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Introduction

Wireshark is one of the most sought out tools among network engineers 

and network security analysts. Wireshark gives engineers the capability to 

analyze network traffic by expanding through each section of a header and 

examining its value. Wireshark not only helps with network traffic analysis; 

it is also a critical tool when it comes to understanding or learning a 

network protocol or feature. Performing packet capture and analyzing 

network traffic can be complex, time-consuming, and tedious tasks. With 

the help of this book, users will be able to use Wireshark to its full potential 

and become expert at analyzing network traffic and more efficient at 

solving complex network problems.

This book helps build a strong foundation for how Layer 2, Layer 3, 

and Layer 4 traffic behaves and how various routing protocols and overlay 

protocols function, as well as an understanding of their packet structure. 

This book is a very useful handbook for troubleshooting engineers who 

want to analyze traffic to identify issues in the network, such as issues 

related to packet loss, bursty traffic, and so on. This book will help you 

get started on the journey of becoming a strong network engineer or a 

cybersecurity expert.



1© Vinit Jain 2022 
V. Jain, Wireshark Fundamentals, https://doi.org/10.1007/978-1-4842-8002-7_1

CHAPTER 1

Introduction to 
Wireshark
This chapter covers the following topics:

•	 Introduction to network traffic analysis

•	 Overview of Wireshark

•	 Installing Wireshark

•	 Setting up port mirroring

�Introduction to Network Traffic Analysis
Modern-day networks and network designs are complex. A network 

is a graphical representation of how different elements in the network 

(nodes) are connected. Because every business or organization has its own 

set of network requirements, network architects come up with designs 

and solutions that are best suited for the given business requirements. 

The network design differs between enterprise, service provider, and 

datacenter networks in various aspects such as scale, redundancy, 

security, and so on. A few factors are usually considered when designing a 

network:

https://doi.org/10.1007/978-1-4842-8002-7_1#DOI
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•	 Simple: A network design should be simple. Most 

practitioners in the network field are familiar with 

the KISS principle: Keep It Simple, Stupid. A network 

is dependent on various technologies, protocols, 

hardware and software resources, and so on. Even 

though each of these components might be simple 

individually, their combination in a network will 

always add to the complexity. Identifying problems in 

large-scale networks is often like finding a needle in 

a haystack. It thus becomes more important that the 

network design and architecture are kept as simple as 

possible.

•	 Highly available: Almost every network is designed 

to carry traffic for critical business applications, and 

a small network event could have a massive impact 

on the services provided by an organization. Thus, 

it is important to build redundancy into the network 

such that in the case of a failure event, the availability 

of services is maintained. Although redundancy in a 

network is vital, it is equally important to understand 

and define how much redundancy is acceptable. More 

redundant paths in the network result in higher costs.

•	 Robust: As stated in the IEEE document “Robust 

Network Design,” robustness is defined as minimizing 

variations in network performance, such as average 

delay and throughput, due to perturbations in the 

network like topology, demand, and community of 

interest. If a network design as well as its requirements 

are not thought through in depth, the network will be 

affected with increased average delays and throughput 

or performance issues over a period of time.

Chapter 1  Introduction to Wireshark



3

•	 Scalable: Because the scale of the application and user 

traffic are constantly growing, the ability to scale the 

existing network infrastructure holds great importance. 

While designing computer networks, it is important to 

choose designs that will allow you to scale the network 

horizontally as well as vertically as and when required. 

In other words, the network design should allow the 

organization to scale the network for east–west as 

well as north–south traffic on an on-demand basis. 

One such example is the Clos network design, which 

primarily focuses on the spine–leaf architecture and 

has been widely adopted by large-scale datacenter 

networks to help them cater to the increased traffic 

demand over the years.

•	 Futuristic: In designing networks, it is also important 

to choose the right set of hardware and software. 

The right hardware and software choices will allow 

you to leverage the latest technologies and current 

innovations in the network industry and will enable 

you to upgrade the firmware or the network operating 

system to access the latest available features.

Even when all of these factors are taken into consideration while 

designing a network, every network still has to undergo changes to 

overcome dynamic application and resource demands. In addition, every 

network, irrespective of how carefully it has been designed, is prone to 

network issues. As the network grows, its complexity also grows. It is only 

a matter of time before a network problem arises and network engineers 

are called on to solve the problem. Network problems are usually difficult 

to manage, and the complexity is even greater when we have multiple 

features and encapsulations being used in the network.
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The main goal of the network operations team is to keep the network 

as stable as possible and mitigate any problems as quickly as possible 

while keeping the blast radius of the event to a minimum. Most network 

outages can be quickly mitigated by following one of several techniques:

•	 Shutting down a bad or faulty link

•	 Rebooting or shutting down a network device  

(e.g., router, switch, firewall, etc.)

•	 Diverting traffic by adjusting the routing metrics

•	 Flapping a routing adjacency

Some issues could take longer time to resolve, especially when it 

comes to software or hardware defects. Among the different network-

related issues faced by network engineers, issues such as continuous or 

intermittent packet loss, latency, or routing or switching issues require a 

deeper analysis. Other issues can be quickly mitigated by replacing the 

hardware or cable or a particular port, for example, but issues related to 

packet loss or routing problems involve multiple elements in the network 

that cannot be identified and mitigated quickly. Such issues sometimes 

require more visibility at the packet level as to what data are being 

transmitted on the wire. That said, it is now time to understand what 

network analysis is.

Network traffic analysis (NTA), often referred to as packet sniffing, 

is the process of collecting (capturing) network traffic and monitoring 

network activity and events by examining the collected traffic to identify 

anomalies in the network, including but not limited to operational issues 

such as packet loss or latency and security issues such as Transmission 

Control Protocol (TCP) SYN attacks or man-in-the-middle attacks. There 

are always situations in the network where the show commands or debugs 

from the network operating system do not yield the actual packet-level 

information that is being transmitted from one node to another. A tap in 

the wire allows the network administrators to gain a clear understanding of 
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what packets are being transmitted across the network elements. There are 

several use cases where NTA techniques could be applied:

•	 Understanding network characteristics

•	 Analyzing protocol behaviors

•	 Troubleshooting slowness in the network

•	 Troubleshooting packet forwarding issues

•	 Identifying vulnerabilities in the network protocols 

and ciphers

•	 Identifying malicious activities in the network

•	 Collecting real-time information on activities between 

different network elements

Better visibility into the network allows the network administrators 

to optimize performance, enhance the security posture of the network, 

minimize the blast radius of a network attack, and better analyze the 

utilization of network resources. The packets collected in the network also 

give network administrators a better understanding of how the network 

users are implementing their applications. Techniques such as deep 

packet inspection (DPI) allow complete network visibility by transforming 

the raw packet data as well as metadata into a readable format.

Typically, packet analysis or packet sniffing is performed by a packet 

sniffer, a tool that is used to capture raw network traffic going across the 

wire (network). There are several tools available, including the free or 

commercial ones, based on the command-line interface (CLI) as well as 

the graphical user interface (GUI). These are some of the most popular 

packet sniffer tools:

•	 Tcpdump: This is a powerful CLI-based packet analyzer 

tool that is freely available and runs on Linux or most 

UNIX-like operating systems.
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•	 Omnipeek: This is a GUI-based commercial packet 

analyzer tool from Savvius, a LiveAction company.

•	 Wireshark: Wireshark is a free, open source, GUI-based 

packet analyzer available for download on various 

operating systems.

Note  In this book, we primarily focus on Wireshark. Covering 
different network analyzer tools is outside the scope of the book.

�Network Sniffing
As easy as it sounds, network sniffing is actually not easy. Most network 

engineers think that packet sniffing involves simply plugging a laptop into 

a network port and capturing traffic, but that is not the case. There are 

various factors to be considered when tapping into the wire and capturing 

traffic. Two factors play a vital role when sniffing network traffic:

	 1.	 Placement of the sniffer in the network

	 2.	 The number of sniffer placements

We discuss both these points in detail.

�Sniffer Placement

Location of the sniffer placement varies based on the network topology. 

Different network topologies have varied requirements and complexities 

and identifying the point of sniffer placement in such complex 

environments is not easy. As we know, networks include different 

elements, such as routers, switches, wireless controllers, firewalls, and so 

on. Some of these components might not even have support for enabling 

traffic mirroring for sniffing purposes. Traffic mirroring on switches can be 

Chapter 1  Introduction to Wireshark



7

enabled using a technique known as port mirroring. Port mirroring or port 

spanning can be configured on the switch using a CLI command or a web 

management interface of the switch. The best feature of port mirroring is 

that it leaves no network footprint and does not generate any additional 

packets. It can be configured without taking any of the active traffic 

interfaces or host interfaces offline, which makes it an ideal option for 

mirroring not just switch traffic, but also router or server and host ports. As 

part of the configuration, you define the source interface(s) along with the 

direction of the traffic (incoming or outgoing) you want to capture and a 

destination interface that is connected to a host with a packet capture tool, 

such as Wireshark, installed on it to collect all the mirrored packets that 

can later be used for analysis. Once this is set up, the mirrored traffic from 

all the source ports is sent to a host connected on the destination port. 

Figure 1-1 illustrates how port mirroring works. In this given topology, 

traffic sourced from host A and destined for host B is mirrored and sent to 

the capture device connected on Eth2/0.

Switch Host-BHost-A

Capture Device

Figure 1-1.  Port mirroring

For a capture device to be able to capture packets, the network 

interface card (NIC) should support promiscuous mode. A promiscuous 

mode driver allows a NIC to view all packets crossing the wire. When tools 
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such as Wireshark are installed on the capture device, they also install a 

libpcap or WinPcap driver on the device. These drivers allow the NIC to 

switch to promiscuous mode and capture packets across the network.

Now, we return to the question of what the right place is to locate the 

sniffer capture in the network. The simple answer is that it depends on 

the troubleshooting being performed and the relevant network topology 

between the problematic source and destination. First of all, it should 

never be a goal of any kind of network troubleshooting to begin with 

placing sniffer captures at multiple places in the network. The goal should 

always be to isolate and narrow down the problem as much as possible. 

In narrowing down, you might find that you do not need to place sniffer 

captures at all. To troubleshoot a network problem, it is important to 

first understand the problem and its scope. Unless a problem is clearly 

understood, troubleshooting cannot move in the right direction and it 

could take more time and effort to mitigate or resolve a problem. Second, 

as part of the problem statement, the scope information should also be 

gathered to understand the blast radius of the problem. In other words, 

the scope of the network problem can be identified by asking few simple 

questions such as these:

•	 When did the problem start?

•	 What is the problematic source and destination?

•	 What is the working source and destination?

•	 What is the relevant topology between the source and 

destination?

•	 How many users and services are affected?

•	 What was the trigger of the problem?
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Once the problem statement and the scope are clearly defined, the 

next step is to isolate the direction of the problem. For instance, let’s say 

there is a complete packet loss between hosts A and B as the traffic is 

flowing across multiple network devices. To isolate the direction of the 

problem, we need to identify if the problem is when the packet is sent from 

A to B or in the reverse direction. It could be, based on the way the network 

devices are configured, that the traffic from host B to host A might not flow 

via the same set of devices that it took when flowing from host A to host B.  

This is known as asymmetrical routing. If direction of the problem is not 

identified, we would end up placing sniffer captures randomly across 

multiple devices in the network, which consumes more time. Once the 

direction of the problem is isolated, then it is important to further narrow 

down the problem to a minimum set of devices or even interfaces. To 

understand this in detail, examine the topology shown in Figure 1-2. 

The topology shows the connectivity between two sites of an enterprise 

network. In this topology, each site has access, distribution, core, and wide 

area network (WAN) layers. The WAN routers are connected to the Internet 

service providers (ISPs) that provide connectivity to the remote site across 

the Internet. In this topology, the distribution switches, the core switches, 

and the WAN routers are all connected via an interior gateway protocol 

(IGP). The WAN routers at Site 1 are connected to the remote site WAN 

routers via Border Gateway Protocol (BGP) peering toward the ISP, which 

is exchanging certain prefixes along with a default route. The BGP prefixes 

are then redistributed into the Open Shortest Path First (OSPF) database at 

both sides to provide end-to-end connectivity between both sites.

Chapter 1  Introduction to Wireshark



10

Internet

Wan-RTR-1 Wan-RTR-3

Wan-RTR-2 Wan-RTR-4

TxCorSw1 TxCorSw2 CaCorSw1 CaCorSw2

CaDist1 CaDist2 TxDist1 CaDist2

S1 S2 S3 S4 S5 S6

H1 H2 H3 H4 H5 H6

Figure 1-2.  Enterprise network topology

Now, let’s examine a scenario where the network operations team 

has reported a problem, stating that host H1 is having connectivity issues 

reaching multiple hosts across the remote site. As a network engineer, you 

start isolating the problem scope by asking few basic questions as stated 

previously. Let’s assume that host H1 is having issues reaching host H4 and 

host H5, but not host H6. Host H1 is not having any issues reaching any 

of the hosts that are local to the site. Now you have baseline information 

on what is working and what is broken. As a next step in troubleshooting, 

there are a few simple steps that you can take:

•	 Verify Address Resolution Protocol (ARP) information: 

Verify if the ARP entry is complete for host H4 or H5 

versus host H6.

•	 Traffic pattern: Verify if the issue is sending broadcast 

traffic or unicast traffic. If the ARP table on host H1 

shows that the ARP entry is present or is getting 

completed for host H4 and H5 even after clearing the 

Chapter 1  Introduction to Wireshark



11

ARP, then it might be a problem just with the unicast 

traffic instead of all traffic (broadcast, unicast, or 

multicast traffic) between H1 and H4 or H5.

•	 Path information: Perform traceroutes between 

working and nonworking hosts to identify any 

difference in paths taken by each of them. If the 

network has equal cost multiple paths (ECMP), 

then most routing and switching platforms perform 

flow-based hashing to send traffic out on one of the 

interfaces. If the traceroute fails at one of the hops in 

the path, that would indicate the problem might be 

isolated to that segment of the network. Note that it is 

important to perform traceroutes from both endpoints 

so that any possibility of asymmetrical routing could be 

detected.

•	 Access control lists (ACLs): Leverage ACLs whenever 

possible to isolate where the traffic loss is happening. 

Users can configure both Layer 3 ACLs (standard and 

extended) and Layer 2 ACLs (media access control 

[MAC] ACLs) to match Layer 3 as well as Layer 2 traffic 

at different segments of the network. However, there 

could be instances where ACLs might not be of any 

help. For instance, ACLs do not allow users to capture 

Multiprotocol Label Switching (MPLS) packets. Thus, 

it becomes important to identify the kind of packets 

being investigated during troubleshooting.
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•	 Hop-by-hop ping tests: If a traceroute fails at a segment 

of the network, it might make sense to check the 

reachability of the source device to that segment of 

the network. It is possible that only the transit traffic 

might be affected and not the traffic destined for those 

devices in the segment. This usually happens if there 

is an ACL blocking the traffic in the path or due to a 

software misprogramming (software defect). In such 

instances, ping tests should be performed before 

performing deep-dive troubleshooting.

•	 Platform troubleshooting tools: Most routing and 

switching platforms come with troubleshooting 

tools as part of the network operating system (OS). 

These platform troubleshooting tools can help you 

understand if a packet is being dropped on the device 

itself or not and why. These tools are primarily helpful 

when the issue has been isolated to a particular device 

or a network segment. Note that some network OS’s 

come with platform-level packet capture tools. These 

tools can be very useful to perform packet captures to 

understand if the packet is being received on the device 

or not and if what action is being taken on the packet by 

the network OS.

•	 Debugs: It might sometimes help to run debugs on the 

network devices. The debug logs allow you to gain more 

insight on what is happening on the network device. 

For instance, if a BGP prefix is not being received, you 

could run a BGP protocol debug to understand if the 

prefix is being received or not.
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Once all the basic and some advanced-level troubleshooting steps 

have been performed and you are unable to isolate the issue to one 

particular device or segment, that’s where external sniffer capture tools 

come into play. Here are some of the scenarios in which sniffer capture can 

be useful:

•	 When dealing with corrupted packets

•	 Gathering more information about the packet headers, 

as they might be affecting forwarding decision

•	 Troubleshooting encapsulated packets

•	 Troubleshooting packet loss or retransmission issues

•	 Voice or video traffic-related issues

•	 Protocol issues such as OSPF not forming adjacency 

due to wrong information being exchanged or BGP not 

establishing peering due to TCP or wrong or missing 

information in BGP packets

If we talk about the problem displayed in Figure 1-2, if the traffic loss 

is happening between host H1 and host H4 or host H5, then some of the 

preceding steps could be followed to isolate the problem to a smaller 

segment of the network and sniffer devices could be attached in those 

segments to further investigate the issue. For instance, if the issue was 

narrowed down between the site 2 WAN router and Distribution layer 

switch(es), then enabling port spanning on core switches will help identify 

if the issue lies on the WAN router, the core switch, or the distribution 

switch. If the packet sniffers are to be used to analyze the problem, 

however, then the network engineers would have to enable the sniffer 

captures at the following devices:

•	 Access switch connected to the source and 

destination host
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•	 Core switch(es) at each site

•	 WAN routers (if they support enabling port spanning)

The captures taken at each site can easily help determine where the 

packet loss is happening. Even though the sniffer captures help a lot in 

investigating the issue, that is not the final step of the troubleshooting 

process. There are a few more steps that are involved in mitigating and 

remediating the problem, which we will see in the coming chapters based 

on different problem scenarios.

�Number of Sniffer Placements

Placing sniffers is not always easy. Each organization, be it an enterprise, 

service provider, or datacenter, has its own set of policies for managing 

and troubleshooting in its network environment. Most organizations 

require scheduling a change and maintenance window to perform 

troubleshooting, let alone performing sniffer captures. Also, when the 

whole network environment that is under investigation is geographically 

displaced or made up of remote unmanned sites, it takes a while to get 

field engineers on site to help with sniffer captures. Further, when the 

sniffer captures are to be performed at multiple places in the network, the 

complexity is compounded. When the troubleshooting requires sniffer 

captures in the network, it is important that the points of placement should 

be carefully considered before actually enabling port spanning.

Some network environments are also set up in a way that supports 

remote spanning with specific hosts configured to collect mirrored traffic. 

Such network deployments allow users to perform port spanning at almost 

any given node in the network without having to wait for any human to 

be present on site. The only limitation of such deployments is either the 

support for the remote span feature on all network devices or the host or 

the switch performance with higher throughput interfaces.
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In the example discussed in Figure 1-2, the ideal process would be to 

isolate the segment where the problem is and then place sniffer captures 

in that segment. If there are issues related to voice traffic such as users 

facing choppy voice or even TCP retransmission issues, it would require 

sniffer placements at multiple points across the network to determine 

where the issue is actually happening. For such a huge span of segments 

to troubleshoot, the approach for performing packet captures should be to 

isolate between the internal network versus the ISP network. For instance, 

the sniffer placements between the access and core or WAN layer at each 

site will allow us to identify if the issue is local to any of the two sites. If the 

packet sent from one site is not received by the WAN router on the remote 

site, that means the issue would be isolated to the ISP network instead of 

the site local networks.

�Network Tap

A network tap is a hardware device that creates a copy or mirror of the 

traffic flowing between two points in your cabling system. The hardware 

is specially designed for network analysis. When setting up network taps, 

the hosts or network devices might be temporarily offline. The network 

taps can be useful in enterprises for performing packet captures and 

continuous monitoring, as they are reliable and support high-throughput 

links. There are two primary types of network taps:

•	 Aggregated: The aggregated network taps allow 

bundling of multiple streams of data across multiple 

ports to one monitoring port. This type of network tap 

is useful when it is required to monitor bidirectional 

streams of traffic but only one NIC for monitoring.
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•	 Nonaggregated: The nonaggregated network taps 

provide additional flexibility for capturing traffic but 

also add to complexity when compared to aggregated 

network taps. In nonaggregated network taps, two ports 

are required for monitoring purposes, each of them 

capturing traffic in only one direction.

Based on the monitoring requirements, the choice can be made 

between aggregated and nonaggregated network taps.

So far, we have learned about the port spanning and network taps 

that can be used to enable and perform packet captures in the network. 

Next, we learn about the Wireshark tool that will be used for analyzing the 

captured traffic.

�Overview of Wireshark
Wireshark is a widely used open source network protocol analyzer. The 

first version of the application was called Ethereal and was developed 

and released by Gerald Combs in 1998 under the GNU Public License 

(GPL). After some conflicts over the Ethereal brand rights with his 

employer, Combs, along with the rest of the development team, rebranded 

the project as Wireshark in mid-2006. Wireshark is freely available for 

personal, educational, and commercial purposes and is supported and 

maintained by a community of more than 1,800 developers.

It is the go-to tool for almost every network administrator or network 

engineer to analyze network traffic patterns, troubleshoot network protocol 

issues, and perform in-depth analysis of network security loopholes. 

Wireshark comes with tons of features, supports the most common and 

uncommon set of protocols and encapsulations, and is supported on all the 

well-known OSs. It provides an easy-to-use and easy-to-understand GUI 

and advanced filtering capabilities to search through millions of packets to 

allow network administrators to quickly analyze the events in the network.
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�Installing Wireshark
At the time of writing, the latest and stable version of Wireshark is 3.4.4. 

Wireshark installer is available in both 32-bit and 64-bit versions and have 

builds available for Windows, Mac, and various Linux OSs. Wireshark 

installer can be downloaded from https://www.wireshark.org/

download.html. Installation of Wireshark is fairly simple. In the section, we 

cover the installation of Wireshark on different OSs.

�Installing Wireshark on Windows
Follow these steps to install Wireshark on Windows:

•	 Download the installer (.exe file) from https://www.

wireshark.org.

•	 Double-click the installer to begin the installation 

process.

•	 Click Next to begin the installation.

•	 Acknowledge the License Agreement by clicking Noted.

•	 Select the components that you want to install as 

shown in Figure 1-3 and click Next.
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Figure 1-3.  Wireshark Installation Choose Components screen

Note  In the component selection you can see an option to install 
TShark. TShark is a CLI version of Wireshark, which is designed to 
capture and analyze network traffic. It supports the same options as 
Wireshark. To view all the options of TShark, use the command man 
tshark or tshark --help option.

•	 Select the different shortcuts that you want to place on 

your PC and click Next.

•	 Select the installation directory for Wireshark and 

click Next.

•	 Select the Npcap or WinPcap version that is currently 

installed or is available to install and click Next. Note 

that Npcap or WinPcap is required by Wireshark to 

capture live network packets.
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•	 Optionally, you can install USBPcap to capture USB 

traffic and click Install to begin the installation process.

•	 During the installation, another installer window 

will open for Npcap or WinPcap software. Select 

the necessary installation options and begin the 

installation process by clicking Install.

•	 Once the installation completes, click Finish.

•	 The Wireshark installation will continue further.

•	 Once the installation process is completed, click Finish. 

At this point, Wireshark is now ready to perform packet 

captures on your system.

�Installing Wireshark on Mac
Follow these steps to install Wireshark on MacOS:

•	 Download the installer (.dmg file) from https://www.

wireshark.org.

•	 Double-click the installer file to begin the extraction 

process.

•	 The extraction process will create a volume with all the 

necessary files on the desktop.

•	 Once the extraction is completed, a pop-up window 

gives you an option to move the Wireshark app into the 

Applications directory

•	 Drag the Wireshark app into the Applications directory 

to make Wireshark accessible from the launch pad.
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�Installing Wireshark on Ubuntu

Wireshark can be installed quickly on Ubuntu from the terminal using 

the apt-get package installer. Follow these steps to install Wireshark 

on Ubuntu:

•	 Update the repository on the Ubuntu machine using 

the command apt update.

•	 Install Wireshark using the command apt install 

wireshark.

If you just have CLI access to the Ubuntu server or machine, then it 

might be a better option to install TShark. Users can install TShark using 

the command apt install tshark as shown in Example 1-1. Once 

installed, users can review the CLI options for TShark using the tshark 

command with the --help option or the man tshark command.

Example 1-1.  Installing tshark on Ubuntu

root@genie-rnd-server:~# apt install tshark

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following NEW packages will be installed:

  tshark

0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.

Need to get 137 kB of archives.

After this operation, 411 kB of additional disk space will 

be used.

Get:1 http://us.archive.ubuntu.com/ubuntu focal/universe amd64 

tshark amd64 3.2.3-1 [137 kB]

Fetched 137 kB in 0s (323 kB/s)

Selecting previously unselected package tshark.
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(Reading database ... 279306 files and directories currently 

installed.)

Preparing to unpack .../tshark_3.2.3-1_amd64.deb ...

Unpacking tshark (3.2.3-1) ...

Setting up tshark (3.2.3-1) ...

Processing triggers for man-db (2.9.1-1) ...

root@genie-rnd-server:~# tshark --help

Running as user "root" and group "root". This could be dangerous.

TShark (Wireshark) 3.2.3 (Git v3.2.3 packaged as 3.2.3-1)

Dump and analyze network traffic.

See https://www.wireshark.org for more information.

Usage: tshark [options] ...

Capture interface:

  -i <interface>, --interface <interface>

                           �name or idx of interface (def: first 

non-loopback)

  �-f <capture filter>      packet filter in libpcap 

filter syntax

  -s <snaplen>, --snapshot-length <snaplen>

                           �packet snapshot length (def: 

appropriate maximum)

  -p, --no-promiscuous-mode

                           don't capture in promiscuous mode

  �-I, --monitor-mode       capture in monitor mode, if available

  -B <buffer size>, --buffer-size <buffer size>

                           size of kernel buffer (def: 2MB)

  -y <link type>, --linktype <link type>

                           �link layer type (def: first 

appropriate)

<snip>
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Once set up, the GUI-based Wireshark app or CLI-based tshark app 

can be used to capture traffic traversing the network.

It is important to learn how to capture the packets and analyze the 

network traffic, but it is equally important to know the tools available with 

different network devices that you can use to set up packet captures.

�Setting Up Port Mirroring
As we all know, there are multiple elements in the network such as routers, 

switches, firewalls, load-balancers, servers, and so on, and troubleshooting 

a network with multiple elements involved can be complex. Packet capture 

tools are very handy when investigating issues at the packet level. When a 

deep-dive investigation is required at the packet level, the issue is usually 

found in one of the following places:

•	 At the transmitting device or the device that initiated 

the packet

•	 At the receiving device or the device for which the 

packet is destined

•	 At the transit device

•	 In the transmission media

The packet-level issues require the network engineers to perform 

packet captures and investigate the issues by analyzing the captured traffic. 

In most cases, switching devices have the capability of mirroring network 

traffic and sending it to a mirroring port that is connected to a PC. Let’s see 

how port mirroring can be enabled on different vendor devices.
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�SPAN on Cisco IOS/IOS-XE
The port mirroring capability on Cisco devices is known as Switched  

Port Analyzer (SPAN). SPAN can be set up on both Layer 2 and Layer 3  

interfaces. When setting up SPAN, the source and the destination 

interfaces are defined. Source ports are a collection of physical ports 

such as Gigabit Ethernet or TenGig interfaces and virtual interfaces such 

as virtual local area network (VLAN) switch virtual interfaces (SVIs). In 

defining the source ports, users can also define the direction of the traffic; 

that is, rx for incoming direction, tx for outgoing direction, or both, which 

means mirror both rx and tx traffic. A SPAN session on a Cisco IOS or 

Cisco IOS-XE switch can be configured using the command monitor 

session session number. Under the SPAN session configuration, you can 

define the source and the destination ports along with their direction. 

Example 1-2 illustrates how to configure a SPAN session on a Cisco IOS-

XE switch.

