

Wireshark
Fundamentals

A Network Engineer’s
Handbook to Analyzing

Network Traffic

Vinit Jain

Wireshark Fundamentals: A Network Engineer’s Handbook to Analyzing

Network Traffic

ISBN-13 (pbk): 978-1-4842-8001-0		 ISBN-13 (electronic): 978-1-4842-8002-7
https://doi.org/10.1007/978-1-4842-8002-7

Copyright © 2022 by Vinit Jain

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aditee Mirashi
Development Editor: Laura Berendson
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-8001-0.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Vinit Jain
San Jose, CA, USA

https://doi.org/10.1007/978-1-4842-8002-7

I would like to dedicate this book to my late brother
Lalit Jain (Dada Bhai), who was and will always

be an inspiration in my life. You always treated me as
your son and gave me so much love my whole life. Dada

Bhai, I will always miss our conversations, your jokes and
smile even during the tough moments, your love, and the
bonding we shared. I didn’t even get a chance to hug you
and bid you a goodbye. It will always be the biggest regret

of my life that I wasn’t there when you needed me the most.
I wish I was there to save you. With you gone it feels like
I have lost the roof above my head for the rest of my life.

I know I have lost a gem of a brother in this life but
hopefully we will meet again in the life beyond this one.

I just want to let you know that I will always love you and
will keep doing my best to reach the heights that
you wanted me to. May your soul rest in peace.

v

Table of Contents

Chapter 1: Introduction to Wireshark��1

Introduction to Network Traffic Analysis��1

Network Sniffing���6

Overview of Wireshark���16

Installing Wireshark���17

Installing Wireshark on Windows���17

Installing Wireshark on Mac���19

Setting Up Port Mirroring���22

SPAN on Cisco IOS/IOS-XE��23

SPAN on Cisco Nexus Switches��25

Enabling Port Mirroring on Arista EOS��30

Enabling Port Mirroring on JunOS��31

Summary���33

References in This Chapter��33

About the Author��ix

About the Technical Reviewers��xi

Acknowledgments��xiii

Introduction���xv

https://doi.org/10.1007/978-1-4842-8002-7_1
https://doi.org/10.1007/978-1-4842-8002-7_1
https://doi.org/10.1007/978-1-4842-8002-7_1#Sec1
https://doi.org/10.1007/978-1-4842-8002-7_1#Sec2
https://doi.org/10.1007/978-1-4842-8002-7_1#Sec6
https://doi.org/10.1007/978-1-4842-8002-7_1#Sec7
https://doi.org/10.1007/978-1-4842-8002-7_1#Sec8
https://doi.org/10.1007/978-1-4842-8002-7_1#Sec9
https://doi.org/10.1007/978-1-4842-8002-7_1#Sec11
https://doi.org/10.1007/978-1-4842-8002-7_1#Sec12
https://doi.org/10.1007/978-1-4842-8002-7_1#Sec13
https://doi.org/10.1007/978-1-4842-8002-7_1#Sec14
https://doi.org/10.1007/978-1-4842-8002-7_1#Sec15
https://doi.org/10.1007/978-1-4842-8002-7_1#Sec16
https://doi.org/10.1007/978-1-4842-8002-7_1#Sec17

vi

Chapter 2: Getting Familiar with Wireshark��35

Overview of Wireshark Tool��35

Wireshark Preferences���36

Performing Packet Capture Using Wireshark���41

Dissectors���43

Configuration Profiles���45

Filtering with Wireshark���47

Working with Wireshark Capture Files���60

PCAP vs. PCAPng��60

Splitting Packet Captures into Multiple Files��65

Merging Multiple Capture Files��66

Analyzing Packets in Wireshark���68

OSI Model���69

Analyzing Packets��71

Summary���78

Chapter 3: Analyzing Layer 2 and Layer 3 Traffic��������������������������������79

Layer 2 Frames��79

Ethernet Frames���81

Layer 3 Packets��86

Address Resolution Protocol���86

IPv4 Packets���90

IPv6 Packets���111

Analyzing QoS Markings��127

Summary���133

Reference in This Chapter��134

Table of Contents

https://doi.org/10.1007/978-1-4842-8002-7_2
https://doi.org/10.1007/978-1-4842-8002-7_2
https://doi.org/10.1007/978-1-4842-8002-7_2#Sec1
https://doi.org/10.1007/978-1-4842-8002-7_2#Sec2
https://doi.org/10.1007/978-1-4842-8002-7_2#Sec12
https://doi.org/10.1007/978-1-4842-8002-7_2#Sec13
https://doi.org/10.1007/978-1-4842-8002-7_2#Sec14
https://doi.org/10.1007/978-1-4842-8002-7_2#Sec15
https://doi.org/10.1007/978-1-4842-8002-7_2#Sec18
https://doi.org/10.1007/978-1-4842-8002-7_2#Sec19
https://doi.org/10.1007/978-1-4842-8002-7_2#Sec25
https://doi.org/10.1007/978-1-4842-8002-7_2#Sec26
https://doi.org/10.1007/978-1-4842-8002-7_2#Sec27
https://doi.org/10.1007/978-1-4842-8002-7_2#Sec28
https://doi.org/10.1007/978-1-4842-8002-7_2#Sec29
https://doi.org/10.1007/978-1-4842-8002-7_2#Sec33
https://doi.org/10.1007/978-1-4842-8002-7_3
https://doi.org/10.1007/978-1-4842-8002-7_3
https://doi.org/10.1007/978-1-4842-8002-7_3#Sec1
https://doi.org/10.1007/978-1-4842-8002-7_3#Sec2
https://doi.org/10.1007/978-1-4842-8002-7_3#Sec3
https://doi.org/10.1007/978-1-4842-8002-7_3#Sec4
https://doi.org/10.1007/978-1-4842-8002-7_3#Sec5
https://doi.org/10.1007/978-1-4842-8002-7_3#Sec9
https://doi.org/10.1007/978-1-4842-8002-7_3#Sec14
https://doi.org/10.1007/978-1-4842-8002-7_3#Sec15
https://doi.org/10.1007/978-1-4842-8002-7_3#Sec16

vii

Chapter 4: Analyzing Layer 4 Traffic��135

Understanding the TCP/IP Model���135

Problem of Ownership��140

Transmission Control Protocol���141

TCP Flags��146

TCP Three-Way Handshake��148

Port Scanning���157

Investigating Packet Loss���159

Troubleshooting with Wireshark Graphs���164

TCP Expert��182

User Datagram Protocol���187

Summary���193

References in This Chapter��194

Chapter 5: Analyzing Control Plane Traffic��195

Analyzing Routing Protocol Traffic���195

OSPF���196

EIGRP��210

BGP���218

PIM���226

Analyzing Overlay Traffic��235

GRE���236

IPSec��237

VXLAN���244

Summary���249

�Index��251

Table of Contents

https://doi.org/10.1007/978-1-4842-8002-7_4
https://doi.org/10.1007/978-1-4842-8002-7_4
https://doi.org/10.1007/978-1-4842-8002-7_4#Sec1
https://doi.org/10.1007/978-1-4842-8002-7_4#Sec2
https://doi.org/10.1007/978-1-4842-8002-7_4#Sec3
https://doi.org/10.1007/978-1-4842-8002-7_4#Sec4
https://doi.org/10.1007/978-1-4842-8002-7_4#Sec5
https://doi.org/10.1007/978-1-4842-8002-7_4#Sec6
https://doi.org/10.1007/978-1-4842-8002-7_4#Sec7
https://doi.org/10.1007/978-1-4842-8002-7_4#Sec10
https://doi.org/10.1007/978-1-4842-8002-7_4#Sec19
https://doi.org/10.1007/978-1-4842-8002-7_4#Sec21
https://doi.org/10.1007/978-1-4842-8002-7_4#Sec22
https://doi.org/10.1007/978-1-4842-8002-7_4#Sec23
https://doi.org/10.1007/978-1-4842-8002-7_5
https://doi.org/10.1007/978-1-4842-8002-7_5
https://doi.org/10.1007/978-1-4842-8002-7_5#Sec1
https://doi.org/10.1007/978-1-4842-8002-7_5#Sec2
https://doi.org/10.1007/978-1-4842-8002-7_5#Sec3
https://doi.org/10.1007/978-1-4842-8002-7_5#Sec9
https://doi.org/10.1007/978-1-4842-8002-7_5#Sec10
https://doi.org/10.1007/978-1-4842-8002-7_5#Sec15
https://doi.org/10.1007/978-1-4842-8002-7_5#Sec16
https://doi.org/10.1007/978-1-4842-8002-7_5#Sec17
https://doi.org/10.1007/978-1-4842-8002-7_5#Sec18
https://doi.org/10.1007/978-1-4842-8002-7_5#Sec19

ix

About the Author

Vinit Jain is a Senior Technical Leader for

Network Engineering at Cisco, focusing

on architecting network infrastructure for

edge computing solutions. Prior to that, he

worked as a Network Development Engineer

at Amazon as part of Amazon’s backbone

network operations team and as a technical

leader at Cisco Technical Assistance Center,

providing escalation support in enterprise, service provider, and data

center technologies.

Vinit is a speaker at various networking forums, including Cisco

Live events, NANOG, and CHINOG. He has coauthored several Cisco

Press books and video courses with Cisco Press. Vinit holds a bachelor

of arts degree in mathematics from Delhi University and also holds a

master of science in information technology. Apart from CCIE, he also

holds multiple certifications in programming, database, and system

administration and is also a Certified Ethical Hacker. Vinit can be found on

Twitter: @vinugenie.

xi

About the Technical Reviewers

Carsten Thomsen is primarily a back-end

developer, but he works with smaller front-end

bits as well. He has authored and reviewed

a number of books, and created numerous

Microsoft Learning courses, all to do with

software development. He works as a

freelancer and contractor in various countries

in Europe, using Azure, Visual Studio, Azure

DevOps, and GitHub among other tools. Being

an exceptional troubleshooter, asking the right

questions, including the less logical ones, in a most logical to least logical

fashion, he also enjoys working with architecture, research, analysis,

development, testing, and bug fixing. Carsten is a very good communicator

with great mentoring and team-lead skills, and great aptitude for

researching and presenting new material.

Shyam Sundar Ramaswami is a Senior

Research Scientist. He is also a two-time TEDx

speaker. In addition, he enjoys being a digital

detective. He loves security problems because

they are easy, complex, and fun to solve. He

also enjoys creating security prototypes and

malware analysis.

His goals include guarding domains and

predicting the possible threats that might hit

the cyberworld by analyzing various scenarios, re-creating attack scenes,

and educating the world on various attacks.

xiii

Acknowledgments

A special thanks to Aditee Mirashi for encouraging me to work on this

project. Aditee, this book would not have been possible without your

patience and help. You have helped me during this project in so many

ways for which I shall always be thankful. I would also like to thank the

technical reviewers, Shyam Sundar Ramaswami and Carsten Thomsen,

for their valuable inputs and in-depth verification of the content. Their

insightful feedback has made this project a successful one. Last but not

least, I would like to thank Apress team for all their hard work and support

on this project.

xv

Introduction

Wireshark is one of the most sought out tools among network engineers

and network security analysts. Wireshark gives engineers the capability to

analyze network traffic by expanding through each section of a header and

examining its value. Wireshark not only helps with network traffic analysis;

it is also a critical tool when it comes to understanding or learning a

network protocol or feature. Performing packet capture and analyzing

network traffic can be complex, time-consuming, and tedious tasks. With

the help of this book, users will be able to use Wireshark to its full potential

and become expert at analyzing network traffic and more efficient at

solving complex network problems.

This book helps build a strong foundation for how Layer 2, Layer 3,

and Layer 4 traffic behaves and how various routing protocols and overlay

protocols function, as well as an understanding of their packet structure.

This book is a very useful handbook for troubleshooting engineers who

want to analyze traffic to identify issues in the network, such as issues

related to packet loss, bursty traffic, and so on. This book will help you

get started on the journey of becoming a strong network engineer or a

cybersecurity expert.

1© Vinit Jain 2022
V. Jain, Wireshark Fundamentals, https://doi.org/10.1007/978-1-4842-8002-7_1

CHAPTER 1

Introduction to
Wireshark
This chapter covers the following topics:

•	 Introduction to network traffic analysis

•	 Overview of Wireshark

•	 Installing Wireshark

•	 Setting up port mirroring

�Introduction to Network Traffic Analysis
Modern-day networks and network designs are complex. A network

is a graphical representation of how different elements in the network

(nodes) are connected. Because every business or organization has its own

set of network requirements, network architects come up with designs

and solutions that are best suited for the given business requirements.

The network design differs between enterprise, service provider, and

datacenter networks in various aspects such as scale, redundancy,

security, and so on. A few factors are usually considered when designing a

network:

https://doi.org/10.1007/978-1-4842-8002-7_1#DOI

2

•	 Simple: A network design should be simple. Most

practitioners in the network field are familiar with

the KISS principle: Keep It Simple, Stupid. A network

is dependent on various technologies, protocols,

hardware and software resources, and so on. Even

though each of these components might be simple

individually, their combination in a network will

always add to the complexity. Identifying problems in

large-scale networks is often like finding a needle in

a haystack. It thus becomes more important that the

network design and architecture are kept as simple as

possible.

•	 Highly available: Almost every network is designed

to carry traffic for critical business applications, and

a small network event could have a massive impact

on the services provided by an organization. Thus,

it is important to build redundancy into the network

such that in the case of a failure event, the availability

of services is maintained. Although redundancy in a

network is vital, it is equally important to understand

and define how much redundancy is acceptable. More

redundant paths in the network result in higher costs.

•	 Robust: As stated in the IEEE document “Robust

Network Design,” robustness is defined as minimizing

variations in network performance, such as average

delay and throughput, due to perturbations in the

network like topology, demand, and community of

interest. If a network design as well as its requirements

are not thought through in depth, the network will be

affected with increased average delays and throughput

or performance issues over a period of time.

Chapter 1 Introduction to Wireshark

3

•	 Scalable: Because the scale of the application and user

traffic are constantly growing, the ability to scale the

existing network infrastructure holds great importance.

While designing computer networks, it is important to

choose designs that will allow you to scale the network

horizontally as well as vertically as and when required.

In other words, the network design should allow the

organization to scale the network for east–west as

well as north–south traffic on an on-demand basis.

One such example is the Clos network design, which

primarily focuses on the spine–leaf architecture and

has been widely adopted by large-scale datacenter

networks to help them cater to the increased traffic

demand over the years.

•	 Futuristic: In designing networks, it is also important

to choose the right set of hardware and software.

The right hardware and software choices will allow

you to leverage the latest technologies and current

innovations in the network industry and will enable

you to upgrade the firmware or the network operating

system to access the latest available features.

Even when all of these factors are taken into consideration while

designing a network, every network still has to undergo changes to

overcome dynamic application and resource demands. In addition, every

network, irrespective of how carefully it has been designed, is prone to

network issues. As the network grows, its complexity also grows. It is only

a matter of time before a network problem arises and network engineers

are called on to solve the problem. Network problems are usually difficult

to manage, and the complexity is even greater when we have multiple

features and encapsulations being used in the network.

Chapter 1 Introduction to Wireshark

4

The main goal of the network operations team is to keep the network

as stable as possible and mitigate any problems as quickly as possible

while keeping the blast radius of the event to a minimum. Most network

outages can be quickly mitigated by following one of several techniques:

•	 Shutting down a bad or faulty link

•	 Rebooting or shutting down a network device

(e.g., router, switch, firewall, etc.)

•	 Diverting traffic by adjusting the routing metrics

•	 Flapping a routing adjacency

Some issues could take longer time to resolve, especially when it

comes to software or hardware defects. Among the different network-

related issues faced by network engineers, issues such as continuous or

intermittent packet loss, latency, or routing or switching issues require a

deeper analysis. Other issues can be quickly mitigated by replacing the

hardware or cable or a particular port, for example, but issues related to

packet loss or routing problems involve multiple elements in the network

that cannot be identified and mitigated quickly. Such issues sometimes

require more visibility at the packet level as to what data are being

transmitted on the wire. That said, it is now time to understand what

network analysis is.

Network traffic analysis (NTA), often referred to as packet sniffing,

is the process of collecting (capturing) network traffic and monitoring

network activity and events by examining the collected traffic to identify

anomalies in the network, including but not limited to operational issues

such as packet loss or latency and security issues such as Transmission

Control Protocol (TCP) SYN attacks or man-in-the-middle attacks. There

are always situations in the network where the show commands or debugs

from the network operating system do not yield the actual packet-level

information that is being transmitted from one node to another. A tap in

the wire allows the network administrators to gain a clear understanding of

Chapter 1 Introduction to Wireshark

5

what packets are being transmitted across the network elements. There are

several use cases where NTA techniques could be applied:

•	 Understanding network characteristics

•	 Analyzing protocol behaviors

•	 Troubleshooting slowness in the network

•	 Troubleshooting packet forwarding issues

•	 Identifying vulnerabilities in the network protocols

and ciphers

•	 Identifying malicious activities in the network

•	 Collecting real-time information on activities between

different network elements

Better visibility into the network allows the network administrators

to optimize performance, enhance the security posture of the network,

minimize the blast radius of a network attack, and better analyze the

utilization of network resources. The packets collected in the network also

give network administrators a better understanding of how the network

users are implementing their applications. Techniques such as deep

packet inspection (DPI) allow complete network visibility by transforming

the raw packet data as well as metadata into a readable format.

Typically, packet analysis or packet sniffing is performed by a packet

sniffer, a tool that is used to capture raw network traffic going across the

wire (network). There are several tools available, including the free or

commercial ones, based on the command-line interface (CLI) as well as

the graphical user interface (GUI). These are some of the most popular

packet sniffer tools:

•	 Tcpdump: This is a powerful CLI-based packet analyzer

tool that is freely available and runs on Linux or most

UNIX-like operating systems.

Chapter 1 Introduction to Wireshark

6

•	 Omnipeek: This is a GUI-based commercial packet

analyzer tool from Savvius, a LiveAction company.

•	 Wireshark: Wireshark is a free, open source, GUI-based

packet analyzer available for download on various

operating systems.

Note  In this book, we primarily focus on Wireshark. Covering
different network analyzer tools is outside the scope of the book.

�Network Sniffing
As easy as it sounds, network sniffing is actually not easy. Most network

engineers think that packet sniffing involves simply plugging a laptop into

a network port and capturing traffic, but that is not the case. There are

various factors to be considered when tapping into the wire and capturing

traffic. Two factors play a vital role when sniffing network traffic:

	 1.	 Placement of the sniffer in the network

	 2.	 The number of sniffer placements

We discuss both these points in detail.

�Sniffer Placement

Location of the sniffer placement varies based on the network topology.

Different network topologies have varied requirements and complexities

and identifying the point of sniffer placement in such complex

environments is not easy. As we know, networks include different

elements, such as routers, switches, wireless controllers, firewalls, and so

on. Some of these components might not even have support for enabling

traffic mirroring for sniffing purposes. Traffic mirroring on switches can be

Chapter 1 Introduction to Wireshark

7

enabled using a technique known as port mirroring. Port mirroring or port

spanning can be configured on the switch using a CLI command or a web

management interface of the switch. The best feature of port mirroring is

that it leaves no network footprint and does not generate any additional

packets. It can be configured without taking any of the active traffic

interfaces or host interfaces offline, which makes it an ideal option for

mirroring not just switch traffic, but also router or server and host ports. As

part of the configuration, you define the source interface(s) along with the

direction of the traffic (incoming or outgoing) you want to capture and a

destination interface that is connected to a host with a packet capture tool,

such as Wireshark, installed on it to collect all the mirrored packets that

can later be used for analysis. Once this is set up, the mirrored traffic from

all the source ports is sent to a host connected on the destination port.

Figure 1-1 illustrates how port mirroring works. In this given topology,

traffic sourced from host A and destined for host B is mirrored and sent to

the capture device connected on Eth2/0.

Switch Host-BHost-A

Capture Device

Figure 1-1.  Port mirroring

For a capture device to be able to capture packets, the network

interface card (NIC) should support promiscuous mode. A promiscuous

mode driver allows a NIC to view all packets crossing the wire. When tools

Chapter 1 Introduction to Wireshark

8

such as Wireshark are installed on the capture device, they also install a

libpcap or WinPcap driver on the device. These drivers allow the NIC to

switch to promiscuous mode and capture packets across the network.

Now, we return to the question of what the right place is to locate the

sniffer capture in the network. The simple answer is that it depends on

the troubleshooting being performed and the relevant network topology

between the problematic source and destination. First of all, it should

never be a goal of any kind of network troubleshooting to begin with

placing sniffer captures at multiple places in the network. The goal should

always be to isolate and narrow down the problem as much as possible.

In narrowing down, you might find that you do not need to place sniffer

captures at all. To troubleshoot a network problem, it is important to

first understand the problem and its scope. Unless a problem is clearly

understood, troubleshooting cannot move in the right direction and it

could take more time and effort to mitigate or resolve a problem. Second,

as part of the problem statement, the scope information should also be

gathered to understand the blast radius of the problem. In other words,

the scope of the network problem can be identified by asking few simple

questions such as these:

•	 When did the problem start?

•	 What is the problematic source and destination?

•	 What is the working source and destination?

•	 What is the relevant topology between the source and

destination?

•	 How many users and services are affected?

•	 What was the trigger of the problem?

Chapter 1 Introduction to Wireshark

9

Once the problem statement and the scope are clearly defined, the

next step is to isolate the direction of the problem. For instance, let’s say

there is a complete packet loss between hosts A and B as the traffic is

flowing across multiple network devices. To isolate the direction of the

problem, we need to identify if the problem is when the packet is sent from

A to B or in the reverse direction. It could be, based on the way the network

devices are configured, that the traffic from host B to host A might not flow

via the same set of devices that it took when flowing from host A to host B.

This is known as asymmetrical routing. If direction of the problem is not

identified, we would end up placing sniffer captures randomly across

multiple devices in the network, which consumes more time. Once the

direction of the problem is isolated, then it is important to further narrow

down the problem to a minimum set of devices or even interfaces. To

understand this in detail, examine the topology shown in Figure 1-2.

The topology shows the connectivity between two sites of an enterprise

network. In this topology, each site has access, distribution, core, and wide

area network (WAN) layers. The WAN routers are connected to the Internet

service providers (ISPs) that provide connectivity to the remote site across

the Internet. In this topology, the distribution switches, the core switches,

and the WAN routers are all connected via an interior gateway protocol

(IGP). The WAN routers at Site 1 are connected to the remote site WAN

routers via Border Gateway Protocol (BGP) peering toward the ISP, which

is exchanging certain prefixes along with a default route. The BGP prefixes

are then redistributed into the Open Shortest Path First (OSPF) database at

both sides to provide end-to-end connectivity between both sites.

Chapter 1 Introduction to Wireshark

10

Internet

Wan-RTR-1 Wan-RTR-3

Wan-RTR-2 Wan-RTR-4

TxCorSw1 TxCorSw2 CaCorSw1 CaCorSw2

CaDist1 CaDist2 TxDist1 CaDist2

S1 S2 S3 S4 S5 S6

H1 H2 H3 H4 H5 H6

Figure 1-2.  Enterprise network topology

Now, let’s examine a scenario where the network operations team

has reported a problem, stating that host H1 is having connectivity issues

reaching multiple hosts across the remote site. As a network engineer, you

start isolating the problem scope by asking few basic questions as stated

previously. Let’s assume that host H1 is having issues reaching host H4 and

host H5, but not host H6. Host H1 is not having any issues reaching any

of the hosts that are local to the site. Now you have baseline information

on what is working and what is broken. As a next step in troubleshooting,

there are a few simple steps that you can take:

•	 Verify Address Resolution Protocol (ARP) information:

Verify if the ARP entry is complete for host H4 or H5

versus host H6.

•	 Traffic pattern: Verify if the issue is sending broadcast

traffic or unicast traffic. If the ARP table on host H1

shows that the ARP entry is present or is getting

completed for host H4 and H5 even after clearing the

Chapter 1 Introduction to Wireshark

11

ARP, then it might be a problem just with the unicast

traffic instead of all traffic (broadcast, unicast, or

multicast traffic) between H1 and H4 or H5.

•	 Path information: Perform traceroutes between

working and nonworking hosts to identify any

difference in paths taken by each of them. If the

network has equal cost multiple paths (ECMP),

then most routing and switching platforms perform

flow-based hashing to send traffic out on one of the

interfaces. If the traceroute fails at one of the hops in

the path, that would indicate the problem might be

isolated to that segment of the network. Note that it is

important to perform traceroutes from both endpoints

so that any possibility of asymmetrical routing could be

detected.

•	 Access control lists (ACLs): Leverage ACLs whenever

possible to isolate where the traffic loss is happening.

Users can configure both Layer 3 ACLs (standard and

extended) and Layer 2 ACLs (media access control

[MAC] ACLs) to match Layer 3 as well as Layer 2 traffic

at different segments of the network. However, there

could be instances where ACLs might not be of any

help. For instance, ACLs do not allow users to capture

Multiprotocol Label Switching (MPLS) packets. Thus,

it becomes important to identify the kind of packets

being investigated during troubleshooting.

Chapter 1 Introduction to Wireshark

12

•	 Hop-by-hop ping tests: If a traceroute fails at a segment

of the network, it might make sense to check the

reachability of the source device to that segment of

the network. It is possible that only the transit traffic

might be affected and not the traffic destined for those

devices in the segment. This usually happens if there

is an ACL blocking the traffic in the path or due to a

software misprogramming (software defect). In such

instances, ping tests should be performed before

performing deep-dive troubleshooting.

•	 Platform troubleshooting tools: Most routing and

switching platforms come with troubleshooting

tools as part of the network operating system (OS).

These platform troubleshooting tools can help you

understand if a packet is being dropped on the device

itself or not and why. These tools are primarily helpful

when the issue has been isolated to a particular device

or a network segment. Note that some network OS’s

come with platform-level packet capture tools. These

tools can be very useful to perform packet captures to

understand if the packet is being received on the device

or not and if what action is being taken on the packet by

the network OS.

•	 Debugs: It might sometimes help to run debugs on the

network devices. The debug logs allow you to gain more

insight on what is happening on the network device.

For instance, if a BGP prefix is not being received, you

could run a BGP protocol debug to understand if the

prefix is being received or not.

Chapter 1 Introduction to Wireshark

13

Once all the basic and some advanced-level troubleshooting steps

have been performed and you are unable to isolate the issue to one

particular device or segment, that’s where external sniffer capture tools

come into play. Here are some of the scenarios in which sniffer capture can

be useful:

•	 When dealing with corrupted packets

•	 Gathering more information about the packet headers,

as they might be affecting forwarding decision

•	 Troubleshooting encapsulated packets

•	 Troubleshooting packet loss or retransmission issues

•	 Voice or video traffic-related issues

•	 Protocol issues such as OSPF not forming adjacency

due to wrong information being exchanged or BGP not

establishing peering due to TCP or wrong or missing

information in BGP packets

If we talk about the problem displayed in Figure 1-2, if the traffic loss

is happening between host H1 and host H4 or host H5, then some of the

preceding steps could be followed to isolate the problem to a smaller

segment of the network and sniffer devices could be attached in those

segments to further investigate the issue. For instance, if the issue was

narrowed down between the site 2 WAN router and Distribution layer

switch(es), then enabling port spanning on core switches will help identify

if the issue lies on the WAN router, the core switch, or the distribution

switch. If the packet sniffers are to be used to analyze the problem,

however, then the network engineers would have to enable the sniffer

captures at the following devices:

•	 Access switch connected to the source and

destination host

Chapter 1 Introduction to Wireshark

14

•	 Core switch(es) at each site

•	 WAN routers (if they support enabling port spanning)

The captures taken at each site can easily help determine where the

packet loss is happening. Even though the sniffer captures help a lot in

investigating the issue, that is not the final step of the troubleshooting

process. There are a few more steps that are involved in mitigating and

remediating the problem, which we will see in the coming chapters based

on different problem scenarios.

�Number of Sniffer Placements

Placing sniffers is not always easy. Each organization, be it an enterprise,

service provider, or datacenter, has its own set of policies for managing

and troubleshooting in its network environment. Most organizations

require scheduling a change and maintenance window to perform

troubleshooting, let alone performing sniffer captures. Also, when the

whole network environment that is under investigation is geographically

displaced or made up of remote unmanned sites, it takes a while to get

field engineers on site to help with sniffer captures. Further, when the

sniffer captures are to be performed at multiple places in the network, the

complexity is compounded. When the troubleshooting requires sniffer

captures in the network, it is important that the points of placement should

be carefully considered before actually enabling port spanning.

Some network environments are also set up in a way that supports

remote spanning with specific hosts configured to collect mirrored traffic.

Such network deployments allow users to perform port spanning at almost

any given node in the network without having to wait for any human to

be present on site. The only limitation of such deployments is either the

support for the remote span feature on all network devices or the host or

the switch performance with higher throughput interfaces.

Chapter 1 Introduction to Wireshark

15

In the example discussed in Figure 1-2, the ideal process would be to

isolate the segment where the problem is and then place sniffer captures

in that segment. If there are issues related to voice traffic such as users

facing choppy voice or even TCP retransmission issues, it would require

sniffer placements at multiple points across the network to determine

where the issue is actually happening. For such a huge span of segments

to troubleshoot, the approach for performing packet captures should be to

isolate between the internal network versus the ISP network. For instance,

the sniffer placements between the access and core or WAN layer at each

site will allow us to identify if the issue is local to any of the two sites. If the

packet sent from one site is not received by the WAN router on the remote

site, that means the issue would be isolated to the ISP network instead of

the site local networks.

�Network Tap

A network tap is a hardware device that creates a copy or mirror of the

traffic flowing between two points in your cabling system. The hardware

is specially designed for network analysis. When setting up network taps,

the hosts or network devices might be temporarily offline. The network

taps can be useful in enterprises for performing packet captures and

continuous monitoring, as they are reliable and support high-throughput

links. There are two primary types of network taps:

•	 Aggregated: The aggregated network taps allow

bundling of multiple streams of data across multiple

ports to one monitoring port. This type of network tap

is useful when it is required to monitor bidirectional

streams of traffic but only one NIC for monitoring.

Chapter 1 Introduction to Wireshark

16

•	 Nonaggregated: The nonaggregated network taps

provide additional flexibility for capturing traffic but

also add to complexity when compared to aggregated

network taps. In nonaggregated network taps, two ports

are required for monitoring purposes, each of them

capturing traffic in only one direction.

Based on the monitoring requirements, the choice can be made

between aggregated and nonaggregated network taps.

So far, we have learned about the port spanning and network taps

that can be used to enable and perform packet captures in the network.

Next, we learn about the Wireshark tool that will be used for analyzing the

captured traffic.

�Overview of Wireshark
Wireshark is a widely used open source network protocol analyzer. The

first version of the application was called Ethereal and was developed

and released by Gerald Combs in 1998 under the GNU Public License

(GPL). After some conflicts over the Ethereal brand rights with his

employer, Combs, along with the rest of the development team, rebranded

the project as Wireshark in mid-2006. Wireshark is freely available for

personal, educational, and commercial purposes and is supported and

maintained by a community of more than 1,800 developers.

It is the go-to tool for almost every network administrator or network

engineer to analyze network traffic patterns, troubleshoot network protocol

issues, and perform in-depth analysis of network security loopholes.

Wireshark comes with tons of features, supports the most common and

uncommon set of protocols and encapsulations, and is supported on all the

well-known OSs. It provides an easy-to-use and easy-to-understand GUI

and advanced filtering capabilities to search through millions of packets to

allow network administrators to quickly analyze the events in the network.

Chapter 1 Introduction to Wireshark

17

�Installing Wireshark
At the time of writing, the latest and stable version of Wireshark is 3.4.4.

