

Wireshark® 101
Essential Skills for Network Analysis

2nd Edition

Always ensure you have proper authorization
before you listen to and capture network traffic.

Protocol Analysis Institute, Inc
59 Damonte Ranch Parkway, #B340
Reno, NV 89521 USA
www.packet-level.com

Chappell University
info@chappellU.com
www.chappellU.com

Copyright 2017, Protocol Analysis Institute, Inc., dba Chappell University. All rights reserved. No part of this book, or
related materials, including interior design, cover design, and contents of the book web site, www.wiresharkbook.com, may
be reproduced or transmitted in any form, by any means (electronic, photocopying, recording, or otherwise) without the
prior written permission of the publisher.

To arrange bulk purchase discounts for sales promotions, events, training courses, or other purposes, please contact
Chappell University (info@chappellU.com).

Book URL: www.wiresharkbook.com
13-digit ISBN: 978-1-893939-75-2
10-digit ISBN: 1-893939-75-8

(Version 2.0a)

Distributed worldwide for Chappell University through Protocol Analysis Institute, Inc. Protocol Analysis Institute, Inc. is
the exclusive educational materials developer for Chappell University.

For general information on Chappell University or Protocol Analysis Institute, Inc., including information on corporate
licenses, updates, future titles, or courses, contact the Protocol Analysis Institute, Inc., at info@wiresharkbook.com.

For authorization to photocopy items for corporate, personal, or educational use, contact Protocol Analysis Institute, Inc.,
at info@wiresharkbook.com.

Trademarks. All brand names and product names used in this book or mentioned in this course are trade names, service
marks, trademarks, or registered trademarks of their respective owners. Wireshark and the “fin” logo are registered
trademarks of the Wireshark Foundation.

Limit of Liability/Disclaimer of Warranty. The author and publisher have used their best efforts in preparing this book
and the related materials used in this book. Protocol Analysis Institute, Inc., Chappell University, and the author(s) make
no representations or warranties of merchantability of fitness for a particular purpose. Protocol Analysis Institute, Inc., and
Chappell University assume no liability for any damages caused by following the instructions or using the techniques or
tools listed in this book or related materials used in this book. Protocol Analysis Institute, Inc., Chappell University, and
the author(s) make no representations or warranties that extend beyond the descriptions contained in this paragraph. No
warranty may be created or extended by sales representatives or written sales materials. The accuracy or completeness of
the information provided herein and the opinions stated herein are not guaranteed or warranted to produce any particular
result and the advice and strategies contained herein may not be suitable for every individual. Protocol Analysis Institute,
Inc., Chappell University, and author(s) shall not be liable for any loss of profit or any other damages, including without
limitation, special, incidental, consequential, or other damages.

Copy Protection. In all cases, reselling or duplication of this book and related materials used in this training course
without explicit written authorization is expressly forbidden. We will find you, ya know. So don’t steal or plagiarize this
book.

Acknowledgments
There are many people who were directly and indirectly involved in building the concept of this lab-based
book in its first and second edition. Your time and patience (through never-ending revisions and updates) are
truly appreciated.

Lanell Allen
Jim Aragon

Brenda Cardinal
Tobias Clary

Gerald Combs
Joy DeManty
John Gonder
Jennifer Keels
Jill Poulsen
Erin Shirley
Kayla Smith
John Wright

I would especially like to thank Jim Aragon for his meticulous technical and grammatical expertise. Jim, you
did another great job on this edition—you are still my “style guru!” <grin>

Special thanks to the following individuals who offered encouraging quotes for readers beginning their
Wireshark journey or honing their skills with this book.

Lanell Allen, Wireshark Certified Network Analyst™
Richard Bejtlich, Chief Security Officer, Mandiant

Sake Blok, Wireshark Core Developer and SYN-bit Founder
Anders Broman, Wireshark Core Developer and System Tester at Ericsson

Loris Degioanni, Creator of WinPcap, Founder and CEO at Draios
Betty DuBois, Chief Detective of Network Detectives and Certified Wireshark University Instructor

Tony Fortunato, Senior Network Performance Specialist, The Technology Firm
Lionel Gentil, iTunes Software Reliability Engineer, Apple, Inc.