Example 1-2.  Configuring SPAN

SW1#configure terminal

SW1(config)# monitor session 10 source interface 

GigabitEthernet1/5 rx

SW1(config)# monitor session 10 source interface 

GigabitEthernet1/7 tx

SW1(config)# monitor session 10 destination interface 

GigabitEthernet2/1

SW1#configure terminal

SW1(config)# monitor session 11 source vlan 3 - 5 rx

SW1(config)# monitor session 11 source vlan 20

SW1(config)# monitor session 11 destination interface 

GigabitEthernet2/2
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Note A s per the Cisco.com documentation, you cannot have two 
SPAN sessions using the same destination port.

Once the SPAN is set up, you can view the state of the SPAN using the 

command show monitor session [session-number]. If the command 

is executed without specifying the session-number element, it displays all 

the SPANs that are configured on the switch. When the session-number 

option is specified, the command displays information about only the 

specified session. It is important to note that the destination interface is 

the one running in promiscuous mode. Thus, no other protocol or feature 

will work on that port. Example 1-3 displays how to verify the SPAN session 

and also displays the destination interface state in monitoring state. The 

monitoring state indicates that the port is running in promiscuous mode.

Example 1-3.  SPAN Session Verification

SW1#show monitor session 10

Session 10

---------

Type                   : Local Session

Source Ports           :

    rx                 : Gi1/5

    tx                 : Gi1/7

Destination Ports      : Gi2/1

MTU                    : 1464

Egress SPAN Replication State:

Operational mode       : Distributed

Configured mode        : Distributed

SW1#show interface GigabitEthernet1/1

GigabitEthernet2/1 is up, line protocol is down (monitoring)
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  �Hardware is Gigabit Ethernet, address is 2c54.2d68.1207 (bia 

2c54.2d68.1207)

  MTU 1998 bytes, BW 1000000 Kbit/sec, DLY 10 usec,

     reliability 255/255, txload 1/255, rxload 18/255

  Encapsulation ARPA, loopback not set

  Keepalive not set

  �Full-duplex, 1000Mb/s, link type is auto, media type is 

10/100/1000BaseTX SFP

<snip>

Note R efer to the Cisco online product documentation to verify 
how many SPAN sessions can be configured. The supported number 
of SPAN sessions varies from platform to platform and from vendor 
to vendor.

�SPAN on Cisco Nexus Switches
The Cisco Nexus OS (NX-OS) SPAN feature is pretty similar to the SPAN 

feature on Cisco IOS-XE software. Different Nexus series switches might 

vary on the number of monitor sessions they support. Before configuring 

the monitor session on NX-OS, the destination switchport should be 

configured with the command switchport monitor. Nexus supports 

hierarchical configuration, thus the source ports and destination port 

configuration are defined under the monitor configuration mode.  

Example 1-4 illustrates how to configure SPAN session on Nexus switches. 

Note that a monitor session on NX-OS does not become active unless a no 

shut command is configured under the monitor session.
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Example 1-4.  Configuring SPAN Session on Cisco NX-OS

NX-2(config)# interface Etherner1/5-6

NX-2(config-if)# switchport

NX-2(config-if)# switchport monitor

NX-2(config-if)# no shut

NX-2(config)# monitor session 1

NX-2(config-monitor)# source interface ethernet 1/1

NX-2(config-monitor)# source interface ethernet 1/2 tx

NX-2(config-monitor)# destination interface ethernet 1/5

NX-2(config-monitor)# no shut

Once the monitor session is configured, the session state can be 

verified using the command show monitor session session-number. 

Example 1-5 displays the output of the command show monitor session 1.  

Notice that in the output, the type is set to local. When defining the 

monitor session, if the type is not specified, then by default the monitor 

session is configured as a local SPAN session. The output shown in 

Example 1-5 displays the source rx and tx interfaces that are configured 

in the SPAN along with the destination interface. In NX-OS, the show 
interface command does not show the state of the interface as monitoring, 

but rather has another line in the output indicating that the switchport 

monitor is enabled on the port.

Example 1-5.  Verifying SPAN Session on Cisco NX-OS

NX-2# show monitor session 1

   session 1

---------------

type              : local

state             : up

acl-name          : acl-name not specified
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source intf       :

    rx            : Eth1/1

    tx            : Eth1/1        Eth1/2

    both          : Eth1/1

source VLANs      :

    rx            :

    tx            :

    both          :

filter VLANs      : filter not specified

source fwd drops  :

destination ports : Eth1/5

PFC On Interfaces :

source VSANs      :

    rx            :

NX-2# show interface ethernet 1/5

Ethernet1/5 is up

admin state is up, Dedicated Interface

  �Hardware: 100/1000/10000 Ethernet, address: 0c5f.3d16.260d 

(bia 0c5f.3d16.260d

)

  MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec

  reliability 255/255, txload 1/255, rxload 1/255

  Encapsulation ARPA, medium is broadcast

  Port mode is access

  full-duplex, 1000 Mb/s

  Beacon is turned off

  Auto-Negotiation is turned on  FEC mode is Auto

  Input flow-control is off, output flow-control is off

  Auto-mdix is turned off

  Switchport monitor is on

  EtherType is 0x8100
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  EEE (efficient-ethernet) : n/a

    admin fec state is auto, oper fec state is off

  Last link flapped 00:13:37

<snip>

Nexus 9000 series switches also support filtering of spanned traffic 

at the VLAN level or by applying an ACL. Only one type of filtering is 

supported on a given monitor session and filtering can only be applied 

when the source interfaces are configured in the rx direction. Example 1-6 

illustrates how to set up a monitor session with VLAN as well as ACL-based 

filtering and also how the show monitor session output differs between 

the monitor sessions when different filtering methods are applied. Also, 

as shown in this example, a monitor session can be deleted using the 

command no monitor session session-number.

Example 1-6.  SPAN Sessions with Filtering

NX-2(config)# ip access-list TEST-ACL

NX-2(config-acl)# permit icmp any any

NX-2(config-acl)# exit

NX-2(config)# no monitor session 1

NX-2(config)# monitor session 1

NX-2(config-monitor)# source interface ethernet 1/1 rx

NX-2(config-monitor)# destination interface eth1/5

NX-2(config-monitor)# filter access-group TEST-ACL

NX-2(config-monitor)# exit

NX-2(config-if)# monitor session 2

NX-2(config-monitor)# source interface eth1/3 rx

NX-2(config-monitor)# destination interface eth1/5

NX-2(config-monitor)# filter ?

  access-group  Access control group

  vlan          Vlan type
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NX-2(config-monitor)# filter vlan 100

NX-2(config-monitor)# no shut

NX-2# show monitor session 1

   session 1

---------------

type              : local

state             : up

acl-name          : TEST-ACL (Rx only)

source intf       :

    rx            : Eth1/1

    tx            :

    both          :

source VLANs      :

    rx            :

    tx            :

    both          :

filter VLANs      : filter not specified

source fwd drops  :

destination ports : Eth1/5

PFC On Interfaces :

source VSANs      :

    rx            :

NX-2# show monitor session 2

   session 2

---------------

type              : local

state             : up

acl-name          : acl-name not specified

source intf       :

    rx            : Eth1/3

    tx            :

    both          :
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source VLANs      :

    rx            :

    tx            :

    both          :

filter VLANs      : 100

source fwd drops  :

destination ports : Eth1/6

PFC On Interfaces :

source VSANs      :

    rx            :

�Enabling Port Mirroring on Arista EOS
Port mirroring on Arista can be enabled by configuring one or more 

mirroring sessions. Port mirroring configuration of Arista EOS is very 

similar to that for Cisco IOS-XE devices. You can enable port mirroring 

sessions using the command monitor session with the difference 

that instead of specifying the session number, you specify the name of 

the monitor session. Example 1-7 demonstrates how to configure port 

mirroring on Arista devices. Once configured, use the command show 

monitor session to verify the state of the monitor session and the show 

interface interface-name status command to verify the state of 

the interface. The destination port on the Arista device also displays in 

monitoring state.

Example 1-7.  Configuring Port Mirroring on Arista

eos-1(config)# monitor session test1 source ethernet 1,7-9 rx

eos-1(config)# monitor session test1 source ethernet 4 tx

eos-1(config)# monitor session test1 destination ethernet 20

eos-1# show monitor session

Session test1

------------------------
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Source Ports

Rx Only:     Et1, Et7, Et8, Et9

Tx Only:     Et4

Destination Port: Et20

eos-1# show int et20 status

Port   Name   Status    Vlan         Duplex   Speed   Type

Et20          connect   monitoring   full     10G     Not Present

�Enabling Port Mirroring on JunOS
On JunOS, we use the term analyzers to set up port mirroring. JunOS also 

supports configuring of port mirroring to capture bridged packets (Layer 

2 packets) as well as routed packets (Layer 3 packets). On a JunOS device, 

the following packets can be mirrored:

•	 Packets entering or exiting a port

•	 Packets entering or exiting a VLAN or a bridge domain

•	 Policy-based sample packets

For policy-based sample packets, a firewall filter with a policy is 

configured to mirror the packets. The sample traffic based on the firewall 

filter can be sent to the port-mirroring instance for further analysis.

Analyzers on JunOS can be set up in few simple steps:

•	 Get into forwarding-options configuration mode.

•	 Define a name for the analyzer and specify the input 

interface along with the direction of the traffic you wish 

to capture.

•	 Choose the destination interface.

•	 Commit the configuration.
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In JunOS, you can also configure firewall filters to limit the amount 

of traffic being mirrored. Example 1-8 displays a sample configuration 

of analyzer and the use of the command show forwarding-options 

analyzer analyzer-name to verify the state of the analyzer.

Example 1-8.  Configuring Port Mirroring on JunOS

root> show configuration forwarding-options

analyzer {

    testCapture {

        input {

            ingress {

                interface ge-0/0/1.0;

            }

            egress {

                interface ge-0/0/1.0;

            }

        }

        output {

            interface ge-0/0/4.0;

        }

    }

}

root> show forwarding-options analyzer testCapture

  Analyzer name                    : testCapture

  Mirror rate                      : 1

  Maximum packet length            : 0

  State                            : up

  Ingress monitored interfaces     : ge-0/0/1.0

  Egress monitored interfaces      : ge-0/0/1.0
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So far, we have seen how to configure local port mirroring on various 

vendor devices running their respective network OS. Similarly, you 

can also set up remote port mirroring. In remote port mirroring, the 

configuration is pretty much the same as local port mirroring with the 

minute difference that the destination interface does not reside on the 

local device, but is multiple hops away. Each vendor has its own method of 

implementing remote port mirroring. Unless necessary, it is not required 

to set up remote port mirroring.

�Summary
In this chapter, we learned what NTA is and why it is important in the 

network. We also learned the factors that should be considered when 

implementing port mirroring and how we can set up the minimum 

number of capture points in the network to isolate a problem in the 

network. Unless it is necessary, one should avoid enabling port mirroring 

on network devices. Further, we learned what Wireshark is and how to 

install it on various OSs. Finally, we concluded the chapter by seeing how 

port mirroring can be enabled on network devices from different vendors.
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CHAPTER 2

Getting Familiar 
with Wireshark
Network administrators and security analysts often work packet captures 

to analyze the traffic and determine the cause of network events and 

attacks in the network. With Wireshark being the preferred tool to capture 

and analyze network traffic, it is important to have an understanding of 

how to use Wireshark’s features and know about its options. This chapter 

focuses on various features and options available in Wireshark.

This chapter covers the following topics:

•	 Overview of Wireshark tool

•	 Performing packet capture using Wireshark

•	 Working with Wireshark capture files

•	 Analyzing packets in Wireshark

�Overview of Wireshark Tool
In the previous chapter we learned about what Wireshark is and how 

to install Wireshark on various OSs. In this chapter, we focus on how 

to use the Wireshark tool. After Wireshark is installed, you can open 

https://doi.org/10.1007/978-1-4842-8002-7_2#DOI
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the Wireshark tool using the Wireshark shortcut from the installed 

applications list. Before diving into how to use Wireshark, let’s take a closer 

look at the user interface (UI), which is shown in Figure 2-1.

Figure 2-1.  Wireshark user interface

�Wireshark Preferences
There are numerous settings that a user can customize when using 

Wireshark. All these settings can be changed from the Preferences window. 

To open the Preferences window, navigate through the following menu:

•	 Mac: Wireshark | Preferences

•	 Windows: Edit | Preferences

•	 Linux: Edit | Preferences

From the Preferences window, users can change the settings for the 

following sections.
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�Appearance

The Appearance section of the Wireshark preferences allows you to change 

the UI settings of Wireshark. In this section, you can adjust the text for 

the window title, specify the columns that you want to see when using 

Wireshark, and set the font and colors and the layout of Wireshark UI. For 

instance, if you want to change the default layout of Wireshark to a layout 

that is more comfortable for you, you can change what information the 

different panes in the layout will display. Figure 2-2 displays the modified 

layout where Pane 1 displays the packet list, Pane 2 displays the packet 

details, and Pane 3 displays the packet bytes in the layout that you selected 

in the Preferences window.

Figure 2-2.  Custom Wireshark layout
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�Capture

The Capture section allows you to select the default interface that 

Wireshark will use for capturing traffic. Users can also select other settings 

in this section:

•	 Enable or disable the option to capture packets in 

promiscuous mode

•	 Enable or disable the option to capture packets in 

pcapng format

•	 Enable or disable the option to update the list of 

packets in real time

•	 Enable or disable the option for automatic scrolling 

when capturing live packets

•	 Enable or disable the option to not load interfaces 

on startup

•	 Enable or disable the option to disable external capture 

interfaces

�Expert

The Expert section of the Wireshark Preferences window allows you to 

define different field names and set the severity for those fields.

Note T he Expert section is covered later when covering Expert 
Information.
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�Filter Buttons

The Filter Buttons options allow the user to create custom shortcuts on the 

toolbar for various filter expressions. By using these buttons, users don’t 

have to repeatedly type the filter expressions; instead they can just click the 

button to apply the filter on the captured traffic. Figure 2-3 displays how to 

create a filter button for the HTTP GET method.

Figure 2-3.  HTTP GET filter button

�Name Resolution

The Name Resolution settings allow users to update the settings with 

regard to MAC address resolution and transport and network address 

resolution. These settings also allow users to use Domain Name System 

(DNS) packets for address resolution, use an external network name 

resolver, and also use the list of DNS servers for name resolution. The 

Name Resolution section also has options to list the DNS servers that can 

be used by Wireshark.
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�Protocols

The Protocols section of the Preferences window allows the user to 

configure settings for various lists of protocols supported by Wireshark. 

This is useful for analyzing traffic in network environments where the 

protocols are being used ports different than the default port numbers.

�RSA Keys

The RSA Keys section allows user to configure the RSA private keys for 

decryption. In this section, use the Add New Keyfile button to select a 

file. The user will be prompted for a password if necessary. The Add New 

Token button can be used to add keys from a hardware security module 

(HSM), which might require using Add New Provider to add a vendor-

specific configuration.

�Statistics

This section allows you to customize the settings used by Wireshark to 

perform and display statistical analysis of the captured traffic. Settings 

such as burst rate resolution, burst rate window size, tab update interval, 

and so on, can be configured under this section.

�Advanced

The Advanced section of the Preferences window allows user to view and 

edit all Wireshark preferences. If you are familiar with about:config in 

Firefox or chrom:flags in the Chrome web browser, then making changes 

using the Advanced pane will be a walk in the park. Users can search for 

a preference by typing text in the Search box on this window as shown in 

Figure 2-4.
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Figure 2-4.  Wireshark Advanced preferences

�Performing Packet Capture Using Wireshark
When the Wireshark application is launched, a welcome screen displays 

options to either open old files or to start a new packet capture on the 

current device. In the Capture section, all the wired, wireless, and virtual 

network interfaces that can be selected to begin the packet capture 

immediately are listed. Alternatively, users can go to the Capture menu 

and then select the Option submenu. This will open the Wireshark – 

Capture Options window shown in Figure 2-5, which has three tabs:

•	 Input: This tab displays all the interfaces. You can 

enable the listed network interfaces and select one of 

the interfaces on which you wish to capture incoming 

and outgoing packets.

•	 Output: This tab allows the user to edit the output 

settings, such as the output format, permanent file 
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name where the packet capture will be saved, and 

also options to save the captured traffic into a new file 

by limiting the number of packets, file size, duration, 

and so on.

•	 Options: The Options tab gives you options to set the 

display settings of the captured packets, such as updating 

the list of packets in real time, automatic scrolling during 

live capture, and showing capture information during live 

capture. It also has options for name resolution such as 

resolving MAC addresses, network names, and transport 

names. Users can also define the settings for when they 

can stop the packet capture.

Figure 2-5.  Wireshark - Capture Options window

Once all the capture options are set, users can click the Start button to 

begin the packet capture. It is important to note that you can capture traffic 

on interfaces that are in promiscuous mode. This mode allows you to see 

all the traffic coming into the NIC. In Figure 2-5, notice that all the listed 

interfaces have promiscuous mode enabled.
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Note T o perform on Mac OS, users are required to install the 
ChmodBPF application. By default, users on Mac OS do not have 
privileges or permission to capture traffic on local interfaces. Once 
the ChmodBPF daemon is launched, it creates the access_bpf 
group and adds the user to that group. Similarly, on Windows, 
Wireshark requires either Npcap or WinPcap to capture live network 
traffic.

�Dissectors
As most of you might already know, traffic enters the NIC in binary format. 

Wireshark uses the Enhanced Packet Analyzer (EPAN), which decodes 

the binary data into human-readable format. EPAN is the main core of the 

Wireshark tool. It is the packet analyzer engine that uses dissectors to re-

create the protocol packets from the binary data. EPAN primarily consists 

of four components:

•	 Protocol tree: Performs detailed analysis of a 

single packet.

•	 Dissectors: Hold the information from the Request 

for Comment (RFC) and other specifications on how 

to decode and interpret fields of different protocol 

packets.

•	 Dissector plug-ins: Allows the use of default dissectors 

that come with Wireshark and also allows the use of 

user-created dissector plug-ins.

•	 Display filters: – Provide options to perform filtering on 

captured data.
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Dissection of any packet can be broken down into a few simple steps:

	 1.	 Wireshark identifies the frame type of any incoming 

packet and hands it off to the correct frame 

dissector, for instance, Ethernet.

	 2.	 The dissector breaks down the contents of the frame 

header to understand which section to look up next. 

For instance, Ethernet type 0x0800 in the Type field 

of the Ethernet header indicates Internet Protocol 

version 4 (IPv4). Wireshark then hands off the 

packet to the IP dissector.

	 3.	 After the IP dissector decodes the IP header, it 

identifies the next protocol header by looking at 

the Protocol field in the IP header. If the value is 

0x06 it hands off the packet to the TCP dissector. If 

the value is 0x11, it hands off the packet to the User 

Datagram Protocol (UDP) dissector.

	 4.	 This process is followed until there are no further 

dissections identified by the current dissector.

Although Wireshark is a very mature application and supports a 

wide range of protocol specifications and dissectors, there might still be 

scenarios where you are required to guide Wireshark on how to decode a 

protocol. For such scenarios, users can simply right-click the frame and 

select the Decode-As option. This option will open the window shown in 

Figure 2-6. Using this window, a user can select the field type from which 

the user can select any of the options such as a TCP port, a UDP port, and 

so on. Once that is selected, the user can then define the value and then 

map the field and value to a particular protocol from the drop-down list 

in the Current column. For example, let’s presume that Wireshark does 

not understand a Virtual Extensible Local Area Network (VXLAN) packet. 

When Wireshark receives such a packet, the user can select the packet and 
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choose UDP port as the Field, set the Value to port 4789, and in the Current 

column, map the packet to the VXLAN protocol. This setup is shown in 

Figure 2-6.

Figure 2-6.  Wireshark - Decode As

This feature comes in very handy when the network administrators are 

running the protocols on a port numbers other than their defaults.

�Configuration Profiles
Wireshark allows users to define and maintain configurations and 

preferences in the form of configuration profiles. Wireshark comes with 

four predefined configuration profiles:

•	 Default: Default profile

•	 Bluetooth: Global profile

•	 Classic: Global profile

•	 No Reassembly: Global profile
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The configuration profiles store the following set of information:

•	 Preferences

•	 Capture filters (cfilters)

•	 Display filters (dfilters)

•	 Coloring rules

•	 Disabled drotocols

•	 User accessible tables (e.g., custom HTTP headers, 

custom LDAP AttributeValue types, etc.)

•	 Dissector assignments (decode_as_entries)

•	 Recent settings such as pane sizes, column widths, 

and so on

Users can create custom profiles in few simple steps.

	 1.	 On the Edit menu, click Configuration Profiles. This 

opens the Configuration Profiles dialog box.

	 2.	 In the Configuration Profiles dialog box, click the + 

icon to add a new profile. For example, let’s create 

a configuration profile named Network Profile. This 

profile will be of type Personal. The newly created 

profile is created with the default settings that are 

part of the Default profile.

	 3.	 Select the Network Profile and click OK.

Once the custom profile is created and selected, all the preferences 

and other settings such as capture or display filters will be saved under the 

custom configuration profile.
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�Filtering with Wireshark
When packet capture is performed using Wireshark, all the incoming and 

outgoing traffic on the selected NIC is captured. This limits the user to 

capturing a huge amount of packets on high-speed as well as high-traffic 

links. Although capturing more data is never bad, it could also lead to 

other issues:

•	 Crashing of Wireshark application due to large file size

•	 Longer time needed to load and analyze the 

captured packets

•	 Might not be able to capture problematic traffic during 

a short time span due to higher packet per second 

(pps) rate

Filtering in Wireshark can be of two types:

•	 Capture filter: This is used to filter or restrict the 

packets that will be captured by Wireshark.

•	 Display filter: This is used to filter the packets from the 

captured traffic.

We next discuss both these filtering capabilities in detail.

�Capture Filters

As stated previously, the capture filter in Wireshark is used to limit the 

packets that can be captured during a live capture. This means that the 

capture filter cannot be applied on existing packet capture or pcap files.  

In scenarios where the network is busy with heavy traffic or during network 

troubleshooting when a user wants to capture a specific packet, capture 

filters are a very useful feature. Capture filters are applied on the packets 

after they are processed by WinPcap in a Windows installation or the 

libpcap library in a Linux installation. Once the packets are passed through 
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the filter criteria, they are then passed to the Wireshark capture engine as 

shown in Figure 2-7. Note that once the packets are parsed through the 

capture filter, only the filtered packets are received by the capture engine. 

The remaining packets are dropped and discarded before being sent to the 

capture engine.

Network Interface Card

Network

WinPcap / Libpcap

Capture Filters

Capture Engine

Figure 2-7.  Wireshark capture filter

Capture filters follow the Berkeley Packet Filtering (BPF) syntax, which 

is also used by Tcpdump. Wireshark comes with default capture filters 

named cfilters that are stored in the Wireshark application or program 

file directory. Wireshark comes with the default capture filters shown in 

Table 2-1.
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Table 2-1.  Default Wireshark Capture Filters

Filter Name Filter Config

Ethernet address 00:08:15:00:08:15 ether host 00:08:15:00:08:15

Ethernet type 0x0806 (ARP) ether proto 0x0806

No Broadcast and no Multicast not broadcast and not multicast

No ARP not arp

IPv4 only ip

IPv4 address 192.0.2.1 host 192.0.2.1

IPv6 only ip6

IPv6 address 2001:db8::1 host 2001:db8::1

TCP only tcp

UDP only udp

Non-DNS not port 53

TCP or UDP port 80 (HTTP) port 80

HTTP TCP port 80 tcp port http

No ARP and no DNS not arp and port not 53

Non-HTTP and non-SMTP to/from  

www.wireshark.org

not port 80 and not port 25 and 

host www.wireshark.org

Users can also create custom cfilters that can be part of the default 

profile or a custom profile. Let’s now create a custom capture filter for 

capturing only VXLAN traffic. To filter VXLAN encapsulated traffic, we 

can simply filter on UDP port 4789. This filter can be created in a few 

simple steps:

	 1.	 Go to the Capture menu and select Capture Filters 

to open the Capture Filters dialog box.
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	 2.	 In the Capture Filters dialog box, click the + icon, 

which will add an entry at the end of the existing 

default list.

	 3.	 Edit the name of the filter and set it to VXLAN only 

and then edit the Filter Expression and set it to udp 

port 4789.

	 4.	 Click OK to save.

	 5.	 Once saved, go to the Capture menu and select 

Options. This will open the Wireshark Capture 

Options dialog box.

	 6.	 In this dialog box, click the green bookmark icon 

next to Capture Filter for Selected Interfaces. 

This displays the list of all capture filters that are 

available. Select the VXLAN Only option as shown 

in Figure 2-8.

	 7.	 Once the interface and capture filter are selected, 

click Start to start the capture.
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Figure 2-8.  Selecting a customdefined capture filter

You will now notice that only the VXLAN packets are being captured in 

Wireshark. This method of capturing packets has the benefit of capturing 

only specific traffic, but if the user is unsure about which traffic to capture, 

it might be a better option to use display filters.

�Display Filters

Most traffic analysis is performed during live traffic or on precaptured 

packet captures. To analyze traffic in both these scenarios, display filters 

can help users easily narrow down the problematic traffic quickly by 
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applying the filter criteria on the packets. Display filters enable users to 

focus on specific packets based on the filter expressions that are specified. 

There are several ways of creating display filters:

•	 Typing the display filter criteria with the help of 

auto-complete

•	 Applying saved display filters

•	 Using expressions

•	 Right-clicking the filter

•	 Applying conversation or endpoint filters

Before moving on to checking different ways of implementing display 

filters, let’s talk about the syntax for display filters. Wireshark uses a 

proprietary Wireshark display filter that is different than the capture filter’s 

BPF format. Even though the syntax for both capture and display filters 

is different, there are a few examples where the syntax for both of them 

happens to be the same. For instance, the syntax for filtering TCP traffic 

on both filters is specifying the tcp keyword. Figure 2-9 illustrates how the 

packets are filtered after applying the display filter for TCP traffic. Notice 

that in this example, there are 76 packets that have been identified and 

filtered for TCP traffic out of 1,452 packets.
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The status bar indicates that there 
are 76 packets that have been 

filtered out of 1452 packets that 
match the display filter criteria of 

tcp packets

Display filter

Filtered packets

Figure 2-9.  Filtering packets using a display filter

Display filters can be relatively simple or quite complex. It all depends 

on the display filter expression. Users can perform simple filtering 

by specifying the protocol traffic that they want to filter. For instance, 

Table 2-2 displays a sample list of packets that can be filtered with just a 

single filtering keyword.

Table 2-2.  Simple Display Filters

Filter Config Filter Description

tcp Filtering only TCP packets

udp Filtering only UDP packets

ip Filtering only IPv4 traffic

ipv6 Filtering only IPv6 traffic

arp Filtering only ARP broadcast packets

dns Filtering only DNS packets
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Display filters also allow users to filter packets based on packet 

characteristics. For instance, if a user wants to filter packets that have an 

invalid IP header checksum, they can simply set the display filter to ip.

checksum_bad.expert. Note that by packet characteristics we do not mean 

an actual field in the headers. Some examples of display filters based on 

packet characteristics are listed in Table 2-3.

Table 2-3.  Display Filters for Packet Characteristics

Filter Config Filter Description

tcp.analysis.flags Displays packets that contain one of the TCP 

analysis flags packets

tcp.bogus_header_length Filters TCP packets that have bogus header 

length in the TCP header

ip.bogus_header_length Filters packets that have bogus header length 

in the IP header

The display filters provide an option to filter more specific packets by 

the use of expressions. Expressions allow users to define filters based on 

the contents of a field and matching specific values that can be set using 

comparison operators. Display filters can also be a combination of two or 

more expressions that are evaluated based on the evaluation operators. 

