

Wireshark	Essentials

Table	of	Contents

Wireshark	Essentials

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Errata

Piracy

Questions

1.	Getting	Acquainted	with	Wireshark

Installing	Wireshark

Installing	Wireshark	on	Windows

Installing	Wireshark	on	Mac	OS	X

Installing	Wireshark	on	Linux/Unix

Performing	your	first	packet	capture

Selecting	a	network	interface

Performing	a	packet	capture

Wireshark	user	interface	essentials

Filtering	out	the	noise

Applying	a	display	filter

Saving	the	packet	trace

Summary

2.	Networking	for	Packet	Analysts

The	OSI	model	–	why	it	matters

Understanding	network	protocols

The	seven	OSI	layers

Layer	1	–	the	physical	layer

Layer	2	–	the	data-link	layer

Layer	3	–	the	network	layer

Internet	Protocol

Address	Resolution	Protocol

Layer	4	–	the	transport	layer

User	Datagram	Protocol

Transmission	Control	Protocol

Layer	5	–	the	session	layer

Layer	6	–	the	presentation	layer

Layer	7	–	the	application	layer

Encapsulation

IP	networks	and	subnets

Switching	and	routing	packets

Ethernet	frames	and	switches

IP	addresses	and	routers

WAN	links

Wireless	networking

Summary

3.	Capturing	All	the	Right	Packets

Picking	the	best	capture	point

User	location

Server	location

Other	capture	locations

Mid-network	captures

Both	sides	of	specialized	network	devices

Test	Access	Ports	and	switch	port	mirroring

Test	Access	Port

Switch	port	mirroring

Capturing	packets	on	high	traffic	rate	links

Capturing	interfaces,	filters,	and	options

Selecting	the	correct	network	interface

Using	capture	filters

Configuring	capture	filters

Capture	options

Capturing	filenames	and	locations

Multiple	file	options

Ring	buffer

Stop	capture	options

Display	options

Name	resolution	options

Verifying	a	good	capture

Saving	the	bulk	capture	file

Isolating	conversations	of	interest

Using	the	Conversations	window

The	Ethernet	tab

The	TCP	and	UDP	tabs

The	WLAN	tab

Wireshark	display	filters

The	Display	Filter	window

The	display	filter	syntax

Typing	in	a	display	filter

Display	filters	from	a	Conversations	or	Endpoints	window

Filter	Expression	Buttons

Using	the	Expressions	window	button

Right-click	menus	on	specific	packet	fields

Following	TCP/UDP/SSL	streams

Marking	and	ignoring	packets

Saving	the	filtered	traffic

Summary

4.	Configuring	Wireshark

Working	with	packet	timestamps

How	Wireshark	saves	timestamps

Wireshark	time	display	options

Adding	a	time	column

Conversation	versus	displayed	packet	time	options

Choosing	the	best	Wireshark	time	display	option

Using	the	Time	Reference	option

Colorization	and	coloring	rules

Packet	colorization

Wireshark	preferences

Wireshark	profiles

Creating	a	Wireshark	profile

Selecting	a	Wireshark	profile

Summary

5.	Network	Protocols

The	OSI	and	DARPA	reference	models

Network	layer	protocols

Wireshark	IPv4	filters

Wireshark	ARP	filters

Internet	Group	Management	Protocol

Wireshark	IGMP	filters

Internet	Control	Message	Protocol

ICMP	pings

ICMP	traceroutes

ICMP	control	message	types

ICMP	redirects

Wireshark	ICMP	filters

Internet	Protocol	Version	6

IPv6	addressing

IPv6	address	types

IPv6	header	fields

IPv6	transition	methods

Wireshark	IPv6	filters

Internet	Control	Message	Protocol	Version	6

Multicast	Listener	Discovery

Wireshark	ICMPv6	filters

Transport	layer	protocols

User	Datagram	Protocol

Wireshark	UDP	filters

Transmission	Control	Protocol

TCP	flags

TCP	options

Wireshark	TCP	filters

Application	layer	protocols

Dynamic	Host	Configuration	Protocol

Wireshark	DHCP	filters

Dynamic	Host	Configuration	Protocol	Version	6

Wireshark	DHCPv6	filters

Domain	Name	Service

Wireshark	DNS	filters

Hypertext	Transfer	Protocol

HTTP	Methods

Host

Request	Modifiers

Wireshark	HTTP	filters

Additional	information

Wireshark	wiki

Protocols	on	Wikipedia

Requests	for	Comments

Summary

6.	Troubleshooting	and	Performance	Analysis

Troubleshooting	methodology

Gathering	the	right	information

Establishing	the	general	nature	of	the	problem

Half-split	troubleshooting	and	other	logic

Troubleshooting	connectivity	issues

Enabling	network	interfaces

Confirming	physical	connectivity

Obtaining	the	workstation	IP	configuration

Obtaining	MAC	addresses

Obtaining	network	service	IP	addresses

Basic	network	connectivity

Connecting	to	the	application	services

Troubleshooting	functional	issues

Performance	analysis	methodology

Top	five	reasons	for	poor	application	performance

Preparing	the	tools	and	approach

Performing,	verifying,	and	saving	a	good	packet	capture

Initial	error	analysis

Detecting	and	prioritizing	delays

Server	processing	time	events

Application	turn’s	delay

Network	path	latency

Bandwidth	congestion

Data	transport

TCP	StreamGraph

IO	Graph

IO	Graph	–	Wireshark	2.0

Summary

7.	Packet	Analysis	for	Security	Tasks

Security	analysis	methodology

The	importance	of	baselining

Security	assessment	tools

Identifying	unacceptable	or	suspicious	traffic

Scans	and	sweeps

ARP	scans

ICMP	ping	sweeps

TCP	port	scans

UDP	port	scans

OS	fingerprinting

Malformed	packets

Phone	home	traffic

Password-cracking	traffic

Unusual	traffic

Summary

8.	Command-line	and	Other	Utilities

Wireshark	command-line	utilities

Capturing	traffic	with	Dumpcap

Capturing	traffic	with	Tshark

Editing	trace	files	with	Editcap

Merging	trace	files	with	Mergecap

Mergecap	batch	file

Other	helpful	tools

HttpWatch

SteelCentral	Packet	Analyzer	Personal	Edition

AirPcap	adapters

Summary

Index

Wireshark	Essentials

Wireshark	Essentials
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	October	2014

Production	reference:	1211014

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78355-463-8

www.packtpub.com

http://www.packtpub.com

Credits
Author

James	H.	Baxter

Reviewers

Sarath	Lakshman

Bruno	Vernay

Ms.	Samia	Yousif

Commissioning	Editor

Pramila	Balan

Acquisition	Editor

Larissa	Pinto

Content	Development	Editor

Sweny	M.	Sukumaran

Technical	Editor

Shashank	Desai

Copy	Editor

Roshni	Banerjee

Project	Coordinator

Akash	Poojary

Proofreaders

Simran	Bhogal

Maria	Gould

Ameesha	Green

Paul	Hindle

Indexers

Hemangini	Bari

Rekha	Nair

Graphics

Sheetal	Aute

Abhinash	Sahu

Production	Coordinator

Nitesh	Thakur

Cover	Work

Nitesh	Thakur

About	the	Author
James	H.	Baxter	is	the	President	and	CEO	of	PacketIQ	Inc.,	a	company	which	specializes
in	network	and	application	performance	analysis	and	management,	including	development
of	advanced	analysis	frameworks	and	tools.

With	over	30	years	of	experience	in	the	IT	industry,	his	diverse	technical	background
includes	electronics,	RF,	satellite,	data/telecom,	LAN/WAN	and	voice	design,	network
management,	speech	technologies,	and	Java/.NET	programming.	For	most	of	the	last	20
years,	he	has	been	working	specifically	with	network	and	application	performance	issues.

James	is	a	Wireshark	Certified	Network	Analyst	(WCNA).	He	is	a	member	of	the	IEEE,
Computer	Measurement	Group,	and	Association	of	Computing	Machinery,	and	he	follows
advancements	in	artificial	intelligence.

James	is	also	a	private	pilot	who	holds	an	amateur	radio	Extra	class	license.	He	is	also	a
guitar	player	and	an	amateur	astronomer.	You	can	find	out	more	about	James	and
PacketIQ	Inc.	at	www.packetiq.com.

http://www.packetiq.com

About	the	Reviewers
Sarath	Lakshman	is	a	software	engineer	at	Couchbase.	He	is	a	core	developer	for
Couchbase	MapReduce	View	Engine,	and	he	works	on	storage	and	indexing	problems	at
Couchbase.	Before	Couchbase,	he	worked	at	Zynga	for	over	2	years,	building	ZBase—a
distributed	storage	platform	that	powered	the	entire	social	games	infrastructure	at	Zynga.
He	was	attracted	to	Linux	in	his	teenage	years,	and	he	created	a	user-friendly	Linux
distribution	called	Slynux.	He	is	also	the	author	of	Linux	Shell	Scripting	Cookbook,	Packt
Publishing.	He	holds	a	Bachelor’s	degree	in	Computer	Science	from	Model	Engineering
College,	India.	He	is	an	open	source	software	enthusiast	and	has	contributed	to	various
projects	in	the	past.	To	find	out	more	about	Sarath,	you	can	visit
www.sarathlakshman.com.

Bruno	Vernay	has	been	working	with	all	forms	of	web	application	design	and
development	for	the	last	15	years—a	bit	of	CSS/JavaScript	and	a	lot	of	Java,	SQL,	Linux,
and	network.	He	even	had	the	chance	to	work	with	Complex	Event	Processing,	Rules
Engines,	and	Geographic	Information	Systems.	He	also	touched	on	large	clusters	as	well
as	embedded	devices	and	has	been	through	various	paradigms,	from	modeling	via	UML	to
Test	or	Domain	Driven	Development	and	Domain	Specific	Language.	If	he	has	time,	he
would	like	to	work	on	Synthetic	Biology	and	Biohacking.	Now,	he	is	focusing	on	IoT
Security,	enjoying	the	variety	of	systems	and	opportunities.

Ms.	Samia	Yousif	holds	Master’s	and	Bachelor’s	degrees	from	the	University	of	Bahrain
as	well	as	CCNA,	CCNP,	and	CCDA	from	Bahrain	Training	Institute	and	Diploma	Mr.
Tabatabai	in	culture	Quranic	from	Islamic	Enlightenment	Society.	She	has	developed
extensive	knowledge	and	skills	in	various	technical	fields	of	Computer	Science	and	IT.
She	has	published	conference	publications	and	books	and	received	the	Research	Award
from	Ahlia	University	and	the	e-Government	Excellence	Award	(e-Education	Award).	She
has	delivered	several	IT	workshops	and	has	attended	many	seminars.	Samia	has	10	years
of	teaching	experience	at	an	undergraduate	level	in	Computer	Science	and	IT.
Furthermore,	she	has	worked	on	the	development	of	numerous	systems	and	professional
website	applications	using	the	most	up-to-date	web	technologies.	She	is	now	an	Assistant
Director	of	ICT	at	Ahlia	University,	Kingdom	of	Bahrain,	and	she	is	planning	to	undertake
a	PhD	program.

She	has	contributed	to	the	book	Computer	Jobs	&	Certifications	Choose	&	Improve	Your
IT	Career,	Dr.	Mansoor	Al-Aali,	Lulu.com	and	also	reviewed	the	book	Packet	Tracer
Network	Simulator,	Jesin	A,	Packt	Publishing.	She	has	also	written	a	lab	manual,	HTML
Fundamental,	for	the	Royal	University	for	Women	in	October	2006	and	AMA
International	University,	Bahrain,	in	May	2006.

To	find	out	more	about	her,	visit	her	website	http://samiayousif.hostoi.com.

http://www.sarathlakshman.com
http://samiayousif.hostoi.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Wireshark	is	perhaps	the	world’s	most	popular	network	packet	analyzer	used	to
troubleshoot	and	analyze	network	and	application	protocols	across	wide	variety	of
technologies.	Wireshark	is	free,	open	source,	and	available	for	Windows,	Mac	OS	X,
Linux,	and	several	Unix-like	platforms,	and	it	is	continuously	being	improved	and
expanded	by	its	original	developer,	Gerald	Combs,	and	over	500	code	contributors.

Wireshark	has	a	rich	feature	set,	including	the	ability	to	capture,	save,	and	import	packet
files	in	a	variety	of	formats.	It	provides	an	extensive	filtering	capability,	detailed	protocol
information,	statistics,	and	built-in	analysis	and	packet	coloring	features	to	help	you
identify	and	analyze	important	events.	This	powerful	analysis	capability	is	available	to
anyone	who	is	willing	to	invest	a	little	time	to	learn	Wireshark’s	basic	features	and	how	to
interpret	a	relatively	small	set	of	core	network	and	application	protocols.

This	book	is	designed	to	introduce	Wireshark	and	essential	packet	analysis	techniques	to
not	only	network	engineers	and	administrators,	but	also	application	developers,	database
designers	and	administrators,	server	administrators,	and	IT	security	professionals.	It	also
gives	them	the	essential	knowledge	and	practical	examples	needed	to	effectively	utilize
Wireshark	so	they	can	include	packet-level	analysis	in	their	daily	tasks.

Application	developers	can	use	Wireshark	to	view	and	understand	how	the	routines	in
their	code	that	make	network	calls	translate	into	request/response	packets,	inspect	how	the
application-related	data	fields	within	those	packets	are	structured,	and	verify	that	these
calls	are	efficient	and	work	in	the	way	that	they	are	anticipated	and	intended.

Database	designers	and	administrators	can	utilize	the	packet	details	provided	by
Wireshark	to	examine	the	queries	and	responses	carried	by	packets	and	to	check	whether
they	are	efficient.	Are	there	a	lot	of	small	request/response	cycles	involved	in	a
transactional	query	that	could	be	replaced	by	fewer,	more	efficient	requests	to	improve
performance?

Server	processing	times	can	be	a	huge	factor	and	point	of	contention	in	performance-
related	issues	across	almost	all	IT	arenas.	This	book	will	show	you	how	easy	it	is	to	use
Wireshark	to	identify	and	measure	server	processing	times	at	the	packet	level	where	there
can	be	no	disputing	the	evidence.

IT	security	professionals	inherently	utilize	protocol-level	parameters	to	configure	firewalls
and	intrusion	detection	and	prevention	devices,	but	may	lack	the	skills	to	confidently
establish	and	verify	these	factors	themselves—instead	relying	upon	others	for	this	critical
input.	The	ability	of	a	security	professional	to	inspect	packet	captures	to	identify,
characterize,	and	guard	against	malicious	traffic	is	assumed,	and	a	small	investment	of
time	with	this	book	will	open	the	door	to	mastering	this	essential	skill.

Finally,	network	support	personnel	are	called	upon	on	an	almost	daily	basis	to
troubleshoot	strange	connectivity	or	slow	network	issues.	They	need	the	visibility	and
evidence	that	packet-level	analysis	provides	to	not	only	defend	their	domain,	but	also	to
assist	in	identifying	and	resolving	the	real	problem;	that’s	usually	the	only	way	the	heat

gets	permanently	turned	off.	Good	Wireshark	skills	are	a	must-have	for	these	folks.

The	focus	of	this	book	is	to	teach	you	how	to	become	comfortable	and	proficient	in	using
basic	Wireshark	skills	within	your	respective	domain.	At	first	glance,	looking	at	a	screen
full	of	packets	of	seemingly	endless	varieties	and	sources	can	be	very	intimidating,	but	it
is	actually	quite	easy	after	learning	the	concepts	provided	in	this	book	to	isolate	just	the
packets	that	pertain	to	the	area	of	interest	and	filter	everything	else	out,	establish	a	high-
level	understanding	of	the	packet	flow	and	sequence	of	events,	and	then	find	and	inspect
the	correct	packets	and	data	fields	that	address	the	issue	at	hand.

One	of	the	additional	advantages	of	learning	how	to	use	Wireshark	is	an	increased
understanding	of	how	networks	and	applications	really	work,	the	benefits	of	which	are
helpful	across	all	other	aspects	of	your	work.	I’m	confident	the	small	investment	in	time
required	to	learn	Wireshark	and	packet	analysis	skills	will	return	huge	dividends.

What	this	book	covers
Chapter	1,	Getting	Acquainted	with	Wireshark,	starts	with	the	first	step.	This	introductory
chapter	will	help	you	quickly	start	developing	proficiency	with	Wireshark	by	getting	it
installed	and	doing	something	fun	and	useful,	such	as	performing	a	packet	capture,
isolating	and	filtering	some	traffic	of	interest,	and	saving	a	trace	file	before	diving	into
more	details	and	the	supporting	concepts	in	the	later	chapters.

Chapter	2,	Networking	for	Packet	Analysts,	provides	an	overview	of	network
technologies,	foundational	network	protocols	including	IP,	UDP,	and	TCP,	and	how	the
most	common	protocols	fit	together	within	the	OSI	and	DARPA	model	levels.	The	goal	of
this	chapter	is	to	develop	a	good	mental	model	of	how	networks	and	protocols	function
together	to	allow	you	to	confidently	and	effectively	approach	packet-level	analysis.

Chapter	3,	Capturing	All	the	Right	Packets,	covers	the	details	of	how	to	correctly	position
Wireshark	in	the	network	and	configure	it	to	capture	the	desired	packets,	how	to	identify
network	conversations	of	interest	and	apply	display	filters	to	isolate	just	those	packets,	and
finally	save	a	filtered	file	for	further	or	later	analysis.	These	are	the	essential	skills	that
support	practical	packet	analysis.

Chapter	4,	Configuring	Wireshark,	provides	a	number	of	features	that	can	be	configured
and	employed	to	enhance	the	accuracy	and	ease	of	analysis	activities.	The	various	ways	to
display	and	interpret	packet	timestamps	are	especially	important	and	we’ll	cover	these
topics	thoroughly,	along	with	other	essential	configuration	options,	packet	list	coloring	to
help	identify	important	events,	and	how	to	save	different	configurations	in	customized
profiles	that	can	be	tailored	and	selected	for	various	analysis	tasks.

Chapter	5,	Network	Protocols,	covers	a	number	of	other	essential	and	useful	network
protocols	that	you	should	be	familiar	with,	including	ICMP,	DNS,	DHCP,	an	introductory
review	of	Internet	Protocol	Version	6	(IPv6),	and	an	example	application	layer	protocol
(HTTP).	We	will	also	discuss	basic	Wireshark	capture	and	display	filters.

Chapter	6,	Troubleshooting	and	Performance	Analysis,	provides	methodologies	to	apply
your	new	skills	and	protocol	knowledge	to	the	primary	purpose	for	which	Wireshark	was
developed:	troubleshooting	and	analyzing	network	and	application	issues	and
performance.	We’ll	cover	the	top	reasons	for	poor	performance	and	how	to	use	Wireshark
to	detect	and	measure	them.

Chapter	7,	Packet	Analysis	for	Security	Tasks,	introduces	the	use	of	Wireshark	to	detect
and	analyze	suspect	traffic	such	as	scans	and	sweeps,	operating	system	fingerprinting,
malformed	packets,	phone	home	traffic,	and	other	unusual	packets	and	patterns	that	could
indicate	malicious	origin.

Chapter	8,	Command-line	and	Other	Utilities,	covers	some	of	the	most	useful	command-
line	utilities	provided	with	Wireshark	to	perform	packet	captures	with	minimal	resources
and	to	manipulate	packet	trace	files.	We	will	also	discuss	a	few	other	tools	that	can	help
you	round	out	your	packet	analysis	toolset.

What	you	need	for	this	book
To	accomplish	the	tasks	and	repeat	the	examples	provided	in	this	book,	you	only	need	a
computer	on	which	you	can	install	and	use	Wireshark	and	a	wired	LAN	connection	to
your	home	or	business	network.

Although	you	could	capture	from	a	Wireless	interface,	the	additional	overhead	of	wireless
management	frames	can	be	burdensome	and	distracting	to	analyze,	so	it’s	much	better	for
your	learning	experience	to	start	off	on	a	wired	network.

In	terms	of	background	knowledge,	if	you	are	involved	in	some	aspect	of	the	IT	industry,
you	probably	have	at	least	some	basic	familiarity	with	the	common	concepts	and	terms
used	with	packet-level	analysis,	such	as	switches,	routers,	packets,	protocols,	TCP/IP,	and
HTTP,	but	it	is	assumed	that	you	possess	only	a	basic	familiarity	with	network	and
application	protocols.

Who	this	book	is	for
This	book	is	aimed	at	a	broad	spectrum	of	IT	professionals	who	want	to	develop	or
enhance	their	Wireshark	skills	to	expand	their	troubleshooting	and	analysis	capabilities
and	increase	their	value	in	the	workplace:	network	designers	and	administrators,
application	developers	and	support	personnel,	database	designers	and	administrators,	IT
security	professionals,	and	anyone	else	whose	job	responsibilities	include	supporting
information	technology	in	today’s	increasingly	networked	world.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The	IP
address	of	the	target	host	was	10.1.1.125.”

A	block	of	code	is	set	as	follows:

(tcp.flags&02	&&	tcp.seq==0)	||		(tcp.flags&12	&&	tcp.seq==0)	||	

(tcp.flags.ack	&&	tcp.seq==1	&&	!tcp.nxtseq	>	0	&&	!tcp.ack	>1)		||	

tcp.flags.fin	==	1	||	tcp.flags.reset	==1

Any	command-line	input	or	output	is	written	as	follows:

dumpcap	-i	2	-f	"host	192.168.1.115"	-w	capture.pcapng

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“This	field	is	roughly
equivalent	to	the	Time	To	Live	field	in	IPv4;	it	is	decremented	by	one	by	each	device	that
forwards	the	IPv6	packet.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Getting	Acquainted	with
Wireshark
Since	its	creation	in	1997	by	Gerald	Combs	to	troubleshoot	network	problems	at	a	small
ISP,	Wireshark	(originally	called	Ethereal)	has	now	become	one	of	the	most	popular	tools
available	for	packet-level	analysis	of	network	and	application	protocols.	This	is	mostly
because	it	is	an	open	source	solution,	which	makes	it	freely	available	to	any	technical
professional,	as	well	as	its	extensive	range	of	features,	coverage	of	over	1000	protocols,
and	the	continued	support	and	improvements	made	possible	by	contributions	from	over
800	developers	around	the	globe.

This	introductory	chapter	will	help	you	to	quickly	become	proficient	in	Wireshark	by
installing	it	on	your	system	and	doing	something	fun	and	useful	with	it,	before	diving	into
more	details	and	supporting	concepts.

In	this	chapter,	we	will	cover	the	following	topics:

Installing	Wireshark
Performing	a	packet	capture
Wireshark	user	interface	essentials
Using	display	filters	to	isolate	traffic	of	interest
Saving	a	filtered	packet	trace	file

The	chapters	that	follow	will	build	on	and	provide	the	supporting	concepts	for	these	basic
functions	to	allow	you	to	develop	the	Wireshark	skills	that	are	most	applicable	to	your
technical	role	and	objectives.

Installing	Wireshark
Wireshark	can	be	installed	on	machines	running	32-	and	64-bit	Windows	(XP,	Win7,
Win8.1,	and	so	on),	Mac	OS	X	(10.5	and	higher),	and	most	flavors	of	Linux/Unix.
Installation	on	Windows	and	Mac	machines	is	quick	and	easy	because	installers	are
available	from	the	Wireshark	website	download	page.	Wireshark	is	a	standard	package
available	on	many	Linux	distributions,	and	there	is	a	list	of	links	to	third-party	installers
provided	on	the	Wireshark	download	page	for	a	variety	of	popular	*nix	platforms.
Alternatively,	you	can	download	the	source	code	and	compile	Wireshark	for	your
environment	if	a	precompiled	installation	package	isn’t	available.

Wireshark	relies	on	the	WinPcap	(Windows)	or	libpcap	(Linux/Unix/Mac)	libraries	to
provide	the	packet	capture	and	capture	filtering	functions;	the	appropriate	library	is
installed	during	the	Wireshark	installation.

Note
You	might	need	administrator	(Windows)	or	root	(Linux/Unix/Mac)	privileges	to	install
Wireshark	and	the	WinPcap/libpcap	utilities	on	your	workstation.

Assuming	that	you’re	installing	Wireshark	on	a	Windows	or	Mac	machine,	you	need	to	go
to	the	Wireshark	website	(https://www.wireshark.org/)	and	click	on	the	Download	button
at	the	top	of	the	page.	This	will	take	you	to	the	download	page,	and	at	the	same	time
attempt	to	perform	an	autodiscovery	of	your	operating	system	type	and	version	from	your
browser	info.	The	majority	of	the	time,	the	correct	Wireshark	installation	package	for	your
machine	will	be	highlighted,	and	you	only	have	to	click	on	the	highlighted	link	to
download	the	correct	installer.

Note
If	you	already	have	Wireshark	installed,	an	autoupdate	feature	will	notify	you	of	available
version	updates	when	you	launch	Wireshark.

https://www.wireshark.org/

Installing	Wireshark	on	Windows
In	the	following	screenshot,	the	Wireshark	download	page	has	identified	that	a	64-bit
Windows	installer	is	appropriate	for	this	Windows	workstation:

Clicking	on	the	highlighted	link	downloads	a	Wireshark-win64-1.10.8.exe	file	or
similar	executable	file	that	you	can	save	on	your	hard	drive.	Double-clicking	on	the
executable	starts	the	installation	process.	You	need	to	follow	these	steps:

1.	 Agree	to	the	License	Agreement.
2.	 Accept	all	of	the	defaults	by	clicking	on	Next	for	each	prompt,	including	the	prompt

to	install	WinPcap,	which	is	a	library	needed	to	capture	packets	from	the	Network
Interface	Card	(NIC)	on	your	workstation.

3.	 Early	in	the	Wireshark	installation,	the	process	will	pause	and	prompt	you	to	click	on
Install	and	several	Next	buttons	in	separate	windows	to	install	WinPcap.

4.	 After	the	WinPcap	installation	is	complete,	click	through	the	remaining	Next	prompts
to	finish	the	Wireshark	installation.

Installing	Wireshark	on	Mac	OS	X
The	process	to	install	Wireshark	on	Mac	is	the	same	as	the	process	for	Windows,	except
that	you	will	not	be	prompted	to	install	WinPcap;	libpcap,	the	packet	capture	library	for
Mac	and	*nix	machines,	gets	installed	instead	(without	prompting).

There	are,	however,	two	additional	requirements	that	may	need	to	be	addressed	in	a	Mac
installation:

The	first	is	to	install	X11,	a	windowing	system	library.	If	this	is	needed	for	your
system,	you	will	be	informed	and	provided	a	link	that	ultimately	takes	you	to	the
XQuartz	project	download	page	so	you	can	install	this	package.
The	second	requirement	that	might	come	up	is	if	upon	starting	Wireshark,	you	are
informed	that	there	are	no	interfaces	on	which	a	capture	can	be	done.	This	is	a
permissions	issue	on	the	Berkeley	packet	filter	(BPF)	that	can	be	resolved	by
opening	a	terminal	window	and	typing	the	following	command:

bash-3.2$	sudo	chmod	644	/dev/bpf*

If	this	process	needs	to	be	repeated	each	time	you	start	Wireshark,	you	can	perform	a	web
search	for	a	more	permanent	permissions	solution	for	your	environment.

Installing	Wireshark	on	Linux/Unix
The	requirements	and	process	to	install	Wireshark	on	a	Linux	or	Unix	platform	can	vary
significantly	depending	on	the	particular	environment.	Wireshark	is	usually	available	by
default	through	the	package	management	systems	for	your	specific	Linux	distribution.
Guidance	to	install	Wireshark	on	Linux	can	be	found	in	Chapter	2,	Networking	for	Packet
Analysts,	or	in	the	Wireshark	user	documentation	located	at
www.wireshark.org/docs/wsug_html_chunked/ChapterBuildInstall.html.

http://www.wireshark.org/docs/wsug_html_chunked/ChapterBuildInstall.html

Performing	your	first	packet	capture
When	you	first	start	Wireshark,	you	are	presented	with	an	initial	Start	Page	as	shown	in
the	following	screenshot:

Don’t	get	too	fond	of	this	screen.	Although	you’ll	see	this	every	time	you	start	Wireshark,
once	you	do	a	capture,	open	a	trace	file,	or	perform	any	other	function	within	Wireshark,
this	screen	will	be	replaced	with	the	standard	Wireshark	user	interface	and	you	won’t	see
it	again	until	the	next	time	you	start	Wireshark.	So,	we	won’t	spend	much	time	here.

Selecting	a	network	interface
If	you	have	a	number	of	network	interfaces	on	your	machine,	you	may	not	be	sure	which
one	to	select	to	capture	packets,	but	there’s	a	fairly	easy	way	to	figure	this	out.	On	the
Wireshark	start	page,	click	on	Interface	List	(alternatively,	click	on	Interfaces	from	the
Capture	menu	or	click	on	the	first	icon	on	the	icon	bar).

The	Wireshark	Capture	Interfaces	window	that	opens	provides	a	list	and	description	of
all	the	network	interfaces	on	your	machine,	the	IP	address	assigned	to	each	one	(if	an
address	has	been	assigned),	and	a	couple	of	counters,	such	as	the	total	number	of	packets
seen	on	the	interface	since	this	window	opened	and	a	packets/s	(packets	per	second)
counter.	If	an	interface	has	an	IPv6	address	assigned	(which	may	start	with	fe80::	and
contain	a	number	of	colons)	and	this	is	being	displayed,	you	can	click	on	the	IPv6	address
and	it	will	toggle	to	display	the	IPv4	address.	This	is	shown	in	the	following	screenshot:

Note
On	Linux/Unix/Mac	platforms,	you	might	also	see	a	loopback	interface	that	can	be
selected	to	capture	packets	being	sent	between	applications	on	the	same	machine.
However,	in	most	cases,	you’ll	only	be	interested	in	capturing	packets	from	a	network
interface.

The	goal	is	to	identify	the	active	interface	that	will	be	used	to	communicate	with	the
Internet	when	you	open	a	browser	and	navigate	to	a	website.	If	you	have	a	wired	local
area	network	connection	and	the	interface	is	enabled,	that’s	probably	the	active	interface,
but	you	might	also	have	a	wireless	interface	that	is	enabled	and	you	may	or	may	not	be	the
primary	interface.	The	most	reliable	indicator	of	the	active	network	interface	is	that	it	will
have	greater	number	of	steadily	increasing	packets	with	a	corresponding	active	number	of
packets/s	(which	will	vary	over	time).	Another	possible	indicator	is	if	an	interface	has	an
IP	address	assigned	and	others	do	not.	If	you’re	still	unsure,	open	a	browser	window	and
navigate	to	one	of	your	favorite	websites	and	watch	the	packets	and	packets/s	counters	to
identify	the	interface	that	shows	the	greatest	increase	in	activity.

Performing	a	packet	capture
Once	you’ve	identified	the	correct	interface,	select	the	checkbox	on	the	left-hand	side	of
that	interface	and	click	on	the	Start	button	at	the	bottom	of	the	Capture	Interfaces
window.	Wireshark	will	start	capturing	all	the	packets	that	can	be	seen	from	that	interface,
including	the	packets	sent	to	and	from	your	workstation.	You’ll	see	a	bewildering	variety
of	packets	going	by	in	the	top	section	(called	the	Packet	List	pane)	of	the	screen;	this	is
normal.	If	you	don’t	see	this,	try	a	different	interface.

It’s	a	bit	amazing	just	how	much	background	traffic	there	is	on	a	typical	network,	such	as
broadcast	packets	from	devices	advertising	their	names,	addresses,	and	services	to	and
from	other	devices	asking	for	addresses	of	stations	they	want	to	communicate	with.	Also,
a	fair	amount	of	traffic	is	generated	from	your	own	workstation	for	applications	and
services	that	are	running	in	the	background,	and	you	had	no	idea	they	were	creating	this
much	noise.	Your	Wireshark’s	Packet	List	pane	may	look	similar	to	the	following
screenshot;	however,	we	can	ignore	all	this	for	now:

We’re	ready	to	generate	some	traffic	that	we’ll	be	interested	in	analyzing.	Open	a	new
Internet	browser	window,	enter	www.wireshark.org	in	the	address	box,	and	press	Enter.

When	the	https://www.wireshark.org/	home	page	finishes	loading,	stop	the	Wireshark
capture	by	either	selecting	Stop	from	the	Capture	menu	or	by	clicking	on	the	red	square
stop	icon	that’s	between	the	View	and	Go	menu	headers.

https://www.wireshark.org/

Wireshark	user	interface	essentials
Once	you	have	completed	your	first	capture,	you	will	see	the	normal	Wireshark	user
interface	main	screen.	So	before	we	go	much	further,	a	quick	introduction	to	the	primary
parts	of	this	user	interface	will	be	helpful	so	you’ll	know	what’s	being	referred	to	as	we
continue	the	analysis	process.

There	are	eight	significant	sections	or	elements	of	the	default	Wireshark	user	interface,	as
shown	in	the	following	screenshot:

Let’s	look	at	the	eight	significant	sections	in	detail:

Title:	This	area	reflects	the	interface	from	where	a	capture	is	being	taken	or	the
filename	of	an	open	packet	trace	file
Menu:	This	is	the	standard	row	of	main	functions	and	subfunctions	in	Wireshark
Main	toolbar	(icons):	These	provide	a	quick	way	to	access	the	most	useful
Wireshark	functions	and	are	well	worth	getting	familiar	with	and	using
Display	filter	toolbar:	This	allows	you	to	quickly	create,	edit,	clear,	apply,	and	save
filters	to	isolate	packets	of	interest	for	analysis
Packet	list	pane:	This	section	contains	a	summary	info	line	for	each	captured	packet,
as	well	as	a	packet	number	and	relative	timestamp
Packet	details	pane:	This	section	provides	a	hierarchical	display	of	information
about	a	single	packet	that	has	been	selected	in	the	packet	list	pane,	which	is	divided
into	sections	for	the	various	protocols	contained	in	a	packet
Packet	bytes	pane:	This	section	displays	the	selected	packets’	contents	in	hex	bytes
or	bits	form,	as	well	as	an	ASCII	display	of	the	data	that	can	be	helpful
Status	bar:	This	section	provides	an	expert	info	indicator,	edit	capture	comments

icon,	trace	file	path	name	and	size	information,	data	on	the	number	of	packets
captured	and	displayed	and	other	info,	and	a	profile	display	and	selection	section

Filtering	out	the	noise
Somewhere	in	your	packet	capture,	there	are	packets	involved	with	loading	the	Wireshark
home	page—but	how	do	you	find	and	view	just	those	packets	out	of	all	the	background
noise?

The	simplest	and	most	reliable	method	is	to	determine	the	IP	address	of	the	Wireshark
website	and	filter	out	all	the	packets	except	those	flowing	between	that	IP	address	and	the
IP	address	of	your	workstation	by	using	a	display	filter.	The	best	approach—and	the	one
that	you’ll	likely	use	as	a	first	step	for	most	of	your	post-capture	analysis	work	in	future—
is	to	investigate	a	list	of	all	the	conversations	by	IP	address	and/or	hostnames,	sorted	by
the	most	active	nodes,	and	identify	your	target	hostname,	website	name,	or	IP	address
from	this	list.

From	the	Wireshark	menu,	select	Conversations	from	the	Statistics	menu,	and	in	the
Conversations	window	that	opens,	select	the	IPv4	tab	at	the	top.	You’ll	see	a	list	of
network	conversations	identified	by	Address	A	and	Address	B,	with	columns	for	total
Packets,	Bytes,	Packets	A→B,	Bytes	A→B,	Packets	A←B,	and	Bytes	A←B.

Scrolling	over	to	the	right-hand	side	of	this	window,	there	are	Relative	Start	values.
These	are	the	times	when	each	particular	conversation	was	first	observed	in	the	capture,
relative	to	the	start	of	the	capture	in	seconds.	The	next	column	is	Duration,	which	is	how
long	this	conversation	persisted	in	the	capture	(first	to	last	packet	seen).

Finally,	there	are	average	data	rates	in	bits	per	second	(bps)	in	each	direction	for	each
conversation,	which	is	the	network	impact	for	this	conversation.	All	these	are	shown	in	the
following	screenshot:

We	want	to	sort	the	list	of	conversations	to	get	the	busiest	ones—called	the	Top	Talkers	in
network	jargon—at	the	top	of	the	list.	Click	on	the	Bytes	column	header	and	then	click	on

it	again.	Your	list	should	look	something	like	the	preceding	screenshot,	and	if	you	didn’t
get	a	great	deal	of	other	background	traffic	flowing	to/from	your	workstation,	the	traffic
from	https://www.wireshark.org/	should	have	the	greatest	volume	and	therefore	be	at	the
top	of	the	list.

In	this	example,	the	conversation	between	IP	addresses	162.159.241.165	and
192.168.1.116	has	the	greatest	overall	volume,	and	looking	at	the	Bytes	A->B	column,	it’s
apparent	that	the	majority	of	the	traffic	was	from	the	162.159.241.165	address	to	the
192.168.1.116	address.	However,	at	this	point,	how	do	we	know	if	this	is	really	the
conversation	that	we’re	after?

We	will	need	to	resolve	the	IP	addresses	from	our	list	to	hostnames	or	website	addresses,
and	this	can	be	done	from	within	Wireshark	by	turning	on	Network	Name	Resolution
and	trying	to	get	hostnames	and/or	website	addresses	resolved	for	those	IP	addresses	using
reverse	DNS	queries	(using	what	is	known	as	a	pointer	(PTR)	DNS	record	type).	If	you
just	installed	or	started	Wireshark,	the	Name	Resolution	option	may	not	be	turned	on	by
default.

This	is	usually	a	good	thing,	as	Wireshark	can	create	traffic	of	its	own	by	transmitting	the
DNS	queries	trying	to	resolve	all	the	IP	addresses	that	it	comes	across	during	the	capture,
and	you	don’t	really	want	that	going	on	during	a	capture.	However,	the	Name	Resolution
option	can	be	very	helpful	to	resolve	IP	addresses	to	proper	hostnames	after	a	capture	is
complete.

To	enable	Name	Resolution,	navigate	to	View	|	Name	Resolution	|	Enable	for	Network
Layer	(click	to	turn	on	the	checkmark)	and	make	sure	Use	External	Network	Name
Resolver	is	enabled	as	well.	Wireshark	will	attempt	to	resolve	all	the	IP	addresses	in	the
capture	to	their	hostname	or	website	address,	and	the	resolved	names	will	then	appear
(replacing	the	previous	IP	addresses)	in	the	packet	list	as	well	as	the	Conversations
window.

Note	that	the	Name	Resolution	option	at	the	bottom	of	the	Conversations	window	must
be	enabled	as	well	(it	usually	is	by	default),	and	this	setting	affects	whether	resolved
names	or	IP	addresses	appear	in	the	Conversations	window	(if	Name	Resolution	is
enabled	in	the	Wireshark	main	screen),	as	shown	in	the	following	screenshot:

https://www.wireshark.org/

At	this	point,	you	should	see	the	conversation	pair	between	wireshark.org	and	your
workstation	at	or	near	the	top	of	the	list,	as	shown	in	the	following	screenshot.	Of	course,
your	workstation	will	have	a	different	name	or	may	only	appear	as	an	IP	address,	but
identifying	the	conversation	to	wireshark.org	has	been	achieved.

Applying	a	display	filter
You	now	want	to	see	just	the	conversation	between	your	workstation	and	wireshark.org,
and	get	rid	of	all	the	extraneous	conversations	so	you	can	focus	on	the	traffic	of	interest.
This	is	accomplished	by	creating	a	filter	that	only	displays	the	desired	traffic.

Right-click	on	the	line	containing	the	wireshark.org	entry	and	navigate	to	Apply	as
Filter	|	Selected	|	A<->B,	as	shown	in	the	following	screenshot:

Wireshark	will	create	and	apply	a	display	filter	string	that	isolates	the	displayed	traffic	to
just	the	conversation	between	the	IP	addresses	of	wireshark.org	and	your	workstation,	as
shown	in	the	following	screenshot.	Note	that	if	you	create	or	edit	a	display	filter	entry
manually,	you	will	need	to	click	on	Apply	to	apply	the	filter	to	the	trace	file	(or	Clear	to
clear	it).

This	particular	display	filter	syntax	works	with	IP	addresses,	not	with	hostnames,	and	uses
an	ip.addr==	(IP	address	equals)	syntax	for	each	node	along	with	the	&&	(and)	logic
operator	to	build	a	string	that	says	display	any	packet	that	contains	this	IP
address	*and*	that	IP	address.	This	is	the	type	of	display	filter	that	you	will	be	using
a	great	deal	for	packet	analysis.

You’ll	notice	as	you	scroll	up	and	down	in	the	Packet	List	pane	that	all	the	other	packets,
except	those	between	your	workstation	and	wireshark.org,	are	gone.	They’re	not	gone	in
the	strict	sense,	they’re	just	hidden—as	you	can	observe	by	inspecting	the	Packet	No.
column,	there	are	gaps	in	the	numbering	sequence;	those	are	for	the	hidden	packets.

Saving	the	packet	trace
Now	that	you’ve	isolated	the	traffic	of	interest	using	a	display	filter,	you	can	save	a	new
packet	trace	file	that	contains	just	the	filtered	packets.

