Wireshark Essentials

et up and running with Wireshark to analyze network packets
and protocols effectively

Wireshark Essentials

Table of Contents

Wireshark Essentials

Credits
About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions
Reader feedback
Customer support
Errata
Piracy
Questions
1. Getting Acquainted with Wireshark

Installing Wireshark
Installing Wireshark on Windows

Installing Wireshark on Mac OS X

Installing Wireshark on Linux/Unix

Performing your first packet capture

Selecting a network interface

Performing a packet capture

Wireshark user interface essentials

Filtering out the noise

Applying a display filter

Saving the packet trace

Summary
2. Networking for Packet Analysts

The OSI model — why it matters

Understanding network protocols

The seven OSI layers

Layer 1 — the physical layer
Layer 2 — the data-link layer

Layer 3 — the network layer

Internet Protocol

Address Resolution Protocol

Layer 4 — the transport layer

User Datagram Protocol

Transmission Control Protocol

Layer 5 — the session layer

Layer 6 — the presentation layer
Layer 7 — the application layer
Encapsulation

IP networks and subnets

Switching and routing packets

Ethernet frames and switches

IP addresses and routers

WAN links

Wireless networking

Summary
3. Capturing All the Right Packets

Picking the best capture point

User location

Server location

Other capture locations

Mid-network captures

Both sides of specialized network devices
Test Access Ports and switch port mirroring

Test Access Port

Switch port mirroring
Capturing packets on high traffic rate links
Capturing interfaces, filters, and options
Selecting the correct network interface
Using capture filters
Configuring capture filters
Capture options
Capturing filenames and locations
Multiple file options
Ring buffer
Stop capture options
Display options
Name resolution options
Verifying a good capture
Saving the bulk capture file

Isolating conversations of interest

Using the Conversations window
The Ethernet tab
The TCP and UDP tabs
The WLAN tab

Wireshark display filters

The Display Filter window

The display filter syntax

Typing in a display filter

Display filters from a Conversations or Endpoints window

Filter Expression Buttons

Using the Expressions window button

Right-click menus on specific packet fields

Following TCP/UDP/SSL streams
Marking and ignoring packets
Saving the filtered traffic
Summary
4. Configuring Wireshark
Working with packet timestamps
How Wireshark saves timestamps
Wireshark time display options
Adding a time column
Conversation versus displayed packet time options
Choosing the best Wireshark time display option
Using the Time Reference option
Colorization and coloring rules
Packet colorization
Wireshark preferences
Wireshark profiles
Creating a Wireshark profile
Selecting a Wireshark profile
Summary

5. Network Protocols

The OSI and DARPA reference models

Network layer protocols
Wireshark IPv4 filters
Wireshark ARP filters

Internet Group Management Protocol

Wireshark IGMP filters

Internet Control Message Protocol

ICMP pings
ICMP traceroutes

ICMP control message types
ICMP redirects

Wireshark ICMP filters

Internet Protocol Version 6

IPv6 addressing

IPv6 address types
IPv6 header fields

IPv6 transition methods

Wireshark IPv6 filters

Internet Control Message Protocol Version 6

Multicast Listener Discovery
Wireshark ICMPv6 filters

Transport layer protocols

User Datagram Protocol
Wireshark UDP filters

Transmission Control Protocol

TCP flags
TCP options
Wireshark TCP filters
Application layer protocols
Dynamic Host Configuration Protocol
Wireshark DHCP filters

Dynamic Host Configuration Protocol Version 6
Wireshark DHCPv6 filters

Domain Name Service

Wireshark DNS filters

Hypertext Transfer Protocol
HTTP Methods
Host

Request Modifiers
Wireshark HTTP filters

Additional information

Wireshark wiki

Protocols on Wikipedia

Requests for Comments
Summary
6. Troubleshooting and Performance Analysis
Troubleshooting methodology
Gathering the right information
Establishing the general nature of the problem
Half-split troubleshooting and other logic
Troubleshooting connectivity issues
Enabling network interfaces
Confirming physical connectivity
Obtaining the workstation IP configuration
Obtaining MAC addresses
Obtaining network service IP addresses
Basic network connectivity
Connecting to the application services
Troubleshooting functional issues
Performance analysis methodology

Top five reasons for poor application performance

Preparing the tools and approach
Performing, verifying, and saving a good packet capture

Initial error analysis

Detecting and prioritizing delays

Server processing time events

Application turn’s delay

Network path latency

Bandwidth congestion

Data transport

TCP StreamGraph

IO Graph
IO Graph — Wireshark 2.0

Summary
7. Packet Analysis for Security Tasks

Security analysis methodology
The importance of baselining
Security assessment tools
Identifying unacceptable or suspicious traffic
Scans and sweeps
ARP scans
ICMP ping sweeps
TCP port scans
UDP port scans
OS fingerprinting
Malformed packets

Phone home traffic

Password-cracking traffic

Unusual traffic
Summary
8. Command-line and Other Utilities

Wireshark command-line utilities

Capturing traffic with Dumpcap

Capturing traffic with Tshark
Editing trace files with Editcap

Merging trace files with Mergecap

Mergecap batch file

Other helpful tools

HttpWatch

SteelCentral Packet Analyzer Personal Edition

AirPcap adapters

Summary

Index

Wireshark Essentials

Wireshark Essentials
Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014
Production reference: 1211014
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78355-463-8

www.packtpub.com

http://www.packtpub.com

Credits

Author

James H. Baxter
Reviewers

Sarath Lakshman
Bruno Vernay

Ms. Samia Yousif
Commissioning Editor
Pramila Balan
Acquisition Editor
Larissa Pinto
Content Development Editor
Sweny M. Sukumaran
Technical Editor
Shashank Desai

Copy Editor

Roshni Banerjee
Project Coordinator
Akash Poojary
Proofreaders

Simran Bhogal

Maria Gould
Ameesha Green

Paul Hindle

Indexers

Hemangini Bari
Rekha Nair

Graphics

Sheetal Aute
Abhinash Sahu

Production Coordinator

Nitesh Thakur
Cover Work
Nitesh Thakur

About the Author

James H. Baxter is the President and CEO of PacketIQ Inc., a company which specializes
in network and application performance analysis and management, including development
of advanced analysis frameworks and tools.

With over 30 years of experience in the IT industry, his diverse technical background
includes electronics, RF, satellite, data/telecom, LAN/WAN and voice design, network
management, speech technologies, and Java/.NET programming. For most of the last 20
years, he has been working specifically with network and application performance issues.

James is a Wireshark Certified Network Analyst (WCNA). He is a member of the IEEE,
Computer Measurement Group, and Association of Computing Machinery, and he follows
advancements in artificial intelligence.

James is also a private pilot who holds an amateur radio Extra class license. He is also a
guitar player and an amateur astronomer. You can find out more about James and

PacketIQ Inc. at www.packetig.com.

http://www.packetiq.com

About the Reviewers

Sarath Lakshman is a software engineer at Couchbase. He is a core developer for
Couchbase MapReduce View Engine, and he works on storage and indexing problems at
Couchbase. Before Couchbase, he worked at Zynga for over 2 years, building ZBase—a
distributed storage platform that powered the entire social games infrastructure at Zynga.
He was attracted to Linux in his teenage years, and he created a user-friendly Linux
distribution called Slynux. He is also the author of Linux Shell Scripting Cookbook, Packt
Publishing. He holds a Bachelor’s degree in Computer Science from Model Engineering
College, India. He is an open source software enthusiast and has contributed to various
projects in the past. To find out more about Sarath, you can visit
www.sarathlakshman.com.

Bruno Vernay has been working with all forms of web application design and
development for the last 15 years—a bit of CSS/JavaScript and a lot of Java, SQL, Linux,
and network. He even had the chance to work with Complex Event Processing, Rules
Engines, and Geographic Information Systems. He also touched on large clusters as well
as embedded devices and has been through various paradigms, from modeling via UML to
Test or Domain Driven Development and Domain Specific Language. If he has time, he
would like to work on Synthetic Biology and Biohacking. Now, he is focusing on IoT
Security, enjoying the variety of systems and opportunities.

Ms. Samia Yousif holds Master’s and Bachelor’s degrees from the University of Bahrain
as well as CCNA, CCNP, and CCDA from Bahrain Training Institute and Diploma Mr.
Tabatabai in culture Quranic from Islamic Enlightenment Society. She has developed
extensive knowledge and skills in various technical fields of Computer Science and IT.
She has published conference publications and books and received the Research Award
from Ahlia University and the e-Government Excellence Award (e-Education Award). She
has delivered several IT workshops and has attended many seminars. Samia has 10 years
of teaching experience at an undergraduate level in Computer Science and IT.
Furthermore, she has worked on the development of numerous systems and professional
website applications using the most up-to-date web technologies. She is now an Assistant
Director of ICT at Ahlia University, Kingdom of Bahrain, and she is planning to undertake
a PhD program.

She has contributed to the book Computer Jobs & Certifications Choose & Improve Your
IT Career, Dr. Mansoor Al-Aali, Lulu.com and also reviewed the book Packet Tracer
Network Simulator, Jesin A, Packt Publishing. She has also written a lab manual, HTML
Fundamental, for the Royal University for Women in October 2006 and AMA
International University, Bahrain, in May 2006.

To find out more about her, visit her website http://samiayousif.hostoi.com.

http://www.sarathlakshman.com
http://samiayousif.hostoi.com

www.PacktPub.com

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[lﬁ PACKT! i 1°

http://Packtl.ib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com

Preface

Wireshark is perhaps the world’s most popular network packet analyzer used to
troubleshoot and analyze network and application protocols across wide variety of
technologies. Wireshark is free, open source, and available for Windows, Mac OS X,
Linux, and several Unix-like platforms, and it is continuously being improved and
expanded by its original developer, Gerald Combs, and over 500 code contributors.

Wireshark has a rich feature set, including the ability to capture, save, and import packet
files in a variety of formats. It provides an extensive filtering capability, detailed protocol
information, statistics, and built-in analysis and packet coloring features to help you
identify and analyze important events. This powerful analysis capability is available to
anyone who is willing to invest a little time to learn Wireshark’s basic features and how to
interpret a relatively small set of core network and application protocols.

This book is designed to introduce Wireshark and essential packet analysis techniques to
not only network engineers and administrators, but also application developers, database
designers and administrators, server administrators, and IT security professionals. It also
gives them the essential knowledge and practical examples needed to effectively utilize
Wireshark so they can include packet-level analysis in their daily tasks.

Application developers can use Wireshark to view and understand how the routines in
their code that make network calls translate into request/response packets, inspect how the
application-related data fields within those packets are structured, and verify that these
calls are efficient and work in the way that they are anticipated and intended.

Database designers and administrators can utilize the packet details provided by
Wireshark to examine the queries and responses carried by packets and to check whether
they are efficient. Are there a lot of small request/response cycles involved in a
transactional query that could be replaced by fewer, more efficient requests to improve
performance?

Server processing times can be a huge factor and point of contention in performance-
related issues across almost all I'T arenas. This book will show you how easy it is to use
Wireshark to identify and measure server processing times at the packet level where there
can be no disputing the evidence.

IT security professionals inherently utilize protocol-level parameters to configure firewalls
and intrusion detection and prevention devices, but may lack the skills to confidently
establish and verify these factors themselves—instead relying upon others for this critical
input. The ability of a security professional to inspect packet captures to identify,
characterize, and guard against malicious traffic is assumed, and a small investment of
time with this book will open the door to mastering this essential skill.

Finally, network support personnel are called upon on an almost daily basis to
troubleshoot strange connectivity or slow network issues. They need the visibility and
evidence that packet-level analysis provides to not only defend their domain, but also to
assist in identifying and resolving the real problem; that’s usually the only way the heat

gets permanently turned off. Good Wireshark skills are a must-have for these folks.

The focus of this book is to teach you how to become comfortable and proficient in using
basic Wireshark skills within your respective domain. At first glance, looking at a screen
full of packets of seemingly endless varieties and sources can be very intimidating, but it
is actually quite easy after learning the concepts provided in this book to isolate just the
packets that pertain to the area of interest and filter everything else out, establish a high-
level understanding of the packet flow and sequence of events, and then find and inspect
the correct packets and data fields that address the issue at hand.

One of the additional advantages of learning how to use Wireshark is an increased
understanding of how networks and applications really work, the benefits of which are
helpful across all other aspects of your work. I’'m confident the small investment in time
required to learn Wireshark and packet analysis skills will return huge dividends.

What this book covers

Chapter 1, Getting Acquainted with Wireshark, starts with the first step. This introductory
chapter will help you quickly start developing proficiency with Wireshark by getting it
installed and doing something fun and useful, such as performing a packet capture,
isolating and filtering some traffic of interest, and saving a trace file before diving into
more details and the supporting concepts in the later chapters.

Chapter 2, Networking for Packet Analysts, provides an overview of network
technologies, foundational network protocols including IP, UDP, and TCP, and how the
most common protocols fit together within the OSI and DARPA model levels. The goal of
this chapter is to develop a good mental model of how networks and protocols function
together to allow you to confidently and effectively approach packet-level analysis.

Chapter 3, Capturing All the Right Packets, covers the details of how to correctly position
Wireshark in the network and configure it to capture the desired packets, how to identify
network conversations of interest and apply display filters to isolate just those packets, and
finally save a filtered file for further or later analysis. These are the essential skills that
support practical packet analysis.

Chapter 4, Configuring Wireshark, provides a number of features that can be configured
and employed to enhance the accuracy and ease of analysis activities. The various ways to
display and interpret packet timestamps are especially important and we’ll cover these
topics thoroughly, along with other essential configuration options, packet list coloring to
help identify important events, and how to save different configurations in customized
profiles that can be tailored and selected for various analysis tasks.

Chapter 5, Network Protocols, covers a number of other essential and useful network
protocols that you should be familiar with, including ICMP, DNS, DHCP, an introductory
review of Internet Protocol Version 6 (IPv6), and an example application layer protocol
(HTTP). We will also discuss basic Wireshark capture and display filters.

Chapter 6, Troubleshooting and Performance Analysis, provides methodologies to apply
your new skills and protocol knowledge to the primary purpose for which Wireshark was
developed: troubleshooting and analyzing network and application issues and
performance. We’ll cover the top reasons for poor performance and how to use Wireshark
to detect and measure them.

Chapter 7, Packet Analysis for Security Tasks, introduces the use of Wireshark to detect
and analyze suspect traffic such as scans and sweeps, operating system fingerprinting,
malformed packets, phone home traffic, and other unusual packets and patterns that could
indicate malicious origin.

Chapter 8, Command-line and Other Ultilities, covers some of the most useful command-
line utilities provided with Wireshark to perform packet captures with minimal resources
and to manipulate packet trace files. We will also discuss a few other tools that can help
you round out your packet analysis toolset.

What you need for this book

To accomplish the tasks and repeat the examples provided in this book, you only need a
computer on which you can install and use Wireshark and a wired LAN connection to
your home or business network.

Although you could capture from a Wireless interface, the additional overhead of wireless
management frames can be burdensome and distracting to analyze, so it’s much better for
your learning experience to start off on a wired network.

In terms of background knowledge, if you are involved in some aspect of the IT industry,
you probably have at least some basic familiarity with the common concepts and terms
used with packet-level analysis, such as switches, routers, packets, protocols, TCP/IP, and
HTTP, but it is assumed that you possess only a basic familiarity with network and
application protocols.

Who this book is for

This book is aimed at a broad spectrum of IT professionals who want to develop or
enhance their Wireshark skills to expand their troubleshooting and analysis capabilities
and increase their value in the workplace: network designers and administrators,
application developers and support personnel, database designers and administrators, I'T
security professionals, and anyone else whose job responsibilities include supporting
information technology in today’s increasingly networked world.

Conventions

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “The IP
address of the target host was 10.1.1.125.”

A block of code is set as follows:

(tcp.flags&02 && tcp.seq==0) || (tcp.flags&l2 && tcp.seq==0) ||
(tcp.flags.ack && tcp.seq==1 && !'tcp.nxtseq > 0 && !tcp.ack >1) ||
tcp.flags.fin == 1 || tcp.flags.reset ==1

Any command-line input or output is written as follows:
dumpcap -i 2 -f "host 192.168.1.115" -w capture.pcapng

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “This field is roughly
equivalent to the Time To Live field in IPv4; it is decremented by one by each device that
forwards the IPv6 packet.”

Note

Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/submit-
errata, selecting your book, clicking on the errata submission form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from

http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:questions@packtpub.com

Chapter 1. Getting Acquainted with
Wireshark

Since its creation in 1997 by Gerald Combs to troubleshoot network problems at a small
ISP, Wireshark (originally called Ethereal) has now become one of the most popular tools
available for packet-level analysis of network and application protocols. This is mostly
because it is an open source solution, which makes it freely available to any technical
professional, as well as its extensive range of features, coverage of over 1000 protocols,
and the continued support and improvements made possible by contributions from over
800 developers around the globe.

This introductory chapter will help you to quickly become proficient in Wireshark by
installing it on your system and doing something fun and useful with it, before diving into
more details and supporting concepts.

In this chapter, we will cover the following topics:

Installing Wireshark

Performing a packet capture

Wireshark user interface essentials

Using display filters to isolate traffic of interest
Saving a filtered packet trace file

The chapters that follow will build on and provide the supporting concepts for these basic
functions to allow you to develop the Wireshark skills that are most applicable to your
technical role and objectives.

Installing Wireshark

Wireshark can be installed on machines running 32- and 64-bit Windows (XP, Win7,
Win8.1, and so on), Mac OS X (10.5 and higher), and most flavors of Linux/Unix.
Installation on Windows and Mac machines is quick and easy because installers are
available from the Wireshark website download page. Wireshark is a standard package
available on many Linux distributions, and there is a list of links to third-party installers
provided on the Wireshark download page for a variety of popular *nix platforms.
Alternatively, you can download the source code and compile Wireshark for your
environment if a precompiled installation package isn’t available.

Wireshark relies on the WinPcap (Windows) or libpcap (Linux/Unix/Mac) libraries to
provide the packet capture and capture filtering functions; the appropriate library is
installed during the Wireshark installation.

Note

You might need administrator (Windows) or root (Linux/Unix/Mac) privileges to install
Wireshark and the WinPcap/libpcap utilities on your workstation.

Assuming that you’re installing Wireshark on a Windows or Mac machine, you need to go
to the Wireshark website (https://www.wireshark.org/) and click on the Download button
at the top of the page. This will take you to the download page, and at the same time
attempt to perform an autodiscovery of your operating system type and version from your
browser info. The majority of the time, the correct Wireshark installation package for your
machine will be highlighted, and you only have to click on the highlighted link to
download the correct installer.

Note

If you already have Wireshark installed, an autoupdate feature will notify you of available
version updates when you launch Wireshark.

https://www.wireshark.org/

Installing Wireshark on Windows

In the following screenshot, the Wireshark download page has identified that a 64-bit
Windows installer is appropriate for this Windows workstation:

. Download Wireshark

The current =table releaze of Wireshark iz 1.10.58.

Stable Release (1.10.8)

& Windows Installer (64-bit)
Windows Installer (32-bit)
Windows U3 (32-bit)
Windows PortableApps (32-bit)
0% X 10.6 and later Intel 64-bit .dmg

05 X 10.5 and later Intel 32-bit .dmg

Source Code

Clicking on the highlighted link downloads a Wireshark-win64-1.10.8.exe file or
similar executable file that you can save on your hard drive. Double-clicking on the
executable starts the installation process. You need to follow these steps:

1. Agree to the License Agreement.

2. Accept all of the defaults by clicking on Next for each prompt, including the prompt
to install WinPcap, which is a library needed to capture packets from the Network
Interface Card (NIC) on your workstation.

3. Early in the Wireshark installation, the process will pause and prompt you to click on
Install and several Next buttons in separate windows to install WinPcap.

4. After the WinPcap installation is complete, click through the remaining Next prompts
to finish the Wireshark installation.

Install WinPcap?
WinPcap is required to capture live network data. Should WinPcap be installed?

| Wireshark 1.10.8 (64-bit) Setup - =

Currently installed WinPcap version
WinPcap is currently not installed

Install
Install WinPcap 4.1.3
{Use Add/Remove Programs first to uninstall any undetected old WinPcap versions)

What is WinPcap?

Mullsoft Install System v2, 46

<Back | Instal | | Cancel

Installing Wireshark on Mac OS X

The process to install Wireshark on Mac is the same as the process for Windows, except
that you will not be prompted to install WinPcap; libpcap, the packet capture library for
Mac and *nix machines, gets installed instead (without prompting).

There are, however, two additional requirements that may need to be addressed in a Mac
installation:

e The first is to install X11, a windowing system library. If this is needed for your
system, you will be informed and provided a link that ultimately takes you to the
XQuartz project download page so you can install this package.

e The second requirement that might come up is if upon starting Wireshark, you are
informed that there are no interfaces on which a capture can be done. This is a
permissions issue on the Berkeley packet filter (BPF) that can be resolved by
opening a terminal window and typing the following command:

bash-3.2$ sudo chmod 644 /dev/bpf*

If this process needs to be repeated each time you start Wireshark, you can perform a web
search for a more permanent permissions solution for your environment.

Installing Wireshark on Linux/Unix

The requirements and process to install Wireshark on a Linux or Unix platform can vary
significantly depending on the particular environment. Wireshark is usually available by
default through the package management systems for your specific Linux distribution.
Guidance to install Wireshark on Linux can be found in Chapter 2, Networking for Packet
Analysts, or in the Wireshark user documentation located at

www.wireshark.org/docs/wsug_html_chunked/ChapterBuildInstall.html.

http://www.wireshark.org/docs/wsug_html_chunked/ChapterBuildInstall.html

Performing your first packet capture

When you first start Wireshark, you are presented with an initial Start Page as shown in
the following screenshot:

M The Wireshark Network Analyzer [Wireshark 110.8 (v1.10.8-2-g5225244 from master-1.10)]]|

Eile Edit View Go (Capture Analyze Statistics Telephony Tools Internals Help

©® 4 qaes»pTLEEcaan @08 % @
Filter: IZI Expression.. Clear Apply Save

The World's Most Popular Network Protocol Analyzer

-
WI RES HARK Version 1.10.8 (v1.10.8-2-g52a5244 from master-1.10)
- Fils _____________J ____ Online

_ Interface List B Open Website

|
“ Live list of the capture interfaces ‘Open a previously captured file

Visit the project’s website
{counts incoming packets)

Open Recent:

) %7 User's Guide

Start] o

The User's Guide {loczl version, if installed)
Choose one or more interfaces to capture from, then Start
. Sample Captures i

E_‘ Local Area Connection L @ P P secu"ty
e X o A rich assortment of example capture files on the wiki ‘Work with Wireshark as = ty 25 possibh
5| Wireless Network Connection - o e

®) Capture Options

Start & capture with detsiled opticns

Capture Help

) How to Capture

Step by step to & successful capture setup

Network Media

®

Specific information for capturing on:
Ethernet, WLAN,

R“ea:iy to load or cap{:ure [No Packets Profile: Default

Don’t get too fond of this screen. Although you’ll see this every time you start Wireshark,
once you do a capture, open a trace file, or perform any other function within Wireshark,
this screen will be replaced with the standard Wireshark user interface and you won’t see
it again until the next time you start Wireshark. So, we won’t spend much time here.

Selecting a network interface

If you have a number of network interfaces on your machine, you may not be sure which
one to select to capture packets, but there’s a fairly easy way to figure this out. On the
Wireshark start page, click on Interface List (alternatively, click on Interfaces from the
Capture menu or click on the first icon on the icon bar).

The Wireshark Capture Interfaces window that opens provides a list and description of
all the network interfaces on your machine, the IP address assigned to each one (if an
address has been assigned), and a couple of counters, such as the total number of packets
seen on the interface since this window opened and a packets/s (packets per second)
counter. If an interface has an IPv6 address assigned (which may start with fego: : and
contain a number of colons) and this is being displayed, you can click on the IPv6 address
and it will toggle to display the IPv4 address. This is shown in the following screenshot:

M Wireshark: Capture Interfaces |- ||-= |@
Device Description P Packets Packets/s
J g?" Local Area Connection Intel(R) 82567LM Gigabit Metwork Connection 1921681116 70938 2758 |Qetai|s|
g}' Wireless Metwork Connection Microsoft 192.168.1111 1473 1 Qetail5|

| Help Start Stop Options | [Close]

Note

On Linux/Unix/Mac platforms, you might also see a loopback interface that can be
selected to capture packets being sent between applications on the same machine.
However, in most cases, you’ll only be interested in capturing packets from a network
interface.

The goal is to identify the active interface that will be used to communicate with the
Internet when you open a browser and navigate to a website. If you have a wired local
area network connection and the interface is enabled, that’s probably the active interface,
but you might also have a wireless interface that is enabled and you may or may not be the
primary interface. The most reliable indicator of the active network interface is that it will
have greater number of steadily increasing packets with a corresponding active number of
packets/s (which will vary over time). Another possible indicator is if an interface has an
IP address assigned and others do not. If you’re still unsure, open a browser window and
navigate to one of your favorite websites and watch the packets and packets/s counters to
identify the interface that shows the greatest increase in activity.

Performing a packet capture

Once you’ve identified the correct interface, select the checkbox on the left-hand side of
that interface and click on the Start button at the bottom of the Capture Interfaces
window. Wireshark will start capturing all the packets that can be seen from that interface,
including the packets sent to and from your workstation. You’ll see a bewildering variety
of packets going by in the top section (called the Packet List pane) of the screen; this is
normal. If you don’t see this, try a different interface.

It’s a bit amazing just how much background traffic there is on a typical network, such as
broadcast packets from devices advertising their names, addresses, and services to and
from other devices asking for addresses of stations they want to communicate with. Also,
a fair amount of traffic is generated from your own workstation for applications and
services that are running in the background, and you had no idea they were creating this
much noise. Your Wireshark’s Packet List pane may look similar to the following
screenshot; however, we can ignore all this for now:

£ Capturing frem Local Area Connection [Wireshark 1108 (v1.10.8-2-g52a5244 from master-1.10]] = || =] |
File Edit View Go Capture Analyze Statistics Telephonx Tools Internals Help

o @ 4 m R AeraTa (EE Qaal #2M % B
Filter: EIExpression... Clear Apply Save
Mo, Time Source Destination Protocol Length Info -
388 33.840317000 Cisco_55:14:b4 Broadcast ARP 60 who has 192.168.1.1407 Tell 192.168.1.2
390 35.183312000 feB0::5c71:8be6:45eFF02::cC S5DP 208 M-SEARCH * HTTP/1.1
391 36.055240000 192.168.1.116 173.194.46. 81 551 55 Continuation Data
392 36.104061000 173.194.46.81 192.168.1.116 TCP 66 https > 54514 [ACK] Seg=1 Ack=2 Win=661 Len=C
393 36.303254000 192.168.1.116 208.85.40. 20 TCP 55 [TcP segment of a reassembled PDU]
395 36. 383778000 208.85.40.20 192.168.1.116 TCP 60 http > 54216 [ACK] Seq=1 Ack=2 Win=20136 Len= -
I I b
& Frame 1: 378 bytes on wire (3024 bits), 378 bytes captured (3024 bits) on interface 0
@ Ethernet II, Src: HuaweiTe_Be:84:f4 (78:f5:fd:Be:84:F4), Dst: Broadcast (ff:ff:ff.ff:ff:fF)
@ Internet Protocol version 4, Src: 192.168.1.112 (1952.168.1.112), Dst: 192.168.1.255 (192.168.1.255)
User Datagram Protocol, Src Port: 44727 (44727), Dst Port: ssdp (1900)
& Hypertext Transfer Protocol

oooo ffF ff £f £f ff £f 78 f5 fd Be 84 f4 08B 00 45 00O : ST GR | = A
0010 01 6c 00 00 40 00 40 11 b4 cl cO a8 01 70 cO a8 R DEn T e s =
0020 01 ff ae b7 07 6c 0L 58 13 9b 4e 4f 54 49 46 59 T.X .. NOTIFY L=

0030 20 2a 20 48 54 54 50 2f 31 2e 31 Od 0a 53 63 72 * HTTP/ 1.1..Ser
0040 76 65 72 3a 20 4c 69 6e 75 78 2f 33 2e 30 2e 32 ver: Lin ux/3.0.2
0050 31 2d 70 65 72 66 20 55 50 6e 50 2f 31 2e 30 20 l—Eer“F U PnP;/1.0
0060 43 79 62 65 72 4c 69 6e 6b 4a 61 76 61 2f 31 2e CyberLin klava/1.
0070 38 0d Da 43 61 63 68 65 2d 43 6f 6e 74 72 &6f 6C 8. .Cache -Control il

@ .&.’ Local Arza Connection: <live captufe in pru.:igress:L File: ChUsersilal | Packets: 395 . Displayed: 395 (100.0%) Profile: Default

We’re ready to generate some traffic that we’ll be interested in analyzing. Open a new
Internet browser window, enter www.wireshark.org in the address box, and press Enter.

When the https://www.wireshark.org/ home page finishes loading, stop the Wireshark
capture by either selecting Stop from the Capture menu or by clicking on the red square
stop icon that’s between the View and Go menu headers.

https://www.wireshark.org/

Wireshark user interface essentials

Once you have completed your first capture, you will see the normal Wireshark user
interface main screen. So before we go much further, a quick introduction to the primary
parts of this user interface will be helpful so you’ll know what’s being referred to as we
continue the analysis process.

There are eight significant sections or elements of the default Wireshark user interface, as
shown in the following screenshot:

M “Local Area Connection [Wireshark 1108 (v110.8-2-952a5244 from master-110]] o = =
File Edit View Go Capture Analyze Statistics Telephon! Tools Internals Help

codmz BEERE AesaTLIEEQaaan @Bk @ @
Filter: |_|Expre55|on Clear Apply Save e

Mo, i Source i Protucol Length Info

2 0007393000 192.168.1.111 T —— 175 MoSEARCH * HTTP/1.1
6 3 0.152016000 192.168.1.121 239.255.255. 250 S5DP 139 M-SEARCH * HTTP/1.1

5 0.574804000 192.168.1.1 192.168.1.116 UDP 440 source port: 54729 Destination port: 49996

6 0.696472000 TeBO::5c71:8be6:45eff02::cC 55DP 208 M-SEARCH * HTTP/1.1

7 0.984841000 Cisco_55:14:b4 Broadcast ARP 60 who has 192.168.1.1107 Tell 192.168.1.2

9 3.020849000 192.168.1.116 239.255.255. 250 55DP 175 M-SEARCH * HTTP/1.1

10 3.028438000 192.168.1.111 239.255.255. 250 55DP 175 M-SEARCH * HTTP/1.1 -

| Frame 1: 175 bytes on wire (1400 bits), 175 bytes captured (1400 bits) on interface 0

| Ethernet II, Src: HonHaiPr_99:db:85 (00:1c:25:99:db:85), Dst: IPvdmcast 7f:ff:fa (01:00:5e:7f:ff:fa)

| Internet Protocol version 4, Src: 192.168.1.116 (192.168.1.116), Dst: 239.255.255.250 (239.255.255.250)
| User Datagram Protocol, Src Port: 49996 (49996), Dst Port: ssdp (1900)

Hypertext Transfer Protocol

(6]

T EEEBE

0000 01 00 Se 7f ff fa 00 1c 25 99 db 85 08 00 45 00 ..A..... - — E.
0010 00 al 2b 53 00 00 01 11 db e2 cO a8 01 74 ef FF ..+45....
0020 ff fa c3 4c 07 6c 00 8d b2 b5 4d 2d 53 45 41 52 .L.l.. ..M-SEAR

m

43 48 20 2a 20 48 54 34 50 2f 31 Ze 31 0d Oa 48 CH * HTT P/l 1..H
6f 73 74 3a 32 33 39 2e 32 35 35 2e 32 35 35 2e 05T:239. 255. 255
0050 32 35 30 3a 31 39 30 30 0Od 0a 53 54 3a 75 72 be 250:1900 ..5T:urn
0060 3a 73 63 68 65 6d 61 73 2d 75 70 G6e 70 2d &f 72 :schemas -upnp-or
0070 67 3a 64 65 76 69 63 65 3a 49 6e 74 65 72 6e 65 o:device :Interne 2

@] ':r File: "C:\Users\James\AppData\Local\Temp\wireshark_pcapng_... | Packets: 396 . Displayed: 396 (100.0%) . Dropped: 0 (0.0%) - Ignored: 1 ... | Profile: Default 9

Let’s look at the eight significant sections in detail:

e Title: This area reflects the interface from where a capture is being taken or the
filename of an open packet trace file

e Menu: This is the standard row of main functions and subfunctions in Wireshark

¢ Main toolbar (icons): These provide a quick way to access the most useful
Wireshark functions and are well worth getting familiar with and using

e Display filter toolbar: This allows you to quickly create, edit, clear, apply, and save
filters to isolate packets of interest for analysis

e Packet list pane: This section contains a summary info line for each captured packet,
as well as a packet number and relative timestamp

e Packet details pane: This section provides a hierarchical display of information
about a single packet that has been selected in the packet list pane, which is divided
into sections for the various protocols contained in a packet

e Packet bytes pane: This section displays the selected packets’ contents in hex bytes
or bits form, as well as an ASCII display of the data that can be helpful

e Status bar: This section provides an expert info indicator, edit capture comments

icon, trace file path name and size information, data on the number of packets
captured and displayed and other info, and a profile display and selection section

Filtering out the noise

Somewhere in your packet capture, there are packets involved with loading the Wireshark
home page—but how do you find and view just those packets out of all the background
noise?

The simplest and most reliable method is to determine the IP address of the Wireshark
website and filter out all the packets except those flowing between that IP address and the
IP address of your workstation by using a display filter. The best approach—and the one
that you’ll likely use as a first step for most of your post-capture analysis work in future—
is to investigate a list of all the conversations by IP address and/or hostnames, sorted by
the most active nodes, and identify your target hostname, website name, or IP address
from this list.

From the Wireshark menu, select Conversations from the Statistics menu, and in the
Conversations window that opens, select the IPv4 tab at the top. You’ll see a list of
network conversations identified by Address A and Address B, with columns for total
Packets, Bytes, Packets A - B, Bytes A - B, Packets A — B, and Bytes A — B.

Scrolling over to the right-hand side of this window, there are Relative Start values.
These are the times when each particular conversation was first observed in the capture,
relative to the start of the capture in seconds. The next column is Duration, which is how
long this conversation persisted in the capture (first to last packet seen).

Finally, there are average data rates in bits per second (bps) in each direction for each
conversation, which is the network impact for this conversation. All these are shown in the
following screenshot:

.! Conversations: Local Area Connection

e |

[Ethernet: 19 Fibre Channel| FoDI] 1Pve: 37 [1pve: 2] 1px [xta [nce | rsve

scTP | 7cP: 39| Token Ring | upP: 51| use | wian|

Address A

1011125
173194.46.52
31.13.65.33
192.168.1.1
1921681112
54.225.161.68
7412522139

1732521718
4

d Address B
162.159.241.165 1921681116

192.168.1.116
192.168.1.116
192.168.1.116
192.168.1.116
192.168.1.255
192.168.1.116
192.168.1.116

192 1R 1 1R

1 Packets 4 Bytes Packets A—B 4 Bytes A—B 4 Packets A—B 4 Bytes A—B 4 Rel Start
' 13517 '

71
29
15
15
46
13
15

17829
10652
71825
5174
5087
4677
1942
1555

1816
iy

IPvd Conversations

32
14

10
24
13

4701
3467
2495
3345
4677

&30

584

525

1 Dur »

15 5951 12105871000 i
9 4 358 16477797000
5 2679 16.990433000

1742 12106027000
0 0 0.000000000
] 1112 16.505575000
3
1

971 2874266000
Qa1 1A NRTATINNN

[¥] Mame resolution

[C] Limit to display filter

||

Help

Copy

Follow Stream

Cloze

Graph A—B Graph B—A

We want to sort the list of conversations to get the busiest ones—called the Top Talkers in
network jargon—at the top of the list. Click on the Bytes column header and then click on

it again. Your list should look something like the preceding screenshot, and if you didn’t
get a great deal of other background traffic flowing to/from your workstation, the traffic
from https://www.wireshark.org/ should have the greatest volume and therefore be at the
top of the list.

In this example, the conversation between IP addresses 162.159.241.165 and
192.168.1.116 has the greatest overall volume, and looking at the Bytes A->B column, it’s
apparent that the majority of the traffic was from the 162.159.241.165 address to the
192.168.1.116 address. However, at this point, how do we know if this is really the
conversation that we’re after?

We will need to resolve the IP addresses from our list to hostnames or website addresses,
and this can be done from within Wireshark by turning on Network Name Resolution
and trying to get hostnames and/or website addresses resolved for those IP addresses using
reverse DNS queries (using what is known as a pointer (PTR) DNS record type). If you
just installed or started Wireshark, the Name Resolution option may not be turned on by
default.

This is usually a good thing, as Wireshark can create traffic of its own by transmitting the
DNS queries trying to resolve all the IP addresses that it comes across during the capture,
and you don’t really want that going on during a capture. However, the Name Resolution
option can be very helpful to resolve IP addresses to proper hostnames after a capture is
complete.

To enable Name Resolution, navigate to View | Name Resolution | Enable for Network
Layer (click to turn on the checkmark) and make sure Use External Network Name
Resolver is enabled as well. Wireshark will attempt to resolve all the IP addresses in the
capture to their hostname or website address, and the resolved names will then appear
(replacing the previous IP addresses) in the packet list as well as the Conversations
window.

Note that the Name Resolution option at the bottom of the Conversations window must
be enabled as well (it usually is by default), and this setting affects whether resolved
names or IP addresses appear in the Conversations window (if Name Resolution is
enabled in the Wireshark main screen), as shown in the following screenshot:

https://www.wireshark.org/

-

‘ *Local Area Connection [Wireshark 1,108 (v1.10.8-2-g52a5244 from raster-1.10]]
File Edit Yiew Go Capture Analyze Statistics Telephoni Tools Internals Help

S @ @ ¥ MainToolbar
[w Filter Toolbar

Filter f Wireless Toolbar
i Tir Status Bar
2 0.| v Packet List
i g v Packet Details
5 0. ¥ PacketBytes
0 G'_ Time Display Format
20 Mame Resolution

9 0. « Colorize Packet List

&

| | v Auto Scrollin Live Capture

Frame |
Etherr @ ZoemIn

Interr € Zoom Qut
user O @ Normal Size

T2 QQ Q

EI Expression... Clear

Protocol Length

L3 Resohve Mame

Manually Resclve Mame

v Enable for MAC Layer
Ctrl++ | ¥ Enable for Transport Layer
Ctrl+- Enable for Metwork Layer
Ctrl+= | ¥ Use External Metwork Mame Resolver

At this point, you should see the conversation pair between wireshark.org and your
workstation at or near the top of the list, as shown in the following screenshot. Of course,
your workstation will have a different name or may only appear as an IP address, but
identifying the conversation to wireshark.org has been achieved.