John Gonder, Cisco Academy Director, Las Positas College
Jennifer Keels, CNP-S, CEH, Network Engineer

Gordon "Fyodor" Lyon, Founder of the open source Nmap Security Scanner project
Steven McCanne, CTO and Executive Vice President, Riverbed

As always, my sincere thanks to the Wireshark Core Developers and Gerald Combs who have built
Wireshark into an indispensable tool. The current list of core developers can be found at
wiki.wireshark.org/Developers.

If I’ve missed anyone in this acknowledgments section, I apologize sincerely.

Dedication

This book is dedicated to
my Mom and Dad.

I miss you both.

About this Book
Who Should Read this Book?
This book is written for beginner analysts. This book provides an ideal starting point whether you are
interested in analyzing traffic to learn how an application works, you need to troubleshoot slow network
performance, or determine whether a machine is infected with malware.

Learning to capture and analyze communications with Wireshark will help you really understand how
TCP/IP networks function. As the most popular network analyzer tool in the world, the time you spend
honing your skills with Wireshark will pay off when you read technical specs, marketing materials, security
briefings, and more.

This book can also be used by current analysts who need to practice the skills contained in this book.

In essence, this book is for anyone who really wants to know what’s happening on their network.

What Prerequisite Knowledge do I Need?
Before you delve into this book (or network analysis in general), you should have a solid understanding of
basic network concepts and TCP/IP fundamentals. For example, you should know the purpose of a switch, a
router, and a firewall. You should be familiar with the concepts of Ethernet networking, basic wireless
networking, and be comfortable with IP network addressing, as well.

There are a few spots in this book where you will need to access the command prompt to set a path to an
application directory or to run basic command-line tools such as ipconfig/ifconfig, ping, or tracert/traceroute. If
you are unfamiliar with these tools, there are plenty of resources on the Internet to show you how they work
on various platforms.

You will find a Network Analyst’s Glossary at the back of the book. This glossary covers many of the terms and
technology mentioned in the book. For example, if you aren’t familiar with WinPcap when it’s discussed in the
book, just flip to the Network Analyst’s Glossary to learn more.

What Version of Wireshark does this Book Cover?
This book was written using several Wireshark 2.x.x versions. If you are still stuck in the world of Wireshark
1.x, it’s time to update your version. Wireshark 2 offers numerous advantages over the earlier versions, such
as a native install for Macintosh users, Intelligent Scrollbar, much better graphs, a related packet column and
more.

Where Can I Get the Book Trace Files?
Probably your first step should be to download the book trace files and other supplemental files from
www.wiresharkbook.com. Click the Wireshark 101 book link and download the entire set of supplemental files
for this Second Edition book.

The book supplemental files are available in .zip format. Create a folder on your local system and unzip the
files into that folder.

If you have questions regarding the book or the book web site, please send them to info@wiresharkbook.com.

Where Can I Learn More about Wireshark and Network Analysis?
Download or watch Laura’s free four-part Wireshark 101 course online at the All Access Pass portal
(www.lcuportal2.com).

For more information on the All Access Pass and other training options, visit Chappell University at
www.chappellU.com.

Foreword by Gerald Combs

What's happening on the network?

This is one of those small questions with large answers. For many people it's an
important question, particularly when network problems impact lives and
livelihoods.

The first time I saw someone analyze a network they used an oscilloscope. It
was the 1980s and network analysis tools were scarce. I blame hair bands.

The oscilloscope was all we had on hand in our university lab and it showed us
the square-ish electrical pulses that bounced up and down and made up the Ethernet frames flying
around our network. It was a very narrow, limited view of the network, but it was fascinating.

A few years later at a different university I had to troubleshoot the network for our IT department.
By then we had better tools such as tcpdump and a Sniffer which gave us packets instead of pulses.
It was still daunting at first because our network was a zoo of different technologies: Ethernet,
FDDI, token ring, IPX, DECnet, IP, AppleTalk, and more.

It didn't make much sense at first, but it was still fascinating. You could see what was in each
message going across the network along with all the clever methods that people had devised to let
computers talk to each other. That fascination turned into a passion which is still going strong.

Later on I had to answer the question, “What’s happening on the network?” at an ISP. The nice tools to
which I had grown accustomed were unavailable and I felt blind.

I started writing a protocol analyzer and released it as an open source application. Thanks to
contributions from an amazingly talented team of developers and users, it grew into the world's
most popular protocol analyzer.

I think everyone should have a fundamental understanding of computer networks. They are a vital
part of modern society, and as such it's important to know how they work.