This	serves	two	purposes.	Firstly,	you	can	close	Wireshark,	come	back	to	it	later,	open	the
filtered	trace	file,	and	pick	up	where	you	left	off	in	your	analysis,	as	well	as	have	a	record
of	the	capture	in	case	you	need	to	reference	it	later	such	as	in	a	troubleshooting	scenario.

Secondly,	it’s	much	easier	and	quicker	to	work	in	the	various	Wireshark	screens	and
functions	with	a	smaller,	more	focused	trace	file	that	contains	just	the	packets	that	you
want	to	analyze.

To	create	a	new	packet	trace	file	containing	just	the	filtered/displayed	packets,	select
Export	Specified	Packets	from	the	Wireshark	File	menu.

You	can	navigate	to	and/or	create	a	folder	to	hold	your	Wireshark	trace	files,	and	then
enter	a	filename	for	the	trace	file	that	you	want	to	save.	In	this	example,	the	filename	is
wireshark_website.pcapng.	By	default,	Wireshark	will	save	the	trace	file	in	the	pcapng
format	(which	is	the	preferred	format).	If	you	don’t	specify	a	file	extension	with	the
filename,	Wireshark	will	provide	the	appropriate	extension	based	on	the	Save	as	type
selection,	as	shown	in	the	following	screenshot:

Also,	by	default,	Wireshark	will	have	the	All	packets	option	selected,	and	if	a	display
filter	is	applied	(as	it	is	in	this	scenario),	the	Displayed	option	will	be	selected	as	opposed
to	the	Captured	option	that	saves	all	the	packets	regardless	of	whether	a	filter	was
applied.	Having	entered	a	filename	and	confirmed	that	all	the	save	selections	are	correct,
you	can	click	on	Save	to	save	the	new	packet	trace	file.

Note	that	when	you	have	finished	this	trace	file	save	activity,	Wireshark	still	has	all	the
original	packets	from	the	capture	in	memory,	and	they	can	still	be	viewed	by	clicking	on
Clear	in	the	Display	Filter	Toolbar	menu.	If	you	want	to	work	further	with	the	new	trace
file	you	just	saved,	you’ll	need	to	open	it	by	clicking	on	Open	in	the	File	menu	(or	Open
Recent	in	the	File	menu).

Summary
Congratulations!	If	you	accomplished	all	the	activities	covered	in	this	chapter,	you	have
successfully	installed	Wireshark,	performed	a	packet	capture,	created	a	filter	to	isolate	and
display	just	the	packets	you	were	interested	in	from	all	the	extraneous	noise,	and	created	a
new	packet	trace	file	containing	just	those	packets	so	you	can	analyze	them	later.
Moreover,	in	the	process,	you	gained	an	initial	familiarity	with	the	Wireshark	user
interface	and	you	learned	how	to	use	several	of	its	most	useful	and	powerful	features.	Not
bad	for	a	first	chapter.

In	the	next	chapter,	we’ll	review	some	essential	network	concepts	needed	to	provide	a
solid	foundation	to	perform	packet-level	analysis.	The	main	goal	of	the	next	chapter	is	to
help	you	develop	a	mental	model	of	networking	that	lends	itself	well	to	packet-level
analysis	without	getting	too	tangled	up	in	unnecessary	details.

Chapter	2.	Networking	for	Packet
Analysts
Packet	analysis	is	all	about	analyzing	how	applications	transfer	useful	data	from	point	A	to
point	B	over	networks.	So,	an	understanding	of	how	networks	function	is	essential.

In	this	chapter,	we	will	cover	the	following	topics:

Why	the	seven-layer	OSI	model	matters
IP	networks	and	subnets
Switching	and	routing	packets
Ethernet	frames	and	switches
IP	addresses	and	routers
WAN	links
Wireless	networking

The	seven-layer	OSI	model	will	be	mapped	to	the	most	common	networking	terms,	and
we’ll	review	frames,	switching,	IP	addressing,	routing,	and	a	few	other	networking	topics
of	interest.	The	goal	is	to	develop	a	mental	model	of	networking	that	lends	itself	well	to
packet-level	analysis.

The	OSI	model	–	why	it	matters
The	Open	Systems	Interconnections	(OSI)	reference	model	is	an	industry	recognized
standard	developed	by	the	International	Organization	for	Standardization	(ISO)	to
divide	networking	functions	into	seven	logical	layers	to	support	and	encourage	(relatively)
independent	development	while	providing	(relatively)	seamless	interconnectivity	between
each	layer	from	different	hardware/software	environments,	platforms,	and	vendors.
There’s	also	a	somewhat	simpler	four-layer	Defense	Advanced	Research	Projects
Agency	(DARPA)	model	that	maps	to	the	OSI	model,	but	the	OSI	version	is	the	most
commonly	referred	to.	I’ll	reference	both	models	when	discussing	the	various	layers.

The	following	diagram	compares	the	OSI	and	DARPA	reference	models:

Unless	you’re	in	the	business	of	writing	protocols,	there’s	no	need	to	study	any	of	the
seven	layers	in	great	depth,	but	it	is	helpful	to	understand	them	conceptually	because	these
layers	are	referred	to	by	the	industry	and	your	IT	peers.

More	importantly,	it’s	essential	that	you	know	where	and	how	these	layers	and	their
associated	protocols	are	presented	in	Wireshark’s	Packet	Details	pane.	We’ll	cover	the
layers	from	this	aspect	to	help	you	remember	them	and	get	the	most	use	from	the
discussion.

Understanding	network	protocols
Network	protocols,	like	the	OSI	layers,	are	a	set	of	industry	standard	rules	and	designs
used	to	exchange	messages	and	data	between	computers	and	applications.	In	any
discussion	about	OSI	layers,	you	are	directly	or	indirectly	referring	to	the	protocols
associated	with	a	given	layer—the	most	commonly	known	protocols	are	IP,	UDP,	TCP,
HTTP,	and	so	on—and	the	significant	functions	they	perform.

For	example,	you’ll	often	hear	the	terms	network	layer	and	IP	layer	used	interchangeably,
and	it	is	assumed	and	understood	that	you	are	talking	about	the	layer	and	the	associated
protocol	that	contains	and	uses	IP	addresses	to	route	packets	from	point	A	to	point	B
across	the	network.	The	discussions	that	follow	will	tie	the	OSI	and	DARPA	layers	to	their
associated	protocols.

The	seven	OSI	layers
As	we	cover	the	OSI	layers	starting	from	layer	1	and	working	up	to	layer	7,	I’ll	outline
how	each	layer’s	associated	protocol(s)	are	displayed	in	Wireshark	and/or	used	in
networking	hardware.	The	mental	model	you	develop	from	this	approach	should	be	the
most	accurate	and	useful	for	packet	analysis.

Layer	1	–	the	physical	layer
The	physical	layer	encompasses	the	electrical	characteristics	and	mechanical	standards	to
get	data	bits	transmitted	from	a	computer’s	Network	Interface	Card	(NIC)	to	a	switch
port	or	between	switch	and	router	ports.	The	most	common	standards,	terms,	and	devices
you’ll	encounter	at	this	layer	include	the	following:

Ethernet:	This	is	a	family	of	networking	technologies	for	local	area	networks
(LANs).
RJ-45:	These	are	8-pin	modular	connectors	found	on	both	ends	of	a	copper	Ethernet
cable	that	are	plugged	into	the	NIC	on	a	computer	and	a	wall	jack	or	switch	port
Cat	5	(Cat	5e	or	Cat	6)	cables:	These	are	Ethernet	cables	that	use	twisted-pair
copper	wires.	“Cat”	stands	for	the	category	of	cable	and	reflects	its	quality	and	data
speed	capabilities.
100Base-T,	1000Base-T,	and	1000Base-LX:	These	represent	a	particular	Ethernet
standard.	100Base-T	is	100	Mbps	over	twisted-pair	cable	using	RJ-45	connectors,
1000Base-LX	is	1000	Mbps	over	fiber,	and	so	on.
Single-mode	and	multimode	fiber	optic	cables:	These	use	pulses	of	light	from
solid-state	LEDs	or	lasers	to	transmit	data	bits.

The	Ethernet	standards	used	to	connect	NICs	to	switches	are	also	used	to	connect	switches
together	and	to	connect	switches	to	routers	or	other	network	devices,	although	the	cables
and	connectors	used	may	vary	depending	on	cable	type	and	speed.

There	are	other	layer	1	standards	in	common	use,	including	802.11	Wireless,	Frame	Relay,
and	ATM;	the	last	two	are	used	in	long	distance	wide	area	networks	(WANs).

Layer	2	–	the	data-link	layer
The	data-link	layer	organizes	raw	bits	from	the	physical	layer	(typically	Ethernet)	into
frames,	which	is	the	first	manifestation	of	what	is	generally	called	a	packet	that	you’ll	see
in	Wireshark.	This	layer	is	a	dividing	line	between	physical	networking,
electrical/mechanical	standards,	and	the	logical	structures	(protocols)	used	to	format	and
transmit,	receive,	and	decode	packets	of	data	in	the	higher	layers.

In	the	DARPA	reference	model,	the	physical	and	data-link	OSI	layers	are	combined	and
called	the	network	interface	layer.	The	significant	features	and	functions	of	this	layer	(for
Ethernet	II	frames)	include:

Media	Access	Control	(MAC)	addresses:	These	are	the	network	addresses	used	in
LANs.	They	are	6-byte	network	hardware	addresses	burned	into	memory	chips	on
NICs,	switches,	routers,	or	other	network	device	ports/interfaces:

The	first	three	bytes	of	a	MAC	address	are	assigned	to	and	can	be	associated
with	a	specific	manufacturer.	Wireshark	has	a	list	of	these	and	can	display	MAC
addresses	as	a	combination	of	the	manufacturer	code	and	the	last	three	bytes.
The	manufacturer	creates	a	unique	last-three-bytes	address	for	every	interface	so
that	each	MAC	address	is	unique	across	the	globe.	(Although,	an	NIC	might	be
programmed	to	use	another	arbitrary	MAC	address,	which	is	done	for	MAC
spoofing	for	malicious	attacks.	But	this	is	a	very	bad	idea	as	another	card	may
be	using	the	same	address	and	can	cause	a	loss	of	data	and	some	very	confusing
packet	switching	problems.)
Ethernet	frames	include	a	destination	and	source	MAC	address.	MAC	addresses
are	used	to	switch	(not	route—we’ll	make	the	distinction	shortly)	frames
between	computers	on	the	same	LAN	or	between	computers	and	a	router	or
other	device	port	on	a	LAN.

Type	(or	EtherType)	field:	This	indicates	the	next	higher	protocol	layer	(typically	IP
(0800)	or	ARP	(0806)).	Wireshark	uses	this	to	determine	the	next	protocol	dissector
to	apply	in	packet	decodes.
Payload:	This	is	the	packet	or	datagram	carried	by	the	Ethernet	frame.
The	frame	check	sequence:	This	is	a	4-byte	Cyclic	Redundancy	Check	(CRC)
error-detection	code	calculated	from	all	the	bits	in	a	frame	and	added	to	the	end	of	the
frame.	This	is	used	to	detect	frames	that	have	been	corrupted	usually	because	of
faulty	cables,	noise	induced	on	the	wires	in	a	cable	from	outside	electrical	signals,
and	so	on.	When	a	frame	is	received,	this	code	is	recalculated	based	on	the	bits
received	and	compared	to	the	FCS	field.	The	bad	frames	are	then	discarded.

The	following	diagram	illustrates	the	layout	of	the	fields	in	an	Ethernet	frame:

A	key	point	here—and	this	is	important	to	understand—is	that	Ethernet	frames	and	their
MAC	addresses	are	only	able	to	transmit	frames	between	devices	on	the	local	area
network	(LAN	and	IP	subnet)	they	belong	to.

Routers	form	the	boundary	between	LANs	by	virtue	of	their	IP	subnet	(subnetwork)
addressing.	All	the	devices	belonging	to	the	same	IP	subnet	are	part	of	the	same	LAN,	and
getting	packets	to	or	from	a	different	subnet	requires	a	router.

Once	a	frame	enters	a	router	port	to	get	routed	to	a	different/distant	network,	the	Ethernet
frame	with	its	MAC	addresses	and	FCS	is	stripped	off	and	discarded.	The	payload	inside
the	frame	is	routed	to	the	port	and	it	will	leave	on	its	way	to	the	next	device,	and	another
frame	with	a	different	MAC	address	and	recalculated	FCS	is	created	to	encase	the	packet.

This	frame	is	then	transmitted	to	the	next	destination.

The	network	devices	that	work	at	this	layer—usually	switches—are	commonly	referred	to
as	layer	2	devices	or	layer	2	switches.

Finally,	you	should	be	aware	that	layer	2	switches	can	support	several	networking
enhancements	such	as	Virtual	LAN	(VLAN)	and	Class	of	Service	(CoS)	tagging,	which
is	accomplished	by	adding	a	4-byte	802.1Q	field	between	the	MAC	addresses	and
EtherType	field.	You	might	see	these	frames	between	switches	(but	not	on	user	ports).

VLAN	is	a	layer	2	solution	that	allows	administrative	partitioning	of	various	ports	on	a
switch	into	separate	broadcast	domains.	Devices	located	on	different	VLANs	are
effectively	isolated	from	each	other	as	if	they	were	on	separate	physical	networks.	VLANs
can	be	dispersed	across	multiple	switches	without	running	separate	cables	for	each	VLAN
if	the	switches	support	VLAN	tagging.	Communication	between	devices	on	separate
VLANs	generally	requires	using	a	router.

In	the	following	Wireshark	packet	details	screenshot,	the	Ethernet	II	frame	Destination
and	Source	MAC	addresses,	Type	(indicating	that	the	next	layer	protocol	is	IP),	and
Frame	check	sequence	are	circled,	as	is	the	Frame	summary.

Note
Wireshark	displays	a	summary	of	each	frame	that	includes	frame	sizes,	captured
timestamps	and	interframe	times,	and	other	useful	information.	This	is	metadata	calculated
by	Wireshark	to	aid	in	analysis	and	not	a	part	of	the	captured	frame.

The	following	screenshot	highlights	the	significant	fields	of	an	Ethernet	frame:

Note
Any	additional	analysis	provided	by	Wireshark	in	any	area	of	the	Packet	Details	pane	that
is	calculated	or	otherwise	not	part	of	actual	packet	contents	will	be	encased	in	brackets.

Layer	3	–	the	network	layer
The	network	layer	(called	the	Internet	layer	in	the	DARPA	model)	primarily	handles	the
routing	of	packets	across	and	to	other	networks	along	the	path	from	source	computers	to

destination	hosts	based	on	the	destination	IP	address.	The	two	most	common	protocols
seen	at	this	layer	are	Internet	Protocol	and	Address	Resolution	Protocol.

Internet	Protocol

The	most	common	protocol	in	use	at	this	layer	is	Internet	Protocol	Version	4	(IPv4),
which	includes	several	essential	fields	to	accomplish	the	task	of	routing	packets	across
networks:

Differentiated	Services	(DiffServ):	This	field	supports	an	enhancement	to	the	IP	that
is	generally	called	Quality	of	Service	(QoS)	and	allows	classification	of	certain
types	of	traffic	(voice,	video,	and	so	on)	so	that	these	packets	can	receive	priority
handling	in	cases	of	network	congestion.
Total	length:	This	is	the	total	length	of	the	packet	(minus	the	Ethernet	MAC	header).
Identification	(IP	ID):	This	an	incrementing	number	used	to	support	fragmentation.
Flags:	These	are	used	to	support	fragmenting	(dividing	a	packet	into	two	or	more
smaller	ones)	in	case	the	large	packets	have	to	be	divided	into	several	smaller	ones	to
traverse	a	packet-size-limited	link.	These	flags	along	with	the	IP	ID	field	values
allow	proper	reassembly	of	the	fragmented	packets	into	the	original.
Fragment	offset:	If	the	Flag	field	is	1	(more	fragments),	the	value	in	this	field
indicates	the	offset	from	the	start	of	the	original	payload	in	bytes	that	this	fragment
packet	contains.
Time	to	Live	(TTL):	This	is	a	“hop”	or	time	counter	that	is	decremented	every	time
a	packet	passes	through	a	router.	If	the	TTL	reaches	zero,	the	packet	is	discarded.	The
primary	purpose	is	to	keep	packets	from	living	forever	and	crashing	the	network	in
the	case	of	an	inadvertent	path	loop.
Protocol:	This	identifies	the	protocol	in	the	IP	packet’s	payload.	Wireshark	uses	this
to	determine	the	next	protocol	dissector	to	apply	to	packet	decodes.
Source	and	destination	IP	addresses:	These	are	the	IP	addresses	of	the	sending
machine	and	the	ultimate	destination	machine.	IP	addresses	are	4	bytes	long	and	are
represented	as	four	octets	(numbered	0	through	255	decimal)	separated	by	periods.

In	the	following	screenshot,	the	significant	IPv4	fields	are	circled.	These	are	the	fields
you’ll	want	to	inspect	and	be	comfortable	with	when	doing	packet	analysis	at	this	layer.

Address	Resolution	Protocol

Another	protocol	you’ll	see	at	the	network	layer	is	Address	Resolution	Protocol	(ARP),
which	is	used	by	a	device	to	obtain	the	MAC	address	of	another	device	when	it	only
knows	that	device’s	IP	address.

In	the	following	Wireshark	packet	details	screenshot,	note	that	the	Ethernet	frame
destination	MAC	address	is	Broadcast	(ff:ff:ff:ff:ff:ff),	Type	is	ARP	(0x0806),	and	the
station	has	provided	its	own	MAC	and	IP	address	in	the	ARP	protocol	Sender	fields
(which	other	stations	listen	to	and	use	to	build	a	table	of	MAC	and	IP	addresses).	It
provides	the	IP	address	of	the	target	device	and	puts	all	zeros	in	the	Target	MAC	Address
field.	The	target	device	should	return	a	similar	ARP	packet	addressed	to	the	requestor	with
its	MAC	address	in	the	Sender	field.

A	station	will	send	an	ARP	request	only	in	the	following	situations:

The	station	that	requires	a	MAC	address	for	a	target	device	hasn’t	heard	a	previous
broadcast	of	that	station’s	MAC	address,	or	its	ARP	table	has	timed	out	(ARP	entries
are	only	kept	for	a	period).
The	station	that	requires	a	MAC	address	for	a	target	device	has	calculated	(from	the
target’s	IP	address	and	its	own	subnet	mask)	that	the	target	device	should	be	on	the
same	LAN.	Otherwise,	the	station	assumes	the	target	device	is	on	a	different	network
and	sends	its	first	session	initiation	packet	to	the	default	gateway	(router)	MAC
address	based	on	the	entry	in	the	sending	station’s	default	gateway	configuration
setting.	The	default	gateway	will	forward	the	packet	to	the	appropriate	egress	port	to
route	it	to	the	destination.
The	station	that	needs	to	send	a	packet	to	a	distant	network	doesn’t	know	the	MAC
address	of	its	default	gateway	(for	example,	just	after	a	power-up).

The	following	screenshot	highlights	the	significant	fields	of	an	ARP	packet:

Other	protocols	utilized	at	this	layer	include	Internet	Control	Message	Protocol
(ICMP),	which	is	used	to	send	network	error	messages	between	devices,	and	Internet
Group	Management	Protocol	(IGMP),	which	is	used	by	hosts	and	adjacent	routers	to
establish	multicast	(one-to-many)	group	memberships	for	network	applications	such	as
streaming	video	and	gaming.

Layer	4	–	the	transport	layer
The	transport	layer,	as	it’s	called	in	both	the	OSI	and	DARPA	models,	is	responsible	for
transporting	packets	of	data	in	unique	sessions	between	applications	or	a	user	and	an
application	by	means	of	port	numbers.	The	combination	of	a	device	or	user’s	IP	address
and	that	device	or	user’s	assigned	port	number	(referred	to	as	a	socket)	will	be	different
from	another	devices	or	users’	IP	address	and	port	numbers	(on	the	client	side).

If	the	source	host	for	a	packet	is	a	server,	the	source	port	is	likely	to	be	a	well-known
number	for	standard	applications	and	services,	such	as	port	80	for	HTTP.

The	transport	layer	typically	uses	one	of	two	protocols,	User	Datagram	Protocol	or
Transmission	Control	Protocol,	with	the	latter	being	the	more	prevalent	for	most
applications.

User	Datagram	Protocol

The	User	Datagram	Protocol	(UDP)	is	a	fairly	simple	protocol.	It	is	considered	an
unreliable	transport	as	there’s	no	guarantee	of	packet	delivery	or	ordering,	but	it	has	lower
overhead	and	is	used	by	time-sensitive	applications	such	as	voice	and	video	traffic,	as	well
as	by	network	services	applications	such	as	DNS.

The	UDP	header	is	only	8	bytes	long	and	consists	of	the	following:

Source	and	Destination	port	number:These	are	2	bytes	each.
Length:	This	is	the	length	of	the	UDP	header	plus	the	payload.	This	is	a	2-byte	field.
Checksum:	This	is	the	2-byte	field	used	to	check	errors	of	the	UDP	header	and	data.
If	no	checksum	was	generated	by	the	transmitter,	this	will	be	all	zeros.

The	following	screenshot	shows	the	fields	contained	in	a	UDP	header:

Transmission	Control	Protocol

Unlike	UDP,	the	Transmission	Control	Protocol	(TCP)	provides	reliable	delivery	of	data
by	detecting	lost,	duplicated,	or	out-of-order	packets,	requesting	retransmission	of	lost
data,	or	rearranging	packets	in	the	right	order	before	delivering	them	to	the	application.
TCP	can	also	accept	a	large	chunk	of	data	from	an	application	and	handle	getting	the	data
transported	to	the	other	end	reliably	using	multiple	packets	and	reassembling	them	at	the
other	end	(as	can	UDP,	but	not	reliably;	the	application	has	to	determine	and	recover	from
lost	packets).

The	TCP	header	contents	and	length	can	vary	depending	on	the	options	that	may	be	in	use,
but	in	its	simplest	implementation,	it	consists	of:

Source	and	Destination	ports	(2	bytes	each):	These	are	well-known	registered	ports
that	are	used	(on	servers)	to	access	standard	application	services	such	as	HTTP,	FTP,
SMTP,	databases,	and	so	on.	Port	numbers	assigned	to	client/user	sessions	are	usually
in	a	higher	number	range	and	assigned	sequentially.
Sequence	number	(4	bytes):	This	is	a	number	that	represents	the	first	octet	in	any
given	segment.	Sequence	numbers	are	initialized	at	the	beginning	of	new	sessions	as
a	random	number,	and	then	incremented	as	data	bytes	and	sent.
Acknowledgment	number	(4	bytes):	When	the	ACK	flag	bit	is	set,	this	field
contains	the	next	sequence	number	expected	from	the	sender,	which	in	turn
acknowledges	receipt	of	all	the	bytes	received	up	to	that	point.

Note
The	use	of	sequence	and	acknowledgment	numbers	are	how	the	TCP	ensures	reliable
delivery	of	data	by	tracking	the	number	and	order	of	received	bytes.

Sequence	and	acknowledgment	numbers	are	large	and	difficult	for	humans	to	follow;
Wireshark	can	convert	and	display	these	as	relative	values	that	start	with	0	at	the
beginning	of	a	session	to	make	it	easier	to	inspect	them	and	relate	the	values	to	the
number	of	bytes	transmitted	and	received.

Flags	(9	bits):	These	bits	are	used	to	control	connection	setups,	terminations,	and
flow	control	mechanisms.
Window	size	(2	bytes):	This	indicates	the	current	size	of	the	buffer	on	this	host	used
to	store	received	data	until	it	can	be	handed	off	to	the	receiving	application.	This
information	lets	the	sending	host	adjust	data	flow	rates	in	case	of	network	or	host

congestion.

The	following	screenshot	highlights	the	significant	fields	of	a	TCP	header:

Layer	5	–	the	session	layer
The	session	layer	handles	setting	up,	controlling,	and	ending	sessions	within	an
application	between	two	computers.	This	is	not	necessarily	the	same	thing	as,	for	example,
a	TCP	connection,	although	the	two	will	be	related.	The	application	sessions	can	span	and
outlive	multiple	network	connections.	An	example	of	a	networking	protocol	that	operates
at	this	layer	is	Network	Basic	Input/Output	System	(NetBIOS).

Layer	6	–	the	presentation	layer
The	presentation	layer	converts	incoming	and	outgoing	data	from	one	format	to	another
and	handles	encryption/decryption	and/or	compression	if	any	of	these	are	required.	The
presentation	layer	is	also	responsible	for	the	delivery	and	formatting	of	information	to	the
application	layer	for	further	processing	or	display.	An	example	of	a	presentation	service
would	be	the	conversion	of	an	EBCDIC-coded	text	computer	file	to	an	ASCII-coded	file.

Layer	7	–	the	application	layer
The	application	layer,	which	may	(or	may	not)	perform	separate	functions	from	the
application	itself,	handles	message	formatting,	human	to	machine	interfaces,	and	so	on.
This	layer	represents	the	services	that	directly	support	applications	such	as	software	for
file	transfers,	database	access,	e-mail,	and	so	on.

In	many	widely	used	applications,	no	distinction	is	made	between	the	presentation	and
application	layers.	For	example,	HyperText	Transfer	Protocol	(HTTP),	which	is
generally	regarded	as	an	application-layer	protocol,	has	presentation-layer	aspects	such	as
the	ability	to	identify	character	encoding	for	proper	conversion,	which	is	then	done	in	the
application	layer.

In	the	DARPA	model,	the	OSI	layers	5-7	are	combined	into	an	application	layer.	From	a

packet	analysis	standpoint,	the	particular	manifestations	and	visibility	(in	Wireshark)	of
the	functions	in	the	top	layer(s)	will	vary	depending	on	the	applications	and	specific
protocols	employed	to	support	them.

The	following	diagram	summarizes	the	OSI	and	DARPA	layers	and	how	various
networking	protocols	and	services	align	with	these	layers	and	each	other:

Encapsulation

You	may	have	observed	by	now	that	packets	encapsulate	various	protocols	into	successive
layers,	just	like	peeling	an	onion.	An	Ethernet	frame	contains	a	datagram	payload;	this
datagram	is	a	packet	with	an	IP	header	and	payload.	The	IP	packet	payload	consists	of	a
TCP	header	and	data	segment,	which	in	turn	may	contain	an	HTTP	header	and	payload.
This	encapsulation	is	easier	to	visualize	when	working	within	Wireshark’s	Packet	Details
pane.

IP	networks	and	subnets
Before	moving	on,	a	short	review	of	typical	IP	subnetting	terms	and	typical	applications
should	help	clarify	the	terms	used	in	this	book	and	will	act	as	a	refresher	for	those	already
versed	in	IP	addressing.

A	/24	designator	placed	after	a	network	IP	address	in	diagrams	or	device	configurations	is
a	Classless	Inter-Domain	Routing	(CIDR)	designator	that	indicates	the	following:

The	first	24	out	of	the	32	bits	in	the	4-byte	IP	address	represents	the	network	portion
of	any	IP	address	on	this	network.	This	network	is	designated	as	10.1.1.0	(the	next
/24	network	would	be	10.1.2.0,	then	10.1.3.0,	and	so	on).
The	last	8	bits	of	the	32-bit	address	can	be	used	to	give	workstations,	hosts,	and	other
devices	an	IP	address,	with	the	following	exceptions:

The	first	host	address	on	this	network	is	reserved	as	a	network	designator	to
build	routing	tables:	10.1.1.0	(typically	called	the	loopback	address)
The	last	host	address	on	this	network	is	reserved	as	an	IP	broadcast	address:
10.1.1.255

The	8	bits	binary	is	equal	to	256	decimal,	minus	the	preceding	two	exceptions.	This
leaves	254	usable	IP	addresses	for	devices,	starting	with	10.1.1.1,	10.1.1.2,	and	so
on	up	to	10.1.1.254.

Another	way	of	expressing	subnet	masks	is	in	a	dotted	decimal	format,
255.255.255.0,	which	again	indicates	that	the	first	24	bits	of	an	IP	address	is	the
network	and	the	remaining	8	bits	are	for	hosts.
There	are	Class	A,	Class	B,	and	Class	C	address	ranges,	as	well	as	a	subset	of	IP
ranges	reserved	as	private	addresses	to	use	within	organizations.

The	following	table	shows	the	IP	address	ranges	in	the	three	major	classes:

Class	of	IP	address Starting	IP	address Ending	IP	address

A 1.0.0.0 126.255.255.255

B 128.0.0.0 191.255.255.255

C 192.0.0.0 223.255.255.255

The	following	table	shows	the	private	IP	address	ranges:

Class	of	private	IP	addresses Starting	IP	address Ending	IP	address

A 10.0.0.0 10.255.255.255

B 172.16.0.0 172.32.255.255

C 192.168.0.0 192.168.255.255

Subnet	masks	can	be	configured	to	allow	more	or	fewer	hosts	per	subnet	with	a
corresponding	tradeoff	in	having	fewer	or	greater	network	addresses	with	which	to
build	multiple	networks	within	larger	organizations.

A	deeper	review	of	IP	addressing	and	subnetting	is	beyond	the	scope	of	this	book.	If
you’re	not	familiar	with	these	concepts,	some	additional	study	would	be	advisable	as	a
solid	understanding	of	IP	subnetting	is	essential	for	most	analysis	activities.

Switching	and	routing	packets
So	far,	we’ve	covered	the	topics	required	to	discuss	how	packets	of	data	get	routed	from
computer	A	to	host	B	across	LANs	and/or	WANs	over	distances	that	may	range	from
across	a	room	to	across	the	globe.	The	important	concepts	to	remember	are	that	Ethernet
frames	work	with	switches	and	IP	packets	work	with	routers	to	accomplish	this	feat,
which	we’ll	cover	in	the	next	section.

Ethernet	frames	and	switches
To	reiterate	what	was	outlined	in	the	layer	2	(the	data-link	layer)	discussion,	Ethernet
frames	are	switched	from	the	entry	port	to	the	appropriate	destination	port	based	on	the
destination	MAC	address.	Network	switches	build	tables	of	which	MAC	addresses	belong
to	each	port,	compare	a	frame’s	destination	MAC	address	to	these	tables,	and	switch	the
frame	to	the	appropriate	egress	port	if	the	destination	is	on	the	same	switch	or	out	a	trunk
port	to	another	switch	or	router	otherwise.

Note	that	the	first	time	a	switch	sees	a	destination	MAC	address	it	doesn’t	recognize,	it
sends	the	packet	(which	will	usually	be	an	ARP	packet)	out	all	the	ports	until	a	device
answers	and	it	can	add	the	new	MAC	address	to	its	content	addressable	memory	(CAM)
table	that	maps	MAC	addresses	to	specific	ports.

Frames	carrying	packets	destined	for	remote	networks	are	sent	to	the	default	gateway	port
MAC	address.	If	you	look	at	a	list	of	MAC	addresses	in	the	Ethernet	tab	of	a
Conversations	table	in	Wireshark	and	see	an	address	with	a	drastically	higher	volume	of
traffic	than	the	other	stations,	this	is	likely	a	default	gateway	(router)	port	MAC	address.
This	port	is	the	pathway	into/out	of	this	LAN	from/to	other	networks.

On	any	given	LAN,	you’ll	see	workstations,	servers,	and	routers	generating	ARP	and
Domain	Name	Service	(DNS)	requests:

ARP:	This	is	used	to	resolve	IP	addresses	to	MAC	addresses
DNS:	This	is	used	to	resolve	hostnames	to	IP	addresses

In	the	following	diagram,	there	are	two	user	workstations	and	a	server	that	are	connected
together	in	a	LAN	residing	on	the	10.1.1.0/24	IP	network.	A	router	is	attached	to	this
network,	which	has	a	WAN	link	to	another	location.

The	following	two	scenarios	leverage	this	drawing	to	show	how	MAC	addresses	are
utilized	to	switch	Ethernet	frames	around	local	area	networks:

The	workstation	with	MAC	address	B	wants	to	use	an	application	on	the	server
Venus,	which	is	unknown	to	all	the	network	devices	as	it	was	just	powered	up.	The
workstation	knows	the	IP	address	of	Venus	as	the	IP	address	was	preconfigured	in	the
client	application,	but	it	doesn’t	know	the	server’s	MAC	address.

The	workstation	broadcasts	an	ARP	packet	with	its	own	MAC	and	IP	address	as	the
sender,	the	IP	address	of	the	Venus	server,	and	all	the	zeros	for	the	MAC	address	in
the	Target	fields.	Venus	responds	to	the	workstation	with	an	ARP	response	that
includes	its	MAC	address	of	C	in	the	sender	MAC	address.

The	workstation	then	sends	a	session	initiation	packet	to	the	server	using	the	server’s
MAC	address	as	the	destination	MAC	in	the	Ethernet	frame.

These	Ethernet	frames	traversed	switch	3,	which	learned	both	devices’	MAC
addresses	from	observing	the	ARP	conversations.	The	rest	of	the	switches	in	the
LAN	network	learned	workstation	C’s	MAC	address	when	it	broadcasted	its	ARP
packet	(because	switch	3	sent	this	ARP	packet	out	all	ports),	but	not	the	server’s
MAC	as	the	server	responded	directly	to	C.

The	workstation	with	MAC	address	A	now	wants	to	use	an	application	on	the	server
Venus.	It	doesn’t	know	the	server’s	MAC	address	either,	so	it	sends	an	ARP	request
as	well,	which	switch	2	broadcasts	out	all	its	ports,	as	does	switch	1	and	switch	3	as
the	switches	only	look	at	MAC	addresses	and	the	destination	MAC	address	of	any
ARP	request	is	ff:ff:ff:ff:ff:ff,	so	each	switch	is	obliged	to	send	the	broadcast	frame

out	all	ports.

However,	when	the	server	Venus	responds	to	A’s	ARP	packet,	using	A’s	MAC
address,	each	switch	in	the	path	has	learned	which	ports	it	saw	A’s	MAC	address
come	in	on.	So,	each	switch	only	sends	Venus’	response	out	the	appropriate	port	back
to	workstation	A.	The	same	is	true	for	learned	non-broadcast	frames.	If	a	switch
doesn’t	recognize	a	destination	MAC	address	of	a	nonbroadcast	frame,	these	are	sent
out	all	ports	the	first	time	as	well.

As	switch	CAM	tables	get	populated	with	MAC	addresses	and	their	associated	ports,
the	number	of	frames	that	must	be	sent	to	every	device	in	the	LAN	as	well	as	the
workload	on	all	these	devices	is	reduced	significantly.

IP	addresses	and	routers
When	packets	need	to	leave	the	LAN	to	get	to	a	remote	IP	network,	routers	are	required	to
route	the	packets	based	on	their	destination	IP	addresses.	The	following	scenario	(still
referring	to	the	preceding	screenshot)	illustrates	some	of	the	details	involved	in	one
possible	situation.

Workstation	A	now	wants	to	use	an	application	on	the	server	Mars,	which	resides	on	a
different	network	than	in	the	previous	scenarios.	And	in	this	case,	workstation	A	doesn’t
know	the	IP	address	of	the	server;	it	only	needs	its	name.	Workstation	A	will	send	a	DNS
request	packet	to	the	DNS	server	IP	address	configured	in	its	network	settings	(the	DNS
server	isn’t	shown	here)	with	the	hostname	Mars;	the	DNS	server	will	return	the	IP
address	of	Mars	10.1.2.25.	Workstation	A	calculates	that	this	host	isn’t	on	its	own	network
from	a	comparison	of	its	IP	address	and	subnet	mask	with	Mars’	IP	address,	so	it	sends	the
session	initiation	packet	to	router	1,	which	was	configured	as	its	default	gateway	in	its
network	settings.	We’ll	assume	that	Workstation	A	already	knows	the	MAC	address	of
router	1’s	port	from	a	previous	ARP	exchange	to	find	router	1’s	MAC	address	from	the
given	IP	address.

When	the	router	receives	A’s	frame,	which	was	sent	to	the	router	port’s	MAC	address,	it
inspects	the	destination	IP	address	inside	the	IP	header	and	looks	up	the	appropriate	port	to
forward	the	packet	to.	This	routing	process	is	supported	by	routing	table	entries	the	router
builds	from	route	information	broadcasted	by	other	routers;	each	router	tells	all	the	others
what	networks	it	knows	a	route	to.

In	this	case,	the	Ethernet	frame	surrounding	A’s	packet	is	stripped	off	and	the	remaining
payload	(packet)	is	sent	across	the	WAN	link	to	router	2,	which	also	inspects	the	IP	header
destination	IP	address	and	looks	up	the	correct	port	to	forward	the	packet	to.	Router	2
wraps	the	packet	in	a	new	Ethernet	frame	with	its	own	MAC	address	X	as	the	source	and
the	Mars	server’s	Y	address	as	the	destination	MAC	(assuming	the	router	already	has	the
server	in	its	MAC	table),	and	transmits	the	packet	out	onto	the	LAN	to	get	switched	to	the
Mars	server,	as	shown	in	the	following	diagram:

WAN	links
Actually,	network	packets	may	traverse	several	routers	and	WAN	links	to	reach	the
destination	network,	and	each	router	traversed	is	called	a	hop.	In	the	context	of	packet
analysis,	you	should	be	aware	that	WAN	links	can	introduce	packet	delivery	delays	or
latency	due	to	the	following	four	major	factors:

Physical	speed-of-light	propagation	delay:	This	is	the	amount	of	time	required	for
electrical	or	light	signals	to	travel	across	copper/fiber	cables	over	long	distances.
Network	routing/geographical	distance:	The	WAN	link	routes	are	never	in	a
straight	line	between	points.	They	have	to	traverse	major	telephony	switching	centers
and	route	along	railways,	roads,	and	other	opportunistic	paths.
Serialization	delay	into	and	across	WAN	links:	The	WAN	links	are	often	slower
speed	links,	and	it	takes	a	finite	amount	of	time	to	send	packet	data	across	these	links
one	bit	at	a	time.
Queuing	delays:	In	network	device	buffers,	including	additional	delays	that	may	be
induced	by	Quality	of	Service	policies,	some	packets	receive	priority	and	others	have
to	wait	longer	for	their	turn	to	be	transmitted.

The	effects	of	network	delay	incurred	across	LAN	and	WAN	links	can	be	seen	and
measured	in	Wireshark	packet	traces	by	inspecting	the	elapsed	times	between	session
setup	packets.

Wireless	networking
Wireless	networks	utilize	a	range	of	802.11	specifications	to	provide	connectivity	over	2.4
or	5	GHz	frequency	bands	at	a	variety	of	speeds.	The	significant	differences	between
wireless	frames	and	those	found	on	wired	networks	are	as	follows:

Wireless	networks	employ	carrier	sense	(every	station	is	listening),	multiple	access
(shared	medium),	and	collision	avoidance	(avoiding	collisions	instead	of	just
recovering	from	them)	techniques,	which	reduce	the	throughput
In	addition	to	data	frames,	which	get	forwarded	to	the	wired	network,	wireless	frame
types	include	the	following:

Management	frames:	This	is	used	for	authentication	and	association	tasks
Control	frames:	This	controls	send/receive	functions	on	the	shared	media	to
help	avoid	collisions

Wireshark	can	be	used	to	capture	and	analyze	packets	on	Wireless	networks.	However,	in
order	to	analyze	the	control	and	management	frames,	as	well	as	select	the	radio	channels
to	capture	on	without	having	to	associate	with	a	specific	channel,	specialized	adapters	are
required.	These	adapters	are	available	from	various	networking	vendors.

These	wireless	adapters	and	their	drivers	enable	Wireshark	to	display	a	pseudo	header	just
below	the	frame	header	in	the	Packet	Details	pane,	which	includes	information	about:

Data	rate:	This	is	the	maximum	data	transfer	rate	possible	across	the	radio	channel
Channel	frequency:	This	is	the	RF	channel	frequency	that	the	station	is	using
Channel	type:	This	is	the	802.11	protocol	used,	and	the	common	types	are	a,	b,	g,
and	n
RF	signal	and	noise	levels:	This	is	the	received	RF	signal	strength	and	background
noise	levels;	the	larger	the	difference	between	these	two	the	better	the	signal	can	be
decoded

Remember	when	analyzing	wireless	networks,	the	wireless	access	points	utilize	a	wired
LAN	connection	to	the	rest	of	the	network	that	may	warrant	a	separate	analysis.	The
access	point	strips	off	the	802.11	header	and	encapsulates	a	packet	in	an	Ethernet	frame
before	sending	the	packet	off	on	the	wired	network.

The	following	screenshot	illustrates	the	contents	of	a	typical	Radiotap	Header	and	IEEE
802.11	frame;	note	the	Data	Rate,	Channel	frequency,	and	Signal/Noise	values:

Note
There	are	numerous	reference	materials	and	books	that	you	can	read	to	learn	more	about
networking	and	network	protocols.	One	of	the	classic	sources	is	TCP/IP	Illustrated
Volumes	I,	II,	and	III,	W.	Richard	Stevens,	Addison-Wesley	Professional,	available	online
or	in	book	formats.

Summary
The	important	points	covered	in	this	chapter	included	how	Ethernet	frames	are	switched	to
the	appropriate	switch	ports	on	a	LAN	based	on	destination	MAC	addresses	that	packets
are	routed	across	and	to	remote	networks	based	on	destination	IP	addresses,	and	how	the
frames	carrying	packets	destined	for	remote	networks	based	on	the	destination	IP	address
are	sent	to	the	default	gateway’s	port	MAC	address.