,‘ Conversations: Local Area Connection

=N [EER ™=
| Ethernet: 19 Fibre Channel | FDDI| 1Pva: 37 |1pv6: 2| x| xma | ncp | Rsve | scTp | TcP: 39| Token Ring [upP: 51| Use | wian]
IPvd Conversations

1 Packets 4 Bytes ¥ Packets A—B 4 Bytes A—B 4 Packets A—B 4 Bytes A—B 1 =
7117829 & g 3 |
2 10652 14 4701 15 50511~

18 7825 9 3467 9 4358

15 5174 10 2495 5 2679

46 5087 24 3345 2 1742

13 4677 13 4677 0 0

15 1082 6 GE 9 1112

6 1555 3 584 3 971
1 51A 7 535 1 an T

: r

Address A 1 Address B
wireshark.org Thinkpad_LAN
10.1.1.125 Thinkpad_LAN
www.google.com Thinkpad_LAM
31136533 Thinkpad_LAN
Cisco24973 Thinkpad_LAM
1921681112 192.168.1.255
eue.collect-opnet.com Thinkpad_LAM
7412522139 Thinkpad_LAN
1(74| 2521N7 18 Thinknad | AN

[#] Mame resolution [T] Limit to display filter

Help H Lopy

Follow Stream Graph A—B Graph B—A

Applying a display filter

You now want to see just the conversation between your workstation and wireshark.org,

and get rid of all the extraneous conversations so you can focus on the traffic of interest.

This is accomplished by creating a filter that only displays the desired traffic.

Right-click on the line containing the wireshark.org entry and navigate to Apply as
Filter | Selected | A<->B, as shown in the following screenshot:

M Conversations: Local Area Connection E@
| Ethernet: 19 Fibre Channel | FODI| 1Pva: 37 |1pve: 2| x| sxrn | nee | rsve | scrp | Tep: 39| Token Ring [upp: 51| Use | wian|
IPvd Conversations
Address A 1 |Address B 4 Packets 4 Bytes v Packets A—B 4 BytesA—B 4 Pi »
wireshark.org i . 5 st "' 12517 |B
pltigsvil Apply as Filter L4 Selected L4 A—E 4700
www.google.com Prepare a Filter k Mot Selected Ly A—B 3467
3113.65.33 Find Packet r .. and Selected L4 A—B 2495
Cicco24973 Colorize Conversation s .o OF Selected k A~ Any 3345
android-20del d3d81451787.cfl.rr.com 192.] . and not Selected ’ A — Any 4877
eue.collect-opnet.com Thin w. or not Selected > A — Any 830 -
i 1m = | Any —~B 3
Any — B
[¥] Mame resolution 7] Limit to display filter Any —B

Help I [Copy] Follow Stream Graph A—B Graph B—A Close

Wireshark will create and apply a display filter string that isolates the displayed traffic to
just the conversation between the IP addresses of wireshark.org and your workstation, as
shown in the following screenshot. Note that if you create or edit a display filter entry
manually, you will need to click on Apply to apply the filter to the trace file (or Clear to
clear it).

Filter: | ip.addr==162159.241 165 && ip.addr==192168.1.116 IZI Expression... Clear Apply Save

Ma. Time Source Destination Protocol Length Info
96 16. 255957000 Thinkpad_LAN wireshark. org 66 54578 > http [5YN]
97 16. 256085000 Thinkpad_LAN wireshark.org TCFP 66 54579 > http [5YN]
98 16. 275410000 wireshark.org Thinkpad_LAN TCFP 66 http > 54579 [5YN,
99 16. 275474000 Thinkpad_LAN wireshark.org TCFP 54 54579 > http [AckK]

This particular display filter syntax works with IP addresses, not with hostnames, and uses
an ip.addr== (IP address equals) syntax for each node along with the && (and) logic
operator to build a string that says display any packet that contains this IP
address *and* that IP address. This is the type of display filter that you will be using
a great deal for packet analysis.

You’ll notice as you scroll up and down in the Packet List pane that all the other packets,
except those between your workstation and wireshark.org, are gone. They’re not gone in
the strict sense, they’re just hidden—as you can observe by inspecting the Packet No.
column, there are gaps in the numbering sequence; those are for the hidden packets.

Saving the packet trace

Now that you’ve isolated the traffic of interest using a display filter, you can save a new
packet trace file that contains just the filtered packets.

This serves two purposes. Firstly, you can close Wireshark, come back to it later, open the
filtered trace file, and pick up where you left off in your analysis, as well as have a record
of the capture in case you need to reference it later such as in a troubleshooting scenario.

Secondly, it’s much easier and quicker to work in the various Wireshark screens and
functions with a smaller, more focused trace file that contains just the packets that you
want to analyze.

To create a new packet trace file containing just the filtered/displayed packets, select
Export Specified Packets from the Wireshark File menu.

You can navigate to and/or create a folder to hold your Wireshark trace files, and then
enter a filename for the trace file that you want to save. In this example, the filename is
wireshark_website.pcapng. By default, Wireshark will save the trace file in the pcapng
format (which is the preferred format). If you don’t specify a file extension with the
filename, Wireshark will provide the appropriate extension based on the Save as type
selection, as shown in the following screenshot:

Save in:

=
Recent Places

Desktop

=l
Libraries

A

=

ThinkPadW500

@

Metwork

M Wireshark: Export Specified Packets

Wireshark Trace Files - & Ty BB

-~

Mame Date modified Type

Mo iterns match your search,

Size

File name: wireshark_website pcapng - Save
Save as type: Wireshark/... - pcapng ("pcapng;” pcapng.gz;” ntar;”.ntar.gz) v| [Cancel]
E—
Help

Packet Range

i Captured | @ Displayed
@ All packets 123 71
Selected pachet 1

Marked packets

First to last marced

) Range: 0

Remove lgnored packets

[] Compress with gzip

Also, by default, Wireshark will have the All packets option selected, and if a display
filter is applied (as it is in this scenario), the Displayed option will be selected as opposed
to the Captured option that saves all the packets regardless of whether a filter was
applied. Having entered a filename and confirmed that all the save selections are correct,
you can click on Save to save the new packet trace file.

Note that when you have finished this trace file save activity, Wireshark still has all the
original packets from the capture in memory, and they can still be viewed by clicking on
Clear in the Display Filter Toolbar menu. If you want to work further with the new trace
file you just saved, you’ll need to open it by clicking on Open in the File menu (or Open
Recent in the File menu).

Summary

Congratulations! If you accomplished all the activities covered in this chapter, you have
successfully installed Wireshark, performed a packet capture, created a filter to isolate and
display just the packets you were interested in from all the extraneous noise, and created a
new packet trace file containing just those packets so you can analyze them later.
Moreover, in the process, you gained an initial familiarity with the Wireshark user
interface and you learned how to use several of its most useful and powerful features. Not
bad for a first chapter.

In the next chapter, we’ll review some essential network concepts needed to provide a
solid foundation to perform packet-level analysis. The main goal of the next chapter is to
help you develop a mental model of networking that lends itself well to packet-level
analysis without getting too tangled up in unnecessary details.

Chapter 2. Networking for Packet
Analysts

Packet analysis is all about analyzing how applications transfer useful data from point A to
point B over networks. So, an understanding of how networks function is essential.

In this chapter, we will cover the following topics:

Why the seven-layer OSI model matters
IP networks and subnets

Switching and routing packets

Ethernet frames and switches

IP addresses and routers

WAN links

Wireless networking

The seven-layer OSI model will be mapped to the most common networking terms, and
we’ll review frames, switching, IP addressing, routing, and a few other networking topics
of interest. The goal is to develop a mental model of networking that lends itself well to
packet-level analysis.

The OSI model — why it matters

The Open Systems Interconnections (OSI) reference model is an industry recognized
standard developed by the International Organization for Standardization (ISO) to
divide networking functions into seven logical layers to support and encourage (relatively)
independent development while providing (relatively) seamless interconnectivity between
each layer from different hardware/software environments, platforms, and vendors.
There’s also a somewhat simpler four-layer Defense Advanced Research Projects
Agency (DARPA) model that maps to the OSI model, but the OSI version is the most
commonly referred to. I’ll reference both models when discussing the various layers.

The following diagram compares the OSI and DARPA reference models:

OSI| model layers DARPA layers

Application Layer

Presentation Layer Application Layer

Session Layer

Transport Layer Transport Layer

Network Layer Internet Layer

Data Link Layer
Network Interface

Layer

Physical Layer

Unless you’re in the business of writing protocols, there’s no need to study any of the
seven layers in great depth, but it is helpful to understand them conceptually because these
layers are referred to by the industry and your IT peers.

More importantly, it’s essential that you know where and how these layers and their
associated protocols are presented in Wireshark’s Packet Details pane. We’ll cover the
layers from this aspect to help you remember them and get the most use from the
discussion.

Understanding network protocols

Network protocols, like the OSI layers, are a set of industry standard rules and designs
used to exchange messages and data between computers and applications. In any
discussion about OSI layers, you are directly or indirectly referring to the protocols
associated with a given layer—the most commonly known protocols are IP, UDP, TCP,
HTTP, and so on—and the significant functions they perform.

For example, you’ll often hear the terms network layer and IP layer used interchangeably,
and it is assumed and understood that you are talking about the layer and the associated
protocol that contains and uses IP addresses to route packets from point A to point B
across the network. The discussions that follow will tie the OSI and DARPA layers to their
associated protocols.

The seven OSI layers

As we cover the OSI layers starting from layer 1 and working up to layer 7, I’ll outline
how each layer’s associated protocol(s) are displayed in Wireshark and/or used in
networking hardware. The mental model you develop from this approach should be the
most accurate and useful for packet analysis.

Layer 1 — the physical layer

The physical layer encompasses the electrical characteristics and mechanical standards to
get data bits transmitted from a computer’s Network Interface Card (NIC) to a switch
port or between switch and router ports. The most common standards, terms, and devices
you’ll encounter at this layer include the following:

e Ethernet: This is a family of networking technologies for local area networks
(LANS).

e RJ-45: These are 8-pin modular connectors found on both ends of a copper Ethernet
cable that are plugged into the NIC on a computer and a wall jack or switch port

e Cat 5 (Cat 5e or Cat 6) cables: These are Ethernet cables that use twisted-pair
copper wires. “Cat” stands for the category of cable and reflects its quality and data
speed capabilities.

e 100Base-T, 1000Base-T, and 1000Base-LX: These represent a particular Ethernet
standard. 100Base-T is 100 Mbps over twisted-pair cable using RJ-45 connectors,
1000Base-LX is 1000 Mbps over fiber, and so on.

¢ Single-mode and multimode fiber optic cables: These use pulses of light from
solid-state LEDs or lasers to transmit data bits.

The Ethernet standards used to connect NICs to switches are also used to connect switches
together and to connect switches to routers or other network devices, although the cables
and connectors used may vary depending on cable type and speed.

There are other layer 1 standards in common use, including 802.11 Wireless, Frame Relay,
and ATM; the last two are used in long distance wide area networks (WANSs).

Layer 2 — the data-link layer

The data-link layer organizes raw bits from the physical layer (typically Ethernet) into
frames, which is the first manifestation of what is generally called a packet that you’ll see
in Wireshark. This layer is a dividing line between physical networking,
electrical/mechanical standards, and the logical structures (protocols) used to format and
transmit, receive, and decode packets of data in the higher layers.

In the DARPA reference model, the physical and data-link OSI layers are combined and
called the network interface layer. The significant features and functions of this layer (for
Ethernet IT frames) include:

e Media Access Control (MAC) addresses: These are the network addresses used in
LANSs. They are 6-byte network hardware addresses burned into memory chips on
NICs, switches, routers, or other network device ports/interfaces:

o The first three bytes of a MAC address are assigned to and can be associated
with a specific manufacturer. Wireshark has a list of these and can display MAC
addresses as a combination of the manufacturer code and the last three bytes.
The manufacturer creates a unique last-three-bytes address for every interface so
that each MAC address is unique across the globe. (Although, an NIC might be
programmed to use another arbitrary MAC address, which is done for MAC
spoofing for malicious attacks. But this is a very bad idea as another card may
be using the same address and can cause a loss of data and some very confusing
packet switching problems.)

Ethernet frames include a destination and source MAC address. MAC addresses
are used to switch (not route—we’ll make the distinction shortly) frames
between computers on the same LAN or between computers and a router or
other device port on a LAN.

e Type (or EtherType) field: This indicates the next higher protocol layer (typically IP
(0800) or ARP (0806)). Wireshark uses this to determine the next protocol dissector
to apply in packet decodes.

e Payload: This is the packet or datagram carried by the Ethernet frame.

e The frame check sequence: This is a 4-byte Cyclic Redundancy Check (CRC)
error-detection code calculated from all the bits in a frame and added to the end of the
frame. This is used to detect frames that have been corrupted usually because of
faulty cables, noise induced on the wires in a cable from outside electrical signals,
and so on. When a frame is received, this code is recalculated based on the bits
received and compared to the FCS field. The bad frames are then discarded.

The following diagram illustrates the layout of the fields in an Ethernet frame:

cB d7 19 21 b7 ec 00 1c 25 99 db B85 08 00 IP, ARP, etc. 46 55 eB de
Dastination MAC Addr Source MAC Addr EtherType Payload CRC Checksum
MAC Header Datagram FCS
(14 bytes) (46 - 1500 bytes) (4 bytes)

Ethernet Type Il Frame

(64 - 1518 bytes)

A key point here—and this is important to understand—is that Ethernet frames and their
MAC addresses are only able to transmit frames between devices on the local area
network (LAN and IP subnet) they belong to.

Routers form the boundary between LANs by virtue of their IP subnet (subnetwork)
addressing. All the devices belonging to the same IP subnet are part of the same LAN, and
getting packets to or from a different subnet requires a router.

Once a frame enters a router port to get routed to a different/distant network, the Ethernet
frame with its MAC addresses and FCS is stripped off and discarded. The payload inside
the frame is routed to the port and it will leave on its way to the next device, and another
frame with a different MAC address and recalculated FCS is created to encase the packet.

This frame is then transmitted to the next destination.

The network devices that work at this layer—usually switches—are commonly referred to
as layer 2 devices or layer 2 switches.

Finally, you should be aware that layer 2 switches can support several networking
enhancements such as Virtual LAN (VLAN) and Class of Service (CoS) tagging, which
is accomplished by adding a 4-byte 802.1Q field between the MAC addresses and
EtherType field. You might see these frames between switches (but not on user ports).

VLAN is a layer 2 solution that allows administrative partitioning of various ports on a
switch into separate broadcast domains. Devices located on different VLANSs are
effectively isolated from each other as if they were on separate physical networks. VLANSs
can be dispersed across multiple switches without running separate cables for each VLAN
if the switches support VLAN tagging. Communication between devices on separate
VLANSs generally requires using a router.

In the following Wireshark packet details screenshot, the Ethernet II frame Destination
and Source MAC addresses, Type (indicating that the next layer protocol is IP), and
Frame check sequence are circled, as is the Frame summary.

Note

Wireshark displays a summary of each frame that includes frame sizes, captured
timestamps and interframe times, and other useful information. This is metadata calculated
by Wireshark to aid in analysis and not a part of the captured frame.

The following screenshot highlights the significant fields of an Ethernet frame:

F§Frame 7: 674 bytes on wire (5392 bits), 674 bytes captured (5392 bits) on interface O

® Ethernet II, Src: HonHaiPr_99:db:85 (00:1c:25:99:db:85)}, Dst: CiscoCon 21:b7:ec (cB:d7:19:21:b7:ec)
Ef Destination: CiscoCon_2i:brF:ec (c8:d7:19:21:b7:ecC)
Address: CiscoCon_21:b7:ec (cB8:dr7:19:21:b7:ec)

veDi were weee ssnes o sess = LG bit: Globally unigque address (Tactory default)
....... D ciee dain cwii owe. =16 bit: Individual address (unicast)
=f Source: HonHaiPr_33:db:85 (00:1c:25:93:dbiss) |
Address: HonHaiPr_99:db:85 (00:1c:25:99:db:85)
a0l iies diie sees swe. = LG bit: Globally unique address (Tactory default)
....... D ciaw sonn saas saes = TG bit: Individual address (unicast)

Type: IP (0x0800) |

#HfiFrame check sequence: 0x0doaddoa |

Internet Protocol version 4, Src: 192.1658.1.116 (192.168.1.116), Dst: 162.159.241.165 (162.159.241.165)
Transmission Control Protocol, Src Port: 54579 (54579), Dst Port: http (80), Seq: 1, Ack: 1, Len: 616

| Hypertext Transfer Protocol

=+ [#

Note

Any additional analysis provided by Wireshark in any area of the Packet Details pane that
is calculated or otherwise not part of actual packet contents will be encased in brackets.

Layer 3 — the network layer

The network layer (called the Internet layer in the DARPA model) primarily handles the
routing of packets across and to other networks along the path from source computers to

destination hosts based on the destination IP address. The two most common protocols
seen at this layer are Internet Protocol and Address Resolution Protocol.

Internet Protocol

The most common protocol in use at this layer is Internet Protocol Version 4 (IPv4),
which includes several essential fields to accomplish the task of routing packets across
networks:

¢ Differentiated Services (DiffServ): This field supports an enhancement to the IP that
is generally called Quality of Service (QoS) and allows classification of certain
types of traffic (voice, video, and so on) so that these packets can receive priority
handling in cases of network congestion.

o Total length: This is the total length of the packet (minus the Ethernet MAC header).

¢ Identification (IP ID): This an incrementing number used to support fragmentation.

e Flags: These are used to support fragmenting (dividing a packet into two or more
smaller ones) in case the large packets have to be divided into several smaller ones to
traverse a packet-size-limited link. These flags along with the IP ID field values
allow proper reassembly of the fragmented packets into the original.

e Fragment offset: If the Flag field is 1 (more fragments), the value in this field
indicates the offset from the start of the original payload in bytes that this fragment
packet contains.

e Time to Live (TTL): This is a “hop” or time counter that is decremented every time
a packet passes through a router. If the TTL reaches zero, the packet is discarded. The
primary purpose is to keep packets from living forever and crashing the network in
the case of an inadvertent path loop.

e Protocol: This identifies the protocol in the IP packet’s payload. Wireshark uses this
to determine the next protocol dissector to apply to packet decodes.

e Source and destination IP addresses: These are the IP addresses of the sending
machine and the ultimate destination machine. IP addresses are 4 bytes long and are
represented as four octets (numbered 0 through 255 decimal) separated by periods.

In the following screenshot, the significant IPv4 fields are circled. These are the fields
you’ll want to inspect and be comfortable with when doing packet analysis at this layer.

¥ Frame 7: &74 bytes on wire (5392 bits), 674 bytes captured (5392 bits) on interface 0
E Ethernet II, Src: HonHaiPr_99:db:85 (00:1c:25:99:db:85), Dst: CiscoCon_21:b7:ec (c8:d7:19:21:b7:ec)

B Internet Protocol Version 4, Src: 192.168.1.116 (192.168.1.116), Dst: 162.159.241.165 (162.159.241.165)
version: 4
Header Tength: 20 bytes

=5|foferentfated Services Field: Ox00 (DSCP Ox00: Default; ECN: OxX00: NOL-ECT (NOoL ECN-Capable Transportjjl

o000 00.. = Differentiated Services Codepoint: Default (0x00)

...... 00 = Explicit Congestion MWotification: MoOL-ECT (Mot ECN-Capable Transport) (0x00)
Total Length: &&0 |
Identification: Ox30a0 (12448)
Flags: Ox02 (Don't Fragment)

Aoriia e = Reserved bit: Not set

.1.. = Don't fragment: Set

«.0. ... = More fragments: Not set
Fragment offset: 0
Time to Tive: 128
Protocol: TCP (&)
Header checksum: 0x0000 [validation disabled]
Source: 192.165.1.116 (192.165.1.11&)
Destination: 162.159.241.165 (162.159,.241.165)
® Transmission Control Protocol, Src Port: 54579 (54579%), Dst Port: http (80), Seqg: 1, Ack: 1, Len: 616
Hypertext Transfer Protocol

|

[

Address Resolution Protocol

Another protocol you’ll see at the network layer is Address Resolution Protocol (ARP),
which is used by a device to obtain the MAC address of another device when it only
knows that device’s IP address.

In the following Wireshark packet details screenshot, note that the Ethernet frame
destination MAC address is Broadcast (ff:ff:ff:ff:ff:ff), Type is ARP (0x0806), and the
station has provided its own MAC and IP address in the ARP protocol Sender fields
(which other stations listen to and use to build a table of MAC and IP addresses). It
provides the IP address of the target device and puts all zeros in the Target MAC Address
field. The target device should return a similar ARP packet addressed to the requestor with
its MAC address in the Sender field.

A station will send an ARP request only in the following situations:

e The station that requires a MAC address for a target device hasn’t heard a previous
broadcast of that station’s MAC address, or its ARP table has timed out (ARP entries
are only kept for a period).

e The station that requires a MAC address for a target device has calculated (from the
target’s IP address and its own subnet mask) that the target device should be on the
same LAN. Otherwise, the station assumes the target device is on a different network
and sends its first session initiation packet to the default gateway (router) MAC
address based on the entry in the sending station’s default gateway configuration
setting. The default gateway will forward the packet to the appropriate egress port to
route it to the destination.

e The station that needs to send a packet to a distant network doesn’t know the MAC
address of its default gateway (for example, just after a power-up).

The following screenshot highlights the significant fields of an ARP packet:

¥ Frame 35692: &0 bytes on wire (480 bits), &0 bytes captured (480 bits) on interface 0

B Ethernet II, Src: Cisco_55:14:b4 (00:27:0d:55:14:b4), Dst: Broadcast (FF:ff:fF:FfF:FF:FT)
Destination: Broadcast (ff:ff:ff:fT:ff:f)
¥ Source: Cisco_55:14:b4 (00:27:0d:55:14:b4)

Type: ARP (0x0806)
Padding: 0QOQOO0O0000000000:00000000:0 000000000000

B Address Resolution Protocol (request)

Hardware type: Ethernet (1)

Protocol type: IP (0x0800)

Hardware size: &

Protocal size: 4

Opcode: request (1)

Sender MAC address: Cisco_55:14:b4 (00:27:0d:55:14:b4)
Sender IP address: 192.168.1.2 (192.168.1.2)

!rarget MAC address: 00:00:00_00:00:00 {00:00:00:00:00:00)
Target IP address: 192.168.1.107 (192.165.1.107)

Other protocols utilized at this layer include Internet Control Message Protocol
(ICMP), which is used to send network error messages between devices, and Internet
Group Management Protocol (IGMP), which is used by hosts and adjacent routers to
establish multicast (one-to-many) group memberships for network applications such as
streaming video and gaming.

Layer 4 — the transport layer

The transport layer, as it’s called in both the OSI and DARPA models, is responsible for
transporting packets of data in unique sessions between applications or a user and an
application by means of port numbers. The combination of a device or user’s IP address
and that device or user’s assigned port number (referred to as a socket) will be different
from another devices or users’ IP address and port numbers (on the client side).

If the source host for a packet is a server, the source port is likely to be a well-known
number for standard applications and services, such as port 80 for HTTP.

The transport layer typically uses one of two protocols, User Datagram Protocol or
Transmission Control Protocol, with the latter being the more prevalent for most
applications.

User Datagram Protocol

The User Datagram Protocol (UDP) is a fairly simple protocol. It is considered an
unreliable transport as there’s no guarantee of packet delivery or ordering, but it has lower
overhead and is used by time-sensitive applications such as voice and video traffic, as well
as by network services applications such as DNS.

The UDP header is only 8 bytes long and consists of the following:

e Source and Destination port number:These are 2 bytes each.

e Length: This is the length of the UDP header plus the payload. This is a 2-byte field.

e Checksum: This is the 2-byte field used to check errors of the UDP header and data.
If no checksum was generated by the transmitter, this will be all zeros.

The following screenshot shows the fields contained in a UDP header:

E Frame 18: 214 bytes on wire (1712 bits), 214 bytes captured (1712 bits)
Ethernet II, Src: Polycom 82:92:20 (00:04:T2:82:92:20), Dst: Cisco 55:14:b5 (00:27:0d:55:14:b5)
E Internet Protocol Version 4, Src: 10.1.1.100 (10.1.1.100), Dst: 208.73.144.71 (208.73.144.71)
B User Datagram Protocol, Src Port: 2222 (2222), Dst Port: 24268 (24268)
Source port: 2222 (2222,
Destination port: 24268 (24268)
Length: 180

FfChecksum: Oxbe&4c
F Real-Time Transport Protocol

Transmission Control Protocol

Unlike UDP, the Transmission Control Protocol (TCP) provides reliable delivery of data
by detecting lost, duplicated, or out-of-order packets, requesting retransmission of lost

data, or rearranging packets in the right order before delivering them to the application.
TCP can also accept a large chunk of data from an application and handle getting the data
transported to the other end reliably using multiple packets and reassembling them at the
other end (as can UDP, but not reliably; the application has to determine and recover from
lost packets).

The TCP header contents and length can vary depending on the options that may be in use,
but in its simplest implementation, it consists of:

e Source and Destination ports (2 bytes each): These are well-known registered ports
that are used (on servers) to access standard application services such as HTTP, FTP,
SMTP, databases, and so on. Port numbers assigned to client/user sessions are usually
in a higher number range and assigned sequentially.

¢ Sequence number (4 bytes): This is a number that represents the first octet in any
given segment. Sequence numbers are initialized at the beginning of new sessions as
a random number, and then incremented as data bytes and sent.

e Acknowledgment number (4 bytes): When the ACK flag bit is set, this field
contains the next sequence number expected from the sender, which in turn
acknowledges receipt of all the bytes received up to that point.

Note

The use of sequence and acknowledgment numbers are how the TCP ensures reliable
delivery of data by tracking the number and order of received bytes.

Sequence and acknowledgment numbers are large and difficult for humans to follow;
Wireshark can convert and display these as relative values that start with O at the
beginning of a session to make it easier to inspect them and relate the values to the
number of bytes transmitted and received.

e Flags (9 bits): These bits are used to control connection setups, terminations, and
flow control mechanisms.

e Window size (2 bytes): This indicates the current size of the buffer on this host used
to store received data until it can be handed off to the receiving application. This
information lets the sending host adjust data flow rates in case of network or host

congestion.

The following screenshot highlights the significant fields of a TCP header:

[# Frame 7: &74 bytes on wire (5392 bits), 674 bytes captured (5392 bits) on interface 0

H Ethernet II, Src: HonHaiPr_99:db:85 (00:1c:25:99:db:85), Dst: CiscoCon 2i:br:ec (c8:d7:19:21:b7:ec)

Internet Protocol version 4, Src: 192.168.1.116 (192.168.1.116), Dst: 162.159.241.165 (162.159.241.165)
‘B Transmission Control Protocol, Src Port: 54579 (54579), Dst Port: http (80), Seq: 1, Ack: 1, Len: 616
Source port: 54579 (54579)
pestination port: http (80)
[Stream index: 1]

|Sequence number: 1 | (relative sequence number)

[Next sequence number: 617 (relative sequence number)]

|Acknnw1edgment number: 1 |[re1at1ve ack number)

Header Tength: 20 bytes
[#Flags: 0Ox018 (PSH, ACK)
window size walue: 16425
[Calculated window size: 16425]

[window size scaling factor: -1 (unknown)]

[Checksum: 0Ox58e8 [validation disabled]

F [SEQ/ACK analysis]

E [Timestamps]

Hypertext TransfTer Protocol

Layer 5 — the session layer

The session layer handles setting up, controlling, and ending sessions within an
application between two computers. This is not necessarily the same thing as, for example,
a TCP connection, although the two will be related. The application sessions can span and
outlive multiple network connections. An example of a networking protocol that operates
at this layer is Network Basic Input/Output System (NetBIOS).

Layer 6 — the presentation layer

The presentation layer converts incoming and outgoing data from one format to another
and handles encryption/decryption and/or compression if any of these are required. The
presentation layer is also responsible for the delivery and formatting of information to the
application layer for further processing or display. An example of a presentation service
would be the conversion of an EBCDIC-coded text computer file to an ASCII-coded file.

Layer 7 — the application layer

The application layer, which may (or may not) perform separate functions from the
application itself, handles message formatting, human to machine interfaces, and so on.
This layer represents the services that directly support applications such as software for
file transfers, database access, e-mail, and so on.

In many widely used applications, no distinction is made between the presentation and
application layers. For example, HyperText Transfer Protocol (HTTP), which is
generally regarded as an application-layer protocol, has presentation-layer aspects such as
the ability to identify character encoding for proper conversion, which is then done in the
application layer.

In the DARPA model, the OSI layers 5-7 are combined into an application layer. From a

packet analysis standpoint, the particular manifestations and visibility (in Wireshark) of
the functions in the top layer(s) will vary depending on the applications and specific
protocols employed to support them.

The following diagram summarizes the OSI and DARPA layers and how various
networking protocols and services align with these layers and each other:

TCP/IP Protocol Suite

l

0S| model layers DARPA layers | r

Application Layer

Presentation Layer Application Layer HTTP SMB2 SMTP DNS RTP SNMP

Session Layer

Transport Layer Transport Layer TCP UDP

IGMP | ICMP ND_| MLD
Network Layer Internet Layer ICMPv6

ARP IP (IPv4) IPvG

Data Link Layer T S — :_......_._.._.._._._.._.._.._F

Network Interface | | : : 802.11 | | I | !

: Layer | Ethemet | | wireless |! FrameRelay | | ATM |

Physical Layer i | LAN | | i :
i Jo 1 3]

v e d e e o o o

Encapsulation

You may have observed by now that packets encapsulate various protocols into successive
layers, just like peeling an onion. An Ethernet frame contains a datagram payload; this
datagram is a packet with an IP header and payload. The IP packet payload consists of a
TCP header and data segment, which in turn may contain an HTTP header and payload.
This encapsulation is easier to visualize when working within Wireshark’s Packet Details
pane.

IP networks and subnets

Before moving on, a short review of typical IP subnetting terms and typical applications
should help clarify the terms used in this book and will act as a refresher for those already
versed in IP addressing.

A /24 designator placed after a network IP address in diagrams or device configurations is
a Classless Inter-Domain Routing (CIDR) designator that indicates the following:

e The first 24 out of the 32 bits in the 4-byte IP address represents the network portion
of any IP address on this network. This network is designated as 10.1.1.0 (the next
/24 network would be 10.1.2.0, then 10.1.3.0, and so on).

e The last 8 bits of the 32-bit address can be used to give workstations, hosts, and other
devices an IP address, with the following exceptions:

o The first host address on this network is reserved as a network designator to
build routing tables: 16.1.1.0 (typically called the loopback address)

o The last host address on this network is reserved as an IP broadcast address:
10.1.1.255

The 8 bits binary is equal to 256 decimal, minus the preceding two exceptions. This
leaves 254 usable IP addresses for devices, starting with 160.1.1.1, 10.1.1.2, and so
onupto 10.1.1.254.

e Another way of expressing subnet masks is in a dotted decimal format,
255.255.255.0, which again indicates that the first 24 bits of an IP address is the
network and the remaining 8 bits are for hosts.

e There are Class A, Class B, and Class C address ranges, as well as a subset of IP
ranges reserved as private addresses to use within organizations.

The following table shows the IP address ranges in the three major classes:

Class of IP address||Starting IP address||Ending IP address
|A 1.0.0.0 126.255.255.255
|B 128.0.0.0 191.255.255.255
|c 192.0.0.0 223.255.255.255

The following table shows the private IP address ranges:

Class of private IP addresses||Starting IP address||[Ending IP address
|A 10.0.0.0 10.255.255.255
|B 172.16.0.0 172.32.255.255
|C 192.168.0.0 192.168.255.255

e Subnet masks can be configured to allow more or fewer hosts per subnet with a
corresponding tradeoff in having fewer or greater network addresses with which to
build multiple networks within larger organizations.

A deeper review of IP addressing and subnetting is beyond the scope of this book. If
you’re not familiar with these concepts, some additional study would be advisable as a
solid understanding of IP subnetting is essential for most analysis activities.

Switching and routing packets

So far, we’ve covered the topics required to discuss how packets of data get routed from
computer A to host B across LANs and/or WANSs over distances that may range from
across a room to across the globe. The important concepts to remember are that Ethernet
frames work with switches and IP packets work with routers to accomplish this feat,
which we’ll cover in the next section.

Ethernet frames and switches

To reiterate what was outlined in the layer 2 (the data-link layer) discussion, Ethernet
frames are switched from the entry port to the appropriate destination port based on the
destination MAC address. Network switches build tables of which MAC addresses belong
to each port, compare a frame’s destination MAC address to these tables, and switch the
frame to the appropriate egress port if the destination is on the same switch or out a trunk
port to another switch or router otherwise.

Note that the first time a switch sees a destination MAC address it doesn’t recognize, it
sends the packet (which will usually be an ARP packet) out all the ports until a device
answers and it can add the new MAC address to its content addressable memory (CAM)
table that maps MAC addresses to specific ports.

Frames carrying packets destined for remote networks are sent to the default gateway port
MAC address. If you look at a list of MAC addresses in the Ethernet tab of a
Conversations table in Wireshark and see an address with a drastically higher volume of
traffic than the other stations, this is likely a default gateway (router) port MAC address.
This port is the pathway into/out of this LAN from/to other networks.

On any given LAN, you’ll see workstations, servers, and routers generating ARP and
Domain Name Service (DNS) requests:

e ARP: This is used to resolve IP addresses to MAC addresses
e DNS: This is used to resolve hostnames to IP addresses

In the following diagram, there are two user workstations and a server that are connected
together in a LAN residing on the 10.1.1.0/24 IP network. A router is attached to this
network, which has a WAN link to another location.

Router 1 .
Switch 1 MAC D WAN Link
Mgmt IP 10.1.1.5 Intf Fa/0 IP 10.1.1.1/24
10.1.1.0/24 / \
Switch 2 / Switch 3
Mgmt P 10.1.1.6 / Mgmt IP 10.1.1.7
!
f
E)% /
X | HOST ‘Venus'
MAC A) MAC B / \ MAC C
IP 10.1.1.30 j.f IP 10.1.1.47) \ IP 10.1.1.25
(| 1t \

The following two scenarios leverage this drawing to show how MAC addresses are
utilized to switch Ethernet frames around local area networks:

e The workstation with MAC address B wants to use an application on the server
Venus, which is unknown to all the network devices as it was just powered up. The
workstation knows the IP address of Venus as the IP address was preconfigured in the
client application, but it doesn’t know the server’s MAC address.

The workstation broadcasts an ARP packet with its own MAC and IP address as the
sender, the IP address of the Venus server, and all the zeros for the MAC address in
the Target fields. Venus responds to the workstation with an ARP response that
includes its MAC address of C in the sender MAC address.

The workstation then sends a session initiation packet to the server using the server’s
MAC address as the destination MAC in the Ethernet frame.

These Ethernet frames traversed switch 3, which learned both devices’ MAC
addresses from observing the ARP conversations. The rest of the switches in the
LAN network learned workstation C’s MAC address when it broadcasted its ARP
packet (because switch 3 sent this ARP packet out all ports), but not the server’s
MAC as the server responded directly to C.

e The workstation with MAC address A now wants to use an application on the server
Venus. It doesn’t know the server’s MAC address either, so it sends an ARP request
as well, which switch 2 broadcasts out all its ports, as does switch 1 and switch 3 as
the switches only look at MAC addresses and the destination MAC address of any
ARP request is ff:ff:ff:ff:ff:ff, so each switch is obliged to send the broadcast frame

out all ports.

However, when the server Venus responds to A’s ARP packet, using A’s MAC
address, each switch in the path has learned which ports it saw A’s MAC address
come in on. So, each switch only sends Venus’ response out the appropriate port back
to workstation A. The same is true for learned non-broadcast frames. If a switch
doesn’t recognize a destination MAC address of a nonbroadcast frame, these are sent
out all ports the first time as well.

As switch CAM tables get populated with MAC addresses and their associated ports,
the number of frames that must be sent to every device in the LAN as well as the
workload on all these devices is reduced significantly.

IP addresses and routers

When packets need to leave the LAN to get to a remote IP network, routers are required to
route the packets based on their destination IP addresses. The following scenario (still
referring to the preceding screenshot) illustrates some of the details involved in one
possible situation.

Workstation A now wants to use an application on the server Mars, which resides on a
different network than in the previous scenarios. And in this case, workstation A doesn’t
know the IP address of the server; it only needs its name. Workstation A will send a DNS
request packet to the DNS server IP address configured in its network settings (the DNS
server isn’t shown here) with the hostname Mars; the DNS server will return the IP
address of Mars 10.1.2.25. Workstation A calculates that this host isn’t on its own network
from a comparison of its IP address and subnet mask with Mars’ IP address, so it sends the
session initiation packet to router 1, which was configured as its default gateway in its
network settings. We’ll assume that Workstation A already knows the MAC address of
router 1’s port from a previous ARP exchange to find router 1’s MAC address from the
given IP address.

When the router receives A’s frame, which was sent to the router port’s MAC address, it
inspects the destination IP address inside the IP header and looks up the appropriate port to
forward the packet to. This routing process is supported by routing table entries the router
builds from route information broadcasted by other routers; each router tells all the others
what networks it knows a route to.

In this case, the Ethernet frame surrounding A’s packet is stripped off and the remaining
payload (packet) is sent across the WAN link to router 2, which also inspects the IP header
destination IP address and looks up the correct port to forward the packet to. Router 2
wraps the packet in a new Ethernet frame with its own MAC address X as the source and
the Mars server’s Y address as the destination MAC (assuming the router already has the
server in its MAC table), and transmits the packet out onto the LAN to get switched to the
Mars server, as shown in the following diagram:

Router 2
MAC X Switch 20

WAN Link Intf Fa/0 IP 10.1.1.1/24 Mgmt IP 10.1.1.5

A

NETWORK Switch 25
Mgmt IP 10.1.2.10
10.1.1.0/24

HOST ‘Mars’
MAC Y
IP 10.1.1.25

WAN links

Actually, network packets may traverse several routers and WAN links to reach the
destination network, and each router traversed is called a hop. In the context of packet
analysis, you should be aware that WAN links can introduce packet delivery delays or
latency due to the following four major factors:

¢ Physical speed-of-light propagation delay: This is the amount of time required for
electrical or light signals to travel across copper/fiber cables over long distances.

e Network routing/geographical distance: The WAN link routes are never in a
straight line between points. They have to traverse major telephony switching centers
and route along railways, roads, and other opportunistic paths.