It's also important to know that Wireshark won't give you this understanding by itself - no tool will.
Fortunately, Wireshark has a vibrant ecosystem that surrounds it, from the development team, to
the user community, to companies that offer Wireshark-related products and services (including my
employer), and to instructors like Laura. The ecosystem is an amazing collection of people who are
keenly interested in protocol analysis and equally interested in helping each other. It is an honor to
be part of it.

Networks may not make a lot of sense at first (they didn't for me), but that's OK. Laura can help you
understand how they work (and how they often don't). She can give you the understanding you
need to get the most out of Wireshark.

What's happening on your network?

Gerald Combs
Creator of Wireshark® (formerly Ethereal)

Chapter 0 Skills:
Explore Key Wireshark
Elements and Traffic
Flows

There has been one constant in the network traffic aspect of my career, which started in 1998: packet analysis
with Ethereal, later renamed to Wireshark.

The Air Force Computer Emergency Response Team (AFCERT), where I learned the trade, was an early
adopter of the first versions of the tool. Today, I couldn't imagine doing protocol inspection without Wireshark,
and the project has only improved over time.

Richard Bejtlich
Chief Security Officer, Mandiant Corporation

Quick Reference: Key Wireshark Graphical Interface Elements

(1) Title bar – trace file name, capture source, or “The Wireshark Network Analyzer”
(2) Main menu – standard menu
(3) Main toolbar – learn to use this set of icon buttons!
(4) Display Filter and Filter Expressions area – focus on specific traffic
(5) Wireless toolbar – define 802.11 settings
(6) Packet List pane – packet relationship indicator and summary of each frame
(7) Packet Details pane – dissected frames
(8) Packet Bytes pane – hex and ASCII details
(9) Status Bar – access to the Expert, annotations, packet counts, and profiles

0.1. Understand Wireshark’s Capabilities
Knowing what Wireshark can do will help you determine if it is the right tool for the job.

Wireshark is the world’s most popular network analysis tool with an average of over 1 million downloads per
month. Wireshark is also ranked #1 in the world as a security tool1. Named one of the “Most Important Open-
Source Apps of All Time”2, Wireshark runs on Windows, Mac OS X, and *NIX. Wireshark can even be run as a
Portable App3.

Wireshark is a free open source software program available at wireshark.org. When run on a host that can see a
wired or wireless network, Wireshark captures and decodes the network frames, offering an ideal tool for
network troubleshooting, optimization, security (network forensics), and application analysis. Captured traffic
can be saved in numerous trace file formats (defaulting to the .pcapng format).

Wireshark’s decoding process uses dissectors that can identify and display the various fields and values in
network frames. In many instances, Wireshark’s dissectors offer an interpretation of frame contents as well—a
feature that significantly reduces the time required to locate the cause of poor network performance or to
validate security concerns.

The open source development community has created thousands of dissectors to interpret the most commonly
seen applications and protocols on networks. A core set of Wireshark developers is led by Gerald Combs, the
original creator of Ethereal (Wireshark’s development name prior to May 2006). As an open source project,
Wireshark’s source code is open to anyone for review or enhancement.

Wireshark can be used to easily determine who the top talkers are on the network, what applications are
currently in use, which protocols are supported on a network, whether requests are receiving error responses,
and whether packets are being dropped or delayed along a path. In addition, numerous filters can be applied
to target a specific address (or address range), application, response code, conversation, keyword, etc.

The Wireshark installation package includes numerous tools used to capture packets at the command line,
merge trace files, split trace files, and more.

Based on SLOCCount (Source Lines of Code Count), created by David A. Wheeler, Wireshark has over 2.4
million total lines of code (SLOC)4 and the total estimated cost to develop Wireshark is over $95 million.

The following is a quick list of some tasks that can be performed using Wireshark.

1 SecTools.Org: Top 125 Network Security Tools, sectools.org.
2 eWEEK/eWEEK Labs, May 28, 2012, see www.eweek.com/c/a/Linux-and-Open-Source/The-Most-Important-OpenSource-

Apps-of-All-Time/5/
3 See portableapps.com to learn more about this platform and to download the Portable App launcher. Download the

Wireshark portable application from www.wireshark.org.
4 See www.wireshark.org/download/automated/sloccount.txt for the current SLOCCount estimates.

