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Introduction

Wireshark is one of the most sought out tools among network engineers
and network security analysts. Wireshark gives engineers the capability to
analyze network traffic by expanding through each section of a header and
examining its value. Wireshark not only helps with network traffic analysis;
itis also a critical tool when it comes to understanding or learning a
network protocol or feature. Performing packet capture and analyzing
network traffic can be complex, time-consuming, and tedious tasks. With
the help of this book, users will be able to use Wireshark to its full potential
and become expert at analyzing network traffic and more efficient at
solving complex network problems.

This book helps build a strong foundation for how Layer 2, Layer 3,
and Layer 4 traffic behaves and how various routing protocols and overlay
protocols function, as well as an understanding of their packet structure.
This book is a very useful handbook for troubleshooting engineers who
want to analyze traffic to identify issues in the network, such as issues
related to packet loss, bursty traffic, and so on. This book will help you
get started on the journey of becoming a strong network engineer or a
cybersecurity expert.



CHAPTER 1

Introduction to
Wireshark

This chapter covers the following topics:
e Introduction to network traffic analysis
e Overview of Wireshark
o Installing Wireshark

e Setting up port mirroring

Introduction to Network Traffic Analysis

Modern-day networks and network designs are complex. A network

is a graphical representation of how different elements in the network
(nodes) are connected. Because every business or organization has its own
set of network requirements, network architects come up with designs

and solutions that are best suited for the given business requirements.

The network design differs between enterprise, service provider, and
datacenter networks in various aspects such as scale, redundancy,
security, and so on. A few factors are usually considered when designing a
network:

© Vinit Jain 2022 1
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CHAPTER 1

INTRODUCTION TO WIRESHARK

Simple: A network design should be simple. Most
practitioners in the network field are familiar with
the KISS principle: Keep It Simple, Stupid. A network
is dependent on various technologies, protocols,
hardware and software resources, and so on. Even
though each of these components might be simple
individually, their combination in a network will
always add to the complexity. Identifying problems in
large-scale networks is often like finding a needle in

a haystack. It thus becomes more important that the
network design and architecture are kept as simple as
possible.

Highly available: Almost every network is designed

to carry traffic for critical business applications, and

a small network event could have a massive impact

on the services provided by an organization. Thus,

itis important to build redundancy into the network
such that in the case of a failure event, the availability
of services is maintained. Although redundancy in a
network is vital, it is equally important to understand
and define how much redundancy is acceptable. More
redundant paths in the network result in higher costs.

Robust: As stated in the IEEE document “Robust
Network Design,” robustness is defined as minimizing
variations in network performance, such as average
delay and throughput, due to perturbations in the
network like topology, demand, and community of
interest. If a network design as well as its requirements
are not thought through in depth, the network will be
affected with increased average delays and throughput
or performance issues over a period of time.
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e Scalable: Because the scale of the application and user
traffic are constantly growing, the ability to scale the
existing network infrastructure holds great importance.
While designing computer networks, it is important to
choose designs that will allow you to scale the network
horizontally as well as vertically as and when required.
In other words, the network design should allow the
organization to scale the network for east-west as
well as north-south traffic on an on-demand basis.
One such example is the Clos network design, which
primarily focuses on the spine-leaf architecture and
has been widely adopted by large-scale datacenter
networks to help them cater to the increased traffic
demand over the years.

e Futuristic: In designing networks, it is also important
to choose the right set of hardware and software.
The right hardware and software choices will allow
you to leverage the latest technologies and current
innovations in the network industry and will enable
you to upgrade the firmware or the network operating
system to access the latest available features.

Even when all of these factors are taken into consideration while
designing a network, every network still has to undergo changes to
overcome dynamic application and resource demands. In addition, every
network, irrespective of how carefully it has been designed, is prone to
network issues. As the network grows, its complexity also grows. It is only
a matter of time before a network problem arises and network engineers
are called on to solve the problem. Network problems are usually difficult
to manage, and the complexity is even greater when we have multiple
features and encapsulations being used in the network.
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The main goal of the network operations team is to keep the network
as stable as possible and mitigate any problems as quickly as possible
while keeping the blast radius of the event to a minimum. Most network
outages can be quickly mitigated by following one of several techniques:

o Shutting down a bad or faulty link

¢ Rebooting or shutting down a network device
(e.g., router, switch, firewall, etc.)

» Diverting traffic by adjusting the routing metrics
o Flapping a routing adjacency

Some issues could take longer time to resolve, especially when it
comes to software or hardware defects. Among the different network-
related issues faced by network engineers, issues such as continuous or
intermittent packet loss, latency, or routing or switching issues require a
deeper analysis. Other issues can be quickly mitigated by replacing the
hardware or cable or a particular port, for example, but issues related to
packet loss or routing problems involve multiple elements in the network
that cannot be identified and mitigated quickly. Such issues sometimes
require more visibility at the packet level as to what data are being
transmitted on the wire. That said, it is now time to understand what
network analysis is.

Network traffic analysis (NTA), often referred to as packet sniffing,
is the process of collecting (capturing) network traffic and monitoring
network activity and events by examining the collected traffic to identify
anomalies in the network, including but not limited to operational issues
such as packet loss or latency and security issues such as Transmission
Control Protocol (TCP) SYN attacks or man-in-the-middle attacks. There
are always situations in the network where the show commands or debugs
from the network operating system do not yield the actual packet-level
information that is being transmitted from one node to another. A tap in
the wire allows the network administrators to gain a clear understanding of
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what packets are being transmitted across the network elements. There are
several use cases where NTA techniques could be applied:

e Understanding network characteristics

e Analyzing protocol behaviors

o Troubleshooting slowness in the network
e Troubleshooting packet forwarding issues

o Identifying vulnerabilities in the network protocols
and ciphers

o Identifying malicious activities in the network

e Collecting real-time information on activities between
different network elements

Better visibility into the network allows the network administrators
to optimize performance, enhance the security posture of the network,
minimize the blast radius of a network attack, and better analyze the
utilization of network resources. The packets collected in the network also
give network administrators a better understanding of how the network
users are implementing their applications. Techniques such as deep
packet inspection (DPI) allow complete network visibility by transforming
the raw packet data as well as metadata into a readable format.

Typically, packet analysis or packet sniffing is performed by a packet
sniffer, a tool that is used to capture raw network traffic going across the
wire (network). There are several tools available, including the free or
commercial ones, based on the command-line interface (CLI) as well as
the graphical user interface (GUI). These are some of the most popular
packet sniffer tools:

e Tcpdump: This is a powerful CLI-based packet analyzer
tool that is freely available and runs on Linux or most
UNIX-like operating systems.
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e Omnipeek: This is a GUI-based commercial packet
analyzer tool from Savvius, a LiveAction company.

o  Wireshark: Wireshark is a free, open source, GUI-based
packet analyzer available for download on various
operating systems.

Note In this book, we primarily focus on Wireshark. Covering
different network analyzer tools is outside the scope of the book.

Network Sniffing

As easy as it sounds, network sniffing is actually not easy. Most network
engineers think that packet sniffing involves simply plugging a laptop into
a network port and capturing traffic, but that is not the case. There are
various factors to be considered when tapping into the wire and capturing
traffic. Two factors play a vital role when sniffing network traffic:

1. Placement of the sniffer in the network
2. The number of sniffer placements

We discuss both these points in detail.

Sniffer Placement

Location of the sniffer placement varies based on the network topology.
Different network topologies have varied requirements and complexities
and identifying the point of sniffer placement in such complex
environments is not easy. As we know, networks include different
elements, such as routers, switches, wireless controllers, firewalls, and so
on. Some of these components might not even have support for enabling
traffic mirroring for sniffing purposes. Traffic mirroring on switches can be
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enabled using a technique known as port mirroring. Port mirroring or port
spanning can be configured on the switch using a CLI command or a web
management interface of the switch. The best feature of port mirroring is
that it leaves no network footprint and does not generate any additional
packets. It can be configured without taking any of the active traffic
interfaces or host interfaces offline, which makes it an ideal option for
mirroring not just switch traffic, but also router or server and host ports. As
part of the configuration, you define the source interface(s) along with the
direction of the traffic (incoming or outgoing) you want to capture and a
destination interface that is connected to a host with a packet capture tool,
such as Wireshark, installed on it to collect all the mirrored packets that
can later be used for analysis. Once this is set up, the mirrored traffic from
all the source ports is sent to a host connected on the destination port.
Figure 1-1 illustrates how port mirroring works. In this given topology,
traffic sourced from host A and destined for host B is mirrored and sent to
the capture device connected on Eth2/0.

HOSI—F Switch Host—F

S
Capture Device

Figure 1-1. Port mirroring

For a capture device to be able to capture packets, the network
interface card (NIC) should support promiscuous mode. A promiscuous
mode driver allows a NIC to view all packets crossing the wire. When tools
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such as Wireshark are installed on the capture device, they also install a
libpcap or WinPcap driver on the device. These drivers allow the NIC to
switch to promiscuous mode and capture packets across the network.
Now, we return to the question of what the right place is to locate the
sniffer capture in the network. The simple answer is that it depends on
the troubleshooting being performed and the relevant network topology
between the problematic source and destination. First of all, it should
never be a goal of any kind of network troubleshooting to begin with
placing sniffer captures at multiple places in the network. The goal should
always be to isolate and narrow down the problem as much as possible.
In narrowing down, you might find that you do not need to place sniffer
captures at all. To troubleshoot a network problem, it is important to
first understand the problem and its scope. Unless a problem is clearly
understood, troubleshooting cannot move in the right direction and it
could take more time and effort to mitigate or resolve a problem. Second,
as part of the problem statement, the scope information should also be
gathered to understand the blast radius of the problem. In other words,
the scope of the network problem can be identified by asking few simple
questions such as these:

e When did the problem start?
e What is the problematic source and destination?
e What is the working source and destination?

e What is the relevant topology between the source and
destination?

e How many users and services are affected?

o What was the trigger of the problem?
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Once the problem statement and the scope are clearly defined, the
next step is to isolate the direction of the problem. For instance, let’s say
there is a complete packet loss between hosts A and B as the traffic is
flowing across multiple network devices. To isolate the direction of the
problem, we need to identify if the problem is when the packet is sent from
A to B or in the reverse direction. It could be, based on the way the network
devices are configured, that the traffic from host B to host A might not flow
via the same set of devices that it took when flowing from host A to host B.
This is known as asymmetrical routing. If direction of the problem is not
identified, we would end up placing sniffer captures randomly across
multiple devices in the network, which consumes more time. Once the
direction of the problem is isolated, then it is important to further narrow
down the problem to a minimum set of devices or even interfaces. To
understand this in detail, examine the topology shown in Figure 1-2.

The topology shows the connectivity between two sites of an enterprise
network. In this topology, each site has access, distribution, core, and wide
area network (WAN) layers. The WAN routers are connected to the Internet
service providers (ISPs) that provide connectivity to the remote site across
the Internet. In this topology, the distribution switches, the core switches,
and the WAN routers are all connected via an interior gateway protocol
(IGP). The WAN routers at Site 1 are connected to the remote site WAN
routers via Border Gateway Protocol (BGP) peering toward the ISP, which
is exchanging certain prefixes along with a default route. The BGP prefixes
are then redistributed into the Open Shortest Path First (OSPF) database at
both sides to provide end-to-end connectivity between both sites.
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Internet

Figure 1-2. Enterprise network topology

Now, let’s examine a scenario where the network operations team
has reported a problem, stating that host H1 is having connectivity issues
reaching multiple hosts across the remote site. As a network engineer, you
start isolating the problem scope by asking few basic questions as stated
previously. Let’s assume that host H1 is having issues reaching host H4 and
host H5, but not host H6. Host H1 is not having any issues reaching any
of the hosts that are local to the site. Now you have baseline information
on what is working and what is broken. As a next step in troubleshooting,
there are a few simple steps that you can take:

o Verify Address Resolution Protocol (ARP) information:
Verify if the ARP entry is complete for host H4 or H5
versus host H6.

o Traffic pattern: Verify if the issue is sending broadcast
traffic or unicast traffic. If the ARP table on host H1
shows that the ARP entry is present or is getting
completed for host H4 and H5 even after clearing the

10
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ARP, then it might be a problem just with the unicast
traffic instead of all traffic (broadcast, unicast, or
multicast traffic) between H1 and H4 or H5.

Path information: Perform traceroutes between
working and nonworking hosts to identify any
difference in paths taken by each of them. If the
network has equal cost multiple paths (ECMP),

then most routing and switching platforms perform
flow-based hashing to send traffic out on one of the
interfaces. If the traceroute fails at one of the hops in
the path, that would indicate the problem might be
isolated to that segment of the network. Note that it is
important to perform traceroutes from both endpoints
so that any possibility of asymmetrical routing could be
detected.

Access control lists (ACLs): Leverage ACLs whenever
possible to isolate where the traffic loss is happening.
Users can configure both Layer 3 ACLs (standard and
extended) and Layer 2 ACLs (media access control
[MAC] ACLs) to match Layer 3 as well as Layer 2 traffic
at different segments of the network. However, there
could be instances where ACLs might not be of any
help. For instance, ACLs do not allow users to capture
Multiprotocol Label Switching (MPLS) packets. Thus,
it becomes important to identify the kind of packets
being investigated during troubleshooting.

11
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Hop-by-hop ping tests: If a traceroute fails at a segment
of the network, it might make sense to check the
reachability of the source device to that segment of
the network. It is possible that only the transit traffic
might be affected and not the traffic destined for those
devices in the segment. This usually happens if there
is an ACL blocking the traffic in the path or due to a
software misprogramming (software defect). In such
instances, ping tests should be performed before
performing deep-dive troubleshooting.

Platform troubleshooting tools: Most routing and
switching platforms come with troubleshooting

tools as part of the network operating system (OS).
These platform troubleshooting tools can help you
understand if a packet is being dropped on the device
itself or not and why. These tools are primarily helpful
when the issue has been isolated to a particular device
or a network segment. Note that some network OS’s
come with platform-level packet capture tools. These
tools can be very useful to perform packet captures to
understand if the packet is being received on the device
or not and if what action is being taken on the packet by
the network OS.

Debugs: It might sometimes help to run debugs on the
network devices. The debug logs allow you to gain more
insight on what is happening on the network device.
For instance, if a BGP prefix is not being received, you
could run a BGP protocol debug to understand if the
prefix is being received or not.
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Once all the basic and some advanced-level troubleshooting steps
have been performed and you are unable to isolate the issue to one
particular device or segment, that’s where external sniffer capture tools
come into play. Here are some of the scenarios in which sniffer capture can
be useful:

e When dealing with corrupted packets

e Gathering more information about the packet headers,
as they might be affecting forwarding decision

e Troubleshooting encapsulated packets
e Troubleshooting packet loss or retransmission issues
e Voice or video traffic-related issues

o Protocol issues such as OSPF not forming adjacency
due to wrong information being exchanged or BGP not
establishing peering due to TCP or wrong or missing
information in BGP packets

If we talk about the problem displayed in Figure 1-2, if the traffic loss
is happening between host H1 and host H4 or host H5, then some of the
preceding steps could be followed to isolate the problem to a smaller
segment of the network and sniffer devices could be attached in those
segments to further investigate the issue. For instance, if the issue was
narrowed down between the site 2 WAN router and Distribution layer
switch(es), then enabling port spanning on core switches will help identify
if the issue lies on the WAN router, the core switch, or the distribution
switch. If the packet sniffers are to be used to analyze the problem,
however, then the network engineers would have to enable the sniffer
captures at the following devices:

e Access switch connected to the source and
destination host

13
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e Core switch(es) at each site
e WAN routers (if they support enabling port spanning)

The captures taken at each site can easily help determine where the
packet loss is happening. Even though the sniffer captures help a lot in
investigating the issue, that is not the final step of the troubleshooting
process. There are a few more steps that are involved in mitigating and
remediating the problem, which we will see in the coming chapters based
on different problem scenarios.

Number of Sniffer Placements

Placing sniffers is not always easy. Each organization, be it an enterprise,
service provider, or datacenter, has its own set of policies for managing
and troubleshooting in its network environment. Most organizations
require scheduling a change and maintenance window to perform
troubleshooting, let alone performing sniffer captures. Also, when the
whole network environment that is under investigation is geographically
displaced or made up of remote unmanned sites, it takes a while to get
field engineers on site to help with sniffer captures. Further, when the
sniffer captures are to be performed at multiple places in the network, the
complexity is compounded. When the troubleshooting requires sniffer
captures in the network, it is important that the points of placement should
be carefully considered before actually enabling port spanning.

Some network environments are also set up in a way that supports
remote spanning with specific hosts configured to collect mirrored traffic.
Such network deployments allow users to perform port spanning at almost
any given node in the network without having to wait for any human to
be present on site. The only limitation of such deployments is either the
support for the remote span feature on all network devices or the host or
the switch performance with higher throughput interfaces.

14
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In the example discussed in Figure 1-2, the ideal process would be to
isolate the segment where the problem is and then place sniffer captures
in that segment. If there are issues related to voice traffic such as users
facing choppy voice or even TCP retransmission issues, it would require
sniffer placements at multiple points across the network to determine
where the issue is actually happening. For such a huge span of segments
to troubleshoot, the approach for performing packet captures should be to
isolate between the internal network versus the ISP network. For instance,
the sniffer placements between the access and core or WAN layer at each
site will allow us to identify if the issue is local to any of the two sites. If the
packet sent from one site is not received by the WAN router on the remote
site, that means the issue would be isolated to the ISP network instead of
the site local networks.

Network Tap

A network tap is a hardware device that creates a copy or mirror of the
traffic flowing between two points in your cabling system. The hardware
is specially designed for network analysis. When setting up network taps,
the hosts or network devices might be temporarily offline. The network
taps can be useful in enterprises for performing packet captures and
continuous monitoring, as they are reliable and support high-throughput
links. There are two primary types of network taps:

o Aggregated: The aggregated network taps allow
bundling of multiple streams of data across multiple
ports to one monitoring port. This type of network tap
is useful when it is required to monitor bidirectional
streams of traffic but only one NIC for monitoring.

15
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o Nonaggregated: The nonaggregated network taps
provide additional flexibility for capturing traffic but
also add to complexity when compared to aggregated
network taps. In nonaggregated network taps, two ports
are required for monitoring purposes, each of them
capturing traffic in only one direction.

Based on the monitoring requirements, the choice can be made
between aggregated and nonaggregated network taps.

So far, we have learned about the port spanning and network taps
that can be used to enable and perform packet captures in the network.
Next, we learn about the Wireshark tool that will be used for analyzing the
captured traffic.

Overview of Wireshark

Wireshark is a widely used open source network protocol analyzer. The
first version of the application was called Ethereal and was developed
and released by Gerald Combs in 1998 under the GNU Public License
(GPL). After some conflicts over the Ethereal brand rights with his
employer, Combs, along with the rest of the development team, rebranded
the project as Wireshark in mid-2006. Wireshark is freely available for
personal, educational, and commercial purposes and is supported and
maintained by a community of more than 1,800 developers.

It is the go-to tool for almost every network administrator or network
engineer to analyze network traffic patterns, troubleshoot network protocol
issues, and perform in-depth analysis of network security loopholes.
Wireshark comes with tons of features, supports the most common and
uncommon set of protocols and encapsulations, and is supported on all the
well-known OSs. It provides an easy-to-use and easy-to-understand GUI
and advanced filtering capabilities to search through millions of packets to
allow network administrators to quickly analyze the events in the network.

16
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Installing Wireshark

At the time of writing, the latest and stable version of Wireshark is 3.4.4.
Wireshark installer is available in both 32-bit and 64-bit versions and have
builds available for Windows, Mac, and various Linux OSs. Wireshark
installer can be downloaded from https://www.wireshark.org/
download.html. Installation of Wireshark is fairly simple. In the section, we
cover the installation of Wireshark on different OSs.

Installing Wireshark on Windows

Follow these steps to install Wireshark on Windows:

o Download the installer (.exe file) from https://www.
wireshark.org.

e Double-click the installer to begin the installation

process.
e Click Next to begin the installation.
e Acknowledge the License Agreement by clicking Noted.

e Select the components that you want to install as
shown in Figure 1-3 and click Next.

17
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Figure 1-3. Wireshark Installation Choose Components screen

Note In the component selection you can see an option to install
TShark. TShark is a CLI version of Wireshark, which is designed to
capture and analyze network traffic. It supports the same options as
Wireshark. To view all the options of TShark, use the command man
tshark or tshark --help option.

o Select the different shortcuts that you want to place on

your PC and click Next.

o Select the installation directory for Wireshark and
click Next.

e Select the Npcap or WinPcap version that is currently
installed or is available to install and click Next. Note
that Npcap or WinPcap is required by Wireshark to
capture live network packets.
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Optionally, you can install USBPcap to capture USB
traffic and click Install to begin the installation process.

During the installation, another installer window
will open for Npcap or WinPcap software. Select
the necessary installation options and begin the
installation process by clicking Install.

Once the installation completes, click Finish.
The Wireshark installation will continue further.

Once the installation process is completed, click Finish.
At this point, Wireshark is now ready to perform packet
captures on your system.

Installing Wireshark on Mac

Follow these steps to install Wireshark on MacOS:

Download the installer (. dmg file) from https://www.
wireshark.org.

Double-click the installer file to begin the extraction
process.

The extraction process will create a volume with all the
necessary files on the desktop.

Once the extraction is completed, a pop-up window
gives you an option to move the Wireshark app into the
Applications directory

Drag the Wireshark app into the Applications directory
to make Wireshark accessible from the launch pad.
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Installing Wireshark on Ubuntu

Wireshark can be installed quickly on Ubuntu from the terminal using
the apt-get package installer. Follow these steps to install Wireshark
on Ubuntu:

e Update the repository on the Ubuntu machine using
the command apt update.

o Install Wireshark using the command apt install
wireshark.

If you just have CLI access to the Ubuntu server or machine, then it
might be a better option to install TShark. Users can install TShark using
the command apt install tshark asshown in Example 1-1. Once
installed, users can review the CLI options for TShark using the tshark
command with the --help option or the man tshark command.

Example 1-1. Installing tshark on Ubuntu

root@genie-rnd-server:~# apt install tshark
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
tshark
0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 137 kB of archives.
After this operation, 411 kB of additional disk space will
be used.
Get:1 http://us.archive.ubuntu.com/ubuntu focal/universe amd64
tshark amdé64 3.2.3-1 [137 kB]
Fetched 137 kB in 0s (323 kB/s)
Selecting previously unselected package tshark.

20



CHAPTER 1  INTRODUCTION TO WIRESHARK

(Reading database ... 279306 files and directories currently
installed.)

Preparing to unpack .../tshark 3.2.3-1_amd64.deb ...
Unpacking tshark (3.2.3-1) ...

Setting up tshark (3.2.3-1) ...

Processing triggers for man-db (2.9.1-1) ...

root@genie-rnd-server:~# tshark --help

Running as user "root" and group "root". This could be dangerous.
TShark (Wireshark) 3.2.3 (Git v3.2.3 packaged as 3.2.3-1)

Dump and analyze network traffic.

See https://www.wireshark.org for more information.

Usage: tshark [options] ...

Capture interface:
-i <interface>, --interface <interface>
name or idx of interface (def: first
non-loopback)
-t <capture filter> packet filter in libpcap
filter syntax
-s <snaplen>, --snapshot-length <snaplen>
packet snapshot length (def:
appropriate maximum)
-p, --no-promiscuous-mode
don't capture in promiscuous mode
-I, --monitor-mode capture in monitor mode, if available
-B <buffer size>, --buffer-size <buffer size>
size of kernel buffer (def: 2MB)
-y <link type>, --linktype <link type>
link layer type (def: first
appropriate)
<snip>
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Once set up, the GUI-based Wireshark app or CLI-based tshark app
can be used to capture traffic traversing the network.

It is important to learn how to capture the packets and analyze the
network traffic, but it is equally important to know the tools available with
different network devices that you can use to set up packet captures.

Setting Up Port Mirroring

As we all know, there are multiple elements in the network such as routers,
switches, firewalls, load-balancers, servers, and so on, and troubleshooting
a network with multiple elements involved can be complex. Packet capture
tools are very handy when investigating issues at the packet level. When a
deep-dive investigation is required at the packet level, the issue is usually
found in one of the following places:

o Atthe transmitting device or the device that initiated
the packet

o Atthe receiving device or the device for which the
packet is destined

o Atthe transit device
e In the transmission media

The packet-level issues require the network engineers to perform
packet captures and investigate the issues by analyzing the captured traffic.
In most cases, switching devices have the capability of mirroring network
traffic and sending it to a mirroring port that is connected to a PC. Let’s see
how port mirroring can be enabled on different vendor devices.
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SPAN on Cisco 10S/10S-XE

The port mirroring capability on Cisco devices is known as Switched

Port Analyzer (SPAN). SPAN can be set up on both Layer 2 and Layer 3
interfaces. When setting up SPAN, the source and the destination
interfaces are defined. Source ports are a collection of physical ports
such as Gigabit Ethernet or TenGig interfaces and virtual interfaces such
as virtual local area network (VLAN) switch virtual interfaces (SVIs). In
defining the source ports, users can also define the direction of the traffic;
that is, rx for incoming direction, tx for outgoing direction, or both, which
means mirror both rx and tx traffic. A SPAN session on a Cisco I0S or
Cisco IOS-XE switch can be configured using the command monitor
session session number. Under the SPAN session configuration, you can
define the source and the destination ports along with their direction.
Example 1-2 illustrates how to configure a SPAN session on a Cisco 10S-
XE switch.

Example 1-2. Configuring SPAN

SWi#configure terminal

SW1(config)# monitor session 10 source interface
GigabitEthernet1/5 rx

SW1(config)# monitor session 10 source interface
GigabitEthernet1/7 tx

SW1(config)# monitor session 10 destination interface
GigabitEthernet2/1

SWi#configure terminal

SW1(config)# monitor session 11 source vlan 3 - 5 rx
SW1(config)# monitor session 11 source vlan 20
SW1(config)# monitor session 11 destination interface
GigabitEthernet2/2
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Note As per the Cisco.com documentation, you cannot have two
SPAN sessions using the same destination port.

Once the SPAN is set up, you can view the state of the SPAN using the
command show monitor session [session-number].If the command
is executed without specifying the session-number element, it displays all
the SPANSs that are configured on the switch. When the session-number
option is specified, the command displays information about only the
specified session. It is important to note that the destination interface is
the one running in promiscuous mode. Thus, no other protocol or feature
will work on that port. Example 1-3 displays how to verify the SPAN session
and also displays the destination interface state in monitoring state. The
monitoring state indicates that the port is running in promiscuous mode.

Example 1-3. SPAN Session Verification

SWittshow monitor session 10

Session 10
Type : Local Session
Source Ports

X : Gi1/s

tx : Gia/7
Destination Ports : Gi2/1
MTU 1 1464

Egress SPAN Replication State:

Operational mode : Distributed

Configured mode : Distributed

SWi#show interface GigabitEtherneti/1

GigabitEthernet2/1 is up, line protocol is down (monitoring)
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Hardware is Gigabit Ethernet, address is 2c54.2d68.1207 (bia
2¢54.2d68.1207)
MTU 1998 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 18/255

Encapsulation ARPA, loopback not set
Keepalive not set
Full-duplex, 1000Mb/s, link type is auto, media type is
10/100/1000BaseTX SFP

<snip>

Note Refer to the Cisco online product documentation to verify
how many SPAN sessions can be configured. The supported number
of SPAN sessions varies from platform to platform and from vendor
to vendor.

SPAN on Cisco Nexus Switches

The Cisco Nexus OS (NX-0S) SPAN feature is pretty similar to the SPAN
feature on Cisco I0S-XE software. Different Nexus series switches might
vary on the number of monitor sessions they support. Before configuring
the monitor session on NX-OS, the destination switchport should be
configured with the command switchport monitor. Nexus supports
hierarchical configuration, thus the source ports and destination port
configuration are defined under the monitor configuration mode.
Example 1-4 illustrates how to configure SPAN session on Nexus switches.
Note that a monitor session on NX-OS does not become active unless a no
shut command is configured under the monitor session.
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Example 1-4. Configuring SPAN Session on Cisco NX-OS

NX-2(config)# interface Etherneri/5-6

NX-2(config-if)# switchport

NX-2(config-if)# switchport monitor

NX-2(config-if)# no shut

NX-2(config)# monitor session 1

NX-2(config-monitor)# source interface ethernet 1/1
NX-2(config-monitor)# source interface ethernet 1/2 tx
NX-2(config-monitor)# destination interface ethernet 1/5
NX-2(config-monitor)# no shut

Once the monitor session is configured, the session state can be
verified using the command show monitor session session-number.
Example 1-5 displays the output of the command show monitor session 1.
Notice that in the output, the type is set to local. When defining the
monitor session, if the type is not specified, then by default the monitor
session is configured as a local SPAN session. The output shown in
Example 1-5 displays the source rx and tx interfaces that are configured
in the SPAN along with the destination interface. In NX-OS, the show
interface command does not show the state of the interface as monitoring,
but rather has another line in the output indicating that the switchport
monitor is enabled on the port.

Example 1-5. Verifying SPAN Session on Cisco NX-OS

NX-2# show monitor session 1

session 1
type : local
state Toup
acl-name : acl-name not specified
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source VSANs

X

NX-2# show interface ethernet 1/5
Ethernet1/5 is up
admin state is up, Dedicated Interface

)

Hardware: 100/1000/10000 Ethernet, address: 0c5f.3d16.260d
(bia oc5f.3d16.260d

MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, medium is broadcast

Port mode is access

full-duplex, 1000 Mb/s

Beacon is turned off

Auto-Negotiation is turned on FEC mode is Auto
Input flow-control is off, output flow-control is off
Auto-mdix is turned off

Switchport monitor is on

EtherType is 0x8100
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EEE (efficient-ethernet) : n/a
admin fec state is auto, oper fec state is off
Last link flapped 00:13:37
<snip>

Nexus 9000 series switches also support filtering of spanned traffic
at the VLAN level or by applying an ACL. Only one type of filtering is
supported on a given monitor session and filtering can only be applied
when the source interfaces are configured in the rx direction. Example 1-6
illustrates how to set up a monitor session with VLAN as well as ACL-based
filtering and also how the show monitor session output differs between
the monitor sessions when different filtering methods are applied. Also,
as shown in this example, a monitor session can be deleted using the
command no monitor session session-number.

Example 1-6. SPAN Sessions with Filtering

NX-2(config)# ip access-list TEST-ACL
NX-2(config-acl)# permit icmp any any
NX-2(config-acl)# exit
NX-2(config)# no monitor session 1
NX-2(config)# monitor session 1
NX-2(config-monitor)# source interface ethernet 1/1 rx
NX-2(config-monitor)# destination interface ethi1/s
NX-2(config-monitor)# filter access-group TEST-ACL
NX-2(config-monitor)# exit
NX-2(config-if)# monitor session 2
NX-2(config-monitor)# source interface ethi/3 rx
NX-2(config-monitor)# destination interface ethi1/5
NX-2(config-monitor)# filter ?

access-group Access control group

vlan Vlan type
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NX-2(config-monitor)# filter vlan 100
NX-2(config-monitor)# no shut
NX-2# show monitor session 1
session 1
type : local
state Toup
acl-name : TEST-ACL (Rx only)
source intf :
X : Eth1/1
tx
both
source VLANs
194
tx
both :
filter VLANs : filter not specified
source fwd drops :
destination ports : Ethi1/5
PFC On Interfaces :
source VSANs
X :
NX-2# show monitor session 2

session 2
type : local
state Toup
acl-name : acl-name not specified
source intf
IX : Eth1/3
tx
both

INTRODUCTION TO WIRESHARK

29



CHAPTER 1 INTRODUCTION TO WIRESHARK

source VLANs

X

tx

both :
filter VLANs : 100
source fwd drops
destination ports : Eth1/6
PFC On Interfaces :
source VSANs

X

Enabling Port Mirroring on Arista EQS

Port mirroring on Arista can be enabled by configuring one or more
mirroring sessions. Port mirroring configuration of Arista EOS is very
similar to that for Cisco IOS-XE devices. You can enable port mirroring
sessions using the command monitor session with the difference
that instead of specifying the session number, you specify the name of
the monitor session. Example 1-7 demonstrates how to configure port
mirroring on Arista devices. Once configured, use the command show
monitor session to verify the state of the monitor session and the show
interface interface-name status command to verify the state of
the interface. The destination port on the Arista device also displays in
monitoring state.

Example 1-7. Configuring Port Mirroring on Arista

eos-1(config)# monitor session testl source ethernet 1,7-9 rx
eos-1(config)# monitor session testi source ethernet 4 tx
eos-1(config)# monitor session testl destination ethernet 20
eos-1# show monitor session

Session test1
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Source Ports

Rx Only: Et1, Et7, Et8, Et9

Tx Only: Et4

Destination Port: Et20

eos-1# show int et20 status

Port Name Status Vlan Duplex Speed Type

Et20 connect monitoring  full 10G Not Present

Enabling Port Mirroring on Jun0S

On JunOS§, we use the term analyzers to set up port mirroring. JunOS also
supports configuring of port mirroring to capture bridged packets (Layer
2 packets) as well as routed packets (Layer 3 packets). On a JunOS device,
the following packets can be mirrored:

o Packets entering or exiting a port
o Packets entering or exiting a VLAN or a bridge domain
e Policy-based sample packets

For policy-based sample packets, a firewall filter with a policy is
configured to mirror the packets. The sample traffic based on the firewall
filter can be sent to the port-mirroring instance for further analysis.

Analyzers on JunOS can be set up in few simple steps:

e Getinto forwarding-options configuration mode.

e Define a name for the analyzer and specify the input
interface along with the direction of the traffic you wish
to capture.

¢ Choose the destination interface.

e Commit the configuration.
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In JunOS§, you can also configure firewall filters to limit the amount
of traffic being mirrored. Example 1-8 displays a sample configuration
of analyzer and the use of the command show forwarding-options
analyzer analyzer-name to verify the state of the analyzer.

Example 1-8. Configuring Port Mirroring on JunOS

root> show configuration forwarding-options

analyzer {
testCapture {
input {
ingress {
interface ge-0/0/1.0;
}
egress {
interface ge-0/0/1.0;
}
}
output {
interface ge-0/0/4.0;
}
}
}
root> show forwarding-options analyzer testCapture
Analyzer name . testCapture
Mirror rate i1
Maximum packet length : 0
State Doup
Ingress monitored interfaces : ge-0/0/1.0
Egress monitored interfaces : ge-0/0/1.0
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So far, we have seen how to configure local port mirroring on various
vendor devices running their respective network OS. Similarly, you
can also set up remote port mirroring. In remote port mirroring, the
configuration is pretty much the same as local port mirroring with the
minute difference that the destination interface does not reside on the
local device, but is multiple hops away. Each vendor has its own method of
implementing remote port mirroring. Unless necessary, it is not required
to set up remote port mirroring.

Summary

In this chapter, we learned what NTA is and why it is important in the
network. We also learned the factors that should be considered when
implementing port mirroring and how we can set up the minimum
number of capture points in the network to isolate a problem in the
network. Unless it is necessary, one should avoid enabling port mirroring
on network devices. Further, we learned what Wireshark is and how to
install it on various OSs. Finally, we concluded the chapter by seeing how
port mirroring can be enabled on network devices from different vendors.

References in This Chapter

o Wireshark: https://www.wireshark.org

o Network Management Configuration Guide: https://
www.cisco.com/c/en/us/td/docs/switches/
lan/catalyst9300/software/release/16-10/
configuration guide/nmgmt/b_1610 nmgmt 9300 cg/
configuring span_and_rspan.html
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Getting Familiar
with Wireshark

Network administrators and security analysts often work packet captures
to analyze the traffic and determine the cause of network events and
attacks in the network. With Wireshark being the preferred tool to capture
and analyze network traffic, it is important to have an understanding of
how to use Wireshark’s features and know about its options. This chapter
focuses on various features and options available in Wireshark.