Wireshark installer is available in both 32-bit and 64-bit versions and have

builds available for Windows, Mac, and various Linux OSs. Wireshark

installer can be downloaded from https://www.wireshark.org/

download.html. Installation of Wireshark is fairly simple. In the section, we

cover the installation of Wireshark on different OSs.

�Installing Wireshark on Windows
Follow these steps to install Wireshark on Windows:

•	 Download the installer (.exe file) from https://www.

wireshark.org.

•	 Double-click the installer to begin the installation

process.

•	 Click Next to begin the installation.

•	 Acknowledge the License Agreement by clicking Noted.

•	 Select the components that you want to install as

shown in Figure 1-3 and click Next.

Chapter 1 Introduction to Wireshark

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org
https://www.wireshark.org

18

Figure 1-3.  Wireshark Installation Choose Components screen

Note  In the component selection you can see an option to install
TShark. TShark is a CLI version of Wireshark, which is designed to
capture and analyze network traffic. It supports the same options as
Wireshark. To view all the options of TShark, use the command man
tshark or tshark --help option.

•	 Select the different shortcuts that you want to place on

your PC and click Next.

•	 Select the installation directory for Wireshark and

click Next.

•	 Select the Npcap or WinPcap version that is currently

installed or is available to install and click Next. Note

that Npcap or WinPcap is required by Wireshark to

capture live network packets.

Chapter 1 Introduction to Wireshark

19

•	 Optionally, you can install USBPcap to capture USB

traffic and click Install to begin the installation process.

•	 During the installation, another installer window

will open for Npcap or WinPcap software. Select

the necessary installation options and begin the

installation process by clicking Install.

•	 Once the installation completes, click Finish.

•	 The Wireshark installation will continue further.

•	 Once the installation process is completed, click Finish.

At this point, Wireshark is now ready to perform packet

captures on your system.

�Installing Wireshark on Mac
Follow these steps to install Wireshark on MacOS:

•	 Download the installer (.dmg file) from https://www.

wireshark.org.

•	 Double-click the installer file to begin the extraction

process.

•	 The extraction process will create a volume with all the

necessary files on the desktop.

•	 Once the extraction is completed, a pop-up window

gives you an option to move the Wireshark app into the

Applications directory

•	 Drag the Wireshark app into the Applications directory

to make Wireshark accessible from the launch pad.

Chapter 1 Introduction to Wireshark

https://www.wireshark.org
https://www.wireshark.org

20

�Installing Wireshark on Ubuntu

Wireshark can be installed quickly on Ubuntu from the terminal using

the apt-get package installer. Follow these steps to install Wireshark

on Ubuntu:

•	 Update the repository on the Ubuntu machine using

the command apt update.

•	 Install Wireshark using the command apt install

wireshark.

If you just have CLI access to the Ubuntu server or machine, then it

might be a better option to install TShark. Users can install TShark using

the command apt install tshark as shown in Example 1-1. Once

installed, users can review the CLI options for TShark using the tshark

command with the --help option or the man tshark command.

Example 1-1.  Installing tshark on Ubuntu

root@genie-rnd-server:~# apt install tshark

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following NEW packages will be installed:

 tshark

0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.

Need to get 137 kB of archives.

After this operation, 411 kB of additional disk space will

be used.

Get:1 http://us.archive.ubuntu.com/ubuntu focal/universe amd64

tshark amd64 3.2.3-1 [137 kB]

Fetched 137 kB in 0s (323 kB/s)

Selecting previously unselected package tshark.

Chapter 1 Introduction to Wireshark

21

(Reading database ... 279306 files and directories currently

installed.)

Preparing to unpack .../tshark_3.2.3-1_amd64.deb ...

Unpacking tshark (3.2.3-1) ...

Setting up tshark (3.2.3-1) ...

Processing triggers for man-db (2.9.1-1) ...

root@genie-rnd-server:~# tshark --help

Running as user "root" and group "root". This could be dangerous.

TShark (Wireshark) 3.2.3 (Git v3.2.3 packaged as 3.2.3-1)

Dump and analyze network traffic.

See https://www.wireshark.org for more information.

Usage: tshark [options] ...

Capture interface:

 -i <interface>, --interface <interface>

 �name or idx of interface (def: first

non-loopback)

 �-f <capture filter> packet filter in libpcap

filter syntax

 -s <snaplen>, --snapshot-length <snaplen>

 �packet snapshot length (def:

appropriate maximum)

 -p, --no-promiscuous-mode

 don't capture in promiscuous mode

 �-I, --monitor-mode capture in monitor mode, if available

 -B <buffer size>, --buffer-size <buffer size>

 size of kernel buffer (def: 2MB)

 -y <link type>, --linktype <link type>

 �link layer type (def: first

appropriate)

<snip>

Chapter 1 Introduction to Wireshark

22

Once set up, the GUI-based Wireshark app or CLI-based tshark app

can be used to capture traffic traversing the network.

It is important to learn how to capture the packets and analyze the

network traffic, but it is equally important to know the tools available with

different network devices that you can use to set up packet captures.

�Setting Up Port Mirroring
As we all know, there are multiple elements in the network such as routers,

switches, firewalls, load-balancers, servers, and so on, and troubleshooting

a network with multiple elements involved can be complex. Packet capture

tools are very handy when investigating issues at the packet level. When a

deep-dive investigation is required at the packet level, the issue is usually

found in one of the following places:

•	 At the transmitting device or the device that initiated

the packet

•	 At the receiving device or the device for which the

packet is destined

•	 At the transit device

•	 In the transmission media

The packet-level issues require the network engineers to perform

packet captures and investigate the issues by analyzing the captured traffic.

In most cases, switching devices have the capability of mirroring network

traffic and sending it to a mirroring port that is connected to a PC. Let’s see

how port mirroring can be enabled on different vendor devices.

Chapter 1 Introduction to Wireshark

23

�SPAN on Cisco IOS/IOS-XE
The port mirroring capability on Cisco devices is known as Switched

Port Analyzer (SPAN). SPAN can be set up on both Layer 2 and Layer 3

interfaces. When setting up SPAN, the source and the destination

interfaces are defined. Source ports are a collection of physical ports

such as Gigabit Ethernet or TenGig interfaces and virtual interfaces such

as virtual local area network (VLAN) switch virtual interfaces (SVIs). In

defining the source ports, users can also define the direction of the traffic;

that is, rx for incoming direction, tx for outgoing direction, or both, which

means mirror both rx and tx traffic. A SPAN session on a Cisco IOS or

Cisco IOS-XE switch can be configured using the command monitor

session session number. Under the SPAN session configuration, you can

define the source and the destination ports along with their direction.

Example 1-2 illustrates how to configure a SPAN session on a Cisco IOS-

XE switch.

Example 1-2.  Configuring SPAN

SW1#configure terminal

SW1(config)# monitor session 10 source interface

GigabitEthernet1/5 rx

SW1(config)# monitor session 10 source interface

GigabitEthernet1/7 tx

SW1(config)# monitor session 10 destination interface

GigabitEthernet2/1

SW1#configure terminal

SW1(config)# monitor session 11 source vlan 3 - 5 rx

SW1(config)# monitor session 11 source vlan 20

SW1(config)# monitor session 11 destination interface

GigabitEthernet2/2

Chapter 1 Introduction to Wireshark

24

Note A s per the Cisco.com documentation, you cannot have two
SPAN sessions using the same destination port.

Once the SPAN is set up, you can view the state of the SPAN using the

command show monitor session [session-number]. If the command

is executed without specifying the session-number element, it displays all

the SPANs that are configured on the switch. When the session-number

option is specified, the command displays information about only the

specified session. It is important to note that the destination interface is

the one running in promiscuous mode. Thus, no other protocol or feature

will work on that port. Example 1-3 displays how to verify the SPAN session

and also displays the destination interface state in monitoring state. The

monitoring state indicates that the port is running in promiscuous mode.

Example 1-3.  SPAN Session Verification

SW1#show monitor session 10

Session 10

Type : Local Session

Source Ports :

 rx : Gi1/5

 tx : Gi1/7

Destination Ports : Gi2/1

MTU : 1464

Egress SPAN Replication State:

Operational mode : Distributed

Configured mode : Distributed

SW1#show interface GigabitEthernet1/1

GigabitEthernet2/1 is up, line protocol is down (monitoring)

Chapter 1 Introduction to Wireshark

25

 �Hardware is Gigabit Ethernet, address is 2c54.2d68.1207 (bia

2c54.2d68.1207)

 MTU 1998 bytes, BW 1000000 Kbit/sec, DLY 10 usec,

 reliability 255/255, txload 1/255, rxload 18/255

 Encapsulation ARPA, loopback not set

 Keepalive not set

 �Full-duplex, 1000Mb/s, link type is auto, media type is

10/100/1000BaseTX SFP

<snip>

Note R efer to the Cisco online product documentation to verify
how many SPAN sessions can be configured. The supported number
of SPAN sessions varies from platform to platform and from vendor
to vendor.

�SPAN on Cisco Nexus Switches
The Cisco Nexus OS (NX-OS) SPAN feature is pretty similar to the SPAN

feature on Cisco IOS-XE software. Different Nexus series switches might

vary on the number of monitor sessions they support. Before configuring

the monitor session on NX-OS, the destination switchport should be

configured with the command switchport monitor. Nexus supports

hierarchical configuration, thus the source ports and destination port

configuration are defined under the monitor configuration mode.

Example 1-4 illustrates how to configure SPAN session on Nexus switches.

Note that a monitor session on NX-OS does not become active unless a no

shut command is configured under the monitor session.

Chapter 1 Introduction to Wireshark

26

Example 1-4.  Configuring SPAN Session on Cisco NX-OS

NX-2(config)# interface Etherner1/5-6

NX-2(config-if)# switchport

NX-2(config-if)# switchport monitor

NX-2(config-if)# no shut

NX-2(config)# monitor session 1

NX-2(config-monitor)# source interface ethernet 1/1

NX-2(config-monitor)# source interface ethernet 1/2 tx

NX-2(config-monitor)# destination interface ethernet 1/5

NX-2(config-monitor)# no shut

Once the monitor session is configured, the session state can be

verified using the command show monitor session session-number.

Example 1-5 displays the output of the command show monitor session 1.

Notice that in the output, the type is set to local. When defining the

monitor session, if the type is not specified, then by default the monitor

session is configured as a local SPAN session. The output shown in

Example 1-5 displays the source rx and tx interfaces that are configured

in the SPAN along with the destination interface. In NX-OS, the show
interface command does not show the state of the interface as monitoring,

but rather has another line in the output indicating that the switchport

monitor is enabled on the port.

Example 1-5.  Verifying SPAN Session on Cisco NX-OS

NX-2# show monitor session 1

 session 1

type : local

state : up

acl-name : acl-name not specified

Chapter 1 Introduction to Wireshark

27

source intf :

 rx : Eth1/1

 tx : Eth1/1 Eth1/2

 both : Eth1/1

source VLANs :

 rx :

 tx :

 both :

filter VLANs : filter not specified

source fwd drops :

destination ports : Eth1/5

PFC On Interfaces :

source VSANs :

 rx :

NX-2# show interface ethernet 1/5

Ethernet1/5 is up

admin state is up, Dedicated Interface

 �Hardware: 100/1000/10000 Ethernet, address: 0c5f.3d16.260d

(bia 0c5f.3d16.260d

)

 MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec

 reliability 255/255, txload 1/255, rxload 1/255

 Encapsulation ARPA, medium is broadcast

 Port mode is access

 full-duplex, 1000 Mb/s

 Beacon is turned off

 Auto-Negotiation is turned on FEC mode is Auto

 Input flow-control is off, output flow-control is off

 Auto-mdix is turned off

 Switchport monitor is on

 EtherType is 0x8100

Chapter 1 Introduction to Wireshark

28

 EEE (efficient-ethernet) : n/a

 admin fec state is auto, oper fec state is off

 Last link flapped 00:13:37

<snip>

Nexus 9000 series switches also support filtering of spanned traffic

at the VLAN level or by applying an ACL. Only one type of filtering is

supported on a given monitor session and filtering can only be applied

when the source interfaces are configured in the rx direction. Example 1-6

illustrates how to set up a monitor session with VLAN as well as ACL-based

filtering and also how the show monitor session output differs between

the monitor sessions when different filtering methods are applied. Also,

as shown in this example, a monitor session can be deleted using the

command no monitor session session-number.

Example 1-6.  SPAN Sessions with Filtering

NX-2(config)# ip access-list TEST-ACL

NX-2(config-acl)# permit icmp any any

NX-2(config-acl)# exit

NX-2(config)# no monitor session 1

NX-2(config)# monitor session 1

NX-2(config-monitor)# source interface ethernet 1/1 rx

NX-2(config-monitor)# destination interface eth1/5

NX-2(config-monitor)# filter access-group TEST-ACL

NX-2(config-monitor)# exit

NX-2(config-if)# monitor session 2

NX-2(config-monitor)# source interface eth1/3 rx

NX-2(config-monitor)# destination interface eth1/5

NX-2(config-monitor)# filter ?

 access-group Access control group

 vlan Vlan type

Chapter 1 Introduction to Wireshark

29

NX-2(config-monitor)# filter vlan 100

NX-2(config-monitor)# no shut

NX-2# show monitor session 1

 session 1

type : local

state : up

acl-name : TEST-ACL (Rx only)

source intf :

 rx : Eth1/1

 tx :

 both :

source VLANs :

 rx :

 tx :

 both :

filter VLANs : filter not specified

source fwd drops :

destination ports : Eth1/5

PFC On Interfaces :

source VSANs :

 rx :

NX-2# show monitor session 2

 session 2

type : local

state : up

acl-name : acl-name not specified

source intf :

 rx : Eth1/3

 tx :

 both :

Chapter 1 Introduction to Wireshark

30

source VLANs :

 rx :

 tx :

 both :

filter VLANs : 100

source fwd drops :

destination ports : Eth1/6

PFC On Interfaces :

source VSANs :

 rx :

�Enabling Port Mirroring on Arista EOS
Port mirroring on Arista can be enabled by configuring one or more

mirroring sessions. Port mirroring configuration of Arista EOS is very

similar to that for Cisco IOS-XE devices. You can enable port mirroring

sessions using the command monitor session with the difference

that instead of specifying the session number, you specify the name of

the monitor session. Example 1-7 demonstrates how to configure port

mirroring on Arista devices. Once configured, use the command show

monitor session to verify the state of the monitor session and the show

interface interface-name status command to verify the state of

the interface. The destination port on the Arista device also displays in

monitoring state.

Example 1-7.  Configuring Port Mirroring on Arista

eos-1(config)# monitor session test1 source ethernet 1,7-9 rx

eos-1(config)# monitor session test1 source ethernet 4 tx

eos-1(config)# monitor session test1 destination ethernet 20

eos-1# show monitor session

Session test1

Chapter 1 Introduction to Wireshark

31

Source Ports

Rx Only: Et1, Et7, Et8, Et9

Tx Only: Et4

Destination Port: Et20

eos-1# show int et20 status

Port Name Status Vlan Duplex Speed Type

Et20 connect monitoring full 10G Not Present

�Enabling Port Mirroring on JunOS
On JunOS, we use the term analyzers to set up port mirroring. JunOS also

supports configuring of port mirroring to capture bridged packets (Layer

2 packets) as well as routed packets (Layer 3 packets). On a JunOS device,

the following packets can be mirrored:

•	 Packets entering or exiting a port

•	 Packets entering or exiting a VLAN or a bridge domain

•	 Policy-based sample packets

For policy-based sample packets, a firewall filter with a policy is

configured to mirror the packets. The sample traffic based on the firewall

filter can be sent to the port-mirroring instance for further analysis.

Analyzers on JunOS can be set up in few simple steps:

•	 Get into forwarding-options configuration mode.

•	 Define a name for the analyzer and specify the input

interface along with the direction of the traffic you wish

to capture.

•	 Choose the destination interface.

•	 Commit the configuration.

Chapter 1 Introduction to Wireshark

32

In JunOS, you can also configure firewall filters to limit the amount

of traffic being mirrored. Example 1-8 displays a sample configuration

of analyzer and the use of the command show forwarding-options

analyzer analyzer-name to verify the state of the analyzer.

Example 1-8.  Configuring Port Mirroring on JunOS

root> show configuration forwarding-options

analyzer {

 testCapture {

 input {

 ingress {

 interface ge-0/0/1.0;

 }

 egress {

 interface ge-0/0/1.0;

 }

 }

 output {

 interface ge-0/0/4.0;

 }

 }

}

root> show forwarding-options analyzer testCapture

 Analyzer name : testCapture

 Mirror rate : 1

 Maximum packet length : 0

 State : up

 Ingress monitored interfaces : ge-0/0/1.0

 Egress monitored interfaces : ge-0/0/1.0

Chapter 1 Introduction to Wireshark

33

So far, we have seen how to configure local port mirroring on various

vendor devices running their respective network OS. Similarly, you

can also set up remote port mirroring. In remote port mirroring, the

configuration is pretty much the same as local port mirroring with the

minute difference that the destination interface does not reside on the

local device, but is multiple hops away. Each vendor has its own method of

implementing remote port mirroring. Unless necessary, it is not required

to set up remote port mirroring.

�Summary
In this chapter, we learned what NTA is and why it is important in the

network. We also learned the factors that should be considered when

implementing port mirroring and how we can set up the minimum

number of capture points in the network to isolate a problem in the

network. Unless it is necessary, one should avoid enabling port mirroring

on network devices. Further, we learned what Wireshark is and how to

install it on various OSs. Finally, we concluded the chapter by seeing how

port mirroring can be enabled on network devices from different vendors.

�References in This Chapter
•	 Wireshark: https://www.wireshark.org

•	 Network Management Configuration Guide: https://

www.cisco.com/c/en/us/td/docs/switches/

lan/catalyst9300/software/release/16-10/

configuration_guide/nmgmt/b_1610_nmgmt_9300_cg/

configuring_span_and_rspan.html

Chapter 1 Introduction to Wireshark

https://www.wireshark.org
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9300/software/release/16-10/configuration_guide/nmgmt/b_1610_nmgmt_9300_cg/configuring_span_and_rspan.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9300/software/release/16-10/configuration_guide/nmgmt/b_1610_nmgmt_9300_cg/configuring_span_and_rspan.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9300/software/release/16-10/configuration_guide/nmgmt/b_1610_nmgmt_9300_cg/configuring_span_and_rspan.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9300/software/release/16-10/configuration_guide/nmgmt/b_1610_nmgmt_9300_cg/configuring_span_and_rspan.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9300/software/release/16-10/configuration_guide/nmgmt/b_1610_nmgmt_9300_cg/configuring_span_and_rspan.html

34

•	 Cisco Nexus 9000 Series NX-OS System Management

Configuration Guide: https://www.cisco.com/c/

en/us/td/docs/switches/datacenter/nexus9000/

sw/7-x/system_management/configuration/

guide/b_Cisco_Nexus_9000_Series_NX-OS_System_

Management_Configuration_Guide_7x/b_Cisco_

Nexus_9000_Series_NX-OS_System_Management_

Configuration_Guide_7x_chapter_010000.html

•	 Arista EOS Introduction to Port Mirroring: https://

eos.arista.com/introduction-to-port-mirroring/

•	 Juniper Port Mirroring and Analyzers: https://www.

juniper.net/documentation/us/en/software/junos/

network-mgmt/topics/topic-map/port-mirroring-

and-analyzers.html

Chapter 1 Introduction to Wireshark

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/system_management/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_System_Management_Configuration_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_System_Management_Configuration_Guide_7x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/system_management/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_System_Management_Configuration_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_System_Management_Configuration_Guide_7x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/system_management/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_System_Management_Configuration_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_System_Management_Configuration_Guide_7x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/system_management/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_System_Management_Configuration_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_System_Management_Configuration_Guide_7x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/system_management/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_System_Management_Configuration_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_System_Management_Configuration_Guide_7x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/system_management/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_System_Management_Configuration_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_System_Management_Configuration_Guide_7x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/system_management/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_System_Management_Configuration_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_System_Management_Configuration_Guide_7x_chapter_010000.html
https://eos.arista.com/introduction-to-port-mirroring/
https://eos.arista.com/introduction-to-port-mirroring/
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/port-mirroring-and-analyzers.html
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/port-mirroring-and-analyzers.html
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/port-mirroring-and-analyzers.html
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/port-mirroring-and-analyzers.html

35© Vinit Jain 2022
V. Jain, Wireshark Fundamentals, https://doi.org/10.1007/978-1-4842-8002-7_2

CHAPTER 2

Getting Familiar
with Wireshark
Network administrators and security analysts often work packet captures

to analyze the traffic and determine the cause of network events and

attacks in the network. With Wireshark being the preferred tool to capture

and analyze network traffic, it is important to have an understanding of

how to use Wireshark’s features and know about its options. This chapter

focuses on various features and options available in Wireshark.

This chapter covers the following topics:

•	 Overview of Wireshark tool

•	 Performing packet capture using Wireshark

•	 Working with Wireshark capture files

•	 Analyzing packets in Wireshark

�Overview of Wireshark Tool
In the previous chapter we learned about what Wireshark is and how

to install Wireshark on various OSs. In this chapter, we focus on how

to use the Wireshark tool. After Wireshark is installed, you can open

https://doi.org/10.1007/978-1-4842-8002-7_2#DOI

36

the Wireshark tool using the Wireshark shortcut from the installed

applications list. Before diving into how to use Wireshark, let’s take a closer

look at the user interface (UI), which is shown in Figure 2-1.

Figure 2-1.  Wireshark user interface

�Wireshark Preferences
There are numerous settings that a user can customize when using

Wireshark. All these settings can be changed from the Preferences window.

To open the Preferences window, navigate through the following menu:

•	 Mac: Wireshark | Preferences

•	 Windows: Edit | Preferences

•	 Linux: Edit | Preferences

From the Preferences window, users can change the settings for the

following sections.

Chapter 2 Getting Familiar with Wireshark

37

�Appearance

The Appearance section of the Wireshark preferences allows you to change

the UI settings of Wireshark. In this section, you can adjust the text for

the window title, specify the columns that you want to see when using

Wireshark, and set the font and colors and the layout of Wireshark UI. For

instance, if you want to change the default layout of Wireshark to a layout

that is more comfortable for you, you can change what information the

different panes in the layout will display. Figure 2-2 displays the modified

layout where Pane 1 displays the packet list, Pane 2 displays the packet

details, and Pane 3 displays the packet bytes in the layout that you selected

in the Preferences window.

Figure 2-2.  Custom Wireshark layout

Chapter 2 Getting Familiar with Wireshark

38

�Capture

The Capture section allows you to select the default interface that

Wireshark will use for capturing traffic. Users can also select other settings

in this section:

•	 Enable or disable the option to capture packets in

promiscuous mode

•	 Enable or disable the option to capture packets in

pcapng format

•	 Enable or disable the option to update the list of

packets in real time

•	 Enable or disable the option for automatic scrolling

when capturing live packets

•	 Enable or disable the option to not load interfaces

on startup

•	 Enable or disable the option to disable external capture

interfaces

�Expert

The Expert section of the Wireshark Preferences window allows you to

define different field names and set the severity for those fields.

Note T he Expert section is covered later when covering Expert
Information.

Chapter 2 Getting Familiar with Wireshark

39

�Filter Buttons

The Filter Buttons options allow the user to create custom shortcuts on the

toolbar for various filter expressions. By using these buttons, users don’t

have to repeatedly type the filter expressions; instead they can just click the

button to apply the filter on the captured traffic. Figure 2-3 displays how to

create a filter button for the HTTP GET method.

Figure 2-3.  HTTP GET filter button

�Name Resolution

The Name Resolution settings allow users to update the settings with

regard to MAC address resolution and transport and network address

resolution. These settings also allow users to use Domain Name System

(DNS) packets for address resolution, use an external network name

resolver, and also use the list of DNS servers for name resolution. The

Name Resolution section also has options to list the DNS servers that can

be used by Wireshark.

Chapter 2 Getting Familiar with Wireshark

40

�Protocols

The Protocols section of the Preferences window allows the user to

configure settings for various lists of protocols supported by Wireshark.

This is useful for analyzing traffic in network environments where the

protocols are being used ports different than the default port numbers.

�RSA Keys

The RSA Keys section allows user to configure the RSA private keys for

decryption. In this section, use the Add New Keyfile button to select a

file. The user will be prompted for a password if necessary. The Add New

Token button can be used to add keys from a hardware security module

(HSM), which might require using Add New Provider to add a vendor-

specific configuration.

�Statistics

This section allows you to customize the settings used by Wireshark to

perform and display statistical analysis of the captured traffic. Settings

such as burst rate resolution, burst rate window size, tab update interval,

and so on, can be configured under this section.

�Advanced

The Advanced section of the Preferences window allows user to view and

edit all Wireshark preferences. If you are familiar with about:config in

Firefox or chrom:flags in the Chrome web browser, then making changes

using the Advanced pane will be a walk in the park. Users can search for

a preference by typing text in the Search box on this window as shown in

Figure 2-4.

Chapter 2 Getting Familiar with Wireshark

41

Figure 2-4.  Wireshark Advanced preferences

�Performing Packet Capture Using Wireshark
When the Wireshark application is launched, a welcome screen displays

options to either open old files or to start a new packet capture on the

current device. In the Capture section, all the wired, wireless, and virtual

network interfaces that can be selected to begin the packet capture

immediately are listed. Alternatively, users can go to the Capture menu

and then select the Option submenu. This will open the Wireshark –

Capture Options window shown in Figure 2-5, which has three tabs:

•	 Input: This tab displays all the interfaces. You can

enable the listed network interfaces and select one of

the interfaces on which you wish to capture incoming

and outgoing packets.

•	 Output: This tab allows the user to edit the output

settings, such as the output format, permanent file

Chapter 2 Getting Familiar with Wireshark

42

name where the packet capture will be saved, and

also options to save the captured traffic into a new file

by limiting the number of packets, file size, duration,

and so on.

•	 Options: The Options tab gives you options to set the

display settings of the captured packets, such as updating

the list of packets in real time, automatic scrolling during

live capture, and showing capture information during live

capture. It also has options for name resolution such as

resolving MAC addresses, network names, and transport

names. Users can also define the settings for when they

can stop the packet capture.

Figure 2-5.  Wireshark - Capture Options window

Once all the capture options are set, users can click the Start button to

begin the packet capture. It is important to note that you can capture traffic

on interfaces that are in promiscuous mode. This mode allows you to see

all the traffic coming into the NIC. In Figure 2-5, notice that all the listed

interfaces have promiscuous mode enabled.

Chapter 2 Getting Familiar with Wireshark

43

Note T o perform on Mac OS, users are required to install the
ChmodBPF application. By default, users on Mac OS do not have
privileges or permission to capture traffic on local interfaces. Once
the ChmodBPF daemon is launched, it creates the access_bpf
group and adds the user to that group. Similarly, on Windows,
Wireshark requires either Npcap or WinPcap to capture live network
traffic.

�Dissectors
As most of you might already know, traffic enters the NIC in binary format.

Wireshark uses the Enhanced Packet Analyzer (EPAN), which decodes

the binary data into human-readable format. EPAN is the main core of the

Wireshark tool. It is the packet analyzer engine that uses dissectors to re-

create the protocol packets from the binary data. EPAN primarily consists

of four components:

•	 Protocol tree: Performs detailed analysis of a

single packet.

•	 Dissectors: Hold the information from the Request

for Comment (RFC) and other specifications on how

to decode and interpret fields of different protocol

packets.

•	 Dissector plug-ins: Allows the use of default dissectors

that come with Wireshark and also allows the use of

user-created dissector plug-ins.

•	 Display filters: – Provide options to perform filtering on

captured data.

Chapter 2 Getting Familiar with Wireshark

44

Dissection of any packet can be broken down into a few simple steps:

	 1.	 Wireshark identifies the frame type of any incoming

packet and hands it off to the correct frame

dissector, for instance, Ethernet.

	 2.	 The dissector breaks down the contents of the frame

header to understand which section to look up next.

For instance, Ethernet type 0x0800 in the Type field

of the Ethernet header indicates Internet Protocol

version 4 (IPv4). Wireshark then hands off the

packet to the IP dissector.

	 3.	 After the IP dissector decodes the IP header, it

identifies the next protocol header by looking at

the Protocol field in the IP header. If the value is

0x06 it hands off the packet to the TCP dissector. If

the value is 0x11, it hands off the packet to the User

Datagram Protocol (UDP) dissector.

	 4.	 This process is followed until there are no further

dissections identified by the current dissector.

Although Wireshark is a very mature application and supports a

wide range of protocol specifications and dissectors, there might still be

scenarios where you are required to guide Wireshark on how to decode a

protocol. For such scenarios, users can simply right-click the frame and

select the Decode-As option. This option will open the window shown in

Figure 2-6. Using this window, a user can select the field type from which

the user can select any of the options such as a TCP port, a UDP port, and

so on. Once that is selected, the user can then define the value and then

map the field and value to a particular protocol from the drop-down list

in the Current column. For example, let’s presume that Wireshark does

not understand a Virtual Extensible Local Area Network (VXLAN) packet.

When Wireshark receives such a packet, the user can select the packet and

Chapter 2 Getting Familiar with Wireshark

45

choose UDP port as the Field, set the Value to port 4789, and in the Current

column, map the packet to the VXLAN protocol. This setup is shown in

Figure 2-6.

Figure 2-6.  Wireshark - Decode As

This feature comes in very handy when the network administrators are

running the protocols on a port numbers other than their defaults.

�Configuration Profiles
Wireshark allows users to define and maintain configurations and

preferences in the form of configuration profiles. Wireshark comes with

four predefined configuration profiles:

•	 Default: Default profile

•	 Bluetooth: Global profile

•	 Classic: Global profile

•	 No Reassembly: Global profile

Chapter 2 Getting Familiar with Wireshark

46

The configuration profiles store the following set of information:

•	 Preferences

•	 Capture filters (cfilters)

•	 Display filters (dfilters)

•	 Coloring rules

•	 Disabled drotocols

•	 User accessible tables (e.g., custom HTTP headers,

custom LDAP AttributeValue types, etc.)

•	 Dissector assignments (decode_as_entries)

•	 Recent settings such as pane sizes, column widths,

and so on

Users can create custom profiles in few simple steps.

	 1.	 On the Edit menu, click Configuration Profiles. This

opens the Configuration Profiles dialog box.

	 2.	 In the Configuration Profiles dialog box, click the +

icon to add a new profile. For example, let’s create

a configuration profile named Network Profile. This

profile will be of type Personal. The newly created

profile is created with the default settings that are

part of the Default profile.

	 3.	 Select the Network Profile and click OK.

Once the custom profile is created and selected, all the preferences

and other settings such as capture or display filters will be saved under the

custom configuration profile.

Chapter 2 Getting Familiar with Wireshark

47

�Filtering with Wireshark
When packet capture is performed using Wireshark, all the incoming and

outgoing traffic on the selected NIC is captured. This limits the user to

capturing a huge amount of packets on high-speed as well as high-traffic

links. Although capturing more data is never bad, it could also lead to

other issues:

•	 Crashing of Wireshark application due to large file size

•	 Longer time needed to load and analyze the

captured packets

•	 Might not be able to capture problematic traffic during

a short time span due to higher packet per second

(pps) rate

Filtering in Wireshark can be of two types:

•	 Capture filter: This is used to filter or restrict the

packets that will be captured by Wireshark.

•	 Display filter: This is used to filter the packets from the

captured traffic.

We next discuss both these filtering capabilities in detail.

�Capture Filters

As stated previously, the capture filter in Wireshark is used to limit the

packets that can be captured during a live capture. This means that the

capture filter cannot be applied on existing packet capture or pcap files.