General Analysis Tasks
• Find the top talkers on the network

• See network communications in “clear text”

• See which hosts use which applications

• Baseline normal network communications

• Verify proper network operations

• Learn who’s trying to connect to your wireless network

• Capture on multiple networks simultaneously

• Perform unattended traffic capture

• Capture and analyze traffic to/from a specific host or subnet

• View and reassemble files transferred via FTP or HTTP

• Import trace files from other capture tools

• Capture traffic using minimal resources

Troubleshooting Tasks
• Create a custom analysis environment for troubleshooting

• Identify path, client, and server delays

• Identify TCP problems

• Detect HTTP proxy problems

• Detect application error responses

• Graph IO rates and correlate drops to network problems

• Identify overloaded buffers

• Compare slow communications to a baseline of normal communications

• Find duplicate IP addresses

• Identify DHCP server or relay agent problems on a network

• Identify WLAN signal strength problems

• Detect WLAN retries

• Capture traffic leading up to (and possibly the cause of) problems

• Detect various network misconfigurations

• Identify applications that are overloading a network segment

• Identify the most common causes of poorly performing applications

Security Analysis (Network Forensics) Tasks

• Create a custom analysis environment for network forensics

• Detect applications that are using non-standard ports

• Identify traffic to/from suspicious hosts

• See which hosts are trying to obtain an IP address

• Identify “phone home” traffic

• Identify network reconnaissance processes

• Locate and globally map remote target addresses

• Detect questionable traffic redirections

• Examine a single TCP or UDP conversation between a client and server

• Detect maliciously malformed frames

• Locate known keyword attack signatures in your network traffic

Application Analysis Tasks
• Learn how applications and protocols work

• Graph bandwidth usage of an application

• Determine if a link will support an application

• Examine application performance after update/upgrade

• Detect error responses from a newly installed application

• Identify which users are running a particular application

• Examine how an application uses transport protocols such as TCP or UDP

WARNING

Before you capture your first packet, ensure you have permission to listen to the network traffic. If you are an IT staff member, obtain
written permission to listen to network traffic for troubleshooting, optimization, security, and application analysis. Consult a legal
specialist to understand your local and national laws regarding packet capture on wired and wireless networks.

0.2. Get the Right Wireshark Version
Since you may move from one location to another, from one computer to another, and from one operating
system to another, it’s best to know on what systems you can install Wireshark. Wireshark runs on most of the
commonly used operating systems, including Windows, Mac OS X, and *NIX systems.

All OS versions of Wireshark can be obtained from www.wireshark.org. Click the Download button and the site
will recognize the operating system you are running and highlight the version of Wireshark that is most
appropriate for that operating system.

If you are really new to Wireshark, consider downloading, installing, and using either the Windows or Apple OS X version—these are
the simplest processes since they only require running an executable installation file.

As of Wireshark version 2, the Windows and Apple OS X installation processes are quite simple since these
versions of Wireshark are available with an installer program.

Binary packages are available for most *NIX distributions. If a binary package is not available for your
platform you can download the source and build it yourself. Refer to the Wireshark documentation
(www.wireshark.org/docs/wsug_html/).

Wireshark also comes preinstalled on a number of forensic tool distributions, such as Kali Linux
(www.kali.org), although it may not be the latest Wireshark version.

The complete list of operating system requirements is available at
www.wireshark.org/docs/wsug_html_chunked/ChIntroPlatforms.html.

0.3. Learn how Wireshark Captures Traffic
Understanding how Wireshark captures traffic will affect how you use Wireshark’s features. In this section we
refer to the elements depicted in Figure 1.

Figure 1. How Wireshark handles traffic from a live capture or from a saved trace file.

The Capture Process Relies on Special Link-Layer Drivers
When your computer connects to a network, it relies on a network interface card (such as an Ethernet card)
and link-layer driver (such as an Atheros PCI-E Ethernet driver) to send and receive packets.

Wireshark also relies on network interface cards and link-layer drivers to pass up traffic for capture and
analysis. For capturing, you can use either WinPcap or Npcap (special link-layer drivers) on Windows hosts.
Libpcap is the special link-layer driver used on *NIX hosts and Apple OS X. USBpcap is used to capture
communications to and from local USB ports.