The operators that can be used with display filters are listed in Table 2-4.
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Table 2-4.  Operators for Display Filters

Operators Operator Description

== Exactly matches the specified value

> Matches when the value of the field is greater than the specified value

< Matches when the value of the field is less than the specified value

>= Matches when the value of the field is greater than or equal to the 

specified value

<= Matches when the value of the field is less than or equal to the specified 

value

! Filters all the values of the field that do not match the specified 

expression

!= Filters all the values that do not match the specified value

&& Allows AND operation between two different expressions; filters the 

packets that match all the specified expressions

|| Allows OR operation between two different expressions; filters the 

packets that match any of the two expressions

Let’s now examine how we can use these operators to create 

expressions for display filters. Table 2-5 displays a list of expressions for 

filtering various types of traffic.
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Table 2-5.  Expressions for Display Filters

Filter Expressions Filter Description

http.request.method == 

"POST"

Filters traffic that includes the HTTP POST 

method in the HTTP headers

tcp.window_size < 1500 Matches packets that have TCP window size 

less than 1,500

dns.qry.name == "www.

google.com"

Filters DNS queries for www.google.com

udp.port != 686 Filters out packets that do not match UDP port 

number 686

(arp.opcode == 0x0001) &&  

(arp.src.hw_mac == 

00:01:ab:cd:0e:02)

Displays ARP request only from MAC address 

00:01:ab:cd:0e:02

(tcp.flags.syn == 1) && 

!(tcp.flags.ack == 1)

Displays packets that have the TCP SYN bit set 

but do not have the TCP ACK bit set.

(icmp.type == 3) &&  

((icmp.code = 0x01) ||  

(ip.addr == 

192.168.100.1))

Displays Internet Control Message Protocol 

(ICMP) unreachable packets where the host is 

unreachable or either the source or destination 

address is 192.168.100.1

Because there is a different set of fields within each header, it is 

nearly impossible to remember all the fields to create the display filters. 

Wireshark comes with an auto-complete feature that helps users to create 

filters. Users are only required to know the top-level header and the 

Wireshark Intellisense or auto-complete feature kicks in as soon as any 

character is typed. The Wireshark auto-complete feature displays all the 

available options within that header that can be used to create the filter. 

For example, if the user wants to check for any traffic with destination port 

53 or DNS traffic, the user can just type in tcp and it will display all the 
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available options. In this case, the option would be tcp.dstport, as shown 

in Figure 2-10. Once the user identifies the right filter option, he or she can 

then complete the expression by using the comparison operators. For this 

example, the display filter is tcp.dstport == 53.

Figure 2-10.  Display filter using auto-complete

Users are also allowed to select display filters from previously used 

filters or save their display filter like a capture filter. To use the previously 

searched display filter, use the drop-down list seen at the end of the display 

filter bar. To save the current display filter, use the bookmark icon at the 

beginning of the display filter area, as shown in Figure 2-11. The drop-

down list shows the default display filters available as well as other options 

to save or manage the display filters. Selecting the Save This Filter option 

opens the Display Filters dialog box. There you can click the + icon to add 

the current display filter.
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Figure 2-11.  Display filter bookmarks and options

Another quick method of filtering the packets is using the right-click 

filtering method. While navigating through the list of packets, if you come 

across a packet that looks suspicious or you are interested in checking out 

similar packets, you can simply right-click the packet or field of interest 

and select either the Apply as Filter | Selected or the Prepare as Filter | 

Selected option as shown in Figure 2-12. The Apply as Filter | Selected 

option directly places the filter on the live traffic or captured packets, 

whereas the Prepare as Filter | Selected option prepares the display filter 

and gives the user an option to edit the filter before it is applied on the live 

traffic or captured packets.
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Figure 2-12.  Right-click filtering

Within both Apply as Filter | Selected and Prepare as Filter | Selected, 

users can choose from one of the available filter options:

•	 Selected: Creates a filter matching the selection

•	 Not Selected: Creates an exclusion filter

•	 And Selected: Must match both the existing filter and 

the selection

•	 Or Selected: Must match either the existing filter or the 

selection

•	 And Not Selected: Must match the existing filter with the 

exclusion of the selection

•	 Or Not Selected: Must match either the existing filter or 

filter based on the exclusion of the selection
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Users can also leverage the Copy | As Filter feature available in 

Wireshark as part of right-click filtering. This feature allows users to copy 

the filter expression without applying or listing the filter in the display filter 

pane. This feature can be very useful for creating complex display filters or 

for copying filters between different Wireshark instances where we want to 

trace the packets across multiple capture files.

Although there are many ways of creating display filters, one of the 

features that really stands out in Wireshark is its ability to catch errors or 

mistakes in display filters, which prevents users from applying the wrong 

display filters on the packet captures. The display filter pane turns red and 

disables the option to apply a filter if there is an incomplete or incorrect 

display filter expression typed in the pane.

�Working with Wireshark Capture Files
As stated before, Wireshark captures network traffic and allows the 

user to save the packets with either .pcap or .pcapng extensions. The 

pcap file format is the initial version of the file format that was originally 

implemented in UNIX and Linux using the libcap library. This file format 

was implemented in Windows using the WinPcap library. The pcapng file 

format was the result of an Internet Engineering Task Force (IETF) draft 

that specifies the PCAP Next Generation (pcapng) Capture File Format. 

Through this IETF draft, the proponents defined standardized blocks and 

fields, thus making the pcapng format a more extensible and futureproof 

file format.

�PCAP vs. PCAPng
There are several differences between the pcap and pcapng file formats, 

some of which are listed in the sections that follow.
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�Capture from Multiple Interfaces

The pcap format contains some information about the capture interface 

but does not have support for multiple interfaces. This is because the 

interface information is included as part of the common header and not 

stored on a per-packet basis, making it difficult to capture traffic from 

multiple interfaces in the same capture file. On the other hand, the pcapng 

file format supports multiple interfaces by using the interface description 

block defined in the PCAP Next Generation (pcapng) capture file format 

IETF draft. Using the interface description block, each packet can be 

associated with a specific interface. Figure 2-13 displays the interface 

description block as defined in the IETF draft. Note that the block type of 

the interface description block is 1 (0x00000001).

Figure 2-13.  Interface description block

Note A  simple packet block, which is a smaller and simpler 
packet block that is easy to process and contains a minimal set of 
information, does not contain the Interface ID field and is thus set to 
a default value of 0. With a simple packet block, it is assumed that 
the packets have been captured on the interface that was previously 
specified in the first interface description block.
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When a packet capture is initiated for multiple interfaces, a user can 

see the packet of each interface in the pcapng file using their interface_id 

field. Figure 2-14 displays the packets belonging to interface id 1, which in 

this case is a loopback interface (IP address 127.0.0.1) of the PC itself.

Figure 2-14.  Packets with interface id 1

�Timestamps

With pcap format, one of the major concerns for network analysts was 

its resolution on packet timestamps. Each packet in the pcap format has 

a time resolution accurate to the microsecond level (i.e., 10-6 seconds), 

which provides a resolution for 999,999 packets per second. On first look, 

this number looks reasonable, but with the modern-day networks evolving 

to 25 Gig, 40 Gig, and 100 Gig links, microsecond-level accuracy can 

create a huge gap. It is imperative to note that even a common 1 Gig link 

can easily exceed this link. The pcapng file format provides the capability 

to adjust the resolution using a flexible timestamp format, which is now 

expressed as a 64-bit time unit that can easily accommodate evolving 
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network speeds. The default resolution value on packet timestamps is still 

given in microseconds, but this can be altered by setting the if_tsresol 

option in the interface description block.

�Embedding Comments

Troubleshooting networks can be complex and time consuming and could 

be further delayed when information is shared across peers or customers. 

The pcapng format allows the user to embed both top-level and per-packet 

comments that can be helpful when traces are shared across multiple 

users for analysis. To add a comment to a packet, select a packet and right-

click to choose the Packet Comment option. Once selected, this opens a 

window that will allow the user to add a comment on the packet, as shown 

in Figure 2-15.

Figure 2-15.  Adding comments on a packet

Once the comment is added, the packet headers will also have a packet 

comments section added at the top, as shown in Figure 2-16.
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Figure 2-16.  Packet headers with comments

To add top-level comments or file-level comments, go to Statistics 

| Capture File Properties. This opens a window that includes a Capture 

File Comments section. Users can add the comments and then click Save 

Comments to save the top-level comments.

�Metadata

Additional information is always useful when investigating network issues. 

Although adding top-level and per-packet comments can be extremely 

useful, additional information such as the source of the packet capture can 

be very useful. With pcapng, additional fields such as a description field, 

OS field, and filter field within the interface description block can provide 

additional information regarding the capture source.

�Extendable Format

Because the pcapng format is standardized and deploys a generic block 

structure, it allows the format to evolve over time. In pcapng, specific 
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blocks are defined for packets (enhanced packet block or simple packet 

block) and interfaces (interface description block). Additional information 

such as metadata can be stored in other optional blocks, such as a name 

resolution block or interface statistics block. With the options to define 

experimental blocks and metadata, pcapng allows organizations to develop 

their own customized yet compatible network analysis tools.

�Splitting Packet Captures into Multiple Files
When capturing network traffic on high-speed links, the Wireshark file size 

can increase rapidly. This could increase the loading time when the packet 

capture file is opened for analysis. To overcome this challenge, network 

administrators or analysts can adjust the capture options in Wireshark to 

automatically split the packet captures into multiple files. Follow these 

simple steps to do that:

	 1.	 On the Capture menu, select Capture Options. This 

opens the Capture Options window in Wireshark.

	 2.	 In the Capture Options window, click the 

Output tab.

•	 On the Output tab, set the capture file from under 

Capture to a Permanent File by clicking Browse and 

specifying the file name. Click Save.

•	 Choose the output format. The default option 

is pcapng.

•	 Select the Create a New File Automatically 

check box.

•	 You can then select one or multiple options to 

decide which factors will trigger the creation of 

a new file. For instance, you can select an option 

to create a new file after the file has reached 100 

packets, as shown in Figure 2-17.
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	 3.	 Once these options are selected, click Start.

Once you have completed the capture and stopped the capture, you 

will notice that multiple files have been created.

Figure 2-17.  Splitting packet capture into multiple files

�Merging Multiple Capture Files
While splitting helps load the packet capture files quickly, merging is 

required to analyze the packets, especially in scenarios where captures are 

taken from multiple interfaces or when the packet stream is split across 

multiple capture files. The Wireshark merge option tries to merge the files 

based on one of the following selected options:

•	 Prepend Packets: Prepends the packets from the 

selected file before the currently loaded packets.
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•	 Merge Chronologically: Merge packets from both 

opened and selected files in chronological order. This 

option is selected by default.

•	 Append Packets: Appends the packets from the selected 

file after the currently loaded packets.

To merge multiple files, few simple steps can be followed:

	 1.	 Open or load a packet capture file on Wireshark.

	 2.	 On the File menu, select Merge to open the Merge 

dialog box.

	 3.	 Select the file that you want to merge with the 

opened file, as shown in Figure 2-18.

Once the packets are merged, the user can then save the merged file 

with the same or a different name.

Figure 2-18.  Merging multiple capture files
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�Analyzing Packets in Wireshark
Now that we have learned about the basics of the Wireshark UI, how to 

perform a packet capture, and how to work with capture files, the next step 

is learning how to analyze the packets using Wireshark. Before we jump 

into analyzing the packets, there are few critical factors that must be kept 

in mind, and this goes back to the question of why we need to analyze the 

packets. Usually, network packet analysis is done when there is a problem 

in the network and we need to tackle get to the root of any network event. 

For instance, Company ABC is seeing some anomaly in their network 

behavior, and they want to investigate what is causing the problem. To 

get to the root cause of the anomaly, network administrators or security 

analysts might begin by asking few basic questions such as these:

	 1.	 When did the problem start?

	 2.	 What is or was the trigger for the problem?

	 3.	 Can we re-create the problem?

	 4.	 Does the problem happen at a particular time in 

the day?

	 5.	 How frequently does the problem occur in the 

network?

	 6.	 What kind of traffic is affected?

	 7.	 Is the issue currently occurring?

	 8.	 To which segment of the network is the problem 

isolated?

	 9.	 How many network users are affected due to the 

given problem?
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All these questions, though, might or might not directly answer why 

we need to perform packet analysis, but these questions will always 

help get to the bottom of the problem or at least one or few steps closer 

to it. Out of these questions, the answers to questions 2, 3, 4, 5, 6, 

and 7 are required when performing network analysis by performing 

packet captures at different points in the network. If you do not know 

the answer to question 8, you will eventually find the answer to that 

question while investigating any network event. Even though, there can 

be several reasons for performing packet analysis, it is usually done for 

two primary reasons:

•	 Baselining the network

•	 Troubleshooting a network issue (e.g., packet loss, 

latency issue, network attack, etc.)

�OSI Model
Before diving into the steps involved in performing packet analysis, 

it is important to understand the Open Systems Interconnection 

(OSI) model. The OSI model was developed by the International 

Organization for Standardization (ISO) in 1984 with the sole intent of 

standardizing the communication functions of a telecommunications 

or computing system irrespective of its underlying structure and 

technology. The OSI model helps with interoperability across different 

computers or network devices.

The OSI model outlines the data flow in a network device (or a 

communication system) through its seven abstraction layers, as shown in 

Figure 2-19.
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Layer 1 – Physical Layer

Layer 2 – Data Link Layer

Layer 3 – Network Layer

Layer 4 – Transport Layer

Layer 5 – Session Layer

Layer 6 – Presentation Layer

Layer 7 – Application Layer

Figure 2-19.  OSI model

Each layer in the OSI model defines different functions, as listed in 

Table 2-6.

Table 2-6.  OSI Model Layers and Their Functions

Layer Functions

Physical layer Transits and receives raw bit streams over a physical medium

Examples: 1000BaseTX, ISDN, etc.

Data Link layer Provides reliable transmission of data frames between two 

devices connected via the physical layer

Examples: Ethernet, Frame Relay, ATM, etc.

Network layer Provides mechanism for structuring and managing a 

multinode network. The network layer takes care of IP/IPv6 

addressing, routing protocols, and traffic control.

Examples: IPv4, IPv6, ICMP, IPSEC

Transport layer Provides reliable transmission of data segments between two 

points in a network through transport layer protocols.

Examples: TCP and UDP
(continued)
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To enable communication across each layer, communication protocols 

enable the communication between two hosts on the same corresponding 

layer. We learn more about these communication protocols in the coming 

chapters.

�Analyzing Packets
Wireshark organizes the captured packets in an incredibly easy-to-read 

packet list pane. Once the packets are captured, and if users want to 

identify the details of the packet, all they need to do is find the packet and 

click on it. On clicking any packet in the packet list pane, the details about 

the structure of the packet along with all its fields are visible in the packet 

details pane. The details displayed in the packet details pane make it 

incredibly easy to learn and understand more about the packet.

Layer Functions

Session layer Manages communication sessions.

Examples: NetBIOS, SAP

Presentation layer Also known as the Translation layer; Provides three primary 

functions:

Translation

Encryption/decryption

Compression

Examples: SSL, TLS, MPEG

Application layer Provides high-level application programming interfaces (APIs) 

including resource sharing and remote file access.

Examples: FTP, SMTP

Table 2-6.  (continued)
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To start analyzing the packets, it is important to first understand the 

different columns available in the Wireshark UI. Figure 2-20 displays the 

Wireshark UI and information present across various columns in the 

packet list pane.

Figure 2-20.  Wireshark user interface

Here are high-level details about the various columns available at the 

top of the packet list pane.

•	 No.: This column displays the number order of the 

captured packet. If there is a bracket displayed along 

with the packet number, it indicates that the packet is 

part of the conversation.

•	 Time: This column displays how long after the packet 

capture was started each packet got captured.

•	 Source: This column displays the source address of the 

system from where the packet originated.
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•	 Destination: This column displays the address of the 

destination device or host for which the packet is 

destined.

•	 Protocol: This column displays the type of each packet; 

for instance, TCP, ICMP, DNS, and so on.

•	 Length: Displays the length of each packet in bytes.

•	 Info: This column displays more information about the 

packet and could have varied information from packet 

to packet.

Out of these fields, the Time and Length fields require a bit more 

explanation, as the rest of the fields are self-explanatory.

�Time

As packets are captured in Wireshark, each packet is timestamped. These 

timestamps are available for each packet in the packet list pane, which can 

be further used for analysis. It is important to note that the timestamps 

are created by the Npcap library, but the source of the timestamps is the 

system’s kernel. That is the primary reason timestamps can vary from file 

to file. Users can choose from one of the following time precision formats 

in which they wish the timestamps to be displayed:

•	 Seconds

•	 Tenths of a second

•	 Hundredths of a second

•	 Milliseconds

•	 Microseconds

•	 Nanoseconds
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Apart from choosing the format of the timestamps, user can also 

change the display format of the Time column. Users can right-click the 

column and select the Edit Column option from the menu. That opens a 

column edit pane just below the display filter bar. In this pane, users can 

select one of the following time format options from the Type field:

•	 Time (format as specified); this is the default option

•	 Absolute date, as YYYY-MM-DD, and time

•	 Absolute date, as YYYY/DOY, and time

•	 Absolute time

•	 Delta time

•	 Delta time displayed

•	 Relative time

•	 UTC date, as YYYY-MM-DD, and time

•	 UTC date, as YYYY/DOY, and time

•	 UTC time

After selecting one of these options, click OK in the edit column pane. 

Figure 2-21 displays the packet list pane with Time column displayed in 

UTC date and time option.

Figure 2-21.  Wireshark with UTC date and time timestamps
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�Length

In Wireshark, the length column displays the number of bytes captured 

for that packet. The number of bytes usually corresponds to the raw data 

bytes listed at the bottom of the Wireshark window. Now, you must be 

wondering what is so significant about these captured bytes of the packet. 

The significance is the statistics that can be gathered from these captured 

bytes. Based on the captured bytes of each packet, users can examine 

the distribution of lengths across the captured traffic. To do so, users can 

go to the Statistics menu and select Packet Length. This will open the 

Packet Lengths window, which displays the statistical information for 

varied packet lengths and includes the following columns, as shown in 

Figure 2-22:

•	 Packet Lengths

•	 Count

•	 Average

•	 Min Val

•	 Max Val

•	 Rate (ms)

•	 Percent

•	 Burst Rate

•	 Burst Start
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Figure 2-22.  Packet Lengths statistics

�Capture File Properties

Wireshark provides a summarized view of the captured packets in the 

Capture File Properties dialog box. Users can select Capture File Properties 

from the Statistics menu. This opens the Capture File Properties dialog 

box, which shows when the first and the last packets were captured, the 

device hardware on which the packet was captured, interfaces on which 

the packets were captured, and statistics from the captured packets as 

shown in Figure 2-23:

•	 Packets (total packets captured)

•	 Time span (total time span for which the capture was 

running)

•	 Average pps

•	 Average packet size in bytes
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•	 Bytes

•	 Average bytes/second

•	 Average bits/second

Figure 2-23.  Capture File Properties dialog box

There is other statistical and deep packet analysis that can be done, 

but those topics are covered in the coming chapters once we have built 

a more foundational knowledge on troubleshooting issues with different 

packet types.
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�Summary
In this chapter we gained a basic understanding of how to use the 

Wireshark tool and became familiar with its UI. Initially, we learned about 

Wireshark preferences and how users can change the default settings and 

UI according to their requirements and oreferences. We then learned how 

to perform packet captures and how dissectors play a role in Wireshark 

to break down packets into a more consumable format. We also covered 

various filtering techniques, such as capture filters, display filters, and how 

users can save the filters based on their usage. This chapter also discussed 

in detail the differences between the pcap and the pcapng file formats and 

the information available across these file formats. Finally, we concluded 

this chapter by learning how to analyze the packet using the Wireshark 

UI and how various statistical information can be identified from the 

captured packets.
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CHAPTER 3

Analyzing Layer 2 and 
Layer 3 Traffic
This chapter covers the following topics:

•	 Layer 2 frames

•	 Layer 3 packets

•	 Analyzing QoS markings

�Layer 2 Frames
Layer 2 of the OSI or TCP/IP model is the Data Link layer. The Data 

Link layer is responsible for performing encapsulation of the packets. 

Appropriate addressing is chosen at each of the Transport, Network, and 

Data Link layers during the encapsulation process. The Transport layer 

uses port numbers, the network layer uses IP address, and the Data Link 

layer uses MAC address, as shown in Figure 3-1.

Frame Header 
(MAC Address)

IP Header (IPv4 / 
IPv6 Addresses)

TCP / UDP 
Header (port 

numbers)
Data FCS

Figure 3-1.  Data encapsulation with different headers
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At each layer, the data are encapsulated in a specific format known 

as the packet data unit (PDU). The PDU defines the structure or format 

in which the data will be shared with the layer above or layer beneath 

the current layer. The PDU could simply be the data, a segment (at the 

Transport layer), a packet (at the Network layer), a frame (at the Data Link 

layer), or even bits.

The Data Link layer encapsulates the outgoing IP datagrams from the 

network layer and packages them into frames that are transferred between 

two nodes. This layer is also responsible for correcting any errors that 

might have occurred at the Physical layer. The Data Link layer has two 

sublayers:

•	 Media Access Control (MAC): Controls access to the 

network medium by interfacing with the network 

adapter. It is responsible for flow control and 

multiplexing device transmissions over the network.

•	 Logical Link Control (LLC): LLC provides error control 

and flow control over the physical medium. It is also 

used for identifying line protocols.

Layer 2 Protocols are required for two devices to communicate over the 

Layer 2 medium. They provide the communication mechanism between 

different Layer 2 devices such as NICs, switches, bridges, and more, over a 

LAN or WAN. There are different types of Layer 2 protocols, some of which 

are described in Table 3-1.
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Table 3-1.  Layer 2 Protocols

Protocol Description

Cisco Discovery 

Protocol (CDP)

CDP is a Cisco proprietary protocol that is primarily used 

to exchange information between directly connected Cisco 

devices.

Link Layer Discovery 

Protocol (LLDP)

LLDP is a vendor-neutral Layer 2 discovery protocol that is 

commonly used by devices to advertise information to their 

directly connected devices.

Point-to-Point 

Protocol (PPP)

PPP provides the standard mechanism for transmitting data 

over point-to-point links.

Frame Relay Frame Relay is a packet-switched WAN protocol that 

operates over the Physical and Data Link layers.

Asynchronous 

Transfer Mode (ATM)

ATM is a cell-switched WAN protocol that is designed to 

facilitate various types of traffic streams.

Ethernet Ethernet is the most widely used Data Link layer protocol 

used in both LAN and WAN environments.

There are several other protocols that are used at Layer 2, but most 

of them are now obsolete or have very limited implementation. In this 

chapter, we focus on Ethernet frames.

�Ethernet Frames
When talking about Ethernet frames, we can start by taking a close look at 

the IEEE 802.3 standard. The fields within the Ethernet header based on 

IEEE 802.3 standard are described here and shown in Figure 3-2.
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•	 Preamble: Ethernet frame starts with a 7-byte Preamble 

field. Initially this field was introduced to allow for 

loss of a few bits due to signal delays, but high-speed 

Ethernet links do not require the Preamble field.

•	 Start of frame delimiter (SFD): SFD is a 1-byte field that 

is always set to 10101011. This field indicates the start 

of the frame.

•	 Destination Address (DA): DA is a 6-byte field that 

holds the destination MAC address of the machine.

•	 Source Address (SA): SA is also a 6-byte field that holds 

the source MAC address of the machine from which the 

packet originated.

•	 Length: This 2-byte field indicates the length of the 

entire Ethernet frame.

•	 Data: The Data section holds the payload of the frame. 

Note that both the IP header and data will be inserted 

into this section if IP is being used over Ethernet. The 

minimum length of the data field is 46 bytes, and the 

maximum data can be as long as 1,500 bytes, assuming 

the interface maximum transmission unit (MTU) is set 

to 1,500. If the data length is less than the minimum 

length of 46 bytes, then 0s are padded to meet the 

minimum possible data length.

•	 Cyclic Redundancy Check (CRC): The checksum is 

computed based on the 32-bit hash code generated 

using the destination address, source address, length, 

and data field of the frame and stored in the CRC field. 

If the checksum computed by the source or sender is 

not the same as that of the client or receiving device, 

the data received seem corrupted.
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Preamble SFD Destination Address Source Address Length Data CRC

7-Bytes 1-Byte 6-Bytes 6-Bytes 2-Bytes 46 – 1500 Bytes 4-Bytes

Figure 3-2.  802.3 Ethernet frame

As stated earlier, the 802.3-based Ethernet frame only supported 

payloads between 46 bytes and 1,500 bytes, which was good enough for 10 

Mbps or 100 Mbps ports, but not helpful for Gigabit Ethernet technology. 

To support payloads greater than 1,500 bytes, an Extended Ethernet frame 

was introduced. The Extended Ethernet frame, also known as Ethernet II 

frame, had the following fields:

•	 Destination Address

•	 Source Address

•	 Type (EtherType)

•	 Data (Variable size)

•	 Frame Checksum (FCS)

Figure 3-3 displays the Wireshark capture packet view of an Ethernet 

frame for an IP packet. Notice that the EtherType in the Type field is set to 

0x0800, which indicates the encapsulated packet is an IPv4 packet.
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Figure 3-3.  Ethernet II header in IPv4 packet

Note  By default, FCS is not visible in the Wireshark capture. To view 
the FCS for the Ethernet header, go to Wireshark ➤ Preferences ➤ 
Protocols ➤ Ethernet and enable Assume Packets Have FCS option. 
Once that option is enabled, the Wireshark packet detail view will 
display the FCS field under the Ethernet II header.

When investigating packets at Layer 2, it is important to take note 

of some well-known EtherTypes that are seen inside most production 

networks. Some of these well-known EtherTypes are listed in Table 3-2.
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Table 3-2.  Well-Known EtherTypes

EtherType Protocol

0x0800 IPv4

0x0806 ARP

0x8100 VLAN-Tagged Frame (IEEE 802.1Q)

0x8847 MPLS

0x86DD IPv6

When analyzing Layer 2 frames, packets in Wireshark can be filtered 

by applying filters based on source MAC, destination MAC, or EtherType. 

Figure 3-4 displays the filtering of Layer 2 ARP broadcast frames coming 

from a specific MAC address. The filters can be applied on eth.src and 

eth.type fields on the captured Wireshark packets.

Figure 3-4.  Filtering of broadcast frames sourced from a specific 
MAC address
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�Layer 3 Packets
When troubleshooting issues within a single broadcast domain or local 

LAN environments, Layer-2-based captures are more relevant, but when 

investigating issues that span multiple network segments that might 

be residing in different geographical location, we primarily focus on 

looking at Layer 3 and upper layer information in the packet captures. 

When talking about Layer 3 packets, we are primarily referring to either 

IPv4 packets or IPv6 packets. The protocols at Layer 3 provide logical 

addressing in a network (Internet or intranet) and ensure routing of data 

across different network segments. Even when dealing with tunneling 

technologies, the logical addressing of the tunnel interfaces and routing 

traffic across tunnel interfaces is still required. Before diving into IPv4 or 

IPv6 packets, let’s first understand ARP and its importance for establishing 

network communication.

�Address Resolution Protocol
It is important to remember that both physical and logical addresses are 

required to establish communication in the network. Logical addresses 

allow users to establish communication across multiple network segments, 

and physical addresses are used for establishing communication within 

the same network segment. To forward traffic within the same broadcast 

segment, MAC addresses are required by the switch. Unless the switch 

knows about the MAC address of the host, it will not be able to forward the 

traffic toward the port where the destination host is connected. The MAC 

addresses of all the hosts connected to a switch within the same broadcast 

domain are stored in a Content Addressable Memory (CAM) table. If the 

MAC address of the destination address is not known, the switch will first 

perform a lookup in its cache. If the address is not found even in the cache, 

then a request is flooded to all the ports within the same broadcast domain 

until the MAC address is identified.
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TCP/IP uses ARP to map the IPv4 address with the MAC address. The 

ARP protocol functionality, defined in RFC 826, relies on primarily two 

packets:

•	 ARP request: An ARP request is basically a broadcast 

packet that is initiated by the sender or source host 

when it does not know the MAC address of the 

destination host or receiver.

