ENTITY-MIB::entPhysicalClass.3	=	INTEGER:	module(9)

ENTITY-MIB::entPhysicalName.1	=	STRING:	3745	chassis

ENTITY-MIB::entPhysicalName.2	=	STRING:	3640	Chassis	Slot	0

ENTITY-MIB::entPhysicalName.3	=	STRING:	c3745	Motherboard	with	Fast	

Ethernet	on	Slot	0

ENTITY-MIB::entPhysicalHardwareRev.1	=	STRING:	2.0

ENTITY-MIB::entPhysicalHardwareRev.2	=	STRING:

ENTITY-MIB::entPhysicalHardwareRev.3	=	STRING:	2.0

ENTITY-MIB::entPhysicalSerialNum.1	=	STRING:	FTX0945W0MY

ENTITY-MIB::entPhysicalSerialNum.2	=	STRING:

ENTITY-MIB::entPhysicalSerialNum.3	=	STRING:	XXXXXXXXXXX

It	should	be	immediately	clear	to	you	that	you	can	find	the	chassis’s	serial	number	by
creating	an	item	with:

ENTITY-MIB::entPhysicalSerialNum["index",	"ENTITY-MIB::entPhysicalName",	

"3745	chassis"]

Then	you	can	specify,	in	the	same	item,	that	it	should	populate	the	Serial	Number	field	of
the	host’s	inventory.	This	is	how	you	can	have	a	more	automatic,	dynamic	population	of
inventory	fields.

The	possibilities	are	endless	as	we’ve	only	just	scratched	the	surface	of	what	any	given
device	can	expose	as	SNMP	metrics.	Before	you	go	and	find	your	favorite	OIDs	to
monitor	though,	let’s	have	a	closer	look	at	the	preceding	examples,	and	let’s	discuss	data
types.

Getting	data	types	right
We	have	already	seen	how	an	OID’s	value	has	a	specific	data	type	that	is	usually	clearly
stated	with	the	default	snmpwalk	command.	In	the	preceding	examples,	you	can	clearly	see
the	data	type	just	after	the	=	sign,	before	the	actual	value.	There	are	a	number	of	SNMP
data	types—some	still	current	and	some	deprecated.	You	can	find	the	official	list	and
documentation	in	RFC2578	(http://tools.ietf.org/html/rfc2578),	but	let’s	have	a	look	at	the
most	important	ones	from	the	perspective	of	a	Zabbix	user:

SNMP
type Description Suggested	Zabbix	item	type	and	options

INTEGER
This	can	have	negative	values	and	is	usually	used	for
enumerations

Numeric	unsigned,	decimal
Store	value	as	is
Show	with	value	mappings

STRING This	is	a	regular	character	string	and	can	contain	new	lines Text
Store	value	as	is

OID This	is	an	SNMP	object	identifier Character
Store	value	as	is

IpAddress IPv4	only
Character
Store	value	as	is

Counter32 This	includes	only	non-negative	and	nondecreasing	values
Numeric	unsigned,	decimal
Store	value	as	delta	(speed	per
second)

Gauge32 This	includes	only	non-negative	values,	which	can	decrease Numeric	unsigned,	decimal
Store	value	as	is

http://tools.ietf.org/html/rfc2578

Counter64 This	includes	non-negative	and	nondecreasing	64-bit	values Numeric	unsigned,	decimal
Store	value	as	delta	(speed	per
second)

TimeTicks This	includes	non-negative,	nondecreasing	values Numeric	unsigned,	decimal
Store	value	as	is

First	of	all,	remember	that	the	above	suggestions	are	just	that—suggestions.	You	should
always	evaluate	how	to	store	your	data	on	a	case-by-case	basis,	but	you’ll	probably	find
that	in	many	cases	those	are	indeed	the	most	useful	settings.

Moving	on	to	the	actual	data	types,	remember	that	the	command	line	SNMP	tools	by
default	parse	the	values	and	show	some	already	interpreted	information.	This	is	especially
true	for	Timeticks	values	and	for	INTEGER	values	when	these	are	used	as	enumerations.	In
other	words,	you	see	the	following	from	the	command	line:

VRRP-MIB::vrrpNotificationCntl.0	=	INTEGER:	disabled(2)

However,	what	is	actually	passed	as	a	request	is	the	bare	OID:

1.3.6.1.2.1.68.1.2.0

The	SNMP	agent	will	respond	with	just	the	value,	which,	in	this	case,	is	the	value	2.

This	means	that	in	the	case	of	enumerations,	Zabbix	will	just	receive	and	store	a	number
and	not	the	string	disabled(2)	as	seen	from	the	command	line.	If	you	want	to	display
monitoring	values	that	are	a	bit	clearer,	you	can	apply	value	mappings	to	your	numeric
items.	Value	maps	contain	the	mapping	between	numeric	values	and	arbitrary	string
representations	for	a	human-friendly	representation.	You	can	specify	which	one	you	need
in	the	item	configuration	form,	as	follows:

Zabbix	comes	with	a	few	predefined	value	mappings.	You	can	create	your	own	mappings
by	following	the	show	value	mappings	link	and,	provided	you	have	admin	roles	on
Zabbix,	you’ll	be	taken	to	a	page	where	you	can	configure	all	value	mappings	that	will	be
used	by	Zabbix.	From	there,	click	on	Create	value	map	in	the	upper-right	corner	of	the
page,	and	you’ll	be	able	to	create	a	new	mapping.	Not	all	INTEGER	values	are
enumerations,	but	those	that	are	used	as	such	will	be	clearly	recognizable	from	your
command-line	tools	as	they	will	be	defined	as	INTEGER	values	but	will	show	a	string	label
along	with	the	actual	value,	just	as	in	the	preceding	example.

On	the	other	hand,	when	they	are	not	used	as	enumerations,	they	can	represent	different
things	depending	on	the	context.	As	seen	in	the	previous	paragraph,	they	can	represent	the
number	of	indexes	available	for	a	given	OID.	They	can	also	represent	application	or
protocol-specific	values,	such	as	default	MTU,	default	TTL,	route	metrics,	and	so	on.

The	main	difference	between	gauges,	counters,	and	integers	is	that	integers	can	assume
negative	values,	while	gauges	and	counters	cannot.	In	addition	to	that,	counters	can	only
increase	or	wrap	around	and	start	again	from	the	bottom	of	their	value	range	once	they
reach	the	upper	limits	of	it.	From	the	perspective	of	Zabbix,	this	marks	the	difference	in
how	you’ll	want	to	store	their	values.

Gauges	are	usually	employed	when	a	value	can	vary	within	a	given	range,	such	as	the
speed	of	an	interface,	the	amount	of	free	memory,	or	any	limits	and	timeouts	you	might
find	for	notifications,	the	number	of	instances,	and	so	on.	In	all	of	these	cases,	the	value
can	increase	or	decrease	in	time,	so	you’ll	want	to	store	them	as	they	are	because	once	put
on	a	graph,	they’ll	draw	a	meaningful	curve.

Counters,	on	the	other	hand,	can	only	increase	by	definition.	They	are	typically	used	to
show	how	many	packets	were	processed	by	an	interface,	how	many	were	dropped,	how
many	errors	were	encountered,	and	so	on.	If	you	store	counter	values	as	they	are,	you’ll
find	in	your	graphs	some	ever-ascending	curves	that	won’t	tell	you	very	much	for	your
monitoring	or	capacity	planning	purposes.	This	is	why	you’ll	usually	want	to	track	a
counter’s	amount	of	change	in	time,	more	than	its	actual	value.	To	do	that,	Zabbix	offers
two	different	ways	to	store	deltas	or	differences	between	successive	values.

The	delta	(simple	change)	storage	method	does	exactly	what	it	says:	it	simply	computes
the	difference	between	the	currently	received	value	and	the	previously	received	one,	and
stores	the	result.	It	doesn’t	take	into	consideration	the	elapsed	time	between	the	two
measurements,	nor	the	fact	that	the	result	can	even	have	a	negative	value	if	the	counter
overflows.	The	fact	is	that	most	of	the	time,	you’ll	be	very	interested	in	evaluating	how
much	time	has	passed	between	two	different	measurements	and	in	treating	correctly	any
negative	values	that	can	appear	as	a	result.

The	delta	(speed	per	second)	will	divide	the	difference	between	the	currently	received
value	and	the	previously	received	one	by	the	difference	between	the	current	timestamp
and	the	previous	one,	as	follows:

(value	–	prev_value)/(time	-	prev_time)

This	will	ensure	that	the	scale	of	the	change	will	always	be	constant,	as	opposed	to	the
scale	of	the	simple	change	delta,	which	will	vary	every	time	you	modify	the	update
interval	of	the	item,	giving	you	inconsistent	results.	Moreover,	the	speed-per-second	delta
will	ignore	any	negative	values	and	just	wait	for	the	next	measurement,	so	you	won’t	find
any	false	dips	in	your	graph	due	to	overflowing.

Finally,	while	SNMP	uses	specific	data	types	for	IP	addresses	and	SNMP	OIDs,	there	are
no	such	types	in	Zabbix,	so	you’ll	need	to	map	them	to	some	kind	of	string	item.	The
suggested	type	here	is	character	as	both	values	won’t	be	bigger	than	255	characters	and
won’t	contain	any	newlines.

String	values,	on	the	other	hand,	can	be	quite	long	as	the	SNMP	specification	allows	for
65,535-character-long	texts;	however,	text	that	long	would	be	of	little	practical	value.
Even	if	they	are	usually	much	shorter,	string	values	can	often	contain	newlines	and	be
longer	than	255	characters.

Consider,	for	example,	the	following	SysDescr	OID	for	this	device:

NMPv2-MIB::sysDescr.0	=	STRING:	Cisco	IOS	Software,	3700	Software	(C3745-

ADVENTERPRISEK9_SNA-M),	Version	12.4(15)T14,	RELEASE	SOFTWARE	(fc2)^M

Technical	Support:	http://www.cisco.com/techsupport^M

Copyright	(c)	1986-2010	by	Cisco	Systems,	Inc.^M

Compiled	Tue	17-Aug-10	12:56	by	prod_rel_tea

As	you	can	see,	the	string	spans	multiple	lines,	and	it’s	definitely	longer	than	255
characters.	This	is	why	the	suggested	type	for	string	values	is	text	as	it	allows	text	of
arbitrary	length	and	structure.	On	the	other	hand,	if	you’re	sure	that	a	specific	OID	value
will	always	be	much	shorter	and	simpler,	you	can	certainly	use	the	character	data	type
for	your	corresponding	Zabbix	item.

Now,	you	are	truly	ready	to	get	the	most	out	of	your	devices’	SNMP	agents	as	you	are	now
able	to	find	the	OID	you	want	to	monitor	and	map	them	perfectly	to	Zabbix	items,	down
to	how	to	store	the	values,	their	data	types,	with	what	frequency,	and	with	any	value
mapping	that	might	be	necessary.

It’s	now	time	to	explore	the	other	aspect	of	SNMP:	traps.

SNMP	traps
SNMP	traps	are	a	bit	of	an	oddball	when	compared	to	all	the	other	Zabbix	item	types.
Unlike	other	items,	SNMP	traps	do	not	report	a	simple	measurement,	but	an	event	of	some
type.	In	other	words,	they	are	the	result	of	some	kind	of	check	or	computation	made	by	the
SNMP	agent	and	sent	over	to	the	monitoring	server	as	a	status	report.	An	SNMP	trap	can
be	issued	every	time	a	host	is	rebooted,	an	interface	is	down,	a	disk	is	damaged,	or	a	UPS
has	lost	power	and	is	keeping	servers	up	using	its	battery.

This	kind	of	information	contrasts	with	Zabbix’s	basic	assumption	that	an	item	is	a	simple
metric	not	directly	related	to	a	specific	event.	On	the	other	hand,	there’s	no	other	way	to
be	aware	of	certain	situations	if	not	through	an	SNMP	trap	either	because	there	are	no
related	metrics	(consider,	for	example,	the	event	the	server	is	being	shut	down)	or	because
the	appliance’s	only	way	to	convey	its	status	is	through	a	bunch	of	SNMP	objects	and
traps.

So	traps	are	of	relatively	limited	use	to	Zabbix	as	you	can’t	do	much	more	than	build	a
simple	trigger	out	of	every	trap	and	then	notify	about	the	event	(not	much	point	in
graphing	a	trap	or	building	calculated	items	on	it).	Nevertheless,	they	might	prove
essential	for	a	complete	monitoring	solution.

To	manage	SNMP	traps	effectively,	Zabbix	needs	a	couple	of	helper	tools:	the	snmptrapd
daemon	to	actually	handle	connections	from	the	SNMP	agents	and	some	kind	of	script	to
correctly	format	every	trap	and	pass	it	to	the	Zabbix	server	for	further	processing.

Snmptrapd
If	you	have	compiled	SNMP	support	into	the	Zabbix	server,	you	should	already	have	the
complete	SNMP	suite	installed,	which	contains	the	SNMP	daemon	and	the	SNMP	trap
daemon	along	with	the	utilities	we	have	used	in	the	previous	section.

Just	as	the	Zabbix	server	has	a	bunch	of	daemon	processes	that	listen	on	TCP	port	10051
for	incoming	connections	(from	agents,	proxies,	and	nodes),	snmptrapd	is	the	daemon
process	that	listens	on	UDP	port	162	for	incoming	traps	coming	from	remote	SNMP
agents.

Once	installed,	snmptrapd	reads	its	configuration	options	from	an	snmptrapd.conf	file
that	can	be	usually	found	in	the	/etc/snmp/	directory.	The	bare	minimum	configuration
for	snmptrapd	requires	the	definition	of	a	user	and	a	privacy	level	for	SNMP	v3,	as
follows:

createUser	zbxuser	SHA	auth	AES	priv

authUser	log,execute,net	zbxuser

Tip
The	above	configuration	will	enable	snmptrapd	to	receive	SNMPv3	INFORM	packets.
These	are	just	like	regular	SNMP	traps,	with	two	differences:	the	first	one	is	that	while	an
agent	won’t	expect	a	response	after	sending	a	trap,	INFORM	packets	are	acknowledged,	so
snmptrapd	will	send	a	response	for	every	trap	received.	But	the	most	important	difference

is	that	with	INFORM	packets,	the	authoritative	EngineID	will	be	that	of	the	receiving
party	and	not	the	sending	party	as	with	regular	traps.	This	means	that	you’ll	have	to
specify	your	server’s	EngineID	to	every	device	that	will	send	SNMPv3	INFORM	packets.
Since	you’ll	have	to	configure	them	to	send	packets	to	the	server	anyway,	this	won’t	mean
too	much	work.	Many	agents	automatically	discover	a	peer’s	EngineID	before	sending	an
INFORM,	but	if	you	need	to	set	it	yourself,	you	can	discover	your	server’s	EngineID
using	snmpget	and	asking	for	the	snmpEngineID.0	OID.

If	you	want	to	use	regular	SNMP	traps,	you’ll	have	to	insert	a	new	createUser	line	for
every	agent	that	will	send	traps	to	the	server,	with	each	one	specifying	the	correct
EngineID	of	the	agent	sending	traps.

With	this	minimal	configuration,	snmptrapd	will	limit	itself	to	log	the	trap	to	syslog.
While	it	could	be	possible	to	extract	this	information	and	send	it	to	Zabbix,	it’s	easier	to
tell	snmptrapd	how	it	should	handle	traps.	While	the	daemon	has	no	processing
capabilities	of	its	own,	it	can	execute	any	command	or	application	either	using	the
trapHandle	directive,	or	leveraging	its	embedded	Perl	functionality.	The	latter	is	more
efficient	as	the	daemon	won’t	have	to	fork	a	new	process	and	wait	for	its	execution	to
finish,	so	it’s	the	recommended	one	if	you	plan	to	receive	a	significant	number	of	traps.
Just	add	the	following	line	to	snmptrapd.conf:

perl	do	"/usr/local/bin/zabbix_trap_receiver.pl";

Tip
You	can	get	the	zabbix_trap_receiver	script	from	the	Zabbix	sources.	It’s	located	in
misc/snmptrap/zabbix_trap_receiver.pl.

Be	sure	to	check	that	you	also	have	the	Net-SNMP	Perl	module	installed.	If	you	need	it,	a
simple	yum	install	net-snmp-perl	command	should	take	care	of	everything.

Once	restarted,	the	snmptrapd	daemon	will	execute	the	Perl	script	you	specified	to	process
every	trap	received,	translating	it	into	a	format	that	can	be	easily	parsed	by	the	Zabbix
server.	In	the	following	section,	we’ll	see	how	an	SNMP	trap	is	translated	and	used	by
Zabbix.

Transforming	a	trap	into	a	Zabbix	item
The	Perl	script	included	in	the	Zabbix	distribution	works	as	a	translator	from	an	SNMP
trap	format	to	a	Zabbix	item	measurement.	For	every	trap	received,	it	will	format	it
according	to	the	rules	defined	in	the	script	and	will	output	the	result	in	a	log	file.	By
default,	the	log	file	is	called	/tmp/zabbix_traps.tmp.	You	need	to	make	sure	that	the
same	file	is	read	by	Zabbix	by	setting	the	following	parameters	in
/etc/zabbix/zabbix_server.conf:

###	Option:	StartSNMPTrapper

#							If	1,	SNMP	trapper	process	is	started.

#

#	Mandatory:	no

#	Range:	0-1

#	Default:

StartSNMPTrapper=1

###	Option:	SNMPTrapperFile

#							Temporary	file	used	for	passing	data	from	SNMP	trap	daemon	to	the	

server.

#							Must	be	the	same	as	in	zabbix_trap_receiver.pl	or	SNMPTT	

configuration	file.

SNMPTrapperFile=/tmp/zabbix_traps.tmp

The	log	file	will	have	a	format	similar	to	the	following	example:

03:47:10	2014/12/09	ZBXTRAP	127.0.0.1

PDU	INFO:

		notificationtype															TRAP

		version																								0

		receivedfrom																			UDP:	[127.0.0.1]:34373->[127.0.0.1]

		errorstatus																				0

		messageid																						0

		community																						public

		transactionid																		3

		errorindex																					0

		requestid																						0

VARBINDS:

		DISMAN-EVENT-MIB::sysUpTimeInstance	type=67	value=Timeticks:	(55)	

0:00:00.55

		SNMPv2-MIB::snmpTrapOID.0						type=6		value=OID:	IF-MIB::linkDown.0.33

		IF-MIB::linkDown															type=4		value=Hex-STRING:	E2	80	9C	54	45	

53	54	4D	45	4E	4F	57	E2	80	9D

		SNMP-COMMUNITY-MIB::snmpTrapCommunity.0	type=4		value=STRING:	"public"

		SNMPv2-MIB::snmpTrapEnterprise.0	type=6		value=OID:	IF-MIB::linkDown

The	ZBXTRAP	followed	by	the	IP	address	will	mark	the	start	of	a	new	log	stanza.	The
rest	of	the	log	will	contain	all	details	about	the	trap,	so	you’ll	be	able	to	act	on	any	of
those.

The	Zabbix	server	will	in	turn	monitor	the	aforesaid	log	file	and	process	every	new	line	as
an	SNMP	trap	item,	basically	matching	the	content	of	the	log	to	any	trap	item	defined	for
the	relevant	host.

As	you’ve	already	seen,	the	first	part	of	the	log	line	is	used	by	the	Zabbix	trap	receiver	to
match	a	trap	with	its	corresponding	host.	The	rest	is	matched	to	the	aforesaid	host’s	SNMP
trap	item’s	regexp	definitions	and	its	content	added	to	every	matching	item’s	history	of
values.	This	means	that	if	you	wish	to	have	a	linkDown	trap	item	for	a	given	host,	you’ll
need	to	configure	an	SNMP	trap	item	with	an	snmptrap["linkDown"]	key,	as	follows:

You	might	need	to	make	sure	that	the	log	time	format	you	specify	in	the	item’s
configuration	will	match	the	one	used	by	the	Perl	script.	You’ll	also	have	to	check	that	the
host’s	interface	will	match	the	one	logged	by	snmptrapd	because	it’s	the	one	piece	of	data
Zabbix	will	use	to	match	traps	to	hosts.

From	now	on,	you’ll	be	able	to	see	the	contents	of	the	trap	in	the	item’s	data	history.

Moving	on	from	SNMP,	there	are	still	other	data	sources	that	you	can	rely	on	to	get
monitoring	data	into	Zabbix;	for	the	purposes	of	this	book,	the	most	interesting	ones	are
log	files.	Compared	to	SNMP,	they	can	be	tricky	to	work	with,	but	they	do	have	their	uses,
so	let’s	explore	them	for	a	while.

Getting	netflow	from	the	devices	to	the	monitoring	server
Netflow	is	a	protocol	originally	developed	by	Cisco	to	collect	and	monitor	statistics	of
network	traffic	on	a	device.	After	the	initial	release,	many	vendors	started	providing	their
own	implementation	of	the	protocol.	In	2008	IETF	standardized	netflow	and	published
Internet	Protocol	Flow	Information	eXport	(IPFIX)	based	on	netflow	v9	with	some
extensions.	However,	netflow	somehow	remains	the	existing	name	of	the	protocol	in	fact
but	not	necessarily	by	legal	right,	so	that’s	the	one	we’ll	use	here.

A	netflow	record	contains	information	about	a	single	network	flow.	A	flow	is	a	sequence
of	packets	that	share	some	common	properties:

IP	protocol
Source	IP	address
Source	port	(for	TCP	and	UDP)
Destination	IP	address
Destination	port	(for	TCP	and	UDP)
Input	interface
Type	of	service

For	each	flow,	a	record	exposes	many	different	values,	which	change	with	netflow

versions	and	implementations.	Here	are	the	most	common	ones:

Input	interface	of	the	device
Output	interface	of	the	device
Flow	start	time
Flow	end	time
Number	of	bytes	in	the	flow
Number	of	packets	in	the	flow
Source	IP	address
Source	IP	port
Source	IP	mask
Destination	IP	address
Destination	IP	port
Destination	IP	mask
ICMP	type	and	code
TCP	flags
IP	address	of	the	immediate	next-hop

It	should	be	immediately	clear	to	you	that	this	type	of	information	can	be	extremely	useful
to	a	network	administrator	as	it	allows	you	to	build	a	picture	of	all	the	traffic	traversing
your	network.	It	can	also	be	used	to	identify	anomalous	traffic	and	traffic	to	and	from	IP
addresses	or	ports	that	should	not	be	there,	or	as	forensic	evidence	after	an	incident.
Moreover,	it	can	be	used	as	a	source	for	capacity-planning	analysis	to	identify	bottlenecks
in	your	network,	periods	of	peak	use,	and	top	talkers	among	your	servers	and	devices.

Finally,	as	we	were	explaining	previously,	it’s	a	good	candidate	for	a	Zabbix	log	item	as
flow	data	is	useful	even	if	it	is	not	directly	related	to	the	host	that	generated	it	(even	if	it’s
still	useful	to	track	that	piece	of	information	whenever	possible).

So,	let’s	see	how	to	get	netflow	data	into	Zabbix.

First	of	all,	you’ll	have	to	configure	your	device	to	send	flow	data	to	a	server.	In	the	case
of	a	Cisco	device,	here	are	the	configuration	commands	that	you	need	to	issue	(remember
to	substitute	all	references	to	the	example	Zabbix	server	with	the	real	ones	that	apply	to
your	environment):

R1(config)#ip	flow-export	destination	192.168.234.131	9995

R1(config)#ip	flow-export	version	9

R1(config)#interface	f0/0

R1(config-if)#ip	flow	ingress

R1(config-if)#ip	flow	egress

R1(config-if)#exit

In	the	first	line,	we	specify	the	IP	address	of	our	Zabbix	server	and	the	UDP	port	the
device	should	send	netflow	information	to.

The	second	line	sets	the	netflow	version.

In	the	third	line,	we	go	into	interface	f0/0	mode.	Please	note	that	you’ll	have	to	explicitly
enable	netflow	for	every	interface	you	are	interested	in.	This	is	usually	not	a	problem

because	if	you	configure	netflow	on	the	right	interfaces	of	your	routers,	you’ll	see	most,	if
not	all	of	your	traffic	anyway;	you	won’t	need	to	enable	netflow	on	every	interface	of
every	network	device	you	have.

The	fourth	line	enables	netflow	monitoring	for	incoming	traffic	on	interface	f0/0,	while
the	fifth	line	enables	netflow	monitoring	for	outgoing	traffic	on	the	same	interface.	If	you
want	to	enable	netflow	on	other	interfaces,	you’ll	need	to	repeat	lines	3	to	5	for	every
interface	you	are	interested	in.

Repeat	the	whole	process	for	all	the	routers	you	want	to	get	flow	information	from,	and
once	you	are	done,	you	are	ready	to	turn	to	your	Zabbix	server.

Receiving	netflow	data	on	your	server
To	actually	receive	and	process	netflow	packets	on	a	server,	you	need	a	daemon	that	will
listen	on	a	specified	UDP	port,	and	that	will	understand	the	netflow	protocol.	On	Linux,
such	daemons	and	associated	tools	are	contained	in	the	nfdump	package.

Nfdump	is	a	collection	of	tools	that	will	enable	you	to	capture	netflow	data,	store	it	on
disk,	filter	it,	and	analyze	it.	The	most	important	components	are:

nfcapd:	This	is	the	daemon	component	that	listens	for	incoming	netflow	data	and
stores	it	on	disk	in	binary	format
nfdump:	This	is	similar	to	tcpdump;	it	reads	and	filters	nfcapd	files,	and	outputs
readable	data

So	the	basic	dataflow	will	be	similar	to	this	one:

1.	 A	router	sends	netflow	data	to	the	server.
2.	 On	the	server,	nfcapd	captures	the	data	and	stores	it	in	binary	files.
3.	 A	scheduled	nfdump	process	will	read	the	binary	files	and	populate	a	human	readable

log	with	netflow	information.
4.	 A	Zabbix	agent	will	read	the	log	and	send	data	to	the	Zabbix	server	according	to	the

item’s	configuration.