We	also	covered	how	and	why	slower	and/or	longer	distance	WAN	links	can	add
significant	amounts	of	delay	to	packet	transmissions,	which	slows	application	data
exchanges	and	increases	user	response	times.	We	finished	the	chapter	by	discussing	how
Wireshark	can	capture	and	analyze	packets	on	802.11	wireless	networks	using	specialized
adapters.

In	the	next	chapter,	we’ll	cover	in	detail	how	to	capture	and	filter	packets	using	Wireshark.

Chapter	3.	Capturing	All	the	Right
Packets
In	order	to	analyze	packets	to	troubleshoot	connectivity,	performance,	or	security	issues,
you	have	to	successfully	capture	all	of	the	right	packets	and	then	identify	and	filter	out	just
the	packets	that	pertain	to	the	goal	at	hand.

In	this	chapter,	we	will	cover	the	following	topics:

Picking	the	best	capture	point
TAPs	and	switch	port	mirroring
Wireshark’s	capture	interfaces,	filters,	and	options
Verifying	a	good	capture
Isolating	the	conversation(s)	of	interest
Using	the	Wireshark	Conversations	window
Wireshark’s	display	filters
Filtering	expression	buttons
Following	TCP/UDP/SSL	streams
Marking	and	ignoring	packets
Saving	filtered	traffic

You’ll	recognize	that	many	of	these	activities	are	the	same	ones	that	we	accomplished	in
Chapter	1,	Getting	Acquainted	with	Wireshark,	to	perform	a	capture	and	filter	just	the
packets	involved	in	loading	a	web	page.	In	this	chapter,	we’ll	expand	and	finish	rounding
out	your	skills	in	all	these	topics.

Picking	the	best	capture	point
Determining	the	best	location	to	perform	a	packet	capture	depends	on	several
considerations:

The	nature	of	the	issue	being	investigated
The	relative	ability	to	perform	a	capture	in	a	location	that	provides	the	highest	degree
of	usefulness	to	the	analysis
The	amount	of	technical	difficulty,	risk,	and	time	required	to	perform	a	capture	at	a
given	location

User	location
If	you’re	troubleshooting	a	user	complaint,	the	first	capture	point	should	be	at	the	user’s
workstation	to	gain	a	view	from	the	user’s	perspective	and	verify/clarify	the	situation	that
the	user	is	reporting.	From	this	vantage	point,	you	can:

Ensure	that	basic	network	services	such	as	ARP	and	DNS	are	working	correctly
Analyze	the	initial	login	process	if	the	user	authentication	involves	a	different	device
than	the	target	application	server
Measure	network	round	trip	times	from	the	user	to	the	target	host(s)
Determine	whether	the	TCP	session	setup	handshake	is	appropriate	for	the
application	being	accessed
Measure	service	response	times	(such	as	HTTP	or	SMB	response	times)
Determine	whether	the	user	is	experiencing	packet	loss	and	retransmissions,	out-of-
order	packets,	or	other	network-related	anomalies
Capture	any	application	error	messages	being	sent	to	the	user	and	the	requests	that
resulted	in	those	errors

Capturing	from	a	user’s	location	is	usually	much	simpler	from	a	practical	standpoint	and
there	is	a	lot	less	traffic	to	deal	with,	which	makes	capture	sizes	smaller	and	filtering	the
packets	of	interest	simpler.	Disconnecting	a	user’s	Ethernet	cable	for	a	few	minutes	to
insert	a	TAP	(we’ll	discuss	these	in	the	next	section)	or	installing	Wireshark	on	the	user’s
workstation	does	not	typically	require	special	authorization	or	preparation	as	the	risk	to
other	users	is	negligible.

Server	location
If	a	capture	from	a	complaining	user’s	workstation	isn’t	possible	or	practical,	a	capture
from	the	server	end	can	still	be	useful,	but	it	might	be	advantageous	to	apply	a	capture
filter	to	gather	just	the	traffic	to/from	the	user’s	workstation	(based	on	the	user’s	IP
address)	to	limit	the	capture	file	size.	You	can	still	measure	network	round	trip	times,
server	response	times,	analyze	TCP	handshake	details,	and	detect	retransmissions	caused
by	packet	loss,	and	perhaps	the	login/authentication	process	from	this	location.

Capturing	from	a	server	location	is	also	appropriate	when	analyzing	backend	service
response	times.	For	example,	if	users	interact	with	an	application	server	but	that	app
server	performs	transactions	with	a	backend	database	in	order	to	fulfill	user	requests	and	if
there	are	complaints	of	slow	response	times,	then	an	analysis	of	application	server-to-
database	server	interactions	can	help	isolate	the	true	source	of	the	poor	performance	to	one
or	the	other	host	and	the	types	of	requests	that	result	in	slow	or	erroneous	responses.

Other	capture	locations
For	the	majority	of	packet	captures,	you’ll	likely	be	at	user	workstations	or	server	switch
ports,	but	there	will	also	be	some	cases	where	captures	will	need	to	be	performed	at	other
locations.

Mid-network	captures
Identifying	the	source	of	excessive	packet	loss	or	disordering	over	a	network	path	may
require	performing	packet	captures	at	various	points	along	that	path,	typically	at
distribution	or	core	switch	trunks,	or	interfaces	to	routers,	firewalls,	and	so	on,	to	find	the
network	segment	where	packet	loss	becomes	apparent.

Both	sides	of	specialized	network	devices
Today’s	modern	networks	often	employ	a	number	of	network	devices	that	can	actually
alter	the	contents	of	packets	flowing	between	clients	and	servers;	in	some	(occasional	or
last	resort)	cases,	it	may	be	necessary	to	capture	on	both	sides	of	these	devices	to	isolate	or
prove	a	functional	or	configuration	problem:

Routers	and	gateways:	These	are	also	called	Internet	gateways	in	some
configurations	and	may	be	configured	to	perform	a	Network	Address	Translation
(NAT)	function	that	alters	and	hides	the	user’s	actual	IP	address	from	an	outside
network.	This	is	done	by	substituting	a	public	IP	address	for	the	user’s	real	address.
This	usually	involves	translating	port	numbers	as	well	so	that	a	single	public	IP
address	can	be	used	to	support	multiple	sessions;	in	which	case,	the	solution	is	called
Port	Address	Translation	(PAT).	The	end	result	of	the	PAT	functionality	is	that	a
capture	from	the	client	side	and	a	capture	at	the	server	side	of	the	same	session
conversation	will	involve	different	IP	addresses	and	port	numbers.

The	following	diagram	illustrates	how	a	PAT	device	translates	IP	addresses	and	ports
from	an	internal	private	network	to	and	from	an	externally	visible	IP	address	and	has
translated	the	ports	used	for	an	individual	user	session:

Proxy	servers	and	firewalls:	Devices	such	as	these	can	act	as	an	intermediary
between	clients	wanting	to	use	resources	from	other	(usually	external)	servers.	These
devices	are	most	typically	deployed	between	users	inside	a	company	and	outside
(web)	services	accessed	via	the	Internet.	These	devices	are	employed	for	their
security	capabilities,	allowing	administrative	control	over	what	can	be	accessed	and
the	type	of	data	content	that	can	be	relayed	between	the	two	networks,	malware
scanning,	and	so	on.	From	a	packet	analysis	standpoint,	you	should	be	aware	that	in
addition	to	performing	a	NAT/PAT	function,	some	implementations	of	these	devices
may	actually	terminate	a	user	session	on	one	side	and	initiate	a	completely	different
session	between	the	device	and	the	outside	host	on	the	other	side,	on	behalf	of	the
user,	such	that	the	TCP	handshake	and	session	parameters,	IP	addresses	and	port
numbers,	and	packet	sizes	can	all	differ	on	either	side.
IP	tunnels	using	Generic	Routing	Encapsulation:	These	are	used	to	connect	two	IP
networks	that	don’t	otherwise	have	a	native	routing	path	to	each	other.	The	original
packets	are	encapsulated	inside	packets	with	different	IP	addresses	appropriate	for	the
network	media	that	they	will	traverse.	The	most	common	use	of	IP	tunneling	is	to
connect	private	corporate	networks	together	through	public	Internet	connections	or	to
connect	Internet	Protocol	Version	6	(IPv6)	networks	together	over	traditional	IPv4
network	paths.	IP	tunnels	can	be	configured	between	routers	and	high-end	switches.

Although	it	may	be	necessary	(to	validate	an	issue	to	other	support	teams)	or	more
practical	to	capture	at	or	near	the	interfaces	to	the	devices	described	earlier,	it	is	usually
easier	and	just	as	effective	to	perform	the	captures	at	user	and/or	server	locations.	Unless
you’re	part	of	a	network	support	team,	you	won’t	have	to	conduct	an	analysis	in	such	an
advanced	and	complicated	environment.

Test	Access	Ports	and	switch	port
mirroring
If	you’re	capturing	from	a	user	location	and	cannot	or	do	not	wish	to	install	Wireshark	on
the	user’s	machine	or	you’re	capturing	at	another	location	in	the	network,	you	have	two
options	to	obtain	a	copy	of	the	packets	traversing	the	network:	Test	Access	Ports	or	switch
port	mirroring.

Test	Access	Port
A	Test	Access	Port	(TAP)	is	a	device	that	copies	all	the	packets	flowing	through	it	to	one
or	more	monitor	ports.	A	station	with	Wireshark	installed	on	it	can	be	connected	to	one	of
the	monitor	ports	to	capture	the	packets.

You	should	select	an	aggregating	TAP	that	supports	the	link	speed	of	the	network	ports
being	analyzed	(usually	100	Mbps	or	1	Gbps)	and	that	will	copy	and	combine	the	packets
flowing	in	both	directions	(transmit	data	from	the	user’s	workstation	and	receive	data	from
the	network);	the	aggregating	TAP	funnels	the	traffic	to	a	single	connection	(transmit	to
the	Wireshark	station)	so	that	you	can	capture	the	traffic	in	both	directions	with	a	single
network	interface	on	the	Wireshark	station.	Be	aware	that	since	you’re	copying	packets
from	two	directions	into	one	pipe	to	the	Wireshark	station,	it	is	possible	to	oversubscribe
the	monitor	port	if	traffic	rates	are	extremely	high.	If	this	happens,	the	excess	packets	will
be	dropped.	Oversubscription	usually	isn’t	a	concern	at	user	workstations,	but	it	could	be
for	switch	trunks	or	other	high	traffic	areas.

The	following	figure	illustrates	how	a	TAP	is	inserted	between	a	user	workstation	and	that
workstation’s	switch	port,	and	how	a	Wireshark	workstation	is	attached	to	capture	packets:

Switch	port	mirroring
Switch	port	mirroring,	also	known	as	a	Switched	Port	Analyzer	(SPAN)	feature	or
spanning	a	port,	is	the	practice	of	configuring	a	network	switch	to	perform	the	same
function	as	a	TAP:	to	make	a	copy	of	the	packets	flowing	in	and	out	of	a	specified	port
and	send	them	to	an	otherwise	unused	monitor	port	where	a	Wireshark	station	is	attached
to	capture	the	packets.

The	advantage	of	using	port	mirroring	is	that	no	connections	need	to	be	broken	to	insert	a
TAP.	The	monitor	port	can	be	easily	configured	by	a	switch	administrator	and	just	as
easily	disabled.

The	potential	issues	with	this	option	include	the	fact	that	not	all	switches	support	port
mirroring,	and	there	is	some	evidence	to	suggest	that	using	this	feature	can	affect	the
performance	of	the	switch,	at	least	for	the	port	being	monitored.	The	possibility	of
oversubscribing	the	monitor	port	from	excessive	transmit	plus	receiving	traffic	levels	also
exists	for	port	mirroring,	as	is	the	case	when	using	a	TAP,	and	this	is	likely	when
monitoring	switch	trunks	to	other	switches,	as	these	will	be	carrying	traffic	for	multiple
users.

The	following	diagram	is	a	simple	illustration	of	a	port	mirroring	scenario	on	a	switch.
The	packets	to	and	from	the	workstation	port	are	copied	to	the	port	where	the	Wireshark
station	is	connected.

Capturing	packets	on	high	traffic	rate	links
If	you	need	to	capture	packets	on	a	high	traffic	rate	link	such	as	a	trunk	link	between
larger	switches,	Wireshark	is	probably	not	the	best	solution.	It	may	not	be	able	to	keep	up

with	a	busy	link.	Wireshark	is	actually	a	GUI	tool	that	calls	a	command-line	executable
called	dumpcap,	which	captures	the	packets	and	saves	them	to	a	disk	file.	Wireshark
reads	this	file	and	presents	the	processed	packets	to	the	user	interface.	An	alternative	to
Wireshark	is	to	use	the	dumpcap	or	tcpdump	executable	directly	(these	are	covered	in
Chapter	8,	Command-line	and	Other	Utilities)	or	a	high	performance	capture	appliance
offered	by	numerous	vendors.

Capturing	interfaces,	filters,	and	options
Capturing	packets	with	Wireshark	consists	of	selecting	the	correct	network	interface	to
capture	packets	from,	applying	any	capture	filters	that	may	be	appropriate,	and	applying
the	correct	options	to	accomplish	the	capture	in	the	desired	manner.	We’ll	cover	these
three	topics	in	the	following	sections.

Selecting	the	correct	network	interface
As	discussed	in	Chapter	1,	Getting	Acquainted	with	Wireshark,	if	you	have	multiple
network	interfaces	on	your	machine,	you	need	to	determine	and	select	the	correct	interface
to	capture	packets.	In	Wireshark’s	Capture	menu,	click	on	Interface	or	click	on	the	first
icon	on	the	icon	bar.

The	Wireshark	Capture	Interfaces	window	provides	a	list	and	description	of	the
network	interfaces	on	your	machine,	the	IP	addresses	assigned,	and	the	total	packets	and
packets	per	second	counters	for	each	interface.	If	an	interface	has	an	IPv6	address
assigned	and	this	is	being	displayed,	you	can	click	on	the	address	to	toggle	and	display	the
IPv4	address.

The	following	screenshot	illustrates	a	typical	Capture	Interfaces	window	listing	a	LAN
and	wireless	interface	along	with	their	IP	addresses	and	packet	counters:

The	Capture	Interfaces	window	provides	the	following	two	options:

Clicking	on	the	Details	button	for	any	of	the	listed	interfaces	opens	an	Interface
Details	window	that	provides	a	wide	range	of	information	that	can	be	useful	to	verify
the	interface’s	operation.	The	status	of	the	Link	and	Link	Speed	information	is
displayed	in	the	Characteristics	tab,	and	the	MAC	address	of	the	selected	NIC	is
displayed	in	the	802.3	(Ethernet)	tab.
The	rest	of	the	capture	options	are	configured	in	the	Capture	Options	window,
which	is	opened	by	clicking	on	the	Options	button	in	the	Capture	Interfaces
window,	or	by	selecting	Options	from	the	Capture	menu,	or	by	clicking	on	the
second	icon	in	the	icon	bar.

The	following	screenshot	illustrates	a	typical	Capture	Options	window	with	a	number	of
options	specified.	You	can	refer	to	it	for	examples	of	the	topics	on	Capture	Options.

As	seen	in	the	preceding	screenshot,	the	Capture	Options	window	displays	the	available
interfaces	and	their	IP	addresses	and	allows	you	to	select	one	or	more	of	these	interfaces	to
perform	the	capture.	Wireshark	can	capture	from	multiple	interfaces	simultaneously,	as
well	as	from	virtual	interfaces.	The	primary	advantage	of	starting	with	the	Capture
Interfaces	window	is	the	availability	of	the	packet	counters	to	aid	in	identifying	active
interfaces,	a	feature	not	available	in	the	Capture	Options	window.	Otherwise,	if	you
know	which	interface	you’ll	want	to	use,	you	can	skip	using	the	Capture	Interfaces
window	and	start	here.

Clicking	on	the	Manage	Interfaces	button	in	the	Capture	Options	window	brings	up	an
Interface	Management	window.	From	the	Local	Interfaces	tab,	you	can	select	to	hide
interfaces	that	you	do	not	wish	to	see	displayed	in	the	Capture	Interfaces	and	Capture
Options	windows.

There	is	an	option	to	quickly	enable	Capture	on	all	interfaces	and	a	Use	promiscuous
mode	on	all	interfaces	option	that	is	enabled	by	default.	In	most	cases,	this	option	should
be	left	enabled	so	that	the	chosen	interface(s)	can	capture	and	save	all	the	packets	seen.
Otherwise,	only	the	packets	that	are	being	sent	to	the	Wireshark	workstation’s	MAC
address,	broadcast,	and/or	multicast	packets	will	be	seen	and	captured,	which	basically
negates	its	usefulness	as	a	capture	device.	The	Compile	selected	BPFs	button	provides	a
machine	language	display	of	the	compiled	capture	filter,	but	has	no	other	functional
purpose.

Note
The	Capture	Filter	field	has	a	highlighting	feature	that	indicates	valid	versus	invalid	filter
syntax.	A	green	background	indicates	a	good	filter	and	a	red	background	indicates	an
invalid	or	incomplete	filter.

Using	capture	filters
Capture	filters	are	used	to	reduce	the	amount	of	traffic	saved	during	a	packet	capture.	In
practice,	capture	filters	should	be	used	sparingly,	if	used	at	all,	to	help	make	sure	that	no
packets	that	are	important	for	an	analysis	are	inadvertently	missed	because	they	fall
outside	the	capture	filter	parameters.	Remember	that	you	can	always	filter	out	unwanted
traffic	from	a	capture,	but	you	can’t	do	anything	about	missed	packets	once	the	capture	is
finished.	If	you’re	unsure	about	a	capture,	perform	the	capture	again	with	a	more	generous
capture	filter	or	none	at	all.

One	scenario	where	a	capture	filter	is	appropriate	is	when	you	want	to	let	a	capture	run	for
a	long	period	of	time.	Then,	you	should	filter	out	as	much	extraneous	traffic	as	possible	to
keep	capture	file	sizes	under	control.	However,	take	care	to	make	sure	the	capture	filter
you	apply	doesn’t	exclude	any	traffic	that	may	be	useful	for	the	analysis.

It’s	usually	a	good	idea	to	do	some	trial	captures	when	using	capture	filters	to	verify	that
the	filter	is	working	as	desired	before	doing	the	official	capture	that	you	want	to	keep.

Configuring	capture	filters
Wireshark	provides	a	Capture	Filter	window	that	makes	it	easy	to	select	a	preconfigured
capture	filter,	or	you	can	configure	your	own	based	on	your	needs.

Click	on	the	Capture	Filter	button	in	the	Capture	Options	window	to	open	the	Capture
Filters	window.	From	this	window,	you	can	select	from	a	number	of	useful	preconfigured
capture	filters,	create	a	new	and	unique	capture	filter	for	your	purposes,	or	delete
unwanted	or	erroneous	filters.	Creating	a	new	filter	only	involves	giving	the	filter	a	name,
entering	the	capture	filter	syntax,	clicking	on	New	to	save	the	filter,	and	then	finally
clicking	on	OK.	Alternatively,	you	can	click	on	an	existing	filter	and	then	click	on	New,
which	will	create	a	copy	of	that	filter	at	the	bottom	of	the	list	that	can	then	be	modified	for
your	purposes.

The	following	screenshot	illustrates	a	typical	Capture	Filter	window.	In	this	case,	a
capture	filter	that	will	only	allow	traffic	to	and	from	a	specific	Ethernet	MAC	address	has
been	selected:

Wireshark’s	capture	filters	use	a	syntax	that	is	known	as	the	Berkley	Packet	Filter	(BPF)
format,	which	has	legacy	roots	in	the	Unix	world	and	is	still	in	use	today	with	packet-level
drivers.	Note	that	the	syntax	used	to	capture	filters	in	Wireshark	differs	significantly	from
the	syntax	used	for	display	filters.

The	default	selection	of	capture	filters	from	the	Capture	Filter	window	is	helpful	in
providing	examples	of	capture	filter	syntax.	Some	additional	examples	of	capture	filter
syntax	and	examples	of	that	syntax	are	outlined	in	the	following	table:

Description Syntax Examples

Filter	on	an	Ethernet	MAC	address

Filter	to	capture	just	the	traffic	from	or	to	a
MAC	address

ether	host	xx:xx:xx:xx:xx:xx

ether	src	or	ether	dst

ether	host	00:1c:25:99:db:85

ether	src	00:1c:25:99:db:85

Filter	on	an	IP	address	or	hostname

Filter	to	capture	just	the	traffic	between
two	IP	addresses

Filter	traffic	in	one	direction	only	between
two	hosts

host	xxx.xxx.xxx.xxx

src	host	and	dst	host

host	192.168.1.115

host	www.wireshark.org

host	192.168.1.115	and	host
10.1.1.125

src	host	192.168.1.115	and	dst	host
10.1.1.125

Filter	based	on	a	port	number

Filter	for	DNS	packets

Filter	for	DHCP	packets

port,	dst	port,	and	src	port
port	53

port	67

Filter	based	on	a	protocol

Filter	for	HTTP	traffic	only
arp,	icmp,	ip,	upd,	tcp,	http,
ip6,	and	icmp6

http

Capture	filter	logical	operators

Filter	to	exclude	ARP	and	DNS	packets
=,	!=,	>,	<,	>=,	<=,	!,	not,	&&,	and,
||,	or

not	arp	and	port	not	53
!	arp	&&	port	!	53

More	information	and	examples	of	capture	filters	can	be	found	on	the	Wireshark	wiki	at
http://wiki.wireshark.org/CaptureFilters	and	the	protocol-specific	capture	filter	syntax	is
included	in	the	reference	information	found	at
http://wiki.wireshark.org/ProtocolReference.

http://wiki.wireshark.org/CaptureFilters
http://wiki.wireshark.org/ProtocolReference

Capture	options
The	Wireshark	Capture	Options	window	offers	a	variety	of	controls	to	configure	captures
to	suit	a	particular	need.

Capturing	filenames	and	locations
Clicking	on	the	Browse	button	on	the	File	option	allows	you	to	navigate	to	a	chosen
directory	in	which	you	can	store	the	capture	files	and	enter	a	filename	for	the	capture	files.

When	the	File	option	is	used,	Wireshark	will	append	a	file	number	and	date-time	stamp	to
the	filename	you	specify	and	will	not	provide	a	file	extension.	You	should	specify	a
.pcapng	extension	in	the	filename.	This	is	better	illustrated	with	an	example.

The	user	provided	directory	and	filename	is	C:\Wireshark\long_capture.pcapng,	and
Wireshark	will	create	and	save	packets	to	files	in	the	format
C:\Wireshark\long_capture_00001_20140724132952.pcapng.

If	Wireshark	is	configured	to	capture	to	more	than	one	file	(this	will	be	discussed	later),
the	file	numbers	and	date-time	stamps	will	be	incremented	accordingly	as	the	capture
progresses,	for	example,	long_capture_00002_20140724133343.pcapng	and
long_capture_00003_20140724133612.pcapng.

Multiple	file	options
Wireshark	can	be	configured	to	save	packets	to	multiple	files	to	allow	long-term	captures,
and	offers	a	number	of	options	to	control	how	this	is	accomplished.

Selecting	the	Use	multiple	files	option	causes	the	appropriate	underlying	controls	to
become	active	as	specific	options	are	enabled.	You	can	choose	to	start	a	new	(next)	file
when	each	file	reaches	a	given	size	and/or	after	a	configurable	period.

Note
Wireshark	can	become	very	sluggish	or	might	even	crash	when	working	with	capture	file
sizes	of	much	greater	than	100	MB,	so	you	should	consider	this	as	a	good	maximum	file
size.

Ring	buffer
The	Ring	buffer	option	works	in	conjunction	with	the	Next	File	every	option	to	cause
Wireshark	to	fill	the	specified	number	of	files,	and	as	the	capture	continues	to	progress,	it
deletes	the	oldest	files.

This	feature	is	useful	to	keep	a	capture	running	while	waiting	for	some	intermittent
problem	or	an	event	to	occur,	after	which	the	capture	is	manually	stopped.	The	ring	buffer
files	provide	historical	capture	data	for	a	period	just	prior	to	stopping	the	capture,	without
filling	a	hard	drive	with	an	excessive	number	of	large	capture	files.

Stop	capture	options
Wireshark	has	options	to	automatically	stop	a	capture	after	a	specified	number	of	packets,

file	size,	or	time	period.	If	the	Use	multiple	files	option	is	enabled,	an	option	to	stop	the
capture	after	a	specified	number	of	files	can	be	employed.	Otherwise,	the	capture	can	be
stopped	after	a	specified	number	of	packets,	file	size,	or	time	period	has	elapsed.

Display	options
The	Update	list	of	packets	in	real	time	option	specifies	that	Wireshark	is	to	periodically
read	the	capture	file	as	it	is	being	written	during	the	capture	and	update	the	Packet	List
contents	accordingly.	Otherwise,	the	Wireshark	user	interface	will	be	grayed	out	during
the	capture.

The	Automatically	scroll	during	live	capture	option	specifies	that	Wireshark	updates
and	displays	the	latest	captured	packets	in	the	Packet	List	pane	such	that	the	packets	seem
to	scroll	up	as	the	list	is	updated.	The	Update	list	of	packets	in	real	time	option	must	be
enabled	for	this	option	to	function.

Both	of	these	options	have	a	processing	time	cost	that	could	result	in	lost	packets	and/or	a
sluggish	display	and	should	be	disabled	if	capturing	on	a	very	busy	link.	However,	the
ability	to	view	and	confirm	that	the	expected	packet	flows	are	occurring	during	the	capture
will	be	lost.

The	Hide	capture	info	dialog	option	(which	is	enabled	by	default)	controls	whether	a
simple	window	is	displayed	during	the	capture	that	displays	the	packet	counts	and
percentages	by	protocol.	Unless	specifically	needed,	it	is	best	to	leave	this	window	hidden.

Name	resolution	options
If	the	Resolve	MAC	addresses	option	is	enabled,	it	causes	Wireshark	to	display	MAC
addresses	with	an	assigned	manufacturer	code	in	place	of	the	first	three	octets.	For
example,	Wireshark	will	display	CiscoCon_21:b7:ec	instead	of	c8:d7:19:21:b7:ec.	The
list	of	manufacturer’s	codes	is	kept	in	the	manuf	file	of	the	Wireshark	installation
directory.

The	Resolve	network-layer	names	option	works	in	conjunction	with	Use	external
network	name	resolver	to	determine	if	or	how	captured	IP	addresses	are	resolved	into
their	hostnames,	as	follows:

The	Resolve	network-layer	names	option	specifies	that	Wireshark	should	attempt	to
resolve	IP	addresses	into	hostnames.	If	the	Use	external	network	name	resolver
option	is	enabled,	Wireshark	will	perform	reverse	DNS	lookups	for	each	unique	IP
address.	This	causes	Wireshark	to	generate	traffic	of	its	own.
If	the	Use	external	network	name	resolver	option	is	disabled,	Wireshark	will
attempt	to	resolve	the	IP	addresses	using	a	hosts	text	file	provided	by	a	user	(which
uses	typical	IP	address	<tab>	hostname	syntax)	located	in	the	Wireshark	installation
directory	when	using	a	default	profile	or	in	the	appropriate	profile	directory	when
using	a	custom	profile.

During	a	capture,	it	is	better	to	leave	the	Resolve	network-layer	names	option	disabled
so	that	Wireshark	isn’t	creating	additional	network	traffic	while	trying	to	resolve	IP
addresses	during	a	capture.	This	feature	can	always	be	temporarily	enabled	(by	navigating

to	View	|	Name	Resolution	|	Enable	for	network	layer	from	the	menu)	after	the	capture
is	finished.

If	the	Resolve	transport-layer	name	option	is	enabled,	it	causes	Wireshark	to	display	the
human-readable,	port-	and	protocol-specific	services’	names	instead	of	the	port	numbers	in
the	Info	display	field	in	the	Packet	List	pane.	For	example,	TCP	port	80	will	be	displayed
as	HTTP.	The	list	of	port	number	services	is	kept	in	the	services	file	in	the	Wireshark
installation	directory.

The	screenshot	at	the	beginning	of	this	section	illustrates	a	Capture	Option	window	set	to
use	the	LAN	interface,	a	filter	to	capture	traffic	only	to	and	from	a	specific	Ethernet	MAC
address,	to	save	up	to	five	files	of	100	MB	each	in	a	ring	buffer	scenario,	and	to	save	those
files	in	a	provided	directory	with	a	specific	leading	filename	and	extension.	The	Display
Options	and	Name	Resolution	options	have	been	left	in	their	default	settings.

Once	all	the	desired	Capture	Options	have	been	selected,	clicking	on	the	Start	button
will	start	the	capture.

Having	covered	all	the	most	useful	Capture	Options	features,	now	is	probably	the	right
time	to	tell	you	that	for	many	of	your	captures,	especially	from	a	relatively	low	traffic
volume	location	such	as	from	a	user	workstation,	you	don’t	want	or	need	to	set	any
capture	options	(except	the	appropriate	interface	to	capture	from)	and	can	simply	jump
into	starting	a	capture	using	all	the	defaults	by	clicking	on	the	third	(green	shark-fin
shaped)	icon	on	the	icon	bar	or	selecting	Start	from	the	Capture	menu.	Not	using	a
capture	filter	allows	you	to	capture	all	the	relevant	packets—without	missing	anything—
and	filter	any	unwanted	traffic	out	using	display	filters	after	the	capture	is	done.

Verifying	a	good	capture
After	a	capture	is	complete,	you	should	scroll	through	and	inspect	the	packets	in	the
Packet	List	pane	to	ensure	that	you’re	seeing	the	traffic	you	were	expecting—usually
traffic	to	and	from	a	specific	host.

You	should	also	ensure	there	were	no	dropped	packets,	which	would	be	displayed	in	the
Packet	Information	section	of	the	Status	Bar	at	the	bottom	center	of	the	Wireshark	user
interface.	Dropped	packets	indicate	that	Wireshark	or	the	selected	NIC	could	not	keep	up
with	the	traffic	volume	and	had	to	discard	packets,	which	could	of	course	affect	the	quality
of	your	analysis.	If	dropped	packets	occur,	you	may	need	to	use	a	higher	performance
workstation	to	perform	the	captures	or	select	a	lower	traffic	volume	capture	location.

Saving	the	bulk	capture	file
After	completing	and	verifying	a	good	capture,	you	should	save	the	bulk	(all	captured
packets)	capture	file	(assuming	a	single	file	capture)	to	your	directory	of	choice.	You	will
later	be	filtering	and	saving	a	subset	of	packets	to	a	smaller	file,	but	it	is	advantageous	to
be	able	to	load	the	original	capture	file	again	at	a	later	time	if	during	the	analysis	you
discover	that	you	might	have	inadvertently	filtered	out	more	packets	than	you	wanted.

Using	the	Save	As	option	in	the	File	menu,	navigate	to	the	directory	of	your	choice	and
give	the	file	a	name.	If	no	file	extension	is	specified,	Wireshark	will	append	a	file
extension	based	on	the	Save	as	type	option	selected;	the	default	is	the	.pcapng	format.
However,	you	can	save	the	file	in	several	other	popular	vendor-specific	formats	if	you
intend	to	share	the	capture	file	with	someone	who	is	using	a	different	protocol	analysis
tool.

If	multiple	files	were	saved	using	one	of	the	multiple	file	and/or	ring	buffer	capture
options,	navigate	to	the	File	|	File	Set	|	List	Files	to	select	and	open	one	of	the	files.

Isolating	conversations	of	interest
After	you	have	completed	a	packet	capture	and	saved	a	bulk	capture	file,	you’ll	be	with	an
almost	overwhelming	number	of	packets	of	various	types	and	addresses	in	the	Packet	List
pane.	It’s	now	time	to	par	this	down	to	just	the	packets	that	pertain	to	the	analysis	task	at
hand.

The	idea	is	to	progressively	eliminate	unrelated	packets;	analyze	the	pertinent
conversations	looking	for	anomalies;	and	again	progressively	filter,	measure,	and	analyze
packet	flow	and	application	behavior	until	you	have	discovered	and	can	document	the	root
cause	of	the	issue.

There	are	two	basic	ways	to	isolate	and	inspect	packets	and	conversations	of	interest,	and
you’ll	likely	use	both	of	the	following	methods	in	most	of	your	analysis	activities:

Conversations:	This	window	creates	a	list	of	conversation	pairs	by	MAC	or	IP
address	and/or	TCP/UDP	ports	that	can	be	sorted.	It	displays	filters	that	will	isolate
and	display	only	the	selected	conversation	packets	can	be	quickly	applied	from	this
window.
Display	Filters:	These	filters	are	based	on	MAC	or	IP	addresses	and/or	protocol-
specific	fields	that	limit	the	packets	displayed	in	the	Packet	List	pane.

We’ll	discuss	each	of	these	methods	in	the	following	sections.

Using	the	Conversations	window
The	basics	of	using	the	Conversations	window	were	covered	during	the	first	capture	in
Chapter	1,	Getting	Acquainted	with	Wireshark.	In	this	section,	we’ll	cover	a	few	other
handy	features	of	the	Conversations	window.

The	Ethernet	tab
The	Conversations	window	exhibits	specific	behaviors	in	the	Ethernet	tab,	depending	on
the	available	Name	Resolution	settings.	If	Enable	for	Network	Layer	in	the	Name
Resolution	menu,	which	can	be	found	in	the	View	menu,	is	enabled	and	Name
Resolution	is	also	enabled	in	the	Conversations	window,	then	the	IP	address	that	is
associated	with	a	given	device’s	MAC	address	is	displayed	as	an	IP	address	instead	of	a
MAC	address.	Toggling	the	Name	Resolution	option	in	this	scenario	is	useful	for	easily
associating	a	devices’	IP	address	with	its	MAC	address.

If	the	Enable	for	Network	Layer	option	is	not	enabled,	then	the	Name	Resolution	option
in	the	Conversations	window	controls	whether	the	MAC	addresses	are	displayed	with
manufacturer	prefixes	or	as	the	basic	6-octet	MAC	address.

The	TCP	and	UDP	tabs
The	TCP	and	UDP	tabs	of	the	Conversations	window	list	all	of	the	conversations
between	devices	based	on	IP	addresses	and	ports.	Considering	that	network
communications	between	a	pair	of	devices,	each	with	their	associated	IP	addresses,	could
include	multiple	sequential	or	simultaneous	sessions	with	differing	port	numbers,	the	TCP
and	UDP	tabs	(depending	on	the	protocol	in	use)	make	it	much	easier	to	inspect	the
number	and	relative	size	and	start/duration	of	these	individual	sessions.

As	can	be	done	in	any	of	the	other	tabs	in	the	Conversations	window,	a	display	filter	can
be	quickly	prepared	or	applied	using	the	right-click	functionality.

A	helpful	practice	when	investigating	TCP	or	UDP	sessions	is	to	apply	a	display	filter	on
just	the	IP	addresses	initially	and	then	enabling	the	Limit	to	display	filter	option	at	the
bottom	of	the	Conversations	window.	Upon	returning	to	the	TCP	or	UDP	tab,	only	the
port-level	sessions	between	the	filtered	host	pair	are	displayed,	which	makes	investigating
these	sessions	much	easier	than	picking	them	out	from	the	entire	list.

The	following	screenshot	shows	the	multiple	TCP	sessions	that	were	involved	in	loading
the	https://www.wireshark.org/	home	page	after	applying	a	display	filter	(from	the	bulk
capture	file)	and	enabling	the	Limit	to	display	filter	option	in	the	Conversations
window.	It	can	be	seen	that	the	(top)	conversation	between	port	54581	on	the	user
workstation	and	port	80	(HTTP)	carried	the	vast	majority	of	the	traffic;	the	remaining
ports	carried	much	smaller	amounts	of	traffic.

https://www.wireshark.org/

The	WLAN	tab
Since	the	Conversations	window	tabs	are	ordered	alphabetically,	the	WLAN	tab	comes	at
the	end.	This	tab	displays	the	wireless	station	MAC	addresses,	as	well	as	the	Bytes,
Packets,	and	other	columns	offered	in	the	other	tabs.

Wireshark	display	filters
Wireshark	provides	a	very	wide	range	of	protocol-specific	display	filters	that	can	be
extremely	useful	for	analysis	activities	by	allowing	you	to	focus	on	specific	packets,	based
on	criteria	that	you	define.	You	can	filter	on	just	the	traffic	that	you	want	to	see	or	filter
undesired	traffic	out	of	view.	Display	filters	are	one	of	the	most	helpful	features	of
Wireshark,	so	they	warrant	becoming	very	familiar	with.

Display	filters	can	be	created	in	several	ways:

By	applying	display	filters	from	the	Display	Filter	window
By	typing	in	the	display	filter	syntax	(using	autocomplete)
By	applying	display	filters	from	the	Conversations	(or	Endpoints)	window
By	applying	saved	display	filters	from	Filter	Expression	Buttons
Using	the	Expressions	button	for	assistance	creating	filters
Using	right-click	menus	on	specific	packet	fields

Note
Remember	that	display	filters	use	a	proprietary	Wireshark	filter	format,	which	is
protocol-dependent	and	significantly	different	from	capture	filter	syntax.

The	Display	Filter	window
You	can	open	the	Display	Filter	window	by	selecting	Display	Filters	from	the	Analyze
menu,	by	clicking	on	the	Edit/apply	display	filter	icon	on	the	icon	bar,	or	by	just	clicking
the	Filters	button	next	to	the	display	filter	textbox	on	the	display	filter	bar.

The	Display	Filter	window	looks	and	functions	in	a	similar	fashion	to	the	capture	filters
window,	as	shown	in	the	following	screenshot.	You	can	create	a	new	custom	display	filter
to	be	added	to	this	window	by	entering	a	filter	name	and	the	appropriate	syntax	and
clicking	on	New	or	clicking	an	existing	filter.	Click	on	New	and	modify/rename	as	per
your	requirements.

Display	filters	listed	in	this	window	were	saved	in	a	dfilters	file	in	the	Wireshark
installation	directory	for	the	default	profile	and	in	the	appropriate	Personal	configuration
directory	when	custom	profiles	are	in	use.

When	you	apply	a	display	filter,	the	Status	Bar	at	the	bottom	of	the	Wireshark	user
interface	screen	reflects	the	total	number	of	packets	and	the	packets	displayed,	as
illustrated	in	the	following	screenshot:

The	display	filter	syntax
The	default	selection	of	capture	filters	from	the	Display	Filter	window	shown	previously
provides	examples	of	basic	capture	filter	syntax.	Additional	examples	of	display	filter
syntax	are	outlined	in	the	following	table:

Description Syntax Examples

Basic	protocols
arp,	bootp,	dns,	dhcp6,	eth,	snmp,	smb,
smb2,	icmp,	rtp,	ip,	ipv6,	udp,	tcp,	http,
and	sip

Same	as	syntax	examples

Display	filter	comparison
operators

eq,	==,	ne,	!=,	gt,	>,	lt,	<,	ge,	>=,	le,	<=,
!,	not,	and,	&&,	or,	||,	XOR,	and	^^

ip.addr	==	192.168.1.115	and	!
(ip.addr	==	192.168.1.125)

Protocol-specific	extensions protocol-specific
ip.addr,	tcp.port,	tcp.dstport,
tcp.analysis,	udp.port,	and
udp.srcport

Classless	InterDomain	Routing
(CIDR)	notation	on	IPv4
addresses

A.B.C.D/CIDR	notation
ip.addr	==	192.168.1.0/24	that
matches	any	IP	address	in	the
192.168.1.0	subnet

Note
Using	the	!=	operator	on	expressions	such	as	eth.addr,	ip.addr,	tcp.port,	and	udp.port
and	alike	may	not	work	as	expected	as	there	are	usually	two	addresses	and	ports	in	a
packet,	and	the	!	operator	will	not	match	both	instances.

Use	!(ip.addr	==	x.x.x.x)	or	a	similar	syntax	for	these	types	of	filters.

More	information	and	examples	of	display	filters	can	be	found	on	the	Wireshark	wiki	at
http://wiki.wireshark.org/DisplayFilters	and	protocol-specific	display	filter	syntax	is
included	in	the	reference	information	found	at
http://wiki.wireshark.org/ProtocolReference.

http://wiki.wireshark.org/DisplayFilters
http://wiki.wireshark.org/ProtocolReference

Typing	in	a	display	filter
You	can	type	a	display	filter	syntax	directly	into	the	Filter	textbox	in	the	display	filter	bar,
and	then	click	on	Apply	to	apply	the	filter	or	Clear	to	clear	a	filter	and	start	over.

A	helpful	feature	of	typing	the	display	filter	syntax	into	the	textbox	is	the	autocomplete
function.	Upon	typing	a	protocol	and	then	a	period	(.),	the	textbox	will	display	a	list	of
available	protocol-related	extensions	that	can	be	selected	and	then	the	appropriate
comparison	operator	and	value	added	before	clicking	on	Apply.

The	textbox	also	has	a	color-coded	background	indicating	the	display	filter	syntax	status.
If	the	syntax	is	incorrect	or	incomplete,	the	background	is	red	and	a	correct	filter	results	in
a	green	background.	A	yellow	background	is	a	warning	that	the	entered	syntax	may	not
work	as	expected.