¢ Serialization delay into and across WAN links: The WAN links are often slower
speed links, and it takes a finite amount of time to send packet data across these links
one bit at a time.

¢ Queuing delays: In network device buffers, including additional delays that may be
induced by Quality of Service policies, some packets receive priority and others have
to wait longer for their turn to be transmitted.

The effects of network delay incurred across LAN and WAN links can be seen and
measured in Wireshark packet traces by inspecting the elapsed times between session
setup packets.

Wireless networking

Wireless networks utilize a range of 802.11 specifications to provide connectivity over 2.4
or 5 GHz frequency bands at a variety of speeds. The significant differences between
wireless frames and those found on wired networks are as follows:

e Wireless networks employ carrier sense (every station is listening), multiple access
(shared medium), and collision avoidance (avoiding collisions instead of just
recovering from them) techniques, which reduce the throughput

¢ In addition to data frames, which get forwarded to the wired network, wireless frame
types include the following:

o Management frames: This is used for authentication and association tasks
o Control frames: This controls send/receive functions on the shared media to
help avoid collisions

Wireshark can be used to capture and analyze packets on Wireless networks. However, in
order to analyze the control and management frames, as well as select the radio channels
to capture on without having to associate with a specific channel, specialized adapters are
required. These adapters are available from various networking vendors.

These wireless adapters and their drivers enable Wireshark to display a pseudo header just
below the frame header in the Packet Details pane, which includes information about:

e Data rate: This is the maximum data transfer rate possible across the radio channel

¢ Channel frequency: This is the RF channel frequency that the station is using

e Channel type: This is the 802.11 protocol used, and the common types are a, b, g,
and n

¢ RF signal and noise levels: This is the received RF signal strength and background

noise levels; the larger the difference between these two the better the signal can be
decoded

Remember when analyzing wireless networks, the wireless access points utilize a wired
LAN connection to the rest of the network that may warrant a separate analysis. The
access point strips off the 802.11 header and encapsulates a packet in an Ethernet frame
before sending the packet off on the wired network.

The following screenshot illustrates the contents of a typical Radiotap Header and IEEE
802.11 frame; note the Data Rate, Channel frequency, and Signal/Noise values:

FH Frame 1138: 2174 bytes on wire (173292 bits), 2174 bytes captured (17392 bits) on interface 0

B Radiotap Header vO, Length 26

Header revision: 0O
Header pad: 0
Header length: 26

H Present Tlags
MAC timestamp: 664141796

[F Flags: Ox50
Data Rate: 12.0 Mb/s
Channel frequency: 2437 [BG 6]

Channel type: 802.11g (pure-g) {(Ox00cC0)
55I Signal: -72 dem
S5I Woise: -8& dBm
Antenna: o
55I Signal: 14 de

= IEEE 802.11 Unrecognized (Reserved Trame), Flags: .p.P.....

Type/subtype: Unknown (0Oxzd)

Frame Control Field: Oxd850
100 0010 11310 13100 = Duration: 17132 microseconds
Receiver address: O0fF:14:3e:76:25:1e (0F:14:3e:76:25:1e)
Destination address: O0F:14:3e:76:25:1e (OF:14:3e:76:25:1e)
Transmitter address: 49:T1:33:a5:c7:84 (49:T1:33:a5:c7:84)
Source address: 49:T1:33:a5:c7:84 (49:T1:33:a5:c7:584)
BESS Id: 6eb:05:45:d9:c58:95 (6b:05:45:d9:c5:95)
Fragment number: 13
Sequence number: 3176

H Frame check sequence: Ox758T0b920 [incorrect, should be Ox0992cafi]

¥ Qos Control: OxOeld

Note

There are numerous reference materials and books that you can read to learn more about
networking and network protocols. One of the classic sources is TCP/IP Illustrated
Volumes 1, II, and III, W. Richard Stevens, Addison-Wesley Professional, available online
or in book formats.

Summary

The important points covered in this chapter included how Ethernet frames are switched to
the appropriate switch ports on a LAN based on destination MAC addresses that packets
are routed across and to remote networks based on destination IP addresses, and how the
frames carrying packets destined for remote networks based on the destination IP address
are sent to the default gateway’s port MAC address.

We also covered how and why slower and/or longer distance WAN links can add
significant amounts of delay to packet transmissions, which slows application data
exchanges and increases user response times. We finished the chapter by discussing how
Wireshark can capture and analyze packets on 802.11 wireless networks using specialized
adapters.

In the next chapter, we’ll cover in detail how to capture and filter packets using Wireshark.

Chapter 3. Capturing All the Right
Packets

In order to analyze packets to troubleshoot connectivity, performance, or security issues,
you have to successfully capture all of the right packets and then identify and filter out just
the packets that pertain to the goal at hand.

In this chapter, we will cover the following topics:

Picking the best capture point

TAPs and switch port mirroring
Wireshark’s capture interfaces, filters, and options
Verifying a good capture

Isolating the conversation(s) of interest
Using the Wireshark Conversations window
Wireshark’s display filters

Filtering expression buttons

Following TCP/UDP/SSL streams

Marking and ignoring packets

Saving filtered traffic

You’ll recognize that many of these activities are the same ones that we accomplished in
Chapter 1, Getting Acquainted with Wireshark, to perform a capture and filter just the
packets involved in loading a web page. In this chapter, we’ll expand and finish rounding
out your skills in all these topics.

Picking the best capture point

Determining the best location to perform a packet capture depends on several
considerations:

e The nature of the issue being investigated

e The relative ability to perform a capture in a location that provides the highest degree
of usefulness to the analysis

e The amount of technical difficulty, risk, and time required to perform a capture at a
given location

User location

If you’re troubleshooting a user complaint, the first capture point should be at the user’s
workstation to gain a view from the user’s perspective and verify/clarify the situation that
the user is reporting. From this vantage point, you can:

Ensure that basic network services such as ARP and DNS are working correctly
Analyze the initial login process if the user authentication involves a different device
than the target application server

Measure network round trip times from the user to the target host(s)

Determine whether the TCP session setup handshake is appropriate for the
application being accessed

Measure service response times (such as HTTP or SMB response times)

Determine whether the user is experiencing packet loss and retransmissions, out-of-
order packets, or other network-related anomalies

Capture any application error messages being sent to the user and the requests that
resulted in those errors

Capturing from a user’s location is usually much simpler from a practical standpoint and
there is a lot less traffic to deal with, which makes capture sizes smaller and filtering the
packets of interest simpler. Disconnecting a user’s Ethernet cable for a few minutes to
insert a TAP (we’ll discuss these in the next section) or installing Wireshark on the user’s
workstation does not typically require special authorization or preparation as the risk to
other users is negligible.

Server location

If a capture from a complaining user’s workstation isn’t possible or practical, a capture
from the server end can still be useful, but it might be advantageous to apply a capture
filter to gather just the traffic to/from the user’s workstation (based on the user’s IP
address) to limit the capture file size. You can still measure network round trip times,
server response times, analyze TCP handshake details, and detect retransmissions caused
by packet loss, and perhaps the login/authentication process from this location.

Capturing from a server location is also appropriate when analyzing backend service
response times. For example, if users interact with an application server but that app
server performs transactions with a backend database in order to fulfill user requests and if
there are complaints of slow response times, then an analysis of application server-to-
database server interactions can help isolate the true source of the poor performance to one
or the other host and the types of requests that result in slow or erroneous responses.

Other capture locations

For the majority of packet captures, you’ll likely be at user workstations or server switch
ports, but there will also be some cases where captures will need to be performed at other
locations.

Mid-network captures

Identifying the source of excessive packet loss or disordering over a network path may
require performing packet captures at various points along that path, typically at
distribution or core switch trunks, or interfaces to routers, firewalls, and so on, to find the
network segment where packet loss becomes apparent.

Both sides of specialized network devices

Today’s modern networks often employ a number of network devices that can actually
alter the contents of packets flowing between clients and servers; in some (occasional or
last resort) cases, it may be necessary to capture on both sides of these devices to isolate or
prove a functional or configuration problem:

¢ Routers and gateways: These are also called Internet gateways in some
configurations and may be configured to perform a Network Address Translation
(NAT) function that alters and hides the user’s actual IP address from an outside
network. This is done by substituting a public IP address for the user’s real address.
This usually involves translating port numbers as well so that a single public IP
address can be used to support multiple sessions; in which case, the solution is called
Port Address Translation (PAT). The end result of the PAT functionality is that a
capture from the client side and a capture at the server side of the same session
conversation will involve different IP addresses and port numbers.

The following diagram illustrates how a PAT device translates IP addresses and ports
from an internal private network to and from an externally visible IP address and has
translated the ports used for an individual user session:

SRC: 10.1.1.30 port 1025 — SRC: 155.57.1.12 port 2060
DST: 10.1.1.30 port 1025 +— DST: 155.57.1.12 port 2060

MNAT / PAT device

10.1.1.1 155.57.1.12
x% __-. el
/

NETWORK /
10.1.1.0/24 F

10.1.1.30 /

e Proxy servers and firewalls: Devices such as these can act as an intermediary
between clients wanting to use resources from other (usually external) servers. These
devices are most typically deployed between users inside a company and outside
(web) services accessed via the Internet. These devices are employed for their
security capabilities, allowing administrative control over what can be accessed and
the type of data content that can be relayed between the two networks, malware
scanning, and so on. From a packet analysis standpoint, you should be aware that in
addition to performing a NAT/PAT function, some implementations of these devices
may actually terminate a user session on one side and initiate a completely different
session between the device and the outside host on the other side, on behalf of the
user, such that the TCP handshake and session parameters, IP addresses and port
numbers, and packet sizes can all differ on either side.

e [P tunnels using Generic Routing Encapsulation: These are used to connect two IP
networks that don’t otherwise have a native routing path to each other. The original
packets are encapsulated inside packets with different IP addresses appropriate for the
network media that they will traverse. The most common use of IP tunneling is to
connect private corporate networks together through public Internet connections or to
connect Internet Protocol Version 6 (IPv6) networks together over traditional IPv4
network paths. IP tunnels can be configured between routers and high-end switches.

Although it may be necessary (to validate an issue to other support teams) or more
practical to capture at or near the interfaces to the devices described earlier, it is usually
easier and just as effective to perform the captures at user and/or server locations. Unless
you’re part of a network support team, you won’t have to conduct an analysis in such an
advanced and complicated environment.

Test Access Ports and switch port
mirroring

If you’re capturing from a user location and cannot or do not wish to install Wireshark on
the user’s machine or you’re capturing at another location in the network, you have two
options to obtain a copy of the packets traversing the network: Test Access Ports or switch
port mirroring.

Test Access Port

A Test Access Port (TAP) is a device that copies all the packets flowing through it to one
or more monitor ports. A station with Wireshark installed on it can be connected to one of
the monitor ports to capture the packets.

You should select an aggregating TAP that supports the link speed of the network ports
being analyzed (usually 100 Mbps or 1 Gbps) and that will copy and combine the packets
flowing in both directions (transmit data from the user’s workstation and receive data from
the network); the aggregating TAP funnels the traffic to a single connection (transmit to
the Wireshark station) so that you can capture the traffic in both directions with a single
network interface on the Wireshark station. Be aware that since you’re copying packets
from two directions into one pipe to the Wireshark station, it is possible to oversubscribe
the monitor port if traffic rates are extremely high. If this happens, the excess packets will
be dropped. Oversubscription usually isn’t a concern at user workstations, but it could be
for switch trunks or other high traffic areas.

The following figure illustrates how a TAP is inserted between a user workstation and that
workstation’s switch port, and how a Wireshark workstation is attached to capture packets:

i
Iii

R0y

Switch port mirroring

Switch port mirroring, also known as a Switched Port Analyzer (SPAN) feature or
spanning a port, is the practice of configuring a network switch to perform the same
function as a TAP: to make a copy of the packets flowing in and out of a specified port
and send them to an otherwise unused monitor port where a Wireshark station is attached
to capture the packets.

The advantage of using port mirroring is that no connections need to be broken to insert a
TAP. The monitor port can be easily configured by a switch administrator and just as
easily disabled.

The potential issues with this option include the fact that not all switches support port
mirroring, and there is some evidence to suggest that using this feature can affect the
performance of the switch, at least for the port being monitored. The possibility of
oversubscribing the monitor port from excessive transmit plus receiving traffic levels also
exists for port mirroring, as is the case when using a TAP, and this is likely when
monitoring switch trunks to other switches, as these will be carrying traffic for multiple
users.

The following diagram is a simple illustration of a port mirroring scenario on a switch.
The packets to and from the workstation port are copied to the port where the Wireshark
station is connected.

Capturing packets on high traffic rate links

If you need to capture packets on a high traffic rate link such as a trunk link between
larger switches, Wireshark is probably not the best solution. It may not be able to keep up

with a busy link. Wireshark is actually a GUI tool that calls a command-line executable
called dumpcap, which captures the packets and saves them to a disk file. Wireshark
reads this file and presents the processed packets to the user interface. An alternative to
Wireshark is to use the dumpcap or tcpdump executable directly (these are covered in
Chapter 8, Command-line and Other Ultilities) or a high performance capture appliance
offered by numerous vendors.

Capturing interfaces, filters, and options

Capturing packets with Wireshark consists of selecting the correct network interface to
capture packets from, applying any capture filters that may be appropriate, and applying
the correct options to accomplish the capture in the desired manner. We’ll cover these

three topics in the following sections.

Selecting the correct network interface

As discussed in Chapter 1, Getting Acquainted with Wireshark, if you have multiple
network interfaces on your machine, you need to determine and select the correct interface
to capture packets. In Wireshark’s Capture menu, click on Interface or click on the first
icon on the icon bar.

The Wireshark Capture Interfaces window provides a list and description of the
network interfaces on your machine, the IP addresses assigned, and the total packets and
packets per second counters for each interface. If an interface has an IPv6 address
assigned and this is being displayed, you can click on the address to toggle and display the
[Pv4 address.

The following screenshot illustrates a typical Capture Interfaces window listing a LAN
and wireless interface along with their IP addresses and packet counters:

M Wireshark: Capture Interfaces |- ||-= |@
Device Description P Packets Packets/s
J g?" Local Area Connection Intel(R) 82567LM Gigabit Metwork Connection 1921681115 51340 112 |Qetai|s|
g}' Wireless Metwork Connection Microsoft 192.168.1111 5185 0 Qetail5|

| Help Start Stop Options | [Close]

The Capture Interfaces window provides the following two options:

e Clicking on the Details button for any of the listed interfaces opens an Interface
Details window that provides a wide range of information that can be useful to verify
the interface’s operation. The status of the Link and Link Speed information is
displayed in the Characteristics tab, and the MAC address of the selected NIC is
displayed in the 802.3 (Ethernet) tab.

e The rest of the capture options are configured in the Capture Options window,
which is opened by clicking on the Options button in the Capture Interfaces
window, or by selecting Options from the Capture menu, or by clicking on the
second icon in the icon bar.

The following screenshot illustrates a typical Capture Options window with a number of
options specified. You can refer to it for examples of the topics on Capture Options.

M Wireshark: Capture Options =0

Capture

Capture Interface Link-layer header Prom, Mode Snaplen [B] Buffer [MIB] Capture Filter
_ Local Area Connection
(V] feB0-299faflrclcE-345c Ethernet enabled default 2 ether host 00:08:15:00:08:15
132 1681115
Wireless Network Connection =
feB0-5c85811T-150263a5 Ethernet enabled default 2 3
1521681111

4 T !

:'_ Capture on all interfaces ManageInter‘faceg|

[¥] Use promiscuous mode on all interfaces

|£a pture Filter: ‘ ether host 00:08:15:00:08:15 B ICompile selected BPF5|
Capture Files Display Options

File: |EFOW5E--- [¥] Update list of packets in real time

¥ Use multiple files Use pcap-ng format [7] Automatically scroll during live capture

[¥] Mext file every 100 : megakbyte(s) E

_ ; [¥] Hid ture info dial

] Next file every 1 = |minute(z) T R)

[¥] Ring buffer with 5 = files Mame Resolution

[C] Stop capture after |1 | filefs) [¥] Resolve MAC addresses

Stop Capture Autormatically After... [Resolve network-layer names

1 - packet(s)
- [¥| Resolve transport-layer name
1 - |megabyte(s)
1 & iniEats) [¥] Use external network name resolver

U sor_| [Qo

As seen in the preceding screenshot, the Capture Options window displays the available
interfaces and their IP addresses and allows you to select one or more of these interfaces to
perform the capture. Wireshark can capture from multiple interfaces simultaneously, as
well as from virtual interfaces. The primary advantage of starting with the Capture
Interfaces window is the availability of the packet counters to aid in identifying active
interfaces, a feature not available in the Capture Options window. Otherwise, if you
know which interface you’ll want to use, you can skip using the Capture Interfaces
window and start here.

Clicking on the Manage Interfaces button in the Capture Options window brings up an
Interface Management window. From the Local Interfaces tab, you can select to hide
interfaces that you do not wish to see displayed in the Capture Interfaces and Capture
Options windows.

There is an option to quickly enable Capture on all interfaces and a Use promiscuous
mode on all interfaces option that is enabled by default. In most cases, this option should
be left enabled so that the chosen interface(s) can capture and save all the packets seen.
Otherwise, only the packets that are being sent to the Wireshark workstation’s MAC
address, broadcast, and/or multicast packets will be seen and captured, which basically
negates its usefulness as a capture device. The Compile selected BPFs button provides a
machine language display of the compiled capture filter, but has no other functional
purpose.

Note

The Capture Filter field has a highlighting feature that indicates valid versus invalid filter
syntax. A green background indicates a good filter and a red background indicates an
invalid or incomplete filter.

Using capture filters

Capture filters are used to reduce the amount of traffic saved during a packet capture. In
practice, capture filters should be used sparingly, if used at all, to help make sure that no
packets that are important for an analysis are inadvertently missed because they fall
outside the capture filter parameters. Remember that you can always filter out unwanted
traffic from a capture, but you can’t do anything about missed packets once the capture is
finished. If you’re unsure about a capture, perform the capture again with a more generous
capture filter or none at all.

One scenario where a capture filter is appropriate is when you want to let a capture run for
a long period of time. Then, you should filter out as much extraneous traffic as possible to
keep capture file sizes under control. However, take care to make sure the capture filter
you apply doesn’t exclude any traffic that may be useful for the analysis.

It’s usually a good idea to do some trial captures when using capture filters to verify that
the filter is working as desired before doing the official capture that you want to keep.

Configuring capture filters

Wireshark provides a Capture Filter window that makes it easy to select a preconfigured
capture filter, or you can configure your own based on your needs.

Click on the Capture Filter button in the Capture Options window to open the Capture
Filters window. From this window, you can select from a number of useful preconfigured
capture filters, create a new and unique capture filter for your purposes, or delete
unwanted or erroneous filters. Creating a new filter only involves giving the filter a name,
entering the capture filter syntax, clicking on New to save the filter, and then finally
clicking on OK. Alternatively, you can click on an existing filter and then click on New,
which will create a copy of that filter at the bottom of the list that can then be modified for
your purposes.

The following screenshot illustrates a typical Capture Filter window. In this case, a
capture filter that will only allow traffic to and from a specific Ethernet MAC address has
been selected:

M Wireshark: Capture Filter - Profile: Default El (=]

Edit Capture Filter

Ethernet type 0:0806 (ARP)
Mo Broadcast and no Multicast

Mo ARP

IP cnly
IP address 192.168.0.1
IPX only
TCP only
[Delete] | | uDP only
TCP or UDP port 80 (HTTP)
HTTP TCP port (80)

m

Properties
Filter name; | Ethernet address 00:08:15:00:08:15

Filter string: | ether host 00:08:15:00:08:15

o |

] | Cancel

]
=

Wireshark’s capture filters use a syntax that is known as the Berkley Packet Filter (BPF)
format, which has legacy roots in the Unix world and is still in use today with packet-level
drivers. Note that the syntax used to capture filters in Wireshark differs significantly from

the syntax used for display filters.

The default selection of capture filters from the Capture Filter window is helpful in
providing examples of capture filter syntax. Some additional examples of capture filter
syntax and examples of that syntax are outlined in the following table:

Description Syntax

Examples

Filter on an Ethernet MAC address
ether hOSt XX IXX XX I XX XX XX

Filter to capture just the traffic from or to a

ether or ether dst
MAC address sre S

ether host 60:1¢c:25:99:db:85

ether src 00:1c:25:99:db:85

Filter on an IP address or hostname

Filter to capture just the traffic between
two [P addresses

host xxx . XXX . XXX . XXX

src host and dst host
Filter traffic in one direction only between

two hosts

host 192.168.1.115

host www.wireshark.org

host 192.168.1.115 and host
10.1.1.125

src host 192.168.1.115 and dst host
10.1.1.125

Filter based on a port number

Filter for HTTP traffic only ip6, and icmp6

_ port 53
Filter for DNS packets port, dst port, and src port port 67
Filter for DHCP packets
Filter based on a protocol ; :

P “arp, icmp, ip, upd, tcp, http, http

Filter to exclude ARP and DNS packets |'l,or

Capture filter logical operators =, 1=, >, <, >=, <=, |, not, &&, and,

not arp and port not 53
! arp & port ! 53

More information and examples of capture filters can be found on the Wireshark wiki at
http://wiki.wireshark.org/CaptureFilters and the protocol-specific capture filter syntax is

included in the reference information found at
http://wiki.wireshark.org/ProtocolReference.

http://wiki.wireshark.org/CaptureFilters
http://wiki.wireshark.org/ProtocolReference

Capture options

The Wireshark Capture Options window offers a variety of controls to configure captures
to suit a particular need.

Capturing filenames and locations

Clicking on the Browse button on the File option allows you to navigate to a chosen
directory in which you can store the capture files and enter a filename for the capture files.

When the File option is used, Wireshark will append a file number and date-time stamp to
the filename you specify and will not provide a file extension. You should specify a
.pcapng extension in the filename. This is better illustrated with an example.

The user provided directory and filename is C:\Wireshark\long_capture.pcapng, and
Wireshark will create and save packets to files in the format
C:\Wireshark\long_capture_00001_20140724132952.pcapng.

If Wireshark is configured to capture to more than one file (this will be discussed later),
the file numbers and date-time stamps will be incremented accordingly as the capture
progresses, for example, long_capture_00002_20140724133343.pcapng and
long_capture_00003_20140724133612.pcapng.

Multiple file options

Wireshark can be configured to save packets to multiple files to allow long-term captures,
and offers a number of options to control how this is accomplished.

Selecting the Use multiple files option causes the appropriate underlying controls to
become active as specific options are enabled. You can choose to start a new (next) file
when each file reaches a given size and/or after a configurable period.

Note

Wireshark can become very sluggish or might even crash when working with capture file
sizes of much greater than 100 MB, so you should consider this as a good maximum file
size.

Ring buffer

The Ring buffer option works in conjunction with the Next File every option to cause
Wireshark to fill the specified number of files, and as the capture continues to progress, it
deletes the oldest files.

This feature is useful to keep a capture running while waiting for some intermittent
problem or an event to occur, after which the capture is manually stopped. The ring buffer
files provide historical capture data for a period just prior to stopping the capture, without
filling a hard drive with an excessive number of large capture files.

Stop capture options

Wireshark has options to automatically stop a capture after a specified number of packets,

file size, or time period. If the Use multiple files option is enabled, an option to stop the
capture after a specified number of files can be employed. Otherwise, the capture can be
stopped after a specified number of packets, file size, or time period has elapsed.

Display options

The Update list of packets in real time option specifies that Wireshark is to periodically
read the capture file as it is being written during the capture and update the Packet List
contents accordingly. Otherwise, the Wireshark user interface will be grayed out during
the capture.

The Automatically scroll during live capture option specifies that Wireshark updates
and displays the latest captured packets in the Packet List pane such that the packets seem
to scroll up as the list is updated. The Update list of packets in real time option must be
enabled for this option to function.

Both of these options have a processing time cost that could result in lost packets and/or a
sluggish display and should be disabled if capturing on a very busy link. However, the
ability to view and confirm that the expected packet flows are occurring during the capture
will be lost.

The Hide capture info dialog option (which is enabled by default) controls whether a
simple window is displayed during the capture that displays the packet counts and
percentages by protocol. Unless specifically needed, it is best to leave this window hidden.

Name resolution options

If the Resolve MAC addresses option is enabled, it causes Wireshark to display MAC
addresses with an assigned manufacturer code in place of the first three octets. For
example, Wireshark will display CiscoCon_21:b7:ec instead of ¢8:d7:19:21:b7:ec. The
list of manufacturer’s codes is kept in the manuf file of the Wireshark installation
directory.

The Resolve network-layer names option works in conjunction with Use external
network name resolver to determine if or how captured IP addresses are resolved into
their hostnames, as follows:

e The Resolve network-layer names option specifies that Wireshark should attempt to
resolve IP addresses into hostnames. If the Use external network name resolver
option is enabled, Wireshark will perform reverse DNS lookups for each unique IP
address. This causes Wireshark to generate traffic of its own.

o [f the Use external network name resolver option is disabled, Wireshark will
attempt to resolve the IP addresses using a hosts text file provided by a user (which
uses typical IP address <tab> hostname syntax) located in the Wireshark installation
directory when using a default profile or in the appropriate profile directory when
using a custom profile.

During a capture, it is better to leave the Resolve network-layer names option disabled
so that Wireshark isn’t creating additional network traffic while trying to resolve IP
addresses during a capture. This feature can always be temporarily enabled (by navigating

to View | Name Resolution | Enable for network layer from the menu) after the capture
is finished.

If the Resolve transport-layer name option is enabled, it causes Wireshark to display the
human-readable, port- and protocol-specific services’ names instead of the port numbers in
the Info display field in the Packet List pane. For example, TCP port 80 will be displayed
as HTTP. The list of port number services is kept in the services file in the Wireshark
installation directory.

The screenshot at the beginning of this section illustrates a Capture Option window set to
use the LAN interface, a filter to capture traffic only to and from a specific Ethernet MAC
address, to save up to five files of 100 MB each in a ring buffer scenario, and to save those
files in a provided directory with a specific leading filename and extension. The Display
Options and Name Resolution options have been left in their default settings.

Once all the desired Capture Options have been selected, clicking on the Start button
will start the capture.

Having covered all the most useful Capture Options features, now is probably the right
time to tell you that for many of your captures, especially from a relatively low traffic
volume location such as from a user workstation, you don’t want or need to set any
capture options (except the appropriate interface to capture from) and can simply jump
into starting a capture using all the defaults by clicking on the third (green shark-fin
shaped) icon on the icon bar or selecting Start from the Capture menu. Not using a
capture filter allows you to capture all the relevant packets—without missing anything—
and filter any unwanted traffic out using display filters after the capture is done.

Verifying a good capture

After a capture is complete, you should scroll through and inspect the packets in the
Packet List pane to ensure that you’re seeing the traffic you were expecting—usually
traffic to and from a specific host.

You should also ensure there were no dropped packets, which would be displayed in the
Packet Information section of the Status Bar at the bottom center of the Wireshark user
interface. Dropped packets indicate that Wireshark or the selected NIC could not keep up
with the traffic volume and had to discard packets, which could of course affect the quality
of your analysis. If dropped packets occur, you may need to use a higher performance
workstation to perform the captures or select a lower traffic volume capture location.

Saving the bulk capture file

After completing and verifying a good capture, you should save the bulk (all captured
packets) capture file (assuming a single file capture) to your directory of choice. You will
later be filtering and saving a subset of packets to a smaller file, but it is advantageous to
be able to load the original capture file again at a later time if during the analysis you
discover that you might have inadvertently filtered out more packets than you wanted.

Using the Save As option in the File menu, navigate to the directory of your choice and
give the file a name. If no file extension is specified, Wireshark will append a file
extension based on the Save as type option selected; the default is the .pcapng format.
However, you can save the file in several other popular vendor-specific formats if you
intend to share the capture file with someone who is using a different protocol analysis
tool.

If multiple files were saved using one of the multiple file and/or ring buffer capture
options, navigate to the File | File Set | List Files to select and open one of the files.

Isolating conversations of interest

After you have completed a packet capture and saved a bulk capture file, you’ll be with an
almost overwhelming number of packets of various types and addresses in the Packet List
pane. It’s now time to par this down to just the packets that pertain to the analysis task at
hand.

The idea is to progressively eliminate unrelated packets; analyze the pertinent
conversations looking for anomalies; and again progressively filter, measure, and analyze
packet flow and application behavior until you have discovered and can document the root
cause of the issue.

There are two basic ways to isolate and inspect packets and conversations of interest, and
you’ll likely use both of the following methods in most of your analysis activities:

e Conversations: This window creates a list of conversation pairs by MAC or IP
address and/or TCP/UDP ports that can be sorted. It displays filters that will isolate
and display only the selected conversation packets can be quickly applied from this
window.

¢ Display Filters: These filters are based on MAC or IP addresses and/or protocol-
specific fields that limit the packets displayed in the Packet List pane.

We’ll discuss each of these methods in the following sections.

Using the Conversations window

The basics of using the Conversations window were covered during the first capture in
Chapter 1, Getting Acquainted with Wireshark. In this section, we’ll cover a few other
handy features of the Conversations window.

The Ethernet tab

The Conversations window exhibits specific behaviors in the Ethernet tab, depending on
the available Name Resolution settings. If Enable for Network Layer in the Name
Resolution menu, which can be found in the View menu, is enabled and Name
Resolution is also enabled in the Conversations window, then the IP address that is
associated with a given device’s MAC address is displayed as an IP address instead of a
MAC address. Toggling the Name Resolution option in this scenario is useful for easily
associating a devices’ IP address with its MAC address.

If the Enable for Network Layer option is not enabled, then the Name Resolution option
in the Conversations window controls whether the MAC addresses are displayed with
manufacturer prefixes or as the basic 6-octet MAC address.

The TCP and UDP tabs

The TCP and UDP tabs of the Conversations window list all of the conversations
between devices based on IP addresses and ports. Considering that network
communications between a pair of devices, each with their associated IP addresses, could
include multiple sequential or simultaneous sessions with differing port numbers, the TCP
and UDP tabs (depending on the protocol in use) make it much easier to inspect the
number and relative size and start/duration of these individual sessions.

As can be done in any of the other tabs in the Conversations window, a display filter can
be quickly prepared or applied using the right-click functionality.

A helpful practice when investigating TCP or UDP sessions is to apply a display filter on
just the IP addresses initially and then enabling the Limit to display filter option at the
bottom of the Conversations window. Upon returning to the TCP or UDP tab, only the
port-level sessions between the filtered host pair are displayed, which makes investigating
these sessions much easier than picking them out from the entire list.

The following screenshot shows the multiple TCP sessions that were involved in loading
the https://www.wireshark.org/ home page after applying a display filter (from the bulk
capture file) and enabling the Limit to display filter option in the Conversations
window. It can be seen that the (top) conversation between port 54581 on the user
workstation and port 80 (HTTP) carried the vast majority of the traffic; the remaining
ports carried much smaller amounts of traffic.

M Conversations: wireshark.org bulk capture.pcapng = |- |@

| Ethernet: 1| Fibre Channel | FDDI | Ptz 1 | 1pv6i | e | ax7 | wcp | rsve | scTe| TCP:8 | Token Ring | upe | use | wian|

TCP Conversations - Filter: ip.addr==162.159.241.165 && ip.addr==192168.1.116

Address A 4 Port A 1 AddressB 4 PortB 4 Packets 4 Bytes ¥ Packets A~B 4 Bytes A—B 4 Packets A—B 4 Bytes A—B 4 RelStart 4 Duration 4 bps A—B ¢
Thinkpad_LAN 54581 wireshark.org http 27 14065 1 2096 16 11 969 16.476263000 08138 20604.0
Thinkpad_LAN 54579 wireshark.org http 8 1640 4 848 4 792 16.256085000 02146 316167
Thinkpad_LAN 54578 wireshark.org http 6 354 4 228 2 126 16.255857000 13.5229 1318
Thinkpad_LAN 54582 wireshark.org http 6 354 4 228 2 126 16.476518000 13,6023 1340
Thinkpad_LAN 54583 wireshark.org http 6 354 4 228 2 126 16.476749000 13,6022 1341
Thinkpad_LAN 34584 wireshark.org http 6 354 4 228 2 126 16.476567000 13.6007 1341
Thinkpad_LAN 54585 wireshark.org http 6 354 4 228 2 126 16.477185000 13.6005 1341
Thinkpad_LAN 54586 wireshark.org http 6 354 4 228 2 126 16.477473000 13,6013 1341

[¥] Name resolution V] Limit to display filter

Help | | Copy Follow Stream | | Graph A—B | | Graph B—A | | Close

https://www.wireshark.org/

The WLAN tab

Since the Conversations window tabs are ordered alphabetically, the WLAN tab comes at
the end. This tab displays the wireless station MAC addresses, as well as the Bytes,
Packets, and other columns offered in the other tabs.

Wireshark display filters

Wireshark provides a very wide range of protocol-specific display filters that can be
extremely useful for analysis activities by allowing you to focus on specific packets, based
on criteria that you define. You can filter on just the traffic that you want to see or filter
undesired traffic out of view. Display filters are one of the most helpful features of
Wireshark, so they warrant becoming very familiar with.

Display filters can be created in several ways:

By applying display filters from the Display Filter window

By typing in the display filter syntax (using autocomplete)

By applying display filters from the Conversations (or Endpoints) window
By applying saved display filters from Filter Expression Buttons

Using the Expressions button for assistance creating filters

Using right-click menus on specific packet fields

Note

Remember that display filters use a proprietary Wireshark filter format, which is
protocol-dependent and significantly different from capture filter syntax.

The Display Filter window

You can open the Display Filter window by selecting Display Filters from the Analyze
menu, by clicking on the Edit/apply display filter icon on the icon bar, or by just clicking
the Filters button next to the display filter textbox on the display filter bar.

The Display Filter window looks and functions in a similar fashion to the capture filters
window, as shown in the following screenshot. You can create a new custom display filter
to be added to this window by entering a filter name and the appropriate syntax and
clicking on New or clicking an existing filter. Click on New and modify/rename as per
your requirements.

M Wireshark: Display Filter - Profile: Default = ===
Edit Display Filter
IP only i

IP address 192.168.0.1
Mew | IP address isn't 192.168.0.1, don't use != for this!
IPX only
TCP only
UDP only
Mon-DMS
TCP or UDP port is 80 (HTTP)
Mo ARP and no DMS
Mon-HTTP and nen-5MTP to/from 192.168.0.1 E

e

Properties
Filter name; HTTP

Filter string: | http
| Help

]
=

l [Apply | | Cancel ‘

Display filters listed in this window were saved in a dfilters file in the Wireshark
installation directory for the default profile and in the appropriate Personal configuration
directory when custom profiles are in use.

When you apply a display filter, the Status Bar at the bottom of the Wireshark user
interface screen reflects the total number of packets and the packets displayed, as
illustrated in the following screenshot:

Packets: 423 . Displayed: 71 (16.8%) - Load time: 0:00.030

The display filter syntax

The default selection of capture filters from the Display Filter window shown previously
provides examples of basic capture filter syntax. Additional examples of display filter
syntax are outlined in the following table:

Description Syntax Examples

arp, bootp, dns, dhcp6, eth, snmp, smb,
smb2, icmp, rtp, ip, ipv6, udp, tcp, http, [JSame as syntax examples
and sip

Basic protocols

Display filter comparison
operators

ip.addr == 192.168.1.115 and !

I, not, and, &&, or, | |, XOR, and A (ip.addr == 192.168.1.125)

Protocol-specific extensions protocol-specific tcp.analysis, udp.port, and

|eq, ==, ne, !5, gt, >, 1t, <, ge, >=, le, <=,
| udp.srcport

Classless InterDomain Routing ip.addr == 192.168.1.0/24 that

|ip.addr, tcp.port, tcp.dstport,

(CIDR) notation on IPv4 A.B.C.D/CIDR notation matches any IP address in the
addresses 192.168.1.0 subnet
Note

Using the != operator on expressions such as eth.addr, ip.addr, tcp.port, and udp.port
and alike may not work as expected as there are usually two addresses and ports in a
packet, and the ! operator will not match both instances.

Use !(ip.addr == x.x.x.x) or a similar syntax for these types of filters.

More information and examples of display filters can be found on the Wireshark wiki at
http://wiki.wireshark.org/DisplayFilters and protocol-specific display filter syntax is
included in the reference information found at
http://wiki.wireshark.org/ProtocolReference.

http://wiki.wireshark.org/DisplayFilters
http://wiki.wireshark.org/ProtocolReference

Typing in a display filter

You can type a display filter syntax directly into the Filter textbox in the display filter bar,
and then click on Apply to apply the filter or Clear to clear a filter and start over.

A helpful feature of typing the display filter syntax into the textbox is the autocomplete
function. Upon typing a protocol and then a period (.), the textbox will display a list of
available protocol-related extensions that can be selected and then the appropriate
comparison operator and value added before clicking on Apply.

The textbox also has a color-coded background indicating the display filter syntax status.
If the syntax is incorrect or incomplete, the background is red and a correct filter results in
a green background. A yellow background is a warning that the entered syntax may not
work as expected.

Display filters from a Conversations or Endpoints
window

Creating a display filter to be applied from a Conversations window has already been
covered. The same functionality is available from an Endpoints window, which can be
opened by selecting Endpoint List from the Statistics menu and one of the listed
protocols.

Filter Expression Buttons

Filter Expression Buttons are buttons you can create that are based on display filters; these
can be used to quickly apply previously-saved display filters to your capture data to
identify network and application problems.

For example, to create a Filter Expression Button option that displays just TCP SYN,
SYN/ACK, FIN, or RST packets to analyze the TCP session setup parameters, network
round-trip delay times, and session terminations:

1. Type the following display filter string into the Filter textbox on the Display Filter
Bar:

(tcp.flags&02 && tcp.seq==0) || (tcp.flags&l2 && tcp.seq==0) ||
(tcp.flags.ack && tcp.seq==1 && !'tcp.nxtseq > 0 && !tcp.ack >1) ||
tcp.flags.fin == 1 || tcp.flags.reset ==1

2. Clicking on Apply will apply this filter to a capture that you have loaded so that you
can confirm that it is working properly.

3. Then, click on Save and give the button a name, such as TCP Handshake (as
illustrated in the following screenshot). Then, click on OK:

M Wireshark: Save Filter = |[-= @

Save Filter as...

(tep flags802 8B tep.seq==| | TCP Handshake

|T|p ok || Concel |

The filter expression buttons you create will appear on the right-hand side of the initial
controls in the display filter bar, as illustrated in the following screenshot:

Filter: icpanxtseq > 0 & ltepaack =1) || tepflagsfin ==1 || tcp flags.reset ==1 Expression... Clear Appl Save Good Capture ARP Pkts ~ DMS5Pkts DNS Errors
P q P p-flag p.iiag P! PRy

The filter expression button definitions are stored in the preferences file for the profile you
are using. You can edit the button display order, edit the name or filter syntax, or delete the
buttons in Wireshark’s Preferences window.