•	 ARP response: When a host with the destination IP 

address for which the ARP request was sent receives 

the ARP request, it replies with an ARP response, which 

is basically a unicast packet directed toward the sender 

or the source host.

To understand how ARP works, examine the topology shown in 

Figure 3-5. In this topology, Host 1, Host 2, Host 3, and Host 4 are 

connected to an L2 switch and Host 1 wishes to send data toward Host 2. 

Because Host 1 does not know the MAC address of Host 2, it broadcasts an 

ARP request toward the switch.

Figure 3-5.  ARP request
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On receiving the ARP request, the switch first updates its MAC address 

table with the MAC address of Host 1 (if it doesn’t already know about 

the MAC address) and then broadcasts the ARP request to all the hosts 

within the same VLAN. All three hosts receive the ARP request. Because 

Host 2 holds the destination IP address in the ARP request, it updates 

its MAC ARP cache and sends an ARP response toward Host 1 as shown 

in Figure 3-6. The reply is a unicast reply because Host 2 knows its own 

MAC address but it also knows about the MAC address of Host 1, which it 

learned via the ARP request.

Figure 3-6.  ARP response

Any further communication between Host 1 and Host 2 will be unicast 

unless one of them has its ARP entry time out. Figure 3-7 and Figure 3-8 

show the Wireshark capture of the ARP request and ARP response.
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Figure 3-7.  Wireshark capture ARP request

Figure 3-8.  Wireshark capture ARP response
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�IPv4 Packets
Defined in RFC 791, The Internet Protocol version 4 (IPv4) address is 

a 32-bit address that could allow anywhere from two to hundreds and 

thousands of hosts to be in each network segment. The way subnets 

are implemented in organizations allow them to scale quickly without 

having to make much change in routing. As stated before, the purpose of 

IP was to deliver logical addressing for various network elements and to 

provide routing capability across different network segments. Because 

there was not much advancement that happened in the early 1980s and 

there were limited bandwidth options available, when IPv4 addressing 

was standardized in 1983, one of the foci was solving the fragmentation 

problem that would allow the packets to be broken into smaller chunks. 

Today, with Gigabit Ethernet technologies in place and support for jumbo 

MTUs, we rarely have to deal with fragmentation in the network. All the 

fields of the IPv4 header are shown in Figure 3-9.

Figure 3-9.  IPv4 header

To understand the capabilities of IPv4, let’s examine the IPv4 header in 

detail. The IPv4 address has several fields as shown in Figure 3-9:

•	 Version: This 4-bit field indicates the IP version being 

used. There are devices that could be dual stack (support 

for IPv4 and IPv6 address) and the version field helps the 

device understand how to treat the traffic.
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•	 Internet Header Length (IHL): This is a 4-bit field that 

contains the size of the IPv4 header. The 4 bits are used 

to specify the number of 32-bit words in the header. 

The minimum value of this field is 5 and the maximum 

value is 15, which basically indicates that the minimum 

IPv4 header length can be 20 bytes and the maximum 

can be 60 bytes.

•	 Differentiated Services Code Point (DSCP): This is 

a 6-bit field that was previously known as a Type of 

Service (ToS) field. This field specifies differentiated 

services (DiffServ), defined in RFC 2474, and it is used 

to provide service quality features such as Voice over 

IP (VoIP) calls or data streaming. Based on the values 

assigned in this field, different traffic streams are given 

different priority in the network and treated differently 

by routers and switches.

•	 Explicit Congestion Notification (ECN): ECN is a 2-bit 

field that allows for end-to-end network congestion 

notification without dropping packets. For the ECN 

feature to work, both endpoints are required to support 

this feature.

•	 Total Length: This is a 16-bit field that defines the entire 

packet size in bytes including the header and payload. 

The minimum size is 20 bytes and the maximum size is 

65,535 bytes.

•	 Identification: The Identification field is used to identify 

a group of IP datagram packets uniquely and is also 

widely used for packet tracing purposes.
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•	 Flags: This 3-bit field is used to control and identify 

fragments of an IP datagram. There are three possible 

values that are set in the Flags field:

•	 Bit 0: Reserved

•	 Bit 1: Do not fragment (also known as DF bit)

•	 Bit 2: More fragments

•	 Fragment Offset: This 13-bit field specifies the fragment 

offset relative to the start of the original unfragmented 

IP datagram in blocks. Each block is measured in units 

of 8 bytes. The maximum possible offset is 65,528  

((213 – 1) * 8).

•	 Time to Live (TTL): TTL is an 8-bit field that indicates 

the maximum time that a packet can live in an Internet 

system. The maximum value of TTL is 255 seconds and 

it is decremented when a packet is processed at each 

routed hop and forwarded to the next hop. If the TTL 

value is zero (0), the packet is discarded or dropped. 

This is to ensure that the packets do not keep looping in 

the Internet system.

•	 Protocol: The 8-bit Protocol field is used to denote 

which protocol will be used in the data section of the 

datagram. For instance, the two most common protocol 

numbers that are usually seen in the network are 

protocol number 6, which is used to represent TCP, and 

protocol number 17, which represents a UDP packet. 

The protocol numbers are assigned and maintained by 

the Internet Assigned Numbers Authority (IANA).
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•	 Header Checksum: The 16-bit Header Checksum field 

in the IPv4 header is used for validating the integrity of 

the packet. When an IPv4 packet arrives at the router, 

the router calculates the checksum of the packet and 

compares it with the value in the this field. If the value 

matches, the packet is forwarded; otherwise, the packet 

is dropped.

•	 Source Address (SA): The 32-bit Source Address is used 

to specify the IPv4 address of the source device that 

originated the packet.

•	 Destination Address (DA): The 32-bit Destination 

Address field is used to specify the IPv4 address of the 

destination device to which the packet is destined.

•	 Options: The Options field is an optional field that 

is only set when the IHL value is greater than 5 (i.e., 

between 6 and 15). The Options field contains values 

and settings for security-related options and might be 

considered dangerous by some routers and dropped. 

You might see the Options field set when using the 

Record Route option with extended ICMP pings or for 

Timestamps. Table 3-3 shows the list of options that 

can be used in an IPv4 header and Table 3-4 displays 

the defined options for IPv4.
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Table 3-3.  IPv4 Header Options

Field Size (Bits) Description

Copied 1 Set to 1 if the options need to be copied across all 

fragments of a fragmented packet

Option Class 2 0 – Control Options

1 – Reserved

2 – Debugging and Measurement

3 – Reserved

Option Number 5 Specifies an option

Option Length 8 Indicates the size of the entire option; might not be 

set for simple options

Option Data Variable Holds option specific data; might not be set for 

simple options

Table 3-4.  Defined Options for IPv4

Option Type  
(Decimal/Hexadecimal)

Option Name Description

0/0x00 EOOL End of Option List

1/0x01 NOP No Operation

2/0x02 SEC Security (defunct)

7/0x07 RR Record Route

10/0x0A ZSU Experimental Measurement

11/0x0B MTUP MTU Probe

12/0x0C MTUR MTU Reply

15/0x0F ENCODE ENCODE

25/0x19 QS Quick-Start

(continued)
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Table 3-4.  (continued)

Option Type  
(Decimal/Hexadecimal)

Option Name Description

30/0x1E EXP RFC 3692-style Experiment

68/0x44 TS Timestamp

82/0x52 TR Traceroute

94/0x5E EXP RFC 3692-style Experiment

130/0x82 SEC Security (RIPSO)

131/0x83 LSR Loose Source Route

133/0x85 E-SEC Extended Security (RIPSO)

134/0x86 CIPSO Commercial IP Security Option

136/0x88 SID Stream ID

137/0x89 SSR Strict Source Route

142/0x8E VISA Experimental Access Control

144/0x90 IMITD IMI Traffic Descriptor

145/0x91 EIP Extended Internet Protocol

147/0x93 ADDEXT Address Extension

148/0x94 RTRALT Router Alert

149/0x95 SDB Selective Directed Broadcast

151/0x97 DPS Dynamic Packet State

152/0x98 UMP Upstream Multicast Packet

158/0x9E EXP RFC 3692-style Experiment

205/0xCD FINN Experimental Flow Control

222/0xDE EXP RFC 3692-style Experiment
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•	 Data: The data or payload in the Data field is based on 

the value set in the Protocol field of IPv4 header. For 

instance, if the protocol number is set to 1, then the 

payload will contain ICMP-related data.

Examine Figure 3-10, which displays the Wireshark capture of an IPv4 

packet detailing all the IPv4 header fields. Notice that the Options field is 

not present in this capture.

Figure 3-10.  IPv4 header in Wireshark capture

�IPv4 Addressing

Based on the understanding from the IPv4 header, the Source Address 

and the Destination Address fields store the source and destination IPv4 

addresses, respectively. Although these fields are important, it is equally 

important to understand different types of IPv4 addresses. Primarily, IPv4 

addressing is divided into five different classes:

•	 Class A: 0.0.0.0 to 127.255.255.255

•	 Class B: 128.0.0.0 to 191.255.255.255
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•	 Class C: 192.0.0.0 to 223.255.255.255

•	 Class D (multicast addresses): 224.0.0.0 to 

239.255.255.255

•	 Class E (experimental addresses): 240.0.0.0 to 

255.255.255.255

Within Classes A, B, and C, the IPv4 addresses are further divided into 

public and private addresses.

•	 Public address: Public IPv4 addresses are the addresses 

that are uniquely identified on the Internet and are 

usually allocated to organizations by IANA.

•	 Private addresses: Private IPv4 addresses are primarily 

used in almost every organization for managing 

hosts in LAN environments. These addresses are not 

advertised in the global Internet routing table. The 

private IPv4 address range is shown here:

•	 Class A private IP: 10.0.0.0 to 10.255.255.255

•	 Class B private IP: 172.16.0.0 to 172.31.255.255

•	 Class C private IP: 192.168.0.0 to 192.168.255.255

RFC 1918 defines the range of private addresses that can be used 

by organizations within their LAN environments. Because the private 

addresses are inherently private, multiple organizations could have the 

same addressing schemes within their organizations. They communicate 

to outside networks (Internet) through their public IPv4 addresses, which 

are allocated to their Internet Gateway routers. Even a home broadband 

connection works on the same concept. The local network sits behind a 

modem and the hosts that are part of that network are allocated private 

IPv4 addresses. These hosts have their default gateway set to the modem 

and when the hosts want to communicate to the Internet, they use the 
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default route pointing to the gateway. The modem has a dynamically 

learned or statically assigned IPv4 address that allows the broadband user 

to access the Internet. Figure 3-11 illustrates how a simple broadband 

connection is set up.

Figure 3-11.  Home broadband Internet connection

There are other addresses, too, apart from the public and private IPv4 

addresses, listed here:

•	 Loopback addresses: 127.0.0.0 to 127.255.255.255

•	 APIPA: 169.254.0.0 to 169.254.255.255

•	 Limited broadcast: 255.255.255.255

�ICMP

ICMP is one of the key protocols that is used for validating connectivity in 

the network and for network troubleshooting. ICMP was initially published 

in RFC 777, which was later deprecated by RFC 792 and was later updated 

by RFC 4884, RFC 6633, RFC 6918, and so on. Because IP is a best-effort 

and an unreliable connectionless protocol, ICMP allows identifying and 
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communicating issues that prevent data delivery. Network engineers 

frequently use the ICMP ping utility, which relies on an ICMP request and 

ICMP reply to identify reachability between source and destination. There 

are two versions of ICMP that are used by both the IP versions:

•	 ICMPv4 used for IPv4

•	 ICMPv6 used for IPv6

To communicate errors or reachability information, ICMP relies on 

ICMP messages that are set within the ICMP header. The ICMP header has 

the following fields, shown in Figure 3-12:

•	 Type: 8-bit

•	 Code: 8-bit

•	 Checksum: 16-bit

Figure 3-12.  ICMP header

Note  When sending an ICMP packet, the Protocol field within the IP 
header is set to a value of 1.

Some of the most commonly used ICMP messages are as follows:

•	 ICMP Echo Request and Echo Reply: The ICMP Echo 

Request has the Type/Code value of 8/0 and the ICMP 

Echo Reply has the Type/Code value of 0/0. The Echo 

Request and Echo Reply messages are used to validate 

the connectivity between the source and destination 

device in the network and are commonly used via the 

ICMP Packet InterNet Grouper (PING) tool. When 

the source device tries to verify the connectivity 
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toward the destination device using the PING tool, it 

sends an ICMP request, and if the destination device 

is reachable, it responds back with the ICMP reply 

message.

•	 ICMP Redirect message: ICMP Redirect messages are 

used by routers on nonoptimal paths to notify hosts 

about the availability of an optimal path between the 

source and the destination. An ICMP Redirect message 

has the ICMP Type value of 5 and has four codes:

•	 Code 0: Redirect datagram for the network

•	 Code 1: Redirect datagram for the host

•	 Code 2: Redirect datagram for the type of service 

and network

•	 Code 3: Redirect datagram for the type of service 

and host

•	 ICMP Destination Unreachable message: If a router 

receives a datagram that it is unable to forward or 

deliver to the destination, it replies with an ICMP 

Destination Unreachable message. There can be 

multiple reasons for the router being unable to 

deliver the packet. The different reasons are covered 

under various ICMP codes. The ICMP Destination 

Unreachable message has the Type value of 3 and the 

following code options:

•	 Code 0: Destination network unreachable

•	 Code 1: Destination host unreachable

•	 Code 2: Destination protocol unreachable

•	 Code 3: Destination port unreachable
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•	 Code 4: Fragmentation required, and DF set

•	 Code 5: Source route failed

•	 Code 6: Destination network unknown

•	 Code 7: Destination host unknown

•	 Code 8: Source host isolated

•	 Code 9: Network administratively prohibited

•	 Code 10: Host administratively prohibited

•	 Code 11: Network unreachable for type of service

•	 Code 12: Host unreachable for type of service

•	 Code 13: Administratively prohibited

•	 ICMP Time Exceeded message: This message is sent 

by the router to the source device or host if the TTL 

value reaches 0 before it reaches the destination. One 

reason that could cause the TTL to expire is that the 

destination router is more than 255 hops away or, 

alternatively, there is a routing loop in the network that 

has caused the TTL value to reach 0. The ICMP Time 

Exceeded message has the Type value of 11 and has the 

following codes:

•	 Code 0: TTL expired

•	 Code 1: Fragment reassembly time exceeded

•	 ICMP Source Quench message: If a router receives a 

large amount of data that it can handle and it can send 

an ICMP Source Quench message to the sender asking 

it to slow down the rate at which it is sending the traffic. 

The ICMP Source Quench message has the Type and 

Code value set to 0/0.
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To see what ICMP packets look like, let’s examine the network topology 

shown in Figure 3-13. In this topology, there are three routers—R1, R2, and 

R3—each configured with loopback interfaces.

Figure 3-13.  Network topology

The goal is to test the connectivity between the R1 and R3 loopback 

address. To exchange the routing information, the device is running the 

OSPF routing protocol. To verify connectivity, the network engineers will 

initiate a ping request destined to R3 loopback 0 interface IP (i.e., 3.3.3.3) 

sourcing loopback 0 interface IP (i.e., 1.1.1.1). Figure 3-14 and Figure 3-15 

display the ICMP request and ICMP reply packets between 1.1.1.1 and 

3.3.3.3.

Figure 3-14.  Wireshark capture for ICMP request
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Figure 3-15.  Wireshark capture for ICMP reply

Although in most cases you might not want to perform a packet 

capture for ICMP request and ICMP reply packets, in scenarios where even 

the ICMP packets are unreachable, you might want to perform packet 

capture to isolate the node that might be dropping the packets.

For basic ICMP packets, there is no special Options field that must 

be set in the IP header, but when performing a ping test with the Record 

Route (RR) option, the Options field is set to enable the RR feature. But 

what is the RR feature? It is used mostly with the ping tool. When the RR 

option is set in the Options field of an IPv4 header, it forces every router 

that handles the IP datagram to add its outgoing interface IP to a list in 

the Options field. When the datagram reaches the destination, the list of 

IP addresses is copied into the ICMP reply, which is then returned to the 

sender. Example 3-1 illustrates how the RR option is used with the ping 

request on a Cisco IOS device.
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Example 3-1.  ICMP Ping with Record Route Option

R1#ping

Protocol [ip]:

Target IP address: 3.3.3.3

Repeat count [5]: 1

Datagram size [100]:

Timeout in seconds [2]:

Extended commands [n]: y

Ingress ping [n]:

Source address or interface: 1.1.1.1

DSCP Value [0]:

Type of service [0]:

Set DF bit in IP header? [no]:

Validate reply data? [no]:

Data pattern [0x0000ABCD]:

Loose, Strict, Record, Timestamp, Verbose[none]: Record

Number of hops [ 9 ]:

Loose, Strict, Record, Timestamp, Verbose[RV]:

Sweep range of sizes [n]:

Type escape sequence to abort.

Sending 1, 100-byte ICMP Echos to 3.3.3.3, timeout is 2 

seconds:

Packet sent with a source address of 1.1.1.1

Packet has IP options:  Total option bytes= 39, padded 

length=40
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 Record route: <*>

   (0.0.0.0)

   (0.0.0.0)

   (0.0.0.0)

   (0.0.0.0)

   (0.0.0.0)

   (0.0.0.0)

   (0.0.0.0)

   (0.0.0.0)

   (0.0.0.0)

Reply to request 0 (71 ms).  Received packet has options

 Total option bytes= 40, padded length=40

 Record route:

   (10.1.2.1)

   (10.2.3.2)

   (3.3.3.3)

   (10.1.2.2) <*>

   (0.0.0.0)

   (0.0.0.0)

   (0.0.0.0)

   (0.0.0.0)

   (0.0.0.0)

 End of list

When examining the ICMP packet in Wireshark as shown in 

Figure 3-16, you will also notice that the IPv4 header now has the Options 

field with the Record Route option set and the list of IP addresses.
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Figure 3-16.  Wireshark capture of ping packet with Record 
Route option

�IP Fragmentation and Reassembly

Fragmentation allows the larger sized packets to be broken down into 

smaller chunks to be sent across network segments that do not support 

large packets. When traffic is routed across the network devices, the 

devices in the path might encounter a segment with an interface MTU 

value that is smaller than the incoming packet size. For such situations, 

IP fragmentation can be used. It allows a datagram to be divided into 
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smaller chunks so that it can be transmitted across a segments that have 

a lower interface MTU. When talking about fragmentation, two terms are 

widely used:

•	 Maximum segment size (MSS): Data payload

•	 MTU – MSS + IP header (20 bytes) + TCP header 

(20 bytes)

So, if an interface MTU is set to a default valie of 1500, then the MSS 

will be calculated as follows:

MSS = 1500 (MTU) – 20 bytes (IP header) – 20 bytes (TCP header)

For a better understanding of how fragmentation works, examine 

topology shown earlier in Figure 3-13. In this topology, the link between R1 

and R2 has an interface MTU value set to 9200, whereas the link between 

R2 and R3 has the interface MTU value set to the default of 1500. When a 

ping packet is initiated from R1 sourcing 1.1.1.1 destined to R3 loopback 

3.3.3.3 with packet size set to 9140, the packet will be fragmented because 

the network segment between R2 and R3 has a lower MTU value. In such 

a case, the more fragments bit will be set in the IPv4 header Flags field as 

shown in Figure 3-17. In Figure 3-17, we can see the more fragments bit is 

set but also notice that the Fragment Offset field shows 0. This is because 

the first datagram packet in the fragmented packets will not have any 

offset, thus it begins from 0. Any other packet after this packet will have 

incremental fragment offset values.
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Figure 3-17.  Wireshark capture of first fragmented packets

Similarly, if we notice the last fragment of the fragmented packets, we 

can see that the more fragments bit is not set anymore, but the Fragment 

Offset field is set to 8880, as shown in Figure 3-18. This means that the 

all the previous fragments cumulatively hold 8880 bytes of data in the 

payload. Note that the IP Identification field will have the same value 

across all the fragmented packets of the single large packet. Wireshark also 

displays all the packets that will be used for fragment reassembly, which 

will combine to form the final packet of payload size 9140 bytes.
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Figure 3-18.  Wireshark capture of last fragmented packet

For simplicity and ease of remembering, the IP packets can be 

categorized into three types:

•	 Nonfragmented

•	 Initial fragment

•	 Noninitial fragment

Based on these packet types, the more fragments bit and Fragment 

Offset field are set as shown in Table 3-5.
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Table 3-5.  Fragment Settings in IP Header

Packet Type More Fragments Flag Fragment Offset Field

Nonfragmented 0 0

Initial fragment 1 0

Noninitial fragment (not last) 1 Nonzero

Noninitial fragment (last) 0 Nonzero

In today’s networks, we rarely notice fragmentation as most networks 

these days are designed with support for jumbo MTU (MTU values higher 

than 1500 bytes). All the Gigabit Ethernet networks support up to 9216 

bytes to be set as the MTU value and to leverage the benefit of higher 

MTU sizes, most applications send the packets with the don’t fragment 

(do not fragment or DF) bit set. When this bit is set, the router processing 

the packet will not fragment the packet and will try to send the packet 

out as is. When a packet is forwarded across a network segment with 

the DF bit set and the router encounters a next hop interface having 

lower MTU or IP MTU settings, the router will send an ICMP Destination 

Unreachable message back with type 3 and code 4, which basically 

means fragmentation is needed and the DF bit is set. Along with the 

ICMP Destination Unreachable message, the router also sends the MTU 

settings of the next hop device to let the source know that it needs to send 

the packet with a smaller data payload if it wants to send the packet with 

the DF bit set. Figure 3-19 displays the Wireshark capture of the ICMP 

Destination Unreachable message along with the MTU settings of the next 

hop device.
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Figure 3-19.  Wireshark capture of ICMP Destination 
Unreachable message

�IPv6 Packets
When IPv4 was introduced by DARPA, the 32-bit address space would 

allow for 232 (4.3 billion) addresses, which seemed sufficient at the time. As 

networks and the number of devices grew, however, it became evident that 

the IPv4 address space would not be sufficient based on the number of 

devices per person. Scientists then developed the IPv6 addressing scheme 

and increased the address size limit from 32 bits to 128 bits. In 1998, IPv6 

addressing was standardized in RFC 2460. IPv6 addressing had a number 

of enhancements over IPv4:

•	 Streamlined header: Although the IPv6 header is much 

larger than the IPv4 header, several fields from the IPv4 

header were removed in the IPv6 header, making it 

more streamlined.
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•	 Revised fields: Some of the fields in the IPv6 header 

were revised when compared to Ipv4:

•	 The TTL field in IPv4 was converted to the Hop 

Limit field in IPv6.

•	 The Precedence and ToS fields were moved to the 

Traffic Class field.

•	 The Protocol field was covered under the Next 

Header field.

•	 The 32-bit Source Address and Destination Address 

fields were now converted to 128-bit Source 

Address and Destination Address fields.

•	 Flow label: Flow label was introduced in the IPv6 

header for identifying streams such as real-time traffic 

that required special treatment in the network.

Figure 3-20 shows the comparison between an IPv4 and an IPv6 

header. Notice that even though the the IPv4 header has more field, the 

IPv6 header looks more streamlined.

Fragment 
OffsetFlags

Total LengthType of 
ServiceIHL

PaddingOptions

Destination Address

Source Address

Header ChecksumProtocolTime to Live

Identification

Version

IPv4 Header

Next 
Header Hop Limit

Flow LabelTraffic 
Class

Destination Address

Source Address

Payload Length

Version

IPv6 Header

Field’s Name Kept from IPv4 to IPv6

Fields Not Kept in IPv6

Name and Position Changed in IPv6

New Field in IPv6

Le
ge

nd

Figure 3-20.  IPv4 and IPv6 headers
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Figure 3-21 shows the Wireshark capture of an IPv6 packet exchange 

between two devices. The highlighted section of the Wireshark capture 

shows the IPv6 header. Let’s now examine the fields of an IPv6 header 

in detail:

•	 Version: This 4-bit field indicates the IP version that is 

in use. For IPv6 packets, you will see the value set to 6.

•	 Traffic Class: This 8-bit field is used for allowing 

special treatment to a packet in the network based 

on the DSCP values assigned to an IPv6 packet. It is a 

combination of two fields:

•	 TOS: The first 6 bits are used to set the DSCP value 

of a packet similar to an IPv4 packet. The DSCP 

value defaults to 0.

•	 ECN: The last 2 bits of this field are used for 

congestion notification similar to how it is done in 

an IPv4 packet.

•	 Flow Label: The 20-bit Flow Label field is used by 

a source to group a set of packets belonging to the 

same flow. It is usually used for QoS and to ensure the 

packets of same flow take the same path.

•	 Payload Length: This 16-bit field represents the packet’s 

payload. The payload may not exceed 216 (65,535) bytes 

of data except in situations where extension headers 

are being used. When extension headers are used, the 

field value is set to 0.

•	 Next Header: This 8-bit field indicates the higher layer 

protocol that follows the IPv6 header.
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•	 Hop Limit: The 8-bit Hop Limit field is similar to 

the TTL field in an IPv4 header. The value of this 

field represents the number of routed hops a packet 

can traverse before getting dropped or reaching the 

destination. The maximum value of this field is 255. 

At every routed hop, the value of the Hop Limit field 

is decreased by 1 and when the value reaches 0, the 

packet is dropped.

•	 Source Address: The 128-bit Source Address field 

represents the IPv6 address of the sender from which 

the packet originated.

•	 Destination Address: The 128-bit Destination Address 

field represents the IPv6 address of the packet’s 

destination.

Figure 3-21.  Wireshark capture of IPv6 header
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Note T here is no option for fragmentation in the IPv6 header 
similar to the Flags or Fragment Offset fields in the IPv4 header. If 
fragmentation is required on Ipv6 packets, the Extensions header 
is used.

�IPv6 Addressing

Because IPv6 addresses support 128-bit addressing, the protocol supports 

undecillions (a trillion trillion trillion) addressable spaces, or simply put, 

3.4 × 1038 unique IPv6 addresses can be allocated. IPv6 addresses are 

represented in hexadecimal format written in eight groups of 2 bytes each, 

with each group separated by a colon. For instance, an IPv6 address would 

look something like the following address, making it virtually impossible to 

memorize.

1111:2222:3333:4444:aaaa:bbbb:cccc:0abc

One of the best features of IPv6 address notation is that some groups 

of zeros can be collapsed using a double colon to form a shorter address. 

Note, however, that in any given address, only a single collapsible group is 

allowed. Consider the IPv6 address shown here:

1111:2222:3333:0000:aaaa:0000:cccc:0abc

This address can either be written as:

1111:2222:3333::aaaa:0000:cccc:0abc

or as:

1111:2222:3333:0000:aaaa::cccc:0abc
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Note A  deep dive on IPv6 addressing is outside the scope of this 
book. To learn more about IPv6 addressing, refer to RFC 4291.

There are several types of IPv6 addresses that are supported:

•	 Link local address: Link local addresses are 

automatically assigned to the interfaces on which IPv6 

is enabled. These addresses are used to communicate 

with hosts on the same subnet. This address always 

starts with FE80.

•	 Global unicast: These addresses are public IPv6 

addresses that are uniquely recognized and are 

routable over the Internet.

•	 Unicast address: A unicast address is used for a single 

host on a network.

•	 Unique local: These addresses are routable within the 

administrative domain.

•	 Multicast address: Multicast addresses are used to send 

data to multiple receivers who are subscribed to the 

multicast group address.

•	 Anycast address: Anycast addresses are used to send 

data to multiple locations using the same IPv6 address. 