In scenarios where the network is busy with heavy traffic or during network

troubleshooting when a user wants to capture a specific packet, capture

filters are a very useful feature. Capture filters are applied on the packets

after they are processed by WinPcap in a Windows installation or the

libpcap library in a Linux installation. Once the packets are passed through

Chapter 2 Getting Familiar with Wireshark

48

the filter criteria, they are then passed to the Wireshark capture engine as

shown in Figure 2-7. Note that once the packets are parsed through the

capture filter, only the filtered packets are received by the capture engine.

The remaining packets are dropped and discarded before being sent to the

capture engine.

Network Interface Card

Network

WinPcap / Libpcap

Capture Filters

Capture Engine

Figure 2-7.  Wireshark capture filter

Capture filters follow the Berkeley Packet Filtering (BPF) syntax, which

is also used by Tcpdump. Wireshark comes with default capture filters

named cfilters that are stored in the Wireshark application or program

file directory. Wireshark comes with the default capture filters shown in

Table 2-1.

Chapter 2 Getting Familiar with Wireshark

49

Table 2-1.  Default Wireshark Capture Filters

Filter Name Filter Config

Ethernet address 00:08:15:00:08:15 ether host 00:08:15:00:08:15

Ethernet type 0x0806 (ARP) ether proto 0x0806

No Broadcast and no Multicast not broadcast and not multicast

No ARP not arp

IPv4 only ip

IPv4 address 192.0.2.1 host 192.0.2.1

IPv6 only ip6

IPv6 address 2001:db8::1 host 2001:db8::1

TCP only tcp

UDP only udp

Non-DNS not port 53

TCP or UDP port 80 (HTTP) port 80

HTTP TCP port 80 tcp port http

No ARP and no DNS not arp and port not 53

Non-HTTP and non-SMTP to/from

www.wireshark.org

not port 80 and not port 25 and

host www.wireshark.org

Users can also create custom cfilters that can be part of the default

profile or a custom profile. Let’s now create a custom capture filter for

capturing only VXLAN traffic. To filter VXLAN encapsulated traffic, we

can simply filter on UDP port 4789. This filter can be created in a few

simple steps:

	 1.	 Go to the Capture menu and select Capture Filters

to open the Capture Filters dialog box.

Chapter 2 Getting Familiar with Wireshark

http://www.wireshark.org
http://www.wireshark.org

50

	 2.	 In the Capture Filters dialog box, click the + icon,

which will add an entry at the end of the existing

default list.

	 3.	 Edit the name of the filter and set it to VXLAN only

and then edit the Filter Expression and set it to udp

port 4789.

	 4.	 Click OK to save.

	 5.	 Once saved, go to the Capture menu and select

Options. This will open the Wireshark Capture

Options dialog box.

	 6.	 In this dialog box, click the green bookmark icon

next to Capture Filter for Selected Interfaces.

This displays the list of all capture filters that are

available. Select the VXLAN Only option as shown

in Figure 2-8.

	 7.	 Once the interface and capture filter are selected,

click Start to start the capture.

Chapter 2 Getting Familiar with Wireshark

51

Figure 2-8.  Selecting a customdefined capture filter

You will now notice that only the VXLAN packets are being captured in

Wireshark. This method of capturing packets has the benefit of capturing

only specific traffic, but if the user is unsure about which traffic to capture,

it might be a better option to use display filters.

�Display Filters

Most traffic analysis is performed during live traffic or on precaptured

packet captures. To analyze traffic in both these scenarios, display filters

can help users easily narrow down the problematic traffic quickly by

Chapter 2 Getting Familiar with Wireshark

52

applying the filter criteria on the packets. Display filters enable users to

focus on specific packets based on the filter expressions that are specified.

There are several ways of creating display filters:

•	 Typing the display filter criteria with the help of

auto-complete

•	 Applying saved display filters

•	 Using expressions

•	 Right-clicking the filter

•	 Applying conversation or endpoint filters

Before moving on to checking different ways of implementing display

filters, let’s talk about the syntax for display filters. Wireshark uses a

proprietary Wireshark display filter that is different than the capture filter’s

BPF format. Even though the syntax for both capture and display filters

is different, there are a few examples where the syntax for both of them

happens to be the same. For instance, the syntax for filtering TCP traffic

on both filters is specifying the tcp keyword. Figure 2-9 illustrates how the

packets are filtered after applying the display filter for TCP traffic. Notice

that in this example, there are 76 packets that have been identified and

filtered for TCP traffic out of 1,452 packets.

Chapter 2 Getting Familiar with Wireshark

53

The status bar indicates that there
are 76 packets that have been

filtered out of 1452 packets that
match the display filter criteria of

tcp packets

Display filter

Filtered packets

Figure 2-9.  Filtering packets using a display filter

Display filters can be relatively simple or quite complex. It all depends

on the display filter expression. Users can perform simple filtering

by specifying the protocol traffic that they want to filter. For instance,

Table 2-2 displays a sample list of packets that can be filtered with just a

single filtering keyword.

Table 2-2.  Simple Display Filters

Filter Config Filter Description

tcp Filtering only TCP packets

udp Filtering only UDP packets

ip Filtering only IPv4 traffic

ipv6 Filtering only IPv6 traffic

arp Filtering only ARP broadcast packets

dns Filtering only DNS packets

Chapter 2 Getting Familiar with Wireshark

54

Display filters also allow users to filter packets based on packet

characteristics. For instance, if a user wants to filter packets that have an

invalid IP header checksum, they can simply set the display filter to ip.

checksum_bad.expert. Note that by packet characteristics we do not mean

an actual field in the headers. Some examples of display filters based on

packet characteristics are listed in Table 2-3.

Table 2-3.  Display Filters for Packet Characteristics

Filter Config Filter Description

tcp.analysis.flags Displays packets that contain one of the TCP

analysis flags packets

tcp.bogus_header_length Filters TCP packets that have bogus header

length in the TCP header

ip.bogus_header_length Filters packets that have bogus header length

in the IP header

The display filters provide an option to filter more specific packets by

the use of expressions. Expressions allow users to define filters based on

the contents of a field and matching specific values that can be set using

comparison operators. Display filters can also be a combination of two or

more expressions that are evaluated based on the evaluation operators.

The operators that can be used with display filters are listed in Table 2-4.

Chapter 2 Getting Familiar with Wireshark

55

Table 2-4.  Operators for Display Filters

Operators Operator Description

== Exactly matches the specified value

> Matches when the value of the field is greater than the specified value

< Matches when the value of the field is less than the specified value

>= Matches when the value of the field is greater than or equal to the

specified value

<= Matches when the value of the field is less than or equal to the specified

value

! Filters all the values of the field that do not match the specified

expression

!= Filters all the values that do not match the specified value

&& Allows AND operation between two different expressions; filters the

packets that match all the specified expressions

|| Allows OR operation between two different expressions; filters the

packets that match any of the two expressions

Let’s now examine how we can use these operators to create

expressions for display filters. Table 2-5 displays a list of expressions for

filtering various types of traffic.

Chapter 2 Getting Familiar with Wireshark

56

Table 2-5.  Expressions for Display Filters

Filter Expressions Filter Description

http.request.method ==

"POST"

Filters traffic that includes the HTTP POST

method in the HTTP headers

tcp.window_size < 1500 Matches packets that have TCP window size

less than 1,500

dns.qry.name == "www.

google.com"

Filters DNS queries for www.google.com

udp.port != 686 Filters out packets that do not match UDP port

number 686

(arp.opcode == 0x0001) &&

(arp.src.hw_mac ==

00:01:ab:cd:0e:02)

Displays ARP request only from MAC address

00:01:ab:cd:0e:02

(tcp.flags.syn == 1) &&

!(tcp.flags.ack == 1)

Displays packets that have the TCP SYN bit set

but do not have the TCP ACK bit set.

(icmp.type == 3) &&

((icmp.code = 0x01) ||

(ip.addr ==

192.168.100.1))

Displays Internet Control Message Protocol

(ICMP) unreachable packets where the host is

unreachable or either the source or destination

address is 192.168.100.1

Because there is a different set of fields within each header, it is

nearly impossible to remember all the fields to create the display filters.

Wireshark comes with an auto-complete feature that helps users to create

filters. Users are only required to know the top-level header and the

Wireshark Intellisense or auto-complete feature kicks in as soon as any

character is typed. The Wireshark auto-complete feature displays all the

available options within that header that can be used to create the filter.

For example, if the user wants to check for any traffic with destination port

53 or DNS traffic, the user can just type in tcp and it will display all the

Chapter 2 Getting Familiar with Wireshark

http://dns.qry.name
http://www.google.com
http://www.google.com
http://www.google.com

57

available options. In this case, the option would be tcp.dstport, as shown

in Figure 2-10. Once the user identifies the right filter option, he or she can

then complete the expression by using the comparison operators. For this

example, the display filter is tcp.dstport == 53.

Figure 2-10.  Display filter using auto-complete

Users are also allowed to select display filters from previously used

filters or save their display filter like a capture filter. To use the previously

searched display filter, use the drop-down list seen at the end of the display

filter bar. To save the current display filter, use the bookmark icon at the

beginning of the display filter area, as shown in Figure 2-11. The drop-

down list shows the default display filters available as well as other options

to save or manage the display filters. Selecting the Save This Filter option

opens the Display Filters dialog box. There you can click the + icon to add

the current display filter.

Chapter 2 Getting Familiar with Wireshark

58

Figure 2-11.  Display filter bookmarks and options

Another quick method of filtering the packets is using the right-click

filtering method. While navigating through the list of packets, if you come

across a packet that looks suspicious or you are interested in checking out

similar packets, you can simply right-click the packet or field of interest

and select either the Apply as Filter | Selected or the Prepare as Filter |

Selected option as shown in Figure 2-12. The Apply as Filter | Selected

option directly places the filter on the live traffic or captured packets,

whereas the Prepare as Filter | Selected option prepares the display filter

and gives the user an option to edit the filter before it is applied on the live

traffic or captured packets.

Chapter 2 Getting Familiar with Wireshark

59

Figure 2-12.  Right-click filtering

Within both Apply as Filter | Selected and Prepare as Filter | Selected,

users can choose from one of the available filter options:

•	 Selected: Creates a filter matching the selection

•	 Not Selected: Creates an exclusion filter

•	 And Selected: Must match both the existing filter and

the selection

•	 Or Selected: Must match either the existing filter or the

selection

•	 And Not Selected: Must match the existing filter with the

exclusion of the selection

•	 Or Not Selected: Must match either the existing filter or

filter based on the exclusion of the selection

Chapter 2 Getting Familiar with Wireshark

60

Users can also leverage the Copy | As Filter feature available in

Wireshark as part of right-click filtering. This feature allows users to copy

the filter expression without applying or listing the filter in the display filter

pane. This feature can be very useful for creating complex display filters or

for copying filters between different Wireshark instances where we want to

trace the packets across multiple capture files.

Although there are many ways of creating display filters, one of the

features that really stands out in Wireshark is its ability to catch errors or

mistakes in display filters, which prevents users from applying the wrong

display filters on the packet captures. The display filter pane turns red and

disables the option to apply a filter if there is an incomplete or incorrect

display filter expression typed in the pane.

�Working with Wireshark Capture Files
As stated before, Wireshark captures network traffic and allows the

user to save the packets with either .pcap or .pcapng extensions. The

pcap file format is the initial version of the file format that was originally

implemented in UNIX and Linux using the libcap library. This file format

was implemented in Windows using the WinPcap library. The pcapng file

format was the result of an Internet Engineering Task Force (IETF) draft

that specifies the PCAP Next Generation (pcapng) Capture File Format.

Through this IETF draft, the proponents defined standardized blocks and

fields, thus making the pcapng format a more extensible and futureproof

file format.

�PCAP vs. PCAPng
There are several differences between the pcap and pcapng file formats,

some of which are listed in the sections that follow.

Chapter 2 Getting Familiar with Wireshark

61

�Capture from Multiple Interfaces

The pcap format contains some information about the capture interface

but does not have support for multiple interfaces. This is because the

interface information is included as part of the common header and not

stored on a per-packet basis, making it difficult to capture traffic from

multiple interfaces in the same capture file. On the other hand, the pcapng

file format supports multiple interfaces by using the interface description

block defined in the PCAP Next Generation (pcapng) capture file format

IETF draft. Using the interface description block, each packet can be

associated with a specific interface. Figure 2-13 displays the interface

description block as defined in the IETF draft. Note that the block type of

the interface description block is 1 (0x00000001).

Figure 2-13.  Interface description block

Note A simple packet block, which is a smaller and simpler
packet block that is easy to process and contains a minimal set of
information, does not contain the Interface ID field and is thus set to
a default value of 0. With a simple packet block, it is assumed that
the packets have been captured on the interface that was previously
specified in the first interface description block.

Chapter 2 Getting Familiar with Wireshark

62

When a packet capture is initiated for multiple interfaces, a user can

see the packet of each interface in the pcapng file using their interface_id

field. Figure 2-14 displays the packets belonging to interface id 1, which in

this case is a loopback interface (IP address 127.0.0.1) of the PC itself.

Figure 2-14.  Packets with interface id 1

�Timestamps

With pcap format, one of the major concerns for network analysts was

its resolution on packet timestamps. Each packet in the pcap format has

a time resolution accurate to the microsecond level (i.e., 10-6 seconds),

which provides a resolution for 999,999 packets per second. On first look,

this number looks reasonable, but with the modern-day networks evolving

to 25 Gig, 40 Gig, and 100 Gig links, microsecond-level accuracy can

create a huge gap. It is imperative to note that even a common 1 Gig link

can easily exceed this link. The pcapng file format provides the capability

to adjust the resolution using a flexible timestamp format, which is now

expressed as a 64-bit time unit that can easily accommodate evolving

Chapter 2 Getting Familiar with Wireshark

63

network speeds. The default resolution value on packet timestamps is still

given in microseconds, but this can be altered by setting the if_tsresol

option in the interface description block.

�Embedding Comments

Troubleshooting networks can be complex and time consuming and could

be further delayed when information is shared across peers or customers.

The pcapng format allows the user to embed both top-level and per-packet

comments that can be helpful when traces are shared across multiple

users for analysis. To add a comment to a packet, select a packet and right-

click to choose the Packet Comment option. Once selected, this opens a

window that will allow the user to add a comment on the packet, as shown

in Figure 2-15.

Figure 2-15.  Adding comments on a packet

Once the comment is added, the packet headers will also have a packet

comments section added at the top, as shown in Figure 2-16.

Chapter 2 Getting Familiar with Wireshark

64

Figure 2-16.  Packet headers with comments

To add top-level comments or file-level comments, go to Statistics

| Capture File Properties. This opens a window that includes a Capture

File Comments section. Users can add the comments and then click Save

Comments to save the top-level comments.

�Metadata

Additional information is always useful when investigating network issues.

Although adding top-level and per-packet comments can be extremely

useful, additional information such as the source of the packet capture can

be very useful. With pcapng, additional fields such as a description field,

OS field, and filter field within the interface description block can provide

additional information regarding the capture source.

�Extendable Format

Because the pcapng format is standardized and deploys a generic block

structure, it allows the format to evolve over time. In pcapng, specific

Chapter 2 Getting Familiar with Wireshark

65

blocks are defined for packets (enhanced packet block or simple packet

block) and interfaces (interface description block). Additional information

such as metadata can be stored in other optional blocks, such as a name

resolution block or interface statistics block. With the options to define

experimental blocks and metadata, pcapng allows organizations to develop

their own customized yet compatible network analysis tools.

�Splitting Packet Captures into Multiple Files
When capturing network traffic on high-speed links, the Wireshark file size

can increase rapidly. This could increase the loading time when the packet

capture file is opened for analysis. To overcome this challenge, network

administrators or analysts can adjust the capture options in Wireshark to

automatically split the packet captures into multiple files. Follow these

simple steps to do that:

	 1.	 On the Capture menu, select Capture Options. This

opens the Capture Options window in Wireshark.

	 2.	 In the Capture Options window, click the

Output tab.

•	 On the Output tab, set the capture file from under

Capture to a Permanent File by clicking Browse and

specifying the file name. Click Save.

•	 Choose the output format. The default option

is pcapng.

•	 Select the Create a New File Automatically

check box.

•	 You can then select one or multiple options to

decide which factors will trigger the creation of

a new file. For instance, you can select an option

to create a new file after the file has reached 100

packets, as shown in Figure 2-17.

Chapter 2 Getting Familiar with Wireshark

66

	 3.	 Once these options are selected, click Start.

Once you have completed the capture and stopped the capture, you

will notice that multiple files have been created.

Figure 2-17.  Splitting packet capture into multiple files

�Merging Multiple Capture Files
While splitting helps load the packet capture files quickly, merging is

required to analyze the packets, especially in scenarios where captures are

taken from multiple interfaces or when the packet stream is split across

multiple capture files. The Wireshark merge option tries to merge the files

based on one of the following selected options:

•	 Prepend Packets: Prepends the packets from the

selected file before the currently loaded packets.

Chapter 2 Getting Familiar with Wireshark

67

•	 Merge Chronologically: Merge packets from both

opened and selected files in chronological order. This

option is selected by default.

•	 Append Packets: Appends the packets from the selected

file after the currently loaded packets.

To merge multiple files, few simple steps can be followed:

	 1.	 Open or load a packet capture file on Wireshark.

	 2.	 On the File menu, select Merge to open the Merge

dialog box.

	 3.	 Select the file that you want to merge with the

opened file, as shown in Figure 2-18.

Once the packets are merged, the user can then save the merged file

with the same or a different name.

Figure 2-18.  Merging multiple capture files

Chapter 2 Getting Familiar with Wireshark

68

�Analyzing Packets in Wireshark
Now that we have learned about the basics of the Wireshark UI, how to

perform a packet capture, and how to work with capture files, the next step

is learning how to analyze the packets using Wireshark. Before we jump

into analyzing the packets, there are few critical factors that must be kept

in mind, and this goes back to the question of why we need to analyze the

packets. Usually, network packet analysis is done when there is a problem

in the network and we need to tackle get to the root of any network event.

For instance, Company ABC is seeing some anomaly in their network

behavior, and they want to investigate what is causing the problem. To

get to the root cause of the anomaly, network administrators or security

analysts might begin by asking few basic questions such as these:

	 1.	 When did the problem start?

	 2.	 What is or was the trigger for the problem?

	 3.	 Can we re-create the problem?

	 4.	 Does the problem happen at a particular time in

the day?

	 5.	 How frequently does the problem occur in the

network?

	 6.	 What kind of traffic is affected?

	 7.	 Is the issue currently occurring?

	 8.	 To which segment of the network is the problem

isolated?

	 9.	 How many network users are affected due to the

given problem?

Chapter 2 Getting Familiar with Wireshark

69

All these questions, though, might or might not directly answer why

we need to perform packet analysis, but these questions will always

help get to the bottom of the problem or at least one or few steps closer

to it. Out of these questions, the answers to questions 2, 3, 4, 5, 6,

and 7 are required when performing network analysis by performing

packet captures at different points in the network. If you do not know

the answer to question 8, you will eventually find the answer to that

question while investigating any network event. Even though, there can

be several reasons for performing packet analysis, it is usually done for

two primary reasons:

•	 Baselining the network

•	 Troubleshooting a network issue (e.g., packet loss,

latency issue, network attack, etc.)

�OSI Model
Before diving into the steps involved in performing packet analysis,

it is important to understand the Open Systems Interconnection

(OSI) model. The OSI model was developed by the International

Organization for Standardization (ISO) in 1984 with the sole intent of

standardizing the communication functions of a telecommunications

or computing system irrespective of its underlying structure and

technology. The OSI model helps with interoperability across different

computers or network devices.

The OSI model outlines the data flow in a network device (or a

communication system) through its seven abstraction layers, as shown in

Figure 2-19.

Chapter 2 Getting Familiar with Wireshark

70

Layer 1 – Physical Layer

Layer 2 – Data Link Layer

Layer 3 – Network Layer

Layer 4 – Transport Layer

Layer 5 – Session Layer

Layer 6 – Presentation Layer

Layer 7 – Application Layer

Figure 2-19.  OSI model

Each layer in the OSI model defines different functions, as listed in

Table 2-6.

Table 2-6.  OSI Model Layers and Their Functions

Layer Functions

Physical layer Transits and receives raw bit streams over a physical medium

Examples: 1000BaseTX, ISDN, etc.

Data Link layer Provides reliable transmission of data frames between two

devices connected via the physical layer

Examples: Ethernet, Frame Relay, ATM, etc.

Network layer Provides mechanism for structuring and managing a

multinode network. The network layer takes care of IP/IPv6

addressing, routing protocols, and traffic control.

Examples: IPv4, IPv6, ICMP, IPSEC

Transport layer Provides reliable transmission of data segments between two

points in a network through transport layer protocols.

Examples: TCP and UDP
(continued)

Chapter 2 Getting Familiar with Wireshark

71

To enable communication across each layer, communication protocols

enable the communication between two hosts on the same corresponding

layer. We learn more about these communication protocols in the coming

chapters.

�Analyzing Packets
Wireshark organizes the captured packets in an incredibly easy-to-read

packet list pane. Once the packets are captured, and if users want to

identify the details of the packet, all they need to do is find the packet and

click on it. On clicking any packet in the packet list pane, the details about

the structure of the packet along with all its fields are visible in the packet

details pane. The details displayed in the packet details pane make it

incredibly easy to learn and understand more about the packet.

Layer Functions

Session layer Manages communication sessions.

Examples: NetBIOS, SAP

Presentation layer Also known as the Translation layer; Provides three primary

functions:

Translation

Encryption/decryption

Compression

Examples: SSL, TLS, MPEG

Application layer Provides high-level application programming interfaces (APIs)

including resource sharing and remote file access.

Examples: FTP, SMTP

Table 2-6.  (continued)

Chapter 2 Getting Familiar with Wireshark

72

To start analyzing the packets, it is important to first understand the

different columns available in the Wireshark UI. Figure 2-20 displays the

Wireshark UI and information present across various columns in the

packet list pane.

Figure 2-20.  Wireshark user interface

Here are high-level details about the various columns available at the

top of the packet list pane.

•	 No.: This column displays the number order of the

captured packet. If there is a bracket displayed along

with the packet number, it indicates that the packet is

part of the conversation.

•	 Time: This column displays how long after the packet

capture was started each packet got captured.

•	 Source: This column displays the source address of the

system from where the packet originated.

Chapter 2 Getting Familiar with Wireshark

73

•	 Destination: This column displays the address of the

destination device or host for which the packet is

destined.

•	 Protocol: This column displays the type of each packet;

for instance, TCP, ICMP, DNS, and so on.

•	 Length: Displays the length of each packet in bytes.

•	 Info: This column displays more information about the

packet and could have varied information from packet

to packet.

Out of these fields, the Time and Length fields require a bit more

explanation, as the rest of the fields are self-explanatory.

�Time

As packets are captured in Wireshark, each packet is timestamped. These

timestamps are available for each packet in the packet list pane, which can

be further used for analysis. It is important to note that the timestamps

are created by the Npcap library, but the source of the timestamps is the

system’s kernel. That is the primary reason timestamps can vary from file

to file. Users can choose from one of the following time precision formats

in which they wish the timestamps to be displayed:

•	 Seconds

•	 Tenths of a second

•	 Hundredths of a second

•	 Milliseconds

•	 Microseconds

•	 Nanoseconds

Chapter 2 Getting Familiar with Wireshark

74

Apart from choosing the format of the timestamps, user can also

change the display format of the Time column. Users can right-click the

column and select the Edit Column option from the menu. That opens a

column edit pane just below the display filter bar. In this pane, users can

select one of the following time format options from the Type field:

•	 Time (format as specified); this is the default option

•	 Absolute date, as YYYY-MM-DD, and time

•	 Absolute date, as YYYY/DOY, and time

•	 Absolute time

•	 Delta time

•	 Delta time displayed

•	 Relative time

•	 UTC date, as YYYY-MM-DD, and time

•	 UTC date, as YYYY/DOY, and time

•	 UTC time

After selecting one of these options, click OK in the edit column pane.

Figure 2-21 displays the packet list pane with Time column displayed in

UTC date and time option.

Figure 2-21.  Wireshark with UTC date and time timestamps

Chapter 2 Getting Familiar with Wireshark

75

�Length

In Wireshark, the length column displays the number of bytes captured

for that packet. The number of bytes usually corresponds to the raw data

bytes listed at the bottom of the Wireshark window. Now, you must be

wondering what is so significant about these captured bytes of the packet.

The significance is the statistics that can be gathered from these captured

bytes. Based on the captured bytes of each packet, users can examine

the distribution of lengths across the captured traffic. To do so, users can

go to the Statistics menu and select Packet Length. This will open the

Packet Lengths window, which displays the statistical information for

varied packet lengths and includes the following columns, as shown in

Figure 2-22:

•	 Packet Lengths

•	 Count

•	 Average

•	 Min Val

•	 Max Val

•	 Rate (ms)

•	 Percent

•	 Burst Rate

•	 Burst Start

Chapter 2 Getting Familiar with Wireshark

76

Figure 2-22.  Packet Lengths statistics

�Capture File Properties

Wireshark provides a summarized view of the captured packets in the

Capture File Properties dialog box. Users can select Capture File Properties

from the Statistics menu. This opens the Capture File Properties dialog

box, which shows when the first and the last packets were captured, the

device hardware on which the packet was captured, interfaces on which

the packets were captured, and statistics from the captured packets as

shown in Figure 2-23:

•	 Packets (total packets captured)

•	 Time span (total time span for which the capture was

running)

•	 Average pps

•	 Average packet size in bytes

Chapter 2 Getting Familiar with Wireshark

77

•	 Bytes

•	 Average bytes/second

•	 Average bits/second

Figure 2-23.  Capture File Properties dialog box

There is other statistical and deep packet analysis that can be done,

but those topics are covered in the coming chapters once we have built

a more foundational knowledge on troubleshooting issues with different

packet types.

Chapter 2 Getting Familiar with Wireshark

78

�Summary
In this chapter we gained a basic understanding of how to use the

Wireshark tool and became familiar with its UI. Initially, we learned about

Wireshark preferences and how users can change the default settings and

UI according to their requirements and oreferences. We then learned how

to perform packet captures and how dissectors play a role in Wireshark

to break down packets into a more consumable format. We also covered

various filtering techniques, such as capture filters, display filters, and how

users can save the filters based on their usage. This chapter also discussed

in detail the differences between the pcap and the pcapng file formats and

the information available across these file formats. Finally, we concluded

this chapter by learning how to analyze the packet using the Wireshark

UI and how various statistical information can be identified from the

captured packets.

Chapter 2 Getting Familiar with Wireshark

79© Vinit Jain 2022
V. Jain, Wireshark Fundamentals, https://doi.org/10.1007/978-1-4842-8002-7_3

CHAPTER 3

Analyzing Layer 2 and
Layer 3 Traffic
This chapter covers the following topics:

•	 Layer 2 frames

•	 Layer 3 packets

•	 Analyzing QoS markings

�Layer 2 Frames
Layer 2 of the OSI or TCP/IP model is the Data Link layer. The Data

Link layer is responsible for performing encapsulation of the packets.

Appropriate addressing is chosen at each of the Transport, Network, and

Data Link layers during the encapsulation process. The Transport layer

uses port numbers, the network layer uses IP address, and the Data Link

layer uses MAC address, as shown in Figure 3-1.

Frame Header
(MAC Address)

IP Header (IPv4 /
IPv6 Addresses)

TCP / UDP
Header (port

numbers)
Data FCS

Figure 3-1.  Data encapsulation with different headers

https://doi.org/10.1007/978-1-4842-8002-7_3#DOI

80

At each layer, the data are encapsulated in a specific format known

as the packet data unit (PDU). The PDU defines the structure or format

in which the data will be shared with the layer above or layer beneath

the current layer. The PDU could simply be the data, a segment (at the

Transport layer), a packet (at the Network layer), a frame (at the Data Link

layer), or even bits.

The Data Link layer encapsulates the outgoing IP datagrams from the

network layer and packages them into frames that are transferred between

two nodes. This layer is also responsible for correcting any errors that

might have occurred at the Physical layer. The Data Link layer has two

sublayers:

•	 Media Access Control (MAC): Controls access to the

network medium by interfacing with the network

adapter. It is responsible for flow control and

multiplexing device transmissions over the network.

•	 Logical Link Control (LLC): LLC provides error control

and flow control over the physical medium. It is also

used for identifying line protocols.

Layer 2 Protocols are required for two devices to communicate over the

Layer 2 medium. They provide the communication mechanism between

different Layer 2 devices such as NICs, switches, bridges, and more, over a

LAN or WAN. There are different types of Layer 2 protocols, some of which

are described in Table 3-1.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

81

Table 3-1.  Layer 2 Protocols

Protocol Description

Cisco Discovery

Protocol (CDP)

CDP is a Cisco proprietary protocol that is primarily used

to exchange information between directly connected Cisco

devices.

Link Layer Discovery

Protocol (LLDP)

LLDP is a vendor-neutral Layer 2 discovery protocol that is

commonly used by devices to advertise information to their

directly connected devices.

Point-to-Point

Protocol (PPP)

PPP provides the standard mechanism for transmitting data

over point-to-point links.

Frame Relay Frame Relay is a packet-switched WAN protocol that

operates over the Physical and Data Link layers.

Asynchronous

Transfer Mode (ATM)

ATM is a cell-switched WAN protocol that is designed to

facilitate various types of traffic streams.

Ethernet Ethernet is the most widely used Data Link layer protocol

used in both LAN and WAN environments.

There are several other protocols that are used at Layer 2, but most

of them are now obsolete or have very limited implementation. In this

chapter, we focus on Ethernet frames.

�Ethernet Frames
When talking about Ethernet frames, we can start by taking a close look at

the IEEE 802.3 standard. The fields within the Ethernet header based on

IEEE 802.3 standard are described here and shown in Figure 3-2.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

82

•	 Preamble: Ethernet frame starts with a 7-byte Preamble

field. Initially this field was introduced to allow for

loss of a few bits due to signal delays, but high-speed

Ethernet links do not require the Preamble field.

•	 Start of frame delimiter (SFD): SFD is a 1-byte field that

is always set to 10101011. This field indicates the start

of the frame.

•	 Destination Address (DA): DA is a 6-byte field that

holds the destination MAC address of the machine.

•	 Source Address (SA): SA is also a 6-byte field that holds

the source MAC address of the machine from which the

packet originated.

•	 Length: This 2-byte field indicates the length of the

entire Ethernet frame.

•	 Data: The Data section holds the payload of the frame.

Note that both the IP header and data will be inserted

into this section if IP is being used over Ethernet. The

minimum length of the data field is 46 bytes, and the

maximum data can be as long as 1,500 bytes, assuming

the interface maximum transmission unit (MTU) is set

to 1,500. If the data length is less than the minimum

length of 46 bytes, then 0s are padded to meet the

minimum possible data length.

•	 Cyclic Redundancy Check (CRC): The checksum is

computed based on the 32-bit hash code generated

using the destination address, source address, length,

and data field of the frame and stored in the CRC field.

If the checksum computed by the source or sender is

not the same as that of the client or receiving device,

the data received seem corrupted.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

83

Preamble SFD Destination Address Source Address Length Data CRC

7-Bytes 1-Byte 6-Bytes 6-Bytes 2-Bytes 46 – 1500 Bytes 4-Bytes

Figure 3-2.  802.3 Ethernet frame

As stated earlier, the 802.3-based Ethernet frame only supported

payloads between 46 bytes and 1,500 bytes, which was good enough for 10

Mbps or 100 Mbps ports, but not helpful for Gigabit Ethernet technology.