When you start capturing traffic with Wireshark, a tool called Dumpcap is launched in the background to do
the actual capturing. Frames are passed up from the network, through one of these special link-layer drivers
directly into Wireshark’s Capture Engine. If you applied a capture filter (only capturing broadcast traffic for
example), the frames that pass through the capture filter are passed up to the Capture Engine. Capture filters
use Berkeley Packet Filtering (BPF) syntax.

For more information on filtering out (excluding) or filtering in (passing on to Wireshark) specific traffic types,
refer to Reduce the Amount of Traffic You have to Work With.

The Dumpcap Capture Engine Defines Stop Conditions
The Dumpcap capture engine defines how the capture process runs and the stop conditions. For example, you
can set up a capture to save frames to a set of 50 MB files and automatically stop after six files have been
written. We refer to these files as trace files.

The current default trace file format is .pcapng (packet capture, next generation).

The .pcapng format offers the ability to save metadata with a file. For example, you can save trace file and packet annotations
(comments) inside your trace file. We will look into this process in Chapter 7.

The Core Engine is the Goldmine
The Capture Engine passes frames up to the Core Engine. This is where Wireshark’s power becomes evident.
Wireshark supports thousands of dissectors that translate the incoming bytes into human-readable format
frames. The dissectors break apart the fields in the frames and often perform analysis on the content of those
fields.

For more information on how Wireshark dissectors work, see Dissect the Wireshark Dissectors.

The Qt Framework Provides the User Interface
As of Wireshark version 2, the Qt (pronounced either “Q-T” or “cute”) framework is the preferred option to
provide the cross-platform interface for Wireshark. With very few exceptions, you can move seamlessly from a
Wireshark system running on one platform to a Wireshark system running on another platform with no
problems. The basic interface elements are essentially the same.

The GTK+ Toolkit is Being Phased Out
The GTK+ (GIMP Toolkit) was the primary graphical toolkit until Wireshark version 2 was released. Although
the early releases of Wireshark version 2 still include the option to install the GTK configuration of Wireshark,
this option is being phased out. Now is the time to become familiar with and embrace the Qt framework.

The Wiretap Library is Used to Open Saved Trace Files
The Wiretap Library is used for the input/output functions for saved trace files. When you open a trace file
(whether captured with Wireshark or another analysis tool), the Wiretap Library delivers the frames to the
Core Engine.

The Wiretap Library understands the most commonly used trace file formats. If you receive a trace file in a format that the Wiretap
Library doesn’t support, consider examining the capture tool or process to determine if .pcap or .pcapng formats are available and
perform the capture process again.

For more information on the Wiretap Library, see Open Trace Files Captured with Other Tools.

0.4. Understand a Typical Wireshark Analysis Session
Although each analysis session is a bit different, there are some basic steps that you may want to perform
during each analysis session.

The following is a checklist of the most common tasks performed during an analysis session. Consider using
this basic task checklist when you open a trace file.

 Determine who is talking in the trace file
See Find Out Who’s Talking to Whom on the Network (Page 226)

 Determine what applications are in use
See List Applications Seen on the Network (Page 235)

 Filter on the conversations of interest
See Filter on a Single TCP or UDP Conversation (Page 165)

 Graph the IO to look for drops in throughput
See Graph Application and Host Bandwidth (Page 238)

 Open the Expert to look for problems
See Identify TCP Errors (Page 243)

 Determine the round trip time to identify path latency
See Use Filters to Spot Communication Delays (Page 181)

Each of these tasks is covered in this book.

Now is the time to start your own checklist of tasks. As you go through the labs in this book, note the tasks that you’d like to repeat
each time a trace file comes in. As with many skills, practice will pay off.

0.5. Differentiate a Packet from a Frame
You will see both terms used in the world of protocol analysis. The term “packet” is often used as a blanket
term to describe anything sent across a network, but there is a definite difference between these two terms.

Recognize a Frame
The term “frame” is used when referring to the communication from the Media Access Control (MAC) layer
header (such as an Ethernet header) through the MAC trailer. All communications between devices use
frames. We don’t spend a lot of time troubleshooting or analyzing Ethernet frames, however. There’s not a lot
to analyze in an Ethernet header or trailer and Ethernet technology is fairly well implemented and not often
the problem. In the world of wireless technology, however, there is a lot going on in the WLAN header—
enough to focus on during a troubleshooting session.

You will not always see the Ethernet trailer when analyzing traffic. Some operating systems do not support
capturing the trailers on Ethernet networks.