Display	filters	from	a	Conversations	or	Endpoints
window
Creating	a	display	filter	to	be	applied	from	a	Conversations	window	has	already	been
covered.	The	same	functionality	is	available	from	an	Endpoints	window,	which	can	be
opened	by	selecting	Endpoint	List	from	the	Statistics	menu	and	one	of	the	listed
protocols.

Filter	Expression	Buttons
Filter	Expression	Buttons	are	buttons	you	can	create	that	are	based	on	display	filters;	these
can	be	used	to	quickly	apply	previously-saved	display	filters	to	your	capture	data	to
identify	network	and	application	problems.

For	example,	to	create	a	Filter	Expression	Button	option	that	displays	just	TCP	SYN,
SYN/ACK,	FIN,	or	RST	packets	to	analyze	the	TCP	session	setup	parameters,	network
round-trip	delay	times,	and	session	terminations:

1.	 Type	the	following	display	filter	string	into	the	Filter	textbox	on	the	Display	Filter
Bar:

(tcp.flags&02	&&	tcp.seq==0)	||		(tcp.flags&12	&&	tcp.seq==0)	||	

(tcp.flags.ack	&&	tcp.seq==1	&&	!tcp.nxtseq	>	0	&&	!tcp.ack	>1)		||	

tcp.flags.fin	==	1	||	tcp.flags.reset	==1

2.	 Clicking	on	Apply	will	apply	this	filter	to	a	capture	that	you	have	loaded	so	that	you
can	confirm	that	it	is	working	properly.

3.	 Then,	click	on	Save	and	give	the	button	a	name,	such	as	TCP	Handshake	(as
illustrated	in	the	following	screenshot).	Then,	click	on	OK:

The	filter	expression	buttons	you	create	will	appear	on	the	right-hand	side	of	the	initial
controls	in	the	display	filter	bar,	as	illustrated	in	the	following	screenshot:

The	filter	expression	button	definitions	are	stored	in	the	preferences	file	for	the	profile	you
are	using.	You	can	edit	the	button	display	order,	edit	the	name	or	filter	syntax,	or	delete	the
buttons	in	Wireshark’s	Preferences	window.

Using	the	Expressions	window	button
To	the	right-hand	side	of	the	textbox	on	the	display	filter	toolbar	is	the	Expression	button.
Clicking	on	this	button	opens	a	Filter	Expression	window	that	allows	you	to	select	a
protocol	and	the	extension	to	that	protocol,	one	of	the	appropriate	relation	(comparison)
operators,	and	assign	a	comparison	value.	Click	on	OK	to	populate	the	display	filter
textbox	with	the	resultant	display	filter	syntax	and	then	click	on	Apply	to	apply	the	filter.

Right-click	menus	on	specific	packet	fields
If	you	right-click	on	a	specific	field	in	the	Packet	List	or	Packet	Details	panes,	you	can
select	the	Apply	as	Filter	or	Prepare	a	Filter	option	and	the	required	submenu	option	to
create	display	filter	syntax,	as	illustrated	in	the	following	screenshot.	This	is	a	very	quick
way	of	creating	display	filter	syntax:

If	you	are	selecting	a	field	and	using	the	right-click	functionality	to	create	display	filter
syntax,	it	is	usually	better	to	use	the	Prepare	a	Filter	option,	which	will	allow	you	to	edit
the	syntax	before	clicking	on	Apply	to	apply	the	filter.

Note
Clicking	on	a	protocol	field	in	the	Packet	Details	pane	results	in	that	field	and	the	display
filter	syntax	that	reflects	that	field	to	be	displayed	in	the	bottom-left	Status	bar	field.	This
is	very	helpful	for	starting	a	display	filter	string	that	will	use	a	particular	field.

Following	TCP/UDP/SSL	streams
Selecting	a	packet	in	a	conversation,	right-clicking,	and	selecting	a	Follow	TCP	Stream,
Follow	UDP	Stream,	or	Follow	SSL	Stream	option	(as	appropriate)	from	the	menu
provides	a	display	window	that	contains	a	textual	depiction	of	the	payload	data	from	all	of
the	packets	in	a	conversation.	This	is	an	excellent	way	to	inspect	the	contents	of	a	stream
without	having	to	select	and	inspect	multiple	packets.	Viewing	the	exchanges	between	the
client	and	server	can	be	very	helpful	for	troubleshooting	purposes.

When	a	Follow	Stream	option	is	selected	for	a	given	packet,	a	display	filter	is
automatically	created	and	applied	to	support	creation	of	this	window.	The	following
screenshot	illustrates	a	Follow	TCP	Stream	window.	Also,	note	the	display	filter	syntax
(tcp.stream	eq	15)	that	was	created	and	applied	when	this	stream	was	selected:

Marking	and	ignoring	packets
You	can	toggle	Mark/Unmark	Packet	or	Ignore/Unignore	Packet	from	the	Wireshark
Edit	menu,	or	by	right-clicking	on	a	packet	in	the	Packet	List	pane	and	selecting	Mark
Packet	(toggle)	or	Ignore	Packet	(toggle).

The	menu	displayed	by	right-clicking	on	a	packet	in	the	Packet	List	pane	is	shown	in	the
following	screenshot:

Wireshark	allows	you	to	mark	one	or	more	packets	in	the	Packet	List	pane	to	make	it
easier	to	find	those	packets	later	by	giving	the	packet	entry	a	black	background	with	white
font.	This	marking	can	be	toggled	on	and	off	on	a	per-packet	basis.	Marking	a	packet	has
no	other	effect	on	the	display	or	packet	context.

You	can	also	ignore	one	or	more	packets.	However,	when	you	invoke	the	ignore	function
on	a	packet	that	packet	entry	disappears	from	the	Packet	List,	Packet	Details,	and	Packet
Bytes	panes	and	it	effectively	ceases	(temporarily)	to	be	part	of	the	capture	file.	Note	that
ignoring	packets	can	result	in	Wireshark	reporting	re-transmissions	or	other	error
conditions	caused	by	the	missing	packet.

The	ignored	packets	aren’t	actually	deleted	from	the	capture	file	as	you	can	use	the
Reload	option	in	the	View	menu	or	click	the	Reload	icon	on	the	icon	bar	to	recover	the
ignored	packets.

Saving	the	filtered	traffic
During	or	after	completing	an	analysis,	you	will	want	to	save	a	set	of	filtered	packets	into
a	new	capture	file.	Saving	a	filtered	subset	of	the	bulk	capture	data	and	opening	the	new,
smaller	file	in	Wireshark	is	helpful	to	reduce	the	distracting	background	noise	packets
displayed	when	clearing	display	filters,	working	with	Conversations	windows,	and	so	on
during	your	analysis.	Finally,	upon	completing	your	analysis,	you	will	want	a	filtered
capture	file	that	represents	the	analysis	evidence	and	conclusion	and	can	be	quickly	loaded
for	review	at	a	later	time.

Use	the	Export	Specified	Packets	option	in	the	File	menu	to	save	a	new	capture	file
consisting	of	just	your	filtered	packets.	Navigate	to	the	desired	directory;	enter	a	filename
(Wireshark	will	provide	the	appropriate	filename	extension);	make	the	appropriate
selections	to	save	all	the	Displayed	packets,	Marked	packets,	and/or	to	Remove	Ignored
packets;	and	then	click	on	Save.	Remember	to	save	the	complete	capture	using	the	Save
As	option	in	the	File	menu	as	well,	because	you	may	need	this	file	again.

The	following	screenshot	illustrates	a	typical	Export	Specified	Packets	window	and	its
selections:

Summary
The	important	points	covered	in	this	chapter	included	picking	an	optimal	capture	point,
selecting	between	TAPs	and	mirrored/SPAN	ports,	Wireshark’s	capture	filters	and	options,
verifying	a	good	capture,	using	Wireshark’s	Conversation	windows	and	display	filters	to
isolate	packets	of	interest,	creating	Filter	Expression	Buttons,	marking	and	ignoring
packets,	and	saving	the	filtered	traffic	for	later	or	more	detailed	analysis.

In	the	next	chapter,	we’ll	cover	the	rest	of	Wireshark’s	basic	packet	analysis	features.

Chapter	4.	Configuring	Wireshark
Wireshark	offers	a	number	of	features	that	can	be	configured	to	enhance	the	accuracy	and
ease	of	performing	packet	analysis	activities	such	as	troubleshooting	a	functional	or
performance	problem.	Selecting	the	best	format	to	measure	the	elapsed	time	between
packets	is	an	important	factor.	There	are	a	number	of	protocol-specific	options	that	affect
how	Wireshark	displays	time-related	information	that	are	useful	as	well.	Coloring	rules,
preferences	settings,	and	profiles	let	you	customize	Wireshark	for	your	particular	style	of
analysis,	as	well	as	the	different	environments	that	you	might	work	in.

In	this	chapter,	we	will	cover	the	following	topics:

Working	with	packet	timestamps
Colorization	and	coloring	rules
Wireshark	preferences
Wireshark	profiles

These	topics	will	wrap	up	our	introduction	to	the	most	essential	and	useful	features	and
options	of	Wireshark.

Working	with	packet	timestamps
Understanding	how	Wireshark	handles	time	and	using	the	right	incarnation	of	packet
timestamp	displays	is	crucial	to	properly	analyze	packet	flows	and	identify	time-related
anomalies.

How	Wireshark	saves	timestamps
When	packets	are	captured,	Wireshark	gives	each	packet	a	timestamp	derived	from	the
system	clock	of	the	machine	from	where	the	capture	takes	place.	This	timestamp	is
converted	to	Universal	Coordinated	Time	(UTC)	based	on	an	offset	calculated	from	the
time	zone	setting	and	any	Daylight	Savings	Time	(DST)	rules	that	apply	for	the	capture
machine,	and	then	converted	again	to	an	epoch	number	(the	UTC-based	number	of
seconds	since	January	1,	1970).	This	is	the	time	value	that	gets	saved	in	the	capture	file	for
each	packet.	When	Wireshark	reads	the	capture	file,	it	turns	the	epoch	number	back	to	the
familiar	date	and	time	display,	adjusted	for	the	time	zone	and	DST	offsets	for	your
machine.

This	means	that	if	a	packet	capture	is	conducted	on	a	machine	in	Los	Angeles,	which	has
an	offset	from	UTC	of	-8	hours,	and	you	look	at	the	same	capture	file	on	a	machine	in
Berlin,	which	is	UTC	+1	hour	(an	overall	difference	of	9	hours,	plus	any	DST
differences),	a	packet	that	was	captured	at	10	a.m.	local	time	in	Los	Angeles	will	display	a
timestamp	of	7	p.m.	in	Berlin.

Examples	of	the	timestamp	displays	in	different	time	zones	are	shown	in	the	following
table:

	 Los	Angeles London Berlin Bangalore

Capture	file	time	(UTC) 10:00 10:00 10:00 10:00

Local	offset	to	UTC -8 0 +1 +5:30

Displayed	time	(local	time) 02:00 10:00 11:00 17:30

If	you’re	going	to	look	at	a	packet	capture	someone	has	sent	you	and	the	absolute	time
when	an	event	occurred	is	important	to	the	analysis,	you’ll	need	to	know	or	ask	what	time
zone	the	capture	was	taken	in,	determine	the	offset	between	your	time	zone	and	the
capture	location	time	zone,	and	mentally	make	the	time	difference	adjustment	for	the
timestamps	that	Wireshark	will	display.	Otherwise,	this	difference	won’t	matter	as	you’re
usually	more	interested	in	the	elapsed	time	or	the	time	between	specific	events	in	the
capture.

Wireshark	time	display	options
There	are	a	wide	variety	of	packet	time	displays	available	for	use	in	Wireshark.	By
default,	Wireshark	provides	a	Time	column	in	the	Packet	List	pane	configured	to	display
Seconds	Since	Beginning	of	Capture	with	microsecond	resolution	(123.123456)	for	each
packet.

However,	the	way	in	which	time	is	displayed	in	this	column	can	be	changed	by	selecting
the	desired	format	from	the	Time	Display	Format	option	in	the	View	menu,	which	is
illustrated	in	the	following	screenshot:

If	the	Seconds	Since	Beginning	of	Capture	option	is	in	use,	the	first	packet	in	a	capture
displays	a	time	value	of	0.000000;	all	other	packets	are	timed	in	reference	to	this	first
packet	such	that	the	elapsed	time	from	the	beginning	of	the	capture	is	displayed.

The	time	display	menu	options	provide	examples	of	their	formats	and	are	fairly	self-
explanatory,	except	perhaps	Seconds	Since	Previous	Captured	Packet	and	Seconds
Since	Previous	Displayed	Packet.	The	Seconds	Since	Previous	Captured	Packet	option
provides	the	elapsed	time	between	each	captured	packet,	while	the	Seconds	Since
Previous	Displayed	Packet	option	displays	the	elapsed	time	from	the	previous	packet	that
is	visible	when	a	display	filter	is	applied.

The	way	the	Displayed	Packet	option	works	is	illustrated	in	the	following	screenshot.
You	can	see	how	the	Captured	Packet	timestamps	continue	to	increment,	while	the
Displayed	Packet	timestamps	show	the	time	since	the	last	displayed	packet.

The	time	display	precision	options	in	the	Time	Display	Format	menu	are	also	shown
with	examples	of	the	display	format	and	are	self-explanatory,	except	for	the	Automatic
(File	Format	Precision)	setting,	which	requires	a	description.

Wireshark	relies	on	the	NIC	driver	and	the	capture	devices’	system	clock	for	packet
timestamps.	The	accuracy	of	these	timestamps	in	terms	of	the	precision	and	number	of
subsecond	digits	(milliseconds,	microseconds,	and	nanoseconds)	will	vary,	but	usually	a
millisecond	resolution	is	available.	This	precision	value	is	saved	in	the	capture	file.	The
Automatic	(File	Format	Precision)	setting	tells	Wireshark	to	display	timestamps	using
this	precision	value.

The	ability	to	use	the	Nanoseconds	precision	setting	depends	on	having	an	NIC	driver
that	supports	this	level	of	precision.	If	you	select	this	option	and	the	capture	file	doesn’t
contain	the	higher	resolution,	the	last	three	digits	of	each	timestamp	will	be	all	zeroes.

Adding	a	time	column
It	is	often	helpful	to	have	two	(or	more)	time	columns	in	the	Packet	List	pane	to	provide	a
variety	of	time	display	types	without	having	to	change	the	format	of	a	single	time	column
back	and	forth.	You	can	add	a	new	time	column	using	one	of	two	methods.

The	following	is	the	first	method,	the	preferences	settings	method:

1.	 Go	to	Preferences	from	the	Edit	menu,	or	click	on	the	Preferences	icon	to	open	the
Preferences	window.

2.	 Select	Columns.
3.	 Click	on	Add	to	add	a	new	entry	at	the	bottom	of	the	list.
4.	 Click	on	the	Title	area	of	the	new	entry	and	give	the	column	a	name.
5.	 Ensure	that	the	new	entry	is	highlighted,	and	select	the	desired	time	display	format

from	the	drop-down	Field	type	box.
6.	 Click	and	drag	the	new	entry	up	the	list	to	select	its	relative	position	in	the	Packet

List	pane.
7.	 Finally,	click	on	OK.

The	selectable	options	in	the	Field	type	box	for	time	display	columns	include	the
following:

Absolute	date,	as	YYYY-MM-DD,	and	time:	This	is	the	actual	capture	date	and
time	based	on	the	time	zone	of	the	capture	device.
Absolute	date,	as	YYYY/DOY,	and	time:	This	is	another	format	to	display	the	date
and	time	based	on	the	time	zone	of	the	capture	device.
Relative	time:	This	is	the	time	from	the	first	packet	in	a	capture	file.	This	is	similar
to	the	Seconds	Since	Beginning	of	Capture	option.
Relative	time	(conversation):	This	is	the	time	from	the	first	packet	in	the	trace	file
for	a	conversation	(this	doesn’t	work).
Delta	time:	This	is	the	elapsed	time	from	the	previous	packet	to	the	current	packet.
Delta	time	(conversation):	This	is	the	time	from	the	previous	packet	to	the	current
packet	in	a	conversation	(this	doesn’t	work).
Delta	time	displayed:	This	is	the	time	from	the	end	of	one	packet	to	the	end	of	the
next	displayed	packet	only.
Custom:	The	Relative	time	(conversation)	and	Delta	time	(conversation)	options,
which	are	also	listed	in	the	preferences	settings,	no	longer	work	in	the	version	of
Wireshark	currently	available	(v1.12)	as	of	this	writing.	You	can	accomplish	the
previously	offered	functionality	with	these	options	by	using	the	Custom	option	with
display	filter-style	Field	types	instead.	Select	the	Custom	Field	type	and	enter	either
tcp.time_relative	or	tcp.time_delta	in	the	Field	name	field,	leaving	the	Field
occurrence	field	with	the	default	entry	of	0.

An	example	of	creating	a	functional	Delta	time	(conv)	time	column	using	the	Custom
option	and	the	tcp.time_delta	display	filter	is	shown	in	the	following	screenshot:

For	the	tcp.time_relative	and	tcp.time_delta	fields	to	work	properly,	you	must	also
enable	Calculate	conversation	timestamps	in	the	preferences	settings	using	the
following	steps:

1.	 In	the	Preferences	window,	select	TCP	from	the	Protocols	menu.
2.	 Enable	the	Calculate	conversation	timestamps	option.
3.	 Finally,	click	on	OK.

An	example	of	enabling	Calculate	conversation	timestamps	is	depicted	in	the	following
screenshot:

The	following	steps	show	you	the	second	method,	the	right-click	method	of	adding	a
column:

1.	 Select	an	appropriate	packet	in	the	Packet	List	pane.
2.	 In	the	Packet	Details	pane,	expand	the	Frame	header,	or	if	applicable,	expand	the

Transmission	Control	Protocol	header.
3.	 Locate	the	desired	time	value	field	in	the	Frame	or	TCP	sections	(these	are

surrounded	by	brackets).	If	you	are	selecting	a	time	value	in	the	TCP	section,	you
will	need	to	expand	the	[Timestamps]	section	to	see	the	values.

4.	 Right-click	on	the	desired	time	field	and	select	Apply	as	Column	from	the	menu.
5.	 The	new	column	will	appear	beside	the	Info	column	in	the	Packet	List	pane.	Click

and	drag	the	new	column	to	the	desired	location.
6.	 You	can	right-click	on	the	new	column	header,	select	Edit	Column	Details,	and	give

the	column	a	shorter	name	if	desired.

As	previously	discussed	in	the	preferences	settings	method,	you	must	enable	Calculate
conversation	timestamps	in	the	TCP	protocol	option	of	the	preferences	settings	to	view
and	use	the	time	values	in	the	TCP	section.

Conversation	versus	displayed	packet	time	options
The	difference	between	time	displays	for	a	conversation	versus	a	displayed	packet	time
option	is	perhaps	subtle	but	important.

As	illustrated	previously,	if	you	are	using	one	of	the	displayed	packet	time	options,	the

time	value	shown	for	a	given	packet	will	be	the	elapsed	time	since	the	previous	packet
was	displayed	in	the	Packet	List	pane.	This	time	value	option	has	no	useful	value	until
you	apply	a	display	filter,	after	which	you	can	easily	see	the	elapsed	time	between	each
packet	being	displayed	with	no	other	mental	math	or	adjustments	necessary.	This	is	very
useful	if	you’re	sequentially	filtering,	clearing,	and	viewing	more	than	one	conversation
using,	for	example,	a	tcp.stream==xx	display	filter	setting.

If	you	are	not	using	a	display	filter,	however,	there	may	be	packets	from	multiple
conversations	displayed	in	the	Packet	List	pane.	If	you	are	using	one	of	the	conversations
time	displays,	the	time	value	shown	for	a	given	packet	will	be	the	elapsed	time	since	the
previous	packet	for	that	conversation,	regardless	of	other	packets	that	may	be	interspersed
and	visible	between	the	packet	you’re	looking	at	and	the	previous	packet	in	that
conversation.	This	allows	a	quick	perusal	of	conversation	packet	times	without	having	to
apply	a	display	filter.

Choosing	the	best	Wireshark	time	display	option
With	so	many	time	display	options	available,	it	may	be	difficult	to	know	when	and	where
to	use	a	given	option.	Choosing	the	optimal	time	display	in	a	Wireshark	time	column
depends	greatly	upon	the	objectives	of	the	analysis:

If	you	need	to	know	the	specific	date	and	time	of	day	when	an	event	occurred	in	a
capture,	as	might	be	the	case	if	you’re	trying	to	find	and	correlate	packets	with	user-
reported	events	or	log	entries,	you	should	use	one	of	the	Absolute	time	formats.
If	you’re	looking	for	an	event	that	occurred	some	known	period	of	time	after	a
capture	started,	use	one	of	the	Relative	time	formats.
On	the	other	hand,	if	you	just	need	to	measure	the	time	between	certain	packets,	such
as	when	measuring	the	time	between	a	request	and	a	response,	one	of	the	Delta	time
formats	will	be	the	most	helpful.

Using	the	Time	Reference	option
Another	useful	Wireshark	feature	is	the	Time	Reference	menu	option,	which	can	be	used
to	measure	time	from	one	packet	to	another	in	the	midst	of	a	capture	file.	You	can	click	on
a	specific	packet	and	toggle	this	option	on	and	off	for	that	packet	using	either	the
Set/Unset	Time	Reference	option	from	the	Edit	menu,	or	by	right-clicking	and	selecting
the	Set	Time	Reference	(toggle)	option	from	the	pop-up	menu.	The	packet	will	be
marked	with	a	*REF*	designator	in	the	first	time	column,	and	any	relative	timestamps
following	the	Time	Reference	packet	will	be	displayed	relative	to	that	packet.

The	Time	Reference	setting	is	temporary;	it	isn’t	saved	to	a	capture	file	and	will
disappear	if	you	reload	the	file.

Colorization	and	coloring	rules
Colorization	of	packets	displayed	in	the	Packet	List	pane	can	be	an	effective	tool	to
identify	and	highlight	packets	of	interest,	especially	the	packets	that	contain	or	indicate
some	kind	of	error	condition.

Wireshark	has	predefined	coloring	rules	that	are	enabled	by	default	and	which	can	result
in	a	kaleidoscope	of	colored	packets	in	the	Packet	List	pane.	You	can	enable	or	disable
the	coloring	rules	by	selecting	Colorize	Packet	List	from	the	View	menu	or	by	clicking
on	the	Colorize	Packet	List	icon	in	the	icon	bar	if	this	becomes	overwhelming.

You	can	also	view,	enable/disable,	add,	delete,	reorder,	and	edit	the	coloring	rules	by
selecting	Coloring	Rules	from	the	View	menu	or	by	clicking	on	the	Edit	Coloring	Rules
icon	in	the	icon	bar.	There	is	a	Clear	button	that	removes	all	the	changes	you	may	have
made	to	the	rules	and	restores	them	to	default	settings	if	needed.

A	Coloring	Rules	window	is	depicted	in	the	following	screenshot:

Coloring	rules	employ	display	filter	formats	with	specific	values	to	identify	packets	that
should	be	colored.	The	rules	are	compared	to	packets	starting	with	the	top	rule	and
working	down	through	the	list.	Only	the	first	rule	that	matches	a	packet’s	condition	is
applied,	so	the	ordering	of	the	rules	dictates	which	rule	gets	applied	if	more	than	one	rule
matches	a	packet.	If	you	create	or	modify	a	rule,	you	have	to	check	the	ordering	to	make
sure	you	get	the	desired	behavior.

Clicking	on	a	rule	and	then	clicking	on	Edit	allows	you	to	modify	the	foreground	and
background	colors	for	that	rule,	as	well	as	change	the	filter	string	if	desired.

You	can	also	export/import	coloring	rules	if	you	want	to	share	them	with	others.	Coloring
rules	are	stored	in	a	file	called	colorfilters	in	one	of	your	personal	configuration
directories	depending	on	the	profile	in	use.

Packet	colorization
You	can	also	temporarily	color	a	series	of	packets	in	a	conversation	by	selecting	one	of	the
conversation	packets,	selecting	Colorize	Conversation	from	the	View	menu,	and
selecting	a	color	from	the	adjoining	menu,	or	by	right-clicking	on	a	packet,	selecting
Colorize	Conversation	from	the	menu,	selecting	one	of	the	protocol-specific	options,	and
then	selecting	the	desired	color.	This	colorization	will	disappear	when	the	capture	file	is
reloaded,	or	you	can	select	Reset	Coloring	1-10	from	the	View	menu.

Wireshark	preferences
In	the	Adding	a	time	column	section,	we	opened	the	Preferences	window	using
Preferences	in	the	Edit	menu	or	by	clicking	on	the	Preferences	icon	in	the	icon	bar	to
configure	the	time	display	column	options.	There	are	quite	a	number	of	Preferences
options	that	you	should	be	aware	of	and	may	want	to	adjust	to	customize	your	Wireshark
environment:

Layout:	This	is	used	to	select	the	ordering	of	the	Packet	List,	Packet	Details,	and
Packet	Bytes	panes.
Columns:	This	is	used	to	add,	remove,	and	move	columns	in	the	Packet	List	pane.
Capture:	This	is	used	to	set	the	default	capture	options.
Filter	Expressions:	This	is	used	to	add,	remove,	or	move	the	Filter	Expression
buttons.
Name	Resolution:	This	is	used	to	set	the	MAC,	transport,	and	network	(IP)
resolution	options.
Protocols:	There	are	options	that	can	be	set	for	all	of	the	protocols	that	Wireshark
supports;	some	of	the	most	important	and	useful	of	these	options	include:

HTTP:	This	is	used	to	add	any	additional	TCP	ports	that	should	be	recognized
as	HTTP	traffic	in	your	environment.
IEEE	802.11:	This	is	used	to	add/edit	the	Wireless	Decryption	keys	if	needed
to	decode	an	encrypted	wireless	session.
IPv4:	You	may	want	to	disable	Validate	IPv4	checksum	if	possible	to	avoid
inadvertent	error	messages	caused	by	an	NIC	option	called	checksum
offloading,	wherein	checksums	are	checked	after	the	packet	is	sent	to	Wireshark.
RTP:	Enable	Allow	subdissector	to	reassemble	RTP	streams	to	support
decoding	audio	from	VoIP	captures.
SMB:	Enable	Reassemble	SMB	Transaction	payload	to	support	exporting	file
objects	from	an	SMB	stream	in	a	packet	capture.
SSL:	Wireshark	can	decrypt	the	SSL/TLS	traffic	if	you	have	the	private	key	file.
To	add	a	key	to	Wireshark,	go	to	the	Preferences	window	and	click	on	the	RSA
keys	list	Edit	button.	Then,	in	the	SSL	Decrypt	window,	click	on	New	and
complete	the	SSL	Decrypt:	New	fields	(IP	address	of	the	SSL	server;	Port,
which	is	usually	443	for	HTTP;	Protocol,	such	as	HTTP;	and	Key	File,	which
is	used	to	select	the	path	to	an	RSA	private	key	(if	the	key	file	is	a	PKCS#12
keystore	(usually	has	a	.pfx	or	.p12	extension),	the	Password	field	must	be
completed)),	and	finally,	click	on	OK	to	close	each	subsequent	window.
TCP:	This	provides	you	with	multiple	options,	as	follows:

Validate	TCP	checksum	if	possible:	Disable	this	to	avoid	inadvertent
error	messages	caused	by	checksum	offloading.
Allow	subdissector	to	reassemble	TCP	streams:	Enable	this	to	support
exporting	file	objects	from	a	TCP	stream.
Relative	sequence	numbers:	Enable	this	to	make	it	easier	to	read	and

track	TCP	sequence	numbers	in	a	capture	file.
Track	number	of	bytes	in	flight:	This	is	a	value	calculated	and	displayed
in	the	TCP	protocol	header	in	the	Packet	Details	pane,	which	is	useful	for
performance	analysis.
Calculate	conversation	timestamps:	This	is	the	setting	discussed	earlier
that	is	needed	to	support	the	tcp.time_relative	and	tcp.time_delta	time
displays.

There	are	numerous	other	preferences	settings	that	may	be	pertinent	to	your	personal
preference	or	analysis	environment;	you	will	have	to	investigate	most	or	all	of	these
options.	If	you	are	unsure	of	a	particular	setting,	you	can	get	more	information	by	clicking
on	the	Help	button	at	the	bottom	of	the	Preferences	window.

The	preferences	settings	are	stored	in	a	file	called	preferences	in	one	of	your	Personal
configuration	directories,	depending	on	the	profile	in	use.

Wireshark	profiles
As	we	have	covered	the	numerous	Wireshark	configuration	options	that	are	saved	in
specific	files,	such	as	cfilters	for	Capture	Filters,	dfilters	for	Display	Filters,
colorfilters	for	Coloring	Rules,	and	preferences	for	preferences	settings,	it	was
mentioned	that	these	files	were	saved	in	one	of	your	Personal	configuration	directories,
but	I	have	left	a	full	explanation	of	profiles	and	these	configuration	directories	until	now
so	that	you	would	better	understand	what	makes	up	a	profile	and	why	they	are	useful.

A	profile	is	a	collection	of	Wireshark	configuration	files	customized	for	your	specific
needs	and	tastes	in	capture	and	display	filters,	coloring	rules,	columns	and	layouts,	and	so
on	for	the	particular	environment	you	are	working	in.	You	can	create	one	or	more	profiles
and	quickly	reconfigure	Wireshark	to	work	best	in	differing	environments	by	selecting	the
appropriate	profile.

When	you	first	install	Wireshark,	it	operates	with	a	default	set	of	configuration	files	that
are	located	in	the	Global	configuration	directory,	which	is	usually	the	same	as	the
System	directory	where	the	Wireshark	program	files	reside.	When	you	change	any	of	the
default	settings,	the	changes	are	saved	in	new	configuration	files	that	are	stored	in	a
Personal	configuration	directory,	the	location	of	which	varies	depending	upon	your
installation.	You	can	determine	and	quickly	open	the	Personal	configuration	directory	for
your	installation	from	Wireshark	by	clicking	on	the	About	Wireshark	option	in	the	Help
menu	and	clicking	on	the	Folders	tab.	Within	this	tab	is	a	list	of	all	the	directories	that
Wireshark	uses,	as	shown	in	the	following	screenshot:

You	can	double-click	on	a	Wireshark	directory	link	to	open	a	window	to	that	directory.

Double-clicking	on	the	Personal	configuration	link	in	the	Folders	tab	opens	the
directory	where	(under	a	profiles	subdirectory)	your	custom	profile	files	are	stored.	Each
profile	is	stored	in	a	separate	subdirectory	that	reflects	the	name	you	give	a	profile,	as
shown	in	the	following	screenshot:

Each	custom	profile	directory	contains	all	the	Wireshark	configuration	files	that
determine	how	that	profile	controls	Wireshark’s	features.	You	can	copy	and	share	these
custom	profile	directories	with	other	Wireshark	users;	copying	the	profile	directory	into
their	Personal	configuration	directory	makes	that	profile	available	for	selection.

Creating	a	Wireshark	profile
To	create	a	new	Wireshark	profile,	follow	these	steps:

1.	 Right-click	on	the	Profile	section	(on	the	right-hand	side	pane)	of	Status	Bar	at	the
bottom	of	the	Wireshark	user	interface	and	click	on	New,	or	navigate	to	Edit	|
Configuration	Profiles	|	New	in	the	menu	bar.

2.	 In	the	Create	New	Profile	window	that	appears,	you	can	give	the	profile	a	name.
You	can	also	choose	to	create	the	profile	starting	with	the	settings	from	an	existing
profile	by	making	a	selection	from	the	Create	from	drop-down	list	or	start	from
scratch.	The	Create	New	Profile	window	is	shown	in	the	following	screenshot:

3.	 Clicking	on	OK	will	save	the	new	profile	in	its	own	directory	by	the	same	name	in
your	Profiles	directory	in	the	Personal	configuration	menu.

Selecting	a	Wireshark	profile
You	can	select	one	of	your	custom	profiles	by	selecting	Configuration	Profiles	from	the
Edit	menu,	clicking	on	one	of	the	listed	profiles,	and	clicking	on	OK.	A	quicker	method	is
just	clicking	on	the	Profile	section	of	Status	Bar	and	selecting	a	profile	from	the	pop-up
menu,	as	shown	in	the	following	screenshot:

Summary
The	topics	covered	in	this	chapter	included	working	with	Wireshark’s	time	displays,
colorization	and	coloring	rules,	selecting	the	appropriate	Wireshark	preferences	for	a
given	analysis	environment,	and	saving	all	of	these	settings	in	profiles	that	can	be	selected
as	required.

In	the	next	chapter,	we’ll	cover	a	selection	of	network	layer,	transport	layer,	and
application	layer	protocols	in	common	use	in	modern	networks,	which	will	help	you	to
prepare	for	more	advanced	packet	analysis	activities	in	the	later	chapters.

Chapter	5.	Network	Protocols
Effective	packet	analysis	requires	familiarity	with	the	primary	protocols	in	use	in	modern
networks.	In	this	chapter,	we	will	review	the	most	common	protocols	in	their	respective
layers:

Network	layer	protocols
Transport	layer	protocols
Application	layer	protocols

We’ll	cover	the	significant	purpose	and	relevant	fields	to	support	network	connectivity
and/or	application	functionality	in	each	protocol,	as	well	a	sampling	of	Wireshark	capture
and	display	filters	for	each	protocol.

The	OSI	and	DARPA	reference	models
We	reviewed	the	purpose	of	the	OSI	and	DARPA	reference	models	in	Chapter	2,
Networking	for	Packet	Analysts.	The	visual	depiction	of	their	layers	is	repeated	in	the
following	diagram	as	a	reference	and	summary	of	some	of	the	primary	protocols	and
where	they	fit	into	their	respective	layers:

Network	layer	protocols
Network	layer	protocols,	also	known	as	Internet	layer	protocols	in	the	DARPA	reference
model,	provide	basic	network	connectivity	and	internetwork	communications	services.	In
this	layer,	you	will	predominantly	find	the	IP	protocol	being	used	to	get	packets
transported	across	the	network,	along	with	ARP,	IGMP,	and	ICMP.

We	covered	the	IP	and	ARP	protocol	packet	header	structures	and	fields	in	Chapter	2,
Networking	for	Packet	Analysts,	so	this	information	won’t	be	repeated.	However,	basic
Wireshark	capture	and	display	filters	are	provided	here	and	also	for	the	remaining
protocols	in	the	following	sections:

Wireshark	IPv4	filters
Capture	filter(s):	ip

Display	filter(s):	ip	ip.addr==192.168.1.1	ip.src==	ip.dst==	ip.id	>	2000

Wireshark	ARP	filters
Capture	filter(s):	arp

Display	filter(s):	arp	arp.opcode==1	arp.src.hw_mac==00:1c:25:99:db:85

Internet	Group	Management	Protocol
The	Internet	Group	Management	Protocol	(IGMP)	is	used	by	hosts	to	notify	adjacent
routers	of	established	multicast	(one-to-any)	group	memberships.	In	other	words,	IGMP
enables	a	computer	that	provides	content	(video	feeds),	for	example,	to	provide	such
content	to	a	distributed	group	of	users	using	one	set	of	the	multicast	address	ranges	(in	the
224.0.0.0	to	239.255.255.255	class	D	multicast	range).	This	multicast	capability
depends	on	routers	that	are	capable	and	configured	to	support	this	service;	clients	must
join	the	multicast	group.	When	a	host	wants	to	start	a	multicast,	it	sends	an	IGMP
Membership	Report	message	to	the	224.0.0.2	(all	multicast	routers)	address	that
specifies	the	multicast	IP	address	for	this	particular	group.	Clients	who	wish	to	join	or
leave	this	group	(so	they	can	receive	the	multicast	content)	send	an	IGMP	join	or	leave
message	to	the	router.	The	following	table	shows	the	various	ranges	for	addresses:

Starting	address	range Ending	address	range Description

224.0.0.0 224.0.0.255 These	are	reserved	for	special	well-known	multicast	addresses

224.0.1.0 238.255.255.255 These	are	globally-scoped	(Internet-wide)	multicast	addresses

239.0.0.0 239.255.255.255 These	are	locally-scoped	and	administered	multicast	addresses

The	following	screenshot	shows	the	significant	fields	in	the	IGMP	protocol	header:

The	preceding	significant	fields	in	the	IGMP	protocol	header	include:

Type:	This	is	a	type	of	IGMP	message.	Type	22	is	IGMPv3	Membership	Report.
Record	Type:	There	are	different	types	of	Group	Records.	The	value	of	Record
Type	3	is	Change	To	Include	Mode,	which	indicates	that	content	from	the	source
device	is	to	be	forwarded	to	the	in-group	hosts	by	the	multicast	router.
Multicast	Address:	This	is	the	multicast	IP	address	for	a	specific	group.

You	should	also	note	the	following	interesting	fields	in	the	previous	protocol	layers:

The	Ethernet	frame	destination	MAC	address	is	one	of	a	range	of	multicast	MAC
addresses	(01:00:5e:00:00:00	–	01:00:5e:7f:ff:ff)
The	Protocol	field	in	the	IP	header	specifies	IGMP	2
The	IP	layer	destination	IP	Address	is	224.0.0.22,	which	is	a	reserved	IGMPv3
multicast	IP	address

The	IGMP	protocol	has	multiple	versions	and	is	rather	complex.	Refer	to	the	protocol
references	provided	at	the	beginning	of	this	chapter	for	more	information.

Wireshark	IGMP	filters
Capture	filter(s):	igmp

Display	filter(s):	igmp	igmp.type==0x22	igmp.record_type==4
igmp.maddr==244.0.1.60

Internet	Control	Message	Protocol
The	Internet	Control	Message	Protocol	(ICMP)	is	used	by	network	devices	such	as
routers	to	send	error	messages	indicating	that	a	requested	service	is	not	available,	or	a	host
or	network	router	could	not	be	reached.	ICMP	is	a	control	protocol.	This	means	that
although	it	is	transported	as	IP	datagrams,	it	does	not	carry	the	application	data—instead,
it	carries	the	information	about	the	status	of	the	network	itself.

ICMP	pings
One	of	the	most	well-known	uses	of	ICMP	is	to	ping,	wherein	a	device	sends	an	ICMP
echo	request	(Type	8,	Code	0)	packet	to	a	distant	host	(via	that	host’s	IP	address),	which
will	(if	the	ICMP	service	isn’t	disabled	or	blocked	by	an	intermediate	firewall)	respond
with	an	ICMP	echo	reply	(Type	0,	Code	0)	packet.	Pings	are	used	to	determine	whether
the	target	host	is	available	and	can	be	reached	over	the	network.	By	measuring	the	time
that	expires	between	ping	requests	and	replies,	we	know	the	round	trip	time	(RTT)	delay
time	over	the	network	path.

ICMP	traceroutes
A	variation	of	ping	functionality	is	used	to	perform	a	traceroute	(also	known	as
traceroute),	which	is	a	list	of	the	IP	addresses	of	the	router	interfaces	that	packets	traverse
to	get	from	a	sending	device	to	a	target	host	or	device.	The	traceroutes	are	used	to
determine	or	confirm	the	network	path	taken	from	a	sending	device	to	a	target	host	or
device.

A	traceroute	is	accomplished	by	sending	the	ICMP	echo	request	packets	to	a	distant	host
just	as	in	a	normal	ping,	but	with	modifications	to	the	Time-to-Live	(TTL)	field	in	the	IP
header	of	each	packet.	The	traceroute	function	takes	advantage	of	the	fact	that	each	router
in	a	network	path	decrements	the	TTL	value	in	a	packet	by	1,	so	as	the	packet	traverses,
the	routers	in	a	path	and	the	TTL	value	will	decrease	accordingly	along	the	way.	If	a	router
receives	a	packet	with	a	TTL	value	of	1,	it	will	send	an	ICMP	TTL	exceeded	in	transit
(Type	11,	Code	0)	error	message	back	to	the	sender	(along	with	a	copy	of	the	request
packet	it	received)	and	otherwise	discard	(not	forward)	the	packet.

The	traceroute	works	by	sequentially	setting	the	TTL	in	multiple	ICMP	request	packets	to
1,	then	to	2,	then	3,	and	so	on,	which	results	in	each	router	in	the	network	path	sending
TTL	exceeded	error	messages	back	to	the	sender.	Since	these	returned	messages	are	sent
by	the	in-path	router	using	the	IP	address	of	the	interface	where	the	ICMP	packet	was
received,	the	traceroute	utility	can	build	and	display	a	progressive	list	of	router	interface
IP	addresses	in	the	path	and	the	RTT	delay	to	each	router.