Using the Expressions window button

To the right-hand side of the textbox on the display filter toolbar is the Expression button.
Clicking on this button opens a Filter Expression window that allows you to select a
protocol and the extension to that protocol, one of the appropriate relation (comparison)
operators, and assign a comparison value. Click on OK to populate the display filter
textbox with the resultant display filter syntax and then click on Apply to apply the filter.

Right-click menus on specific packet fields

If you right-click on a specific field in the Packet List or Packet Details panes, you can
select the Apply as Filter or Prepare a Filter option and the required submenu option to
create display filter syntax, as illustrated in the following screenshot. This is a very quick
way of creating display filter syntax:

Apply as Filter » Selected

Prepare a Filter r Mot Selected
Conversation Filter L4 ... and Selected
Colorize Conversation L4 .. Or Selected
SCTP L4 ... and not Selected
Follow TCP Stream ... or not Selected

If you are selecting a field and using the right-click functionality to create display filter
syntax, it is usually better to use the Prepare a Filter option, which will allow you to edit
the syntax before clicking on Apply to apply the filter.

Note

Clicking on a protocol field in the Packet Details pane results in that field and the display
filter syntax that reflects that field to be displayed in the bottom-left Status bar field. This
is very helpful for starting a display filter string that will use a particular field.

Following TCP/UDP/SSL streams

Selecting a packet in a conversation, right-clicking, and selecting a Follow TCP Stream,
Follow UDP Stream, or Follow SSL Stream option (as appropriate) from the menu
provides a display window that contains a textual depiction of the payload data from all of
the packets in a conversation. This is an excellent way to inspect the contents of a stream
without having to select and inspect multiple packets. Viewing the exchanges between the
client and server can be very helpful for troubleshooting purposes.

When a Follow Stream option is selected for a given packet, a display filter is
automatically created and applied to support creation of this window. The following
screenshot illustrates a Follow TCP Stream window. Also, note the display filter syntax
(tcp.stream eq 15) that was created and applied when this stream was selected:

! Follow TCP Stream (tcp.stream eq 15) = @

Strearmn Content

GET / HTTP/1.1

Host: www.wireshark.org

Connection: keep-aliwve

Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,image/webp,*/*;q0=0.8
User-agent: Mozillass.0 (Windows NT 6.1; WOwe4) Applewebkit/537.36 (KHTML, T1ike Gecko)
Chrome/35,0.1916.153 Safari/s37.36

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-uUs,en;q=0.8

m

Cookie: _ cfduid=ddo03zo4a3if4e4c45T81c3d0d1563565514010566950586;
__ Utma=87653150.1222912745.14010566581.1404072442.1404077419.15; __ utmb=87653150.5.10.1404077419;
__utmc=87653150; _ utmz=37653150.1403815183.9.6.utmcsr=google|utmccrn=_{organic) |utmcmd=organic|

utmctr=_notx20provided)

HTTP/1.1 200 OK

Server: cloudflare-nginx

pace: sun, 29 Jun 2014 22:16:11 GMT
Content-Type: text/html

Transfter-Encoding: chunked

Connection: keep-alive

X-Frame-options: SAMEORIGIN

X-Mod-Pagespeed: 1.7.30.5-3847

vary: Accept-Encoding

x¥-5logan: Be good. You never know who's running wireshark nearby.
Cache-control: max-age=0, no-cache, no-store
CF-RAY: 14257cb0odsfbodif-ATL
Content-Encoding: gzip

zaf
.......... ST Bl WiEn. A h. . %0 4B B R [SRRl S | SR et
R R Y B el By JEEE SRR 3 S (O T R
e T R e S Z=KWO1 ¥l 3 fH [T
2Y..DeMrb..V...L.6.U5....Q...gM. "
b e e X CEMEE M LA o R e e TR . o | -3 epey [Wi et G o R et = e e
o R e MES4K...5....&...XAZ PEoik U.Bm. #. ../
i] Rt o "MI.oaT YL IR A i | i s B S R S 6.0 fz
ZRAS [PR iE E i.F.M.. 7.g.H...=.0 AL O o
e =R T i e B el i A W
Entire conversation (12566 bytes) |E|
| End || saeas || pint |O asco) EBCDIC) Hex Dump) C Arrays @ Raw

Help | Filter Out This Stream | | P]

Marking and ignoring packets

You can toggle Mark/Unmark Packet or Ignore/Unignore Packet from the Wireshark
Edit menu, or by right-clicking on a packet in the Packet List pane and selecting Mark
Packet (toggle) or Ignore Packet (toggle).

The menu displayed by right-clicking on a packet in the Packet List pane is shown in the
following screenshot:

Mark Packet (toggle)
Ignore Packet (toggle)
X Set Time Reference (toggle)
(© Time Shift...

¥l Packet Comment...

Wireshark allows you to mark one or more packets in the Packet List pane to make it
easier to find those packets later by giving the packet entry a black background with white
font. This marking can be toggled on and off on a per-packet basis. Marking a packet has
no other effect on the display or packet context.

You can also ignore one or more packets. However, when you invoke the ignore function
on a packet that packet entry disappears from the Packet List, Packet Details, and Packet
Bytes panes and it effectively ceases (temporarily) to be part of the capture file. Note that
ignoring packets can result in Wireshark reporting re-transmissions or other error
conditions caused by the missing packet.

The ignored packets aren’t actually deleted from the capture file as you can use the
Reload option in the View menu or click the Reload icon on the icon bar to recover the
ignored packets.

Saving the filtered traffic

During or after completing an analysis, you will want to save a set of filtered packets into
a new capture file. Saving a filtered subset of the bulk capture data and opening the new,
smaller file in Wireshark is helpful to reduce the distracting background noise packets
displayed when clearing display filters, working with Conversations windows, and so on
during your analysis. Finally, upon completing your analysis, you will want a filtered
capture file that represents the analysis evidence and conclusion and can be quickly loaded
for review at a later time.

Use the Export Specified Packets option in the File menu to save a new capture file
consisting of just your filtered packets. Navigate to the desired directory; enter a filename
(Wireshark will provide the appropriate filename extension); make the appropriate
selections to save all the Displayed packets, Marked packets, and/or to Remove Ignored
packets; and then click on Save. Remember to save the complete capture using the Save
As option in the File menu as well, because you may need this file again.

The following screenshot illustrates a typical Export Specified Packets window and its
selections:

M Wireshark: Export Specified Packets @
Savein: Wireshark Trace Files ~ @2 PO
Z Mame . Date modified Type Size
ke Mo iterns match your search,

Recent Places

Desktop

=Tl
Libraries

A

-

ThinkPadW500

7Y
File name: wireshark_website pcapng - . Save |

Metwork

Save as type: Wireghar/... - pcapng (" pcapng;” pcapng.gz;” ntar;” ntar.gz) v| l Cancel]
= —

Help |

Packet Range ["] Compress with gzip

i Captured | @ Displayed
@) All packets 2 71
Selected pachet 1

Marked packets

First to last marced

Range: 0

Remove lgnored packets

Summary

The important points covered in this chapter included picking an optimal capture point,
selecting between TAPs and mirrored/SPAN ports, Wireshark’s capture filters and options,
verifying a good capture, using Wireshark’s Conversation windows and display filters to
isolate packets of interest, creating Filter Expression Buttons, marking and ignoring
packets, and saving the filtered traffic for later or more detailed analysis.

In the next chapter, we’ll cover the rest of Wireshark’s basic packet analysis features.

Chapter 4. Configuring Wireshark

Wireshark offers a number of features that can be configured to enhance the accuracy and
ease of performing packet analysis activities such as troubleshooting a functional or
performance problem. Selecting the best format to measure the elapsed time between
packets is an important factor. There are a number of protocol-specific options that affect
how Wireshark displays time-related information that are useful as well. Coloring rules,
preferences settings, and profiles let you customize Wireshark for your particular style of
analysis, as well as the different environments that you might work in.

In this chapter, we will cover the following topics:

Working with packet timestamps
Colorization and coloring rules
Wireshark preferences
Wireshark profiles

These topics will wrap up our introduction to the most essential and useful features and
options of Wireshark.

Working with packet timestamps

Understanding how Wireshark handles time and using the right incarnation of packet
timestamp displays is crucial to properly analyze packet flows and identify time-related
anomalies.

How Wireshark saves timestamps

When packets are captured, Wireshark gives each packet a timestamp derived from the
system clock of the machine from where the capture takes place. This timestamp is
converted to Universal Coordinated Time (UTC) based on an offset calculated from the
time zone setting and any Daylight Savings Time (DST) rules that apply for the capture
machine, and then converted again to an epoch number (the UTC-based number of
seconds since January 1, 1970). This is the time value that gets saved in the capture file for
each packet. When Wireshark reads the capture file, it turns the epoch number back to the
familiar date and time display, adjusted for the time zone and DST offsets for your
machine.

This means that if a packet capture is conducted on a machine in Los Angeles, which has
an offset from UTC of -8 hours, and you look at the same capture file on a machine in
Berlin, which is UTC +1 hour (an overall difference of 9 hours, plus any DST
differences), a packet that was captured at 10 a.m. local time in Los Angeles will display a
timestamp of 7 p.m. in Berlin.

Examples of the timestamp displays in different time zones are shown in the following
table:

Los Angeles||London||Berlin||Bangalore
Capture file time (UTC) ||10:00 ||10:00 ||10:00 ||10:00 |
Local offset to UTC ||-8 ||() +1 +5:30 |
Displayed time (local time)[|02:00 ||10:0() 11:00 ||17:30 |

If you’re going to look at a packet capture someone has sent you and the absolute time
when an event occurred is important to the analysis, you’ll need to know or ask what time
zone the capture was taken in, determine the offset between your time zone and the
capture location time zone, and mentally make the time difference adjustment for the
timestamps that Wireshark will display. Otherwise, this difference won’t matter as you’re
usually more interested in the elapsed time or the time between specific events in the
capture.

Wireshark time display options

There are a wide variety of packet time displays available for use in Wireshark. By
default, Wireshark provides a Time column in the Packet List pane configured to display
Seconds Since Beginning of Capture with microsecond resolution (123.123456) for each
packet.

However, the way in which time is displayed in this column can be changed by selecting
the desired format from the Time Display Format option in the View menu, which is
illustrated in the following screenshot:

Date and Time of Day: 1970-01-01 01:02:03.123456 Ctri+Alt+1
Time of Day: 01:02:03.123456 Ctrl+Alt+2
Seconds Since Epoch (1970-01-01): 1234567890.123456 Ctrl+Alt+3
* Seconds Since Beginning of Capture: 123123456 Ctrl+Alt+4
Seconds Since Previous Captured Packet 1123456 Ctrl+Alt+5
Seconds Since Previous Displayed Packet: 1123456 Ctrl+Alt+6
UTC Date and Time of Day: 1970-01-01 01:02:03.123456 Ctrl+Alt+7
UTC Time of Day: 01:02:03.123456 Ctrl+Alt+7

Automatic (File Format Precision)
Seconds: 0
Deciseconds: 0.1
Centiseconds: 012
Milliseconds: 0123

* Microseconds: 0123456
Manoseconds: 0.123456789

Display Seconds with hours and minutes

If the Seconds Since Beginning of Capture option is in use, the first packet in a capture
displays a time value of 0.000000; all other packets are timed in reference to this first
packet such that the elapsed time from the beginning of the capture is displayed.

The time display menu options provide examples of their formats and are fairly self-
explanatory, except perhaps Seconds Since Previous Captured Packet and Seconds
Since Previous Displayed Packet. The Seconds Since Previous Captured Packet option
provides the elapsed time between each captured packet, while the Seconds Since
Previous Displayed Packet option displays the elapsed time from the previous packet that
is visible when a display filter is applied.

The way the Displayed Packet option works is illustrated in the following screenshot.
You can see how the Captured Packet timestamps continue to increment, while the
Displayed Packet timestamps show the time since the last displayed packet.

Captured Packet Displayed Packet
0.000000 0.000000
0.001000 0.001000
0.003000 0.002000
0.007000 0.004000

The time display precision options in the Time Display Format menu are also shown
with examples of the display format and are self-explanatory, except for the Automatic
(File Format Precision) setting, which requires a description.

Wireshark relies on the NIC driver and the capture devices’ system clock for packet
timestamps. The accuracy of these timestamps in terms of the precision and number of
subsecond digits (milliseconds, microseconds, and nanoseconds) will vary, but usually a
millisecond resolution is available. This precision value is saved in the capture file. The
Automatic (File Format Precision) setting tells Wireshark to display timestamps using
this precision value.

The ability to use the Nanoseconds precision setting depends on having an NIC driver
that supports this level of precision. If you select this option and the capture file doesn’t
contain the higher resolution, the last three digits of each timestamp will be all zeroes.

Adding a time column

It is often helpful to have two (or more) time columns in the Packet List pane to provide a
variety of time display types without having to change the format of a single time column
back and forth. You can add a new time column using one of two methods.

The following is the first method, the preferences settings method:

1. Go to Preferences from the Edit menu, or click on the Preferences icon to open the

Preferences window.

Select Columns.

Click on Add to add a new entry at the bottom of the list.

Click on the Title area of the new entry and give the column a name.

Ensure that the new entry is highlighted, and select the desired time display format

from the drop-down Field type box.

6. Click and drag the new entry up the list to select its relative position in the Packet
List pane.

7. Finally, click on OK.

SARE I

The selectable options in the Field type box for time display columns include the
following:

e Absolute date, as YYYY-MM-DD, and time: This is the actual capture date and
time based on the time zone of the capture device.

e Absolute date, as YYYY/DOY, and time: This is another format to display the date
and time based on the time zone of the capture device.

¢ Relative time: This is the time from the first packet in a capture file. This is similar
to the Seconds Since Beginning of Capture option.

¢ Relative time (conversation): This is the time from the first packet in the trace file
for a conversation (this doesn’t work).

¢ Delta time: This is the elapsed time from the previous packet to the current packet.

¢ Delta time (conversation): This is the time from the previous packet to the current
packet in a conversation (this doesn’t work).

¢ Delta time displayed: This is the time from the end of one packet to the end of the
next displayed packet only.

e Custom: The Relative time (conversation) and Delta time (conversation) options,
which are also listed in the preferences settings, no longer work in the version of
Wireshark currently available (v1.12) as of this writing. You can accomplish the
previously offered functionality with these options by using the Custom option with
display filter-style Field types instead. Select the Custom Field type and enter either
tcp.time_relative or tcp.time_delta in the Field name field, leaving the Field
occurrence field with the default entry of 0.

An example of creating a functional Delta time (conv) time column using the Custom
option and the tcp.time_delta display filter is shown in the following screenshot:

M Wireshark: Preferences - Profile: Classic

[E=N NCR *x=

= User Interface
Layout
Columns
Font and Colors
Capture
Filter Expressions
MName Resclution
Printing
[# Protocols

[# Statistics

Help

Displayed Title

|
|

|

EEEEEEEELE

Add

Bemove| | Field name:

No.

Time (format as specified)

[The first list entry will be displayed as the leftmost column - Drag and drop entries to change column order]

Field type
MNumber

Time (format as specified)

Delta time {conv) Custom (tcp.time_delta)

frametime_delta Custom (frame.time_delta)
Absolute date, as YYYY-MM-DD, and time Absolute date, as YYYY-MM-DD, and time

Stream index

Source
Destination
Protocol
Length
Info

Properties
Field type:

Custom (tcp.stream)
Source address
Destination address
Protocol

Packet length (bytes)

Information

Custom |Z|

tep.time_delta

Field occurrence:

| {

Apply

| (senes

For the tcp.time_relative and tcp.time_delta fields to work properly, you must also

enable Calculate conversation timestamps in the preferences settings using the

following steps:

1. In the Preferences window, select TCP from the Protocols menu.
2. Enable the Calculate conversation timestamps option.
3. Finally, click on OK.

An example of enabling Calculate conversation timestamps is depicted in the following

screenshot:

M Wireshark: Preferences - Profile: Classic = | -2 |@

SRVLOC = }
sscop Show TCP summary in protocol trees [V
55H Validate the TCP checksum if possible: [
S Allow subdissector to reassemble TCP streams: [V]
STANAG 5086 DTS
STANAG 5066 SIS Analyze TCP sequence numbers: V]
StarTeam Relative sequence numbers: [¥]
STP
SUA Scaling factor to use when not available from capture: | Mot known |Z|
SYNCHROPHASOR Track number of bytes in flightt [V
e Calculate conversation timestamps: | [V]
TACACS+
TALI Try heuristic sub-dissectors first: ||
TCAP Ignore TCP Timestamps in summary: [
FEP
TCPENCAP Do not call subdissectors for error packets:
TDMoE TCP Experimental Options with a Magic Number: [¥]
TDS
Teredo
tetra
TEIP
TIME
TIPC
THS
Token-Ring
TPKT
TPNCP s

| Help 0K ‘ | Apply | | LCancel

The following steps show you the second method, the right-click method of adding a
column:

1.
2.

o

Select an appropriate packet in the Packet List pane.

In the Packet Details pane, expand the Frame header, or if applicable, expand the
Transmission Control Protocol header.

Locate the desired time value field in the Frame or TCP sections (these are
surrounded by brackets). If you are selecting a time value in the TCP section, you
will need to expand the [Timestamps] section to see the values.

Right-click on the desired time field and select Apply as Column from the menu.
The new column will appear beside the Info column in the Packet List pane. Click
and drag the new column to the desired location.

You can right-click on the new column header, select Edit Column Details, and give
the column a shorter name if desired.

As previously discussed in the preferences settings method, you must enable Calculate
conversation timestamps in the TCP protocol option of the preferences settings to view
and use the time values in the TCP section.

Conversation versus displayed packet time options

The difference between time displays for a conversation versus a displayed packet time
option is perhaps subtle but important.

As illustrated previously, if you are using one of the displayed packet time options, the

time value shown for a given packet will be the elapsed time since the previous packet
was displayed in the Packet List pane. This time value option has no useful value until
you apply a display filter, after which you can easily see the elapsed time between each
packet being displayed with no other mental math or adjustments necessary. This is very
useful if you’re sequentially filtering, clearing, and viewing more than one conversation
using, for example, a tcp.stream==xx display filter setting.

If you are not using a display filter, however, there may be packets from multiple
conversations displayed in the Packet List pane. If you are using one of the conversations
time displays, the time value shown for a given packet will be the elapsed time since the
previous packet for that conversation, regardless of other packets that may be interspersed
and visible between the packet you’re looking at and the previous packet in that
conversation. This allows a quick perusal of conversation packet times without having to
apply a display filter.

Choosing the best Wireshark time display option

With so many time display options available, it may be difficult to know when and where
to use a given option. Choosing the optimal time display in a Wireshark time column
depends greatly upon the objectives of the analysis:

¢ If you need to know the specific date and time of day when an event occurred in a
capture, as might be the case if you’re trying to find and correlate packets with user-
reported events or log entries, you should use one of the Absolute time formats.

e If you're looking for an event that occurred some known period of time after a
capture started, use one of the Relative time formats.

¢ On the other hand, if you just need to measure the time between certain packets, such
as when measuring the time between a request and a response, one of the Delta time
formats will be the most helpful.

Using the Time Reference option

Another useful Wireshark feature is the Time Reference menu option, which can be used
to measure time from one packet to another in the midst of a capture file. You can click on
a specific packet and toggle this option on and off for that packet using either the
Set/Unset Time Reference option from the Edit menu, or by right-clicking and selecting
the Set Time Reference (toggle) option from the pop-up menu. The packet will be
marked with a *REF* designator in the first time column, and any relative timestamps
following the Time Reference packet will be displayed relative to that packet.

The Time Reference setting is temporary; it isn’t saved to a capture file and will
disappear if you reload the file.

Colorization and coloring rules

Colorization of packets displayed in the Packet List pane can be an effective tool to
identify and highlight packets of interest, especially the packets that contain or indicate
some kind of error condition.

Wireshark has predefined coloring rules that are enabled by default and which can result
in a kaleidoscope of colored packets in the Packet List pane. You can enable or disable
the coloring rules by selecting Colorize Packet List from the View menu or by clicking
on the Colorize Packet List icon in the icon bar if this becomes overwhelming.

You can also view, enable/disable, add, delete, reorder, and edit the coloring rules by
selecting Coloring Rules from the View menu or by clicking on the Edit Coloring Rules
icon in the icon bar. There is a Clear button that removes all the changes you may have
made to the rules and restores them to default settings if needed.

A Coloring Rules window is depicted in the following screenshot:

4 Wireshark: Coloring Rules - Profile: Classic |- @
Edit Filter Order
List is processed in order until match is found

New | ;
——— 1| |[Name String

Edit e T Up

Enable

Disable T ExT P —

icmptypeeq 3 || icmptypeeqd || icmptypeeq 5 || icmp.type eq 1l || Move
Delete ARP arp selected filter
= up or down

ICMP icmp || icmpvl

tcp.flags.reset eql
sctp.chunk_type eq ABORT

(lip.

Down

Help | QK J | Apply | | Lancel

Coloring rules employ display filter formats with specific values to identify packets that
should be colored. The rules are compared to packets starting with the top rule and
working down through the list. Only the first rule that matches a packet’s condition is
applied, so the ordering of the rules dictates which rule gets applied if more than one rule
matches a packet. If you create or modify a rule, you have to check the ordering to make
sure you get the desired behavior.

Clicking on a rule and then clicking on Edit allows you to modify the foreground and
background colors for that rule, as well as change the filter string if desired.

You can also export/import coloring rules if you want to share them with others. Coloring
rules are stored in a file called colorfilters in one of your personal configuration
directories depending on the profile in use.

Packet colorization

You can also temporarily color a series of packets in a conversation by selecting one of the
conversation packets, selecting Colorize Conversation from the View menu, and
selecting a color from the adjoining menu, or by right-clicking on a packet, selecting
Colorize Conversation from the menu, selecting one of the protocol-specific options, and
then selecting the desired color. This colorization will disappear when the capture file is
reloaded, or you can select Reset Coloring 1-10 from the View menu.

Wireshark preferences

In the Adding a time column section, we opened the Preferences window using
Preferences in the Edit menu or by clicking on the Preferences icon in the icon bar to
configure the time display column options. There are quite a number of Preferences
options that you should be aware of and may want to adjust to customize your Wireshark
environment:

Layout: This is used to select the ordering of the Packet List, Packet Details, and
Packet Bytes panes.

Columns: This is used to add, remove, and move columns in the Packet List pane.
Capture: This is used to set the default capture options.

Filter Expressions: This is used to add, remove, or move the Filter Expression
buttons.

Name Resolution: This is used to set the MAC, transport, and network (IP)
resolution options.

Protocols: There are options that can be set for all of the protocols that Wireshark
supports; some of the most important and useful of these options include:

e}

HTTP: This is used to add any additional TCP ports that should be recognized
as HTTP traffic in your environment.

IEEE 802.11: This is used to add/edit the Wireless Decryption keys if needed
to decode an encrypted wireless session.

IPv4: You may want to disable Validate IPv4 checksum if possible to avoid
inadvertent error messages caused by an NIC option called checksum
offloading, wherein checksums are checked after the packet is sent to Wireshark.
RTP: Enable Allow subdissector to reassemble RTP streams to support
decoding audio from VoIP captures.

SMB: Enable Reassemble SMB Transaction payload to support exporting file
objects from an SMB stream in a packet capture.

SSL: Wireshark can decrypt the SSL/TLS traffic if you have the private key file.
To add a key to Wireshark, go to the Preferences window and click on the RSA
keys list Edit button. Then, in the SSL Decrypt window, click on New and
complete the SSL Decrypt: New fields (IP address of the SSL server; Port,
which is usually 443 for HTTP; Protocol, such as HTTP; and Key File, which
is used to select the path to an RSA private key (if the key file is a PKCS#12
keystore (usually has a .pfx or .p12 extension), the Password field must be
completed)), and finally, click on OK to close each subsequent window.

TCP: This provides you with multiple options, as follows:

= Validate TCP checksum if possible: Disable this to avoid inadvertent
error messages caused by checksum offloading.

= Allow subdissector to reassemble TCP streams: Enable this to support
exporting file objects from a TCP stream.

= Relative sequence numbers: Enable this to make it easier to read and

track TCP sequence numbers in a capture file.

» Track number of bytes in flight: This is a value calculated and displayed
in the TCP protocol header in the Packet Details pane, which is useful for
performance analysis.

= Calculate conversation timestamps: This is the setting discussed earlier
that is needed to support the tcp.time_relative and tcp.time_delta time
displays.

There are numerous other preferences settings that may be pertinent to your personal
preference or analysis environment; you will have to investigate most or all of these
options. If you are unsure of a particular setting, you can get more information by clicking
on the Help button at the bottom of the Preferences window.

The preferences settings are stored in a file called preferences in one of your Personal
configuration directories, depending on the profile in use.

Wireshark profiles

As we have covered the numerous Wireshark configuration options that are saved in
specific files, such as cfilters for Capture Filters, dfilters for Display Filters,
colorfilters for Coloring Rules, and preferences for preferences settings, it was
mentioned that these files were saved in one of your Personal configuration directories,
but I have left a full explanation of profiles and these configuration directories until now
so that you would better understand what makes up a profile and why they are useful.

A profile is a collection of Wireshark configuration files customized for your specific
needs and tastes in capture and display filters, coloring rules, columns and layouts, and so
on for the particular environment you are working in. You can create one or more profiles
and quickly reconfigure Wireshark to work best in differing environments by selecting the
appropriate profile.

When you first install Wireshark, it operates with a default set of configuration files that
are located in the Global configuration directory, which is usually the same as the
System directory where the Wireshark program files reside. When you change any of the
default settings, the changes are saved in new configuration files that are stored in a
Personal configuration directory, the location of which varies depending upon your
installation. You can determine and quickly open the Personal configuration directory for
your installation from Wireshark by clicking on the About Wireshark option in the Help
menu and clicking on the Folders tab. Within this tab is a list of all the directories that
Wireshark uses, as shown in the following screenshot:

M About Wireshark = | 2 |3

| Wiresharkl Authors| Folders

Plugins License|

Mame 1 Folder
"File" dialogs

Temp Chlsers'James\AppDatatLocal\ Temp

Personal configuration Ci\Users\Jam ta\Roarning\Wire

Global configuration Ch\Program Files'\Wireshark

System ChProgram Files'\Wireshark

Program ChProgram Files\Wireshark

Personal Plugins ChUsersiJames\AppDatat Roaming\Wiresharkplugins
Global Plugins ChProgram Files\Wiresharkpluginsl.12.0

GeolP path

You can double-click on a Wireshark directory link to open a window to that directory.

Double-clicking on the Personal configuration link in the Folders tab opens the
directory where (under a profiles subdirectory) your custom profile files are stored. Each
profile is stored in a separate subdirectory that reflects the name you give a profile, as
shown in the following screenshot:

Roaming » Wireshark » profiles »

Share with = Burn Mew folder

Mame

Classic
, Pt APA
PitlQ HTTP
Pl Performance
Pitl(} SMB2
PitIQ WLAMN

Each custom profile directory contains all the Wireshark configuration files that
determine how that profile controls Wireshark’s features. You can copy and share these
custom profile directories with other Wireshark users; copying the profile directory into
their Personal configuration directory makes that profile available for selection.

Creating a Wireshark profile

To create a new Wireshark profile, follow these steps:

1. Right-click on the Profile section (on the right-hand side pane) of Status Bar at the
bottom of the Wireshark user interface and click on New, or navigate to Edit |
Configuration Profiles | New in the menu bar.

2. In the Create New Profile window that appears, you can give the profile a name.
You can also choose to create the profile starting with the settings from an existing
profile by making a selection from the Create from drop-down list or start from
scratch. The Create New Profile window is shown in the following screenshot:

r! Create Mew Profile = = -'

Create from: |Default |Z|

Profile name: | Troubleshooting|

QK ‘ | Cancel |

3. Clicking on OK will save the new profile in its own directory by the same name in
your Profiles directory in the Personal configuration menu.

Selecting a Wireshark profile

You can select one of your custom profiles by selecting Configuration Profiles from the
Edit menu, clicking on one of the listed profiles, and clicking on OK. A quicker method is
just clicking on the Profile section of Status Bar and selecting a profile from the pop-up
menu, as shown in the following screenshot:

* [efault
Classic
PitIQ APA
PtlQ HTTP
Pl Performance
Pitl() SMB2
PltIQ WLAN

Mew from Global

Profile; Default

Summary

The topics covered in this chapter included working with Wireshark’s time displays,
colorization and coloring rules, selecting the appropriate Wireshark preferences for a
given analysis environment, and saving all of these settings in profiles that can be selected
as required.

In the next chapter, we’ll cover a selection of network layer, transport layer, and

application layer protocols in common use in modern networks, which will help you to
prepare for more advanced packet analysis activities in the later chapters.

Chapter 5. Network Protocols

Effective packet analysis requires familiarity with the primary protocols in use in modern
networks. In this chapter, we will review the most common protocols in their respective

layers:

e Network layer protocols
e Transport layer protocols
e Application layer protocols

We’ll cover the significant purpose and relevant fields to support network connectivity
and/or application functionality in each protocol, as well a sampling of Wireshark capture
and display filters for each protocol.

The OSI and DARPA reference models

We reviewed the purpose of the OSI and DARPA reference models in Chapter 2,

Networking for Packet Analysts. The visual depiction of their layers is repeated in the
following diagram as a reference and summary of some of the primary protocols and
where they fit into their respective layers:

0S| model layers

DARPA layers

TCP/IP Protocol Suite

LAN

Application Layer
Presentation Layer| | Application Layer HTTP SMB2 SMTP DNS RTP SNMP
Session Layer
Transport Layer Transport Layer TCP uDP
IGMP | ICMP ND | MLD
Network Layer Internet Layer ICMPv6
ARP IP (IPv4) IPv6
Data Link Layer
d Network Interface 802.11 :: R i
Layer Ethernet wireless - Frame Relay : ATM
Physical Layer : P 5

Network layer protocols

Network layer protocols, also known as Internet layer protocols in the DARPA reference
model, provide basic network connectivity and internetwork communications services. In
this layer, you will predominantly find the IP protocol being used to get packets
transported across the network, along with ARP, IGMP, and ICMP.

We covered the IP and ARP protocol packet header structures and fields in Chapter 2,
Networking for Packet Analysts, so this information won’t be repeated. However, basic
Wireshark capture and display filters are provided here and also for the remaining
protocols in the following sections:

Wireshark IPv4 filters

Capture filter(s): ip

Display filter(s): ip ip.addr==192.168.1.1 ip.src== ip.dst== ip.id > 2000
Wireshark ARP filters

Capture filter(s): arp

Display filter(s): arp arp.opcode==1 arp.src.hw_mac==00:1c:25:99:db:85

Internet Group Management Protocol

The Internet Group Management Protocol (IGMP) is used by hosts to notify adjacent
routers of established multicast (one-to-any) group memberships. In other words, IGMP
enables a computer that provides content (video feeds), for example, to provide such
content to a distributed group of users using one set of the multicast address ranges (in the
224.0.0.0 to 239.255.255.255 class D multicast range). This multicast capability
depends on routers that are capable and configured to support this service; clients must
join the multicast group. When a host wants to start a multicast, it sends an IGMP
Membership Report message to the 224.0.0.2 (all multicast routers) address that
specifies the multicast IP address for this particular group. Clients who wish to join or
leave this group (so they can receive the multicast content) send an IGMP join or leave
message to the router. The following table shows the various ranges for addresses:

Starting address range||[Ending address range||Description |
224.0.0.0 224.0.0.255 These are reserved for special well-known multicast addresses
224.0.1.0 238.255.255.255 These are globally-scoped (Internet-wide) multicast addresses
239.0.0.0 239.255.255.255 These are locally-scoped and administered multicast addresses

The following screenshot shows the significant fields in the IGMP protocol header:

Source Destination Protocol Length Info

192.168.0.100 224.0.0.22 IGMPV3 54 Membership Report / Join group 224.0.1.60
192.168.0.100 224.0.0.22 IGMPV3 54 Membership Report / Join group 224.0.0.252
192.168.0.100 224.0.0.22 IGMPV3 54 Membership Report / Join group 239.255.255.250

224.0.0.22 Membership Report / Leave group 239.255.255.250

4 | Ll
@ Frame 4: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface 0
= Ethernet IT, Src: 00:18:de:d0:27:d7 (00:18:de:d0:27:d7), Dst: IPvdmcast_16 (01:00:5e:00:00:16)
|= pestination: IPv4mcast_16 (01:00:5e:00:00:16) |
* Source: 00:18:de:d0:27:d7 (00:18:de:dD:27:d7)
Type: IP (0x0800)

= Internet Protocol version 4, src: 192.168.0.100 (192.168.0.100), Dst: 224.0.0.22 (224.0.0.22)
version: 4

IHeader Length: 24 bytes I
F DifTerentiated Services Field: Ox00 (DsCP Ox00: Default; ECN: Ox00: NOT-ECT (Not ECN-Capable Transport))

Total Length: 40
Identification: 0x000f (15)
Flags: 0x00
Fragment offset: 0
Time to live: 1
|protocol: Iawp (2) |
Header checksum: 0x839e [validation disabled]

IDestination: 224.0.0.22 (224.0.0.22).

[Gource GeoIP: Onknowmn]
[Destination GeoIP: Unknown]
E1options: (4 bytes), Router AWertI
El Internet Group Management Protoco
[IGMP version: 3]
Type: Membership Report (0x22)
Header checksum: Oxe correct
Num Group Records: 1
= Group Record : 239.255.255.250 <Change To Include Mode
|Record Type: Change To Include mode (3) |
Aux Data Len: O
Num Src: O
IMu'It'i::ast Address: 239,255.255.250 (239.255.255.250}'

The preceding significant fields in the IGMP protocol header include:

e Type: This is a type of IGMP message. Type 22 is IGMPv3 Membership Report.

e Record Type: There are different types of Group Records. The value of Record
Type 3 is Change To Include Mode, which indicates that content from the source
device is to be forwarded to the in-group hosts by the multicast router.

e Multicast Address: This is the multicast IP address for a specific group.

You should also note the following interesting fields in the previous protocol layers:

e The Ethernet frame destination MAC address is one of a range of multicast MAC
addresses (01:00:5e:00:00:00 - 01:00:5e:7f:ff:ff)

e The Protocol field in the IP header specifies IGMP 2

e The IP layer destination IP Address is 224.0.0.22, which is a reserved IGMPv3
multicast IP address

The IGMP protocol has multiple versions and is rather complex. Refer to the protocol
references provided at the beginning of this chapter for more information.

Wireshark IGMP filters
Capture filter(s): igmp

Display filter(s): igmp igmp.type==0x22 igmp.record_type==4
igmp.maddr==244.0.1.60

Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) is used by network devices such as
routers to send error messages indicating that a requested service is not available, or a host
or network router could not be reached. ICMP is a control protocol. This means that
although it is transported as IP datagrams, it does not carry the application data—instead,
it carries the information about the status of the network itself.

ICMP pings

One of the most well-known uses of ICMP is to ping, wherein a device sends an ICMP
echo request (Type 8, Code 0) packet to a distant host (via that host’s IP address), which
will (if the ICMP service isn’t disabled or blocked by an intermediate firewall) respond
with an ICMP echo reply (Type 0, Code 0) packet. Pings are used to determine whether
the target host is available and can be reached over the network. By measuring the time
that expires between ping requests and replies, we know the round trip time (RTT) delay
time over the network path.

ICMP traceroutes

A variation of ping functionality is used to perform a traceroute (also known as
traceroute), which is a list of the IP addresses of the router interfaces that packets traverse
to get from a sending device to a target host or device. The traceroutes are used to
determine or confirm the network path taken from a sending device to a target host or
device.

A traceroute is accomplished by sending the ICMP echo request packets to a distant host
just as in a normal ping, but with modifications to the Time-to-Live (TTL) field in the IP
header of each packet. The traceroute function takes advantage of the fact that each router
in a network path decrements the TTL value in a packet by 1, so as the packet traverses,
the routers in a path and the TTL value will decrease accordingly along the way. If a router
receives a packet with a TTL value of 1, it will send an ICMP TTL exceeded in transit
(Type 11, Code 0) error message back to the sender (along with a copy of the request
packet it received) and otherwise discard (not forward) the packet.

The traceroute works by sequentially setting the TTL in multiple ICMP request packets to
1, then to 2, then 3, and so on, which results in each router in the network path sending
TTL exceeded error messages back to the sender. Since these returned messages are sent
by the in-path router using the IP address of the interface where the ICMP packet was
received, the traceroute utility can build and display a progressive list of router interface
IP addresses in the path and the RTT delay to each router.

ICMP control message types

A sampling of the most commonly seen types of ICMP control messages, including their
type and code (subtype) numbers, are provided in the following table:

‘|Type| Code

Description |

[=)

This indicates echo reply (ping)

[=)

[uy

This indicates destination network unreachable |
This indicates destination host unreachable |

~

This indicates fragmentation required and do not fragment bit set

[=))

This indicates destination network unknown

[=)

[u—y

This indicates redirect datagram for the host

[=)

This indicates echo request (ping)

—_

I I I

[=)

||This indicates destination host unknown

Fe T o =T a1 =" 1

This indicates redirect datagram for the network |

This indicates TTL expired in transit (seen in traceroutes)

The Wireshark packet details fields for the ICMP packet illustrated in the following
screenshot depict a Time-to-live exceeded message as seen in a typical traceroute capture:

Frame 13: 70 bytes on wire (560 bits), 70 bytes captured (560 bits)
Ethernet II, Src: cB8:d7:19:21:b7:ec (c8:d7:19:21:b7:ec), Dst: 00:1c:25:99:db:85 (00:1c:
Internet Protocol version 4,)src: 10.192.128.1 |(10.192.128.1), Dst: 192.168.1.115 (192.
Internet Control Message Protocol
Type: 11 (Time-to-live exceeded)
Code: 0 (Time to live exceeded in transit) |
Checksum: 0Ox2161 |correct]
= Internet Protocol version 4, src: 192.168.1.115 (192.168.1.115), |Dst: 235.251.242.54'
version: 4
Header Length: 20 bytes
Differentiated Services Field: 0Ox00 (DSCP Ox00: pDefault; ECN: Ox00: NoT-ECT (NoT E(
Total Length: 56
Identification: 0x637d (25469)
Flags: 0x02 (Don't Fragment)

Fragment offset: O
Protocol: ICMP (1)

@ _Header checksum: 0x93fa [validation disabled
|SDUFEE: 152.168.1.115 (192.168.1.115)
Destination: 205.251.242.54 (205.251.242.54)

[source GeoIP: uUnknown]
[Destination GeoIP: Unknown]

F Internet Control Message Protocol
Type: & (Echo (ping) request)
Code: 0O

Checksum: Oxc739

Identifier (BE): 1 (Ox0001)
Identifier (LE): 256 (0x0100)
Sequence number (BE): 1124 (0x0464)
Sequence number (LE): 25604 (0Ox6404)

HEHE

i

The following points are significant to analyze this packet:

e The source IP address seen in the IPv4 header summary is 10.192.128.1, which is the

IP address of the router interface sending the ICMP message to the originator,
192.168.1.115
The ICMP packet is Type 11, Code 0 (TTL exceeded in transit)

The second set of IPv4 and ICMP headers that follow the first IPv4 and ICMP headers are
copies of the original packet transmitted by the sender. This copy is returned to allow
determination of the packet that caused the ICMP message. The significant points in the
packet details of this ICMP message copy include:

The target destination IP address, where the echo request packet was intended to be
sent (and would have been if the TTL value hadn’t been altered) is 205.251.242.51.
The TTL value was 1 when this packet reached the 16.192.128.1 router interface.
This packet cannot be forwarded, resulting in the TTL exceeded message being sent
back to the sender.