Just to make this more confusing, Wireshark adds a “Frame” section to provide extra information about all
actual frames. When you look inside the Packet Details pane, you will see this Frame section at the top. If you
expand that section, you will see time, coloring and other information added to the actual frame by Wireshark.

The actual frame begins with the second line, labeled “Ethernet II.” Wireshark’s Frame section only contains
information about the frame (metadata). It does not contain any of the actual contents of the frame.

Figure 2 indicates the beginning and ending of the actual frame as well as the Frame section that contains the
metadata.

Recognize a Packet
A packet is the stuff that sits inside a MAC frame. In TCP/IP communications, a packet begins at the IP header
and ends just before the MAC trailer. People often refer to network analysis as “packet analysis”—this naming
is due to the fact that the majority of analysis tasks begin at the IP header. Figure 2 indicates the beginning and
ending of the packet.

Recognize a Segment (and Watch for Ambiguities)
This term is the catalyst for many arguments regarding network terminology. A TCP data segment consists of
application bytes preceded by a TCP header. The “data” may include an HTTP header or just contain data.
The confusion with this term arises when you examine the establishment of a TCP connection. During this
time, each TCP peer shares its Maximum Segment Size (MSS) value. In this instance, the term segment is used
to define the receive data segment size, not including the TCP header. Figure 2 indicates the beginning and
ending of the TCP segment.

Figure 2. It is best to learn and use the proper terminology whenever possible.

In this book, we use the term “frame” when focusing on the MAC header in communications, or when
referring to a value in the No. column (frame number column) in the Packet List pane.

Since Wireshark often refers to frames as packets in various menus, we will use Wireshark’s terminology in
those cases. For example, the File menu contains an option to “Export Specified Packets” even though it is
actually exporting frames.

0.6. Follow an HTTP Packet through a Network
To be a good analyst, you must know TCP/IP very well. Also key to communications analysis is a solid
understanding of how packets travel through a network and how the traffic is affected by various network
devices.

Let’s look at a network path that includes a client, two switches, one standard router, a router that performs
Network Address Translation (NAT) and a server.

Figure 3. How will these devices affect the format of the frame along the path?

In Figure 3, our client sends an HTTP GET request for the main page on the HTTP server. We’ve used simple
letters to represent the MAC addresses (aka hardware addresses) of the devices.

To know how devices affect the contents of the frame, we will look at how this frame is altered as it travels
through switches, routers, and even a router/NAT device.

There are many times when you will need to capture at more than one location. For example, when you want to know how a device
affects the contents of a frame, you need to capture the frame both before and after it travels through the device. You may also want to
capture traffic at two locations to determine which internetworking device is dropping packets.

Because capturing at multiple locations is a common analysis task, you should have Wireshark (or at least Dumpcap) loaded on more
than one laptop or be prepared to capture using port spanning or a full-duplex tap. We will cover these capture options in Chapter 2.

Point 1: What Would You See at the Client?

All devices can only send to the hardware address of local machines in MAC headers. This MAC header will
be stripped off by the first router along the path—these MAC headers are only temporary and are used to get
the packet to the next hop along a path. In the IP header example above, the packet is addressed from 10.1.0.1
(client) to 74.125.224.143 (server).

Analyst View: At this point, the Ethernet header of our client’s GET request is addressed to the local router’s
MAC address (B).

Point 2: What Would You See on the Other Side of the First Switch?

True switches5 do not affect the contents of the frame. Switch 1 would simply look at the destination MAC
address (MAC address B) to determine if that host is connected to one of the switch ports.

When the switch finds the switch port associated with MAC address B, the switch forwards the frame out the
appropriate switch port.

Analyst View: We would see a frame that matches the frame we saw at point 1.

Point 3: What Would You See on the Other Side of the Router?

Upon receipt of the frame, after checking to make sure the frame isn’t corrupt and that the frame is addressed
to the router’s MAC address, the router strips off the Ethernet header.

The router examines the destination IP address in the packet (it is now considered a packet, not a frame) and
consults its routing tables to see if it knows what to do with the packet. If the router does not know how to get
to the destination IP address (and it doesn’t have a default gateway to send the packet to), the router will drop
the packet and send a message back to the originator indicating there is a routing problem. We can capture
these error messages with Wireshark and detect which router is unable to forward our packets to the
destination.