ICMP	control	message	types
A	sampling	of	the	most	commonly	seen	types	of	ICMP	control	messages,	including	their
type	and	code	(subtype)	numbers,	are	provided	in	the	following	table:

Type Code Description

0 0 This	indicates	echo	reply	(ping)

3 0 This	indicates	destination	network	unreachable

3 1 This	indicates	destination	host	unreachable

3 4 This	indicates	fragmentation	required	and	do	not	fragment	bit	set

3 6 This	indicates	destination	network	unknown

3 7 This	indicates	destination	host	unknown

5 0 This	indicates	redirect	datagram	for	the	network

5 1 This	indicates	redirect	datagram	for	the	host

8 0 This	indicates	echo	request	(ping)

11 0 This	indicates	TTL	expired	in	transit	(seen	in	traceroutes)

The	Wireshark	packet	details	fields	for	the	ICMP	packet	illustrated	in	the	following
screenshot	depict	a	Time-to-live	exceeded	message	as	seen	in	a	typical	traceroute	capture:

The	following	points	are	significant	to	analyze	this	packet:

The	source	IP	address	seen	in	the	IPv4	header	summary	is	10.192.128.1,	which	is	the

IP	address	of	the	router	interface	sending	the	ICMP	message	to	the	originator,
192.168.1.115
The	ICMP	packet	is	Type	11,	Code	0	(TTL	exceeded	in	transit)

The	second	set	of	IPv4	and	ICMP	headers	that	follow	the	first	IPv4	and	ICMP	headers	are
copies	of	the	original	packet	transmitted	by	the	sender.	This	copy	is	returned	to	allow
determination	of	the	packet	that	caused	the	ICMP	message.	The	significant	points	in	the
packet	details	of	this	ICMP	message	copy	include:

The	target	destination	IP	address,	where	the	echo	request	packet	was	intended	to	be
sent	(and	would	have	been	if	the	TTL	value	hadn’t	been	altered)	is	205.251.242.51.
The	TTL	value	was	1	when	this	packet	reached	the	10.192.128.1	router	interface.
This	packet	cannot	be	forwarded,	resulting	in	the	TTL	exceeded	message	being	sent
back	to	the	sender.
The	original	ICMP	packet	was	a	Type	8,	Code	0	echo	request	message.
The	Header	Data	section	of	the	ICMP	packet	for	the	echo	requests	and	replies	will
include	a	16-bit	identifier	and	16-bit	sequence	number,	which	are	used	to	match	echo
replies	to	their	requests.

ICMP	redirects
Another	common	use	of	ICMP	is	to	redirect	a	client	to	use	a	different	default	gateway
(router)	to	reach	a	host	or	network	than	the	gateway	it	originally	tried	to	use.	In	the	ICMP
Redirect	packet	depicted	in	the	following	screenshot,	a	number	of	packet	fields	should	be
noted:

The	source	IP	address	of	the	ICMP	redirect	packet	is	192.168.1.1,	which	was	the
client’s	default	gateway;	this	is	the	router	sending	the	redirect	packet	back	to	the
client
The	ICMP	Type	is	5	(Redirect)	and	Code	is	1	(Redirect	for	host)
The	gateway	IP	address	that	the	router	192.168.1.1	is	telling	the	client	to	use	to
reach	the	desired	target	host	is	192.168.1.2
The	IP	address	of	the	target	host	was	10.1.1.125

The	following	screenshot	shows	the	ICMP	Redirect	packets:

Wireshark	ICMP	filters

Capture	filters(s):	icmp

Display	filter(s):	icmp	icmp.type==8	||	icmp.type==0	(pings)	icmp.type==5
&&	icmp.code==1	(host	redirects)

Internet	Protocol	Version	6
The	Internet	Protocol	Version	6	(IPv6)	is	the	latest	version	of	Internet	protocol,	and
although	it	is	in	its	earliest	stages	of	adoption,	it	is	intended	to	eventually	replace	IPv4—
mostly	to	alleviate	the	shortage	of	IP	addresses	that	can	be	assigned	to	network	devices.
IPv4,	with	its	32-bit	address	space,	provides	approximately	4.3	billion	addresses,	nearly
all	of	which	have	been	assigned	to	companies	and	private	interests	worldwide.

IPv6	utilizes	a	128-bit	address	space,	which	allows	2128	or	approximately	3.4	x	1038
addresses;	that	number	is	340,282,366,920,463,463,374,607,431,768,211,456	unique
addresses.

IPv6	addressing
The	128	bits	of	an	IPv6	address	are	represented	in	eight	groups	of	16	bits	each,	written	as
four	hexadecimal	digits	separated	by	colons	(:).	An	example	of	an	IPv6	address	is
2001:0db8:0000:0000:0000:ff00:0042:8329.

For	convenience,	an	IPv6	address	may	be	abbreviated	to	shorter	notations	by	application
of	the	following	rules,	wherever	possible:

One	or	more	leading	zeroes	from	any	groups	of	hexadecimal	digits	are	removed;	this
is	usually	done	to	either	all	or	none	of	the	leading	zeroes.	For	example,	the
hexadecimal	group	0042	can	be	converted	to	just	42.
Consecutive	sections	of	zeroes	are	replaced	with	a	double	colon	(::).	The	double
colon	may	only	be	used	once	in	an	address,	as	multiple	use	would	render	the	address
indeterminate.	A	double	colon	must	not	be	used	to	denote	a	single	section	of	omitted
zeroes.

An	example	of	applying	these	rules	to	IPv6	addresses	is	as	follows:

Initial	address:	2001:0db8:0000:0000:0000:ff00:0042:8329
After	removing	all	leading	zeroes:	2001:db8:0:0:0:ff00:42:8329
After	omitting	consecutive	sections	of	zeroes:	2001:db8::ff00:42:8329

The	128	bits	of	an	IPv6	address	are	logically	divided	into	a	network	prefix	and	a	host
identifier.	The	Class	Inter-Domain	Routing	(CIDR)	notation	is	used	to	represent	IPv6
network	prefixes,	for	example,	2001:DB8:0:CD30::/64	represents	network
2001:DB8:0000:CD30::.

IPv6	address	types
There	are	three	basic	types	of	IPv6	addresses:

Unicast:	These	packets	from	one-to-one	device	use	a	single	interface	address.
Unicast	addresses	can	be	of	one	of	the	following	three	types:

Global	Unicast:	This	is	routable	to	and	over	the	Internet.	Global	Unicast
addresses	generally	start	with	2xxx	(such	as	2000::/3).
Link-local:	This	is	automatically	assigned	to	an	interface	and	used	on	the	local
network	link;	this	is	not	routable	to	the	Internet,	much	like	a	MAC	address.

Link-local	Unicast	addresses	start	with	FE80	(FE80::/10).	They	are
automatically	assigned	to	an	interface	when	it	is	initialized	using	an	algorithm
that	uses	a	rearranged	version	of	the	NIC’s	48-bit	MAC	address	in	the	IPv6
address	and	are	used	to	communicate	on	the	local	link.	These	addresses	are	not
routable.	IPv6	uses	link-local	addresses	for	neighbor	discovery	functions.
Unique	local:	This	is	not	routable	to	the	Internet,	but	it	is	routable	within	an
enterprise	(similar	to	IPv4	private	addresses).	Unique	local	Unicast	addresses
start	with	FC00	(FC00::/7).	This	block	of	addresses	is	reserved	for	use	in	private
IPv6	networks.

Multicast:	These	are	packets	from	one-to-many	devices.	Multicast	addresses	start
with	FFxx.	An	example	of	a	multicast	address	is	FF01:0:0:0:0:0:0:101,	which	can
be	shortened	to	FF01::101.	There	is	no	broadcast	address	in	IPv6;	multicasts	are	used
as	a	replacement.	Some	well-known	multicast	addresses	are	shown	in	the	following
table:

Address Description Scope

ff01:0:0:0:0:0:0:1
All	nodes
address

Interface-local	(spans	only	a	single	interface	on	a	node	useful	only	for
loopback	transmission	of	multicast	packets)

ff02:0:0:0:0:0:0:1
All	nodes
address Link-local	(all	nodes	on	the	local	network	segment)

ff01:0:0:0:0:0:0:2
All	routers
address Interface-local

ff02:0:0:0:0:0:0:2
All	routers
address Link-local

ff05:0:0:0:0:0:0:2
All	routers
address Site-local	(spans	a	single	site)

ff02:0:0:0:0:0:1:2
DHCPv6
servers/agents Link-local

ff05:0:0:0:0:0:1:3
DHCPv6
servers/agents Site-local

Anycast:	These	packets	are	from	one	to	the	nearest	of	a	group	of	interfaces.	There	is
no	special	addresses	scheme	for	Anycast	addresses;	they	are	similar	to	Unicast
addresses.	An	Anycast	address	is	created	automatically	when	a	Unicast	address	is
assigned	to	more	than	one	interface.	Anycast	addresses	can	be	used	to	set	up	a	group
of	devices	so	that	any	one	of	the	group	devices	can	respond	to	a	request	sent	to	a
single	IPv6	address.

Further	discussion	of	IPv6	addressing	would	cover	quite	a	number	of	additional	features,
which	are	beyond	the	scope	of	this	book.	The	reader	is	encouraged	to	research	IPv6
addressing	further	online	and/or	by	reading	Request	For	Comments	(RFC)	4291	(IP
Version	6	Addressing	Architecture).

IPv6	header	fields
An	example	of	an	IPv6	protocol	header	is	illustrated	in	the	following	screenshot:

The	IPv6	header	fields	are	similar	to	many	IPv4	headers	and	the	fields	include:

Version:	This	is	the	IP	version	number,	6	for	IPv6.
Traffic	class:	This	is	similar	to	the	IPv4	DiffServ	field;	it	is	used	to	identify	different
classes	or	priorities	of	IPv6	packets.
Flow	label:	These	are	used	to	identify	sequences	of	packets	that	are	labeled	as	a	set.
An	IPv6	flow	is	defined	by	the	20-bit	Flow	Label	field	and	the	source	and
destination	IPv6	address	fields.
Payload	length:	This	is	the	length	of	the	IPv6	payload,	not	including	any	packet
padding.
Next	header:	This	field	indicates	what’s	coming	next	in	the	packet.	This	is
equivalent	to	the	IPv4	Protocol	field.	In	the	preceding	example,	the	next	layer	is	a
normal	TCP	(6)	header.
Hop	limit:	This	field	is	roughly	equivalent	to	the	Time	To	Live	field	in	IPv4;	it	is
decremented	by	one	by	each	device	that	forwards	the	IPv6	packet.	When	the	value
reaches	one,	the	packet	cannot	be	forwarded.
Source	and	Destination	addresses:	These	are	the	128-bit	IPv6	source	and
destination	addresses.

IPv6	supports	extension	headers	that	provide	additional	information	fields	and	that	also
extend	the	length	of	the	IPv6	header.	There	is	specific	Next	Header	code	that	indicates
the	presence	of	this	added	functionality.

IPv6	transition	methods
As	part	of	the	transition	to	IPv6,	the	current	TCP/IP	devices	support	dual	stacks	(IPv4	and
IPv6	simultaneously)	and	the	ability	to	encapsulate	and	tunnel	IPv6	packets	inside	IPv4
packets	so	that	they	can	be	routed	by	IPv4	networks.	The	three	of	the	most	popular
encapsulation	methods	are:

6to4	tunneling:	In	this	tunneling	method,	an	IPv6	header	follows	an	IPv4	header;	the
Protocol	field	of	the	IPv4	header	will	contain	41	(IPv6),	and	the	source	IPv6	address
in	the	IPv6	header	will	start	with	2002.

Teredo:	In	this	tunneling	method,	an	IPv6	header	is	encapsulated	inside	a	UDP
packet.	This	method	was	developed	to	accommodate	NAT	devices	that	do	not	handle
protocol	41.	Teredo	tunneling	can	be	identified	in	the	UDP	packet	header	by	a
destination	port	of	3544.
ISATAP:	This	tunneling	method	uses	a	locally	assigned	IPv4	address	to	create	a	64-
bit	interface	identifier.	For	example,	in	ISATAP,	the	IPv4	address	24.6.173.220
becomes	::0:5EFE:1806:addc.	ISATAP	encapsulates	IPv6	headers	within	IPv4	as	in
6to4	tunneling.

Wireshark	IPv6	filters

Capture	filter(s):	ip6	host	fe80::1	ip	proto	41	(capture	IPv6-over-IPv4
tunneled	traffic)

Display	filter(s):	ipv6	ipv6.addr	==	fe80::f61f:c2ff:fe58:7dcb	ipv6.addr	==
ff02::1

Internet	Control	Message	Protocol	Version	6
Internet	Control	Message	Protocol	Version	6	(ICMPv6)	is	an	integral	part	of	IPv6,	and
the	base	protocol	must	be	fully	implemented	by	every	IPv6	node.	ICMPv6	provides
services	for	an	IPv6	environment	that	are	provided	by	other	distinct	protocols	in	an	IPv4
environment,	such	as	Neighbor	Solicitation	to	replace	ARP.

The	following	table	contains	some	of	the	common	ICMPv6	packet	types:

ICMPv6
packet	type

ICMPv6
type Purpose

Echo	request 128 Ping	request

Echo
response 129 Ping	response

Multicast
listener	query 130 Sent	by	multicast	router	to	poll	a	network	segment	for	group	members

Multicast
listener	report 131

Sent	by	a	host	when	it	joins	a	multicast	group,	or	in	response	to	a	multicast	listener	query	sent
by	a	router

Multicast
listener	done 132 Sent	by	a	host	when	it	leaves	a	multicast	group	and	might	be	the	last	member	of	that	group	on

the	network	segment

Router
solicitation 133 Discover	the	local	router(s)

Router
advertisement 134

Respond	to	Router	Solicitation	messages,	as	well	as	sending	this	packet	after	initialization
and	periodically	afterwards

Neighbor
solicitation 135 Used	first	for	Duplicate	Address	Detection	(using	a	source	address	of	::)	and	then	to	obtain

the	MAC	address	of	the	local	router;	this	function	replaces	ARP

Neighbor
advertisement 136 Response	to	Neighbor	Solicitation	messages

Redirect
message 137 Redirect	a	device	to	the	proper	router	to	send	packets	to	a	specific	network	or	host

An	example	of	a	Neighbor	Solicitation	ICMPv6	packet	is	shown	in	the	following
screenshot:

The	significant	fields	in	this	packet	include:

Next	Header:	This	field	contains	58,	which	indicates	that	the	next	protocol	header	is
to	be	ICMPv6.
IPv6	Source	Address:	The	presence	of	an	unspecified	address	(::)	indicates	this	is	a
Duplicate	Address	Detection	packet.
IPv6	Destination	Address:	This	is	basically	a	multicast	address.
ICMPv6	Type:	This	is	a	Neighbor	Solicitation	message	using	Type	135.
ICMPv6	Code:	This	is	the	subtype	for	Neighbor	Solicitation	messages;	this	will	be
0.
ICMPv6	Target	Address:	This	is	the	address	the	host	wants	to	use.	If	another	node
on	the	network	is	already	using	this	address,	they	will	respond	accordingly.

Multicast	Listener	Discovery
Multicast	Listener	Discovery	(MLD)	is	another	component	of	the	IPv6	suite	used	by
IPv6	routers	to	discover	multicast	listeners	on	a	directly	attached	link.	MLD	is	part	of	the
ICMPv6	protocol	and	it	replaces	IGMP	on	IPv4	networks.

Wireshark	ICMPv6	filters

Capture	filter(s):	icmp6

Display	filter(s):	icmpv6	icmpv6.type==1135	&&	icmpv6.code==0	(Neighbor
Solicitation)

Transport	layer	protocols
The	transport	layer	protocols	include	TCP	and	UDP	used	to	transport	application
protocols.

User	Datagram	Protocol
The	User	Datagram	Protocol	(UDP)	is	considered	an	unreliable	transport.	In	this,	there’s
no	guarantee	of	packet	delivery	or	ordering,	but	it	has	a	lower	overhead	and	is	used	by
time-sensitive	applications	such	as	voice	and	video	traffic.

The	following	screenshot	shows	the	fields	contained	in	an	UDP	header:

The	UDP	header	is	only	8-bytes	long,	consisting	of:

Source	and	Destination	port	number:	This	is	2	bytes	each.
Length:	This	is	the	length	of	the	UDP	header	plus	the	payload.	This	is	a	2-byte	field.
Checksum:	This	is	a	2-byte	field	used	to	check	for	errors	in	the	UDP	header	and
data.	If	no	checksum	was	generated	by	the	transmitter,	this	will	be	all	zeroes.

Wireshark	UDP	filters
Capture	filter(s):	udp	udp	port	2222

Display	filter(s):	udp	udp.srcport	==	161	(SNMP	response)	udp.length	>	256

Transmission	Control	Protocol
The	Transmission	Control	Protocol	(TCP)	provides	a	reliable	delivery	of	data	by
detecting	lost,	duplicated,	or	out-of-order	packets,	requesting	retransmission	of	lost	data,
or	rearranging	packets	in	the	right	order	before	delivering	them	to	the	application.	TCP
can	also	accept	a	large	chunk	of	data	from	an	application	and	handle	getting	the	data
transported	to	the	other	end	reliably	using	multiple	packets	and	reassembling	them	at	the
other	end.

The	following	screenshot	highlights	the	significant	fields	of	a	basic	TCP	header:

The	TCP	header	contents	and	length	can	vary	depending	on	options	that	may	be	in	use,
but	in	its	simplest	implementation	it	consists	of:

Source	port	and	Destination	port:	These	are	well-known	and	registered	ports	are
used	(on	servers)	to	access	standard	application	services	such	as	HTTP,	FTP,	SMTP,
databases,	and	so	on.	Port	numbers	assigned	to	client/user	sessions	are	usually	in	a
higher	number	range	and	assigned	sequentially.
Sequence	number:	This	is	a	number	that	represents	the	first	octet	in	any	given
segment.	Sequence	numbers	are	initialized	at	the	beginning	of	new	sessions	as	a
random	number,	and	then	incremented	as	data	bytes	are	sent.
Acknowledgment	number:	When	the	ACK	flag	bit	is	set,	this	field	contains	the	next
sequence	number	expected	from	the	sender,	which	in	turn	acknowledges	receipt	of	all
the	bytes	received	up	to	that	point.

Note
The	use	of	sequence	and	acknowledgment	numbers	is	how	TCP	ensures	reliable
delivery	of	data	by	tracking	the	number	and	order	of	received	bytes.

Sequence	and	acknowledgment	numbers	are	large	and	difficult	for	humans	to	follow.
Wireshark	can	convert	and	display	these	as	relative	values	that	start	with	0	at	the

beginning	of	a	session	to	make	it	easier	to	inspect	them	and	relate	the	values	to	the
number	of	bytes	transmitted	and	received.

Flags:	These	bits	are	used	to	control	connection	setups,	terminations,	and	flow
control	mechanisms.
Window	size:	This	field	indicates	the	current	size	of	the	buffer	on	this	host	used	to
store	received	data	until	it	can	be	handed	off	to	the	receiving	application.	This
information	enables	the	sending	host	to	adjust	data	flow	rates	in	case	of	network	or
host	congestion.

TCP	flags
The	following	table	lists	the	flags	that	are	most	commonly	used	in	a	TCP	header:

Flag	field	name Description

URG	(urgent) This	indicates	the	Urgent	Pointer	field	(after	the	TCP	header	checksum)	that	should	be	examined.
This	flag	is	normally	0;	the	Urgent	Pointer	field	is	only	examined	if	this	bit	is	set.

ACK
(acknowledgment) This	is	the	acknowledgment	packet.

PSH	(push) This	indicates	whether	the	sending	node’s	TCP	stack	should	bypass	any	buffering	and	pass	the	data
directly	to	the	network	and	on	to	the	receiving	application.

RST	(reset) This	is	used	to	close	the	connection	explicitly.

SYN
(synchronize)

This	is	used	to	synchronize	sequence	numbers	and	used	in	a	three-way	TCP	session	initiation
handshake	process.

FIN	(finish) This	is	used	when	the	transaction	is	finished.	This	does	not	mean	that	the	connection	is	to	be	closed
explicitly,	but	is	commonly	seen	at	the	end	of	sessions.

TCP	options
The	TCP	also	supports	a	number	of	additional	options,	several	of	which	are	in	common
use	in	modern	networks	that	you	should	be	aware	of.	The	snippet	of	a	TCP	header
illustrated	in	the	following	screenshot	depicts	several	of	the	most	popular	options:

The	TCP	options	highlighted	in	the	preceding	screenshot	include:

Maximum	Segment	Size:	This	option	allows	you	to	specify	of	the	number	of	bytes
that	can	follow	the	TCP	header.	This	option	exists	to	allow	adjustment	to
accommodate	VLAN	tagging	or	Multiprotocol	Label	Switching	(MPLS).
Window	Scale:	This	option	overcomes	the	inability	of	the	Window	Size	field	in	a
standard	TCP	header	to	specify	a	window	size	greater	than	65,535	bytes.	Window
scaling	allows	you	to	specify	a	factor	to	multiply	the	advertised	window	size	to
achieve	a	larger	window	size.	Both	sides	of	a	session	must	be	able	to	support	this
option	for	it	to	apply;	this	is	determined	during	the	session	setup.
TCP	SACK	Permitted	Option:	This	option	indicates	that	this	node	supports
selective	acknowledgments,	which	allows	a	node	to	acknowledge	ongoing	and
incoming	data	packets	while	still	asking	for	a	specific	missing	packet.	The	recovery
process	only	requires	retransmission	of	the	missing	packet(s),	instead	of	the	missing
packet	and	all	the	packets	that	followed.	Both	sides	of	a	session	must	be	able	to
support	this	option	for	it	to	apply,	as	determined	during	session	setup.

Wireshark	TCP	filters

Capture	filter(s):	tcp	tcp	port	80

Display	filter(s):	tcp	tcp.port	==	80	tcp.dstport	==	8080	tcp.stream	==	2

Application	layer	protocols
The	most	common	application	layer	protocols	include	DHCP	used	to	obtain	client	IP
addresses	and	configuration	information,	DNS	for	hostname	resolution,	HTTP,	SMB,
POP/SMTP,	and	FTP	for	the	most	common	network	services	and	SIP,	RTP,	and	RTCP	for
VoIP	and	video	conferencing.

Extensive	coverage	of	all	the	upper	layer	protocols	is	beyond	the	scope	of	this	book.	A
brief	overview	of	DHCP	and	DNS	will	be	provided,	as	these	protocols	universally	support
network	operations	and	HTTP	as	an	example	of	one	of	the	most	common	application	layer
protocols.	The	reader	is	encouraged	to	research	any	or	all	of	these	protocols	further
depending	on	their	scope	of	interest	and	need	to	meet	the	analysis	tasks	being	addressed.

Dynamic	Host	Configuration	Protocol
Dynamic	Host	Configuration	Protocol	(DHCP)	allows	a	client	to	lease	an	IP	address
from	a	pool	managed	by	a	DHCP	server.	The	client	can	receive	other	configuration
options	such	as	the	default	gateway,	subnet	mask,	and	one	or	more	DNS	server	addresses
as	well.	DHCP	is	derived	from	an	older	BOOTP	protocol;	Wireshark	uses	bootp	in	display
filter	syntax.	DHCP	works	by	the	client	sending	a	broadcast	packet	using	UDP	source	port
67	to	UDP	destination	port	68.	A	DHCP	server	will	respond	to	the	requestor’s	IP	address
and	using	UDP	source	port	68	to	UDP	destination	port	67.

DHCP	servers	don’t	necessarily	have	to	reside	on	the	same	local	network	segment	as
clients.	A	relay	agent	such	as	a	router	can	forward	DHCP	requests	and	respond	to/from	a
different	network	where	a	DHCP	server	resides.

Wireshark	DHCP	filters
Capture	filter(s):	port	67	(DHCP	is	between	ports	67	and	68;	filtering	on	port	67	is
sufficient	to	get	both	sides	of	the	conversations)

Display	filter(s):	bootp	bootp.option.value	==	0	(DHCP	Discover	message)

Dynamic	Host	Configuration	Protocol	Version	6
Dynamic	Host	Configuration	Protocol	Version	6	(DHCPv6)	is	the	IPv6	version	of
DHCP.	Since	IPv6	doesn’t	use	broadcasts,	DHCPv6	clients	use	the	multicast	address	for
All_DHCP_Relay_Agents_and_Servers	(ff02::1:2)	to	locate	DHCPv6	servers	or	relay
agents.

Wireshark	DHCPv6	filters
Capture	filter(s):	port	546	(DHCPv6	is	between	ports	546	and	547;	either	will	work)

Display	filter(s):	dhcpv6	dhcpv6.msgtype	==	1(DHCPv6	Solicit	message)

Domain	Name	Service
Domain	Name	Service	(DNS)	is	used	to	convert	host	names,	such	as	www.wireshark.org
to	IP	addresses.	DNS	can	also	be	used	to	identify	the	hostname	associated	with	an	IP
address	(an	inverse	or	pointer	(PTR)	query)	and	several	other	network	information
services.	This	is	a	good	protocol	to	become	familiar	with	as	it	is	used	extensively	to	locate
nodes	both	within	an	enterprise	and	on	the	Internet	using	hostnames.

Wireshark	DNS	filters
Capture	filter(s):	port	53

Display	filter(s):	dns	dns.flags.response	==	0(DNS	query)	dns.flags.response	==
1(DNS	response)	dns.flags.rcode	!=	0(DNS	response	contains	an	error)

http://www.wireshark.org

Hypertext	Transfer	Protocol
Hypertext	Transfer	Protocol	(HTTP)	is	the	application	protocol	used	when	someone
browses	(unsecured)	websites	on	the	Internet,	along	with	the	secure	version	(HTTPS).
HTTP/1.1	is	the	current	version—although	HTTP/2.0	is	starting	to	appear	in	some
environments.	Be	aware	that	some	network	devices	such	as	proxy	servers	and	gateways
may	not	support	HTTP/2.0	yet.

An	example	of	a	HTTP	packet	delivering	a	GET	request	to	a	web	server	is	depicted	in	the
following	screenshot:

The	most	common	features	and	fields	of	the	HTTP	protocol	include	HTTP	Methods,	Host,
and	Request	Modifiers.

In	the	preceding	screenshot,	the	HTTP	header	includes:

Request	Method:	GET
Request	URI:	/Orion	(a	home	page	on	the	web	server)
Request	Version:	HTTP/1.1

HTTP	Methods
Some	of	the	more	common	HTTP	Methods	are	listed	and	described	in	the	following	table:

Method Description

GET This	retrieves	information	defined	by	the	Uniform	Resource	Identifier	(URI)	field

HEAD This	retrieves	meta	data	related	to	the	desired	URI

POST This	sends	data	to	the	HTTP	server/application

OPTIONS This	determines	the	options	associated	with	a	resource

PUT This	sends	data	to	the	HTTP	server/application

DELETE This	deletes	the	resource	defined	by	the	URI

CONNECT This	is	used	to	connect	to	a	proxy	device

Host
The	Host	field	identifies	the	target	host	and	port	number	of	the	resource	being	requested.
In	the	preceding	screenshot,	Host	is	pktiqsvr1	on	port	8080.

Request	Modifiers
HTTP	requests	and	responses	use	Request	Modifiers	to	provide	details	for	the	request.	In
the	preceding	screenshot,	Request	Modifiers	includes:

Connection:	This	indicates	the	preference	for	a	persistent	connection	(keep-alive).
Accept:	This	is	a	list	of	data	formats	(text/html	and	application/xhtml	plus	xml)
accepted.
User-agent:	This	is	a	list	of	browser	and	operating	system	parameters	(Mozilla/5.0
(Windows	NT	6.1;	WOW64)	AppleWebKit)	for	the	requesting	device.
Accept-encoding:	This	is	a	list	of	the	acceptable	HTTP	compression	schemes	(gzip,
deflate,	and	sdch).
Accept-language:	The	acceptable	languages	(en-US	and	en;	q=0.8)	where	q=0.8	is	a
relative	quality	factor	that	specifies	the	language	the	user	would	prefer	on	a	scale	of	0
to	1.
Cookie:	This	is	a	session	ID	cookie
(ASP.NET_SessionId=sidsruxjbm4eaed4d3dgg4zd)	that	was	previously	stored	on	the
user’s	browser	in	a	cookie	and	is	being	provided	to	the	website.

The	following	table	lists	some	of	the	more	commonly	used	modifiers:

Request
Modifier Description

Accept Acceptable	content	types

Accept-
charset Acceptable	character	sets

Accept-
encoding Acceptable	encodings

Accept-
language Acceptable	languages

Accept-
ranges

Server	can	accept	range	requests

Authorization Authentication	credentials	for	HTTP	authentication

Cache-
control Caching	directives

Connection Type	of	connection	preferred	by	the	user	agent

Cookie HTTP	cookie	(a	small	piece	of	data	sent	from	the	website	and	stored	in	a	user’s	browser,	and/or	sent
back	to	the	website	the	next	time	the	user	visits	containing	session	information)

Content-
length Length	of	the	request	body	in	bytes

Content-type Mime	type	of	the	body	(used	with	POST	and	PUT	requests)

Date Date	and	time	the	message	was	sent

Expect Defines	server	behavior	expected	by	the	client

If-match Perform	action	if	client-provided	information	matches

If-modified-
since Provide	date/time	of	cached	data;	return	304	Not	Modified	if	the	cached	data	is	still	current

If-range Request	for	range	of	missing	information

IF-
unmodified-
since

Only	send	if	unmodified	since	the	provided	date/time

Max-
forwards Limit	the	number	of	forwards	through	proxies	or	gateways

Proxy-
authorization Authorization	credential	for	a	proxy	connection

Range Request	only	part	of	an	entity

TE Transfer	encodings	accepted

User-agent A	string	containing	browser	and	operating	system	information

Via The	proxies	traversed

Wireshark	HTTP	filters

Capture	filter(s):	tcp	port	http	tcp	port	https

Display	filter(s):	http	http.request.method	==	"GET"	or	http.request.method	==
"POST"	http.response.code	>	399	(identifies	client	or	server	error	packets)

Additional	information
Covering	all	the	most	common	upper	layer	protocols	or	covering	them	to	any	great	depth
is	obviously	more	than	what	can	be	included	in	a	book	of	this	size.	I	encourage	you	to
spend	some	time	studying	those	protocols	that	are	of	interest	to	you	for	personal	or	job-
related	reasons.	The	return	on	your	investment	in	time	will	be	well	worth	the	effort.

Additional	information	for	any	of	the	protocols	discussed	in	this	chapter	as	well	as	all
those	not	covered	can	be	found	online.

Wireshark	wiki
If	you	are	inspecting	a	protocol	within	the	Wireshark’s	Packet	Details	pane,	you	can
right-click	on	a	protocol	header	or	field	within	a	header	and	select	the	Wiki	Protocol
Page	from	the	menu	to	go	to	the	specific	page	on	the	Wireshark	wiki	that	contains
information	on	that	protocol.	More	information	can	be	found	at
http://wiki.wireshark.org/ProtocolReference.

You	can	also	get	a	complete	list	of	Wireshark	display	filters	on	specific	protocols	by
selecting	a	protocol	header	or	a	field	within	a	header,	right-clicking,	and	selecting	Filter
Field	Reference.

Protocols	on	Wikipedia
You	can	find	general	information	on	various	protocols	on	Wikipedia.	Start	with	the
Internet	protocol.	Additional	links	to	the	entire	Internet	protocol	suite	are	also	provided	at
http://en.wikipedia.org/wiki/Internet_Protocol.

Requests	for	Comments
The	Requests	for	Comment	(RFC)	documents	contain	detailed	information	for	all	the
Internet	protocols.	These	documents	are	maintained	by	the	Internet	Engineering	Task
Force	(IETF)	and	are	the	final	word	on	how	the	protocols	should	be	implemented	and
function	(http://www.ietf.org/rfc.html).	If	you	want	to	search	for	a	specific	RFC	by	title	or
keyword,	use	the	link	http://www.rfc-editor.org/search/rfc_search.php.

http://wiki.wireshark.org/ProtocolReference
http://en.wikipedia.org/wiki/Internet_Protocol
http://www.ietf.org/rfc.html
http://www.rfc-editor.org/search/rfc_search.php

Summary
The	topics	covered	in	this	chapter	included	protocol	and	field	coverage	of	the	network
layer	protocols	IPv4,	ARP,	IGMP,	ICMP,	IPv6,	and	ICMPv6;	the	transport	layer	protocols
UDP	and	TCP;	an	overview	of	the	application	layer	protocols	DHCP,	DHCPv6,	and	DNS;
and	a	more	in-depth	look	at	HTTP.

In	the	next	chapter,	we’ll	put	all	the	topics	covered	so	far	to	good	use	by	using	Wireshark
to	troubleshoot	the	functionality	and	performance	issues.

Chapter	6.	Troubleshooting	and
Performance	Analysis
In	this	chapter,	we	will	discuss	the	use	of	Wireshark	for	its	primary	purpose—
troubleshooting	network	and	application	connectivity,	functionality,	and	performance
issues.

The	topics	that	will	be	covered	include:

Troubleshooting	methodology
Troubleshooting	connectivity	issues
Troubleshooting	functional	issues
Performance	analysis	methodology
Top	five	reasons	for	poor	application	performance
Detecting	and	prioritizing	delays
Server	processing	time	events
Application	turn’s	delay
Network	path	latency
Bandwidth	congestion
Data	transport	issues

These	topics	cover	the	majority	of	problems	you’ll	come	across	in	your	analysis	efforts.

Troubleshooting	methodology
There	are	two	fundamental	reasons	why	you	might	be	doing	packet	analysis:

Troubleshooting	a	connectivity	or	functionality	problem	(a	user	can’t	connect,	an
application	doesn’t	work,	or	doesn’t	work	right),	which	we’ll	just	call
troubleshooting
Analyzing	a	performance	problem	(the	application	works	but	is	slow),	which	we’ll
call	performance	analysis

A	third	gray	area	is	an	application	that	basically	works	but	is	slow	and	occasionally	times
out,	which	could	involve	an	underlying	functional	problem	that	causes	the	performance
issue,	or	just	simply	be	a	really	poor	performance.

Troubleshooting	a	connectivity	or	functional	issue	is	just	a	matter	of	comparing	what
normally	works	with	what	is	going	on,	in	the	case	you’re	working	on.

A	performance	problem,	on	the	other	hand,	requires	determining	where	the	majority	of	the
time	for	a	particular	transaction	to	complete	is	being	spent,	measuring	the	delay	and
comparing	that	delay	to	what	is	normal	or	acceptable.	The	source	and	type	of	excessive
delay	usually	points	to	the	next	area	to	investigate	further	or	resolve.

In	any	case,	you	need	to	gather	the	information	that	allows	you	to	determine	whether	this
is	a	connectivity,	functional,	or	performance	issue	and	approach	the	problem	according	to
its	nature.

Gathering	the	right	information
The	most	important	thing	you	can	do	when	approaching	a	problem	is	to	determine	what
the	real	problem	is	so	you	can	work	on	the	right	problem	or	the	right	aspect	of	the
problem.	In	order	to	determine	what	the	real	problem	is,	or	at	least	get	close,	you’ll	need
to	ask	questions	and	interpret	the	answers.	These	questions	could	include	the	appropriate
selections	(depending	on	the	complaint)	from	the	following	list:

Define	the	problem:

What	were	you	trying	to	do	(connect	to	a	server,	log	in,	send/receive	e-mails,
general	application	usage,	upload/download	file,	and	specific	transactions	or
functions)?
Is	nothing	working	or	is	this	just	a	problem	with	a	specific	application	or
multiple	applications?
What	website/server/application	were	you	trying	/	connecting	to?	Do	you	know
the	hostname,	URL,	and/or	IP	address	and	port	used	to	access	the	application?
What	is	the	symptom/nature	of	the	problem?	Has	this	application	or
function/feature	worked	before,	or	is	this	the	first	time	you’ve	ever	tried	to	use
it?
Did	you	receive	any	error	messages	or	other	indications	of	a	problem?
Is	the	issue	consistent	or	intermittent?	Depends?	On	what?
How	long	has	this	been	happening?
Was	there	some	recent	change	that	did	or	could	have	had	an	impact?
What	has	been	identified	or	suspected	so	far?	What	has	been	done	to	address
this?	Has	it	helped	or	changed	anything?
Are	there	any	other	pertinent	factors,	symptoms,	or	recent	changes	to	the	user
environment	that	should	be	considered?

Determine	the	scope	of	the	issue:

Is	this	problem	occurring	for	a	single	user	or	a	group	of	users?
Is	this	problem	occurring	within	a	specific	office,	region,	or	across	the	whole
company?
Is	this	problem	affecting	different	types	of	users	differently?

Collect	system,	application,	and	path	information.	For	a	more	in-depth	analysis
(beyond	single	user	or	small	group	issues),	the	applicable	questions	from	the
following	list	might	also	need	to	be	gathered	and	analyzed,	as	appropriate	to	the
complaint	(some	of	this	information	may	have	to	be	obtained	from	network	or
application	support	groups):

What	is	the	browser	type	and	version	on	the	client	(for	web	apps)?	Is	this
different	from	clients	that	are	working	properly?
What	is	the	operating	system	type	and	version	of	the	client(s)	and	server?
What	is	the	proper	(vendor)	application	name	and	version?	Are	there	any	known
issues	with	the	application	that	match	these	symptoms	(check	the	vendor’s	bug
reports).

What	is	the	database	type	and	server	environment	behind	the	application	server?
Are	there	other	backend-supporting	data	sources	such	as	an	online	data	service
or	Documentum	and	SharePoint	servers	involved?
What	is	the	network	path	between	the	client	and	server?	Are	there	firewalls,
proxy	servers,	load	balancers,	and/or	WAN	accelerators	in	the	path?	Are	they
configured	and	working	properly?
Can	you	confirm	the	expected	network	path	(and	any	WAN	links	involved)	with
a	traceroute	and	verify	the	bandwidth	availability?
Can	you	measure	the	round	trip	time	(RTT)	path	latency	from	the	user	to	the
application	server	with	pings	or	TCP	handshake	completion	times?

Establishing	the	general	nature	of	the	problem
At	this	point,	you	should	be	able	to	identify	the	general	nature	of	the	problem	between	one
of	the	following	three	basic	types:

Determine	whether	this	is	a	connectivity	problem

User(s)	cannot	connect	to	anything
User(s)	cannot	connect	to	a	specific	server/application

Determine	whether	this	is	a	functionality	or	configuration	problem

User(s)	can	connect	(gets	a	login	screen	or	other	response	from	the	application
server)	but	cannot	log	in	(or	get	the	expected	response)
User(s)	can	connect	and	log	in	but	some	or	all	functions	are	failing	(for	example,
cannot	send/receive	e-mails)

Determine	whether	this	is	a	performance	problem

User(s)	can	connect,	log	in,	and	use	the	application	normally;	but	it’s	slow
The	application	works	normally	but	sometimes	it	stalls	and/or	times	out

Half-split	troubleshooting	and	other	logic
When	I	was	doing	component-level	repair	of	electronic	equipment	early	in	my	career,	I
learned	to	use	the	“half-split”	troubleshooting	method,	which	worked	very	well	in	almost
every	single	case.	Half-split	troubleshooting	is	the	process	of	cutting	the	problem	domain
(in	my	case,	a	piece	of	radio	gear)	in	half	by	injecting	or	measuring	signals	roughly
midway	through	the	system.	The	idea	is	to	see	which	half	is	working	right	and	which	half
isn’t,	then	shifting	focus	to	the	half	that	doesn’t	work,	analyzing	it	halfway	through,	and	so
on.	This	process	is	repeated	until	you	narrow	the	problem	down	to	its	source.

In	the	network	and	application	world,	the	same	half-split	troubleshooting	approach	can	be
applied	as	well,	in	a	general	sense.	If	users	are	complaining	that	the	network	is	slow,	try	to
confirm	or	eliminate	the	network:

Are	users	close	to	the	server	experiencing	similar	slowness?	How	about	users	in	other
remote	locations?
If	a	certain	application	is	slow	for	a	remote	user,	are	other	applications	slow	for	that
user	as	well?
If	users	can’t	connect	to	a	given	server,	can	they	connect	to	other	servers	nearby	or	at
other	locations?

By	a	process	of	logical	examination	of	what	does	and	doesn’t	work,	you	can	eliminate	a
lot	of	guesswork	and	narrow	your	analysis	down	to	just	a	few	plausible	possibilities.

It’s	usually	much	easier	to	determine	the	source	of	a	connectivity	or	functionality	problem
if	you	have	an	environment	where	everything	is	working	properly	to	compare	with	a
situation	that	does	not	work.	A	packet	capture	of	a	working	versus	a	non-working	scenario
can	be	compared	to	see	what	is	different	and	if	those	differences	are	significant.

It	is	important	not	to	make	too	many	assumptions	about	a	problem,	even	if	the	issue
you’re	working	on	looks	the	same	as	the	one	that	you’ve	fixed	before.	Always	verify	the
problem	and	the	resolution	that	you	should	be	able	to	apply	and	remove	a	fix	and	see	the
problem	disappear/reappear	reliably.	Otherwise,	you	should	question	yourself	about
whether	you’ve	found	the	true	source	of	the	issue	or	are	just	affecting	the	symptoms.