To support payloads greater than 1,500 bytes, an Extended Ethernet frame

was introduced. The Extended Ethernet frame, also known as Ethernet II

frame, had the following fields:

•	 Destination Address

•	 Source Address

•	 Type (EtherType)

•	 Data (Variable size)

•	 Frame Checksum (FCS)

Figure 3-3 displays the Wireshark capture packet view of an Ethernet

frame for an IP packet. Notice that the EtherType in the Type field is set to

0x0800, which indicates the encapsulated packet is an IPv4 packet.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

84

Figure 3-3.  Ethernet II header in IPv4 packet

Note  By default, FCS is not visible in the Wireshark capture. To view
the FCS for the Ethernet header, go to Wireshark ➤ Preferences ➤
Protocols ➤ Ethernet and enable Assume Packets Have FCS option.
Once that option is enabled, the Wireshark packet detail view will
display the FCS field under the Ethernet II header.

When investigating packets at Layer 2, it is important to take note

of some well-known EtherTypes that are seen inside most production

networks. Some of these well-known EtherTypes are listed in Table 3-2.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

85

Table 3-2.  Well-Known EtherTypes

EtherType Protocol

0x0800 IPv4

0x0806 ARP

0x8100 VLAN-Tagged Frame (IEEE 802.1Q)

0x8847 MPLS

0x86DD IPv6

When analyzing Layer 2 frames, packets in Wireshark can be filtered

by applying filters based on source MAC, destination MAC, or EtherType.

Figure 3-4 displays the filtering of Layer 2 ARP broadcast frames coming

from a specific MAC address. The filters can be applied on eth.src and

eth.type fields on the captured Wireshark packets.

Figure 3-4.  Filtering of broadcast frames sourced from a specific
MAC address

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

86

�Layer 3 Packets
When troubleshooting issues within a single broadcast domain or local

LAN environments, Layer-2-based captures are more relevant, but when

investigating issues that span multiple network segments that might

be residing in different geographical location, we primarily focus on

looking at Layer 3 and upper layer information in the packet captures.

When talking about Layer 3 packets, we are primarily referring to either

IPv4 packets or IPv6 packets. The protocols at Layer 3 provide logical

addressing in a network (Internet or intranet) and ensure routing of data

across different network segments. Even when dealing with tunneling

technologies, the logical addressing of the tunnel interfaces and routing

traffic across tunnel interfaces is still required. Before diving into IPv4 or

IPv6 packets, let’s first understand ARP and its importance for establishing

network communication.

�Address Resolution Protocol
It is important to remember that both physical and logical addresses are

required to establish communication in the network. Logical addresses

allow users to establish communication across multiple network segments,

and physical addresses are used for establishing communication within

the same network segment. To forward traffic within the same broadcast

segment, MAC addresses are required by the switch. Unless the switch

knows about the MAC address of the host, it will not be able to forward the

traffic toward the port where the destination host is connected. The MAC

addresses of all the hosts connected to a switch within the same broadcast

domain are stored in a Content Addressable Memory (CAM) table. If the

MAC address of the destination address is not known, the switch will first

perform a lookup in its cache. If the address is not found even in the cache,

then a request is flooded to all the ports within the same broadcast domain

until the MAC address is identified.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

87

TCP/IP uses ARP to map the IPv4 address with the MAC address. The

ARP protocol functionality, defined in RFC 826, relies on primarily two

packets:

•	 ARP request: An ARP request is basically a broadcast

packet that is initiated by the sender or source host

when it does not know the MAC address of the

destination host or receiver.

•	 ARP response: When a host with the destination IP

address for which the ARP request was sent receives

the ARP request, it replies with an ARP response, which

is basically a unicast packet directed toward the sender

or the source host.

To understand how ARP works, examine the topology shown in

Figure 3-5. In this topology, Host 1, Host 2, Host 3, and Host 4 are

connected to an L2 switch and Host 1 wishes to send data toward Host 2.

Because Host 1 does not know the MAC address of Host 2, it broadcasts an

ARP request toward the switch.

Figure 3-5.  ARP request

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

88

On receiving the ARP request, the switch first updates its MAC address

table with the MAC address of Host 1 (if it doesn’t already know about

the MAC address) and then broadcasts the ARP request to all the hosts

within the same VLAN. All three hosts receive the ARP request. Because

Host 2 holds the destination IP address in the ARP request, it updates

its MAC ARP cache and sends an ARP response toward Host 1 as shown

in Figure 3-6. The reply is a unicast reply because Host 2 knows its own

MAC address but it also knows about the MAC address of Host 1, which it

learned via the ARP request.

Figure 3-6.  ARP response

Any further communication between Host 1 and Host 2 will be unicast

unless one of them has its ARP entry time out. Figure 3-7 and Figure 3-8

show the Wireshark capture of the ARP request and ARP response.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

89

Figure 3-7.  Wireshark capture ARP request

Figure 3-8.  Wireshark capture ARP response

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

90

�IPv4 Packets
Defined in RFC 791, The Internet Protocol version 4 (IPv4) address is

a 32-bit address that could allow anywhere from two to hundreds and

thousands of hosts to be in each network segment. The way subnets

are implemented in organizations allow them to scale quickly without

having to make much change in routing. As stated before, the purpose of

IP was to deliver logical addressing for various network elements and to

provide routing capability across different network segments. Because

there was not much advancement that happened in the early 1980s and

there were limited bandwidth options available, when IPv4 addressing

was standardized in 1983, one of the foci was solving the fragmentation

problem that would allow the packets to be broken into smaller chunks.

Today, with Gigabit Ethernet technologies in place and support for jumbo

MTUs, we rarely have to deal with fragmentation in the network. All the

fields of the IPv4 header are shown in Figure 3-9.

Figure 3-9.  IPv4 header

To understand the capabilities of IPv4, let’s examine the IPv4 header in

detail. The IPv4 address has several fields as shown in Figure 3-9:

•	 Version: This 4-bit field indicates the IP version being

used. There are devices that could be dual stack (support

for IPv4 and IPv6 address) and the version field helps the

device understand how to treat the traffic.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

91

•	 Internet Header Length (IHL): This is a 4-bit field that

contains the size of the IPv4 header. The 4 bits are used

to specify the number of 32-bit words in the header.

The minimum value of this field is 5 and the maximum

value is 15, which basically indicates that the minimum

IPv4 header length can be 20 bytes and the maximum

can be 60 bytes.

•	 Differentiated Services Code Point (DSCP): This is

a 6-bit field that was previously known as a Type of

Service (ToS) field. This field specifies differentiated

services (DiffServ), defined in RFC 2474, and it is used

to provide service quality features such as Voice over

IP (VoIP) calls or data streaming. Based on the values

assigned in this field, different traffic streams are given

different priority in the network and treated differently

by routers and switches.

•	 Explicit Congestion Notification (ECN): ECN is a 2-bit

field that allows for end-to-end network congestion

notification without dropping packets. For the ECN

feature to work, both endpoints are required to support

this feature.

•	 Total Length: This is a 16-bit field that defines the entire

packet size in bytes including the header and payload.

The minimum size is 20 bytes and the maximum size is

65,535 bytes.

•	 Identification: The Identification field is used to identify

a group of IP datagram packets uniquely and is also

widely used for packet tracing purposes.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

92

•	 Flags: This 3-bit field is used to control and identify

fragments of an IP datagram. There are three possible

values that are set in the Flags field:

•	 Bit 0: Reserved

•	 Bit 1: Do not fragment (also known as DF bit)

•	 Bit 2: More fragments

•	 Fragment Offset: This 13-bit field specifies the fragment

offset relative to the start of the original unfragmented

IP datagram in blocks. Each block is measured in units

of 8 bytes. The maximum possible offset is 65,528

((213 – 1) * 8).

•	 Time to Live (TTL): TTL is an 8-bit field that indicates

the maximum time that a packet can live in an Internet

system. The maximum value of TTL is 255 seconds and

it is decremented when a packet is processed at each

routed hop and forwarded to the next hop. If the TTL

value is zero (0), the packet is discarded or dropped.

This is to ensure that the packets do not keep looping in

the Internet system.

•	 Protocol: The 8-bit Protocol field is used to denote

which protocol will be used in the data section of the

datagram. For instance, the two most common protocol

numbers that are usually seen in the network are

protocol number 6, which is used to represent TCP, and

protocol number 17, which represents a UDP packet.

The protocol numbers are assigned and maintained by

the Internet Assigned Numbers Authority (IANA).

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

93

•	 Header Checksum: The 16-bit Header Checksum field

in the IPv4 header is used for validating the integrity of

the packet. When an IPv4 packet arrives at the router,

the router calculates the checksum of the packet and

compares it with the value in the this field. If the value

matches, the packet is forwarded; otherwise, the packet

is dropped.

•	 Source Address (SA): The 32-bit Source Address is used

to specify the IPv4 address of the source device that

originated the packet.

•	 Destination Address (DA): The 32-bit Destination

Address field is used to specify the IPv4 address of the

destination device to which the packet is destined.

•	 Options: The Options field is an optional field that

is only set when the IHL value is greater than 5 (i.e.,

between 6 and 15). The Options field contains values

and settings for security-related options and might be

considered dangerous by some routers and dropped.

You might see the Options field set when using the

Record Route option with extended ICMP pings or for

Timestamps. Table 3-3 shows the list of options that

can be used in an IPv4 header and Table 3-4 displays

the defined options for IPv4.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

94

Table 3-3.  IPv4 Header Options

Field Size (Bits) Description

Copied 1 Set to 1 if the options need to be copied across all

fragments of a fragmented packet

Option Class 2 0 – Control Options

1 – Reserved

2 – Debugging and Measurement

3 – Reserved

Option Number 5 Specifies an option

Option Length 8 Indicates the size of the entire option; might not be

set for simple options

Option Data Variable Holds option specific data; might not be set for

simple options

Table 3-4.  Defined Options for IPv4

Option Type
(Decimal/Hexadecimal)

Option Name Description

0/0x00 EOOL End of Option List

1/0x01 NOP No Operation

2/0x02 SEC Security (defunct)

7/0x07 RR Record Route

10/0x0A ZSU Experimental Measurement

11/0x0B MTUP MTU Probe

12/0x0C MTUR MTU Reply

15/0x0F ENCODE ENCODE

25/0x19 QS Quick-Start

(continued)

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

95

Table 3-4.  (continued)

Option Type
(Decimal/Hexadecimal)

Option Name Description

30/0x1E EXP RFC 3692-style Experiment

68/0x44 TS Timestamp

82/0x52 TR Traceroute

94/0x5E EXP RFC 3692-style Experiment

130/0x82 SEC Security (RIPSO)

131/0x83 LSR Loose Source Route

133/0x85 E-SEC Extended Security (RIPSO)

134/0x86 CIPSO Commercial IP Security Option

136/0x88 SID Stream ID

137/0x89 SSR Strict Source Route

142/0x8E VISA Experimental Access Control

144/0x90 IMITD IMI Traffic Descriptor

145/0x91 EIP Extended Internet Protocol

147/0x93 ADDEXT Address Extension

148/0x94 RTRALT Router Alert

149/0x95 SDB Selective Directed Broadcast

151/0x97 DPS Dynamic Packet State

152/0x98 UMP Upstream Multicast Packet

158/0x9E EXP RFC 3692-style Experiment

205/0xCD FINN Experimental Flow Control

222/0xDE EXP RFC 3692-style Experiment

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

96

•	 Data: The data or payload in the Data field is based on

the value set in the Protocol field of IPv4 header. For

instance, if the protocol number is set to 1, then the

payload will contain ICMP-related data.

Examine Figure 3-10, which displays the Wireshark capture of an IPv4

packet detailing all the IPv4 header fields. Notice that the Options field is

not present in this capture.

Figure 3-10.  IPv4 header in Wireshark capture

�IPv4 Addressing

Based on the understanding from the IPv4 header, the Source Address

and the Destination Address fields store the source and destination IPv4

addresses, respectively. Although these fields are important, it is equally

important to understand different types of IPv4 addresses. Primarily, IPv4

addressing is divided into five different classes:

•	 Class A: 0.0.0.0 to 127.255.255.255

•	 Class B: 128.0.0.0 to 191.255.255.255

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

97

•	 Class C: 192.0.0.0 to 223.255.255.255

•	 Class D (multicast addresses): 224.0.0.0 to

239.255.255.255

•	 Class E (experimental addresses): 240.0.0.0 to

255.255.255.255

Within Classes A, B, and C, the IPv4 addresses are further divided into

public and private addresses.

•	 Public address: Public IPv4 addresses are the addresses

that are uniquely identified on the Internet and are

usually allocated to organizations by IANA.

•	 Private addresses: Private IPv4 addresses are primarily

used in almost every organization for managing

hosts in LAN environments. These addresses are not

advertised in the global Internet routing table. The

private IPv4 address range is shown here:

•	 Class A private IP: 10.0.0.0 to 10.255.255.255

•	 Class B private IP: 172.16.0.0 to 172.31.255.255

•	 Class C private IP: 192.168.0.0 to 192.168.255.255

RFC 1918 defines the range of private addresses that can be used

by organizations within their LAN environments. Because the private

addresses are inherently private, multiple organizations could have the

same addressing schemes within their organizations. They communicate

to outside networks (Internet) through their public IPv4 addresses, which

are allocated to their Internet Gateway routers. Even a home broadband

connection works on the same concept. The local network sits behind a

modem and the hosts that are part of that network are allocated private

IPv4 addresses. These hosts have their default gateway set to the modem

and when the hosts want to communicate to the Internet, they use the

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

98

default route pointing to the gateway. The modem has a dynamically

learned or statically assigned IPv4 address that allows the broadband user

to access the Internet. Figure 3-11 illustrates how a simple broadband

connection is set up.

Figure 3-11.  Home broadband Internet connection

There are other addresses, too, apart from the public and private IPv4

addresses, listed here:

•	 Loopback addresses: 127.0.0.0 to 127.255.255.255

•	 APIPA: 169.254.0.0 to 169.254.255.255

•	 Limited broadcast: 255.255.255.255

�ICMP

ICMP is one of the key protocols that is used for validating connectivity in

the network and for network troubleshooting. ICMP was initially published

in RFC 777, which was later deprecated by RFC 792 and was later updated

by RFC 4884, RFC 6633, RFC 6918, and so on. Because IP is a best-effort

and an unreliable connectionless protocol, ICMP allows identifying and

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

99

communicating issues that prevent data delivery. Network engineers

frequently use the ICMP ping utility, which relies on an ICMP request and

ICMP reply to identify reachability between source and destination. There

are two versions of ICMP that are used by both the IP versions:

•	 ICMPv4 used for IPv4

•	 ICMPv6 used for IPv6

To communicate errors or reachability information, ICMP relies on

ICMP messages that are set within the ICMP header. The ICMP header has

the following fields, shown in Figure 3-12:

•	 Type: 8-bit

•	 Code: 8-bit

•	 Checksum: 16-bit

Figure 3-12.  ICMP header

Note  When sending an ICMP packet, the Protocol field within the IP
header is set to a value of 1.

Some of the most commonly used ICMP messages are as follows:

•	 ICMP Echo Request and Echo Reply: The ICMP Echo

Request has the Type/Code value of 8/0 and the ICMP

Echo Reply has the Type/Code value of 0/0. The Echo

Request and Echo Reply messages are used to validate

the connectivity between the source and destination

device in the network and are commonly used via the

ICMP Packet InterNet Grouper (PING) tool. When

the source device tries to verify the connectivity

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

100

toward the destination device using the PING tool, it

sends an ICMP request, and if the destination device

is reachable, it responds back with the ICMP reply

message.

•	 ICMP Redirect message: ICMP Redirect messages are

used by routers on nonoptimal paths to notify hosts

about the availability of an optimal path between the

source and the destination. An ICMP Redirect message

has the ICMP Type value of 5 and has four codes:

•	 Code 0: Redirect datagram for the network

•	 Code 1: Redirect datagram for the host

•	 Code 2: Redirect datagram for the type of service

and network

•	 Code 3: Redirect datagram for the type of service

and host

•	 ICMP Destination Unreachable message: If a router

receives a datagram that it is unable to forward or

deliver to the destination, it replies with an ICMP

Destination Unreachable message. There can be

multiple reasons for the router being unable to

deliver the packet. The different reasons are covered

under various ICMP codes. The ICMP Destination

Unreachable message has the Type value of 3 and the

following code options:

•	 Code 0: Destination network unreachable

•	 Code 1: Destination host unreachable

•	 Code 2: Destination protocol unreachable

•	 Code 3: Destination port unreachable

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

101

•	 Code 4: Fragmentation required, and DF set

•	 Code 5: Source route failed

•	 Code 6: Destination network unknown

•	 Code 7: Destination host unknown

•	 Code 8: Source host isolated

•	 Code 9: Network administratively prohibited

•	 Code 10: Host administratively prohibited

•	 Code 11: Network unreachable for type of service

•	 Code 12: Host unreachable for type of service

•	 Code 13: Administratively prohibited

•	 ICMP Time Exceeded message: This message is sent

by the router to the source device or host if the TTL

value reaches 0 before it reaches the destination. One

reason that could cause the TTL to expire is that the

destination router is more than 255 hops away or,

alternatively, there is a routing loop in the network that

has caused the TTL value to reach 0. The ICMP Time

Exceeded message has the Type value of 11 and has the

following codes:

•	 Code 0: TTL expired

•	 Code 1: Fragment reassembly time exceeded

•	 ICMP Source Quench message: If a router receives a

large amount of data that it can handle and it can send

an ICMP Source Quench message to the sender asking

it to slow down the rate at which it is sending the traffic.

The ICMP Source Quench message has the Type and

Code value set to 0/0.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

102

To see what ICMP packets look like, let’s examine the network topology

shown in Figure 3-13. In this topology, there are three routers—R1, R2, and

R3—each configured with loopback interfaces.

Figure 3-13.  Network topology

The goal is to test the connectivity between the R1 and R3 loopback

address. To exchange the routing information, the device is running the

OSPF routing protocol. To verify connectivity, the network engineers will

initiate a ping request destined to R3 loopback 0 interface IP (i.e., 3.3.3.3)

sourcing loopback 0 interface IP (i.e., 1.1.1.1). Figure 3-14 and Figure 3-15

display the ICMP request and ICMP reply packets between 1.1.1.1 and

3.3.3.3.

Figure 3-14.  Wireshark capture for ICMP request

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

103

Figure 3-15.  Wireshark capture for ICMP reply

Although in most cases you might not want to perform a packet

capture for ICMP request and ICMP reply packets, in scenarios where even

the ICMP packets are unreachable, you might want to perform packet

capture to isolate the node that might be dropping the packets.

For basic ICMP packets, there is no special Options field that must

be set in the IP header, but when performing a ping test with the Record

Route (RR) option, the Options field is set to enable the RR feature. But

what is the RR feature? It is used mostly with the ping tool. When the RR

option is set in the Options field of an IPv4 header, it forces every router

that handles the IP datagram to add its outgoing interface IP to a list in

the Options field. When the datagram reaches the destination, the list of

IP addresses is copied into the ICMP reply, which is then returned to the

sender. Example 3-1 illustrates how the RR option is used with the ping

request on a Cisco IOS device.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

104

Example 3-1.  ICMP Ping with Record Route Option

R1#ping

Protocol [ip]:

Target IP address: 3.3.3.3

Repeat count [5]: 1

Datagram size [100]:

Timeout in seconds [2]:

Extended commands [n]: y

Ingress ping [n]:

Source address or interface: 1.1.1.1

DSCP Value [0]:

Type of service [0]:

Set DF bit in IP header? [no]:

Validate reply data? [no]:

Data pattern [0x0000ABCD]:

Loose, Strict, Record, Timestamp, Verbose[none]: Record

Number of hops [9]:

Loose, Strict, Record, Timestamp, Verbose[RV]:

Sweep range of sizes [n]:

Type escape sequence to abort.

Sending 1, 100-byte ICMP Echos to 3.3.3.3, timeout is 2

seconds:

Packet sent with a source address of 1.1.1.1

Packet has IP options: Total option bytes= 39, padded

length=40

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

105

 Record route: <*>

 (0.0.0.0)

 (0.0.0.0)

 (0.0.0.0)

 (0.0.0.0)

 (0.0.0.0)

 (0.0.0.0)

 (0.0.0.0)

 (0.0.0.0)

 (0.0.0.0)

Reply to request 0 (71 ms). Received packet has options

 Total option bytes= 40, padded length=40

 Record route:

 (10.1.2.1)

 (10.2.3.2)

 (3.3.3.3)

 (10.1.2.2) <*>

 (0.0.0.0)

 (0.0.0.0)

 (0.0.0.0)

 (0.0.0.0)

 (0.0.0.0)

 End of list

When examining the ICMP packet in Wireshark as shown in

Figure 3-16, you will also notice that the IPv4 header now has the Options

field with the Record Route option set and the list of IP addresses.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

106

Figure 3-16.  Wireshark capture of ping packet with Record
Route option

�IP Fragmentation and Reassembly

Fragmentation allows the larger sized packets to be broken down into

smaller chunks to be sent across network segments that do not support

large packets. When traffic is routed across the network devices, the

devices in the path might encounter a segment with an interface MTU

value that is smaller than the incoming packet size. For such situations,

IP fragmentation can be used. It allows a datagram to be divided into

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

107

smaller chunks so that it can be transmitted across a segments that have

a lower interface MTU. When talking about fragmentation, two terms are

widely used:

•	 Maximum segment size (MSS): Data payload

•	 MTU – MSS + IP header (20 bytes) + TCP header

(20 bytes)

So, if an interface MTU is set to a default valie of 1500, then the MSS

will be calculated as follows:

MSS = 1500 (MTU) – 20 bytes (IP header) – 20 bytes (TCP header)

For a better understanding of how fragmentation works, examine

topology shown earlier in Figure 3-13. In this topology, the link between R1

and R2 has an interface MTU value set to 9200, whereas the link between

R2 and R3 has the interface MTU value set to the default of 1500. When a

ping packet is initiated from R1 sourcing 1.1.1.1 destined to R3 loopback

3.3.3.3 with packet size set to 9140, the packet will be fragmented because

the network segment between R2 and R3 has a lower MTU value. In such

a case, the more fragments bit will be set in the IPv4 header Flags field as

shown in Figure 3-17. In Figure 3-17, we can see the more fragments bit is

set but also notice that the Fragment Offset field shows 0. This is because

the first datagram packet in the fragmented packets will not have any

offset, thus it begins from 0. Any other packet after this packet will have

incremental fragment offset values.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

108

Figure 3-17.  Wireshark capture of first fragmented packets

Similarly, if we notice the last fragment of the fragmented packets, we

can see that the more fragments bit is not set anymore, but the Fragment

Offset field is set to 8880, as shown in Figure 3-18. This means that the

all the previous fragments cumulatively hold 8880 bytes of data in the

payload. Note that the IP Identification field will have the same value

across all the fragmented packets of the single large packet. Wireshark also

displays all the packets that will be used for fragment reassembly, which

will combine to form the final packet of payload size 9140 bytes.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

109

Figure 3-18.  Wireshark capture of last fragmented packet

For simplicity and ease of remembering, the IP packets can be

categorized into three types:

•	 Nonfragmented

•	 Initial fragment

•	 Noninitial fragment

Based on these packet types, the more fragments bit and Fragment

Offset field are set as shown in Table 3-5.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

110

Table 3-5.  Fragment Settings in IP Header

Packet Type More Fragments Flag Fragment Offset Field

Nonfragmented 0 0

Initial fragment 1 0

Noninitial fragment (not last) 1 Nonzero

Noninitial fragment (last) 0 Nonzero

In today’s networks, we rarely notice fragmentation as most networks

these days are designed with support for jumbo MTU (MTU values higher

than 1500 bytes). All the Gigabit Ethernet networks support up to 9216

bytes to be set as the MTU value and to leverage the benefit of higher

MTU sizes, most applications send the packets with the don’t fragment

(do not fragment or DF) bit set. When this bit is set, the router processing

the packet will not fragment the packet and will try to send the packet

out as is. When a packet is forwarded across a network segment with

the DF bit set and the router encounters a next hop interface having

lower MTU or IP MTU settings, the router will send an ICMP Destination

Unreachable message back with type 3 and code 4, which basically

means fragmentation is needed and the DF bit is set. Along with the

ICMP Destination Unreachable message, the router also sends the MTU

settings of the next hop device to let the source know that it needs to send

the packet with a smaller data payload if it wants to send the packet with

the DF bit set. Figure 3-19 displays the Wireshark capture of the ICMP

Destination Unreachable message along with the MTU settings of the next

hop device.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

111

Figure 3-19.  Wireshark capture of ICMP Destination
Unreachable message

�IPv6 Packets
When IPv4 was introduced by DARPA, the 32-bit address space would

allow for 232 (4.3 billion) addresses, which seemed sufficient at the time. As

networks and the number of devices grew, however, it became evident that

the IPv4 address space would not be sufficient based on the number of

devices per person. Scientists then developed the IPv6 addressing scheme

and increased the address size limit from 32 bits to 128 bits. In 1998, IPv6

addressing was standardized in RFC 2460. IPv6 addressing had a number

of enhancements over IPv4:

•	 Streamlined header: Although the IPv6 header is much

larger than the IPv4 header, several fields from the IPv4

header were removed in the IPv6 header, making it

more streamlined.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

112

•	 Revised fields: Some of the fields in the IPv6 header

were revised when compared to Ipv4:

•	 The TTL field in IPv4 was converted to the Hop

Limit field in IPv6.

•	 The Precedence and ToS fields were moved to the

Traffic Class field.

•	 The Protocol field was covered under the Next

Header field.

•	 The 32-bit Source Address and Destination Address

fields were now converted to 128-bit Source

Address and Destination Address fields.

•	 Flow label: Flow label was introduced in the IPv6

header for identifying streams such as real-time traffic

that required special treatment in the network.

Figure 3-20 shows the comparison between an IPv4 and an IPv6

header. Notice that even though the the IPv4 header has more field, the

IPv6 header looks more streamlined.

Fragment
OffsetFlags

Total LengthType of
ServiceIHL

PaddingOptions

Destination Address

Source Address

Header ChecksumProtocolTime to Live

Identification

Version

IPv4 Header

Next
Header Hop Limit

Flow LabelTraffic
Class

Destination Address

Source Address

Payload Length

Version

IPv6 Header

Field’s Name Kept from IPv4 to IPv6

Fields Not Kept in IPv6

Name and Position Changed in IPv6

New Field in IPv6

Le
ge

nd

Figure 3-20.  IPv4 and IPv6 headers

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

113

Figure 3-21 shows the Wireshark capture of an IPv6 packet exchange

between two devices. The highlighted section of the Wireshark capture

shows the IPv6 header. Let’s now examine the fields of an IPv6 header

in detail:

•	 Version: This 4-bit field indicates the IP version that is

in use. For IPv6 packets, you will see the value set to 6.

•	 Traffic Class: This 8-bit field is used for allowing

special treatment to a packet in the network based

on the DSCP values assigned to an IPv6 packet. It is a

combination of two fields:

•	 TOS: The first 6 bits are used to set the DSCP value

of a packet similar to an IPv4 packet. The DSCP

value defaults to 0.

•	 ECN: The last 2 bits of this field are used for

congestion notification similar to how it is done in

an IPv4 packet.

•	 Flow Label: The 20-bit Flow Label field is used by

a source to group a set of packets belonging to the

same flow. It is usually used for QoS and to ensure the

packets of same flow take the same path.

•	 Payload Length: This 16-bit field represents the packet’s

payload. The payload may not exceed 216 (65,535) bytes

of data except in situations where extension headers

are being used. When extension headers are used, the

field value is set to 0.

•	 Next Header: This 8-bit field indicates the higher layer

protocol that follows the IPv6 header.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

114

•	 Hop Limit: The 8-bit Hop Limit field is similar to

the TTL field in an IPv4 header. The value of this

field represents the number of routed hops a packet

can traverse before getting dropped or reaching the

destination. The maximum value of this field is 255.

At every routed hop, the value of the Hop Limit field

is decreased by 1 and when the value reaches 0, the

packet is dropped.

•	 Source Address: The 128-bit Source Address field

represents the IPv6 address of the sender from which

the packet originated.

•	 Destination Address: The 128-bit Destination Address

field represents the IPv6 address of the packet’s

destination.

Figure 3-21.  Wireshark capture of IPv6 header

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

115

Note T here is no option for fragmentation in the IPv6 header
similar to the Flags or Fragment Offset fields in the IPv4 header. If
fragmentation is required on Ipv6 packets, the Extensions header
is used.

�IPv6 Addressing

Because IPv6 addresses support 128-bit addressing, the protocol supports

undecillions (a trillion trillion trillion) addressable spaces, or simply put,

3.4 × 1038 unique IPv6 addresses can be allocated. IPv6 addresses are

represented in hexadecimal format written in eight groups of 2 bytes each,

with each group separated by a colon. For instance, an IPv6 address would

look something like the following address, making it virtually impossible to

memorize.

1111:2222:3333:4444:aaaa:bbbb:cccc:0abc

One of the best features of IPv6 address notation is that some groups

of zeros can be collapsed using a double colon to form a shorter address.

Note, however, that in any given address, only a single collapsible group is

allowed. Consider the IPv6 address shown here:

1111:2222:3333:0000:aaaa:0000:cccc:0abc

This address can either be written as:

1111:2222:3333::aaaa:0000:cccc:0abc

or as:

1111:2222:3333:0000:aaaa::cccc:0abc

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

116

Note A deep dive on IPv6 addressing is outside the scope of this
book. To learn more about IPv6 addressing, refer to RFC 4291.

There are several types of IPv6 addresses that are supported:

•	 Link local address: Link local addresses are

automatically assigned to the interfaces on which IPv6

is enabled. These addresses are used to communicate

with hosts on the same subnet. This address always

starts with FE80.

•	 Global unicast: These addresses are public IPv6

addresses that are uniquely recognized and are

routable over the Internet.

•	 Unicast address: A unicast address is used for a single

host on a network.

•	 Unique local: These addresses are routable within the

administrative domain.

•	 Multicast address: Multicast addresses are used to send

data to multiple receivers who are subscribed to the

multicast group address.

•	 Anycast address: Anycast addresses are used to send

data to multiple locations using the same IPv6 address.

An anycast address is allocated for a set of interfaces

that typically belong to different nodes.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

117

Following are the IPv6 address subnet ranges for different IPv6

addresses:

•	 Global unicast: 2000::/3

•	 Unique local: FC00::/7

•	 Link local: FE80::/10

•	 Multicast: FF00::/8

�Extension Headers

In IPv4, a lot of capabilities were added using the Options field and similar

functionalities and those capabilities had to be preserved in IPv6. Having

an additional Options field added a bit of an overhead in processing IPv4

headers, though. Taking that into consideration, IPv6 Extension Headers

(EH) was introduced, as defined in RFC 2460. The EH are added to the

IPv6 headers as needed and the main header of 40 bytes remains as is.

Figure 3-22 illustrates what an IPv6 header with EH would look like.

Ver Traffic Class Flow Label

Payload Length Next Header = EH1 Hop Limit

Source Address

Destination Address

EH1

EH2

EH3

Payload

Next Header = EH2

Next Header = EH3

Next Header = UL

Upper Layer Header

Figure 3-22.  IPv6 header with Extension Headers

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

118

Table 3-6 lists the various Extension Headers and their mapping for

next header values.

Table 3-6.  IPv6 Extension Headers and Next Header Values

Order Header Type Next Header Code

1 Basic IPv6 header -

2 Hop-by-Hop options 0

3 Destination options (with Routing

options)

60

4 Routing header 43

5 Fragment header 44

6 Authentication header 51

7 Encapsulation Security Payload header 50

8 Destination options 60

9 Mobility header 135

No next header 59

Upper layer TCP 6

Upper layer UDP 17

Upper layer ICMPv6 58

�ICMPv6

ICMPv6 is a very crucial protocol when it comes to the working of IPv6.

Although IPv4 and IPv6 are similar in terms of their overall functionality,

ICMPv6 has multiple use cases when it comes to the functioning of IPv6.

ICMPv6 provides additional benefits such as these:

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

119

•	 Improved multicast routing

•	 Extensions

•	 Stateless Autoconfiguration (SLAAC)

The ICMPv6 header is similar an IPv4 header. It contains the Type,

Code, and Checksum fields, followed by ICMPv6 options and contents that

are based on type and code values.