This chapter covers the following topics:

e Overview of Wireshark tool
e Performing packet capture using Wireshark
o Working with Wireshark capture files

e Analyzing packets in Wireshark

Overview of Wireshark Tool

In the previous chapter we learned about what Wireshark is and how
to install Wireshark on various OSs. In this chapter, we focus on how
to use the Wireshark tool. After Wireshark is installed, you can open
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the Wireshark tool using the Wireshark shortcut from the installed
applications list. Before diving into how to use Wireshark, let’s take a closer
look at the user interface (UI), which is shown in Figure 2-1.

i mEBRRER Re2EFLIHEBE

Ssures | Destination | Pratocol
92 88020777 192.168.122.2 192.168.122.3 118 Client: Encrypted packet [len=g4)
93 68.860102 152.168.122.3 192.168.122.2 118 Server: Encrypted packet (len=64)
94 88078431 190.168.122.2 192.168.122.3 102 Client: Encrypted packet [len=as)
95 08.803375 152.168.122.3 192.168.122.2 102 Server: Encrypted packet (len=48)
96 B8.999527 192.168.122.2 192.168.122.3 118 Client: Encrypted packet (len=e4)

97 08.995271  152.168.122.2 192.168.122.3 78 Ercrypted packet (len=16)[Malformed Packet]
98 88.099435 5 2 192.168.123.2 5 118 Server: Encrypted packet (lensed)
99 B8.108433 . 192.168.122.3 118 Client: Encrypted packet (len=g4)

108 88.111225 - 192.168.122.3 86 Encrypted packet (len=32)[Malfcrmed Packet]
F 182 Server: Encrypted packet [len=as)

118 Client: Encrypted packet [len=g4)
184 88.151074 . 192.168.122.2 238 Server: Encrypted packet (len=176)
185 88.360083 192.168.122.2 192.168.122.3 54 12641 - 22 [ACK] Seq=1269 Ack=1600 Win=3952 Len=@
186 88725407 152.168.122.3 192.168.122.2 1514 Server: Encrypted packet (len=1468)
187 88.726353 192.168.122.3 192.168.122.2 322 Server: Encrypted packet (len=268)

Figure 2-1. Wireshark user interface

Wireshark Preferences

There are numerous settings that a user can customize when using
Wireshark. All these settings can be changed from the Preferences window.
To open the Preferences window, navigate through the following menu:

e Mac: Wireshark | Preferences
o Windows: Edit | Preferences
e Linux: Edit | Preferences

From the Preferences window, users can change the settings for the
following sections.
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Appearance

The Appearance section of the Wireshark preferences allows you to change
the Ul settings of Wireshark. In this section, you can adjust the text for

the window title, specify the columns that you want to see when using
Wireshark, and set the font and colors and the layout of Wireshark UI. For
instance, if you want to change the default layout of Wireshark to a layout
that is more comfortable for you, you can change what information the
different panes in the layout will display. Figure 2-2 displays the modified
layout where Pane 1 displays the packet list, Pane 2 displays the packet
details, and Pane 3 displays the packet bytes in the layout that you selected
in the Preferences window.

® Wireshark - Preferences

v Appearance

Columns | 1] rI—| nﬂ n
fndcaors | |EIE|  HE IH o IHH

Capture
Expert
Filter Buttons ® Packet List Packet List Packet List
Name Resolution Packet Details Packet Details Packet Details

Pane 1: Pane 2: Pane 3:

> Protocols Packet Bytes Packet Bytes ® Packet Bytes
RSA Keys Packet Diagram Packet Diagram Packet Diagram

> Statistics None None None
Advanced

Packet List settings:

Show packet separator
» Show column definition in column context menu

Status Bar settings:

Show selected packet number

Figure 2-2. Custom Wireshark layout
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Capture

The Capture section allows you to select the default interface that
Wireshark will use for capturing traffic. Users can also select other settings
in this section:

o Enable or disable the option to capture packets in

promiscuous mode

o Enable or disable the option to capture packets in
pcapng format

o Enable or disable the option to update the list of
packets in real time

o Enable or disable the option for automatic scrolling
when capturing live packets

o Enable or disable the option to not load interfaces
on startup

o Enable or disable the option to disable external capture
interfaces

Expert

The Expert section of the Wireshark Preferences window allows you to
define different field names and set the severity for those fields.

Note The Expert section is covered later when covering Expert
Information.

38



CHAPTER 2  GETTING FAMILIAR WITH WIRESHARK

Filter Buttons

The Filter Buttons options allow the user to create custom shortcuts on the
toolbar for various filter expressions. By using these buttons, users don’t
have to repeatedly type the filter expressions; instead they can just click the
button to apply the filter on the captured traffic. Figure 2-3 displays how to
create a filter button for the HTTP GET method.

@ Wireshark - Preferences

~ Appearance

Show in toolbar | Button Label | Filter Expression | Comment
Columns

Fartand Csicrs v HTTP GET http.request.method == "GET* HTTP GET Method

Layout
Capture
Expert
Filter Buttons
Name Resoclution
> Protocols
RSA Keys
> Statistics
Advanced

Figure 2-3. HTTP GET filter button

Name Resolution

The Name Resolution settings allow users to update the settings with
regard to MAC address resolution and transport and network address
resolution. These settings also allow users to use Domain Name System
(DNS) packets for address resolution, use an external network name
resolver, and also use the list of DNS servers for name resolution. The
Name Resolution section also has options to list the DNS servers that can
be used by Wireshark.
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Protocols

The Protocols section of the Preferences window allows the user to
configure settings for various lists of protocols supported by Wireshark.
This is useful for analyzing traffic in network environments where the
protocols are being used ports different than the default port numbers.

RSA Keys

The RSA Keys section allows user to configure the RSA private keys for
decryption. In this section, use the Add New Keyfile button to select a
file. The user will be prompted for a password if necessary. The Add New
Token button can be used to add keys from a hardware security module
(HSM), which might require using Add New Provider to add a vendor-
specific configuration.

Statistics

This section allows you to customize the settings used by Wireshark to
perform and display statistical analysis of the captured traffic. Settings
such as burst rate resolution, burst rate window size, tab update interval,
and so on, can be configured under this section.

Advanced

The Advanced section of the Preferences window allows user to view and
edit all Wireshark preferences. If you are familiar with about: configin
Firefox or chrom: flags in the Chrome web browser, then making changes
using the Advanced pane will be a walk in the park. Users can search for

a preference by typing text in the Search box on this window as shown in
Figure 2-4.
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~ Appearance
Columns
Font and Colors
Layout
Capture
Expert
Filter Buttons . Ibmpdm_tep.pert_high
Name Resolution Ibmpdm_tep.port_low
> Protocols Ibmpdm_tcpicp.port
RSA Keys Ibmpdm_tepinw_|bmpdm_t...

> Statistics
Ibmpdm_tcpuse_lbmpdm_t...
Advanced

Search: tep.

Name

Ibmsrsicp.port

Ibttcp.request_port_high
Ibttcp.request_port_low
Ibttcp.source_port_high
Ibttcp.source_port_low
Ibttcp.store_port_high

I store_port_low
Ibttcpiep.port
Ibtteptnw_Ibttcp_tags
Ibttcp.use_lbttcp_domain

9picp.port
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Default
Default
Default
Unknown
Default

Default

Default
Default
Default
Default
Default
Default
Default
Unknown
Default

Default

Decimal

Decimal

Decode As value
UAT

Boolean

Decode As value

Decimal
Decimal
Decimal

Decimal

Decimal
Decimal

Decode As value
UAT

Boolean

Decode As value

Figure 2-4. Wireshark Advanced preferences
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14390

14371

0

[Managed in the file "lbmpdm_tcg
FALSE

0

0

0

0

[Managed in the file "Ibttcp_doma
FALSE

Performing Packet Capture Using Wireshark

When the Wireshark application is launched, a welcome screen displays

options to either open old files or to start a new packet capture on the

current device. In the Capture section, all the wired, wireless, and virtual

network interfaces that can be selected to begin the packet capture

immediately are listed. Alternatively, users can go to the Capture menu

and then select the Option submenu. This will open the Wireshark -

Capture Options window shown in Figure 2-5, which has three tabs:

o Input: This tab displays all the interfaces. You can

enable the listed network interfaces and select one of

the interfaces on which you wish to capture incoming

and outgoing packets.

e Output: This tab allows the user to edit the output

settings, such as the output format, permanent file
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name where the packet capture will be saved, and
also options to save the captured traffic into a new file
by limiting the number of packets, file size, duration,

and so on.

Options: The Options tab gives you options to set the
display settings of the captured packets, such as updating
the list of packets in real time, automatic scrolling during
live capture, and showing capture information during live
capture. It also has options for name resolution such as
resolving MAC addresses, network names, and transport
names. Users can also define the settings for when they
can stop the packet capture.

Wireshark - Capture Options
Input  Output  Options

plen (B) | Butfer (MB) | Monita
2

¢

Unknown
Unknown
Unknown

Unknown
Unknown

Unknown

Unknown

P T T T T

MR R KRR R R

¥ Enable promiscuous mode on all interfaces Manage Interfaces...

Capture filter for selected interfaces: ||| Ente apture filt - Compile BPFs

Figure 2-5. Wireshark - Capture Options window

Once all the capture options are set, users can click the Start button to

begin the packet capture. It is important to note that you can capture traffic

on interfaces that are in promiscuous mode. This mode allows you to see

all the traffic coming into the NIC. In Figure 2-5, notice that all the listed

interfaces have promiscuous mode enabled.
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Note To perform on Mac OS, users are required to install the
ChmodBPF application. By default, users on Mac OS do not have
privileges or permission to capture traffic on local interfaces. Once
the ChmodBPF daemon is launched, it creates the access bpf
group and adds the user to that group. Similarly, on Windows,
Wireshark requires either Npcap or WinPcap to capture live network
traffic.

Dissectors

As most of you might already know, traffic enters the NIC in binary format.
Wireshark uses the Enhanced Packet Analyzer (EPAN), which decodes

the binary data into human-readable format. EPAN is the main core of the
Wireshark tool. It is the packet analyzer engine that uses dissectors to re-
create the protocol packets from the binary data. EPAN primarily consists
of four components:

e Protocol tree: Performs detailed analysis of a
single packet.

e Dissectors: Hold the information from the Request
for Comment (RFC) and other specifications on how
to decode and interpret fields of different protocol
packets.

o Dissector plug-ins: Allows the use of default dissectors
that come with Wireshark and also allows the use of
user-created dissector plug-ins.

e Display filters: - Provide options to perform filtering on
captured data.
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Dissection of any packet can be broken down into a few simple steps:

1. Wireshark identifies the frame type of any incoming
packet and hands it off to the correct frame
dissector, for instance, Ethernet.

2. The dissector breaks down the contents of the frame
header to understand which section to look up next.
For instance, Ethernet type 0x0800 in the Type field
of the Ethernet header indicates Internet Protocol
version 4 (IPv4). Wireshark then hands off the
packet to the IP dissector.

3. After the IP dissector decodes the IP header, it
identifies the next protocol header by looking at
the Protocol field in the IP header. If the value is
0x06 it hands off the packet to the TCP dissector. If
the value is 0x11, it hands off the packet to the User
Datagram Protocol (UDP) dissector.

4. This process is followed until there are no further
dissections identified by the current dissector.

Although Wireshark is a very mature application and supports a
wide range of protocol specifications and dissectors, there might still be
scenarios where you are required to guide Wireshark on how to decode a
protocol. For such scenarios, users can simply right-click the frame and
select the Decode-As option. This option will open the window shown in
Figure 2-6. Using this window, a user can select the field type from which
the user can select any of the options such as a TCP port, a UDP port, and
so on. Once that is selected, the user can then define the value and then
map the field and value to a particular protocol from the drop-down list
in the Current column. For example, let’s presume that Wireshark does
not understand a Virtual Extensible Local Area Network (VXLAN) packet.
When Wireshark receives such a packet, the user can select the packet and
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choose UDP port as the Field, set the Value to port 4789, and in the Current
column, map the packet to the VXLAN protocol. This setup is shown in
Figure 2-6.

® Wireshark - Decode As...

Field | Value | Type | Default | Current
UDP pert 4789 Integer,base 10 (none) VXLAN

Figure 2-6. Wireshark - Decode As

This feature comes in very handy when the network administrators are
running the protocols on a port numbers other than their defaults.

Configuration Profiles

Wireshark allows users to define and maintain configurations and
preferences in the form of configuration profiles. Wireshark comes with

four predefined configuration profiles:
e Default: Default profile
e Bluetooth: Global profile
e Classic: Global profile
e No Reassembly: Global profile
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The configuration profiles store the following set of information:
» Preferences
o Capture filters (cfilters)
» Display filters (dfilters)
e Coloringrules
o Disabled drotocols

e User accessible tables (e.g., custom HTTP headers,
custom LDAP AttributeValue types, etc.)

o Dissector assignments (decode_as_entries)

e Recent settings such as pane sizes, column widths,
and so on

Users can create custom profiles in few simple steps.

1. On the Edit menu, click Configuration Profiles. This
opens the Configuration Profiles dialog box.

2. In the Configuration Profiles dialog box, click the +
icon to add a new profile. For example, let’s create
a configuration profile named Network Profile. This
profile will be of type Personal. The newly created
profile is created with the default settings that are
part of the Default profile.

3. Select the Network Profile and click OK.

Once the custom profile is created and selected, all the preferences
and other settings such as capture or display filters will be saved under the
custom configuration profile.
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Filtering with Wireshark

When packet capture is performed using Wireshark, all the incoming and
outgoing traffic on the selected NIC is captured. This limits the user to
capturing a huge amount of packets on high-speed as well as high-traffic
links. Although capturing more data is never bad, it could also lead to

other issues:
e Crashing of Wireshark application due to large file size

o Longer time needed to load and analyze the

captured packets

e Might not be able to capture problematic traffic during
a short time span due to higher packet per second

(pps) rate

Filtering in Wireshark can be of two types:

o Capture filter: This is used to filter or restrict the
packets that will be captured by Wireshark.

o Display filter: This is used to filter the packets from the
captured traffic.

We next discuss both these filtering capabilities in detail.

Capture Filters

As stated previously, the capture filter in Wireshark is used to limit the
packets that can be captured during a live capture. This means that the
capture filter cannot be applied on existing packet capture or pcap files.

In scenarios where the network is busy with heavy traffic or during network
troubleshooting when a user wants to capture a specific packet, capture
filters are a very useful feature. Capture filters are applied on the packets
after they are processed by WinPcap in a Windows installation or the
libpcap library in a Linux installation. Once the packets are passed through
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the filter criteria, they are then passed to the Wireshark capture engine as
shown in Figure 2-7. Note that once the packets are parsed through the
capture filter, only the filtered packets are received by the capture engine.
The remaining packets are dropped and discarded before being sent to the
capture engine.

Capture Engine

Capture Filters

WinPcap / Libpcap

Network Interface Card

Network

Figure 2-7. Wireshark capture filter

Capture filters follow the Berkeley Packet Filtering (BPF) syntax, which
is also used by Tcpdump. Wireshark comes with default capture filters
named cfilters that are stored in the Wireshark application or program
file directory. Wireshark comes with the default capture filters shown in
Table 2-1.
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Table 2-1. Default Wireshark Capture Filters

Filter Name Filter Config

Ethernet address 00:08:15:00:08:15 ether host 00:08:15:00:08:15

Ethernet type 0x0806 (ARP) ether proto 0x0806

No Broadcast and no Multicast not broadcast and not multicast
No ARP not arp

IPv4 only ip

IPv4 address 192.0.2.1 host 192.0.2.1

IPv6 only ip6

IPv6 address 2001:db8::1 host 2001:db8::1

TCP only tcp

UDP only udp

Non-DNS not port 53

TCP or UDP port 80 (HTTP) port 80

HTTP TCP port 80 tcp port http

No ARP and no DNS not arp and port not 53
Non-HTTP and non-SMTP to/from not port 80 and not port 25 and
www.wireshark.org host www.wireshark.org

Users can also create custom cfilters that can be part of the default
profile or a custom profile. Let’s now create a custom capture filter for
capturing only VXLAN traffic. To filter VXLAN encapsulated traffic, we
can simply filter on UDP port 4789. This filter can be created in a few
simple steps:

1. Go to the Capture menu and select Capture Filters
to open the Capture Filters dialog box.
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In the Capture Filters dialog box, click the + icon,
which will add an entry at the end of the existing
default list.

Edit the name of the filter and set it to VXLAN only
and then edit the Filter Expression and set it to udp
port 4789.

Click OK to save.

Once saved, go to the Capture menu and select
Options. This will open the Wireshark Capture
Options dialog box.

In this dialog box, click the green bookmark icon
next to Capture Filter for Selected Interfaces.

This displays the list of all capture filters that are
available. Select the VXLAN Only option as shown
in Figure 2-8.

Once the interface and capture filter are selected,
click Start to start the capture.
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You are running Wireshark 3.4.8 (
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VELAN Only: udp port 4781

Mo Packets

Figure 2-8. Selecting a customdefined capture filter

You will now notice that only the VXLAN packets are being captured in
Wireshark. This method of capturing packets has the benefit of capturing
only specific traffic, but if the user is unsure about which traffic to capture,
it might be a better option to use display filters.

Display Filters

Most traffic analysis is performed during live traffic or on precaptured
packet captures. To analyze traffic in both these scenarios, display filters
can help users easily narrow down the problematic traffic quickly by
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applying the filter criteria on the packets. Display filters enable users to
focus on specific packets based on the filter expressions that are specified.
There are several ways of creating display filters:

o Typing the display filter criteria with the help of
auto-complete

o Applying saved display filters

o Using expressions

o Right-clicking the filter

o Applying conversation or endpoint filters

Before moving on to checking different ways of implementing display
filters, let’s talk about the syntax for display filters. Wireshark uses a
proprietary Wireshark display filter that is different than the capture filter’s
BPF format. Even though the syntax for both capture and display filters
is different, there are a few examples where the syntax for both of them
happens to be the same. For instance, the syntax for filtering TCP traffic
on both filters is specifying the tcp keyword. Figure 2-9 illustrates how the
packets are filtered after applying the display filter for TCP traffic. Notice
that in this example, there are 76 packets that have been identified and
filtered for TCP traffic out of 1,452 packets.
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Display filter

Filtered packets

1 2.231.18
192.168.1.82

1B 6.967425 192.168.1.82  142.250.77.228 66 50347 - 443 [ACK] Seg=l Ack=l Win=131584 Len=d T5
19 6.967523 192,168.1.82 142.250.77.228 TLSvl. 583 Client Mells |
20 €.973482 142.250.77.228 192.166.1.82  TCP 66 443 = 50347 [ACK] Seq=l Acks518 Win=66816 Len=g T
37 7.842133 142.250.77.228 192.168.1.82  TLSvi. 1466 Server Hello, Change Cipher Spec

The status bar indicates that there

are 76 packets that have been
filtered out of 1452 packets that
match the display filter criteria of
tcp packets

Figure 2-9. Filtering packets using a display filter

Display filters can be relatively simple or quite complex. It all depends
on the display filter expression. Users can perform simple filtering
by specifying the protocol traffic that they want to filter. For instance,
Table 2-2 displays a sample list of packets that can be filtered with just a
single filtering keyword.

Table 2-2. Simple Display Filters

Filter Config Filter Description

tcp Filtering only TCP packets

udp Filtering only UDP packets

ip Filtering only IPv4 traffic

ipv6 Filtering only IPv6 traffic

arp Filtering only ARP broadcast packets
dns Filtering only DNS packets
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Display filters also allow users to filter packets based on packet
characteristics. For instance, if a user wants to filter packets that have an
invalid IP header checksum, they can simply set the display filter to ip.
checksum_bad.expert. Note that by packet characteristics we do not mean
an actual field in the headers. Some examples of display filters based on
packet characteristics are listed in Table 2-3.

Table 2-3. Display Filters for Packet Characteristics

Filter Config Filter Description

tcp.analysis.flags Displays packets that contain one of the TCP
analysis flags packets

tcp.bogus header length Filters TCP packets that have bogus header
length in the TCP header

ip.bogus _header length Filters packets that have bogus header length
in the IP header

The display filters provide an option to filter more specific packets by
the use of expressions. Expressions allow users to define filters based on
the contents of a field and matching specific values that can be set using
comparison operators. Display filters can also be a combination of two or
more expressions that are evaluated based on the evaluation operators.
The operators that can be used with display filters are listed in Table 2-4.
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Table 2-4. Operators for Display Filters

Operators Operator Description

v

Exactly matches the specified value
Matches when the value of the field is greater than the specified value
Matches when the value of the field is less than the specified value

Matches when the value of the field is greater than or equal to the
specified value

Matches when the value of the field is less than or equal to the specified
value

Filters all the values of the field that do not match the specified
expression

Filters all the values that do not match the specified value

Allows AND operation between two different expressions; filters the
packets that match all the specified expressions

Allows OR operation between two different expressions; filters the
packets that match any of the two expressions

Let’s now examine how we can use these operators to create

expressions for display filters. Table 2-5 displays a list of expressions for

filtering various types of traffic.
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Table 2-5. Expressions for Display Filters

Filter Expressions

Filter Description

http.request.method ==
"POST"

tcp.window _size < 1500

dns.qry.name == "www.
google.com"

udp.port != 686

(arp.opcode == 0x0001) 88&
(arp.src.hw_mac ==
00:01:ab:cd:0e:02)
(tcp.flags.syn == 1) 88&
I'(tcp.flags.ack == 1)
(icmp.type == 3) &&
((icmp.code = 0x01) ||
(ip.addr ==
192.168.100.1))

Filters traffic that includes the HTTP POST
method in the HTTP headers

Matches packets that have TCP window size
less than 1,500

Filters DNS queries for www.google.com

Filters out packets that do not match UDP port
number 686

Displays ARP request only from MAC address
00:01:ab:cd:0e:02

Displays packets that have the TCP SYN bit set
but do not have the TCP ACK bit set.

Displays Internet Control Message Protocol
(ICMP) unreachable packets where the host is
unreachable or either the source or destination
address is 192.168.100.1

Because there is a different set of fields within each header, it is

nearly impossible to remember all the fields to create the display filters.

Wireshark comes with an auto-complete feature that helps users to create

filters. Users are only required to know the top-level header and the

Wireshark Intellisense or auto-complete feature kicks in as soon as any

character is typed. The Wireshark auto-complete feature displays all the

available options within that header that can be used to create the filter.

For example, if the user wants to check for any traffic with destination port

53 or DNS traffic, the user can just type in tcp and it will display all the

56


http://dns.qry.name
http://www.google.com
http://www.google.com
http://www.google.com

CHAPTER 2  GETTING FAMILIAR WITH WIRESHARK

available options. In this case, the option would be tcp.dstport, as shown
in Figure 2-10. Once the user identifies the right filter option, he or she can
then complete the expression by using the comparison operators. For this
example, the display filter is tcp.dstport == 53.

o0 ch ng

A0 4 mERERE SexeEF B E

N tep.

No. tcpanalysis.zero_winde tination Protocol | Lengtt| Info
t.168.1.82 DNS 155 Standard query response Bxb3d7 HTTPS smoot-searchims
6@ Who has 192.168.1.827 Tell 192.168.1.254
42 192.168.1.82 is at 4c:20:bB:el:2d:8b
155 Standard query response @xb3d7 HTTPS smoot-searc
7@ Destination unreachable (Port unreachable)
155 Standard query response 8xb3d7 HTTPS smoot-searc
78 Destination unreachable (Port unreachable)
.168.1.82 TLSvI. 9@ Application Data
«72.231.10 TCP 66 49286 - 443 [ACK] Seq=1 Ack=25 Win=2048 Len=2 TS
.72.231.10 TLSvI. 94 Application Data

55 bytes captured (1248 bits) on interface enl, id @
:40), Dst: Apple_el:2d:8b (4c:20:bB:el:2d:8b)
st: 192.168.1.82
t, Dst Port: 60792

4c 20 bB el 2d 8b 30 df 8d 80 e5 42 08 2@ 45 @0
82 Bd ea e3 48 80 48 11 ca db c@ a8 @1 fe c@ aB
01 52 @@ 35 ed 7B 7 db a6 b3 d7 81 8@ 0@ @l
o0 20 20 21 00 @0 14 73 6d 6f 67 74 2d 73 65 61

Figure 2-10. Display filter using auto-complete

Users are also allowed to select display filters from previously used
filters or save their display filter like a capture filter. To use the previously
searched display filter, use the drop-down list seen at the end of the display
filter bar. To save the current display filter, use the bookmark icon at the
beginning of the display filter area, as shown in Figure 2-11. The drop-
down list shows the default display filters available as well as other options
to save or manage the display filters. Selecting the Save This Filter option
opens the Display Filters dialog box. There you can click the + icon to add
the current display filter.
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A i © m @
N udp.dstport == 53
Sav filter
quer, 2xa07b A ww. gstatic. com
ge DI
Filter Butt query Bx7ccf AAAA www.gstatic.com
query @xc643 A content-autofill.googleapis.com
Ethernet address 00:00:5€:00:53:00: eth.addr == 00:00:5e:00:53:00 query 8x7198 AAAA content-autofill.googleapis.
Ethernet l-.-_:m 020806 (A 0 query 8x6fcc A safebrowsing.googleapis.com
query 8xb@ld AAAA safebrowsing.googleapis.com
query 8xd856 A adservice.google.com

query @x5e2d AAAA adservice.google.com
ip.addr == 192.0.2.1
on't use != for this!): I{ip.addr

interface enl, id @
1140 (30:df:8d:80:e5:40)

0 || udp.port == BO

No ARP and no DNS: not arp and !{udp.p 53)
Non-HTTP and non-SMTP to/ffrom 19: .addr == 192.0.2.1 and not tep.port in {80 25}

30 df 8d 8@ e5 4@ @ B 2d 8b 88 00 45 @0 @
88 3d 42 40 00 e f ¢ aB 81 52 c@ aB
@1 fe d5 38 @0 35 80 29 ce 9e ad 7b 91 00 @0 81
90 90 20 00 00 20 3 77 TT T7 @7 67 73 74 61 74

Figure 2-11. Display filter bookmarks and options

Another quick method of filtering the packets is using the right-click
filtering method. While navigating through the list of packets, if you come
across a packet that looks suspicious or you are interested in checking out
similar packets, you can simply right-click the packet or field of interest
and select either the Apply as Filter | Selected or the Prepare as Filter |
Selected option as shown in Figure 2-12. The Apply as Filter | Selected
option directly places the filter on the live traffic or captured packets,
whereas the Prepare as Filter | Selected option prepares the display filter
and gives the user an option to edit the filter before it is applied on the live
traffic or captured packets.
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» Frame 5: 70 bytes on wire (568 bits), 78 bytes captured (56@ bits) on interface enl, id @

Ethernet II, Src: Apple_el:
1

v Internet Protocol

» Differentiat.
Total Length

Identification: Axzcdlf (502871

Expand All
Collapse All

Apply as Column

t Packet Bytes...

ocol Page
Filter Field Reference
Protocol Preferences

Decode As...

t: 192.168.1.254

, ECN: Not-ECT)

disabled]
1

Selectad
Not Selected

Bb 23 @@ 45 00
al 91 52 c@ a8
2@ 2@ 8d ea 6
aB 21 52 ee 235

Figure 2-12. Right-click filtering

b (4c:20:b8:el: b}, Ds Shenzhen_80:e5:48 (32:df:8d:80:e5:40)
‘ersion 4, Src: 192.168.1

0108 .... = Version: 4

» 8181 = He r Length: 20 bytes

ices Field:

Within both Apply as Filter | Selected and Prepare as Filter | Selected,
users can choose from one of the available filter options:

o Selected: Creates a filter matching the selection

e Not Selected: Creates an exclusion filter

o And Selected: Must match both the existing filter and

the selection

o Or Selected: Must match either the existing filter or the

selection

o And Not Selected: Must match the existing filter with the
exclusion of the selection

e Or Not Selected: Must match either the existing filter or

filter based on the exclusion of the selection

59



CHAPTER 2  GETTING FAMILIAR WITH WIRESHARK

Users can also leverage the Copy | As Filter feature available in
Wireshark as part of right-click filtering. This feature allows users to copy
the filter expression without applying or listing the filter in the display filter
pane. This feature can be very useful for creating complex display filters or
for copying filters between different Wireshark instances where we want to
trace the packets across multiple capture files.

Although there are many ways of creating display filters, one of the
features that really stands out in Wireshark is its ability to catch errors or
mistakes in display filters, which prevents users from applying the wrong
display filters on the packet captures. The display filter pane turns red and
disables the option to apply a filter if there is an incomplete or incorrect
display filter expression typed in the pane.

Working with Wireshark Capture Files

As stated before, Wireshark captures network traffic and allows the

user to save the packets with either .pcap or .pcapng extensions. The
pcap file format is the initial version of the file format that was originally
implemented in UNIX and Linux using the libcap library. This file format
was implemented in Windows using the WinPcap library. The pcapng file
format was the result of an Internet Engineering Task Force (IETF) draft
that specifies the PCAP Next Generation (pcapng) Capture File Format.
Through this IETF draft, the proponents defined standardized blocks and
fields, thus making the pcapng format a more extensible and futureproof
file format.

PCAP vs. PCAPng

There are several differences between the pcap and pcapng file formats,
some of which are listed in the sections that follow.
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Capture from Multiple Interfaces

The pcap format contains some information about the capture interface
but does not have support for multiple interfaces. This is because the
interface information is included as part of the common header and not
stored on a per-packet basis, making it difficult to capture traffic from
multiple interfaces in the same capture file. On the other hand, the pcapng
file format supports multiple interfaces by using the interface description
block defined in the PCAP Next Generation (pcapng) capture file format
IETF draft. Using the interface description block, each packet can be
associated with a specific interface. Figure 2-13 displays the interface
description block as defined in the IETF draft. Note that the block type of
the interface description block is 1 (0x00000001).

1 2 3

1234567890123 456789012345678981

L L e e e e e e e e e L e o L e T S S o L St BT B S B o B ol e o
8 | Block Type = 8x@0088801

e L e R e e e e e et e e e e e e e e e e e e e L e e e e o e
4 | Block Total Length

E e e e e s 0 S L e e e e o e e DL SRR T T L et s e s L L S
8 | LinkType | Reserved

LT ST S T S DT S N L T T ST S T S R DT B S T T S R S S T e L L
12 | SnaplLen

B et e e e e e o e e
16

Options (variable)
PSS S S S S S S S S S S S

Block Total Length
e e e e T e e e e L e L et e e e L L Tt B

P Er P S IS R

+
/
/
/
+
|
+

Figure 2-13. Interface description block

Note A simple packet block, which is a smaller and simpler
packet block that is easy to process and contains a minimal set of
information, does not contain the Interface ID field and is thus set to
a default value of 0. With a simple packet block, it is assumed that
the packets have been captured on the interface that was previously
specified in the first interface description block.
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When a packet capture is initiated for multiple interfaces, a user can
see the packet of each interface in the pcapng file using their interface_id
field. Figure 2-14 displays the packets belonging to interface id 1, which in
this case is a loopback interface (IP address 127.0.0.1) of the PC itself.

oee

a i mBARE@E | e

M |frameinterface_id ==
Time | Source | Destination | Protocol | Langth Info
9.451137 127.9.0.1 127.8.0.1 5023 - 54428 Len=595
9.451304 127.0.0.1 127.9.0.1 54428 - 5003 Len=24
1.525373 127.9.8.1 127.8.9.1 5083 - 54428 Len=595
1.525566 127.9.0.1 127.0.0.1 54428 - 5003 Len=24
2.589696 127.9.9.1 127.9.0.1 5082 - 54428 Len=595
2.589879 127.0.8.1 127.98.9.1 54428 ~ 5003 Len=24
3.646493 127.0.0.1 127.8.0.1 5003 - 53428 Lens595
3.646578 127.0.0.1 127.9.0.1 54428 - 5003 Len=24
4.7118B66 127.0.98.1 127.8.9.1 5093 - 54428 Len=595
4.712133 127.0.0.1 127.0.0.1 54428 - 5003 Len=24
5.753384 127.9.0.1 127.9.0.1 5092 - 54428 Len=595

» Frame 639: 56 bytes on wire (448 bits), 56 bytes captured (4 0000 02 @2 @0 00 45 02 00 34 @b 48 02 00 42 11 2@ @0
» Null/Loopback 7f B2 8@ A1 7f B2 88 D1 d4 9c 13 8b 9@ 28 fe 33

91 82 1a 4d 54 6a 90 02 03 20 02 00 02 90 22 @0

. a « i 4 .8.0.1, : 127.8.8. a
Internet Protocol Version 4, Src 8.0.1, Dst: 127.8.9.1 20 0P 88 90 80 AR B8 B8

Protocol, Src P 28, Dst Port: 5083

Figure 2-14. Packets with interface id 1

Timestamps

With pcap format, one of the major concerns for network analysts was

its resolution on packet timestamps. Each packet in the pcap format has

a time resolution accurate to the microsecond level (i.e., 10® seconds),
which provides a resolution for 999,999 packets per second. On first look,
this number looks reasonable, but with the modern-day networks evolving
to 25 Gig, 40 Gig, and 100 Gig links, microsecond-level accuracy can

create a huge gap. It is imperative to note that even a common 1 Gig link
can easily exceed this link. The pcapng file format provides the capability
to adjust the resolution using a flexible timestamp format, which is now
expressed as a 64-bit time unit that can easily accommodate evolving
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network speeds. The default resolution value on packet timestamps is still
given in microseconds, but this can be altered by setting the if tsresol
option in the interface description block.

Embedding Comments

Troubleshooting networks can be complex and time consuming and could
be further delayed when information is shared across peers or customers.
The pcapng format allows the user to embed both top-level and per-packet
comments that can be helpful when traces are shared across multiple
users for analysis. To add a comment to a packet, select a packet and right-
click to choose the Packet Comment option. Once selected, this opens a
window that will allow the user to add a comment on the packet, as shown
in Figure 2-15.

Wireshark - Packet 640 Comment

[This TCP packet has Spurious Retransmission.Follow this

TCP stream to troubleshoot further.

Figure 2-15. Adding comments on a packet

Once the comment is added, the packet headers will also have a packet
comments section added at the top, as shown in Figure 2-16.
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o0

et has Spurious Retransmission. Follow this TCP stream to
CP packet has Spurious Retransmission. Follow this TCP stream to troubleshoot further.]
level: Comment]
[Group: Comment]
> Frame 648: 1466 bytes on wire (11728 bits), 1466 bytes captured (11728 bits) on interface enl, id @
> Ethernet II, Src: Shenzhen_80:eS: :df:8d:80: @), Dst: Apple_el:2d:8b (4c:20:b8:el:2d:8b)
> Internet Protocol Version 4, H 192.168.1.82
8022 4c 20 b8 el 2d 8b 38 df B0 e5 40 08 L --QEN- @ -E
5 4b 00 @@ 70 94 75 49 2a e@ . (++pr culef
dB c4 fb 8f ]
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Figure 2-16. Packet headers with comments

To add top-level comments or file-level comments, go to Statistics
| Capture File Properties. This opens a window that includes a Capture
File Comments section. Users can add the comments and then click Save
Comments to save the top-level comments.

Metadata

Additional information is always useful when investigating network issues.
Although adding top-level and per-packet comments can be extremely
useful, additional information such as the source of the packet capture can
be very useful. With pcapng, additional fields such as a description field,
OS field, and filter field within the interface description block can provide
additional information regarding the capture source.

Extendable Format

Because the pcapng format is standardized and deploys a generic block
structure, it allows the format to evolve over time. In pcapng, specific
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block) and interfaces (interface description block). Additional information

such as metadata can be stored in other optional blocks, such as a name
resolution block or interface statistics block. With the options to define

experimental blocks and metadata, pcapng allows organizations to develop

their own customized yet compatible network analysis tools.

Splitting Packet Captures into Multiple Files

When capturing network traffic on high-speed links, the Wireshark file size

can increase rapidly. This could increase the loading time when the packet

capture file is opened for analysis. To overcome this challenge, network
administrators or analysts can adjust the capture options in Wireshark to
automatically split the packet captures into multiple files. Follow these

simple steps to do that:

1.

On the Capture menu, select Capture Options. This

opens the Capture Options window in Wireshark.

In the Capture Options window, click the
Output tab.

On the Output tab, set the capture file from under
Capture to a Permanent File by clicking Browse and
specifying the file name. Click Save.

Choose the output format. The default option
is pcapng.

Select the Create a New File Automatically
check box.

You can then select one or multiple options to
decide which factors will trigger the creation of
a new file. For instance, you can select an option
to create a new file after the file has reached 100
packets, as shown in Figure 2-17.
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3. Once these options are selected, click Start.

Once you have completed the capture and stopped the capture, you
will notice that multiple files have been created.

k - Capture Options

Input  Output  Options
Capture to a permanent file

File: sonal Projects/Book/Apress/Network Analysis using Wireshark/packet capturesftesting Browse...