Unless	a	reported	problem	is	obviously	a	system-wide	or	specific	server	issue,	it	is	better
to	conduct	at	least	the	initial	analysis	at	or	as	close	to	the	complaining	user’s	workstation
as	possible.	This	has	the	advantages	of	offering	the	ability	to	perform	the	following
actions:

View	and	verify	the	actual	problem	that	the	user	is	reporting
Measure	round-trip	times	to	the	target	server(s)
Capture	and	view	the	TCP	handshake	process	upon	session	initiation
Capture	and	investigate	the	login	and	any	other	background	processes	and	traffic
Look	for	indications	of	network	problems	(lost	packets	and	retransmissions)	as	they
are	experienced	by	the	user’s	device
Measure	the	apparent	network	throughput	to	the	user’s	workstation	during	data
downloads

Eliminate	the	need	to	use	a	capture	filter;	the	amount	of	traffic	to/from	a	single
workstation	should	not	be	excessive

A	capture	at	a	user	workstation,	server,	or	other	device	should	be	conducted	with	the	use
of	an	aggregating	Test	Access	Point	(TAP)	versus	using	a	switch	SPAN	port	(as	discussed
in	Chapter	3,	Capturing	All	the	Right	Packets,	or	as	a	last	resort	by	installing	Wireshark	on
the	user’s	workstation	or	server	(if	authorized).

Troubleshooting	connectivity	issues
Single	user	or	small	group	connectivity	issues	can	be	resolved	by	confirming	that	the
networking	functions	required	for	a	user	workstation	to	access	local	and	remote	network
resources	are	functioning	properly.	The	basic	requirements	or	items	to	confirm	include:

Enabling	the	correct	network	interface(s)	(workstation	configuration)
Confirming	layer	1	(physical)	connectivity
Obtaining	an	IP	address,	subnet	mask,	and	default	gateway	for	each	interface
(DHCP)
Obtaining	the	MAC	address	of	the	default	gateway	or	other	local	network	services
(ARP)
Obtaining	the	IP	address	of	a	network	service	(DNS)
Connecting	to	a	network	service	(TCP	handshake	or	UDP	response)

We’ll	briefly	discuss	each	of	these	in	order;	while	the	first	two	steps	will	not	involve	using
Wireshark,	they	are	a	necessary	part	in	a	troubleshooting	approach.	If	the	connectivity
issue	is	affecting	a	group	of	users	or	a	whole	office,	the	first	step	is	probably	not
applicable.

Enabling	network	interfaces
While	it	may	seem	obvious	that	network	interfaces	need	to	be	enabled,	the	assumption	that
they	are	automatically	enabled	(especially	for	the	wireless	connectivity)	by	default	upon
device	boot	up	may	be	false.

On	Windows,	you	can	use	the	command-line	utility	ipconfig	to	view	the	status	and	basic
configuration	(IP	address,	subnet	mask,	and	default	gateway)	of	network	interfaces;	on
Linux	or	MAC	devices,	the	equivalent	command	is	ifconfig	or	ip.

Confirming	physical	connectivity
If	a	connectivity	problem	is	isolated	to	a	single	user’s	workstation,	the	physical
connections	are	suspected.	There	are	a	few	items	to	check,	and	the	troubleshooting	steps
that	can	be	taken	are	as	follows:

If	there	is	a	problem	with	the	Ethernet	cable	from	the	workstation	to	a	wall	jack,	you
need	to	swap	the	cable	with	a	different	one.
If	there	is	a	problem	with	the	cabling	from	the	user’s	wall	jack	to	the	switch	port,	you
need	to	temporarily	plug	the	user’s	Ethernet	cable	into	another	(known	good)	wall
jack.
If	there	is	a	problem	with	the	switch,	switch	port,	or	port	configuration,	you	need	to
temporarily	plug	the	user’s	port	cable	into	another	(known	good)	port.	Be	aware	that
some	network	security	policies	call	to	disable	switch	ports	until	they	are	needed	or
configuring	the	port	to	be	associated	with	a	single,	specific	MAC	address.	If	so,	a
port	may	not	work	when	you	plug	into	it	although	there	is	nothing	physically	wrong
with	it.

Obtaining	the	workstation	IP	configuration
Unless	the	workstation	was	manually	configured,	it	will	need	to	get	its	IP	address,	subnet
mask,	default	gateway,	and	DNS	server	settings	from	a	DHCP	server.	If	this	does	not
appear	to	be	working	properly	(after	checking	the	configuration	using	ipconfig
(Windows)	or	ifconfig,	(Linux	or	Mac	OS	X)),	you	need	to	perform	a	packet	capture
during	the	workstation	initialization/boot-up	process	using	a	TAP	or	SPAN	port	and
investigate	the	DHCP	requests	and	responses.

There	are	eight	DHCP	message	types	(not	to	be	confused	with	the	two	Bootstrap	Protocol
types,	Boot	Request	and	Boot	Reply):

Message	type
number Message	type Description

1 DHCP	Discover A	client	broadcast	to	locate	an	available	DHCP	server

2 DHCP	Reply A	server	to	client	response	to	a	DHCP	Discover	to	offer	configuration
parameters

3 DHCP	Request

A	client	message	to	a	DHCP	server	to	either	one	of	the	following
conditions:

Request	offered	parameters	from	one	server	and	decline	offers
from	other	DHCP	servers
Confirm	correctness	of	previously	allocated	address	after	a	reboot
Extending	the	lease	on	an	IP	address

4 DHCP	Decline Client	message	to	DHCP	server	indicating	the	offered	address	is	not
acceptable

5 DHCP	Acknowledgment Server	to	client	with	configuration	parameters	including	a	committed
network	address

6 DHCP	Negative
Acknowledgement Server	to	client	indicating	client’s	address	is	incorrect	or	expired

7 DHCP	Release Client	to	server	releasing	a	network	address	and	canceling	a	lease

8 DHCP	Informational Client	to	server	asking	for	local	configuration	parameters	only

For	a	workstation	that	is	booting	up	and	was	previously	working	on	the	network,	you’ll
generally	see	the	DHCP	Request	and	Acknowledgment	packets	verifying	that	the
workstation	can	still	use	a	previously	leased	address.	On	an	entirely	cold	start	up,	the	first
two	DHCP	packets	will	be	DHCP	Discover	and	DHCP	Offer	packets,	followed	by	the
Request	and	ACK	packets.

In	a	DHCPv6	environment,	the	typical	packet	sequence	is	DHCPv6	Solicit,	DHCPv6
Advertise,	DHCPv6	Request,	and	DHCPv6	Reply.

The	fields	to	verify	in	a	DHCP	Response	packet	(or	similar	fields	in	a	DHCPv6	Advertise
packet)	include	the	following	four	fields:

Your	(client)	IP	Address:	This	is	the	offered	IP	address	for	this	workstation
Subnet	Mask:	This	is	the	subnet	mask	to	use	on	this	network
Domain	Name	Server:	This	is	the	DNS	server	IP	address
Router:	This	is	the	IP	address	of	the	default	gateway	to	use

This	is	minimum	data	required	for	any	network	communications;	an	example	of	these
fields	being	provided	in	a	DHCP	Reply	packet	is	illustrated	in	the	following	screenshot:

You	can	apply	Wireshark	display	filters	to	isolate	DHCP	packets;	the	filter	is	bootp,	as
this	is	the	legacy	name	for	DHCP:

DHCP	display	filter:	bootp	bootp.option.dhcp	==	5	(DHCP	Message	Type
'ACK')

DHCPv6	display	filter:	dhcpv6	dhcpv6.msgtype	==	2	(DHCPv6	'Advertise')

You	can	save	the	basic	bootp	and	dhcpv6	display	filters	as	a	Filter	Expression	Button
(FEB)	after	entering	the	filter	string	in	the	textbox	on	the	Display	Filter	toolbar,	clicking
on	Save,	and	giving	the	button	a	name	such	as	DHCP	Pkts	and	DHCPv6	Pkts	respectively.
Alternatively,	you	could	combine	both	filters	with	an	or	(||)	in	one	button,	as	shown	in
the	following	screenshot:

You	might	want	to	save	another	FEB	that	displays	an	abnormal	DHCP	condition	packets
using	the	following	display	filter	string	and	call	the	DHCP	Errors	button	or	a	similar	as
follows:

bootp.option.dhcp	==	4	||	bootp.option.dhcp	==	6	||	bootp.option.dhcp	==	7

Similar	abnormal	event	display	filters	for	DHCPv6	could	include:

dhcpv6.msgtype	==	8	||	dhcpv6.msgtype	==	9	||	dhcpv6.msgtype	==	10

You	can	research	more	about	DHCP,	DHCPv6,	and	the	various	DHCPv6	message	types
online	or	from	other	sources	if	you	need	to	analyze	these	in	more	detail.

Obtaining	MAC	addresses
A	workstation	will	utilize	the	ARP	protocol	to	obtain	a	MAC	address	for	known	IP
addresses	of	network	services,	such	as	its	default	gateway	or	the	DNS	server	if	it’s	located
on	the	same	network	segment.	The	ARP	protocol	and	how	it	typically	functions	has
already	been	covered	in	Chapter	2,	Networking	for	Packet	Analysts.

You	may	want	to	create	an	ARP	FEB	using	the	arp	display	filter	syntax	to	make	it	quick
and	easy	to	inspect	those	packets.

Obtaining	network	service	IP	addresses
A	client	workstation	sends	queries	to	a	DNS	server	to	obtain	an	IP	address	for	a	given
hostname;	the	DNS	server	responds	with	the	information	or	asks	other	DNS	servers	for
the	information	on	behalf	of	the	client.

The	format	of	the	DNS	query	and	response	packet	fields	as	displayed	in	the	Wireshark
Packet	Details	pane	is	fairly	intuitive.	An	example	of	a	DNS	response	packet	containing	a
resolved	IP	address	for	time.windows.com,	which	actually	provided	the	IP	address
(137.170.185.211)	for	the	alias	time.microsoft.akadns.com	is	shown	in	the	following
screenshot:

If	a	client	workstation	cannot	obtain	the	IP	address	of	a	web	service	or	application	server,
a	packet-level	investigation	of	the	request	(which	URL	or	hostname	is	being	requested),
and	what	the	response	is	from	the	DNS	server	(if	any)	should	be	revealing.	A	comparison
of	a	failing	query	with	queries	that	work	properly	for	other	hostnames	or	from	other
workstations	should	reveal	the	root	of	the	problem	(if	DNS	is	the	problem).	Failure	to
obtain	an	IP	address	can	be	caused	by	an	inoperable	DNS	server,	improper	hostname	or
URL,	or	a	problem	with	connectivity	from	the	user	to	other	parts	of	the	network,	which

we’ll	check	next.

Basic	network	connectivity
A	few	simple	tests	can	confirm	that	basic	network	connectivity	is	working,	or	reveal	a
routing	issue	or	another	issue	that	needs	to	be	addressed	by	the	network	support	team.

Capturing	and	analyzing	the	ICMP	packets	sent	and	received	during	the	following	tests
can	be	revealing;	although,	the	test	results	themselves	are	often	telling	enough:

Ping	the	user’s	default	gateway	using	the	default	gateway	IP	address	obtained	from
using	ipconfig	/all	(Windows)	or	ip	addr	show	(Linux)	to	confirm	that	the	user
workstation	has	basic	connectivity	on	the	local	network.
Ping	the	hostname	or	URL	of	the	target	server.	If	this	fails	(request	timed	out
message),	try	to	ping	other	hosts	or	URLs.	If	necessary,	inspect	the	DNS	and/or
ICMP	responses	in	a	packet	capture	of	these	tests	to	determine	the	nature	of	the
failure.	Otherwise,	take	note	of	the	average	round	trip	times.
If	a	ping	works	to	the	default	gateway	but	pinging	other	targets	fails,	a	traceroute	to	a
target	server	can	reveal	where	in	the	network	path	connectivity	ceases	to	function	or
is	blocked.

Note
The	traceroute	command-line	utility	in	Windows	is	tracert,	whereas	for	traceroutes
on	Linux/Unix	and	Mac	OS	X	machines,	the	command	is	traceroute.	To	do	a
traceroute	in	Windows,	open	a	Command	Prompt	(CMD)	window	and	type
tracert	<hostname	or	IP	Address	of	target>.	In	most	other	environments,	open
a	terminal	window	and	type	traceroute	<hostname	or	IP	address	of	target>.

If	you	can	ping	the	target	server	and	network	connectivity	is	functioning,	you	can	move	on
to	the	next	step	in	the	troubleshooting	process.	If	not,	be	aware	that	some	hosts	may	be
configured	to	not	respond	to	ICMP	ping	requests,	and/or	ICMP	is	blocked	by	a	firewall
between	the	user	and	server	for	security	reasons.	So,	the	inability	to	ping	a	device	is	not
necessarily	a	sign	of	a	network	problem.	Traceroute	results	should	help	determine	how	far
and	to	what	extent	network	connectivity	is	functioning	in	the	path	towards	the	target
server;	testing	to	other	targets	should	be	revealing	as	well.

An	example	of	pinging	a	default	gateway,	then	a	URL,	and	finally	performing	a	traceroute
to	the	target	URL	is	depicted	in	the	following	screenshot:

Connecting	to	the	application	services
If	network	connectivity	from	a	user	workstation	to	a	target	server	is	functional	(as	proven
by	the	ability	to	ping	the	host),	a	problem	connecting	to	a	specific	application	hosted	on
that	server	may	be	caused	by	a	number	of	factors:

The	URL	or	port	used	by	the	client	to	access	the	application	is	wrong
The	port	used	to	access	the	application	is	blocked	by	a	firewall
The	application	service	is	not	turned	up	or	is	not	working	properly

The	first	of	these	factors	is	far	more	likely	for	a	single	user	issue.	Any	of	the	last	two
factors	would	prevent	anyone	in	a	group	or	the	whole	organization	from	accessing	the
application.	A	packet-level	analysis	(from	the	client	side)	of	a	user	attempting	to	connect
to	an	application	that	is	blocked	should	result	in	ICMP	messages:	Destination	Host	is

Unreachable	or	Destination	Port	is	Unreachable,	or	there	will	be	no	response	at	all	if
ICMP	messages	are	being	blocked	by	a	firewall.

If	the	server	is	up,	the	application	is	reportedly	operational	but	cannot	be	accessed;	a
client-side	capture	does	not	offer	any	solid	clues,	but	a	packet	capture	of	the	TCP	session
setup	(if	any)	from	or	near	the	server	end	should	be	revealing.

Troubleshooting	functional	issues
If	a	user	is	able	to	connect	and	set	up	a	TCP	session	with	an	application	server,	but	the
application	does	not	function	otherwise,	or	function	correctly,	then,	there	are	a	number	of
areas	that	can	be	investigated.	These	areas	can	be	investigated	using	a	combination	of
packet-level	analysis,	error	reports,	and	configuration	comparisons	with	captures	and
configurations	from	other	users’	machines:

User	credentials:	The	most	common	reason	for	specific-user	issues	with	application
functionality	is	the	lack	of	proper	credentials,	authorization,	rights,	and	so	on.	This	is
the	first	thing	to	check	whether	other	users	are	working	normally.
Application	settings	on	the	user	machine:	Some	applications	require	specific
configuration	files	to	be	placed	on	a	user’s	machine	in	a	specific	location.
Applications	may	also	require	certain	version	levels	of	application-specific	utilities,
Java,	.NET	frameworks,	and	so	on.	Usually,	an	application	will	provide	an	error
message	indicating	at	least	the	general	nature	of	a	configuration	problem.
Application	reported	errors:	You	can	look	for	the	error	code	within	response
packets	or	on	the	user	screen	that	may	reveal	the	nature	of	application	errors:

Status	code	greater	than	400	in	HTTP,	FTP,	or	SIP	response	packets
Error	code	in	SMB	response	packets
Other	application-specific	exceptions,	error	codes,	and	messages

Differences	in	web	browsers:	Some	web	applications	are	designed	to	work	with
specific	browsers	(Chrome,	Internet	Explorer,	Firefox,	Opera,	and	so	on)	and	may	not
work	properly	or	at	all	on	other	browsers	and	there	may	not	be	any	error	messages
provided	that	indicate	this	is	the	case.	A	comparison	of	the	browser	type	and	version
with	other	working	users	may	be	revealing.

The	causes	of	network	connectivity	and	application	functionality	issues	can	vary	widely,
so	it	is	impossible	to	draw	a	clear	roadmap	for	every	possibility.	The	best	approach	to
successfully	address	these	problems	is	not	to	make	too	many	assumptions	without	proving
those	assumptions	correct	with	systematic,	logical	troubleshooting	steps,	but	try	to	find	or
create	a	scenario	where	the	system,	or	at	least	part	of	the	system,	works	properly	and
compare	the	appropriate	packet-level	details	of	the	working	environment	to	the	one	that
doesn’t	work.

Performance	analysis	methodology
Analyzing	an	application’s	performance	problem	is	basically	a	case	of	identifying	where
the	majority	of	the	time	for	a	particular	task	to	complete	is	being	spent,	and
measuring/comparing	that	time	to	what	is	normal	and/or	acceptable	for	that	type	of	task.

Top	five	reasons	for	poor	application	performance
Generally	speaking,	performance	issues	can	be	attributed	to	one	of	the	following	five
areas,	in	order	of	decreasing	likelihood:

Server	processing	time	delay
Application	turns	delay
Network	path	latency
Bandwidth	congestion
Data	transport	(TCP)	issues

Client	processing	time	is	usually	a	relatively	small	component	of	overall	response	time—
except	perhaps	for	some	compute-extensive	desktop	applications,	which	leaves	the	focus
on	the	network	and	server	environments	and	any	performance-affecting	application	design
characteristics.

Preparing	the	tools	and	approach
As	was	done	when	preparing	to	troubleshoot	a	connectivity	or	functionality	problem,
you’ll	need	to	gather	the	right	information	about	the	application	environment	and	problem
domain.	You’ll	also	want	to	determine	which	tools	you	may	need	to	use	during	the
analysis:	Wireshark,	TAPs	to	facilitate	packet	captures,	and	any	other	analysis	tools.

You	will	also	need	to	determine	where	to	perform	the	first	packet	capture:

A	client-side	capture	is	the	best	place	to	begin	a	performance	analysis	effort.	From
this	vantage	point,	you	can	view	and	verify	what	the	user	is	complaining	about,	view
any	error	messages	presented	to	the	user	or	evident	in	the	packet	capture,	measure
network	round-trip	times,	and	capture	the	performance	characteristics	to	study	within
a	packet	capture	without	the	need	to	use	a	capture	filter	so	you	know	you	won’t	miss
anything.
A	server-side	capture	may	be	needed	because	a	client-side	capture	may	not	be
possible	for	a	user	that	is	at	a	long	distance,	or	to	analyze	server-to-server
transactions	to	backend	databases	or	other	data	sources.
A	packet	capture	at	some	intermediate	point	in	the	network	path	may	be	needed	to
isolate	the	source	of	excessive	packet	loss/errors	and	the	associated	retransmissions.

Remember	that	the	use	of	an	aggregating	TAP	is	preferable	over	using	SPAN	ports,	or	you
can	install	Wireshark	on	the	client	workstation	or	server	as	a	last	resort,	but	get	the	capture
done	any	way	you	have	to.

Performing,	verifying,	and	saving	a	good	packet	capture
After	performing	the	capture	and	saving	the	bulk	capture	file,	confirm	the	following:

1.	 Check	the	file	to	ensure	there	are	no	packets	with	the	ACKed	Unseen	Segment
messages	in	the	Wireshark	Warnings	tab	in	the	Expert	Info	menu,	which	means
Wireshark	saw	a	packet	that	was	acknowledged	but	didn’t	see	the	original	packet;	an
indication	that	Wireshark	is	missing	packets	due	to	a	bad	TAP	or	SPAN	port
configuration	or	excessive	traffic	levels.	In	any	case,	if	more	than	just	a	few	of	these

show	up,	you’ll	want	to	do	the	capture	again	after	confirming	the	capture	setup.
2.	 Next,	you’ll	want	to	review	the	captured	conversations	in	IPv4	in	the	Conversations

window	and	sort	the	Bytes	column.	The	IP	conversation	between	the	user	and
application	server	should	be	at	or	near	the	top	so	you	can	select	this	conversation,
right-click	on	it,	and	select	A	<->	B	in	the	Selected	menu.

3.	 After	reviewing	the	filtered	data	to	ensure	it	contains	what	you	expected,	select
Export	Specified	Packets	from	the	File	menu	and	save	the	filtered	capture	file	with
a	filename	that	reflects	the	fact	that	this	is	a	filtered	subset	of	the	bulk	capture	file.

4.	 Finally,	open	the	filtered	file	you	just	saved	so	you’re	working	with	a	smaller,	faster
file	without	any	distracting	packets	from	other	conversations	that	have	nothing	to	do
with	your	analysis.

Initial	error	analysis
At	the	onset	of	your	analysis,	you	should	take	a	look	through	the	Errors,	Warnings,	and
Notes	tabs	of	Wireshark’s	Expert	Info	window	(Analyze	|	Expert	Info)	for	significant
errors	such	as	excessive	retransmissions,	Zero	Window	conditions,	or	application	errors.
These	are	very	helpful	to	provide	clues	to	the	source	of	reported	poor	performance.

Although	a	few	lost	packets	and	retransmissions	are	normal	and	of	minimal	consequence
in	most	packet	captures,	an	excessive	number	indicates	that	network	congestion	is
occurring	somewhere	in	the	path	between	user	and	server,	packets	are	being	discarded,
and	that	an	appreciable	amount	of	time	may	be	lost	recovering	from	these	lost	packets.

Seeing	a	high	count	number	of	Duplicate	ACK	packets	in	the	Expert	Info	Notes	window
may	be	alarming,	but	can	be	misleading.	In	the	following	screenshot,	there	was	up	to	69
Duplicate	ACKs	for	one	lost	packet,	and	for	a	second	lost	packet	the	count	went	up	to	89
(not	shown	in	the	following	screenshot):

However,	upon	marking	the	time	when	the	first	Duplicate	ACK	occurred	in	Wireshark
using	the	Set/Unset	Time	Reference	feature	in	the	Edit	menu	and	then	going	to	the	last
Duplicate	ACK	in	this	series	by	clicking	the	packet	number	in	the	Expert	Info	screen	and
inspecting	a	Relative	time	column	in	the	Packet	List	pane,	only	30	milliseconds	had
transpired.	This	is	not	a	significant	amount	of	time,	especially	if	Selective
Acknowledgment	is	enabled	(as	it	was	in	this	example)	and	other	packets	are	being
delivered	and	acknowledged	in	the	meantime.	Over	longer	latency	network	paths,	the
Duplicate	ACK	count	can	go	much	higher;	it’s	only	when	the	total	number	of	lost	packets
and	required	retransmissions	gets	excessively	high	that	the	delay	may	become	noticeable
to	a	user.

Another	condition	to	look	for	in	the	Expert	Info	Notes	window	includes	the	TCP	Zero
Window	reports,	which	are	caused	by	a	receive	buffer	on	the	client	or	server	being	too
full	to	accept	any	more	data	until	the	application	has	time	to	retrieve	and	process	the	data
and	make	more	room	in	the	buffer.	This	isn’t	necessarily	an	error	condition,	but	it	can	lead
to	substantial	delays	in	transferring	data,	depending	on	how	long	it	takes	the	buffer	to	get
relieved.

You	can	measure	this	time	by	marking	the	TCP	Zero	Window	packet	with	a	time	reference
and	looking	at	the	elapsed	relative	time	until	a	TCP	Window	Update	packet	is	sent,
which	indicates	the	receiver	is	ready	for	more	data.	If	this	occurs	frequently,	or	the	delay
between	Zero	Window	and	Window	Update	packets	is	long,	you	may	need	to	inspect	the
host	that	is	experiencing	the	full	buffer	condition	to	see	whether	there	are	any	background

processes	that	are	adversely	affecting	the	application	that	you’re	analyzing.

Note
If	you	haven’t	added	them	already,	you	need	to	add	the	Relative	time	and	Delta	time
columns	in	the	Packet	List	pane.	Navigate	to	Edit	|	Preferences	|	Columns	to	add	these.
Adding	time	columns	was	also	explained	in	Chapter	4,	Configuring	Wireshark.

You	will	probably	see	the	connection	reset	(RST)	messages	in	the	Warnings	tab.	These
are	not	indicators	of	an	error	condition	if	they	occur	at	the	end	of	a	client-server	exchange
or	session;	they	are	normal	indicators	of	sessions	being	terminated.

A	very	handy	Filter	Expression	button	you	may	want	to	add	to	Wireshark	is	a	TCP
Issues	button	using	this	display	filter	string	as	follows:

tcp.analysis.flags	&&	!tcp.analysis.window_update	&&	

!tcp.analysis.keep_alive	&&	!tcp.analysis.keep_alive_ack

This	will	filter	and	display	most	of	the	packets	for	which	you	will	see	the	messages	in	the
Expert	Info	window	and	provide	a	quick	overview	of	any	significant	issues.

Detecting	and	prioritizing	delays
Since	we’re	addressing	application	performance,	the	first	step	is	to	identify	any	delays	in
the	packet	flow	so	we	can	focus	on	the	surrounding	packets	to	identify	the	source	and
nature	of	the	delay.

One	of	the	quickest	ways	to	identify	delay	events	is	to	sort	a	TCP	Delta	time	column	(by
clicking	on	the	column	header)	so	that	the	highest	delay	packets	are	arranged	at	the	top	of
the	packet	list.	You	can	then	inspect	the	Info	field	of	these	packets	to	determine	which,	if
any,	reflect	a	valid	performance	affecting	the	event	as	most	of	them	do	not.

In	the	following	screenshot,	a	TCP	Delta	time	column	is	sorted	in	order	of	descending
inter-packet	times:

Let’s	have	a	detailed	look	at	all	the	packets:

The	first	two	packets	are	the	TCP	Keep-Alive	packets,	which	do	just	what	they’re
called.	They	are	a	way	for	the	client	(or	server)	to	make	sure	a	connection	is	still

alive	(and	not	broken	because	the	other	end	has	gone	away)	after	some	time	has
elapsed	with	no	activity.	You	can	disregard	these;	they	usually	have	nothing	to	do
with	the	user	experience.
The	third	packet	is	a	Reset	packet,	which	is	the	last	packet	in	the	conversation	stream
and	was	sent	to	terminate	the	connection.	Again,	it	has	no	impact	on	the	user
experience	so	you	can	ignore	this.
The	next	series	of	packets	listed	with	a	high	inter-packet	delay	were	GETs	and	a
POST.	These	are	the	start	of	a	new	request	and	have	occurred	because	the	user
clicked	on	a	button	or	some	other	action	on	the	application.	However,	the	time	that
expired	before	these	packets	appear	were	consumed	by	the	user	think	time—a	period
when	the	user	was	reading	the	last	page	and	deciding	what	to	do	next.	These	also	did
not	affect	the	user’s	response	time	experience	and	can	be	disregarded.
Finally,	Frame	#	3691,	which	is	a	HTTP/1.1	200	OK,	is	a	response	from	the	server
to	a	previous	request;	this	is	a	legitimate	response	time	of	1.9	seconds	during	which
the	user	was	waiting.	If	this	response	time	had	consumed	more	than	a	few	seconds,
the	user	may	have	grown	frustrated	with	the	wait	and	the	type	of	request	and	reason
for	the	excessive	delay	would	warrant	further	analysis	to	determine	why	it	took	so
long.

The	point	of	this	discussion	is	to	illustrate	that	not	all	delays	you	may	see	in	a	packet	trace
affect	the	end	user	experience;	you	have	to	locate	and	focus	on	just	those	that	do.

You	may	want	to	add	some	extra	columns	to	Wireshark	to	speed	up	the	analysis	process;
you	can	right-click	on	a	column	header	and	select	Hide	Column	or	Displayed	Columns
to	show	or	hide	specific	columns:

TCP	Delta	(tcp.time_delta):	This	is	the	time	from	one	packet	in	a	TCP	conversation
to	the	next	packet	in	the	same	conversation/stream
DNS	Delta	(dns.time):	This	is	the	time	between	DNS	requests	and	responses
HTTP	Delta	(http.time):	This	is	the	time	between	the	HTTP	requests	and	responses

Note
You	should	ensure	that	Calculate	conversation	timestamps	is	enabled	in	the	TCP
option,	which	can	be	found	by	navigating	to	Edit	|	References	|	Protocols,	so	that
the	delta	time	columns	will	work	properly.

While	you’re	adding	columns,	the	following	can	also	be	helpful	during	a	performance
analysis:

Stream	#	(tcp.stream):	This	is	the	TCP	conversation	stream	number.	You	can	right-
click	on	a	stream	number	in	this	column,	and	select	Selected	from	the	Apply	as	a
filter	menu	to	quickly	build	a	display	filter	to	inspect	a	single	conversation.
Calc	Win	Size	(tcp.window_size):	This	is	the	calculated	TCP	window	size.	This
column	can	be	used	to	quickly	spot	periods	within	a	data	delivery	flow	when	the
buffer	size	is	decreasing	to	the	point	where	a	Zero	Window	condition	occurred	or
almost	occurred.

Server	processing	time	events

One	of	the	most	common	causes	of	poor	response	times	are	excessively	long	server
processing	time	events,	which	can	be	caused	by	processing	times	on	the	application	server
itself	and/or	delays	incurred	from	long	response	times	from	a	high	number	of	requests	to
backend	databases	or	other	data	sources.

Confirming	and	measuring	these	response	times	is	easy	within	Wireshark	using	the
following	approach:

1.	 Having	used	the	sorted	Delta	Time	column	approach	discussed	in	the	previous
section	to	identify	a	legitimate	response	time	event,	click	on	the	suspect	packet	and
then	click	on	the	Delta	Time	column	header	until	it	is	no	longer	in	the	sort	mode.
This	should	result	in	the	selected	packet	being	highlighted	in	the	middle	of	the
Packet	List	pane	and	the	displayed	packets	are	back	in	their	original	order.

2.	 Inspect	the	previous	several	packets	to	find	the	request	that	resulted	in	the	long
response	time.	The	pattern	that	you’ll	see	time	and	again	is:

1.	 The	user	sends	a	request	to	the	server.
2.	 The	server	fairly	quickly	acknowledges	the	request	(with	a	[ACK]	packet).
3.	 After	some	time,	the	server	starts	sending	data	packets	to	service	the	request;	the

first	of	these	packets	is	the	packet	you	saw	and	selected	in	the	sorted	Delta
Time	view.

The	time	that	expires	between	the	first	user	request	packet	and	the	third	packet	when	the
server	actually	starts	sending	data	is	the	First	Byte	response	time.	This	is	the	area	where
you’ll	see	longer	response	times	caused	by	server	processing	time.	This	effect	can	be	seen
between	users	and	servers,	as	well	as	between	application	servers	and	database	servers	or
other	data	sources.

In	the	following	screenshot,	you	can	see	a	GET	request	from	the	client	followed	by	an
ACK	packet	from	the	server	198	milliseconds	later	(0.198651	seconds	in	the	Delta	Time
Displ	column);	1.9	seconds	after	that	the	server	sends	the	first	data	packet	(HTTP/1.1	200
OK	in	the	Info	field)	followed	by	the	start	of	a	series	of	additional	packets	to	deliver	all	of
the	requested	data.	In	this	illustration,	a	Time	Reference	has	been	set	on	the	request
packet.	Looking	at	the	Rel	Time	column,	it	can	be	seen	that	2.107481	seconds	transpired
between	the	original	request	packet	and	the	first	byte	packet:

It	should	be	noted	that	how	the	First	Byte	data	packet	is	summarized	in	the	Info	field
depends	upon	the	state	of	the	Allow	subdissector	to	reassemble	TCP	streams	setting	in
the	TCP	menu,	which	can	be	found	by	navigating	to	Edit	|	Preferences	|	Protocols,	as
follows:

If	this	option	is	disabled,	the	First	Byte	packet	will	display	a	summary	of	the	contents
of	the	first	data	packet	in	the	Info	field,	such	as	HTTP/1.1	200	OK	shown	in	the
preceding	screenshot,	followed	by	a	series	of	data	delivery	packets.	The	end	of	this
delivery	process	has	no	remarkable	signature;	the	packet	flow	just	stops	until	the	next
request	is	received.
If	the	Allow	subdissector	to	reassemble	TCP	streams	option	is	enabled,	the	First
Byte	packet	will	be	summarized	as	simply	a	TCP	segment	of	a	reassembled	PDU	or
similar	notation.	The	HTTP/1.1	200	OK	summary	will	be	displayed	in	the	Info	field
of	the	last	data	packet	in	this	delivery	process,	signifying	that	the	requested	data	has
been	delivered.	An	example	of	having	this	option	enabled	is	illustrated	in	the
following	screenshot.	This	is	the	same	request/response	stream	as	shown	in	the
preceding	screenshot.	It	can	be	seen	in	the	Rel	Time	column	that	the	total	elapsed
time	from	the	original	request	to	the	last	data	delivery	packet	was	2.1097	seconds:

Note
The	Reassemble	SMB	Transaction	payload	setting	in	the	SMB	protocol	preferences	will
affect	how	SMB	and	SMB2	responses	are	summarized	in	the	Info	field	in	like	fashion	to
the	related	setting	in	the	TCP	protocol	preferences.

In	either	case,	the	total	response	time	as	experienced	by	the	user	will	be	the	time	that
transpires	from	the	client	request	packet	to	the	end	of	the	data	delivery	packet	plus	the
(usually)	small	amount	of	time	required	for	the	client	application	to	process	the	received
data	and	display	the	results	on	the	user’s	screen.

In	summary,	measuring	the	time	from	the	first	request	to	the	First	Byte	packets	is	the
server	response	time.	The	time	from	the	first	request	packet	to	the	final	data	delivery
packet	is	a	good	representation	of	the	user	response	time	experience.

Application	turn’s	delay
The	next,	most	likely	source	of	poor	response	times—especially	for	remote	users
accessing	applications	over	longer	distances—is	a	relatively	high	number	of	what	is
known	as	application	turns.	An	app	turn	is	an	instance	where	a	client	application	makes	a
request	and	nothing	else	can	or	does	happen	until	the	response	is	received,	after	which
another	request/response	cycle	can	occur,	and	so	on.

Every	client/server	application	is	subject	to	the	application	turn	effects	and	every
request/response	cycle	incurs	one.	An	application	that	imposes	a	high	number	of	app	turns
to	complete	a	task—due	to	poor	application	design,	usually—can	subject	an	end	user	to
poor	response	times	over	higher	latency	network	paths	as	the	time	spent	waiting	for	these
multiple	requests	and	responses	to	traverse	back	and	forth	across	the	network	adds	up,
which	it	can	do	quickly.

For	example,	if	an	application	requires	100	application	turns	to	complete	a	task	and	the
round	trip	time	(RTT)	between	the	user	and	the	application	is	50	milliseconds	(a	typical
cross-country	value),	the	app	turns	delay	will	be	5	seconds:

100	App	Turns	X	50	ms	RTT	network	latency	=	5	seconds	

This	app	turns’	effect	is	additional	wait	(response)	time	on	top	of	any	server	processing
and	network	transport	delays	that	is	5	seconds	of	totally	wasted	time.	The	resultant	longer
time	inevitably	gets	blamed	on	the	network;	the	network	support	teams	assert	that	the
network	is	working	just	fine	and	the	application	team	points	out	that	the	application	works
fine	until	the	network	gets	involved.	And	on	it	goes,	so	it	is	important	to	know	about	the
app	turns	effects,	what	causes	them,	and	how	to	measure	and	account	for	them.

Web	applications	can	incur	a	relatively	high	app	turn	count	due	to	the	need	to	download
one	or	more	CSS	files,	JavaScript	files,	and	multiple	images	to	populate	a	page.	Web
designers	can	use	techniques	to	reduce	the	app	turn	and	download	times,	and	modern
browsers	allow	numerous	connections	to	be	used	at	the	same	time	so	that	multiple
requests	can	be	serviced	simultaneously,	but	the	effects	can	still	be	significant	over	longer
network	paths.	Many	older,	legacy	applications	and	Microsoft’s	Server	Message	Block
(SMB)	protocols	are	also	known	to	impose	a	high	app	turn	count.

The	presence	and	effects	of	application	turns	are	not	intuitively	apparent	in	a	packet
capture	unless	you	know	they	exist	and	how	to	identify	and	count	them.	You	can	do	this	in
Wireshark	for	a	client-side	capture	using	a	display	filter:

ip.scr	==	10.1.1.125	&&	tcp.analysis.ack_rtt	>	.008	&&	tcp.flags.ack	==	1

You	will	need	to	replace	the	ip.src	IP	address	with	that	of	your	server,	and	adjust	the
tcp.analysis.ack_rtt	value	to	the	RTT	of	the	network	path	between	the	user	and	server.
Upon	applying	the	filter,	you	will	see	a	display	of	packets	that	represent	an	application
turn,	and	you	can	see	the	total	app	turns	count	in	the	Displayed	field	in	the	center	section
of	the	Wireshark’s	Status	Bar	option	at	the	bottom	of	the	user	interface.

If	you	measure	the	total	time	required	to	complete	a	task	(first	request	packet	to	last	data
delivery	packet)	and	divide	that	time	into	the	time	incurred	for	application	turns	(number
of	app	turns	X	network	RTT),	you	can	derive	an	approximate	app	turn	time	percentage:

5	seconds	app	turns	delay	/	7.5	seconds	total	response	time	=	66%	of	RT	

Any	percentage	over	25	percent	warrants	further	investigation	into	what	can	be	done	to
reduce	either	the	RTT	latency	(server	placement)	or	the	number	app	turns	(application
design).

Network	path	latency
The	next	leading	cause	of	high	response	times	is	network	path	latency,	which	compounds
the	effects	of	application	turns	as	discussed	in	the	preceding	section,	as	well	as	affecting
data	transport	throughput	and	how	long	it	takes	to	recover	from	packet	loss	and	the
subsequent	retransmissions.

You	can	measure	the	network	path	latency	between	a	client	and	server	using	the	ICMP

ping	packets,	but	you	can	also	determine	this	delay	from	a	packet	capture	by	measuring
the	time	that	transpires	from	a	client	SYN	packet	to	the	server’s	SYN,	ACK	response
during	a	TCP	three-way	handshake	process,	as	illustrated	in	the	following	figure	of	a
client-side	capture:

In	a	server-side	capture,	the	time	from	the	SYN,	ACK	to	the	client’s	ACK	(third	packet	in
the	three-way	handshake),	also	reflects	the	RTT.	In	practice,	from	any	capture	point,	the
time	from	the	first	SYN	packet	to	the	third	ACK	packet	is	a	good	representation	of	the
RTT	as	well	assuming	the	client	and	server	response	times	during	the	handshake	process
are	small.	Be	aware	that	the	server	response	time	to	a	SYN	packet,	while	usually	short,
can	be	longer	than	normal	during	periods	of	high	loading	and	can	affect	this	measurement.

High	network	path	latency	isn’t	an	error	condition	by	itself,	but	can	obviously	have
adverse	effects	on	the	application’s	operation	over	the	network	as	previously	discussed.

Bandwidth	congestion
Bandwidth	congestion	affects	the	application’s	performance	by	extending	the	amount	of
time	required	to	transmit	a	given	amount	of	data	over	a	network	path;	for	users	accessing
an	application	server	over	a	busy	WAN	link,	these	effects	can	become	significant.	A
network	support	team	should	be	able	to	generate	bandwidth	usage	and	availability	reports
for	the	in-path	WAN	links	to	check	for	this	possibility,	but	you	can	also	look	for	evidence
of	bandwidth	congestion	by	using	a	properly	configured	Wireshark	IO	Graph	to	view
network	throughput	during	larger	data	transfers.

The	following	screenshot	illustrates	a	data	transfer	that	is	affected	by	limited	bandwidth;
the	flatlining	at	the	2.5	Mbps	mark	(the	total	bandwidth	availability	in	this	example),
because	no	more	bandwidth	is	available	to	support	a	faster	transfer	is	clearly	visible:

You	can	determine	the	peak	data	transfer	rate	in	bits-per-second	(bps)	from	an	IO	Graph
by	configuring	the	graph	as	follows:

X	Axis	Tick	interval:	1	sec
Y	Axis	Unit:	Bits/tick
Graph	2	Filter:	ip.dst	==	<IP	address	of	server>
Graph	4	Filter:	ip.src	==	<IP	address	of	server>

These	settings	result	in	an	accurate	bits-per-second	display	of	network	throughput	in
client-to-server	(red	color)	and	server-to-client	(blue	color)	directions.	The	Pixels	per	tick
option	in	the	X	Axis	panel,	the	Scale	option	in	the	Y	Axis	panel,	and	other	settings	can	be
modified	as	desired	for	the	best	display	without	affecting	the	accuracy	of	the
measurement.

Be	aware	that	most	modern	applications	can	generate	short-term	peak	bandwidth	demands
(over	an	unrestricted	link)	of	multiple	Mbps.	The	WAN	links	along	a	network	path	should
have	enough	spare	capacity	to	accommodate	these	short	term	demands	or	response	time
will	suffer	accordingly.	This	is	an	important	performance	consideration.

Data	transport
There	are	a	number	of	TCP	data	transport	effects	that	can	affect	application	performance;
these	can	be	analyzed	in	Wireshark.