In the previous section, you likely noticed that when we were

talking about IPv6 addressing, we did not talk about broadcast. That is

because there is no concept of broadcast in IPv6, as it is considered an

inefficient mechanism. Because there is no broadcast, ARP cannot work

for IPv6. This is where ICMPv6 comes into play. We talk about the IPv6

neighbor discovery process in the next section, but for now, let’s focus

on the different ICMPv6 messages and their Type and Code values. The

ICMPv6 messages are divided into two categories, error messages and

informational messages.

Table 3-7 displays a list of the most commonly used error messages

in ICMPv6.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

120

Table 3-7.  ICMPv6 Error Messages

Type Header Type Code Definition

1 Destination

unreachable

0 No route to destination

1 Communication with destination administratively

prohibited

2 Beyond scope of source address

3 Address unreachable

4 Port unreachable

5 Source address failed ingress/egress policy

6 Reject route to destination

7 Error in source routing header

2 Packet too big 0

3 Time exceeded 0 Hop limit exceeded in transit

1 Fragment reassembly time exceeded

4 Parameter problem 0 Erroneous header field encountered

1 Unrecognized next header type encountered

2 Unrecognized IPv6 option encountered

Table 3-8 displays a list of most commonly used informational

messages in ICMPv6.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

121

Table 3-8.  ICMPv6 Informational Messages

Type Header Type Code Definition

128 Echo Request 0

129 Echo Reply 0

130 Multicast Listener

Query (MLD)

0 • �G eneral query: Used to learn which multicast

addresses have listeners on an attached link

• � Multicast-address-specific query: Used to

learn if a particular multicast address has any

listeners on an attached link

131 Multicast Listener

Report (MLD)

0

132 Multicast Listener

Done (MLD)

0

133 Router Solicitation

(NDP)

0

134 Router

Advertisement (NDP)

0

135 Neighbor Solicitation

(NDP)

0

136 Neighbor

Advertisement (NDP)

0

137 Redirect Message

(NDP)

0

138 Router Renumbering 0 Router Renumbering command

1 Router Renumbering result

255 Sequence number reset

(continued)

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

122

Note T here are other ICMPv6 informational messages, too.
Table 3-8 does not provide an exhaustive list.

�IPv6 Neighbor Discovery

To learn about the connected neighbor in IPv6, we have Neighbor

Discovery Protocol (NDP). NDP uses the link local address (fe80::/64)

as its source and the hop limit is set to 255. IPv6 neighbor discovery

relies primarily on two functions, neighbor solicitation and neighbor

advertisement.

Table 3-8.  (continued)

Type Header Type Code Definition

139 ICMP Node

Information Query

0 The Data field contains an IPv6 address that is

the subject of this query.

1 The Data field contains a name that is the

subject of this query, or is empty, as in the case

of a NOOP.

2 The Data field contains an IPv4 address that is

the subject of this query.

140 ICMP Node

Information

Response

0 A successful reply. The Reply Data field may or

may not be empty.

1 The responder refuses to supply the answer; the

Reply Data field will be empty.

2 The Qtype of the query is unknown to the

responder. The Reply Data field will be empty.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

123

A Neighbor Solicitation (NS) message is primarily used for three

purposes:

•	 Determining the link-layer address of a neighbor.

•	 Checking the validity of an already defined address.

•	 Validating if an IPv6 address generated via auto-config

is unique.

Let’s assume we have two hosts or two devices, say A and B, connected

to each other and interested in communicating with each other. When

Host A wants to form an IPv6 neighborship with Host B, it will send an

NS packet. An NS packet is basically a Type 135 ICMPv6 packet. The

originating device sends the NS packet to every device on the network

via multicast, which basically communicates to the receiver, “What is the

MAC address of 2001:db8:12:2? My MAC address is 01:01:01:01:01:01.”

When the device that is assigned the destination IPv6 address receives the

multicast NS packet, it responds back with a Neighbor Advertisement (NA)

packet, which is an ICMPv6 Type 136 packet. This packet basically tells the

source, “Hi. My network address is 2001:db8:12:2 and my MAC address is

02:02:02:02:02:02.” This neighbor discovery process is explained visually in

Figure 3-23.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

124

Figure 3-23.  IPv6 neighbor discovery

Figures 3-24 and 3-25 demonstrate the NDP though the Wireshark

capture. Notice that in Figure 3-24 the NS packet has generated sourcing

the client machine’s unicast address with the destination set to the

solicited node multicast address. The solicited node multicast address

is created by taking the least significant 24 bits of the unicast or anycast

address and appending it to the FF02::1:FF00:0/104 address.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

125

Figure 3-24.  ICMPv6 Neighbor Solicitation packet

Figure 3-25.  ICMPv6 Neighbor Advertisement packet

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

126

Apart from the NS and NA messages, other ICMPv6 messages are used

as part of the NDP:

•	 Router Solicitation (ICMPv6 Type 133): The Router

Solicitation (RS) messages are sent by nodes at bootup

to find a router in the local segment. These messages

are sent by the hosts to the All Router Multicast Address

(FF02::2). On receiving this message, an IPv6 router

will generate an RA message immediately rather

than waiting for the next scheduled interval. Because

the destination address is a multicast address, the

corresponding Layer 2 address will be in the format

33:33:xx:xx:xx:xx, where xx:xx:xx:xx:xx is the last 24 bits

of the destination IPv6 address.

•	 Router Advertisement (ICMPv6 Type 134): The RA

messages are sent in response to the RS messages or

periodically. The RA messages are sent to All Nodes

Multicast Address. These messages consist of certain

flags and options that contain the information that the

interfaces on the links use to configure themselves.

IPv6 routers send RA messages periodically at random

intervals to reduce synchronization issues when there

are multiple IPv6 routers on the segment.

•	 Redirect (ICMPv6 Type 137): Redirects are used by IPv6

routers to inform the hosts of a better first hop for a

destination.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

127

�Analyzing QoS Markings
Almost every organization utilizes time-sensitive applications such as

VoIP or streaming media, routing protocols, and so on. Because the global

Internet is unpredictable, there are chances that such critical and time-

sensitive applications could be dropped. The traffic for such applications

should be given higher priority and treated differently in the network than

the usual data traffic. To do that, the IPv4 header has the Type of Service

(DSCP + ECN) field and the IPv6 header has the Traffic Class field, which

allow the user to set DSCP values that will categorize different application

traffic. The network devices such as routers and switches can then be

configured to treat the traffic based on their DSCP values.

Although we deal with QoS settings mostly at Layer 3, there is still the

possibility of frame prioritization at the Layer 2 level. This is done using

Class of Service (CoS) bits in Layer 2 frames. If we talk about a regular

packet, at the outermost layer we have the Layer 2 header, then the IP

header, and then the data or payload. From the Layer 2 frame perspective,

we usually have an 802.1Q or 802.1p frame. Figure 3-26 highlights the Tag

field in the 802.1Q header, which is used for setting CoS bits.

Preamble Start Frame
Delimiter DA SA Tag PT Data FCS

3-bits used for CoS

Figure 3-26.  QoS at Layer 2

The 802.1Q frame header has a 16-bit Tag control information field that

has the following subfields:

•	 Priority code point (PCP): 3-bit

•	 Drop Eligible Indicator (DEI): 1-bit

•	 VLAN Identifier (VID): 12-bit

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

128

The PCP field refers to the IEEE 802.1p CoS and maps to the frame priority

level. The values of this field are used to prioritize different classes of traffic.

When talking about QoS at Layer 3, ToS (DiffServ field) or Traffic Class

is an 8-bit field, out of which the initial 6 bits make up the DSCP field and

the last 2 bits are for ECN as shown in Figure 3-27.

DS2 DS1 DS0 ECNDS3DS4DS5 ECN

DSCP ECN

Figure 3-27.  DiffServ field

Based on the 6-bit DSCP values, the traffic is given different treatments

in the network and these values are categorized as explained here:

•	 Default Forwarding (DF): Any traffic that does not meet

the criteria of any of the defined classes falls under

the category of Default Forwarding. The default and

recommended DSCP value of this class is 0.

•	 Expedited Forwarding (EF): RFC 3246 defines the EF

per-hop behavior (PHB) for traffic that has low delay,

low loss, and low jitter requirements. This class is

suitable for voice, video, and real-time service traffic.

The recommended DSCP value of EF is 46.

•	 Assured Forwarding (AF): RFC 2597 and RFC 3260

define the behavior for the AF class. This class assures

delivery of traffic if the traffic does not exceed some

subscribed rate. Within AF, four separate classes are

defined and packets within each class are given drop

precedence (low, medium, and high). Note that the

traffic within one class has the same priority. Table 3-9

shows the different AF classes categorized based on

their drop probability.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

129

•	 Class Selector: Before DiffServ, IP networks used the IP

Precedence field in the ToS byte to prioritize the traffic

to maintain backward compatibility with devices that

still use IP Precedence, and the Class Selector PHB was

defined. Table 3-10 lists all the IP Precedence values.

Table 3-10.  IP Precedence Values

Value IP Precedence Bits IP Precedence Name

0 000 Routine

1 001 Priority

2 010 Immediate

3 011 Flash

4 100 Flash Override

5 101 Critical

6 110 Internetwork Control

7 111 Network Control

To sum up, the different DSCP values and their corresponding IP

Precedence values are shown in Table 3-11.

Table 3-9.  Assured Forwarding Classes Based on Drop Probability

Drop
Probability

Class 1 Class 2 Class 3 Class 4

Low AF11 (DSCP 10) AF21 (DSCP 18) AF31 (DSCP 26) AF41 (DSCP 34)

Med AF12 (DSCP 12) AF22 (DSCP 20) AF32 (DSCP 28) AF42 (DSCP 36)

High AF13 (DSCP 14) AF23 (DSCP 22) AF33 (DSCP 30) AF43 (DSCP 38)

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

130

Table 3-11.  DSCP and IP Precedence Values

DSCP Value Decimal Value Meaning IP Precedence Value

101 110 46 Expedited Forwarding (EF) 101 – Critical

000 000 0 Best Effort/Default 000 – Routine

001 010 10 AF11 001 – Priority

001 100 12 AF12

001 110 14 AF13

010 010 18 AF21 010 – Immediate

010 100 20 AF22

010 110 22 AF23

011 010 26 AF31 011 – Flash

011 100 28 AF32

011 110 30 AF33

100 010 34 AF41 100 – Flash Override

100 100 36 AF42

100 110 38 AF43

001 000 8 CS1 1

010 000 16 CS2 2

011 000 24 CS3 3

100 000 32 CS4 4

101 000 40 CS5 5

110 000 48 CS6 6

111 000 56 CS7 7

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

131

Based on Table 3-11, it can be understood that traffic such as voice,

video, and network protocols are given a higher priority in the network.

All the routing protocols traffic is sent with the DSCP value of CS6. To deal

with all other traffic such as voice, video, or application traffic, QoS needs

to be configured on a per-hop basis so that each device can treat the traffic

accordingly. Figure 3-28 shows the Wireshark capture of a BGP keepalive

message that is marked with a DSCP value of CS6 under the DiffServ field

in the IP header.

Figure 3-28.  Wireshark capture of BGP packet

When performing network QoS testing and validation, network

operators can simply use the PING tool to mimic different application

traffic. Example 3-2 demonstrates how to use this tool on Cisco IOS-XE

software and Mac OS to simulate traffic with different ToS and DSCP

settings. Although the traffic can be initiated, it is important to note that

the network devices should be configured accordingly to perform further

classification of the traffic. Note that when initiating the ping on Mac OS,

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

132

use the -z option to specify the ToS value. Note that the binary for 184 is

1011 1000. This means that the packet will be sent with the DSCP value of

46 (101 110 in binary) and with the ECN field set to 0 (00 in binary).

Example 3-2.  Using PING for Traffic Simulation with DSCP Settings

! Ping on Cisco IOS-XE Software

R1#ping

Protocol [ip]:

Target IP address: 2.2.2.2

Repeat count [5]: 100

Datagram size [100]: 1400

Timeout in seconds [2]:

Extended commands [n]: y

Ingress ping [n]:

Source address or interface: 1.1.1.1

DSCP Value [0]: 46

Set DF bit in IP header? [no]:

Validate reply data? [no]:

Data pattern [0x0000ABCD]:

Loose, Strict, Record, Timestamp, Verbose[none]:

Sweep range of sizes [n]:

Type escape sequence to abort.

Sending 100, 1400-byte ICMP Echos to 2.2.2.2, timeout is 2

seconds:

Packet sent with a source address of 1.1.1.1

!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Success rate is 100 percent (100/100), round-trip min/avg/max =

1/1/46 ms

! Ping on MAC OS with DSCP value 46

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

133

vinit@Hackers-Box ~ % ping -z 184 192.168.0.1

PING 192.168.0.1 (192.168.0.1): 56 data bytes

64 bytes from 192.168.0.1: icmp_seq=0 ttl=64 time=125.217 ms

64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1.200 ms

64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=2.703 ms

64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=49.220 ms

64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1.386 ms

64 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=1.347 ms

Note E CN bits in the DiffServ field will be covered in the next chapter.

�Summary
By now, you should understand the Layer 2 and Layer 3 concepts as well

as have a solid foundation about the different fields in Ethernet, IPv4,

and IPv6 headers. In this chapter, we covered in detail the Layer 2 header,

specifically the Ethernet header, and learned about various EtherTypes.

We also learned about the IPv4 header, including how the packets get

encapsulated inside the IP header and uses of various fields in the IP

header. We also covered the ICMP header and how it can be used for

troubleshooting purposes, and how ICMP messages can be used to notify

the network about incorrect network MTU settings.

We then moved on to IPv6 headers, which helped network operators

transition from 32-bit addressing to 128-bit addressing. We discovered

some of the benefits of IPv6 over IPv4 headers and how they reduce the

need for having broadcast packets by performing neighbor discovery using

ICMPv6 headers. We learned that in IPv6, NDP leverages different ICMPv6

messages such as Router Solicitation, Router Advertisement, Neighbor

Solicitation, Neighbor Advertisement, and Redirect message.

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

134

We also learned that the ICMPv6 messages are sent to different IPv6

multicast addresses. Finally, we ended this chapter learning about how

QoS can be used in the network and how the DSCP values can be used to

treat each type of application traffic differently.

�Reference in This Chapter
•	 RFC 1918: Address Allocation for Private Internets, by

Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot,

and E. Lear. https://datatracker.ietf.org/doc/

html/rfc1918

Chapter 3 Analyzing Layer 2 and Layer 3 Traffic

https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1918

135© Vinit Jain 2022
V. Jain, Wireshark Fundamentals, https://doi.org/10.1007/978-1-4842-8002-7_4

CHAPTER 4

Analyzing Layer 4
Traffic
This chapter covers the following topics:

•	 Understanding the TCP/IP model

•	 Transmission Control Protocol

•	 User Datagram Protocol

�Understanding the TCP/IP Model
We have already covered the OSI model, in which we learned about Layer 2

frames and Layer 3 packets and their importance when exchanging

packets between two endpoints. This chapter focuses on the Transport

layer (Layer 4) of the OSI model, which is responsible for transporting the

data between the source and destination either via a connection-oriented

or a connectionless mechanism. There are various Transport layer

protocols that are used to transmit the data, including these:

•	 Transmission Control Protocol (TCP)

•	 User Datagram Protocol (UDP)

•	 Stream Control Transmission Protocol (SCTP)

•	 Reliable User Datagram Protocol (RUDP)

https://doi.org/10.1007/978-1-4842-8002-7_4#DOI

136

In this chapter, we focus primarily on the TCP and UDP modes of

transmission.

In the 1970s, two Defense Advanced Research Projects Agency

(DARPA) scientists, Vint Cerf and Bob Kahn, often known as the fathers

of the Internet, started researching reliable data communications across

packet radio networks. From the lessons learned from the Networking

Control Protocol (NCP), a set of protocols forming a part of Point-to-Point

Protocol (PPP), Cerf and Kahn created the Transmission Control Program.

Transmission Control Program was a huge success, and in 1974 it was

initially standardized in RFC 675, Specification of Internet Transmission

Control Program.

Initially, the Transmission Control Program managed both the routing

and datagram transmission, but over time, collaborators suggested

dividing the functionality into layers. In 1978, the Transmission Control

Program was split into two distinct Protocols, the Internet Protocol

(IP) and the Transmission Control Protocol (TCP). Both the protocols

combined to form the Internet Protocol suite, commonly known as TCP/

IP. The TCP/IP model only has four layers:

•	 Application layer: This layer allows for process-to-

process communication on the same host or different

hosts. This layer leverages the lower layer protocols

to transmit the information. The Application layer

introduces different communication models such as

the client/server model or peer-to-peer networking

model. Some of the examples of aHTTP, FTP, and SSH.

•	 Transport layer: This layer takes care of performing

host-to-host communication that is either in a local

LAN segment or remote network segments separated

by routers. Two of the primary protocols in the

Transport layer are TCP and UDP.

Chapter 4 Analyzing Layer 4 Traffic

137

•	 Internet layer: This layer defines the addressing and

routing structures used by the TCP/IP protocols.

IP defines the addressing that will be used by the

hosts and network elements in the same or different

segments and provides a function for hop-by-hop

routing by sending datagrams to the next hop that

holds the information to the next network segment.

•	 Link layer: This layer is a combination of the Data Link

layer and Physical layer of the OSI model. This layer

provides information about hardware addresses (MAC

address) and ensures physical transmission of data.

When distributed applications or client/server applications that are

separated across network segments communicate using a router, they

leverage the TCP/IP model to establish the communication and exchange

information. As mentioned before, the Application layer of the TCP/IP

model only focuses on process-to-process communication; it leverages

the underlying layers to transmit the data. Figure 4-1 illustrates how a

client/server application communicates using the TCP/IP model. When

the client wants to send a request to the server, it creates a packet data

unit (PDU) for the data that it wants to send to the remote server. The

first level of encapsulation is provided by the Transport layer, in which it

is decided based on the application requirements if the communication

is to be established using a connectionless architecture (via UDP) or

using a connection-oriented architecture (via TCP). The packet is then

encapsulated with an IP header and then with the protocols at the Link

layer. Once the final encapsulation is completed, the packet is sent across

the network segments, processed, and routed accordingly toward the

destination host, where the decapsulation process starts from Link layer all

the way to the Transport layer, after which the final PDU is received by the

remote server and processed accordingly.

Chapter 4 Analyzing Layer 4 Traffic

138

Application
Layer

Transport
Layer

Internet
Layer

Link
Layer

Application
Layer

Transport
Layer

Internet
Layer

Link
Layer

Host-to-Host
Communication

Process-to-Process
Communication

Internet
Layer

Link
Layer

Internet
Layer

Link
Layer

Ethernet Ethernet

Fiber Link

Figure 4-1.  Data flow across the TCP/IP model

The TCP/IP model is so widely used that it can be safely said that

the Internet today depends on it. The TCP/IP model contains a suite of

protocols that allows for host-to-host communication across multiple

network segments. Figure 4-2 displays the TCP/IP models and the

protocols being used at each layer.

Chapter 4 Analyzing Layer 4 Traffic

139

Link Layer Ethernet PPP Drivers

Internet Layer IP ICMP
Routing Protocols

OSPF EIGRP BGP

ARP

Transport Layer TCP UDP

Application Layer

Web

HTTP

HTTPS

Email

SMTP

IMAP

POP

File Transfer

FTP

TFTP

Name Systems

DNS

Figure 4-2.  TCP/IP protocol suite

If we take a closer look at the TCP/IP model, it is not very different

from the OSI model, but it was developed to solve a different problem than

the OSI model. The Application layer, Presentation layer, and Session layer

of the OSI model are categorized all under the Application layer in the

TCP/IP model. The Transport layer and Network layer remain the same in

the TCP/IP model. The Data Link layer and Physical layer of the OSI model

are categorized under the Link layer in the TCP/IP model. Apart from the

number of layers and layer mapping, there are some other key differences

between the two models, listed in Table 4-1.

Chapter 4 Analyzing Layer 4 Traffic

140

Table 4-1.  OSI Model vs. TCP/IP Model

OSI Model TCP/IP Model

Transport layer is only

connection-oriented.

Transport layer is both connection-

oriented and connectionless.

Allows users to standardize router,

switch, motherboard, and other hardware.

Focuses only on establishing connection

between different types of computers.

Provides clear distinction between

interfaces, services, and protocols.

Doesn’t provide clear distinction points.

�Problem of Ownership
Today, almost every IT-enabled organization depends on mission-critical

applications to successfully run its business. Sometimes these applications

are an important aspect of a company’s revenue generation model (e.g., an

ecommerce portal). When those mission-critical applications stop working

and the software developers are sure that it is not because of their code,

they escalate the problem to network engineers or network administrators.

The software developers usually own the Application layer, Presentation

layer, and Session layer of the OSI model or just the Application layer of the

TCP/IP model.

In 90 percent of the cases, if not more, network engineers verify the

routing and reachability, which falls under the Link layer and Internet layer

of the TCP/IP model (Physical layer, Data Link layer, and Network layer

of the OSI model) and escalate it back to the application team, saying it is

not their problem. This is where the finger-pointing game starts between

the application developers and network engineers. If we take a close look

at both the OSI model and the TCP/IP model, you will realize that both

the application developers and the network engineers do not demonstrate

Chapter 4 Analyzing Layer 4 Traffic

141

ownership for an important layer—the Transport layer. Nobody wants to

go the extra mile and check the information presented at the Transport

layer. Instead of posing this as a challenge, we should be seeing this as an

opportunity. Knowing how the data are transmitted and how host-to-host

communication will happen can quickly help isolate the problem and help

both the application developers and network engineers solve the problem

quickly.

�Transmission Control Protocol
When the initial research was being done by DARPA in 1973, the focus

was on developing a protocol that would ensure secure transmission

between two hosts while maintaining the integrity of the data, regardless

of the amount of data being sent. DARPA and the University of Southern

California collaborated and standardized the protocol specification of

TCP, a protocol that provided a connection-oriented data transmission

mechanism while ensuring data integrity, in RFC 793. RFC 793 was later

updated by RFC 1122, RFC 3168, RFC 6093, and RFC 6528.

The current version of TCP allows two nodes or endpoints to establish

a connection that enables two-way transmission of data; that is, a device

can send and receive data at the same time. Each connection in TCP works

in a client/server model, irrespective of which node assumes the role of

the server or client, and each endpoint connection is uniquely identified

using an ordered pair of IP address and port number. This ordered pair is

known as a tuple or a socket. Thus, a TCP connection is often referred to

as a socket connection. Now, before moving onto understanding how a

TCP connection is established, let’s take a closer look at the TCP header,

displayed in Figure 4-3.

Chapter 4 Analyzing Layer 4 Traffic

142

A TCP header is a 20-byte header that consists of the following fields:

•	 Source port (16-bit): Specifies the port number of

the sender.

•	 Destination port (16-bit): Specifies the port number of

the receiver.

•	 Sequence number (32-bit): Used to keep track of the

data (in bytes) sent out by the host during a TCP

session. During a new TCP connection, the initial

sequence number sent is a random 32-bit value. The

receiver will use the sequence number and reply with

an acknowledgment. When it comes to troubleshooting

TCP issues, protocol analyzers often use a relative

sequence number of 0 as it is easier to remember

than some high-value random number. The sequence

number is also used for validating the segments after

transmission.

•	 Acknowledgment number (32-bit): Used to keep

track of every byte received by the receiver. An

acknowledgment is sent in response to every packet

that is received by the host.

•	 Offset (4-bit): Specifies the length of the TCP header,

which allows us to know where the actual data begins.

•	 Reserved (6-bit): Reserved for further use as per

RFC 793.

Chapter 4 Analyzing Layer 4 Traffic

143

•	 Flags (6-bit): Enables various TCP actions for data

processing and communication. The TCP software will

perform specific actions when one or more flags are set

in the TCP header. The following are the various flags

that are set in TCP:

•	 Urgent Pointer (URG)

•	 Acknowledgment (ACK)

•	 Push (PSH)

•	 Reset (RST)

•	 Synchronization (SYN)

•	 Finish (FIN)

•	 Window size (16-bit): Specifies the number of bytes

the receiver is willing to receive. Using this field, the

receiver tells the sender the amount of data that it is

willing to receive.

•	 Checksum (16-bit): Used to verify if the TCP header

is okay or not. Using this field, TCP is able to reliably

detect any transmission issues.

•	 Urgent pointer (16-bit): This field is used to indicate

how many bytes of packet data starting from the first

byte are considered to be the urgent data by the sender.

This field is only used when the URG flag is set under

the Flags field.

Chapter 4 Analyzing Layer 4 Traffic

144

•	 Options (0–320 bits): The TCP Options field is at the

end of the header and is always specified in multiples

of 8 bits. If any of the bits are not filled, they are padded

with zeros. This field is used to include various TCP

functions that do not belong to the general TCP header.

The following is a list of various TCP functions available

as part of the TCP Options field:

•	 Maximum Segment Size (MSS)

•	 Window Scaling

•	 Selective Acknowledgments (SACK)

•	 Timestamps

•	 Nop

Figure 4-3.  TCP header

Figure 4-4 shows the Wireshark capture of the first packet of an SSH

session. Notice that this packet displays both the raw sequence number,

which is a randomly generated number, and a relative sequence number

that can be used for troubleshooting purposes. This packet also has

multiple TCP options such as MSS and Timestamps as part of the TCP

Options field.

Chapter 4 Analyzing Layer 4 Traffic

145

Figure 4-4.  Wireshark capture of TCP packet

When talking about port numbers in the TCP header, there are a

maximum of 65,535 port numbers that are allowed on a system. There

are some well-known port numbers, too, that we use knowingly or

unknowingly on a daily basis through various applications:

•	 HTTP: Port 80

•	 HTTPS: Port 443

•	 Telnet: Port 23

•	 SSH: Port 22

•	 FTP: Port 21

•	 DNS: Port 53

•	 IMAP: Port 143

•	 POP3: Port 110

Chapter 4 Analyzing Layer 4 Traffic

146

Port numbers can be categorized into three types:

•	 Well-known ports: These port numbers range from 0

to 1023.

•	 Registered ports: These port numbers range from 1024

to 49151. They are not assigned or controlled but can

be registered to avoid any duplication.

•	 Dynamic ports: These ports range from 49152 to 65535

and cannot be assigned, controlled, or registered.

When troubleshooting, TCP-related issues such as HTTP/TCP-based

IP Service Level Agreement (SLA) probes that are deployed on network

devices might stop working. As network engineer you might focus on

validating the configuration or checking why the remote end has stopped

responding, but it is equally important to keep an eye on the ports that are

locally open on the box. It could be that even though the TCP session gets

established, the connection does not terminate from time to time, and the

device might run out of available ports to establish further TCP sessions.

�TCP Flags
In the previous section we learned about the six flags in the TCP header.

Each flag plays an important role during various phases of a TCP session.

Figure 4-5 shows all the different flags in the TCP header seen in a

Wireshark capture.

Chapter 4 Analyzing Layer 4 Traffic

147

Figure 4-5.  TCP flags in Wireshark capture

Each TCP flag is set to perform the following actions:

•	 URG: The Urgent flag is set to signal the TCP

application that the payload data must be processed

urgently up to the set pointer in the Urgent Pointer

field. Note that the Urgent Pointer field is relevant only

when the URG flag is set in the TCP header.

•	 ACK: The Acknowledgment flag is set in combination

with the Acknowledgment Number field. This flag

indicates the acknowledgment by the receiver that it

has received the TCP packets that were previously sent.

•	 PSH: The Transport layer, by default, stores the

application data in a buffer for some time so that it can

transmit data equal to the MSS size to ensure faster

convergence and better performance in the network for

Chapter 4 Analyzing Layer 4 Traffic

148

TCP applications. Such behavior is not desirable, though,

for certain applications, such as chat applications.

Similar issues apply on the receiving end as well. The

PSH flag in the TCP header solves this problem by telling

the TCP software to immediately send the payload to the

Network layer as soon as it receives the payload from the

Application layer. In simple words, it tells the receiver

and sender to immediately process the packets instead

of buffering them.

•	 RST: If the TCP software identifies an error during

transmission, it sends an RST flag to reset the

connection.

•	 SYN: The SYN flag is the first step to initiate a TCP

connection via the three-way handshake process.

•	 FIN: – The FIN flag signals the receiver that the sender

is ending the transmission.

�TCP Three-Way Handshake
The TCP three-way handshake is a three-step process that is required

to establish a secure and reliable TCP connection between a client and

a server.

	 1.	 SYN: In the first step, the client initiates a TCP

connection toward the remote server. When it does

that, the SYN flag is set to 1 in the TCP header and

a random sequence number is used for this TCP

connection. In this case, it is 926587467, as shown in

Figure 4-6. Because this is the first packet, the ACK flag

is set to 0. There are other fields that are also set in the

TCP header such as Window size and MSS TCP options.

Chapter 4 Analyzing Layer 4 Traffic

149

Figure 4-6.  TCP SYN Wireshark capture

	 2.	 SYN-ACK: When the server receives the SYN packet

for the TCP connection, it responds back with an

acknowledgment by setting the ACK flag bit to 1.

Also, when the ACK flag is set, the Acknowledgment

Number field is set to the value of one more than

the received SYN packet. So, in this case, the

Acknowledgment number field will have the value

926587468. Also, because TCP allows for two-way

communication, the server also sets the SYN flag

to 1 and sets a random sequence number in the

TCP header. Note that the sequence number used

in the SYN-ACK packet will be different than the

one received from the client. In this case, it is set to

4227540456. Figure 4-7 displays the TCP SYN-ACK

packet from server to client.

Chapter 4 Analyzing Layer 4 Traffic

150

Figure 4-7.  TCP SYN-ACK Wireshark capture

	 3.	 ACK: On receiving the SYN from the server,

the client now must respond back with an

acknowledgment. For that, the client sends another

TCP packet to the server with the ACK flag set, and

the Acknowledgment Number field value set to

the value of the sequence number plus 1. In this

packet the SYN flag is set to 0. Figure 4-8 displays

the ACK from the client to the server with the

Acknowledgment Number field set to 4227540457.

Note that after the ACK is received by the server, the

minimum of the client or server’s MSS value is taken

into consideration for data transmission.

Chapter 4 Analyzing Layer 4 Traffic

151

Figure 4-8.  TCP ACK Wireshark capture

Because we are looking at an example of an SSH session between

the server and client, after a TCP session has been established, all the

SSH protocol exchanges are performed. If you look at the packets that

are exchanged by the SSH protocol, you will notice that they mostly have

the PSH flag set, which indicates that the SSH protocol is telling the TCP

software not to buffer the data and transmit the packet to the remote end.

Figure 4-9 displays the Wireshark capture of an SSH control packet with

the PSH flag set in the TCP header.

Chapter 4 Analyzing Layer 4 Traffic

152

Figure 4-9.  SSH packet with PSH flag

Like the connection initiation process, there is a three-way handshake

process for connection termination. The client and the server exchange

the following TCP packets when they wish to close the connection:

•	 FIN: When the client wishes to terminate the

connection, it sends a TCP packet with the FIN flag

set to 1 and sends it with a random sequence number.

Note that at this point, the SYN flag will be set to 0 and

the ACK is set to 0. If the client is supposed to send

an acknowledgment to the server for the previously

received TCP packet, the ACK flag can be set to 1

along with the acknowledgment number, but this

ACK has no relation to the FIN flag that is set on the

packet. TCP does this to reduce the number of packets

being exchanged. Figure 4-10 shows the Wireshark

Chapter 4 Analyzing Layer 4 Traffic

153

capture of SSH connection being terminated when

an ‘exit  ’ command is typed on the terminal by the

client. Figure 4-10 shows the Wireshark capture of TCP

FIN packet when the client wishes to terminate the

connection. Notice that in this packet, there is an ACK

flag set as well, but this acknowledgment is for another

sequence number that the client received.