Qutput format: ® pcapng pcap
» Create a new file automatically...
+ after 100 packets
after 1 kilobytes
after 1 - | seconds

when time is a multiple of 1 hours

Use a ring buffer with 2 o files

Start

Figure 2-17. Splitting packet capture into multiple files

Merging Multiple Capture Files

While splitting helps load the packet capture files quickly, merging is
required to analyze the packets, especially in scenarios where captures are
taken from multiple interfaces or when the packet stream is split across
multiple capture files. The Wireshark merge option tries to merge the files

based on one of the following selected options:

o Prepend Packets: Prepends the packets from the
selected file before the currently loaded packets.
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e Merge Chronologically: Merge packets from both

opened and selected files in chronological order. This

option is selected by default.

e Append Packets: Appends the packets from the selected

file after the currently loaded packets.

To merge multiple files, few simple steps can be followed:

1. Open or load a packet capture file on Wireshark.

2. On the File menu, select Merge to open the Merge

dialog box.

3. Select the file that you want to merge with the

opened file, as shown in Figure 2-18.

Once the packets are merged, the user can then save the merged file

with the same or a different name.
Wireshark - Merge Capture File

Look in: ™ [Users/vinitjain/Deskt...eshark/packet captures <

Name ~ | Size

_ B ch2-1.pcapng 1.28 MiB

I8 vinitjain B ch2-2.pcapng 641..KiB
B testing_00001_20210830011540 44...KiB

I testing_00002_20210830011549 i

B testing_00003_20210830011550

B testing_00004_20210830011550

B testing_00005_20210830011550

B testing_00006_20210830011550

B testing_00007_20210830011550

B testing_00008_20210830011551

== Computer

File name: testing_00001_20210830011540

Files of type: | All Filas

Prepend packets Format: Wireshark/...- pcapng

# Merge chronologically Size: 44KiB,100 data records

¢ » "7 @0

| Date Modified
8/29/21 8:03 PM
8/30/211:01 AM
8/30/211:156 AM
8/30/211:15 AM
8/30/211:15 AM
8/30/211:15 AM
8/30/211:156 AM
8/30/211:156 AM
8/30/211:15 AM
8/30/21 1115 AM

Open

Append packets Start [ elapsed: 2021-08-30 01:15:40 { 00:00:09

Read filter:

Figure 2-18. Merging multiple capture files
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Analyzing Packets in Wireshark

Now that we have learned about the basics of the Wireshark UI, how to
perform a packet capture, and how to work with capture files, the next step
is learning how to analyze the packets using Wireshark. Before we jump
into analyzing the packets, there are few critical factors that must be kept
in mind, and this goes back to the question of why we need to analyze the
packets. Usually, network packet analysis is done when there is a problem
in the network and we need to tackle get to the root of any network event.
For instance, Company ABC is seeing some anomaly in their network
behavior, and they want to investigate what is causing the problem. To

get to the root cause of the anomaly, network administrators or security
analysts might begin by asking few basic questions such as these:

1. When did the problem start?
2. What is or was the trigger for the problem?
3. Can we re-create the problem?

4. Does the problem happen at a particular time in
the day?

5. How frequently does the problem occur in the
network?

6. What kind of traffic is affected?
7. Istheissue currently occurring?

8. To which segment of the network is the problem
isolated?

9. How many network users are affected due to the
given problem?

68



CHAPTER 2  GETTING FAMILIAR WITH WIRESHARK

All these questions, though, might or might not directly answer why
we need to perform packet analysis, but these questions will always
help get to the bottom of the problem or at least one or few steps closer
to it. Out of these questions, the answers to questions 2, 3, 4, 5, 6,
and 7 are required when performing network analysis by performing
packet captures at different points in the network. If you do not know
the answer to question 8, you will eventually find the answer to that
question while investigating any network event. Even though, there can
be several reasons for performing packet analysis, it is usually done for
two primary reasons:

e Baselining the network

e Troubleshooting a network issue (e.g., packet loss,
latency issue, network attack, etc.)

0S|I Model

Before diving into the steps involved in performing packet analysis,
it is important to understand the Open Systems Interconnection
(OSI) model. The OSI model was developed by the International
Organization for Standardization (ISO) in 1984 with the sole intent of
standardizing the communication functions of a telecommunications
or computing system irrespective of its underlying structure and
technology. The OSI model helps with interoperability across different
computers or network devices.

The OSI model outlines the data flow in a network device (or a
communication system) through its seven abstraction layers, as shown in
Figure 2-19.
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Layer 7 — Application Layer

Layer 6 — Presentation Layer

Layer 5 — Session Layer

Layer 4 — Transport Layer

Layer 3 — Network Layer

Layer 2 — Data Link Layer

Layer 1 — Physical Layer

Figure 2-19. OSI model

Each layer in the OSI model defines different functions, as listed in
Table 2-6.

Table 2-6. OSI Model Layers and Their Functions

Layer Functions

Physical layer Transits and receives raw bit streams over a physical medium
Examples: 1000BaseTX, ISDN, etc.

Data Link layer Provides reliable transmission of data frames between two
devices connected via the physical layer
Examples: Ethernet, Frame Relay, ATM, etc.

Network layer Provides mechanism for structuring and managing a
multinode network. The network layer takes care of IP/IPv6
addressing, routing protocols, and traffic control.
Examples: IPv4, IPv6, ICMP, IPSEC

Transport layer Provides reliable transmission of data segments between two
points in a network through transport layer protocols.
Examples: TCP and UDP

(continued)
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Table 2-6. (continued)

Layer Functions

Session layer Manages communication sessions.
Examples: NetBIOS, SAP

Presentation layer ~ Also known as the Translation layer; Provides three primary
functions:
Translation
Encryption/decryption
Compression
Examples: SSL, TLS, MPEG

Application layer Provides high-level application programming interfaces (APISs)
including resource sharing and remote file access.
Examples: FTP, SMTP

To enable communication across each layer, communication protocols
enable the communication between two hosts on the same corresponding
layer. We learn more about these communication protocols in the coming
chapters.

Analyzing Packets

Wireshark organizes the captured packets in an incredibly easy-to-read
packet list pane. Once the packets are captured, and if users want to
identify the details of the packet, all they need to do is find the packet and
click on it. On clicking any packet in the packet list pane, the details about
the structure of the packet along with all its fields are visible in the packet
details pane. The details displayed in the packet details pane make it
incredibly easy to learn and understand more about the packet.
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To start analyzing the packets, it is important to first understand the

different columns available in the Wireshark UI. Figure 2-20 displays the

Wireshark UT and information present across various columns in the

packet list pane.

i@ mBRR ARe>EF IR B A

Source Destination Protocol | Lengtt| Info

627 6.684430 142.250.194.227 172.208.10.3 TLSv1l. 1464 Application Data

628 6.684431 142,.250.193.68 172.208.18.3 TLSv1. 158 Application Data
629 6.684432 142.250.193.68 172.20.10.3 TLSvi. 1464 Application Data
630 6.684434 142.250.193.68 172.208.108.3 TLSV1.. 466 Application Data
631 6.684435 142.250.2086.170 172.208.10.3 TCP 74 443 - 58748 [SYN, ACK] Seq=0 Ack=1 Win=
632 6.684480 172.20.108.3 142.250.194.227 TCP 66 58747 - 443 [ACK] Seq=1298 Ack=29269 Wi
633 6.684493 172.20.10.3 142.250.193.68 TCP 66 49919 -+ 443 [ACK] Seq=2483 Ack=353621 W

6.684508 172.208.18.3 142.250.206.178 TCP 50748 -+ 443 [ACK] Seg=1 Ack=1 Win=13139
6. 684535 172.20.10.3 142,250,194.227 [TCP Window Update] 50747 -+ 443 [ACK] Seq

Figure 2-20. Wireshark user interface

Here are high-level details about the various columns available at the

top of the packet list pane.
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e No.: This column displays the number order of the
captured packet. If there is a bracket displayed along
with the packet number, it indicates that the packet is
part of the conversation.

e Time: This column displays how long after the packet
capture was started each packet got captured.

e Source: This column displays the source address of the
system from where the packet originated.
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Destination: This column displays the address of the
destination device or host for which the packet is
destined.

Protocol: This column displays the type of each packet;
for instance, TCP, ICMP, DNS, and so on.

Length: Displays the length of each packet in bytes.

Info: This column displays more information about the
packet and could have varied information from packet
to packet.

Out of these fields, the Time and Length fields require a bit more

explanation, as the rest of the fields are self-explanatory.

Time

As packets are captured in Wireshark, each packet is timestamped. These

timestamps are available for each packet in the packet list pane, which can

be further used for analysis. It is important to note that the timestamps

are created by the Npcap library, but the source of the timestamps is the

system’s kernel. That is the primary reason timestamps can vary from file

to file. Users can choose from one of the following time precision formats

in which they wish the timestamps to be displayed:

Seconds

Tenths of a second
Hundredths of a second
Milliseconds
Microseconds

Nanoseconds
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Apart from choosing the format of the timestamps, user can also
change the display format of the Time column. Users can right-click the
column and select the Edit Column option from the menu. That opens a
column edit pane just below the display filter bar. In this pane, users can
select one of the following time format options from the Type field:

o Time (format as specified); this is the default option
e Absolute date, as YYYY-MM-DD, and time

e Absolute date, as YYYY/DOY, and time

e Absolute time

e Deltatime

e Delta time displayed

e Relative time

e UTC date, as YYYY-MM-DD, and time

e UTC date, as YYYY/DOQY, and time

o UTCtime

After selecting one of these options, click OK in the edit column pane.
Figure 2-21 displays the packet list pane with Time column displayed in
UTC date and time option.

Title: Time Time (format as specified)

No. Source
20821-89-85 14:22:50.005944  142.250.193.68 . 1464 Application Data [TCP se

2021-09-85 14:22:50.095948  142.250.193.68 5 1464 Application Data [TCP sef
2021-89-85 14:22: 142.250.193.68 172.20.1 1464 Application Data [TCP se

2021-89-05 14: . 142.250.193.68 172.20.1 1464 Application Data [TCP se
2021-89-985 14: . 142.258.193.68 172.20.1 1464 Application Data
2021-89-85 14: . 142.250.193.68 1 1464 Application Data
2021-89-05 14: . 142.250.193.68 172.20.18. 1464 Application Data
2021-89-85 14: 5 142.250.193.68 172.20.18. 1464 Application Data [TCP se

22.20,00.3 LSe35 Acolication Data [ICP Socznl,

Figure 2-21. Wireshark with UTC date and time timestamps
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Length

In Wireshark, the length column displays the number of bytes captured
for that packet. The number of bytes usually corresponds to the raw data
bytes listed at the bottom of the Wireshark window. Now, you must be
wondering what is so significant about these captured bytes of the packet.
The significance is the statistics that can be gathered from these captured
bytes. Based on the captured bytes of each packet, users can examine

the distribution of lengths across the captured traffic. To do so, users can
go to the Statistics menu and select Packet Length. This will open the
Packet Lengths window, which displays the statistical information for
varied packet lengths and includes the following columns, as shown in
Figure 2-22:

o Packet Lengths

e Count

o Average

e Min Val

e MaxVal
e Rate (ms)
o Percent

e Burst Rate

e Burst Start

75



CHAPTER 2  GETTING FAMILIAR WITH WIRESHARK

[ ] ireshark - Packet Lengths - Wi-Fi: en
Pe 0 Wireshark - Packet Lengths - Wi-Fi: en0

Topic [ Item ~ | Count | Average |Min Val | Max Val | Rate (ms) | Percent |Burst Rate | Burst Start
~ Packet Lengths 792 648.27 b5 1464 0.0873 100% 21700 6.367
0-19 - - - 0.0000 0.00% - -
20-39 = = 0.0000 00% -
79 0.0333 0.4600
0. . 0.1500
0.0054 6.19° 0.0700
0.0033 3.7¢ 0.0600
0.0018 . 0.0500
1461.42 0.0336 : 1.6200

5119 0 0.0000

5120 and greater 0 = = 0.0000

Display filter:

Figure 2-22. Packet Lengths statistics

Capture File Properties

Wireshark provides a summarized view of the captured packets in the
Capture File Properties dialog box. Users can select Capture File Properties
from the Statistics menu. This opens the Capture File Properties dialog
box, which shows when the first and the last packets were captured, the
device hardware on which the packet was captured, interfaces on which
the packets were captured, and statistics from the captured packets as
shown in Figure 2-23:

o Packets (total packets captured)

o Time span (total time span for which the capture was

running)
o Average pps

o Average packet size in bytes
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o Bytes
e Average bytes/second

e Average bits/second

GETTING FAMILIAR WITH WIRESHARK

Wireshark - Capture File Properties - Wi-Fi: en0

Jvarffolders/y0/bin066pd3i1456ca3g

540kB

d9d6fi1f6Eefbaef16dbb
208b564b16226d7566¢

263311de

411862488¢1add16870215c18562101d!
Wi

Format:

ark).
Encapsulation: Ethernet

Elapsed:
Capture

Hardware:

Interfaces

Capture filter

Displayed

792 (100.0%)

Time span,s

ge packet sizeB 648

jd80000gn/ Twireshark_Wi-FiFYM780.pcapng

8408efb28cb63b066045a156b1d8a5d3102ba6B05

Link type
Ethernet

Bytes 426 513426 (100.0%)

Average bytesfs E 5B

Figure 2-23. Capture File Properties dialog box

There is other statistical and deep packet analysis that can be done,

but those topics are covered in the coming chapters once we have built

a more foundational knowledge on troubleshooting issues with different

packet types.
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Summary

In this chapter we gained a basic understanding of how to use the
Wireshark tool and became familiar with its Ul Initially, we learned about
Wireshark preferences and how users can change the default settings and
Ul according to their requirements and oreferences. We then learned how
to perform packet captures and how dissectors play a role in Wireshark

to break down packets into a more consumable format. We also covered
various filtering techniques, such as capture filters, display filters, and how
users can save the filters based on their usage. This chapter also discussed
in detail the differences between the pcap and the pcapng file formats and
the information available across these file formats. Finally, we concluded
this chapter by learning how to analyze the packet using the Wireshark

UI and how various statistical information can be identified from the
captured packets.
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Analyzing Layer 2 and
Layer 3 Traffic

This chapter covers the following topics:
e Layer 2 frames
e Layer 3 packets

e Analyzing QoS markings

Layer 2 Frames

Layer 2 of the OSI or TCP/IP model is the Data Link layer. The Data

Link layer is responsible for performing encapsulation of the packets.
Appropriate addressing is chosen at each of the Transport, Network, and
Data Link layers during the encapsulation process. The Transport layer
uses port numbers, the network layer uses IP address, and the Data Link
layer uses MAC address, as shown in Figure 3-1.

TCP / UDP
Header (port
r:

mbers)

Frame Header IP Header (IPv4 /

(MAC Address) ~ IPv6 Addresses)

Figure 3-1. Data encapsulation with different headers
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At each layer, the data are encapsulated in a specific format known
as the packet data unit (PDU). The PDU defines the structure or format
in which the data will be shared with the layer above or layer beneath
the current layer. The PDU could simply be the data, a segment (at the
Transport layer), a packet (at the Network layer), a frame (at the Data Link
layer), or even bits.

The Data Link layer encapsulates the outgoing IP datagrams from the
network layer and packages them into frames that are transferred between
two nodes. This layer is also responsible for correcting any errors that
might have occurred at the Physical layer. The Data Link layer has two
sublayers:

e Media Access Control (MAC): Controls access to the
network medium by interfacing with the network
adapter. It is responsible for flow control and
multiplexing device transmissions over the network.

e Logical Link Control (LLC): LLC provides error control
and flow control over the physical medium. It is also
used for identifying line protocols.

Layer 2 Protocols are required for two devices to communicate over the
Layer 2 medium. They provide the communication mechanism between
different Layer 2 devices such as NICs, switches, bridges, and more, over a
LAN or WAN. There are different types of Layer 2 protocols, some of which
are described in Table 3-1.

80



CHAPTER 3  ANALYZING LAYER 2 AND LAYER 3 TRAFFIC

Table 3-1. Layer 2 Protocols

Protocol

Description

Cisco Discovery
Protocol (CDP)

Link Layer Discovery
Protocol (LLDP)

Point-to-Point
Protocol (PPP)

Frame Relay

Asynchronous
Transfer Mode (ATM)

Ethernet

CDP is a Cisco proprietary protocol that is primarily used
to exchange information between directly connected Cisco
devices.

LLDP is a vendor-neutral Layer 2 discovery protocol that is
commonly used by devices to advertise information to their
directly connected devices.

PPP provides the standard mechanism for transmitting data
over point-to-point links.

Frame Relay is a packet-switched WAN protocol that
operates over the Physical and Data Link layers.

ATM is a cell-switched WAN protocol that is designed to
facilitate various types of traffic streams.

Ethernet is the most widely used Data Link layer protocol
used in both LAN and WAN environments.

There are several other protocols that are used at Layer 2, but most

of them are now obsolete or have very limited implementation. In this

chapter, we focus on Ethernet frames.

Ethernet Frames

When talking about Ethernet frames, we can start by taking a close look at
the IEEE 802.3 standard. The fields within the Ethernet header based on
IEEE 802.3 standard are described here and shown in Figure 3-2.
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Preamble: Ethernet frame starts with a 7-byte Preamble
field. Initially this field was introduced to allow for

loss of a few bits due to signal delays, but high-speed
Ethernet links do not require the Preamble field.

Start of frame delimiter (SFD): SFD is a 1-byte field that
is always set to 10101011. This field indicates the start
of the frame.

Destination Address (DA): DA is a 6-byte field that
holds the destination MAC address of the machine.

Source Address (SA): SA is also a 6-byte field that holds
the source MAC address of the machine from which the
packet originated.

Length: This 2-byte field indicates the length of the
entire Ethernet frame.

Data: The Data section holds the payload of the frame.
Note that both the IP header and data will be inserted
into this section if IP is being used over Ethernet. The
minimum length of the data field is 46 bytes, and the
maximum data can be as long as 1,500 bytes, assuming
the interface maximum transmission unit (MTU) is set
to 1,500. If the data length is less than the minimum
length of 46 bytes, then Os are padded to meet the
minimum possible data length.

Cyclic Redundancy Check (CRC): The checksum is
computed based on the 32-bit hash code generated
using the destination address, source address, length,
and data field of the frame and stored in the CRC field.
If the checksum computed by the source or sender is
not the same as that of the client or receiving device,
the data received seem corrupted.
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Preamble |SFD | Destination Address Source Address Length Data CRC

7-Bytes  1-Byte 6-Bytes 6-Bytes 2-Bytes 46 — 1500 Bytes 4-Bytes

Figure 3-2. 802.3 Ethernet frame

As stated earlier, the 802.3-based Ethernet frame only supported
payloads between 46 bytes and 1,500 bytes, which was good enough for 10
Mbps or 100 Mbps ports, but not helpful for Gigabit Ethernet technology.
To support payloads greater than 1,500 bytes, an Extended Ethernet frame
was introduced. The Extended Ethernet frame, also known as Ethernet II
frame, had the following fields:

e Destination Address

e Source Address

o Type (EtherType)

e Data (Variable size)

¢ Frame Checksum (FCS)

Figure 3-3 displays the Wireshark capture packet view of an Ethernet
frame for an IP packet. Notice that the EtherType in the Type field is set to
0x0800, which indicates the encapsulated packet is an IPv4 packet.
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capl.pcapng

MERR Qe FFLIME AQA]MN

=+
Source Destination Protocol | Lengtt| info |
:52.999334 64.100.34.101 TCP 78 4287 - 60192 [ACK] Seqewl Ack=1EEN |

Figure 3-3. Ethernet Il header in IPv4 packet

Note By default, FCS is not visible in the Wireshark capture. To view
the FCS for the Ethernet header, go to Wireshark » Preferences »
Protocols » Ethernet and enable Assume Packets Have FCS option.
Once that option is enabled, the Wireshark packet detail view will
display the FCS field under the Ethernet Il header.

When investigating packets at Layer 2, it is important to take note
of some well-known EtherTypes that are seen inside most production
networks. Some of these well-known EtherTypes are listed in Table 3-2.
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When analyzing Layer 2 frames, packets in Wireshark can be filtered
by applying filters based on source MAC, destination MAC, or EtherType.
Figure 3-4 displays the filtering of Layer 2 ARP broadcast frames coming
from a specific MAC address. The filters can be applied on eth.src and
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Table 3-2. Well-Known EtherTypes

EtherType Protocol

0x0800
0x0806
0x8100
0x8847
0x86DD

IPv4
ARP

VLAN-Tagged Frame (IEEE 802.1Q)

MPLS
IPv6

eth.type fields on the captured Wireshark packets.

2821-88-29
2021-08-29
2021-88-29
2021-86-29
2021-88-29

2921-88-29 04:
2021-08-29 04:

ff ff 1 f8ca
6 84 B2 01 18 c4
20 00 02 00 c@ af

Figure 3-4. Filtering of broadcast frames sourced from a specific

MAC address

Rex2EFIEE A4Q

| Destination
Hroadcas:
Broadcast
Broadcast
Broadcast
Broadcast
Shanghai_64:44:58 Broadcast
Shanghai_64:44:58 Broadcast
Shanghai_& =58 Broadcast

44 58 08 26 00 01
44 58 cP 28 01 01

Protocal | Lengtt| Info
1o -y

n interface en@, id @
ast (ff:ff:ff:ff:ff:ff)

& W

alTormed Facke’

[Malformed Packet]
[Malformed Packet]
[Malforsed Packet]
[Malformed Packet]
[Malformed Packet]
[Malformed Packet]
[Malformed Packet]
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Layer 3 Packets

When troubleshooting issues within a single broadcast domain or local
LAN environments, Layer-2-based captures are more relevant, but when
investigating issues that span multiple network segments that might

be residing in different geographical location, we primarily focus on
looking at Layer 3 and upper layer information in the packet captures.
When talking about Layer 3 packets, we are primarily referring to either
IPv4 packets or IPv6 packets. The protocols at Layer 3 provide logical
addressing in a network (Internet or intranet) and ensure routing of data
across different network segments. Even when dealing with tunneling
technologies, the logical addressing of the tunnel interfaces and routing
traffic across tunnel interfaces is still required. Before diving into IPv4 or
IPv6 packets, let’s first understand ARP and its importance for establishing
network communication.

Address Resolution Protocol

It is important to remember that both physical and logical addresses are
required to establish communication in the network. Logical addresses
allow users to establish communication across multiple network segments,
and physical addresses are used for establishing communication within
the same network segment. To forward traffic within the same broadcast
segment, MAC addresses are required by the switch. Unless the switch
knows about the MAC address of the host, it will not be able to forward the
traffic toward the port where the destination host is connected. The MAC
addresses of all the hosts connected to a switch within the same broadcast
domain are stored in a Content Addressable Memory (CAM) table. If the
MAC address of the destination address is not known, the switch will first
perform a lookup in its cache. If the address is not found even in the cache,
then a request is flooded to all the ports within the same broadcast domain
until the MAC address is identified.
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TCP/IP uses ARP to map the IPv4 address with the MAC address. The
ARP protocol functionality, defined in RFC 826, relies on primarily two
packets:

e ARPrequest: An ARP request is basically a broadcast
packet that is initiated by the sender or source host
when it does not know the MAC address of the
destination host or receiver.

e ARPresponse: When a host with the destination IP
address for which the ARP request was sent receives
the ARP request, it replies with an ARP response, which
is basically a unicast packet directed toward the sender
or the source host.

To understand how ARP works, examine the topology shown in
Figure 3-5. In this topology, Host 1, Host 2, Host 3, and Host 4 are
connected to an L2 switch and Host 1 wishes to send data toward Host 2.
Because Host 1 does not know the MAC address of Host 2, it broadcasts an
ARP request toward the switch.

Host 2
IP-10.00.2

!

1P -10.0.0.1 IP-10.0.0.3
::> =
: ARP Request :
: Src IP - 10.0.0.1 H
1 §rc MAC - 01.01.01.01.01.01
: 10, H

L DstIP-10002 !
! Dst MAC - 00.00.00.00.00.00 |

Host 4
IP - 10.0.0.4

!

Figure 3-5. ARP request
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On receiving the ARP request, the switch first updates its MAC address
table with the MAC address of Host 1 (if it doesn’t already know about
the MAC address) and then broadcasts the ARP request to all the hosts
within the same VLAN. All three hosts receive the ARP request. Because
Host 2 holds the destination IP address in the ARP request, it updates
its MAC ARP cache and sends an ARP response toward Host 1 as shown
in Figure 3-6. The reply is a unicast reply because Host 2 knows its own
MAC address but it also knows about the MAC address of Host 1, which it
learned via the ARP request.

ARP Response
: SrcIP-10.0.0.2 H
+ Src MAC - 02.02.02.02.02.02 |
: DstIP - 10.0.0.1 H
: Dst MAC - 01.01.01.01.01.01 ;

ig sz
g il pr.

Host 1
IP-10.0.0.1

- Host 3
g IP - 10.0.0.3

Host 4
IP - 10.0.0.4

t,

Figure 3-6. ARP response

Any further communication between Host 1 and Host 2 will be unicast
unless one of them has its ARP entry time out. Figure 3-7 and Figure 3-8
show the Wireshark capture of the ARP request and ARP response.

88



CHAPTER 3  ANALYZING LAYER 2 AND LAYER 3 TRAFFIC

ARP.pcapng — R1Gl1 to R2 Gi1

© m i BRE Re2EF ¢ E QAaqaam

=3 -
Time | Source | Destination Pratocol | Lengtt| Info
1 2021-11-14 21:97:51.379155 @c:db:b6:el:02:08 Broadcast ARP 68 Who has 19.9.8.27 Tell 10.8.9.1
> Frame 1: 6@ bytes on wire (482 bits), 6@ bytes captured (488 bits) on interface -, id @
« Ethernet II, Src: @c:db:b6:e1:00:00 (@c:db:b6:el:0@:00), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Destination: Broadcast ffff:ff
: Be:db:b6:el:8@:08 (Bc:db:b6:el:@:0a)
ARP (2x0806)
Padding: 222808000002200000200000000228200000
Resolution Protocol (request)

Sender
Sender
Target
Target

Destination | Protacol | Length| Info

2 2021-11-14 21:97:51.380515 @c:96:24:25:00:00 Oc:db:bb:el:00:00 ARP 60 12.9.9.2 is at 9c:96:24:20:00:00
> Frame 2: 6@ bytes on wire (488 bits), 6@ bytes captured (480 bits) on interface -, id @
+ Ethernet II, Src: @c:96:24:29:00:00 (8c:96:24:29:00:00), Dst: @c:db:bé

Destination

: Bc:96:24:29:00:00 (Bc:96:24:29:00:08)
ARP (0x0806)

Padding: 280000082200000082000000020000000000

~ Address Resolution Protocol (reply)
Ethernet (1)
IPva (exosea)

Hardware siz

Protocol siz

Opcode:

Sender MAC

Target MAC address: @c:db:b6:el:80:88 (Oc:db:b6:el:
Target IP address: 10.0.9.1

Figure 3-8. Wireshark capture ARP response
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IPv4 Packets

Defined in RFC 791, The Internet Protocol version 4 (IPv4) address is

a 32-bit address that could allow anywhere from two to hundreds and
thousands of hosts to be in each network segment. The way subnets

are implemented in organizations allow them to scale quickly without
having to make much change in routing. As stated before, the purpose of
IP was to deliver logical addressing for various network elements and to
provide routing capability across different network segments. Because
there was not much advancement that happened in the early 1980s and
there were limited bandwidth options available, when IPv4 addressing
was standardized in 1983, one of the foci was solving the fragmentation
problem that would allow the packets to be broken into smaller chunks.
Today, with Gigabit Ethernet technologies in place and support for jumbo
MTUs, we rarely have to deal with fragmentation in the network. All the
fields of the IPv4 header are shown in Figure 3-9.

i 32 Bits i

8 8 8 | 8
. Header Type of Service
Version Length or DiffServ Total Length
Identifier Flags Fragment Offset
Time 1o Live Protocol Header Checksum

Source Addrass

Destination Address

Options J Padding

Figure 3-9. IPv4 header

To understand the capabilities of IPv4, let’s examine the IPv4 header in
detail. The IPv4 address has several fields as shown in Figure 3-9:

o Version: This 4-bit field indicates the IP version being
used. There are devices that could be dual stack (support
for IPv4 and IPv6 address) and the version field helps the
device understand how to treat the traffic.
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Internet Header Length (IHL): This is a 4-bit field that
contains the size of the IPv4 header. The 4 bits are used
to specify the number of 32-bit words in the header.
The minimum value of this field is 5 and the maximum
value is 15, which basically indicates that the minimum
IPv4 header length can be 20 bytes and the maximum
can be 60 bytes.

Differentiated Services Code Point (DSCP): This is

a 6-bit field that was previously known as a Type of
Service (ToS) field. This field specifies differentiated
services (DiffServ), defined in RFC 2474, and it is used
to provide service quality features such as Voice over
IP (VoIP) calls or data streaming. Based on the values
assigned in this field, different traffic streams are given
different priority in the network and treated differently
by routers and switches.

Explicit Congestion Notification (ECN): ECN is a 2-bit
field that allows for end-to-end network congestion
notification without dropping packets. For the ECN
feature to work, both endpoints are required to support
this feature.

Total Length: This is a 16-bit field that defines the entire
packet size in bytes including the header and payload.
The minimum size is 20 bytes and the maximum size is
65,535 bytes.

Identification: The Identification field is used to identify
a group of IP datagram packets uniquely and is also
widely used for packet tracing purposes.
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Flags: This 3-bit field is used to control and identify
fragments of an IP datagram. There are three possible
values that are set in the Flags field:

e Bit 0: Reserved
e Bit 1: Do not fragment (also known as DF bit)
e Bit2: More fragments

Fragment Offset: This 13-bit field specifies the fragment
offset relative to the start of the original unfragmented
IP datagram in blocks. Each block is measured in units
of 8 bytes. The maximum possible offset is 65,528
((213-1)*8).

Time to Live (TTL): TTL is an 8-bit field that indicates
the maximum time that a packet can live in an Internet
system. The maximum value of TTL is 255 seconds and
it is decremented when a packet is processed at each
routed hop and forwarded to the next hop. If the TTL
value is zero (0), the packet is discarded or dropped.
This is to ensure that the packets do not keep looping in
the Internet system.

Protocol: The 8-bit Protocol field is used to denote
which protocol will be used in the data section of the
datagram. For instance, the two most common protocol
numbers that are usually seen in the network are
protocol number 6, which is used to represent TCP, and
protocol number 17, which represents a UDP packet.
The protocol numbers are assigned and maintained by
the Internet Assigned Numbers Authority (IANA).
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Header Checksum: The 16-bit Header Checksum field
in the IPv4 header is used for validating the integrity of
the packet. When an IPv4 packet arrives at the router,
the router calculates the checksum of the packet and
compares it with the value in the this field. If the value
matches, the packet is forwarded; otherwise, the packet
is dropped.

Source Address (SA): The 32-bit Source Address is used
to specify the IPv4 address of the source device that
originated the packet.

Destination Address (DA): The 32-bit Destination
Address field is used to specify the IPv4 address of the
destination device to which the packet is destined.

Options: The Options field is an optional field that

is only set when the IHL value is greater than 5 (i.e.,
between 6 and 15). The Options field contains values
and settings for security-related options and might be
considered dangerous by some routers and dropped.
You might see the Options field set when using the
Record Route option with extended ICMP pings or for
Timestamps. Table 3-3 shows the list of options that
can be used in an IPv4 header and Table 3-4 displays
the defined options for IPv4.
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Table 3-3. IPv4 Header Options

Field Size (Bits) Description

Copied 1 Set to 1 if the options need to be copied across all
fragments of a fragmented packet

Option Class 2 0 — Control Options
1 —Reserved
2 — Debugging and Measurement
3 — Reserved
Option Number 5 Specifies an option
Option Length 8 Indicates the size of the entire option; might not be

set for simple options

Option Data Variable Holds option specific data; might not be set for
simple options

Table 3-4. Defined Options for IPv4

Option Type Option Name Description
(Decimal/Hexadecimal)

0/0x00 EOOL End of Option List
1/0x01 NOP No Operation
2/0x02 SEC Security (defunct)
7/0x07 RR Record Route
10/0x0A ZSU Experimental Measurement
11/0x0B MTUP MTU Probe
12/0x0C MTUR MTU Reply
15/0x0F ENCODE ENCODE

25/0x19 QS Quick-Start

(continued)
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Option Type Option Name Description
(Decimal/Hexadecimal)

30/0x1E EXP RFC 3692-style Experiment
68/0x44 TS Timestamp

82/0x52 TR Traceroute

94/0x5E EXP RFC 3692-style Experiment
130/0x82 SEC Security (RIPSO)

131/0x83 LSR Loose Source Route
133/0x85 E-SEC Extended Security (RIPSO)
134/0x86 CIPSO Commercial IP Security Option
136/0x88 SID Stream ID

137/0x89 SSR Strict Source Route
142/0x8E VISA Experimental Access Control
144/0x90 IMITD IMI Traffic Descriptor
145/0x91 EIP Extended Internet Protocol
147/0x93 ADDEXT Address Extension
148/0x94 RTRALT Router Alert

149/0x95 SDB Selective Directed Broadcast
151/0x97 DPS Dynamic Packet State
152/0x98 UMP Upstream Multicast Packet
158/0x9E EXP RFC 3692-style Experiment
205/0xCD FINN Experimental Flow Control
222/0xDE EXP RFC 3692-style Experiment
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e Data: The data or payload in the Data field is based on
the value set in the Protocol field of IPv4 header. For
instance, if the protocol number is set to 1, then the
payload will contain ICMP-related data.

Examine Figure 3-10, which displays the Wireshark capture of an IPv4
packet detailing all the IPv4 header fields. Notice that the Options field is
not present in this capture.

Destination | Protocel | Lengtt| Info

5 . B TET TATRI Teq-ToRTAC
192.168.1.7 5 130 Standard query response Pxfdepmms )
192.168.1.1 88 Standard query Oxbeef TXT debu |

» Frame 42: 138 bytes on wire (1848 bits 38 bytes captured (1848 bits) on inte
» Ethernet II, Src: Shanghai_64:44:58 (fB:cd4:f3:64:44:58), Dst: Apple_2f:87:b8 (88:6
~ Internet Protocol Version 4, Src: 192.168.1.1, Dst: 192.168.1.7
Q1R ....
. 8101
» Different 51 s Fi 1 Bxe SCP: CS@, ECN: Not-ECT)

lidation disabled]
verified]

» Domain Name System

0222 BB 66 5a 2f B7 bB f@ cd 13 64 44 58 03 00 45 @0 12/ -5 sdox
980 74 30 3c B2 00 le 11 B e4 c@ 2B B1 01 c@ aB td<
@1 @7 @2 35 15 54 @2 60 9d d7 14 e8 61 B3 @@ @1 5.-T-*

Figure 3-10. IPv4 header in Wireshark capture

IPv4 Addressing

Based on the understanding from the IPv4 header, the Source Address
and the Destination Address fields store the source and destination IPv4
addresses, respectively. Although these fields are important, it is equally
important to understand different types of IPv4 addresses. Primarily, IPv4
addressing is divided into five different classes:

e Class A:0.0.0.0 to 127.255.255.255

e Class B:128.0.0.0 to 191.255.255.255
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Class C:192.0.0.0 to 223.255.255.255

Class D (multicast addresses): 224.0.0.0 to
239.255.255.255

Class E (experimental addresses): 240.0.0.0 to
255.255.255.255

Within Classes A, B, and C, the IPv4 addresses are further divided into
public and private addresses.

Public address: Public IPv4 addresses are the addresses
that are uniquely identified on the Internet and are
usually allocated to organizations by IANA.

Private addresses: Private IPv4 addresses are primarily
used in almost every organization for managing

hosts in LAN environments. These addresses are not
advertised in the global Internet routing table. The
private IPv4 address range is shown here:

e Class A private IP: 10.0.0.0 to 10.255.255.255
e Class B private IP: 172.16.0.0 to 172.31.255.255

e Class Cprivate IP: 192.168.0.0 to 192.168.255.255

RFC 1918 defines the range of private addresses that can be used

by organizations within their LAN environments. Because the private

addresses are inherently private, multiple organizations could have the

same addressing schemes within their organizations. They communicate

to outside networks (Internet) through their public IPv4 addresses, which

are allocated to their Internet Gateway routers. Even a home broadband

connection works on the same concept. The local network sits behind a

modem and the hosts that are part of that network are allocated private

IPv4 addresses. These hosts have their default gateway set to the modem

and when the hosts want to communicate to the Internet, they use the

97



CHAPTER 3  ANALYZING LAYER 2 AND LAYER 3 TRAFFIC

default route pointing to the gateway. The modem has a dynamically
learned or statically assigned IPv4 address that allows the broadband user
to access the Internet. Figure 3-11 illustrates how a simple broadband

connection is set up.