We	have	already	taken	care	of	point	1,	so	let’s	see	how	to	install	and	configure	the	nfdump
package,	before	looking	into	the	Zabbix	side.

Unfortunately,	there	are	no	readymade	rpm	packets	for	nfdump,	so	we’ll	need	to	find	the
source	code,	compile	it,	and	install	it.	This	is	usually	a	straightforward	process.	First	of	all,
let’s	install	some	required	dependencies	for	nfdump:

#	yum	install	rrdtool	rrdtool-devel	rrdtool-doc	perl-rrdtool

Then,	we’ll	need	to	download	the	latest	sources.	At	the	moment	of	writing	this,	the	latest
available	version	is	1.6.12.	You	can	download	the	package	from
http://sourceforge.net/projects/nfdump/	and	then	transfer	it	to	your	server.	Once	you	have
tar.gz	ready,	unpack	it:

$	tar	xvzf	nfdump-1.6.12.tar.gz

http://sourceforge.net/projects/nfdump/

Then	move	into	the	nfdump-1.6.12	directory	and	run	the	usual	configure,	make,	and
make	install	sequence.	If	you	want	to	install	nfdump	in	the	main	directories	instead	of	the
/usr/local	tree,	just	pass	the	–prefix	option	to	the	configure	script.	In	the	following
example,	that’s	what	we’ll	use:

$	cd	nfdump-1.6.12

$./configure	–prefix=/usr	--sysconfdir=/etc

$	make

$	su	root

#	make	install

Once	installed,	you	can	add	a	dedicated	user	for	nfcapd	so	that	it	doesn’t	have	to	run	as
root	and	set	a	working	directory	for	it:

#	useradd	-s	/sbin/nologin	netflow

#	mkdir	-p	/var/nfdump/nfcapd

#	mkdir	-p	/var/nfdump/logs

#	chown	-R	netflow	/var/nfdump

When	you	run	nfcapd,	it	will	create	its	binary	files	under	/var/nfdump/nfcapd.	Nfcapd
files	are	rotated,	by	default,	once	every	five	minutes	and	can	be	separated	into	one	dump
collection	(current	and	rotated	files)	per	sending	host	or	a	single	collection	for	all	sending
hosts.	They	can	also	be	expired	after	a	set	amount	of	time.	You	are	now	ready	to	wait	for
netflow	data	and	transform	it	into	a	log	file.	To	do	that,	you’ll	need	to	pass	the	right	option
to	nfcapd.	Since	there	are	quite	a	few	options	to	pass,	let’s	build	the	command	line	little
by	little.	Please	don’t	run	the	intermediate	commands,	but	only	the	final	one;	nfcapd	will
complain	about	missing	options	and	refuse	to	run.

First	of	all,	we’ll	pass	some	options	that	will	instruct	nfcapd	to	go	into	daemon	mode	(-D),
to	compress	output	(-z),	to	run	as	user	netflow	(-u),	and	to	listen	on	port	9995	(-p):

#	nfcapd	-D	-z	-u	netflow	-p	9995

Then,	we’ll	need	to	add	some	options	about	data	sources.	The	accepted	current	method	is
to	use	the	-n	switch.	We’ll	also	instruct	nfcapd	to	create	additional	subdirectories	to	store
the	cap	files	to	better	organize	them	(-S):

#	nfcapd	-D	-z	-u	netflow	-p	9995	-n	R1,192.168.11.9,/var/nfdump/nfcapd	-n	

R2,10.10.1.254,/var/nfdump/nfcapd	-S2

As	you	can	see,	you’ll	have	to	specify	a	different	-n	option	for	every	source	you
configure.	If	you	have	many	netflow	sources,	it	might	be	better	to	run	different	instances
of	nfcapd	on	different	UDP	ports	so	as	to	share	the	load	between	different	processes.	In
that	case,	just	remember	to	configure	your	devices	accordingly	so	that	they	send	their
traffic	to	the	correct	UDP	port.	The	-S2	option	will	create	additional	year/month/day/hour
directories	under	/var/nfdump/nfcapd	to	store	current	and	rotated	files.

Nfcapd	files	are	rotated	every	five	minutes,	and	if	your	network	has	a	lot	of	traffic,	your
nfcapd	directory	can	become	huge.	You	could	schedule	a	separate	job	to	clean	them	up,
but	with	the	-e	option,	nfcapd	will	be	able	to	also	take	care	of	that.	Just	set	the	expiration
parameter	with	nfexpire	and	nfcapd	will	pick	them	up:

#	nfexpire	-u	/var/nfdump/nfcapd	-s	15G	-t	90d

#	nfcapd	-D	-z	-u	netflow	-p	9995	-n	R1,192.168.11.9,/var/nfdump/nfcapd	-n	

R2,10.10.1.254,/var/nfdump/nfcapd	-S2	-e

In	the	above	example,	we	set	the	size	limit	of	the	directory	to	15	gigabytes,	and	the	cap
(maximum)	file	age	to	90	days.	Files	will	be	deleted	by	nfcapd	whenever	one	of	these
limits	is	reached.	The	last	line	in	the	preceding	command	now	contains	all	the	parameters
we	need	for	basic	netflow	dumping.	If	you	run	it	(don’t	forget	the	nfexpire	command	too)
or	put	it	into	a	startup	script,	nfcapd	will	listen	on	the	specified	network	port	for	incoming
netflow	data	and	write	it	to	the	directories	you	specified.

Once	you	have	some	data	in,	you	can	read	it	with	nfdump	and	output	a	human-readable	set
of	records:

$	nfdump	-r	/var/nfdump/nfcapd/2014/10/29/02/nfcapd.201410290250	-o	

extended

Date	flow	start									Duration	Proto				Src	IP	Addr:Port									Dst	IP	

Addr:Port			Flags	Tos		Packets				Bytes						pps						bps				Bpp	Flows

2014-10-29	02:51:53.160			63.545	TCP			10.13.27.151:80				->			

123.43.98.124:6523		.AP.SF			0							128					8412								0						550					56					

1

2014-10-29	02:53:13.370			23.135	TCP				64.76.73.121:25		->		

10.138.41.151:7643				.AP.SF			0							51	2450								0						551					56					

1

...

Time	window:	Oct	29	2014	02:50:00	-	Oct	29	2014	02:54:56

This	is	getting	closer	to	our	objective.	If	you	run	nfdump	and	redirect	its	output	to	a	file
instead	of	the	screen,	there	you	have	the	log	file	we’ve	been	talking	about	in	the	last
several	pages.	To	do	that,	you	are	probably	thinking	of	setting	up	a	cron	job	that	will	find
the	latest	nfcapd	files	that	weren’t	already	parsed	by	nfdump,	make	nfdump	read	them
while	specifying	a	time	window	so	that	your	log	file	won’t	contain	duplicated	data,	and
add	the	aforesaid	output	to	a	log	file	that	will	be	monitored	by	Zabbix.	This	can	be	a
nontrivial	exercise	when	you	consider	that	nfcapd	will	continually	produce	new	files	and
will	put	them	in	new	directories	all	the	time.	Moreover,	you’ll	need	to	keep	some	kind	of
execution	state	with	the	timestamp	of	the	last	time	nfdump	was	run	in	order	to	avoid	the
aforesaid	duplicates.

It	turns	out	that	you’ll	be	able	to	avoid	all	this	work,	thanks	to	a	nice	option	for	nfcapd,
the	-x	option.	So	let’s	rewrite	the	nfcapd	command	one	last	time:

#	nfcapd	-D	-z	-u	netflow	-p	9995	-n	R1,192.168.11.9,/var/nfdump/nfcapd	-n	

R2,10.10.1.254,/var/nfdump/nfcapd	-S2	-e	-x	'nfdump	-q	-o	extended	-r	%d/%f	

>>	/var/nfdump/logs/zabbix_netflow.log'

The	-x	command	executes	an	arbitrary	command	every	time	a	dump	file	is	rotated.	You
can	reference	the	dump	file	and	the	base	directory	with	the	%d/%f	macros.	This	means	that
nfdump	will	always	be	executed	on	new	data	and	only	once	per	dump	file.	Suddenly,	you
won’t	need	to	schedule	any	complicated	cron	job	to	generate	the	final,	human-readable
netflow	log	file.	We	also	added	a	-q	option	to	suppress	the	header	and	statistics	printing	to
keep	the	log	file	clean.

Note
You	might	still	want	to	configure	some	log	rotation	for	the
/var/nfdump/logs/zabbix_netflow.log	file.	If	you	let	it	grow	unchecked,	it	will	fill	up
your	disk	space	in	due	time!

It’s	finally	time	to	make	Zabbix	aware	of	the	netflow	log	file.

Monitoring	a	log	file	with	Zabbix
As	already	explained,	log	file	monitoring	needs	a	Zabbix	agent.	For	illustration	purposes,
we	will	assume	that	you	have	installed	nfdump	on	the	same	box	as	the	Zabbix	server,	and
that	the	log	file	is	thus	locally	available.	It	goes	without	saying	that	you	could	also	install
nfdump,	along	with	a	Zabbix	agent,	on	a	separated,	possibly	dedicated	machine.	It	won’t
make	any	difference	from	Zabbix’s	perspective.

Basic	item	creation	is	fairly	straightforward,	just	point	the	item	key	to	the	correct	file	path
and	you’re	good	to	go.	Please	note,	in	the	following	example,	the	timestamp	parsing	field:

This	is	all	you	need	for	basic	log	file	monitoring.	For	further	explorations,	the	log	key
accepts	different	options,	among	which	the	most	interesting	are	those	related	to	regular
expression	filtering	and	output	so	that	you	can	also	create	additional	items	that	will	only
extract	the	exact	information	you	need	(for	instance,	bytes	per	second	of	a	flow)	and	use	it
as	raw	data,	just	as	you	would	use	any	other	Zabbix	item.	Zabbix’s	own	official
documentation	is	excellent	in	this	respect,	so	you	are	encouraged	to	find	out	more	at
https://www.zabbix.com/documentation/2.4/manual/config/items/itemtypes/log_items.

https://www.zabbix.com/documentation/2.4/manual/config/items/itemtypes/log_items

On	the	nfdump	side,	there	are	many	more	options	and	features	available	to	nfdump,	we’ve
really	only	scratched	the	surface	to	keep	things	simple.	We	don’t	have	the	space	to	fully
explore	it	here,	but	if	you’re	willing	to	spend	some	time	exploring	the	tool,	you’ll	find	that
nfdump	is	not	only	capable	of	powerful	traffic	filtering,	just	as	tcpdump	is,	but	it	can	also
create	statistics	and	aggregated	data	on	virtually	every	aspect	of	a	flow,	from	network
ports	to	packet	sizes,	and	so	on.	Combine	this	with	Zabbix’s	powerful	external	script
items,	and	you	can	easily	see	that	you	can	slice	and	dice	your	data;	however,	if	you	want,
bring	it	into	Zabbix	for	further	processing,	graphing,	and	alarming.	Really,	the	sky	is	the
limit	when	you	learn	to	combine	these	tools	together.

Summary
In	this	chapter,	you	have	learned	the	different	possibilities	Zabbix	offers	to	the	enterprising
network	administrator.

You	should	now	be	able	to	choose,	design,	and	implement	all	the	monitoring	items	you
need,	based	on	the	methods	illustrated	in	the	preceding	paragraphs:	simple	checks	that	are
more	useful	and	powerful	than	the	name	implies;	the	all-powerful	SNMP	protocol,	both	as
get	values	and	as	traps;	log	files	in	general;	and	the	infinitely	useful	netflow	protocol

The	next	chapter	will	build	on	the	information	exposed	in	this	chapter	and	will	focus	more
on	server	monitoring	and	how	to	extract	information	from	DNS	servers,	web	servers,
proxies,	and	other	appliances.	These	are	important,	if	often	overlooked,	components	of	a
network	even	from	the	perspective	of	a	network	administrator,	and	you’ll	find	many	useful
tips	on	how	to	monitor	them.

Chapter	3.	Monitoring	Your	Network
Services
In	every	environment,	especially	in	a	large	one,	there	are	many	network	critical	services
that	are	directly	tied	on	the	network	infrastructure.	Many	of	them	can	be	monitored	by	the
system	administrators,	but	the	core	critical	services	for	the	whole	network	are	better	if
they	are	monitored	directly	by	the	network	administrator.

Between	those	critical	services,	we	can	find	the	following:

DNS
DHCP
NTP
Apache	proxy	/	reverse	proxies
Proxy	cache	Squid

As	it	is	easy	to	understand,	even	if	those	services	are	provided	from	some	dedicated	server
and	not	network	devices,	the	metrics	that	you	are	acquiring	from	them	are	fundamental.
Those	metrics,	indeed,	play	a	critical	role	when	you	would	like	to	set	up	a	proactive	alarm.

An	example	of	a	service	that	can	cause	a	lot	of	confusion	in	your	network	can	be	the	DNS,
the	DHCP,	or	even	the	NTP.	In	an	ideal	environment,	all	those	services	need	to	be
responsive,	and	even	the	response	time	is	crucial;	if	each	one	of	those	components
becomes	unresponsive,	they	will	act	as	the	weakest	link	of	your	infrastructure,	causing	a
lot	of	problems	that	will	be	quickly	propagated	to	the	whole	network.	A	simple	NTP
server	can	introduce	confusion	in	the	logs	of	your	systems	or	even	cause	an	issue	in	your
connections.	Working	on	a	practical	example,	try	to	imagine	that	you	have	all	your
accounts	stored	in	an	LDAP.	Well,	if	the	LDAP	takes	too	much	time	to	resolve	the
UID/GID	of	your	account,	you	can	have	issues	propagated	to	all	your	systems.	An
unresponsive	LDAP	can	cause	filesystem	issues	and	even	NAS	issues,	and	if	all	your
accounts	are	stored	there,	even	an	ls	can	literally	take	ages,	with	a	big	impact	on	the	whole
infrastructure.	Here,	we	are	not	considering	the	DNS,	where	a	dysfunction	can	be	even
worse.

Also,	those	services	need	to	be	taken	under	surveillance	as,	if	they	become	unresponsive,
quite	soon	they	will	accumulate	requests	to	serve,	and	if	the	environment	is	not	ready,	they
will	be	flooded	by	their	own	queries	in	a	queue,	with	a	global	impact	on	our	infrastructure.

In	this	chapter,	we	will	go	through	all	the	main	services	that	a	network	admin	should
monitor	to	avoid	these	kinds	of	issues.	Then,	the	reader	will	learn	and	understand	the
importance	of	an	effective	proactive	alarm	to	avoid	a	quick	escalation	of	issues	across	the
network.

Monitoring	the	DNS
The	first	network	component	we	will	analyze	and	see	how	to	monitor	is	the	DNS.

The	most	popular	DNS	server	is	BIND,	which	is	also	one	of	the	oldest	packages	produced.
Here,	in	the	next	example,	we	assume	you	have	BIND	9.6	or	later.

Starting	with	version	9.6,	there	is	a	brand	new	feature	that	is	not	even	mentioned	in	the
main	page	(of	Red	Hat	Linux	at	least).	This	feature	is	a	built-in	web	server	that	provides
statistics	about	BIND	in	a	very	simple	way	thought	HTTP.	To	enable	this	feature,	it	is
enough	to	add	those	lines	to	your	BIND9	configuration	file,	/etc/named.conf:

statistics-channels	{

		inet	127.0.0.1	port	8053	allow	{	127.0.0.1;	};

};

The	line	we	have	just	added	is	a	good	example	as	the	statistics’	access	is	controlled	and
restricted	to	the	localhost.

Tip
BIND,	by	default,	will	use	the	standard	80	HTTP	port	if	you	don’t	specify	the	port.	Also
please	take	care	to	limit	the	access	to	the	statistic	channel;	to	do	so,	you	can	use	this
clause:

allow	{		address_match_list		}

If	you	don’t	specify	the	allow	clause,	BIND	will	accept	connections	from	any	address.
This	needs	to	be	avoided.

Once	this	is	done,	all	you	have	to	do	is	restart	your	service	with:

$	service	named	restart

Stopping	named:																				[OK]

Starting	named:																				[OK]

Now,	you	can	even	use	curl	to	call	your	web	server	and	have	delivered	to	you	all	the
statistics:

#	curl	http://127.0.0.1:8053

<?xml	version="1.0"	encoding="UTF-8"?>

<?xml-stylesheet	type="text/xsl"	href="/bind9.xsl"?>

<isc	version="1.0">

		<bind>

				<statistics	version="2.2">

						<views>

								<view>

										<name>_default</name>

										<zones>

….

								<summary>

										<TotalUse>5965501</TotalUse>

										<InUse>1502936</InUse>

										<BlockSize>4718592</BlockSize>

										<ContextSize>3595936</ContextSize>

										<Lost>0</Lost>

								</summary>

						</memory>

				</statistics>

		</bind>

</isc>

Now,	we	have	two	ways	to	retrieve	the	statistics:

Configure	BIND	to	write	the	statistics	in	the	stat	file	(old	method)
Configure	BIND	to	use	the	built-in	HTTP	web	service

The	first	and	old	method	can	be	used	for	servers	that	are	not	under	a	heavy	load;	the	new
method	using	the	statistics-channels	is	on	the	other	hand	lightweight	and	very	easy	to
manage.	Nowadays	this	one	is	the	preferred	method	to	use.

Note
Starting	from	BIND	9.10,	the	statistics	can	be	delivered	in	either	the	XML	or	the	JSON
format.	The	previous	version	of	BIND	offered	only	statistics	on	XML	v2	or	V3.	Starting
with	BIND	9.10,	the	XML	statistics	are	available	only	in	V3	format.	Anyway,	the	JSON
format	is	significantly	faster	than	XML	and	even	lightweight	to	provide.

Now,	to	filter	the	output	obtained	by	curl,	there	is	an	interesting	utility	that	unfortunately
is	not	a	standard	RPM	distributed	by	Red	Hat.	The	tool	we	are	going	to	use	on	those
examples	is	xml2.

This	xml2	is	an	XML	processing	tool	that	can	be	used	to	parse	and	read	the	XML
envelopes	and	rewrite	them	as	a	flat	format.	The	flat	format	is	really	useful	to	be
manipulated	with	shell	scripts.	Then,	first	of	all,	you	need	to	download	this	utility	(the
source	code	is	available	at	http://download.ofb.net/gale/xml2-0.5.tar.gz).	Here’s	the	output
summary:

#	wget	http://download.ofb.net/gale/xml2-0.5.tar.gz

--2014-11-01	10:43:44--		http://download.ofb.net/gale/xml2-0.5.tar.gz

Resolving	download.ofb.net…	64.13.131.34

Connecting	to	download.ofb.net|64.13.131.34|:80…	connected.

HTTP	request	sent,	awaiting	response…	200	OK

Length:	86318	(84K)	[application/x-gzip]

Saving	to:	"xml2-0.5.tar.gz"

100%[===================================>]	86,318							155K/s			in	0.5s

2014-11-01	10:43:45	(155	KB/s)	-	"xml2-0.5.tar.gz"	saved	[86318/86318]

Perform	the	following	steps	to	obtain	the	results	set	out	in	the	preceding	paragraph:

1.	 Explode	the	package,	as	follows:

#	tar	-zxvf	xml2-0.5.tar.gz

xml2-0.5/

xml2-0.5/configure.ac

xml2-0.5/aclocal.m4

…

http://download.ofb.net/gale/xml2-0.5.tar.gz

xml2-0.5/csv2.c

xml2-0.5/xml2.c

2.	 Step	into	the	directory,	as	follows:

#	cd	xml2-0.5

3.	 Run	the	usual	./configure	followed	by	make	and	make	install,	as	follows:

#	./configure	&&	make	

Then,	as	root,	you	can	now	run	the	following	command:

#make	install

Once	all	this	has	been	completed,	you	are	ready	to	run	the	utility.

To	make	you	better	understand	what	this	tool	exactly	does,	you	can	run	the	following
command:

#	curl	http://localhost:8053/	2>/dev/null	|	xml2	|	grep	-A1	queries

/isc/bind/statistics/server/queries-in/rdtype/name=A

/isc/bind/statistics/server/queries-in/rdtype/counter=11230

/isc/bind/statistics/server/queries-in/rdtype

/isc/bind/statistics/server/queries-in/rdtype/name=AAAA

/isc/bind/statistics/server/queries-in/rdtype/counter=1112

Now,	the	output	is	finally	very	easy	to	manipulate	with	a	standard	utility	like	sed	or
awk.

4.	 Then,	the	next	step	to	enquire	from	the	locally	installed	agent	is	to	add	these	two
lines:

UserParameter=bind.queries.in[*],curl	http://localhost:8053/	

2>/dev/null	|	/usr/local/bin/xml2	|	grep	-A1	

"/isc/bind/statistics/server/queries-in/rdtype/name=1"	|	tail	-1	|	

cut	-d=	-f2

UserParameter=bind.queries.out[*],curl	http://localhost:8053/	

2>/dev/null	|	/usr/local/bin/xml2	|	grep	-A1	

"/isc/bind/statistics/views/view/rdtype/name=1"	|	tail	-1	|	cut	-d=	-

f2

Using	the	preceding	command	as	an	example,	you	can	run	the	standard	queries,	such	as	A,
AAAA,	CNAME,	ANY,	MX,	NS,	PTR,	SOA,	and	TXT	records	in/out.

Now,	on	the	Zabbix	server	side,	you	need	to	configure	all	your	items	just	as	the	one	shown
in	the	screenshot	following	the	upcoming	list,	taking	care	to	create	the	same	kind	of	item
for	A	as	well:

AAAA

CNAME

ANY

MX

NS

PTR

SOA

TXT

Once	you’ve	added	all	your	items	in	a	graph,	the	final	result	will	be	just	like	the	one
shown	in	the	next	screenshot.	Now,	you’re	acquiring	all	the	queries	done	for	the	most
important	DNS	fields.

DNS	–	response	time
Now,	we	are	monitoring	all	queries	done	against	all	the	main	DNS	records,	but	actually
we	need	to	check	how	our	DNS	is	working	and	then	how	much	time	is	required	to	have
the	response	back.

On	the	Zabbix	how-to,	there	is	an	example	to	do	what’s	available	here:
https://www.zabbix.com/wiki/doku.php?
id=howto/monitor/services/monitor_dns_and_ntp_services_on_your_network.

The	problem	with	this	example	is	that	the	script	and	code	proposed	simply	returns	a	0	or	1
depending	on	the	DNS	response	or	DNS	timeout.

Well,	that	example	is	not	good	enough	for	us;	we	are	looking	for	numbers	like	response
time,	and	over	those	numbers	we	can	implement	a	trigger.	The	trigger	needs	to	go	on	fire
when	the	time	needed	by	DNS	to	give	us	back	a	response	is	higher	than	a	value	that	we
can	consider	acceptable.	In	a	complex	network,	you	can	have	a	DNS	query	where	you	can
tolerate	a	slow	response	(the	entire	development	network	segment,	for	instance,	is	not	as
critical	as	the	production	segment).	Then,	the	solutions	we	propose	here	give	us	the
response	time.	We	can	build	our	trigger	over	the	response	time	unlike	the	other	way,
which	is	a	lot	less	flexible.

We	can	see	the	script	step	by	step;	first	of	all,	we	need	to	acquire	the	response	time.	This
can	be	done	using	dig,	as	follows:

#dig	mydomain.com

Note
NOTE

dig	is	part	of	the	bind-utils	package.	If	you	don’t	have	it	installed	in	your	system,	you
need	to	run	as	root	the	following	command:

yum	install	bind-utils

Anyway,	dig	uses	the	local	resolver,	and	then	if	you	run	the	same	query	again,	you’ll	see
that	the	time	spent	to	acquire	the	DNS	record	is	0	minutes.	This	is	clearly	a	false	value!	To
avoid	any	cached	response	and	to	measure	the	real	time,	we	need	to	use	the	+trace	option.
When	tracing	is	enabled,	dig	makes	iterative	queries	to	resolve	the	name;	practically,	dig
will	follow	referrals	from	the	root	servers,	showing	the	answer	from	each	server	that	was
used	to	resolve	the	lookup.

Here,	we	need	to	have	the	total	time	spent	for	the	query	and	not	the	time	consumed	by
every	server.	To	do	that,	we	can	use	the	following	syntax:

$(time	dig	@127.0.0.1	mydomain.com	+trace)

real				0m1.376s

user				0m0.010s

sys					0m0.012s

Now	that	we	have	understood	the	logic,	here	is	the	full	script	we	will	use:

https://www.zabbix.com/wiki/doku.php?id=howto/monitor/services/monitor_dns_and_ntp_services_on_your_network

#	cat	test_dns.sh

#!/bin/sh

if	test	-z	"$1"	;	then

				echo	"You	need	to	supply	a	DNS	entry	to	check.	Quitting"

				exit	01;

fi

DOMAIN=$1

MYTIME=$((time	dig	$DOMAIN	+trace)	2>&1|	grep	real	|	awk	-F'[m,s]'	'{print	

$2}')

if	[$?	-eq	0];	then

		echo	$MYTIME

else

		echo	0

fi

This	script	requires	a	$1	parameter,	which	is	the	domain	to	check.	Now,	we	need	to	enable
this	script	on	the	agent’s	side	with	UserParameter	on	the	agent	configuration	file,	thus
adding:

UserParameter=dns.responsetime[*],test_dns.sh	$1

The	script	we	just	created	needs	to	placed	in	a	valid	runtime	agent’s	path,	or	we	need	to
use	the	fully	qualified	path	in	UserParameter,	as	follows:

UserParameter=dns.responsetime[*],/full/path/of/test_dns.sh	$1

Note
This	method	is	really	useful	as	you	can	deploy	the	script	on	different	network	segments,
like	for	instance,	the	application	server	zone,	and	have	a	real	value	of	the	time	needed	to
resolve	a	DNS	host	from	that	network	segment.