The original ICMP packet was a Type 8, Code 0 echo request message.

The Header Data section of the ICMP packet for the echo requests and replies will
include a 16-bit identifier and 16-bit sequence number, which are used to match echo
replies to their requests.

ICMP redirects

Another common use of ICMP is to redirect a client to use a different default gateway
(router) to reach a host or network than the gateway it originally tried to use. In the ICMP
Redirect packet depicted in the following screenshot, a number of packet fields should be
noted:

The source IP address of the ICMP redirect packet is 192.168.1.1, which was the
client’s default gateway; this is the router sending the redirect packet back to the
client

The ICMP Type is 5 (Redirect) and Code is 1 (Redirect for host)

The gateway IP address that the router 192.168.1.1 is telling the client to use to
reach the desired target host is 192.168.1.2

The IP address of the target host was 16.1.1.125

The following screenshot shows the ICMP Redirect packets:

Mo. Time Source Destination Protocol Length Info
4.927128 Ak 192.168.1.115 ICMP 174 Redirect (Redirect for host)
o o) ICMP 154 Redirect (Redirect for host)

[+]

1| mn |

Frame 2529: 174 bytes on wire (1392 bits), 174 bytes captured (1392 bits) on interface 0
Ethernet II, src: c8:d7:19:21:b7:ec (c8:d7:19:21:b7:ec), Dst: 00:1c:25:99:db:85 (00:1c:25:99:db:85)
Internet Protocol version 4, Src: 192.168.1.1 (192.168.1.1), Dst: 192.168.1.115 (192.168.1.115)
version: 4
Header Length: 20 bytes
pifferentiated Serwvices Field: OxcO (DSCP 0x30: Class Selector &; ECN: 0x00: Not-ECT (Not ECN-Capable Transport))
Total Length: 160
Identification: O0x78Fa (30970)
Flags: 0x00
Fragment offset: 0
Time to live: 64
Protocol: ICMP (1)
Header checksum: Ox7cde [validation disabled]
Ssource: 192.168.1.1 (192.168.1.1)
Destination: 192.168.1.115 (192.168.1.115)
[Source GeoIP: Unknown]
[Destination GeoIP: unknown]
= Internet Control Message Protocol
Type: 5 (Redirect)
code: 1 (Redirect for host)
Checksum: Ox0/64 |correct|

|Gateway address: 192.168.1.2 (192.158.1.2)!
Internet Protocol Version 4, 5rc: 5 .1.115 (192.168.1.115),pst: 10.1.1.125 (10.1.1.125)

Transmission Control Protocol, Ssrc Port: 49161 (49161), DSt Port: , 5eq: %
NetBIOS Session Serwvice
SMBE2 (Server Message Block Protocol version 2)

HE

m

o
I

Ack: 361772998

EHEBH

Wireshark ICMP filters
Capture filters(s): icmp

Display filter(s): icmp icmp.type==8 || icmp.type==0 (pings) icmp.type==5

&& icmp.code==1 (host redirects)

Internet Protocol Version 6

The Internet Protocol Version 6 (IPv6) is the latest version of Internet protocol, and
although it is in its earliest stages of adoption, it is intended to eventually replace IPv4—
mostly to alleviate the shortage of IP addresses that can be assigned to network devices.
IPv4, with its 32-bit address space, provides approximately 4.3 billion addresses, nearly
all of which have been assigned to companies and private interests worldwide.

IPv6 utilizes a 128-bit address space, which allows 2128 o approximately 3.4 x 1038
addresses; that number is 340,282,366,920,463,463,374,607,431,768,211,456 unique
addresses.

IPv6 addressing

The 128 bits of an IPv6 address are represented in eight groups of 16 bits each, written as
four hexadecimal digits separated by colons (:). An example of an IPv6 address is
2001:0db8:0000:0000:0000:ff00:0042:8329.

For convenience, an IPv6 address may be abbreviated to shorter notations by application
of the following rules, wherever possible:

¢ One or more leading zeroes from any groups of hexadecimal digits are removed; this
is usually done to either all or none of the leading zeroes. For example, the
hexadecimal group 0042 can be converted to just 42.

e Consecutive sections of zeroes are replaced with a double colon (::). The double
colon may only be used once in an address, as multiple use would render the address
indeterminate. A double colon must not be used to denote a single section of omitted
Zeroes.

An example of applying these rules to IPv6 addresses is as follows:

e Initial address: 2001:0db8:0000:0000:0000: ff00:0042:8329
o After removing all leading zeroes: 2001:db8:0:0:0: ff00:42:8329
o After omitting consecutive sections of zeroes: 2001:db8: : ff00:42:8329

The 128 bits of an IPv6 address are logically divided into a network prefix and a host
identifier. The Class Inter-Domain Routing (CIDR) notation is used to represent IPv6
network prefixes, for example, 2001:DB8:0:CD30: : /64 represents network
2001:DB8:0000:CD30: :.

IPv6 address types
There are three basic types of IPv6 addresses:

e Unicast: These packets from one-to-one device use a single interface address.
Unicast addresses can be of one of the following three types:

o Global Unicast: This is routable to and over the Internet. Global Unicast
addresses generally start with 2xxx (such as 2000: : /3).

o Link-local: This is automatically assigned to an interface and used on the local
network link; this is not routable to the Internet, much like a MAC address.

Link-local Unicast addresses start with FE80 (FE80: : /10). They are
automatically assigned to an interface when it is initialized using an algorithm
that uses a rearranged version of the NIC’s 48-bit MAC address in the IPv6
address and are used to communicate on the local link. These addresses are not
routable. IPv6 uses link-local addresses for neighbor discovery functions.

o Unique local: This is not routable to the Internet, but it is routable within an
enterprise (similar to IPv4 private addresses). Unique local Unicast addresses
start with Fcoee (FCcoeo: : /7). This block of addresses is reserved for use in private
IPv6 networks.

e Multicast: These are packets from one-to-many devices. Multicast addresses start
with FFxx. An example of a multicast address is FF01:0:0:0:0:0:0:101, which can
be shortened to FFO1: :101. There is no broadcast address in IPv6; multicasts are used
as a replacement. Some well-known multicast addresses are shown in the following
table:

Address Description [|Scope

£F01:0:0:0:0:0:0:1 All nodes Interface-local (spans only a single interface on a node useful only for
address loopback transmission of multicast packets)
ff02:0:0:0:0:0:0:1 ?dl(lj;osges Link-local (all nodes on the local network segment)

All routers
address

0:0:0:

All routers
address

Link-local

All routers
address

ff05:0:0:0:0:0:0:2 Site-local (spans a single site)

|Interface-10ca1

DHCPv6

Link-local
servers/agents

DHCPv6
servers/agents

ff05:0:0:0:0:0:1:3 Site-local

|ff02:0:0:

e Anycast: These packets are from one to the nearest of a group of interfaces. There is
no special addresses scheme for Anycast addresses; they are similar to Unicast
addresses. An Anycast address is created automatically when a Unicast address is
assigned to more than one interface. Anycast addresses can be used to set up a group
of devices so that any one of the group devices can respond to a request sent to a
single IPv6 address.

Further discussion of IPv6 addressing would cover quite a number of additional features,
which are beyond the scope of this book. The reader is encouraged to research IPv6
addressing further online and/or by reading Request For Comments (RFC) 4291 (IP
Version 6 Addressing Architecture).

IPv6 header fields

An example of an IPv6 protocol header is illustrated in the following screenshot:

= Internet Protocol version 6, Src: 2607:f0d0:2001:e:1::120 (2607 :f0d0:2001:

[

0110 = version: 6

R = Traffic class: 0x00000000

............ 0000 0000 0000 0000 0000 = Flowlabel: 0x00000000

Payload Tength: 428

Next header: TCP (6)

Hop 1imit: 50

Source: 2607:f0d0:2001:e:1::120 (2607:f0d0:2001:e:1::120)

Destination: 2002:1806:addc::1806:addc (2002:1806:addc: :1806:addc)

= Transmission Control Protocol, Src Port: 80 (80), Dst Port: 52004 (52004),

[source GeoIP: Unknown]
[Destination GeoIP: Unknown]

The IPv6 header fields are similar to many IPv4 headers and the fields include:

Version: This is the IP version number, 6 for IPv6.

Traffic class: This is similar to the [Pv4 DiffServ field; it is used to identify different
classes or priorities of IPv6 packets.

Flow label: These are used to identify sequences of packets that are labeled as a set.
An IPv6 flow is defined by the 20-bit Flow Label field and the source and
destination IPv6 address fields.

Payload length: This is the length of the IPv6 payload, not including any packet
padding.

Next header: This field indicates what’s coming next in the packet. This is
equivalent to the IPv4 Protocol field. In the preceding example, the next layer is a
normal TCP (6) header.

Hop limit: This field is roughly equivalent to the Time To Live field in IPv4; it is
decremented by one by each device that forwards the IPv6 packet. When the value
reaches one, the packet cannot be forwarded.

Source and Destination addresses: These are the 128-bit IPv6 source and
destination addresses.

IPv6 supports extension headers that provide additional information fields and that also
extend the length of the IPv6 header. There is specific Next Header code that indicates
the presence of this added functionality.

IPv6 transition methods

As part of the transition to IPv6, the current TCP/IP devices support dual stacks (IPv4 and
[Pv6 simultaneously) and the ability to encapsulate and tunnel IPv6 packets inside IPv4
packets so that they can be routed by IPv4 networks. The three of the most popular
encapsulation methods are:

6to4 tunneling: In this tunneling method, an IPv6 header follows an IPv4 header; the
Protocol field of the IPv4 header will contain 41 (IPv6), and the source IPv6 address
in the IPv6 header will start with 2002.

e Teredo: In this tunneling method, an IPv6 header is encapsulated inside a UDP
packet. This method was developed to accommodate NAT devices that do not handle
protocol 41. Teredo tunneling can be identified in the UDP packet header by a
destination port of 3544.

e ISATAP: This tunneling method uses a locally assigned IPv4 address to create a 64-
bit interface identifier. For example, in ISATAP, the IPv4 address 24.6.173.220

becomes : :0:5EFE:1806:addc. ISATAP encapsulates IPv6 headers within IPv4 as in
6to4 tunneling.

Wireshark IPv6 filters

Capture filter(s): ip6 host fe80::1 ip proto 41 (capture IPv6-over-IPv4
tunneled traffic)

Display filter(s): ipv6 ipv6.addr == fe80::f61f:c2ff:fe58:7dcb ipv6.addr ==
ffo2::1

Internet Control Message Protocol Version 6

Internet Control Message Protocol Version 6 (ICMPv6) is an integral part of IPv6, and
the base protocol must be fully implemented by every IPv6 node. ICMPv6 provides
services for an IPv6 environment that are provided by other distinct protocols in an IPv4
environment, such as Neighbor Solicitation to replace ARP.

The following table contains some of the common ICMPv6 packet types:

ICMPv6 ICMPv6
Purpose

packet type |type
Echo request ||128 Ping request
Echo 129 Ping response
response
Multi .

u ticast 130 “Sent by multicast router to poll a network segment for group members
listener query
Multicast 131 Sent by a host when it joins a multicast group, or in response to a multicast listener query sent
listener report by a router
Multicast 132 Sent by a host when it leaves a multicast group and might be the last member of that group on
listener done the network segment
ROl.lt.e " 133 “Discover the local router(s)
solicitation
Router 134 Respond to Router Solicitation messages, as well as sending this packet after initialization
advertisement and periodically afterwards
Neighbor 135 Used first for Duplicate Address Detection (using a source address of : :) and then to obtain
solicitation the MAC address of the local router; this function replaces ARP
Nelghl?or 136 “Response to Neighbor Solicitation messages
advertisement
Redirect . . cp
message 137 Redirect a device to the proper router to send packets to a specific network or host

An example of a Neighbor Solicitation ICMPv6 packet is shown in the following
screenshot:

Frame 1: 78 bytes on wire (624 bits), 78 bytes captured (624 bits) on interface 0
Ethernet II, Src: 00:18:de:d0:27:d7 (00:18:de:d0:27:d7), Dst: IPvbmcast_ff:cB:e5:c8 (

H H

- Internet Protocol Version 6, src: :: (::), Dst: ff02::1:ffcB:e5cB (ff02::1:ffcB:e5cB)
B 0110 = version: 6
B soos ODOR OB :::: seds sead &8s sadd = Traffic class: O0x00000000

............ 0000 0000 0000 0000 0000
Payload length: 24
| Next header: ICMPvE (58) |
Hop 1imit: 255
Source: :: (::) |
Destination: TF02::1:ffc8:e5c8 (ff02::1:ffcB:e5c8)|
[Source GeoIP: unknown]
[Destination GeoIP: unknown]
= Internet Control Message Protocol vé
Type: Neighbor Solicitation
Code: O
Checksum: 0x8de8 [correct]
Reserved: 00000000
r?EFget Address: feB0::85ed:bcZe:dfcB8:e5c8 (TeB80::85%ed:bc2e:dfc8:e5cC8)

Flowlabel: 0x00000000

The significant fields in this packet include:

e Next Header: This field contains 58, which indicates that the next protocol header is
to be ICMPv6.

IPv6 Source Address: The presence of an unspecified address (::) indicates this is a
Duplicate Address Detection packet.

IPv6 Destination Address: This is basically a multicast address.

ICMPv6 Type: This is a Neighbor Solicitation message using Type 135.

ICMPv6 Code: This is the subtype for Neighbor Solicitation messages; this will be
0.

ICMPv6 Target Address: This is the address the host wants to use. If another node
on the network is already using this address, they will respond accordingly.

Multicast Listener Discovery

Multicast Listener Discovery (MLD) is another component of the IPv6 suite used by
IPv6 routers to discover multicast listeners on a directly attached link. MLD is part of the
ICMPv6 protocol and it replaces IGMP on IPv4 networks.

Wireshark ICMPv6 filters
Capture filter(s): icmp6

Display filter(s): icmpvé icmpvé.type==1135 && icmpv6.code==0 (Neighbor
Solicitation)

Transport layer protocols

The transport layer protocols include TCP and UDP used to transport application
protocols.

User Datagram Protocol

The User Datagram Protocol (UDP) is considered an unreliable transport. In this, there’s
no guarantee of packet delivery or ordering, but it has a lower overhead and is used by
time-sensitive applications such as voice and video traffic.

The following screenshot shows the fields contained in an UDP header:

Frame 18: 214 bytes on wire (1712 bits), 214 bytes captured (1712 bits)

Ethernet II, Src: Polycom_82:92:20 (00:04:T2:82:92:20), Dst: Cisco_55:14:b5 (00:27:0d:55:14:b5)
Internet Protocol Version 4; Src: 10.1.1.100 (10.1.1.100), Dst: 208.72.144.71 (208.73.144.71)
User Datagram Protocol, Src Port: 2222 (2222), Dst Port: 24268 (24268)
Source port: 222z ;
Destination port: 24268 (24268)
Length: 180

Checksum: Oxbe4c

F Real-Time Transport Protocol

i
i
=

The UDP header is only 8-bytes long, consisting of:

¢ Source and Destination port number: This is 2 bytes each.

e Length: This is the length of the UDP header plus the payload. This is a 2-byte field.

e Checksum: This is a 2-byte field used to check for errors in the UDP header and
data. If no checksum was generated by the transmitter, this will be all zeroes.

Wireshark UDP filters
Capture filter(s): udp udp port 2222
Display filter(s): udp udp.srcport == 161 (SNMP response) udp.length > 256

Transmission Control Protocol

The Transmission Control Protocol (TCP) provides a reliable delivery of data by
detecting lost, duplicated, or out-of-order packets, requesting retransmission of lost data,
or rearranging packets in the right order before delivering them to the application. TCP
can also accept a large chunk of data from an application and handle getting the data
transported to the other end reliably using multiple packets and reassembling them at the
other end.

The following screenshot highlights the significant fields of a basic TCP header:

[F Frame 7: 674 bytes on wire (5392 bits), 674 bytes captured

Ethernet II, Src: HonHaiPr_99:db:85 (00:1c:25:99:db:85)

Internet Protocol Version 4, Src: 192.168.1.116 (192.168.1.116)
‘B Transmission Control Protocol, Src Port: 54579 (54579)

Source port: 54579 (54579)

Destination port: http (80)

[Stream index: 1]

|Sequence number: 1 | (relative sequence number)

[Next sequence number: &17 (relative sequence number)]

|Acknuw1edgﬂent number: 1 |{re1at1v& ack number)

Header length: 20 byvtes

Flags: Ox0158 (PSH, ACK)

window size value: 16425

[+ Hypertext Transfer Protocol

[Calculated window size: 16425]

[window size scaling Tactor: -1 (unknown)]
Checksum: Ox58e8 [validation disabled]
[SEQ/ACK analysis]

[Timestamps]

The TCP header contents and length can vary depending on options that may be in use,
but in its simplest implementation it consists of:

Source port and Destination port: These are well-known and registered ports are
used (on servers) to access standard application services such as HTTP, FTP, SMTP,
databases, and so on. Port numbers assigned to client/user sessions are usually in a
higher number range and assigned sequentially.

Sequence number: This is a number that represents the first octet in any given
segment. Sequence numbers are initialized at the beginning of new sessions as a
random number, and then incremented as data bytes are sent.

Acknowledgment number: When the ACK flag bit is set, this field contains the next
sequence number expected from the sender, which in turn acknowledges receipt of all
the bytes received up to that point.

Note

The use of sequence and acknowledgment numbers is how TCP ensures reliable
delivery of data by tracking the number and order of received bytes.

Sequence and acknowledgment numbers are large and difficult for humans to follow.
Wireshark can convert and display these as relative values that start with O at the

beginning of a session to make it easier to inspect them and relate the values to the
number of bytes transmitted and received.

e Flags: These bits are used to control connection setups, terminations, and flow
control mechanisms.

e Window size: This field indicates the current size of the buffer on this host used to
store received data until it can be handed off to the receiving application. This
information enables the sending host to adjust data flow rates in case of network or
host congestion.

TCP flags

The following table lists the flags that are most commonly used in a TCP header:

Flag field name |[|Description
URG (urgent) This indicates the Urgent Pointer field (after the TCP header checksum) that should be examined.
g This flag is normally 0; the Urgent Pointer field is only examined if this bit is set.
ACK .
(acknowledgment) This is the acknowledgment packet.
This indicates whether the sending node’s TCP stack should bypass any buffering and pass the data
PSH (push) . . L
directly to the network and on to the receiving application.
RST (reset) ||This is used to close the connection explicitly.
SYN This is used to synchronize sequence numbers and used in a three-way TCP session initiation
(synchronize) handshake process.
_ This is used when the transaction is finished. This does not mean that the connection is to be closed
FIN (finish) . . .
explicitly, but is commonly seen at the end of sessions.
TCP options

The TCP also supports a number of additional options, several of which are in common
use in modern networks that you should be aware of. The snippet of a TCP header
illustrated in the following screenshot depicts several of the most popular options:

window size value: 8192
[Calculated window size: 8192]
= Checksum: o0oxcdbf [validation disabled]
[Good Checksum: False]
[Bad Checksum: False]
Urgent pointer: 0

Options: (12 bytes), Maximum segment size
EHiMaximum segment size: 1460 bytes
Kind: Maximum Segment Size (2]
Length: 4
M55 value: 1460
= No-Operation (NOP)
E Type: 1
e = Copy on Tragmentation: No
00, ..., = Class: Control (0]
...0 0001 = Number: No-Operation (NOP) (1)
Eiwindow scale: 2 (multiply by 4)
Kind: window Scale (3}
Length: 3
Shift count: 2
[Multiplier: 4]
-] No-Operation (NOP)
E Type: 1
e = Copy on Tragmentation: No
0. ... = Class: Control (0]
...0 0001 = Number: No-Operation (NOP) (1)
= No-Operation (NOP)
E Type: 1
e = Copy on Tragmentation: No
0. ... = Class: Control (0]
...0 0001 = Number: No-Operation (NOP) (1)

1 FCP SACK Permitted Option: True
Kind: SACK Permitted (4)
Length: 2

FH [Timestamps]

l_lu

The TCP options highlighted in the preceding screenshot include:

e Maximum Segment Size: This option allows you to specify of the number of bytes

that can follow the TCP header. This option exists to allow adjustment to
accommodate VLAN tagging or Multiprotocol Label Switching (MPLS).

e Window Scale: This option overcomes the inability of the Window Size field in a
standard TCP header to specify a window size greater than 65,535 bytes. Window

scaling allows you to specify a factor to multiply the advertised window size to
achieve a larger window size. Both sides of a session must be able to support this
option for it to apply; this is determined during the session setup.

e TCP SACK Permitted Option: This option indicates that this node supports
selective acknowledgments, which allows a node to acknowledge ongoing and

incoming data packets while still asking for a specific missing packet. The recovery
process only requires retransmission of the missing packet(s), instead of the missing

packet and all the packets that followed. Both sides of a session must be able to
support this option for it to apply, as determined during session setup.

Wireshark TCP filters

Capture filter(s): tcp tcp port 80

Display filter(s): tcp tcp.port == 80 tcp.dstport == 8080 tcp.stream ==

Application layer protocols

The most common application layer protocols include DHCP used to obtain client IP
addresses and configuration information, DNS for hostname resolution, HTTP, SMB,
POP/SMTP, and FTP for the most common network services and SIP, RTP, and RTCP for
VoIP and video conferencing.

Extensive coverage of all the upper layer protocols is beyond the scope of this book. A
brief overview of DHCP and DNS will be provided, as these protocols universally support
network operations and HTTP as an example of one of the most common application layer
protocols. The reader is encouraged to research any or all of these protocols further
depending on their scope of interest and need to meet the analysis tasks being addressed.

Dynamic Host Configuration Protocol

Dynamic Host Configuration Protocol (DHCP) allows a client to lease an IP address
from a pool managed by a DHCP server. The client can receive other configuration
options such as the default gateway, subnet mask, and one or more DNS server addresses
as well. DHCP is derived from an older BOOTP protocol; Wireshark uses bootp in display
filter syntax. DHCP works by the client sending a broadcast packet using UDP source port
67 to UDP destination port 68. A DHCP server will respond to the requestor’s IP address
and using UDP source port 68 to UDP destination port 67.

DHCP servers don’t necessarily have to reside on the same local network segment as
clients. A relay agent such as a router can forward DHCP requests and respond to/from a
different network where a DHCP server resides.

Wireshark DHCP filters

Capture filter(s): port 67 (DHCP is between ports 67 and 68; filtering on port 67 is
sufficient to get both sides of the conversations)

Display filter(s): bootp bootp.option.value == 0 (DHCP Discover message)

Dynamic Host Configuration Protocol Version 6

Dynamic Host Configuration Protocol Version 6 (DHCPV®6) is the IPv6 version of
DHCP. Since IPv6 doesn’t use broadcasts, DHCPv6 clients use the multicast address for
A1l _DHCP_Relay Agents_and_Servers (ff02::1:2) to locate DHCPVG6 servers or relay
agents.

Wireshark DHCPV6 filters
Capture filter(s): port 546 (DHCPV6 is between ports 546 and 547; either will work)

Display filter(s): dhcpvé dhcpve.msgtype == 1(DHCPv6 Solicit message)

Domain Name Service

Domain Name Service (DNS) is used to convert host names, such as www.wireshark.org
to IP addresses. DNS can also be used to identify the hostname associated with an IP
address (an inverse or pointer (PTR) query) and several other network information
services. This is a good protocol to become familiar with as it is used extensively to locate
nodes both within an enterprise and on the Internet using hostnames.

Wireshark DNS filters
Capture filter(s): port 53

Display filter(s): dns dns.flags.response == O(DNS query) dns.flags.response ==
1(DNS response) dns.flags.rcode != O(DNS response contains an error)

http://www.wireshark.org

Hypertext Transfer Protocol

Hypertext Transfer Protocol (HTTP) is the application protocol used when someone
browses (unsecured) websites on the Internet, along with the secure version (HTTPS).
HTTP/1.1 is the current version—although HTTP/2.0 is starting to appear in some
environments. Be aware that some network devices such as proxy servers and gateways
may not support HTTP/2.0 yet.

An example of a HTTP packet delivering a GET request to a web server is depicted in the
following screenshot:

Frame 7: 451 bytes on wire (3608 bits), 451 bytes captured (3608 bits) on interface 0O
Ethernet II, Src: 00:1c:25:99:db:85 (00:1c:25:99:db:85), Dst: c8:d7:19:21:b7:ec (c8:d7:19
Internet Protocol Version 4, Src: 192.168.1.115 (192.168.1.115), Dst: 10.1.1.125 (10.1.1.
FH Transmission Control Protocol, Src Port: 60347 (60347), Dst Port: 8080 (8080), Seq: 1, Ac
=l Hypertext Transfer Protocol

S{GET /orion HTTE/1.2%\r\n |

E [Expert Info (Chat/Sequence): GET jOorion HTTP/1.1\r\n]

[GET jOrion HTTP/1.1%r%n]

[Severity l1evel: Chat]

[Group: Sequence]
Request Method: GET
Request URI: /Orion
Request vVersion: HTTP/ 1.1
Host: pktiqsvril:s080%rhn
Cconnection: keep-alivehrin
Accept: text/html,application/xhtml+xml,application/xml;q=0.%9,image/webp,=/*;q=0.8%r"n
User-agent: Mozilla/s5.0 (Windows NT 6.1; WOwWe4) Applewebkit/537.36 (KHTML, Tike Gecko)
Accept-Encoding: gzip,deflate,sdchyr’n
Accept-Language: en-uUs,en;q=0.8%r%n
Cookie: ASP.NET_SessionId=sidsruxjbm4easd4dadgg4zdirin

Cookie pair: ASP.NET_SessionId=sidsruxjbm4eaed4d3dgg4zd
NN
[Full request URT: http:,// pktigswvri:8080,/0rion]
[HTTP request 1/46]
[Response in frame: 81
[Mext reqguest in frame: 9]

£

The most common features and fields of the HTTP protocol include HTTP Methods, Host,
and Request Modifiers.

In the preceding screenshot, the HTTP header includes:

¢ Request Method: GET
¢ Request URI: /Orion (a home page on the web server)
¢ Request Version: HTTP/1.1

HTTP Methods

Some of the more common HTTP Methods are listed and described in the following table:

Method||Description |

GET ||This retrieves information defined by the Uniform Resource Identifier (URI) field
I

HEAD ||This retrieves meta data related to the desired URI

POST ||This sends data to the HTTP server/application

OPTIONS

This determines the options associated with a resource

PUT

||This sends data to the HTTP server/application

DELETE

This deletes the resource defined by the URI

CONNECT

This is used to connect to a proxy device

Host

The Host field identifies the target host and port number of the resource being requested.
In the preceding screenshot, Host is pktigsvril on port 8080.

Request Modifiers

HTTP requests and responses use Request Modifiers to provide details for the request. In
the preceding screenshot, Request Modifiers includes:

Connection: This indicates the preference for a persistent connection (keep-alive).
Accept: This is a list of data formats (text/ntml and application/xhtml plus xml)
accepted.

User-agent: This is a list of browser and operating system parameters (Mozilla/5.0
(Windows NT 6.1; WOWG64) AppleWebKit) for the requesting device.
Accept-encoding: This is a list of the acceptable HTTP compression schemes (gzip,
deflate, and sdch).

Accept-language: The acceptable languages (en-US and en; q=0.8) where q=0.8 is a
relative quality factor that specifies the language the user would prefer on a scale of 0
to 1.

Cookie: This is a session ID cookie
(ASP.NET_SessionId=sidsruxjbm4eaed4d3dgg4zd) that was previously stored on the
user’s browser in a cookie and is being provided to the website.

The following table lists some of the more commonly used modifiers:

Request ..

Modifier Description

Accept Acceptable content types
Accept- Acceptable character sets
charset

Accept- Acceptable encodings
encoding

Accept-

language Acceptable languages

Accept- Server can accept range requests

ranges

Authorization||Authentication credentials for HTTP authentication

Cache- . -
Caching directives

control

Connection [|Type of connection preferred by the user agent

Cookie HTTP cookie (a small piece of data sent from the website and stored in a user’s browser, and/or sent
back to the website the next time the user visits containing session information)

Content- Length of the request body in bytes

length g q y in byt

Content-type ||[Mime type of the body (used with POST and PUT requests)

Date Date and time the message was sent
Expect Defines server behavior expected by the client
If-match Perform action if client-provided information matches

If-modified- Provide date/time of cached data; return 304 Not Modified if the cached data is still current

since
If-range Request for range of missing information
IF-
unmodified- [|Only send if unmodified since the provided date/time
since
Max- - .
Limit the number of forwards through proxies or gateways

forwards
Proxy- o . .

... l|Authorization credential for a proxy connection
authorization
Range Request only part of an entity
TE Transfer encodings accepted
User-agent ||A string containing browser and operating system information
Via The proxies traversed

Wireshark HTTP filters
Capture filter(s): tcp port http tcp port https

Display filter(s): http http.request.method == "GET" or http.request.method ==
"POST" http.response.code > 399 (identifies client or server error packets)

Additional information

Covering all the most common upper layer protocols or covering them to any great depth
is obviously more than what can be included in a book of this size. I encourage you to
spend some time studying those protocols that are of interest to you for personal or job-
related reasons. The return on your investment in time will be well worth the effort.

Additional information for any of the protocols discussed in this chapter as well as all
those not covered can be found online.

Wireshark wiki

If you are inspecting a protocol within the Wireshark’s Packet Details pane, you can
right-click on a protocol header or field within a header and select the Wiki Protocol
Page from the menu to go to the specific page on the Wireshark wiki that contains
information on that protocol. More information can be found at

http://wiki.wireshark.org/ProtocolReference.

You can also get a complete list of Wireshark display filters on specific protocols by
selecting a protocol header or a field within a header, right-clicking, and selecting Filter
Field Reference.

Protocols on Wikipedia

You can find general information on various protocols on Wikipedia. Start with the
Internet protocol. Additional links to the entire Internet protocol suite are also provided at

http://en.wikipedia.org/wiki/Internet_Protocol.
Requests for Comments

The Requests for Comment (RFC) documents contain detailed information for all the
Internet protocols. These documents are maintained by the Internet Engineering Task
Force (IETF) and are the final word on how the protocols should be implemented and
function (http://www.ietf.org/rfc.html). If you want to search for a specific RFC by title or
keyword, use the link http://www.rfc-editor.org/search/rfc_search.php.

http://wiki.wireshark.org/ProtocolReference
http://en.wikipedia.org/wiki/Internet_Protocol
http://www.ietf.org/rfc.html
http://www.rfc-editor.org/search/rfc_search.php

Summary

The topics covered in this chapter included protocol and field coverage of the network
layer protocols IPv4, ARP, IGMP, ICMP, IPv6, and ICMPv6; the transport layer protocols
UDP and TCP; an overview of the application layer protocols DHCP, DHCPv6, and DNS;

and a more in-depth look at HTTP.

In the next chapter, we’ll put all the topics covered so far to good use by using Wireshark
to troubleshoot the functionality and performance issues.

Chapter 6. Troubleshooting and
Performance Analysis

In this chapter, we will discuss the use of Wireshark for its primary purpose—
troubleshooting network and application connectivity, functionality, and performance
issues.

The topics that will be covered include:

Troubleshooting methodology
Troubleshooting connectivity issues
Troubleshooting functional issues
Performance analysis methodology
Top five reasons for poor application performance
Detecting and prioritizing delays
Server processing time events
Application turn’s delay

Network path latency

Bandwidth congestion

Data transport issues

These topics cover the majority of problems you’ll come across in your analysis efforts.

Troubleshooting methodology

There are two fundamental reasons why you might be doing packet analysis:

e Troubleshooting a connectivity or functionality problem (a user can’t connect, an
application doesn’t work, or doesn’t work right), which we’ll just call
troubleshooting

¢ Analyzing a performance problem (the application works but is slow), which we’ll
call performance analysis

A third gray area is an application that basically works but is slow and occasionally times
out, which could involve an underlying functional problem that causes the performance
issue, or just simply be a really poor performance.

Troubleshooting a connectivity or functional issue is just a matter of comparing what
normally works with what is going on, in the case you’re working on.

A performance problem, on the other hand, requires determining where the majority of the
time for a particular transaction to complete is being spent, measuring the delay and
comparing that delay to what is normal or acceptable. The source and type of excessive
delay usually points to the next area to investigate further or resolve.

In any case, you need to gather the information that allows you to determine whether this
is a connectivity, functional, or performance issue and approach the problem according to
its nature.

Gathering the right information

The most important thing you can do when approaching a problem is to determine what
the real problem is so you can work on the right problem or the right aspect of the
problem. In order to determine what the real problem is, or at least get close, you’ll need
to ask questions and interpret the answers. These questions could include the appropriate
selections (depending on the complaint) from the following list:

e Define the problem:

e}

O O O O O

What were you trying to do (connect to a server, log in, send/receive e-mails,
general application usage, upload/download file, and specific transactions or
functions)?

Is nothing working or is this just a problem with a specific application or
multiple applications?

What website/server/application were you trying / connecting to? Do you know
the hostname, URL, and/or IP address and port used to access the application?
What is the symptom/nature of the problem? Has this application or
function/feature worked before, or is this the first time you’ve ever tried to use
it?

Did you receive any error messages or other indications of a problem?

Is the issue consistent or intermittent? Depends? On what?

How long has this been happening?

Was there some recent change that did or could have had an impact?

What has been identified or suspected so far? What has been done to address
this? Has it helped or changed anything?

Are there any other pertinent factors, symptoms, or recent changes to the user
environment that should be considered?

e Determine the scope of the issue:

e}

e}

e}

Is this problem occurring for a single user or a group of users?

Is this problem occurring within a specific office, region, or across the whole
company?

Is this problem affecting different types of users differently?

e Collect system, application, and path information. For a more in-depth analysis
(beyond single user or small group issues), the applicable questions from the
following list might also need to be gathered and analyzed, as appropriate to the
complaint (some of this information may have to be obtained from network or
application support groups):

o What is the browser type and version on the client (for web apps)? Is this

different from clients that are working properly?

o What is the operating system type and version of the client(s) and server?
o What is the proper (vendor) application name and version? Are there any known

issues with the application that match these symptoms (check the vendor’s bug
reports).

What is the database type and server environment behind the application server?
Are there other backend-supporting data sources such as an online data service
or Documentum and SharePoint servers involved?

What is the network path between the client and server? Are there firewalls,
proxy servers, load balancers, and/or WAN accelerators in the path? Are they
configured and working properly?

Can you confirm the expected network path (and any WAN links involved) with
a traceroute and verify the bandwidth availability?

Can you measure the round trip time (RTT) path latency from the user to the
application server with pings or TCP handshake completion times?

Establishing the general nature of the problem

At this point, you should be able to identify the general nature of the problem between one
of the following three basic types:

e Determine whether this is a connectivity problem

o User(s) cannot connect to anything
o User(s) cannot connect to a specific server/application

e Determine whether this is a functionality or configuration problem

o User(s) can connect (gets a login screen or other response from the application
server) but cannot log in (or get the expected response)

o User(s) can connect and log in but some or all functions are failing (for example,
cannot send/receive e-mails)

e Determine whether this is a performance problem

o User(s) can connect, log in, and use the application normally; but it’s slow
o The application works normally but sometimes it stalls and/or times out

Half-split troubleshooting and other logic

When I was doing component-level repair of electronic equipment early in my career, I
learned to use the “half-split” troubleshooting method, which worked very well in almost
every single case. Half-split troubleshooting is the process of cutting the problem domain
(in my case, a piece of radio gear) in half by injecting or measuring signals roughly
midway through the system. The idea is to see which half is working right and which half
isn’t, then shifting focus to the half that doesn’t work, analyzing it halfway through, and so
on. This process is repeated until you narrow the problem down to its source.

In the network and application world, the same half-split troubleshooting approach can be
applied as well, in a general sense. If users are complaining that the network is slow, try to
confirm or eliminate the network:

e Are users close to the server experiencing similar slowness? How about users in other
remote locations?

e If a certain application is slow for a remote user, are other applications slow for that
user as well?

e If users can’t connect to a given server, can they connect to other servers nearby or at
other locations?

By a process of logical examination of what does and doesn’t work, you can eliminate a
lot of guesswork and narrow your analysis down to just a few plausible possibilities.

It’s usually much easier to determine the source of a connectivity or functionality problem
if you have an environment where everything is working properly to compare with a
situation that does not work. A packet capture of a working versus a non-working scenario
can be compared to see what is different and if those differences are significant.

It is important not to make too many assumptions about a problem, even if the issue
you’re working on looks the same as the one that you’ve fixed before. Always verify the
problem and the resolution that you should be able to apply and remove a fix and see the
problem disappear/reappear reliably. Otherwise, you should question yourself about
whether you’ve found the true source of the issue or are just affecting the symptoms.

Unless a reported problem is obviously a system-wide or specific server issue, it is better
to conduct at least the initial analysis at or as close to the complaining user’s workstation
as possible. This has the advantages of offering the ability to perform the following
actions:

View and verify the actual problem that the user is reporting

Measure round-trip times to the target server(s)

Capture and view the TCP handshake process upon session initiation

Capture and investigate the login and any other background processes and traffic
Look for indications of network problems (lost packets and retransmissions) as they
are experienced by the user’s device

e Measure the apparent network throughput to the user’s workstation during data
downloads

¢ Eliminate the need to use a capture filter; the amount of traffic to/from a single
workstation should not be excessive

A capture at a user workstation, server, or other device should be conducted with the use
of an aggregating Test Access Point (TAP) versus using a switch SPAN port (as discussed
in Chapter 3, Capturing All the Right Packets, or as a last resort by installing Wireshark on
the user’s workstation or server (if authorized).