Home User
192.168.0.11

S 100019 100.1.1.111_ 192.168.0.1

, IsPIP Model IP o Default Gateway

— Broadband Modem
ISP Router

192.168.0.10
Home User

Figure 3-11. Home broadband Internet connection
There are other addresses, too, apart from the public and private IPv4
addresses, listed here:
e Loopback addresses: 127.0.0.0 to 127.255.255.255
o APIPA:169.254.0.0 to 169.254.255.255

e Limited broadcast: 255.255.255.255

ICMP

ICMP is one of the key protocols that is used for validating connectivity in
the network and for network troubleshooting. ICMP was initially published
in RFC 777, which was later deprecated by RFC 792 and was later updated
by RFC 4884, RFC 6633, RFC 6918, and so on. Because IP is a best-effort
and an unreliable connectionless protocol, ICMP allows identifying and
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communicating issues that prevent data delivery. Network engineers
frequently use the ICMP ping utility, which relies on an ICMP request and
ICMP reply to identify reachability between source and destination. There
are two versions of ICMP that are used by both the IP versions:

o ICMPv4 used for IPv4
e ICMPv6 used for IPv6

To communicate errors or reachability information, ICMP relies on
ICMP messages that are set within the ICMP header. The ICMP header has
the following fields, shown in Figure 3-12:

o Type: 8-bit
o Code: 8-bit

o  Checksum: 16-bit

0 B 16 31
Type ‘ Code [ Checksum |
Content

Figure 3-12. ICMP header

Note When sending an ICMP packet, the Protocol field within the IP
header is set to a value of 1.

Some of the most commonly used ICMP messages are as follows:

e ICMP Echo Request and Echo Reply: The ICMP Echo
Request has the Type/Code value of 8/0 and the ICMP
Echo Reply has the Type/Code value of 0/0. The Echo
Request and Echo Reply messages are used to validate
the connectivity between the source and destination
device in the network and are commonly used via the
ICMP Packet InterNet Grouper (PING) tool. When
the source device tries to verify the connectivity
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toward the destination device using the PING tool, it
sends an ICMP request, and if the destination device
isreachable, it responds back with the ICMP reply

message.

ICMP Redirect message: ICMP Redirect messages are
used by routers on nonoptimal paths to notify hosts
about the availability of an optimal path between the
source and the destination. An ICMP Redirect message
has the ICMP Type value of 5 and has four codes:

e Code 0: Redirect datagram for the network
e Code 1: Redirect datagram for the host

o Code 2: Redirect datagram for the type of service
and network

e Code 3: Redirect datagram for the type of service
and host

ICMP Destination Unreachable message: If a router
receives a datagram that it is unable to forward or
deliver to the destination, it replies with an ICMP
Destination Unreachable message. There can be
multiple reasons for the router being unable to
deliver the packet. The different reasons are covered
under various ICMP codes. The ICMP Destination
Unreachable message has the Type value of 3 and the
following code options:

e Code 0: Destination network unreachable
¢ Code 1: Destination host unreachable
e Code 2: Destination protocol unreachable

e Code 3: Destination port unreachable
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e Code 4: Fragmentation required, and DF set

o Code 5: Source route failed

e Code 6: Destination network unknown

e Code 7: Destination host unknown

o Code 8: Source host isolated

e Code 9: Network administratively prohibited

e Code 10: Host administratively prohibited

e Code 11: Network unreachable for type of service
e Code 12: Host unreachable for type of service

e Code 13: Administratively prohibited

ICMP Time Exceeded message: This message is sent

by the router to the source device or host if the TTL
value reaches 0 before it reaches the destination. One
reason that could cause the TTL to expire is that the
destination router is more than 255 hops away or,
alternatively, there is a routing loop in the network that
has caused the TTL value to reach 0. The ICMP Time
Exceeded message has the Type value of 11 and has the
following codes:

e Code 0: TTL expired
o Code 1: Fragment reassembly time exceeded

ICMP Source Quench message: If a router receives a
large amount of data that it can handle and it can send
an ICMP Source Quench message to the sender asking
it to slow down the rate at which it is sending the traffic.
The ICMP Source Quench message has the Type and
Code value set to 0/0.

101



CHAPTER 3  ANALYZING LAYER 2 AND LAYER 3 TRAFFIC

To see what ICMP packets look like, let’s examine the network topology
shown in Figure 3-13. In this topology, there are three routers—R1, R2, and
R3—each configured with loopback interfaces.

R1 R3
Lo0-1.1.1.1/32 LoD - 2.2.2.2/32 Lo0 - 3.3.3.3/32

Figure 3-13. Network topology

The goal is to test the connectivity between the R1 and R3 loopback
address. To exchange the routing information, the device is running the
OSPF routing protocol. To verify connectivity, the network engineers will
initiate a ping request destined to R3 loopback 0 interface IP (i.e., 3.3.3.3)
sourcing loopback 0 interface IP (i.e., 1.1.1.1). Figure 3-14 and Figure 3-15
display the ICMP request and ICMP reply packets between 1.1.1.1 and
3.3.3.3.

R1Gi1to R2 Gi1

i mARE RE2EFIHEE Q&
 filter .<3t/> 0 -
Source | Destination Protocol | Lengtt| info

IMP 114 Echo (ping) reques
114 Echo (ping) reply

> Frame 47: 114 bytes on wire (912 bits), 114 bytes captured (912 bits) on interface -, id @
> Ethernet II, Src: @c:db:b6:e1:80:00 (Oc:db:b6:e1:00:00), Dst: Bc:96:24:29:00:00 (0c:96:24:29:00:00)
> Internet Protocol Version 4, Src: 1.1.1.1, Dst: 3.3.3.3
Internet Control Message Protocol
Type: 8 (Echo (ping) request)

: 8x8717 [correct]
Status: Good]

t (BE): @ (exoo0ee)
Identifier (LE): @ (exeeee)
Sequence Number (BE): 2 (@x@@@2)
Sequence Number (LE): 512 (@x@2@8)

~ Data (32 bytes)
Data: 20200000001595cdR0@Rabcd@@@Rabcdo@@@abcd0@@Rabcdo@@@abecdeoRoed
[Length: 32]

Figure 3-14. Wireshark capture for ICMP request
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== R1Gi1to R2 G

i mABRE Re2>EF IR E

| Source | Destination | Protocol | Lengtt| Info

.454178 & . 114 Echo (ping) request
19.455548 T IMP 114 Echo (ping) reply

> Frame 48: 114 bytes on wire (912 bits), 114 byt captured (912 bits) on interface -, id @
> Ethernet II, Src: ©9c:96:24:29:00:00 (Pc:96:24:29:00:00), Dst: @c:db:b6:el:00:80 (@c:db:b6:el:008:00)
Internet Protocol Version 4, Src: 3.3.3.3, Dst: 1.1.1.1

- Internet Control Message Protocol

Type: @ (Echo (ping) reply)

Code: @

Checksum: 8x@f17 [correct]

[Checksum Status: Good]

Identifier (BE): @ (@xeeed)

Identifier (LE): @ (@xeoe0)

Sequence Number (BE): 2 (@x@0e2)

Sequence Number (LE): 512 (@x@eze8)

[Response time: 1.370 ms]
Data (32 bytes)
Data: 20220820001595cdeepdabcd@ddlabecddl@dabcdddddabcdddldabocdecpdeean

Figure 3-15. Wireshark capture for ICMP reply

Although in most cases you might not want to perform a packet

capture for ICMP request and ICMP reply packets, in scenarios where even

the ICMP packets are unreachable, you might want to perform packet
capture to isolate the node that might be dropping the packets.

For basic ICMP packets, there is no special Options field that must
be set in the IP header, but when performing a ping test with the Record
Route (RR) option, the Options field is set to enable the RR feature. But
what is the RR feature? It is used mostly with the ping tool. When the RR
option is set in the Options field of an IPv4 header, it forces every router
that handles the IP datagram to add its outgoing interface IP to a list in
the Options field. When the datagram reaches the destination, the list of
IP addresses is copied into the ICMP reply, which is then returned to the
sender. Example 3-1 illustrates how the RR option is used with the ping
request on a Cisco I0S device.
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Example 3-1. ICMP Ping with Record Route Option

R1t#ping

Protocol [ip]:

Target IP address: 3.3.3.3

Repeat count [5]: 1

Datagram size [100]:

Timeout in seconds [2]:

Extended commands [n]: y

Ingress ping [n]:

Source address or interface: 1.1.1.1

DSCP Value [0]:

Type of service [0]:

Set DF bit in IP header? [no]:

Validate reply data? [no]:

Data pattern [0x0000ABCD]:

Loose, Strict, Record, Timestamp, Verbose[none]: Record
Number of hops [ 9 ]:

Loose, Strict, Record, Timestamp, Verbose[RV]:

Sweep range of sizes [n]:

Type escape sequence to abort.

Sending 1, 100-byte ICMP Echos to 3.3.3.3, timeout is 2
seconds:

Packet sent with a source address of 1.1.1.1

Packet has IP options: Total option bytes= 39, padded
length=40
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Record route: <*>

(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)

Reply to request 0 (71 ms). Received packet has options
Total option bytes= 40, padded length=40
Record route:
(10.1.2.1)
(10.2.3.2)
(3.3.3.3)
(10.1.2.2) <*»
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)

End of list

When examining the ICMP packet in Wireshark as shown in
Figure 3-16, you will also notice that the IPv4 header now has the Options
field with the Record Route option set and the list of IP addresses.
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Protocol | Lengtt| infa

114 Echo (ping) request id=@xed
114 Echo (ping) reply id=@xoq

Time Li
Protocol: ICMP (1)
Header Checksum
[Header chec
Source Add

«@ 9000 = Number: End of Option List (EOL) (@)

@c db b6 el 80 B0 Bc 96 24 29 00 22 08 8@ 4f 0@ %) o

® B wireshari_-MHUBD1.pcapng Packets: 3343 - Displayed: 3343 (100.0%) - Dropped: 0 (0.0%)  Profile: Default

Figure 3-16. Wireshark capture of ping packet with Record
Route option

IP Fragmentation and Reassembly

Fragmentation allows the larger sized packets to be broken down into
smaller chunks to be sent across network segments that do not support
large packets. When traffic is routed across the network devices, the
devices in the path might encounter a segment with an interface MTU
value that is smaller than the incoming packet size. For such situations,
IP fragmentation can be used. It allows a datagram to be divided into
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smaller chunks so that it can be transmitted across a segments that have
a lower interface MTU. When talking about fragmentation, two terms are
widely used:

e Maximum segment size (MSS): Data payload

e MTU - MSS + IP header (20 bytes) + TCP header
(20 bytes)

So, if an interface MTU is set to a default valie of 1500, then the MSS
will be calculated as follows:

MSS = 1500 (MTU) - 20 bytes (IP header) - 20 bytes (TCP header)

For a better understanding of how fragmentation works, examine
topology shown earlier in Figure 3-13. In this topology, the link between R1
and R2 has an interface MTU value set to 9200, whereas the link between
R2 and R3 has the interface MTU value set to the default of 1500. When a
ping packet is initiated from R1 sourcing 1.1.1.1 destined to R3 loopback
3.3.3.3 with packet size set to 9140, the packet will be fragmented because
the network segment between R2 and R3 has a lower MTU value. In such
a case, the more fragments bit will be set in the IPv4 header Flags field as
shown in Figure 3-17. In Figure 3-17, we can see the more fragments bit is
set but also notice that the Fragment Offset field shows 0. This is because
the first datagram packet in the fragmented packets will not have any
offset, thus it begins from 0. Any other packet after this packet will have
incremental fragment offset values.
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ZE2 I HE

| Prote| Lengtt|
Fragmented protocol
Fragmented protocol
Fragmented protocol
Fragmented protocol
Fragmented protocol
Fragmented protocol
Echo (ping) request id
Fragmented IP protocol

2021-11-14 :903.126535
2021-11-14 :88:83.126613
2021-11-14 :98:83.126633
2921-11-14 :98:83.126675
2021-11-14 108:03.126694
:83.126714

9 2021-11-14 :08:03.126741
18 2021-11-14 @7:88:93.127462

WS e e e
PR W W W W w WD

1
1
1
«1
¢
1
1
3

1
1
1
1.
% |
1
1
3

~ Internet Protocol Version 4, Src: 1.1.1.1, Dst: 3.3.3.
. = Version: 4
eader Length: 20 bytes (5)
» Differentiated Services Field: @x0@ (DSCP: CS@, ECN: Not-ECT)
Total Length: 15@@
Identification: @x0@14 (20)
: @x28, More fragments
. = Reserved bit: Not set
. = Don't fragment: Not set
«+l. .v.. = More fragments: Set
Fragment Offset: @

Protocol: ICMI

Header Checksur <805 [validation disabled]
[Header checksum status: Unverified]

Source Add

Destination Address: 3.3.3.3

Bc 94 fd c6 9@ @1 @c 96 24 29 90 @1 98 @@ 45 @0 $) E

® kL wireshark_-FJSVC1.peapng Packets: 162 - Displayed: 162 (100.0%) - Dropped: 0 (0.0%) Profile: Dafault

Figure 3-17. Wireshark capture of first fragmented packets

Similarly, if we notice the last fragment of the fragmented packets, we
can see that the more fragments bit is not set anymore, but the Fragment
Offset field is set to 8880, as shown in Figure 3-18. This means that the
all the previous fragments cumulatively hold 8880 bytes of data in the
payload. Note that the IP Identification field will have the same value
across all the fragmented packets of the single large packet. Wireshark also
displays all the packets that will be used for fragment reassembly, which
will combine to form the final packet of payload size 9140 bytes.
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Protc| Lengtt| Info
2021-11-14 :83.126535 .1. «3.3. - Fragmented IP protocol
2021-11-14 87:88:03.126613 als e e Fragmented IP protocol
2021-11-14 87:08:03.126633 Fragmented IP protocol
2021-11-14 87:08:83.126675 Fragmented IP protocol ——
2021-11-14 97:08:03.126694 -1, «3.3. L Fragmented IP protocol
2021-11-14 97:08:03.126714 oda - Fragmented IP protocol
2021-11-14 87:88:03.126741 . . Eche (ping) request id——
1@ 2021-11-14 @7:08:03.127462 . Fragmented IP protocol ——

Internet Protocol Version 4, Src: 1.1.1.1, Dst:
01e® .... = Version: 4
«»s» 8101 = Header Length: 2@ bytes (5)
» Differentiated Services Field: @&x@@ (DSCP: C5@, ECN: No
Total Length: 26@
Identification: @x@eld (28)
Flags: oxe4
@... +us. = Reserved bit: Not set
-8 . = Don't fragment: Not set
. . = More fragments: Not set
Fragment Offset: BBB@
Time to Live: 254
Proto : ICMP (1)
Header Checksum: @xaf87 [validation disabled]
[Header checksum status: Unverified]
Source Address: 1.1.1.1
Destination Address: 3.3.3.3
[7 IPv4 Fragments (9120 bytes): #3(1480), #4(148@), #5(1480), #6(1480), #7(1480), #8(1480), #9(240))

©eouwownmas wlr |,

Frame (274 bytes)

®L wireshark_-FJSVC1.pcapng Packets: 162 - Displayed: 162 (100.0%) - Dropped: 0 (0.0%)  Profile: Default

Figure 3-18. Wireshark capture of last fragmented packet
For simplicity and ease of remembering, the IP packets can be
categorized into three types:
o Nonfragmented
o Initial fragment
o Noninitial fragment

Based on these packet types, the more fragments bit and Fragment
Offset field are set as shown in Table 3-5.
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Table 3-5. Fragment Settings in IP Header

Packet Type More Fragments Flag  Fragment Offset Field
Nonfragmented 0 0

Initial fragment 1 0

Noninitial fragment (not last) 1 Nonzero

Noninitial fragment (last) 0 Nonzero

In today’s networks, we rarely notice fragmentation as most networks
these days are designed with support for jumbo MTU (MTU values higher
than 1500 bytes). All the Gigabit Ethernet networks support up to 9216
bytes to be set as the MTU value and to leverage the benefit of higher
MTU sizes, most applications send the packets with the don’t fragment
(do not fragment or DF) bit set. When this bit is set, the router processing
the packet will not fragment the packet and will try to send the packet
out as is. When a packet is forwarded across a network segment with
the DF bit set and the router encounters a next hop interface having
lower MTU or IP MTU settings, the router will send an ICMP Destination
Unreachable message back with type 3 and code 4, which basically
means fragmentation is needed and the DF bit is set. Along with the
ICMP Destination Unreachable message, the router also sends the MTU
settings of the next hop device to let the source know that it needs to send
the packet with a smaller data payload if it wants to send the packet with
the DF bit set. Figure 3-19 displays the Wireshark capture of the ICMP
Destination Unreachable message along with the MTU settings of the next
hop device.
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«3.3. 1514 Echo (ping)} request id. )
19 2021-11-14 97:53:04.644892 19.1.2.2 -1.1. IMP 7@ Destination unreachable. =

Frame 19: 7@ bytes on wire (56@ b ] its) on interface -, id @
Ethernet II, c:96:24: :H H c:db:bb6:el:08:08 (Oc:db:b6:el:00:080)

» Internet P
Internet Co

y (ping) reques

unverified] [in ICMP error packet]

@c db b6 el 20 00 BC 96 24 29 00 00 03 00 45 @0
82 28 00 00 90 00 ff @1 ad c@ Oa 21 92 @02 @1 01
@1 81 @3 04 c5 de 92 2@ @5 78 45 @80 @5 dc @@ 2d

B Ready 1o load or capture Packets: 123 - Displayed: 123 {100.0%) Profile: Default

Figure 3-19. Wireshark capture of ICMP Destination
Unreachable message

IPv6 Packets

When IPv4 was introduced by DARPA, the 32-bit address space would
allow for 2% (4.3 billion) addresses, which seemed sufficient at the time. As
networks and the number of devices grew, however, it became evident that
the IPv4 address space would not be sufficient based on the number of
devices per person. Scientists then developed the IPv6 addressing scheme
and increased the address size limit from 32 bits to 128 bits. In 1998, IPv6
addressing was standardized in RFC 2460. IPv6 addressing had a number
of enhancements over IPv4:

o Streamlined header: Although the IPv6 header is much
larger than the IPv4 header, several fields from the IPv4
header were removed in the IPv6 header, making it
more streamlined.
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e Revised fields: Some of the fields in the IPv6 header
were revised when compared to Ipv4:

e The TTL field in IPv4 was converted to the Hop
Limit field in IPv6.

o The Precedence and ToS fields were moved to the
Traffic Class field.

o The Protocol field was covered under the Next
Header field.

e The 32-bit Source Address and Destination Address
fields were now converted to 128-bit Source
Address and Destination Address fields.

o Flow label: Flow label was introduced in the IPv6
header for identifying streams such as real-time traffic
that required special treatment in the network.

Figure 3-20 shows the comparison between an IPv4 and an IPv6
header. Notice that even though the the IPv4 header has more field, the
IPv6 header looks more streamlined.

IPv4 Header IPv6 Header
- Type. of Total Length
Service
Identification Flags | Fragment
& Offset

Traffic

Class Flow Label

Next
Header

Payload Length

Hop Limit

Time to Live Header Checksum

- Field’s Name Kept from IPv4 to IPv6
- Fields Not Kept in IPv6

- Name and Position Changed in IPv6
- New Field in IPv6

Legend

Figure 3-20. IPv4 and IPv6 headers
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Figure 3-21 shows the Wireshark capture of an IPv6 packet exchange

between two devices. The highlighted section of the Wireshark capture

shows the IPv6 header. Let’s now examine the fields of an IPv6 header

in detail:

Version: This 4-bit field indicates the IP version that is
in use. For IPv6 packets, you will see the value set to 6.

Traffic Class: This 8-bit field is used for allowing
special treatment to a packet in the network based
on the DSCP values assigned to an IPv6 packet. Itis a
combination of two fields:

e TOS: The first 6 bits are used to set the DSCP value
of a packet similar to an IPv4 packet. The DSCP
value defaults to 0.

o ECN: The last 2 bits of this field are used for
congestion notification similar to how it is done in
an IPv4 packet.

Flow Label: The 20-bit Flow Label field is used by

a source to group a set of packets belonging to the
same flow. It is usually used for QoS and to ensure the
packets of same flow take the same path.

Payload Length: This 16-bit field represents the packet’s
payload. The payload may not exceed 2'° (65,535) bytes
of data except in situations where extension headers
are being used. When extension headers are used, the
field value is set to 0.

Next Header: This 8-bit field indicates the higher layer
protocol that follows the IPv6 header.
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e Hop Limit: The 8-bit Hop Limit field is similar to
the TTL field in an IPv4 header. The value of this
field represents the number of routed hops a packet
can traverse before getting dropped or reaching the
destination. The maximum value of this field is 255.
At every routed hop, the value of the Hop Limit field
is decreased by 1 and when the value reaches 0, the
packet is dropped.

e Source Address: The 128-bit Source Address field
represents the IPv6 address of the sender from which
the packet originated.

o Destination Address: The 128-bit Destination Address
field represents the IPv6 address of the packet’s

destination.

FesEFIME QAN

Destination Drm ocol | Length| Info

Echo lp)ng! request id
Echo {ping) reply id=@x
2021-11-14 23:!3:25.?5179! 2001:db8:10:12 : $12:: Echo (ping) request id=@x112a, i!q’: [l
2021-11-14 23:58:25.752117 2001:dbB:10:12 2001: de 19:12:: Echo (ping) reply id=8x112a, seq=2,
2001:dbB:18:12:: Eche (ping) request id=8x112a, seq=3
H Echo (ping) reply id=8x112a, segs3

1, Dst: 2001:db:

= Traffic =00 (DS €58, ECN: Not-ECT)
202 2002 0022 PR0D BOD = Flow Lab 200

Ready 1o load " Packets: 22 - Displayed: 22 (100.0%) Profile: Default

Figure 3-21. Wireshark capture of IPv6 header
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Note There is no option for fragmentation in the IPv6 header
similar to the Flags or Fragment Offset fields in the IPv4 header. If
fragmentation is required on Ipv6 packets, the Extensions header
is used.

IPv6 Addressing

Because IPv6 addresses support 128-bit addressing, the protocol supports
undecillions (a trillion trillion trillion) addressable spaces, or simply put,
3.4 x 10%* unique IPv6 addresses can be allocated. IPv6 addresses are
represented in hexadecimal format written in eight groups of 2 bytes each,
with each group separated by a colon. For instance, an IPv6 address would
look something like the following address, making it virtually impossible to

memorize.
1111:2222:3333:4444:aaaa:bbbb:cccc:0abc

One of the best features of IPv6 address notation is that some groups
of zeros can be collapsed using a double colon to form a shorter address.
Note, however, that in any given address, only a single collapsible group is
allowed. Consider the IPv6 address shown here:

1111:2222:3333:0000:aaaa:0000:cccc:0abc
This address can either be written as:
1111:2222:3333::aaaa:0000:cccc:0abc
or as:

1111:2222:3333:0000:2aaa: :cccc:0abc
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Note A deep dive on IPv6 addressing is outside the scope of this
book. To learn more about IPv6 addressing, refer to RFC 4291.

There are several types of IPv6 addresses that are supported:

e Link local address: Link local addresses are
automatically assigned to the interfaces on which IPv6
is enabled. These addresses are used to communicate
with hosts on the same subnet. This address always
starts with FE80.

e Global unicast: These addresses are public IPv6
addresses that are uniquely recognized and are
routable over the Internet.

e Unicast address: A unicast address is used for a single
host on a network.

e Unique local: These addresses are routable within the
administrative domain.

e Multicast address: Multicast addresses are used to send
data to multiple receivers who are subscribed to the
multicast group address.

e Anycast address: Anycast addresses are used to send
data to multiple locations using the same IPv6 address.
An anycast address is allocated for a set of interfaces
that typically belong to different nodes.
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Following are the IPv6 address subnet ranges for different IPv6
addresses:
e Global unicast: 2000::/3
e Unique local: FC00::/7
o Linklocal: FE80::/10

e  Multicast: FF00::/8

Extension Headers

In IPv4, a lot of capabilities were added using the Options field and similar
functionalities and those capabilities had to be preserved in IPv6. Having
an additional Options field added a bit of an overhead in processing IPv4
headers, though. Taking that into consideration, IPv6 Extension Headers
(EH) was introduced, as defined in RFC 2460. The EH are added to the
IPv6 headers as needed and the main header of 40 bytes remains as is.
Figure 3-22 illustrates what an IPv6 header with EH would look like.

Ver | Traffic Class | Flow Label

Source Address

Destination Address

EH1

EH2

EH3

Upper Layer Header

Figure 3-22. IPv6 header with Extension Headers
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Table 3-6 lists the various Extension Headers and their mapping for
next header values.

Table 3-6. IPv6 Extension Headers and Next Header Values

Order Header Type Next Header Code
1 Basic IPv6 header -
2 Hop-by-Hop options 0
3 Destination options (with Routing 60
options)
4 Routing header 43
5 Fragment header 44
6 Authentication header o1
7 Encapsulation Security Payload header 50
8 Destination options 60
9 Mobility header 135
No next header 59
Upper layer TCP 6
Upper layer uDP 17
Upper layer ICMPv6 58

ICMPv6

ICMPv6 is a very crucial protocol when it comes to the working of IPv6.
Although IPv4 and IPv6 are similar in terms of their overall functionality,
ICMPv6 has multiple use cases when it comes to the functioning of IPv6.
ICMPv6 provides additional benefits such as these:
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e Improved multicast routing
o Extensions
o Stateless Autoconfiguration (SLAAC)

The ICMPv6 header is similar an IPv4 header. It contains the Type,
Code, and Checksum fields, followed by ICMPv6 options and contents that
are based on type and code values.

In the previous section, you likely noticed that when we were
talking about IPv6 addressing, we did not talk about broadcast. That is
because there is no concept of broadcast in IPv6, as it is considered an
inefficient mechanism. Because there is no broadcast, ARP cannot work
for IPv6. This is where ICMPv6 comes into play. We talk about the IPv6
neighbor discovery process in the next section, but for now, let’s focus
on the different ICMPv6 messages and their Type and Code values. The
ICMPv6 messages are divided into two categories, error messages and
informational messages.

Table 3-7 displays a list of the most commonly used error messages
in ICMPv6.
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Table 3-7. ICMPv6 Error Messages

Type Header Type

Code Definition

1 Destination
unreachable

2 Packet too big

3 Time exceeded

4 Parameter problem

No route to destination

Communication with destination administratively
prohibited

Beyond scope of source address

Address unreachable

Port unreachable

Source address failed ingress/egress policy
Reject route to destination

Error in source routing header

Hop limit exceeded in transit

Fragment reassembly time exceeded
Erroneous header field encountered
Unrecognized next header type encountered

Unrecognized IPv6 option encountered

Table 3-8 displays a list of most commonly used informational

messages in ICMPv6.
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Table 3-8. ICMPuv6 Informational Messages

Type Header Type

Code Definition

128
129
130

131

132

133

134

135

136

137

138

Echo Request
Echo Reply

Multicast Listener
Query (MLD)

Multicast Listener
Report (MLD)

Multicast Listener
Done (MLD)

Router Solicitation
(NDP)

Router
Advertisement (NDP)

Neighbor Solicitation
(NDP)

Neighbor
Advertisement (NDP)

Redirect Message
(NDP)

Router Renumbering

0
0

0 e General query: Used to learn which multicast
addresses have listeners on an attached link
¢ Multicast-address-specific query: Used to
learn if a particular multicast address has any
listeners on an attached link

0 Router Renumbering command
1 Router Renumbering result

255  Sequence number reset

(continued)
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Table 3-8. (continued)

Type Header Type

Code Definition

139 ICMP Node
Information Query

140 ICMP Node
Information
Response

0

The Data field contains an IPv6 address that is
the subject of this query.

The Data field contains a name that is the
subject of this query, or is empty, as in the case
of a NOOP.

The Data field contains an IPv4 address that is
the subject of this query.

A successful reply. The Reply Data field may or
may not be empty.

The responder refuses to supply the answer; the
Reply Data field will be empty.

The Qtype of the query is unknown to the
responder. The Reply Data field will be empty.

Note There are other ICMPv6 informational messages, too.
Table 3-8 does not provide an exhaustive list.

IPv6 Neighbor Discovery

To learn about the connected neighbor in IPv6, we have Neighbor
Discovery Protocol (NDP). NDP uses the link local address (fe80::/64)
as its source and the hop limit is set to 255. IPv6 neighbor discovery

relies primarily on two functions, neighbor solicitation and neighbor

advertisement.
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A Neighbor Solicitation (NS) message is primarily used for three
purposes:

¢ Determining the link-layer address of a neighbor.
o Checking the validity of an already defined address.

e Validating if an IPv6 address generated via auto-config
is unique.

Let’s assume we have two hosts or two devices, say A and B, connected
to each other and interested in communicating with each other. When
Host A wants to form an IPv6 neighborship with Host B, it will send an
NS packet. An NS packet is basically a Type 135 ICMPv6 packet. The
originating device sends the NS packet to every device on the network
via multicast, which basically communicates to the receiver, “What is the
MAC address of 2001:db8:12:2? My MAC address is 01:01:01:01:01:01.”
When the device that is assigned the destination IPv6 address receives the
multicast NS packet, it responds back with a Neighbor Advertisement (NA)
packet, which is an ICMPv6 Type 136 packet. This packet basically tells the
source, “Hi. My network address is 2001:db8:12:2 and my MAC address is
02:02:02:02:02:02.” This neighbor discovery process is explained visually in
Figure 3-23.
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=
3]

3rd Party
Mail Server

ICMPVE Neighbor Solicitation

Client Machine

ICMPvE Neighbor Solicitation

aJ

Office Web
Apps Server

Figure 3-23. IPv6 neighbor discovery

File Server

Figures 3-24 and 3-25 demonstrate the NDP though the Wireshark
capture. Notice that in Figure 3-24 the NS packet has generated sourcing

the client machine’s unicast address with the destination set to the

solicited node multicast address. The solicited node multicast address

is created by taking the least significant 24 bits of the unicast or anycast
address and appending it to the FF02::1:FF00:0/104 address.
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Wireshark - Packet 285 - -

> Frame 285: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on interface -, :
> Ethernet II, Src: @c:db:b6:e1:0@:00 (@c:db:b6:el:00:00), Dst: IPvEmcast_ff:00:00:02 (:
> Internet Protocol Version 6, Src: 20@1:db8:12::1, Dst: ff@2::1:ffee:2
- Internet Control Message Protocol v6

Type: Neighbor Solicitation (135)

Code: @

Checksum: @x5a47 [correct]
[Checksum Status: Good]
Reserved: 22000e00

Target Address: 2001:db8:12::2
~ ICMPv6 Option (Source link-layer address : @c:db:b6:el:00:00)
Type: Source link-layer address (1)
Length: 1 (8 bytes)
Link-layer address: @c:db:b6:el:00:00 (@c:db:b6:el:00:00)

No.: 285 - Timo: 2021-11-22 08:55:11. 683246 - Source: 2007:dbi o: Nelghber Solicitation for 20071:db8:12::2 from Oc:db:bE:al:00:00

Help Close

Figure 3-24. ICMPv6 Neighbor Solicitation packet

Wireshark - Packet 286 - -

> Frame 286: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on interface -, id @
Ethernet II, Src: ©c:96:24:29:00:00 (0c:96:24:29:00:00), Dst: @c:db:b6:el:00:00 (Bc:db:b6::
Internet Protocol Version 6, Src: 2001:db8:12::2, Dst: 2001:dbB8:12::1
+ Internet Control Message Protocol v6
Type: Neighbor Advertisement (136)
Code: @
Checksum: @xdb7d [correct]
[Checksum Status: Good]
- Flags: @xe@@00000, Router, Scolicited, Override
love wess sase saas sans - .» = Router: Set
adeia W alalaial alaiam - = Solicited: Set
.s sass sass sess swss ssss sxss ssas = Override: Set
...0 0000 0000 9000 0000 Q000 2000 2000 = Reserved: @
Target Address: 2001:db8:12::2
ICMPv6 Option (Target link-layer address : @c:96:24:29:00:00)
Type: Target link-layer address (2)
Length: 1 (8 bytes)
Link-layer address: @c:96:24:29:00:80 (0c:96:24:29:00:00)

No.: 286 - Time: 2021-11-22 09:55:11.685008 - Source: 2001:db8:12::2 - ..or Advertisemont 2001:db8:12::2 (rir,solovr) Is af 0c:96:24:29:00:00

Help Close

Figure 3-25. ICMPv6 Neighbor Advertisement packet
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Apart from the NS and NA messages, other ICMPv6 messages are used
as part of the NDP:

e Router Solicitation (ICMPv6 Type 133): The Router
Solicitation (RS) messages are sent by nodes at bootup
to find a router in the local segment. These messages
are sent by the hosts to the All Router Multicast Address
(FF02::2). On receiving this message, an IPv6 router
will generate an RA message immediately rather
than waiting for the next scheduled interval. Because
the destination address is a multicast address, the
corresponding Layer 2 address will be in the format
33:33:xx:xx:XX:XX, where xx:xx:xx:xx:xx is the last 24 bits

of the destination IPv6 address.

o Router Advertisement (ICMPuv6 Type 134): The RA
messages are sent in response to the RS messages or
periodically. The RA messages are sent to All Nodes
Multicast Address. These messages consist of certain
flags and options that contain the information that the
interfaces on the links use to configure themselves.
IPv6 routers send RA messages periodically at random
intervals to reduce synchronization issues when there
are multiple IPv6 routers on the segment.

e Redirect (ICMPuv6 Type 137): Redirects are used by IPv6
routers to inform the hosts of a better first hop for a
destination.

126



CHAPTER 3  ANALYZING LAYER 2 AND LAYER 3 TRAFFIC

Analyzing QoS Markings

Almost every organization utilizes time-sensitive applications such as
VoIP or streaming media, routing protocols, and so on. Because the global
Internet is unpredictable, there are chances that such critical and time-
sensitive applications could be dropped. The traffic for such applications
should be given higher priority and treated differently in the network than
the usual data traffic. To do that, the IPv4 header has the Type of Service
(DSCP + ECN) field and the IPv6 header has the Traffic Class field, which
allow the user to set DSCP values that will categorize different application
traffic. The network devices such as routers and switches can then be
configured to treat the traffic based on their DSCP values.

Although we deal with QoS settings mostly at Layer 3, there is still the
possibility of frame prioritization at the Layer 2 level. This is done using
Class of Service (CoS) bits in Layer 2 frames. If we talk about a regular
packet, at the outermost layer we have the Layer 2 header, then the IP
header, and then the data or payload. From the Layer 2 frame perspective,
we usually have an 802.1Q or 802.1p frame. Figure 3-26 highlights the Tag
field in the 802.1Q header, which is used for setting CoS bits.

Preamble Start Frame DA SA Tag PT Data FCs
Delimiter

L s s useatorcos
Figure 3-26. QoS at Layer 2
The 802.1Q frame header has a 16-bit Tag control information field that
has the following subfields:
e  Priority code point (PCP): 3-bit
e Drop Eligible Indicator (DEI): 1-bit
e VLAN Identifier (VID): 12-bit
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The PCP field refers to the IEEE 802.1p CoS and maps to the frame priority
level. The values of this field are used to prioritize different classes of traffic.

When talking about QoS at Layer 3, ToS (DiffServ field) or Traffic Class
is an 8-bit field, out of which the initial 6 bits make up the DSCP field and
the last 2 bits are for ECN as shown in Figure 3-27.

DSs Ds4 DS3 DS2 DS1 bSO ECN ECN

L Y J J

DscpP ECN

Figure 3-27. DiffServ field

Based on the 6-bit DSCP values, the traffic is given different treatments
in the network and these values are categorized as explained here:

e Default Forwarding (DF): Any traffic that does not meet
the criteria of any of the defined classes falls under
the category of Default Forwarding. The default and
recommended DSCP value of this class is 0.

e Expedited Forwarding (EF): RFC 3246 defines the EF
per-hop behavior (PHB) for traffic that has low delay,
low loss, and low jitter requirements. This class is
suitable for voice, video, and real-time service traffic.
The recommended DSCP value of EF is 46.

o Assured Forwarding (AF): REC 2597 and RFC 3260
define the behavior for the AF class. This class assures
delivery of traffic if the traffic does not exceed some
subscribed rate. Within AF, four separate classes are
defined and packets within each class are given drop
precedence (low, medium, and high). Note that the
traffic within one class has the same priority. Table 3-9
shows the different AF classes categorized based on
their drop probability.
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Table 3-9. Assured Forwarding Classes Based on Drop Probability

Drop Class 1 Class 2 Class 3 Class 4
Probability

Low AF11 (DSCP 10) AF21 (DSCP 18) AF31 (DSCP 26) AF41 (DSCP 34)
Med AF12 (DSCP 12) AF22 (DSCP 20) AF32 (DSCP 28) AF42 (DSCP 36)
High AF13 (DSCP 14) AF23 (DSCP 22) AF33 (DSCP 30) AF43 (DSCP 38)

e Class Selector: Before DiffServ, IP networks used the IP
Precedence field in the ToS byte to prioritize the traffic
to maintain backward compatibility with devices that
still use IP Precedence, and the Class Selector PHB was
defined. Table 3-10 lists all the IP Precedence values.