As	the	last	step,	create	the	relative	item	on	the	Zabbix	server	side,	where	you	will	pass	the
DNS	name	to	check,	as	shown	in	the	following	screenshot:

Please	bear	in	mind	that	this	script,	if	executed	continuously,	can	hammer	your	DNS
exactly	because	it	avoids	using	the	cache	of	the	local	resolver	and	even	one	of	the
intermediate	segments.

Then,	as	we	have	explained,	we	need	to	schedule	our	script	with	a	reasonable	period	that
can	be	for	an	instance	of	1	minute.	Please	consider	your	network	segments	from	which
you’re	running	this	check,	for	both	the	quantity	of	scripts	that	are	running	and	frequency.

Note
Here,	you	can	create	a	trigger	based	on	the	zone,	bearing	in	mind	that	you’re	monitoring
the	DNS	response	time	directly	from	the	hosts	that	require	those	DNS	entries	resolved.
Here,	it	is	important	to	tune	your	trigger	based	on	the	response	time	you	consider
acceptable	from	the	point	of	view	of	the	zone.

When	you’re	creating	your	trigger,	it	is	important	to	consider	that	this	plugin	provides	you
with	the	real	DNS	response	time,	which	is	the	worst-case	scenario.	Here,	we	avoid	using
any	caching	systems,	which	is	not	the	real	case	but	a	pessimistic	one.	That	said,	if	you
notice	some	spikes	of	high	response	time,	those	can	be	ignored	as	those	spikes	can’t
impact	your	system.	Considering	that,	the	trigger	needs	to	be	tuned	to	spot	the	response
time	that	is	still	there	for	two	or	three	item	cycles	(or	even	more—this	depends	on	the
frequency	at	which	you	run	the	check)	and	avoid	considering	single	spikes.

DNSSEC	–	monitoring	the	zone	rollover
Here,	we	don’t	have	enough	pages	to	explain	all	the	features	added	by	DNSSEC	or	a
complete	setup	guide	of	it.	Anyway,	it	is	important	to	know	that	the	best	way	to	avoid
issues	like	a	DNS	cache	poisoning	attack	is	to	use	DNSSEC.	DNSSEC	does	a	deep	usage
of	cryptographic	keys	and	digital	signatures	to	ensure	that	lookup	data	is	correct	and
connections	are	legitimate.	Then,	in	a	secure	environment,	you’re	supposed	to	use	mainly
DNSSEC,	and	then	it	is	important	to	monitor	the	critical	DNSSEC	parameters;	those	items
can	be	resumed,	as	follows:

The	zonefile’s	validity
The	zones’	rollover	status
The	DNS	response	time

Currently,	there	are	two	plugins	available	to	implement	checks	against	the	DNSSEC	zone
rollover:

Rollstate
Zonestate

The	first	one	checks	the	zone	managed	by	the	daemon	rollerd;	the	second	one	checks	the
validity	of	DNS	zones.

Note
The	full	code	is	available	at	https://github.com/hardaker/dnssec-tools/tree/master/dnssec-
tools/apps/zabbix,	and	the	package	is	available	at	http://www.dnssec-
tools.org/download/dnssec-tools-2.1.tar.gz.

One	of	the	requirements	to	properly	set	up	this	plugin	is	that	you	need	to	be	aware	of	the
frequency	of	your	rollover	actions	to	tune	the	Zabbix	item;	please	be	aware	that	a	little
latency	is	normal	here.	Anyway,	as	long	as	you	don’t	rollover	zones	every	few	minutes
(TTL	is	set	to	a	few	minutes),	this	lag	will	not	be	an	issue.

Now,	before	you	can	run	the	plugin,	you	need	to	have	installed	a	few	required	Perl
modules:

#	perl	-MCPAN	-e	shell

cpan>		install	Net::DNS

cpan>		install	Net::DNS::SEC

We	are	supposing	that	you	already	have	cpan	installed;	if	you	don’t	have	it	installed	in
your	system,	please	install	it	with	the	following	line	of	code:

#	yum	install	cpan

Now,	once	you	have	installed	the	required	module,	you	need	to	install	the	openssl-devel
package	with	the	following	command:

#	yum	install	openssl-devel.x86_64

Now,	you	can	finally	uncompress	the	software	with	the	following	code:

https://github.com/hardaker/dnssec-tools/tree/master/dnssec-tools/apps/zabbix
http://www.dnssec-tools.org/download/dnssec-tools-2.1.tar.gz

#	tar	-zxvf	./dnssec-tools-2.1.tar.gz

#	cd	./dnssec-tools-2.1

#	./configure	&&	make	&&	make	install

Now	in	/dnssec-tools-2.1/apps/zabbix/,	we	have	all	the	needed	software.	Here	are	the
pieces	of	software	available	in	/dnssec-tools-2.1/apps/zabbix/:

#	ls	-l

total	40

-rwxrwxr-x.	1	1274	1274		768	Jan		2		2013	backup-zabbix

-rw-rw-r--.	1	1274	1274	1706	Jan		2		2013	item.fields

-rw-rw-r--.	1	1274	1274	2878	Jan		2		2013	README

-rwxrwxr-x.	1	1274	1274	6763	Feb	15		2013	rollstate

-rwxrwxr-x.	1	1274	1274	7720	Feb	15		2013	uemstats

-rw-rw-r--.	1	1274	1274	1329	Oct	19		2011	zabbix_agentd.conf

-rwxrwxr-x.	1	1274	1274	6314	Feb	15		2013	zonestate

Finally,	we	can	try	our	new	plugins,	as	follows:

#	./rollstate	mydomain.com

ZSK	phase	3

#	./zonestate	mydomain.com

zone	file	valid

Now,	it’s	time	to	enable	our	new	plugins;	to	do	this,	we	need	to	define	a	couple	of	new
entries	of	UserParameter	on	the	agent	side’s	/etc/zabbix/zabbix_agentd.conf:

UserParameter=dnssec-tools.rollover.status[*],rollstate	$1

UserParameter=dnssec-tools.rollover.statusnum[*],rollstate	–numeric	$1

Even	here,	you	need	to	place	the	rollstate	plugin	in	a	directory	contained	in	the	path	or
use	the	fully	qualified	path	for	our	plugin.	Also,	once	you	have	added	UserParameter,	you
need	to	restart	the	agent	with:

#	service	zabbix-agent	restart

Shutting	down	Zabbix	agent:																													[OK]

Starting	Zabbix	agent:																																		[OK]

The	rollstate	plugin	provides	two	different	outputs	with	the	–numeric	option	specified.
It	provides	positive	numbers	for	the	ZSK	phases	and	negative	numbers	for	the	KSK
phases.	This	enables	us	to	produce	a	graph	that	represents	all	the	phases	of	DNSSEC.

Once	you	have	created	the	Zabbix	agent	item	on	your	template	and	your	script	is	running,
the	output	will	be	like	the	next	screenshot.

In	the	example	and	the	relative	graph,	we	have	a	highly	frequent	rollover.	In	a	real-life
scenario,	the	time	required	to	go	through	all	the	different	statuses	will	be	longer.

The	details	of	the	DNSSEC	rollover	in	text	mode,	useful	to	keep	track	of	all	the	status
changes,	will	be	contained	in	a	text	item.	An	example	of	the	latest	data	is	shown	in	the
next	screenshot:

As	you	can	see,	you	will	have	a	historical	status	of	all	the	steps	crossed	during	the
rollover,	and	you	will	have	a	clear	track	of	the	steps	performed.

Note
This	item	will	be	precious	if	your	process	gets	stuck	on	a	step,	especially	if	this	happens
periodically.

In	the	next	screenshot,	you	can	see	the	zonestatus	plugin	at	work:

Now,	the	only	thing	you	still	have	to	do	is	create	a	trigger	based	on	the	information	we’re
acquiring.	Here,	it	is	important	to	bear	in	mind	that	a	little	lag	is	normal	during	the	zone
transfer	process;	this	lag	needs	to	be	considered	when	you	set	up	the	trigger.

Apache	monitoring
Most	of	the	reverse	proxies	are	nowadays	implemented	using	Apache.	Apache,	other	than
being	a	web	server,	is	quite	useful	as	a	reverse	proxy	as	it	includes	some	powerful
modules:

mod_proxy

mod_proxy_http

mod_proxy_ftp

Other	than	as	a	reverse	proxy,	it	can	be	used	as	a	load	balancer	thanks	to:

mod_proxy_balancer

Now,	unfortunately,	there	isn’t	a	valid	method	to	acquire	the	metrics	strictly	related	to	the
module	used,	but	anyway,	we	can	acquire	quite	a	few	metrics	from	Apache	itself.

The	first	thing	you	have	to	do	before	you	can	acquire	the	statistics	is	enable	them.	To	do
this,	you	need	to	put	the	following	lines	in	your	Apache	configuration	file:

<Location	/server-status>

		SetHandler	server-status

		Allow	from	127.0.0.1	

		Order	deny,allow

		Deny	from	all

</Location>

Also,	you	can	optionally	add	the	following	line	to	your	global	Apache	configuration	file:

	ExtendedStatus	On

Here,	we	are	configuring	the	module	with	the	ExtendedStatus	On	option.	With	this
setting,	Apache	keeps	track	of	extended	status	information	for	each	request.	This
collection	can	slow	down	the	server,	and	if	you	notice	performance	issues,	it	can	be
disabled	with	the	ExtendedStatus	Off	keyword.

Tip
Please	keep	restricted,	as	much	as	you	can,	the	access	to	the	/server-status	location.	In
our	case,	it	is	allowed	only	from	127.0.0.1.	This	means	that	you	need	to	collect	the
statistics	from	the	agent	installed	locally	on	your	Apache	host.	It	is	important	to	know	that
if	mod_status	is	compiled	into	the	server,	then	its	handler	is	available	in	all	configuration
files,	including	per-directory	files,	like	htaccess.	This	can	have	security-related
ramifications	for	your	site.

Now,	all	you	have	to	do	is	restart	your	Apache	and	check	whether	you	can	retrieve	the
statistics	running	the	following	command:

[root@localhost	~]#	curl	http://127.0.0.1/server-status

<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	3.2	Final//EN">

<html><head>

<title>Apache	Status</title>

</head><body>

<h1>Apache	Server	Status	for	127.0.0.1</h1>

<dl><dt>Server	Version:	Apache/2.2.15	(Unix)	DAV/2	PHP/5.3.3</dt>

<dt>Server	Built:	Jul	23	2014	14:17:29

</dt></dl><hr	/><dl>

<dt>Current	Time:	Monday,	03-Nov-2014	19:48:11	PST</dt>

<dt>Restart	Time:	Monday,	03-Nov-2014	19:48:00	PST</dt>

<dt>Parent	Server	Generation:	0</dt>

<dt>Server	uptime:		11	seconds</dt>

<dt>Total	accesses:	9	-	Total	Traffic:	0	kB</dt>

This	Apache	module’s	output	is	really	full	of	useful	information;	looking	at	the	output	in
detail,	you	can	see	that	it	provides	the	information	shown	in	the	following	screenshot:

Here,	you	have	a	view	that	is	split	into	four	main	sections,	which	are	as	follows:

The	Apache	version	data,	module	started,	and	server	build	details
The	Apache	server	status	that	provides	you	the	uptime,	CPU,	number	of	access,
number	of	request/sec,	and	some	more	information	about	its	status
The	Apache	scoreboard
A	section	with	all	the	details	of	the	connection	served

Here,	retrieving	the	statistics	is	not	as	easy	as	you	would	imagine.	The	first	and	second
sections	are	quite	verbose,	and	it	is	easy	to	extract	the	required	information	from	them
once	you’ve	obtained	the	web	page.	The	third	section	is	a	little	more	complex	as	it	is	the
Apache	scoreboard.	The	scoreboard	is	a	representation	of	Apache’s	workers	and	their
relative	status.	The	workers	are	Apache’s	request-handler	status.	The	keys	used	on	the
scoreboard	are	the	following:

Scoreboard	Key:"_"	Waiting	for	Connection,	"S"	Starting	up,	"R"	Reading	

Request,"W"	Sending	Reply,	"K"	Keepalive	(read),	"D"	DNS	Lookup,"C"	Closing	

connection,	"L"	Logging,	"G"	Gracefully	finishing,"I"	Idle	cleanup	of	

worker,	"."	Open	slot	with	no	current	process

Then,	to	retrieve	and	analyze	the	status,	we	need	to	use	a	slightly	different	URL:
http://localhost/server-status?auto.

We	can	try	the	output	produced	by	this	URL	using	curl,	as	follows:

#	curl		http://127.0.0.1/server-status?auto

Total	Accesses:	1334

Total	kBytes:	2163

CPULoad:	5.20713

Uptime:	2776

ReqPerSec:	.480548

BytesPerSec:	797.879

BytesPerReq:	1660.35

BusyWorkers:	1

IdleWorkers:	10

Scoreboard:	

_______W___…...

...

...

.............................		

Now,	it’s	easy	to	retrieve	the	CPULoad	value,	for	instance:

#	curl		-s	http://127.0.0.1/server-status?auto	|		awk	'/^CPULoad:/	{print	

$2}'

5.15882

With	the	same	method,	we	can	acquire	all	the	metrics,	for	example,	the	number	of
IdleWorkers	will	be:

#	curl		-s	http://127.0.0.1/server-status?auto	|		awk	'/^IdleWorkers:/	

{print	$2}'

10

Parsing	the	scoreboard	is	a	little	different	as	we	need	to	count	the	number	of	_	if	we	are
looking	at	all	the	workers	that	are	waiting	for	a	connection	instead	of	counting	all	the
occurrences	of	W	to	check	all	the	workers	that	are	sending	replies.	To	address	this
requirement,	you	can	use	the	following	command:

#	curl		-s	http://127.0.0.1/server-status?auto	|		awk	'/^Scoreboard:/	

{print	$2}'		|	awk	'BEGIN	{	FS	=	"_"	};	{	print	NF-1	}'								

10

The	first	awk	command	identifies	the	Scoreboard:	section,	the	second	awk	command
counts	all	the	occurrences	of	_	in	the	line,	defining	a	field	separator,	and	then	counting	all
the	matched	fields.

Currently,	there	are	three	prebuilt	plugins	to	do	this:

zapache:	This	is	a	shell	script	called	via	UserParameter
ZabbixApacheUpdater:	This	is	a	Python	software	that	needs	to	be	scheduled	on

crontab
query_apachestats.py:	This	is	a	Python	software	triggered	by	UserParameter

In	this	section,	we	will	analyze	zapache	as	it	uses	the	same	method	described	to	acquire
metrics	from	mod_status	of	Apache.	The	script	is	available	for	download	at
https://github.com/lorf/zapache.

All	you	have	to	do	is	download	zapache	from	that	location,	copy	zapache	under
/home/zabbix/bin/	with	the	relative	template,	and	then	configure	UserParameter	in	the
agent	configuration	file	/etc/zabbix/zabbix_agentd.conf,	as	shown	here:

UserParameter=zapache[*],/home/zabbix/bin/zapache	$1

Now,	on	the	GUI,	you	have	to	create	your	template	or	import	the	one	distributed	with
zapache.	Then,	navigate	to	Configuration	|	Template	|	Import	and	select	the	zapache-
template.xml	template	if	you	want	the	item	as	Zabbix	agent	or	the	zapache-template-
active.xml	template	if	you	prefer	the	items	managed	as	Zabbix	agent	(active).

If	you	take	a	look	at	the	zapache	source	code,	you	will	notice	that	it	can	run	as	Zabbix
agent’s	mode	or	as	an	external	script,	which	means	that	you	can	use	it	to	acquire	the
Apache	statistics	locally	on	the	same	server	or	remotely.

Here	is	the	code	section	that	manages	this	kind	of	behavior:

if	[[$#	==		1]];then

		#Agent	Mode

		STATUS_URL="http://127.0.0.1/server-status?auto"

		CASE_VALUE="$1"

elif	[[$#	==	2]];then

		#External	Script	Mode

		STATUS_URL="$1"

		case	"$STATUS_URL"	in

				http://*|https://*)	;;

				*)	STATUS_URL="http://$STATUS_URL/server-status?auto";;

		esac

		CASE_VALUE="$2"

As	you	can	see,	you	can	run	the	script	with	only	one	parameter,	which	represents	the
metric	you	would	like	to	acquire,	or	two	parameters,	specifying	even	the	remote	IP
address	of	your	Apache	reverse	proxy	or	web	server.	Here,	in	order	to	keep	things	easy,
we	avoid	mod_status	from	being	accessed	externally	using	a	UserParameter.	Anyway,	it
is	better	to	be	aware	that	you	can	even	centralize	statistic	acquisition	thanks	to	this	code
section.

The	final	result	of	our	setup	and	Apache’s	metric	acquisition	is	shown	in	the	next
screenshot:

https://github.com/lorf/zapache

Now,	it	is	time	to	discuss	triggers	related	to	this	Apache	monitoring.	First	of	all,	you	need
to	create	a	trigger	based	on	the	last	value	of	zapache	ping,	as	follows:

{Template	App	Apache	Web	Server	zapache:zapache[ping].last(0)}=0

Of	course,	if	the	zapache	ping	fails,	returning	0,	you	have	an	issue.	Some	other	parameters
that	are	critical	for	server	status	and	on	which	you	can	create	triggers	are:

WaitingForConnection:	This	indicates	that	the	number	of	processes	are	waiting	for	a
connection
ReqPerSec:	This	indicates	the	number	of	requests	per	second
CPULoad:	This	indicates	the	amount	of	CPU	consumed	by	Apache

Those	values	are	strictly	dependent	on	the	server	you’re	using,	the	number	of	clients	you
are	serving,	and	most	importantly,	what	exactly	and	how	you	are	serving	the	request.
About	what	and	how	you	are	serving	the	request,	you	can	have	some	very	complex
rewriting	and	reverse	rules	that	can	make	a	group	of	URLs	more	complex	to	manage.
Here,	the	best	thing	to	do	is	try	to	find	out	your	Apache’s	limit	using	some	tools	that	are
able	to	produce	a	lot	of	concurrent	connections	and	then	workload,	for	instance,	you	can
try	Siege.

Note
More	information	about	Siege	is	available	here:	http://www.joedog.org/siege-home/.

Once	you’ve	tested	and	found	the	maximum	number	of	clients	you	can	serve	per	URL	and
you’ve	seen	the	web	server	limits,	you	can	create	and	tune	your	custom	triggers.

http://www.joedog.org/siege-home/

NTP	monitoring
The	system	clock	is	something	you	should	keep	monitoring	because	if,	for	some	reason,
your	system	suffers	a	system	clock	drift,	this	can	become	a	big	issue.

Performing	a	practical	example	of	heavy	drift	on	the	system	clock	will	cause	issues.	The
DNSSEC	zone	replication,	your	FTP	service,	the	IMAP	service,	and	many	other	services
will	be	affected,	making	your	server	unstable	and	unusable.

To	keep	your	system	clock	in	sync	with	the	remote	NTP,	you	can	use	and	install	the	NTP
daemon	that	will	take	care	of	the	system	clock.

To	install	NTP,	you	can	use	yum	as	usual:

#	yum	install	ntp

...	output	removed	here…

Installed:

		ntp.x86_64	0:4.2.6p5-1.el6

Complete!

Once	you’ve	installed	the	NTP,	you	need	to	find	the	server	that	is	closer	to	you	using	the
website	http://www.pool.ntp.org/en/.

From	this	website,	you	need	to	choose	the	server	that	is	better	for	you	and	then	change	the
/etc/ntp.conf	configuration	file.

Also,	it	is	a	good	practice	to	add	the	log	file	directive	at	the	end	of	the	ntp.conf
configuration	file,	as	follows:

#	echo	"logfile	/var/log/ntp.log"	>>	/etc/ntp.conf

Then	start	or	restart	the	service,	as	follows:

#	service	ntpd	stop

Shutting	down	ntpd:																		[OK]

#	service	ntpd	start				

Starting	ntpd:																							[OK]

Now,	you	need	to	consider	that	you	can	have	one	central	server	used	as	a	primary	ntpd
server	for	your	network	and	propagate	the	system	time	from	there;	in	this	case,	you	need
to	change	the	/etc/ntp.conf	configuration	file	a	bit:

#	Hosts	on	local	network	are	less	restricted.

restrict	192.168.1.0	mask	255.255.255.0	nomodify	notrap

Now	finally,	you	can	attach	all	the	hosts	of	your	network	to	this	ntpd	server	and	then
monitor	this	NTP	and	the	client’s	time.

Tip
If	you	are	protecting	a	server	with	a	firewall,	you	need	to	enable	the	UDP	on	port	123	on
both	directions.	If	you’re	using	iptables	to	enable	the	client	and	the	server
communication,	you	need	to	add	the	following	rules	to	the	OUTPUT	and	INPUT	chains:

http://www.pool.ntp.org/en/

iptables	-A	INPUT	-p	udp	--dport	123	-j	ACCEPT

iptables	-A	OUTPUT	-p	udp	--sport	123	-j	ACCEPT

Now,	to	retrieve	metrics,	we	need	to	query	ntpd.	For	this	operation,	we	can	use	ntpq,
which	will	show	all	the	statistics.	From	a	monitoring	perspective,	we’re	looking	for	the
offset,	jitter,	and	delay.

In	the	next	example,	we	see	the	complete	output	of	ntpq,	as	follows:

#	ntpq	-pn	127.0.0.1

Remote					refid					st	t	when	poll	reach			delay	offset		jitter

==

+91.247.253.152		191.241.139.137		3	u	9	64	1	35.276	29.492			9.791

+217.147.208.1			194.242.34.149			2	u	8	64	1	19.617	30.912		11.497

*192.33.214.47			129.194.21.195			2	u	7	64	1	25.581	32.157		11.007

+195.141.190.190	212.161.179.138		2	u	6	64	1	20.739	31.143		10.983

Please	note	that	this	server	is	suffering	a	big	drift	and	the	trigger	is	already	on	fire.

To	acquire	the	metric	then,	we	can	use	a	command	like	this	one:

#	ntpq	-pn	127.0.0.1	|	/usr/bin/awk	'BEGIN	{	offset=0	}	$1	~/*/	{	

offset=$9	}	END	{	print	offset	}'

32.157

This	command	retrieves	the	offset	between	the	system	clock	and	the	NTP	server.

Note
We	are	using	the	–p	and	–n	options	together;	with	the	–n	option,	we	are	avoiding	the	name
resolution,	and	then	the	DNS	query.	This	is	done	in	order	to	keep	the	item	as	lightweight
as	we	can.

Now,	we	can	quickly	set	up	NTP	monitoring	using	UserParameter	on	the	agent	side	with:

UserParameter=	ntp.jitter,	ntpq	-pn	127.0.0.1	|	/usr/bin/awk	'BEGIN	{	

offset=0	}	$1	~/*/	{	offset=$9	}	END	{	print	offset	}'

This	will	set	UserParameter	to	retrieve	the	jitter	value;	anyway,	we	can	even	do
something	a	little	more	complex	and	then	produce	a	script	like	the	following:

#!/bin/bash

VERSION="1.0"

function	usage()

{

								echo	"ntpcheck	version:	$VERSION"

								echo	"usage:"

								echo	"		$0	jitter											-	Check	ntp	jitter	delay"

								echo	"		$0	offset											-	Check	ntp	offset"

								echo	"		$0	delay												-	Check	ntp	delay"

}

########

#	Main	#

########

if	[[$#	!=		1]];then

								#No	Parameter

								usage

								exit	0

fi

case	"$1"	in

'jitter')

								value="'ntpq	-pn	127.0.0.1	|	/usr/bin/awk	'BEGIN	{	jitter=0	}	$1	

~/*/	{	jitter=$10	}	END	{	print	jitter	}''"

								rval=$?;;

'offset')

								value="'ntpq	-pn	127.0.0.1	|	/usr/bin/awk	'BEGIN	{	offset=0	}	$1	

~/*/	{	offset=$9	}	END	{	print	offset	}''"

								rval=$?;;

'delay')

								value="'ntpq	-pn	127.0.0.1	|	/usr/bin/awk	'BEGIN	{	delay=0	}	$1	

~/*/	{	delay=$8	}	END	{	print	delay	}''"

								rval=$?;;

*)

								usage

								exit	1;;

esac

if	["$rval"	-eq	0	-a	-z	"$value"];	then

								rval=1

fi

if	["$rval"	-ne	0];	then

								echo	"ZBX_NOTSUPPORTED"

fi

echo	$value

Then,	on	the	agent	side,	we	can	deploy	this	script	called	ntpcheck.sh	in	the
/home/zabbix/bin	directory:

#	ls	-la	/home/zabbix/bin/ntpcheck.sh

-rwxr-xr-x	1	zabbix	zabbix	781	Nov	9	03:23	/home/zabbix/bin/ntpcheck.sh

Once	this	is	done,	all	we	have	to	do	is	create	UserParameter,	as	follows:

UserParameter=ntp[*],/home/zabbix/bin/ntpcheck.sh	$1

Then,	restart	the	agent:

#	service	zabbix-agent	restart

Shutting	down	Zabbix	agent:																													[OK]

Starting	Zabbix	agent:																																		[OK]

Test	our	new	items:

#	zabbix_get	-s	127.0.0.1	-k	ntp[jitter]

2.273

#	zabbix_get	-s	127.0.0.1	-k	ntp[offset]

-6.696

#	zabbix_get	-s	127.0.0.1	-k	ntp[delay]

18.956

And	in	the	end,	create	our	three	new	items	on	the	Zabbix	GUI,	as	shown	in	the	following
screenshot:

NTP	–	what	are	we	monitoring?
Now,	even	if	those	item	names	appear	as	something	easy	to	understand,	it	is	better	to
know	what	we	are	monitoring.	First	of	all,	we	need	to	clarify	that	we’re	acquiring	values
for	the	current	time	source,	hence	we	are	taking	the	values	in	the	line	that	begins	with	a	*
from	the	ntpq	output.	For	convenience,	the	ntpq	output	is	reported	here:

#	ntpq	-pn	127.0.0.1

Remote					refid					st	t	when	poll	reach			delay	offset		jitter

==

+91.247.253.152		191.241.139.137		3	u	9	64	1	35.276	29.492			9.791

+217.147.208.1			194.242.34.149			2	u	8	64	1	19.617	30.912		11.497

*192.33.214.47			129.194.21.195			2	u	7	64	1	25.581	32.157		11.007

+195.141.190.190	212.161.179.138		2	u	6	64	1	20.739	31.143		10.983

As	you	can	see,	the	lines	of	this	output	are	not	ordered,	and	they	begin	with	+	and	*	(in
this	example).	We	are	interested	in	the	one	that	begins	with	*.	The	reason	is	that	the	line
that	begins	with	*	represents	the	preferred	and	current	time	source.