If the router has the information required to forward the packet, it decrements the IP header Time to Live (hop
count) field value by 1 and applies a new Ethernet header to the packet before sending it on to the
router/NAT device.

Analyst View: We would see a new Ethernet header (from C to D) and an IP header Time to Live value that has
been decreased by 1.

5 A true switch does not offer any routing functionality. The only purpose of a true switch is to learn what machines are

connected to it (based on MAC addresses) and forward traffic accordingly.

Point 4: What Would You See on the Other Side of the Router/NAT Device?

The router/NAT device goes through the same routing process as the previous router before forwarding the
packet. Additionally, the router/NAT device changes the source IP address (network address translation) and
source port number while making note of the original source IP address and source port number. The
router/NAT device associates this information with the newly assigned outbound IP address and port
number.

Analyst View: We would see a new Ethernet header (from E to F) and an IP header Time to Live value that has
been decreased by 1. In addition, we would see that the source IP address and source port number has
changed.

Point 5: What Would You See at the Server?

At this point we should see the same frame that we saw at Point 4. Remember, switches should not alter the
contents of a frame.

Where You Capture Traffic Matters
If you capture at Point 1, 2, or 3, you cannot determine the MAC address of the server. Likewise, if you capture
at Point 3, 4, or 5, you cannot determine the MAC address of the client. If you capture at point 5, you cannot
tell the actual IP address of the client, either.

Beware of Default Switch Forwarding
Remember, switches forward frames based on MAC address. If you’d connected a Wireshark system to either
of the switches in Figure 3, you would not have seen any of the traffic between our HTTP client and HTTP
server. The switches would only forward broadcast, multicasts, and traffic destined to your Wireshark
system’s MAC address down your port6.

Switches do not alter the MAC addresses or the IP addresses of the traffic, but they can be a major roadblock
in network analysis.

Consider the example shown in Figure 4. We loaded Wireshark on the machine connected to switch port 1. We
have a problem if we want to listen to the traffic between the two other devices on the network. The switch is
not going to forward this down our port—it’s not addressed to our MAC address.

Figure 4. Switches can affect the amount of traffic you see.

It is this limitation that causes us to figure out other methods for listening in on network traffic. We will look
at our options in Identify the Best Capture Location to Troubleshoot Slow Browsing or File Downloads.

Plan and test your capture methods in advance. It’s not a fun process to start testing capture methods when all hell breaks loose on
the network and users, their managers, your manager, and the CEO are pounding on your office door or encroaching in your cubicle
air space. Be prepared—be practiced.

6 One other item can be sent down your switch port—traffic to an unknown MAC address. If all goes well, this should

rarely happen. We have resolution processes to ensure we know target MAC addresses and we should only see MAC
addresses that are in use on the network.

0.7. Access Wireshark Resources
Eventually you will hit a problem that you just can’t solve. Whether it is a problem in Wireshark functionality
or packet structures, you can find assistance in several key places on the Internet.

Use the Wireshark Wiki Protocol Pages
Wireshark offers support through a series of Wiki protocol pages.

Visit wiki.wireshark.org to see all the Wiki information related to Wireshark. You can also add the protocol or
application name to the URL for assistance on a protocol. For example, you can type
wiki.wireshark.org/Ethernet7.

You can also get to these pages by right-clicking on any protocol displayed inside a frame, as shown in Figure
5. Wireshark detects the protocol selected and launches the related Wiki page.

Figure 5. Right-click on any protocol shown in the Packet Details pane to launch the related Wiki protocol page. [http-
google101.pcapng]

7 Note that the URL is case sensitive. If you browse to wiki.wireshark.org/ethernet (all lower case), you will see a

message indicating that “This page does not yet exist.”

Get Your Questions Answered at ask.wireshark.org
There is a very active Q&A forum for Wireshark users (shown in Figure 6). Visit ask.wireshark.org to pose your
questions to the Wireshark community. You must register for a free account to post a question here.

Figure 6. Use the Search function (7) to look for key words related to your question at ask.wireshark.org.

The following lists the key areas on ask.wireshark.org.