Figure 4-10.  TCP FIN Wireshark capture

•	 FIN-ACK: On receiving the client’s termination request

with TCP FIN, the server acknowledges the request

by replying to the client with ACK. The server also

sets the FIN flag to 1 and sends it to the client with

a random sequence number different than that of

the received FIN. Once this step is completed, the

connection is terminated from the client to the server

Chapter 4 Analyzing Layer 4 Traffic

154

side. Figure 4-11 shows the Wireshark capture of a TCP

FIN-ACK packet sent by the server toward the client in

response to the FIN request received from the client.

Figure 4-11.  TCP FIN-ACK Wireshark capture

•	 ACK: This is the last step where the client sends the

acknowledgment back to the server for the received

FIN from the server. It sets the ACK flag to 1 and sets

the Acknowledgment Number value to the Sequence

Number of FIN plus 1. After this step is completed, the

connection is terminated from the server to the client

side. Figure 4-12 displays the Wireshark capture of

the TCP ACK packet sent by the client to the server in

response to the FIN packet it received from the server

in the previous step. Note that the Sequence Number

and Acknowledgment Number fields work in the same

manner as they did during the session initiation process.

Chapter 4 Analyzing Layer 4 Traffic

155

Figure 4-12.  TCP ACK Wireshark capture

Every TCP connection goes through different connection states during

its session lifetime. The following are the possible TCP connection states:

•	 LISTEN: A TCP application is awaiting an inbound

connection request.

•	 SYN-SENT: A connection request has been sent but no

acknowledgment has been received from the remote end.

•	 SYN-RECEIVED: A connection request has been

received and an acknowledgment has been sent

to the remote host, but the host is awaiting an

acknowledgment of the connection request sent out as

a response to the original connection request.

Chapter 4 Analyzing Layer 4 Traffic

156

•	 ESTABLISHED: All SYN and ACK have been received

and the connection has now been established. Both

end hosts can start sharing the data.

•	 FIN_WAIT_1: A session or connection termination

request has been sent, but no acknowledgment has

been received.

•	 FIN_WAIT_2: An acknowledgment has been received

from the remote host, but no corresponding termination

request has been received from the remote host.

•	 CLOSING: A session termination request has been

sent and a corresponding session termination

request has been received and acknowledged but no

acknowledgment has been received from the remote

host for the original session termination request.

•	 CLOSE_WAIT: A session termination request was

received and acknowledged but no corresponding

session termination request has been sent out yet.

•	 TIME_WAIT: The host waits for a reasonable amount

of time to ensure the remote host receives the final

acknowledgment of a session termination request.

•	 LAST_ACK: Host awaits a final acknowledgment after

sending an end of connection message in response to

having received a session termination request.

At times it gets hard to remember the state transitions and the

corresponding TCP flags set during those state transitions. To remember

this, you can simply follow the TCP finite state machine as shown in

Figure 4-13.

Chapter 4 Analyzing Layer 4 Traffic

157

Figure 4-13.  TCP finite state machine

�Port Scanning
Many network and security analysts perform port scanning to find out

about network and host vulnerabilities and services running on the

network that can be exploited. Port scanning is a technique of determining

which ports in a network or host are open to send or receive traffic. An

open port indicates that a service such as HTTP/HTTPS or FTP is offered

on the destination network or host. If attackers know what services

are offered, they might be able to use other tools to identify security

vulnerabilities to exploit those services.

NMAP is a freely available scanner that runs on the UNIX OS and

has options for various port scanning techniques. It also has options to

detect any scans that might be running on the network. Some of the port

scanning techniques are listed here:

Chapter 4 Analyzing Layer 4 Traffic

158

•	 Connect requests: In this technique an active

connection is attempted using the three-way

handshake. If the port is open, the three-way

handshake is completed, and the scanner gracefully

closes the connection by sending an active close

request. If the port is closed, the destination responds

back with an RST flag set. Note that this is not a safe

scanning method, as these connection attempts are

logged on the target host.

•	 Half-open scan: In this technique, the three-way

handshake is not completed and thus the name half-

open scan. A SYN is sent by the scanner and it waits

for a response. If the target port is open, it returns a

SYN-ACK and the connection will be immediately torn

down by the scanning host because it did not issue

the connection request. Because the handshake never

completed, the target host might not log these TCP SYN

packet scans.

•	 Non-SYN-ACK-RST scans: As per RFC 793, segments

containing an RST flag are always discarded and

segments containing an ACK always generate an RST

flag. So, non-SYN packets that do not contain an RST

or ACK could be used for port scanning. Note that this

method of port scanning is only useful if the target host

or network follows the RFC specifications. OSs that do

not follow the RFC send RSTs from both open as well

as closed ports, thus making it difficult for scanners to

return accurate results.

Chapter 4 Analyzing Layer 4 Traffic

159

As part of network security best practices, it is equally important to

detect any impossible packet types that might have the following TCP flag

combinations:

•	 SYN RST

•	 SYN FIN

•	 RST FIN

•	 FIN

•	 No flags

Network operators can perform filtering of various types of flags in

Wireshark using the following filters:

•	 SYN Flag set: tcp && tcp.flags == 0x02

•	 ACK flag set: tcp && tcp.flags == 0x10

•	 RST flag set: tcp && tcp.flags == 0x04

•	 FIN flag set: tcp && tcp.flags == 0x01

•	 No flags set: tcp && tcp.flags == 0x3f

�Investigating Packet Loss
Packet loss in a network can happen for two main reasons:

•	 Link errors/Layer 2 errors

•	 Network congestion

Most of the time, once a network is set up, it runs smoothly. It could

demonstrate transient or complete packet loss only when the hardware

fails or the link has issues. Detecting hardware failures is not very complex,

as multiple links and protocols running on the network hardware or host

will start showing symptoms of hardware failure and can easily be fixed

by replacing the complete hardware or a particular part that is causing

Chapter 4 Analyzing Layer 4 Traffic

160

the symptoms. When it comes to link issues, there could be several things

to troubleshoot, some within our control and some outside. With a link,

the issue could be with the unidirectional failures, Small Form-Factor

Pluggables (SFPs), fiber or Ethernet cables, duplex settings, telco provider

in the middle, and so on. The challenge with link issues is that even though

the link might have errors, it will still forward some traffic and drop the

remaining traffic, so network operators might not even know unless there

is a notification of an event or a complaint from an end customer. With

link issues, the data transmitted may also get corrupted and get eventually

dropped. In most cases, an error counter on the network or host interface

will increment to indicate an issue with the link, which then helps to

identify and resolve the problem.

Traffic congestion, on the other hand, can cause a great deal of service

disruption and is seen especially when transitioning between link speeds

within the network (from 10 Gbps to 1 Gbps). If the higher speed link

sends traffic at a rate the egress interface might not be able to keep up

with, then it will start dropping the packets. In such cases, with TCP, the

sender determines that the loss occurred in transit and will retransmit the

packets. This scenario is also known as discards. Because TCP is a reliable

connection-oriented protocol, it provides a mechanism to track data that

have been sent and receive an acknowledgment of what has been received.

If for any given packet the mapping ACK is not received, the TCP software

resends the data assuming the packet has gone missing and ensuring

reliable transmission of data. You might wonder why, after so much progress

and innovation in the field of networking and development of 100 Gbps fiber

links, we still have to deal with issues such as network congestion.

�TCP Retransmission

As we already know, for every byte of data sent across a TCP connection,

there is an associated sequence number. When a sender sends a TCP

segment, it starts a retransmission timer of variable length. Let’s assume

Chapter 4 Analyzing Layer 4 Traffic

161

that the TCP segment gets lost in transit before reaching the receiver. Due

to the packet being lost in transit, the receiver never sends the ACK back to

the sender. After the retransmission timer expires, the sender assumes that

the segment has been lost and it retransmits the data again to the receiver.

Figure 4-14 demonstrates the segment loss and data retransmission

between server and client. So, if a Wireshark capture shows a lot of

retransmitted TCP segments, it simply means that there is packet loss in

the network.

Sender Receiver

SEQ 1

ACK 1

SEQ 10

. . .

Segment
Drop

SEQ 10

ACK 10

Figure 4-14.  TCP retransmission

To analyze retransmissions in a network, network operators might have

to place multiple taps in the network. For instance, examine the simple

topology shown in Figure 4-15. In this topology host H1 (IP 10.1.2.1) sitting

behind router R1 is trying to send traffic to host H3 (IP 3.3.3.3), which is

sitting behind router R3.

H1
10.1.2.1

R1 R2 R3 H3
3.3.3.3

Figure 4-15.  Topology

Chapter 4 Analyzing Layer 4 Traffic

162

If there is packet loss happening in the network segment between R2

and R3, you will notice in the Wireshark capture that there are multiple

retransmissions between the source and destination. In Figure 4-16,

the segment for which the sender did not receive the acknowledgment

retransmitted the segment back. In this case the sequence number of

that segment was 3546854380 (relative sequence number 213) and the

acknowledgment number was 597044005 (relative acknowledgment

number 501).

Figure 4-16.  Wireshark capture with TCP retransmissions

Chapter 4 Analyzing Layer 4 Traffic

163

�TCP Out-of-Order Packets

In networks, users might also encounter TCP out-of-order (OOO) packets.

TCP OOO packets simply mean that the packets arrive at the destination in

a different order from that in which they were sent. This could happen for

several reasons:

•	 Multiple paths: If the TCP segments are following multiple

paths (ECMP paths to the destination) or via parallel

processing paths within a router or a network equipment

(e.g., per-packet load balancing), and either of the systems

are not designed to ensure the ordering of the packets, this

could lead to OOO packets in the network. Note that it is

TCP’s job to deliver the packets in the right order.

•	 QoS: Poorly configured QoS, especially a queueing

mechanism, can cause OOO packets in the network.

If the QoS settings do not forward the packet in a first

in, first out (FIFO) manner or if the QoS settings drop

the TCP packets along the path, this could lead to

retransmission of those dropped TCP segments and

eventually to OOO packets.

•	 Oversubscription: Oversubscribed links in the network

can cause OOO packets. The traffic will end up getting

dropped, causing retransmission, slowdowns, and OOO

packets.

•	 Microbursts: A microburst is a behavior seen in networks

when rapid bursts of data packets are seen in quick

succession, leading to time intervals of full line-rate

transmission. This can cause packets to get dropped due

to buffer overflows on the interface. When such bursts

occur in the network, links would end up dropping packets,

causing retransmissions, slowness, and OOO packets.

Chapter 4 Analyzing Layer 4 Traffic

164

When OOO segments are received by the TCP software, one of the

main functions that it performs is reassembling packets in order or

requesting retransmission of OOO packets. If the Wireshark capture shows

that there are OOO packets, then as part of the troubleshooting process

you might want to look at the possible causes listed earlier.

Tip I f you see a lot of TCP OOO packets, there is packet loss
between the capture point and the sender. If you see a lot of TCP
retransmissions, though, there is packet loss happening between the
capture point and the receiver.

�Troubleshooting with Wireshark Graphs
When troubleshooting TCP or any network issues in a large-scale

environment, where there is large amount of data to be analyzed, it

becomes challenging and time consuming to identify the root cause.

In such a scenario, a quick peek at graphical data can give us a better

understanding of what is happening in the network. Wireshark provides

you with numerous graph options that can be used for investigating

various types of issues. There are graphs in Wireshark that are specific

for TCP and can come in handy for day-to-day network analysis and

troubleshooting tasks. This section focuses on some of the various graphs

that can be used.

�TCP Stream Graphs

TCP Stream Graphs can be used to provide visual insights about TCP

streams. The Wireshark tool gives user options to select between all packets

and TCP packets. The graphs are part of the Wireshark profile and can also

be imported from another profile. Within TCP Stream Graphs, there are

different graph and analysis options that network analysts can use:

Chapter 4 Analyzing Layer 4 Traffic

165

•	 Time Sequence (Stevens)

•	 Time Sequence (tcptrace)

•	 Throughput

•	 Round Trip Time

•	 Window Scaling

All these options can be accessed in Wireshark on the Statistics menu

by selecting TCP Stream Graphs, as shown in Figure 4-17.

Figure 4-17.  TCP Stream Graphs options

�Time Sequence (Stevens)

This TCP stream time sequence graph shows TCP sequence numbers

plotted against time in any single direction. You do have options to switch

between the direction of the TCP stream, but only one direction can be

analyzed at any given point in time. If the captured traffic is only TCP

Chapter 4 Analyzing Layer 4 Traffic

166

traffic, then you can simply select Time Sequence (Stevens) graphs from

the menu. This will display the graph based on sequence numbers vs. time

in seconds as shown in Figure 4-18.

Figure 4-18.  TCP Stream Graphs: Time Sequence (Stevens)

In an ideal situation you might want to see a smooth line from the

bottom left corner to the top right corner of the graph. Notice that in the

graph in Figure 4-18, the graph is mostly incremental and has a smooth

line, but there are flat periods in the graph. The flat periods in this graph

are bad in that they indicate that the sequence number in that direction is

not increasing. When you click on these flat periods, you will notice that

there are TCP errors seen during those periods in the Wireshark capture.

In this case, when we click on one of the flat periods, we can see TCP

Chapter 4 Analyzing Layer 4 Traffic

167

ZeroWindow error shown in Figure 4-19, which indicates that the window

size is 0 in the TCP header. A TCP window size of 0 usually indicates the

client (or server, but in most scenarios it is the client) has advertised the

value of 0 for its window size, indicating that the TCP receive buffer is full

and cannot receive any more data.

Figure 4-19.  TCP ZeroWindow Error seen in Stevens Time
Sequence graphs

If there are dips in the graph, it would usually indicate TCP

retransmissions or OOO packets. Figure 4-20 displays the dip in graphs

indicating TCP retransmissions as well as OOO packets in the network.

Chapter 4 Analyzing Layer 4 Traffic

168

Figure 4-20.  TCP retransmissions and OOO packets in Stevens graph

�Time Sequence (tcptrace)

The tcptrace Time Sequence graph is similar to the Stevens graph, but

on steroids. It shows the bytes in flight as well as the receive window

information, which is highlighted. This graph also shows other

information such as acknowledgments and selective acknowledgments

(SACKs) received. Figure 4-21 displays the tcptrace Time Sequence graph.

Notice the green line in the graph; this indicates the receive window

(rwnd) received from the destination host. The blue sections or blue dots

in the graph indicate the packets in transit. The red lines in the graph

indicate SACKs.

Chapter 4 Analyzing Layer 4 Traffic

169

Figure 4-21.  Tcptrace Time Sequence graph

When we further expand the graph as seen in Figure 4-22, notice the

brown lines in the graph. These brown lines indicate acknowledgments

received from the receiver end. The red lines in the graph indicate SACKs.

Figure 4-22.  ACKs and SACKs in tcptrace Time Sequence graphs

Chapter 4 Analyzing Layer 4 Traffic

170

When looking at these graphs, there are two things that we do not

want to see:

	 1.	 The bytes in flight (blue lines or dots) touching the

receive window (graph lines).

	 2.	 Steps (these denote that the sender is not sending

the data fast enough or it could be related to a

receive window size issue).

Figure 4-23 shows a pretty big step in the graph and when a user clicks

on that step, they can see TCP ZeroWindow errors in the Wireshark capture

indicating the receiver’s TCP receive buffer is full and it cannot process any

further packets at the moment.

Figure 4-23.  Steps in tcptrace Time Sequence graphs

Chapter 4 Analyzing Layer 4 Traffic

171

�Throughput Graph

The Throughput graph is very useful during throughput testing in a

greenfield deployment or during migration testing in the network. This

graph shows the segment length (packet size) and average throughput

vs. bytes per second (bps) over time. It also has options to show both

the throughput and the goodput in the graph. Figure 4-24 shows the

Throughput graph. Notice that in this graph, the segment length is stable

during the capture but there is also a gap in the segment length section

that indicates that the sender is not sending anything.

Note I n computer networks, goodput means the application-level
throughput of a communication. It simply indicates good throughput
of an application.

Chapter 4 Analyzing Layer 4 Traffic

172

Figure 4-24.  Throughput graph

If the graph shows sporadic segments (dotted lines), it indicates that

the device is sending sporadically as shown in Figure 4-25, and it usually

indicates that there is packet loss in the path. If users click those sporadic

segments, they might be able to see TCP retransmissions or OOO packets.

Chapter 4 Analyzing Layer 4 Traffic

173

Figure 4-25.  Sporadic segments

�Window Scaling Graph

The Window Scaling graph can be very useful when troubleshooting TCP

window issues. These issues usually occur when one end is sending more

traffic than the other end can handle, or the receiving end has no buffer

left in the TCP receive window (as seen in some previous examples). This

graph, displayed in Figure 4-26, shows the TCP receive window (in green)

vs. bytes in flight (in blue). Note that in an ideal situation, the bytes in flight

should never be more than the receive window size.

Chapter 4 Analyzing Layer 4 Traffic

174

Figure 4-26.  Window Scaling graph

Further zooming into the graph, if we see the flat lines (steps) in the

graph, it usually represents round trip time (RTT). An RTT is the difference

between the time when the packet was sent out and an ACK was received

for that packet. Figure 4-27 displays the flat lines in the Window Scaling

graphs indicating the RTT.

Chapter 4 Analyzing Layer 4 Traffic

175

Figure 4-27.  RTT in Window Scaling graph

Note that if the bytes in flight (the blue dots and line) start from the

bottom (i.e., at 0), it indicates that all the previous segments that were

transmitted have been acknowledged and there are no packets in flight. If

the bytes in flight start above the 0 value (baseline) it indicates that there

are segments and bytes that have not yet been acknowledged. Figure 4-28

shows the bytes in flight starting above the baseline.

Chapter 4 Analyzing Layer 4 Traffic

176

Figure 4-28.  Unacknowledged bytes in flight in Window
Scaling graph

�RTT Graph

If there are jitters in the network, you might want to leverage the help of

the TCP Streams RTT graph. The RTT graph measures the RTT of all TCP

packets. If the graph shows big spikes, it usually indicates there is either

packet loss in the network or network congestion. Figure 4-29 shows the

RTT graph for all the captured packets in Wireshark. Notice that initially in

the graph, there are very large spikes, but the later part of the graph shows

consistent RTT. This indicates that initially there was either congestion or

packet loss that increased the RTT, but after it was resolved the RTT was

fairly stable.

Chapter 4 Analyzing Layer 4 Traffic

177

Figure 4-29.  RTT graph

�I/O Graphs

The I/O graphs provide a customizable list of graphs allowing users

to compare different types of traffic and correlate the events with the

application traffic based on errors seen in the network quickly and easily.

The I/O graphs allow users to customize the different graphs they wish

to see simultaneously, which makes it easier to correlate the data with

network events. For instance, you might observe a dip in the requests

coming in on a web server on HTTP as well as HTTPS using the I/O

graphs while comparing it with any TCP errors seen during that instance.

Figure 4-30 displays the traffic pattern of both HTTP and HTTPS traffic

from the Wireshark capture. The green lines highlight the HTTP traffic,

whereas the red line indicates the HTTPS traffic. Note that the HTTP and

HTTPS graph filters are not present by default. These can be added by

clicking the + icon, assigning the graph name, and under Display Filters,

Chapter 4 Analyzing Layer 4 Traffic

178

setting the filter to tcp.port == 80 for HTTP or tcp.port == 443 for

HTTPS. Once the filters are set, users can customize these graphs with the

colors of their choice.

Figure 4-30.  HTTP vs. HTTPS traffic in I/O graphs

If we look at another Wireshark capture where we only have HTTP

traffic, but a lot of TCP errors, we can easily correlate the dip in the traffic

with a high number of TCP errors. In Figure 4-31, the traffic pattern of

HTTP traffic is shown along with TCP errors. When there are major dips

seen in the HTTP traffic, we can also see the spike in the TCP errors. When

looking at the Wireshark capture around that time, we will be able to

determine that there was packet loss happening around that time.

Chapter 4 Analyzing Layer 4 Traffic

179

Figure 4-31.  HTTP traffic and TCP errors in I/O graphs

The I/O graphs can also be used to analyze any type of microbursts

happening in the network. The I/O graphs give options to plot the

graph, not just at a 1-s time interval, but also to the millisecond level

(performance could be affected based on the amount of data being

analyzed by the Wireshark capture). Figure 4-32 shows the I/O graphs

adjusted to a 100-ms time interval. The graph in this scenario shows

spikes from time to time. The traffic spikes in these scenarios might not be

relevant because there are not too many packets being sent within the

100-ms time interval, but if there were more packets sent during the 100-ms

time interval, it would have been a concern.

Chapter 4 Analyzing Layer 4 Traffic

180

Figure 4-32.  Microbursts in I/O graphs

�Flow Graphs

When troubleshooting TCP-related network problems, it is necessary

to track the flow such as the three-way handshake, data flow and

acknowledgments, and so on. Just looking at Wireshark it might be difficult

to identify the flow unless you are using the option to follow the TCP

stream, in which case it will give you the complete flow of that packet.

However, it might still be difficult to understand the direction of each

packet, as you will have to keep track of the source and destination IP

addresses. This challenge is solved by another Wireshark graph known as

Flow graphs. Flow graphs provide you with a graphical representation of all

the TCP flows from the Wireshark capture and help you visualize the TCP

flow along with its direction. Figure 4-33 shows the Flow graph of the TCP

packets from the Wireshark capture.

Chapter 4 Analyzing Layer 4 Traffic

181

Figure 4-33.  Flow graph

One of the benefits of using Flow graphs is that they preserve the

colors from the Wireshark profile and allow you to apply filters. The Flow

graph comes in very handy when troubleshooting VoIP-related issues.

It shows all the conversations related to DNS, TCP, HTTP, and so on, for

the specified traffic. These are a few of the most common use cases of

Flow graphs:

•	 Tracking any malicious host or application that is trying

to access multiple servers on the network.

•	 Tracking TCP retransmissions

•	 Tracking connection resets

For applying filters in Flow graphs, you can simply apply a display filter

in the Wireshark tool using filter expressions and then use Limit To Display

Filter check box. When this check box is selected, it will automatically

change the Flow graph to only the flow that is being targeted in the display

filter. Figure 4-34 shows the Flow graph of an HTTP flow that has been

Chapter 4 Analyzing Layer 4 Traffic

182

filtered on the Wireshark display filter. Next to the Limit To Display Filter

check box, there is also a drop-down list that allows users to further trim

down the visual Flow graph to particular types of flows such as ICMP, TCP,

and so on.

Figure 4-34.  Flow graph filter

�TCP Expert
When working on a complex problem, you must know the right filters,

use the right options, and have your own profile in Wireshark for different

protocols to be able to analyze and identify the problem as quickly as

possible. Knowing and using various display filters for troubleshooting

different types of TCP issues can save you a lot of time. Table 4-2 displays a

list of common TCP-based display filters and what they do.

Chapter 4 Analyzing Layer 4 Traffic

183

Table 4-2.  TCP Display Filters and Their Functions

Display Filter Function

tcp.flags == 0x2

tcp.flags.syn == 1

Capture all TCP SYN packets

tcp.flags.reset == 1 Capture TCP Resets

(tcp.flags == 0x10) &&

(tcp.seq == 1) &&

(tcp.ack == 1)

Capture only third packet of the TCP three-way

handshake

tcp.time_delta > 1 Filter TCP delays greater than t seconds; in this

example, t = 1

tcp.time_delta > 1 &&

tcp.flags.fin == 0 &&

tcp.flags.reset == 0

Identifying TCP delays but ignoring delays from

the TCP connection termination process (during

the connection termination process, TCP FIN is

sent to the remote end, or the TCP reset flag

is set)

tcp.window_size >= 0 &&

tcp.window_size < 500

Identifying small TCP window sizes

tcp.analysis.out_of_order Filtering TCP OOO packets

(tcp.flags.syn == 1) &&

(!tcp.len == 0)

Filtering TCP SYN or SYN-ACK packets that

contain data

Chapter 4 Analyzing Layer 4 Traffic

184

�Wireshark Profile for TCP

Wireshark allows users to create custom profiles that can come in very

handy based on the type of issue being investigated. Every Wireshark

application comes with a Default profile that has the following fields:

•	 No.

•	 Time

•	 Source

•	 Destination

•	 Protocol

•	 Length

•	 Info

The Default profile is good for beginners and yields a lot of useful

information, but troubleshooting TCP issues is a complex process and

requires more specific fields related to TCP to quickly analyze TCP packets.

To create a new profile, follow these steps:

	 1.	 Right-click Profile: Default at the bottom right

corner of the Wireshark application (Figure 4-35).

	 2.	 Select the New option. This will open the profile

modally.

	 3.	 Create a profile named TCP and click OK.

	 4.	 Right-click again at the bottom right corner of the

Wireshark application and select the TCP profile

from the Switch To submenu.

Chapter 4 Analyzing Layer 4 Traffic

185

	 5.	 Once selected, the new TCP profile will become

your active profile. Note that at this point, this new

profile will have the same columns and settings as

the Default profile.

To change the settings of the new TCP profile, select Preferences from

the Wireshark Menu then go to Appearance | Columns and then add the

following columns with the types and settings as shown in Figure 4-36.

•	 No.

•	 Time

•	 Delta

•	 Source

•	 Destination

•	 TCP Delta

•	 SEQ

•	 ACK

•	 Window

•	 Bytes in flight

•	 Info

Figure 4-35.  Selecting the Default profile

Chapter 4 Analyzing Layer 4 Traffic

186

Once the columns are added, the TCP profile UI yields more granular

information about TCP as shown in Figure 4-36. You can see how easy

it looks to point out packets with window size 0. Not just for TCP, but

in general, network and security analysts should always create and use

custom profiles and use custom fields in their UI based on their style of

troubleshooting.

Most of the fields in the Columns list are self-explanatory. The only

field that needs some explanation is the TCP Delta field. The TCP Delta

simply means the time since previous frame in the given TCP stream. This

field helps identify if there have been delays in the network in turn causing

delays in receiving the TCP stream. The information in the TCP Delta

field is available in the Timestamp section of the TCP header but let’s not

get confused with every delta that you see. Some delays are normal, such

as these:

Figure 4-36.  Custom columns for TCP profile

Chapter 4 Analyzing Layer 4 Traffic

187

•	 SYN packets: There might be a delay before the initial

SYN packet. For instance, once the Wireshark capture

is started, you might ask the user to connect to a web

server. There will be a delay in such a case before the

first packet is seen on the wire.

•	 Connection termination packets: TCP connection

termination packets are basically FIN, FIN-ACK, RST,

and RST-ACK. These packets are explicitly sent to close

or terminate a connection. These packets could be sent

when a user opens a new tab on the browser, or the

session gets automatically closed after a page is loaded.

•	 GET requests: GET requests can be generated in

HTTP when a user clicks a link to open a new page

or to request new data from the back end of the web

application. Some GET requests are instant, but

there might be GET requests initiated by background

processes that might not have any priority, for instance,

a GET request for .ico files.

•	 DNS queries: DNS queries during a web browsing

session are common and could lead to unexpected

delays in response.

•	 Image files: When a browser application requests

image files or .ico files, there might be delays for such

requests based on the web server settings or file size of

the image.

�User Datagram Protocol
Unlike TCP, UDP is a lightweight connectionless protocol that is used to

transfer data in the network. UDP is different than TCP in several ways:

Chapter 4 Analyzing Layer 4 Traffic

188

•	 No handshake mechanism

•	 No session teardown

•	 Smaller header size

•	 Unreliable data delivery

•	 No mechanism to manage OOO packets

•	 No protection from data duplication

UDP as a transport protocol thus seems useful in scenarios where error

checking and correction mechanisms are either not necessary, or these

functions are performed by the end applications. The UDP protocol was

designed by David P. Reed in 1980 and was standardized in RFC 768. It is a

simple message-oriented Transport layer protocol that primarily consists

of four fields of 2 bytes each, as shown in Figure 4-37. The UDP header is

always 8 bytes in length, as it does not have any Options field in the header.

•	 Source port: Identifies the sender’s port number.

•	 Destination port: Identifies the receiver’s port number.

•	 Length: Specifies the length in bytes of the UDP header

and payload; minimum length is 8 bytes.

•	 Checksum: This field is used to ensure the integrity of

the data. This field stores the 16-bit words summed

using 1’s complement arithmetic, which is calculated

based on the IP header, the UDP header, and the

payload.

Source Port Destination Port

Length Checksum

Figure 4-37.  UDP header

Chapter 4 Analyzing Layer 4 Traffic

189

Knowingly or unknowingly, you use UDP in various applications

on your network computer. Applications such as DHCP, DNS, Trivial

File Transfer Protocol (TFTP), and more, all use UDP as their transport

protocol. If you are interested in checking which UDP ports are in use on

your system, use the command netstat -anp udp. Example 4-1 displays

the output of this command on a Mac OS and Windows OS.

Example 4-1.  Netstat Command for Verifying UDP

genie@VinJ ~ % netstat -anp udp

udp4 0 0 10.65.55.185.* 8.8.8.8.53

udp4 0 0 10.65.55.185.* 8.8.8.8.53

udp4 0 0 10.65.55.185.* 8.8.8.8.53

udp4 0 0 10.65.55.185.* 8.8.8.8.53

! Output omitted for brevity

C:\Users\Administrator>netstat -anp udp

Active Connections

 Proto Local Address Foreign Address State

 UDP 127.0.0.1:1900 *:*

 UDP 127.0.0.1:56629 *:*

 UDP 127.0.0.1:57233 *:*

 UDP 127.0.0.1:65272 *:*

 UDP 192.168.0.3:137 *:*

 UDP 192.168.0.3:138 *:*

 UDP 192.168.0.3:1900 *:*

 UDP 192.168.0.3:5353 *:*

 UDP 192.168.0.3:56527 *:*

 UDP 192.168.0.3:57232 *:*

 UDP 192.168.0.3:65271 *:*

Chapter 4 Analyzing Layer 4 Traffic

190

You can follow these simple steps to capture UDP traffic on your

computer system:

	 1.	 Start the Wireshark application and start a capture

on your computer’s NIC.

	 2.	 Open a command prompt.

	 3.	 Clear your DNS cache using the ipconfig /

flushdns command.

	 4.	 Try initiating a ping to a remote server or website

from the command prompt.

	 5.	 Close the command prompt.

	 6.	 Stop the Wireshark capture.

Figure 4-38 shows the Wireshark capture of a DNS query for www.

apple.com. The destination UDP port of 53 indicates that this is a DNS

packet. If there are too many packets in the Wireshark capture file, you can

simply filter the DNS packets using the display filter udp.port == 53.

If we look at the UDP packet, we can see the source port is 51053, the

destination port is 53, which is used for DNS, the length of the packet is 39

bytes, and the checksum value is set to 0x22e5. Note that at the end of the

UDP header, you can see that the UDP payload is 31 bytes and adding 8

bytes of UDP header it equates to 39 bytes.

Chapter 4 Analyzing Layer 4 Traffic

http://www.apple.com
http://www.apple.com

191

Figure 4-38.  Wireshark capture of DNS query

Once the Wireshark capture has been performed, users can also follow

the UDP streams by selecting one of the flows in Wireshark, right-clicking,

and from Follow menu, selecting UDP Stream. This will show both the

DNS query and the DNS response in the Wireshark window with the filter

being set to udp.stream eq stream-number. Figure 4-39 displays the

complete UDP stream for a DNS query to www.apple.com.

Chapter 4 Analyzing Layer 4 Traffic

http://www.apple.com

192

Figure 4-39.  Filtered UDP stream in Wireshark

There isn’t much as user can do when it comes to troubleshooting

UDP. If there is a packet loss in the network, the application can simply

request the data again, but the UDP software itself does not track any

sequence number. A UDP data packet lost is data lost. There is some

analysis that can still be done in Wireshark using I/O graphs, as these are

not specific to just TCP, but any kind of stream captured in Wireshark.