We	can	even	have	a	prefix	like	the	following:

+:	This	sign	indicates	that	the	peer	is	a	good,	preferred	remote	peer	or	server
	(space),	x,	-,	#,	and	.:	These	indicate	that	this	peer	is	not	being	used	for
synchronization

Now,	we	have	clarified	the	reason	why	we	are	running	this	awk	command:

#	ntpq	-pn	127.0.0.1	|	/usr/bin/awk	'BEGIN	{	delay=0	}	$1	~/*/	{	delay=$8	

}	END	{	print	delay	}'

Now,	to	have	some	more	details	about	what	we’re	acquiring,	we	can	define	them	as:

Delay:	This	is	the	current	estimated	delay.	It	is	the	transit	time	between	remote	peers
or	servers	in	milliseconds.
Offset:	This	is	the	current	estimated	offset.	It	is	the	time	difference	between	remote
peers	in	milliseconds.
Jitter:	This	is	the	current	estimated	dispersion,	or	better,	the	variation	in	delay
between	these	peers	in	milliseconds.

Note
If	you’re	monitoring	a	server	that	is	running	in	a	virtual	environment,	you	need	to	be
aware	that	practically	all	the	virtualization	software	suffers	from	system	clock	drift.
Then	check	the	vendor-specific	best	practice	to	reduce	the	NTP	drift.

Now	it’s	time	to	change	the	script	a	little	as	we	can	check	the	NTP	health	status	by	adding
the	following	case	statement:

case	"$1"	in

…

'health')

								primary="'ntpq	-pn	127.0.01	|	grep	^*	|grep	-v	grep	|	wc	-l'"

								rval=$?

								if	["${primary}"	-eq	"1"]	;	then

																value="1"

								else

																value="0"

								fi

								;;

…

esac

Now,	we	can	check	whether	we	have	at	least	one	primary	preferred	source	defined	to	get
the	NTP	sync	in	a	good	shape.	We	need	to	then	add	a	new	item	and	a	related	trigger	that
will	go	on	fire	if	the	value	returned	is	0.	Other	than	this	trigger,	we	can	even	have	a	trigger
that	will	go	on	fire	if	the	clock	drift	is	bigger	than	50	milliseconds	for	instance,	or	even
less.

In	the	next	screenshot,	you	see	the	interaction	between	the	Jitter,	Offset,	and	Delay	on	a
Linux	virtual	server	(that	suffer	from	big	system	clock	drifts):

Squid	monitoring
Squid	is	the	most	diffused	caching	proxy	for	the	Web.	Squid	supports	HTTP,	HTTPS,	FTP,
and	many	more	protocols.	This	proxy	software	reduces	a	lot	of	the	bandwidth	required	to
serve	its	clients	and	improves	the	response	time,	implementing	a	very	good	caching
system.	For	all	those	reasons,	it	is	quite	evident	why	you	should	have	Squid	to	monitor
inside	your	network.

There	are	two	primary	ways	to	acquire	data	and	metrics	from	Squid:

Using	SNMP
Using	squidclient

If	you’re	curious	about	the	SNMP	setup	on	the	Squid	server,	you	can	have	a	look	at	the
official	documentation,	in	particular	the	section	available	at	http://wiki.squid-
cache.org/Features/Snmp.

We	should	avoid	enabling	SNMP	on	our	Squid	as	it	has	been	affected	in	the	past	by	many
overflows	and	issues.	The	last	security	issue,	at	the	time	of	writing	this,	caused	by	SNMP
enabled	on	Squid,	is	available	at	http://www.squid-cache.org/Advisories/SQUID-
2014_3.txt,	and	as	you	can	see,	it	is	a	really	recent	issue.

Fortunately,	the	client	is	really	powerful	and	this	permits	us	to	implement	a	good
monitoring	solution	without	enabling	SNMP.

Type	the	following	command:

#	squidclient	mgr:info

In	response	to	the	preceding	command,	Squid	will	print	out	the	entire	statistic	domain
acquired	until	now:

HTTP/1.0	200	OK

Server:	squid/3.1.10

Mime-Version:	1.0

Date:	Sun,	09	Nov	2014	17:23:25	GMT

Content-Type:	text/plain

Expires:	Sun,	09	Nov	2014	17:23:25	GMT

Last-Modified:	Sun,	09	Nov	2014	17:23:25	GMT

X-Cache:	MISS	from	localhost.localdomain

X-Cache-Lookup:	MISS	from	localhost.localdomain:3128

Via:	1.0	localhost.localdomain	(squid/3.1.10)

Connection:	close

...

Then,	as	you	can	understand,	it	will	be	quite	easy	to	retrieve	some	important	items	from
this	kind	of	output.	Trying	out	an	example,	if	you	would	like	to	acquire	the	CPU	Usage,
you	can	simply	run:

#	squidclient	mgr:info|grep	'CPU	Usage:'

								CPU	Usage:						0.01%

Of	course,	this	kind	of	output	needs	to	be	a	little	shaped	to	be	usable	for	our	work,	the	next

http://wiki.squid-cache.org/Features/Snmp
http://www.squid-cache.org/Advisories/SQUID-2014_3.txt

command	will	be	a	UserParameter	ready	command:

#	squidclient	mgr:info|grep	'CPU	Usage:'|cut	-d':'	-f2|tr	-d	'%'|tr	-d	'	

\t'

0.01

Now,	we	have	two	ways	of	doing	this:

We	create	a	long	list	of	UserParameter	on	the	agent	side
We	create	just	a	one-user	UserParameter	and	call	it	using	a	parameter

The	second	way	is	the	preferred	approach	as	if	you	need	to	add	an	item	to	acquire,	you
don’t	need	to	restart	the	agent.	Here	due	to	space	constraints,	we	will	not	comment	all	the
script;	for	the	complete	script,	please	refer	to	Appendix	B,	Collecting	Squid	Metrics.

You	need	to	create	UserParameter:

UserParameter=squid[*],/home/zabbix/bin/squidcheck.sh	$1	

Now,	you	need	to	restart	the	agent,	and	you	can	check	whether	you’re	able	to	acquire	the
metrics	with	the	following	command:

#	zabbix_get	-s	127.0.0.1	-k	squid[icp_sent]

12

If	you	can	retrieve	the	metrics,	the	configuration	is	fine.

Now,	on	the	server	side,	you	need	to	create	your	items,	as	shown	in	the	following
screenshot:

Now	that	we	are	finally	acquiring	all	the	metrics,	it	is	important	to	define	at	least	two

triggers:

One	tied	to	the	number	of	Squid	processes	running	that	should	never	be	0
One	tied	to	the	number	of	available	file	descriptors;	if	this	number	is	less	than	100,
we	need	to	have	a	trigger	on	fire

This	is	shown	in	the	following	screenshot	and	is	the	minimum	number	of	triggers	you
should	have:

To	close	the	Squid	monitoring,	we	can	tell	that	you	are	now	able	to	acquire	at	least	22
items	using	the	script	available	on	GitHub	at
https://github.com/smartmarmot/zabbix_network_monitoring/tree/master/Chapter3;	you
can	now	set	many	other	triggers	depending	on	your	setup,	server	capacity,	number	of
clients	to	serve,	and	the	mean	of	the	number	of	pages	required	by	your	client	network.

Among	the	most	important	parameters	to	monitor,	we	have:

The	byte	hit	ratio	over	5	and	60	minutes
The	request	disk	hit	ratio	over	5	and	60	minutes
Request	failure	ratio

All	the	hit	ratios	need	to	be	as	close	to	100	percent	as	possible.	Every	value	of	caching
under	70	percent	should	make	a	trigger	go	on	fire,	and	even	the	request	failure	ratio,	if	it
is	higher	than	30,	should	trigger	an	alarm	as	it	is	telling	us	that	our	system	is	not
responding	properly.

https://github.com/smartmarmot/zabbix_network_monitoring/tree/master/Chapter3

Summary
In	this	chapter,	we	covered	a	large	number	of	components.	We	started	our	discussion	from
the	most	used	and	even	very	critical	network	service:	DNS.	Going	ahead	on	the	same	way,
we	discussed	DNSSEC;	then,	we	moved	on	to	Apache,	the	most	used	and	effective	reverse
proxy;	walked	through	NTP;	and	closed	the	chapter	with	Squid,	the	most	installed	and
used	proxy	service.	For	all	the	systems	and	services	analyzed,	you’re	now	able	to	acquire
the	most	critical	metrics,	and	you	know	how	to	create	effective	triggers.

Triggers	here	are	covering	the	most	critical	role	and	hence	your	experience	within	your
network	is	the	truly	added	value.	You,	with	the	knowledge	acquired	from	this	chapter	and
your	environment	experience,	will	be	the	key	to	creating	effective	and	proactive	triggers.
This	chapter	has	covered	all	the	critical	services	you	can	find	in	a	network,	and	now	you
can	easily	provide	a	heavy	added	value,	creating	proactive	checks	and	installing	an
effective,	tailor-made	monitoring	solution.	In	the	next	chapter,	you	will	learn	how	to
automate	the	discovering	of	your	network’s	elements	and	how	to	apply	a	template	to	the
discovered	item.	Also,	you	have	to	adapt	your	monitoring	system	within	your
environments,	and	this	kind	of	task	is	the	typical	boring	and	time-consuming	task	that	a
network	admin	doesn’t	like	to	do.	The	chapter	will	provide	you	with	all	the	necessary
information	to	use	the	host	discovery	and	the	low-level	discovery	in	an	effective	way.	You
will	be	guided	through	the	difficult	way	to	automate	the	item	discovery:	this	will	heavily
reduce	the	time	needed	to	start	up	your	monitoring	solution	but	will	impact	and	reduce	the
time	needed	to	maintain	your	growing	and	dynamically	moving	setup.

Chapter	4.	Discovering	Your	Network
In	the	previous	chapters,	we’ve	seen	how	to	get	different	metrics	from	quite	a	few
different	sources,	using	different	methods.	What	we	haven’t	covered	yet,	is	how	to	easily
get	all	this	data	into	Zabbix	when	you	have	a	great	number	of	monitored	objects.

Manually	creating	hosts,	items,	and	triggers	is	an	excellent	exercise	to	get	the	hang	of	how
things	work	in	Zabbix,	but	it	can	quickly	become	a	repetitive,	boring,	error-prone	activity.
In	other	words,	they	are	the	kinds	of	tasks	computers	were	made	for	in	the	first	place.

What	if	your	monitoring	solution	could	just	find	the	hosts	and	devices	you	want	to
monitor,	add	them	as	Zabbix	hosts,	apply	a	template,	and	start	monitoring	them?	And
what	if	it	didn’t	just	limit	itself	to	finding	hosts	to	monitor,	but	it	also	found	out	whether
your	switch	has	24	or	48	ports,	how	many	disks	your	web	server	has	attached,	and	what
ports	are	open	on	a	certain	host?	After	some	initial	configuration,	you	would	not	have	to
bother	with	adding	or	removing	things	to	monitor.	It	would	certainly	be	great,	but	the
problem	with	automated	discovery	is	that	it	often	has	to	come	to	terms	with	the	reality	of	a
real-world	network,	which	is	often	full	of	exceptions	and	special	rules.	In	such	cases,	you
could	find	yourself	spending	a	lot	of	time	trying	to	adapt	your	monitoring	system	to	your
environment	in	order	to	catch	up	with	an	automated	discovery	that	might	be	just	a	little
too	automatic.

Luckily,	Zabbix	can	support	many	different	discovery	strategies,	mix	them	up	with	regular
host	and	item	creation,	and	generally	provide	a	good	balance	between	the	need	to	have	a
fully	automated	system	and	the	need	do	have	a	monitoring	solution	that	matches	as	closely
as	possible	the	environment	it	has	to	monitor,	with	all	its	exceptions	and	special	cases	that
are	impossible	to	capture	with	just	a	discovery	strategy.

This	chapter	will	be	divided	into	two	main	parts	that	mirror	the	two	main	levels	of
discovery	that	Zabbix	supports:	network	discovery	and	low-level	discovery.	The	former
is	used	to	find	out	which	hosts	are	in	your	network,	and	the	latter	is	used	to	find	out	what
facilities	and	components	are	featured	in	a	given	host.

Let’s	start	with	finding	out	how	network	discovery	works	and	how	to	make	the	most	out
of	it.

Finding	hosts	the	Zabbix	way
Zabbix’s	discovery	facilities	consist	of	a	set	of	rules	that	periodically	scan	the	network,
looking	for	new	hosts,	or	disappearing	ones,	according	to	predetermined	conditions.

The	three	methods	Zabbix	can	use	to	check	for	new	or	disappeared	hosts,	given	an	IP
range,	are:

The	availability	of	a	Zabbix	agent
The	availability	of	an	SNMP	agent
The	response	to	simple	external	checks	(FTP,	SSH,	and	so	on)

These	checks	can	also	be	combined,	as	illustrated	in	the	following	example:

As	you	can	see,	when	enabled,	this	rule	will	check	every	hour,	in	the	IP	range
192.168.1.1-254,	for	any	server	that:

Returns	an	SNMPv3	value	for	the	SNMPv2-MIB::sysDescr.0	OID
Is	listening	to	and	accepting	connections	via	SSH
Has	an	HTTPS	server	listening	on	port	8000

Be	aware	that	a	discovery	event	will	be	generated	if	any	one	of	these	conditions	is	met.

So,	if	a	discovery	rule	has	three	checks	defined	and	a	host	in	the	network	responds	to	all
three	checks,	three	events	will	be	generated,	one	per	service.

As	usual	with	all	things	Zabbix,	a	discovery	rule	will	not	do	anything	by	itself,	except
generate	a	discovery	event.	It	will	then	be	the	job	of	Zabbix’s	actions	facility	to	detect	the
aforesaid	event	and	decide	whether	and	how	to	act	on	it.

Discovery	event	actions	are	very	similar	to	regular	trigger	event	actions,	so	you’ll
probably	be	already	able	to	make	the	most	out	of	them.	The	main	thing	to	remember	is
that	with	Zabbix,	you	cannot	act	directly	on	an	event	to	create	or	disable	a	host:	you	need
to	either	copy	the	event	data	by	hand	somewhere	and	then	proceed	with	all	the	manual
operations	needed	based	on	that	data,	or	you	need	to	properly	configure	some	actions	to
do	that	work	for	you.	In	other	words,	without	a	properly	configured	action,	a	discovery
rule	will	not	add	by	itself	any	discovered	host	to	the	list	of	monitored	ones.

Every	action	has	a	global	scope:	it’s	not	tied	to	any	particular	trigger,	host,	or	host	group
by	default.	This	means	that	when	you	create	an	action,	you’ll	need	to	provide	some	action
conditions	in	order	to	make	it	valid	only	for	certain	events	and	not	others.	To	access	the
discovery	actions	section	in	the	web	UI,	head	to	Configuration	|	Actions	and	then	select
Discovery	from	the	Event	source	drop-down	menu,	just	under	the	Create	action	button.

When	you	create	an	action,	you’ll	start	with	giving	it	a	name	and	defining	a	default
message	in	the	action	definition	section.	You’ll	then	move	to	the	action	conditions
section	to	provide	filtering	intelligence,	before	finishing	with	the	action	operations
section	to	provide	the	action’s	core	functionality.	Action	definitions	are	pretty	simple	as
you’ll	just	need	to	provide	a	unique	name	for	the	action	and	a	default	message,	if	you	need
one.	So,	let’s	move	straight	to	the	interesting	sections	of	action	configuration:	conditions
and	operations.

Defining	action	conditions
The	action	conditions	section	lets	you	define	conditions	based	on	the	event’s	reported
host	IP	address,	service	status	and	reported	value,	discovery	rules,	and	a	few	others:

The	Received	value	condition	is	of	particular	interest,	as	it	allows	you	to	do	things	like
differentiating	between	operating	systems,	application	versions,	and	any	other	information
you	could	get	from	a	Zabbix	or	SNMP	agent	query.	This	will	be	invaluable	when	defining
action	operations,	as	you’ll	see	in	the	next	paragraph.	A	received	value	depends	on	the
discovery	rule	and	on	the	output	of	the	discovery	event	that	triggers	the	action.	For
example,	if	a	discovery	rule	is	set	to	look	for	hosts	responding	to	an	SNMP	Get	for	the
SNMPv2-MIB::sysDescr.0	OID,	and	that	rule	finds	a	router	that	has	C3745	as	the	value	of
that	OID,	then	the	discovery	event	will	pass	C3745	to	the	action	as	the	received	value.

Single	conditions	can	be	combined	together	with	logical	operators.	There’s	not	much
flexibility	in	how	you	can	combine	them	though.

You	can	either	have	all	AND,	all	OR,	or	a	combination	of	the	two	where	conditions	of
different	types	are	combined	with	AND,	while	conditions	of	the	same	type	are	combined
with	OR.

Choosing	action	operations
Discovery	actions	are	somewhat	simpler	than	trigger	actions	as	there	are	no	steps	or
escalations	involved.	This	doesn’t	mean	that	you	don’t	have	quite	a	few	options	to	choose
from:

Please	note	that	even	if	you	defined	a	default	message,	it	won’t	be	sent	until	you	specify
the	recipients	in	this	section	using	the	Send	message	operation.	On	the	other	hand,	if
adding	(or	removing)	a	host	is	a	quite	self-explanatory	action,	when	it	comes	to	adding	to
a	host	group	or	linking	to	a	template,	it	becomes	clear	that	a	good	set	of	actions	with
specific	received	value	conditions	and	template-linking	operations	can	give	a	high	level	of
automation	to	your	Zabbix	installation.

Note
This	high	level	of	automation	is	probably	more	useful	in	rapidly	changing	environments
that	still	display	a	good	level	of	predictability,	for	example,	the	kind	of	hosts	you	can	find,
such	as	fast-growing	grids	or	clusters.	In	these	kinds	of	environments,	you	can	have	new
hosts	appearing	on	a	daily	basis,	and	maybe	old	hosts	disappear	at	almost	the	same	rate,
but	the	kind	of	host	is	more	or	less	always	the	same.	This	is	the	ideal	premise	for	a	small
set	of	well-configured	discovery	rules	and	actions,	so	you	don’t	have	to	constantly	and
manually	add	or	remove	the	same	types	of	hosts.	On	the	other	hand,	if	your	environment
is	quite	stable	or	you	have	a	very	high	host	type	variability,	you	might	want	to	look	more
closely	at	which,	and	how	many	hosts,	you	are	monitoring	as	any	error	can	be	much	more
critical	in	such	environments.

Also,	limiting	discovery	actions	to	sending	messages	about	discovered	hosts	can	prove

quite	useful	in	such	chaotic	environments	or	where	you	don’t	control	directly	your
systems’	inventory	and	deployment.	In	such	cases,	getting	simple	alerts	about	new	hosts,
or	disappearing	ones,	can	help	the	monitoring	team	keep	Zabbix	updated	despite	any
communication	failure	between	IT	departments,	accidental	or	otherwise.

Moreover,	you	are	not	stuck	with	e-mails	and	SMSes	for	notifications	or	logging.	In	an
Action	operation	form,	you	can	only	choose	recipients	as	Zabbix	users	and	groups.	If	the
users	don’t	have	any	media	defined,	or	they	don’t	have	the	right	media	for	the	action
operation,	they	won’t	receive	any	message.	Adding	media	to	users	is	done	through	the
Administration	tab	of	the	Zabbix	frontend,	where	you	can	also	specify	a	time	window	for
a	specific	media	to	be	used	(so	that	you	won’t	get	discovery	messages	as	an	SMS	in	the
middle	of	the	night	for	example).	Speaking	of	users	and	media	types,	you	can	also	define
custom	ones,	through	the	Media	types	section	of	the	Administration	tab	in	Zabbix’s
frontend.	New	media	types	will	be	available	both	in	the	Media	section	of	the	user
configuration	and	as	targets	for	message	sending	in	the	Action	operations	form.

An	interesting	use	for	new	media	types	is	to	define	custom	scripts	that	can	go	beyond
simple	email	or	SMS	sending.

A	custom	media	script	has	to	reside	on	the	Zabbix	server,	in	the	directory	indicated	by	the
AlertScriptsPath	variable,	in	the	zabbix_server.conf	configuration	file.	When	called
upon,	it	will	be	executed	with	three	parameters	passed	by	the	server	and	taken	from	the
action	configuration	in	the	context	of	the	event	that	was	generated:

$1:	This	is	the	recipient	of	the	message
$2:	This	is	the	subject	of	the	message
$3:	This	is	the	main	message	body

The	recipient’s	address	will	be	the	one	defined	for	the	new	media	type	in	the
corresponding	media	property	for	the	user	specified	in	the	action	operation	step.	The
subject	and	the	message	body	will	also	be	passed	according	to	the	action	operation	step,	as
shown	in	the	preceding	list.	This	is	all	that	Zabbix	needs	to	know	about	the	script.

The	fact	is,	a	custom	script	can	actually	do	many	different	things	with	the	message:
logging	to	a	local	or	remote	directory,	creating	an	XML	document	and	interacting	with	a
log	manager	web	services	API,	printing	on	a	custom	display—just	as	with	every	custom
solution,	the	sky’s	the	limit	with	custom	media	types.

Here	is	a	simple,	practical	example	of	such	a	custom	media	type.	Let’s	say	that	your	IT
department	has	implemented	a	self-provisioning	service	for	virtual	machines	so	that
developers	and	system	admins	can	create	their	own	VMs	and	use	them	for	a	limited
amount	of	time	before	they	are	destroyed	and	the	resources	recycled.	This	laboratory	of
sorts	has	been	put	in	a	separate	network,	but	users	still	have	to	gain	access	to	it,	and	they
are	also	administrators	of	those	VMs,	so	there’s	very	little	control	over	what	gets	installed,
configured,	or	uninstalled	on	those	machines.	In	other	words,	while	you	could	provision
the	VMs	with	a	preinstalled	Zabbix	agent,	you	can’t	really	rely	on	the	fact	that	your	users,
whether	inadvertently	or	for	specific	reasons,	would	not	disable	it,	or	would	not	install
services	that	should	really	not	be	there,	like	a	DHCP	server	for	example.	So,	you	decide	to

keep	an	eye	on	those	machines	directly	from	the	Zabbix	server	(or	a	suitable	proxy)	and
implement	a	simple	discovery	rule	that	will	generate	a	discovery	event	for	every	host	that
responds	to	an	ICMP	echo	request	and	nothing	more,	as	follows:

Based	on	that	rule,	you’ll	want	to	configure	an	action	that,	for	every	host	in	that	subnet,
will	perform	a	port	scan	and	report	the	results	via	mail	to	you.

To	do	that,	you’ll	first	need	to	have	a	custom	media	type	and	the	corresponding	script.	So,
you	head	to	Administration	|	Media	types	and	click	on	Create	media	type.	Once	there,
you	assign	a	suitable	name,	select	Script	as	a	type	and	provide	Zabbix	with	the	name	of
the	script	to	execute.	Here,	you	just	need	to	define	the	script	name,	as	shown	in	the
following	screenshot.	You’ll	find	out	later	in	the	chapter	in	what	directory	the	actual	script
should	be	placed:

Just	adding	a	media	type	is	not	enough	though,	you’ll	have	to	enable	it	for	the	user	you
intend	to	send	those	reports	to.	Just	head	to	Administration	|	Users	and	select	the	user
you	want	to	add	the	new	media	type	to.	Quite	predictably,	the	tab	you	want	is	called
Media.	Add	the	media	you	just	created	and	remember	to	also	add	a	way	to	tell	the	script

where	it	should	send	the	results.	Since	you	are	interested	in	receiving	an	e-mail	address
after	all,	that’s	what	we’ll	tell	Zabbix,	as	follows:

The	Send	to	parameter	will	be	the	first	argument	passed	to	port_scan.sh,	followed	by	the
subject	and	the	body	of	the	message	to	send.	So,	before	actually	deploying	the	script,	let’s
define	the	subject	and	the	body	of	the	message.	To	do	that,	you’ll	need	to	create	an	action
for	the	discovery	event,	as	follows:

For	the	purposes	of	the	script,	all	you	really	need	is	the	IP	address	of	the	host	you	are
going	to	scan,	but	it	certainly	wouldn’t	hurt	to	add	some	more	information	in	the	final
message.

The	next	step	is	to	define	some	conditions	for	the	action.	Remember	that	actions	are
global,	so	the	first	condition	you	want	to	set	is	the	IP	range	on	which	this	action	will	be
performed,	otherwise	you’d	run	the	risk	of	performing	a	port	scan	on	every	discovered
host	in	your	network.

You	might	also	want	to	limit	the	action	as	a	consequence	for	the	discovery	rule	you
created,	independent	of	any	other	rules	you	might	have	on	the	same	network.

Finally,	you	should	make	a	decision	about	the	discovery	status.	If	you	want	a	periodic
update	of	what	ports	are	open	on	a	discovered	host,	you’ll	also	need	to	define	a	condition
for	the	host	to	be	Up:	in	other	words,	for	the	host	to	be	reported	as	live	for	at	least	two
consecutive	checks.

For	as	long	as	the	host	stays	up,	a	port	scan	will	be	executed	and	reported	according	to	the
discovery	interval	of	the	rule	you	defined	earlier.	If	you	just	want	a	port	scan	for	a	new
host	or	for	a	host	that	has	been	reported	as	down	for	a	while,	you’ll	just	need	to	fire	the
action	on	the	condition	that	the	host	is	Discovered;	that	is,	it	is	now	being	reported	up,
while	it	was	down	before.	What	is	certain	is	that	you’ll	want	to	avoid	any	action	if	the	host
is	down	or	unavailable.