Troubleshooting connectivity issues

Single user or small group connectivity issues can be resolved by confirming that the
networking functions required for a user workstation to access local and remote network
resources are functioning properly. The basic requirements or items to confirm include:

e Enabling the correct network interface(s) (workstation configuration)

e Confirming layer 1 (physical) connectivity

¢ Obtaining an IP address, subnet mask, and default gateway for each interface
(DHCP)

¢ Obtaining the MAC address of the default gateway or other local network services
(ARP)

¢ Obtaining the IP address of a network service (DNS)

e Connecting to a network service (TCP handshake or UDP response)

We’ll briefly discuss each of these in order; while the first two steps will not involve using
Wireshark, they are a necessary part in a troubleshooting approach. If the connectivity
issue is affecting a group of users or a whole office, the first step is probably not
applicable.

Enabling network interfaces

While it may seem obvious that network interfaces need to be enabled, the assumption that
they are automatically enabled (especially for the wireless connectivity) by default upon
device boot up may be false.

On Windows, you can use the command-line utility ipconfig to view the status and basic
configuration (IP address, subnet mask, and default gateway) of network interfaces; on
Linux or MAC devices, the equivalent command is ifconfig or ip.

Confirming physical connectivity

If a connectivity problem is isolated to a single user’s workstation, the physical
connections are suspected. There are a few items to check, and the troubleshooting steps
that can be taken are as follows:

e If there is a problem with the Ethernet cable from the workstation to a wall jack, you
need to swap the cable with a different one.

o If there is a problem with the cabling from the user’s wall jack to the switch port, you
need to temporarily plug the user’s Ethernet cable into another (known good) wall
jack.

o If there is a problem with the switch, switch port, or port configuration, you need to
temporarily plug the user’s port cable into another (known good) port. Be aware that
some network security policies call to disable switch ports until they are needed or
configuring the port to be associated with a single, specific MAC address. If so, a
port may not work when you plug into it although there is nothing physically wrong
with it.

Obtaining the workstation IP configuration

Unless the workstation was manually configured, it will need to get its IP address, subnet
mask, default gateway, and DNS server settings from a DHCP server. If this does not
appear to be working properly (after checking the configuration using ipconfig
(Windows) or ifconfig, (Linux or Mac OS X)), you need to perform a packet capture
during the workstation initialization/boot-up process using a TAP or SPAN port and
investigate the DHCP requests and responses.

There are eight DHCP message types (not to be confused with the two Bootstrap Protocol
types, Boot Request and Boot Reply):

Message type ..
number Message type Description
1 ||DHCP Discover A client broadcast to locate an available DHCP server
9 DHCP Reply “A server to client response to a DHCP Discover to offer configuration
parameters
A client message to a DHCP server to either one of the following
conditions:
3 DHCP Request e Request offered parameters from one server and decline offers
from other DHCP servers
e Confirm correctness of previously allocated address after a reboot
e Extending the lease on an IP address
4 DHCP Decline Client message to DHCP server indicating the offered address is not
acceptable
5 DHCP Acknowledgment Server to client with configuration parameters including a committed
network address
6 DHCP Negative Server to client indicating client’s address is incorrect or expired
Acknowledgement
7 ||DHCP Release | Client to server releasing a network address and canceling a lease
8 ||DHCP Informational | Client to server asking for local configuration parameters only

For a workstation that is booting up and was previously working on the network, you’ll
generally see the DHCP Request and Acknowledgment packets verifying that the
workstation can still use a previously leased address. On an entirely cold start up, the first
two DHCP packets will be DHCP Discover and DHCP Offer packets, followed by the
Request and ACK packets.

In a DHCPv6 environment, the typical packet sequence is DHCPv6 Solicit, DHCPv6
Advertise, DHCPv6 Request, and DHCPv6 Reply.

The fields to verify in a DHCP Response packet (or similar fields in a DHCPv6 Advertise
packet) include the following four fields:

Your (client) IP Address: This is the offered IP address for this workstation
Subnet Mask: This is the subnet mask to use on this network

Domain Name Server: This is the DNS server IP address

Router: This is the IP address of the default gateway to use

This is minimum data required for any network communications; an example of these
fields being provided in a DHCP Reply packet is illustrated in the following screenshot:

Message type: Boot Reply (2)
Hardware type: Ethernet (O0x01)
Hardware address 1ength: &
Hops: O
Transaction ID: Ox28a0655C
| Seconds elapsed: 4
E [Expert Info (Note/Protocol): Seconds elapsed appears to b
[Seconds elapsed appears to be encoded as Tittle-endian]
[Severity level: Note]
[Group: Protocol]
E Bootp flags: Ox5000 (Broadcast)
lice sves =es= === = Broadcast Tlag: Broadcast
e IO D000 0000 D000 = Beseryed Tlags - 00000
Client IP address: 0.0.0.0 (0.0.0.0)
Your (client) IP address: 192.168.1.115 (192.168.1.115)
Next server IFP address: 192.1658.1.1 (192.165.1.1)
Relay agent IF address: 0.0.0.0 (0.0.0.0)
Client MAC address: 00:1cC:25:99:db:85 (00:1c:25:99:db:585)
Client hardware address padding: 00000000000000000000
Server host name: ecosystem.home.cisco.com
Boot Tile name not given
Magic cookie: DHCP
= option: (537 DHCP Message Type (ACK)
Length: 1
DHCP: ACK (5]
= option: (54) DHCP Server Identifier
Length: 4
DHCP Server Identifier: 192.168.1.1 (192.168.1.1)
= option: (51) IP Address Lease Time
Length: 4
IP Address Lease Time: (56400s5) 1 day
E option: (58) Renewal Time value
Length: 4
Renewal Time value: (43200s5) 12 hours
E option: (52) Rebinding Time value
Length: 4
Rebinding Time value: (F5600s5) 21 hours
= option: (1) Subnet Mask
Length: 4
Subnet Mask: 255.255.255.0 (255.255.255.0)
= option: (28) Broadcast Address
Length: 4
Broadcast Address: 192.168.1.255 (192.165.1.255)
= option: (81) Client Fully Qualified Domain Name

Length: 15
Flags: 0x03
0000 = Reserved Tlags: Ox00
0... = Server DDN5: Some server updates
.0.. = Encoding: ASCII encoding
.1. = Server overrides: Override
.1 = Server: Server

A-RR. result: 255

PTR-RR. result: 255

Client name: ThinkPadwsoo
=] Option: (&) Domain Name Server

Length: 4

Domain Name Server: 192.1653.1.1 (19¢.168.1.1)
= Ooption: (3) Router

Length: 4

Router: 192.168.1.1 (192.168.1.1)
E option: (255) End

option End: 255

You can apply Wireshark display filters to isolate DHCP packets; the filter is bootp, as
this is the legacy name for DHCP:

e DHCP display filter: bootp bootp.option.dhcp == 5 (DHCP Message Type
'ACK")
e DHCPv6 display filter: dhcpvé dhcpv6.msgtype == 2 (DHCPv6 'Advertise')

You can save the basic bootp and dhcpvé display filters as a Filter Expression Button
(FEB) after entering the filter string in the textbox on the Display Filter toolbar, clicking
on Save, and giving the button a name such as DHCP Pkts and DHCPv6 Pkts respectively.
Alternatively, you could combine both filters with an or (] |) in one button, as shown in
the following screenshot:

Filter: bootp || dhepv E Expression... Clear Apply Save DHCP Pkts DHCP Errors DHCPuW Errors Good Capture ARP Pkts DS Pkts

80211 Channel: Channel Offset: FCS Filter: | All Frames None |z| Wireless Settings... Decryption Keys...

Rel Time (formatted

) Delta Time Displ WS Stream #
6.659752 : 0. 00 i

0.000000

Source Address Destination Addr Protocol Info
feB0::2e41:38FF: fes2:ec3a Trogesns DHCPVE Solicit XID: Ox49bb09 CID: 00030001082e5faeadis

Pkt Length
132

You might want to save another FEB that displays an abnormal DHCP condition packets
using the following display filter string and call the DHCP Errors button or a similar as
follows:

bootp.option.dhcp == 4 || bootp.option.dhcp == 6 || bootp.option.dhcp == 7
Similar abnormal event display filters for DHCPv6 could include:
dhcpv6.msgtype == 8 || dhcpv6.msgtype == | | dhcpv6.msgtype == 10

You can research more about DHCP, DHCPv6, and the various DHCPv6 message types
online or from other sources if you need to analyze these in more detail.

Obtaining MAC addresses

A workstation will utilize the ARP protocol to obtain a MAC address for known IP
addresses of network services, such as its default gateway or the DNS server if it’s located
on the same network segment. The ARP protocol and how it typically functions has
already been covered in Chapter 2, Networking for Packet Analysts.

You may want to create an ARP FEB using the arp display filter syntax to make it quick
and easy to inspect those packets.

Obtaining network service IP addresses

A client workstation sends queries to a DNS server to obtain an IP address for a given
hostname; the DNS server responds with the information or asks other DNS servers for
the information on behalf of the client.

The format of the DNS query and response packet fields as displayed in the Wireshark
Packet Details pane is fairly intuitive. An example of a DNS response packet containing a
resolved IP address for time.windows.com, which actually provided the IP address
(137.170.185.211) for the alias time.microsoft.akadns.com is shown in the following
screenshot:

Frame 1116: 131 bytes on wire (1048 bits), 131 bytes captured (1048 bits) on ing
Ethernet II, Src: c8:d7:19:21:b7:ec (c8:d7:19:21:b7:ec), Dst: 00:24:9b:06:8F:T9
Internet Protocol Version 4, Src: 192.168.1.1 (192.168.1.1), Dst: 192.168.1.125
User Datagram Protocol, Src Port: 53 (53], Dst Port: 59274 (59274)
[Regquest Tn: 133157
[Time: ©O.000530000 seconds]
Transaction ID: Oxabf7r
Flags: 0x8180 Standard query response, Ko error
Questions: 1
Answer RRs: 2
Authority RRs: O
Additional RRs: O
Eiqueries
E time.windows.com: type A, class IN
Name: time.windows.com
[Name Length: 1&]
[Label Count: 3]
Type: A (Host Address) (1)
Class: IN (0Ox0001)
—j Answers
E time.windows.com: type CNAME, class IN, cname time.microsoft.akadns.net
Name: time.windows.com
Type: CNAME (Canonical NaMmE Tor an alias) (5)
Class: IN (0Ox0001)
Time to live: 774
Data length: 27
CNAME: time.microsoft.akadns.net
E time.microsoft.akadns.net: type A, class IN, addr 137.170.185.211
Name: time.microsoft.akadns.net
Type: A (Host Address) (1)
Class: IN (0Ox0001)
Time to 1live: 78
Data 1ength: 4
Address: 137.170.185.211 (137.170.185.211)

HEHEHE

&

If a client workstation cannot obtain the IP address of a web service or application server,
a packet-level investigation of the request (which URL or hostname is being requested),
and what the response is from the DNS server (if any) should be revealing. A comparison
of a failing query with queries that work properly for other hostnames or from other
workstations should reveal the root of the problem (if DNS is the problem). Failure to
obtain an IP address can be caused by an inoperable DNS server, improper hostname or
URL, or a problem with connectivity from the user to other parts of the network, which

we’ll check next.

Basic network connectivity

A few simple tests can confirm that basic network connectivity is working, or reveal a
routing issue or another issue that needs to be addressed by the network support team.

Capturing and analyzing the ICMP packets sent and received during the following tests
can be revealing; although, the test results themselves are often telling enough:

e Ping the user’s default gateway using the default gateway IP address obtained from
using ipconfig /all (Windows) or ip addr show (Linux) to confirm that the user
workstation has basic connectivity on the local network.

¢ Ping the hostname or URL of the target server. If this fails (request timed out
message), try to ping other hosts or URLs. If necessary, inspect the DNS and/or
ICMP responses in a packet capture of these tests to determine the nature of the
failure. Otherwise, take note of the average round trip times.

e If a ping works to the default gateway but pinging other targets fails, a traceroute to a
target server can reveal where in the network path connectivity ceases to function or

is blocked.
Note

The traceroute command-line utility in Windows is tracert, whereas for traceroutes
on Linux/Unix and Mac OS X machines, the command is traceroute. To do a
traceroute in Windows, open a Command Prompt (CMD) window and type
tracert <hostname or IP Address of target>.In most other environments, open
a terminal window and type traceroute <hostname or IP address of target>.

If you can ping the target server and network connectivity is functioning, you can move on
to the next step in the troubleshooting process. If not, be aware that some hosts may be
configured to not respond to ICMP ping requests, and/or ICMP is blocked by a firewall
between the user and server for security reasons. So, the inability to ping a device is not
necessarily a sign of a network problem. Traceroute results should help determine how far
and to what extent network connectivity is functioning in the path towards the target
server; testing to other targets should be revealing as well.

An example of pinging a default gateway, then a URL, and finally performing a traceroute
to the target URL is depicted in the following screenshot:

BN Command Prompt i“ﬂ@

CiZping 192.168.1.1

Pinging 1?2.168.1.1 with 32 bytesz of data:
192 _168_1.1: bytes=32 time<ims TTL=64
192 . 168_1.1: bytes=32 time<ims TTL=64
192 _168_1.1: bytes=32 time<ims TTL=64
Reply from 192.168.1.1: bytes=32 time<ims TTL=64

Ping statistics for 192.168.1.1:

Packets: Sent = 4., Received = 4, Lost = 8 (@x loss>.
Approximate round trip times in milli-—seconds:

Hinimum = Bms, Maximum = Bms,. Average = Bms

C:sping www.wireshark.org

Pinging www.wireshark.org [162_157.241.165]1 with 32 hytes of
Reply from 162.159.241 .165: bytes=32 time=1?ms TTL=54
Reply from 162.159.241 .165: bytez=32 time=1?ms TTL=54
Reply from 162.159.241 .165: bytez=32 time=1?ms TTL=54
Reply from 162.159.241 .165: bytezs=32 time=28ms TTL=54

Ping statistics for 162.15%7_241_165:

Packets: Sent = 4. Received = 4, Lost = B (@x loss>.
Approximate round trip times in milli-seconds:

Hinimum = 19ms,. Maximum = 28ms. Average = 21ims

R
R
R
C:s>tracert wuw.wireshark.org

Tracing route to wuyw.wireshark.org [162.15%.241.1651
over a maximum of 38 hops:

ms ms Cisco24973 [192.168.1.11

ms ms 18.192.128.1

ms ms 72-31-193-94 _net.bhntampa.com [Y2_.31.1
ms ms ten@-8-0-7.orldid—=serl . bhn.net [72.31.
ms ms T2-31-188—178 .net .bhntampa.com [Y2.31.
mns mns 18.bhu—etherls5 .orldf 1joddw—bcrBBd._thone.
ms ms bu—etherl8 . at lngangd/w—hcrdl _thone.rr.
mns mns bu—ether2l .at lngangdbw—hcrdd._thone.rr.
ms ms ae—1-B.prA.atl2@.thone.rr.com [66.1679.
ms ms 66.189 .18.62

ms ms as13335 . xe—-7-8-7.ard.atll _us.nlaver.ne
ms ms 162.157.241 .165

Trace complete.

HER

Connecting to the application services

If network connectivity from a user workstation to a target server is functional (as proven
by the ability to ping the host), a problem connecting to a specific application hosted on
that server may be caused by a number of factors:

e The URL or port used by the client to access the application is wrong
e The port used to access the application is blocked by a firewall
e The application service is not turned up or is not working properly

The first of these factors is far more likely for a single user issue. Any of the last two
factors would prevent anyone in a group or the whole organization from accessing the
application. A packet-level analysis (from the client side) of a user attempting to connect
to an application that is blocked should result in ICMP messages: Destination Host is

Unreachable or Destination Port is Unreachable, or there will be no response at all if
ICMP messages are being blocked by a firewall.

If the server is up, the application is reportedly operational but cannot be accessed; a
client-side capture does not offer any solid clues, but a packet capture of the TCP session
setup (if any) from or near the server end should be revealing.

Troubleshooting functional issues

If a user is able to connect and set up a TCP session with an application server, but the
application does not function otherwise, or function correctly, then, there are a number of
areas that can be investigated. These areas can be investigated using a combination of
packet-level analysis, error reports, and configuration comparisons with captures and
configurations from other users’ machines:

e User credentials: The most common reason for specific-user issues with application
functionality is the lack of proper credentials, authorization, rights, and so on. This is
the first thing to check whether other users are working normally.

e Application settings on the user machine: Some applications require specific
configuration files to be placed on a user’s machine in a specific location.
Applications may also require certain version levels of application-specific utilities,
Java, .NET frameworks, and so on. Usually, an application will provide an error
message indicating at least the general nature of a configuration problem.

e Application reported errors: You can look for the error code within response
packets or on the user screen that may reveal the nature of application errors:

o Status code greater than 400 in HTTP, FTP, or SIP response packets
o Error code in SMB response packets
o Other application-specific exceptions, error codes, and messages

¢ Differences in web browsers: Some web applications are designed to work with
specific browsers (Chrome, Internet Explorer, Firefox, Opera, and so on) and may not
work properly or at all on other browsers and there may not be any error messages
provided that indicate this is the case. A comparison of the browser type and version
with other working users may be revealing.

The causes of network connectivity and application functionality issues can vary widely,
so it is impossible to draw a clear roadmap for every possibility. The best approach to
successfully address these problems is not to make too many assumptions without proving
those assumptions correct with systematic, logical troubleshooting steps, but try to find or
create a scenario where the system, or at least part of the system, works properly and
compare the appropriate packet-level details of the working environment to the one that
doesn’t work.

Performance analysis methodology

Analyzing an application’s performance problem is basically a case of identifying where
the majority of the time for a particular task to complete is being spent, and
measuring/comparing that time to what is normal and/or acceptable for that type of task.

Top five reasons for poor application performance

Generally speaking, performance issues can be attributed to one of the following five
areas, in order of decreasing likelihood:

Server processing time delay
Application turns delay
Network path latency
Bandwidth congestion

Data transport (TCP) issues

Client processing time is usually a relatively small component of overall response time—
except perhaps for some compute-extensive desktop applications, which leaves the focus
on the network and server environments and any performance-affecting application design
characteristics.

Preparing the tools and approach

As was done when preparing to troubleshoot a connectivity or functionality problem,
you’ll need to gather the right information about the application environment and problem
domain. You’ll also want to determine which tools you may need to use during the
analysis: Wireshark, TAPs to facilitate packet captures, and any other analysis tools.

You will also need to determine where to perform the first packet capture:

e A client-side capture is the best place to begin a performance analysis effort. From
this vantage point, you can view and verify what the user is complaining about, view
any error messages presented to the user or evident in the packet capture, measure
network round-trip times, and capture the performance characteristics to study within
a packet capture without the need to use a capture filter so you know you won’t miss
anything.

e A server-side capture may be needed because a client-side capture may not be
possible for a user that is at a long distance, or to analyze server-to-server
transactions to backend databases or other data sources.

¢ A packet capture at some intermediate point in the network path may be needed to
isolate the source of excessive packet loss/errors and the associated retransmissions.

Remember that the use of an aggregating TAP is preferable over using SPAN ports, or you
can install Wireshark on the client workstation or server as a last resort, but get the capture
done any way you have to.

Performing, verifying, and saving a good packet capture
After performing the capture and saving the bulk capture file, confirm the following:

1. Check the file to ensure there are no packets with the ACKed Unseen Segment
messages in the Wireshark Warnings tab in the Expert Info menu, which means
Wireshark saw a packet that was acknowledged but didn’t see the original packet; an
indication that Wireshark is missing packets due to a bad TAP or SPAN port
configuration or excessive traffic levels. In any case, if more than just a few of these

show up, you’ll want to do the capture again after confirming the capture setup.

2. Next, you’ll want to review the captured conversations in IPv4 in the Conversations
window and sort the Bytes column. The IP conversation between the user and
application server should be at or near the top so you can select this conversation,
right-click on it, and select A <-> B in the Selected menu.

3. After reviewing the filtered data to ensure it contains what you expected, select
Export Specified Packets from the File menu and save the filtered capture file with
a filename that reflects the fact that this is a filtered subset of the bulk capture file.

4. Finally, open the filtered file you just saved so you’re working with a smaller, faster
file without any distracting packets from other conversations that have nothing to do
with your analysis.

Initial error analysis

At the onset of your analysis, you should take a look through the Errors, Warnings, and
Notes tabs of Wireshark’s Expert Info window (Analyze | Expert Info) for significant
errors such as excessive retransmissions, Zero Window conditions, or application errors.
These are very helpful to provide clues to the source of reported poor performance.

Although a few lost packets and retransmissions are normal and of minimal consequence
in most packet captures, an excessive number indicates that network congestion is
occurring somewhere in the path between user and server, packets are being discarded,
and that an appreciable amount of time may be lost recovering from these lost packets.

Seeing a high count number of Duplicate ACK packets in the Expert Info Notes window
may be alarming, but can be misleading. In the following screenshot, there was up to 69
Duplicate ACKs for one lost packet, and for a second lost packet the count went up to 89
(not shown in the following screenshot):

M Wireshark: 1576 Expert Infos o || =[]

|Errors: 0 (0) | Warnings: 3 (31) | Motes: 97 (375) | Chats: 415 (1170) | Details: 1576 | Packet Comments: 0 |

Group 1 Protocol 1 Summary 1 Count 1] 4

[Sequence TCP Duplicate ACK (#65) 2

[Sequence TCP Duplicate ACK (#58) 2

[Sequence TCP Duplicate ACK (#67) 2

[Sequence TCP Duplicate ACK (#58) 2
Packet: 6309 1
Packet: 6492 1

[Sequence TCP Duplicate ACK (#70) 1

[Sequence TCP Duplicate ACK (£71) 1

=l Sequence TCP Duplicate ACK (£72) 14
Packet: G315 1 .E

[Sequence TCP Duplicate ACK (#73) 1] |

[Sequence TCP Duplicate ACK (£74) 1

[Sequence TCP Duplicate ACK (£75) 1: g

[T] Limit to display filter

However, upon marking the time when the first Duplicate ACK occurred in Wireshark
using the Set/Unset Time Reference feature in the Edit menu and then going to the last
Duplicate ACK in this series by clicking the packet number in the Expert Info screen and
inspecting a Relative time column in the Packet List pane, only 30 milliseconds had
transpired. This is not a significant amount of time, especially if Selective
Acknowledgment is enabled (as it was in this example) and other packets are being
delivered and acknowledged in the meantime. Over longer latency network paths, the
Duplicate ACK count can go much higher; it’s only when the total number of lost packets
and required retransmissions gets excessively high that the delay may become noticeable
to a user.

Another condition to look for in the Expert Info Notes window includes the TCP Zero
Window reports, which are caused by a receive buffer on the client or server being too
full to accept any more data until the application has time to retrieve and process the data
and make more room in the buffer. This isn’t necessarily an error condition, but it can lead
to substantial delays in transferring data, depending on how long it takes the buffer to get
relieved.

You can measure this time by marking the TCP Zero Window packet with a time reference
and looking at the elapsed relative time until a TCP Window Update packet is sent,
which indicates the receiver is ready for more data. If this occurs frequently, or the delay
between Zero Window and Window Update packets is long, you may need to inspect the
host that is experiencing the full buffer condition to see whether there are any background

processes that are adversely affecting the application that you’re analyzing.

Note

If you haven’t added them already, you need to add the Relative time and Delta time
columns in the Packet List pane. Navigate to Edit | Preferences | Columns to add these.
Adding time columns was also explained in Chapter 4, Configuring Wireshark.

You will probably see the connection reset (RST) messages in the Warnings tab. These
are not indicators of an error condition if they occur at the end of a client-server exchange
or session; they are normal indicators of sessions being terminated.

A very handy Filter Expression button you may want to add to Wireshark is a TCP
Issues button using this display filter string as follows:

tcp.analysis.flags && !tcp.analysis.window_update &&
I'tcp.analysis.keep_alive && !tcp.analysis.keep_alive_ack

This will filter and display most of the packets for which you will see the messages in the
Expert Info window and provide a quick overview of any significant issues.

Detecting and prioritizing delays

Since we’re addressing application performance, the first step is to identify any delays in
the packet flow so we can focus on the surrounding packets to identify the source and
nature of the delay.

One of the quickest ways to identify delay events is to sort a TCP Delta time column (by
clicking on the column header) so that the highest delay packets are arranged at the top of
the packet list. You can then inspect the Info field of these packets to determine which, if
any, reflect a valid performance affecting the event as most of them do not.

In the following screenshot, a TCP Delta time column is sorted in order of descending
inter-packet times:

Frame # Delta Time Disp * fW5 Stream # Info

3820 30. 760486 2 GET Jorion/js/breadcrumb. js.i18n. ashx?1=en-uUs;
952 13.110531 2 GET Jorion/js/jquery/jgquery.cluetip.css.il18n.
2141 7.614162 2 GET Jorion/images/Gradient-Green.git HTTP/1.1
3738 5.5811606 2 GET /ScriptResource. axd?d=MOTuTR1d406MEaS2-pm
3202 3.812984 2 POST JOrion/MetPerfMon/Mapservice. asmx/GetMap
2211 2.584325889 2 GET Jorion/vim/styles /extjsTix.cs5.118n. ashx?
3504 2.795273 2 GET JOrion/MetPerfMon/ModePopup. aspx?Netobjec
3691 1.908530 2 HTTP/1.1 200 OK (PNG)[Unreassembled Packet]

3519 1.048155 2 GET JOrion/MetPerfMon/NodeDetails. aspx?Netob]
3516 0. 602610 2 GET JOrion/NetPerfMon/NodePopup. aspx?Netobjec

Let’s have a detailed look at all the packets:

e The first two packets are the TCP Keep-Alive packets, which do just what they’re
called. They are a way for the client (or server) to make sure a connection is still

alive (and not broken because the other end has gone away) after some time has
elapsed with no activity. You can disregard these; they usually have nothing to do
with the user experience.

e The third packet is a Reset packet, which is the last packet in the conversation stream
and was sent to terminate the connection. Again, it has no impact on the user
experience so you can ignore this.

e The next series of packets listed with a high inter-packet delay were GETs and a
POST. These are the start of a new request and have occurred because the user
clicked on a button or some other action on the application. However, the time that
expired before these packets appear were consumed by the user think time—a period
when the user was reading the last page and deciding what to do next. These also did
not affect the user’s response time experience and can be disregarded.

e Finally, Frame # 3691, which is a HTTP/1.1 200 OK, is a response from the server
to a previous request; this is a legitimate response time of 1.9 seconds during which
the user was waiting. If this response time had consumed more than a few seconds,
the user may have grown frustrated with the wait and the type of request and reason
for the excessive delay would warrant further analysis to determine why it took so
long.

The point of this discussion is to illustrate that not all delays you may see in a packet trace
affect the end user experience; you have to locate and focus on just those that do.

You may want to add some extra columns to Wireshark to speed up the analysis process;
you can right-click on a column header and select Hide Column or Displayed Columns
to show or hide specific columns:

e TCP Delta (tcp.time_delta): This is the time from one packet in a TCP conversation
to the next packet in the same conversation/stream

e DNS Delta (dns.time): This is the time between DNS requests and responses

e HTTP Delta (http.time): This is the time between the HTTP requests and responses

Note

You should ensure that Calculate conversation timestamps is enabled in the TCP
option, which can be found by navigating to Edit | References | Protocols, so that
the delta time columns will work properly.

While you’re adding columns, the following can also be helpful during a performance
analysis:

e Stream # (tcp.stream): This is the TCP conversation stream number. You can right-
click on a stream number in this column, and select Selected from the Apply as a
filter menu to quickly build a display filter to inspect a single conversation.

e Calc Win Size (tcp.window_size): This is the calculated TCP window size. This
column can be used to quickly spot periods within a data delivery flow when the
buffer size is decreasing to the point where a Zero Window condition occurred or
almost occurred.

Server processing time events

One of the most common causes of poor response times are excessively long server
processing time events, which can be caused by processing times on the application server
itself and/or delays incurred from long response times from a high number of requests to
backend databases or other data sources.

Confirming and measuring these response times is easy within Wireshark using the
following approach:

1. Having used the sorted Delta Time column approach discussed in the previous
section to identify a legitimate response time event, click on the suspect packet and
then click on the Delta Time column header until it is no longer in the sort mode.
This should result in the selected packet being highlighted in the middle of the
Packet List pane and the displayed packets are back in their original order.

2. Inspect the previous several packets to find the request that resulted in the long
response time. The pattern that you’ll see time and again is:

1. The user sends a request to the server.

2. The server fairly quickly acknowledges the request (with a [ACK] packet).

3. After some time, the server starts sending data packets to service the request; the
first of these packets is the packet you saw and selected in the sorted Delta
Time view.

The time that expires between the first user request packet and the third packet when the
server actually starts sending data is the First Byte response time. This is the area where
you’ll see longer response times caused by server processing time. This effect can be seen
between users and servers, as well as between application servers and database servers or
other data sources.

In the following screenshot, you can see a GET request from the client followed by an
ACK packet from the server 198 milliseconds later (0.198651 seconds in the Delta Time
Displ column); 1.9 seconds after that the server sends the first data packet (HTTP/1.1 200
OK in the Info field) followed by the start of a series of additional packets to deliver all of
the requested data. In this illustration, a Time Reference has been set on the request
packet. Looking at the Rel Time column, it can be seen that 2.107481 seconds transpired
between the original request packet and the first byte packet:

Rel Time (formatted) Delta Time Displ W5 Stream # Source Address Destination Addr Info
192.168.1.115 10.1.1.125 GET /Orion/NetPerfMon;

2.107481 1.908830 2 10.1.1.125 192.168.1.115 HTTP/1.1 200 OK (PNG)
2.107671 0. 000190 2 10.1.1.125 192.168.1.115 B8080-60351 [ACK] Seg=1

It should be noted that how the First Byte data packet is summarized in the Info field
depends upon the state of the Allow subdissector to reassemble TCP streams setting in
the TCP menu, which can be found by navigating to Edit | Preferences | Protocols, as
follows:

o If this option is disabled, the First Byte packet will display a summary of the contents
of the first data packet in the Info field, such as HTTP/1.1 200 OK shown in the
preceding screenshot, followed by a series of data delivery packets. The end of this
delivery process has no remarkable signature; the packet flow just stops until the next
request is received.

o If the Allow subdissector to reassemble TCP streams option is enabled, the First
Byte packet will be summarized as simply a TCP segment of a reassembled PDU or
similar notation. The HTTP/1.1 200 OK summary will be displayed in the Info field
of the last data packet in this delivery process, signifying that the requested data has
been delivered. An example of having this option enabled is illustrated in the
following screenshot. This is the same request/response stream as shown in the
preceding screenshot. It can be seen in the Rel Time column that the total elapsed
time from the original request to the last data delivery packet was 2.1097 seconds:

Rel Time (formatted) Delta Tirne Displ WS Stream # Source Address Destination Addr Info
2.109764 0. 000300 i 10.1.31.125 192.168.1.115 [TCP segment of a reass
2.109766 e e o e 192.168.1.115 HTTP/1.1 200 OK (PNG)

Note

The Reassemble SMB Transaction payload setting in the SMB protocol preferences will
affect how SMB and SMB2 responses are summarized in the Info field in like fashion to
the related setting in the TCP protocol preferences.

In either case, the total response time as experienced by the user will be the time that
transpires from the client request packet to the end of the data delivery packet plus the
(usually) small amount of time required for the client application to process the received
data and display the results on the user’s screen.

In summary, measuring the time from the first request to the First Byte packets is the
server response time. The time from the first request packet to the final data delivery
packet is a good representation of the user response time experience.

Application turn’s delay

The next, most likely source of poor response times—especially for remote users
accessing applications over longer distances—is a relatively high number of what is
known as application turns. An app turn is an instance where a client application makes a
request and nothing else can or does happen until the response is received, after which
another request/response cycle can occur, and so on.

Every client/server application is subject to the application turn effects and every
request/response cycle incurs one. An application that imposes a high number of app turns
to complete a task—due to poor application design, usually—can subject an end user to
poor response times over higher latency network paths as the time spent waiting for these
multiple requests and responses to traverse back and forth across the network adds up,
which it can do quickly.

For example, if an application requires 100 application turns to complete a task and the
round trip time (RTT) between the user and the application is 50 milliseconds (a typical
cross-country value), the app turns delay will be 5 seconds:

100 App Turns X 50 ms RTT network latency = 5 seconds

This app turns’ effect is additional wait (response) time on top of any server processing
and network transport delays that is 5 seconds of totally wasted time. The resultant longer
time inevitably gets blamed on the network; the network support teams assert that the
network is working just fine and the application team points out that the application works
fine until the network gets involved. And on it goes, so it is important to know about the
app turns effects, what causes them, and how to measure and account for them.

Web applications can incur a relatively high app turn count due to the need to download
one or more CSS files, JavaScript files, and multiple images to populate a page. Web
designers can use techniques to reduce the app turn and download times, and modern
browsers allow numerous connections to be used at the same time so that multiple
requests can be serviced simultaneously, but the effects can still be significant over longer
network paths. Many older, legacy applications and Microsoft’s Server Message Block
(SMB) protocols are also known to impose a high app turn count.

The presence and effects of application turns are not intuitively apparent in a packet
capture unless you know they exist and how to identify and count them. You can do this in
Wireshark for a client-side capture using a display filter:

ip.scr == 10.1.1.125 && tcp.analysis.ack_rtt > .008 && tcp.flags.ack == 1

You will need to replace the ip.src IP address with that of your server, and adjust the
tcp.analysis.ack_rtt value to the RTT of the network path between the user and server.
Upon applying the filter, you will see a display of packets that represent an application
turn, and you can see the total app turns count in the Displayed field in the center section
of the Wireshark’s Status Bar option at the bottom of the user interface.

If you measure the total time required to complete a task (first request packet to last data
delivery packet) and divide that time into the time incurred for application turns (number
of app turns X network RTT), you can derive an approximate app turn time percentage:

5 seconds app turns delay / 7.5 seconds total response time = 66% of RT

Any percentage over 25 percent warrants further investigation into what can be done to
reduce either the RTT latency (server placement) or the number app turns (application
design).

Network path latency

The next leading cause of high response times is network path latency, which compounds
the effects of application turns as discussed in the preceding section, as well as affecting
data transport throughput and how long it takes to recover from packet loss and the
subsequent retransmissions.

You can measure the network path latency between a client and server using the [ICMP

ping packets, but you can also determine this delay from a packet capture by measuring
the time that transpires from a client SYN packet to the server’s SYN, ACK response
during a TCP three-way handshake process, as illustrated in the following figure of a
client-side capture:

CLIENT SIDE RTT

S
w‘
RTT = 10 ms
% 5‘[“1 AG“ 5 ms
:éE=.=_-_f_;_-=_:_.:E_.
- " -

In a server-side capture, the time from the SYN, ACK to the client’s ACK (third packet in
the three-way handshake), also reflects the RTT. In practice, from any capture point, the
time from the first SYN packet to the third ACK packet is a good representation of the
RTT as well assuming the client and server response times during the handshake process
are small. Be aware that the server response time to a SYN packet, while usually short,
can be longer than normal during periods of high loading and can affect this measurement.

High network path latency isn’t an error condition by itself, but can obviously have
adverse effects on the application’s operation over the network as previously discussed.

Bandwidth congestion

Bandwidth congestion affects the application’s performance by extending the amount of
time required to transmit a given amount of data over a network path; for users accessing
an application server over a busy WAN link, these effects can become significant. A
network support team should be able to generate bandwidth usage and availability reports
for the in-path WAN links to check for this possibility, but you can also look for evidence
of bandwidth congestion by using a properly configured Wireshark IO Graph to view
network throughput during larger data transfers.

The following screenshot illustrates a data transfer that is affected by limited bandwidth;
the flatlining at the 2.5 Mbps mark (the total bandwidth availability in this example),
because no more bandwidth is available to support a faster transfer is clearly visible:

M Wireshark I0 Graphs: Transfer 2.5 MB File SMB2 Svr 10x - WS 192x 2.5Mbps 100ms.pcapng o= |
— 5000000
— 2500000
| rTn1 rﬁﬁT T 0
s 10s
4 [m | *
Graphs X Axis
[Graph 1] Color [Filter:| Style: | Line » | [¥] Smooth || Tick interval:1 sec |Z|
EGraph 2| Colar [Filter:| ip.dst==1011125 Style: | Line IEI [¥] Smooth ?ITEE etk 10 |Z|
[T] View as time of day
IGraph 3]) [FiH:er:| Style: Line IZI Y| Smooth -
= Y Axis
| Graph 4| Color [Filter:| | ip.sre==1011125 Style: Line B @ smooth ||y [Bis/Tick [
[Graph 5] Calor [Filter:] Style: Line » | [¥] Smooth || Scale: Auto |Z|
Smooth: | Mo filter |Z|
’ Help ‘ l Copy | | Save] ’ Close]

You can determine the peak data transfer rate in bits-per-second (bps) from an IO Graph
by configuring the graph as follows:

X Axis Tick interval: 1 sec

Y Axis Unit: Bits/tick

Graph 2 Filter: ip.dst == <IP address of server>
Graph 4 Filter: ip.src == <IP address of server>

These settings result in an accurate bits-per-second display of network throughput in
client-to-server (red color) and server-to-client (blue color) directions. The Pixels per tick
option in the X Axis panel, the Scale option in the Y Axis panel, and other settings can be
modified as desired for the best display without affecting the accuracy of the
measurement.

Be aware that most modern applications can generate short-term peak bandwidth demands
(over an unrestricted link) of multiple Mbps. The WAN links along a network path should
have enough spare capacity to accommodate these short term demands or response time
will suffer accordingly. This is an important performance consideration.

Data transport

There are a number of TCP data transport effects that can affect application performance;
these can be analyzed in Wireshark.

TCP StreamGraph

Wireshark provides TCP StreamGraphs to analyze several key data transport metrics,
including:

Round-trip time: This graphs the RTT from a data packet to the corresponding ACK
packet.

Throughput: These are plots throughput in bytes per second.

Time/sequence (Stephen’s-style): This visualizes the TCP-based packet sequence
numbers (and the number of bytes transferred) over time. An ideal graph flows from
bottom-left to upper-right in a smooth fashion.

Time/sequence (tcptrace): This is similar to the Stephen’s graph, but provides more
information. The data packets are represented with an I-bar display, where the taller
the I-bar, the more data is being sent. A gray bar is also displayed that represents the
receive window size. When the gray bar moves closer to the I-bars, the receive
window size decreases.

Window Scaling: This plots the receive window size.

Note

The TCP StreamGraphs are unidirectional. You want to select a packet for the
direction that is transporting data to get the proper view.