An anycast address is allocated for a set of interfaces 

that typically belong to different nodes.
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Following are the IPv6 address subnet ranges for different IPv6 

addresses:

•	 Global unicast: 2000::/3

•	 Unique local: FC00::/7

•	 Link local: FE80::/10

•	 Multicast: FF00::/8

�Extension Headers

In IPv4, a lot of capabilities were added using the Options field and similar 

functionalities and those capabilities had to be preserved in IPv6. Having 

an additional Options field added a bit of an overhead in processing IPv4 

headers, though. Taking that into consideration, IPv6 Extension Headers 

(EH) was introduced, as defined in RFC 2460. The EH are added to the 

IPv6 headers as needed and the main header of 40 bytes remains as is. 

Figure 3-22 illustrates what an IPv6 header with EH would look like.

Ver Traffic Class Flow Label

Payload Length Next Header = EH1 Hop Limit

Source Address

Destination Address

EH1

EH2

EH3

Payload

Next Header = EH2

Next Header = EH3

Next Header = UL

Upper Layer Header

Figure 3-22.  IPv6 header with Extension Headers
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Table 3-6 lists the various Extension Headers and their mapping for 

next header values.

Table 3-6.  IPv6 Extension Headers and Next Header Values

Order Header Type Next Header Code

1 Basic IPv6 header -

2 Hop-by-Hop options 0

3 Destination options (with Routing 

options)

60

4 Routing header 43

5 Fragment header 44

6 Authentication header 51

7 Encapsulation Security Payload header 50

8 Destination options 60

9 Mobility header 135

No next header 59

Upper layer TCP 6

Upper layer UDP 17

Upper layer ICMPv6 58

�ICMPv6

ICMPv6 is a very crucial protocol when it comes to the working of IPv6. 

Although IPv4 and IPv6 are similar in terms of their overall functionality, 

ICMPv6 has multiple use cases when it comes to the functioning of IPv6. 

ICMPv6 provides additional benefits such as these:
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•	 Improved multicast routing

•	 Extensions

•	 Stateless Autoconfiguration (SLAAC)

The ICMPv6 header is similar an IPv4 header. It contains the Type, 

Code, and Checksum fields, followed by ICMPv6 options and contents that 

are based on type and code values.

In the previous section, you likely noticed that when we were 

talking about IPv6 addressing, we did not talk about broadcast. That is 

because there is no concept of broadcast in IPv6, as it is considered an 

inefficient mechanism. Because there is no broadcast, ARP cannot work 

for IPv6. This is where ICMPv6 comes into play. We talk about the IPv6 

neighbor discovery process in the next section, but for now, let’s focus 

on the different ICMPv6 messages and their Type and Code values. The 

ICMPv6 messages are divided into two categories, error messages and 

informational messages.

Table 3-7 displays a list of the most commonly used error messages 

in ICMPv6.
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Table 3-7.  ICMPv6 Error Messages

Type Header Type Code Definition

1 Destination 

unreachable

0 No route to destination

1 Communication with destination administratively 

prohibited

2 Beyond scope of source address

3 Address unreachable

4 Port unreachable

5 Source address failed ingress/egress policy

6 Reject route to destination

7 Error in source routing header

2 Packet too big 0

3 Time exceeded 0 Hop limit exceeded in transit

1 Fragment reassembly time exceeded

4 Parameter problem 0 Erroneous header field encountered

1 Unrecognized next header type encountered

2 Unrecognized IPv6 option encountered

Table 3-8 displays a list of most commonly used informational 

messages in ICMPv6.
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Table 3-8.  ICMPv6 Informational Messages

Type Header Type Code Definition

128 Echo Request 0

129 Echo Reply 0

130 Multicast Listener 

Query (MLD)

0 • �G eneral query: Used to learn which multicast 

addresses have listeners on an attached link

• � Multicast-address-specific query: Used to 

learn if a particular multicast address has any 

listeners on an attached link

131 Multicast Listener 

Report (MLD)

0

132 Multicast Listener 

Done (MLD)

0

133 Router Solicitation 

(NDP)

0

134 Router 

Advertisement (NDP)

0

135 Neighbor Solicitation 

(NDP)

0

136 Neighbor 

Advertisement (NDP)

0

137 Redirect Message 

(NDP)

0

138 Router Renumbering 0 Router Renumbering command

1 Router Renumbering result

255 Sequence number reset

(continued)
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Note T here are other ICMPv6 informational messages, too. 
Table 3-8 does not provide an exhaustive list.

�IPv6 Neighbor Discovery

To learn about the connected neighbor in IPv6, we have Neighbor 

Discovery Protocol (NDP). NDP uses the link local address (fe80::/64) 

as its source and the hop limit is set to 255. IPv6 neighbor discovery 

relies primarily on two functions, neighbor solicitation and neighbor 

advertisement.

Table 3-8.  (continued)

Type Header Type Code Definition

139 ICMP Node 

Information Query

0 The Data field contains an IPv6 address that is 

the subject of this query.

1 The Data field contains a name that is the 

subject of this query, or is empty, as in the case 

of a NOOP.

2 The Data field contains an IPv4 address that is 

the subject of this query.

140 ICMP Node 

Information 

Response

0 A successful reply. The Reply Data field may or 

may not be empty.

1 The responder refuses to supply the answer; the 

Reply Data field will be empty.

2 The Qtype of the query is unknown to the 

responder. The Reply Data field will be empty.
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A Neighbor Solicitation (NS) message is primarily used for three 

purposes:

•	 Determining the link-layer address of a neighbor.

•	 Checking the validity of an already defined address.

•	 Validating if an IPv6 address generated via auto-config 

is unique.

Let’s assume we have two hosts or two devices, say A and B, connected 

to each other and interested in communicating with each other. When 

Host A wants to form an IPv6 neighborship with Host B, it will send an 

NS packet. An NS packet is basically a Type 135 ICMPv6 packet. The 

originating device sends the NS packet to every device on the network 

via multicast, which basically communicates to the receiver, “What is the 

MAC address of 2001:db8:12:2? My MAC address is 01:01:01:01:01:01.” 

When the device that is assigned the destination IPv6 address receives the 

multicast NS packet, it responds back with a Neighbor Advertisement (NA) 

packet, which is an ICMPv6 Type 136 packet. This packet basically tells the 

source, “Hi. My network address is 2001:db8:12:2 and my MAC address is 

02:02:02:02:02:02.” This neighbor discovery process is explained visually in 

Figure 3-23.
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Figure 3-23.  IPv6 neighbor discovery

Figures 3-24 and 3-25 demonstrate the NDP though the Wireshark 

capture. Notice that in Figure 3-24 the NS packet has generated sourcing 

the client machine’s unicast address with the destination set to the 

solicited node multicast address. The solicited node multicast address 

is created by taking the least significant 24 bits of the unicast or anycast 

address and appending it to the FF02::1:FF00:0/104 address.
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Figure 3-24.  ICMPv6 Neighbor Solicitation packet

Figure 3-25.  ICMPv6 Neighbor Advertisement packet
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Apart from the NS and NA messages, other ICMPv6 messages are used 

as part of the NDP:

•	 Router Solicitation (ICMPv6 Type 133): The Router 

Solicitation (RS) messages are sent by nodes at bootup 

to find a router in the local segment. These messages 

are sent by the hosts to the All Router Multicast Address 

(FF02::2). On receiving this message, an IPv6 router 

will generate an RA message immediately rather 

than waiting for the next scheduled interval. Because 

the destination address is a multicast address, the 

corresponding Layer 2 address will be in the format 

33:33:xx:xx:xx:xx, where xx:xx:xx:xx:xx is the last 24 bits 

of the destination IPv6 address.

•	 Router Advertisement (ICMPv6 Type 134): The RA 

messages are sent in response to the RS messages or 

periodically. The RA messages are sent to All Nodes 

Multicast Address. These messages consist of certain 

flags and options that contain the information that the 

interfaces on the links use to configure themselves. 

IPv6 routers send RA messages periodically at random 

intervals to reduce synchronization issues when there 

are multiple IPv6 routers on the segment.

•	 Redirect (ICMPv6 Type 137): Redirects are used by IPv6 

routers to inform the hosts of a better first hop for a 

destination.
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�Analyzing QoS Markings
Almost every organization utilizes time-sensitive applications such as 

VoIP or streaming media, routing protocols, and so on. Because the global 

Internet is unpredictable, there are chances that such critical and time-

sensitive applications could be dropped. The traffic for such applications 

should be given higher priority and treated differently in the network than 

the usual data traffic. To do that, the IPv4 header has the Type of Service 

(DSCP + ECN) field and the IPv6 header has the Traffic Class field, which 

allow the user to set DSCP values that will categorize different application 

traffic. The network devices such as routers and switches can then be 

configured to treat the traffic based on their DSCP values.

Although we deal with QoS settings mostly at Layer 3, there is still the 

possibility of frame prioritization at the Layer 2 level. This is done using 

Class of Service (CoS) bits in Layer 2 frames. If we talk about a regular 

packet, at the outermost layer we have the Layer 2 header, then the IP 

header, and then the data or payload. From the Layer 2 frame perspective, 

we usually have an 802.1Q or 802.1p frame. Figure 3-26 highlights the Tag 

field in the 802.1Q header, which is used for setting CoS bits.

Preamble Start Frame 
Delimiter DA SA Tag PT Data FCS

3-bits used for CoS

Figure 3-26.  QoS at Layer 2

The 802.1Q frame header has a 16-bit Tag control information field that 

has the following subfields:

•	 Priority code point (PCP): 3-bit

•	 Drop Eligible Indicator (DEI): 1-bit

•	 VLAN Identifier (VID): 12-bit
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The PCP field refers to the IEEE 802.1p CoS and maps to the frame priority 

level. The values of this field are used to prioritize different classes of traffic.

When talking about QoS at Layer 3, ToS (DiffServ field) or Traffic Class 

is an 8-bit field, out of which the initial 6 bits make up the DSCP field and 

the last 2 bits are for ECN as shown in Figure 3-27.

DS2 DS1 DS0 ECNDS3DS4DS5 ECN

DSCP ECN

Figure 3-27.  DiffServ field

Based on the 6-bit DSCP values, the traffic is given different treatments 

in the network and these values are categorized as explained here:

•	 Default Forwarding (DF): Any traffic that does not meet 

the criteria of any of the defined classes falls under 

the category of Default Forwarding. The default and 

recommended DSCP value of this class is 0.

•	 Expedited Forwarding (EF): RFC 3246 defines the EF 

per-hop behavior (PHB) for traffic that has low delay, 

low loss, and low jitter requirements. This class is 

suitable for voice, video, and real-time service traffic. 

The recommended DSCP value of EF is 46.

•	 Assured Forwarding (AF): RFC 2597 and RFC 3260 

define the behavior for the AF class. This class assures 

delivery of traffic if the traffic does not exceed some 

subscribed rate. Within AF, four separate classes are 

defined and packets within each class are given drop 

precedence (low, medium, and high). Note that the 

traffic within one class has the same priority. Table 3-9 

shows the different AF classes categorized based on 

their drop probability.
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•	 Class Selector: Before DiffServ, IP networks used the IP 

Precedence field in the ToS byte to prioritize the traffic 

to maintain backward compatibility with devices that 

still use IP Precedence, and the Class Selector PHB was 

defined. Table 3-10 lists all the IP Precedence values.

Table 3-10.  IP Precedence Values

Value IP Precedence Bits IP Precedence Name

0 000 Routine

1 001 Priority

2 010 Immediate

3 011 Flash

4 100 Flash Override

5 101 Critical

6 110 Internetwork Control

7 111 Network Control

To sum up, the different DSCP values and their corresponding IP 

Precedence values are shown in Table 3-11.

Table 3-9.  Assured Forwarding Classes Based on Drop Probability

Drop 
Probability

Class 1 Class 2 Class 3 Class 4

Low AF11 (DSCP 10) AF21 (DSCP 18) AF31 (DSCP 26) AF41 (DSCP 34)

Med AF12 (DSCP 12) AF22 (DSCP 20) AF32 (DSCP 28) AF42 (DSCP 36)

High AF13 (DSCP 14) AF23 (DSCP 22) AF33 (DSCP 30) AF43 (DSCP 38)
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Table 3-11.  DSCP and IP Precedence Values

DSCP Value Decimal Value Meaning IP Precedence Value

101 110 46 Expedited Forwarding (EF) 101 – Critical

000 000 0 Best Effort/Default 000 – Routine

001 010 10 AF11 001 – Priority

001 100 12 AF12

001 110 14 AF13

010 010 18 AF21 010 – Immediate

010 100 20 AF22

010 110 22 AF23

011 010 26 AF31 011 – Flash

011 100 28 AF32

011 110 30 AF33

100 010 34 AF41 100 – Flash Override

100 100 36 AF42

100 110 38 AF43

001 000 8 CS1 1

010 000 16 CS2 2

011 000 24 CS3 3

100 000 32 CS4 4

101 000 40 CS5 5

110 000 48 CS6 6

111 000 56 CS7 7
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Based on Table 3-11, it can be understood that traffic such as voice, 

video, and network protocols are given a higher priority in the network. 

All the routing protocols traffic is sent with the DSCP value of CS6. To deal 

with all other traffic such as voice, video, or application traffic, QoS needs 

to be configured on a per-hop basis so that each device can treat the traffic 

accordingly. Figure 3-28 shows the Wireshark capture of a BGP keepalive 

message that is marked with a DSCP value of CS6 under the DiffServ field 

in the IP header.

Figure 3-28.  Wireshark capture of BGP packet

When performing network QoS testing and validation, network 

operators can simply use the PING tool to mimic different application 

traffic. Example 3-2 demonstrates how to use this tool on Cisco IOS-XE 

software and Mac OS to simulate traffic with different ToS and DSCP 

settings. Although the traffic can be initiated, it is important to note that 

the network devices should be configured accordingly to perform further 

classification of the traffic. Note that when initiating the ping on Mac OS, 
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use the -z option to specify the ToS value. Note that the binary for 184 is 

1011 1000. This means that the packet will be sent with the DSCP value of 

46 (101 110 in binary) and with the ECN field set to 0 (00 in binary).

Example 3-2.  Using PING for Traffic Simulation with DSCP Settings

! Ping on Cisco IOS-XE Software

R1#ping

Protocol [ip]:

Target IP address: 2.2.2.2

Repeat count [5]: 100

Datagram size [100]: 1400

Timeout in seconds [2]:

Extended commands [n]: y

Ingress ping [n]:

Source address or interface: 1.1.1.1

DSCP Value [0]: 46

Set DF bit in IP header? [no]:

Validate reply data? [no]:

Data pattern [0x0000ABCD]:

Loose, Strict, Record, Timestamp, Verbose[none]:

Sweep range of sizes [n]:

Type escape sequence to abort.

Sending 100, 1400-byte ICMP Echos to 2.2.2.2, timeout is 2 

seconds:

Packet sent with a source address of 1.1.1.1

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Success rate is 100 percent (100/100), round-trip min/avg/max = 

1/1/46 ms

! Ping on MAC OS with DSCP value 46
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vinit@Hackers-Box ~ % ping -z 184 192.168.0.1

PING 192.168.0.1 (192.168.0.1): 56 data bytes

64 bytes from 192.168.0.1: icmp_seq=0 ttl=64 time=125.217 ms

64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1.200 ms

64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=2.703 ms

64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=49.220 ms

64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1.386 ms

64 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=1.347 ms

Note E CN bits in the DiffServ field will be covered in the next chapter.

�Summary
By now, you should understand the Layer 2 and Layer 3 concepts as well 

as have a solid foundation about the different fields in Ethernet, IPv4, 

and IPv6 headers. In this chapter, we covered in detail the Layer 2 header, 

specifically the Ethernet header, and learned about various EtherTypes. 

We also learned about the IPv4 header, including how the packets get 

encapsulated inside the IP header and uses of various fields in the IP 

header. We also covered the ICMP header and how it can be used for 

troubleshooting purposes, and how ICMP messages can be used to notify 

the network about incorrect network MTU settings.

We then moved on to IPv6 headers, which helped network operators 

transition from 32-bit addressing to 128-bit addressing. We discovered 

some of the benefits of IPv6 over IPv4 headers and how they reduce the 

need for having broadcast packets by performing neighbor discovery using 

ICMPv6 headers. We learned that in IPv6, NDP leverages different ICMPv6 

messages such as Router Solicitation, Router Advertisement, Neighbor 

Solicitation, Neighbor Advertisement, and Redirect message.
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We also learned that the ICMPv6 messages are sent to different IPv6 

multicast addresses. Finally, we ended this chapter learning about how 

QoS can be used in the network and how the DSCP values can be used to 

treat each type of application traffic differently.

�Reference in This Chapter
•	 RFC 1918: Address Allocation for Private Internets, by 

Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, 

and E. Lear. https://datatracker.ietf.org/doc/

html/rfc1918
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CHAPTER 4

Analyzing Layer 4 
Traffic
This chapter covers the following topics:

•	 Understanding the TCP/IP model

•	 Transmission Control Protocol

•	 User Datagram Protocol

�Understanding the TCP/IP Model
We have already covered the OSI model, in which we learned about Layer 2  

frames and Layer 3 packets and their importance when exchanging 

packets between two endpoints. This chapter focuses on the Transport 

layer (Layer 4) of the OSI model, which is responsible for transporting the 

data between the source and destination either via a connection-oriented 

or a connectionless mechanism. There are various Transport layer 

protocols that are used to transmit the data, including these:

•	 Transmission Control Protocol (TCP)

•	 User Datagram Protocol (UDP)

•	 Stream Control Transmission Protocol (SCTP)

•	 Reliable User Datagram Protocol (RUDP)

https://doi.org/10.1007/978-1-4842-8002-7_4#DOI
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In this chapter, we focus primarily on the TCP and UDP modes of 

transmission.

In the 1970s, two Defense Advanced Research Projects Agency 

(DARPA) scientists, Vint Cerf and Bob Kahn, often known as the fathers 

of the Internet, started researching reliable data communications across 

packet radio networks. From the lessons learned from the Networking 

Control Protocol (NCP), a set of protocols forming a part of Point-to-Point 

Protocol (PPP), Cerf and Kahn created the Transmission Control Program. 

Transmission Control Program was a huge success, and in 1974 it was 

initially standardized in RFC 675, Specification of Internet Transmission 

Control Program.

Initially, the Transmission Control Program managed both the routing 

and datagram transmission, but over time, collaborators suggested 

dividing the functionality into layers. In 1978, the Transmission Control 

Program was split into two distinct Protocols, the Internet Protocol 

(IP) and the Transmission Control Protocol (TCP). Both the protocols 

combined to form the Internet Protocol suite, commonly known as TCP/

IP. The TCP/IP model only has four layers:

•	 Application layer: This layer allows for process-to-

process communication on the same host or different 

hosts. This layer leverages the lower layer protocols 

to transmit the information. The Application layer 

introduces different communication models such as 

the client/server model or peer-to-peer networking 

model. Some of the examples of aHTTP, FTP, and SSH.

•	 Transport layer: This layer takes care of performing 

host-to-host communication that is either in a local 

LAN segment or remote network segments separated 

by routers. Two of the primary protocols in the 

Transport layer are TCP and UDP.
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•	 Internet layer: This layer defines the addressing and 

routing structures used by the TCP/IP protocols. 

IP defines the addressing that will be used by the 

hosts and network elements in the same or different 

segments and provides a function for hop-by-hop 

routing by sending datagrams to the next hop that 

holds the information to the next network segment.

•	 Link layer: This layer is a combination of the Data Link 

layer and Physical layer of the OSI model. This layer 

provides information about hardware addresses (MAC 

address) and ensures physical transmission of data.

When distributed applications or client/server applications that are 

separated across network segments communicate using a router, they 

leverage the TCP/IP model to establish the communication and exchange 

information. As mentioned before, the Application layer of the TCP/IP 

model only focuses on process-to-process communication; it leverages 

the underlying layers to transmit the data. Figure 4-1 illustrates how a 

client/server application communicates using the TCP/IP model. When 

the client wants to send a request to the server, it creates a packet data 

unit (PDU) for the data that it wants to send to the remote server. The 

first level of encapsulation is provided by the Transport layer, in which it 

is decided based on the application requirements if the communication 

is to be established using a connectionless architecture (via UDP) or 

using a connection-oriented architecture (via TCP). The packet is then 

encapsulated with an IP header and then with the protocols at the Link 

layer. Once the final encapsulation is completed, the packet is sent across 

the network segments, processed, and routed accordingly toward the 

destination host, where the decapsulation process starts from Link layer all 

the way to the Transport layer, after which the final PDU is received by the 

remote server and processed accordingly.
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Figure 4-1.  Data flow across the TCP/IP model

The TCP/IP model is so widely used that it can be safely said that 

the Internet today depends on it. The TCP/IP model contains a suite of 

protocols that allows for host-to-host communication across multiple 

network segments. Figure 4-2 displays the TCP/IP models and the 

protocols being used at each layer.

Chapter 4  Analyzing Layer 4 Traffic



139

Link Layer Ethernet PPP Drivers

Internet Layer IP ICMP
Routing Protocols

OSPF EIGRP BGP

ARP

Transport Layer TCP UDP

Application Layer

Web

HTTP

HTTPS

Email

SMTP

IMAP

POP

File Transfer

FTP

TFTP

Name Systems

DNS

Figure 4-2.  TCP/IP protocol suite

If we take a closer look at the TCP/IP model, it is not very different 

from the OSI model, but it was developed to solve a different problem than 

the OSI model. The Application layer, Presentation layer, and Session layer 

of the OSI model are categorized all under the Application layer in the 

TCP/IP model. The Transport layer and Network layer remain the same in 

the TCP/IP model. The Data Link layer and Physical layer of the OSI model 

are categorized under the Link layer in the TCP/IP model. Apart from the 

number of layers and layer mapping, there are some other key differences 

between the two models, listed in Table 4-1.
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Table 4-1.  OSI Model vs. TCP/IP Model

OSI Model TCP/IP Model

Transport layer is only  

connection-oriented.

Transport layer is both connection-

oriented and connectionless.

Allows users to standardize router,  

switch, motherboard, and other hardware.

Focuses only on establishing connection 

between different types of computers.

Provides clear distinction between 

interfaces, services, and protocols.

Doesn’t provide clear distinction points.

�Problem of Ownership
Today, almost every IT-enabled organization depends on mission-critical 

applications to successfully run its business. Sometimes these applications 

are an important aspect of a company’s revenue generation model (e.g., an 

ecommerce portal). When those mission-critical applications stop working 

and the software developers are sure that it is not because of their code, 

they escalate the problem to network engineers or network administrators. 

The software developers usually own the Application layer, Presentation 

layer, and Session layer of the OSI model or just the Application layer of the 

TCP/IP model.

In 90 percent of the cases, if not more, network engineers verify the 

routing and reachability, which falls under the Link layer and Internet layer 

of the TCP/IP model (Physical layer, Data Link layer, and Network layer 

of the OSI model) and escalate it back to the application team, saying it is 

not their problem. This is where the finger-pointing game starts between 

the application developers and network engineers. If we take a close look 

at both the OSI model and the TCP/IP model, you will realize that both 

the application developers and the network engineers do not demonstrate 
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ownership for an important layer—the Transport layer. Nobody wants to 

go the extra mile and check the information presented at the Transport 

layer. Instead of posing this as a challenge, we should be seeing this as an 

opportunity. Knowing how the data are transmitted and how host-to-host 

communication will happen can quickly help isolate the problem and help 

both the application developers and network engineers solve the problem 

quickly.

�Transmission Control Protocol
When the initial research was being done by DARPA in 1973, the focus 

was on developing a protocol that would ensure secure transmission 

between two hosts while maintaining the integrity of the data, regardless 

of the amount of data being sent. DARPA and the University of Southern 

California collaborated and standardized the protocol specification of 

TCP, a protocol that provided a connection-oriented data transmission 

mechanism while ensuring data integrity, in RFC 793. RFC 793 was later 

updated by RFC 1122, RFC 3168, RFC 6093, and RFC 6528.

The current version of TCP allows two nodes or endpoints to establish 

a connection that enables two-way transmission of data; that is, a device 

can send and receive data at the same time. Each connection in TCP works 

in a client/server model, irrespective of which node assumes the role of 

the server or client, and each endpoint connection is uniquely identified 

using an ordered pair of IP address and port number. This ordered pair is 

known as a tuple or a socket. Thus, a TCP connection is often referred to 

as a socket connection. Now, before moving onto understanding how a 

TCP connection is established, let’s take a closer look at the TCP header, 

displayed in Figure 4-3.
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A TCP header is a 20-byte header that consists of the following fields:

•	 Source port (16-bit): Specifies the port number of 

the sender.

•	 Destination port (16-bit): Specifies the port number of 

the receiver.

•	 Sequence number (32-bit): Used to keep track of the 

data (in bytes) sent out by the host during a TCP 

session. During a new TCP connection, the initial 

sequence number sent is a random 32-bit value. The 

receiver will use the sequence number and reply with 

an acknowledgment. When it comes to troubleshooting 

TCP issues, protocol analyzers often use a relative 

sequence number of 0 as it is easier to remember 

than some high-value random number. The sequence 

number is also used for validating the segments after 

transmission.

•	 Acknowledgment number (32-bit): Used to keep 

track of every byte received by the receiver. An 

acknowledgment is sent in response to every packet 

that is received by the host.

•	 Offset (4-bit): Specifies the length of the TCP header, 

which allows us to know where the actual data begins.

•	 Reserved (6-bit): Reserved for further use as per 

RFC 793.
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•	 Flags (6-bit): Enables various TCP actions for data 

processing and communication. The TCP software will 

perform specific actions when one or more flags are set 

in the TCP header. The following are the various flags 

that are set in TCP:

•	 Urgent Pointer (URG)

•	 Acknowledgment (ACK)

•	 Push (PSH)

•	 Reset (RST)

•	 Synchronization (SYN)

•	 Finish (FIN)

•	 Window size (16-bit): Specifies the number of bytes 

the receiver is willing to receive. Using this field, the 

receiver tells the sender the amount of data that it is 

willing to receive.

•	 Checksum (16-bit): Used to verify if the TCP header 

is okay or not. Using this field, TCP is able to reliably 

detect any transmission issues.

•	 Urgent pointer (16-bit): This field is used to indicate 

how many bytes of packet data starting from the first 

byte are considered to be the urgent data by the sender. 

This field is only used when the URG flag is set under 

the Flags field.
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•	 Options (0–320 bits): The TCP Options field is at the 

end of the header and is always specified in multiples 

of 8 bits. If any of the bits are not filled, they are padded 

with zeros. This field is used to include various TCP 

functions that do not belong to the general TCP header. 

The following is a list of various TCP functions available 

as part of the TCP Options field:

•	 Maximum Segment Size (MSS)

•	 Window Scaling

•	 Selective Acknowledgments (SACK)

•	 Timestamps

•	 Nop

Figure 4-3.  TCP header

Figure 4-4 shows the Wireshark capture of the first packet of an SSH 

session. Notice that this packet displays both the raw sequence number, 

which is a randomly generated number, and a relative sequence number 

that can be used for troubleshooting purposes. This packet also has 

multiple TCP options such as MSS and Timestamps as part of the TCP 

Options field.
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Figure 4-4.  Wireshark capture of TCP packet

When talking about port numbers in the TCP header, there are a 

maximum of 65,535 port numbers that are allowed on a system. There 

are some well-known port numbers, too, that we use knowingly or 

unknowingly on a daily basis through various applications:

•	 HTTP: Port 80

•	 HTTPS: Port 443

•	 Telnet: Port 23

•	 SSH: Port 22

•	 FTP: Port 21

•	 DNS: Port 53

•	 IMAP: Port 143

•	 POP3: Port 110
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Port numbers can be categorized into three types:

•	 Well-known ports: These port numbers range from 0 

to 1023.

•	 Registered ports: These port numbers range from 1024 

to 49151. They are not assigned or controlled but can 

be registered to avoid any duplication.

•	 Dynamic ports: These ports range from 49152 to 65535 

and cannot be assigned, controlled, or registered.