The	following	screenshot	encapsulates	the	discussion	in	this	paragraph:

The	last	step	is	to	define	the	action	operation	that	is	sending	the	message	via	the
port_scan	custom	media	type	to	the	user	you	want,	as	follows:

Once	done	with	this,	you	are	finally	ready	to	create	the	port_scan.sh	script.	So,	head	to
the	AlertScriptsPath	directory	as	configured	in	your	zabbix_server.conf	(it’s	usually
defined	as	/usr/lib/zabbix/alertscripts)	and	create	the	following	script	there:

#!/bin/bash

RECIPIENT=$1

IPADDRESS=$2

MESSAGE=$3

SCAN="nmap	-AT5	-sT"

RESULT=$($SCAN	$IPADDRESS)

(echo	"Scan	results	for	IP	$IPADDRESS";

echo	"$RESULT";

echo	"";

echo	"$MESSAGE")	|	mailx	-s	"Scan	results	for	$IPADDRESS"	$RECIPIENT

Note
Don’t	forget	to	set	the	correct	ownership	and	permissions	for	the	script	once	you	are	done:

#	chown	zabbix	port_scan.sh

#	chmod	755	port_scan.sh

As	you	can	see,	the	program	that	will	perform	the	actual	port	scan	is	Nmap,	so	make	sure
you	have	it	installed.	In	case	you	don’t	have	it	installed,	a	simple	yum	install	nmap	will
take	care	of	that.	The	options	passed	to	Nmap	are	just	the	basics:	-sT	performs	a	simple
connect()	scan.	It’s	not	the	fanciest	one,	but	it’s	the	only	one	available	to	non-root	users,

and	the	script	will	be	executed	by	Zabbix	as	the	zabbix	user.	–A	turns	on	traceroute,	OS,
and	service	detection	so	that	the	output	is	as	complete	as	possible.	Finally,	-T5	forces
Nmap	to	execute	the	port	scan	in	as	little	time	as	possible.	Once	the	script	has	the	results
of	the	port	scan,	it	will	just	construct	the	message	and	send	it	to	the	recipient	defined	in	the
action.

This	is,	of	course,	a	very	basic	script,	but	it	will	get	the	job	done,	and	you’ll	soon	receive	a
port	scan	report	for	every	new	VM	created	in	your	self-provisioning	lab.	To	keep	things
simple	and	clear,	we	did	not	include	any	consistency	checking	or	error	reporting	in	case	of
problems,	so	that’s	certainly	a	way	you	can	improve	on	this	example.	You	could	also	try	to
send	the	results	to	a	log	file	(or	a	log	directory)	instead	of	a	mail	address,	or	even	to	a
database,	so	that	other	automation	components	can	pick	up	the	reports	and	make	them
available	via	other	media	such	as	web	pages.	What	you’ll	probably	want	to	avoid	is	to
directly	change	the	host’s	configuration,	or	Zabbix’s	own	one,	through	this	script.

Even	if	no	one	will	prevent	you	from	doing	so,	it’s	probably	best	if	you	avoid	using	all	this
power	to	execute	complex	scripts	that	might	change	your	network	configuration,	such	as
enabling	interfaces,	adding	rules	to	a	firewall,	and	such	like.	While	this	is	perfectly
possible	using	a	custom	media	script,	this	should	be	the	domain	of	remote	commands.
These	will	take	center	stage	in	the	next	paragraph.

Remote	commands
There	are	quite	a	few	options	available	to	you	when	it	comes	to	executing	remote
commands	as	an	action	operation.

You	can	define	a	list	of	IPMI	commands	to	be	run	on	the	target	host	or	a	series	of	SSH
commands	that	connect	to	a	box	and	perform	various	operations	there.	A	remote	command
could	even	be	a	simple	wrapper	for	a	remote	script	deployed	on	a	Zabbix	agent,	or	a
custom	script	that	will	be	run	either	on	an	agent	or	on	the	Zabbix	server	itself.

The	truth	is,	sometimes,	remote	commands	can	be	just	a	little	too	powerful.	You	can	start
and	stop	services,	deploy	or	provision	software,	make	configuration	changes,	open	or
close	firewall	ports,	and	everything	else	you	can	possibly	imagine,	as	long	as	you	can
write	a	script	for	it.	While	this	can	sound	fascinating	and	promising,	we	have	found	over
the	years	that	these	solutions	tend	to	be	fragile	and	unpredictable.	One	of	the	reasons	is
that	Zabbix	doesn’t	warn	you	if	a	remote	command	fails.	More	importantly,	environments
tend	to	change	faster	than	these	automation	tools	so	that	you	can	quickly	find	yourself
dealing	with	the	unintended	consequences	of	a	remote	command	running	where	it	should
not	run,	or	not	running	when	it	should	run.

The	more	of	these	you	add,	the	more	it	will	be	hard	to	keep	track	of	them,	and	the	more
one	can	be	lured	into	a	false	sense	of	security,	counting	on	the	fact	that	remote	commands
are	taking	care	of	things,	while,	in	fact,	they	may	be	contributing	to	the	chaos	instead	of
taming	it.

That	said,	it’s	certainly	undeniable	that	remote	commands	can	be	useful.	Let’s	see	an
example	that	is	both	helpful	for	your	Zabbix	configuration	and	also	fairly	safe.

In	Chapter	2,	Active	Monitoring	of	Your	Devices,	we’ve	seen	how	it’s	possible	to	use	some
of	the	measurements,	as	reported	by	a	host’s	items,	to	populate	the	same	host’s	inventory
fields.	This	is	a	great	solution	for	the	fields	that	can	be	filled	this	way,	but	what	about	the
other	ones?	Things	like	POC	details,	maintenance	dates,	installer	name,	installed	software,
and	such	like	can’t	always	be	extrapolated	from	monitoring	metrics	as	they	may	simply
not	be	available	on	the	monitored	host	itself.

They	usually	are	available,	though,	on	asset	inventory	systems	that	IT	departments	use	to
keep	track	of	available	resources.

In	the	following	example,	you’ll	create	an	action	operation	that	will	execute	a	remote
command	on	the	Zabbix	server,	fetch	some	inventory	information	from	an	asset	database,
and	fill	up	or	update	the	host’s	inventory	details.

Before	proceeding	with	the	command,	let’s	make	an	assumption	and	some	preparations.

There	are	many	asset	inventory	systems	available,	some	proprietary	and	some	open
source.	All	of	them	have	different	database	schemas	and	different	ways	to	expose	their
data.	Moreover,	an	inventory	database	structure	depends	as	much	on	the	actual
environment	it’s	put	into,	and	the	processes	that	govern	the	aforesaid	environment,	as	it	is
on	its	internal	specifications.	So,	we	decided	to	use	a	dummy	asset	management	tool	that
will	return,	given	an	IP	address,	a	simple	JSON	object	containing	all	the	inventory	data
you	need	for	the	task	at	hand.	The	assumption	is	that	you’ll	be	able	to	put	the	example	into
your	context	and	figure	out	how	to	extract	the	same	information	from	your	own	inventory
management	system,	and	that	you	will	also	know	what	authentication	scheme	you	will
rely	on	if	you	need	to	make	just	one	request	or	multiple	related	requests,	and	so	on.

Secondly,	for	practical	reasons	we	are	going	to	use	Python	as	the	language	of	the
command	script,	so	you’ll	want	to	make	sure	that	it’s	installed	and	available	on	your
Zabbix	server.	If	it’s	not	there,	you	can	install	it,	and	the	related	utilities,	quite	easily	using
yum:

#	yum	install	python

#	yum	install	python-setuptools

#	easy_install	pip

Finally,	we	are	going	to	interact	with	Zabbix’s	configuration	not	through	direct	queries	to
its	database,	but	through	its	API.	In	order	to	do	that,	we’ll	use	a	very	useful	Python	library,
called	pyzabbix.	You	can	find	it	at	https://github.com/lukecyca/pyzabbix,	but	since	you
installed	pip,	it	will	be	extremely	easy	to	make	it	available	to	your	Python	installation.
Just	run	the	following	command:

#	pip	install	pyzabbix

The	Python	package	manager	will	download	and	install	it	for	you.

Now	we	are	ready	to	configure	the	discovery	action	and	write	the	actual	command	script.

You	can	choose	to	reuse	an	existing	discovery	rule,	such	as	the	simple	ICMP	rule	you	used
in	the	previous	paragraph,	you	can	create	a	new	one	specific	to	a	single	network	to	scan,	a
single	TCP	port	that	has	to	be	available,	or	the	presence	of	a	Zabbix	agent.	We	won’t	go

https://github.com/lukecyca/pyzabbix

into	any	more	details	here,	as	you’ve	already	learned	how	to	configure	one	earlier	in	the
chapter.	Similarly,	we	can	safely	skip	any	detail	about	the	action	conditions	as	they	might
also	be	entirely	similar	to	those	shown	earlier.	What	changes	is,	of	course,	the	action
operation.	The	following	screenshot	will	give	you	a	better	idea	of	what	we	have	been
talking	about	in	this	paragraph:

The	important	elements	here	are	the	fact	that	the	script	should	be	executed	on	the	Zabbix
server,	the	fact	that	we	specified	the	full	path	for	the	script,	and	the	fact	that	we	are	using
the	{DISCOVERY.IPADDRESS}	macro	as	the	argument.

Once	the	action	is	configured,	you	are	ready	to	prepare	the	actual	script.	Let’s	see	how	it
would	look:

#!/usr/bin/python

import	sys

import	json

from	pyzabbix	import	ZabbixAPI

import	dummy_inventory_api

ipaddr	=	sys.argv[1]

hostinfo_json	=	dummy_inventory_api.getinfo(ipaddr)

#	hostinfo_json	will	contain	a	JSON	string	similar	to	this	one:

#	{	"hostip"				:	"172.16.11.11",

#			"hostname"		:	"HostA",

#			"inventory"	:	{	

#										"asset_tag"					:	"12345678",

#										"install_date"		:	"31-11-2014",

#										"installer_name":	"SKL"

#										}

#	}

hostinv	=	json.loads(hostinfo_json)['inventory']

zbx	=	ZabbixAPI(http://127.0.0.1/zabbix/)

zbx.login("admin",	"zabbix")

hostinfo	=	zbx.host.get(output=['hostid'],	filter={'ip':	ipaddr})

hid	=	hostinfo[0]['hostid]

zbx_inventory	=	{

																			'date_hw_install':	hostinv['install_date'],

																			'installer_name'	:	hostinv['installer_name'],

																			'asset_tag'						:	'12345678'	

																		#	add	other	fields	you	may	be	interested	in…

																}

zbx.host.update(hostid=hid,	inventory=zbx_inventory)

sys.exit()

As	you	can	see,	the	script	is	fairly	straightforward	and	simplistic,	but	it	can	be	used	as	a
starting	point	for	your	own	inventory-updating	scripts.	The	main	thing	that	you	need	to
take	care	of	is	to	figure	out	how	to	get	your	inventory	data	from	your	asset	database.	You
might	need	to	connect	to	a	REST	API,	or	get	an	XML	document	via	a	web	service,	or
even	perform	some	queries	via	ODBC.	What	matters	is	that	you	end	up	with	a	Python
dictionary	or	list	containing	all	that	you	need	to	update	the	relevant	host	in	Zabbix.

The	second	part	of	the	script	first	of	all	shows	you	how	to	connect	to	the	Zabbix	API	using
the	ZabbixAPI	constructor.	It	then	proceeds	with	the	login	method,	where	you’ll	need	to
provide	the	credentials	you	configured	earlier.

All	get	methods	accept	a	filter	parameter	that	you	can	use	to	retrieve	a	single	object	or	a
list	of	objects	that	satisfy	certain	conditions.	In	this	case,	we	used	it	to	get	the	hostid	of
the	host	that	is	associated	with	a	specific	IP	address.

Pay	attention	to	the	next	line	as	the	value	returned	by	all	get	methods	is	always	a	list,	even
if	it	contains	only	one	element.	That’s	why	we	need	to	reference	the	first	element	of
hostinfo,	element	0,	before	referencing	the	inventory	dictionary	key.

We	only	showed	three	inventory	fields	here,	but	there	are	many	more	available	in	Zabbix,
so	it	may	be	a	good	idea	to	build	a	dictionary	with	all	Zabbix	inventory	fields	as	keys	and
the	retrieved	values	as	values.

Now	that	we	have	the	hostid	and	the	inventory	information	at	our	disposal,	we	can
proceed	with	the	actual	inventory	update.	The	update	method	is	fairly	straightforward:	you
specify	the	hostid	of	the	host	you	want	to	update	and	the	new	values	for	the	fields	that
you	need	to	update.

And	that’s	it,	with	a	script	like	this	configured	as	a	remote	command	for	a	discovery
action,	you	can	keep	your	Zabbix	inventory	data	in	sync	with	whatever	asset	management
system	you	may	have.

As	you	might	have	realized,	host	discovery	can	be	quite	a	complex	matter	because	of	the
sheer	number	of	variables	you	need	to	take	care	of,	and	because	it’s	not	always	easy,	in	a
real-world	network,	to	identify	a	clear	logic	for	host	creation,	template	assignment,	and
other	monitoring	parameters,	based	on	discovery	data.

Low-level	discovery,	by	contrast,	is	much	more	simple,	given	its	power	to	dynamically
create	specific	items	as	a	host’s	available	resources	are	discovered.	So,	let’s	use	the
remaining	pages	of	this	chapter	to	explore	a	few	aspects	of	this	extremely	useful	feature.

Low-level	discovery
An	extremely	useful	and	important	feature	of	Zabbix	templates	is	their	ability	to	support
special	kinds	of	items	called	low-level	discovery	rules.	Once	applied	to	actual	hosts,	these
rules	will	query	the	host	for	whatever	kind	of	resources	they	are	configured	to	look	for:
filesystems,	network	interfaces,	SNMP	OIDs,	and	more.	For	every	resource	found,	the
server	will	dynamically	create	items,	triggers,	and	graphs	according	to	special	entity
prototypes	connected	to	the	discovery	rules.

The	great	advantage	of	low-level	discovery	rules	is	that	they	take	care	of	the	more	variable
parts	of	a	monitored	host,	such	as	the	type	and	number	of	network	interfaces,	in	a	dynamic
and	general	way.	This	means	that,	instead	of	manually	creating	specific	items	and	triggers
of	every	host’s	network	interfaces	or	filesystems,	or	creating	huge	templates	with	any
possible	kind	of	item	for	a	particular	operating	system	and	keeping	most	of	these	items
disabled,	you	can	have	a	reasonable	number	of	general	templates	that	will	adapt
themselves	to	the	specifics	of	any	given	host	by	creating	on	the	fly	any	entity	required,
based	on	discovered	resources	and	previously	configured	prototypes.

Out	of	the	box,	Zabbix	supports	four	discovery	rules:

Network	interfaces
Filesystems’	types
SNMP	OIDs
CPUs	and	CPU	cores	(as	of	version	2.4)

As	discovery	rules	are	effectively	special	kinds	of	items,	you	can	create	your	own	rules,
provided	you	understand	their	peculiarity	compared	to	regular	items.

You	need	to	create	and	manage	low-level	discovery	rules	in	the	Discovery	rules	section	of
a	template	configuration	and	not	in	the	usual	Items	section,	even	if	the	discovery	rules	end
up	creating	some	kind	of	items.	The	main	difference	between	discovered	and	regular	items
is	that,	whereas	a	regular	item	usually	returns	a	single	value,	a	discovery	item	always
returns	a	list,	expressed	in	JSON,	of	macro	value	pairs.	This	list	represents	all	the
resources	found	by	the	discovery	items,	together	with	a	means	to	reference	them.

The	following	table	shows	Zabbix’s	supported	discovery	items	and	their	return	values,
together	with	a	generalization	that	should	give	you	an	idea	of	how	to	create	your	own
rules:

Discovery	item	key Item	type Return	values

vfs.fs.discovery Zabbix	agent

{"data":	[

{"{#FSNAME}":<path>",		"{#FSTYPE}":"<fstype>"},

{"{#FSNAME}":<path>",		"{#FSTYPE}":"<fstype>"},

{"{#FSNAME}":<path>",		"{#FSTYPE}":"<fstype>"},

…

]	}

{"data":[

{"{#IFNAME}":"<name>"},

{"{#IFNAME}":"<name>"},

net.if.discovery Zabbix	agent {"{#IFNAME}":"<name>"},

…

]}

snmp.discovery SNMP	(v1,	v2,	or	v3)	agent

{"data":[

{"{#SNMPINDEX}":"<idx>",	"{#SNMPVALUE}":"<value>},

{"{#SNMPINDEX}":"<idx>",	"{#SNMPVALUE}":"<value>},

{"{#SNMPINDEX}":"<idx>",	"{#SNMPVALUE}":"<value>},

…

]}

system.cpu.discovery Zabbix	agent

{"data":[

{""{#CPU.NUMBER}":"<idx>",	"{#CPU.STATUS}":"<value>},

{"{#CPU.NUMBER}":"<idx>",	"{#CPU.STATUS}":"<value>},

{"{#CPU.NUMBER}":"<idx>",	"{#CPU.STATUS}":"<value>},

…

]}

custom.discovery Any

{"data":[

{"{#CUSTOM1}":"<value>","{#CUSTOM2}":"<value>"},

{"{#CUSTOM1}":"<value>","{#CUSTOM2}":"<value>"},

{"{#CUSTOM1}":"<value>","{#CUSTOM2}":"<value>"},

…

]}

Tip
Just	as	with	all	SNMP	items,	the	item	key	is	not	really	important	as	long	as	it	is	unique.
It’s	the	SNMP	OID	value	that	you	ask	an	agent	for	that	makes	the	difference:	you	can
create	different	SNMP	discovery	rules	that	look	for	different	kinds	of	resources	by
changing	the	item	key	and	looking	for	different	OID	values.	The	custom	discovery
example	is	even	more	abstract	as	it	will	depend	on	the	actual	item	type.

As	you	can	see,	a	discovery	item	always	returns	a	list	of	values,	but	the	actual	contents	of
the	list	change,	depending	on	what	resources	you	are	looking	for.	In	the	case	of	a
filesystem,	the	returned	list	will	contain	values	like	{#FSNAME}:"/usr",
{#FSTYPE}:"btrfs",	and	so	on	for	every	discovered	filesystem.	On	the	other	hand,	a
network	discovery	rule	will	return	a	list	of	the	names	of	the	discovered	network	interfaces.
This	is	the	case	for	the	default	SNMP	network	interfaces	template.	Let’s	see	in	detail	how
it	works.

The	template	has	a	discovery	rule	called	network	interfaces.	It	looks	just	like	a	regular
item	as	it	has	a	name,	a	type,	an	update	interval,	and	a	key.	It’s	an	SNMP	type,	so	it	also
has	an	SNMP	OID,	IF-MIB::ifDescr.	This	is	a	discovery	rule,	so	instead	of	a	single
value,	it	will	return	a	list	of	all	the	OIDs	that	are	part	of	the	IF-MIB::ifDescr	subtree	for
that	particular	device.	This	means	that	it	will	return	the	OID	and	its	value	for	all	the
network	interfaces	present	on	the	device.	Every	time	the	discovery	rule	is	executed	on	a
host	(based	on	the	update	interval,	just	like	any	other	item),	it	will	return	a	list	of	all
interfaces	that	are	available	at	that	particular	moment.	If	the	device	had	four	network
interfaces,	it	could	return	something	similar	to	this:

{"data"	:	[

												{	"{#SNMPINDEX}"	:	"1",

														"{#SNMPVALUE}"	:	"FastEthernet0/0"},

												{	"{#SNMPINDEX}"	:	"2",

														"{#SNMPVALUE}"	:	"FastEthernet0/1"},

												{	"{#SNMPINDEX}"	:	"3",

														"{#SNMPVALUE}"	:	"FastEthernet1/0"},

												{	"{#SNMPINDEX}"	:	"4",

														"{#SNMPVALUE}"	:	"FastEthernet1/1"},

]}

The	discovery	rule	will	then	proceed	to	apply	the	list	to	the	item	and	trigger	prototypes	it
has	configured,	as	follows:

Taking	the	Incoming	traffic	on	interface	{#SNMPVALUE}	item	prototype	as	an
example,	you	can	see	how	it	all	comes	together:

The	{#SNMPVALUE}	macro	is	used	in	the	item’s	key	and,	therefore,	in	the	item’s	name	as
well	(look	at	the	$1	macro	that	references	the	first	argument	of	the	item’s	key).

On	the	other	hand,	the	{#SNMPINDEX}	macro	will	be	used	by	Zabbix	to	actually	get	the
incoming	traffic	value	for	that	specific	interface	as	it	should	be	clear	by	now	if	you
observe	the	value	in	the	SNMP	OID	field.

When	configuring	a	template’s	discovery	rules,	you	don’t	need	to	care	about	the	actual
values	returned	in	their	lists,	nor	the	lists’	length.	The	only	thing	you	have	to	know	is	the
name	of	the	macros	that	you	can	reference	in	your	prototypes.	These	are	to	be	referenced
in	the	second	half	of	the	low-level	discovery	mechanism,	object	prototypes.	You	create
them	as	regular	template	entities,	making	sure	you	use	the	discovery	item	macros	where
needed,	and	Zabbix	will	take	care	of	the	rest	for	you,	creating	for	each	item	prototype	as
many	items	as	there	are	elements	in	the	list	returned	by	the	discovery	rule,	for	each	trigger
prototype	as	many	triggers	as	there	are	elements	in	the	list	returned,	and	so	on.

So,	when	you	apply	the	template	to	a	host,	it	will	create	items,	triggers,	and	graphs	based
on	the	resources	discovered	by	the	discovery	items	and	configured	according	to	the
discovery	prototypes.

Custom	discovery	rules,	from	this	point	of	view,	work	exactly	in	the	same	way	as	custom
items,	whether	you	decide	to	use	agent-side	scripts	(thereby	using	a	custom	zabbix.agent
item	key),	external	scripts,	database	queries,	or	anything	else.	The	only	things	you	have	to
make	sure	of	is	that	your	custom	items	return	keys/values	that	follow	the	JSON	syntax,	as
shown	in	the	preceding	table,	and	that	you	reference	your	custom	macros	in	the	entities
prototypes	that	you	will	create.

Let’s	see	an	example	of	a	custom	discovery	rule	using	again	Nmap	and	its	output	to
dynamically	create	some	items	for	a	host,	representing	the	open	port	it	has,	and	the	kind	of
services	that	are	listening.	Why	would	you	want	to	use	Nmap	and	a	port	scan?	The	device
you	need	to	monitor	maybe	doesn’t	support	the	Zabbix	agent,	so	if	you	just	ask	for	the
output	of	netstat,	you	might	not	be	able	to	install	the	agent	for	administrative	reasons,	or
you	might	have	to	make	sure	that	the	services	are	also	available	from	another	network,	so
checking	them	from	afar,	instead	of	directly	on	the	host,	will	enable	you	to	also	verify
your	firewall	rules,	killing	two	birds	with	one	stone.

Either	way,	we’ll	create	an	external	check	item	per	open	TCP	port,	configured	as	a
character-type	item.	Each	item	will	contain	the	name	of	the	service	that	was	found
listening,	if	any,	as	reported	by	Nmap’s	service	discovery	facilities.

Start	by	creating	the	discovery	rule	as	an	external	check	that	will	call	a	port-mapping
script,	as	follows:

As	you	can	see,	the	script	will	receive	the	host’s	IP	as	the	only	argument,	and	it	will	run
once	an	hour	for	every	host	that	has	this	discovery	rule	configured	and	is	active.

The	script	itself	is	very	simple	and	is	based	on	NMAP’s	XML	output	coupled	with	the
nifty	xml2	tool	you	already	used	in	Chapter	3,	Monitoring	Your	Network	Services,	as
follows:

#!/bin/bash

IPADDR=$1

#store	ports	as	array

PORTS=($(nmap	-sV	-oX	-	${IPADDR}	|	xml2	|	grep	portid	|	cut	-d'='	-f2))

#count	elements	of	the	array	and	use	as	counter	for	later	processing

COUNTER=${#PORTS[@]}

#open	JSON

echo	'{"data":['

#loop	through	ports	and	print	key/value

for	PORT	in	"${PORTS[@]}";	do

	COUNTER=$((COUNTER	-	1))

	if	[$COUNTER	-ne	0];	then

		echo	"{\"{#PORTID}\"	:	\"${PORT}\"}",

	else

		#it's	the	last	element.	To	have	valid	JSON	We	don't	add	a	trailing	comma

		echo	"{\"{#PORTID}\"	:	\"${PORT}\"}"

	fi

done

#close	JSON

echo]}

#exit	with	clean	exit	code

exit	0

The	line	starting	with	nmap	is	the	heart	of	the	script.	The	–oX	option	enables	XML	output,
which	is	more	stable	and	easy	to	manage	compared	to	the	normal	one.	The	dash	after	–oX
specifies	stdout	as	the	output	instead	of	a	regular	file,	so	we	can	pipe	the	result	to	xml2
and	then	take	only	the	lines	that	contain	portid,	that	is,	the	open	port	numbers	for	that
host.

As	a	result,	the	script	just	outputs	a	simple	JSON	object.	Here’s	an	example	of	what	the
discovery	rule	will	get,	as	shown	from	the	command	line:

./port_map.sh	'127.0.0.1'

{"data":[

{"{#PORTID}"	:	"22"},

{"{#PORTID}"	:	"25"},

{"{#PORTID}"	:	"80"},

{"{#PORTID}"	:	"631"},

{"{#PORTID}"	:	"3306"}

]}

It’s	now	time	to	define	the	item	and	trigger	prototypes,	based	on	the	open	port	that	you
found.	We’ll	show	here	an	example	of	an	item	prototype	that	will	return	the	name	and
version	of	the	daemon	listening	on	the	port,	as	returned,	once	again,	by	Nmap:

The	external	check	will	call	a	script	that	is	even	simpler	than	the	previous	one,	as	follows:

#!/bin/bash

IPADDR=$1

PORT=$2

nmap	-sV	-oX	-	-p	${PORT}	${IPADDR}	|	xml2	|	grep	'port/service/@\

(product\|version\|extrainfo\)'

Compared	to	the	previous	Nmap	command,	we	added	a	–sV	option	to	make	NMAP	run	a
series	of	probes	in	order	to	find	out	what	service	is	running	behind	that	open	port	and	a	–p
option	to	specify	a	single	port	to	scan.