Table 3-10. IP Precedence Values

Value IP Precedence Bits IP Precedence Name

0 000 Routine

1 001 Priority

2 010 Immediate

3 011 Flash

4 100 Flash Override

6} 101 Critical

6 110 Internetwork Control
7 111 Network Control

To sum up, the different DSCP values and their corresponding IP
Precedence values are shown in Table 3-11.
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Table 3-11. DSCP and IP Precedence Values

DSCP Value Decimal Value Meaning

IP Precedence Value

101 110
000 000
001 010
001 100
001 110
010010
010100
010110
011010
011100
011110
100010
100 100
100 110
001 000
010 000
011 000
100 000
101 000
110 000
111 000

46
0

10
12
14
18
20
22
26
28
30
34
36
38
8

16
24
32
40
48
56

Expedited Forwarding (EF)
Best Effort/Default
AF11
AF12
AF13
AF21
AF22
AF23
AF31
AF32
AF33
AF41
AF42
AF43
CS1
CS2
CS3
CS4
CS5
CS6
CS7

101 — Critical
000 — Routine
001 — Priority

010 — Immediate

011 —Flash

100 — Flash Override

N o o AW
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Based on Table 3-11, it can be understood that traffic such as voice,
video, and network protocols are given a higher priority in the network.
All the routing protocols traffic is sent with the DSCP value of CS6. To deal
with all other traffic such as voice, video, or application traffic, QoS needs
to be configured on a per-hop basis so that each device can treat the traffic
accordingly. Figure 3-28 shows the Wireshark capture of a BGP keepalive
message that is marked with a DSCP value of CS6 under the DiffServ field
in the IP header.

Wireshark - Packet 1 -

> Frame 1: 85 bytes on wire (680 bits), 85 bytes captured (680 bits) on interface -, id @
> Ethernet II, Src: ©c:59:00:00:1b:08 (©c:59:00:00:1b:08), Dst: ©@c:cl:P0:00:1b:08 (@c:cl:00:0¢
~ Internet Protocol Version 4, Src: 10.150.1.2, Dst: 10.150.1.1
0100 .... = Version: 4
. 8101 = Header Length: 2@ bytes (5)
~ Differentiated Services Field: ©@xc® (DSCP: CS6, ECN: Not-ECT)
1100 €8.. = Differentiated Services Codepoint: Class Selector 6 (48)
80 = Explicit Congestion Notification: Not ECN-Capable Transport (@)
Total Length: 71
Identification: @x8539 (34105)
> Flags: @x0@
Fragment Offset: @
Protocol: TCP (6)
Header Checksum: ©xlc8a [validation disabled]
[Header checksu atus: Unverified]
Source Address: 18.150.1.2
Destination Add 10.150.1.1
» Transmission Control Protocol, Src Port: 36614, Dst Port: 179, Seq: 1, Ack: 1, Len: 19
> Border Gateway Protocol - KEEPALIVE Message

No.: 1- Time: 2021-11-25 10:42:08.618962 - Source: 10.150.1.2 - Destination: 10.150.1.1 - Protocol: BGP - Length: 85 - Info: KEEPALIVE Mossage

Help Close

Figure 3-28. Wireshark capture of BGP packet

When performing network QoS testing and validation, network
operators can simply use the PING tool to mimic different application
traffic. Example 3-2 demonstrates how to use this tool on Cisco IOS-XE
software and Mac OS to simulate traffic with different ToS and DSCP
settings. Although the traffic can be initiated, it is important to note that
the network devices should be configured accordingly to perform further
classification of the traffic. Note that when initiating the ping on Mac OS,
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use the -z option to specify the ToS value. Note that the binary for 184 is
1011 1000. This means that the packet will be sent with the DSCP value of
46 (101 110 in binary) and with the ECN field set to 0 (00 in binary).

Example 3-2. Using PING for Traffic Simulation with DSCP Settings

I Ping on Cisco IOS-XE Software

R1#tping

Protocol [ip]:

Target IP address: 2.2.2.2

Repeat count [5]: 100

Datagram size [100]: 1400

Timeout in seconds [2]:

Extended commands [n]: y

Ingress ping [n]:

Source address or interface: 1.1.1.1

DSCP Value [0]: 46

Set DF bit in IP header? [no]:

Validate reply data? [no]:

Data pattern [0x0000ABCD]:

Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]:

Type escape sequence to abort.

Sending 100, 1400-byte ICMP Echos to 2.2.2.2, timeout is 2
seconds:

Packet sent with a source address of 1.1.1.1
SRNRRRRN R RN RN RN RN R RN RN RN RN RN R RN RN RN RN RN R RN RERENR

Success rate is 100 percent (100/100), round-trip min/avg/max =
1/1/46 ms
I Ping on MAC OS with DSCP value 46
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vinit@Hackers-Box ~ % ping -z 184 192.168.0.1
PING 192.168.0.1 (192.168.0.1): 56 data bytes

64 bytes from 192.168.0.1: icmp seq=0 ttl=64 time=125.217 ms
64 bytes from 192.168.0.1: icmp seq=1 ttl=64 time=1.200 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=2.703 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=49.220 ms
64 bytes from 192.168.0.1: icmp seq=4 ttl=64 time=1.386 ms
64 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=1.347 ms

Note ECN bits in the DiffServ field will be covered in the next chapter.

Summary

By now, you should understand the Layer 2 and Layer 3 concepts as well
as have a solid foundation about the different fields in Ethernet, IPv4,
and IPv6 headers. In this chapter, we covered in detail the Layer 2 header,
specifically the Ethernet header, and learned about various EtherTypes.
We also learned about the IPv4 header, including how the packets get
encapsulated inside the IP header and uses of various fields in the IP
header. We also covered the ICMP header and how it can be used for
troubleshooting purposes, and how ICMP messages can be used to notify
the network about incorrect network MTU settings.

We then moved on to IPv6 headers, which helped network operators
transition from 32-bit addressing to 128-bit addressing. We discovered
some of the benefits of IPv6 over IPv4 headers and how they reduce the
need for having broadcast packets by performing neighbor discovery using
ICMPv6 headers. We learned that in IPv6, NDP leverages different ICMPv6
messages such as Router Solicitation, Router Advertisement, Neighbor
Solicitation, Neighbor Advertisement, and Redirect message.
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We also learned that the ICMPv6 messages are sent to different IPv6
multicast addresses. Finally, we ended this chapter learning about how
QoS can be used in the network and how the DSCP values can be used to
treat each type of application traffic differently.

Reference in This Chapter

e RFC 1918: Address Allocation for Private Internets, by
Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot,
and E. Lear. https://datatracker.ietf.org/doc/
html/rfc1918
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CHAPTER 4

Analyzing Layer 4
Traffic

This chapter covers the following topics:
e Understanding the TCP/IP model
e Transmission Control Protocol

e User Datagram Protocol

Understanding the TCP/IP Model

We have already covered the OSI model, in which we learned about Layer 2
frames and Layer 3 packets and their importance when exchanging
packets between two endpoints. This chapter focuses on the Transport
layer (Layer 4) of the OSI model, which is responsible for transporting the
data between the source and destination either via a connection-oriented
or a connectionless mechanism. There are various Transport layer
protocols that are used to transmit the data, including these:

e Transmission Control Protocol (TCP)
e User Datagram Protocol (UDP)
e Stream Control Transmission Protocol (SCTP)

o Reliable User Datagram Protocol (RUDP)
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In this chapter, we focus primarily on the TCP and UDP modes of
transmission.

In the 1970s, two Defense Advanced Research Projects Agency
(DARPA) scientists, Vint Cerf and Bob Kahn, often known as the fathers
of the Internet, started researching reliable data communications across
packet radio networks. From the lessons learned from the Networking
Control Protocol (NCP), a set of protocols forming a part of Point-to-Point
Protocol (PPP), Cerf and Kahn created the Transmission Control Program.
Transmission Control Program was a huge success, and in 1974 it was
initially standardized in RFC 675, Specification of Internet Transmission
Control Program.

Initially, the Transmission Control Program managed both the routing
and datagram transmission, but over time, collaborators suggested
dividing the functionality into layers. In 1978, the Transmission Control
Program was split into two distinct Protocols, the Internet Protocol
(IP) and the Transmission Control Protocol (TCP). Both the protocols
combined to form the Internet Protocol suite, commonly known as TCP/
IP. The TCP/IP model only has four layers:

o Application layer: This layer allows for process-to-
process communication on the same host or different
hosts. This layer leverages the lower layer protocols
to transmit the information. The Application layer
introduces different communication models such as
the client/server model or peer-to-peer networking
model. Some of the examples of aHTTP, FTP, and SSH.

e Transport layer: This layer takes care of performing
host-to-host communication that is either in a local
LAN segment or remote network segments separated
by routers. Two of the primary protocols in the
Transport layer are TCP and UDP.
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o Internet layer: This layer defines the addressing and
routing structures used by the TCP/IP protocols.
IP defines the addressing that will be used by the
hosts and network elements in the same or different
segments and provides a function for hop-by-hop
routing by sending datagrams to the next hop that
holds the information to the next network segment.

e Link layer: This layer is a combination of the Data Link
layer and Physical layer of the OSI model. This layer
provides information about hardware addresses (MAC
address) and ensures physical transmission of data.

When distributed applications or client/server applications that are
separated across network segments communicate using a router, they
leverage the TCP/IP model to establish the communication and exchange
information. As mentioned before, the Application layer of the TCP/IP
model only focuses on process-to-process communication; it leverages
the underlying layers to transmit the data. Figure 4-1 illustrates how a
client/server application communicates using the TCP/IP model. When
the client wants to send a request to the server, it creates a packet data
unit (PDU) for the data that it wants to send to the remote server. The
first level of encapsulation is provided by the Transport layer, in which it
is decided based on the application requirements if the communication
is to be established using a connectionless architecture (via UDP) or
using a connection-oriented architecture (via TCP). The packet is then
encapsulated with an IP header and then with the protocols at the Link
layer. Once the final encapsulation is completed, the packet is sent across
the network segments, processed, and routed accordingly toward the
destination host, where the decapsulation process starts from Link layer all
the way to the Transport layer, after which the final PDU is received by the
remote server and processed accordingly.
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The TCP/IP model is so widely used that it can be safely said that
the Internet today depends on it. The TCP/IP model contains a suite of
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Figure 4-1. Data flow across the TCP/IP model

protocols that allows for host-to-host communication across multiple
network segments. Figure 4-2 displays the TCP/IP models and the
protocols being used at each layer.
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Figure 4-2. TCP/IP protocol suite

If we take a closer look at the TCP/IP model, it is not very different
from the OSI model, but it was developed to solve a different problem than
the OSI model. The Application layer, Presentation layer, and Session layer
of the OSI model are categorized all under the Application layer in the
TCP/IP model. The Transport layer and Network layer remain the same in
the TCP/IP model. The Data Link layer and Physical layer of the OSI model
are categorized under the Link layer in the TCP/IP model. Apart from the
number of layers and layer mapping, there are some other key differences
between the two models, listed in Table 4-1.
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Table 4-1. OSI Model vs. TCP/IP Model

0SI Model TCP/IP Model

Transport layer is only Transport layer is both connection-
connection-oriented. oriented and connectionless.

Allows users to standardize router, Focuses only on establishing connection

switch, motherboard, and other hardware.  between different types of computers.

Provides clear distinction between Doesn’t provide clear distinction points.
interfaces, services, and protocols.

Problem of Ownership

Today, almost every IT-enabled organization depends on mission-critical
applications to successfully run its business. Sometimes these applications
are an important aspect of a company’s revenue generation model (e.g., an
ecommerce portal). When those mission-critical applications stop working
and the software developers are sure that it is not because of their code,
they escalate the problem to network engineers or network administrators.
The software developers usually own the Application layer, Presentation
layer, and Session layer of the OSI model or just the Application layer of the
TCP/IP model.

In 90 percent of the cases, if not more, network engineers verify the
routing and reachability, which falls under the Link layer and Internet layer
of the TCP/IP model (Physical layer, Data Link layer, and Network layer
of the OSI model) and escalate it back to the application team, saying it is
not their problem. This is where the finger-pointing game starts between
the application developers and network engineers. If we take a close look
at both the OSI model and the TCP/IP model, you will realize that both
the application developers and the network engineers do not demonstrate
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ownership for an important layer—the Transport layer. Nobody wants to
go the extra mile and check the information presented at the Transport
layer. Instead of posing this as a challenge, we should be seeing this as an
opportunity. Knowing how the data are transmitted and how host-to-host
communication will happen can quickly help isolate the problem and help
both the application developers and network engineers solve the problem
quickly.

Transmission Control Protocol

When the initial research was being done by DARPA in 1973, the focus
was on developing a protocol that would ensure secure transmission
between two hosts while maintaining the integrity of the data, regardless
of the amount of data being sent. DARPA and the University of Southern
California collaborated and standardized the protocol specification of
TCP, a protocol that provided a connection-oriented data transmission
mechanism while ensuring data integrity, in RFC 793. RFC 793 was later
updated by RFC 1122, RFC 3168, RFC 6093, and RFC 6528.

The current version of TCP allows two nodes or endpoints to establish
a connection that enables two-way transmission of data; that is, a device
can send and receive data at the same time. Each connection in TCP works
in a client/server model, irrespective of which node assumes the role of
the server or client, and each endpoint connection is uniquely identified
using an ordered pair of IP address and port number. This ordered pair is
known as a tuple or a socket. Thus, a TCP connection is often referred to
as a socket connection. Now, before moving onto understanding how a
TCP connection is established, let’s take a closer look at the TCP header,
displayed in Figure 4-3.
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A TCP header is a 20-byte header that consists of the following fields:

Source port (16-bit): Specifies the port number of
the sender.

Destination port (16-bit): Specifies the port number of
the receiver.

Sequence number (32-bit): Used to keep track of the
data (in bytes) sent out by the host during a TCP
session. During a new TCP connection, the initial
sequence number sent is a random 32-bit value. The
receiver will use the sequence number and reply with
an acknowledgment. When it comes to troubleshooting
TCP issues, protocol analyzers often use a relative
sequence number of 0 as it is easier to remember
than some high-value random number. The sequence
number is also used for validating the segments after
transmission.

Acknowledgment number (32-bit): Used to keep
track of every byte received by the receiver. An
acknowledgment is sent in response to every packet
that is received by the host.

Offset (4-bit): Specifies the length of the TCP header,
which allows us to know where the actual data begins.

Reserved (6-bit): Reserved for further use as per
RFC 793.
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Flags (6-bit): Enables various TCP actions for data
processing and communication. The TCP software will
perform specific actions when one or more flags are set
in the TCP header. The following are the various flags
that are set in TCP:

e Urgent Pointer (URG)

e Acknowledgment (ACK)

e Push (PSH)

e Reset (RST)

e Synchronization (SYN)

« Finish (FIN)

Window size (16-bit): Specifies the number of bytes
the receiver is willing to receive. Using this field, the

receiver tells the sender the amount of data that it is
willing to receive.

Checksum (16-bit): Used to verify if the TCP header
is okay or not. Using this field, TCP is able to reliably
detect any transmission issues.

Urgent pointer (16-bit): This field is used to indicate
how many bytes of packet data starting from the first
byte are considered to be the urgent data by the sender.
This field is only used when the URG flag is set under
the Flags field.
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e Options (0-320 bits): The TCP Options field is at the
end of the header and is always specified in multiples
of 8 bits. If any of the bits are not filled, they are padded
with zeros. This field is used to include various TCP
functions that do not belong to the general TCP header.
The following is a list of various TCP functions available
as part of the TCP Options field:

e Maximum Segment Size (MSS)

e Window Scaling

o Selective Acknowledgments (SACK)
e Timestamps

¢ Nop

0 1 2 3
012345678901234567890123456789¢01

Source Port Destination Port

Sequence Number

Acknowledgment Number

Data U|A|P
offset Reserved |R|C|S
G[K[H

S|F
Y[I Window
N

R
S
T(NIN

Checksum Urgent Pointer

Options N padding

data bytes

Figure 4-3. TCP header

Figure 4-4 shows the Wireshark capture of the first packet of an SSH
session. Notice that this packet displays both the raw sequence number,
which is a randomly generated number, and a relative sequence number
that can be used for troubleshooting purposes. This packet also has
multiple TCP options such as MSS and Timestamps as part of the TCP
Options field.
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> Frame 41: 58 bytes on wire (464 bits), 58 bytes captured (464 bits) on interface -, id @
> Ethernet II, Src: @c:3e:72:31:d8:01 (@c:3e:72:31:d8:01), Dst: @c 2:84:9d:87 (@c:3e:72:84:9
> Internet Protocol Version 4, Src: 192.168.122.2, Dst: 192.168.122.3
~ Transmission Control Protocol, Src Port: 12641, Dst Port: 22, Seq: @, Len: @
Source Port: 12641
Destination Port: 22
[Stream index: 8]
[TCP Segment Len: @]
Sequence Number: @ (relative sequence number)
Sequence Number (raw): 926587467
[Next Sequence Number: 1 (relative sequence number)]
Acknowledgment Number: @
Acknowledgment number (raw): @
8110 = Header Length: 24 bytes (6)
4 Flag %802 (SYN)
Window: 4128
[Calculated window size: 4128]
Checksum: @x@fb3 [unverified]
[Checksum Status: Unverified]
Urgent Pointer: @
> Options: (4 bytes), Maximum segment size
> [Timestamps]

.3 - Protaco... 12641 -+ 2 =0 Win=4128 Len=0 - Source Port: 41 - Destination Port: 41

Close

Figure 4-4. Wireshark capture of TCP packet

When talking about port numbers in the TCP header, there are a
maximum of 65,535 port numbers that are allowed on a system. There
are some well-known port numbers, too, that we use knowingly or
unknowingly on a daily basis through various applications:

e HTTP: Port 80

e HTTPS: Port 443
e Telnet: Port 23

e SSH: Port 22

e FTP:Port21

e DNS: Port 53

o IMAP: Port 143

e POP3: Port110
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Port numbers can be categorized into three types:

o Well-known ports: These port numbers range from 0
to 1023.

e Registered ports: These port numbers range from 1024
to 49151. They are not assigned or controlled but can
be registered to avoid any duplication.

e Dynamic ports: These ports range from 49152 to 65535
and cannot be assigned, controlled, or registered.

When troubleshooting, TCP-related issues such as HTTP/TCP-based
IP Service Level Agreement (SLA) probes that are deployed on network
devices might stop working. As network engineer you might focus on
validating the configuration or checking why the remote end has stopped
responding, but it is equally important to keep an eye on the ports that are
locally open on the box. It could be that even though the TCP session gets
established, the connection does not terminate from time to time, and the
device might run out of available ports to establish further TCP sessions.

TCP Flags

In the previous section we learned about the six flags in the TCP header.
Each flag plays an important role during various phases of a TCP session.
Figure 4-5 shows all the different flags in the TCP header seenin a
Wireshark capture.
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Wireshark t 41 TCP.pcapng

Acknowledément number (raw): @

0110 .... = Header Length: 24 bytes (6)

9 Flags: 8x@82 (SYN)

= Reserved: Not set

= Nonce: Not set

Congestion Window Reduced (CWR): Not set
ECN-Echo: Not set

Urgent: Not set

Acknowledgment: Not set

Push: Not set

Reset: Not set

nn

@ = Fin: Not set
[TCP Flags: +++rvvvvvs 5]

Window: 4128

[Calculated window size: 4128]
Checksum: AxAfhl Tunverifiedl

Figure 4-5. TCP flags in Wireshark capture

Each TCP flag is set to perform the following actions:

URG: The Urgent flag is set to signal the TCP
application that the payload data must be processed
urgently up to the set pointer in the Urgent Pointer
field. Note that the Urgent Pointer field is relevant only
when the URG flag is set in the TCP header.

ACK: The Acknowledgment flag is set in combination
with the Acknowledgment Number field. This flag
indicates the acknowledgment by the receiver that it
has received the TCP packets that were previously sent.

PSH: The Transport layer, by default, stores the
application data in a buffer for some time so that it can
transmit data equal to the MSS size to ensure faster
convergence and better performance in the network for
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TCP applications. Such behavior is not desirable, though,
for certain applications, such as chat applications.
Similar issues apply on the receiving end as well. The
PSH flag in the TCP header solves this problem by telling
the TCP software to immediately send the payload to the
Network layer as soon as it receives the payload from the
Application layer. In simple words, it tells the receiver
and sender to immediately process the packets instead
of buffering them.

RST: If the TCP software identifies an error during
transmission, it sends an RST flag to reset the
connection.

SYN: The SYN flag is the first step to initiate a TCP
connection via the three-way handshake process.

FIN: - The FIN flag signals the receiver that the sender
is ending the transmission.

TCP Three-Way Handshake

The TCP three-way handshake is a three-step process that is required

to establish a secure and reliable TCP connection between a client and

a Server.

1.
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SYN: In the first step, the client initiates a TCP
connection toward the remote server. When it does
that, the SYN flag is set to 1 in the TCP header and
arandom sequence number is used for this TCP
connection. In this case, it is 926587467, as shown in
Figure 4-6. Because this is the first packet, the ACK flag
is set to 0. There are other fields that are also set in the
TCP header such as Window size and MSS TCP options.
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L N N Wireshark - Packet 41 - TCP.pcapng

> Frame 41: 58 bytes on wire (464 bits), 58 bytes captured (464 bits) on interface -, id @
> Ethernet II, Src: Bc:3e:72:31:d8:81 (@c:3e:72:31:d8:01), Dst: Bc:3e:72:84:9d:87 (Bc:3e:72:84:9
> Internet Protocol Version 4, Src: 192.168.122.2, Dst: 192.168.122.3
Source Port: 12641
Destination Port: 22
[Stream index: @]
[TCP Segment Len: @]
Sequence Number: (relative sequence number)
Sequence Number (raw): 926587467
[Next Sequence Number: 1 (relative sequence number)]
Acknowledgment Number: @
Acknowledgment number (raw): @
@118 .... = Header Length: 24 bytes (6)
B Flags: 0x002 (SYN)
Window: 4128
[Calculated window size: 4128]
Checksum: @x@fb3 [unverified]
[Checksum Status: Unverified]
Urgent Pointer: @
~ Options: (4 bytes), Maximum segment size
> TCP Option - Maximum segment size: 146@ bytes
> [Timestamps]

Figure 4-6. TCP SYN Wireshark capture

2. SYN-ACK: When the server receives the SYN packet
for the TCP connection, it responds back with an
acknowledgment by setting the ACK flag bit to 1.
Also, when the ACK flag is set, the Acknowledgment
Number field is set to the value of one more than
the received SYN packet. So, in this case, the
Acknowledgment number field will have the value
926587468. Also, because TCP allows for two-way
communication, the server also sets the SYN flag
to 1 and sets a random sequence number in the
TCP header. Note that the sequence number used
in the SYN-ACK packet will be different than the
one received from the client. In this case, it is set to
4227540456. Figure 4-7 displays the TCP SYN-ACK
packet from server to client.
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L N N Wires k - Packet 42 - TCP.pcapng

> Frame 42: 6@ bytes on wire (480 bits), 6@ bytes captured (488 bits) on interface -, id @
> Ethernet II, Src: Bc:3e:72:84:9d:07 (Bc:3e:72:84:9d:87), Dst: Bc:3e:72:31:d8:01 (Bc:3e:72:31:d
> Internet Protocol Version 4, Src: 192.168.122.3, Dst: 192.168.122.2

2 Transmission Control Protocol, Src Port: 22, Dst Port: 12641, Seq: @, Ack: 1, Len: @

Source Port: 22
Destination Port: 12641
[Stream index: @]
[TCP Segment Len: @)
Sequence Number: @ (relative sequence number)
Sequence Number (raw): 4227548456
[Next Sequence Number: 1 (relative sequence number)]
Acknowledgment Number: 1 (relative ack number)
Acknowledgment number (raw): 926587468
9110 .... = Header Length: 24 bytes (6)
'
Window: 17192
[Caleculated window size: 17192]
Checksum: @xbe51 [unverified]
[Checksum Status: Unverified]
Urgent Pointer: @

~ Options: (4 bytes), Maximum segment size

> TCP Dption - Maximum segment size: 536 bytes
> [SEQ/ACK analysis]

Figure 4-7. TCP SYN-ACK Wireshark capture
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3. ACK: Onreceiving the SYN from the server,
the client now must respond back with an
acknowledgment. For that, the client sends another
TCP packet to the server with the ACK flag set, and
the Acknowledgment Number field value set to
the value of the sequence number plus 1. In this
packet the SYN flag is set to 0. Figure 4-8 displays
the ACK from the client to the server with the
Acknowledgment Number field set to 4227540457.
Note that after the ACK is received by the server, the
minimum of the client or server’s MSS value is taken

into consideration for data transmission.
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oo ® hark - Packe! P.pcapng

> Frame 43: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface -, id @
> Ethernet II, Src: @c:3 :31:d8:01 (@c:3e:7 8:01), Dst: Bc:3e:72:84:9d:87 (Bc:3e:72:84:9
> Internet Protocol Version 4, Src: 192.168.122. st: 192.168.122.3
« Transmission Control Protocol, Src Port: 12641, Dst Port: 22, Seq: 1, Ack: 1, Len: @

Source Port: 12641

Destination Port: 22

[Stream index: @]

[TCP Segment Len: @]

Sequence Number: 1 (relative sequence number)

Sequence Number (raw): 926587468

[Next Sequence Number: 1 (relative sequence number)]

Acknowledgment Number: 1 (relative ack number)

Acknowledgment number (raw):

. = Header Length: 2

Window: 4128
[Calculated window size: 4128]
[Window size scaling factor: -2 (no window scaling used)]
Checksum: 8x857b [unverified]
[Checksum Status: Unverified]
Urgent Pointer: @
> [SEQ/ACK analysis]
> [Timestamps]

Figure 4-8. TCP ACK Wireshark capture

Because we are looking at an example of an SSH session between
the server and client, after a TCP session has been established, all the
SSH protocol exchanges are performed. If you look at the packets that
are exchanged by the SSH protocol, you will notice that they mostly have
the PSH flag set, which indicates that the SSH protocol is telling the TCP
software not to buffer the data and transmit the packet to the remote end.
Figure 4-9 displays the Wireshark capture of an SSH control packet with
the PSH flag set in the TCP header.
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Y] Wireshark - Packet 44 - capng

> Frame 44: 85 bytes on wire (680 bits), B85 bytes captured (688 bits) on interface -, id @
» Ethernet II, Src: @c:3e:72:84:9d:07 (@c:3e:7 4:9d:97), Dst: @c:3e:72:31:dB:@1 (@c:3e:72:31:d8:@1)
» Internet Protocol Version 4, Src: 192.168 3, Dst: 192.168.122.2
~ Transmission Control Protocol, Src Port: 22, Dst Port: 12641, Seq: 1, Ack: 1, Len: 31

Source Port: 22

Destination Port: 12641

[Stream index: @]

[TCP Segment Len: 31]

Sequence Number: 1 (relative sequence number)

Sequence Number (raw): 4227540457

[Next Sequence Number: 32 (relative sequence number)]

Acknowledgment Number: 1 (relative ack number)

Acknowledgment number (raw): 926587468

101 = Header Length: 20 bytes (5)

E: 18 (PSH, ACK)
: 17528

[Calculated window size: 17528]

[Window size scaling factor: -2 (no window scaling used)]

Checksum: @xbSe7 [unverified]

[Checksum Status: Unverified]

Urgent Pointer: @

> [SEQ/ACK analysis]
> [Timestamps]

TCP payload (31 bytes)

» SSH Protocol

Figure 4-9. SSH packet with PSH flag

Like the connection initiation process, there is a three-way handshake
process for connection termination. The client and the server exchange
the following TCP packets when they wish to close the connection:

e FIN: When the client wishes to terminate the
connection, it sends a TCP packet with the FIN flag
set to 1 and sends it with a random sequence number.
Note that at this point, the SYN flag will be set to 0 and
the ACK s set to 0. If the client is supposed to send
an acknowledgment to the server for the previously
received TCP packet, the ACK flag can be set to 1
along with the acknowledgment number, but this
ACK has no relation to the FIN flag that is set on the
packet. TCP does this to reduce the number of packets
being exchanged. Figure 4-10 shows the Wireshark
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capture of SSH connection being terminated when

an ‘exit’ command is typed on the terminal by the
client. Figure 4-10 shows the Wireshark capture of TCP
FIN packet when the client wishes to terminate the
connection. Notice that in this packet, there is an ACK
flag set as well, but this acknowledgment is for another
sequence number that the client received.

[ X X | Nires| capng

> Frame 33@: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface enl, id @
> Ethernet II, Src: Apple_el:2d:8b (4c:2@:bB:el:2d:8b), Dst: D-LinkIn_d2:6c:ee (74:da:da:d2:6c:ee)
Internet Protocol Version 4, Src: 192.168.8.5, Dst: 128.199.17.181
g Transmission Control Protocol, Src Port: 54298, Dst Port: 22, Seg: 5319, Ack: 10246, Len: 8 |
Source Port: 54290
Destination Port: 22
[Stream index: 4]
[TCP Segment Len: @]
Sequence Mumber: 5319 (relative seguence number)
Sequence Mumber (raw): 3598296319
[Next Sequence Number: 5320 (relative sequence number)]
Acknowledgment Number: 18246 (relative ack number)
Acknowledgment number (raw): 845332899
Header Length: 32 bytes (8)

8x811 (FIN, ACK)

[Calculated window size: 131@72]

[Window size scaling factor: 64]

Checksum: @xal9b [unverified]

[Checksum Status: Unverified]

Urgent Pointer: @
> Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
> [Timestamps]

Figure 4-10. TCP FIN Wireshark capture

o FIN-ACK: Onreceiving the client’s termination request
with TCP FIN, the server acknowledges the request
by replying to the client with ACK. The server also
sets the FIN flag to 1 and sends it to the client with
arandom sequence number different than that of
the received FIN. Once this step is completed, the

connection is terminated from the client to the server
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side. Figure 4-11 shows the Wireshark capture of a TCP
FIN-ACK packet sent by the server toward the client in
response to the FIN request received from the client.

209 Wireshark - Packet 3: png

> Frame 333: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface enl, id @
» Ethernet II, Src: D-LinkIn_d2:6c:ee (74:da:da:d2:6c:ee), Dst: Apple_el:2d:8b (4c:28:b8:el:2d:8b)
» Internet Protocol Version 4, Src: 128.199.17.181, Dst: 192.16B8.8.5
¥ Transmission Control Protocol, Src Port: 22, Dst Port: 54298, Seq: 10246, Ack: 5328, Len: @
Source Port: 22
Destination Port: 54299
[Stream index: 4]
[TCP Segment Len: @]
Sequence Number: 10246 (relative sequence number)
Sequence Number (raw): B45332899
[Next Sequence Number: 10247 (relative sequence number)]
Acknowledgment Number: 5328 (relative ack number)
Acknowledgment number (raw): 3598298320
1008 .... = Header Length: 32 bytes (8)
dFlags: eéxe11 (PN, ACK) |
Window: 298
[Calculated window size: 38144]
[Window size scaling facter: 128]
Checksum: ©xa826 [unve d]
[Checksum Status: Unverified]
Urgent Pointer: @
> Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
> [SEQ/ACK analysis]
> [Timestamps]

Figure 4-11. TCP FIN-ACK Wireshark capture

e ACK: This is the last step where the client sends the
acknowledgment back to the server for the received
FIN from the server. It sets the ACK flag to 1 and sets
the Acknowledgment Number value to the Sequence
Number of FIN plus 1. After this step is completed, the
connection is terminated from the server to the client
side. Figure 4-12 displays the Wireshark capture of
the TCP ACK packet sent by the client to the server in
response to the FIN packet it received from the server
in the previous step. Note that the Sequence Number
and Acknowledgment Number fields work in the same
manner as they did during the session initiation process.
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X N ] Wireshark - Packet 334 - 55H.pcapng

> Frame 334: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface enl, id @
» Ethernet II, Src: Apple_el:2d:8b (4c:20:b8:el:2d:8b), Dst: D-LinkIn_d2:6c:ee (74:da:da:d2:6c:ee)
» Internet Protocol Version 4, Src: 192.168.8.5, Dst: 128.199.17.181
~ Transmission Control Protocol, Src Port: 54298, Dst Port: 22, Seq: 5320, Ack: 18247, Len: @
Source Port: 54298
Destination Port: 22
[Stream index: 4]
[TCP Segment Len: @]
Sequence Number: 5328 (relative sequence number)
Sequence Number (raw): 3598298320
[Next Sequence Number: 532@ (relative sequence number)]
Acknowledgment Number: 10247 (relative ack number)
Acknowledgment number (raw): 845332990
= Header Length: 32 bytes (8)
@xe1@ (ACK)
: 2848
[Calculated window size: 131072]
[Window size scaling factor: 64]
Checks xal06 [unverified]
[Checksum Status: Unverified]
Urgent Pointer: @
> Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
> [SEQ/ACK analysis]
> [Timestamps]

Figure 4-12. TCP ACK Wireshark capture

Every TCP connection goes through different connection states during
its session lifetime. The following are the possible TCP connection states:

e LISTEN: A TCP application is awaiting an inbound
connection request.

e SYN-SENT: A connection request has been sent but no
acknowledgment has been received from the remote end.

e SYN-RECEIVED: A connection request has been
received and an acknowledgment has been sent
to the remote host, but the host is awaiting an
acknowledgment of the connection request sent out as

aresponse to the original connection request.
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e ESTABLISHED: All SYN and ACK have been received
and the connection has now been established. Both
end hosts can start sharing the data.

e FIN_WAIT 1: A session or connection termination
request has been sent, but no acknowledgment has
been received.

e FIN_WAIT_2: An acknowledgment has been received
from the remote host, but no corresponding termination
request has been received from the remote host.

e CLOSING: A session termination request has been
sent and a corresponding session termination
request has been received and acknowledged but no
acknowledgment has been received from the remote

host for the original session termination request.

o CLOSE_WAIT: A session termination request was
received and acknowledged but no corresponding
session termination request has been sent out yet.

e TIME WAIT: The host waits for a reasonable amount
of time to ensure the remote host receives the final

acknowledgment of a session termination request.

e LAST ACK:Host awaits a final acknowledgment after
sending an end of connection message in response to

having received a session termination request.

At times it gets hard to remember the state transitions and the
corresponding TCP flags set during those state transitions. To remember
this, you can simply follow the TCP finite state machine as shown in
Figure 4-13.
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(start) CLOSED CONNECT / S¥YN
LISTEN/- | CLOSE/-
SYN/S¥N + ACK s I CLOSE /-
_ LSITEN
* RST/- [ I SEND / SYN
SYN RCVD SYNSENT
SYN/SYN + ACK

SYN + ACK/ACK
— ESTABLISHED

ACK/- FIN/ACK
CLOSE/FIN J(Data Transfer State) /

(Active Close) (Passive Close)
SRR Jujefnipinl. A— sy [ PrV——
FIN/ACK i
FIN WAIT 1 CLOSING AT
ACK /- I | FIN + ACK/ACK J ACK /- E EC].OSE}FTN l
FIN WAIT 2 TIME WAIT P | Lastack
”"’W]I“m"w i
ACK/ -
(Go Back to Start) CLOSED

Figure 4-13. TCP finite state machine

Port Scanning

Many network and security analysts perform port scanning to find out
about network and host vulnerabilities and services running on the
network that can be exploited. Port scanning is a technique of determining
which ports in a network or host are open to send or receive traffic. An
open port indicates that a service such as HTTP/HTTPS or FTP is offered
on the destination network or host. If attackers know what services

are offered, they might be able to use other tools to identify security
vulnerabilities to exploit those services.