TCP	StreamGraph

Wireshark	provides	TCP	StreamGraphs	to	analyze	several	key	data	transport	metrics,
including:

Round-trip	time:	This	graphs	the	RTT	from	a	data	packet	to	the	corresponding	ACK
packet.
Throughput:	These	are	plots	throughput	in	bytes	per	second.
Time/sequence	(Stephen’s-style):	This	visualizes	the	TCP-based	packet	sequence
numbers	(and	the	number	of	bytes	transferred)	over	time.	An	ideal	graph	flows	from
bottom-left	to	upper-right	in	a	smooth	fashion.
Time/sequence	(tcptrace):	This	is	similar	to	the	Stephen’s	graph,	but	provides	more
information.	The	data	packets	are	represented	with	an	I-bar	display,	where	the	taller
the	I-bar,	the	more	data	is	being	sent.	A	gray	bar	is	also	displayed	that	represents	the
receive	window	size.	When	the	gray	bar	moves	closer	to	the	I-bars,	the	receive
window	size	decreases.
Window	Scaling:	This	plots	the	receive	window	size.

Note
The	TCP	StreamGraphs	are	unidirectional.	You	want	to	select	a	packet	for	the
direction	that	is	transporting	data	to	get	the	proper	view.

These	analysis	graphs	can	be	utilized	by	selecting	one	of	the	packets	in	a	TCP	stream	in
the	Packet	List	pane	and	selecting	TCP	StreamGraph	from	the	Statistics	menu	and	then
one	of	the	options	such	as	the	Time-Sequence	Graph	(tcptrace).

The	selected	graph	and	Control	Window	will	appear	from	the	Graph	type	tab	of	the
Control	Window	that	you	can	select	one	of	the	other	types	of	analysis	graphs,	as	shown
in	the	following	screenshot:

The	Time/Sequence	Graph	(tcptrace)	shown	in	the	following	screenshot	plots	sequence
numbers	as	they	increase	during	a	data	transfer,	along	with	the	gray	receive	window	size

line:

You	can	click	and	drag	the	mouse	over	a	section	of	the	graph	to	zoom	into	a	particular
section,	or	press	the	+	key	to	zoom	in	and	the	-	key	to	zoom	out.	Clicking	on	a	point	in
any	of	the	graphs	will	take	you	to	the	corresponding	packet	in	the	Wireshark’s	Packet	List
pane.

IO	Graph

You	can	also	analyze	a	the	effects	of	TCP	issues	on	network	throughput	by	applying	TCP
analysis	display	filter	strings	to	Wireshark’s	IO	Graph,	such	as:

tcp.analysis.flags	&&	!tcp.analysis.window_update

In	the	following	screenshot	of	a	slow	SMB	data	transfer,	it	can	be	seen	that	the	multiple
TCP	issues	(in	this	case,	packet	loss,	Duplicate	ACKs,	and	retransmissions)	in	the	red	line
correspond	to	a	decrease	in	throughput	(the	black	line):

Clicking	on	a	point	in	the	IO	Graph	takes	you	to	the	corresponding	packet	in	the
Wireshark’s	Packet	List	pane	so	you	can	investigate	the	issue.

IO	Graph	–	Wireshark	2.0

Wireshark	2.0,	also	known	as	Wireshark	Qt,	is	a	major	change	in	Wireshark’s	version
history	due	to	a	transition	from	the	GTK+	user	interface	library	to	Qt	to	provide	better
ongoing	UI	coverage	for	the	supported	platforms.	Most	of	the	Wireshark	features	and	user
interface	controls	will	remain	basically	the	same,	but	there	are	changes	to	the	IO	Graph.

These	are	shown	in	the	following	screenshot,	which	shows	the	same	TCP	issues	that	were
seen	in	the	preceding	screenshot:

The	new	IO	Graph	window	features	the	ability	to	add	as	many	lines	as	desired	(using	the
+	key)	and	to	zoom	in	on	a	graph	line,	as	well	as	the	ability	to	save	the	graph	as	an	image
or	PDF	document.

Summary
The	topics	covered	in	this	chapter	included	troubleshooting	methodology,	how	to	use
Wireshark	to	troubleshoot	connectivity	and	functionality	issues,	performance	analysis
methodology,	and	the	top	five	causes	of	poor	application	performance	and	how	to	use
Wireshark	to	analyze	those	causes.

In	the	next	chapter,	we	will	review	some	of	the	common	types	and	sources	of	malicious
traffic	and	introduce	how	a	security	professional	can	use	Wireshark	to	detect	these	threats.

Chapter	7.	Packet	Analysis	for	Security
Tasks
With	the	increasing	threat	of	hackers,	identity	thieves,	and	corporate	data	theft,	you	need
to	be	able	to	analyze	the	security	of	your	network	at	the	packet	level.

The	topics	that	will	be	covered	in	this	chapter	include:

Security	analysis	methodology
Scans	and	sweeps
OS	fingerprinting
Malformed	packets
Phone	home	traffic
Password	cracking	traffic
Unusual	traffic

Security	analysis	methodology
Security	analysis	at	the	packet	level	is	based	on	detecting	and	analyzing	suspect	traffic,
that	is,	the	traffic	that	does	not	match	normal	patterns	because	of	the	presence	of	unusual
protocol	types	or	ports,	or	unusual	requests,	responses,	or	packet	frequency.	Suspicious
traffic	may	include	reconnaissance	(discovery)	sweeps,	phone	home	behavior,	denial	of
service	attacks,	botnet	commands,	or	other	types	of	behavior	from	direct	attacks	or	virus-
or	botnet-based	agents.

Wireshark	captures	strategic	points	in	the	network	to	investigate	suspicious	packets	from
specific	hosts	or	on	network	segments	and	egress	points	can	also	complement	any
Intrusion	Detection	System	(IDS)	systems	that	may	be	in	place	to	alert	the	IT	staff	about
the	suspicious	traffic.

The	importance	of	baselining
The	ability	to	identify	abnormal	traffic	patterns	that	bear	investigation	versus	traffic
caused	by	poorly	behaving	applications,	misconfigurations,	or	faulty	devices	can	be	made
much	easier	if	you	have	a	baseline	of	what	is	normal.	A	baseline	is	a	snapshot	capture	of
typical	conversations	with	your	primary	applications	and	servers	and	the	background
traffic	on	the	network	segments	that	they	reside	on.	In	a	potential	security	breach	situation,
you	can	compare	the	normal	protocols,	traffic	patterns,	and	user	sessions	from	a	baseline
with	a	current	capture,	filter	out	the	normal	traffic,	and	then	inspect	the	differences.

To	allow	the	comparison	of	baselines	in	your	security	analysis,	you	need	to	periodically
capture	and	store	packet	trace	files	that	cover	a	sufficient	period	of	time	to	provide	a	good
sample	of	typical	user	and	background	traffic	patterns	while	keeping	the	file	sizes
manageable	for	use	within	Wireshark,	for	example,	100	MB	to	1	GB	per	file.	You	can
configure	the	Ring	Buffer	option	within	Wireshark’s	Capture	Options	window	to	save	a
series	of	reasonably	sized	files	for	longer	captures	or	busier	network	segments.

Although	your	baselining	needs	and	practices	will	depend	on	your	environment,	some	of
the	traffic	aspects	that	you	should	inspect	include:

Broadcast	and	multicast	types	and	rates:

What	devices	and	applications	are	using	broadcasts	and	multicasts?
What	are	the	typical	broadcast	and	multicast	packet	rates?

Applications	and	protocols:

What	applications	are	running	over	the	network?
What	protocols	and	ports	are	they	using?
Application	launch	sequences	and	typical	tasks
Are	application	sessions	encrypted?
Are	all	users	forced	to	use	encryption?	Any	exceptions?
What	are	the	login/logout	sequences	and	dependencies?

Routing	protocol(s)	and	routing	updates
ICMP	traffic
Boot-up	sequences
Name	resolution	sessions
Wireless	connectivity	includes	normal	management,	control,	and	data	frame	contents
VoIP	and	video	communications
Idle	time	traffic	is	the	host	communicating	with	other	hosts	when	there	are	no	users
logged	in
What	backup	processes	are	running	at	night	and	for	how	long?
Are	there	any	suspect	protocols	or	broadcasts/scans	taking	place?

As	you	inspect	your	baseline	captures,	it	is	helpful	to	view	a	summary	of	the	protocols
being	used	by	selecting	Protocol	Hierarchy	from	the	Wireshark’s	Statistics	menu.	In	the
following	screenshot,	for	example,	you	can	see	that	there	is	some	Internet	Relay	Chat
(IRC)	traffic,	as	well	as	the	Trivial	File	Transfer	Protocol	(TFTP)	traffic,	neither	of

which	might	be	normal	on	your	network	and	could	be	an	indication	of	rogue
communications	with	outside	entities:

Analyzing	baselines	of	normal	traffic	levels	and	patterns	is	also	an	excellent	way	of
getting	familiar	with	your	network	environment	and	its	typical	packet	flows	and	protocols,
which	better	prepares	you	to	spot	abnormal	traffic.

Security	assessment	tools
There	are	several	popular	tools	that	are	used	by	security	professionals	to	perform	security
assessment	and	vulnerability	testing.	As	these	tools	can	generate	the	same	types	of	scans,
fingerprinting,	and	other	exploitive	activities,	as	might	be	used	by	hackers	and	malicious
agents,	they	can	be	useful	to	a	packet	analyst	to	analyze	the	packets	that	they	generate
with	Wireshark	to	build	familiarity	with	how	different	types	of	activities	appear	in	a
packet	trace	and	also	to	build	display	filters	to	detect	them.

One	of	the	most	popular	tools	is	Network	Mapper	(Nmap),	a	free	and	open	source	utility
for	network	discovery	and	security	auditing.	Nmap	runs	on	all	major	computer	operating
systems	and	offers	a	command-line	and	GUI	version	(Zenmap).

Note
You	can	find	more	information	about	Nmap	at	http://nmap.org	and	information	on	other
top	security	tools	can	be	found	at	http://sectools.org.

http://nmap.org
http://sectools.org

Identifying	unacceptable	or	suspicious
traffic
Wireshark	can	be	used	to	identify	unusual	patterns	or	packet	contents	in	the	network
traffic	including	network	scans,	malformed	packets,	and	unusual	protocols,	applications,
and	or	conversations	that	should	not	be	running	on	your	network.	The	following	is	a
general	list	of	traffic	types	that	may	not	be	acceptable	and/or	warrant	investigation	to
validate	their	legitimacy	in	your	environment:

MAC	or	IP	address	scans:	These	attempt	to	identify	active	hosts	on	the	network
TCP	or	UDP	port	scans:	These	attempt	to	identify	active	applications	and	services

IP	address	and	port	scans	can	be	generated	from	network	management	applications	to
build	or	maintain	their	list	of	devices	and	applications	to	monitor/manage,	but	that’s
usually	the	only	legitimate	source	of	these	types	of	traffic.

Clear	text	passwords:	These	are	passwords	that	you	can	see	in	the	Wireshark’s
Packet	Details	or	Packet	Bytes	fields.	These	are	typical	for	File	Transfer	Protocol
(FTP)	logins,	but	not	typical	or	acceptable	elsewhere.
Clear	text	data:	This	is	the	data	in	packet	payloads	that	can	be	read.	This	is	typical
for	HTTP	requests	and	responses	and	commonly	seen	in	application	server	to
database	requests	and	responses,	but	these	database	exchanges	should	be	between
hosts	on	isolated,	nonpublic	network	segments	and	otherwise	physically	secure
environments.
Password	cracking	attempts:	These	are	repeated,	systematic	attempts	to	discover	a
working	password,	usually	from	a	single	device.
Maliciously	formed	packets:	These	are	packets	with	intentionally	invalid	or
improperly	formatted	data	in	protocol	fields	that	are	intended	to	exploit
vulnerabilities	in	applications.
Phone	home	traffic:	This	is	the	traffic	from	a	rogue	agent	that	may	be	resident	on	a
server	or	workstation	that	periodically	checks	in	with	a	remote	(usually	off-network)
host.
Flooding	or	Denial	of	Service	(DOS)	attacks:	This	is	the	traffic	that	is	intentionally
sent	at	a	very	high	packet-per-second	rate	to	one	or	more	hosts	in	an	attempt	to	flood
the	host(s)	or	network	with	so	much	traffic	that	no	one	else	can	access	their	services.
Subversive	activities:	These	include	a	number	of	techniques	to	prepare	for	and
facilitate	the	man-in-the-middle	attacks	where	a	device	is	tricked	into	sending	packets
to	a	malicious	host	for	the	purpose	of	intercepting	data.

This	is	only	a	sampling	of	types	of	malicious	traffic	that	you	might	see	on	your	network;
network	security	is	an	ever	evolving	exchange	of	increasingly	sophisticated	attacks	and
subsequent	countermeasures.

As	you	develop	your	security	analysis	skills,	you	might	want	to	build	a	special	security
profile	in	Wireshark	that	includes	packet	coloring	rules	based	on	display	filters	to	help
identify	suspicious	or	malformed	packets,	as	well	as	a	set	of	Filter	Expression	Buttons

that	isolate	and	display	various	types	of	questionable	traffic	you	might	be	looking	for.

Some	examples	of	display	filters	to	isolate	and	inspect	suspicious	packets	include:

Filter	description Display	filter	string

Detect	ICMP	pings	and	possible	ping	sweep icmp.type	==	8	||	icmp.type	==	0

ICMP	destination	unreachable	filter	(included
redirects)

(icmp.type	>=	3	&&	icmp.type	<=	5)	||	icmp.type	==	11

||	(icmpv6.type	>=	1	&&	icmpv6.type	<=	4)

Unusual	ICMP	echo	requests (icmp.type	==	8)	&&	!(icmp.code	==	0x00)

TCP	handshakes	useful	for	detecting	TCP	scans	as
well	as	inspecting	normal	session	setups/tear-
downs/resets

(tcp.flags&02	&&	tcp.seq==0)	||	(tcp.flags&12	&&

tcp.seq==0)	||	(tcp.flags.ack	&&	tcp.seq==1	&&

!tcp.nxtseq	>	0	&&	!tcp.ack	>1)	||	tcp.flags.fin	==	1

||	tcp.flags.reset	==1

Detect	Xmas	scan	(URG,	FIN,	and	PUSH	flags	set) tcp.flags	==	0x029

Other	suspicious	TCP	settings:	TCP	SYN/ACK	w/
Win	size	greater	than	1025,	SYN,	FIN,	PSH,	URG
bits	set,	no	TCP	flags	set,	TCP	max	segment	size	set
to	less	than	1460

((tcp.flags	==	0x02)	&&	(tcp.window_size	<	1025))	||

tcp.flags	==	0x2b	||	tcp.flags	==	0x00	||

tcp.options.mss_val	<	1460

Internet	Relay	Chat	(IRC)	traffic	(is	this	normal	in
your	network?)

tcp.port	==	194	||	(tcp.port	>=	6660	&&	tcp.port	<=

6669)	||	tcp.port	==	7000

High	number	of	DNS	answers	(could	be	a	list	of
command	and	control	servers)

dns.count.answers	>	5

Scans	and	sweeps
Malicious	programs	and	rogue	processes	might	investigate	a	network	environment	for
available	ports	and	hosts	using	various	scanning	processes	before	launching	an	exploit.
Identifying	the	presence	of	these	reconnaissance	processes	may	allow	thwarting	the	attack
before	it	is	launched,	as	well	as	tracking	down	and/or	blocking	the	source	of	the	malicious
activity—especially	if	that	source	is	inside	the	company	as	some	of	them	are.

ARP	scans
ARP	scans,	also	called	as	ARP	sweeps,	are	used	to	discover	active	localhosts	on	a	network
segment.	An	ARP	sweep	can	be	difficult	to	detect	unless	you	apply	a	display	filter	and
observe	a	steady,	incremental	sweep	from	the	same	device,	as	seen	in	the	following
screenshot:

As	ARP	packets	cannot	pass	through	a	router,	the	source	device	conducting	the	ARP
sweep	must	be	on	the	same	network	segment	that	the	ARP	packets	are	seen	on.

ICMP	ping	sweeps
ICMP	ping	sweeps	are	used	to	discover	active	hosts	on	local	or	remote	network	segments
(since	ICMP	uses	IP	and	is	routable)	using	ICMP	Type	8	Echo	Requests	and	Type	0	Echo
Replies	for	a	range	of	IP	addresses.	You	can	easily	detect	ping	sweeps	by	using	a	display
filter	icmp.type	==	8	||	icmp.type	==	0.

TCP	port	scans
TCP	port	scans	allow	a	malicious	agent	to	discover	which	TCP	ports	are	open	on	a	target
host.	Network	ports	are	the	entry	points	to	a	server	or	workstation;	a	service	that	listens	on
a	given	port	is	able	to	service	requests	from	a	client.	Malicious	agents	can	sometimes
exploit	vulnerabilities	in	server	code	to	gain	access	to	sensitive	data	or	execute	malicious
code	on	the	machine,	which	is	why	testing	all	active	ports	is	necessary	for	a	complete
coverage	of	any	security	validation.

Some	of	the	most	common	ports	used	for	TCP-based	services	include:

80	HTTP
443	HTTPS
8080	HTTP	proxy
8000	HTTP	alternate
21	FTP
22	SSH
23	Telnet
3389	Microsoft	Remote	Desktop
5900	VNC
25	SMTP
110	POP3
143	IMAP
3306	MySQL
1433	Microsoft	SQL	Server
1720	H.323
5060	SIP

A	TCP	port	scan	device	will	send	a	TCP	SYN	packet	to	a	port	on	a	target	host,	which	will
respond	with	either	SYN,	or	ACK	if	the	port	is	open,	or	RST	if	the	port	is	closed.	Similar
to	an	ARP	scan,	a	TCP	scan	can	be	detected	by	a	series	of	SYN	packets	from	a	single	IP
address	to	a	target	IP	address	over	a	range	of	port	numbers.	A	display	filter	can	make
detecting	these	types	of	scans	easier:

ip.dest	==	<IP	Address	of	target	host>	&&	tcp.flags.syn

UDP	port	scans
UDP	port	scans	are	like	TCP	scans,	but	they	are	run	against	typical	UDP-based	services,
the	most	common	of	which	include:

53	DNS
161/162	SNMP
67/68	DHCP
5060	SIP
135	Microsoft	Endpoint	Mapper
137/139	NetBIOS	Name	Service

The	preceding	topics	cover	just	a	sampling	of	the	most	common	scans	used	by	malicious
agents.	Security	analysts	should	research	this	topic	further	to	identify	all	the	types	of	scans
that	may	be	used	to	exploit	their	particular	environment’s	vulnerabilities.

OS	fingerprinting
OS	fingerprinting	is	a	technique	wherein	a	remote	machine	sends	various	types	of
commands	to	a	target	device	and	analyzes	the	responses	to	attempt	to	identify	the	target
devices’	operating	system	and	version.	Knowing	which	operating	system	a	device	is
running	makes	it	possible	to	use	exploits	specific	to	that	operating	system.

Nmap	detects	operating	systems	based	on	a	series	of	port	scans,	ICMP	pings,	and
numerous	other	tests,	and	then	runs	a	set	of	follow-up	tests	based	on	the	results	to	further
define	the	OS	version	running.

In	the	following	screenshot,	you	can	see	the	test	results	verbiage	from	the	GUI	version	of
Nmap	(Zenmap)	as	it	completes	an	OS	detection	scan,	as	well	as	its	best	estimate	of	the
operating	system	and	version:

A	Wireshark	capture	of	the	OS	detection	activity	described	earlier	included	as	an	example
of	one	of	the	OS	fingerprinting	scripts	that	are	run,	a	bogus	HTTP	request	to	the	target
device	(172.20.0.1)	for	/nice%20ports%2C/Tri%6Eity.txt%2ebak	to	see	exactly	what
kind	of	error	response	was	generated,	which	is	used	to	help	pinpoint	the	OS	version:

The	exact	format	of	the	HTML	response	from	the	preceding	request	could	be	used	to
identify	the	OS	and/or	web	server	version,	as	seen	in	the	following	Wireshark	packet
details	screenshot:

Analyzing	packet	captures	of	these	kinds	of	OS	fingerprinting	requests	and	responses	will
make	it	much	easier	to	spot	similar	activities	from	malicious	entities.

Malformed	packets
Maliciously	malformed	packets	take	advantage	of	vulnerabilities	in	operating	systems	and
applications	by	intentionally	altering	the	content	of	data	fields	in	network	protocols.	These
vulnerabilities	may	include	causing	a	system	crash	(a	form	of	denial	of	service)	or	forcing
the	system	to	execute	the	arbitrary	code.

An	example	of	malformed	packet	vulnerability	is	Cisco	Security	Advisory	cisco-sa-
20140611-ipv6,	wherein	vulnerability	in	parsing	malformed	IPv6	packets	in	a	certain
series	of	routers	could	cause	a	reload	(reboot)	of	a	certain	card	that	carries	network	traffic,
which	could	intermittently	cause	service	outages.

Another	example	of	this	kind	of	vulnerability	is	in	some	unpatched	Windows	or	Linux
systems	that	will	crash	if	they	receive	a	series	of	fragmented	packets	where	the	fragments
overlap	each	other.

The	types	and	possibilities	of	malformed	packets	are	endless,	but	vulnerabilities	are
usually	announced	as	they	are	discovered	and	some	may	provide	packet	details.	You	can
build	display	filters	and/or	build	coloring	rules	in	Wireshark	to	detect	these	packets.	It	also
helps	to	study	and	understand	what	range	of	values	the	different	protocol	fields	normally
and	legally	contain,	and	what	TCP	and	other	protocol	sequences	normally	look	like	so	you
can	spot	suspicious	contents	in	packet	flows.

Phone	home	traffic
Phone	home	traffic	originates	from	a	rogue	application	on	a	device	that	periodically
connects	to	a	remote	(usually	off-network)	host	to	receive	updates	or	commands	or	deliver
data	collected	from	the	infected	host.	The	majority	of	phone	home	traffic	will	be	the
operating	system	and	virus	protection	updates,	Dropbox	or	other	external	services,	and
similar	authorized	and	appropriate	services,	so	it	will	take	some	effort	to	identify
malicious	traffic	out	of	this	mix.

It	is	important	to	understand	the	risk	that	phone	home	traffic	can	represent:	many	botnet
Distributed	Denial	of	Service	(DDoS)	attacks	are	supported	by	a	“zombie	army”	of
hijacked	computers	running	software	that	may	lie	undetected	for	some	period	of	time
except	for	periodic	communications	with	their	Command	and	Control	(C&C)	servers
awaiting	instructions	to	attack	a	target.	In	a	similar	fashion,	keylogging	traffic	will	send
periodic	reports	of	video	screenshots	and	keystroke	data	to	the	collecting	host.

One	way	to	identify	potentially	malicious	phone	home	traffic	is	to	capture	and	inspect	the
DNS	queries	as	these	sessions	start	up,	looking	at	two	distinct	areas:

The	hostname(s)	of	legitimate	services	are	often	reasonably	recognizable.
DNS	queries	for	illegitimate	applications	contacting	C&C	servers	will	often	return	a
long	list	of	aliases	with	IP	addresses	that	are	not	all	in	the	same	general	range	(that	is,
from	all	over	the	world).	A	display	filter	that	helps	identify	DNS	responses	with	long
response	lists	is	dns.count.answers	>	5.

It	also	helps	to	have	a	baseline	that	includes	the	idle	period	traffic	and	a	sample	of	known
updates/services	dialogs	to	compare	a	questionable	capture	to.

Password-cracking	traffic
Password-cracking	traffic	can	be	detected	by	observing	numerous	error	messages	from	a
target	host	directed	to	a	client	that	repeatedly	and	unsuccessfully	attempts	to	log	in.	There
are	two	general	types	of	password	cracking	attempts:

Dictionary	attacks	work	from	a	list	of	common	words,	names,	and	numbers
Brute	force	attacks	use	a	sequence	of	characters,	numbers,	and	key	values

Both	of	these	types	are	often	thwarted	by	login	security	measures	that	lock	out	an	account
after	a	short	number	of	failed	login	attempts.

Unusual	traffic
While	it	is	difficult	to	anticipate	what	methods	a	hacker	may	use	in	an	attempt	to	infiltrate
a	network	or	host,	there	are	a	few	things	that	should	probably	never	happen	on	a	normal,
healthy	network.	Due	to	their	usefulness	in	testing	and	conveying	error	conditions,	ICMP
packets	are	a	likely	target	for	malicious	redirection.	Since	TCP	is	the	predominant
transport	protocol	in	use	for	most	applications,	you	should	look	out	for	abnormalities	in
TCP	headers	or	payloads	that	could	be	a	sign	of	malicious	intent.

Some	examples	of	abnormalities	to	look	out	for	are	discussed	in	the	following	table:

Suspicious
content Description

TCP	bad
flags

An	illegal	or	unlikely	combination	of	TCP	flags.	The	SYN,	SYN/ACK,	ACK,	PSH,	FIN,	and	RST	flags
are	normal	when	they’re	used	in	the	appropriate	places;	anything	otherwise	warrants	investigation.

SYN
packet
contains
data

The	initial	TCP	SYN	packet	should	never	contain	payload	data;	it	is	used	to	establish	a	session	only.	Note,
however,	that	the	third	ACK	packet	in	the	TCP	can	contain	data.

Suspicious
datagram
payload
contents

References	to	the	operating	system	or	other	non-application	directories,	strange	executables,	or	other
payload	data	that	doesn’t	seem	to	fit	the	purpose	of	the	application	being	used	to	send	the	data.

Suspicious
ping
payload
text

The	text	used	to	fill	in	the	payload	of	an	ICMP	Echo	Request	packet	is	usually	a	benign	sequential	series
of	letters	and	numbers	or	similar	meaningless	text.	If	this	text	appears	to	carry	commands	or	meaningful
data,	it	warrants	investigation.

Clear	text
passwords
in	FTP	or
Telnet
sessions

Seeing	FTP	used	to	transport	sensitive	business	data,	or	Telnet	to	administer	switches	and	routers,	isn’t
malicious	intent	by	a	hacker.	It’s	negligent	practice	by	employees	as	both	protocols,	by	design,	transmit
clear	text	login	IDs	and	passwords	over	the	network,	making	it	easy	for	even	an	unsophisticated	hacker	to
capture	them.	There	are	Secure	FTP	(sftp)	and	Secure	Shell	(SSH)	(Telnet	alternative)	solutions	for	all
platforms	available	on	the	Web.

Summary
The	topics	covered	in	this	chapter	on	security	analysis	included	detecting	scans	and
sweeps	to	identify	targets	for	planned	attacks,	operating	system	fingerprinting,	detecting
malformed	packets,	and	packets	that	are	suspiciously	fragmented	or	sent	out	of	order,
phone	home	traffic	from	malicious	agents,	identifying	password	cracking	attempts,	and
identifying	other	abnormal	packets	and	payloads.

In	the	next	chapter,	we’ll	review	several	key	command-line	utilities	provided	in	a
Wireshark	installation,	as	well	as	a	few	additional	packet	analysis	tools	that	can
complement	your	toolset.

Chapter	8.	Command-line	and	Other
Utilities
Wireshark	includes	a	number	of	command-line	utilities	to	manipulate	packet	trace	files
and	offer	GUI-free	packet	captures,	and	there	are	a	few	other	tools	that	can	help	round	out
your	analysis	toolset.

The	topics	that	will	be	covered	in	this	chapter	include:

Capturing	traffic	with	Dumpcap	and	Tshark
Editing	trace	files	with	Editcap
Merging	trace	files	with	Mergecap
Other	helpful	tools

Wireshark	command-line	utilities
When	you	install	Wireshark,	a	range	of	command-line	tools	also	gets	installed,	including:

capinfos.exe:	This	prints	information	about	trace	files
dumpcap.exe:	This	captures	packets	and	saves	to	a	libpcap	format	file
editcap.exe:	This	splits	a	trace	file,	alters	timestamps,	and	removes	duplicate
packets
mergecap.exe:	This	merges	two	or	more	packet	files	into	one	file
rawshark.exe:	This	reads	a	stream	of	packets	and	prints	field	descriptions
text2pcap.exe:	This	reads	an	ASCII	hex	dump	and	writes	a	libpcap	file
tshark.exe:	This	captures	network	packets	or	displays	data	from	a	saved	trace	file

The	Wireshark.exe	file	launches	the	GUI	version	you’re	familiar	with,	but	you	can	also
launch	Wireshark	from	the	command	line	with	a	number	of	parameters;	type	Wireshark	–
h	for	a	list	of	options	and/or	create	shortcuts	to	launch	Wireshark	with	any	of	those
options.

Note
It	is	very	helpful	to	add	the	Wireshark	program	directory	to	your	system’s	PATH	statement
so	that	you	can	execute	any	of	the	command-line	utilities	from	any	working	directory.

Capturing	traffic	with	Dumpcap
The	dumpcap.exe	file	is	the	executable	that	Wireshark	actually	runs	under	the	covers	to
capture	packets	and	save	them	to	a	trace	file	in	libpcap	format.	You	can	run	Dumpcap	on
the	command	line	to	circumvent	using	the	Wireshark	GUI	and	use	fewer	resources.	A	list
of	command-line	options	is	available	by	typing	dumpcap.exe	-h.

Some	of	the	most	useful	options	are	as	follows:

-D:	This	prints	a	list	of	available	interfaces	and	exits
-i	<interface>:	This	specifies	a	name	or	index	number	of	an	interface	to	capture	on
-f	<capture	filter>:	This	applies	a	capture	filter	in	the	Berkeley	Packet	Filter
(BPF)	syntax
-b	filesize:	This	is	the	file	size
-w	<outfile>:	This	is	the	name	of	the	file	where	the	files	will	be	saved

An	example	of	viewing	a	list	of	interfaces	and	then	running	Dumpcap	to	capture	a	specific
interface	with	an	IP	address	capture	filter	(note	the	use	of	quotes	around	the	filter	syntax)
configured	to	use	a	three-file	ring	buffer	with	file	sizes	of	100	MB	and	an	output	filename
derived	from	capture.pcap	is	illustrated	in	the	following	screenshot:

You	can	get	more	information	on	Dumpcap	options	at
https://www.wireshark.org/docs/man-pages/dumpcap.html.

https://www.wireshark.org/docs/man-pages/dumpcap.html

Capturing	traffic	with	Tshark
Tshark	can	be	used	to	capture	network	packets	and/or	display	data	from	the	capture	or	a
previously	saved	packet	trace	file;	packets	can	be	displayed	on	the	screen	or	saved	to	a
new	trace	file.

The	same	syntax	used	to	perform	a	basic	capture	using	Dumpcap	will	work	with	Tshark	as
well,	so	we	won’t	repeat	that	here.	However,	Tshark	offers	a	very	wide	range	of	additional
features,	with	a	corresponding	large	number	of	command-line	options	that	can,	as	in	all
Wireshark	utilities,	be	viewed	by	typing	tshark	–h	in	the	command	prompt.

A	number	of	Tshark	options	are	to	view	statistics;	an	example	of	the	command	syntax	and
statistical	results	from	a	capture	(after	pressing	Ctrl	+	C	to	end	the	capture)	is	illustrated	in
the	following	screenshot:

You	will	find	an	extensive	number	of	details	and	examples	on	using	statistics	and	other
Tshark	options	at	https://www.wireshark.org/docs/man-pages/tshark.html.

https://www.wireshark.org/docs/man-pages/tshark.html

Editing	trace	files	with	Editcap
You	can	use	Editcap	to	split	a	trace	file	that	is	too	large	to	work	with	in	Wireshark	into
multiple	smaller	files,	extract	a	subset	of	a	trace	file	based	on	a	start	and	stop	time,	alter
timestamps,	remove	duplicate	packets,	and	a	number	of	other	useful	functions.

Type	editcap	–h	in	the	command	prompt	for	a	list	of	options.	The	syntax	to	extract	a
single	packet	or	a	range	of	packets	by	packet	numbers	is	as	follows:

editcap		–r		<infile>		<outfile>		<packet#>	[-	<packet#>]

You	must	specify	<infile>	and	<outfile>.	The	–r	specifies	to	keep,	not	delete,	the
specified	packet	or	packet	range,	for	example:

editcap		–r		MergedTraces.pcapng			packetrange.pcapng			1-5000

You	can	split	a	source	trace	file	into	multiple	sequential	files,	each	containing	the	number
of	packets	specified	by	the	–c	option:

editcap		–c	5000		MergedTraces.pcapng			SplitTrace.pcapng

You	can	eliminate	duplicate	packets	in	a	file	within	a	five-packet	proximity:

editcap		–d		hasdupes.pcapng		nodupes.pcapng

If	you	have	two	trace	files	that	have	a	significant	span	of	time	between	them,	and	you
want	to	merge	them	into	one	file	but	closer	together,	you	can	investigate	all	of	the	packets
within	one	IO	Graph	or	a	similar	analysis	function;	you	can	first	use	the	–t	option	on	one
of	the	files	to	adjust	the	timestamps	in	that	file	by	a	constant	amount	(in	seconds).	For
example,	to	subtract	5	hours	from	a	trace	file’s	timestamps,	use	the	following	command:

editcap		-t		-18000		packetrange.pcapng			adj_packetrange.pcapng

Comparing	the	two	traces	in	Wireshark	reveals	the	following	details:

Packet	#500	before	adjustment:	2014-09-04	15:27:38.696897
Packet	#500	after	adjustment:	2014-09-04	10:27:38.696897

You	can	get	more	information	on	and	examples	of	Editcap	options	at
https://www.wireshark.org/docs/man-pages/editcap.html.

https://www.wireshark.org/docs/man-pages/editcap.html

Merging	trace	files	with	Mergecap
You	can	use	Mergecap	to	merge	two	or	more	trace	files	into	one	file.	The	basic	syntax	is
as	follows:

mergecap	–w	<outfile.pcapng>		infile1.pcapng			infile2.pcapng		…

For	example:

mergecap	–w	merged.pacap			source1.pcapng			source2.pcapng				

source3.pcapng

One	useful	option	you	sometimes	may	want	to	use	in	Mergecap	(and	several	of	the	other
command-line	utilities)	is	–s	<snaplen>.	This	will	truncate	the	packets	at	the	specified
length	past	the	start	of	each	frame,	resulting	in	a	smaller	file;	a	typical	value	for
<snaplen>	is	128	bytes:

mergecap	–w	merged_trimmed.pcapng		-s	128		source1.pcapng		source2.pcapng

Mergecap	batch	file
If	the	capture	files	you	want	to	merge	have	a	variety	of	naming	formats,	you	can	create	a
MergeTraces.bat	file	containing	the	following	Windows	batch	commands:

@echo	off

cls

echo	MergeTraces.bat

echo.

echo	Merges	multiple	packet	trace	files	with	a	.pcapng	extension	into	one	

.pcapng	file

echo.

echo	Usage:	Copy	MergeTraces.bat	into	the	directory	with	the	.pkt	files	and	

execute

echo	The	utility	will	generate	a	'MergedTraces.pcap'	file	

echo	and	a	'MergedFileList.txt'	file	which	lists	the	.pcapng	files	

processed.

echo.

echo.

echo	IMPORTANT!!	You	must	type	'CMD	/V:ON'	from	this	window	which	enables	

echo	'Delayed	environment	variable	expansion'	in	order	to	properly	execute

echo	this	batch	utility.

echo.

echo	You	must	also	add	the	path	to	Wireshark's	mergecap.exe	to	your	path	

statement.

echo.

echo	If	you've	not	done	this,	Type	Ctrl-C	to	exit;	Otherwise

pause

echo.

echo	Deleting	old	MergedFileList.txt…

if	exist	"MergedFileList.txt"	del	MergedFileList.txt

for	%%f	in	(*.pcap-ng)	do	echo	"%%f"	>>	MergedFileList.txt

echo	Deleting	old	MergedTraces.pcapng…

if	exist	"MergedTraces.pcapng"	del	MergedTraces.pcapng

echo	Preparing	to	merge:

echo.

type	MergedFileList.txt

echo.

echo	Merging….......

set	FILELIST=

for	%%f	in	(*.pcap-ng)	do	set	FILELIST=!FILELIST!	%%f

::	DEBUG

::	echo	%FILELIST%

mergecap	-w	MergedTraces.pcapng	%FILELIST%

echo.

if	exist	MergedTraces.pcapng	@echo	Done!

if	NOT	exist	MergedTraces.pcapng	@echo	Error!!—Check	your	settings.

echo.

Copy	the	batch	file	into	a	directory	containing	just	the	packet	trace	files	you	want	to	merge
and	execute	it.	The	batch	file	will	merge	all	the	.pcapng	files	into	one	file	called
MergedTraces.pcapng.	This	is	much	easier	than	trying	to	specify	a	long	list	of	unique
source	files	in	a	command	line,	especially	if	the	filenames	contain	date-time	stamps.	If
you	need	to	work	with	the	.pcap	files,	change	all	instances	of	.pcapng	to	.pcap	in	the

batch	commands;	you	can	also	alter	the	output	filename	as	desired.

Note
You	can	also	merge	trace	files	by	clicking-and-dragging	the	files	into	the	Wireshark
desktop.	The	files	will	be	merged	in	chronological	order	based	on	their	timestamps	after
selecting	Merge	from	the	Wireshark	File	menu.	This	works	reasonably	well	as	long	as	the
total	file	size	doesn’t	exceed	1GB.

You	can	get	more	info	and	examples	of	Mergecap	options	at
https://www.wireshark.org/docs/man-pages/mergecap.html.

https://www.wireshark.org/docs/man-pages/mergecap.html

Other	helpful	tools
Wireshark	is	an	extremely	versatile	and	useful	tool.	However,	there	are	some	things	it
doesn’t	do	easily	or	at	all,	so	we’ll	discuss	a	few	other	tools	you	may	want	to	include	in
your	analysis	toolset.

HttpWatch
HttpWatch	is	a	packet-based	performance	analysis	utility	that	integrates	with	Internet
Explorer	and	Firefox	browsers	to	view	a	graphical	depiction	and	statistical	values	from
HTTP	interactions	between	the	browser	and	websites.	This	kind	of	utility	makes	it	easy	to
discover	and	measure	from	the	user’s	perspective	when	significant	delays	are	occurring
and	the	source	of	those	delays.

The	following	screenshot	shows	the	HttpWatch	visual	and	numerical	analysis	by	loading
the	www.wireshark.org	home	page:

You	can	get	more	information	about	HttpWatch	from	http://www.httpwatch.com/.	Also,	a
similar	performance	analysis	utility	is	Fiddler,	which	can	be	found	at
http://www.telerik.com/fiddler.

http://www.wireshark.org
http://www.httpwatch.com/
http://www.telerik.com/fiddler

SteelCentral	Packet	Analyzer	Personal	Edition
SteelCentral	Packet	Analyzer	(previously	known	as	Cascade	Pilot)	is	available	in	Standard
and	Personal	Edition	versions.	Unlike	Wireshark,	this	utility	is	able	to	open	and	analyze
multigigabyte	trace	files;	you	can	quickly	isolate	a	conversation	of	interest,	right-click	on
it,	and	save	that	conversation	in	a	separate	packet	trace	file	or	launch	Wireshark	directly
and	pass	that	conversation	to	it	from	the	same	menu.

In	addition,	the	utility	offers	a	variety	of	network	analysis	screens	called	Views	that
provide	graphical	displays	and	reports	on	a	wide	range	of	performance	perspectives.	The
following	screenshot	illustrates	a	set	of	MAC	Overview	Views:

You	can	get	more	information	on	the	SteelCentral	Packet	Analyzer	products	at
http://www.riverbed.com/products/performance-management-control/network-
performance-management/packet-analysis.html.

http://www.riverbed.com/products/performance-management-control/network-performance-management/packet-analysis.html

AirPcap	adapters
If	you	are	using	Wireshark	to	analyze	wireless	networks,	you	will	need	a	wireless	adapter
that	provides	the	ability	to	see	all	of	the	available	channels	and	provides	a	Radiotap
Header,	which	offers	additional	information	for	each	frame	such	as	radio	channel	and
signal/noise	strengths.

The	prevalent	wireless	adaptor	for	use	with	Wireshark	or	SteelCentral	Packet	Analyzer	on
Windows	platforms	is	the	Riverbed	AirPcap	adapter,	which	is	available	from	the
Riverbed	website.	The	AirPcap	adapter	plugs	into	a	USB	port	and	includes	drivers	to
integrate	with	Wireshark	and	provide	the	Radiotap	Header	information.	There	are	several
product	models	that	offer	increasing	coverage	of	the	various	WLAN	bands;	AirPcap	Nx
offers	the	widest	coverage.	The	following	image	depicts	two	of	the	available	adapters:

You	can	get	more	information	on	the	Riverbed	AirPcap	adapters	at
http://www.riverbed.com/products/performance-management-control/network-
performance-management/wireless-packet-capture.html.

http://www.riverbed.com/products/performance-management-control/network-performance-management/wireless-packet-capture.html

Summary
The	topics	covered	in	this	chapter	included	several	of	Wireshark’s	command-line	utilities
to	capture	packets	and	edit	and	merge	packet	trace	files,	as	well	as	several	useful	tools	to
compliment	your	analysis	toolset.

This	is	the	final	chapter	of	this	book	on	Wireshark.	I	hope	you	enjoyed	reading	it,	and
mostly,	I	hope	you	use	it	as	a	foundation	to	become	a	Wireshark	expert!