The	output	was	kept	simple	on	purpose	to	show	you	an	example	of	xml2’s	output.	You
can,	of	course,	slice	it	and	dice	it	to	suit	your	own	needs:

./port_service.sh	127.0.0.1	80

/nmaprun/host/ports/port/service/@product=Apache	httpd

/nmaprun/host/ports/port/service/@version=2.2.15

/nmaprun/host/ports/port/service/@extrainfo=(CentOS)

Note
The	amount	of	information	Nmap	will	be	able	to	get	from	a	network	service	depends	very

much	on	how	much	and	on	what	kind	of	data	the	service	is	configured	to	expose.	This
might	depend	on	built-in	parameters	or	security	considerations	on	the	part	of	the	service
owner.	Compared	to	the	previous	example,	your	mileage	can	vary.

This	is	what	will	appear	as	the	value	of	the	item	once	the	discovery	rule	is	activated.

Summary
In	this	chapter,	you	learned	how	to	use	Zabbix’s	discovery	facilities	to	automate	its
configuration	as	much	as	possible.	It	should	also	be	clear	to	you	why	it’s	important	to
minimize	the	difference	between	what	is	configured	in	Zabbix	and	what	is	actually	out
there	on	the	wire.	Keeping	track	of	everything	that	can	appear	or	disappear	on	a	busy
network	can	be	a	fulltime	job	and	one	that	is	better	suited	to	automated	monitoring
facilities	like	this	one.	You	now	have	all	the	skills	needed	to	actually	do	it,	and	you	are
ready	to	apply	them	in	your	real-world	environment.

In	the	next	chapter,	we’ll	wrap	things	up	by	showing	you	how	to	leverage	Zabbix’s
presentation	power	to	create	and	manage	graphs,	dynamic	maps,	and	screens.

Chapter	5.	Visualizing	Your	Topology
with	Maps	and	Graphs
As	you	probably	already	know,	Zabbix’s	approach	to	monitoring	is	based	on	separating
data	gathered	from	trigger	logic	and	event	logging.	On	the	one	hand,	this	means	that	you
are	able	to	reference	any	measurement,	present	and	past,	in	your	triggers,	making	them	all
the	more	powerful.	On	the	other	hand,	it	also	means	that	you	have	direct	access	to	all	your
measurement	history	for	all	your	items.

While	sorting	through	all	of	your	historical	data	to	look	for	a	specific	value	can	certainly
be	useful,	the	real	advantage	here	is	to	leverage	Zabbix’s	graphing	and	mapping
functionalities	to	aggregate	and	visualize	data	in	meaningful	ways.

In	this	chapter,	you’ll	see	how	to	create	complex	graphs	from	your	items’	numerical
values,	how	to	automatically	draw	maps	that	reflect	the	current	status	of	your	network,
and	how	to	bring	it	all	together	using	screens	as	a	tool	to	customize	monitoring	data
presentation.

Creating	custom	graphs
Basic	graphical	data	representation	comes	for	free	for	any	item	that	has	a	numeric	data
type.	You	just	need	to	go	to	Monitoring	|	Latest	Data,	select	the	host	you	are	interested
in,	find	the	relevant	item,	and	click	on	Graph	in	the	last	column	on	the	right-hand	side.
You’ll	get	a	line	graph	with	a	time	slider	that	you	can	use	to	change	the	timeframe	of	the
graph	itself;	widen	it	to	cover	a	longer	amount	of	time,	or	shorten	it	to	focus	on	a	specific
point	in	time.

Since	Zabbix	2.4,	you	can	also	compare	different	items	on	the	fly	with	ad	hoc	graphs.
These	are	a	direct	extension	of	simple	graphs:	from	Monitoring	|	Latest	Data,	you	just
need	to	mark	the	checkbox	on	the	left-hand	side	of	every	item	that	you	want	to	graph	and
select	Display	stacked	graph	or	Display	graph	from	the	drop-down	menu	at	the	bottom
of	the	page,	as	follows:

The	result	is	pretty	much	the	one	you	expect.	You	also	don’t	have	to	worry	too	much
about	choosing	between	a	normal	graph	and	a	stacked	graph	as	you’ll	be	able	to	switch
between	the	two	from	the	graph	itself,	as	follows:

These	quick,	ad	hoc	graphs	can	really	cover	most	of	your	visualization	needs,	especially
for	values	that	you	don’t	consult	that	often	or	if	you	need	to	compare	items	that	you

normally	don’t	have	to,	as	part	of	a	new	analysis	or	to	investigate	a	new	class	of	problems.

On	the	other	hand,	if	you	need	to	compare	the	same	types	of	items	over	and	over,	and	for
different	hosts,	you’ll	need	a	way	to	save	your	selections	so	that	you	are	able	to	access
your	aggregated	graphs	without	having	to	specify	every	time	what	items	need	to	be
graphed.	You	can	achieve	all	this	with	custom	graphs.

Note
If	you	like	to	visualize	your	percentile	data	with	pie	charts,	you’ll	also	need	to	create
custom	graphs	as	they’re	currently	the	only	way	to	create	pie	charts	in	Zabbix.

Custom	graphs	can	be	created	as	part	of	a	host,	or	better	yet	as	part	of	a	template,	or	a
low-level	discovery	rule,	so	that	any	host	inheriting	the	template	or	discovery	rule	will
automatically	also	inherit	the	custom	graph.

To	create	one,	you	need	to	go	to	Configuration	|	Templates,	choose	the	template	you
want	to	put	your	graph	into,	select	Graphs,	and	click	on	Create	graph.	This	will	bring
you	to	the	graph	creation	form.	For	convenience,	the	following	example	will	show	you
some	items	already	added	to	the	item	list	and	some	other	options	already	selected	instead
of	an	empty	form,	but	you’ll	easily	be	able	to	add	your	own	items	by	following	the	add
link	at	the	bottom	of	the	item	list,	as	follows:

As	you	can	see,	there	are	a	few	options	worth	noting.	First	of	all,	you	can	select	the	graph
type	between	Normal,	Stacked,	Pie,	and	Exploded	(that	is,	a	pie	chart	with	all	slices
separated	instead	of	close	together).	Next,	if	you	select	the	Show	triggers	checkbox,	the
graph	will	include	a	horizontal	line	for	every	trigger	that	has	any	of	the	items	present	in

the	graph’s	item	list	in	its	expression.	You	don’t	have	to	specify	the	trigger	or	find	them
manually;	Zabbix	will	take	care	of	finding	all	relevant	triggers	and	show	them	on	the
graph.

You	can	also	specify	the	range	of	y	axis	values	either	as	fixed	values	or	calculated	based
on	the	data	you	have.	You’ll	normally	want	to	set	them	as	calculated	as	this	option	will
usually	show	the	clearest	and	best-looking	graphs,	but	sometimes,	you	might	want	to	set
them	to	a	fixed	value	to	have	a	better	understanding	of	how	the	values	change,	especially
if	they	fluctuate	a	lot	between	very	big	and	very	small	values,	and	the	item	expresses	a
percentile	range.

Moving	to	the	item	list,	you	can	order	the	items	by	dragging	and	dropping	the	blue	arrows
on	the	left-hand	side	of	the	item’s	name	and	change	their	color	by	either	specifying	an
RGB	value	or	choosing	from	a	color	palette.

The	draw	style	can	be	quite	useful	if	you	want	a	specific	item	to	stand	out	from	the	rest.
There	are	quite	a	few	styles	available	for	a	normal	graph,	while	this	option	is	not	available
for	stacked	and	pie	charts.

The	Function	drop-down	menu	enables	you	to	choose	how	the	item	should	be	graphed	for
every	tick	in	the	x	axis:	you	can	choose	between	the	minimum	value,	the	maximum	one,
and	the	average.	Keep	in	mind	that	the	x-axis	tick	density	will	change	dynamically	with
the	time	scale	of	the	graph	(you	can	select	different	timeframes	while	looking	at	a	graph;
you	don’t	have	to	specify	them	in	advance):	for	timeframes	up	to	an	hour,	it	will	show
every	sample	collected,	depending	on	the	items’	sample	frequency;	for	larger	timeframes,
you’ll	have	x-axis	ticks	proportional	to	the	timeframe	selected,	which	is	a	few	minutes	if
the	global	timeframe	is	a	few	hours,	to	days	or	weeks	if	you	select	months’	or	years’	worth
of	monitoring	data.	For	every	tick,	Zabbix	will	use	the	function	you	selected	here	to	plot
the	item	value	either	by	selecting	the	maximum,	the	minimum,	or	the	average	value	for
that	time	tick.

Finally,	you	can	choose	whether	the	y	axis	for	an	item	will	be	shown	on	the	left-hand	side
or	the	right-hand	side.	One	of	the	reasons	to	separate	different	items	on	different	y-axis
sides	is	that	maybe	you	are	plotting	on	the	same	graph	items	that	have	absolute	values
together	with	items	that	express	a	percentile	value.	In	this	case,	it	makes	sense	to	show	the
absolute	scale	on	one	side	and	the	percentile	one	on	the	other	side	of	the	graph.

Another	reason	might	be	that	you	are	plotting	together	items	that	will	show,	on	average,
very	big	or	very	small	values,	and	you	can	predict	ahead	of	time	the	ones	that	will
gravitate	towards	the	bottom	of	the	scale,	and	the	ones	that	will	make	the	scale	go	up	with
big	values.	In	that	case,	you	might	want	to	separate	the	two;	otherwise,	the	items	with	big
values	will	make	the	others	look	very	flat	and	not	very	informative	on	the	chart.	This	is
the	case	illustrated	in	the	preceding	graph:	we	predicted	that	the	total	number	of	queries
would	be	much	bigger	(by	definition)	compared	to	all	the	others,	so	we	moved	its	y	axis	to
the	right-hand	side.	Here’s	the	result	of	the	graph	we	created:

What	we	haven’t	shown	here,	but	you	can	easily	imagine,	is	that	as	with	almost	everything
in	Zabbix,	you	are	not	limited	to	graphing	items	from	the	same	host:	you	can	just	as	easily
graph	the	same	item	from	different	hosts,	or	even	different	items	from	different	hosts.	You
might	be	interested,	for	example,	in	tracking	network	traffic	from	a	bunch	of	different
routers	and	looking	at	how	this	traffic	changes	in	time,	which	machines	are	the	busiest	and
when,	which	ones	are	not	as	busy	as	you	expected	compared	to	the	overall	traffic	you
have,	and	so	on.	To	do	that,	you	can	easily	create	a	graph	following	the	guidelines	above,
only	selecting	the	relevant	network	interfaces	inbound	and	outbound	items	from	the
different	appliances	and	putting	them	all	on	the	same	item	list.

You	can	use	Zabbix’s	custom	graph	creation	facilities	to	explore	your	data	in	very
meaningful	ways	that	can	be	hard	to	achieve	otherwise:	don’t	be	fooled	by	the	fact	that	it’s
all	mainly	time-based	(you	can’t	put	custom	values	on	the	x	axis).	You’ll	soon	find	that	the
ability	to	correlate	different	items	from	different	sources	is	a	very	powerful	tool	for	both
troubleshooting	and	capacity	planning.

Another	powerful	tool	is	Zabbix’s	mapping	facility.	We’ll	explore	a	few	interesting
aspects	of	map	creation	and	maintenance	in	the	following	section.

Maps	–	a	quick	setup	for	a	large	topology
Creating	complex	maps	is	the	kind	of	job	that	can	take	a	lot	of	time.	While	doing	a
practical	example,	if	you	would	like	to	design	a	map	of	20-30	elements,	it	is	easy	to	spend
up	to	2	hours	even	if	you	already	know	the	job.

To	manually	produce	a	map,	you	need	to:

Add	all	the	items	on	the	map
Move	the	items	around	until	you	see	a	nice-looking	disposition

Every	time	you	need	to	add	in	a	map	one	host,	you	need	to	repeat	many	times	the	same
steps	as	aforementioned,	which	will	become	a	boring	and	complex	task.	Currently,	there
are	many	open-feature	requests	that	can	facilitate	this	kind	of	task;	unfortunately,	they
have	been	open	for	a	long	time,	even	years.

The	issues	you	can	face	are:

You	can’t	move	multiple	elements	at	the	same	time,	something	that	can	be	found	at
https://support.zabbix.com/browse/ZBXNEXT-161
You	can’t	add	hosts	in	a	bulk	way,	something	that	can	be	found	at
https://support.zabbix.com/browse/ZBXNEXT-163
You	can’t	clone	any	existing	map	element,	something	that	can	be	found	at
https://support.zabbix.com/browse/ZBXNEXT-51
When	you	are	using	icons,	you	can’t	select	them	automatically,	so	you	need	to	check
their	size	and	see	whether	they	fit	on	your	map,	something	that	can	be	found	at
https://support.zabbix.com/browse/ZBXNEXT-1608

For	all	those	issues,	we	need	to	find	a	different	way	to	automate	this	long	and	slow
process.	Clearly,	this	is	the	kind	of	task	that	needs	to	be	automated	as	much	as	possible.

https://support.zabbix.com/browse/ZBXNEXT-161
https://support.zabbix.com/browse/ZBXNEXT-163
https://support.zabbix.com/browse/ZBXNEXT-51
https://support.zabbix.com/browse/ZBXNEXT-1608

Maps	–	automating	the	DOT	creation
What	is	missing	here	is	something	that	can	process	our	information	and	produce	as	output
something	usable	by	Zabbix.	To	automate	this	task,	there	is	one	library	that	can	help	us
—NetworkX—which	is	available	at	http://networkx.github.io/.

NetworkX	is	a	Python	software	library	tailor-made	for	the	creation,	manipulation,	and
study	of	dynamic	network	structures.

In	this	example,	we	assume	that	you’re	using	Cisco	Prime,	which	is	a	vendor-specific	tool
to	export	a	discovered	topology.

Anyway,	this	concept	is	still	valid	as	here	we	are	going	to	use	an	export	file	obtained,
which	is	in	CSV.	This	kind	of	CSV	can	be	obtained	as	an	export	from	many	other	vendors’
software	and	can	be	easily	produced	from	any	third-party	software.

The	file	that	we	are	going	to	parse	is	in	the	following	form:

IP	address,	System	name,	SysObjectID,	Found	by	modules,	Neighbors,	Status

As	you	can	see,	it	contains	the	IP	address	of	the	device	discovered,	the	system	name,	the
OID	of	the	system,	the	module	that	found	the	device,	a	list	of	all	the	neighbors	that	are
connected	to	it,	and	it	ends	with	the	status.

The	following	is	an	example	of	the	line	that	we	are	expecting	to	see:

10.12.50.1,main.example.com,.1.3.6.1.4.1.9.1.896,System,"10.12.2.1,	

10.12.2.2,	10.12.3.1,	10.12.4.1,	10.12.5.1",Reachable

We	are	mostly	interested	in	the	following	fields:

IP	address
System	name
SysObjectID
Neighbors

Then,	what	we	can	do	is	write	some	Python	lines	that	can	read	this	file,	identify	all	the
required	information,	and	write	in	the	output	a	DOT	file.

Here,	I	am	going	to	spend	a	few	words	about	the	DOT	notation,	performing	an	example	in
order	to	clarify	how	this	notation	is	done.

First	of	all,	I	would	like	to	explain	why	we	are	going	to	have	a	Graphviz	DOT	file.

The	Graphviz	DOT	file	is	really	easy	to	read,	maintain,	and	update,	and	nevertheless,	it
can	be	stored	in	a	CVS	or	SVN.

Something	that	is	really	important	to	have	is	a	file	that	can	be	quickly	used	to	spot	all	the
differences	between	versions	and	is	easy	to	maintain.	Also,	we	are	considering	using	it	as
it	is	a	standard	language	and	a	good	starting	point,	on	which	we	can	transform	all	our
acquired	data	from	all	the	different	versions	of	export.

Indeed,	some	other	vendor-specific	software	can	export	the	same	data	but	in	a	different
form,	so	it	is	important	to	normalize	all	our	data	in	a	common	language.

http://networkx.github.io/

This	common	language	file	will	be	the	file	to	use	to	populate	our	Zabbix	map.

This	section,	as	you	probably	already	have	understood,	will	be	a	large	usage	of	the
Graphviz’s	packages.

The	easiest	way	to	install	and	maintain	Graphviz	on	Red	Hat	Enterprise	Linux	is	to	use	the
dedicated	yum	repository.	To	set	up	yum,	first	of	all,	you	need	to	download	the	graphviz-
rhel.repo	file	and	save	it	(as	root)	in	/etc/yum.repos.d/,	as	follows:

#	cd	/etc/yum.repos.d

#	wget	http://www.graphviz.org/graphviz-rhel.repo

--2014-11-27	02:52:17--		http://www.graphviz.org/graphviz-rhel.repo

Resolving	www.graphviz.org…	204.178.9.49

Connecting	to	www.graphviz.org|204.178.9.49|:80…	connected.

HTTP	request	sent,	awaiting	response…	200	OK

Length:	1138	(1.1K)	[text/plain]

Saving	to:	"graphviz-rhel.repo"

100%[======================================>]	1,138							--.-K/s			in	0s

2014-11-27	02:52:17	(134	MB/s)	-	"graphviz-rhel.repo"	saved	[1138/1138]

#	ls	-la	graphviz-rhel.repo

-rw-r--r--.	1	root	root	1138	Feb	16		2012	graphviz-rhel.repo

Then,	you	can	finally	list	all	the	Graphviz	packages	as	root:

yum	list	available	'graphviz*'

Install	them,	as	follows:

yum	install	'graphviz*'

Now	that	we’ve	clarified	the	reason	why	we’re	doing	those	steps,	it	is	important	to	walk
through	the	DOT	language.	The	DOT	language	is	a	language	made	to	represent	objects
connected	between	each	other.

While	performing	a	practical	example,	if	we	want	to	define	two	connected	nodes	with	the
Graphviz	DOT	language,	we	can	do	as	follows:

graph	{

A—B

}

This	is	a	very	easy-to-understand	language;	we	are	now	representing	two	nodes	connected
to	each	other.

To	see	the	graphical	result,	we	can	use	a	simple	Python	program	xdot.py	available	for
download	here:

https://github.com/jrfonseca/xdot.py

All	you	have	to	do	is	download	the	program,	write	a	file	with	the	Graphviz	DOT	content
that	we	showed	previously,	and	then	run	the	program,	as	follows:

xdot.py	example.dot

https://github.com/jrfonseca/xdot.py

The	result	is	the	DOT	expressed	topology	visualized,	as	follows:

Using	the	same	grammar,	we	can	define	three	nodes	connected,	as	follows:

graph	{

A—B—C

}

Using	the	same	xdot.py	used	previously,	the	result	is	the	following:

Writing	a	couple	of	lines	more,	we	can	even	avoid	using	long	names	using	the	following
grammar:

graph	{

		//We	can	create	aliases	to	avoid	to	use	very	long	names	on	the	dependency	

definition

		Andrea	[hostname="andrea.dalle.vacche.example.com"]

		Stefano	[hostname="stefano.kewan.lee.example.com"]

		router	[label="Our	network	router"	zbximage="router"]

		//now	it's	time	to	define	connections	between	the	nodes

		//This	notation	allows	for	multiple	edges	from	"router"	in	one	go

		router—{	Andrea	Stefano	}

}

And	the	result	is	shown	here:

For	a	detailed	documentation	of	this	grammar,	please	refer	to	the	official	documentation
available	at	http://www.graphviz.org/content/dot-language.

Until	now,	we’ve	covered	all	that	is	needed	to	know	for	our	small	application.

Now,	we	can	come	back	to	our	CSV	file	we	extracted	from	Cisco	Prime.

Here	is	the	CSV	of	a	very	simple	network,	but	it	can	be	applied	on	very	complex	network
topologies,	as	well:

[root@localhost	graphs]#	cat	my_export.csv

IP	Address,System	Name,SysObjectID,Found	By	Modules,Neighbors,Status

10.12.20.1,main.example.com,.1.3.6.1.4.1.9.1.896,System,"10.12.2.1,	

10.12.2.2,	10.12.3.1,	10.12.4.1,	10.12.5.1",Reachable

10.12.2.1,cluster1.example.com,.1.3.6.1.4.1.9.1.634,System,"10.12.2.2,	

192.168.99.1",Reachable

10.12.1.1,london.example.com,.1.3.6.1.4.1.9.1.503,System,"",Reachable

10.12.2.2,cluster2.example.com,.1.3.6.1.4.1.9.1.634,System,"10.12.2.1,	

192.168.99.1",Reachable

10.12.3.1,switch1.example.com,.1.3.6.1.4.1.9.1.503,System,"192.168.99.1",Re

achable

10.12.4.1,4.example.com,.1.3.6.1.4.1.9.1.502,System,"192.168.99.1,		

10.12.4.42,	10.12.4.47,	10.12.4.48,	10.12.4.49",Reachable

10.12.4.45,4d.example.com,.1.3.6.1.4.1.9.1.503,System,"10.12.4.1",Reachable

10.12.4.46,4e.example.com,.1.3.6.1.4.1.9.1.502,System,"10.12.4.1",Reachable

10.12.4.47,4f.example.com,.1.3.6.1.4.1.9.1.503,System,"10.12.4.1",Reachable

10.12.4.48,4g.example.com,.1.3.6.1.4.1.9.1.503,System,"10.12.4.1",Reachable

10.12.5.1,5.example.com,.1.3.6.1.4.1.9.1.502,System,"192.168.99.1,	

10.12.5.45,	10.12.5.43,	10.12.5.44,	10.12.5.46,	10.12.5.47,	10.12.5.48,		

10.12.6.1",Reachable

10.12.5.44,5c.example.com,.1.3.6.1.4.1.9.1.503,System,"10.12.5.1",Reachable

10.12.5.45,5d.example.com,.1.3.6.1.4.1.9.1.503,System,"10.12.5.1",Reachable

10.12.5.46,5e.example.com,.1.3.6.1.4.1.9.1.502,System,"10.12.5.1",Reachable

10.12.5.47,5f.example.com,.1.3.6.1.4.1.9.1.503,System,"10.12.5.1",Reachable

10.12.5.48,5g.example.com,.1.3.6.1.4.1.9.1.503,System,"10.12.5.1",Reachable

10.12.5.155,5i.example.com,.1.3.6.1.4.1.9.1.634,System,"10.12.5.1",Reachabl

e

10.12.6.1,6.example.com,.1.3.6.1.4.1.9.1.502,System,"	10.12.6.45,	

10.12.6.46,	10.12.6.47,	,	10.12.5.1",Reachable

10.12.6.45,6d.example.com,.1.3.6.1.4.1.9.1.503,System,"10.12.6.1",Reachable

10.12.6.46,6e.example.com,.1.3.6.1.4.1.9.1.502,System,"10.12.6.1",Reachable

http://www.graphviz.org/content/dot-language

10.12.6.47,6f.example.com,.1.3.6.1.4.1.9.1.503,System,"10.12.6.1",Reachable

From	this	file,	we	see	that	all	the	relations	between	neighbors	are	already	contained	in	the
CSV,	and	that	we	only	need	to	convert	them	into	DOT	notation	using	the	node	notation.

Here,	we	can	start	coding	a	few	Python	lines	to	produce	our	desired	output:

#First	of	all	we	need	to	import	csv	and	Networkx

import	csv

import	networkx	as	nx

#Then	we	need	to	define	who	is	our	zabbix	server	and	some	other	detail	to	

properly	produce	the	DOT	file

zabbix_service_ipaddr	=	"192.168.1.100"

main_loop_ipaddr	=	"10.12.20.1"

main_vlan_ipaddr	=	"149.148.56.1"

#	Now	we	can	finally	create	our	graph

G=nx.Graph()

#	we	can	open	our	CSV	file

csv_reader	=	csv.DictReader(open('my_export.csv'),	\

				delimiter=",",	\

				fieldnames=("ipaddress",	"hostname",	"oid",	"dontcare",	"neighbors"))

#	Skip	the	header

csv_reader.next()

for	row	in	csv_reader:

				neighbor_list	=	row["neighbors"].split(",")

				for	neighbor	in	neighbor_list:

								#	Remove	spaces

								neighbor	=	neighbor.lstrip()

		#	Add	neighbors,and	here	we've	decided	to	ignore	isolated	nodes

								if	neighbor	!=	"":

												G.add_edge(row["ipaddress"],	neighbor)

												#	Add	additional	information	to	nodes	or	edges	here

												G.node[row["ipaddress"]]["hostname"]	=	row["hostname"]

#	Cisco	Prime	doesn't	export	all	IP	addresses	of	a	device

#	but	only	the	first	for	each	network,	Here	we	merge	hosts	with

#	multiple	IP	addresses

mapping	=	{main_vlan_ipaddr:	main_loop_ipaddr}

G	=	nx.relabel_nodes(G,	mapping)

#	Remove	cluster	connection	not	needed	in	our	map

G.remove_edge("10.12.2.1",	"10.12.2.2")

#	Adding	connection	between	Zabbix	server	and	main	switch

G.add_edge(zabbix_service_ipaddr,	main_loop_ipaddr)

main_neigh_list	=	G.neighbors(main_loop_ipaddr)

#	finally	write	out	our	file

nx.draw_graphviz(G)

nx.write_dot(G,	"/tmp/total.dot")

Now,	if	you	run	this	small	software	against	the	CSV	file	we	have	shown	before	you	see
our	DOT	file	generated	on	/tmp/total.dot.	Now,	it	is	interesting	to	see	how	our	DOT	file

is	represented	on	XDot.	Here,	in	the	next	diagram,	we	see	the	representation	of	our	DOT
file:

Now,	all	that	we	have	to	do	is	produce	the	map	starting	from	the	DOT	file	we	just
generated.