Users can filter a UDP stream on Wireshark and then select the I/O Graph

option from the Statistics menu. The I/O graph will display options such

as All Packets and TCP Errors, but also Filtered Packets with the filter set

to UDP packets that was used as the display filter in Wireshark. Figure 4-40

displays the I/O graph of filtered UDP packets on Wireshark.

Chapter 4 Analyzing Layer 4 Traffic

193

Figure 4-40.  I/O graph for filtered UDP packets

�Summary
Any network engineer or security analyst should have a deep and solid

understanding of protocols working at different layers, but one of the layers

that most engineers least on least is the Transport layer. The Transport

layer protocols are crucial for ensuring end-to-end communication and

transporting data between sender and receiver. To transport the data,

the Transport layer has protocols that follow either connectionless or

connection-oriented architecture with both having their respective use

cases. In this chapter, we focused on the two key Transport layer protocols,

TCP and UDP.

In this chapter, we explored the working of TCP and how it helps solves

several problems such as data reliability, data integrity, and so on. We

learned about the TCP connection process using three-way handshake,

how port scanning is done by attackers, and how network engineers can

Chapter 4 Analyzing Layer 4 Traffic

194

investigate packet loss issues in the network. We learned that packet loss

in the network can lead to issues such as TCP retransmissions and TCP

OOO packets. We then saw how quick analysis and troubleshooting can

be performed for network traffic using Wireshark graphs, including TCP

Stream graphs, I/O graphs, and Flow graphs. As a network engineer or

security analyst it is important to have custom profiles in Wireshark to

analyze different types of traffic. We covered how users can create custom

profiles for TCP and can quickly identify issues such as ZeroWindow by

simply looking at the capture.

At the end of the chapter, we looked at UDP and in which scenarios

UDP is used by different applications. We then learned how to filter UDP

traffic and how we can leverage I/O graphs to learn about the UDP traffic

pattern.

�References in This Chapter
•	 RFC 793: Transmission Control Protocol, DARPA,

Information Sciences Institute University of Southern

California, IETF, September 1981. http://tools.ietf.

org/html/rfc793.

RFC 768: User Datagram Protocol, J. Postel, IETF, August 1980. http://

tools.ietf.org/html/rfc768.

Chapter 4 Analyzing Layer 4 Traffic

http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc768

195© Vinit Jain 2022
V. Jain, Wireshark Fundamentals, https://doi.org/10.1007/978-1-4842-8002-7_5

CHAPTER 5

Analyzing Control
Plane Traffic
This chapter covers the following topics:

•	 Analyzing routing protocol traffic

•	 Analyzing overlay traffic

�Analyzing Routing Protocol Traffic
So far, we have learned how to set up Wireshark, perform packet captures,

and analyze Layer 2 to Layer 4 traffic. Most of the traffic that we have

looked at so far is data traffic. When we are dealing with packet loss in

the network, we usually try to understand the problem based on what is

happening in the network: Is there an errored link in the network dropping

the traffic? Is network congestion leading to data loss? When the data

loss is happening in the network, chances are high that the data might

also be control plane traffic. Although we can give separate treatment to

the control plane traffic from the data traffic using QoS, that only helps

prioritizing packets on the device, not on the wire. So, a packet loss can

simply drop data traffic as well as control plane traffic. Thus, a control

plane flap due to any amount of packet loss can still be analyzed using

the methods that we have seen so far. It could also be the case, though,

that control plane protocols misbehave even when there is no packet

https://doi.org/10.1007/978-1-4842-8002-7_5#DOI

196

loss or congestion in the network. This chapter is focused on analyzing

control plane traffic and understanding the headers and functionality of

various routing protocols, diving deeper into certain cases and how we

can troubleshoot them using Wireshark. Note that this chapter does not

focus on teaching any control plane or data plane traffic, but just analyzing

different control plane and data plane traffic, which can prove useful for

network engineers. It is assumed that network engineers are well aware of

the protocols discussed in this chapter.

�OSPF
Open Shortest Path First (OSPF), defined in RFC 2328, is one of the well-

known and most widely adopted interior gateway protocols (IGPs). It is a

dynamic routing protocol that operates within a single autonomous system

(AS) and is suitable for large heterogeneous networks. OSPF uses the

Dijkstra algorithm, also known as the shortest path first (SPF) algorithm, to

calculate the shortest path to the destination. In OSPF, the shortest path to

a destination is calculated based on the cost of the route, which considers

variables such as bandwidth, delay, and load.

OSPF allows network administrators to break large networks

into smaller segments known as OSPF areas. This allows network

administrators to reduce the OSPF areas, which are basically a collection of

networks that support multiple area types:

•	 Backbone area: Network segment that belongs to

area 0.0.0.0. All other areas are either physically or

virtually connected to the backbone area. Exchanging

routing information between multiple nonzero or

nonbackbone areas is only possible through the

backbone area.

Chapter 5 Analyzing Control Plane Traffic

197

•	 Standard nonzero area: In this area, OSPF packets are

normally transmitted. This area is directly or virtually

connected to the backbone area.

•	 Stub area: This area does not allow and accept routes

from external sources such as routes learned by other

routing protocols and redistributed into OSPF.

•	 Totally stubby area: This area does not accept routes

from external sources and link information from

other areas. Instead, a default route is advertised in

this area for allowing the router in this area to reach a

destination in other areas or even external sources.

•	 Not so stubby area (NSSA): An NSSA is derived from a

stub area with the difference that this area also has an

Autonomous System Boundary Router (ASBR) router

attached to it and learns the external routes from the

redistribution happening on the ASBR.

In an OSPF area, based on the placement of the router, each router

assumes different responsibilities and performs various functions. OSPF

has four router types:

•	 Backbone router: A backbone router runs OSPF and has

at least one interface part of the backbone area or area

0.0.0.0.

•	 Internal router: An internal router has OSPF adjacency

only with the devices in the same area. These routers

do not form adjacency across multiple areas.

Chapter 5 Analyzing Control Plane Traffic

198

•	 Area Border Router (ABR): An ABR router forms OSPF

neighbor adjacency with multiple devices in multiple

areas. Because it has adjacency in multiple areas, it

maintains a copy of the link-state topology database of

multiple areas and distributes it to the backbone area.

•	 ASBR: An ASBR router participates in other routing

protocols apart from OSPF and exchanges the routing

information learned from other protocols into OSPF

and vice versa.

The OSPF routing protocol uses a link-state database (LSDB) that is

formed using the information exchanged between all the routers within

the area. This information exchange between the routers within the area

is done using link-state advertisement (LSA). Instead of exchanging all the

network and link information in a single LSA, OSPF uses different types

of LSA for different network types. The following is a list of the commonly

used LSAs used in OSPF for exchanging various routing updates:

•	 Router LSA (Type 1)

•	 Network LSA (Type 2)

•	 Summary LSA (Type 3)

•	 Summary ASBR LSA (Type 4)

•	 AS External LSA (Type 5)

•	 NSSA LSA (Type 7)

Based on the information in the LSDB, every router in an OSPF area

runs the SPF algorithm on all the destination prefixes and installs the

route in the routing table. Note that every router in the OSPF area has

an identical copy of the LSDB. Based on the understanding of different

LSA types, each area type allows for only specific type of LSAs. Table 5-1

displays different LSAs allowed in different area types in OSPF.

Chapter 5 Analyzing Control Plane Traffic

199

Table 5-1.  OSPF Area to LSA Mapping

Area Type LSAs Allowed

Backbone area Type 1, 2, 3, 4, 5

Standard or normal area Type 1, 2, 3, 4, 5

Stub area Type 1, 2, 3

Totally stubby area Type 1, 2, and Type 3 default route

NSSA Type 1, 2, 3, 7

Totally NSSA Type 1, 2, 7, and Type 3 default route

Now that we have learned about the basics of the OSPF routing

protocol, let’s examine the most commonly seen issues in OSPF. The

majority of the issues seen in OSPF are neighbor adjacency issues. When

two devices form an OSPF adjacency, they can either form the adjacency

over these types of networks:

•	 Broadcast

•	 Nonbroadcast

•	 Point-to-point

•	 Point-to-multipoint

We can focus on broadcast and point-to-point networks because

broadcast and nonbroadcast methods both require Designated Router

(DR) / Border Designated Router (BDR) election, and point-to-multipoint

networks works on the same principle as point-to-point networks. To form

a neighbor adjacency, there are different kind of OSPF packets that are

Chapter 5 Analyzing Control Plane Traffic

200

exchanged, including Hello packets, link-state requests, link-state (LS)

updates, and LSAs. Any two devices participating in forming neighbor

adjacency go through the following states in the finite state machine:

•	 Down: This is the initial state of an OSPF router where

no information is exchanged between the routers.

•	 Attempt: This state is similar to the down state, with

the difference that the router is in the state of initiating

a conversation. This state is only applicable for

nonbroadcast multiaccess (NBMA) networks.

•	 Init: – In this state, a Hello packet has been

received from the neighbor router, but the two-way

communication has not yet been established.

•	 2-Way: Indicates that a bidirectional conversation has

been established between two routers. After this state,

DR/BDR is elected for broadcast and NBMA networks.

A router on a broadcast or NBMA network becomes

full with the DR/BDR, but remains in 2-way with all the

remaining routers.

•	 Exstart: In this state DR/BDR is established as a

master–subordinate relationship. The router with the

highest router ID is selected as the master and starts

exchanging the link-state information.

•	 Exchange: In this state, the OSPF neighbors exchange

database description (DBD) packets. The DBD packets

contain LSA headers that describe the contents of the

LSDB and are compared with the router’s LSDB.

•	 Loading: If there is any discrepancy or missing

information found by comparing the DBD packets with

the LSDB, routers send link-state request packets to the

Chapter 5 Analyzing Control Plane Traffic

201

neighbor routers. In response to the link-state requests,

the neighbor router responds with LS Update packets

that are acknowledged by the receiving router using

LSA packets.

•	 Full: In this state, the router’s database is completely

synchronized with the LSDB of the neighbor routers

and the routers become fully adjacent.

Let’s now look at the Wireshark captures based on the different states.

Figure 5-1 displays the initial OSPF Hello packet where an OSPF-enabled

router sends out a Hello packet on the 224.0.0.5 multicast address. Because

the router has not received any hello back from the other end, there is no

information available about the active neighbor.

Figure 5-1.  OSPF Hello packet

Chapter 5 Analyzing Control Plane Traffic

202

Once the OSPF router is able to see the neighbor router, you can then

see the Active Neighbor field in the Hello packet. Figure 5-2 displays the

active neighbor in the Hello packet for router R3 with OSPF router ID

192.168.3.3. Notice that so far no DR/BDR election has happened in this

network segment.

Figure 5-2.  OSPF Hello packet with active neighbor

Once the OSPF routers negotiate the DR/BDR roles, the Hello

packet will then have both the DR and BDR fields populated as shown in

Figure 5-3.

Chapter 5 Analyzing Control Plane Traffic

203

Figure 5-3.  OSPF Hello packet with DR/BDR

After the DR/BDR election, the routers decide on the master and

subordinate election on the segment. Remember that initially both the

routers will send the DBD packet with the Master (MS) bit set, but once

the OSPF software realizes that the router with the highest router ID is

the master, then the router with lowest router ID will not have the MS

bit set. Within the OSPF DBD packet, the MTU of the segment is also

advertised. Notice that if there is a mismatch of the MTU values, the OSPF

neighborship gets stuck in the exstart or exchange state. Once the master

and subordinate election is completed, only then will the routers start

exchanging the LSA information in the OSPF DBD packets. Figure 5-4

displays the DBD packet with the MS bit set for the packet coming

from the router with highest router ID. Also notice the various LSAs

being advertised to the neighboring router. Another important thing to

Chapter 5 Analyzing Control Plane Traffic

204

remember is that the Init (I) bit is always set on the initial DBD packet sent

by each side of the segment. The More (M) flag is set where there are more

DBD packets pending that will be sent by the router.

Figure 5-4.  OSPF database description packet

The LS Update packets are sent between the routers in the segment.

When an LS Update is sent by DR, it is sent to destination address

224.0.0.5, whereas BDR sends it over 224.0.0.6. The LS Update packet

basically contains the list of LSAs that the OSPF router wants to advertise

Chapter 5 Analyzing Control Plane Traffic

205

to its neighboring device to synchronize the OSPF database. Figure 5-5

displays the Wireshark capture of the OSPF LS Update packet advertising

LSA Type 1 and LSA Type 2 to the neighboring router.

Figure 5-5.  OSPF LS Update packet

What does an LSA header look like? Each LSA has a common header

with 20 bytes followed by a number of additional fields that describe the

link. Here are the fields present in the OSPF LSA header:

•	 LS Age (2 bytes): Represents the elapsed time since the

LSA was created.

•	 Options (1 byte): Used for advertising OSPF capabilities

supported by the router.

•	 LS Type (1 byte): Indicates the type of LSA.

Chapter 5 Analyzing Control Plane Traffic

206

•	 Link State ID (4 bytes): Indicates the link of either the

router or the network the link represents.

•	 Advertising Router (4 bytes): Indicates the OSPF router

ID of the router originating the LSA.

•	 LS Sequence Number (4 bytes): A sequence number

used to detect old or duplicate LSAs.

•	 LS Checksum (2 bytes): Checksum of the LSA, which is

used for identifying any data corruption.

•	 Length (2 bytes): Length of the LSA including 20 bytes

of the header.

Figure 5-6 displays the Wireshark capture of an LSA Type 3 header

within a DBD packet.

Figure 5-6.  OSPF LSA header

Based on the LS Update packet, the router sends an LSA packet.

Figure 5-7 displays the LSA packet sent by the router R1 in response to the

LS Update packet sent by R3 in Figure 5-5.

Chapter 5 Analyzing Control Plane Traffic

207

Figure 5-7.  OSPF LSA packet

Most of the issues in OSPF are usually seen during adjacency bring

up, but once the adjacency is up, OSPF remains stable. There might be a

bit of difference based on the different OSPF area types, especially with

OSPF NSSA. In an OSPF NSSA, the Hello packet has an NSSA (N) bit set,

which tells the peering router that it has the NSSA capability enabled on it.

Figure 5-8 displays the Hello packet in the NSSA.

Chapter 5 Analyzing Control Plane Traffic

208

Figure 5-8.  OSPF NSSA Hello packet

Because NSSA advertises external prefixes as Type 7 LSA and these

Type 7 LSAs are converted to Type 5 LSAs at the ABR, the ABR specifically

looks for a Propagate (P) bit to ensure the conversion from Type 7 to Type

5 LSA is required. If the P bit is not set, the conversion from Type 7 to Type

5 LSA will not be allowed. Figure 5-9 displays the Wireshark capture of the

Type 7 LSA in the LS Update packet with the P bit set.

Chapter 5 Analyzing Control Plane Traffic

209

Figure 5-9.  OSPF Type 7 LSA

Note that most network OSs come with debug capability for various

routing protocols that can be enabled on the router for the purpose of

troubleshooting, but Wireshark can be helpful in instances when there

is a bigger risk of affecting the router in a production environment when

running debugs. When working with Wireshark, the filters listed in

Table 5-2 can be helpful to filter packets.

Chapter 5 Analyzing Control Plane Traffic

210

Table 5-2.  Wireshark OSPF Filtering

Filter Description

ospf.area_id == 0.0.0.10 Filters OSPF packets for specified Area ID

ospf.advrouter == 192.168.5.5 Filters OSPF packets with the specified

router ID of the advertising router

ospf.hello Filters OSPF Hello packets

ospf.lsa.router Filters OSPF router LSA

ospf.lsa.network Filters OSPF network LSA

ospf.lsa.summary Filters OSPF summary LSA

ospf.lsa.nssa Filters for NSSA (Type 7) LSA

ospf.lsa.asext Filters for Type 5 (External) LSA

�EIGRP
Enhanced Interior Gateway Routing Protocol (EIGRP), defined in RFC

7868, is another IGP designed and developed by Cisco Systems. It is also

known as a distance vector protocol that leverages the Diffusing Update

Algorithm (DUAL) to calculate loop-free routing paths using diffusing

computations. All routing protocols, including EIGRP, fundamentally work

the same way and have similar functions such as these:

•	 Establishing communication: EIGRP uses a three-way

handshake for establishing communication.

•	 Exchanging routes: EIGRP uses reliable transport for

exchanging routes.

•	 Performing path computation: The procotol leverages

the DUAL algorithm to perform path computation.

Chapter 5 Analyzing Control Plane Traffic

211

•	 Installing routes in the Routing Information Base (RIB):

EIGRP only installs loop-free paths in the RIB.

One of the key components of EIGRP is its Topology table. It contains

all known paths, locally learned routes, and externally learned routes

(learned via redistribution). The information available in the Topology

table is used by the DUAL algorithm to calculate the loop-free paths. The

EIGRP Topology table not only contains information about the paths, but

it also maintains information about when a route was withdrawn by a

neighbor.

Most of the computation element resides locally on the router, but

EIGRP performs all its tasks using five types of packets:

•	 Hello

•	 Update

•	 Acknowledge

•	 Query

•	 Reply

Let’s take a closer look at these packets one by one.

�Hello Packet

Hello packets are used for peer discovery and maintenance purposes.

This packet is the first message sent when the EIGRP process comes up on

a router and contains several parameters such as K values, AS numbers

that are checked by the peer router on receiving the Hello packet, before

forming neighborship. The Hello timer is set to a default of 5-s intervals on

high-bandwidth links and 60 s on low-bandwidth links. The Hello packets

are usually sent to the multicast address 224.0.0.10 unless the neighbors

Chapter 5 Analyzing Control Plane Traffic

212

are statically configured on a nonbroadcast medium such as a Frame-

Relay, in which case they are sent as unicast packets. Figure 5-10 displays

the Wireshark capture of EIGRP Hello packets. Note that you can simply

filter the EIGRP Hello packets using the filter (eigrp.opcode == 5)

&& (eigrp.ack == 0). Note that the eigrp.ack filter is used to filter

out the Acknowledge field because the opcode for both the Hello and

Acknowledge fields is the same, but the latter has a nonzero value in the

Acknowledge field.

Figure 5-10.  EIGRP Hello packet

Note T he Hello packet also has the Stub flag set when sent by
an EIGRP stub router. Users can filter it in Wireshark using the filter
eigrp.stub_flags.

Chapter 5 Analyzing Control Plane Traffic

213

�Update Packet

The Update packets are used by EIGRP to convey reachability information

for prefixes to EIGRP neighbors. After an EIGRP neighborship is

established, EIGRP routers send Update packets as unicast to the neighbor

routers which contains all the routes, also known as the full updates. Each

route in the update message contains metrics such as bandwidth, delay,

load, reliability, and other information such as hop count, MTU, and so on.

Once the full updates are exchanged between the EIGRP neighbors, the

Update packets are only exchanged when there is a change in topology.

For instance, a link flap triggers a withdrawal of multiple routes. This is

communicated to EIGRP neighbors via a multicast packet only containing

the updates. These updates are called partial updates. Figures 5-11 and 5-12

display both the EIGRP full updates and partial updates.

Figure 5-11.  EIGRP full update

Chapter 5 Analyzing Control Plane Traffic

214

Figure 5-12.  EIGRP partial update

Users can filter EIGRP update packets in Wireshark using the eigrp.

opcode == 1 filter. This filter displays both full and partial updates

in EIGRP.

�Acknowledge Packet

EIGRP works similar to the TCP three-way handshake, where the

initial packet could be an Update, Query, or Reply packet and in

acknowledgment to these packets, an Acknowledge packet is sent by the

EIGRP router. The difference between the TCP and EIGRP three-way

handshake is that the sequence number in EIGRP is not incremented but

rather copied in the Acknowledge field. Also, this whole communication is

done by Cisco’s proprietary Reliable Transport Protocol (RTP). The EIGRP

Chapter 5 Analyzing Control Plane Traffic

215

Acknowledge packet has the same opcode as the EIGRP Hello packet,

but with a nonzero Acknowledge field value. Figure 5-13 displays the

Wireshark capture of an EIGRP Acknowledge packet.

Figure 5-13.  EIGRP Acknowledge packet

You can filter the EIGRP Acknowledge packet by using the Wireshark

filter (eigrp.opcode == 5_ && !(eigrp.ack == 0). The ! operator

ensures that we only capture the Acknowledge packet and not the EIGRP

Hello packet.

�Query Packet

EIGRP queries are sent when a router loses a route to a destination

network (the destination prefix goes into active state). Queries are

normally sent as multicast to all the neighboring routers to find other

paths to the destination prefix. If a receiving router cannot find an

alternate path to the destination prefix, it will then query its peers for the

Chapter 5 Analyzing Control Plane Traffic

216

destination prefix. This process goes on until the query has reached the

boundary router. Figure 5-14 displays the EIGRP Query packet for the

destination prefix.

Figure 5-14.  EIGRP Query packet

You can filter the EIGRP Query packet in Wireshark using the filter

eigrp.opcode == 3.

Note EIGRP Query packets are not sent to stub routers.

Chapter 5 Analyzing Control Plane Traffic

217

�Reply Packet

The EIGRP Reply packet is sent in response to the Query packet. After

sending the Query packet, a router waits for a reply from its peer routers.

If a router receiving the Query packet knows about an alternate path to

the destination prefix, it will respond back to the querying router with the

necessary metrics to reach the destination prefix. Figure 5-15 displays

the Wireshark capture of an EIGRP Reply packet. You can filter the Reply

packet using the Wireshark filter eigrp.opcode == 4.

Figure 5-15.  EIGRP Reply packet

Chapter 5 Analyzing Control Plane Traffic

218

�BGP
BGP, often called the routing protocol of the Internet, is an open standard

protocol used for connecting network across different AS boundaries. BGP

is a highly scalable protocol and has support for multiple address families

such as IPv4, IPv6, VPNv4, L2VPN, EVPN, and so on, which allows BGP to

be the protocol of choice in enterprise, datacenter, and service provider

environments. BGP, in general, cannot route traffic on its own. It leverages

the information from IGP to reach to the next hop for the prefix. BGP

knows about the prefixes that might be within the same AS boundary or

across multiple AS boundaries. BGP only knows about next hops to reach

the destination, but it needs IGP to get to that next hop.

Because BGP exchanges information across AS boundaries, it is also

important that the information is exchanged via a reliable mechanism.

Thus, BGP leverages TCP as its transport mechanism. A BGP session is

established on TCP port 179. In BGP, two types of neighborships can be

established:

•	 Internet BGP (iBGP): BGP peering established with

other routers within the same AS boundary.

•	 External BGP (eBGP): BGP peering established with

routers across AS boundaries.

For two routers to establish a BGP peering, they go through a finite

state machine as listed here:

•	 Idle: In this state, BGP detects a start event and

initializes the BGP resources on the router. The BGP

process initiates a TCP connection toward the peer.

•	 Connect: In this state, BGP waits for the three-way

handshake to complete. If the three-way handshake

is successful, an OPEN message is sent and the BGP

Chapter 5 Analyzing Control Plane Traffic

219

process moves to the OpenSent state. If it is not

successful, BGP moves to the Active state, and waits for

a ConnectRetry timer.

•	 Active: BGP starts a new three-way handshake. If the

connection is successful, it moves to OpenSent state. If

it is unsuccessful, the BGP process moves back to the

Connect state.

•	 OpenSent: In this state, the BGP process sends an

OPEN message to the remote peer and waits for an

OPEN message from the peer.

•	 OpenConfirm: In this state, the router has already

received the OPEN message from the remote peer and

is now waiting for a KEEPALIVE or NOTIFICATION

message. On receiving the KEEPALIVE message,

the BGP session is established. On receiving a

NOTIFICATION message, BGP moves to the Idle state.

•	 Established: This state indicates that the BGP session

is established and is now ready to exchange routing

updates via the BGP UPDATE message.

From this finite state machine, we have already learned that there are

four types of BGP messages:

•	 OPEN: This is the first message exchanged between

BGP peers after a three-way handshake has been

established between the peers. Once each side

confirms the information shared in the BGP OPEN

message, other messages are exchanged between them.

The following information is compared as part of the

OPEN message:

•	 BGP version

Chapter 5 Analyzing Control Plane Traffic

220

•	 Source IP of the OPEN message should match with

configured peer IP

•	 Received AS number should match the configured

remote AS number of the BGP peer

•	 BGP Router ID must be unique

•	 Other security parameters such as password, TTL,

and so on

•	 KEEPALIVE: The BGP KEEPALIVE message acts like

a Hello packet to check whether the BGP peer is alive

or not. This message is used to keep sessions from

expiring.

•	 NOTIFICATION: BGP NOTIFICATION is sent when the

BGP process encounters an error condition. When this

message is received, the BGP process closes the active

session for which the notification was received. The

NOTIFICATION message also contains the information

such as error code and suberror code that can be used

to determine the cause of the error condition.

•	 UPDATE: This message is used for exchanging routing

updates (advertisements and withdrawals) between

BGP peers.

We’ll now examine these BGP messages in Wireshark. First for the BGP

OPEN message, the following fields are present in the header:

•	 Marker: Set to fffffffffffffffffffffff.

•	 Length: Length of the BGP header

•	 Type (OPEN message): Value set to 1.

Chapter 5 Analyzing Control Plane Traffic

221

•	 Version: Specifies the current BGP version used by the

router. The current version is 4 as defined in RFC 4271.

•	 MS AS: Specifies the AS number of the router

originating the OPEN message.

•	 Hold Time: Specifies the Hold Timer value set on the

router sending the OPEN message.

•	 BGP Identifier: Router ID of the router sending the

OPEN message.

•	 Optional Parameters Length: Variable length, specifies

the combined length of all the parameters included in

the Optional Parameters field.

•	 Optional Parameters: This field is used by the router to

advertise optional BGP capabilities that are supported

in BGP by the OS running on the advertising router.

Some of these capabilities include the following:

•	 Multiprotocol BGP (MP-BGP) support

•	 Route Refresh support

•	 4-octet (4-byte) AS number support

Chapter 5 Analyzing Control Plane Traffic

222

Figure 5-16 displays the BGP OPEN message.

Figure 5-16.  BGP OPEN message

The BGP KEEPALIVE message, as mentioned before, is used to

ensure BGP peers are active. The BGP process does not rely on the TCP

connection to validate that the BGP peers are up. BGP KEEPALIVE

messages are sent every 60 s by default with the Hold Timer set to 180 s.

Figure 5-17 displays the Wireshark capture of a BGP KEEPALIVE message

sent between BGP peers. We can see from the Wireshark capture that there

are only three fields present in the BGP KEEPALIVE message.

Chapter 5 Analyzing Control Plane Traffic

223

Figure 5-17.  BGP KEEPALIVE message

A BGP NOTIFICATION message is also a short message that contains

the information about error code (major error code) and suberror code

(minor error code). Because BGP peering may be established multiple

hops away, BGP provides a mechanism to notify other peers about what

might have triggered the error condition, causing the BGP peering to flap.

Figure 5-18 displays the Wireshark capture of the BGP NOTIFICATION

message. In the Wireshark capture we can see that the error code is 6 and

the suberror code is 4, which indicates Administratively Reset. Thus, this

notification message indicates that the BGP peering was manually reset.

Figure 5-18.  BGP NOTIFICATION message

Chapter 5 Analyzing Control Plane Traffic

224

Before we dive into the BGP UPDATE message, let’s first understand

how the BGP update packaging happens. Once the initial TCP session

is established, both endpoints maintain the information about the TCP

MSS. As mentioned in Chapter 3, MSS = MTU – IP Header (20 bytes) – TCP

Header (20 bytes). When the BGP process wants to send updates to its

BGP peers, it packages all the updates to a maximum of MSS bytes and

sends it across to the remote BGP peer with the Don’t Fragment (DF)

bit set. If all the updates cannot be sent in one single update, BGP sends

multiple updates to update the remote BGP peers. It is possible that if any

of the segments has lower interface MTU or IP MTU settings, but the MSS

negotiation happened with a higher value, the BGP updates might not be

able to make it to the remote BGP peer. When the BGP UPDATE packet

is sent, the BGP process does not send a BGP KEEPALIVE message. It

treats the BGP UPDATE packet as the BGP KEEPALIVE message and the

acknowledgment of the BGP UPDATE packet as an acknowledgment to

the KEEPALIVE message. Therefore, if the BGP UPDATE packet is unable

to make it to the remote end, the BGP session will flap due to Hold Timer

expiry. Figure 5-19 displays the Wireshark capture of the BGP UPDATE

packet. Notice that in the IP header, the DF bit is set, and in the BGP

header, we can see the BGP UPDATE message. The BGP UPDATE message

contains the attributes attached to the BGP prefixes and the BGP prefixes

are listed as Network Layer Reachability Information (NLRI).

Chapter 5 Analyzing Control Plane Traffic

https://doi.org/10.1007/978-1-4842-8002-7_3

225

Figure 5-19.  BGP UPDATE message

Most BGP issues can be investigated from the CLI. You might only

need to leverage the help of Wireshark when there is an issue with the

following:

•	 TCP session

•	 Packet loss

•	 Network OS not generating packets in a timely manner

•	 Device not sending the BGP packets out in a

timely manner

•	 BGP updates getting corrupted

Chapter 5 Analyzing Control Plane Traffic

226

�PIM
Today, almost every network uses multicast in one way or the other.

Multicast allows for one-to-many traffic, but only to those who have

subscribed or are interested in that traffic. Multicast applications have

wide implementation and use cases in financial, health care, digital

streaming, and many other types of organizations. Before we dive into

multicast and routing protocols to carry PIM-related traffic, we need to

understand some key terms:

•	 Source address: Unicast address of a multicast source

or sender.

•	 Group address: Destination IP address of a multicast

group. Note that multicast addresses range from

224.0.0.0 to 239.255.255.255.

•	 Multicast distribution tree (MDT): Multicast flows

from source to receivers over an MDT. The MDT is

either shared or dedicated based on the multicast

implementation

•	 Rendezvous point (RP): A multicast-enabled router that

acts as the root of the shared MDT.

•	 Protocol Independent Multicast (PIM): Routing protocol

used to create MDTs.

•	 First-hop router (FHR): First L3 hop that is directly

adjacent to the multicast source.

•	 Last-hop router (LHR): First L3 hop that is directly

adjacent to the receivers.

In this chapter, we focus on the PIM protocol and its messages and see

how it is used to build MDT.

Chapter 5 Analyzing Control Plane Traffic

227

The PIM protocol is used to build shared trees as well as shortest path

trees from source to receivers to facilitate the distribution of multicast

traffic. The PIM protocol runs over the L3 network and builds an overlay

network for multicast using the information from the underlying IGP. Thus,

when troubleshooting multicast issues, it is important to validate the

unicast routing information learned via the IGP. With the help of IGP,

PIM is able to locate where the source, receiver, and the RP resides. PIM

operates in two modes:

•	 Dense mode: – Based on a push model, PIM Dense

mode operates under the assumption that receivers are

densely dispersed through the network. In this mode,

multicast traffic is flooded domain-wide to build a

shortest path tree, and the branches are pruned back

where no receivers are found.

•	 Sparse mode: Based on a pull model, PIM Sparse mode

assumes that the receivers are sparsely dispersed.

In this mode, PIM neighbors are formed and traffic

is forwarded only over the PIM-enabled path. Using

PIM messages, the join request from receivers is

forwarded to the RP and thus the mechanism is known

as explicit join. Because of this method, it is also the

most preferred and widely used method for multicast

distribution.

The PIM protocol has the following fields in its header:

•	 PIM Version (4 bits): Version number is set to 2.

•	 Type (4 bits): Used to specify the PIM message type.

•	 Reserved (8 bits): Reserved for future use. The value is

set to 0 in this field during transmission and is ignored

by the PIM neighbor.