Index
A

abnormalities,	TCP
examples	/	Unusual	traffic

Address	Resolution	Protocol	(ARP)
about	/	Address	Resolution	Protocol

/	Ethernet	frames	and	switches
AirPcap	Adapters

about	/	AirPcap	adapters
Anycast	addresses

about	/	IPv6	address	types
application	layer,	OSI

about	/	Layer	7	–	the	application	layer
encapsulation	/	Encapsulation

application	layer	protocols
about	/	Application	layer	protocols
Dynamic	Host	Configuration	Protocol	(DHCP)	/	Dynamic	Host	Configuration
Protocol
Dynamic	Host	Configuration	Protocol	Version	6	(DHCPv6)	/	Dynamic	Host
Configuration	Protocol	Version	6
Domain	Name	Service	(DNS)	/	Domain	Name	Service
Hypertext	Transfer	Protocol	(HTTP)	/	Hypertext	Transfer	Protocol
additional	information	/	Additional	information

areas,	functional	issues	troubleshooting
user	credentials	/	Troubleshooting	functional	issues
user	machine,	application	settings	/	Troubleshooting	functional	issues
application	reported	errors	/	Troubleshooting	functional	issues
web	browsers	differences	/	Troubleshooting	functional	issues

ARP	packet
significant	fields	/	Address	Resolution	Protocol

ARP	scans
about	/	ARP	scans

ARP	sweeps
about	/	ARP	scans

B
baselining

about	/	The	importance	of	baselining
importance	/	The	importance	of	baselining
traffic	aspects	/	The	importance	of	baselining

basic	network	connectivity
testing	/	Basic	network	connectivity
application	services,	connecting	to	/	Connecting	to	the	application	services

Berkeley	packet	filter	(BPF)	/	Installing	Wireshark	on	Mac	OS	X
bits-per-second	(bps)	/	Bandwidth	congestion
bits	per	second	(bps)	/	Filtering	out	the	noise

C
Capinfos.exe

about	/	Wireshark	command-line	utilities
Capture	Filter	field

about	/	Selecting	the	correct	network	interface
capture	filters

about	/	Capturing	interfaces,	filters,	and	options
using	/	Using	capture	filters
configuring	/	Configuring	capture	filters
reference	link	/	Configuring	capture	filters

Capture	Interfaces	window
about	/	Selecting	the	correct	network	interface
options	/	Selecting	the	correct	network	interface

capture	options
about	/	Capturing	interfaces,	filters,	and	options

Capture	Options	window
about	/	Selecting	the	correct	network	interface,	Capture	options
filename,	configuring	/	Capturing	filenames	and	locations
location,	configuring	/	Capturing	filenames	and	locations
multiple	file	options	/	Multiple	file	options
Ring	buffer	option	/	Ring	buffer
stop	capture	options	/	Stop	capture	options
display	options	/	Display	options
name	resolution	options	/	Name	resolution	options

Class	Inter-Domain	Routing	(CIDR)	notation	/	IPv6	addressing
Classless	Inter-Domain	Routing	(CIDR)	designator	/	IP	networks	and	subnets
Class	of	Service	(CoS)	tagging	/	Layer	2	–	the	data-link	layer
command-line	tools

Capinfos.exe	/	Wireshark	command-line	utilities
Dumpcap.exe	/	Wireshark	command-line	utilities
Editcap.exe	/	Wireshark	command-line	utilities
Mergecap.exe	/	Wireshark	command-line	utilities
Rawshark.exe	/	Wireshark	command-line	utilities
Text2pcap.exe	/	Wireshark	command-line	utilities
Tshark.exe	/	Wireshark	command-line	utilities

Command	and	Control	(C&C)	servers	/	Phone	home	traffic
Command	Prompt	(CMD)	/	Basic	network	connectivity
configuration,	Wireshark

packet	timestamps,	working	with	/	Working	with	packet	timestamps
packet	colorization	/	Colorization	and	coloring	rules
preferences	/	Wireshark	preferences
profiles	/	Wireshark	profiles

connectivity	issues

troubleshooting	/	Troubleshooting	connectivity	issues
connectivity	issues	troubleshooting

about	/	Troubleshooting	connectivity	issues
network	interfaces,	enabling	/	Enabling	network	interfaces
physical	connectivity,	confirming	/	Confirming	physical	connectivity
workstation	IP	configuration,	obtaining	/	Obtaining	the	workstation	IP
configuration
MAC	addresses,	obtaining	/	Obtaining	MAC	addresses
network	service	IP	addresses,	obtaining	/	Obtaining	network	service	IP
addresses
basic	network	connectivity	/	Basic	network	connectivity

content	addressable	memory	(CAM)	table	/	Ethernet	frames	and	switches
Conversations	window

about	/	Using	the	Conversations	window
using	/	Using	the	Conversations	window
Ethernet	tab	/	The	Ethernet	tab
TCP	tab	/	The	TCP	and	UDP	tabs
UDP	tab	/	The	TCP	and	UDP	tabs
WLAN	tab	/	The	WLAN	tab

D
DARPA	model

about	/	The	OSI	and	DARPA	reference	models
data-link	layer,	OSI

about	/	Layer	2	–	the	data-link	layer
Media	Access	Control	(MAC)	addresses	/	Layer	2	–	the	data-link	layer
Type	(or	EtherType)	field	/	Layer	2	–	the	data-link	layer
Payload	/	Layer	2	–	the	data-link	layer
frame	check	sequence	/	Layer	2	–	the	data-link	layer
Cyclic	Redundancy	Check	(CRC)	/	Layer	2	–	the	data-link	layer
Ethernet	II	frame	/	Layer	2	–	the	data-link	layer
Ethernet	frame	/	Layer	2	–	the	data-link	layer

data	transport
about	/	Data	transport
TCP	StreamGraph	/	TCP	StreamGraph
time/sequence	(Stephen’s-style)	/	TCP	StreamGraph
time/sequence	(tcptrace)	/	TCP	StreamGraph
window	scaling	/	TCP	StreamGraph
IO	Graph	/	IO	Graph
Wireshark	2.0	/	IO	Graph	–	Wireshark	2.0

Defense	Advanced	Research	Projects	Agency	(DARPA)	/	The	OSI	model	–	why	it
matters
delays

prioritizing	/	Detecting	and	prioritizing	delays
detecting	/	Detecting	and	prioritizing	delays

DHCP	message	types
DHCP	Discover	/	Obtaining	the	workstation	IP	configuration
DHCP	Reply	/	Obtaining	the	workstation	IP	configuration
DHCP	Request	/	Obtaining	the	workstation	IP	configuration
DHCP	Decline	/	Obtaining	the	workstation	IP	configuration
DHCP	Acknowledgment	/	Obtaining	the	workstation	IP	configuration
DHCP	Negative	Acknowledgement	/	Obtaining	the	workstation	IP	configuration
DHCP	Release	/	Obtaining	the	workstation	IP	configuration
DHCP	Informational	/	Obtaining	the	workstation	IP	configuration

display	filters
about	/	Wireshark	display	filters
ways	of	creating	/	Wireshark	display	filters
Display	Filter	window	/	The	Display	Filter	window
display	filter	syntax	/	The	display	filter	syntax
reference	link	/	The	display	filter	syntax
typing	in	/	Typing	in	a	display	filter
creating,	from	Conversations	window	/	Display	filters	from	a	Conversations	or
Endpoints	window

creating,	from	Endpoints	window	/	Display	filters	from	a	Conversations	or
Endpoints	window

Display	Filter	window
about	/	The	Display	Filter	window

Distributed	Denial	of	Service	(DDoS)	attacks	/	Phone	home	traffic
Domain	Name	Service	(DNS)

about	/	Domain	Name	Service
Wireshark	DNS	filters	/	Wireshark	DNS	filters

Domain	Name	System	(DNS)	/	Ethernet	frames	and	switches
Dumpcap

used,	for	capturing	traffic	/	Capturing	traffic	with	Dumpcap
Dumpcap.exe

about	/	Wireshark	command-line	utilities
Dumpcap	options

-D	/	Capturing	traffic	with	Dumpcap
-i	<interface>	/	Capturing	traffic	with	Dumpcap
-f	<capture	filter>	/	Capturing	traffic	with	Dumpcap
-b	filesize	/	Capturing	traffic	with	Dumpcap
-w	<outfile>	/	Capturing	traffic	with	Dumpcap
reference	link	/	Capturing	traffic	with	Dumpcap

Dynamic	Host	Configuration	Protocol	(DHCP)
about	/	Dynamic	Host	Configuration	Protocol
Wireshark	DHCP	filters	/	Wireshark	DHCP	filters

Dynamic	Host	Configuration	Protocol	Version	6	(DHCPv6)
about	/	Dynamic	Host	Configuration	Protocol	Version	6
Wireshark	DHCPv6	filters	/	Wireshark	DHCPv6	filters

E
Editcap

about	/	Editing	trace	files	with	Editcap
used,	for	editing	trace	files	/	Editing	trace	files	with	Editcap

Editcap.exe
about	/	Wireshark	command-line	utilities

Editcap	options
reference	link	/	Editing	trace	files	with	Editcap

Ethernet	frame
significant	fields	/	Layer	2	–	the	data-link	layer
working,	with	switches	/	Ethernet	frames	and	switches

Ethernet	tab
about	/	The	Ethernet	tab

F
Fiddler

URL	/	HttpWatch
filtered	packets

saving	/	Saving	the	filtered	traffic
Filter	Expression	Button	(FEB)	/	Obtaining	the	workstation	IP	configuration
Filter	Expression	Button	option

TCP	SYN	/	Filter	Expression	Buttons
SYN/ACK	/	Filter	Expression	Buttons
RST	/	Filter	Expression	Buttons
FIN	/	Filter	Expression	Buttons

filter	expression	buttons
about	/	Filter	Expression	Buttons
Expressions	window	button,	using	/	Using	the	Expressions	window	button
right-click	menus,	on	specific	packet	fields	/	Right-click	menus	on	specific
packet	fields

Filter	Expression	Buttons	/	Identifying	unacceptable	or	suspicious	traffic
Filter	Expression	window

using	/	Using	the	Expressions	window	button
First	Byte	response	time	/	Server	processing	time	events
Follow	SSL	Stream	window

about	/	Following	TCP/UDP/SSL	streams
Follow	TCP	Stream	window

about	/	Following	TCP/UDP/SSL	streams
Follow	UDP	Stream	window

about	/	Following	TCP/UDP/SSL	streams
functional	issues

troubleshooting	/	Troubleshooting	functional	issues

H
half-split	troubleshooting

about	/	Half-split	troubleshooting	and	other	logic
advantages	/	Half-split	troubleshooting	and	other	logic

hop
about	/	WAN	links

Host	field	/	Host
HTTP	Methods

about	/	HTTP	Methods
GET	/	HTTP	Methods
HEAD	/	HTTP	Methods
POST	/	HTTP	Methods
OPTIONS	/	HTTP	Methods
PUT	/	HTTP	Methods
DELETE	/	HTTP	Methods
CONNECT	/	HTTP	Methods

HttpWatch
about	/	HttpWatch
URL	/	HttpWatch

HyperText	Transfer	Protocol	(HTTP)
about	/	Layer	7	–	the	application	layer

Hypertext	Transfer	Protocol	(HTTP)
about	/	Hypertext	Transfer	Protocol
features	/	Hypertext	Transfer	Protocol
header	/	Hypertext	Transfer	Protocol
Host	field	/	Host
Request	Modifiers	/	Request	Modifiers

I
ICMP	control	message	types

about	/	ICMP	control	message	types
ICMP	pings

about	/	ICMP	pings
ICMP	ping	sweeps

about	/	ICMP	ping	sweeps
ICMP	redirects

about	/	ICMP	redirects
ICMP	traceroutes

about	/	ICMP	traceroutes
ICMPv6	packet	types

about	/	Internet	Control	Message	Protocol	Version	6
Echo	request	/	Internet	Control	Message	Protocol	Version	6
Echo	response	/	Internet	Control	Message	Protocol	Version	6
Multicast	listener	query	/	Internet	Control	Message	Protocol	Version	6
Multicast	listener	report	/	Internet	Control	Message	Protocol	Version	6
Multicast	listener	done	/	Internet	Control	Message	Protocol	Version	6
Router	solicitation	/	Internet	Control	Message	Protocol	Version	6
Router	advertisement	/	Internet	Control	Message	Protocol	Version	6
Neighbor	solicitation	/	Internet	Control	Message	Protocol	Version	6
Neighbor	advertisement	/	Internet	Control	Message	Protocol	Version	6
Redirect	message	/	Internet	Control	Message	Protocol	Version	6

IGMP	Membership	Report
about	/	Internet	Group	Management	Protocol

IGMP	protocol	header
significant	fields	/	Internet	Group	Management	Protocol

installation
Wireshark	/	Installing	Wireshark
Wireshark,	on	Windows	/	Installing	Wireshark	on	Windows
Wireshark,	on	Mac	OS	X	/	Installing	Wireshark	on	Mac	OS	X
Wireshark,	on	Linux/Unix	/	Installing	Wireshark	on	Linux/Unix

Internet	Control	Message	Protocol	(ICMP)
about	/	Address	Resolution	Protocol,	Internet	Control	Message	Protocol
pings	/	ICMP	pings
traceroutes	/	ICMP	traceroutes
control	message	types	/	ICMP	control	message	types
redirects	/	ICMP	redirects
Wireshark	ICMP	filters	/	Wireshark	ICMP	filters
significant	fields	/	Internet	Control	Message	Protocol	Version	6
Multicast	Listener	Discovery	(MLD)	/	Multicast	Listener	Discovery

Internet	Control	Message	Protocol	Version	6	(ICMPv6)
about	/	Internet	Control	Message	Protocol	Version	6

Internet	Engineering	Task	Force	(IETF)
about	/	Requests	for	Comments

Internet	Group	Management	Protocol	(IGMP)
about	/	Address	Resolution	Protocol,	Internet	Group	Management	Protocol
significant	fields	/	Internet	Group	Management	Protocol
interesting	fields	/	Internet	Group	Management	Protocol
Wireshark	IGMP	filters	/	Internet	Group	Management	Protocol

Internet	Protocol	Version	4	(IPv4)
about	/	Internet	Protocol
Differentiated	Services	(DiffServ)	/	Internet	Protocol
Total	length	/	Internet	Protocol
Identification	(IP	ID)	/	Internet	Protocol
Flags	/	Internet	Protocol
Fragment	offset	/	Internet	Protocol
Time	to	Live	(TTL)	/	Internet	Protocol
Protocol	/	Internet	Protocol
Source	and	destination	IP	addresses	/	Internet	Protocol

Internet	Protocol	Version	6	(IPv6)
about	/	Internet	Protocol	Version	6
addressing	/	IPv6	addressing
address	types	/	IPv6	address	types
header	fields	/	IPv6	header	fields
transition	methods	/	IPv6	transition	methods

Internet	Relay	Chat	(IRC)	traffic	/	The	importance	of	baselining,	Identifying
unacceptable	or	suspicious	traffic
Intrusion	Detection	System	(IDS)	systems	/	Security	analysis	methodology
IO	Graph	/	IO	Graph
IP	addresses

working,	with	routers	/	IP	addresses	and	routers
IP	address	ranges	/	IP	networks	and	subnets
IP	networks

about	/	IP	networks	and	subnets
IPv6	addressing

about	/	IPv6	addressing
rules	/	IPv6	addressing

IPv6	address	types
about	/	IPv6	address	types
Unicast	/	IPv6	address	types
Multicast	/	IPv6	address	types
Anycast	/	IPv6	address	types

IPv6	header	fields
about	/	IPv6	header	fields
version	/	IPv6	header	fields
traffic	class	/	IPv6	header	fields

flow	label	/	IPv6	header	fields
payload	length	/	IPv6	header	fields
next	header	/	IPv6	header	fields
hop	limit	/	IPv6	header	fields
source	and	destination	addresses	/	IPv6	header	fields

IPv6	transition	methods
about	/	IPv6	transition	methods
6to4	tunneling	/	IPv6	transition	methods
Teredo	tunneling	/	IPv6	transition	methods
ISATAP	tunneling	/	IPv6	transition	methods
Wireshark	IPv6	filters	/	Wireshark	IPv6	filters

ISATAP	tunneling	method
about	/	IPv6	transition	methods

L
Linux/Unix

Wireshark,	installing	/	Installing	Wireshark	on	Linux/Unix

M
MAC	addresses

obtaining	/	Obtaining	MAC	addresses,	Obtaining	network	service	IP	addresses
MAC	or	IP	address	scans

about	/	Identifying	unacceptable	or	suspicious	traffic
Mac	OS	X

Wireshark,	installing	/	Installing	Wireshark	on	Mac	OS	X
malformed	packets

about	/	Malformed	packets
Mergecap

about	/	Merging	trace	files	with	Mergecap
used,	for	merging	trace	files	/	Merging	trace	files	with	Mergecap
batch	file	/	Mergecap	batch	file

Mergecap.exe
about	/	Wireshark	command-line	utilities

Mergecap	options
reference	link	/	Mergecap	batch	file

methodology
troubleshooting	/	Troubleshooting	methodology

methodology	troubleshooting
packet	analysis,	reasons	/	Troubleshooting	methodology
about	/	Troubleshooting	methodology
right	information,	gathering	/	Gathering	the	right	information
general	nature	of	problem,	identifying	/	Establishing	the	general	nature	of	the
problem
half-split	troubleshooting	/	Half-split	troubleshooting	and	other	logic

Multicast	addresses
about	/	IPv6	address	types

Multicast	Listener	Discovery	(MLD)
about	/	Multicast	Listener	Discovery
Wireshark	ICMPv6	filters	/	Wireshark	ICMPv6	filters

Multiprotocol	Label	Switching	(MPLS)
about	/	TCP	options

N
Neighbor	Solicitation	ICMPv6	packet	/	Internet	Control	Message	Protocol	Version	6
Network	Basic	Input/Output	System	(NetBIOS)

about	/	Layer	5	–	the	session	layer
network	interface

selecting	/	Selecting	a	network	interface,	Selecting	the	correct	network	interface
Network	Interface	Card	(NIC)	/	Installing	Wireshark	on	Windows

about	/	Layer	1	–	the	physical	layer
network	interfaces

enabling	/	Enabling	network	interfaces
network	layer,	OSI

about	/	Layer	3	–	the	network	layer
Internet	Protocol	/	Internet	Protocol
Address	Resolution	Protocol	(ARP)	/	Address	Resolution	Protocol

network	layer	protocols
about	/	Network	layer	protocols
Wireshark	IPv4	filters	/	Network	layer	protocols
Internet	Group	Management	Protocol	(IGMP)	/	Internet	Group	Management
Protocol
Internet	Control	Message	Protocol	(ICMP)	/	Internet	Control	Message	Protocol
Internet	Protocol	Version	6	(IPv6)	/	Internet	Protocol	Version	6
Internet	Control	Message	Protocol	Version	6	(ICMPv6)	/	Internet	Control
Message	Protocol	Version	6

Network	Mapper	(Nmap)
about	/	Security	assessment	tools
URL	/	Security	assessment	tools

network	traffic
clear	text	passwords	/	Identifying	unacceptable	or	suspicious	traffic
clear	text	data	/	Identifying	unacceptable	or	suspicious	traffic
password	cracking	attempts	/	Identifying	unacceptable	or	suspicious	traffic
maliciously	formed	packets	/	Identifying	unacceptable	or	suspicious	traffic
phone	home	traffic	/	Identifying	unacceptable	or	suspicious	traffic
flooding	or	Denial	of	Service	(DOS)	attacks	/	Identifying	unacceptable	or
suspicious	traffic
subversive	activities	/	Identifying	unacceptable	or	suspicious	traffic

Next	Header	code	/	IPv6	header	fields

O
OS	fingerprinting

about	/	OS	fingerprinting
OSI	layers

about	/	The	seven	OSI	layers
physical	layer	/	Layer	1	–	the	physical	layer
data-link	layer	/	Layer	2	–	the	data-link	layer
network	layer	/	Layer	3	–	the	network	layer
transport	layer	/	Layer	4	–	the	transport	layer
session	layer	/	Layer	5	–	the	session	layer
presentation	layer	/	Layer	6	–	the	presentation	layer
application	layer	/	Layer	7	–	the	application	layer

OSI	model
about	/	The	OSI	model	–	why	it	matters,	The	OSI	and	DARPA	reference	models
importance	/	The	OSI	model	–	why	it	matters
comparing,	with	DARPA	/	The	OSI	model	–	why	it	matters
network	protocols	/	Understanding	network	protocols

P
packet	capture

performing	/	Performing	your	first	packet	capture,	Performing	a	packet	capture,
Performing,	verifying,	and	saving	a	good	packet	capture
noise,	filtering	/	Filtering	out	the	noise
display	filter,	applying	/	Applying	a	display	filter
packet	trace,	saving	/	Saving	the	packet	trace
capture	point,	picking	/	Picking	the	best	capture	point
verifying	/	Verifying	a	good	capture,	Performing,	verifying,	and	saving	a	good
packet	capture
bulk	capture	file,	saving	/	Saving	the	bulk	capture	file
conversations	of	interest,	isolating	/	Isolating	conversations	of	interest
location,	determining	/	Preparing	the	tools	and	approach
saving	/	Performing,	verifying,	and	saving	a	good	packet	capture

packet	capture	point
selecting	/	Picking	the	best	capture	point
user	location	/	User	location
server	location	/	Server	location
other	locations	/	Other	capture	locations
mid-network	captures	/	Mid-network	captures

packet	colorization
about	/	Colorization	and	coloring	rules,	Packet	colorization
coloring	rules	/	Colorization	and	coloring	rules

Packet	Details	pane
data	rate	/	Wireless	networking
channel	frequency	/	Wireless	networking
channel	type	/	Wireless	networking
RF	signal	and	noise	levels	/	Wireless	networking

packets
switching	/	Switching	and	routing	packets
routing	/	Switching	and	routing	packets
capturing,	on	high	traffic	rate	links	/	Capturing	packets	on	high	traffic	rate	links
marking	/	Marking	and	ignoring	packets
ignoring	/	Marking	and	ignoring	packets
filtered	traffic,	saving	/	Saving	the	filtered	traffic

packet	timestamps
working	with	/	Working	with	packet	timestamps
saving	/	How	Wireshark	saves	timestamps
time	display	options	/	Wireshark	time	display	options
time	column,	adding	/	Adding	a	time	column
conversation	versus	a	displayed	packet	time	option	/	Conversation	versus
displayed	packet	time	options
time	display	option,	selecting	/	Choosing	the	best	Wireshark	time	display	option

Time	Reference	option,	using	/	Using	the	Time	Reference	option
packet	trace

saving	/	Saving	the	packet	trace
password-cracking	traffic

about	/	Password-cracking	traffic
performance	analysis	methodology

about	/	Performance	analysis	methodology
poor	application	performance,	reasons	/	Top	five	reasons	for	poor	application
performance

phone	home	traffic
about	/	Phone	home	traffic

physical	connectivity
confirming	/	Confirming	physical	connectivity

physical	layer,	OSI
about	/	Layer	1	–	the	physical	layer
Ethernet	standard	/	Layer	1	–	the	physical	layer
RJ-45	standard	/	Layer	1	–	the	physical	layer
Cat	5	(Cat	5e	or	Cat	6)	cables	standard	/	Layer	1	–	the	physical	layer
100Base-T,	1000Base-T,	and	100Base-FX	/	Layer	1	–	the	physical	layer
single-mode	and	multimode	fiber	optic	cables	/	Layer	1	–	the	physical	layer

poor	performance	reasons,	application
about	/	Top	five	reasons	for	poor	application	performance
tools,	preparing	/	Preparing	the	tools	and	approach
packet	capture	/	Performing,	verifying,	and	saving	a	good	packet	capture
initial	error	analysis	/	Initial	error	analysis
delays,	detecting	/	Detecting	and	prioritizing	delays
delays,	prioritizing	/	Detecting	and	prioritizing	delays
server	processing	time	events	/	Server	processing	time	events
application	turn’s	delay	/	Application	turn’s	delay
network	path	latency	/	Network	path	latency
bandwidth	congestion	/	Bandwidth	congestion
data	transport	/	Data	transport

preferences,	Wireshark
about	/	Wireshark	preferences
layout	/	Wireshark	preferences
columns	/	Wireshark	preferences
capture	/	Wireshark	preferences
filter	expressions	/	Wireshark	preferences
name	resolution	/	Wireshark	preferences
protocols	/	Wireshark	preferences
options	/	Wireshark	preferences

presentation	layer,	OSI
about	/	Layer	6	–	the	presentation	layer

private	IP	address	ranges	/	IP	networks	and	subnets

profiles,	Wireshark
about	/	Wireshark	profiles
creating	/	Creating	a	Wireshark	profile
selecting	/	Selecting	a	Wireshark	profile

protocol-specific	capture	filter	syntax
reference	link	/	Configuring	capture	filters

protocol-specific	display	filter	syntax
reference	link	/	The	display	filter	syntax

protocols,	Wireshark	preferences
about	/	Wireshark	preferences
HTTP	/	Wireshark	preferences
IEEE	802.11	/	Wireshark	preferences
IPv4	/	Wireshark	preferences
RTP	/	Wireshark	preferences
TCP	/	Wireshark	preferences
validate	TCP	checksum	if	possible	/	Wireshark	preferences
allow	subdissector	to	reassemble	TCP	streams	/	Wireshark	preferences
relative	sequence	numbers	/	Wireshark	preferences
track	number	of	bytes	in	flight	/	Wireshark	preferences
calculate	conversation	timestamps	/	Wireshark	preferences

protocols	on	Wikipedia
about	/	Protocols	on	Wikipedia
URL	/	Protocols	on	Wikipedia

R
Rawshark.exe

about	/	Wireshark	command-line	utilities
Request	Modifiers

Connection	/	Request	Modifiers
Accept	/	Request	Modifiers
User-agent	/	Request	Modifiers
Accept-encoding	/	Request	Modifiers
Accept-language	/	Request	Modifiers
Cookie	/	Request	Modifiers
Accept-charset	/	Request	Modifiers
Accept-ranges	/	Request	Modifiers
Authorization	/	Request	Modifiers
Cache-control	/	Request	Modifiers
Content-length	/	Request	Modifiers
Content-type	/	Request	Modifiers
Date	/	Request	Modifiers
Expect	/	Request	Modifiers
If-match	/	Request	Modifiers
If-modified-since	/	Request	Modifiers
If-range	/	Request	Modifiers
IF-unmodified-since	/	Request	Modifiers
Max-forwards	/	Request	Modifiers
Proxy-authorization	/	Request	Modifiers
Range	/	Request	Modifiers
TE	/	Request	Modifiers
Via	/	Request	Modifiers
Wireshark	HTTP	filters	/	Wireshark	HTTP	filters

Requests	for	Comment	(RFC)
about	/	Requests	for	Comments

Riverbed	AirPcap	adapter
about	/	AirPcap	adapters
reference	link	/	AirPcap	adapters

round	trip	time	(RTT)	/	ICMP	pings,	Gathering	the	right	information,	Application
turn’s	delay

S
scans,	security	analysis

about	/	Scans	and	sweeps
ARP	scans	/	ARP	scans
TCP	port	scans	/	TCP	port	scans
UDP	port	scans	/	UDP	port	scans

Secure	FTP	(sftp)	/	Unusual	traffic
Secure	Shell	(SSH)	/	Unusual	traffic
security	analysis

about	/	Security	analysis	methodology
baselining	/	The	importance	of	baselining
security	assessment	tools	/	Security	assessment	tools
suspicious	traffic,	identifying	/	Identifying	unacceptable	or	suspicious	traffic
scans	/	Scans	and	sweeps
sweeps	/	Scans	and	sweeps
OS	fingerprinting	/	OS	fingerprinting
malformed	packets	/	Malformed	packets
phone	home	traffic	/	Phone	home	traffic
password-cracking	traffic	/	Password-cracking	traffic
unusual	traffic	/	Unusual	traffic

security	assessment	tools
about	/	Security	assessment	tools
Network	Mapper	(Nmap)	/	Security	assessment	tools

Server	Message	Block	(SMB)	protocols	/	Application	turn’s	delay
session	layer,	OSI

about	/	Layer	5	–	the	session	layer
SteelCentral	Packet	Analyzer

about	/	SteelCentral	Packet	Analyzer	Personal	Edition
standard	/	SteelCentral	Packet	Analyzer	Personal	Edition
Personal	Edition	/	SteelCentral	Packet	Analyzer	Personal	Edition
reference	link	/	SteelCentral	Packet	Analyzer	Personal	Edition

subnets
about	/	IP	networks	and	subnets

sweeps,	security	analysis
about	/	Scans	and	sweeps
ARP	sweeps	/	ARP	scans
ICMP	ping	sweeps	/	ICMP	ping	sweeps,	TCP	port	scans

Switched	Port	Analyzer	(SPAN)
about	/	Switch	port	mirroring

switch	port	mirroring
about	/	Switch	port	mirroring
advantage	/	Switch	port	mirroring
diagrammatic	representation	/	Switch	port	mirroring

T
6to4	tunneling	method

about	/	IPv6	transition	methods
TAP

about	/	Test	Access	Ports	and	switch	port	mirroring
diagrammatic	representation	/	Test	Access	Port

TCP
about	/	Transmission	Control	Protocol
flagsTopicnabout	/	TCP	flags
options	/	TCP	options
Wireshark	TCP	filters	/	Wireshark	TCP	filters

TCP	header
about	/	Transmission	Control	Protocol
source	and	Destination	ports	(2	bytes	each)	/	Transmission	Control	Protocol
sequence	number	(4	bytes)	/	Transmission	Control	Protocol
acknowledgment	number	(4	bytes)	/	Transmission	Control	Protocol
flags	(9	bits)	/	Transmission	Control	Protocol
Window	size	(2	bytes)	/	Transmission	Control	Protocol
significant	fields	/	Transmission	Control	Protocol,	Transmission	Control
Protocol
source	and	destination	ports	/	Transmission	Control	Protocol
sequence	number	/	Transmission	Control	Protocol
acknowledgment	number	/	Transmission	Control	Protocol
flags	/	Transmission	Control	Protocol
window	size	/	Transmission	Control	Protocol

TCP	port	scans
about	/	Identifying	unacceptable	or	suspicious	traffic,	TCP	port	scans

TCP	StreamGraph
about	/	TCP	StreamGraph
round-trip	time	/	TCP	StreamGraph
throughput	/	TCP	StreamGraph

TCP	tab
about	/	The	TCP	and	UDP	tabs

TCP	Window	Update	packet	/	Initial	error	analysis
Teredo	tunneling	method

about	/	IPv6	transition	methods
Test	Access	Point	(TAP)	/	Half-split	troubleshooting	and	other	logic
Text2pcap.exe

about	/	Wireshark	command-line	utilities
Time-to-Live	(TTL)	field	/	ICMP	traceroutes
tools

about	/	Other	helpful	tools
HttpWatch	/	HttpWatch

SteelCentral	Packet	Analyzer	/	SteelCentral	Packet	Analyzer	Personal	Edition
AirPcap	Adapters	/	AirPcap	adapters

trace	files
editing,	with	Editcap	/	Editing	trace	files	with	Editcap
managing,	with	Mergecap	/	Merging	trace	files	with	Mergecap

traffic
capturing,	with	Dumpcap	/	Capturing	traffic	with	Dumpcap
capturing,	with	Tshark	/	Capturing	traffic	with	Tshark

Transmission	Control	Protocol	(TCP)
about	/	Transmission	Control	Protocol

transport	layer,	OSI
about	/	Layer	4	–	the	transport	layer
User	Datagram	Protocol	(UDP)	/	User	Datagram	Protocol
Transmission	Control	Protocol	/	Transmission	Control	Protocol

transport	layer	protocols
TCP	/	Transport	layer	protocols
UDP	/	Transport	layer	protocols

Trivial	File	Transfer	Protocol	(TFTP)	traffic	/	The	importance	of	baselining
Tshark

about	/	Capturing	traffic	with	Tshark
used,	for	capturing	traffic	/	Capturing	traffic	with	Tshark

Tshark.exe
about	/	Wireshark	command-line	utilities

Tshark	options
reference	link	/	Capturing	traffic	with	Tshark

U
UDP

about	/	User	Datagram	Protocol
Wireshark	UDP	filters	/	Wireshark	UDP	filters

UDP	header
source	and	destination	port	number	/	User	Datagram	Protocol,	User	Datagram
Protocol
length	/	User	Datagram	Protocol,	User	Datagram	Protocol
checksum	/	User	Datagram	Protocol,	User	Datagram	Protocol
fields	/	User	Datagram	Protocol,	User	Datagram	Protocol

UDP	port	scans
about	/	Identifying	unacceptable	or	suspicious	traffic,	UDP	port	scans

UDP	tab
about	/	The	TCP	and	UDP	tabs

Unicast	addresses
about	/	IPv6	address	types
Global	Unicast	/	IPv6	address	types
Link-local	/	IPv6	address	types
Unique	local	/	IPv6	address	types

Uniform	Resource	Identifier	(URI)	/	HTTP	Methods
unusual	traffic

about	/	Unusual	traffic
User	Datagram	Protocol	(UDP)

about	/	User	Datagram	Protocol
user	interface	essentials

about	/	Wireshark	user	interface	essentials
title	/	Wireshark	user	interface	essentials
menu	/	Wireshark	user	interface	essentials
main	toolbar	(icons)	/	Wireshark	user	interface	essentials
display	filter	toolbar	/	Wireshark	user	interface	essentials
packet	list	pane	/	Wireshark	user	interface	essentials
packet	details	pane	/	Wireshark	user	interface	essentials
packet	bytes	pane	/	Wireshark	user	interface	essentials
status	bar	/	Wireshark	user	interface	essentials

V
Views	/	SteelCentral	Packet	Analyzer	Personal	Edition
Virtual	LAN	(VLAN)	/	Layer	2	–	the	data-link	layer

W
WAN	links

about	/	WAN	links
physical	speed-of-light	propagation	delay	/	WAN	links
network	routing/geographical	distance	/	WAN	links
serialization	delay	/	WAN	links
queuing	delays	/	WAN	links

wide	area	networks	(WANs)	/	Layer	1	–	the	physical	layer
Windows

Wireshark,	installing	/	Installing	Wireshark	on	Windows
wireless	frame	types

management	frames	/	Wireless	networking
control	frames	/	Wireless	networking

wireless	networking
about	/	Wireless	networking

Wireshark
installing	/	Installing	Wireshark
URL	/	Installing	Wireshark,	Performing	a	packet	capture,	The	TCP	and	UDP
tabs
installing,	on	Windows	/	Installing	Wireshark	on	Windows
installing,	on	Mac	OS	X	/	Installing	Wireshark	on	Mac	OS	X
installing,	on	Linux/Unix	/	Installing	Wireshark	on	Linux/Unix
URL	for	documentation	/	Installing	Wireshark	on	Linux/Unix
packet	capture,	performing	/	Performing	your	first	packet	capture,	Performing	a
packet	capture
network	interface,	selecting	/	Selecting	a	network	interface
user	interface	essentials	/	Wireshark	user	interface	essentials
display	filters	/	Wireshark	display	filters
command-line	utilities	/	Wireshark	command-line	utilities

Wireshark.exe	file
about	/	Wireshark	command-line	utilities

Wireshark	2.0	(Wireshark	Qt)	/	IO	Graph	–	Wireshark	2.0
Wireshark	ARP	filters

about	/	Wireshark	ARP	filters
Wireshark	DHCP	filters

about	/	Wireshark	DHCP	filters
Wireshark	DHCPv6	filters

about	/	Wireshark	DHCPv6	filters
Wireshark	DNS	filters

about	/	Wireshark	DNS	filters
Wireshark	IGMP	filters

about	/	Wireshark	IGMP	filters
Wireshark	IPv4	filters

about	/	Wireshark	IPv4	filters
Wireshark	TCP	filters

about	/	TCP	options
Wireshark	UDP	filters

about	/	User	Datagram	Protocol
Wireshark	wiki

about	/	Wireshark	wiki
URL	/	Wireshark	wiki

WLAN	tab
about	/	The	WLAN	tab

workstation	IP	configuration
obtaining	/	Obtaining	the	workstation	IP	configuration

Z
Zenmap	/	Security	assessment	tools

	Wireshark Essentials
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Getting Acquainted with Wireshark
	Installing Wireshark
	Installing Wireshark on Windows
	Installing Wireshark on Mac OS X
	Installing Wireshark on Linux/Unix
	Performing your first packet capture
	Selecting a network interface
	Performing a packet capture
	Wireshark user interface essentials
	Filtering out the noise
	Applying a display filter
	Saving the packet trace
	Summary
	2. Networking for Packet Analysts
	The OSI model – why it matters
	Understanding network protocols
	The seven OSI layers
	Layer 1 – the physical layer
	Layer 2 – the data-link layer
	Layer 3 – the network layer
	Internet Protocol
	Address Resolution Protocol
	Layer 4 – the transport layer
	User Datagram Protocol
	Transmission Control Protocol
	Layer 5 – the session layer
	Layer 6 – the presentation layer
	Layer 7 – the application layer
	Encapsulation
	IP networks and subnets
	Switching and routing packets
	Ethernet frames and switches
	IP addresses and routers
	WAN links
	Wireless networking
	Summary
	3. Capturing All the Right Packets
	Picking the best capture point
	User location
	Server location
	Other capture locations
	Mid-network captures
	Both sides of specialized network devices
	Test Access Ports and switch port mirroring
	Test Access Port
	Switch port mirroring
	Capturing packets on high traffic rate links
	Capturing interfaces, filters, and options
	Selecting the correct network interface
	Using capture filters
	Configuring capture filters
	Capture options
	Capturing filenames and locations
	Multiple file options
	Ring buffer
	Stop capture options
	Display options
	Name resolution options
	Verifying a good capture
	Saving the bulk capture file
	Isolating conversations of interest
	Using the Conversations window
	The Ethernet tab
	The TCP and UDP tabs
	The WLAN tab
	Wireshark display filters
	The Display Filter window
	The display filter syntax
	Typing in a display filter
	Display filters from a Conversations or Endpoints window
	Filter Expression Buttons
	Using the Expressions window button
	Right-click menus on specific packet fields
	Following TCP/UDP/SSL streams
	Marking and ignoring packets
	Saving the filtered traffic
	Summary
	4. Configuring Wireshark
	Working with packet timestamps
	How Wireshark saves timestamps
	Wireshark time display options
	Adding a time column
	Conversation versus displayed packet time options
	Choosing the best Wireshark time display option
	Using the Time Reference option
	Colorization and coloring rules
	Packet colorization
	Wireshark preferences
	Wireshark profiles
	Creating a Wireshark profile
	Selecting a Wireshark profile
	Summary
	5. Network Protocols
	The OSI and DARPA reference models
	Network layer protocols
	Wireshark IPv4 filters
	Wireshark ARP filters
	Internet Group Management Protocol
	Wireshark IGMP filters
	Internet Control Message Protocol
	ICMP pings
	ICMP traceroutes
	ICMP control message types
	ICMP redirects
	Wireshark ICMP filters
	Internet Protocol Version 6
	IPv6 addressing
	IPv6 address types
	IPv6 header fields
	IPv6 transition methods
	Wireshark IPv6 filters
	Internet Control Message Protocol Version 6
	Multicast Listener Discovery
	Wireshark ICMPv6 filters
	Transport layer protocols
	User Datagram Protocol
	Wireshark UDP filters
	Transmission Control Protocol
	TCP flags
	TCP options
	Wireshark TCP filters
	Application layer protocols
	Dynamic Host Configuration Protocol
	Wireshark DHCP filters
	Dynamic Host Configuration Protocol Version 6
	Wireshark DHCPv6 filters
	Domain Name Service
	Wireshark DNS filters
	Hypertext Transfer Protocol
	HTTP Methods
	Host
	Request Modifiers
	Wireshark HTTP filters
	Additional information
	Wireshark wiki
	Protocols on Wikipedia
	Requests for Comments
	Summary
	6. Troubleshooting and Performance Analysis
	Troubleshooting methodology
	Gathering the right information
	Establishing the general nature of the problem
	Half-split troubleshooting and other logic
	Troubleshooting connectivity issues
	Enabling network interfaces
	Confirming physical connectivity
	Obtaining the workstation IP configuration
	Obtaining MAC addresses
	Obtaining network service IP addresses
	Basic network connectivity
	Connecting to the application services
	Troubleshooting functional issues
	Performance analysis methodology
	Top five reasons for poor application performance
	Preparing the tools and approach
	Performing, verifying, and saving a good packet capture
	Initial error analysis
	Detecting and prioritizing delays
	Server processing time events
	Application turn's delay
	Network path latency
	Bandwidth congestion
	Data transport
	TCP StreamGraph
	IO Graph
	IO Graph – Wireshark 2.0
	Summary
	7. Packet Analysis for Security Tasks
	Security analysis methodology
	The importance of baselining
	Security assessment tools
	Identifying unacceptable or suspicious traffic
	Scans and sweeps
	ARP scans
	ICMP ping sweeps
	TCP port scans
	UDP port scans
	OS fingerprinting
	Malformed packets
	Phone home traffic
	Password-cracking traffic
	Unusual traffic
	Summary
	8. Command-line and Other Utilities
	Wireshark command-line utilities
	Capturing traffic with Dumpcap
	Capturing traffic with Tshark
	Editing trace files with Editcap
	Merging trace files with Mergecap
	Mergecap batch file
	Other helpful tools
	HttpWatch
	SteelCentral Packet Analyzer Personal Edition
	AirPcap adapters
	Summary
	Index