Drafting	Zabbix	maps	from	DOT
Having	arrived	at	this	point,	we	have	our	Graphviz	DOT	file	that	is	waiting	to	be	used.	As
you	can	see	from	the	previous	image,	thanks	to	Graphviz,	we	already	have	a	ready-to-go
image	to	use.	Then,	all	we	need	to	do	is:

1.	 Read	out	the	DOT	file.
2.	 Generate	the	topology	using	Graphviz.
3.	 Acquire	all	the	coordinates	from	our	topology	generated.
4.	 Use	pyzabbix	to	connect	to	our	Zabbix	server.
5.	 Generate	our	topology	in	a	fully	automated	way.

It’s	now	time	to	write	some	lines	of	Python;	the	following	example	is	similar	to	something
presented	by	Volker	Fröhlich.	Anyway,	the	code	here	has	been	changed	and	fixed	(it	did
not	work	well	with	Zabbix	2.4).

As	the	first	thing,	we	need	to	import	the	ZabbixApi	and	networkX	libraries:

import	networkx	as	nx

from	pyzabbix	import	ZabbixAPI

Then,	we	can	define	the	Graphviz	DOT	file	to	use	as	a	source;	a	good	example	is	the	one
we	just	generated:

dot_file="/tmp/total.dot"

In	the	next	few	lines,	we	define	our	username,	password,	map	dimension,	and	relative	map
name:

username="Admin"

password="zabbix"

width	=	800

height	=	600

mapname	=	"my_network"

What	follows	is	a	static	map	to	define	the	element	type:

ELEMENT_TYPE_HOST	=	0

ELEMENT_TYPE_MAP	=	1

ELEMENT_TYPE_TRIGGER	=	2

ELEMENT_TYPE_HOSTGROUP	=	3

ELEMENT_TYPE_IMAGE	=	4

ADVANCED_LABELS	=	1

LABEL_TYPE_LABEL	=	0

Then,	we	can	define	the	icons	to	use	and	the	relative	color	code:

icons	=	{

		"router":	23,

		"cloud":	26,

		"desktop":	27,

		"laptop":	28,

		"server":	29,

		"sat":	30,

		"tux":	31,

		"default":	40,

}

colors	=	{

		"purple":	"FF00FF",

		"green":	"00FF00",

		"default":	"00FF00",

}

Now,	we	define	some	functions	that	we	can	reuse.	The	first	one	is	to	manage	the	login,
and	the	second	one	is	to	define	a	host	lookup,	as	follows:

def	api_connect():

		zapi	=	ZabbixAPI("http://127.0.0.1/zabbix/")

		zapi.login(username,	password)

		return	zapi

def	host_lookup(hostname):

		hostid	=	zapi.host.get({"filter":	{"host":	hostname}})

		if	hostid:

				return	str(hostid[0]['hostid'])

The	next	thing	to	do,	is	read	our	DOT	file	and	start	converting	it	into	a	graph:

G=nx.read_dot(dot_file)

Then,	we	can	finally	open	our	graph,	as	follows:

pos	=	nx.graphviz_layout(G)

Note
Here,	you	can	select	your	preferred	algorithm.	Graphviz	supports	many	different	kinds	of
layout,	and	then	you	can	change	the	look	and	feel	of	your	map	as	you	prefer.	For	more
information	about	Graphviz,	please	check	the	official	documentation	available	at
http://www.graphviz.org/.

Then,	as	the	graph	is	already	generated,	the	next	thing	to	do	is	find	the	maximum
coordinates	of	the	layout.	This	will	enable	us	to	scale	better	our	predefined	map	output
size.

positionlist=list(pos.values())

maxpos=map(max,	zip(*positionlist))

for	host,	coordinates	in	pos.iteritems():

			pos[host]	=	[int(coordinates[0]*width/maxpos[0]*0.95-

coordinates[0]*0.1),	int((height-

coordinates[1]*height/maxpos[1])*0.95+coordinates[1]*0.1)]

nx.set_node_attributes(G,'coordinates',pos)

Note
Graphviz	and	Zabbix	use	two	different	data	origins:	Graphviz	starts	from	the	bottom-left
corner,	and	Zabbix	works	starting	from	the	top-left	corner.

Then,	we	need	to	retrieve	the	selementids	as	they	are	required	for	links	and	even	for	the
node	data	coordinates,	as	follows:

http://www.graphviz.org/

selementids	=	dict(enumerate(G.nodes_iter(),	start=1))

selementids	=	dict((v,k)	for	k,v	in	selementids.iteritems())

nx.set_node_attributes(G,'selementid',selementids)

nx.set_node_attributes(G,'selementid',selementids)

Now,	we	define	the	map	on	Zabbix,	the	name,	and	the	relative	map	size:

map_params	=	{

		"name":	mapname,

		"label_type":	0,

		"width":	width,

		"height":	height

}

element_params=[]

link_params=[]

Finally,	we	can	connect	to	our	Zabbix	server:

zapi	=	api_connect()

Then,	prepare	all	the	node	information	and	the	coordinates	and	then	set	the	icon	to	use,	as
follows:

for	node,	data	in	G.nodes_iter(data=True):

		#	Generic	part

		map_element	=	{}

		map_element.update({

				"selementid":	data['selementid'],

				"x":	data['coordinates'][0],

				"y":	data['coordinates'][1],

				"use_iconmap":	0,

		})

Check	whether	we	have	the	hostname,	as	follows:

				if	"hostname"	in	data:

						map_element.update({

								"elementtype":	ELEMENT_TYPE_HOST,

								"elementid":	host_lookup(data['hostname'].strip('"')),

								"iconid_off":	icons['server'],

						})

				else:

						map_element.update({

								"elementtype":	ELEMENT_TYPE_IMAGE,

								"elementid":	0,

						})

We	set	labels	for	images,	as	follows:

				if	"label"	in	data:

						map_element.update({

								"label":	data['label'].strip('"')

						})

				if	"zbximage"	in	data:

						map_element.update({

								"iconid_off":	icons[data['zbximage'].strip('"')],

						})

				elif	"hostname"	not	in	data	and	"zbximage"	not	in	data:

						map_element.update({

								"iconid_off":	icons['default'],

						})

				element_params.append(map_element)

Now,	we	need	to	scan	all	the	edges	to	create	the	element	links	based	on	the	element	we
identified,	as	follows:

nodenum	=	nx.get_node_attributes(G,'selementid')

for	nodea,	nodeb,	data	in	G.edges_iter(data=True):

		link	=	{}

		link.update({

				"selementid1":	nodenum[nodea],

				"selementid2":	nerodenum[nodeb],

		})

		if	"color"	in	data:

				color	=		colors[data['color'].strip('"')]

						link.update({

								"color":	color

						})

		else:

				link.update({

						"color":	colors['default']

				})

		if	"label"	in	data:

				label	=		data['label'].strip('"')

				link.update({

						"label":	label,

				})

				link_params.append(link)

#	Join	the	prepared	information

map_params["selements"]	=	element_params

map_params["links"]	=	link_params

Now,	we	have	populated	all	map_params,	and	now	we	need	to	call	Zabbix’s	API	with	this
data:

map=zapi.map.create(map_params)

The	program	is	now	complete,	and	we	can	let	it	run!	In	a	real-world	case,	the	time	spent	to
design	a	topology	of	more	than	2,500	hosts	is	only	2–3	seconds!

We	can	test	the	software	here,	proposed	against	the	DOT	file	we	generated	before:

[root@localhost]#	time	./Generate_MyMap.py

real				0m0.005s

user				0m0.002s

sys					0m0.003s

As	you	can	see,	our	software	is	really	quick…	but	let’s	check	what	has	been	generated.	In

the	next	screenshot,	you	can	see	the	map	that	is	generated	automatically	in	0.005	seconds:

Putting	everything	together	with	screens
Unlike	any	other	Zabbix	feature	we	described	in	this	chapter,	screens	don’t	actually	give
you	new	or	improved	information	about	your	monitored	data.	Pretty	much	anything	that
you	can	decide	to	put	on	a	screen	can	be	found	somewhere	else	in	Zabbix.

From	maps	and	graphs,	to	trigger	status	and	item	data,	all	of	this	and	more	can	be	easily
found	by	exploring	the	Monitoring	tab	of	the	web	frontend.

But	the	point	of	gathering	existing	data	on	a	Zabbix	screen	is	precisely	that	you	bring
together	related	data,	or	different	views	of	the	same	data	so	that	you	don’t	have	to	look	for
it	around	the	frontend,	and	so	that	you	can	have	a	good	overview	of	the	status	of	your
systems	and	see	at	a	glance	whether	there	are	any	problems	within	your	infrastructure.

When	you	create	a	screen	(Configuration	|	Screens	|	Create	screen),	you	give	it	a	name
and	a	starting	number	of	rows	and	columns.	Don’t	worry	too	much	about	how	many	rows
and	columns	you	assign	to	a	screen	as	you	will	be	able	to	change	them	during	screen
configuration.

Once	you	have	the	screen	created,	you	can	go	ahead	and	configure	it	by	selecting	its	name
in	Configuration	|	Screens.

A	screen	is	basically	a	table	with	rows	and	columns	that	identifies	cells.	Every	cell	can
contain	different	types	of	data:

Cell	type Description

Action	log This	shows	a	log	of	the	latest	actions	executed	by	Zabbix.	You	can	configure	how	many	actions	you
want	to	see	in	the	cell.

Clock This	shows	an	analog	clock	with	the	current	time.

Data
overview This	shows	the	latest	item	data	for	a	specific	group	of	hosts.

Graph This	shows	an	existing	custom	graph.

Graph
prototype This	shows	a	custom	graph	created	from	a	low-level	discovery	rule	prototype.

History	of
events

This	shows	a	log	of	the	latest	events	(these	don’t	necessarily	lead	to	actions).	You	can	configure	how
many	events	you	want	to	see	in	the	cell.

Host	group
issues This	shows	the	current	issues	for	a	specific	host	group.

Host	issues This	shows	the	current	issues	for	a	specific	host.

Host’s	info This	shows	a	summary	of	host	availability	for	a	specific	group,	such	as	the	one	you	find	in	Monitoring
|	Overview.

Map This	shows	an	existing	map.

Plain	text
This	shows	the	plain	text	history	of	a	specific	item	together	with	the	timestamp	for	each	measurement.
You	can	configure	how	many	entries	you	want	to	see	in	the	cell.

Screen This	shows	an	existing	screen.	Yes,	you	can	embed	a	screen	into	another	screen	if	you	want.

Server	info This	shows	a	summary	of	the	monitoring	status	for	the	Zabbix	server,	such	as	DB	connectivity,	number
of	hosts,	items	and	triggers,	new	values	per	second,	and	so	on.

Simple	graph This	shows	the	graph	for	a	single	item,	such	as	the	ones	you	can	see	in	Latest	data	without	creating	a
custom	graph.

Simple	graph
prototype

This	is	like	a	simple	graph,	but	is	for	items	created	automatically	from	a	low-level	discovery	rule
prototype.

System	status This	shows	a	summary	of	the	current	issues,	divided	into	host	groups	and	severity.

Trigger
information

This	shows	a	summary	of	triggers	currently	in	a	problem	state,	divided	by	severity.	You	have	to	specify
a	host	group.

Trigger
overview This	shows	every	trigger	status	for	every	host	in	a	specific	host	group	(and	optionally,	application).

URL This	shows	the	content	of	an	arbitrary	web	page,	given	its	URL.

Every	cell	is	also	independent	from	the	others:	you	can	bring	together	data	belonging	to
the	same	host	as	well	as	belonging	to	different	hosts	and	hosts’	groups,	depending	on	how
you	want	to	organize	your	screen.

Finally,	for	every	cell,	you	can	specify	how	many	rows	and	columns	it	should	span,	and
for	graphic	cell	types	(maps,	graphs,	and	so	on),	you	can	also	define	how	much	space	they
should	take	by	specifying	the	width	and	height	in	pixels.

All	this	flexibility	is	certainly	powerful	but	can	be	a	bit	overwhelming,	so	here	are	some
general	guidelines	that	you	can	refer	to	when	you	create	your	own	screens.

A	very	useful	type	of	screen	brings	together	data	from	a	single	host	so	that	you	can	see	at	a
glance	its	overall	performance.	You’ll	typically	want	to	see	some	graphs	in	a	screen	like
this,	such	as	network	and	CPU	performance,	disk	usage,	and	any	application-specific
graph	or	item	summary	you	might	need,	such	as	database	performance	graphs,	application
server	statistics,	and	so	on.

In	the	following	example,	we’ve	kept	things	simple	due	to	space	constraints,	but	you	can
see	how	even	four	graphs	can	prove	useful	when	put	together	this	way:

An	interesting	feature	of	screen	cells	is	that	you	can	make	the	content	dynamic	by	flagging
the	aptly	named	checkbox.	Dynamic	cells	will	refer	the	same	type	of	content	to	different
hosts	depending	on	the	context.

This	means	that	you	can	create	a	screen	at	the	template	level,	flag	all	cells	as	dynamic,	and
just	like	that,	every	host	inheriting	the	template	will	also	inherit	a	personalized	screen,
with	all	graphs	and	tables	referencing	the	aforesaid	host.	This	way,	you	won’t	have	to
manually	create	a	specific	screen	for	every	host.

In	another	type	of	screen,	you	might	want	to	focus	on	group	triggers	and	issues.	In	this
kind	of	screen,	a	typical	cell’s	contents	will	be	some	maps,	with	hosts	and	links	that
change	color	based	on	trigger	status,	some	trigger	information	and	trigger	overview
cells,	and	possibly	a	log	of	the	latest	events	and	actions.

Finally,	you	might	want	to	create	specific	screens	that	bring	together	historical	data	from
different	items,	such	as	application-specific	log	files,	output	from	external	commands,
such	as	Nmap,	Windows	update	status	for	a	host,	and	so	on.	As	usual,	the	sky’s	the	limit
here.

Tip
Keep	in	mind	that	the	preceding	screen	types	are	merely	examples	that	barely	scratch	the
surface	of	what’s	possible	with	Zabbix’s	screen.	You	are	by	no	means	limited	to	these
types;	on	the	contrary,	you	are	encouraged	to	mix	and	match	the	different	cells	to	suit	your
own	needs.	Don’t	let	us	stop	you	from	creating	awesome	screens!

Once	you	have	created	a	few	screens,	the	next	logical	step	is	to	find	a	way	to	bring	them
together	in	an	organized	way.	Slide	shows	serve	this	purpose	in	an	interesting	and	useful
way.	You	can	create	a	slide	show	by	going	to	Configuration	|	Slide	shows	and	clicking

on	Create	slide	show.	The	creation	form	is	pretty	self-explanatory:

Much	like	adding	items	to	a	custom	graph,	by	clicking	on	the	Add	link	at	the	bottom	of
the	Slides	list,	you	can	add	existing	screens	to	the	slide	show,	and	you	can	reorder	them	by
dragging	and	dropping	the	blue	arrows	near	the	screen	name	in	the	list.	The	result	will	be,
quite	predictably,	a	slide	show	of	all	the	screens	you	have	put	in	the	list.	It	will	run	over
and	over	cycling	through	all	the	elements.	Each	slide	will	have	the	focus	for	the	number	of
seconds	equal	to	the	default	delay	if	you	don’t	specify	anything	in	the	slide’s	Delay	field.

Slide	shows	are	very	useful	when	shown	on	a	big	screen	in	a	datacenter,	but	you	need	to
be	careful	when	creating	screens	that	you	know	will	end	up	in	a	slide	show.	Slides	don’t
scroll	vertically,	so	if	a	screen	is	bigger	than	the	browser	window	used	to	show	the	slides,
you’ll	never	be	able	to	see	some	of	the	data.	A	possible	workaround	is	to	create	screens
that	will	take	up	the	whole	window	size,	but	nothing	more.	This	way,	you’ll	be	sure	that
all	relevant	data	will	always	show	up	on	the	slide	show	that	you	play	on	that	big	screen
you	put	on	the	wall	for	monitoring	purposes.

Another	workaround	is	to	make	sure	that	for	each	screen	bigger	than	the	window	size,	you
put	all	important	data	at	the	top	of	the	screen.	This	way,	some	of	the	screen’s	data	will
show	up	on	the	slides,	while	you’ll	still	be	able	to	access	all	of	it	when	accessing	the
screen	on	its	own	and	not	as	part	of	the	slideshow.

Summary
In	this	chapter,	you	explored	Zabbix’s	visualization	features	and	learned	how	to	use	them
to	get	the	most	out	of	your	monitoring	data.	Sometimes,	the	value	of	a	measurement
doesn’t	lie	in	the	events	and	actions	that	it	can	trigger,	but	in	its	correlation	with	other
measurements,	both	in	time	(graphs)	and	instantly	(maps).	This	is	especially	true	with
network	monitoring,	where	the	ability	to	predict	the	future	needs	of	a	network,	and	adapt
to	them,	is	just	as	important	as	acting	on	contingent	issues.

We	have	reached	the	end	of	our	brief	journey	through	Zabbix’s	configuration	and	use.
Now,	you	should	be	able	to	correctly	size	a	Zabbix	installation	based	on	you	environment;
find	the	best	and	most	appropriate	tools	and	protocols	to	monitor	your	data;	automate
device	discovery	and	monitoring	as	much	as	possible	(and	when	not	to	automate	it);	and
move	beyond	actions	and	triggers	and	visualize	all	your	data	in	meaningful	ways.

With	all	these	skills	under	your	belt,	we	are	confident	that	you’ll	be	able	to	adapt	a
powerful	and	flexible	tool	like	Zabbix	to	your	own	network	and	not	be	confined	to	default
templates	that	may,	or	may	not,	reflect	your	actual	monitoring	needs.

Monitoring	a	computer	network	is	often	also	a	discovery	journey,	where	you	can	gain
unexpected	wisdom	from	apparently	dry	and	uninspiring	data,	such	as	SNMP	values	and
server	logs.	With	this	short	book,	we	hope	we	have	shown	you	how	Zabbix	can	be	an
excellent	means	to	gain	such	wisdom	if	you	are	willing	to	play	with	it	for	a	while	and	put
to	good	use	all	its	powerful	features.

Appendix	A.	Partitioning	the	Zabbix
Database

MySQL	partitioning
Here	are	all	the	stored	procedures	you	need	to	create	to	properly	handle	database
partitioning	with	MySQL.

You	need	to	create	all	of	them	in	your	Zabbix	database.

Note	that	all	the	procedures	described	here	are	also	available	at
https://github.com/smartmarmot/zabbix_network_monitoring/tree/master/Chapter1.

https://github.com/smartmarmot/zabbix_network_monitoring/tree/master/Chapter1

The	partition_maintenance	procedure
This	is	the	most	important	procedure,	which	will	manage	all	the	other	stored	procedures
involved	in	the	creation/drop	and	verification	of	partitions,	as	follows:

DELIMITER	$$

CREATE	PROCEDURE	`partition_maintenance`(SCHEMA_NAME	VARCHAR(32),	

TABLE_NAME	VARCHAR(32),	KEEP_DATA_DAYS	INT,	HOURLY_INTERVAL	INT,	

CREATE_NEXT_INTERVALS	INT)

BEGIN

								DECLARE	OLDER_THAN_PARTITION_DATE	VARCHAR(16);

								DECLARE	PARTITION_NAME	VARCHAR(16);

								DECLARE	LESS_THAN_TIMESTAMP	INT;

								DECLARE	CUR_TIME	INT;

	

								CALL	partition_verify(SCHEMA_NAME,	TABLE_NAME,	HOURLY_INTERVAL);

								SET	CUR_TIME	=	UNIX_TIMESTAMP(DATE_FORMAT(NOW(),	'%Y-%m-%d	

00:00:00'));

								IF	DATE(NOW())	=	'2014-04-01'	THEN

																SET	CUR_TIME	=	UNIX_TIMESTAMP(DATE_FORMAT(DATE_ADD(NOW(),	

INTERVAL	1	DAY),	'%Y-%m-%d	00:00:00'));

								END	IF;

								SET	@__interval	=	1;

								create_loop:	LOOP

																IF	@__interval	>	CREATE_NEXT_INTERVALS	THEN

																								LEAVE	create_loop;

																END	IF;

	

																SET	LESS_THAN_TIMESTAMP	=	CUR_TIME	+	(HOURLY_INTERVAL	*	

@__interval	*	3600);

																SET	PARTITION_NAME	=	FROM_UNIXTIME(CUR_TIME	+	

HOURLY_INTERVAL	*	(@__interval	-	1)	*	3600,	'p%Y%m%d%H00');

																CALL	partition_create(SCHEMA_NAME,	TABLE_NAME,	

PARTITION_NAME,	LESS_THAN_TIMESTAMP);

																SET	@__interval=@__interval+1;

								END	LOOP;

	

								SET	OLDER_THAN_PARTITION_DATE=DATE_FORMAT(DATE_SUB(NOW(),	INTERVAL	

KEEP_DATA_DAYS	DAY),	'%Y%m%d0000');

								CALL	partition_drop(SCHEMA_NAME,	TABLE_NAME,	

OLDER_THAN_PARTITION_DATE);

	

END$$

DELIMITER	;

This	stored	procedure	will	be	the	core	of	our	housekeeping.	It	will	be	called	with	the
following	syntax:

CALL	partition_maintenance('<zabbix_db_name>',	'<table_name>',	

<days_to_keep_data>,	<hourly_interval>,	<num_future_intervals_to_create>)

The	partition_create	procedure
This	procedure	is	responsible	for	creating	new	partitions	across	your	schema.	What
follows	here	is	the	procedure	itself:

DELIMITER	$$

CREATE	PROCEDURE	`partition_create`(SCHEMANAME	VARCHAR(64),	TABLENAME	

VARCHAR(64),	PARTITIONNAME	VARCHAR(64),	CLOCK	INT)

BEGIN

								/*

											SCHEMANAME	=	The	DB	schema	in	which	to	make	changes

											TABLENAME	=	The	table	with	partitions	to	potentially	delete

											PARTITIONNAME	=	The	name	of	the	partition	to	create

								*/

								/*

											Verify	that	the	partition	does	not	already	exist

								*/

	

								DECLARE	RETROWS	INT;

								SELECT	COUNT(1)	INTO	RETROWS

								FROM	information_schema.partitions

								WHERE	table_schema	=	SCHEMANAME	AND	TABLE_NAME	=	TABLENAME	AND	

partition_name	=	PARTITIONNAME;

	

								IF	RETROWS	=	0	THEN

																/*

																			1.	Print	a	message	indicating	that	a	partition	was	

created.

																			2.	Create	the	SQL	to	create	the	partition.

																			3.	Execute	the	SQL	from	#2.

																*/

																SELECT	CONCAT("partition_create(",	SCHEMANAME,	",",	

TABLENAME,	",",	PARTITIONNAME,	",",	CLOCK,	")")	AS	msg;

																SET	@SQL	=	CONCAT('ALTER	TABLE	',	SCHEMANAME,	'.',	

TABLENAME,	'	ADD	PARTITION	(PARTITION	',	PARTITIONNAME,	'	VALUES	LESS	THAN	

(',	CLOCK,	'));');

																PREPARE	STMT	FROM	@SQL;

																EXECUTE	STMT;

																DEALLOCATE	PREPARE	STMT;

								END	IF;

END$$

DELIMITER	;

The	partition_verify	procedure
This	partition	is	responsible	for	verifying	whether	a	partition	is	already	present,	and	if	it
isn’t,	partition_verify	will	create	them,	as	follows:

DELIMITER	$$

CREATE	PROCEDURE	`partition_verify`(SCHEMANAME	VARCHAR(64),	TABLENAME	

VARCHAR(64),	HOURLYINTERVAL	INT(11))

BEGIN

								DECLARE	PARTITION_NAME	VARCHAR(16);

								DECLARE	RETROWS	INT(11);

								DECLARE	FUTURE_TIMESTAMP	TIMESTAMP;

	

								/*

									*	Check	if	any	partitions	exist	for	the	given	

SCHEMANAME.TABLENAME.

									*/

								SELECT	COUNT(1)	INTO	RETROWS

								FROM	information_schema.partitions

								WHERE	table_schema	=	SCHEMANAME	AND	TABLE_NAME	=	TABLENAME	AND	

partition_name	IS	NULL;

	

								/*

									*	If	partitions	do	not	exist,	go	ahead	and	partition	the	table

									*/

								IF	RETROWS	=	1	THEN

																/*

																	*	Take	the	current	date	at	00:00:00	and	add	HOURLYINTERVAL	

to	it.		This	is	the	timestamp	below	which	we	will	store	values.

																	*	We	begin	partitioning	based	on	the	beginning	of	a	day.		

This	is	because	we	don't	want	to	generate	a	random	partition

																	*	that	won't	necessarily	fall	in	line	with	the	desired	

partition	naming	(ie:	if	the	hour	interval	is	24	hours,	we	could

																	*	end	up	creating	a	partition	now	named	"p201403270600"	

when	all	other	partitions	will	be	like	"p201403280000").