NMAP is a freely available scanner that runs on the UNIX OS and
has options for various port scanning techniques. It also has options to
detect any scans that might be running on the network. Some of the port
scanning techniques are listed here:
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Connect requests: In this technique an active
connection is attempted using the three-way
handshake. If the port is open, the three-way
handshake is completed, and the scanner gracefully
closes the connection by sending an active close
request. If the port is closed, the destination responds
back with an RST flag set. Note that this is not a safe
scanning method, as these connection attempts are
logged on the target host.

Half-open scan: In this technique, the three-way
handshake is not completed and thus the name half-
open scan. A SYN is sent by the scanner and it waits

for a response. If the target port is open, it returns a
SYN-ACK and the connection will be immediately torn
down by the scanning host because it did not issue

the connection request. Because the handshake never
completed, the target host might not log these TCP SYN
packet scans.

Non-SYN-ACK-RST scans: As per RFC 793, segments
containing an RST flag are always discarded and
segments containing an ACK always generate an RST
flag. So, non-SYN packets that do not contain an RST
or ACK could be used for port scanning. Note that this
method of port scanning is only useful if the target host
or network follows the RFC specifications. OSs that do
not follow the RFC send RSTs from both open as well
as closed ports, thus making it difficult for scanners to
return accurate results.
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As part of network security best practices, it is equally important to
detect any impossible packet types that might have the following TCP flag

combinations:
e SYNRST
e SYNFIN
e RSTFIN
« FIN
e No flags

Network operators can perform filtering of various types of flags in

Wireshark using the following filters:
o SYNFlagset: tcp &% tcp.flags == 0x02
o ACKflagset: tcp && tcp.flags == 0x10
o RSTflagset: tcp && tcp.flags == 0x04
o FINflagset:tcp && tcp.flags == 0x01
o Noflagsset: tcp && tcp.flags == 0x3f

Investigating Packet Loss

Packet loss in a network can happen for two main reasons:
e Link errors/Layer 2 errors

e Network congestion

Most of the time, once a network is set up, it runs smoothly. It could
demonstrate transient or complete packet loss only when the hardware
fails or the link has issues. Detecting hardware failures is not very complex,
as multiple links and protocols running on the network hardware or host
will start showing symptoms of hardware failure and can easily be fixed
by replacing the complete hardware or a particular part that is causing
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the symptoms. When it comes to link issues, there could be several things
to troubleshoot, some within our control and some outside. With a link,
the issue could be with the unidirectional failures, Small Form-Factor
Pluggables (SFPs), fiber or Ethernet cables, duplex settings, telco provider
in the middle, and so on. The challenge with link issues is that even though
the link might have errors, it will still forward some traffic and drop the
remaining traffic, so network operators might not even know unless there
is a notification of an event or a complaint from an end customer. With
link issues, the data transmitted may also get corrupted and get eventually
dropped. In most cases, an error counter on the network or host interface
will increment to indicate an issue with the link, which then helps to
identify and resolve the problem.

Traffic congestion, on the other hand, can cause a great deal of service
disruption and is seen especially when transitioning between link speeds
within the network (from 10 Gbps to 1 Gbps). If the higher speed link
sends traffic at a rate the egress interface might not be able to keep up
with, then it will start dropping the packets. In such cases, with TCP, the
sender determines that the loss occurred in transit and will retransmit the
packets. This scenario is also known as discards. Because TCP is a reliable
connection-oriented protocol, it provides a mechanism to track data that
have been sent and receive an acknowledgment of what has been received.
If for any given packet the mapping ACK is not received, the TCP software
resends the data assuming the packet has gone missing and ensuring
reliable transmission of data. You might wonder why, after so much progress
and innovation in the field of networking and development of 100 Gbps fiber
links, we still have to deal with issues such as network congestion.

TGP Retransmission

As we already know, for every byte of data sent across a TCP connection,
there is an associated sequence number. When a sender sends a TCP
segment, it starts a retransmission timer of variable length. Let’s assume
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that the TCP segment gets lost in transit before reaching the receiver. Due
to the packet being lost in transit, the receiver never sends the ACK back to
the sender. After the retransmission timer expires, the sender assumes that
the segment has been lost and it retransmits the data again to the receiver.
Figure 4-14 demonstrates the segment loss and data retransmission
between server and client. So, if a Wireshark capture shows a lot of
retransmitted TCP segments, it simply means that there is packet loss in
the network.

Sender Receiver
“

ACK 1

SEQ 10
Segment

Drop

A - B———

Figure 4-14. TCP retransmission

To analyze retransmissions in a network, network operators might have
to place multiple taps in the network. For instance, examine the simple
topology shown in Figure 4-15. In this topology host H1 (IP 10.1.2.1) sitting
behind router R1 is trying to send traffic to host H3 (IP 3.3.3.3), which is
sitting behind router R3.

i . |

10.1.2.1 3.3.3.3

Figure 4-15. Topology
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If there is packet loss happening in the network segment between R2
and R3, you will notice in the Wireshark capture that there are multiple
retransmissions between the source and destination. In Figure 4-16,
the segment for which the sender did not receive the acknowledgment
retransmitted the segment back. In this case the sequence number of
that segment was 3546854380 (relative sequence number 213) and the
acknowledgment number was 597044005 (relative acknowledgment
number 501).

TCP-Retran:

ADAdO mBEERB@ R«e>2EF I H B
M |tep and ipaddr == 3.3.3.3
| Destination | Pratocal :L.n.;nunr:.

179.1861- 3.3.3. 1.2, TCP 54 22 + 33971 [ACK] Seq=581 Ack=213 Win 916 Le
178.1867- 1.2, «3.3. TCP 118 33971 - 22 [ACK] Seq=565 Ack=501 Win=3628 Len=64 [TCP seg
170.1868- 10.1.2. -3.3. 55Hv2Z 78 Client: El‘Liptic Curve Diﬂiz-Hellmall Key Exchange Init

[TCF :cglrr‘nt Len: 64]
Sequence Number: 213 (relative sequence number)
Sequence Nx.mncr (raw): 3546854388
q sequence number)]
ugmnnt Number: 501 (relative ack number)
dgment number (raw): 597844085
= Header Length: 20 bytes (5)

[Calculated window 1 3628]

[Windo ze scaling factor: -2 (no window scaling used)]
Checksum: 8x6146 [unverified]

[Checksum Status: Unverified)

Urgent Pointer:

oad (64 bytes)
Retransmitted TCP segment data (64 bytes)

@888 ©c 96 24 29 @8 2@ @c db b6 el PR PO BB 8@ 45 c@ $)

® B TCP-Retranwissions peapeg 0 83 - Displayed: 20 (31, 2%) Profile: Network Profile

Figure 4-16. Wireshark capture with TCP retransmissions
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TCP Qut-of-Order Packets

In networks, users might also encounter TCP out-of-order (OO0O) packets.
TCP 00O packets simply mean that the packets arrive at the destination in
a different order from that in which they were sent. This could happen for
several reasons:

e Multiple paths: If the TCP segments are following multiple
paths (ECMP paths to the destination) or via parallel
processing paths within a router or a network equipment
(e.g., per-packet load balancing), and either of the systems
are not designed to ensure the ordering of the packets, this
could lead to OOO packets in the network. Note that it is
TCP’s job to deliver the packets in the right order.

e QoS: Poorly configured QoS, especially a queueing
mechanism, can cause OOO packets in the network.
If the QoS settings do not forward the packet in a first
in, first out (FIFO) manner or if the QoS settings drop
the TCP packets along the path, this could lead to
retransmission of those dropped TCP segments and
eventually to OOO packets.

e Quersubscription: Oversubscribed links in the network
can cause OO0 packets. The traffic will end up getting
dropped, causing retransmission, slowdowns, and OOO
packets.

e Microbursts: A microburst is a behavior seen in networks
when rapid bursts of data packets are seen in quick
succession, leading to time intervals of full line-rate
transmission. This can cause packets to get dropped due
to buffer overflows on the interface. When such bursts
occur in the network, links would end up dropping packets,
causing retransmissions, slowness, and OOO packets.
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When 00O segments are received by the TCP software, one of the
main functions that it performs is reassembling packets in order or
requesting retransmission of OO0 packets. If the Wireshark capture shows
that there are OOO packets, then as part of the troubleshooting process
you might want to look at the possible causes listed earlier.

Tip If you see a lot of TCP 000 packets, there is packet loss
between the capture point and the sender. If you see a lot of TCP
retransmissions, though, there is packet loss happening between the
capture point and the receiver.

Troubleshooting with Wireshark Graphs

When troubleshooting TCP or any network issues in a large-scale
environment, where there is large amount of data to be analyzed, it
becomes challenging and time consuming to identify the root cause.

In such a scenario, a quick peek at graphical data can give us a better
understanding of what is happening in the network. Wireshark provides
you with numerous graph options that can be used for investigating
various types of issues. There are graphs in Wireshark that are specific

for TCP and can come in handy for day-to-day network analysis and
troubleshooting tasks. This section focuses on some of the various graphs
that can be used.

TCP Stream Graphs

TCP Stream Graphs can be used to provide visual insights about TCP
streams. The Wireshark tool gives user options to select between all packets
and TCP packets. The graphs are part of the Wireshark profile and can also
be imported from another profile. Within TCP Stream Graphs, there are
different graph and analysis options that network analysts can use:
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e Time Sequence (Stevens)
o Time Sequence (tcptrace)
e Throughput

e Round Trip Time

e  Window Scaling

ANALYZING LAYER 4 TRAFFIC

All these options can be accessed in Wireshark on the Statistics menu

by selecting TCP Stream Graphs, as shown in Figure 4-17.

Wireshark Fie Edit View Go Captue Analyze 8 s I Wirtless  Tools  Help
o o0

Source
| 4. 2011-01-25 10:52:4
P4 2011-01-25 10:52:4.
|4 2011-81-25 10:52:4
b4 2911-81-25 10:52:4
Po4. 2001-01-25 19:52:4,

2.
2. 9.183.148.120 1le
2.
2.
i 2.
E 4. 2011-01-25 10:52:42.
2.
2.
2.
2.
2.

9.183,148.120 o oonle

9.183,148.120 8 s e
9.183.148.120 DHCP (BOOTF) Statistics
P 4o 2011-81-25 10:52:4
P 4o 2011-81-25 10:52:4
P 4. 2011-81-25 10:52:4
ioa. 2011-01-25 1015214

PP PEPERY

lle

HPFEEDS

Round Trip Time
¥

Figure 4-17. TCP Stream Graphs options

Time Sequence (Stevens)

19.18.197.119 Packet Lengths 443 [MK] Seq=183 Ack=2044 Win=65TB8 Len=0

ate, Server Mello Done
19.18.197.119 . Servico Response Time 443 [ACK] Seq=183 Ack=2844 Win=65T80 Len=0

ate, Server Helle Done

9.183.148.120 DNC-RPC Programs 1206 [ACK] Seq=1 Ack=183 Win=6848 Len=2
9.183.148.120 N 29Wast 205 [ACK] Seq=l Ack=183 Win=6B48 Len=d
10.19.197.119 . 443 [ACK] SequlBd Ack=2044 Win=65780 Lens=@

i - 1 ate, Server Hello Done

This TCP stream time sequence graph shows TCP sequence numbers

plotted against time in any single direction. You do have options to switch

between the direction of the TCP stream, but only one direction can be

analyzed at any given point in time. If the captured traffic is only TCP
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traffic, then you can simply select Time Sequence (Stevens) graphs from
the menu. This will display the graph based on sequence numbers vs. time
in seconds as shown in Figure 4-18.

Sequence Numbers (Stevens) for 10.10.10.1:80 - 192.168.0.1:2550

Sequence Numbers (Stevens) for 10.10.10.1:80 -+ 192.168.0.1:2550
capture-289.pcapng

5000000
4000000
3000000 -

2000000 [

@
-
]
-3
E
=z
@
H
@
3
o
[
w

1000000 [

Time (s)

Hover over the graph for detalis. - 3543 pkts, 5159k8 ¢ 3652 pkts, 445 bytes

Type Time [Sequence (Stevens) < Stream 0 O Switch Direction

Mouse @ drags Zooms Reset

Help Save As...

Figure 4-18. TCP Stream Graphs: Time Sequence (Stevens)

In an ideal situation you might want to see a smooth line from the
bottom left corner to the top right corner of the graph. Notice that in the
graph in Figure 4-18, the graph is mostly incremental and has a smooth
line, but there are flat periods in the graph. The flat periods in this graph
are bad in that they indicate that the sequence number in that direction is
not increasing. When you click on these flat periods, you will notice that
there are TCP errors seen during those periods in the Wireshark capture.
In this case, when we click on one of the flat periods, we can see TCP
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ZeroWindow error shown in Figure 4-19, which indicates that the window
size is 0 in the TCP header. A TCP window size of 0 usually indicates the
client (or server, but in most scenarios it is the client) has advertised the
value of 0 for its window size, indicating that the TCP receive buffer is full
and cannot receive any more data.

cfe 18I0 LR 1ue. BB L 1318 B = £330 IAUR] SEQRSYDL38 ACKSA4D WANSBAEY LEN=1400

10,1810, 54 [TCP ZeroWindow] = 88 [ACK] S B178 Win=8 Lensd

Sequence Numbers (Stevens) for 10.10.10.4:80 - 192168 .0.:2550
capture-269.peapng

50 7%
Timne (s)

Hovar drer B gragh fev celade, 5 T54T phte, SIPKR & 3EET pte, 145 Eyter

Figure 4-19. TCP ZeroWindow Error seen in Stevens Time
Sequence graphs

If there are dips in the graph, it would usually indicate TCP
retransmissions or OOO packets. Figure 4-20 displays the dip in graphs
indicating TCP retransmissions as well as OO0 packets in the network.
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- .0.
192.168.9.1 18.10.18.1 TCP
192.168.0.1 18.10.10.1
18.18.19 . TCP 1514 [TCP

Dup
1514 80 - 2!

face eth@,
93:308:e9)
Sequence Numbers (Stevens) for 10.10.10.1:80 - 192.968.0.1:2550
capture-289.peapng
. 1900000
1800000
= 1700000
g 1600000

1500000

Chck 10 sabvct packet W58 (56,30 ben 1460 203 1352290 ack 448 win 6459) -+ 3543 piin, SIS0 o I852 picts, 445 bytes

Figure 4-20. TCP retransmissions and OOO packets in Stevens graph

Time Sequence (tcptrace)

The tcptrace Time Sequence graph is similar to the Stevens graph, but

on steroids. It shows the bytes in flight as well as the receive window
information, which is highlighted. This graph also shows other
information such as acknowledgments and selective acknowledgments
(SACKs) received. Figure 4-21 displays the tcptrace Time Sequence graph.
Notice the green line in the graph; this indicates the receive window
(rwnd) received from the destination host. The blue sections or blue dots
in the graph indicate the packets in transit. The red lines in the graph
indicate SACKs.
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Sequence Numbers (tcptrace) for 10.10.10.1:80 -+ 192.168.0.1:2560
caplure-289.pcapng

5000000 - /

4000000

3000000

Sequence Number (8)
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Time (5]

Hovvar over the Graph for detals. - 3543 pkts, 5159kB + 3652 phis, 445 bytes

Figure 4-21. Tcptrace Time Sequence graph

When we further expand the graph as seen in Figure 4-22, notice the
brown lines in the graph. These brown lines indicate acknowledgments
received from the receiver end. The red lines in the graph indicate SACKs.

| Time. Source [ Protocal | Lengtt| Info
2005-11-82 19 10.16.18.1

1-82 19

- 2085-11-82
- 28@5-11-82
—~ 2085-11-82

54 [TCP Window Update] 2550 - 80 [ACK] Seq=446 Ack:
54 [TCP Window Update] 2558 -
1 > p s segment

= B = = 2

Sequence Numbers (tcotrace) for 10.10.90.7:80 - 192.168.0.1-2650
capture-289.peapng

Sequence Number (B)

a6
Time (s)

(Clok 1o swieet Backe! 700 (41,345 lan LSO seq 527390 ask 446 win 84000 -+ 643 phts, 615043 ¢ T653 phts, 445 bytes

Figure 4-22. ACKs and SACKs in teptrace Time Sequence graphs
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When looking at these graphs, there are two things that we do not

want to see:

1. The bytes in flight (blue lines or dots) touching the

receive window (graph lines).

2. Steps (these denote that the sender is not sending

the data fast enough or it could be related to a

receive window size issue).

Figure 4-23 shows a pretty big step in the graph and when a user clicks

on that step, they can see TCP ZeroWindow errors in the Wireshark capture

indicating the receiver’s TCP receive buffer is full and it cannot process any

further packets at the moment.

= 2085-11-82 19:82:0. 10.19.18.1

Sequence Numbers (tlcptrpe) for 10.10.10.180 -+ 192.168.0.1:2550
fapture-280. pcapng

= 32s000

§

300000 -

i
8o
£ amooo f
1 I

250000 *I-

Type  Time | Sequence (icpirace) &

Mouse ® drags  zooms

Help

Switch Direction

Figure 4-23. Steps in tcptrace Time Sequence graphs
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Throughput Graph

The Throughput graph is very useful during throughput testing in a
greenfield deployment or during migration testing in the network. This
graph shows the segment length (packet size) and average throughput
vs. bytes per second (bps) over time. It also has options to show both

the throughput and the goodput in the graph. Figure 4-24 shows the
Throughput graph. Notice that in this graph, the segment length is stable
during the capture but there is also a gap in the segment length section
that indicates that the sender is not sending anything.

Note In computer networks, goodput means the application-level
throughput of a communication. It simply indicates good throughput
of an application.
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Throughput for 10.10.10.1:80 - 192.168.0.1:2550 (MA)

Throughput for 10.10.10.1:80 - 192.168.0.1:2550 (MA)
capture-289.pcapng
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Figure 4-24. Throughput graph

If the graph shows sporadic segments (dotted lines), it indicates that
the device is sending sporadically as shown in Figure 4-25, and it usually
indicates that there is packet loss in the path. If users click those sporadic
segments, they might be able to see TCP retransmissions or OO0 packets.
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Throughput for 10.10.10.1:80 - 192.168.0.1:2550 [MA)
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Figure 4-25. Sporadic segments

Window Scaling Graph

The Window Scaling graph can be very useful when troubleshooting TCP
window issues. These issues usually occur when one end is sending more
traffic than the other end can handle, or the receiving end has no buffer
left in the TCP receive window (as seen in some previous examples). This
graph, displayed in Figure 4-26, shows the TCP receive window (in green)
vs. bytes in flight (in blue). Note that in an ideal situation, the bytes in flight
should never be more than the receive window size.
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Window Scaling for 10.10.10.1:80 - 192.168.0.1:2650
capture-289.pcapng
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Mouse ® drags zo0ms » Rev Win o Bytes Out Reset

Figure 4-26. Window Scaling graph

Further zooming into the graph, if we see the flat lines (steps) in the
graph, it usually represents round trip time (RTT). An RTT is the difference
between the time when the packet was sent out and an ACK was received
for that packet. Figure 4-27 displays the flat lines in the Window Scaling
graphs indicating the RTT.
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Window Scaling for 10.10.10.1:80 - 192.168.0.1:25650

Window Scaling for 10.10.10.1:80 - 192.168.0.1:2550
capture-289.pcapng
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Mouse ® drags ZOOms + Rcv Win & Bytes Out Reset

Figure 4-27. RTT in Window Scaling graph

Note that if the bytes in flight (the blue dots and line) start from the
bottom (i.e., at 0), it indicates that all the previous segments that were
transmitted have been acknowledged and there are no packets in flight. If
the bytes in flight start above the 0 value (baseline) it indicates that there
are segments and bytes that have not yet been acknowledged. Figure 4-28
shows the bytes in flight starting above the baseline.
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Window Scaling for 10.10.10.1:80 = 192.168.0.1:2550
capture-289.pcapng
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Figure 4-28. Unacknowledged bytes in flight in Window
Scaling graph

RTT Graph

If there are jitters in the network, you might want to leverage the help of
the TCP Streams RTT graph. The RTT graph measures the RTT of all TCP
packets. If the graph shows big spikes, it usually indicates there is either
packet loss in the network or network congestion. Figure 4-29 shows the
RTT graph for all the captured packets in Wireshark. Notice that initially in
the graph, there are very large spikes, but the later part of the graph shows
consistent RTT. This indicates that initially there was either congestion or
packet loss that increased the RTT, but after it was resolved the RTT was
fairly stable.
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Round Trip Time for 10.10.10.1:80 - 192.168.0.1:2550
capture-289.pcapng
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Figure 4-29. RTT graph

1/0 Graphs

The I/0 graphs provide a customizable list of graphs allowing users

to compare different types of traffic and correlate the events with the
application traffic based on errors seen in the network quickly and easily.
The I/0 graphs allow users to customize the different graphs they wish
to see simultaneously, which makes it easier to correlate the data with
network events. For instance, you might observe a dip in the requests
coming in on a web server on HTTP as well as HTTPS using the I/O
graphs while comparing it with any TCP errors seen during that instance.
Figure 4-30 displays the traffic pattern of both HTTP and HTTPS traffic
from the Wireshark capture. The green lines highlight the HTTP traffic,
whereas the red line indicates the HTTPS traffic. Note that the HTTP and
HTTPS graph filters are not present by default. These can be added by
clicking the + icon, assigning the graph name, and under Display Filters,

177



CHAPTER 4  ANALYZING LAYER 4 TRAFFIC

setting the filter to tcp.port == 80 for HTTP or tcp.port == 443 for
HTTPS. Once the filters are set, users can customize these graphs with the

colors of their choice.

‘Wireshark I/O Graphs: capture-288.pcapng

Packetsf1 sec

‘,& L L AN ,|~|

50 100

Il

Time (s}

Click to select packet 3897 (1585 = 13).
Erabled Graph Namo Displa o | 53aA Paricd |  Axis Factor
L HTTP tcp.port == 80 Line Packets None 1
o HTTPS tep.port == ... Line Packels None 1
fed Time of day Log scale & Automatic Update Reset

L] o Mouse @ drags ZOOMS Interval | 1sec

Figure 4-30. HTTP vs. HTTPS traffic in 1/0 graphs

If we look at another Wireshark capture where we only have HTTP
traffic, but a lot of TCP errors, we can easily correlate the dip in the traffic
with a high number of TCP errors. In Figure 4-31, the traffic pattern of
HTTP traffic is shown along with TCP errors. When there are major dips
seen in the HTTP traffic, we can also see the spike in the TCP errors. When
looking at the Wireshark capture around that time, we will be able to
determine that there was packet loss happening around that time.
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Wireshark /O Graphs: capture-288.pcapng
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Figure 4-31. HTTP traffic and TCP errors in 1/0 graphs

The I/0 graphs can also be used to analyze any type of microbursts
happening in the network. The I/0 graphs give options to plot the
graph, not just at a 1-s time interval, but also to the millisecond level
(performance could be affected based on the amount of data being
analyzed by the Wireshark capture). Figure 4-32 shows the I/O graphs
adjusted to a 100-ms time interval. The graph in this scenario shows
spikes from time to time. The traffic spikes in these scenarios might not be
relevant because there are not too many packets being sent within the
100-ms time interval, but if there were more packets sent during the 100-ms

time interval, it would have been a concern.
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Wireshark |0 Graphs: capture-288.pcapng
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Figure 4-32. Microbursts in 1/0 graphs

Flow Graphs

When troubleshooting TCP-related network problems, it is necessary

to track the flow such as the three-way handshake, data flow and
acknowledgments, and so on. Just looking at Wireshark it might be difficult
to identify the flow unless you are using the option to follow the TCP
stream, in which case it will give you the complete flow of that packet.
However, it might still be difficult to understand the direction of each
packet, as you will have to keep track of the source and destination IP
addresses. This challenge is solved by another Wireshark graph known as
Flow graphs. Flow graphs provide you with a graphical representation of all
the TCP flows from the Wireshark capture and help you visualize the TCP
flow along with its direction. Figure 4-33 shows the Flow graph of the TCP
packets from the Wireshark capture.
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Figure 4-33. Flow graph

One of the benefits of using Flow graphs is that they preserve the
colors from the Wireshark profile and allow you to apply filters. The Flow
graph comes in very handy when troubleshooting VoIP-related issues.

It shows all the conversations related to DNS, TCP, HTTP, and so on, for
the specified traffic. These are a few of the most common use cases of

Flow graphs:

o Tracking any malicious host or application that is trying
to access multiple servers on the network.

o Tracking TCP retransmissions
o Tracking connection resets

For applying filters in Flow graphs, you can simply apply a display filter
in the Wireshark tool using filter expressions and then use Limit To Display
Filter check box. When this check box is selected, it will automatically
change the Flow graph to only the flow that is being targeted in the display
filter. Figure 4-34 shows the Flow graph of an HTTP flow that has been
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filtered on the Wireshark display filter. Next to the Limit To Display Filter
check box, there is also a drop-down list that allows users to further trim
down the visual Flow graph to particular types of flows such as ICMP, TCP,

and so on.
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Figure 4-34. Flow graph filter

TGP Expert

When working on a complex problem, you must know the right filters,

use the right options, and have your own profile in Wireshark for different
protocols to be able to analyze and identify the problem as quickly as
possible. Knowing and using various display filters for troubleshooting
different types of TCP issues can save you a lot of time. Table 4-2 displays a
list of common TCP-based display filters and what they do.
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Table 4-2. TCP Display Filters and Their Functions

Display Filter Function

tcp.flags == 0x2 Capture all TCP SYN packets

tcp.flags.syn ==

tcp.flags.reset == Capture TCP Resets

(tcp.flags == 0x10) && Capture only third packet of the TCP three-way

(tcp.seq == 1) 8& handshake

(tep.ack == 1)

tcp.time_delta > 1 Filter TCP delays greater than t seconds; in this
example,t=1

tcp.time _delta > 1 8& Identifying TCP delays but ignoring delays from

tcp.flags.fin == 0 && the TCP connection termination process (during

tcp.flags.reset == the connection termination process, TCP FIN is
sent to the remote end, or the TCP reset flag
is set)

tcp.window_size >= 0 && Identifying small TCP window sizes
tcp.window_size < 500

tcp.analysis.out_of order Filtering TCP 000 packets

(tcp.flags.syn == 1) && Filtering TCP SYN or SYN-ACK packets that
('tcp.len == 0) contain data
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Wireshark Profile for TCP

Wireshark allows users to create custom profiles that can come in very

handy based on the type of issue being investigated. Every Wireshark

application comes with a Default profile that has the following fields:

No.

Time
Source
Destination
Protocol
Length

Info

The Default profile is good for beginners and yields a lot of useful

information, but troubleshooting TCP issues is a complex process and

requires more specific fields related to TCP to quickly analyze TCP packets.

To create a new profile, follow these steps:

1.

184

Right-click Profile: Default at the bottom right
corner of the Wireshark application (Figure 4-35).

Select the New option. This will open the profile
modally.

Create a profile named TCP and click OK.

Right-click again at the bottom right corner of the
Wireshark application and select the TCP profile
from the Switch To submenu.
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5. Once selected, the new TCP profile will become
your active profile. Note that at this point, this new
profile will have the same columns and settings as
the Default profile.
To change the settings of the new TCP profile, select Preferences from
the Wireshark Menu then go to Appearance | Columns and then add the
following columns with the types and settings as shown in Figure 4-36.

¢ No.

e Time

e Delta

e Source

e Destination

e TCP Delta
¢ SEQ
¢ ACK

e  Window
o Bytesin flight

o« Info

Acknowledgment number (raw): 2428019935

® B copure-288.pcapng Packets: 14261 - Displayed: 14261 (100.0%)  Profile: Default

Figure 4-35. Selecting the Default profile
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Once the columns are added, the TCP profile Ul yields more granular
information about TCP as shown in Figure 4-36. You can see how easy
it looks to point out packets with window size 0. Not just for TCP, but
in general, network and security analysts should always create and use
custom profiles and use custom fields in their UI based on their style of
troubleshooting.

ark - Preferences

~ Appearance
Columns
Font and Colors
Layout
Capture
Expert
Filter Buttons
Name Resolution
> Protocols
RSA Keys
> Statistics
Advanced

Displayed | Title | Type | Fields | Field Occurrence
v No. Number

Time Time (format as specified)

Delta Delta time

Source Source address

Destination Destination address

TCP Delta Custom tep.time_delt...
SEQ Custom tcp.seq_raw
ACK Custom tep.ack_raw
Window Custom tep.window._...
Bytes in flight Custom tcp.analysis....
Info Information

VAL ANQQORNRLR

Show displayed columns only

Figure 4-36. Custom columns for TCP profile

Most of the fields in the Columns list are self-explanatory. The only
field that needs some explanation is the TCP Delta field. The TCP Delta
simply means the time since previous frame in the given TCP stream. This
field helps identify if there have been delays in the network in turn causing
delays in receiving the TCP stream. The information in the TCP Delta
field is available in the Timestamp section of the TCP header but let’s not
get confused with every delta that you see. Some delays are normal, such
as these:
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e SYN packets: There might be a delay before the initial
SYN packet. For instance, once the Wireshark capture
is started, you might ask the user to connect to a web
server. There will be a delay in such a case before the
first packet is seen on the wire.

o Connection termination packets: TCP connection
termination packets are basically FIN, FIN-ACK, RST,
and RST-ACK. These packets are explicitly sent to close
or terminate a connection. These packets could be sent
when a user opens a new tab on the browser, or the
session gets automatically closed after a page is loaded.

e GETrequests: GET requests can be generated in
HTTP when a user clicks a link to open a new page
or to request new data from the back end of the web
application. Some GET requests are instant, but
there might be GET requests initiated by background
processes that might not have any priority, for instance,
a GET request for . ico files.

e DNS queries: DNS queries during a web browsing
session are common and could lead to unexpected
delays in response.

o Image files: When a browser application requests
image files or .ico files, there might be delays for such
requests based on the web server settings or file size of
the image.

User Datagram Protocol

Unlike TCP, UDP is a lightweight connectionless protocol that is used to
transfer data in the network. UDP is different than TCP in several ways:
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No handshake mechanism

No session teardown

Smaller header size

Unreliable data delivery

No mechanism to manage OOO packets

No protection from data duplication

UDP as a transport protocol thus seems useful in scenarios where error

checking and correction mechanisms are either not necessary, or these

functions are performed by the end applications. The UDP protocol was
designed by David P. Reed in 1980 and was standardized in RFC 768. It is a
simple message-oriented Transport layer protocol that primarily consists
of four fields of 2 bytes each, as shown in Figure 4-37. The UDP header is
always 8 bytes in length, as it does not have any Options field in the header.

Source port: Identifies the sender’s port number.
Destination port: Identifies the receiver’s port number.

Length: Specifies the length in bytes of the UDP header
and payload; minimum length is 8 bytes.

Checksum: This field is used to ensure the integrity of
the data. This field stores the 16-bit words summed
using 1’s complement arithmetic, which is calculated
based on the IP header, the UDP header, and the
payload.

Source Port Destination Port

Length Checksum

Figure 4-37. UDP header
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Knowingly or unknowingly, you use UDP in various applications
on your network computer. Applications such as DHCP, DNS, Trivial
File Transfer Protocol (TFTP), and more, all use UDP as their transport
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protocol. If you are interested in checking which UDP ports are in use on

your system, use the command netstat -anp udp. Example 4-1 displays

the output of this command on a Mac OS and Windows OS.

Example 4-1. Netstat Command for Verifying UDP

genie@Vin] ~ % netstat -anp udp

udp4 0 0 10.65.55.185.
udp4 0 0 10.65.55.185.
udp4 0 0 10.65.55.185.
udp4 0 0 10.65.55.185.

I Output omitted for brevity

C:\Users\Administrator>netstat -anp udp

Active Connections

Proto Local Address
ubpP 127.0.0.1:1900

ubp 127.0.0.1:56629
upp 127.0.0.1:57233
ubpP 127.0.0.1:65272
upp 192.168.0.3:137
upp 192.168.0.3:138
upp 192.168.0.3:1900
ubp 192.168.0.3:5353
upp 192.168.0.3:56527
upp 192.168.0.3:57232
ubpP 192.168.0.3:65271

EE S

8.8.8.8.53
8.8.8.8.53
8.8.8.8.53
8.8.8.8.53

Foreign Address

*
*
%
*

* ¥ X X X X X X X ¥ %

%

*
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You can follow these simple steps to capture UDP traffic on your
computer system:

1. Start the Wireshark application and start a capture
on your computer’s NIC.

2. Open a command prompt.

3. Clear your DNS cache using the ipconfig /
flushdns command.

4. Tryinitiating a ping to a remote server or website
from the command prompt.

5. Close the command prompt.
6. Stop the Wireshark capture.

Figure 4-38 shows the Wireshark capture of a DNS query for www.
apple.com. The destination UDP port of 53 indicates that this is a DNS
packet. If there are too many packets in the Wireshark capture file, you can
simply filter the DNS packets using the display filter udp.port == 53.

If we look at the UDP packet, we can see the source portis 51053, the
destination port is 53, which is used for DNS, the length of the packet is 39
bytes, and the checksum value is set to 0x22e5. Note that at the end of the
UDP header, you can see that the UDP payload is 31 bytes and adding 8
bytes of UDP header it equates to 39 bytes.
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[ ] Wireshark - Packet 2970 - Wi-Fi: en0

> Frame 2970: 73 bytes on wire (584 bits), 73 bytes captured (584 bits) on ini
> Ethernet II, Src: Apple_2f:87:b8 (88:66:5a:2f:87:b8), Dst: Shenzhen_B8@:e5:4¢
> Internet Protocol Version 4, Src: 192.168.1.79, Dst: 192.168.1.254
v User Datagram Protocol, Src Port: 51853, Dst Port: 53

Source Port: 51853

Destination Port: 53

Length: 39

Checksum: @x22e5 [unverified]

[Checksum Status: Unverified]
[Stream index: 5]
> [Timestamps]
UDP payload (31 bytes)
> Domain Name System (query)

Figure 4-38. Wireshark capture of DNS query

Once the Wireshark capture has been performed, users can also follow
the UDP streams by selecting one of the flows in Wireshark, right-clicking,
and from Follow menu, selecting UDP Stream. This will show both the
DNS query and the DNS response in the Wireshark window with the filter
being set to udp.stream eq stream-number. Figure 4-39 displays the
complete UDP stream for a DNS query to www.apple.com.
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oee® Wi-Fi: en0

ADA® mBABRR Re>EF I W HE QQQAME
N udp.stream eq 5 o -l o+
No. Time Source Destination | Pratocol | Lengtt | Info
- - 2021-12-02 14:37:1. 192.168.1.79 192.168.1.2. DNS 73 Standard query @xbd83 A www.apple.com
- 2021-12-02 14:37:1. 192.168.1.2.. 192.168.1.79 DNS 223 Standard query response @xbd83 A www.apple

> Frame 2978: 73 bytes on wire (584 bits), 73 bytes captured (584 bits) on interface en®, id @

> Ethernet II, Src: Apple_2f:87:b8 (8B:66:5a:2f:87:b8), Dst: Shenzhen_80:e5:48 (30:df:8d:80:e5:40)
> Internet Protocol Version 4, Src: 192.168.1.79, Dst: 192.168.1.254

-~ User Datagram Protocol, Src Port: 51853, Dst Port: 53

Source Port: 51053
Destination Port: 53
Length: 39
@x22e5 [unverified]
[Checksum Status: Unverified]
[Stream index: 5]
> [Timestamps]
UDP payload (31 bytes)
> Domain Mame System (query)

Figure 4-39. Filtered UDP stream in Wireshark

There isn’t much as user can do when it comes to troubleshooting
UDP. If there is a packet loss in the network, the application can simply
request the data again, but the UDP software itself does not track any
sequence number. A UDP data packet lost is data lost. There is some
analysis that can still be done in Wireshark using I/O graphs, as these are
not specific to just TCP, but any kind of stream captured in Wireshark.
Users can filter a UDP stream on Wireshark and then select the I/O Graph
option from the Statistics menu. The I/O graph will display options such
as All Packets and TCP Errors, but also Filtered Packets with the filter set
to UDP packets that was used as the display filter in Wireshark. Figure 4-40
displays the I/O graph of filtered UDP packets on Wireshark.
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Wireshark 'O Graphs: Wi-Fi: en0

Packats/) sec

¥ Axis
Packets
Packets
Filtered pac ine Packets

Mouse # drags zooms interval 1sec = Time of day og sca ¥ Automatic Update

Figure 4-40. 1/0 graph for filtered UDP packets

Summary

Any network engineer or security analyst should have a deep and solid
understanding of protocols working at different layers, but one of the layers
that most engineers least on least is the Transport layer. The Transport
layer protocols are crucial for ensuring end-to-end communication and
transporting data between sender and receiver. To transport the data,

the Transport layer has protocols that follow either connectionless or
connection-oriented architecture with both having their respective use
cases. In this chapter, we focused on the two key Transport layer protocols,
TCP and UDP.