These analysis graphs can be utilized by selecting one of the packets in a TCP stream in
the Packet List pane and selecting TCP StreamGraph from the Statistics menu and then
one of the options such as the Time-Sequence Graph (tcptrace).

The selected graph and Control Window will appear from the Graph type tab of the
Control Window that you can select one of the other types of analysis graphs, as shown
in the following screenshot:

!GraphE Control - Wir... [=] -

Eonm Magnlﬁ,- Grlgln Cruss;

Graph type:

1 Round-trip Time

1 Throughput

1 Time/Sequence (Stevens'-style)
@ Time/Sequence (tcptrace-style)

~) Window 5caling

| Init on change

Help Close |

The Time/Sequence Graph (tcptrace) shown in the following screenshot plots sequence
numbers as they increase during a data transfer, along with the gray receive window size

line:

Ml TCP Graph 13 Transfer 2.5 ME File SME2 300ms 100M WAN.peap 192,168 1 11540081 -> 101.1.125:445 |-]

Sequence
number|B] Time/Sequence Graph (tcptrace)

T

1||[|]|]||r|r|1|1[|[|]|]

L B
7 B 9 1 M 12 13 4 15 1§ 7 ¥ 1 2 2

Time|[s]

You can click and drag the mouse over a section of the graph to zoom into a particular
section, or press the + key to zoom in and the - key to zoom out. Clicking on a point in
any of the graphs will take you to the corresponding packet in the Wireshark’s Packet List
pane.

IO Graph

You can also analyze a the effects of TCP issues on network throughput by applying TCP
analysis display filter strings to Wireshark’s IO Graph, such as:

tcp.analysis.flags && !tcp.analysis.window_update

In the following screenshot of a slow SMB data transfer, it can be seen that the multiple
TCP issues (in this case, packet loss, Duplicate ACKs, and retransmissions) in the red line
correspond to a decrease in throughput (the black line):

I.Id s Bt doalim e s byl I ey ek s .
| I 2 ! I T
0= 20s 40= 60s 80s 100s 120s 140s 160s
1|8 iR]
Graphs 1K Axis 1
Coler m Style: |Line IZI [Z] Smooth || Tick interval: 1 sec |E|
T z B ! Pixels per tick: 5 E
Color tcp.analysis.flags 88 ltcp.analysis.window_update Style: |FBar Smooth -
s View as time of day
Graph 3 | Color | Filter: Style: | Line |¥] Smooth
wellioe |l st G
Coler | Filter: Style: |Line IZI Smooth || o Bits/Tick E
Color | Filter Style: |Line IZI [¥] Smooth || Scale: Auto E
Smoocth: | Mo filter IZ|
l Help l l Copy ‘ [Save l [Close I

Clicking on a point in the IO Graph takes you to the corresponding packet in the
Wireshark’s Packet List pane so you can investigate the issue.

I0 Graph — Wireshark 2.0

Wireshark 2.0, also known as Wireshark Qt, is a major change in Wireshark’s version
history due to a transition from the GTK+ user interface library to Qt to provide better
ongoing UI coverage for the supported platforms. Most of the Wireshark features and user
interface controls will remain basically the same, but there are changes to the IO Graph.

These are shown in the following screenshot, which shows the same TCP issues that were
seen in the preceding screenshot:

Wireshark I0 Graphs: Transfer 2.5 MB File SMB2 SLOW.pcap

J
wulllh/hhgﬂtl \L !
|

2F

4f

1 b U

Click fo salect packer 1879 (B8 = 31).

—_— e
Packets/s

75 100 125
Time (5)

MName Display filter Colo Style Y Axis ¥ Field Smoothing

[¥] Al packets B Line Packets/s Nane

[v] TCP errors tepanalysis.flags B Bar Packets/s Hlans

E] Mouse @ drags (7 zooms Interval [] Time of day [Log scale

[Save As...] I Close] [Help] i

The new 10 Graph window features the ability to add as many lines as desired (using the
+ key) and to zoom in on a graph line, as well as the ability to save the graph as an image
or PDF document.

Summary

The topics covered in this chapter included troubleshooting methodology, how to use
Wireshark to troubleshoot connectivity and functionality issues, performance analysis
methodology, and the top five causes of poor application performance and how to use
Wireshark to analyze those causes.

In the next chapter, we will review some of the common types and sources of malicious
traffic and introduce how a security professional can use Wireshark to detect these threats.

Chapter 7. Packet Analysis for Security
Tasks

With the increasing threat of hackers, identity thieves, and corporate data theft, you need
to be able to analyze the security of your network at the packet level.

The topics that will be covered in this chapter include:

Security analysis methodology
Scans and sweeps

OS fingerprinting

Malformed packets

Phone home traffic

Password cracking traffic
Unusual traffic

Security analysis methodology

Security analysis at the packet level is based on detecting and analyzing suspect traffic,
that is, the traffic that does not match normal patterns because of the presence of unusual
protocol types or ports, or unusual requests, responses, or packet frequency. Suspicious
traffic may include reconnaissance (discovery) sweeps, phone home behavior, denial of
service attacks, botnet commands, or other types of behavior from direct attacks or virus-
or botnet-based agents.

Wireshark captures strategic points in the network to investigate suspicious packets from
specific hosts or on network segments and egress points can also complement any
Intrusion Detection System (IDS) systems that may be in place to alert the IT staff about
the suspicious traffic.

The importance of baselining

The ability to identify abnormal traffic patterns that bear investigation versus traffic
caused by poorly behaving applications, misconfigurations, or faulty devices can be made
much easier if you have a baseline of what is normal. A baseline is a snapshot capture of
typical conversations with your primary applications and servers and the background
traffic on the network segments that they reside on. In a potential security breach situation,
you can compare the normal protocols, traffic patterns, and user sessions from a baseline
with a current capture, filter out the normal traffic, and then inspect the differences.

To allow the comparison of baselines in your security analysis, you need to periodically
capture and store packet trace files that cover a sufficient period of time to provide a good
sample of typical user and background traffic patterns while keeping the file sizes
manageable for use within Wireshark, for example, 100 MB to 1 GB per file. You can
configure the Ring Buffer option within Wireshark’s Capture Options window to save a
series of reasonably sized files for longer captures or busier network segments.

Although your baselining needs and practices will depend on your environment, some of
the traffic aspects that you should inspect include:

e Broadcast and multicast types and rates:

o What devices and applications are using broadcasts and multicasts?
o What are the typical broadcast and multicast packet rates?

e Applications and protocols:

What applications are running over the network?

What protocols and ports are they using?

Application launch sequences and typical tasks

Are application sessions encrypted?

Are all users forced to use encryption? Any exceptions?
What are the login/logout sequences and dependencies?

O O O O O O

Routing protocol(s) and routing updates

ICMP traffic

Boot-up sequences

Name resolution sessions

Wireless connectivity includes normal management, control, and data frame contents
VoIP and video communications

Idle time traffic is the host communicating with other hosts when there are no users
logged in

e What backup processes are running at night and for how long?

e Are there any suspect protocols or broadcasts/scans taking place?

As you inspect your baseline captures, it is helpful to view a summary of the protocols
being used by selecting Protocol Hierarchy from the Wireshark’s Statistics menu. In the
following screenshot, for example, you can see that there is some Internet Relay Chat
(IRC) traffic, as well as the Trivial File Transfer Protocol (TFTP) traffic, neither of

which might be normal on your network and could be an indication of rogue
communications with outside entities:

M Wireshark: Protocol Hierarchy Statistics E@
Display filter: none

Protocol % Packets Packets 3% Bytes Bytes Mbit/s End Packets End BytesEnd =
= Frame 347 TN 6835 0.004 0 0
B Ethernet 347 TN 66835 0.004 0 0
& Internet Protocol Version 4 347 250 a6a35 0.004 0 0
= Transmission Control Protocol W 222 SIFT % 34436 0,002 168 13926
[Distributed Corputing Environment / Remote Procedure Call (DCE/RPC) I 4.86 % 17 IQ.?E % 6530 0.000 10 1200
Data [057 2% 2[026% 172 0000 2 172

Internet Relay Chat I 6.29 % 22 ﬂ0.34 % 6942 0.000 22 6842 |E
= Hypertext Transfer Protocol I 343 % 12 ﬂU.Ufl % 6744 0,000 9 2286
Media Type [0.86 % 2]ﬁ.ﬁ4 % 4458 0.000 3 4458
= User Datagram Protocol Emne 125 %323 0002 0 0
[= Trivial File Transfer Protocol m 119 ENT % 31616 0.002 68 3158

Data fasiee 51 67 % 28458 0002 51 28438 -

1 m r

Analyzing baselines of normal traffic levels and patterns is also an excellent way of
getting familiar with your network environment and its typical packet flows and protocols,
which better prepares you to spot abnormal traffic.

Security assessment tools

There are several popular tools that are used by security professionals to perform security
assessment and vulnerability testing. As these tools can generate the same types of scans,
fingerprinting, and other exploitive activities, as might be used by hackers and malicious
agents, they can be useful to a packet analyst to analyze the packets that they generate
with Wireshark to build familiarity with how different types of activities appear in a
packet trace and also to build display filters to detect them.

One of the most popular tools is Network Mapper (Nmap), a free and open source utility
for network discovery and security auditing. Nmap runs on all major computer operating
systems and offers a command-line and GUI version (Zenmap).

Note

You can find more information about Nmap at http://nmap.org and information on other
top security tools can be found at http://sectools.org.

http://nmap.org
http://sectools.org

Identifying unacceptable or suspicious
traffic

Wireshark can be used to identify unusual patterns or packet contents in the network
traffic including network scans, malformed packets, and unusual protocols, applications,
and or conversations that should not be running on your network. The following is a
general list of traffic types that may not be acceptable and/or warrant investigation to
validate their legitimacy in your environment:

e MAC or IP address scans: These attempt to identify active hosts on the network
e TCP or UDP port scans: These attempt to identify active applications and services

IP address and port scans can be generated from network management applications to
build or maintain their list of devices and applications to monitor/manage, but that’s
usually the only legitimate source of these types of traffic.

e Clear text passwords: These are passwords that you can see in the Wireshark’s
Packet Details or Packet Bytes fields. These are typical for File Transfer Protocol
(FTP) logins, but not typical or acceptable elsewhere.

e Clear text data: This is the data in packet payloads that can be read. This is typical
for HTTP requests and responses and commonly seen in application server to
database requests and responses, but these database exchanges should be between
hosts on isolated, nonpublic network segments and otherwise physically secure
environments.

e Password cracking attempts: These are repeated, systematic attempts to discover a
working password, usually from a single device.

e Maliciously formed packets: These are packets with intentionally invalid or
improperly formatted data in protocol fields that are intended to exploit
vulnerabilities in applications.

e Phone home traffic: This is the traffic from a rogue agent that may be resident on a
server or workstation that periodically checks in with a remote (usually off-network)
host.

¢ Flooding or Denial of Service (DOS) attacks: This is the traffic that is intentionally
sent at a very high packet-per-second rate to one or more hosts in an attempt to flood
the host(s) or network with so much traffic that no one else can access their services.

e Subversive activities: These include a number of techniques to prepare for and
facilitate the man-in-the-middle attacks where a device is tricked into sending packets
to a malicious host for the purpose of intercepting data.

This is only a sampling of types of malicious traffic that you might see on your network;
network security is an ever evolving exchange of increasingly sophisticated attacks and
subsequent countermeasures.

As you develop your security analysis skills, you might want to build a special security
profile in Wireshark that includes packet coloring rules based on display filters to help
identify suspicious or malformed packets, as well as a set of Filter Expression Buttons

that isolate and display various types of questionable traffic you might be looking for.

Some examples of display filters to isolate and inspect suspicious packets include:

Filter description Display filter string

Detect ICMP pings and possible ping sweep icmp.type == 8 || icmp.type == 0

ICMP destination unreachable filter (included (icmp.type >= 3 && icmp.type <= 5) || icmp.type == 11
redirects) || (icmpv6.type >= 1 && icmpv6.type <= 4)

Unusual ICMP echo requests (icmp.type == 8) && !(icmp.code == 0x00)

TCP handshakes useful for detecting TCP scans as ||(t¢P.flags&e2 && tcp.seq==0) || (tcp.flags&l2 &&

. . . tcp.seq==0) || (tcp.flags.ack && tcp.seg==1 &&
well as inspecting normal session setups/tear- ltcp.nxtseq > @ && !tcp.ack >1) || tcp.flags.fin == 1

downs/resets || tcp.flags.reset ==1

Detect Xmas scan (URG, FIN, and PUSH flags set) [jtcp.flags == 0x029

Other suspicious TCP settings: TCP SYN/ACK w/] .

Win size greater than 1025, SYN, FIN, PSH, URG |[((tcp.Tlags == 0x62) && (tcp.window_size < 1625)) ||
) > ’ ’ T tcp.flags == 0x2b || tcp.flags == Ox00 ||

bits set, no TCP flags set, TCP max segment size set |ltcp.options.mss_val < 1460

to less than 1460

Internet Relay Chat (IRC) traffic (is this normal in ||tcp.port == 194 || (tcp.port >= 6660 && tcp.port <=
your network?) 6669) || tcp.port == 7000

High number of DNS answers (could be a list of

dns.count.answers > 5
command and control servers)

Scans and sweeps

Malicious programs and rogue processes might investigate a network environment for
available ports and hosts using various scanning processes before launching an exploit.
Identifying the presence of these reconnaissance processes may allow thwarting the attack
before it is launched, as well as tracking down and/or blocking the source of the malicious
activity—especially if that source is inside the company as some of them are.

ARP scans

ARP scans, also called as ARP sweeps, are used to discover active localhosts on a network

segment. An ARP sweep can be difficult to detect unless you apply a display filter and
observe a steady, incremental sweep from the same device, as seen in the following
screenshot:

Mo.

21
22
23
24
25
26
27
28

. 550217
. 551628
. 351659
. 351687
. 551714
. 551742
. 551769
. 351797
. 351827
. 551855

00:
00:
00:
00:
00:
00:
00:
00:

Source

21:
21:
21:
21:
21:
21:
21:
21:

Ba:
b6a:
6a:
Ga:
Ba:
Ga:
6a:
ba:
1Ba:

Bb:
B6:
B6:
B6:
Bb:
Bb:
B6:
B6:

12
H o
H o
H
H s
12
H o
H o
H s

Destination

Broadcast
Broadcast
Broadcast
Broadcast
Broadcast
Broadcast
Broadcast
Broadcast
Broadcast
Broadcast

ARP
ARP
ARP
ARP
ARP
ARP
ARP
ARP
ARP

Protocel Length

42
42
42
42
42
42
42
42

Info

who
who
who
who
who
who
who
who
who

has
has
has
has
has
has
has
has
has

172.
172.
172.
172.
172.
172.
172.
172.
172.

20.
20.
20.
20.
20.
20.
20.
20.

253 B
A

57

.67
A

87

.97
.107
e I By
LA27

Tell
Tell
Tell
Tell
Tell
Tell

172.
o
o
172.
172.
172.

20.
20.
20.
20.
20.
20.

14.
14.
14.
14.
14.
14,

246
246
246
246
246
246

Tell 172.20.14. 246
Tell 172.20.14. 246
Tell 172.20.14. 246

As ARP packets cannot pass through a router, the source device conducting the ARP
sweep must be on the same network segment that the ARP packets are seen on.

ICMP ping sweeps

ICMP ping sweeps are used to discover active hosts on local or remote network segments
(since ICMP uses IP and is routable) using ICMP Type 8 Echo Requests and Type 0 Echo
Replies for a range of IP addresses. You can easily detect ping sweeps by using a display
filter icmp.type == 8 || icmp.type == 0.

TCP port scans

TCP port scans allow a malicious agent to discover which TCP ports are open on a target
host. Network ports are the entry points to a server or workstation; a service that listens on
a given port is able to service requests from a client. Malicious agents can sometimes
exploit vulnerabilities in server code to gain access to sensitive data or execute malicious
code on the machine, which is why testing all active ports is necessary for a complete
coverage of any security validation.

Some of the most common ports used for TCP-based services include:

80 HTTP

443 HTTPS

8080 HTTP proxy

8000 HTTP alternate

21 FTP

22 SSH

23 Telnet

3389 Microsoft Remote Desktop
5900 VNC

25 SMTP

110 POP3

143 IMAP

3306 MySQL

1433 Microsoft SQL Server
1720 H.323

5060 SIP

A TCP port scan device will send a TCP SYN packet to a port on a target host, which will
respond with either SYN, or ACK if the port is open, or RST if the port is closed. Similar
to an ARP scan, a TCP scan can be detected by a series of SYN packets from a single IP
address to a target IP address over a range of port numbers. A display filter can make
detecting these types of scans easier:

ip.dest == <IP Address of target host> && tcp.flags.syn

UDP port scans

UDP port scans are like TCP scans, but they are run against typical UDP-based services,
the most common of which include:

e 53 DNS

161/162 SNMP

67/68 DHCP

5060 SIP

135 Microsoft Endpoint Mapper
137/139 NetBIOS Name Service

The preceding topics cover just a sampling of the most common scans used by malicious
agents. Security analysts should research this topic further to identify all the types of scans
that may be used to exploit their particular environment’s vulnerabilities.

OS fingerprinting

OS fingerprinting is a technique wherein a remote machine sends various types of
commands to a target device and analyzes the responses to attempt to identify the target
devices’ operating system and version. Knowing which operating system a device is
running makes it possible to use exploits specific to that operating system.

Nmap detects operating systems based on a series of port scans, ICMP pings, and
numerous other tests, and then runs a set of follow-up tests based on the results to further
define the OS version running.

In the following screenshot, you can see the test results verbiage from the GUI version of
Nmap (Zenmap) as it completes an OS detection scan, as well as its best estimate of the
operating system and version:

© Zenmap =5 [Hol ==

Scan Teools Profile Help

I

Target: 1722001 | Profite B Caneel

Command: | nmap -sV -0 -v172.2001

[Hosts ” Services MNmap Cutput | Ports / Hustsl Topology | Host Detailsl 5cans|

reerm T nmap -sV -0 ~v172.200.1 |-| = [Details
l denthgml_ﬂlmdf SF 2 AR VALOTUN W ALTUTUDRIU AN U ARSI W ALOTNU L KLgrerelvel 5

WZBwithintx2@thex2a

SF:timeout x28period
\rinThe\x28URL\x28that \x28vou
W2Bareww28trying\x2e
S5F:to\xZBaccess\x28is\x28blockedy .
\rin\ring/s
body>\ryn</html>\ry
S5F:n<!--'w28long\x28comment i x28to\x2@disable\ x2BMSIE
Wr2Band\x28Chrome'x28s
S5F:o-called\x28friendly\x2@error\x28page’ x28-->\ring!--
Wx28longhx28comment

SF: W 28to\x28disable\ x28MSIE K Z2Band \ x28Chrome\x2@s0-
called'\x28friendly’ \x2@

SF:error\x28page\x28-->\r\n<! --\x28long\x28comment
WwZ2etox2@disable\w28MSI
SF:Evx2Band\x2@8Chrome'x28so-called\x28Ffriendly\x2@error
W28page\x28-->\ryn
S5F:<!--'x2@8longhx2@commentix28to\x2@disable\ x2BMSIE
YW2Band\x28Chrome\x28s50
S5F:-called\x28Ffriendly\x2@error\x2@page’ x2@-->\ring!--
Wx28long\x28comment’,

SF:w2@toh\x28disable’\ x28MSIE\x28and \ x28Chrome\ x28s0-
call™}:

MAC Address: 88:;25:98:E5:84:82 (Super Micro Computer)
Warning: 055can results may be unreliable because we
_Euuld not find at least 1 open and 1 closed port
Device type: specialized|general purpose|firewall
Running (JUST GUESSING): Comau embedded (92%), FreeBsD
7.%X (98%), IronPort AsyncO5 7.X (B6%)

05 CPE: cpe:/o:freebsd:freebsd:7 cpe:/
o:ironport:asyncos:7

Appressive 05 pguesses: Comau C4G robot control unit
(92%), FreeBsD 7.8-RELEASE-pS (98%), IronPort AsyncOs —
o 7.5.1 (86%), FreeBSD 7.8-STABLE (85%)
1 [l F "M SRaCL Us MaLches Tor Nost LLest condicions nmon-
ideal). o
F||tErHU‘5t5 [Fier = SPUROR R e L KT oA Lo 2o ool Eo.— W AS.S AL AT

m

A Wireshark capture of the OS detection activity described earlier included as an example
of one of the OS fingerprinting scripts that are run, a bogus HTTP request to the target
device (172.20.0.1) for /nice%20ports%2C/Tri%6Eity . txt%2ebak to see exactly what
kind of error response was generated, which is used to help pinpoint the OS version:

No. Time Source Destination Source Port Destination Port Protocol Length Info
2693 16.260887 172.20.14.246 ' GET /nice%20ports%2C,/Tri%¥6Eity. txt¥2ebak HTTP/1.0
2694 16.262351 172.20.0.1 172.20.14.246 8080 2403 TCP 60 8080-2403 [ACK] Seg=1 Ack=54 wWin=13080 Len=0
2695 16.262403 172.20.0.1 172.20.14. 246 8080 2403 TCP 206 [TcP segment of a reassembled PDU]
2697 16.263793 172.20.0.1 172.20.14.246 8080 2403 HTTP 990 HTTP/1.0 200 oK (text/html)

The exact format of the HTML response from the preceding request could be used to
identify the OS and/or web server version, as seen in the following Wireshark packet
details screenshot:

= Line-based text data: text/html
<html=\rn
<head=\r\n
<titlexError</title="r\n
</head="rn
<body topmargin=1 leftmargin=1 marginheight=1 marginwidth=1 bgcolor="orange" text="black"=\rn
An error occurred.
 </font=\r'n
<font size="+1"="rn
This http server can only serve URL requests for ufdbcuard <br=\r\.n
redirection messages and does not understand the URL.
\rin
URL: <tt>/niceX20ports®2C,/Tri%eEl ty. txt¥2ebak</tt> <br=\rn
Most Tikely the configuration of "redirect” statements is incorrect. It should include "/cgi-bin/URLblocked.cgi”. <br=\rn
</font=\r\n
</body=rin
</html=\r\n
<!-- Tong comment to disable MSIE and Chrome so-called friendly error page -->\r'\n

Analyzing packet captures of these kinds of OS fingerprinting requests and responses will
make it much easier to spot similar activities from malicious entities.

Malformed packets

Maliciously malformed packets take advantage of vulnerabilities in operating systems and
applications by intentionally altering the content of data fields in network protocols. These
vulnerabilities may include causing a system crash (a form of denial of service) or forcing
the system to execute the arbitrary code.

An example of malformed packet vulnerability is Cisco Security Advisory cisco-sa-
20140611-ipv6, wherein vulnerability in parsing malformed IPv6 packets in a certain
series of routers could cause a reload (reboot) of a certain card that carries network traffic,
which could intermittently cause service outages.

Another example of this kind of vulnerability is in some unpatched Windows or Linux
systems that will crash if they receive a series of fragmented packets where the fragments
overlap each other.

The types and possibilities of malformed packets are endless, but vulnerabilities are
usually announced as they are discovered and some may provide packet details. You can
build display filters and/or build coloring rules in Wireshark to detect these packets. It also
helps to study and understand what range of values the different protocol fields normally
and legally contain, and what TCP and other protocol sequences normally look like so you
can spot suspicious contents in packet flows.

Phone home traffic

Phone home traffic originates from a rogue application on a device that periodically
connects to a remote (usually off-network) host to receive updates or commands or deliver
data collected from the infected host. The majority of phone home traffic will be the
operating system and virus protection updates, Dropbox or other external services, and
similar authorized and appropriate services, so it will take some effort to identify
malicious traffic out of this mix.

It is important to understand the risk that phone home traffic can represent: many botnet
Distributed Denial of Service (DDoS) attacks are supported by a “zombie army” of
hijacked computers running software that may lie undetected for some period of time
except for periodic communications with their Command and Control (C&C) servers
awaiting instructions to attack a target. In a similar fashion, keylogging traffic will send
periodic reports of video screenshots and keystroke data to the collecting host.

One way to identify potentially malicious phone home traffic is to capture and inspect the
DNS queries as these sessions start up, looking at two distinct areas:

e The hostname(s) of legitimate services are often reasonably recognizable.

e DNS queries for illegitimate applications contacting C&C servers will often return a
long list of aliases with IP addresses that are not all in the same general range (that is,
from all over the world). A display filter that helps identify DNS responses with long
response lists is dns.count.answers > 5.

It also helps to have a baseline that includes the idle period traffic and a sample of known
updates/services dialogs to compare a questionable capture to.

Password-cracking traffic

Password-cracking traffic can be detected by observing numerous error messages from a
target host directed to a client that repeatedly and unsuccessfully attempts to log in. There
are two general types of password cracking attempts:

e Dictionary attacks work from a list of common words, names, and numbers
¢ Brute force attacks use a sequence of characters, numbers, and key values

Both of these types are often thwarted by login security measures that lock out an account
after a short number of failed login attempts.

Unusual traffic

While it is difficult to anticipate what methods a hacker may use in an attempt to infiltrate
a network or host, there are a few things that should probably never happen on a normal,
healthy network. Due to their usefulness in testing and conveying error conditions, ICMP
packets are a likely target for malicious redirection. Since TCP is the predominant
transport protocol in use for most applications, you should look out for abnormalities in
TCP headers or payloads that could be a sign of malicious intent.

Some examples of abnormalities to look out for are discussed in the following table:

Suspicious

Description
content

TCPbad [|An illegal or unlikely combination of TCP flags. The SYN, SYN/ACK, ACK, PSH, FIN, and RST flags

flags are normal when they’re used in the appropriate places; anything otherwise warrants investigation.

SYN

packet The initial TCP SYN packet should never contain payload data; it is used to establish a session only. Note,
contains [Jhowever, that the third ACK packet in the TCP can contain data.

data

Suspicious

datagram [|References to the operating system or other non-application directories, strange executables, or other
payload |[payload data that doesn’t seem to fit the purpose of the application being used to send the data.
contents

Suspicious s

in p The text used to fill in the payload of an ICMP Echo Request packet is usually a benign sequential series
pa ?oa d of letters and numbers or similar meaningless text. If this text appears to carry commands or meaningful
E)e)zi[data, it warrants investigation.

Clear text [|Seeing FTP used to transport sensitive business data, or Telnet to administer switches and routers, isn’t
passwords |[malicious intent by a hacker. It’s negligent practice by employees as both protocols, by design, transmit
in FTP or ||clear text login IDs and passwords over the network, making it easy for even an unsophisticated hacker to
Telnet capture them. There are Secure FTP (sftp) and Secure Shell (SSH) (Telnet alternative) solutions for all
sessions [Iplatforms available on the Web.

Summary

The topics covered in this chapter on security analysis included detecting scans and
sweeps to identify targets for planned attacks, operating system fingerprinting, detecting
malformed packets, and packets that are suspiciously fragmented or sent out of order,
phone home traffic from malicious agents, identifying password cracking attempts, and
identifying other abnormal packets and payloads.

In the next chapter, we’ll review several key command-line utilities provided in a
Wireshark installation, as well as a few additional packet analysis tools that can
complement your toolset.

Chapter 8. Command-line and Other
Utilities
Wireshark includes a number of command-line utilities to manipulate packet trace files

and offer GUI-free packet captures, and there are a few other tools that can help round out
your analysis toolset.

The topics that will be covered in this chapter include:

Capturing traffic with Dumpcap and Tshark
Editing trace files with Editcap

Merging trace files with Mergecap

Other helpful tools

Wireshark command-line utilities

When you install Wireshark, a range of command-line tools also gets installed, including:

capinfos.exe: This prints information about trace files

dumpcap.exe: This captures packets and saves to a libpcap format file
editcap.exe: This splits a trace file, alters timestamps, and removes duplicate
packets

mergecap.exe: This merges two or more packet files into one file

rawshark.exe: This reads a stream of packets and prints field descriptions
text2pcap.exe: This reads an ASCII hex dump and writes a libpcap file
tshark.exe: This captures network packets or displays data from a saved trace file

The wireshark.exe file launches the GUI version you’re familiar with, but you can also
launch Wireshark from the command line with a number of parameters; type Wireshark
h for a list of options and/or create shortcuts to launch Wireshark with any of those
options.

Note

It is very helpful to add the Wireshark program directory to your system’s PATH statement
so that you can execute any of the command-line utilities from any working directory.

Capturing traffic with Dumpcap

The dumpcap . exe file is the executable that Wireshark actually runs under the covers to
capture packets and save them to a trace file in libpcap format. You can run Dumpcap on
the command line to circumvent using the Wireshark GUI and use fewer resources. A list
of command-line options is available by typing dumpcap.exe -h.

Some of the most useful options are as follows:

e -D: This prints a list of available interfaces and exits

e -i <interface>: This specifies a name or index number of an interface to capture on

e -f <capture filter>: This applies a capture filter in the Berkeley Packet Filter
(BPF) syntax

e -p filesize: This is the file size

e -w <outfile>: This is the name of the file where the files will be saved

An example of viewing a list of interfaces and then running Dumpcap to capture a specific
interface with an IP address capture filter (note the use of quotes around the filter syntax)
configured to use a three-file ring buffer with file sizes of 100 MB and an output filename
derived from capture.pcap is illustrated in the following screenshot:

BN Command Prompt - dumpcap -i 2 -f "host 192.168.1.115" -b filesize:100000 -b files:3 -w capture.pcap == @

C:sWireshark>dumpcap -D

1. “Device~MPF_{ED5BFAFE-831D-4DED-AABF-57E34BBDCBCA> (Wireless Metwork Connection 2>
2. “Device\NPF_{BA76F8BE7Y-5E81-41A7-A618—4741FCAG1E43> (Local Area Connection?

3. “Device~NPF_{865F114C-63AA-4853—A6CC—C6E1B4764655} (Wirelessz Metwork Connection?
4. “Device~NPF_{F6434682-A1E7-4BFD-AALE-D2C2CAZCF1EA} (Bluetooth Metwork Connectionl

C:sUWireshark>dumpcap —i 2 —f "host 192.168.1.115" -bh filesize:100808 -b files:=3 —w capture.pcap
Capturing on ‘Local Area Connection’

File: capture_P8061_260148984151641 .pcap
Packets: 1896812

You can get more information on Dumpcap options at
https://www.wireshark.org/docs/man-pages/dumpcap.html.

https://www.wireshark.org/docs/man-pages/dumpcap.html

Capturing traffic with Tshark

Tshark can be used to capture network packets and/or display data from the capture or a
previously saved packet trace file; packets can be displayed on the screen or saved to a
new trace file.

The same syntax used to perform a basic capture using Dumpcap will work with Tshark as
well, so we won’t repeat that here. However, Tshark offers a very wide range of additional
features, with a corresponding large number of command-line options that can, as in all
Wireshark utilities, be viewed by typing tshark -h in the command prompt.

A number of Tshark options are to view statistics; an example of the command syntax and
statistical results from a capture (after pressing Ctrl + C to end the capture) is illustrated in
the following screenshot:

=

BN Command Prompt ilE@

C:sWireshark>tshark —i 2 —f “host 172.168.1.115" —qg=z io.phs
Capturing on 'Local Area Connection’
4232 packets captured

m

frames:4932 hytes 4698335
frames:43 hytes:2004
frames:4889 hytes:4696331
frames:129 hytes:25427
frames:22 hytes:1839
frames:24 hytes:2208
frames:37? hytes:12266
frames:38 hytes:6330
frames:2 hytes:684
frames:12 hytes: 21006
frames: 4756 hytes 46787208
frames:35 hytes: 22325
data—text—lines frames:12 hytes:5527
xml frames:2 hytes:1479
tep.segments frames:1 hytes:16308
Json frames:1 hytes:249
tep.segments frames:1 hytes:249
media frames:1 hytes:824
tep.segments frames:1 hytes:824
frames:62 hytes:37746
tep.segments frames:7 hytes:4954
szl frames:3 hytes:1126
frames:4 hytes:184

| 4 m b

You will find an extensive number of details and examples on using statistics and other
Tshark options at https://www.wireshark.org/docs/man-pages/tshark.html.

https://www.wireshark.org/docs/man-pages/tshark.html

Editing trace files with Editcap

You can use Editcap to split a trace file that is too large to work with in Wireshark into
multiple smaller files, extract a subset of a trace file based on a start and stop time, alter
timestamps, remove duplicate packets, and a number of other useful functions.

Type editcap -h in the command prompt for a list of options. The syntax to extract a
single packet or a range of packets by packet numbers is as follows:

editcap -r <infile> <outfile> <packet#> [- <packet#>]

You must specify <infile> and <outfile>. The -r specifies to keep, not delete, the
specified packet or packet range, for example:

editcap -r MergedTraces.pcapng packetrange.pcapng 1-5000

You can split a source trace file into multiple sequential files, each containing the number
of packets specified by the -c option:

editcap -c 5000 MergedTraces.pcapng SplitTrace.pcapng
You can eliminate duplicate packets in a file within a five-packet proximity:
editcap -d hasdupes.pcapng nodupes.pcapng

If you have two trace files that have a significant span of time between them, and you
want to merge them into one file but closer together, you can investigate all of the packets
within one IO Graph or a similar analysis function; you can first use the -t option on one
of the files to adjust the timestamps in that file by a constant amount (in seconds). For
example, to subtract 5 hours from a trace file’s timestamps, use the following command:

editcap -t -18000 packetrange.pcapng adj_packetrange.pcapng
Comparing the two traces in Wireshark reveals the following details:

e Packet #500 before adjustment: 2014-09-04 15:27:38.696897
e Packet #500 after adjustment: 2014-09-04 10:27:38.696897

You can get more information on and examples of Editcap options at
https://www.wireshark.org/docs/man-pages/editcap.html.

https://www.wireshark.org/docs/man-pages/editcap.html

Merging trace files with Mergecap

You can use Mergecap to merge two or more trace files into one file. The basic syntax is
as follows:

mergecap -w <outfile.pcapng> infilel.pcapng infile2.pcapng
For example:

mergecap -w merged.pacap sourcel.pcapng source2.pcapng
source3.pcapng

One useful option you sometimes may want to use in Mergecap (and several of the other
command-line utilities) is -s <snaplen>. This will truncate the packets at the specified
length past the start of each frame, resulting in a smaller file; a typical value for
<snaplen> is 128 bytes:

mergecap -w merged_trimmed.pcapng -s 128 sourcel.pcapng source2.pcapng

Mergecap batch file

If the capture files you want to merge have a variety of naming formats, you can create a
MergeTraces.bat file containing the following Windows batch commands:

@echo off

cls

echo MergeTraces.bat
echo.

echo Merges multiple packet trace files with a .pcapng extension into one
.pcapng file

echo.

echo Usage: Copy MergeTraces.bat into the directory with the .pkt files and
execute

echo The utility will generate a 'MergedTraces.pcap' file

echo and a 'MergedFilelList.txt' file which lists the .pcapng files
processed.

echo.

echo.

echo IMPORTANT!! You must type 'CMD /V:ON' from this window which enables
echo 'Delayed environment variable expansion' in order to properly execute
echo this batch utility.

echo.

echo You must also add the path to Wireshark's mergecap.exe to your path
statement.

echo.

echo If you've not done this, Type Ctrl-C to exit; Otherwise

pause

echo.

echo Deleting old MergedFileList. txt..

if exist "MergedFilelList.txt" del MergedFilelList.txt

for %%f in (*.pcap-ng) do echo "%%f" >> MergedFileList.txt

echo Deleting old MergedTraces.pcapng..

if exist "MergedTraces.pcapng" del MergedTraces.pcapng

echo Preparing to merge:

echo.

type MergedFileList.txt

echo.

echo Merging.........

set FILELIST=

for %%f in (*.pcap-ng) do set FILELIST=!FILELIST! %%f

.. DEBUG

:: echo %FILELIST%

mergecap -w MergedTraces.pcapng %FILELIST%

echo.

if exist MergedTraces.pcapng @echo Done!

if NOT exist MergedTraces.pcapng @echo Error!!—Check your settings.

echo.

Copy the batch file into a directory containing just the packet trace files you want to merge
and execute it. The batch file will merge all the . pcapng files into one file called
MergedTraces.pcapng. This is much easier than trying to specify a long list of unique
source files in a command line, especially if the filenames contain date-time stamps. If
you need to work with the .pcap files, change all instances of .pcapng to .pcap in the

batch commands; you can also alter the output filename as desired.
Note

You can also merge trace files by clicking-and-dragging the files into the Wireshark
desktop. The files will be merged in chronological order based on their timestamps after
selecting Merge from the Wireshark File menu. This works reasonably well as long as the
total file size doesn’t exceed 1GB.

You can get more info and examples of Mergecap options at
https://www.wireshark.org/docs/man-pages/mergecap.html.

https://www.wireshark.org/docs/man-pages/mergecap.html

Other helpful tools

Wireshark is an extremely versatile and useful tool. However, there are some things it
doesn’t do easily or at all, so we’ll discuss a few other tools you may want to include in

your analysis toolset.

HttpWatch

HttpWatch is a packet-based performance analysis utility that integrates with Internet
Explorer and Firefox browsers to view a graphical depiction and statistical values from
HTTP interactions between the browser and websites. This kind of utility makes it easy to
discover and measure from the user’s perspective when significant delays are occurring
and the source of those delays.

The following screenshot shows the HttpWatch visual and numerical analysis by loading
the www.wireshark.org home page:

Get Acquainted ~ Get Help - Develop ~

What's on your network?

‘ Download ﬁ_,%

X @ Record [“top fg| Clear |] View |2 Summary |) Find = 7 Filter v| Hsave -~ = v| 8 Tools
Started " Time Chart 1 F Time Sent Received Method Result
=] 00:00:00.000 Wireshark - Go Deep.

+0.000 | ! 0.010 0 0 GET (Cache)
+o.010 | ! 0.519 650 10920 GET 200
+0.517 | ! 0.001 0 0 GET (Cac
+0.71 | ! 0.009 o 0 GET

+0.732 | | 0.001 0 0 GET

+0.737 | | 0.002 0 0 GET

+0.740 | | 0.001 0 0 GET

+0.742 | 0.002 i 0 GET

+0.744 | 0.002 0 0 GET

+0.746 | 0.002 0 0 GET

+0.743 | | 0.002 0 0 GET

+0.750 | | 0.003 0 0 GET

+0.780 [! 0.025 762 485 GET

+0.785 i ! 0.044 730 437 GET

You can get more information about HttpWatch from http://www.httpwatch.com/. Also, a
similar performance analysis utility is Fiddler, which can be found at
http://www.telerik.com/fiddler.

http://www.wireshark.org
http://www.httpwatch.com/
http://www.telerik.com/fiddler

SteelCentral Packet Analyzer Personal Edition

SteelCentral Packet Analyzer (previously known as Cascade Pilot) is available in Standard
and Personal Edition versions. Unlike Wireshark, this utility is able to open and analyze
multigigabyte trace files; you can quickly isolate a conversation of interest, right-click on
it, and save that conversation in a separate packet trace file or launch Wireshark directly
and pass that conversation to it from the same menu.