																	*/

																SET	FUTURE_TIMESTAMP	=	TIMESTAMPADD(HOUR,	HOURLYINTERVAL,	

CONCAT(CURDATE(),	"	",	'00:00:00'));

																SET	PARTITION_NAME	=	DATE_FORMAT(CURDATE(),	'p%Y%m%d%H00');

	

															—Create	the	partitioning	query

																SET	@__PARTITION_SQL	=	CONCAT("ALTER	TABLE	",	SCHEMANAME,	

".",	TABLENAME,	"	PARTITION	BY	RANGE(`clock`)");

																SET	@__PARTITION_SQL	=	CONCAT(@__PARTITION_SQL,	"(PARTITION	

",	PARTITION_NAME,	"	VALUES	LESS	THAN	(",	UNIX_TIMESTAMP(FUTURE_TIMESTAMP),	

"));");

	

															—Run	the	partitioning	query

																PREPARE	STMT	FROM	@__PARTITION_SQL;

																EXECUTE	STMT;

																DEALLOCATE	PREPARE	STMT;

								END	IF;

END$$

DELIMITER	;

The	partition_drop	procedure
This	stored	procedure	is	responsible	for	dropping	the	partitions	older	than	a	given	period,
as	follows:

DELIMITER	$$

CREATE	PROCEDURE	`partition_drop`(SCHEMANAME	VARCHAR(64),	TABLENAME	

VARCHAR(64),	DELETE_BELOW_PARTITION_DATE	BIGINT)

BEGIN

								/*

											SCHEMANAME	=	The	DB	schema	in	which	to	make	changes

											TABLENAME	=	The	table	with	partitions	to	potentially	delete

											DELETE_BELOW_PARTITION_DATE	=	Delete	any	partitions	with	names	

that	are	dates	older	than	this	one	(yyyy-mm-dd)

								*/

								DECLARE	done	INT	DEFAULT	FALSE;

								DECLARE	drop_part_name	VARCHAR(16);

	

								/*

											Get	a	list	of	all	the	partitions	that	are	older	than	the	date

											in	DELETE_BELOW_PARTITION_DATE.		All	partitions	are	prefixed	

with

											a	"p",	so	use	SUBSTRING	TO	get	rid	of	that	character.

								*/

								DECLARE	myCursor	CURSOR	FOR

																SELECT	partition_name

																FROM	information_schema.partitions

																WHERE	table_schema	=	SCHEMANAME	AND	TABLE_NAME	=	TABLENAME	

AND	CAST(SUBSTRING(partition_name	FROM	2)	AS	UNSIGNED)	<	

DELETE_BELOW_PARTITION_DATE;

								DECLARE	CONTINUE	HANDLER	FOR	NOT	FOUND	SET	done	=	TRUE;

	

								/*

											Create	the	basics	for	when	we	need	to	drop	the	partition.		Also,	

create

											@drop_partitions	to	hold	a	comma-delimited	list	of	all	

partitions	that

											should	be	deleted.

								*/

								SET	@alter_header	=	CONCAT("ALTER	TABLE	",	SCHEMANAME,	".",	

TABLENAME,	"	DROP	PARTITION	");

								SET	@drop_partitions	=	"";

	

								/*

											Start	looping	through	all	the	partitions	that	are	too	old.

								*/

								OPEN	myCursor;

								read_loop:	LOOP

																FETCH	myCursor	INTO	drop_part_name;

																IF	done	THEN

																								LEAVE	read_loop;

																END	IF;

																SET	@drop_partitions	=	IF(@drop_partitions	=	"",	

drop_part_name,	CONCAT(@drop_partitions,	",",	drop_part_name));

								END	LOOP;

								IF	@drop_partitions	!=	""	THEN

																/*

																			1.	Build	the	SQL	to	drop	all	the	necessary	partitions.

																			2.	Run	the	SQL	to	drop	the	partitions.

																			3.	Print	out	the	table	partitions	that	were	deleted.

																*/

																SET	@full_sql	=	CONCAT(@alter_header,	@drop_partitions,	

";");

																PREPARE	STMT	FROM	@full_sql;

																EXECUTE	STMT;

																DEALLOCATE	PREPARE	STMT;

	

																SELECT	CONCAT(SCHEMANAME,	".",	TABLENAME)	AS	`table`,	

@drop_partitions	AS	`partitions_deleted`;

								ELSE

																/*

																			No	partitions	are	being	deleted,	so	print	out	"N/A"	(Not	

applicable)	to	indicate

																			that	no	changes	were	made.

																*/

																SELECT	CONCAT(SCHEMANAME,	".",	TABLENAME)	AS	`table`,	"N/A"	

AS	`partitions_deleted`;

								END	IF;

END$$

DELIMITER;

The	partition_maintenance_all	procedure
This	procedure	calls	the	partition_maintenance	procedure	for	each	history/trend	table.
Please	note	that	for	all	the	history	tables,	we	are	applying	the	same	intervals,	which	are
730	days	of	trend	data	and	28	days	of	history	data.	Here’s	how	this	procedure	works:

DELIMITER	$$

CREATE	PROCEDURE	`partition_maintenance_all`(SCHEMA_NAME	VARCHAR(32))

BEGIN

																CALL	partition_maintenance(SCHEMA_NAME,	'history',	28,	24,	

14);

																CALL	partition_maintenance(SCHEMA_NAME,	'history_log',	28,	

24,	14);

																CALL	partition_maintenance(SCHEMA_NAME,	'history_str',	28,	

24,	14);

																CALL	partition_maintenance(SCHEMA_NAME,	'history_text',	28,	

24,	14);

																CALL	partition_maintenance(SCHEMA_NAME,	'history_uint',	28,	

24,	14);

																CALL	partition_maintenance(SCHEMA_NAME,	'trends',	730,	24,	

14);

																CALL	partition_maintenance(SCHEMA_NAME,	'trends_uint',	730,	

24,	14);

END$$

DELIMITER;

Housekeeping	configuration
As	per	our	example,	the	housekeeping	needs	to	be	configured,	as	shown	in	the	following
screenshot,	with	a	history	data	storage	period	of	730	days	and	a	trend	data	storage	period
of	28	days.	Here,	you	can	change	those	values	bearing	in	mind	that	you	also	need	to
change	the	parameter	passed	to	the	stored	procedures.

To	change	the	housekeeping	setting	in	the	web	interface,	you	simply	need	to	go	to
Administration	|	General	|	Housekeeping	(from	the	drop-down	list),	and	here	is	the
configuration:

Appendix	B.	Collecting	Squid	Metrics

Squid	metric	script
Here,	you	can	find	the	script	we	discussed	in	Chapter	3,	Monitoring	Your	Network
Services,	and	create	the	script	in	the	usual	location,	that	is,	at
/home/zabbix/bin/squidcheck.sh.

Create	the	script	with	the	following	content:

cat	squidcheck.sh

#!/bin/bash

VERSION="1.0"

function	usage()

{

		echo	"squidcheck		version:	$VERSION"

		echo	"usage:"

		echo	"		$0	http_requests														-	Number	of	HTTP	requests	received"

		echo	"		$0	clients																				-	Number	of	clients	accessing	

cache"

		echo	"		$0	icp_received															-	Number	of	ICP	messages	received"

		echo	"		$0	icp_sent																			-	Number	of	ICP	messages	sent"

		echo	"		$0	icp_queued																	-	Number	of	queued	ICP	replies"

		echo	"		$0	htcp_received														-	Number	of	HTCP	messages	received"

		echo	"		$0	htcp_sent																		-	Number	of	HTCP	messages	sent"

		echo	"		$0	req_fail_ratio													-	Request	failure	ratio"

		echo	"		$0	avg_http_req_per_min							-	Average	HTTP	requests	per	minute	

since	start"

		echo	"		$0	avg_icp_msg_per_min								-	Average	ICP	messages	per	minute	

since	start"

		echo	"		$0	request_hit_ratio										-	Request	Hit	Ratios"

		echo	"		$0	byte_hit_ratio_5											-	Byte	Hit	Ratio	5	mins"

		echo	"		$0	byte_hit_ratio_60										-	Byte	Hit	Ratio	60	mins"

		echo	"		$0	request_mem_hit_ratio_5				-	Request	Memory	Hit	Ratios	5	mins"

		echo	"		$0	request_mem_hit_ratio_60			-	Request	Memory	Hit	Ratios	60	

mins"

		echo	"		$0	request_disk_hit_ratio_5			-	Request	Disk	Hit	Ratios	5	mins"

		echo	"		$0	request_disk_hit_ratio_60		-	Request	Disk	Hit	Ratios	60	mins"

		echo	"		$0	servicetime_httpreq								-	HTTP	Requests	(All)"

		echo	"		$0	process_mem																-	Process	Data	Segment	Size	via	

sbrk"

		echo	"		$0	cpu_usage																		-	CPU	Usage"

		echo	"		$0	cache_size_disk												-	Storage	Swap	size"

		echo	"		$0	cache_size_mem													-	Storage	Mem	size"

		echo	"		$0	mean_obj_size														-	Mean	Object	Size"

		echo	"		$0	filedescr_max														-	Maximum	number	of	file	

descriptors"

		echo	"		$0	filedescr_avail												-	Available	number	of	file	

descriptors"

}

########

#	Main	#

########

if	[[$#	!=		1]];then

								#No	Parameter

								usage

								exit	0

fi

case	$1	in

"http_requests")

				value="`squidclient	mgr:info|grep	'Number	of	HTTP	requests	

received:'|cut	-d':'	-f2|	tr	-d	'	\t'`"

								rval=$?;;

"clients")

				value="`squidclient	mgr:info|grep	'Number	of	clients	accessing	

cache:'|cut	-d':'	-f2|	tr	-d	'	\t'`"

								rval=$?;;

"icp_received")

								value="`squidclient	mgr:info|grep	'Number	of	ICP	messages	

received:'|cut	-d':'	-f2|	tr	-d	'	\t'`"

								rval=$?;;

"icp_sent")

								value="`squidclient	mgr:info|grep	'Number	of	ICP	messages	

sent:'|cut	-d':'	-f2|	tr	-d	'	\t'`"

								rval=$?;;

"icp_queued")

								value="`squidclient	mgr:info|grep	'Number	of	queued	ICP	

replies:'|cut	-d':'	-f2|	tr	-d	'	\t'`"

								rval=$?;;

"htcp_received")

								value="`squidclient	mgr:info|grep	'Number	of	HTCP	messages	

received:'|cut	-d':'	-f2|	tr	-d	'	\t'`"

								rval=$?;;

"htcp_sent")

								value="`squidclient	mgr:info|grep	'Number	of	HTCP	messages	

sent:'|cut	-d':'	-f2|	tr	-d	'	\t'`"

								rval=$?;;

"req_fail_ratio")

								value="`squidclient	mgr:info|grep	'Request	failure	ratio:'|cut	-

d':'	-f2|	tr	-d	'	\t'`"

								rval=$?;;

"avg_http_req_per_min")

								value="`squidclient	mgr:info|grep	'Average	HTTP	requests	per	minute	

since	start:'|cut	-d':'	-f2|	tr	-d	'	\t'`"

								rval=$?;;

"avg_icp_msg_per_min")

								value="`squidclient	mgr:info|grep	'Average	ICP	messages	per	minute	

since	start:'|cut	-d':'	-f2|	tr	-d	'	\t'`"

								rval=$?;;

"request_hit_ratio")

								value="`squidclient	mgr:info|grep	'Request	Hit	Ratios:'|cut	-d':'	-

f3|cut	-d','	-f1|tr	-d	'	%'`"

								rval=$?;;

"byte_hit_ratio_5")

								value="`squidclient	mgr:info|grep	'Hits	as	%	of	bytes	sent:'|		awk	

-F'[:,%]'	'{print	$10}'|	tr	-d	'	\t'`"

								rval=$?;;

"byte_hit_ratio_60")

								value="`squidclient	mgr:info|grep	'Hits	as	%	of	bytes	sent:'|		awk	

-F'[:,%]'	'{print	$15}'|	tr	-d	'	\t'`"

								rval=$?;;

"request_mem_hit_ratio_5")

								value="`squidclient	mgr:info|grep	'Hits	as	%	of	all	requests:'	|		

awk	-F'[:,%]'	'{print	$10}'|	tr	-d	'	\t'`"

								rval=$?;;

"request_mem_hit_ratio_60")

								value="`squidclient	mgr:info|grep	'Hits	as	%	of	all	requests:'	|		

awk	-F'[:,%]'	'{print	$15}'|	tr	-d	'	\t'`"

								rval=$?;;

"request_disk_hit_ratio_5")

								value="`squidclient	mgr:info|grep	'Disk	hits	as	%	of	hit	

requests:'|awk	-F'[:,%]'	'{print	$11}'|	tr	-d	'	\t'`"

								rval=$?;;

"request_disk_hit_ratio_60")

								value="`squidclient	mgr:info|grep	'Disk	hits	as	%	of	hit	

requests:'|awk	-F'[:,%]'	'{print	$16}'|	tr	-d	'	\t'`"

								rval=$?;;

"servicetime_httpreq")

								value="`squidclient	mgr:info|grep	'HTTP	Requests	(All):'|cut	-d':'	

-f2|tr	-s	'	'|awk	'{print	$1}'`"

								rval=$?;;

"process_mem")

								value="`squidclient	mgr:info|grep	'Process	Data	Segment	Size	via	

sbrk'|cut	-d':'	-f2|awk	'{print	$1}'`"

								rval=$?;;

"cpu_usage")

								value="`squidclient	mgr:info|grep	'CPU	Usage:'|cut	-d':'	-f2|tr	-d	

'%'|tr	-d	'	\t'`"

								rval=$?;;

"cache_size_disk")

								value="`squidclient	mgr:info|grep	'Storage	Swap	size:'|cut	-d':'	-

f2|awk	'{print	$1}'`"

								rval=$?;;

"cache_size_mem")

								value="`squidclient	mgr:info|grep	'Storage	Mem	size:'|cut	-d':'	-

f2|awk	'{print	$1}'`"

								rval=$?;;

"mean_obj_size")

								value="`squidclient	mgr:info|grep	'Mean	Object	Size:'|cut	-d':'	-

f2|awk	'{print	$1}'`"

								rval=$?;;

"filedescr_max")

								value="`squidclient	mgr:info|grep	'Maximum	number	of	file	

descriptors:'|cut	-d':'	-f2|awk	'{print	$1}'`"

								rval=$?;;

"filedescr_avail")

								value="`squidclient	mgr:info|grep	'Available	number	of	file	

descriptors:'|cut	-d':'	-f2|awk	'{print	$1}'`"

								rval=$?;;

*)

								usage

								exit	1;;

esac

if	["$rval"	-eq	0	-a	-z	"$value"];	then

								rval=1

fi

if	["$rval"	-ne	0];	then

								echo	"ZBX_NOTSUPPORTED"

fi

echo	$value

Index
A

action	conditions	section	/	Finding	hosts	the	Zabbix	way
action	definition	section	/	Defining	action	conditions
action	operations	section	/	Finding	hosts	the	Zabbix	way
Apache

modules	/	Apache	monitoring
Apache	monitoring

about	/	Apache	monitoring
performing	/	Apache	monitoring

architectures,	Zabbix
about	/	Zabbix	architectures

C
complex	maps

issues	/	Maps	–	a	quick	setup	for	a	large	topology
CPULoad	parameter	/	Apache	monitoring
custom	graphs

creating	/	Creating	custom	graphs

D
database

installing	/	Installing	a	database
size,	considering	/	Considering	the	database	size
items	/	Considering	the	database	size
refresh	rate	/	Considering	the	database	size
space	/	Considering	the	database	size
MySQL	partitioning	/	MySQL	partitioning

data	flow,	Zabbix
about	/	Understanding	Zabbix	data	flow

data	types,	SNMP
about	/	Getting	data	types	right
URL	/	Getting	data	types	right
INTEGER	/	Getting	data	types	right
STRING	/	Getting	data	types	right
OID	/	Getting	data	types	right
IpAddress	/	Getting	data	types	right
Counter32	/	Getting	data	types	right
Gauge32	/	Getting	data	types	right
Counter64	/	Getting	data	types	right
TimeTicks	/	Getting	data	types	right

dig
about	/	DNS	–	response	time

discovery	items
about	/	Low-level	discovery

discovery	rules
about	/	Low-level	discovery

DNS	monitoring
about	/	Monitoring	the	DNS
performing	/	Monitoring	the	DNS
response	time,	monitoring	/	DNS	–	response	time
DNSSEC	zone	rollover,	monitoring	/	DNSSEC	–	monitoring	the	zone	rollover

DNSSEC	parameters
about	/	DNSSEC	–	monitoring	the	zone	rollover

G
graph

putting,	on	screen	/	Putting	everything	together	with	screens

H
host	groups

about	/	Hosts	and	host	groups
routers	group	/	Hosts	and	host	groups
switches	group	/	Hosts	and	host	groups
subnet	group	/	Hosts	and	host	groups

hosts
about	/	Understanding	Zabbix	hosts
interfaces	/	Host	interfaces
inventory	/	Host	inventory

housekeeping	configuration
about	/	Housekeeping	configuration

I
ICMP	echo	checks

about	/	Simple	checks
interfaces	/	Host	interfaces
Internet	Protocol	Flow	Information	eXport	(IPFIX)	/	Getting	netflow	from	the
devices	to	the	monitoring	server

L
low-level	discovery

about	/	Low-level	discovery
advantage	/	Low-level	discovery
rules,	creating	/	Low-level	discovery
rules,	managing	/	Low-level	discovery

M
maps

complex	maps	/	Maps	–	a	quick	setup	for	a	large	topology
DOT	creation,	automating	/	Maps	–	automating	the	DOT	creation
drafting,	from	DOT	/	Drafting	Zabbix	maps	from	DOT
putting,	on	screen	/	Putting	everything	together	with	screens

MIBs
about	/	Finding	the	right	OIDs	to	monitor

MySQL	partitioning
about	/	MySQL	partitioning
benefits	/	MySQL	partitioning
stored	procedures	/	MySQL	partitioning
partition_maintenance	procedure	/	The	partition_maintenance	procedure
partition_create	procedure	/	The	partition_create	procedure
partition_verify	procedure	/	The	partition_verify	procedure
partition_drop	procedure	/	The	partition_drop	procedure
partition_maintenance_all	procedure	/	The	partition_maintenance_all	procedure

N
netflow

about	/	Getting	netflow	from	the	devices	to	the	monitoring	server
data,	getting	into	Zabbix	/	Getting	netflow	from	the	devices	to	the	monitoring
server
data,	receiving	on	server	/	Receiving	netflow	data	on	your	server

network	discovery
hosts,	finding	/	Finding	hosts	the	Zabbix	way
action	conditions,	defining	/	Defining	action	conditions
action	operations,	selecting	/	Choosing	action	operations
remote	commands,	executing	/	Remote	commands

network	interfaces
about	/	Low-level	discovery

network	services
DNS,	monitoring	/	Monitoring	the	DNS
Apache,	monitoring	/	Apache	monitoring
NTP,	monitoring	/	NTP	monitoring
Squid,	monitoring	/	Squid	monitoring

NetworkX
URL	/	Maps	–	automating	the	DOT	creation
about	/	Maps	–	automating	the	DOT	creation

Nfdump
about	/	Receiving	netflow	data	on	your	server
nfcapd	/	Receiving	netflow	data	on	your	server
nfdump	/	Receiving	netflow	data	on	your	server
URL,	for	nfdump	package	/	Receiving	netflow	data	on	your	server

Nmap	/	Choosing	action	operations
NTP	monitoring

about	/	NTP	monitoring
performing	/	NTP	monitoring,	NTP	–	what	are	we	monitoring?
Delay	/	NTP	–	what	are	we	monitoring?
Offset	/	NTP	–	what	are	we	monitoring?
Jitter	/	NTP	–	what	are	we	monitoring?

O
OIDs

finding,	for	monitoring	/	Finding	the	right	OIDs	to	monitor
about	/	Finding	the	right	OIDs	to	monitor
mapping,	to	Zabbix	items	/	Mapping	SNMP	OIDs	to	Zabbix	items

P
partition_create	procedure

about	/	The	partition_create	procedure
partition_drop	procedure

about	/	The	partition_drop	procedure
partition_maintenance	procedure

about	/	The	partition_maintenance	procedure
partition_maintenance_all	procedure

about	/	The	partition_maintenance_all	procedure
partition_verify	procedure

about	/	The	partition_verify	procedure
Perl	modules

about	/	DNSSEC	–	monitoring	the	zone	rollover
proxies	data	flow,	Zabbix

about	/	Understanding	the	Zabbix	proxies’	data	flow
ProxyConfigFrequency=	parameter

about	/	Understanding	the	Zabbix	proxies’	data	flow
ProxyDataFrequency=	parameter

about	/	Understanding	the	Zabbix	proxies’	data	flow
pyzabbix

about	/	Remote	commands
URL	/	Remote	commands

Q
query_apachestats.py	/	Apache	monitoring

R
ReadingRequest	parameter	/	Apache	monitoring
ReqPerSec	parameter	/	Apache	monitoring
rollstate	plugin

about	/	DNSSEC	–	monitoring	the	zone	rollover

S
screen

about	/	Putting	everything	together	with	screens
creating	/	Putting	everything	together	with	screens
maps,	putting	on	/	Putting	everything	together	with	screens
graph,	putting	on	/	Putting	everything	together	with	screens

Siege
URL	/	Apache	monitoring

simple	checks
about	/	Simple	checks
Icmpping	/	Simple	checks
Icmppingloss	/	Simple	checks
Icmppingsec	/	Simple	checks
Net.tcp.service	/	Simple	checks
Net.tcp.service.perf	/	Simple	checks
configuring	/	Simple	checks

slide	show
creating	/	Putting	everything	together	with	screens

SNMP
about	/	Keeping	SNMP	simple
data,	getting	into	Zabbix	/	Getting	SNMP	data	into	Zabbix
OIDs,	finding	for	monitoring	/	Finding	the	right	OIDs	to	monitor
OIDs,	mapping	to	Zabbix	items	/	Mapping	SNMP	OIDs	to	Zabbix	items
data	types	/	Getting	data	types	right
netflow	data,	receiving	on	server	/	Receiving	netflow	data	on	your	server
log	file,	monitoring	with	Zabbix	/	Monitoring	a	log	file	with	Zabbix

SNMP	gets
about	/	Keeping	SNMP	simple

snmptrapd
about	/	Snmptrapd

SNMP	traps
about	/	Keeping	SNMP	simple,	SNMP	traps
snmptrapd	/	Snmptrapd
transforming,	into	Zabbix	item	/	Transforming	a	trap	into	a	Zabbix	item
netflow,	getting	from	devices	/	Getting	netflow	from	the	devices	to	the
monitoring	server

Squid
about	/	Squid	monitoring
URL	/	Squid	monitoring

Squid	metric	script
about	/	Squid	metric	script

Squid	monitoring
performing	/	Squid	monitoring

StartProxyPollers=	parameter
about	/	Understanding	the	Zabbix	proxies’	data	flow

T
TCP/IP	connection	checks

about	/	Simple	checks
trigger	information	cell	/	Putting	everything	together	with	screens
trigger	overview	cell	/	Putting	everything	together	with	screens

V
value	maps

about	/	Getting	data	types	right

W
WaitingForConnection	parameter	/	Apache	monitoring
WebGUI	interface

installing	/	Installing	the	WebGUI	interface

X
xdot.py

URL	/	Maps	–	automating	the	DOT	creation
xml2

about	/	Monitoring	the	DNS

Z
Zabbix

architectures	/	Zabbix	architectures
data	flow	/	Understanding	Zabbix	data	flow
proxies	data	flow	/	Understanding	the	Zabbix	proxies’	data	flow
installing	/	Installing	Zabbix
database,	installing	/	Installing	a	database
hosts	/	Understanding	Zabbix	hosts
host	groups	/	Hosts	and	host	groups

Zabbix	agent	package,	for	Linux	OS
URL	/	Creating	a	Zabbix	agent	package	with	CheckInstall

Zabbix	agents
about	/	Going	beyond	Zabbix	agents
simple	checks	/	Simple	checks
SNMP	/	Keeping	SNMP	simple
SNMP	traps	/	SNMP	traps

ZabbixApacheUpdater	plugin	/	Apache	monitoring
Zabbix	installation

about	/	Installing	Zabbix
installing,	from	packages	/	Installing	from	packages
Zabbix	agent,	setting	up	/	Setting	up	a	Zabbix	agent
Zabbix	agent	package,	creating	with	CheckInstall	/	Creating	a	Zabbix	agent
package	with	CheckInstall
server	configuration	/	Server	configuration

Zabbix	proxy
installing	/	Installing	a	Zabbix	proxy

zapache	plugin	/	Apache	monitoring
URL	/	Apache	monitoring

zonestate	plugin
about	/	DNSSEC	–	monitoring	the	zone	rollover

	Zabbix Network Monitoring Essentials
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Installing a Distributed Zabbix Setup
	Zabbix architectures
	Understanding Zabbix data flow
	Understanding the Zabbix proxies' data flow
	Installing Zabbix
	Installing from packages
	Setting up a Zabbix agent
	Creating a Zabbix agent package with CheckInstall
	Server configuration
	Installing a database
	Considering the database size
	MySQL partitioning
	Installing a Zabbix proxy
	Installing the WebGUI interface
	Summary
	2. Active Monitoring of Your Devices
	Understanding Zabbix hosts
	Hosts and host groups
	Host interfaces
	Host inventory
	Going beyond Zabbix agents
	Simple checks
	Keeping SNMP simple
	Getting SNMP data into Zabbix
	Finding the right OIDs to monitor
	Mapping SNMP OIDs to Zabbix items
	Getting data types right
	SNMP traps
	Snmptrapd
	Transforming a trap into a Zabbix item
	Getting netflow from the devices to the monitoring server
	Receiving netflow data on your server
	Monitoring a log file with Zabbix
	Summary
	3. Monitoring Your Network Services
	Monitoring the DNS
	DNS – response time
	DNSSEC – monitoring the zone rollover
	Apache monitoring
	NTP monitoring
	NTP – what are we monitoring?
	Squid monitoring
	Summary
	4. Discovering Your Network
	Finding hosts the Zabbix way
	Defining action conditions
	Choosing action operations
	Remote commands
	Low-level discovery
	Summary
	5. Visualizing Your Topology with Maps and Graphs
	Creating custom graphs
	Maps – a quick setup for a large topology
	Maps – automating the DOT creation
	Drafting Zabbix maps from DOT
	Putting everything together with screens
	Summary
	A. Partitioning the Zabbix Database
	MySQL partitioning
	The partition_maintenance procedure
	The partition_create procedure
	The partition_verify procedure
	The partition_drop procedure
	The partition_maintenance_all procedure
	Housekeeping configuration
	B. Collecting Squid Metrics
	Squid metric script
	Index