When troubleshooting, TCP-related issues such as HTTP/TCP-based 

IP Service Level Agreement (SLA) probes that are deployed on network 

devices might stop working. As network engineer you might focus on 

validating the configuration or checking why the remote end has stopped 

responding, but it is equally important to keep an eye on the ports that are 

locally open on the box. It could be that even though the TCP session gets 

established, the connection does not terminate from time to time, and the 

device might run out of available ports to establish further TCP sessions.

�TCP Flags
In the previous section we learned about the six flags in the TCP header. 

Each flag plays an important role during various phases of a TCP session. 

Figure 4-5 shows all the different flags in the TCP header seen in a 

Wireshark capture.

Chapter 4  Analyzing Layer 4 Traffic



147

Figure 4-5.  TCP flags in Wireshark capture

Each TCP flag is set to perform the following actions:

•	 URG: The Urgent flag is set to signal the TCP 

application that the payload data must be processed 

urgently up to the set pointer in the Urgent Pointer 

field. Note that the Urgent Pointer field is relevant only 

when the URG flag is set in the TCP header.

•	 ACK: The Acknowledgment flag is set in combination 

with the Acknowledgment Number field. This flag 

indicates the acknowledgment by the receiver that it 

has received the TCP packets that were previously sent.

•	 PSH: The Transport layer, by default, stores the 

application data in a buffer for some time so that it can 

transmit data equal to the MSS size to ensure faster 

convergence and better performance in the network for 
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TCP applications. Such behavior is not desirable, though, 

for certain applications, such as chat applications. 

Similar issues apply on the receiving end as well. The 

PSH flag in the TCP header solves this problem by telling 

the TCP software to immediately send the payload to the 

Network layer as soon as it receives the payload from the 

Application layer. In simple words, it tells the receiver 

and sender to immediately process the packets instead 

of buffering them.

•	 RST: If the TCP software identifies an error during 

transmission, it sends an RST flag to reset the 

connection.

•	 SYN: The SYN flag is the first step to initiate a TCP 

connection via the three-way handshake process.

•	 FIN: – The FIN flag signals the receiver that the sender 

is ending the transmission.

�TCP Three-Way Handshake
The TCP three-way handshake is a three-step process that is required 

to establish a secure and reliable TCP connection between a client and 

a server.

	 1.	 SYN: In the first step, the client initiates a TCP 

connection toward the remote server. When it does 

that, the SYN flag is set to 1 in the TCP header and 

a random sequence number is used for this TCP 

connection. In this case, it is 926587467, as shown in 

Figure 4-6. Because this is the first packet, the ACK flag 

is set to 0. There are other fields that are also set in the 

TCP header such as Window size and MSS TCP options.
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Figure 4-6.  TCP SYN Wireshark capture

	 2.	 SYN-ACK: When the server receives the SYN packet 

for the TCP connection, it responds back with an 

acknowledgment by setting the ACK flag bit to 1. 

Also, when the ACK flag is set, the Acknowledgment 

Number field is set to the value of one more than 

the received SYN packet. So, in this case, the 

Acknowledgment number field will have the value 

926587468. Also, because TCP allows for two-way 

communication, the server also sets the SYN flag 

to 1 and sets a random sequence number in the 

TCP header. Note that the sequence number used 

in the SYN-ACK packet will be different than the 

one received from the client. In this case, it is set to 

4227540456. Figure 4-7 displays the TCP SYN-ACK 

packet from server to client.
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Figure 4-7.  TCP SYN-ACK Wireshark capture

	 3.	 ACK: On receiving the SYN from the server, 

the client now must respond back with an 

acknowledgment. For that, the client sends another 

TCP packet to the server with the ACK flag set, and 

the Acknowledgment Number field value set to 

the value of the sequence number plus 1. In this 

packet the SYN flag is set to 0. Figure 4-8 displays 

the ACK from the client to the server with the 

Acknowledgment Number field set to 4227540457. 

Note that after the ACK is received by the server, the 

minimum of the client or server’s MSS value is taken 

into consideration for data transmission.
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Figure 4-8.  TCP ACK Wireshark capture

Because we are looking at an example of an SSH session between 

the server and client, after a TCP session has been established, all the 

SSH protocol exchanges are performed. If you look at the packets that 

are exchanged by the SSH protocol, you will notice that they mostly have 

the PSH flag set, which indicates that the SSH protocol is telling the TCP 

software not to buffer the data and transmit the packet to the remote end. 

Figure 4-9 displays the Wireshark capture of an SSH control packet with 

the PSH flag set in the TCP header.
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Figure 4-9.  SSH packet with PSH flag

Like the connection initiation process, there is a three-way handshake 

process for connection termination. The client and the server exchange 

the following TCP packets when they wish to close the connection:

•	 FIN: When the client wishes to terminate the 

connection, it sends a TCP packet with the FIN flag 

set to 1 and sends it with a random sequence number. 

Note that at this point, the SYN flag will be set to 0 and 

the ACK is set to 0. If the client is supposed to send 

an acknowledgment to the server for the previously 

received TCP packet, the ACK flag can be set to 1 

along with the acknowledgment number, but this 

ACK has no relation to the FIN flag that is set on the 

packet. TCP does this to reduce the number of packets 

being exchanged. Figure 4-10 shows the Wireshark 
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capture of SSH connection being terminated when 

an ‘exit  ’ command is typed on the terminal by the 

client. Figure 4-10 shows the Wireshark capture of TCP 

FIN packet when the client wishes to terminate the 

connection. Notice that in this packet, there is an ACK 

flag set as well, but this acknowledgment is for another 

sequence number that the client received.

Figure 4-10.  TCP FIN Wireshark capture

•	 FIN-ACK: On receiving the client’s termination request 

with TCP FIN, the server acknowledges the request 

by replying to the client with ACK. The server also 

sets the FIN flag to 1 and sends it to the client with 

a random sequence number different than that of 

the received FIN. Once this step is completed, the 

connection is terminated from the client to the server 
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side. Figure 4-11 shows the Wireshark capture of a TCP 

FIN-ACK packet sent by the server toward the client in 

response to the FIN request received from the client.

Figure 4-11.  TCP FIN-ACK Wireshark capture

•	 ACK: This is the last step where the client sends the 

acknowledgment back to the server for the received 

FIN from the server. It sets the ACK flag to 1 and sets 

the Acknowledgment Number value to the Sequence 

Number of FIN plus 1. After this step is completed, the 

connection is terminated from the server to the client 

side. Figure 4-12 displays the Wireshark capture of 

the TCP ACK packet sent by the client to the server in 

response to the FIN packet it received from the server 

in the previous step. Note that the Sequence Number 

and Acknowledgment Number fields work in the same 

manner as they did during the session initiation process.
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Figure 4-12.  TCP ACK Wireshark capture

Every TCP connection goes through different connection states during 

its session lifetime. The following are the possible TCP connection states:

•	 LISTEN: A TCP application is awaiting an inbound 

connection request.

•	 SYN-SENT: A connection request has been sent but no 

acknowledgment has been received from the remote end.

•	 SYN-RECEIVED: A connection request has been 

received and an acknowledgment has been sent 

to the remote host, but the host is awaiting an 

acknowledgment of the connection request sent out as 

a response to the original connection request.
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•	 ESTABLISHED: All SYN and ACK have been received 

and the connection has now been established. Both 

end hosts can start sharing the data.

•	 FIN_WAIT_1: A session or connection termination 

request has been sent, but no acknowledgment has 

been received.

•	 FIN_WAIT_2: An acknowledgment has been received 

from the remote host, but no corresponding termination 

request has been received from the remote host.

•	 CLOSING: A session termination request has been 

sent and a corresponding session termination 

request has been received and acknowledged but no 

acknowledgment has been received from the remote 

host for the original session termination request.

•	 CLOSE_WAIT: A session termination request was 

received and acknowledged but no corresponding 

session termination request has been sent out yet.

•	 TIME_WAIT: The host waits for a reasonable amount 

of time to ensure the remote host receives the final 

acknowledgment of a session termination request.

•	 LAST_ACK: Host awaits a final acknowledgment after 

sending an end of connection message in response to 

having received a session termination request.

At times it gets hard to remember the state transitions and the 

corresponding TCP flags set during those state transitions. To remember 

this, you can simply follow the TCP finite state machine as shown in 

Figure 4-13.
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Figure 4-13.  TCP finite state machine

�Port Scanning
Many network and security analysts perform port scanning to find out 

about network and host vulnerabilities and services running on the 

network that can be exploited. Port scanning is a technique of determining 

which ports in a network or host are open to send or receive traffic. An 

open port indicates that a service such as HTTP/HTTPS or FTP is offered 

on the destination network or host. If attackers know what services 

are offered, they might be able to use other tools to identify security 

vulnerabilities to exploit those services.

NMAP is a freely available scanner that runs on the UNIX OS and 

has options for various port scanning techniques. It also has options to 

detect any scans that might be running on the network. Some of the port 

scanning techniques are listed here:
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•	 Connect requests: In this technique an active 

connection is attempted using the three-way 

handshake. If the port is open, the three-way 

handshake is completed, and the scanner gracefully 

closes the connection by sending an active close 

request. If the port is closed, the destination responds 

back with an RST flag set. Note that this is not a safe 

scanning method, as these connection attempts are 

logged on the target host.

•	 Half-open scan: In this technique, the three-way 

handshake is not completed and thus the name half-

open scan. A SYN is sent by the scanner and it waits 

for a response. If the target port is open, it returns a 

SYN-ACK and the connection will be immediately torn 

down by the scanning host because it did not issue 

the connection request. Because the handshake never 

completed, the target host might not log these TCP SYN 

packet scans.

•	 Non-SYN-ACK-RST scans: As per RFC 793, segments 

containing an RST flag are always discarded and 

segments containing an ACK always generate an RST 

flag. So, non-SYN packets that do not contain an RST 

or ACK could be used for port scanning. Note that this 

method of port scanning is only useful if the target host 

or network follows the RFC specifications. OSs that do 

not follow the RFC send RSTs from both open as well 

as closed ports, thus making it difficult for scanners to 

return accurate results.
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As part of network security best practices, it is equally important to 

detect any impossible packet types that might have the following TCP flag 

combinations:

•	 SYN RST

•	 SYN FIN

•	 RST FIN

•	 FIN

•	 No flags

Network operators can perform filtering of various types of flags in 

Wireshark using the following filters:

•	 SYN Flag set: tcp && tcp.flags == 0x02

•	 ACK flag set: tcp && tcp.flags == 0x10

•	 RST flag set: tcp && tcp.flags == 0x04

•	 FIN flag set: tcp && tcp.flags == 0x01

•	 No flags set: tcp && tcp.flags == 0x3f

�Investigating Packet Loss
Packet loss in a network can happen for two main reasons:

•	 Link errors/Layer 2 errors

•	 Network congestion

Most of the time, once a network is set up, it runs smoothly. It could 

demonstrate transient or complete packet loss only when the hardware 

fails or the link has issues. Detecting hardware failures is not very complex, 

as multiple links and protocols running on the network hardware or host 

will start showing symptoms of hardware failure and can easily be fixed 

by replacing the complete hardware or a particular part that is causing 
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the symptoms. When it comes to link issues, there could be several things 

to troubleshoot, some within our control and some outside. With a link, 

the issue could be with the unidirectional failures, Small Form-Factor 

Pluggables (SFPs), fiber or Ethernet cables, duplex settings, telco provider 

in the middle, and so on. The challenge with link issues is that even though 

the link might have errors, it will still forward some traffic and drop the 

remaining traffic, so network operators might not even know unless there 

is a notification of an event or a complaint from an end customer. With 

link issues, the data transmitted may also get corrupted and get eventually 

dropped. In most cases, an error counter on the network or host interface 

will increment to indicate an issue with the link, which then helps to 

identify and resolve the problem.

Traffic congestion, on the other hand, can cause a great deal of service 

disruption and is seen especially when transitioning between link speeds 

within the network (from 10 Gbps to 1 Gbps). If the higher speed link 

sends traffic at a rate the egress interface might not be able to keep up 

with, then it will start dropping the packets. In such cases, with TCP, the 

sender determines that the loss occurred in transit and will retransmit the 

packets. This scenario is also known as discards. Because TCP is a reliable 

connection-oriented protocol, it provides a mechanism to track data that 

have been sent and receive an acknowledgment of what has been received. 

If for any given packet the mapping ACK is not received, the TCP software 

resends the data assuming the packet has gone missing and ensuring 

reliable transmission of data. You might wonder why, after so much progress 

and innovation in the field of networking and development of 100 Gbps fiber 

links, we still have to deal with issues such as network congestion.

�TCP Retransmission

As we already know, for every byte of data sent across a TCP connection, 

there is an associated sequence number. When a sender sends a TCP 

segment, it starts a retransmission timer of variable length. Let’s assume 
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that the TCP segment gets lost in transit before reaching the receiver. Due 

to the packet being lost in transit, the receiver never sends the ACK back to 

the sender. After the retransmission timer expires, the sender assumes that 

the segment has been lost and it retransmits the data again to the receiver. 

Figure 4-14 demonstrates the segment loss and data retransmission 

between server and client. So, if a Wireshark capture shows a lot of 

retransmitted TCP segments, it simply means that there is packet loss in 

the network.

Sender Receiver

SEQ 1

ACK 1

SEQ 10

. . .

Segment 
Drop

SEQ 10

ACK 10

Figure 4-14.  TCP retransmission

To analyze retransmissions in a network, network operators might have 

to place multiple taps in the network. For instance, examine the simple 

topology shown in Figure 4-15. In this topology host H1 (IP 10.1.2.1) sitting 

behind router R1 is trying to send traffic to host H3 (IP 3.3.3.3), which is 

sitting behind router R3.

H1
10.1.2.1

R1 R2 R3 H3
3.3.3.3

Figure 4-15.  Topology
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If there is packet loss happening in the network segment between R2 

and R3, you will notice in the Wireshark capture that there are multiple 

retransmissions between the source and destination. In Figure 4-16, 

the segment for which the sender did not receive the acknowledgment 

retransmitted the segment back. In this case the sequence number of 

that segment was 3546854380 (relative sequence number 213) and the 

acknowledgment number was 597044005 (relative acknowledgment 

number 501).

Figure 4-16.  Wireshark capture with TCP retransmissions
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�TCP Out-of-Order Packets

In networks, users might also encounter TCP out-of-order (OOO) packets. 

TCP OOO packets simply mean that the packets arrive at the destination in 

a different order from that in which they were sent. This could happen for 

several reasons:

•	 Multiple paths: If the TCP segments are following multiple 

paths (ECMP paths to the destination) or via parallel 

processing paths within a router or a network equipment 

(e.g., per-packet load balancing), and either of the systems 

are not designed to ensure the ordering of the packets, this 

could lead to OOO packets in the network. Note that it is 

TCP’s job to deliver the packets in the right order.

•	 QoS: Poorly configured QoS, especially a queueing 

mechanism, can cause OOO packets in the network. 

If the QoS settings do not forward the packet in a first 

in, first out (FIFO) manner or if the QoS settings drop 

the TCP packets along the path, this could lead to 

retransmission of those dropped TCP segments and 

eventually to OOO packets.

•	 Oversubscription: Oversubscribed links in the network 

can cause OOO packets. The traffic will end up getting 

dropped, causing retransmission, slowdowns, and OOO 

packets.

•	 Microbursts: A microburst is a behavior seen in networks 

when rapid bursts of data packets are seen in quick 

succession, leading to time intervals of full line-rate 

transmission. This can cause packets to get dropped due 

to buffer overflows on the interface. When such bursts 

occur in the network, links would end up dropping packets, 

causing retransmissions, slowness, and OOO packets.
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When OOO segments are received by the TCP software, one of the 

main functions that it performs is reassembling packets in order or 

requesting retransmission of OOO packets. If the Wireshark capture shows 

that there are OOO packets, then as part of the troubleshooting process 

you might want to look at the possible causes listed earlier.

Tip I f you see a lot of TCP OOO packets, there is packet loss 
between the capture point and the sender. If you see a lot of TCP 
retransmissions, though, there is packet loss happening between the 
capture point and the receiver.

�Troubleshooting with Wireshark Graphs
When troubleshooting TCP or any network issues in a large-scale 

environment, where there is large amount of data to be analyzed, it 

becomes challenging and time consuming to identify the root cause. 

In such a scenario, a quick peek at graphical data can give us a better 

understanding of what is happening in the network. Wireshark provides 

you with numerous graph options that can be used for investigating 

various types of issues. There are graphs in Wireshark that are specific 

for TCP and can come in handy for day-to-day network analysis and 

troubleshooting tasks. This section focuses on some of the various graphs 

that can be used.

�TCP Stream Graphs

TCP Stream Graphs can be used to provide visual insights about TCP 

streams. The Wireshark tool gives user options to select between all packets 

and TCP packets. The graphs are part of the Wireshark profile and can also 

be imported from another profile. Within TCP Stream Graphs, there are 

different graph and analysis options that network analysts can use:
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•	 Time Sequence (Stevens)

•	 Time Sequence (tcptrace)

•	 Throughput

•	 Round Trip Time

•	 Window Scaling

All these options can be accessed in Wireshark on the Statistics menu 

by selecting TCP Stream Graphs, as shown in Figure 4-17.

Figure 4-17.  TCP Stream Graphs options

�Time Sequence (Stevens)

This TCP stream time sequence graph shows TCP sequence numbers 

plotted against time in any single direction. You do have options to switch 

between the direction of the TCP stream, but only one direction can be 

analyzed at any given point in time. If the captured traffic is only TCP 
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traffic, then you can simply select Time Sequence (Stevens) graphs from 

the menu. This will display the graph based on sequence numbers vs. time 

in seconds as shown in Figure 4-18.

Figure 4-18.  TCP Stream Graphs: Time Sequence (Stevens)

In an ideal situation you might want to see a smooth line from the 

bottom left corner to the top right corner of the graph. Notice that in the 

graph in Figure 4-18, the graph is mostly incremental and has a smooth 

line, but there are flat periods in the graph. The flat periods in this graph 

are bad in that they indicate that the sequence number in that direction is 

not increasing. When you click on these flat periods, you will notice that 

there are TCP errors seen during those periods in the Wireshark capture. 

In this case, when we click on one of the flat periods, we can see TCP 
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ZeroWindow error shown in Figure 4-19, which indicates that the window 

size is 0 in the TCP header. A TCP window size of 0 usually indicates the 

client (or server, but in most scenarios it is the client) has advertised the 

value of 0 for its window size, indicating that the TCP receive buffer is full 

and cannot receive any more data.

Figure 4-19.  TCP ZeroWindow Error seen in Stevens Time 
Sequence graphs

If there are dips in the graph, it would usually indicate TCP 

retransmissions or OOO packets. Figure 4-20 displays the dip in graphs 

indicating TCP retransmissions as well as OOO packets in the network.
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Figure 4-20.  TCP retransmissions and OOO packets in Stevens graph

�Time Sequence (tcptrace)

The tcptrace Time Sequence graph is similar to the Stevens graph, but 

on steroids. It shows the bytes in flight as well as the receive window 

information, which is highlighted. This graph also shows other 

information such as acknowledgments and selective acknowledgments 

(SACKs) received. Figure 4-21 displays the tcptrace Time Sequence graph. 

Notice the green line in the graph; this indicates the receive window 

(rwnd) received from the destination host. The blue sections or blue dots 

in the graph indicate the packets in transit. The red lines in the graph 

indicate SACKs.
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Figure 4-21.  Tcptrace Time Sequence graph

When we further expand the graph as seen in Figure 4-22, notice the 

brown lines in the graph. These brown lines indicate acknowledgments 

received from the receiver end. The red lines in the graph indicate SACKs.

Figure 4-22.  ACKs and SACKs in tcptrace Time Sequence graphs
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When looking at these graphs, there are two things that we do not 

want to see:

	 1.	 The bytes in flight (blue lines or dots) touching the 

receive window (graph lines).

	 2.	 Steps (these denote that the sender is not sending 

the data fast enough or it could be related to a 

receive window size issue).

Figure 4-23 shows a pretty big step in the graph and when a user clicks 

on that step, they can see TCP ZeroWindow errors in the Wireshark capture 

indicating the receiver’s TCP receive buffer is full and it cannot process any 

further packets at the moment.

Figure 4-23.  Steps in tcptrace Time Sequence graphs

Chapter 4  Analyzing Layer 4 Traffic



171

�Throughput Graph

The Throughput graph is very useful during throughput testing in a 

greenfield deployment or during migration testing in the network. This 

graph shows the segment length (packet size) and average throughput 

vs. bytes per second (bps) over time. It also has options to show both 

the throughput and the goodput in the graph. Figure 4-24 shows the 

Throughput graph. Notice that in this graph, the segment length is stable 

during the capture but there is also a gap in the segment length section 

that indicates that the sender is not sending anything.

Note I n computer networks, goodput means the application-level 
throughput of a communication. It simply indicates good throughput 
of an application.
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Figure 4-24.  Throughput graph

If the graph shows sporadic segments (dotted lines), it indicates that 

the device is sending sporadically as shown in Figure 4-25, and it usually 

indicates that there is packet loss in the path. If users click those sporadic 

segments, they might be able to see TCP retransmissions or OOO packets.
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Figure 4-25.  Sporadic segments

�Window Scaling Graph

The Window Scaling graph can be very useful when troubleshooting TCP 

window issues. These issues usually occur when one end is sending more 

traffic than the other end can handle, or the receiving end has no buffer 

left in the TCP receive window (as seen in some previous examples). This 

graph, displayed in Figure 4-26, shows the TCP receive window (in green) 

vs. bytes in flight (in blue). Note that in an ideal situation, the bytes in flight 

should never be more than the receive window size.
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Figure 4-26.  Window Scaling graph

Further zooming into the graph, if we see the flat lines (steps) in the 

graph, it usually represents round trip time (RTT). An RTT is the difference 

between the time when the packet was sent out and an ACK was received 

for that packet. Figure 4-27 displays the flat lines in the Window Scaling 

graphs indicating the RTT.
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Figure 4-27.  RTT in Window Scaling graph

Note that if the bytes in flight (the blue dots and line) start from the 

bottom (i.e., at 0), it indicates that all the previous segments that were 

transmitted have been acknowledged and there are no packets in flight. If 

the bytes in flight start above the 0 value (baseline) it indicates that there 

are segments and bytes that have not yet been acknowledged. Figure 4-28 

shows the bytes in flight starting above the baseline.
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Figure 4-28.  Unacknowledged bytes in flight in Window 
Scaling graph

�RTT Graph

If there are jitters in the network, you might want to leverage the help of 

the TCP Streams RTT graph. The RTT graph measures the RTT of all TCP 

packets. If the graph shows big spikes, it usually indicates there is either 

packet loss in the network or network congestion. Figure 4-29 shows the 

RTT graph for all the captured packets in Wireshark. Notice that initially in 

the graph, there are very large spikes, but the later part of the graph shows 

consistent RTT. This indicates that initially there was either congestion or 

packet loss that increased the RTT, but after it was resolved the RTT was 

fairly stable.
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Figure 4-29.  RTT graph

�I/O Graphs

The I/O graphs provide a customizable list of graphs allowing users 

to compare different types of traffic and correlate the events with the 

application traffic based on errors seen in the network quickly and easily. 

The I/O graphs allow users to customize the different graphs they wish 

to see simultaneously, which makes it easier to correlate the data with 

network events. For instance, you might observe a dip in the requests 

coming in on a web server on HTTP as well as HTTPS using the I/O 

graphs while comparing it with any TCP errors seen during that instance. 

Figure 4-30 displays the traffic pattern of both HTTP and HTTPS traffic 

from the Wireshark capture. The green lines highlight the HTTP traffic, 

whereas the red line indicates the HTTPS traffic. Note that the HTTP and 

HTTPS graph filters are not present by default. These can be added by 

clicking the + icon, assigning the graph name, and under Display Filters, 
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setting the filter to tcp.port == 80 for HTTP or tcp.port == 443 for 

HTTPS. Once the filters are set, users can customize these graphs with the 

colors of their choice.

Figure 4-30.  HTTP vs. HTTPS traffic in I/O graphs

If we look at another Wireshark capture where we only have HTTP 

traffic, but a lot of TCP errors, we can easily correlate the dip in the traffic 

with a high number of TCP errors. In Figure 4-31, the traffic pattern of 

HTTP traffic is shown along with TCP errors. When there are major dips 

seen in the HTTP traffic, we can also see the spike in the TCP errors. When 

looking at the Wireshark capture around that time, we will be able to 

determine that there was packet loss happening around that time.
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Figure 4-31.  HTTP traffic and TCP errors in I/O graphs

The I/O graphs can also be used to analyze any type of microbursts 

happening in the network. The I/O graphs give options to plot the 

graph, not just at a 1-s time interval, but also to the millisecond level 

(performance could be affected based on the amount of data being 

analyzed by the Wireshark capture). Figure 4-32 shows the I/O graphs 

adjusted to a 100-ms time interval. The graph in this scenario shows 

spikes from time to time. The traffic spikes in these scenarios might not be 

relevant because there are not too many packets being sent within the  

100-ms time interval, but if there were more packets sent during the 100-ms 

time interval, it would have been a concern.
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Figure 4-32.  Microbursts in I/O graphs

�Flow Graphs

When troubleshooting TCP-related network problems, it is necessary 

to track the flow such as the three-way handshake, data flow and 

acknowledgments, and so on. Just looking at Wireshark it might be difficult 

to identify the flow unless you are using the option to follow the TCP 

stream, in which case it will give you the complete flow of that packet. 

However, it might still be difficult to understand the direction of each 

packet, as you will have to keep track of the source and destination IP 

addresses. This challenge is solved by another Wireshark graph known as 

Flow graphs. Flow graphs provide you with a graphical representation of all 

the TCP flows from the Wireshark capture and help you visualize the TCP 

flow along with its direction. Figure 4-33 shows the Flow graph of the TCP 

packets from the Wireshark capture.
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Figure 4-33.  Flow graph

One of the benefits of using Flow graphs is that they preserve the 

colors from the Wireshark profile and allow you to apply filters. The Flow 

graph comes in very handy when troubleshooting VoIP-related issues. 

It shows all the conversations related to DNS, TCP, HTTP, and so on, for 

the specified traffic. These are a few of the most common use cases of 

Flow graphs:

•	 Tracking any malicious host or application that is trying 

to access multiple servers on the network.

•	 Tracking TCP retransmissions

•	 Tracking connection resets

For applying filters in Flow graphs, you can simply apply a display filter 

in the Wireshark tool using filter expressions and then use Limit To Display 

Filter check box. When this check box is selected, it will automatically 

change the Flow graph to only the flow that is being targeted in the display 

filter. Figure 4-34 shows the Flow graph of an HTTP flow that has been 
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filtered on the Wireshark display filter. Next to the Limit To Display Filter 

check box, there is also a drop-down list that allows users to further trim 

down the visual Flow graph to particular types of flows such as ICMP, TCP, 

and so on.

Figure 4-34.  Flow graph filter

�TCP Expert
When working on a complex problem, you must know the right filters, 

use the right options, and have your own profile in Wireshark for different 

protocols to be able to analyze and identify the problem as quickly as 

possible. Knowing and using various display filters for troubleshooting 

different types of TCP issues can save you a lot of time. Table 4-2 displays a 

list of common TCP-based display filters and what they do.
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Table 4-2.  TCP Display Filters and Their Functions

Display Filter Function

tcp.flags == 0x2 

tcp.flags.syn == 1

Capture all TCP SYN packets

tcp.flags.reset == 1 Capture TCP Resets

(tcp.flags == 0x10) && 

(tcp.seq == 1) &&  

(tcp.ack == 1)

Capture only third packet of the TCP three-way 

handshake

tcp.time_delta > 1 Filter TCP delays greater than t seconds; in this 

example, t = 1

tcp.time_delta > 1 &&  

tcp.flags.fin == 0 &&  

tcp.flags.reset == 0

Identifying TCP delays but ignoring delays from 

the TCP connection termination process (during 

the connection termination process, TCP FIN is 

sent to the remote end, or the TCP reset flag  

is set)

tcp.window_size >= 0 && 

tcp.window_size < 500

Identifying small TCP window sizes

tcp.analysis.out_of_order Filtering TCP OOO packets

(tcp.flags.syn == 1) && 

(!tcp.len == 0)

Filtering TCP SYN or SYN-ACK packets that 

contain data
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�Wireshark Profile for TCP

Wireshark allows users to create custom profiles that can come in very 

handy based on the type of issue being investigated. Every Wireshark 

application comes with a Default profile that has the following fields:

•	 No.