In addition, the utility offers a variety of network analysis screens called Views that
provide graphical displays and reports on a wide range of performance perspectives. The
following screenshot illustrates a set of MAC Overview Views:

£} Gething Started | € MAC Dverview 11
Filters (None) ¥
Traffic Ohwer Time - Bits i
2 00t
1.804 A
1.60H
1.4
1.200
8
= 1.001
m
0.201
0.6at
0.400
=5
r [
Motes &
| e
o B urce [nversations
g 439 Broadeast End Point Bytes
624.52K
16.55K
60
00:21:60:86:0b0:c2 Cisco_13:72:d8 Conversation: Byfes
623.07TK
= 00-27;0d:55:14:b8 §188kK
i}
00; 1cc25:95:db 854 [eBdT: 18:21:bT e
808 38K 33:33:00:01:00:02 - COPNTRIDTP/PAGP/UDLD
| "
23.259(507. 09K 30 Kea0 33:33:00:00:000¢ 3o a9:54:21:08:04
ol il w8 g
L R S
ANl T L
Sl i 01:80:22.:00:00.00 01:00:5e:;7FfR
. 2ol M pr gl o ¥
ol - F b 1
P F A F & P
3BT 0ePS i 8 o e e
op 12 Conversations (100% of Bytes) 3 (3
Naotes & Notes _
Current Selechon. 412 16:33:48 - 16:40:01 (13 5) 2 1 2ec - Tolal Window: 4712 16:33.48 - 16:40:01 Y

You can get more information on the SteelCentral Packet Analyzer products at
http://www.riverbed.com/products/performance-management-control/network-
performance-management/packet-analysis.html.

http://www.riverbed.com/products/performance-management-control/network-performance-management/packet-analysis.html

AirPcap adapters

If you are using Wireshark to analyze wireless networks, you will need a wireless adapter
that provides the ability to see all of the available channels and provides a Radiotap
Header, which offers additional information for each frame such as radio channel and
signal/noise strengths.

The prevalent wireless adaptor for use with Wireshark or SteelCentral Packet Analyzer on
Windows platforms is the Riverbed AirPcap adapter, which is available from the
Riverbed website. The AirPcap adapter plugs into a USB port and includes drivers to
integrate with Wireshark and provide the Radiotap Header information. There are several
product models that offer increasing coverage of the various WLAN bands; AirPcap Nx
offers the widest coverage. The following image depicts two of the available adapters:

You can get more information on the Riverbed AirPcap adapters at

http://www.riverbed.com/products/performance-management-control/network-
performance-management/wireless-packet-capture.html.

http://www.riverbed.com/products/performance-management-control/network-performance-management/wireless-packet-capture.html

Summary

The topics covered in this chapter included several of Wireshark’s command-line utilities
to capture packets and edit and merge packet trace files, as well as several useful tools to

compliment your analysis toolset.

This is the final chapter of this book on Wireshark. I hope you enjoyed reading it, and
mostly, I hope you use it as a foundation to become a Wireshark expert!

Index

A

abnormalities, TCP

e}

examples / Unusual traffic

Address Resolution Protocol (ARP)

e}

about / Address Resolution Protocol

/ Ethernet frames and switches

AirPcap Adapters

e}

about / AirPcap adapters

Anycast addresses

e}

about / [Pv6 address types

application layer, OSI

e}

e}

about / Layer 7 — the application layer
encapsulation / Encapsulation

application layer protocols

e}

e}

e}

e}

e}

about / Application layer protocols
Dynamic Host Configuration Protocol (DHCP) / Dynamic Host Configuration

Protocol

Dynamic Host Configuration Protocol Version 6 (DHCPv6) / Dynamic Host
Configuration Protocol Version 6

Domain Name Service (DNS) / Domain Name Service

Hypertext Transfer Protocol (HTTP) / Hypertext Transfer Protocol
additional information / Additional information

areas, functional issues troubleshooting

e}

e}

e}

e}

user credentials / Troubleshooting functional issues

user machine, application settings / Troubleshooting functional issues
application reported errors / Troubleshooting functional issues

web browsers differences / Troubleshooting functional issues

ARP packet

e}

significant fields / Address Resolution Protocol

ARP scans

e}

about / ARP scans

ARP sweeps

e}

about / ARP scans

baselining

o about / The importance of baselining
o importance / The importance of baselining

o traffic aspects / The importance of baselining
basic network connectivity

o testing / Basic network connectivity

o application services, connecting to / Connecting to the application services
Berkeley packet filter (BPF) / Installing Wireshark on Mac OS X
bits-per-second (bps) / Bandwidth congestion
bits per second (bps) / Filtering out the noise

Capinfos.exe

o about / Wireshark command-line utilities
Capture Filter field

o about / Selecting the correct network interface
capture filters

o about / Capturing interfaces, filters, and options

o using / Using capture filters

o configuring / Configuring capture filters

o reference link / Configuring capture filters
Capture Interfaces window

o about / Selecting the correct network interface

o options / Selecting the correct network interface
capture options

o about / Capturing interfaces, filters, and options
Capture Options window

o about / Selecting the correct network interface, Capture options
filename, configuring / Capturing filenames and locations

location, configuring / Capturing filenames and locations
multiple file options / Multiple file options

Ring buffer option / Ring buffer

stop capture options / Stop capture options
display options / Display options

o name resolution options / Name resolution options
Class Inter-Domain Routing (CIDR) notation / IPv6 addressing
Classless Inter-Domain Routing (CIDR) designator / IP networks and subnets
Class of Service (CoS) tagging / Layer 2 — the data-link layer
command-line tools

o Capinfos.exe / Wireshark command-line utilities
Dumpcap.exe / Wireshark command-line utilities
Editcap.exe / Wireshark command-line utilities
Mergecap.exe / Wireshark command-line utilities
Rawshark.exe / Wireshark command-line utilities
Text2pcap.exe / Wireshark command-line utilities
Tshark.exe / Wireshark command-line utilities
Command and Control (C&C) servers / Phone home traffic
Command Prompt (CMD) / Basic network connectivity
configuration, Wireshark

o packet timestamps, working with / Working with packet timestamps

o packet colorization / Colorization and coloring rules

o preferences / Wireshark preferences
profiles / Wireshark profiles
connectivity issues

O O O O O O

O O O O O O

(e]

o troubleshooting / Troubleshooting connectivity issues
e connectivity issues troubleshooting

o about / Troubleshooting connectivity issues
network interfaces, enabling / Enabling network interfaces

O
o physical connectivity, confirming / Confirming physical connectivity
o workstation IP configuration, obtaining / Obtaining the workstation IP

configuration
MAC addresses, obtaining / Obtaining MAC addresses
o network service IP addresses, obtaining / Obtaining network service IP
addresses
o basic network connectivity / Basic network connectivity
e content addressable memory (CAM) table / Ethernet frames and switches
e Conversations window

about / Using the Conversations window

using / Using the Conversations window
Ethernet tab / The Ethernet tab

TCP tab / The TCP and UDP tabs
UDP tab / The TCP and UDP tabs
WLAN tab / The WLAN tab

(e]

O O O O O O

D

e DARPA model

e}

about / The OSI and DARPA reference models

e data-link layer, OSI

O O O O O o o

[]
(e] (e]

O O O O O

(e]

about / Layer 2 — the data-link layer
Media Access Control (MAC) addresses / Layer 2 — the data-link layer
Type (or EtherType) field / Layer 2 — the data-link layer

Payload / Layer 2 — the data-link layer
frame check sequence / Layer 2 — the data-link layer

Cyclic Redundancy Check (CRC) / Layer 2 — the data-link layer

Ethernet II frame / Layer 2 — the data-link layer
Ethernet frame / Layer 2 — the data-link layer

data transport

about / Data transport
TCP StreamGraph / TCP StreamGraph

time/sequence (Stephen’s-style) / TCP StreamGraph
time/sequence (tcptrace) / TCP StreamGraph
window scaling / TCP StreamGraph

IO Graph / 10O Graph

Wireshark 2.0 / 10 Graph — Wireshark 2.0

Defense Advanced Research Projects Agency (DARPA) / The OSI model — why it

matters

e}

e}

e}

O O O O O o o

delays

prioritizing / Detecting and prioritizing delays
detecting / Detecting and prioritizing delays

DHCP message types

DHCP Discover / Obtaining the workstation IP configuration

DHCP Reply / Obtaining the workstation IP configuration

DHCP Request / Obtaining the workstation IP configuration

DHCP Decline / Obtaining the workstation IP configuration

DHCP Acknowledgment / Obtaining the workstation IP configuration

DHCP Negative Acknowledgement / Obtaining the workstation IP configuration
DHCP Release / Obtaining the workstation IP configuration

DHCP Informational / Obtaining the workstation IP configuration

¢ display filters

O O O O O o o

about / Wireshark display filters

ways of creating / Wireshark display filters

Display Filter window / The Display Filter window

display filter syntax / The display filter syntax

reference link / The display filter syntax

typing in / Typing in a display filter

creating, from Conversations window / Display filters from a Conversations or
Endpoints window

o creating, from Endpoints window / Display filters from a Conversations or
Endpoints window
Display Filter window
o about / The Display Filter window
Distributed Denial of Service (DDoS) attacks / Phone home traffic
Domain Name Service (DNS)
o about / Domain Name Service
o Wireshark DNS filters / Wireshark DNS filters
Domain Name System (DNS) / Ethernet frames and switches
Dumpcap
o used, for capturing traffic / Capturing traffic with Dumpcap
Dumpcap.exe
o about / Wireshark command-line utilities
Dumpcap options
-D / Capturing traffic with Dumpcap
-i <interface> / Capturing traffic with Dumpcap
-f <capture filter> / Capturing traffic with Dumpcap
-b filesize / Capturing traffic with Dumpcap
-w <outfile> / Capturing traffic with Dumpcap
reference link / Capturing traffic with Dumpcap
Dynamic Host Configuration Protocol (DHCP)
o about / Dynamic Host Configuration Protocol
o Wireshark DHCP filters / Wireshark DHCP filters
Dynamic Host Configuration Protocol Version 6 (DHCPv6)

o about / Dynamic Host Configuration Protocol Version 6
o Wireshark DHCPv®6 filters / Wireshark DHCPv6 filters

O O O O O O

Editcap

o about / Editing trace files with Editcap

o used, for editing trace files / Editing trace files with Editcap
Editcap.exe

o about / Wireshark command-line utilities
Editcap options

o reference link / Editing trace files with Editcap
Ethernet frame

o significant fields / Layer 2 — the data-link layer

o working, with switches / Ethernet frames and switches
Ethernet tab

o about / The Ethernet tab

Fiddler
o URL / HttpWatch
filtered packets

o saving / Saving the filtered traffic
Filter Expression Button (FEB) / Obtaining the workstation IP configuration
Filter Expression Button option

TCP SYN / Filter Expression Buttons

SYN/ACK / Filter Expression Buttons

RST / Filter Expression Buttons

FIN / Filter Expression Buttons

filter expression buttons
o about / Filter Expression Buttons
o Expressions window button, using / Using the Expressions window button
o right-click menus, on specific packet fields / Right-click menus on specific

packet fields
Filter Expression Buttons / Identifying unacceptable or suspicious traffic
Filter Expression window
o using / Using the Expressions window button
First Byte response time / Server processing time events
Follow SSL Stream window

o about / Following TCP/UDP/SSL streams
Follow TCP Stream window

o about / Following TCP/UDP/SSL streams
Follow UDP Stream window

o about / Following TCP/UDP/SSL streams
functional issues
o troubleshooting / Troubleshooting functional issues

(e]

(e]

(e]

(e]

half-split troubleshooting

o about / Half-split troubleshooting and other logic
o advantages / Half-split troubleshooting and other logic
e hop
o about / WAN links
Host field / Host
HTTP Methods
o about / HTTP Methods
GET /HTTP Methods
HEAD / HTTP Methods
POST / HTTP Methods
OPTIONS / HTTP Methods
PUT / HTTP Methods
DELETE / HTTP Methods
o CONNECT / HTTP Methods
e HttpWatch
o about / HttpWatch
o URL / HttpWatch
e HyperText Transfer Protocol (HTTP)
o about / Layer 7 — the application layer
e Hypertext Transfer Protocol (HTTP)
about / Hypertext Transfer Protocol
features / Hypertext Transfer Protocol

header / Hypertext Transfer Protocol
Host field / Host

Request Modifiers / Request Modifiers

O O O O O O

O O O O O

e [ICMP control message types

o about / ICMP control message types
e [CMP pings

o about / ICMP pings
e [CMP ping sweeps

o about / ICMP ping sweeps
e [CMP redirects

o about / ICMP redirects
e ICMP traceroutes

o about / ICMP traceroutes
e [ICMPv6 packet types

about / Internet Control Message Protocol Version 6
Echo request / Internet Control Message Protocol Version 6
Echo response / Internet Control Message Protocol Version 6
Multicast listener query / Internet Control Message Protocol Version 6
Multicast listener report / Internet Control Message Protocol Version 6
Multicast listener done / Internet Control Message Protocol Version 6
Router solicitation / Internet Control Message Protocol Version 6
Router advertisement / Internet Control Message Protocol Version 6
Neighbor solicitation / Internet Control Message Protocol Version 6
Neighbor advertisement / Internet Control Message Protocol Version 6
Redirect message / Internet Control Message Protocol Version 6
e IGMP Membership Report

o about / Internet Group Management Protocol
e IGMP protocol header

o significant fields / Internet Group Management Protocol
e installation
Wireshark / Installing Wireshark

o Wireshark, on Windows / Installing Wireshark on Windows

o Wireshark, on Mac OS X / Installing Wireshark on Mac OS X

o Wireshark, on Linux/Unix / Installing Wireshark on Linux/Unix
¢ Internet Control Message Protocol (ICMP)

o about / Address Resolution Protocol, Internet Control Message Protocol
pings / ICMP pings
traceroutes / ICMP traceroutes
control message types / ICMP control message types
redirects / ICMP redirects
Wireshark ICMP filters / Wireshark ICMP filters
significant fields / Internet Control Message Protocol Version 6

o Multicast Listener Discovery (MLD) / Multicast Listener Discovery
¢ Internet Control Message Protocol Version 6 (ICMPv6)

o about / Internet Control Message Protocol Version 6

O 0O 0O O 0O 0O o o o o o

(e]

O O O O O O

¢ Internet Engineering Task Force (IETF)
o about / Requests for Comments
¢ Internet Group Management Protocol (IGMP)
about / Address Resolution Protocol, Internet Group Management Protocol

significant fields / Internet Group Management Protocol

interesting fields / Internet Group Management Protocol
o Wireshark IGMP filters / Internet Group Management Protocol

¢ Internet Protocol Version 4 (IPv4)
o about / Internet Protocol
Differentiated Services (DiffServ) / Internet Protocol
Total length / Internet Protocol
Identification (IP ID) / Internet Protocol
Flags / Internet Protocol
Fragment offset / Internet Protocol
Time to Live (TTL) / Internet Protocol
Protocol / Internet Protocol
o Source and destination IP addresses / Internet Protocol
¢ Internet Protocol Version 6 (IPv6)
o about / Internet Protocol Version 6

o addressing / IPv6 addressing

o address types / [IPv6 address types
o header fields / IPv6 header fields

o transition methods / IPv6 transition methods

¢ Internet Relay Chat (IRC) traffic / The importance of baselining, Identifying

unacceptable or suspicious traffic
e Intrusion Detection System (IDS) systems / Security analysis methodology

e 10O Graph /10 Graph
e [P addresses
o working, with routers / IP addresses and routers
e [P address ranges / IP networks and subnets
e [P networks
o about / IP networks and subnets
e [Pv6 addressing
o about / [Pv6 addressing
o rules /IPv6 addressing
e [Pv6 address types
o about / [Pv6 address types
o Unicast / IPv6 address types
o Multicast / IPv6 address types
o Anycast / IPv6 address types
e [Pv6 header fields
o about / IPv6 header fields
o version / IPv6 header fields
o traffic class / IPv6 header fields

(e]

(e]

(e]

O O O O O o o

O O O o

e}

flow label / IPv6 header fields

payload length / IPv6 header fields

next header / IPv6 header fields

hop limit / IPv6 header fields

source and destination addresses / IPv6 header fields

e [Pv6 transition methods

(e]

(e]

(e]

(e]

(e]

about / IPv6 transition methods

6to4 tunneling / IPv6 transition methods
Teredo tunneling / IPv6 transition methods
ISATAP tunneling / IPv6 transition methods
Wireshark IPv6 filters / Wireshark IPv6 filters

e [SATAP tunneling method

e}

about / IPv6 transition methods

L

e Linux/Unix
o Wireshark, installing / Installing Wireshark on Linux/Unix

MAC addresses

o obtaining / Obtaining MAC addresses, Obtaining network service IP addresses
MAC or IP address scans

o about / Identifying unacceptable or suspicious traffic
Mac OS X

o Wireshark, installing / Installing Wireshark on Mac OS X
malformed packets

o about / Malformed packets
Mergecap

o about / Merging trace files with Mergecap

o used, for merging trace files / Merging trace files with Mergecap

o batch file / Mergecap batch file
Mergecap.exe

o about / Wireshark command-line utilities
Mergecap options
o reference link / Mergecap batch file
methodology
o troubleshooting / Troubleshooting methodology
methodology troubleshooting
packet analysis, reasons / Troubleshooting methodology
about / Troubleshooting methodology
right information, gathering / Gathering the right information
general nature of problem, identifying / Establishing the general nature of the

problem
o half-split troubleshooting / Half-split troubleshooting and other logic

Multicast addresses

o about / [Pv6 address types
Multicast Listener Discovery (MLD)

o about / Multicast Listener Discovery

o Wireshark ICMPvV6 filters / Wireshark ICMPv6 filters
Multiprotocol Label Switching (MPLS)

o about / TCP options

(e]

O O O

e Neighbor Solicitation ICMPv6 packet / Internet Control Message Protocol Version 6
e Network Basic Input/Output System (NetBIOS)

o about / Layer 5 — the session layer
e network interface

o selecting / Selecting a network interface, Selecting the correct network interface
e Network Interface Card (NIC) / Installing Wireshark on Windows

o about/ Layver 1 — the physical layer
e network interfaces

o enabling / Enabling network interfaces
e network layer, OSI
o about/ Layer 3 — the network layer
o Internet Protocol / Internet Protocol
o Address Resolution Protocol (ARP) / Address Resolution Protocol
e network layer protocols
o about / Network layer protocols
o Wireshark IPv4 filters / Network layer protocols
o Internet Group Management Protocol (IGMP) / Internet Group Management
Protocol
o Internet Control Message Protocol (ICMP) / Internet Control Message Protocol
o Internet Protocol Version 6 (IPv6) / Internet Protocol Version 6
o Internet Control Message Protocol Version 6 (ICMPv6) / Internet Control

Message Protocol Version 6
e Network Mapper (Nmap)

o about / Security assessment tools

o URL / Security assessment tools
e network traffic

o clear text passwords / Identifying unacceptable or suspicious traffic
clear text data / Identifying unacceptable or suspicious traffic

password cracking attempts / Identifying unacceptable or suspicious traffic

maliciously formed packets / Identifying unacceptable or suspicious traffic
phone home traffic / Identifying unacceptable or suspicious traffic

flooding or Denial of Service (DOS) attacks / Identifying unacceptable or
suspicious traffic

o subversive activities / Identifying unacceptable or suspicious traffic
e Next Header code / IPv6 header fields

O O O O O

O

e OS fingerprinting
o about / OS fingerprinting
e OSI layers
o about / The seven OSI layers
physical layer / Laver 1 — the physical layer
data-link layer / Layer 2 — the data-link layer
network layer / Layer 3 — the network layer
transport layer / Layer 4 — the transport layer
session layer / Layer 5 — the session layer
presentation layer / Layer 6 — the presentation layer
o application layer / Layer 7 — the application layer
e OSI model
o about / The OSI model — why it matters, The OSI and DARPA reference models
o importance / The OSI model — why it matters
o comparing, with DARPA / The OSI model — why it matters
o

network protocols / Understanding network protocols

O O O O O O

P

e packet capture

o performing / Performing your first packet capture, Performing a packet capture,
Performing, verifying, and saving a good packet capture
noise, filtering / Filtering out the noise
display filter, applying / Applving a display filter
packet trace, saving / Saving the packet trace
capture point, picking / Picking the best capture point
verifying / Verifying a good capture, Performing, verifying, and saving a good
packet capture
bulk capture file, saving / Saving the bulk capture file
conversations of interest, isolating / Isolating conversations of interest
location, determining / Preparing the tools and approach
o saving / Performing, verifying, and saving a good packet capture
packet capture point
o selecting / Picking the best capture point
o user location / User location
o server location / Server location
o other locations / Other capture locations
o mid-network captures / Mid-network captures
packet colorization
o about / Colorization and coloring rules, Packet colorization

o coloring rules / Colorization and coloring rules
Packet Details pane

data rate / Wireless networking
channel frequency / Wireless networking
channel type / Wireless networking
o RF signal and noise levels / Wireless networking
packets
o switching / Switching and routing packets
routing / Switching and routing packets
capturing, on high traffic rate links / Capturing packets on high traffic rate links
marking / Marking and ignoring packets
ignoring / Marking and ignoring packets
o filtered traffic, saving / Saving the filtered traffic
packet timestamps
o working with / Working with packet timestamps
saving / How Wireshark saves timestamps
time display options / Wireshark time display options
time column, adding / Adding a time column
conversation versus a displayed packet time option / Conversation versus
displayed packet time options
o time display option, selecting / Choosing the best Wireshark time display option

O O O O O

O O O

(¢]

(¢]

(¢]

O O O O

O O O O

o Time Reference option, using / Using the Time Reference option
e packet trace

o saving / Saving the packet trace
e password-cracking traffic

o about / Password-cracking traffic
¢ performance analysis methodology
o about / Performance analysis methodology
o poor application performance, reasons / Top five reasons for poor application

performance
e phone home traffic

o about / Phone home traffic
e physical connectivity

o confirming / Confirming physical connectivity
e physical layer, OSI

o about / Layer 1 — the physical layer
Ethernet standard / Layer 1 — the physical layer

RJ-45 standard / Layer 1 — the physical layer
Cat 5 (Cat 5e or Cat 6) cables standard / Layer 1 — the physical layer

100Base-T, 1000Base-T, and 100Base-FX / Layer 1 — the physical layer
o single-mode and multimode fiber optic cables / Layer 1 — the physical layer
e poor performance reasons, application

o about / Top five reasons for poor application performance

tools, preparing / Preparing the tools and approach

packet capture / Performing, verifying, and saving a good packet capture
initial error analysis / Initial error analysis

delays, detecting / Detecting and prioritizing delays

delays, prioritizing / Detecting and prioritizing delays
server processing time events / Server processing time events

application turn’s delay / Application turn’s delay
network path latency / Network path latency
bandwidth congestion / Bandwidth congestion
o data transport / Data transport
e preferences, Wireshark
o about / Wireshark preferences
layout / Wireshark preferences
columns / Wireshark preferences
capture / Wireshark preferences
filter expressions / Wireshark preferences
name resolution / Wireshark preferences
protocols / Wireshark preferences
o options / Wireshark preferences
e presentation layer, OSI
o about / Layer 6 — the presentation layer
e private IP address ranges / IP networks and subnets

O O O O

O 0O 0O o o o o o o

O O O O O O

profiles, Wireshark
o about / Wireshark profiles
o creating / Creating a Wireshark profile
o selecting / Selecting a Wireshark profile
protocol-specific capture filter syntax

o reference link / Configuring capture filters
protocol-specific display filter syntax

o reference link / The display filter syntax
protocols, Wireshark preferences

o about / Wireshark preferences
HTTP / Wireshark preferences
IEEE 802.11 / Wireshark preferences
IPv4 / Wireshark preferences
RTP / Wireshark preferences

TCP / Wireshark preferences
validate TCP checksum if possible / Wireshark preferences

allow subdissector to reassemble TCP streams / Wireshark preferences
relative sequence numbers / Wireshark preferences
track number of bytes in flight / Wireshark preferences
o calculate conversation timestamps / Wireshark preferences
e protocols on Wikipedia

o about / Protocols on Wikipedia
o URL / Protocols on Wikipedia

O 0O 0O o o o o o o

R

e Rawshark.exe

o about / Wireshark command-line utilities
e Request Modifiers

o Connection / Request Modifiers

Accept / Request Modifiers
User-agent / Request Modifiers
Accept-encoding / Request Modifiers
Accept-language / Request Modifiers
Cookie / Request Modifiers
Accept-charset / Request Modifiers
Accept-ranges / Request Modifiers
Authorization / Request Modifiers
Cache-control / Request Modifiers
Content-length / Request Modifiers

Content-type / Request Modifiers

Date / Request Modifiers

Expect / Request Modifiers

If-match / Request Modifiers
If-modified-since / Request Modifiers
If-range / Request Modifiers
[F-unmodified-since / Request Modifiers
Max-forwards / Request Modifiers
Proxy-authorization / Request Modifiers

Range / Request Modifiers
TE / Request Modifiers

Via / Request Modifiers
o Wireshark HTTP filters / Wireshark HTTP filters

e Requests for Comment (RFC)
o about / Requests for Comments
e Riverbed AirPcap adapter
o about / AirPcap adapters
o reference link / AirPcap adapters
e round trip time (RTT) / ICMP pings, Gathering the right information, Application

turn’s delay

0O 0 0O o 0O O o o o o o 0O O OO 0O 0O O o o o o

scans, security analysis

about / Scans and sweeps

ARP scans / ARP scans

TCP port scans / TCP port scans
UDP port scans / UDP port scans
Secure FTP (sftp) / Unusual traffic
Secure Shell (SSH) / Unusual traffic
security analysis

o about / Security analysis methodology

baselining / The importance of baselining

security assessment tools / Security assessment tools

suspicious traffic, identifying / Identifying unacceptable or suspicious traffic

scans / Scans and sweeps

sweeps / Scans and sweeps

OS fingerprinting / OS fingerprinting

malformed packets / Malformed packets

phone home traffic / Phone home traffic

password-cracking traffic / Password-cracking traffic
o unusual traffic / Unusual traffic

security assessment tools

o about / Security assessment tools

o Network Mapper (Nmap) / Security assessment tools
Server Message Block (SMB) protocols / Application turn’s delay

session layer, OSI

o about / Layer 5 — the session layer
SteelCentral Packet Analyzer
about / SteelCentral Packet Analyzer Personal Edition
standard / SteelCentral Packet Analyzer Personal Edition
Personal Edition / SteelCentral Packet Analyzer Personal Edition

o reference link / SteelCentral Packet Analyzer Personal Edition
subnets

o about / IP networks and subnets
sweeps, security analysis

o about / Scans and sweeps

o ARP sweeps / ARP scans

o ICMP ping sweeps / ICMP ping sweeps, TCP port scans
Switched Port Analyzer (SPAN)

o about / Switch port mirroring
switch port mirroring

o about / Switch port mirroring

o advantage / Switch port mirroring
o diagrammatic representation / Switch port mirroring

(¢]

(¢]

(¢]

(¢]

O 0O 0O o o o o o o

(¢]

(¢]

(¢]

6to4 tunneling method

o about / IPv6 transition methods
TAP

o about / Test Access Ports and switch port mirroring

o diagrammatic representation / Test Access Port
TCP

o about / Transmission Control Protocol

o flagsTopicnabout / TCP flags

o options / TCP options

o Wireshark TCP filters / Wireshark TCP filters
TCP header
about / Transmission Control Protocol
source and Destination ports (2 bytes each) / Transmission Control Protocol
sequence number (4 bytes) / Transmission Control Protocol
acknowledgment number (4 bytes) / Transmission Control Protocol
flags (9 bits) / Transmission Control Protocol
Window size (2 bytes) / Transmission Control Protocol
significant fields / Transmission Control Protocol, Transmission Control
Protocol
source and destination ports / Transmission Control Protocol
sequence number / Transmission Control Protocol
acknowledgment number / Transmission Control Protocol
flags / Transmission Control Protocol
window size / Transmission Control Protocol
TCP port scans

o about / Identifying unacceptable or suspicious traffic, TCP port scans
TCP StreamGraph

o about / TCP StreamGraph

o round-trip time / TCP StreamGraph

o throughput / TCP StreamGraph
TCP tab

o about / The TCP and UDP tabs
TCP Window Update packet / Initial error analysis
Teredo tunneling method

o about / IPv6 transition methods
Test Access Point (TAP) / Half-split troubleshooting and other logic
Text2pcap.exe

o about / Wireshark command-line utilities
Time-to-Live (TTL) field / ICMP traceroutes
tools

o about / Other helpful tools

o HttpWatch / HttpWatch

O O O O O o o

O O O O O

o SteelCentral Packet Analyzer / SteelCentral Packet Analyzer Personal Edition
o AirPcap Adapters / AirPcap adapters
trace files

o editing, with Editcap / Editing trace files with Editcap

o managing, with Mergecap / Merging trace files with Mergecap
traffic

o capturing, with Dumpcap / Capturing traffic with Dumpcap

o capturing, with Tshark / Capturing traffic with Tshark
Transmission Control Protocol (TCP)

o about / Transmission Control Protocol
transport layer, OSI

o about / Layer 4 — the transport layer

o User Datagram Protocol (UDP) / User Datagram Protocol

o Transmission Control Protocol / Transmission Control Protocol
transport layer protocols

o TCP / Transport layer protocols

o UDP / Transport layer protocols
Trivial File Transfer Protocol (TFTP) traffic / The importance of baselining

Tshark

o about / Capturing traffic with Tshark

o used, for capturing traffic / Capturing traffic with Tshark
Tshark.exe

o about / Wireshark command-line utilities
Tshark options

o reference link / Capturing traffic with Tshark

UDP

o about / User Datagram Protocol
o Wireshark UDP filters / Wireshark UDP filters

UDP header
o source and destination port number / User Datagram Protocol, User Datagram
Protocol

o length / User Datagram Protocol, User Datagram Protocol
o checksum / User Datagram Protocol, User Datagram Protocol
o fields / User Datagram Protocol, User Datagram Protocol
UDP port scans
o about / Identifying unacceptable or suspicious traffic, UDP port scans
UDP tab
o about / The TCP and UDP tabs
Unicast addresses
o about / IPv6 address types
o Global Unicast / IPv6 address types
o Link-local / IPv6 address types
o Unique local / IPv6 address types
Uniform Resource Identifier (URI) / HTTP Methods
unusual traffic
o about / Unusual traffic
User Datagram Protocol (UDP)
o about / User Datagram Protocol
user interface essentials
o about / Wireshark user interface essentials
title / Wireshark user interface essentials
menu / Wireshark user interface essentials
main toolbar (icons) / Wireshark user interface essentials
display filter toolbar / Wireshark user interface essentials
packet list pane / Wireshark user interface essentials
packet details pane / Wireshark user interface essentials
packet bytes pane / Wireshark user interface essentials
status bar / Wireshark user interface essentials

O O O O O O o o

\Y

e Views / SteelCentral Packet Analyzer Personal Edition
e Virtual LAN (VLAN) / Layer 2 — the data-link layer

W

e WAN links
o about / WAN links
o physical speed-of-light propagation delay / WAN links
o network routing/geographical distance / WAN links
o serialization delay / WAN links
o queuing delays / WAN links
e wide area networks (WANSs) / Layer 1 — the physical layer
e Windows
o Wireshark, installing / Installing Wireshark on Windows
e wireless frame types
o management frames / Wireless networking
o control frames / Wireless networking
e wireless networking
o about / Wireless networking
e Wireshark
o installing / Installing Wireshark

o URL / Installing Wireshark, Performing a packet capture, The TCP and UDP
tabs

installing, on Windows / Installing Wireshark on Windows
installing, on Mac OS X / Installing Wireshark on Mac OS X
installing, on Linux/Unix / Installing Wireshark on Linux/Unix
URL for documentation / Installing Wireshark on Linux/Unix

packet capture, performing / Performing your first packet capture, Performing a

packet capture
network interface, selecting / Selecting a network interface

user interface essentials / Wireshark user interface essentials
display filters / Wireshark display filters
o command-line utilities / Wireshark command-line utilities
e Wireshark.exe file
o about / Wireshark command-line utilities
e Wireshark 2.0 (Wireshark Qt) / IO Graph — Wireshark 2.0
e Wireshark ARP filters
o about / Wireshark ARP filters
e Wireshark DHCP filters
o about / Wireshark DHCP filters
e Wireshark DHCPv6 filters
o about / Wireshark DHCPv6 filters
e Wireshark DNS filters
o about / Wireshark DNS filters
e Wireshark IGMP filters
o about / Wireshark IGMP filters
e Wireshark IPv4 filters

O O O O O

O O O

o about / Wireshark IPv4 filters
Wireshark TCP filters

o about / TCP options
Wireshark UDP filters

o about / User Datagram Protocol
Wireshark wiki

o about / Wireshark wiki

o URL / Wireshark wiki
WLAN tab

o about / The WLAN tab
workstation IP configuration

o obtaining / Obtaining the workstation IP configuration

Z

e Zenmap / Security assessment tools

	Wireshark Essentials
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Getting Acquainted with Wireshark
	Installing Wireshark
	Installing Wireshark on Windows
	Installing Wireshark on Mac OS X
	Installing Wireshark on Linux/Unix
	Performing your first packet capture
	Selecting a network interface
	Performing a packet capture
	Wireshark user interface essentials
	Filtering out the noise
	Applying a display filter
	Saving the packet trace
	Summary
	2. Networking for Packet Analysts
	The OSI model – why it matters
	Understanding network protocols
	The seven OSI layers
	Layer 1 – the physical layer
	Layer 2 – the data-link layer
	Layer 3 – the network layer
	Internet Protocol
	Address Resolution Protocol
	Layer 4 – the transport layer
	User Datagram Protocol
	Transmission Control Protocol
	Layer 5 – the session layer
	Layer 6 – the presentation layer
	Layer 7 – the application layer
	Encapsulation
	IP networks and subnets
	Switching and routing packets
	Ethernet frames and switches
	IP addresses and routers
	WAN links
	Wireless networking
	Summary
	3. Capturing All the Right Packets
	Picking the best capture point
	User location
	Server location
	Other capture locations
	Mid-network captures
	Both sides of specialized network devices
	Test Access Ports and switch port mirroring
	Test Access Port
	Switch port mirroring
	Capturing packets on high traffic rate links
	Capturing interfaces, filters, and options
	Selecting the correct network interface
	Using capture filters
	Configuring capture filters
	Capture options
	Capturing filenames and locations
	Multiple file options
	Ring buffer
	Stop capture options
	Display options
	Name resolution options
	Verifying a good capture
	Saving the bulk capture file
	Isolating conversations of interest
	Using the Conversations window
	The Ethernet tab
	The TCP and UDP tabs
	The WLAN tab
	Wireshark display filters
	The Display Filter window
	The display filter syntax
	Typing in a display filter
	Display filters from a Conversations or Endpoints window
	Filter Expression Buttons
	Using the Expressions window button
	Right-click menus on specific packet fields
	Following TCP/UDP/SSL streams
	Marking and ignoring packets
	Saving the filtered traffic
	Summary
	4. Configuring Wireshark
	Working with packet timestamps
	How Wireshark saves timestamps
	Wireshark time display options
	Adding a time column
	Conversation versus displayed packet time options
	Choosing the best Wireshark time display option
	Using the Time Reference option
	Colorization and coloring rules
	Packet colorization
	Wireshark preferences
	Wireshark profiles
	Creating a Wireshark profile
	Selecting a Wireshark profile
	Summary
	5. Network Protocols
	The OSI and DARPA reference models
	Network layer protocols
	Wireshark IPv4 filters
	Wireshark ARP filters
	Internet Group Management Protocol
	Wireshark IGMP filters
	Internet Control Message Protocol
	ICMP pings
	ICMP traceroutes
	ICMP control message types
	ICMP redirects
	Wireshark ICMP filters
	Internet Protocol Version 6
	IPv6 addressing
	IPv6 address types
	IPv6 header fields
	IPv6 transition methods
	Wireshark IPv6 filters
	Internet Control Message Protocol Version 6
	Multicast Listener Discovery
	Wireshark ICMPv6 filters
	Transport layer protocols
	User Datagram Protocol
	Wireshark UDP filters
	Transmission Control Protocol
	TCP flags
	TCP options
	Wireshark TCP filters
	Application layer protocols
	Dynamic Host Configuration Protocol
	Wireshark DHCP filters
	Dynamic Host Configuration Protocol Version 6
	Wireshark DHCPv6 filters
	Domain Name Service
	Wireshark DNS filters
	Hypertext Transfer Protocol
	HTTP Methods
	Host
	Request Modifiers
	Wireshark HTTP filters
	Additional information
	Wireshark wiki
	Protocols on Wikipedia
	Requests for Comments
	Summary
	6. Troubleshooting and Performance Analysis
	Troubleshooting methodology
	Gathering the right information
	Establishing the general nature of the problem
	Half-split troubleshooting and other logic
	Troubleshooting connectivity issues
	Enabling network interfaces
	Confirming physical connectivity
	Obtaining the workstation IP configuration
	Obtaining MAC addresses
	Obtaining network service IP addresses
	Basic network connectivity
	Connecting to the application services
	Troubleshooting functional issues
	Performance analysis methodology
	Top five reasons for poor application performance
	Preparing the tools and approach
	Performing, verifying, and saving a good packet capture
	Initial error analysis
	Detecting and prioritizing delays
	Server processing time events
	Application turn's delay
	Network path latency
	Bandwidth congestion
	Data transport
	TCP StreamGraph
	IO Graph
	IO Graph – Wireshark 2.0
	Summary
	7. Packet Analysis for Security Tasks
	Security analysis methodology
	The importance of baselining
	Security assessment tools
	Identifying unacceptable or suspicious traffic
	Scans and sweeps
	ARP scans
	ICMP ping sweeps
	TCP port scans
	UDP port scans
	OS fingerprinting
	Malformed packets
	Phone home traffic
	Password-cracking traffic
	Unusual traffic
	Summary
	8. Command-line and Other Utilities
	Wireshark command-line utilities
	Capturing traffic with Dumpcap
	Capturing traffic with Tshark
	Editing trace files with Editcap
	Merging trace files with Mergecap
	Mergecap batch file
	Other helpful tools
	HttpWatch
	SteelCentral Packet Analyzer Personal Edition
	AirPcap adapters
	Summary
	Index