In this chapter, we explored the working of TCP and how it helps solves
several problems such as data reliability, data integrity, and so on. We
learned about the TCP connection process using three-way handshake,
how port scanning is done by attackers, and how network engineers can
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investigate packet loss issues in the network. We learned that packet loss
in the network can lead to issues such as TCP retransmissions and TCP
00O packets. We then saw how quick analysis and troubleshooting can
be performed for network traffic using Wireshark graphs, including TCP
Stream graphs, I/O graphs, and Flow graphs. As a network engineer or
security analyst it is important to have custom profiles in Wireshark to
analyze different types of traffic. We covered how users can create custom
profiles for TCP and can quickly identify issues such as ZeroWindow by
simply looking at the capture.

At the end of the chapter, we looked at UDP and in which scenarios
UDP is used by different applications. We then learned how to filter UDP
traffic and how we can leverage I/0 graphs to learn about the UDP traffic
pattern.
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e RFC 793: Transmission Control Protocol, DARPA,
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CHAPTER 5

Analyzing Control
Plane Traffic

This chapter covers the following topics:
e Analyzing routing protocol traffic

e Analyzing overlay traffic

Analyzing Routing Protocol Traffic

So far, we have learned how to set up Wireshark, perform packet captures,
and analyze Layer 2 to Layer 4 traffic. Most of the traffic that we have
looked at so far is data traffic. When we are dealing with packet loss in

the network, we usually try to understand the problem based on what is
happening in the network: Is there an errored link in the network dropping
the traffic? Is network congestion leading to data loss? When the data

loss is happening in the network, chances are high that the data might
also be control plane traffic. Although we can give separate treatment to
the control plane traffic from the data traffic using QoS, that only helps
prioritizing packets on the device, not on the wire. So, a packet loss can
simply drop data traffic as well as control plane traffic. Thus, a control
plane flap due to any amount of packet loss can still be analyzed using
the methods that we have seen so far. It could also be the case, though,
that control plane protocols misbehave even when there is no packet

© Vinit Jain 2022 195
V. Jain, Wireshark Fundamentals, https://doi.org/10.1007/978-1-4842-8002-7_5


https://doi.org/10.1007/978-1-4842-8002-7_5#DOI
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loss or congestion in the network. This chapter is focused on analyzing
control plane traffic and understanding the headers and functionality of
various routing protocols, diving deeper into certain cases and how we
can troubleshoot them using Wireshark. Note that this chapter does not
focus on teaching any control plane or data plane traffic, but just analyzing
different control plane and data plane traffic, which can prove useful for
network engineers. It is assumed that network engineers are well aware of
the protocols discussed in this chapter.

OSPF

Open Shortest Path First (OSPF), defined in RFC 2328, is one of the well-
known and most widely adopted interior gateway protocols (IGPs). It is a
dynamic routing protocol that operates within a single autonomous system
(AS) and is suitable for large heterogeneous networks. OSPF uses the
Dijkstra algorithm, also known as the shortest path first (SPF) algorithm, to
calculate the shortest path to the destination. In OSPEF, the shortest path to
a destination is calculated based on the cost of the route, which considers
variables such as bandwidth, delay, and load.

OSPF allows network administrators to break large networks
into smaller segments known as OSPF areas. This allows network
administrators to reduce the OSPF areas, which are basically a collection of
networks that support multiple area types:

e Backbone area: Network segment that belongs to
area 0.0.0.0. All other areas are either physically or
virtually connected to the backbone area. Exchanging
routing information between multiple nonzero or
nonbackbone areas is only possible through the
backbone area.
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Standard nonzero area: In this area, OSPF packets are
normally transmitted. This area is directly or virtually
connected to the backbone area.

Stub area: This area does not allow and accept routes
from external sources such as routes learned by other
routing protocols and redistributed into OSPE

Totally stubby area: This area does not accept routes
from external sources and link information from
other areas. Instead, a default route is advertised in
this area for allowing the router in this area to reach a
destination in other areas or even external sources.

Not so stubby area (NSSA): An NSSA is derived from a
stub area with the difference that this area also has an
Autonomous System Boundary Router (ASBR) router
attached to it and learns the external routes from the
redistribution happening on the ASBR.

In an OSPF area, based on the placement of the router, each router

assumes different responsibilities and performs various functions. OSPF

has four router types:

Backbone router: A backbone router runs OSPF and has
at least one interface part of the backbone area or area
0.0.0.0.

Internal router: An internal router has OSPF adjacency
only with the devices in the same area. These routers
do not form adjacency across multiple areas.
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e Area Border Router (ABR): An ABR router forms OSPF
neighbor adjacency with multiple devices in multiple
areas. Because it has adjacency in multiple areas, it
maintains a copy of the link-state topology database of
multiple areas and distributes it to the backbone area.

e ASBR:An ASBR router participates in other routing
protocols apart from OSPF and exchanges the routing
information learned from other protocols into OSPF
and vice versa.

The OSPF routing protocol uses a link-state database (LSDB) that is
formed using the information exchanged between all the routers within
the area. This information exchange between the routers within the area
is done using link-state advertisement (LSA). Instead of exchanging all the
network and link information in a single LSA, OSPF uses different types
of LSA for different network types. The following is a list of the commonly
used LSAs used in OSPF for exchanging various routing updates:

o Router LSA (Type 1)

e Network LSA (Type 2)

e Summary LSA (Type 3)

e Summary ASBR LSA (Type 4)
e ASExternal LSA (Type 5)

e NSSALSA (Type 7)

Based on the information in the LSDB, every router in an OSPF area
runs the SPF algorithm on all the destination prefixes and installs the
route in the routing table. Note that every router in the OSPF area has
an identical copy of the LSDB. Based on the understanding of different
LSA types, each area type allows for only specific type of LSAs. Table 5-1
displays different LSAs allowed in different area types in OSPE.
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Table 5-1. OSPF Area to LSA Mapping

Area Type LSAs Allowed

Backbone area Type 1,2,3,4,5

Standard or normal area Type1,2,3,4,5

Stub area Type1,2,3

Totally stubby area Type 1, 2, and Type 3 default route
NSSA Type 1,2,3,7

Totally NSSA Type 1, 2, 7, and Type 3 default route

Now that we have learned about the basics of the OSPF routing
protocol, let’s examine the most commonly seen issues in OSPE The
majority of the issues seen in OSPF are neighbor adjacency issues. When
two devices form an OSPF adjacency, they can either form the adjacency
over these types of networks:

e Broadcast

e Nonbroadcast

o Point-to-point

e Point-to-multipoint

We can focus on broadcast and point-to-point networks because
broadcast and nonbroadcast methods both require Designated Router
(DR) / Border Designated Router (BDR) election, and point-to-multipoint
networks works on the same principle as point-to-point networks. To form
a neighbor adjacency, there are different kind of OSPF packets that are
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exchanged, including Hello packets, link-state requests, link-state (LS)
updates, and LSAs. Any two devices participating in forming neighbor
adjacency go through the following states in the finite state machine:

e Down: This is the initial state of an OSPF router where
no information is exchanged between the routers.

o Attempt: This state is similar to the down state, with
the difference that the router is in the state of initiating
a conversation. This state is only applicable for
nonbroadcast multiaccess (NBMA) networks.

e Init: - In this state, a Hello packet has been
received from the neighbor router, but the two-way
communication has not yet been established.

e 2-Way: Indicates that a bidirectional conversation has
been established between two routers. After this state,
DR/BDR s elected for broadcast and NBMA networks.
A router on a broadcast or NBMA network becomes
full with the DR/BDR, but remains in 2-way with all the
remaining routers.

o Exstart: In this state DR/BDR is established as a
master-subordinate relationship. The router with the
highest router ID is selected as the master and starts
exchanging the link-state information.

e Exchange: In this state, the OSPF neighbors exchange
database description (DBD) packets. The DBD packets
contain LSA headers that describe the contents of the
LSDB and are compared with the router’s LSDB.

e Loading: If there is any discrepancy or missing
information found by comparing the DBD packets with
the LSDB, routers send link-state request packets to the
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neighbor routers. In response to the link-state requests,
the neighbor router responds with LS Update packets
that are acknowledged by the receiving router using
LSA packets.

e Full: In this state, the router’s database is completely
synchronized with the LSDB of the neighbor routers
and the routers become fully adjacent.

Let’s now look at the Wireshark captures based on the different states.
Figure 5-1 displays the initial OSPF Hello packet where an OSPF-enabled
router sends out a Hello packet on the 224.0.0.5 multicast address. Because
the router has not received any hello back from the other end, there is no
information available about the active neighbor.

o208 Wireshark - Packet 15 - OSPF-ADJ-DR-BDR.pcapng

» Frame 15: 78 bytes on wire (624 bits), 78 hytes :uptureu (624 bits) on interface -, id
» Ethernet II, Src: Bc:29:08:00:1b:@ B st: IPvdmcast_05 (81:008:5e:8¢
> Internet Protocol Version 4, Src:
~ Open Shortest Path First
- OSPF Header
Version: 2
Message Type: Hello Packet (1)
Packet Length: 44
Source OSPF Router: 192.1
Area ID 8.8 (Backbone)
Checks: afS [correct]
Auth Type: Null (@)
Auth Data (none): 2@2@2@0200020288
~ O5PF Hello Packet
Network Mask: 255.255.255.9@
Hello Interval
ernal Routing
Not set
0: Not set
(DC) Demand Circuits: Not supported
L) LLS Data block: Not Present
N) NSSA: Not supported
MC) Multicast: Not capable
E) External Routing: Capable
MT) Multi-Topology Routing: No
Router Pr ty: 1
Router Dead Interval [sec]: 4@
Designated Router: ©.98.9.9
Backup Designated Router: 2.98.8.8

Figure 5-1. OSPF Hello packet
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Once the OSPF router is able to see the neighbor router, you can then
see the Active Neighbor field in the Hello packet. Figure 5-2 displays the
active neighbor in the Hello packet for router R3 with OSPF router ID
192.168.3.3. Notice that so far no DR/BDR election has happened in this
network segment.

ae® Wiresharl B - O5PF-ADJ-DR-BDR.pcapng

> Frame 23: 82 bytes on wire (656 bits), B2 bytes captured (656 bits) on interface -, id
> Ethernet II, Src: @c:29:909:90:1b:08 (Pc:29:00:00:1b:08), Dst: IPvdmcast_@5 (@1l:0@:5e:e¢
» Internet Protocol Version 4, Src: 18.1.3.1, Dst: 224.0.8.5
~ Open Shortest Path First
~ 0SPF Header
Version: 2
Message Type: Hello Packet (1)
Packet Length: 48
Source OSPF Router: 192.168.1.1
Area ID: @.8.8.8 (Backbone)
Checksum: @x7745 [correct]
Auth Type: Null (@)
Auth Data (none): @@@@@odeeeeeasne
~ 0SPF Hello Packet
Network Mask: 255.255.255.@
Hello Interval [sec]: 1@
- Option ex82, (E) External Routing
: Not set
Not set
(DC) Demand Circuits: Not supported
(L) LLS Data block: Not Present
(N) NSSA: Not supported
(MC) Multicast: Not capable
(E) External Routing: Capable
««@ = (MT) Multi-Topology Routing: No
Router Priority: 1
Router Dead Interval [sec]: 48
Designated Router: 8.9.9.0
Backup Designated Router: ©.8.0.8
Active Neighbor: 192.168.3.3

Figure 5-2. OSPF Hello packet with active neighbor

Once the OSPF routers negotiate the DR/BDR roles, the Hello
packet will then have both the DR and BDR fields populated as shown in
Figure 5-3.
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2009 Wireshark - Packet 41 - OSPF-ADJ-DR-BDR.pcapng

> Frame 41: B2 bytes on wire (656 bits), 82 bytes captured (656 bits) on interface -, id
» Ethernet II, Src: @c:29:00:00:1b:88 (0c:29:8 P:1b:@8), Dst: IPvdmcast_85 (81:808:5e:8
» Internet Protocol Version 4, Src: 18.1.3.1, : 224.0.8.5
~ Open Shortest Path First
« 0SPF Header
Version: 2
Message Type: Hello Packet (1)
Packet Length: 48
Source OSPF Router: 192.168.1.1
Area ID: 9.0.90.@ (Backbone)
Bx5d3d [correct]

pe
Auth Data (none): 2090000000028000
« 0SPF Hello P
Network M
Hello Interval [sec
- Options: Ax@2

C) Demand Circuits: Mot supported
(L) LLS Data block: Not Present
(N) NSSA: Not supported
(MC) Multicast: Not capable
(E) External Routing: Capable
(MT) Multi-Topology Routing: No
Router Priority: 1
Router Dead Interval [sec]: 4@
d Router: 18.1.3.3
signated Router: 10.1.3.3
Active Neighbor: 192.168.3.3

Figure 5-3. OSPF Hello packet with DR/BDR

After the DR/BDR election, the routers decide on the master and
subordinate election on the segment. Remember that initially both the
routers will send the DBD packet with the Master (MS) bit set, but once
the OSPF software realizes that the router with the highest router ID is
the master, then the router with lowest router ID will not have the MS
bit set. Within the OSPF DBD packet, the MTU of the segment is also
advertised. Notice that if there is a mismatch of the MTU values, the OSPF
neighborship gets stuck in the exstart or exchange state. Once the master
and subordinate election is completed, only then will the routers start
exchanging the LSA information in the OSPF DBD packets. Figure 5-4
displays the DBD packet with the MS bit set for the packet coming
from the router with highest router ID. Also notice the various LSAs
being advertised to the neighboring router. Another important thing to
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remember is that the Init (I) bit is always set on the initial DBD packet sent
by each side of the segment. The More (M) flag is set where there are more
DBD packets pending that will be sent by the router.

T Wireshark - Packet 34 - OSPF-ADJ-DR-BDR.peapng

* Frame 34: 426 bytes on wire (3408 bits), 426 bytes captured (34@8 bits) on interface -, id @
» Ethernet II, Src: @c:29:28:@0:1b:08 (Bc:29:00:00:1b:08), Dst: Oc:60:09:00:1b:08 (Ac:60:00:02:1b
» Internet Protocol Version 4, Src: 18.1.3.1, Dst: 18.1.3.3
- Dpen Shortest Path First
« OSPF Header

Version: 2

Message Type: scription (2)

Packet Length: 39

Source OSPF Route 92.168.1.1

Area ID: 8.9.9.0 (Backbone)

[}

0, (E) External Routing
Not set

» LSA=-type
» LSA-type A (IP network)), len
LSA-type 3 (Summary-LSA (IP network)), len
LSA-type 3 (Summar A (IP netwo len
len 28

LSA-type 5

Figure 5-4. OSPF database description packet

The LS Update packets are sent between the routers in the segment.
When an LS Update is sent by DR, it is sent to destination address
224.0.0.5, whereas BDR sends it over 224.0.0.6. The LS Update packet
basically contains the list of LSAs that the OSPF router wants to advertise
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to its neighboring device to synchronize the OSPF database. Figure 5-5
displays the Wireshark capture of the OSPF LS Update packet advertising
LSA Type 1 and LSA Type 2 to the neighboring router.

LA N Wireshar -ADJ-DR-BDR.pcapng

> Frame 39: 166 bytes on wire (1328 bits), 166 bytes captured (1328 bits) on interface -,
> Ethernet II, Src: @c:60:00:00:1b:98 (Pc:60:00:00:1b:08), Dst: IPvdmcast_05 (81:00:5e:0(
~ Internet Protocol Version 4, Src: 10.1.3.3, Dst: 224.0.9.5
21ee .... = Version: 4
sase 0101 = r Length: 28 bytes (5)
» Differentiated Services Field: @xc@ (DSCP: CS6, ECN: Not-ECT)
Total Length: 152
Identification: @x8d55 (36181)

. 8000 DOOR 8080 = Fragment Offset: @
Time to Live: 1
Protocol: OSPF IGP (89)
Header Checksum: @x3def [validation disabled]
m status: Unverified]
Source Address: 18.1.3.3
Destination Addre: 224.8.9.5
~ Open Shortest Path First
~ OSPF Header
Version: 2
Message Type: LS Update (4)
Packet Length: 132
Source OSPF Router: 192.168.3.3
Area ID: 8.0.0.0 (Backbone)
Checksum edf4 [correct]
Auth Type: Null (@)
Auth Data (none): 2292020000802000
~ LS Update Packet
Number of LSA

b <-LSA), len 32
> LSA-type 1 (Router-LSA), len 72

Figure 5-5. OSPF LS Update packet

What does an LSA header look like? Each LSA has a common header
with 20 bytes followed by a number of additional fields that describe the
link. Here are the fields present in the OSPF LSA header:

e LS Age (2 bytes): Represents the elapsed time since the
LSA was created.

e Options (1 byte): Used for advertising OSPF capabilities
supported by the router.

o LS Type (1 byte): Indicates the type of LSA.
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e Link State ID (4 bytes): Indicates the link of either the
router or the network the link represents.

e Advertising Router (4 bytes): Indicates the OSPF router
ID of the router originating the LSA.

e LS Sequence Number (4 bytes): A sequence number
used to detect old or duplicate LSAs.

e LS Checksum (2 bytes): Checksum of the LSA, which is
used for identifying any data corruption.

o Length (2 bytes): Length of the LSA including 20 bytes
of the header.

Figure 5-6 displays the Wireshark capture of an LSA Type 3 header
within a DBD packet.

v LSA-type 3 (Summary-LSA (IP network)), len 28
.000 9011 1001 1110 = LS Age (seconds): 926
B.vv 2uss suss suss = Do Not Age Flag: @

~ Options: @xe2, (E) External Routing

Buve wuns DN: Not set

0: Not set

(DC) Demand Circuits: Not supported

(L) LLS Data block: Not Present

(N) NSSA: Not supported

(MC) Multicast: Not capable

(E) External Routing: Capable

ssns aaa (MT) Multi-Topology Routing: No

LS Type: Summary-LSA (IP network) (3)

Link State ID: 10.3.6.0

Advertising Router: 192.168.3.3

Sequence Number: 9x80000002

Checksum: @xded2

Length: 28

Figure 5-6. OSPF LSA header
Based on the LS Update packet, the router sends an LSA packet.

Figure 5-7 displays the LSA packet sent by the router R1 in response to the
LS Update packet sent by R3 in Figure 5-5.
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ee® Wireshark - Packet 43 - OSPF-ADJ-DR-BDR.pcapng

> Frame 43: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface -, i
> Ethernet II, Src: @c:29:00:00:1b:@8 (9c:29:09:00:1b:08), Dst: IPvdmcast_05 (@1:00:5e:!
» Internet Protocol Version 4, Src: 18.1.3.1, Dst: 224.8.0.5
~ Open Shortest Path First
~ OSPF Header
Version: 2
Message Type: LS Acknowledge (5)
Packet Length: 64
er: 192.168.1.1

(Backbone)

Auth Data (none): @eeeesedceeesded
» LSA-type 2 (Network-LSA), len 32
LSA-type 1 (Router-LSA}, len 72

Figure 5-7. OSPF LSA packet

Most of the issues in OSPF are usually seen during adjacency bring
up, but once the adjacency is up, OSPF remains stable. There might be a
bit of difference based on the different OSPF area types, especially with
OSPF NSSA. In an OSPF NSSA, the Hello packet has an NSSA (N) bit set,
which tells the peering router that it has the NSSA capability enabled on it.
Figure 5-8 displays the Hello packet in the NSSA.
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o0 0 rk - Pac OSPF-NSSA.p:

» Frame 29: 82 bytes on wire (656 bits), 82 h)te* captured (656 bits) on interface -, id @
» Ethernet II, Src: 8c:2 100:1b: : 1b:@8), Dst: IPvdmcast 85 (01:00:5e:80:0
» Internet Protocol Vi
~ Open Shortest Path First

> OSPF Header

« 0SPF Hello Packet

(DC) Dmrjrud Circuits: Not supported
LLS Data block: Not Present
NSSA: Supported
Multicast: Not capable
External Routing: Not capable
} Multi-Topolegy Routing: No

Active Nc:l;hbnr 192. 1(:8 2.2

Figure 5-8. OSPF NSSA Hello packet

Because NSSA advertises external prefixes as Type 7 LSA and these
Type 7 LSAs are converted to Type 5 LSAs at the ABR, the ABR specifically
looks for a Propagate (P) bit to ensure the conversion from Type 7 to Type
5 LSA is required. If the P bit is not set, the conversion from Type 7 to Type
5 LSA will not be allowed. Figure 5-9 displays the Wireshark capture of the
Type 7 LSA in the LS Update packet with the P bit set.
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eee [ ark - Pa 5P 0

» Frame 53: 134 by 134 bytes captured (1872 bits) on interface -, id @
» Ethernet II, Src b: (] @8), Dst: @c:a5:@0:00:1b:88 (Bc:a5:02:80:1b:88)
» Internet Protocol Version
Open Shortest Path First
* OSPF Header
« LS Update Packs
Number of
LSA-type
- LSA-type
.00@ 2000 2000 Peel

Figure 5-9. OSPF Type 7 LSA

Note that most network OSs come with debug capability for various
routing protocols that can be enabled on the router for the purpose of
troubleshooting, but Wireshark can be helpful in instances when there
is a bigger risk of affecting the router in a production environment when
running debugs. When working with Wireshark, the filters listed in
Table 5-2 can be helpful to filter packets.
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Table 5-2. Wireshark OSPF Filtering

Filter Description

ospf.area_id == 0.0.0.10 Filters OSPF packets for specified Area ID

ospf.advrouter == 192.168.5.5  Filters OSPF packets with the specified
router ID of the advertising router

ospf.hello Filters OSPF Hello packets
ospf.lsa.router Filters OSPF router LSA
ospf.lsa.network Filters OSPF network LSA
ospf.lsa.summary Filters OSPF summary LSA
ospf.lsa.nssa Filters for NSSA (Type 7) LSA
ospf.lsa.asext Filters for Type 5 (External) LSA

EIGRP

Enhanced Interior Gateway Routing Protocol (EIGRP), defined in RFC
7868, is another IGP designed and developed by Cisco Systems. It is also
known as a distance vector protocol that leverages the Diffusing Update
Algorithm (DUAL) to calculate loop-free routing paths using diffusing
computations. All routing protocols, including EIGRP, fundamentally work
the same way and have similar functions such as these:

o  Establishing communication: EIGRP uses a three-way
handshake for establishing communication.

o Exchanging routes: EIGRP uses reliable transport for
exchanging routes.

o Performing path computation: The procotol leverages
the DUAL algorithm to perform path computation.
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o Installing routes in the Routing Information Base (RIB):
EIGRP only installs loop-free paths in the RIB.

One of the key components of EIGRP is its Topology table. It contains
all known paths, locally learned routes, and externally learned routes
(learned via redistribution). The information available in the Topology
table is used by the DUAL algorithm to calculate the loop-free paths. The
EIGRP Topology table not only contains information about the paths, but
it also maintains information about when a route was withdrawn by a
neighbor.

Most of the computation element resides locally on the router, but
EIGRP performs all its tasks using five types of packets:

e Hello

e Update

e Acknowledge
e Query

e Reply

Let’s take a closer look at these packets one by one.

Hello Packet

Hello packets are used for peer discovery and maintenance purposes.
This packet is the first message sent when the EIGRP process comes up on
arouter and contains several parameters such as K values, AS numbers
that are checked by the peer router on receiving the Hello packet, before
forming neighborship. The Hello timer is set to a default of 5-s intervals on
high-bandwidth links and 60 s on low-bandwidth links. The Hello packets
are usually sent to the multicast address 224.0.0.10 unless the neighbors
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are statically configured on a nonbroadcast medium such as a Frame-
Relay, in which case they are sent as unicast packets. Figure 5-10 displays
the Wireshark capture of EIGRP Hello packets. Note that you can simply
filter the EIGRP Hello packets using the filter (eigrp.opcode == 5)

88 (eigrp.ack == 0).Note that the eigrp.ack filter is used to filter

out the Acknowledge field because the opcode for both the Hello and
Acknowledge fields is the same, but the latter has a nonzero value in the

Acknowledge field.

t Protocol Version 4, Src: 10.1.2.1, Dst: 224.8.0.10
C IGRP
Version: 2

8 (Address-Family)

Figure 5-10. EIGRP Hello packet

Note The Hello packet also has the Stub flag set when sent by
an EIGRP stub router. Users can filter it in Wireshark using the filter
eigrp.stub flags.
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Update Packet

The Update packets are used by EIGRP to convey reachability information
for prefixes to EIGRP neighbors. After an EIGRP neighborship is
established, EIGRP routers send Update packets as unicast to the neighbor
routers which contains all the routes, also known as the full updates. Each
route in the update message contains metrics such as bandwidth, delay,
load, reliability, and other information such as hop count, MTU, and so on.
Once the full updates are exchanged between the EIGRP neighbors, the
Update packets are only exchanged when there is a change in topology.
For instance, a link flap triggers a withdrawal of multiple routes. This is
communicated to EIGRP neighbors via a multicast packet only containing
the updates. These updates are called partial updates. Figures 5-11 and 5-12
display both the EIGRP full updates and partial updates.

Figure 5-11. EIGRP full update
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» Frame 3769: 99 bytes on wire (792 bits), 99 bytes captured (792 bits) on interface -, id @
Ethernet II, Src: @c:f9:74:1f:00:00 (@c:f9:74:1f:00:00), Dst: IPvdmcast_Pa (01:00:5e:00:00:0a)

» Internet Protocel Version 4, Src: 18.1.2.2, Dst: 224.8.9.18
+ Cisco EIGRP

Version: 2

Opcode: Update (1)

Checksum: @xfe2a [correct]

cksum Status: Good]

Acknowledge: @
Virtual Router ID: @ (Address—Family)
Autonomous
~ Internal Route = 192,
Internal Route (Bx@682)

AFT: IPv4 (1)
RouterID: 192.168.4.4
~ Wide Metric

ce Withdraw: False
Candidate Default: False
i ctive: False

sans = Route is Replicated: False
NextH -8 (]
Prefix Length: 32

Destination: 192.168.4.4

Figure 5-12. EIGRP partial update

Users can filter EIGRP update packets in Wireshark using the eigrp.
opcode == 1 filter. This filter displays both full and partial updates
in EIGRP.

Acknowledge Packet

EIGRP works similar to the TCP three-way handshake, where the

initial packet could be an Update, Query, or Reply packet and in
acknowledgment to these packets, an Acknowledge packet is sent by the
EIGRP router. The difference between the TCP and EIGRP three-way
handshake is that the sequence number in EIGRP is not incremented but
rather copied in the Acknowledge field. Also, this whole communication is
done by Cisco’s proprietary Reliable Transport Protocol (RTP). The EIGRP
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Acknowledge packet has the same opcode as the EIGRP Hello packet,
but with a nonzero Acknowledge field value. Figure 5-13 displays the
Wireshark capture of an EIGRP Acknowledge packet.

A0 4
M | (eigrp.opcode == 5) && !(eigrp.ack == 0)

0. Time | Source | inatio Protocel | Lengtt| Info
- 2022-81-85 82:48:0.. 18.1.2.1 . EIGRP 54 Hello (Ack)
2.1

. 2022-91-85 0©2:4B:0.. 18.1.2. EIGRP 54 Hello (Ack)

> Frame 3877: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface -, id @
Ethernet II, Src: @c:a4:5e:c7:00:00 (Bc:ad:5e:c7:00:00), Dst: Bc:f9:74:1f:00:00 (@c:f9:74:1f:00:00)

~ Cisco EIGRP
Version: 2
Opcode: Hello (5)
1 @xfds2 [correct]
tatus: Good]

Acknowledge: 68
Virtual Router ID: @ (Address-Family)
Autonomous System: 108

® B wireshark_-3TULF1.pcapng Packets: 4578 - Displayed: 40 [0.8%) Profile: Default

Figure 5-13. EIGRP Acknowledge packet

You can filter the EIGRP Acknowledge packet by using the Wireshark
filter (eigrp.opcode == 5 && !(eigrp.ack == 0).The ! operator
ensures that we only capture the Acknowledge packet and not the EIGRP
Hello packet.

Query Packet

EIGRP queries are sent when a router loses a route to a destination
network (the destination prefix goes into active state). Queries are
normally sent as multicast to all the neighboring routers to find other
paths to the destination prefix. If a receiving router cannot find an
alternate path to the destination prefix, it will then query its peers for the
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destination prefix. This process goes on until the query has reached the
boundary router. Figure 5-14 displays the EIGRP Query packet for the
destination prefix.

> Frame 3761: 99 bytes on wire (792 bits), 99 bytes captured (792 bits) on interface -, id @
Ethernet II, Src: @c:f9:74:1f:00:00 (@c:f9:74:17:00:00), Dst: IPvdmcast_@a (01:00:5e:00:00:0a)
» Internet Protocel Version 4, Src: 18.1.2.2, Dst: 224.0.9.18
- Cisco EIGRP
Version: 2

Acknowledge: @
Virtual Router ID: @ (Address-Family)
Autonomous System: 108
~ Internal Route = 192.
Type: Internal Route
Length: 45
Topology: @
AFI: IPv4 (1)
RouterID: 192.168.4.4
~ Wide Metric
Offset: @
Priority: @
Reliability: 255
Load: 1
MTU: 1508
Hop Count: 1
Delay: Infinity
Bandwidth: l@e@eed
Reserved: @xoee9

= Source Withdraw: False
Candidate Default: False
Route is Active: False
see = Route is Replicated: False
NextHop: 8.8.8.8
Prefix Length: 32
Destination: 192.168.4.4

Figure 5-14. EIGRP Query packet

You can filter the EIGRP Query packet in Wireshark using the filter
eigrp.opcode == 3.

Note EIGRP Query packets are not sent to stub routers.
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Reply Packet

The EIGRP Reply packet is sent in response to the Query packet. After
sending the Query packet, a router waits for a reply from its peer routers.
If a router receiving the Query packet knows about an alternate path to
the destination prefix, it will respond back to the querying router with the
necessary metrics to reach the destination prefix. Figure 5-15 displays
the Wireshark capture of an EIGRP Reply packet. You can filter the Reply
packet using the Wireshark filter eigrp.opcode ==

Frame 3765: 99 i 9 its ) interfac id @
» E rnet II, Sr { A £ 3 :1f:08:00)

MTU: 1588

Figure 5-15. EIGRP Reply packet
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BGP

BGP, often called the routing protocol of the Internet, is an open standard
protocol used for connecting network across different AS boundaries. BGP
is a highly scalable protocol and has support for multiple address families
such as IPv4, IPv6, VPNv4, L2VPN, EVPN, and so on, which allows BGP to
be the protocol of choice in enterprise, datacenter, and service provider
environments. BGP, in general, cannot route traffic on its own. It leverages
the information from IGP to reach to the next hop for the prefix. BGP
knows about the prefixes that might be within the same AS boundary or
across multiple AS boundaries. BGP only knows about next hops to reach
the destination, but it needs IGP to get to that next hop.

Because BGP exchanges information across AS boundaries, it is also
important that the information is exchanged via a reliable mechanism.
Thus, BGP leverages TCP as its transport mechanism. A BGP session is
established on TCP port 179. In BGP, two types of neighborships can be
established:

o Internet BGP (iBGP): BGP peering established with
other routers within the same AS boundary.

e External BGP (eBGP): BGP peering established with
routers across AS boundaries.

For two routers to establish a BGP peering, they go through a finite
state machine as listed here:

e Idle: In this state, BGP detects a start event and
initializes the BGP resources on the router. The BGP
process initiates a TCP connection toward the peer.

o Connect: In this state, BGP waits for the three-way
handshake to complete. If the three-way handshake
is successful, an OPEN message is sent and the BGP
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process moves to the OpenSent state. If it is not
successful, BGP moves to the Active state, and waits for
a ConnectRetry timer.

Active: BGP starts a new three-way handshake. If the
connection is successful, it moves to OpenSent state. If
it is unsuccessful, the BGP process moves back to the
Connect state.

OpenSent: In this state, the BGP process sends an
OPEN message to the remote peer and waits for an
OPEN message from the peer.

OpenConfirm: In this state, the router has already
received the OPEN message from the remote peer and
is now waiting for a KEEPALIVE or NOTIFICATION
message. On receiving the KEEPALIVE message,

the BGP session is established. On receiving a
NOTIFICATION message, BGP moves to the Idle state.

Established: This state indicates that the BGP session
is established and is now ready to exchange routing
updates via the BGP UPDATE message.

From this finite state machine, we have already learned that there are

four types of BGP messages:

OPEN: This is the first message exchanged between
BGP peers after a three-way handshake has been
established between the peers. Once each side
confirms the information shared in the BGP OPEN
message, other messages are exchanged between them.
The following information is compared as part of the
OPEN message:

¢ BGP version
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o Source IP of the OPEN message should match with
configured peer IP

e Received AS number should match the configured
remote AS number of the BGP peer

e BGP Router ID must be unique

e Other security parameters such as password, TTL,
and so on

e KEEPALIVE: The BGP KEEPALIVE message acts like
a Hello packet to check whether the BGP peer is alive
or not. This message is used to keep sessions from
expiring.

e NOTIFICATION: BGP NOTIFICATION is sent when the
BGP process encounters an error condition. When this
message is received, the BGP process closes the active
session for which the notification was received. The
NOTIFICATION message also contains the information
such as error code and suberror code that can be used
to determine the cause of the error condition.

e UPDATE: This message is used for exchanging routing
updates (advertisements and withdrawals) between
BGP peers.

We'll now examine these BGP messages in Wireshark. First for the BGP
OPEN message, the following fields are present in the header:

e Marker: Set to T ff.
o Length: Length of the BGP header

o Type (OPEN message): Value set to 1.
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Version: Specifies the current BGP version used by the
router. The current version is 4 as defined in RFC 4271.

MS AS: Specifies the AS number of the router
originating the OPEN message.

Hold Time: Specifies the Hold Timer value set on the
router sending the OPEN message.

BGP Identifier: Router ID of the router sending the
OPEN message.

Optional Parameters Length: Variable length, specifies
the combined length of all the parameters included in
the Optional Parameters field.

Optional Parameters: This field is used by the router to
advertise optional BGP capabilities that are supported
in BGP by the OS running on the advertising router.
Some of these capabilities include the following:

e Multiprotocol BGP (MP-BGP) support
¢ Route Refresh support

e 4-octet (4-byte) AS number support
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Figure 5-16 displays the BGP OPEN message.

w

» Frame 12: 111 bytes on wire (888 bits), 111 bytes captured (888 bits) on interface -, !
» Ethernet II, Src: @c:83:6d:3a:00:00 (0c:83:6d:32:00:00), Dst: 0c:06:00:00:1b:08 (0c:06
» Transmission Control Protocol, Src Port: 53898, Dst Port: 179, Seq: 1, Ack: 1, Len: 57
- Border Gateway Protocol - OPEN Message

Marker: ffffffffffferfffrrfrrerfrefrifreees

Length: 57

Ty, PEN Message (1)

Version: 4

My AS: 100
Hold Time:
ntifier: 172.16.1.1
1 Parameters Length: 28

~ Optional Parameters
Optional Parameter: Capability
Parameter Type: Capability (2)
Parameter Length: 6
~ Capability: Multiprotocol extensions capability
Type: Multiprotocol extensions capability (1)
Length: 4
AFI: IPv4 (1)
Reserved: @@
SAFI: Unicast (1)
> Optional Parameter: Capability

Figure 5-16. BGP OPEN message

The BGP KEEPALIVE message, as mentioned before, is used to
ensure BGP peers are active. The BGP process does not rely on the TCP
connection to validate that the BGP peers are up. BGP KEEPALIVE
messages are sent every 60 s by default with the Hold Timer set to 180 s.
Figure 5-17 displays the Wireshark capture of a BGP KEEPALIVE message
sent between BGP peers. We can see from the Wireshark capture that there
are only three fields present in the BGP KEEPALIVE message.
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< - Pach 16--

> Frame 15: 73 bytes on wire (584 bits), 73 bytes captured (584 bits) on interfact
> Ethernet II, Src: @c:83:6d:3a:00:00 (Bc:83:6d :08), Dst: @c:06:00:00:1b:08
8 Internet Protocol Version 4, Src: 172.16.1.1, Dst
ssion Control Protocol, Src Port: 53093 Dst Port 179, Seq: 58, Ack: 77,
Gateway Protocol - KEEPALIVE Message
arker: fFfffffffffiffffrfrirrrerrirfree

ength: 19
Type: KEEPALIVE Message (4)

Figure 5-17. BGP KEEPALIVE message

A BGP NOTIFICATION message is also a short message that contains
the information about error code (major error code) and suberror code
(minor error code). Because BGP peering may be established multiple
hops away, BGP provides a mechanism to notify other peers about what
might have triggered the error condition, causing the BGP peering to flap.
Figure 5-18 displays the Wireshark capture of the BGP NOTIFICATION
message. In the Wireshark capture we can see that the error code is 6 and
the suberror code is 4, which indicates Administratively Reset. Thus, this
notification message indicates that the BGP peering was manually reset.