•	 Time

•	 Source

•	 Destination

•	 Protocol

•	 Length

•	 Info

The Default profile is good for beginners and yields a lot of useful 

information, but troubleshooting TCP issues is a complex process and 

requires more specific fields related to TCP to quickly analyze TCP packets. 

To create a new profile, follow these steps:

	 1.	 Right-click Profile: Default at the bottom right 

corner of the Wireshark application (Figure 4-35).

	 2.	 Select the New option. This will open the profile 

modally.

	 3.	 Create a profile named TCP and click OK.

	 4.	 Right-click again at the bottom right corner of the 

Wireshark application and select the TCP profile 

from the Switch To submenu.
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	 5.	 Once selected, the new TCP profile will become 

your active profile. Note that at this point, this new 

profile will have the same columns and settings as 

the Default profile.

To change the settings of the new TCP profile, select Preferences from 

the Wireshark Menu then go to Appearance | Columns and then add the 

following columns with the types and settings as shown in Figure 4-36.

•	 No.

•	 Time

•	 Delta

•	 Source

•	 Destination

•	 TCP Delta

•	 SEQ

•	 ACK

•	 Window

•	 Bytes in flight

•	 Info

Figure 4-35.  Selecting the Default profile
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Once the columns are added, the TCP profile UI yields more granular 

information about TCP as shown in Figure 4-36. You can see how easy 

it looks to point out packets with window size 0. Not just for TCP, but 

in general, network and security analysts should always create and use 

custom profiles and use custom fields in their UI based on their style of 

troubleshooting.

Most of the fields in the Columns list are self-explanatory. The only 

field that needs some explanation is the TCP Delta field. The TCP Delta 

simply means the time since previous frame in the given TCP stream. This 

field helps identify if there have been delays in the network in turn causing 

delays in receiving the TCP stream. The information in the TCP Delta 

field is available in the Timestamp section of the TCP header but let’s not 

get confused with every delta that you see. Some delays are normal, such 

as these:

Figure 4-36.  Custom columns for TCP profile
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•	 SYN packets: There might be a delay before the initial 

SYN packet. For instance, once the Wireshark capture 

is started, you might ask the user to connect to a web 

server. There will be a delay in such a case before the 

first packet is seen on the wire.

•	 Connection termination packets: TCP connection 

termination packets are basically FIN, FIN-ACK, RST, 

and RST-ACK. These packets are explicitly sent to close 

or terminate a connection. These packets could be sent 

when a user opens a new tab on the browser, or the 

session gets automatically closed after a page is loaded.

•	 GET requests: GET requests can be generated in 

HTTP when a user clicks a link to open a new page 

or to request new data from the back end of the web 

application. Some GET requests are instant, but 

there might be GET requests initiated by background 

processes that might not have any priority, for instance, 

a GET request for .ico files.

•	 DNS queries: DNS queries during a web browsing 

session are common and could lead to unexpected 

delays in response.

•	 Image files: When a browser application requests 

image files or .ico files, there might be delays for such 

requests based on the web server settings or file size of 

the image.

�User Datagram Protocol
Unlike TCP, UDP is a lightweight connectionless protocol that is used to 

transfer data in the network. UDP is different than TCP in several ways:
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•	 No handshake mechanism

•	 No session teardown

•	 Smaller header size

•	 Unreliable data delivery

•	 No mechanism to manage OOO packets

•	 No protection from data duplication

UDP as a transport protocol thus seems useful in scenarios where error 

checking and correction mechanisms are either not necessary, or these 

functions are performed by the end applications. The UDP protocol was 

designed by David P. Reed in 1980 and was standardized in RFC 768. It is a 

simple message-oriented Transport layer protocol that primarily consists 

of four fields of 2 bytes each, as shown in Figure 4-37. The UDP header is 

always 8 bytes in length, as it does not have any Options field in the header.

•	 Source port: Identifies the sender’s port number.

•	 Destination port: Identifies the receiver’s port number.

•	 Length: Specifies the length in bytes of the UDP header 

and payload; minimum length is 8 bytes.

•	 Checksum: This field is used to ensure the integrity of 

the data. This field stores the 16-bit words summed 

using 1’s complement arithmetic, which is calculated 

based on the IP header, the UDP header, and the 

payload.

Source Port Destination Port

Length Checksum

Figure 4-37.  UDP header
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Knowingly or unknowingly, you use UDP in various applications 

on your network computer. Applications such as DHCP, DNS, Trivial 

File Transfer Protocol (TFTP), and more, all use UDP as their transport 

protocol. If you are interested in checking which UDP ports are in use on 

your system, use the command netstat -anp udp. Example 4-1 displays 

the output of this command on a Mac OS and Windows OS.

Example 4-1.  Netstat Command for Verifying UDP

genie@VinJ ~ % netstat -anp udp

udp4       0      0  10.65.55.185.*         8.8.8.8.53

udp4       0      0  10.65.55.185.*         8.8.8.8.53

udp4       0      0  10.65.55.185.*         8.8.8.8.53

udp4       0      0  10.65.55.185.*         8.8.8.8.53

! Output omitted for brevity

C:\Users\Administrator>netstat -anp udp

Active Connections

  Proto  Local Address          Foreign Address        State

  UDP    127.0.0.1:1900         *:*

  UDP    127.0.0.1:56629        *:*

  UDP    127.0.0.1:57233        *:*

  UDP    127.0.0.1:65272        *:*

  UDP    192.168.0.3:137        *:*

  UDP    192.168.0.3:138        *:*

  UDP    192.168.0.3:1900       *:*

  UDP    192.168.0.3:5353       *:*

  UDP    192.168.0.3:56527      *:*

  UDP    192.168.0.3:57232      *:*

  UDP    192.168.0.3:65271      *:*
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You can follow these simple steps to capture UDP traffic on your 

computer system:

	 1.	 Start the Wireshark application and start a capture 

on your computer’s NIC.

	 2.	 Open a command prompt.

	 3.	 Clear your DNS cache using the ipconfig /

flushdns command.

	 4.	 Try initiating a ping to a remote server or website 

from the command prompt.

	 5.	 Close the command prompt.

	 6.	 Stop the Wireshark capture.

Figure 4-38 shows the Wireshark capture of a DNS query for www.

apple.com. The destination UDP port of 53 indicates that this is a DNS 

packet. If there are too many packets in the Wireshark capture file, you can 

simply filter the DNS packets using the display filter udp.port == 53.  

If we look at the UDP packet, we can see the source port is 51053, the 

destination port is 53, which is used for DNS, the length of the packet is 39 

bytes, and the checksum value is set to 0x22e5. Note that at the end of the 

UDP header, you can see that the UDP payload is 31 bytes and adding 8 

bytes of UDP header it equates to 39 bytes.
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Figure 4-38.  Wireshark capture of DNS query

Once the Wireshark capture has been performed, users can also follow 

the UDP streams by selecting one of the flows in Wireshark, right-clicking, 

and from Follow menu, selecting UDP Stream. This will show both the 

DNS query and the DNS response in the Wireshark window with the filter 

being set to udp.stream eq stream-number. Figure 4-39 displays the 

complete UDP stream for a DNS query to www.apple.com.
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Figure 4-39.  Filtered UDP stream in Wireshark

There isn’t much as user can do when it comes to troubleshooting 

UDP. If there is a packet loss in the network, the application can simply 

request the data again, but the UDP software itself does not track any 

sequence number. A UDP data packet lost is data lost. There is some 

analysis that can still be done in Wireshark using I/O graphs, as these are 

not specific to just TCP, but any kind of stream captured in Wireshark. 

Users can filter a UDP stream on Wireshark and then select the I/O Graph 

option from the Statistics menu. The I/O graph will display options such 

as All Packets and TCP Errors, but also Filtered Packets with the filter set 

to UDP packets that was used as the display filter in Wireshark. Figure 4-40 

displays the I/O graph of filtered UDP packets on Wireshark.
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Figure 4-40.   I/O graph for filtered UDP packets

�Summary
Any network engineer or security analyst should have a deep and solid 

understanding of protocols working at different layers, but one of the layers 

that most engineers least on least is the Transport layer. The Transport 

layer protocols are crucial for ensuring end-to-end communication and 

transporting data between sender and receiver. To transport the data, 

the Transport layer has protocols that follow either connectionless or 

connection-oriented architecture with both having their respective use 

cases. In this chapter, we focused on the two key Transport layer protocols, 

TCP and UDP.

In this chapter, we explored the working of TCP and how it helps solves 

several problems such as data reliability, data integrity, and so on. We 

learned about the TCP connection process using three-way handshake, 

how port scanning is done by attackers, and how network engineers can 
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investigate packet loss issues in the network. We learned that packet loss 

in the network can lead to issues such as TCP retransmissions and TCP 

OOO packets. We then saw how quick analysis and troubleshooting can 

be performed for network traffic using Wireshark graphs, including TCP 

Stream graphs, I/O graphs, and Flow graphs. As a network engineer or 

security analyst it is important to have custom profiles in Wireshark to 

analyze different types of traffic. We covered how users can create custom 

profiles for TCP and can quickly identify issues such as ZeroWindow by 

simply looking at the capture.

At the end of the chapter, we looked at UDP and in which scenarios 

UDP is used by different applications. We then learned how to filter UDP 

traffic and how we can leverage I/O graphs to learn about the UDP traffic 

pattern.
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CHAPTER 5

Analyzing Control 
Plane Traffic
This chapter covers the following topics:

•	 Analyzing routing protocol traffic

•	 Analyzing overlay traffic

�Analyzing Routing Protocol Traffic
So far, we have learned how to set up Wireshark, perform packet captures, 

and analyze Layer 2 to Layer 4 traffic. Most of the traffic that we have 

looked at so far is data traffic. When we are dealing with packet loss in 

the network, we usually try to understand the problem based on what is 

happening in the network: Is there an errored link in the network dropping 

the traffic? Is network congestion leading to data loss? When the data 

loss is happening in the network, chances are high that the data might 

also be control plane traffic. Although we can give separate treatment to 

the control plane traffic from the data traffic using QoS, that only helps 

prioritizing packets on the device, not on the wire. So, a packet loss can 

simply drop data traffic as well as control plane traffic. Thus, a control 

plane flap due to any amount of packet loss can still be analyzed using 

the methods that we have seen so far. It could also be the case, though, 

that control plane protocols misbehave even when there is no packet 
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loss or congestion in the network. This chapter is focused on analyzing 

control plane traffic and understanding the headers and functionality of 

various routing protocols, diving deeper into certain cases and how we 

can troubleshoot them using Wireshark. Note that this chapter does not 

focus on teaching any control plane or data plane traffic, but just analyzing 

different control plane and data plane traffic, which can prove useful for 

network engineers. It is assumed that network engineers are well aware of 

the protocols discussed in this chapter.

�OSPF
Open Shortest Path First (OSPF), defined in RFC 2328, is one of the well-

known and most widely adopted interior gateway protocols (IGPs). It is a 

dynamic routing protocol that operates within a single autonomous system 

(AS) and is suitable for large heterogeneous networks. OSPF uses the 

Dijkstra algorithm, also known as the shortest path first (SPF) algorithm, to 

calculate the shortest path to the destination. In OSPF, the shortest path to 

a destination is calculated based on the cost of the route, which considers 

variables such as bandwidth, delay, and load.

OSPF allows network administrators to break large networks 

into smaller segments known as OSPF areas. This allows network 

administrators to reduce the OSPF areas, which are basically a collection of 

networks that support multiple area types:

•	 Backbone area: Network segment that belongs to 

area 0.0.0.0. All other areas are either physically or 

virtually connected to the backbone area. Exchanging 

routing information between multiple nonzero or 

nonbackbone areas is only possible through the 

backbone area.
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•	 Standard nonzero area: In this area, OSPF packets are 

normally transmitted. This area is directly or virtually 

connected to the backbone area.

•	 Stub area: This area does not allow and accept routes 

from external sources such as routes learned by other 

routing protocols and redistributed into OSPF.

•	 Totally stubby area: This area does not accept routes 

from external sources and link information from 

other areas. Instead, a default route is advertised in 

this area for allowing the router in this area to reach a 

destination in other areas or even external sources.

•	 Not so stubby area (NSSA): An NSSA is derived from a 

stub area with the difference that this area also has an 

Autonomous System Boundary Router (ASBR) router 

attached to it and learns the external routes from the 

redistribution happening on the ASBR.

In an OSPF area, based on the placement of the router, each router 

assumes different responsibilities and performs various functions. OSPF 

has four router types:

•	 Backbone router: A backbone router runs OSPF and has 

at least one interface part of the backbone area or area 

0.0.0.0.

•	 Internal router: An internal router has OSPF adjacency 

only with the devices in the same area. These routers 

do not form adjacency across multiple areas.
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•	 Area Border Router (ABR): An ABR router forms OSPF 

neighbor adjacency with multiple devices in multiple 

areas. Because it has adjacency in multiple areas, it 

maintains a copy of the link-state topology database of 

multiple areas and distributes it to the backbone area.

•	 ASBR: An ASBR router participates in other routing 

protocols apart from OSPF and exchanges the routing 

information learned from other protocols into OSPF 

and vice versa.

The OSPF routing protocol uses a link-state database (LSDB) that is 

formed using the information exchanged between all the routers within 

the area. This information exchange between the routers within the area 

is done using link-state advertisement (LSA). Instead of exchanging all the 

network and link information in a single LSA, OSPF uses different types 

of LSA for different network types. The following is a list of the commonly 

used LSAs used in OSPF for exchanging various routing updates:

•	 Router LSA (Type 1)

•	 Network LSA (Type 2)

•	 Summary LSA (Type 3)

•	 Summary ASBR LSA (Type 4)

•	 AS External LSA (Type 5)

•	 NSSA LSA (Type 7)

Based on the information in the LSDB, every router in an OSPF area 

runs the SPF algorithm on all the destination prefixes and installs the 

route in the routing table. Note that every router in the OSPF area has 

an identical copy of the LSDB. Based on the understanding of different 

LSA types, each area type allows for only specific type of LSAs. Table 5-1 

displays different LSAs allowed in different area types in OSPF.
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Table 5-1.  OSPF Area to LSA Mapping

Area Type LSAs Allowed

Backbone area Type 1, 2, 3, 4, 5

Standard or normal area Type 1, 2, 3, 4, 5

Stub area Type 1, 2, 3

Totally stubby area Type 1, 2, and Type 3 default route

NSSA Type 1, 2, 3, 7

Totally NSSA Type 1, 2, 7, and Type 3 default route

Now that we have learned about the basics of the OSPF routing 

protocol, let’s examine the most commonly seen issues in OSPF. The 

majority of the issues seen in OSPF are neighbor adjacency issues. When 

two devices form an OSPF adjacency, they can either form the adjacency 

over these types of networks:

•	 Broadcast

•	 Nonbroadcast

•	 Point-to-point

•	 Point-to-multipoint

We can focus on broadcast and point-to-point networks because 

broadcast and nonbroadcast methods both require Designated Router 

(DR) / Border Designated Router (BDR) election, and point-to-multipoint 

networks works on the same principle as point-to-point networks. To form 

a neighbor adjacency, there are different kind of OSPF packets that are 
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exchanged, including Hello packets, link-state requests, link-state (LS) 

updates, and LSAs. Any two devices participating in forming neighbor 

adjacency go through the following states in the finite state machine:

•	 Down: This is the initial state of an OSPF router where 

no information is exchanged between the routers.

•	 Attempt: This state is similar to the down state, with 

the difference that the router is in the state of initiating 

a conversation. This state is only applicable for 

nonbroadcast multiaccess (NBMA) networks.

•	 Init: – In this state, a Hello packet has been 

received from the neighbor router, but the two-way 

communication has not yet been established.

•	 2-Way: Indicates that a bidirectional conversation has 

been established between two routers. After this state, 

DR/BDR is elected for broadcast and NBMA networks. 

A router on a broadcast or NBMA network becomes 

full with the DR/BDR, but remains in 2-way with all the 

remaining routers.

•	 Exstart: In this state DR/BDR is established as a 

master–subordinate relationship. The router with the 

highest router ID is selected as the master and starts 

exchanging the link-state information.

•	 Exchange: In this state, the OSPF neighbors exchange 

database description (DBD) packets. The DBD packets 

contain LSA headers that describe the contents of the 

LSDB and are compared with the router’s LSDB.

•	 Loading: If there is any discrepancy or missing 

information found by comparing the DBD packets with 

the LSDB, routers send link-state request packets to the 
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neighbor routers. In response to the link-state requests, 

the neighbor router responds with LS Update packets 

that are acknowledged by the receiving router using 

LSA packets.

•	 Full: In this state, the router’s database is completely 

synchronized with the LSDB of the neighbor routers 

and the routers become fully adjacent.

Let’s now look at the Wireshark captures based on the different states. 

Figure 5-1 displays the initial OSPF Hello packet where an OSPF-enabled 

router sends out a Hello packet on the 224.0.0.5 multicast address. Because 

the router has not received any hello back from the other end, there is no 

information available about the active neighbor.

Figure 5-1.  OSPF Hello packet
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Once the OSPF router is able to see the neighbor router, you can then 

see the Active Neighbor field in the Hello packet. Figure 5-2 displays the 

active neighbor in the Hello packet for router R3 with OSPF router ID 

192.168.3.3. Notice that so far no DR/BDR election has happened in this 

network segment.

Figure 5-2.  OSPF Hello packet with active neighbor

Once the OSPF routers negotiate the DR/BDR roles, the Hello 

packet will then have both the DR and BDR fields populated as shown in 

Figure 5-3.
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Figure 5-3.  OSPF Hello packet with DR/BDR

After the DR/BDR election, the routers decide on the master and 

subordinate election on the segment. Remember that initially both the 

routers will send the DBD packet with the Master (MS) bit set, but once 

the OSPF software realizes that the router with the highest router ID is 

the master, then the router with lowest router ID will not have the MS 

bit set. Within the OSPF DBD packet, the MTU of the segment is also 

advertised. Notice that if there is a mismatch of the MTU values, the OSPF 

neighborship gets stuck in the exstart or exchange state. Once the master 

and subordinate election is completed, only then will the routers start 

exchanging the LSA information in the OSPF DBD packets. Figure 5-4 

displays the DBD packet with the MS bit set for the packet coming 

from the router with highest router ID. Also notice the various LSAs 

being advertised to the neighboring router. Another important thing to 
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remember is that the Init (I) bit is always set on the initial DBD packet sent 

by each side of the segment. The More (M) flag is set where there are more 

DBD packets pending that will be sent by the router.

Figure 5-4.  OSPF database description packet

The LS Update packets are sent between the routers in the segment. 

When an LS Update is sent by DR, it is sent to destination address 

224.0.0.5, whereas BDR sends it over 224.0.0.6. The LS Update packet 

basically contains the list of LSAs that the OSPF router wants to advertise 
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to its neighboring device to synchronize the OSPF database. Figure 5-5 

displays the Wireshark capture of the OSPF LS Update packet advertising 

LSA Type 1 and LSA Type 2 to the neighboring router.

Figure 5-5.  OSPF LS Update packet

What does an LSA header look like? Each LSA has a common header 

with 20 bytes followed by a number of additional fields that describe the 

link. Here are the fields present in the OSPF LSA header:

•	 LS Age (2 bytes): Represents the elapsed time since the 

LSA was created.

•	 Options (1 byte): Used for advertising OSPF capabilities 

supported by the router.

•	 LS Type (1 byte): Indicates the type of LSA.
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•	 Link State ID (4 bytes): Indicates the link of either the 

router or the network the link represents.

•	 Advertising Router (4 bytes): Indicates the OSPF router 

ID of the router originating the LSA.

•	 LS Sequence Number (4 bytes): A sequence number 

used to detect old or duplicate LSAs.

•	 LS Checksum (2 bytes): Checksum of the LSA, which is 

used for identifying any data corruption.

•	 Length (2 bytes): Length of the LSA including 20 bytes 

of the header.

Figure 5-6 displays the Wireshark capture of an LSA Type 3 header 

within a DBD packet.

Figure 5-6.  OSPF LSA header

Based on the LS Update packet, the router sends an LSA packet. 

Figure 5-7 displays the LSA packet sent by the router R1 in response to the 

LS Update packet sent by R3 in Figure 5-5.
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Figure 5-7.  OSPF LSA packet

Most of the issues in OSPF are usually seen during adjacency bring 

up, but once the adjacency is up, OSPF remains stable. There might be a 

bit of difference based on the different OSPF area types, especially with 

OSPF NSSA. In an OSPF NSSA, the Hello packet has an NSSA (N) bit set, 

which tells the peering router that it has the NSSA capability enabled on it. 

Figure 5-8 displays the Hello packet in the NSSA.
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Figure 5-8.  OSPF NSSA Hello packet

Because NSSA advertises external prefixes as Type 7 LSA and these 

Type 7 LSAs are converted to Type 5 LSAs at the ABR, the ABR specifically 

looks for a Propagate (P) bit to ensure the conversion from Type 7 to Type 

5 LSA is required. If the P bit is not set, the conversion from Type 7 to Type 

5 LSA will not be allowed. Figure 5-9 displays the Wireshark capture of the 

Type 7 LSA in the LS Update packet with the P bit set.
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Figure 5-9.  OSPF Type 7 LSA

Note that most network OSs come with debug capability for various 

routing protocols that can be enabled on the router for the purpose of 

troubleshooting, but Wireshark can be helpful in instances when there 

is a bigger risk of affecting the router in a production environment when 

running debugs. When working with Wireshark, the filters listed in 

Table 5-2 can be helpful to filter packets.
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Table 5-2.  Wireshark OSPF Filtering

Filter Description

ospf.area_id == 0.0.0.10 Filters OSPF packets for specified Area ID

ospf.advrouter == 192.168.5.5 Filters OSPF packets with the specified 

router ID of the advertising router

ospf.hello Filters OSPF Hello packets

ospf.lsa.router Filters OSPF router LSA

ospf.lsa.network Filters OSPF network LSA

ospf.lsa.summary Filters OSPF summary LSA

ospf.lsa.nssa Filters for NSSA (Type 7) LSA

ospf.lsa.asext Filters for Type 5 (External) LSA

�EIGRP
Enhanced Interior Gateway Routing Protocol (EIGRP), defined in RFC 

7868, is another IGP designed and developed by Cisco Systems. It is also 

known as a distance vector protocol that leverages the Diffusing Update 

Algorithm (DUAL) to calculate loop-free routing paths using diffusing 

computations. All routing protocols, including EIGRP, fundamentally work 

the same way and have similar functions such as these:

•	 Establishing communication: EIGRP uses a three-way 

handshake for establishing communication.

•	 Exchanging routes: EIGRP uses reliable transport for 

exchanging routes.

•	 Performing path computation: The procotol leverages 

the DUAL algorithm to perform path computation.
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•	 Installing routes in the Routing Information Base (RIB): 

EIGRP only installs loop-free paths in the RIB.

One of the key components of EIGRP is its Topology table. It contains 

all known paths, locally learned routes, and externally learned routes 

(learned via redistribution). The information available in the Topology 

table is used by the DUAL algorithm to calculate the loop-free paths. The 

EIGRP Topology table not only contains information about the paths, but 

it also maintains information about when a route was withdrawn by a 

neighbor.

Most of the computation element resides locally on the router, but 

EIGRP performs all its tasks using five types of packets:

•	 Hello

•	 Update

•	 Acknowledge

•	 Query

•	 Reply

Let’s take a closer look at these packets one by one.

�Hello Packet

Hello packets are used for peer discovery and maintenance purposes. 

This packet is the first message sent when the EIGRP process comes up on 

a router and contains several parameters such as K values, AS numbers 

that are checked by the peer router on receiving the Hello packet, before 

forming neighborship. The Hello timer is set to a default of 5-s intervals on 

high-bandwidth links and 60 s on low-bandwidth links. The Hello packets 

are usually sent to the multicast address 224.0.0.10 unless the neighbors 
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are statically configured on a nonbroadcast medium such as a Frame-

Relay, in which case they are sent as unicast packets. Figure 5-10 displays 

the Wireshark capture of EIGRP Hello packets. Note that you can simply 

filter the EIGRP Hello packets using the filter (eigrp.opcode == 5)  

&& (eigrp.ack == 0). Note that the eigrp.ack filter is used to filter 

out the Acknowledge field because the opcode for both the Hello and 

Acknowledge fields is the same, but the latter has a nonzero value in the 

Acknowledge field.

Figure 5-10.  EIGRP Hello packet

Note T he Hello packet also has the Stub flag set when sent by 
an EIGRP stub router. Users can filter it in Wireshark using the filter 
eigrp.stub_flags.
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�Update Packet

The Update packets are used by EIGRP to convey reachability information 

for prefixes to EIGRP neighbors. After an EIGRP neighborship is 

established, EIGRP routers send Update packets as unicast to the neighbor 

routers which contains all the routes, also known as the full updates. Each 

route in the update message contains metrics such as bandwidth, delay, 

load, reliability, and other information such as hop count, MTU, and so on. 

Once the full updates are exchanged between the EIGRP neighbors, the 

Update packets are only exchanged when there is a change in topology. 

For instance, a link flap triggers a withdrawal of multiple routes. This is 

communicated to EIGRP neighbors via a multicast packet only containing 

the updates. These updates are called partial updates. Figures 5-11 and 5-12 

display both the EIGRP full updates and partial updates.

Figure 5-11.  EIGRP full update
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Figure 5-12.  EIGRP partial update

Users can filter EIGRP update packets in Wireshark using the eigrp.

opcode == 1 filter. This filter displays both full and partial updates 

in EIGRP.

�Acknowledge Packet

EIGRP works similar to the TCP three-way handshake, where the 

initial packet could be an Update, Query, or Reply packet and in 

acknowledgment to these packets, an Acknowledge packet is sent by the 

EIGRP router. The difference between the TCP and EIGRP three-way 

handshake is that the sequence number in EIGRP is not incremented but 

rather copied in the Acknowledge field. Also, this whole communication is 

done by Cisco’s proprietary Reliable Transport Protocol (RTP). The EIGRP 
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Acknowledge packet has the same opcode as the EIGRP Hello packet, 

but with a nonzero Acknowledge field value. Figure 5-13 displays the 

Wireshark capture of an EIGRP Acknowledge packet.

Figure 5-13.  EIGRP Acknowledge packet

You can filter the EIGRP Acknowledge packet by using the Wireshark 

filter (eigrp.opcode == 5_ && !(eigrp.ack == 0). The ! operator 

ensures that we only capture the Acknowledge packet and not the EIGRP 

Hello packet.

�Query Packet

EIGRP queries are sent when a router loses a route to a destination 

network (the destination prefix goes into active state). Queries are 

normally sent as multicast to all the neighboring routers to find other 

paths to the destination prefix. If a receiving router cannot find an 

alternate path to the destination prefix, it will then query its peers for the 
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destination prefix. This process goes on until the query has reached the 

boundary router. Figure 5-14 displays the EIGRP Query packet for the 

destination prefix.

Figure 5-14.  EIGRP Query packet

You can filter the EIGRP Query packet in Wireshark using the filter 

eigrp.opcode == 3.

Note EIGRP  Query packets are not sent to stub routers.
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�Reply Packet

The EIGRP Reply packet is sent in response to the Query packet. After 

sending the Query packet, a router waits for a reply from its peer routers. 