Chapter 5 Analyzing Control Plane Traffic

228

•	 Checksum (16 bits): Used to calculate the checksum of

the entire PIM message except for the payload section.

There are multiple PIM message types, but not all messages are used in

all deployments. Some of the most commonly seen PIM messages in basic

multicast deployment are listed in Table 5-3.

Table 5-3.  PIM message types

Type Message Type Destination Address Description

0 Hello 224.0.0.13 Neighbor discovery.

1 Register Address of RP (unicast) Register message is sent by FHR

to RP to register the source.

2 Register-stop Address of FHR (unicast) This message is sent by RP to

the FHR in response to the PIM

Register message.

3 Join/Prune 224.0.0.13 Join or prune from an MDT.

�PIM Hello Message

The PIM Hello message, identified with Type 0, is sent on all PIM-

enabled interfaces to discover and form PIM neighbor adjacencies. PIM

neighborship is unidirectional in nature, so it is important to validate the

PIM neighborship from both ends of the link. The PIM Hello messages

are sent periodically and with the destination address of 224.0.0.13. A

PIM Hello message allows for multiple options in Type, Length, and Value

(TLV) format. The options supported in PIM Hello messages are listed in

Table 5-4.

Chapter 5 Analyzing Control Plane Traffic

229

Table 5-4.  PIM Hello Message Options

Option Type Option Value

1 Holdtime: The amount of time in which the neighbor is in a

reachable state

2 Has the following parts:

• �LAN Prune Delay: Delay before transmitting Prune message in a

shared LAN segment

• Interval: Time interval for overriding a Prune message

• T: Join message suppression capability

19 DR priority used during DR election

20 Generation ID: Random number indicating neighbor status

24 Address List: used for informing neighbors about secondary IP

address on interface

Figure 5-20 displays the PIM Hello message between two PIM

neighbors.

Figure 5-20.  PIM Hello message

Chapter 5 Analyzing Control Plane Traffic

230

�PIM Register Message

When the source sends multicast traffic, the FHR’s PIM DR takes the first

packet, encapsulates it with the PIM header, and sends it as a unicast

packet to the PIM RP. The PIM Register message is used to inform the PIM

RP that the source is actively sending traffic for the given multicast group.

The PIM Register message contains the following fields in its header:

•	 Type: Value is set to 1 for Register message.

•	 Border (B-bit): The PIM multicast border router

functionality is defined in RFC 4601, which designates

a local source when this bit is set to 0 and designates

the source in a directly connected cloud when this bit is

set to 1.

•	 Null-Register: This bit is set to 1 when a Null-Register

message is sent. In the Null-Register message, the FHR

only encapsulates the header from the source and not

the complete encapsulated data packet of the multicast

stream coming from the source.

•	 Multicast Data packet: The original multicast packet

sent by the source is encapsulated inside the PIM

Register message. If the message is a Null-Register

message, only a dummy IP header containing the

source and group address is encapsulated in the PIM

Register message. Note that the TTL of the original

packet decrements before encapsulation into the PIM

Register message.

Chapter 5 Analyzing Control Plane Traffic

231

Figure 5-21 displays the Wireshark capture of the PIM Register message

sent by the FHR to the RP (192.168.3.3).

Figure 5-21.  PIM Register message

�PIM Register-Stop Message

On receiving the PIM Register message, the RP adds the source to the

multicast distribution tree. Once the RP receives the first packet natively

through the shortest path, it will send a PIM Register-stop message to the

DR that has built the Shortest Path Tree (SPT) toward the source. The PIM

Register-stop message has the following fields:

•	 Type: Value is set to 2 for PIM Register-stop message.

•	 Group Address: Group address of the encapsulated

multicast packet in the PIM Register message.

•	 Source Address: Source address of the encapsulated

multicast packet in the PIM Register message.

Chapter 5 Analyzing Control Plane Traffic

232

Figure 5-22 displays the Wireshark capture of the PIM Register-stop

message from RP to the DR that sent the PIM Register message.

Figure 5-22.  PIM Register-stop message

�PIM Join/Prune Message

The PIM Join/Prune message is sent by PIM routers toward the PIM RP

or toward the source with the destination set to PIM multicast address

224.0.0.13. These messages are used to build RP trees (RPTs) toward the

PIM RP or to build SPT toward the source. The PIM Join/Prune message

contains a list of sources (called source lists) and groups (called group sets)

to be joined or pruned. The following fields are present in the PIM Join/

Prune message:

•	 Type: Value is set to 3 for Join/Prune message.

•	 Upstream Address: Address of the upstream neighbor to

which the message is targeted. It also has subfields that

represent the address family of the upstream neighbor

as well as the encoding.

Chapter 5 Analyzing Control Plane Traffic

233

•	 Number of Groups: Represents the number of multicast

group sets in the message.

•	 Holdtime: The amount of time to keep the Join/Prune

state alive.

•	 Num Joins: Number of joined sources in the message.

•	 Joined Source Address {IP Address x.x.x.x/32}

•	 Sparse bit (S): Set to 1 for PIM Sparse mode.

•	 Wildcard bit (W): When set to 1, this represents

wildcard a in the (*, G) entry. When set to 0,

this indicates that the encoded source address for

(S, G) entry.

•	 RP bit (R): When set to 0, join is sent toward source.

When set to 1, join is sent toward RP.

•	 Num Prunes: Number of pruned sources in the

message.

•	 Pruned Source Address {IP Address x.x.x.x/32}:

Represents the list of sources being pruned for the

group. All three flags in Joined Source Address are

applicable for Pruned Source Address, too.

Chapter 5 Analyzing Control Plane Traffic

234

The PIM Join message is sent by the LHR’s DR toward the RP whenever

a receiver shows an interest in receiving a multicast stream. Figure 5-23

displays the Wireshark capture of the PIM Join message from the FHR

toward the RP.

Figure 5-23.  PIM Join message

A PIM Prune message is sent by a PIM router when it wants to remove

itself from the multicast tree for a particular multicast group. Figure 5-24

displays the Wireshark capture of a PIM Prune message when there is no

receiver interested in the multicast stream.

Chapter 5 Analyzing Control Plane Traffic

235

Figure 5-24.  PIM Prune message

�Analyzing Overlay Traffic
So far, we have learned about analyzing routing protocol traffic that

can run on physical links or virtual links such as SVIs. Such networks

are known as underlay networks. The routing protocols, however, can

also run over an overlay network. An overlay network is a network that

is built on top of another network and leverages underlying network

configuration and protocols to establish communication as if they were

locally connected. The devices or endpoints in an overlay network could

be residing multiple hops away in the same or a different geographical

location. In overlay traffic, the actual host traffic is encapsulated with

the headers of the underlay network. We next look at different overlay

protocols and how we can analyze the overlay traffic using Wireshark.

Chapter 5 Analyzing Control Plane Traffic

236

�GRE
Generic Routing Encapsulation (GRE), defined in RFC 2784, is an overlay

protocol that allows users to create virtual point-to-point links and

encapsulate the data packets in a tunnel interface. Because it creates

a point-to-point link, each side can encapsulate any outgoing packets

toward the remote end and de-encapsulate any incoming packets from

the far end of the tunnel. With GRE, users might be running a different

routing protocol in the underlay to establish the reachability between the

two endpoints of the tunnel while running a different routing protocol in

overlay to establish end-to-end connectivity of hosts and devices sitting

behind the tunnel endpoints. Figure 5-25 displays the Wireshark capture of

the GRE encapsulated packet. Notice that GRE is a 4-byte header, but there

is also an overhead of 20-byte outer IP header after the encapsulation.

Thus, we need to make sure that the IP MTU value is adjusted accordingly

when encapsulating traffic with GRE.

Figure 5-25.  GRE encapsulation

Chapter 5 Analyzing Control Plane Traffic

237

When data traffic is GRE encapsulated, the TTL value in the outer

IP header decrements but does not in the inner IP header. Figure 5-26

displays the Wireshark capture of GRE encapsulated traffic captured after

the first Layer 3 hop. Notice that the outer IP header has a TTL value of

254, whereas the inner IP header (with source IP set to 192.168.1.1 and

destination IP set to 192.168.2.2) has a TTL value of 255.

Figure 5-26.  GRE encapsulated traffic after first Layer 3 hop

�IPSec
IP Security (IPSec), defined in RFC 1825 through RFC 1827, is a suite of

protocols to establish secure communication between two endpoints

across the IP network that provides authentication, data integrity, and

confidentiality. The RFC also defines the protocols needed for secure key

exchange and key management. The following protocols are part of the

IPSec protocol suite:

Chapter 5 Analyzing Control Plane Traffic

238

•	 Authentication Headers (AH): AH provides data

integrity, authentication, and antireplay capabilities,

which protects against unauthorized transmission of

packets.

•	 Internet Key Exchange (IKE): – IKE is a network security

protocol that defines how to dynamically exchange

encryption keys and use Security Associations (SAs)

to establish shared security attributes between the

two IPSec tunnel endpoints. The Internet Security

Association Key Management Protocol (ISAKMP)

provides a framework for authentication and key

exchange and defines how to setup SAs. There are two

versions of IKE:

•	 IKEv1

•	 IKEv2

•	 Encapsulating Security Payload (ESP): ESP provides

authentication for the payload or data. It ensures data

integrity, encryption, and authentication and prevents

any replay attacks on the payload.

Let’s now look at the negotiation for IKEv1 in Wireshark. Figure 5-27

displays the Wireshark capture of all the initial communication between

the two routers participating in IPSec IKEv1 negotiations and then

transmitting data after a secure communication has been established.

From the Wireshark capture we can see there are six Main mode messages

as part of Phase 1 that negotiate security parameters to protect the next

three Quick mode messages as part of Phase 2.

Chapter 5 Analyzing Control Plane Traffic

239

Figure 5-27.  Wireshark capture of IPSec IKEv1 negotiations

In Phase 1, as shown in Figure 5-28, the first step is policy negotiation.

In the first packet, the sender adds its unique Security Parameter Index (SPI)

to identify itself. Along with the SPI, the sender also sends a set of proposals

with various security parameters, called transforms. These transforms are

used by the receiver to match with its local policies.

Chapter 5 Analyzing Control Plane Traffic

240

Figure 5-28.  Wireshark capture of first Phase 1 packet

On receiving the packet, the receiver responds with the Responder SPI

and picks one of the transforms that it received based on the configuration.

Figure 5-29 displays the Wireshark capture of the reply sent by the

responder for the first packet.

Chapter 5 Analyzing Control Plane Traffic

241

Figure 5-29.  Wireshark capture of second Phase 1 packet

In the next two packets, both the peers exchange Diffie-Hellman (DH)

public keys, which allows them to agree on a shared secret key. Figure 5-30

displays the Wireshark capture of the DH keys. Notice that there is a

Nonce data highlighted in the packet capture. The Nonce value helps

protect against replay attacks by adding randomness to the key generation

process.

Chapter 5 Analyzing Control Plane Traffic

242

Figure 5-30.  Wireshark capture of DH keys

The last two packets of the Main mode are used for authentication

purposes. In this exchange, both peers confirm each other’s identity. If

both sides agreed on a preshared mechanism of authentication, then both

sides check whether they have the same preshared key or not. Figure 5-31

displays the Wireshark capture of the identification-related payload.

Notice in this Wireshark capture that the Flags field highlights that there is

no authentication between the two peers.

Chapter 5 Analyzing Control Plane Traffic

243

Figure 5-31.  Wireshark capture of Phase 1 authentication process

After this step, we move to Phase 2 (Quick mode). In this phase, we

primarily focus on establishing security parameters that will be used

by IPSec SA. Figure 5-32 displays the packet exchanged in Quick mode.

Remember that there are three packets that are exchanged in Quick mode

but only one is showed for brevity.

Chapter 5 Analyzing Control Plane Traffic

244

Figure 5-32.  Wireshark capture of Phase 2 Quick mode

Once Phase 2 is completed, the IPSec tunnels are formed, and all the

packets exchanged over the tunnel interface are encrypted. For instance, if

you send ICMP traffic, looking at the Wireshark capture you might not be

able to identify that it is an ICMP packet or some other type of packet.

�VXLAN
VXLAN is an overlay protocol that provides Layer 2 extensions in a

datacenter environment. It allows users to extend Layer 2 domains in

multitenant environments leveraging the underlying IP infrastructure.

VXLAN can also be called a MAC-in-UDP encapsulation. With VXLAN

encapsulation, the original Layer 2 header is encapsulated with a UDP

header and a VXLAN header. VXLAN packets are sent on the destination

UDP port 4789. The VXLAN header provides a 24-bit segment ID that

allows users to have up to 16 million VXLAN segments in the same

datacenter environment. Figure 5-33 displays how the classical Ethernet

frame looks when encapsulated with VXLAN.

Chapter 5 Analyzing Control Plane Traffic

245

Destination
Address

Source Address

VLAN Type 0x8100

VLAN ID Tag

Ether Type 0x0800

Outer MAC
Header FCSOuter IP Header Outer UDP

Header Original Layer 2 FrameVxLAN
Header

IP Header Misc.
Data

Protocol 0x11

Header Checksum

Source IP

Destination IP

Source Port

VxLAN Port

UDP Length

Checksum

VxLAN
RRRR1RRR

Reserved

VNI

Reserved

20 Bytes

8 Bytes

8 Bytes

48

48

16

16

16

72

8

16

32

32

16

16

16

16

8

24

24

8

14 Bytes
(4 bytes optional)

UDP 4789

Hash of inner L2/l3/L4 headers of
original frame. Enables entropy for

ECMP Load balancing

16M possible
segments

NH MAC
Addr

Src VTEP MAC Addr

Src and Dst
Addresses of VTEP

Figure 5-33.  VXLAN encapsulated Ethernet frame

The VXLAN encapsulation and de-encapsulation is done by Virtual

Tunnel End Points (VTEPs) that connect classic Ethernet segments to

the VXLAN fabric. The VXLAN core fabric is usually based on a spine-

leaf architecture. Traffic forwarding in VXLAN fabric is dependent on the

type of traffic. Broadcast, Unknown Unicast, and Multicast (BUM) traffic

requires either multicast replication or unicast replication of packets to a

remote VTEP as these packets are sent to multiple VTEPs at the same time.

Unicast traffic, on the other hand, does not require any kind of replication.

Unicast traffic is encapsulated with VXLAN and a UDP header and sent to

the destination VTEP where the host resides. There are, thus, two types of

replication methods supported with VXLAN.

The first method is multicast replication. In multicast replication, a

multicast group is mapped to the VXLAN Network Identifier (VNI), which

in turn is mapped to a VLAN ID where the host resides. When BUM traffic

is sent—for instance, an ARP request is sent for a destination host residing

in the same VLAN or same VXLAN segment—the ARP request is multicast

replicated to all the VTEPs that have the matching VXLAN Network

Identifier (VNID) configured. The multicast destination address in the

Chapter 5 Analyzing Control Plane Traffic

246

VXLAN encapsulation is the same multicast address that was mapped to

the VNI. Figure 5-34 displays the VXLAN-encapsulated BUM traffic. Notice

that in this Wireshark capture, the destination address in the IP header is

set to 239.1.150.1, which is the multicast address mapped to VNI 10000.

Figure 5-34.  VXLAN encapsulation BUM traffic with multicast
replication

Because the ARP response is a unicast packet, the ARP reply will be

encapsulated with the VXLAN header, but will be sent as a unicast packet

to the source VTEP where the source host resides. Once both the end hosts

have learned about each other’s MAC address, all the communication

will be unicast-based communication. Figure 5-35 displays the Wireshark

capture of unicast packets between the two hosts residing in same the VNI

segment. Notice that the outer header has the IP address of the VTEPs and

the inner IP header has the source and destination IP address of the source

and destination hosts.

Chapter 5 Analyzing Control Plane Traffic

247

Figure 5-35.  VXLAN encapsulated unicast packet

The second replication method is ingress replication, or unicast

replication. This method is used in scenarios where either the organization

is not interested in enabling multicast in its fabric or the devices are

incapable of running multicast features. The BUM traffic, in this case, is

replicated to statically configured remote VTEPs as unicast packets.

So far, we have explored the communication of hosts within the same

VNI. Inter-VNI communication in VXLAN fabric is performed through

symmetrical Integrated Routing and Bridging (IRB) and with the help of

a Layer 3 VNI. For some context of what a Layer 3 or Layer 2 VNI is, let’s

first understand the concept of a tenant. A tenant is a logical instance that

provides Layer 2 or Layer 3 services in a datacenter. Each tenant consists

of multiple Layer 2 VNIs and a Layer 3 VNI. Layer 2 VNIs are the segments

where the hosts are connected and the Layer 3 VNI is used for inter-VNI

routing.

If we try to understand the symmetrical IRB from a packet forwarding

perspective, let’s consider an example where the host H1 with IP address

10.150.1.1, residing in VLAN 1501, which is mapped to VXLAN segment ID

Chapter 5 Analyzing Control Plane Traffic

248

10000, tries to reach to a host H3 with IP address 10.150.2.3 residing in VLAN

1502, which is mapped to VXLAN segment ID 10001. Because these hosts

are in different VXLAN segments, we will have to leverage the Layer 3 VNI,

let’s say 50000. When the packet from the source host reaches the source

VTEP, the VTEP performs a lookup for the destination and understands

that the destination resides in a different VXLAN segment and on a remote

VTEP. It therefore switches the traffic coming in on segment 10000 and sets

the VNID value to 50000 when encapsulating the packet with a VXLAN

header and sends it out. When the remote VTEP receives the VXLAN

encapsulated packet, it notices the VNID is set to L3 VNI and it performs a

routing lookup for the destination IP in the tenant VRF and realizes that it

resides in the segment 10001. Because the segment after de-encapsulation

is just a VLAN segment, the packet is forwarded to the host residing in VLAN

1502. Figure 5-36 displays the Wireshark capture of the VXLAN encapsulated

packet with the VNID value set to 50000, which is the Layer 3 VNI.

Figure 5-36.  Typical LAN

There are various implementations of VXLAN such as VXLAN-EVPN

and VXLAN Multi-site, but the concept remains the same and the method

of encapsulation and de-encapsulation remains the same. Thus, when

Chapter 5 Analyzing Control Plane Traffic

249

investigating any VXLAN issue, you might run into issues related to BUM

replication or unicast forwarding. In the case of BUM replication with

multicast, you might want to troubleshoot the issue from a multicast

perspective more than from a VXLAN perspective.

�Summary
This chapter is primarily focused on topics that are specific to network

engineers to assist them in day-to-day troubleshooting of various routing

protocols and overlay network traffic. We began the chapter learning

about how to analyze routing protocol traffic such as OSPF, EIGRP, BGP,

and PIM. We then moved on to learn about overlay traffic such as GRE

and IPSec VPNs. As part of analyzing overlay traffic, we also covered one

of the most widely used and critical encapsulations, VXLAN. This chapter

assumes that readers understand how these protocols work. They can then

build on top of that to reach a deeper understanding of those protocols by

learning about the content of their headers and how they can troubleshoot

some scenarios that are commonly seen in production environments.

Chapter 5 Analyzing Control Plane Traffic

251© Vinit Jain 2022
V. Jain, Wireshark Fundamentals, https://doi.org/10.1007/978-1-4842-8002-7

Index
A
Area Border Router (ABR)

router, 198
Assured Forwarding (AF), 128, 129
Authentication Headers (AH), 238
Autonomous system (AS), 196, 197
Autonomous System Boundary

Router (ASBR), 197, 198

B
Berkeley Packet Filtering (BPF), 48
Broadcast, Unknown Unicast, and

Multicast (BUM), 245

C
Cisco Nexus OS (NX-OS), 25
Class of Service (CoS), 127
Command-line interface (CLI), 5
Content Addressable Memory

(CAM), 86
Cyclic Redundancy Check (CRC), 82

D
Database description (DBD), 200
Data Link layer, 70, 79–81, 137, 139

Data traffic, 127, 195, 237
Deep packet inspection (DPI), 5
Default Forwarding (DF), 128
Defense Advanced Research

Projects Agency
(DARPA), 136

Destination Address (DA), 82, 93
Differentiated Services Code Point

(DSCP), 91
Diffie-Hellman (DH) keys, 241
Diffusing Update Algorithm

(DUAL), 210

E
Encapsulating Security Payload

(ESP), 238
Enhanced Interior Gateway Routing

Protocol (EIGRP), 210
Enhanced Packet Analyzer

(EPAN), 43
Ethereal, 16
Ethernet frames, 81, 83
Ethernet II frame, 83, 84
EtherTypes, 84, 85, 133
Expedited Forwarding (EF), 128
Explicit Congestion Notification

(ECN), 91

https://doi.org/10.1007/978-1-4842-8002-7#DOI

252

F
First-hop router (FHR), 226
Fragmentation, 90, 106

G
Generic Routing Encapsulation

(GRE), 236
GNU Public License (GPL), 16
Graphical user interface (GUI), 5
Group address, 116, 226, 230, 231

H
Hardware security module

(HSM), 40

I, J, K
Interior gateway protocol

(IGP), 9, 196
International Organization for

Standardization (ISO), 69
Internet Assigned Numbers

Authority (IANA), 92
Internet Engineering Task Force

(IETF), 60
Internet Header Length (IHL), 91
Internet Key Exchange (IKE), 238
Internet Protocol (IP), 136
Internet Protocol version 4

(IPv4), 44, 90
addressing, 96–98
header, 90, 94

ICMP, 98, 99, 102, 103, 105
IP fragmentation, 106–110
options, 94, 96

Internet Security Association Key
Management Protocol
(ISAKMP), 238

IP Security (IPSec), 237
IPv4 packets, 111

addressing, 115–117
BGP, 131
DSCP, 130, 131
EH, 117
ICMPv6, 118–121
NDP, 122, 124–126
QoS, 127
RFC 2460, 111, 113, 114

L
Last-hop router (LHR), 226
Layer 2 frames, 79, 81
Layer 3 packets, ARP

protocol, 86–89
Link-state advertisement

(LSA), 198
Link-state database (LSDB), 198
Logical Link Control (LLC), 80

M
MAC-in-UDP encapsulation, 244
man tshark command, 20
Maximum transmission unit

(MTU), 82

INDEX

253

Media Access Control (MAC), 80
Multicast distribution tree

(MDT), 226

N
Neighbor Advertisement (NA),

121–123, 125, 133
Neighbor Discovery Protocol

(NDP), 122
Neighbor Solicitation (NS), 123
Network administrators, 35
Network congestion, 159, 160,

176, 195
Networking Control Protocol

(NCP), 136
Network interface card (NIC), 7
Network Layer Reachability

Information (NLRI), 224
Network packet analysis, 68
Network sniffing

definition, 6
network tap, 15, 16
placement, 6–13
placing sniffers, 14, 15

Network tap, 15, 16
Network topology, 8, 10, 102
Network traffic analysis (NTA), 4

design, 1–3
network, 1
packet sniffer tools, 5
techniques, 4, 5

O
Open Shortest Path First

(OSPF), 9, 196
Open Systems Interconnection

(OSI), 69
Out-of-order (OOO) packets, 163
Overlay network, 235
Overlay traffic, 235

GRE
definition, 236
encapsulated traffic, 237
encapsulation, 236
point-to-point link, 236
TTL value, 237

IPSec
authentication, 242, 243
definition, 237
DH keys, 241, 242
IKEv1 negotiations, 238, 239
Phase 1 packet, 239–241
protocols, 237, 238
Quick mode, 243, 244
transforms, 239
tunnels, 244

VXLAN
ARP response, 246
BUM traffic, 246
core fabric, 245
definition, 244
Ethernet frame, 244, 245
implementations, 248
ingress replication, 247

INDEX

254

inter-VNI communication, 247
IRB, 247
multicast replication, 245
typical LAN, 248
unicast packet, 246, 247
unicast traffic, 245
VTEPs, 245, 248

P, Q
Packet capture

capture filters, 48
BPF syntax, 48
custom cfilters, 49–51
default, 48, 49
uses, 47

configuration profiles, 45, 46
display filters

auto-complete, 56, 57
bookmarks/options, 57, 58
characteristics, 54
creation, 52
expressions, 54–56
features, 60
filtering, packets, 52, 53
filter options, 59
list, 53
operators, 54, 55
right-click filtering, 58–60
syntax, 52
uses, 51

dissectors

decode-As option, 44, 45
scenarios, 44
steps, 44

filtering, 47
Mac OS, 43
Options window, 41, 42
promiscuous mode, 42
tabs, 41

Packet data unit (PDU), 80, 137
Packet InterNet Grouper (PING)

tool, 99
Packets

analysis
capture file properties, 76, 77
length, 75
time, 73, 74

details pane, 71
factors, 68
list pane, 71–73
network analysis, 69
OSI model, 69–71
problem, 68
reasons, 69

Point-to-Point Protocol (PPP), 136
Port mirroring

Arista EOS, 30
JunOS, 31, 33
NX-OS, 25–29
packet capture tools, 22
SPAN, 23, 24

Protocol Independent Multicast
(PIM), 226

Overlay traffic (cont.)

INDEX

255

R
Record Route (RR), 93, 103–106
Reliable Transport Protocol

(RTP), 214
Reliable User Datagram Protocol

(RUDP), 135
Rendezvous point (RP), 226
Round trip time (RTT), 165, 174
Routing protocol traffic

BGP
AS boundaries, 218
definition, 218
issues, 225
KEEPALIVE message,

222, 223
messages, 219, 220
neighborships, 218
NOTIFICATION

message, 223
OPEN message, 220–222
states, 218, 219
UPDATE message, 224, 225
uses, 218

EIGRP
acknowledge packets,

214, 215
definition, 210
functions, 210
Hello packets, 211, 212
Query packet, 215, 216
Reply packet, 217
Topology table, 211
Update packets, 213, 214

OSPF
active neighbor, 202
adjacency issues, 199
area types, 196, 197
DBD packet, 203, 204
debug capability, 209
definition, 196
DR/BDR roles, 202, 203
fields, 205, 206
filtering, 209, 210
Hello packet, 201
Hello packet, NSSA, 207, 208
LSA header, 206
LSA packet, 206, 207
LSAs, 198
LSDB, 198
LS Update packets, 204, 205
mapping, 198, 199
master/subordinate

election, 203
MTU values, 203
networks, 199
router types, 197, 198
states, 200, 201
Type 7 LSA, 208, 209

PIM
fields, 227, 228
Hello message, 228, 229
Join/Prune message, 232,

234, 235
key terms, 226
message types, 228
modes, 227
Register message, 230, 231

INDEX

256

Register-stop message,
231, 232

uses, 227

S
Security analysts, 35, 68, 157, 186
Security Associations (SAs), 238
Shortest path first (SPF), 196
Source Address (SA), 82, 93, 226
Start of frame delimiter (SFD), 82
Stream Control Transmission

Protocol (SCTP), 135
Switched Port Analyzer (SPAN), 23

T
TCP/IP model

client/server applications, 137
data flow, 138
Internet Protocol suite, 136
Layer 2 frames and Layer 3

packets, 135
vs. OSI model, 140
problem, 140, 141
protocol suite, 139

tcptrace Time Sequence graph, 168
Transmission Control Protocol

(TCP), 4, 135, 136
fields, 142, 143
filters/functions, 183
flags, 146, 147
header, 144

packet loss
network, 159
OOO packets, 163
TCP retransmission, 160–162
traffic congestion, 160

port numbers, 146
port scanning, 157, 158
specifications, 141
three-way handshake, 148–157
Wireshark, 145

default profile, 185, 186
fields, 184
packets, 187
TCP packets, 184

Wireshark graphs
flow graph, 180–182
I/O graph, 177–179
RTT graph, 176, 177
stream, 164, 165
tcptrace time

sequence, 168–170
throughput graph, 171–173
time sequence, 165–168
Window scaling, 173–176

Trivial File Transfer Protocol
(TFTP), 189

tshark command, 20

U
Underlay networks, 235
User Datagram Protocol

(UDP), 44, 135
definition, 187

Routing protocol traffic (cont.)

INDEX

257

example, 189
header, 188
traffic, 190, 194
Wireshark, 191, 192

User interface (UI), 5, 36

V
Virtual Extensible Local Area

Network (VXLAN), 44
Virtual Tunnel End Points

(VTEPs), 245

W, X, Y, Z
Wireshark

definition, 16
installation

Mac, 19
Ubuntu, 20, 22
Windows, 17–19

UI, 36, 72
Wireshark capture files

merging, 66, 67
pcap vs. pcapng

embedding
comments, 63, 64

extendable format, 64
metadata, 64
multiple

interfaces, 61, 62
timestamps, 62

splitting, 65, 66
Wireshark preferences

advanced section, 40, 41
appearance section, 37
capture section, 38
expert section, 38
filter buttons, 39
menu, 36
name resolution, 39
protocols section, 40
RSA keys section, 40
statistics, 40

Wireshark tool, 16, 35, 36, 43, 78,
164, 181

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Wireshark
	Introduction to Network Traffic Analysis
	Network Sniffing
	Sniffer Placement
	Number of Sniffer Placements
	Network Tap

	Overview of Wireshark
	Installing Wireshark
	Installing Wireshark on Windows
	Installing Wireshark on Mac
	Installing Wireshark on Ubuntu

	Setting Up Port Mirroring
	SPAN on Cisco IOS/IOS-XE
	SPAN on Cisco Nexus Switches
	Enabling Port Mirroring on Arista EOS
	Enabling Port Mirroring on JunOS

	Summary
	References in This Chapter

	Chapter 2: Getting Familiar with Wireshark
	Overview of Wireshark Tool
	Wireshark Preferences
	Appearance
	Capture
	Expert
	Filter Buttons
	Name Resolution
	Protocols
	RSA Keys
	Statistics
	Advanced

	Performing Packet Capture Using Wireshark
	Dissectors
	Configuration Profiles
	Filtering with Wireshark
	Capture Filters
	Display Filters

	Working with Wireshark Capture Files
	PCAP vs. PCAPng
	Capture from Multiple Interfaces
	Timestamps
	Embedding Comments
	Metadata
	Extendable Format

	Splitting Packet Captures into Multiple Files
	Merging Multiple Capture Files

	Analyzing Packets in Wireshark
	OSI Model
	Analyzing Packets
	Time
	Length
	Capture File Properties

	Summary

	Chapter 3: Analyzing Layer 2 and Layer 3 Traffic
	Layer 2 Frames
	Ethernet Frames

	Layer 3 Packets
	Address Resolution Protocol
	IPv4 Packets
	IPv4 Addressing
	ICMP
	IP Fragmentation and Reassembly

	IPv6 Packets
	IPv6 Addressing
	Extension Headers
	ICMPv6
	IPv6 Neighbor Discovery

	Analyzing QoS Markings
	Summary
	Reference in This Chapter

	Chapter 4: Analyzing Layer 4 Traffic
	Understanding the TCP/IP Model
	Problem of Ownership

	Transmission Control Protocol
	TCP Flags
	TCP Three-Way Handshake
	Port Scanning
	Investigating Packet Loss
	TCP Retransmission
	TCP Out-of-Order Packets

	Troubleshooting with Wireshark Graphs
	TCP Stream Graphs
	Time Sequence (Stevens)
	Time Sequence (tcptrace)
	Throughput Graph
	Window Scaling Graph
	RTT Graph
	I/O Graphs
	Flow Graphs

	TCP Expert
	Wireshark Profile for TCP

	User Datagram Protocol
	Summary
	References in This Chapter

	Chapter 5: Analyzing Control Plane Traffic
	Analyzing Routing Protocol Traffic
	OSPF
	EIGRP
	Hello Packet
	Update Packet
	Acknowledge Packet
	Query Packet
	Reply Packet

	BGP
	PIM
	PIM Hello Message
	PIM Register Message
	PIM Register-Stop Message
	PIM Join/Prune Message

	Analyzing Overlay Traffic
	GRE
	IPSec
	VXLAN

	Summary

	Index