Packet 3

Frame 3: 75 bytes on wire (6@@ bits), 75 bytes captured (608 bits) on interface -, id @
» Ethernet II, Src: 8c:83:6d:3a:00:00 (@c: ea:ena), @c:P6:00:00:1b:088 (0 :
Protocol Version 4, Src: 172.16 D: 72.1
» Transmission Control Protocel, Src Port: 179, Dst Port: 23850, Seq: 20, Ack: 1, Len: 21
~ Border Gateway Protocol — NOTIFICATION Message
Marker: fffffffffffrrffrffrffrrrrrrreeee
Length: 21

Type: NOTIFICATION Message (3)
Major error Code: Cease (6)
Minor error Code (Cease): Administratively Reset (4)

Figure 5-18. BGP NOTIFICATION message
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Before we dive into the BGP UPDATE message, let’s first understand
how the BGP update packaging happens. Once the initial TCP session
is established, both endpoints maintain the information about the TCP
MSS. As mentioned in Chapter 3, MSS = MTU - IP Header (20 bytes) - TCP
Header (20 bytes). When the BGP process wants to send updates to its
BGP peers, it packages all the updates to a maximum of MSS bytes and
sends it across to the remote BGP peer with the Don’t Fragment (DF)
bit set. If all the updates cannot be sent in one single update, BGP sends
multiple updates to update the remote BGP peers. It is possible that if any
of the segments has lower interface MTU or IP MTU settings, but the MSS
negotiation happened with a higher value, the BGP updates might not be
able to make it to the remote BGP peer. When the BGP UPDATE packet
is sent, the BGP process does not send a BGP KEEPALIVE message. It
treats the BGP UPDATE packet as the BGP KEEPALIVE message and the
acknowledgment of the BGP UPDATE packet as an acknowledgment to
the KEEPALIVE message. Therefore, if the BGP UPDATE packet is unable
to make it to the remote end, the BGP session will flap due to Hold Timer
expiry. Figure 5-19 displays the Wireshark capture of the BGP UPDATE
packet. Notice that in the IP header, the DF bit is set, and in the BGP
header, we can see the BGP UPDATE message. The BGP UPDATE message
contains the attributes attached to the BGP prefixes and the BGP prefixes
are listed as Network Layer Reachability Information (NLRI).
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9188 .... = Versi
» Differentiated Services Field: @xc@ (D5SCP: CS6, ECN: Not-ECT

Total Length: 188
Identification: @xdfbd (20404)
Flag , Don't fragment

Reserved bit: Not set

Don't fragment

= More fragments: Not
@008 = Fragment Of

xcefc [validation disabled
Unverified]

badadabiiianaiiinanRinantitatatil
]

Leng 2
Type: UPDATE Message (2)
Withdrawn Routes Length: @
Total Path Attribute Lengt
Path attributes
» Path Attribute

Path Attribute

101.101.101.101/32

Figure 5-19. BGP UPDATE message

Most BGP issues can be investigated from the CLI. You might only
need to leverage the help of Wireshark when there is an issue with the
following:

o TCP session
o Packetloss
o Network OS not generating packets in a timely manner

e Device not sending the BGP packets out in a

timely manner

o BGP updates getting corrupted
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PIM

Today, almost every network uses multicast in one way or the other.

Multicast allows for one-to-many traffic, but only to those who have

subscribed or are interested in that traffic. Multicast applications have

wide implementation and use cases in financial, health care, digital

streaming, and many other types of organizations. Before we dive into

multicast and routing protocols to carry PIM-related traffic, we need to

understand some key terms:

Source address: Unicast address of a multicast source
or sender.

Group address: Destination IP address of a multicast
group. Note that multicast addresses range from
224.0.0.0 to 239.255.255.255.

Multicast distribution tree (MDT): Multicast flows
from source to receivers over an MDT. The MDT is
either shared or dedicated based on the multicast
implementation

Rendezvous point (RP): A multicast-enabled router that
acts as the root of the shared MDT.

Protocol Independent Multicast (PIM): Routing protocol
used to create MDTs.

First-hop router (FHR): First L3 hop that is directly
adjacent to the multicast source.

Last-hop router (LHR): First L3 hop that is directly
adjacent to the receivers.

In this chapter, we focus on the PIM protocol and its messages and see
how it is used to build MDT.
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The PIM protocol is used to build shared trees as well as shortest path

trees from source to receivers to facilitate the distribution of multicast

traffic. The PIM protocol runs over the L3 network and builds an overlay

network for multicast using the information from the underlying IGP. Thus,

when troubleshooting multicast issues, it is important to validate the

unicast routing information learned via the IGP. With the help of IGP,

PIM is able to locate where the source, receiver, and the RP resides. PIM

operates in two modes:

Dense mode: - Based on a push model, PIM Dense
mode operates under the assumption that receivers are
densely dispersed through the network. In this mode,
multicast traffic is flooded domain-wide to build a
shortest path tree, and the branches are pruned back

where no receivers are found.

Sparse mode: Based on a pull model, PIM Sparse mode
assumes that the receivers are sparsely dispersed.

In this mode, PIM neighbors are formed and traffic

is forwarded only over the PIM-enabled path. Using
PIM messages, the join request from receivers is
forwarded to the RP and thus the mechanism is known
as explicit join. Because of this method, it is also the
most preferred and widely used method for multicast
distribution.

The PIM protocol has the following fields in its header:

PIM Version (4 bits): Version number is set to 2.
Type (4 bits): Used to specify the PIM message type.

Reserved (8 bits): Reserved for future use. The value is
set to 0 in this field during transmission and is ignored
by the PIM neighbor.
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e Checksum (16 bits): Used to calculate the checksum of
the entire PIM message except for the payload section.

There are multiple PIM message types, but not all messages are used in
all deployments. Some of the most commonly seen PIM messages in basic
multicast deployment are listed in Table 5-3.

Table 5-3. PIM message types

Type Message Type Destination Address Description

0 Hello 224.0.0.13 Neighbor discovery.

1 Register Address of RP (unicast)  Register message is sent by FHR
to RP to register the source.

2 Register-stop  Address of FHR (unicast) This message is sent by RP to
the FHR in response to the PIM
Register message.

3 Join/Prune 224.0.0.13 Join or prune from an MDT.

PIM Hello Message

The PIM Hello message, identified with Type 0, is sent on all PIM-
enabled interfaces to discover and form PIM neighbor adjacencies. PIM
neighborship is unidirectional in nature, so it is important to validate the
PIM neighborship from both ends of the link. The PIM Hello messages
are sent periodically and with the destination address of 224.0.0.13. A
PIM Hello message allows for multiple options in Type, Length, and Value
(TLV) format. The options supported in PIM Hello messages are listed in
Table 5-4.
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Table 5-4. PIM Hello Message Options

Option Type Option Value

1 Holdtime: The amount of time in which the neighbor is in a
reachable state

2 Has the following parts:

¢ LAN Prune Delay: Delay before transmitting Prune message in a

shared LAN segment
e [nterval: Time interval for overriding a Prune message
e T: Join message suppression capability

19 DR priority used during DR election
20 Generation ID: Random number indicating neighbor status
24 Address List: used for informing neighbors about secondary IP

address on interface

Figure 5-20 displays the PIM Hello message between two PIM
neighbors.

Wireshark - Packet 8

> Frame 8: 72 bytes on wire (576 bits), 72 bytes captured (576 bits) on interface -, id

> Ethernet II, Src: @c:39:ab:b2:00:00 (@c:39:ab:b2:00:00), Dst: IPvdmcast_@d (81:00:5e:00:00:0d)

» Internet Protocol Version 4, Src: 18.2.3.2, Dst: 224.0.0.13
~ Protocol Independent Multicast
9810 .... = Version: 2
. 9000 = Type: Hello (@)
Reserved byte(s): @@
Checksum: @x2a@6 [correct]
[Checksum Status: Good]
« PIM Options: 5

» Option Hold Time: 1@5

> Option 20: Generation ID: 1783122959

> Option 19: DR Priority: 1

> Option 21: State-Refresh: Version = 1, Interval = @s
> Option 65004: RPF Proxy Vector (Cisco proprietary)

Figure 5-20. PIM Hello message

229



CHAPTER 5  ANALYZING CONTROL PLANE TRAFFIC

PIM Register Message

When the source sends multicast traffic, the FHR’s PIM DR takes the first
packet, encapsulates it with the PIM header, and sends it as a unicast
packet to the PIM RP. The PIM Register message is used to inform the PIM
RP that the source is actively sending traffic for the given multicast group.
The PIM Register message contains the following fields in its header:

o Type: Valueis set to 1 for Register message.

e  Border (B-bit): The PIM multicast border router
functionality is defined in RFC 4601, which designates
a local source when this bit is set to 0 and designates
the source in a directly connected cloud when this bit is
setto 1.

e Null-Register: This bit is set to 1 when a Null-Register
message is sent. In the Null-Register message, the FHR
only encapsulates the header from the source and not
the complete encapsulated data packet of the multicast
stream coming from the source.

e Multicast Data packet: The original multicast packet
sent by the source is encapsulated inside the PIM
Register message. If the message is a Null-Register
message, only a dummy IP header containing the
source and group address is encapsulated in the PIM
Register message. Note that the TTL of the original
packet decrements before encapsulation into the PIM
Register message.
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Figure 5-21 displays the Wireshark capture of the PIM Register message
sent by the FHR to the RP (192.168.3.3).

> Frame 497: 142 bytes on wire (1136 bits), 142 bytes captured (1136 bits) on interface -, id @

» Ethernet II, Src: @c:83:5c:74:00:00 (Bc:83:5c:14:00:80), Dst: @c:3f:cB8:53:00:00 (Bc:3f:c8:53:00:00)

> Internet Protocol Version 4, Src: 172.16.1.4, Dst: 192.168.3.3

~ Protocol Independent Multicast
9010 .... = Version: 2

.. @881 = Type: Register (1)
Reserved by 1 08
Checksum: @xdeff [correct]
[Checksum Status: Good]
~ PIM Options

~ Flags: @x@eegoos8s

[ P ++ = Border: No

eBas sseu sese ssse suss sise saas sase = NUll-Register: No
9100 .... = IP Version: IPv4 (4)
» Internet Protocol Version 4, Src: 172.16.1.4, Dst: 239.1.1.1
» Internet Control Message Protocol

Figure 5-21. PIM Register message

PIM Register-Stop Message

On receiving the PIM Register message, the RP adds the source to the
multicast distribution tree. Once the RP receives the first packet natively
through the shortest path, it will send a PIM Register-stop message to the
DR that has built the Shortest Path Tree (SPT) toward the source. The PIM
Register-stop message has the following fields:

e Type: Value is set to 2 for PIM Register-stop message.

o Group Address: Group address of the encapsulated
multicast packet in the PIM Register message.

e Source Address: Source address of the encapsulated
multicast packet in the PIM Register message.
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Figure 5-22 displays the Wireshark capture of the PIM Register-stop
message from RP to the DR that sent the PIM Register message.

> Frame 499: 52 bytes on wire (416 bits), 52 bytes captured (416 bits) on interface -, id @
» Ethernet II, Src: @c:3f:cB8:53:00:80 (@c:3f:c8:53:00:08), Dst: Ac:83:5c:T4:00:00 (Bc:83:5c:T4:00:00)
» Internet Protocol Version 4, Src: 192.168.3.3, Dst: 172.16.1.4
~ Protocol Independent Multicast
8818 .... = Version: 2
.. 0010 = Type: Register-stop (2)
Reserved byte(s): 0@
Checksum: @x3ec8 [correct]
[Checksum Status: Good]
« PIM Options
~ Group: 239.1.1.1/32
Address Family: IPv4 (1)
Encoding Type: Native (@)
: Flags: @x@e
Masklen: 32
Group: 239.1.1.1
« Source: 172.16.1.4
Address Family: IPv4 (1)
Encoding Type: Native (@)
Unicast: 172.16.1.4

Figure 5-22. PIM Register-stop message

PIM Join/Prune Message

The PIM Join/Prune message is sent by PIM routers toward the PIM RP

or toward the source with the destination set to PIM multicast address
224.0.0.13. These messages are used to build RP trees (RPTs) toward the
PIM RP or to build SPT toward the source. The PIM Join/Prune message
contains a list of sources (called source lists) and groups (called group sets)
to be joined or pruned. The following fields are present in the PIM Join/
Prune message:

o Type: Value is set to 3 for Join/Prune message.

o Upstream Address: Address of the upstream neighbor to
which the message is targeted. It also has subfields that
represent the address family of the upstream neighbor
as well as the encoding.
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Number of Groups: Represents the number of multicast
group sets in the message.

Holdtime: The amount of time to keep the Join/Prune
state alive.

Num Joins: Number of joined sources in the message.
Joined Source Address {IP Address x.x.x.x/32}
o Sparse bit (S): Set to 1 for PIM Sparse mode.

e Wildcard bit (W): When set to 1, this represents
wildcard a in the (*, G) entry. When set to 0,
this indicates that the encoded source address for
(S, G) entry.

e RPbit (R): When set to 0, join is sent toward source.

When set to 1, join is sent toward RP.

Num Prunes: Number of pruned sources in the
message.

Pruned Source Address {IP Address x.x.x.x/32}:
Represents the list of sources being pruned for the
group. All three flags in Joined Source Address are
applicable for Pruned Source Address, too.
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The PIM Join message is sent by the LHR’s DR toward the RP whenever

areceiver shows an interest in receiving a multicast stream. Figure 5-23

displays the Wireshark capture of the PIM Join message from the FHR
toward the RP.

Frame 5081: 68 bytes on wire (544 bits), 68 bytes captured (544 bits) on interface -, id @

» Ethernet II, Src: @c:39:ab:b2:80:08 (8c:39:ab: :8@), Dst: IPvdmcast_8d (01:08:5e:80:00:2d)
» Internet Protocol Version 4, Src: 18.2.3.2, Ds 4.9.8.13

Protocol Independent Multicast
.. = Version:

[Checksum Status: Good]
PIM Options
- Upstream-neighbor: 10.2.3.3
Address Family: IPv4 (1)
Encoding Type: Native (@)
Unicast: 3.3
Reserved byte(s): @0
Num Groups: 1
Holdtime: 218
-« Group @
« Group B: 239.1.1.1/32
Address Family: IPv4 (1)
Encoding Type: Native (8)

Flags: @x@@
32

168.3.3/32 (SWR)
IPv4
pe: Na (
» Flags: 8x@7, Sparse, WildCard, Rendezvous Point Tree
Masklen: 32
Source: 192.168.3.3
Num Prunes: @

Figure 5-23. PIM Join message

A PIM Prune message is sent by a PIM router when it wants to remove

itself from the multicast tree for a particular multicast group. Figure 5-24

displays the Wireshark capture of a PIM Prune message when there is no

receiver interested in the multicast stream.
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+ Frame 522: 76 bytes on wire (aea bits), 76 bytes captured (688 bits) on interface -, id @
Eth»rnc( II, Src b2: c:39:ab 0@), Dst: IPvdmcast_8d (@1:00:5e:00:080:0d)
et Pr(ntoml Vers . 10.2.3.2, Dst: 224.9.0.13

rune (3)

u»sw. [correct]
C Status: Good)
~ PIM Options
Upstream-neighb
Address Fami

Source: 172.16.1.4
IP ad « 16
Address Family: IP {
: Native (2)
Sparse, WildCard, Rendezvous Point Tree

Source: 192.168.3.3

Figure 5-24. PIM Prune message

Analyzing Overlay Traffic

So far, we have learned about analyzing routing protocol traffic that
can run on physical links or virtual links such as SVIs. Such networks
are known as underlay networks. The routing protocols, however, can
also run over an overlay network. An overlay network is a network that
is built on top of another network and leverages underlying network
configuration and protocols to establish communication as if they were
locally connected. The devices or endpoints in an overlay network could
be residing multiple hops away in the same or a different geographical
location. In overlay traffic, the actual host traffic is encapsulated with
the headers of the underlay network. We next look at different overlay
protocols and how we can analyze the overlay traffic using Wireshark.
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GRE

Generic Routing Encapsulation (GRE), defined in RFC 2784, is an overlay
protocol that allows users to create virtual point-to-point links and
encapsulate the data packets in a tunnel interface. Because it creates

a point-to-point link, each side can encapsulate any outgoing packets
toward the remote end and de-encapsulate any incoming packets from
the far end of the tunnel. With GRE, users might be running a different
routing protocol in the underlay to establish the reachability between the
two endpoints of the tunnel while running a different routing protocol in
overlay to establish end-to-end connectivity of hosts and devices sitting
behind the tunnel endpoints. Figure 5-25 displays the Wireshark capture of
the GRE encapsulated packet. Notice that GRE is a 4-byte header, but there
is also an overhead of 20-byte outer IP header after the encapsulation.
Thus, we need to make sure that the IP MTU value is adjusted accordingly
when encapsulating traffic with GRE.

T Wireshark -

Frame 106: 138 wire (1184 bits), 138 bytes captured
Ethernet II, Src 7:31:00:00 ( :07:37:00:00), Dst: @
Internet Protoco

Number Bit: No
ource Ro it: Ne

Differentiated [ H ( (58, ECN: Not-ECT)
Total Length: 188
Identification: @x@eas (5

1
[Header checksum
Source Address
Destination Addre:

Figure 5-25. GRE encapsulation

236



CHAPTER 5  ANALYZING CONTROL PLANE TRAFFIC

When data traffic is GRE encapsulated, the TTL value in the outer
IP header decrements but does not in the inner IP header. Figure 5-26
displays the Wireshark capture of GRE encapsulated traffic captured after
the first Layer 3 hop. Notice that the outer IP header has a TTL value of
254, whereas the inner IP header (with source IP set to 192.168.1.1 and
destination IP set to 192.168.2.2) has a TTL value of 255.

eee

Frame 5: 138 b,te nn wire 11104 bits), 138 captured (1184 bits) on interface —, id @
3 H 181), Dst: @c:5d:39:ed:02:00 (@c:5d:39:ed:e@:00)

: €58, ECN: Not-ECT)

Figure 5-26. GRE encapsulated traffic after first Layer 3 hop

IPSec

IP Security (IPSec), defined in RFC 1825 through RFC 1827, is a suite of
protocols to establish secure communication between two endpoints
across the IP network that provides authentication, data integrity, and
confidentiality. The RFC also defines the protocols needed for secure key
exchange and key management. The following protocols are part of the
IPSec protocol suite:
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e Authentication Headers (AH): AH provides data
integrity, authentication, and antireplay capabilities,
which protects against unauthorized transmission of
packets.

o Internet Key Exchange (IKE): - IKE is a network security
protocol that defines how to dynamically exchange
encryption keys and use Security Associations (SAs)
to establish shared security attributes between the
two IPSec tunnel endpoints. The Internet Security
Association Key Management Protocol (ISAKMP)
provides a framework for authentication and key
exchange and defines how to setup SAs. There are two
versions of IKE:

o IKEvl
o IKEv2

e Encapsulating Security Payload (ESP): ESP provides
authentication for the payload or data. It ensures data
integrity, encryption, and authentication and prevents
any replay attacks on the payload.

Let’s now look at the negotiation for IKEv1 in Wireshark. Figure 5-27
displays the Wireshark capture of all the initial communication between
the two routers participating in IPSec IKEv1 negotiations and then
transmitting data after a secure communication has been established.
From the Wireshark capture we can see there are six Main mode messages
as part of Phase 1 that negotiate security parameters to protect the next
three Quick mode messages as part of Phase 2.
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MNo. Time | Source | Destination | Protocol | Lengtt| Infa

- 2021-12-15 1. 10.1.2.1 18.2.3.3 ISAK. 21@ Identity Protection (Main Mode)
- 2021-12-15 1. 1e.2.3.3 10.1.2.1 ISAK. 150 Identity Protection (Main Mode)
- 2021-12-15 91:52:1. 10.1.2.1 108.2.3.3 ISAK. 350 Identity Protection (Main Mode)
- 2021-12-15 01:52:1.. 10.2.3.3 18.1.2.1 ISAK. 370 Identity Protection (Main Mode)
- 2021-12-15 01:52:1.. 10.1.2.1 18.2.3.3 ISAK. 158 Identity Protection (Main Mode)
- 2821-12-15 01:52:1. 10.2.3.3 18.1.2.1 ISAK. 134 Identity Protection (Main Mode)
- 2021-12-15 91:52:1. 10.1.2.1 10.2.3.3 ISAK. 230 Quick Mode

- 2021-12-15 01:52:1.. 1@.2.3.3 18.1.2.1 ISAK. 23@ Quick Mode

- 2021-12-15 01:52:1.. 10.1.2.1 18.2.3.3 ISAK.. 118 Quick Mode

- 2021-12-15 01:52:1. .1.2.1 .0.8. Hello Packet

- 2021-12-15 .1.2.1 (SPI=8x1c94189%e)

- 2021-12-15 .2.3.3 (SPI=0x3f5745d6)

- 1-12-15 .1.2.1 (SPI=0x1c9418%)

- 2021-12-15 .2.3.3 (SPI=0x315745d6)

- 2021-12-15 «2.1 (SPI=8x1c9418%e)

- 2021-12-15 .3.3 (SPI=8x3f5745d6)

- 2021-12-15 «2.1 (SPI=8x1c94189¢e)

- 2021-12-15 .3.3 (SPI=0x3f5745d6)

Figure 5-27. Wireshark capture of IPSec IKEvI1 negotiations

In Phase 1, as shown in Figure 5-28, the first step is policy negotiation.
In the first packet, the sender adds its unique Security Parameter Index (SPI)
to identify itself. Along with the SPI, the sender also sends a set of proposals
with various security parameters, called fransforms. These transforms are
used by the receiver to match with its local policies.
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Frame 21: 218 5 on wire (1688 bits), 219 bytes captured (1689 bits) on interfa id @
Ethernet II, Src: @c:Be:87:31:00:80 (8c:8e:07:37:00:00), Dst: @cicb:2c:Bci@@:00 (BcicbiZc:8c:00:08)
Internet Protocol Version 4, Src: 18.1.2.1, D:
User Datagram Protocel, Src Port: 589, Dst P 509
+ Internet Association and Key Management Protocol
2
Responder SP
Next paylo y Associatio
Version: 1.2
y Prote

xPopge0en
: 168
Security Associat
payload: Vendor ID (13)
Reserved: @@
d length: 6@
Domain of interpretation: IPSEC (1)

No Next Payload (@)

ayload length: 4@
Transform number: 1
rm ID: KEY_IKE (1)

1 oeee

Attribute Encryption-Algorithe: AES-CBC

Attribute (t=14 }: Key-Lengt 8

Attribute SHA2-256

Attribute ( - 0 iption: Alternate 1824-bit MODP group

IKE Attribute ? ion 3 P ared key

» IKE Attribute i S
> l=4): Life-Durati
: RFC 3947 Negotiation of NAT-Traversal in the IKE

: Vendor ID (

Figure 5-28. Wireshark capture of first Phase 1 packet

On receiving the packet, the receiver responds with the Responder SPI
and picks one of the transforms that it received based on the configuration.
Figure 5-29 displays the Wireshark capture of the reply sent by the
responder for the first packet.
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» User Datagram Protocol, Src Port: 588,
Internet Security Association and Key Management Protocol

» Situation:
Payload: 1
Next pa ()

IKE Attribut

IKE Attribute ( s

IKE Attribute ( Jes Alternate 1024-bit MODP group
thi od: Pre-shared key

Attribute (
» Payload: Vendor ID (13)

Figure 5-29. Wireshark capture of second Phase 1 packet

In the next two packets, both the peers exchange Diffie-Hellman (DH)
public keys, which allows them to agree on a shared secret key. Figure 5-30
displays the Wireshark capture of the DH keys. Notice that there is a
Nonce data highlighted in the packet capture. The Nonce value helps
protect against replay attacks by adding randomness to the key generation
process.
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see

Frame 23: 350

Ethernet II,

Internet Protoc

User Datagram Prot Src Po @, Dst Port: 580
Internet Security iation and Key Managesent Protocol

50461009

B5df23513Teab48810B9b8d45bcd5bea3d9B758..

ad: Vendor ID (1
ad: Vendor ID (1

Figure 5-30. Wireshark capture of DH keys

The last two packets of the Main mode are used for authentication
purposes. In this exchange, both peers confirm each other’s identity. If
both sides agreed on a preshared mechanism of authentication, then both
sides check whether they have the same preshared key or not. Figure 5-31
displays the Wireshark capture of the identification-related payload.
Notice in this Wireshark capture that the Flags field highlights that there is
no authentication between the two peers.
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[ X X ] Wireshark - Packet 25 - | pcapng

» Frame 25: 150 bytes on wire (120@ bits), 150 bytes captured (12@@ bits) on interface -, id @
> Ethernet II, Src: @c:8e:07:3f:00:00 (@c:8e:07:3f:00:00), Dst: Oc:cb:2c:8c:00:00 (Bcichb:2c:B8c:00:00)
> Internet Protocol Version 4, Src: 10.1.2.1, Dst: 1 3.3
> User Datagram Protocol, Src Port: 588, Dst Port: 580
- Internet Security Association and Key Management Protocol
Initiator SPI: f33ad25d4610@93c
Responder SPI: 75bf9ed452fa346db
Next payload: Identification (5)
- Version: 1.@
9081 .... = MjVer: @xl
+ees 000@ = MnVer: @x@
Exchange type: Identity Protection (Main Mode) (2)

~ Flags: @xel

= Encryption: Encrypted
. = Commit: No commit
.8.. = Authentication: No authentication
Message ID: 8x@esoeess
Length: 188
Encrypted Data (8@ bytes)

Figure 5-31. Wireshark capture of Phase 1 authentication process

After this step, we move to Phase 2 (Quick mode). In this phase, we
primarily focus on establishing security parameters that will be used
by IPSec SA. Figure 5-32 displays the packet exchanged in Quick mode.
Remember that there are three packets that are exchanged in Quick mode
but only one is showed for brevity.
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LR N Wireshark - Packet 27 . IPSEC.pcapng

> Frame 27: 230 bytes on wire (184@ bits), 230 bytes captured (1848 bits) on interface -, id @
» Ethernet II, Src: @c:8e:07:3f:00:00 (0c:8e:07:3f:00:00), Dst: @c:cb:2c:8c:00:00 (Bcicb:2c:8c:00:00)
» Internet Protocol Version 4, Src: 10.1.2.1, Dst: 10.2.3.3
» User Datagram Protocol, Src Port: 58@, Dst Port: 500
~ Internet Security Association and Key Management Protocol
Initiator SPI: f33ad25d4610893c
Responder SPI: 75bf9ed452fa346db
Next payload: Hash (8)
~ Version: 1.8
8081 .... = Mjver: oxl
+s». 000G = MnVer: @xo
ype: Quick Mode (32)
1
1 = Encryption: Encrypted
. ommit: No commit
= Authentication: No authentication
Message ID: @x56493aed
Length: 188
Encrypted Data (160 bytes)

Figure 5-32. Wireshark capture of Phase 2 Quick mode

Once Phase 2 is completed, the IPSec tunnels are formed, and all the
packets exchanged over the tunnel interface are encrypted. For instance, if
you send ICMP traffic, looking at the Wireshark capture you might not be
able to identify that it is an ICMP packet or some other type of packet.

VXLAN

VXLAN is an overlay protocol that provides Layer 2 extensions in a
datacenter environment. It allows users to extend Layer 2 domains in
multitenant environments leveraging the underlying IP infrastructure.
VXLAN can also be called a MAC-in-UDP encapsulation. With VXLAN
encapsulation, the original Layer 2 header is encapsulated with a UDP
header and a VXLAN header. VXLAN packets are sent on the destination
UDP port 4789. The VXLAN header provides a 24-bit segment ID that
allows users to have up to 16 million VXLAN segments in the same
datacenter environment. Figure 5-33 displays how the classical Ethernet
frame looks when encapsulated with VXLAN.
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Outer IP Header gy Vsl Original Layer 2 Frame
Header
14 Bytes 1

(4 bytes optional) 8 Bytes Hash of inner L2/13/L4 headers of

NH MAC original frame. Enables entropy for
VXLAN Port —— | UDP4789

16
16
i
;

Src and Dst
8B .
Addresses of VTEP ytes 16M possible

16 20 Bytes
7 IP Header Misc.
Data
8 Protocol 0x11
Src VTEP MAC Addr

.
g o |

.

segments

Figure 5-33. VXLAN encapsulated Ethernet frame

The VXLAN encapsulation and de-encapsulation is done by Virtual
Tunnel End Points (VTEPs) that connect classic Ethernet segments to
the VXLAN fabric. The VXLAN core fabric is usually based on a spine-
leaf architecture. Traffic forwarding in VXLAN fabric is dependent on the
type of traffic. Broadcast, Unknown Unicast, and Multicast (BUM) traffic
requires either multicast replication or unicast replication of packets to a
remote VTEP as these packets are sent to multiple VTEPs at the same time.
Unicast traffic, on the other hand, does not require any kind of replication.
Unicast traffic is encapsulated with VXLAN and a UDP header and sent to
the destination VTEP where the host resides. There are, thus, two types of
replication methods supported with VXLAN.

The first method is multicast replication. In multicast replication, a
multicast group is mapped to the VXLAN Network Identifier (VNI), which
in turn is mapped to a VLAN ID where the host resides. When BUM traffic
is sent—for instance, an ARP request is sent for a destination host residing
in the same VLAN or same VXLAN segment—the ARP request is multicast
replicated to all the VTEPs that have the matching VXLAN Network
Identifier (VNID) configured. The multicast destination address in the
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VXLAN encapsulation is the same multicast address that was mapped to
the VNI. Figure 5-34 displays the VXLAN-encapsulated BUM traffic. Notice
that in this Wireshark capture, the destination address in the IP header is
set to 239.1.150.1, which is the multicast address mapped to VNI 10000.

> Frame 5: 110 bytes on wire (888 bits), 118 bytes captured (888 bits) on interface -, id @
Ethernet II, Src: 8c 09:80:1b:08), Dst: IPvdmcast ©1:96:01 (91:008:5e:01:96
> Internet Protocol . 239.1.158.1
User Datagram Protocol, Src Port: 58359, Dst Port: 4789
Port: 58359
tion Port: 4789

e Local Area Network
AN

AN work ID (VNI)
: Not defined
NI}: True

B2 .e00 2.92 .0Q0 = ved(R): @x0aes
p Poli ID: @
ork Identifier (VNI): 1e00@
1 1 8
> Ethernet IT, Src: ca:d@:3c:eb:21:e3 (ca:d@:3c:eb:21:e3), Dst: Broadcast (ffiff:ffiff:ffiff)
Address Resolution Protocol (request)

Figure 5-34. VXLAN encapsulation BUM traffic with multicast
replication

Because the ARP response is a unicast packet, the ARP reply will be
encapsulated with the VXLAN header, but will be sent as a unicast packet
to the source VTEP where the source host resides. Once both the end hosts
have learned about each other’s MAC address, all the communication
will be unicast-based communication. Figure 5-35 displays the Wireshark
capture of unicast packets between the two hosts residing in same the VNI
segment. Notice that the outer header has the IP address of the VTEPs and
the inner IP header has the source and destination IP address of the source
and destination hosts.
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148 bytes captured (1184 bits) on interface -, id @
93:00:00:1b:08), Dst: @c:10:2@:00:1b:08 (Bc:10:00:88:1b:03
1.1, :23.23.3.23

Port: 64617
tion Port: 4789
14

Not defined

3c d@:3c:eb:21:e3), Dst: 22:90:2c:aS5:2e:52 (22:90:2c:a5:ae:52
» Internet Protocol Vi » Src: 10.158.1.1, Dst: 18.158.1.2
Internet

Figure 5-35. VXLAN encapsulated unicast packet

The second replication method is ingress replication, or unicast
replication. This method is used in scenarios where either the organization
is not interested in enabling multicast in its fabric or the devices are
incapable of running multicast features. The BUM traffic, in this case, is
replicated to statically configured remote VTEPs as unicast packets.

So far, we have explored the communication of hosts within the same
VNI. Inter-VNI communication in VXLAN fabric is performed through
symmetrical Integrated Routing and Bridging (IRB) and with the help of
a Layer 3 VNI. For some context of what a Layer 3 or Layer 2 VNI is, let’s
first understand the concept of a tenant. A tenant is a logical instance that
provides Layer 2 or Layer 3 services in a datacenter. Each tenant consists
of multiple Layer 2 VNIs and a Layer 3 VNI. Layer 2 VNIs are the segments
where the hosts are connected and the Layer 3 VNI is used for inter-VNI
routing.

If we try to understand the symmetrical IRB from a packet forwarding
perspective, let’s consider an example where the host H1 with IP address
10.150.1.1, residing in VLAN 1501, which is mapped to VXLAN segment ID
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10000, tries to reach to a host H3 with IP address 10.150.2.3 residing in VLAN
1502, which is mapped to VXLAN segment ID 10001. Because these hosts
are in different VXLAN segments, we will have to leverage the Layer 3 VNI,
let’s say 50000. When the packet from the source host reaches the source
VTEP, the VTEP performs a lookup for the destination and understands

that the destination resides in a different VXLAN segment and on a remote
VTEP. It therefore switches the traffic coming in on segment 10000 and sets
the VNID value to 50000 when encapsulating the packet with a VXLAN
header and sends it out. When the remote VTEP receives the VXLAN
encapsulated packet, it notices the VNID is set to L3 VNI and it performs a
routing lookup for the destination IP in the tenant VRF and realizes that it
resides in the segment 10001. Because the segment after de-encapsulation
is just a VLAN segment, the packet is forwarded to the host residing in VLAN
1502. Figure 5-36 displays the Wireshark capture of the VXLAN encapsulated
packet with the VNID value set to 50000, which is the Layer 3 VNI.

> Frame 96: 148 bytes on wire (1184 bits), 148 bytes captured (1184 bits) on interface -, id @
> Ethernet II, Src: @c:9a:99:80:1b:98 (8c:9a:00:00:1b:08), Dst: @c:10:00:00:1b:08 (8c:10:00:00:1b:88)
> Internet Protocol Version 4, Src: 1.1.1.1, Dst: 23.23.23.23
> User Datagram Protocol, Src Port: 58588, Dst Port: 4789
~ Virtual eXtensible Local Area Network
89, VXLAN Network ID (VNI)
= GBP Extension: Not defined
= VXLAN Network ID (WNI): True
Don't Learn: False
] = Policy Applied: False

.082 .002 0.99 .00 = Reserved(R): @x@a0e
Group Policy ID: @
VXLAN Network Identifier (VWNI): 5@@ee
Reserved: @
> Ethernet II, Src: @c:9a:0@:00:1b:88 (@c:9a:00:00:1b:08), Dst: @c:72:00:80:1b:88 (Bc:72:00:00:1b:88)
> Internet Protocol Version 4, Src: 10.150.1.1, Dst: 18.158.2.3
Internet Control Message Protocol

No.: 56 - Time: ~12-15 TE16:03.369591 - Source: 10.150.1.1 - Destination: 10.150.2.3 P - Leagith: 148 - Info: Eche fping) request id=0x0037, seqmi24/31744, =63 (reply in 97)

Help Close

Figure 5-36. Typical LAN

There are various implementations of VXLAN such as VXLAN-EVPN
and VXLAN Multi-site, but the concept remains the same and the method
of encapsulation and de-encapsulation remains the same. Thus, when
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investigating any VXLAN issue, you might run into issues related to BUM
replication or unicast forwarding. In the case of BUM replication with
multicast, you might want to troubleshoot the issue from a multicast
perspective more than from a VXLAN perspective.

Summary

This chapter is primarily focused on topics that are specific to network
engineers to assist them in day-to-day troubleshooting of various routing
protocols and overlay network traffic. We began the chapter learning
about how to analyze routing protocol traffic such as OSPE, EIGRP, BGP,
and PIM. We then moved on to learn about overlay traffic such as GRE

and IPSec VPNs. As part of analyzing overlay traffic, we also covered one
of the most widely used and critical encapsulations, VXLAN. This chapter
assumes that readers understand how these protocols work. They can then
build on top of that to reach a deeper understanding of those protocols by
learning about the content of their headers and how they can troubleshoot

some scenarios that are commonly seen in production environments.
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