If a router receiving the Query packet knows about an alternate path to 

the destination prefix, it will respond back to the querying router with the 

necessary metrics to reach the destination prefix. Figure 5-15 displays 

the Wireshark capture of an EIGRP Reply packet. You can filter the Reply 

packet using the Wireshark filter eigrp.opcode == 4.

Figure 5-15.  EIGRP Reply packet
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�BGP
BGP, often called the routing protocol of the Internet, is an open standard 

protocol used for connecting network across different AS boundaries. BGP 

is a highly scalable protocol and has support for multiple address families 

such as IPv4, IPv6, VPNv4, L2VPN, EVPN, and so on, which allows BGP to 

be the protocol of choice in enterprise, datacenter, and service provider 

environments. BGP, in general, cannot route traffic on its own. It leverages 

the information from IGP to reach to the next hop for the prefix. BGP 

knows about the prefixes that might be within the same AS boundary or 

across multiple AS boundaries. BGP only knows about next hops to reach 

the destination, but it needs IGP to get to that next hop.

Because BGP exchanges information across AS boundaries, it is also 

important that the information is exchanged via a reliable mechanism. 

Thus, BGP leverages TCP as its transport mechanism. A BGP session is 

established on TCP port 179. In BGP, two types of neighborships can be 

established:

•	 Internet BGP (iBGP): BGP peering established with 

other routers within the same AS boundary.

•	 External BGP (eBGP): BGP peering established with 

routers across AS boundaries.

For two routers to establish a BGP peering, they go through a finite 

state machine as listed here:

•	 Idle: In this state, BGP detects a start event and 

initializes the BGP resources on the router. The BGP 

process initiates a TCP connection toward the peer.

•	 Connect: In this state, BGP waits for the three-way 

handshake to complete. If the three-way handshake 

is successful, an OPEN message is sent and the BGP 
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process moves to the OpenSent state. If it is not 

successful, BGP moves to the Active state, and waits for 

a ConnectRetry timer.

•	 Active: BGP starts a new three-way handshake. If the 

connection is successful, it moves to OpenSent state. If 

it is unsuccessful, the BGP process moves back to the 

Connect state.

•	 OpenSent: In this state, the BGP process sends an 

OPEN message to the remote peer and waits for an 

OPEN message from the peer.

•	 OpenConfirm: In this state, the router has already 

received the OPEN message from the remote peer and 

is now waiting for a KEEPALIVE or NOTIFICATION 

message. On receiving the KEEPALIVE message, 

the BGP session is established. On receiving a 

NOTIFICATION message, BGP moves to the Idle state.

•	 Established: This state indicates that the BGP session 

is established and is now ready to exchange routing 

updates via the BGP UPDATE message.

From this finite state machine, we have already learned that there are 

four types of BGP messages:

•	 OPEN: This is the first message exchanged between 

BGP peers after a three-way handshake has been 

established between the peers. Once each side 

confirms the information shared in the BGP OPEN 

message, other messages are exchanged between them. 

The following information is compared as part of the 

OPEN message:

•	 BGP version
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•	 Source IP of the OPEN message should match with 

configured peer IP

•	 Received AS number should match the configured 

remote AS number of the BGP peer

•	 BGP Router ID must be unique

•	 Other security parameters such as password, TTL, 

and so on

•	 KEEPALIVE: The BGP KEEPALIVE message acts like 

a Hello packet to check whether the BGP peer is alive 

or not. This message is used to keep sessions from 

expiring.

•	 NOTIFICATION: BGP NOTIFICATION is sent when the 

BGP process encounters an error condition. When this 

message is received, the BGP process closes the active 

session for which the notification was received. The 

NOTIFICATION message also contains the information 

such as error code and suberror code that can be used 

to determine the cause of the error condition.

•	 UPDATE: This message is used for exchanging routing 

updates (advertisements and withdrawals) between 

BGP peers.

We’ll now examine these BGP messages in Wireshark. First for the BGP 

OPEN message, the following fields are present in the header:

•	 Marker: Set to fffffffffffffffffffffff.

•	 Length: Length of the BGP header

•	 Type (OPEN message): Value set to 1.
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•	 Version: Specifies the current BGP version used by the 

router. The current version is 4 as defined in RFC 4271.

•	 MS AS: Specifies the AS number of the router 

originating the OPEN message.

•	 Hold Time: Specifies the Hold Timer value set on the 

router sending the OPEN message.

•	 BGP Identifier: Router ID of the router sending the 

OPEN message.

•	 Optional Parameters Length: Variable length, specifies 

the combined length of all the parameters included in 

the Optional Parameters field.

•	 Optional Parameters: This field is used by the router to 

advertise optional BGP capabilities that are supported 

in BGP by the OS running on the advertising router. 

Some of these capabilities include the following:

•	 Multiprotocol BGP (MP-BGP) support

•	 Route Refresh support

•	 4-octet (4-byte) AS number support
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Figure 5-16 displays the BGP OPEN message.

Figure 5-16.  BGP OPEN message

The BGP KEEPALIVE message, as mentioned before, is used to 

ensure BGP peers are active. The BGP process does not rely on the TCP 

connection to validate that the BGP peers are up. BGP KEEPALIVE 

messages are sent every 60 s by default with the Hold Timer set to 180 s. 

Figure 5-17 displays the Wireshark capture of a BGP KEEPALIVE message 

sent between BGP peers. We can see from the Wireshark capture that there 

are only three fields present in the BGP KEEPALIVE message.
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Figure 5-17.  BGP KEEPALIVE message

A BGP NOTIFICATION message is also a short message that contains 

the information about error code (major error code) and suberror code 

(minor error code). Because BGP peering may be established multiple 

hops away, BGP provides a mechanism to notify other peers about what 

might have triggered the error condition, causing the BGP peering to flap. 

Figure 5-18 displays the Wireshark capture of the BGP NOTIFICATION 

message. In the Wireshark capture we can see that the error code is 6 and 

the suberror code is 4, which indicates Administratively Reset. Thus, this 

notification message indicates that the BGP peering was manually reset.

Figure 5-18.  BGP NOTIFICATION message
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Before we dive into the BGP UPDATE message, let’s first understand 

how the BGP update packaging happens. Once the initial TCP session 

is established, both endpoints maintain the information about the TCP 

MSS. As mentioned in Chapter 3, MSS = MTU – IP Header (20 bytes) – TCP 

Header (20 bytes). When the BGP process wants to send updates to its 

BGP peers, it packages all the updates to a maximum of MSS bytes and 

sends it across to the remote BGP peer with the Don’t Fragment (DF) 

bit set. If all the updates cannot be sent in one single update, BGP sends 

multiple updates to update the remote BGP peers. It is possible that if any 

of the segments has lower interface MTU or IP MTU settings, but the MSS 

negotiation happened with a higher value, the BGP updates might not be 

able to make it to the remote BGP peer. When the BGP UPDATE packet 

is sent, the BGP process does not send a BGP KEEPALIVE message. It 

treats the BGP UPDATE packet as the BGP KEEPALIVE message and the 

acknowledgment of the BGP UPDATE packet as an acknowledgment to 

the KEEPALIVE message. Therefore, if the BGP UPDATE packet is unable 

to make it to the remote end, the BGP session will flap due to Hold Timer 

expiry. Figure 5-19 displays the Wireshark capture of the BGP UPDATE 

packet. Notice that in the IP header, the DF bit is set, and in the BGP 

header, we can see the BGP UPDATE message. The BGP UPDATE message 

contains the attributes attached to the BGP prefixes and the BGP prefixes 

are listed as Network Layer Reachability Information (NLRI).
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Figure 5-19.  BGP UPDATE message

Most BGP issues can be investigated from the CLI. You might only 

need to leverage the help of Wireshark when there is an issue with the 

following:

•	 TCP session

•	 Packet loss

•	 Network OS not generating packets in a timely manner

•	 Device not sending the BGP packets out in a 

timely manner

•	 BGP updates getting corrupted

Chapter 5  Analyzing Control Plane Traffic



226

�PIM
Today, almost every network uses multicast in one way or the other. 

Multicast allows for one-to-many traffic, but only to those who have 

subscribed or are interested in that traffic. Multicast applications have 

wide implementation and use cases in financial, health care, digital 

streaming, and many other types of organizations. Before we dive into 

multicast and routing protocols to carry PIM-related traffic, we need to 

understand some key terms:

•	 Source address: Unicast address of a multicast source 

or sender.

•	 Group address: Destination IP address of a multicast 

group. Note that multicast addresses range from 

224.0.0.0 to 239.255.255.255.

•	 Multicast distribution tree (MDT): Multicast flows 

from source to receivers over an MDT. The MDT is 

either shared or dedicated based on the multicast 

implementation

•	 Rendezvous point (RP): A multicast-enabled router that 

acts as the root of the shared MDT.

•	 Protocol Independent Multicast (PIM): Routing protocol 

used to create MDTs.

•	 First-hop router (FHR): First L3 hop that is directly 

adjacent to the multicast source.

•	 Last-hop router (LHR): First L3 hop that is directly 

adjacent to the receivers.

In this chapter, we focus on the PIM protocol and its messages and see 

how it is used to build MDT.
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The PIM protocol is used to build shared trees as well as shortest path 

trees from source to receivers to facilitate the distribution of multicast 

traffic. The PIM protocol runs over the L3 network and builds an overlay 

network for multicast using the information from the underlying IGP. Thus, 

when troubleshooting multicast issues, it is important to validate the 

unicast routing information learned via the IGP. With the help of IGP, 

PIM is able to locate where the source, receiver, and the RP resides. PIM 

operates in two modes:

•	 Dense mode: – Based on a push model, PIM Dense 

mode operates under the assumption that receivers are 

densely dispersed through the network. In this mode, 

multicast traffic is flooded domain-wide to build a 

shortest path tree, and the branches are pruned back 

where no receivers are found.

•	 Sparse mode: Based on a pull model, PIM Sparse mode 

assumes that the receivers are sparsely dispersed. 

In this mode, PIM neighbors are formed and traffic 

is forwarded only over the PIM-enabled path. Using 

PIM messages, the join request from receivers is 

forwarded to the RP and thus the mechanism is known 

as explicit join. Because of this method, it is also the 

most preferred and widely used method for multicast 

distribution.

The PIM protocol has the following fields in its header:

•	 PIM Version (4 bits): Version number is set to 2.

•	 Type (4 bits): Used to specify the PIM message type.

•	 Reserved (8 bits): Reserved for future use. The value is 

set to 0 in this field during transmission and is ignored 

by the PIM neighbor.
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•	 Checksum (16 bits): Used to calculate the checksum of 

the entire PIM message except for the payload section.

There are multiple PIM message types, but not all messages are used in 

all deployments. Some of the most commonly seen PIM messages in basic 

multicast deployment are listed in Table 5-3.

Table 5-3.  PIM message types

Type Message Type Destination Address Description

0 Hello 224.0.0.13 Neighbor discovery.

1 Register Address of RP (unicast) Register message is sent by FHR 

to RP to register the source.

2 Register-stop Address of FHR (unicast) This message is sent by RP to 

the FHR in response to the PIM 

Register message.

3 Join/Prune 224.0.0.13 Join or prune from an MDT.

�PIM Hello Message

The PIM Hello message, identified with Type 0, is sent on all PIM-

enabled interfaces to discover and form PIM neighbor adjacencies. PIM 

neighborship is unidirectional in nature, so it is important to validate the 

PIM neighborship from both ends of the link. The PIM Hello messages 

are sent periodically and with the destination address of 224.0.0.13. A 

PIM Hello message allows for multiple options in Type, Length, and Value 

(TLV) format. The options supported in PIM Hello messages are listed in 

Table 5-4.
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Table 5-4.  PIM Hello Message Options

Option Type Option Value

1 Holdtime: The amount of time in which the neighbor is in a 

reachable state

2 Has the following parts:

• �LAN Prune Delay: Delay before transmitting Prune message in a 

shared LAN segment

• Interval: Time interval for overriding a Prune message

• T: Join message suppression capability

19 DR priority used during DR election

20 Generation ID: Random number indicating neighbor status

24 Address List: used for informing neighbors about secondary IP 

address on interface

Figure 5-20 displays the PIM Hello message between two PIM 

neighbors.

Figure 5-20.  PIM Hello message
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�PIM Register Message

When the source sends multicast traffic, the FHR’s PIM DR takes the first 

packet, encapsulates it with the PIM header, and sends it as a unicast 

packet to the PIM RP. The PIM Register message is used to inform the PIM 

RP that the source is actively sending traffic for the given multicast group. 

The PIM Register message contains the following fields in its header:

•	 Type: Value is set to 1 for Register message.

•	 Border (B-bit): The PIM multicast border router 

functionality is defined in RFC 4601, which designates 

a local source when this bit is set to 0 and designates 

the source in a directly connected cloud when this bit is 

set to 1.

•	 Null-Register: This bit is set to 1 when a Null-Register 

message is sent. In the Null-Register message, the FHR 

only encapsulates the header from the source and not 

the complete encapsulated data packet of the multicast 

stream coming from the source.

•	 Multicast Data packet: The original multicast packet 

sent by the source is encapsulated inside the PIM 

Register message. If the message is a Null-Register 

message, only a dummy IP header containing the 

source and group address is encapsulated in the PIM 

Register message. Note that the TTL of the original 

packet decrements before encapsulation into the PIM 

Register message.
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Figure 5-21 displays the Wireshark capture of the PIM Register message 

sent by the FHR to the RP (192.168.3.3).

Figure 5-21.  PIM Register message

�PIM Register-Stop Message

On receiving the PIM Register message, the RP adds the source to the 

multicast distribution tree. Once the RP receives the first packet natively 

through the shortest path, it will send a PIM Register-stop message to the 

DR that has built the Shortest Path Tree (SPT) toward the source. The PIM 

Register-stop message has the following fields:

•	 Type: Value is set to 2 for PIM Register-stop message.

•	 Group Address: Group address of the encapsulated 

multicast packet in the PIM Register message.

•	 Source Address: Source address of the encapsulated 

multicast packet in the PIM Register message.
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Figure 5-22 displays the Wireshark capture of the PIM Register-stop 

message from RP to the DR that sent the PIM Register message.

Figure 5-22.  PIM Register-stop message

�PIM Join/Prune Message

The PIM Join/Prune message is sent by PIM routers toward the PIM RP 

or toward the source with the destination set to PIM multicast address 

224.0.0.13. These messages are used to build RP trees (RPTs) toward the 

PIM RP or to build SPT toward the source. The PIM Join/Prune message 

contains a list of sources (called source lists) and groups (called group sets) 

to be joined or pruned. The following fields are present in the PIM Join/

Prune message:

•	 Type: Value is set to 3 for Join/Prune message.

•	 Upstream Address: Address of the upstream neighbor to 

which the message is targeted. It also has subfields that 

represent the address family of the upstream neighbor 

as well as the encoding.
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•	 Number of Groups: Represents the number of multicast 

group sets in the message.

•	 Holdtime: The amount of time to keep the Join/Prune 

state alive.

•	 Num Joins: Number of joined sources in the message.

•	 Joined Source Address {IP Address x.x.x.x/32}

•	 Sparse bit (S): Set to 1 for PIM Sparse mode.

•	 Wildcard bit (W): When set to 1, this represents 

wildcard a in the (*, G) entry. When set to 0,  

this indicates that the encoded source address for 

(S, G) entry.

•	 RP bit (R): When set to 0, join is sent toward source. 

When set to 1, join is sent toward RP.

•	 Num Prunes: Number of pruned sources in the 

message.

•	 Pruned Source Address {IP Address x.x.x.x/32}: 

Represents the list of sources being pruned for the 

group. All three flags in Joined Source Address are 

applicable for Pruned Source Address, too.
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The PIM Join message is sent by the LHR’s DR toward the RP whenever 

a receiver shows an interest in receiving a multicast stream. Figure 5-23 

displays the Wireshark capture of the PIM Join message from the FHR 

toward the RP.

Figure 5-23.  PIM Join message

A PIM Prune message is sent by a PIM router when it wants to remove 

itself from the multicast tree for a particular multicast group. Figure 5-24 

displays the Wireshark capture of a PIM Prune message when there is no 

receiver interested in the multicast stream.
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Figure 5-24.  PIM Prune message

�Analyzing Overlay Traffic
So far, we have learned about analyzing routing protocol traffic that 

can run on physical links or virtual links such as SVIs. Such networks 

are known as underlay networks. The routing protocols, however, can 

also run over an overlay network. An overlay network is a network that 

is built on top of another network and leverages underlying network 

configuration and protocols to establish communication as if they were 

locally connected. The devices or endpoints in an overlay network could 

be residing multiple hops away in the same or a different geographical 

location. In overlay traffic, the actual host traffic is encapsulated with 

the headers of the underlay network. We next look at different overlay 

protocols and how we can analyze the overlay traffic using Wireshark.
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�GRE
Generic Routing Encapsulation (GRE), defined in RFC 2784, is an overlay 

protocol that allows users to create virtual point-to-point links and 

encapsulate the data packets in a tunnel interface. Because it creates 

a point-to-point link, each side can encapsulate any outgoing packets 

toward the remote end and de-encapsulate any incoming packets from 

the far end of the tunnel. With GRE, users might be running a different 

routing protocol in the underlay to establish the reachability between the 

two endpoints of the tunnel while running a different routing protocol in 

overlay to establish end-to-end connectivity of hosts and devices sitting 

behind the tunnel endpoints. Figure 5-25 displays the Wireshark capture of 

the GRE encapsulated packet. Notice that GRE is a 4-byte header, but there 

is also an overhead of 20-byte outer IP header after the encapsulation. 

Thus, we need to make sure that the IP MTU value is adjusted accordingly 

when encapsulating traffic with GRE.

Figure 5-25.  GRE encapsulation
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When data traffic is GRE encapsulated, the TTL value in the outer 

IP header decrements but does not in the inner IP header. Figure 5-26 

displays the Wireshark capture of GRE encapsulated traffic captured after 

the first Layer 3 hop. Notice that the outer IP header has a TTL value of 

254, whereas the inner IP header (with source IP set to 192.168.1.1 and 

destination IP set to 192.168.2.2) has a TTL value of 255.

Figure 5-26.  GRE encapsulated traffic after first Layer 3 hop

�IPSec
IP Security (IPSec), defined in RFC 1825 through RFC 1827, is a suite of 

protocols to establish secure communication between two endpoints 

across the IP network that provides authentication, data integrity, and 

confidentiality. The RFC also defines the protocols needed for secure key 

exchange and key management. The following protocols are part of the 

IPSec protocol suite:
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•	 Authentication Headers (AH): AH provides data 

integrity, authentication, and antireplay capabilities, 

which protects against unauthorized transmission of 

packets.

•	 Internet Key Exchange (IKE): – IKE is a network security 

protocol that defines how to dynamically exchange 

encryption keys and use Security Associations (SAs) 

to establish shared security attributes between the 

two IPSec tunnel endpoints. The Internet Security 

Association Key Management Protocol (ISAKMP) 

provides a framework for authentication and key 

exchange and defines how to setup SAs. There are two 

versions of IKE:

•	 IKEv1

•	 IKEv2

•	 Encapsulating Security Payload (ESP): ESP provides 

authentication for the payload or data. It ensures data 

integrity, encryption, and authentication and prevents 

any replay attacks on the payload.

Let’s now look at the negotiation for IKEv1 in Wireshark. Figure 5-27 

displays the Wireshark capture of all the initial communication between 

the two routers participating in IPSec IKEv1 negotiations and then 

transmitting data after a secure communication has been established. 

From the Wireshark capture we can see there are six Main mode messages 

as part of Phase 1 that negotiate security parameters to protect the next 

three Quick mode messages as part of Phase 2.
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Figure 5-27.  Wireshark capture of IPSec IKEv1 negotiations

In Phase 1, as shown in Figure 5-28, the first step is policy negotiation.  

In the first packet, the sender adds its unique Security Parameter Index (SPI) 

to identify itself. Along with the SPI, the sender also sends a set of proposals 

with various security parameters, called transforms. These transforms are 

used by the receiver to match with its local policies.
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Figure 5-28.  Wireshark capture of first Phase 1 packet

On receiving the packet, the receiver responds with the Responder SPI 

and picks one of the transforms that it received based on the configuration. 

Figure 5-29 displays the Wireshark capture of the reply sent by the 

responder for the first packet.
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Figure 5-29.  Wireshark capture of second Phase 1 packet

In the next two packets, both the peers exchange Diffie-Hellman (DH) 

public keys, which allows them to agree on a shared secret key. Figure 5-30 

displays the Wireshark capture of the DH keys. Notice that there is a 

Nonce data highlighted in the packet capture. The Nonce value helps 

protect against replay attacks by adding randomness to the key generation 

process.
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Figure 5-30.  Wireshark capture of DH keys

The last two packets of the Main mode are used for authentication 

purposes. In this exchange, both peers confirm each other’s identity. If 

both sides agreed on a preshared mechanism of authentication, then both 

sides check whether they have the same preshared key or not. Figure 5-31 

displays the Wireshark capture of the identification-related payload. 

Notice in this Wireshark capture that the Flags field highlights that there is 

no authentication between the two peers.
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Figure 5-31.  Wireshark capture of Phase 1 authentication process

After this step, we move to Phase 2 (Quick mode). In this phase, we 

primarily focus on establishing security parameters that will be used 

by IPSec SA. Figure 5-32 displays the packet exchanged in Quick mode. 

Remember that there are three packets that are exchanged in Quick mode 

but only one is showed for brevity.

Chapter 5  Analyzing Control Plane Traffic



244

Figure 5-32.  Wireshark capture of Phase 2 Quick mode

Once Phase 2 is completed, the IPSec tunnels are formed, and all the 

packets exchanged over the tunnel interface are encrypted. For instance, if 

you send ICMP traffic, looking at the Wireshark capture you might not be 

able to identify that it is an ICMP packet or some other type of packet.

�VXLAN
VXLAN is an overlay protocol that provides Layer 2 extensions in a 

datacenter environment. It allows users to extend Layer 2 domains in 

multitenant environments leveraging the underlying IP infrastructure. 

VXLAN can also be called a MAC-in-UDP encapsulation. With VXLAN 

encapsulation, the original Layer 2 header is encapsulated with a UDP 

header and a VXLAN header. VXLAN packets are sent on the destination 

UDP port 4789. The VXLAN header provides a 24-bit segment ID that 

allows users to have up to 16 million VXLAN segments in the same 

datacenter environment. Figure 5-33 displays how the classical Ethernet 

frame looks when encapsulated with VXLAN.
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Figure 5-33.  VXLAN encapsulated Ethernet frame

The VXLAN encapsulation and de-encapsulation is done by Virtual 

Tunnel End Points (VTEPs) that connect classic Ethernet segments to 

the VXLAN fabric. The VXLAN core fabric is usually based on a spine-

leaf architecture. Traffic forwarding in VXLAN fabric is dependent on the 

type of traffic. Broadcast, Unknown Unicast, and Multicast (BUM) traffic 

requires either multicast replication or unicast replication of packets to a 

remote VTEP as these packets are sent to multiple VTEPs at the same time. 

Unicast traffic, on the other hand, does not require any kind of replication. 

Unicast traffic is encapsulated with VXLAN and a UDP header and sent to 

the destination VTEP where the host resides. There are, thus, two types of 

replication methods supported with VXLAN.

The first method is multicast replication. In multicast replication, a 

multicast group is mapped to the VXLAN Network Identifier (VNI), which 

in turn is mapped to a VLAN ID where the host resides. When BUM traffic 

is sent—for instance, an ARP request is sent for a destination host residing 

in the same VLAN or same VXLAN segment—the ARP request is multicast 

replicated to all the VTEPs that have the matching VXLAN Network 

Identifier (VNID) configured. The multicast destination address in the 
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VXLAN encapsulation is the same multicast address that was mapped to 

the VNI. Figure 5-34 displays the VXLAN-encapsulated BUM traffic. Notice 

that in this Wireshark capture, the destination address in the IP header is 

set to 239.1.150.1, which is the multicast address mapped to VNI 10000.

Figure 5-34.  VXLAN encapsulation BUM traffic with multicast 
replication

Because the ARP response is a unicast packet, the ARP reply will be 

encapsulated with the VXLAN header, but will be sent as a unicast packet 

to the source VTEP where the source host resides. Once both the end hosts 

have learned about each other’s MAC address, all the communication 

will be unicast-based communication. Figure 5-35 displays the Wireshark 

capture of unicast packets between the two hosts residing in same the VNI 

segment. Notice that the outer header has the IP address of the VTEPs and 

the inner IP header has the source and destination IP address of the source 

and destination hosts.
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Figure 5-35.  VXLAN encapsulated unicast packet

The second replication method is ingress replication, or unicast 

replication. This method is used in scenarios where either the organization 

is not interested in enabling multicast in its fabric or the devices are 

incapable of running multicast features. The BUM traffic, in this case, is 

replicated to statically configured remote VTEPs as unicast packets.

So far, we have explored the communication of hosts within the same 

VNI. Inter-VNI communication in VXLAN fabric is performed through 

symmetrical Integrated Routing and Bridging (IRB) and with the help of 

a Layer 3 VNI. For some context of what a Layer 3 or Layer 2 VNI is, let’s 

first understand the concept of a tenant. A tenant is a logical instance that 

provides Layer 2 or Layer 3 services in a datacenter. Each tenant consists 

of multiple Layer 2 VNIs and a Layer 3 VNI. Layer 2 VNIs are the segments 

where the hosts are connected and the Layer 3 VNI is used for inter-VNI 

routing.

If we try to understand the symmetrical IRB from a packet forwarding 

perspective, let’s consider an example where the host H1 with IP address 

10.150.1.1, residing in VLAN 1501, which is mapped to VXLAN segment ID 
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10000, tries to reach to a host H3 with IP address 10.150.2.3 residing in VLAN 

1502, which is mapped to VXLAN segment ID 10001. Because these hosts 

are in different VXLAN segments, we will have to leverage the Layer 3 VNI, 

let’s say 50000. When the packet from the source host reaches the source 

VTEP, the VTEP performs a lookup for the destination and understands 

that the destination resides in a different VXLAN segment and on a remote 

VTEP. It therefore switches the traffic coming in on segment 10000 and sets 

the VNID value to 50000 when encapsulating the packet with a VXLAN 

header and sends it out. When the remote VTEP receives the VXLAN 

encapsulated packet, it notices the VNID is set to L3 VNI and it performs a 

routing lookup for the destination IP in the tenant VRF and realizes that it 

resides in the segment 10001. Because the segment after de-encapsulation 

is just a VLAN segment, the packet is forwarded to the host residing in VLAN 

1502. Figure 5-36 displays the Wireshark capture of the VXLAN encapsulated 

packet with the VNID value set to 50000, which is the Layer 3 VNI.

Figure 5-36.  Typical LAN

There are various implementations of VXLAN such as VXLAN-EVPN 

and VXLAN Multi-site, but the concept remains the same and the method 

of encapsulation and de-encapsulation remains the same. Thus, when 
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investigating any VXLAN issue, you might run into issues related to BUM 

replication or unicast forwarding. In the case of BUM replication with 

multicast, you might want to troubleshoot the issue from a multicast 

perspective more than from a VXLAN perspective.

�Summary
This chapter is primarily focused on topics that are specific to network 

engineers to assist them in day-to-day troubleshooting of various routing 

protocols and overlay network traffic. We began the chapter learning 

about how to analyze routing protocol traffic such as OSPF, EIGRP, BGP, 

and PIM. We then moved on to learn about overlay traffic such as GRE 

and IPSec VPNs. As part of analyzing overlay traffic, we also covered one 

of the most widely used and critical encapsulations, VXLAN. This chapter 

assumes that readers understand how these protocols work. They can then 

build on top of that to reach a deeper understanding of those protocols by 

learning about the content of their headers and how they can troubleshoot 

some scenarios that are commonly seen in production environments.
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