(1) Questions tab—Click to return to the All Questions page (shown above).
(2) Tags tab—Click to see the list of tags related to questions—click on tags related to your topic of

interest to see if there is helpful information there.
(3) Users tab—Click to see the users who participate in the Q&A forum—this area also includes their

status in badge colors, counts, and administrative status (diamonds).
(4) Badges tab—Click to see how many contributors have achieved recognition for their participation

in the Q&A forum.
(5) Unanswered tab—Click to see questions that are still considered unanswered. Unfortunately,

many Q&A participants do not mark questions “answered” even though they have been.
(6) Ask a Question tab—Click to ask your question. If you don’t have a free account here yet, your

question will be saved as you create an account and log in with your new credentials.
(7) Search area and button—Search for the topic you are interested in first. This is a great place to

start.
(8) Vote count—Forum users can vote on (like/unlike) questions.
(9) Answer count—This number indicates how many answers have been submitted to a question.
(10) View count—This number indicates how many times a question has been viewed. This is a great

indicator to determine how “hot” a topic is.
(11) Question title (hyperlink) and tags—Click on the question title to jump to the question page. The

tags indicate the topic(s) covered in the question.
(12) Jump to buttons—Click on any of these buttons to jump to the list of active questions, newest

questions, or questions that have the most votes.
(13) Question activity age and contributor information—This area indicates how old a question is

(based on last activity such as answer, comment, or even just posting the question), who
contributed to the question most recently, and information about that last contributor. The
contributor information includes the Karma level (level of acquired trust in the forum) and their
administrative levels.

For more information on the Q&A forum, visit ask.wireshark.org/faq/.

Note: During the initial development of this book, we pulled up the most active questions and the hottest topics on the
Q&A Forum. That list, along with years of experience teaching Wireshark techniques and analyzing network traffic, led
to the skills covered in this book.

0.8. Analyze Traffic Using the Main Wireshark View
You don’t always need to do a deep dive into the traffic to understand what’s going on. A quick look at the
main Wireshark window may be all you need to find the cause or culprit.

Open a Trace File (Using the Main Toolbar, Please)
When launched, Wireshark displays a Start Page. Although there are many functions available on the Start
Page, the fastest way to navigate in Wireshark is through the main menu, main toolbar, and keyboard
shortcuts. Click the File Open button on the main toolbar (circled in Figure 7). Open http-google101.pcapng
(available at www.wiresharkbook.com).

Figure 7. The Start Page appears when you launch Wireshark. Whenever possible, use the main toolbar and keyboard shortcuts to
navigate in Wireshark.

As of Wireshark version 2, the list of keyboard shortcuts is available under Help | About Wireshark | Keyboard Shortcuts. See

Learn the Keyboard Shortcuts.

This trace file contains the traffic between a client and the www.google.com server when someone opens the
main web site page. If you capture your own traffic to www.google.com, it may look quite different. Your traffic
will contain different MAC and IP addresses and you may have some elements of the Google site cached (on
disk). In the case of cached content, you will load portions of the web site page from disk—you will not see the
cached content being sent from the server in the trace file.

We will work with this trace file as we explore the various elements of the Wireshark main view.

Launch a Capture with Sparklines
Sparklines illustrate the traffic level seen on available interfaces. Double-click on a sparkline to quickly launch
a capture on that interface.

Know When You Must Use the Main Menu
We all know how to use menus. The key is when to use the main menu (Figure 8) and where to find what
you’re looking for. Many of Wireshark’s functions are available through the right-click method or the main
toolbar (also referred to as the icon toolbar).

Figure 8. All functions in the Go and Capture menu items can be done faster using the main toolbar.

The following list highlights the reasons you may need to use the main menu instead of the main toolbar.

File—open file sets, save subsets of packets, export SSL session keys and objects

Edit—change preferences, clear marked/ignored packets, and time references

View—view/hide toolbars and panes, edit the Time column setting, reset coloring

Analyze—create display filter macros, see enabled protocols, save forced decodes

Statistics—build graphs and open statistics windows for various protocols

Telephony—perform all telephony-related functions (graphs, charts, playback)

Wireless—perform Bluetooth and WLAN functions (devices, statistics)

Tools—access the Lua scripting console and jump to resources

Help—check for updates, access Wireshark folder information and shortcut list

Again, this list focuses on things you need in the main menu. Become an efficient analyst by finding the fastest
ways to perform tasks.

Use the Main Toolbar Whenever Possible
You can work very efficiently by clicking on the buttons on the main toolbar to open files and access filters,
coloring rules, and preferences. In this book we use most of the key functions on the main toolbar. These
functions are listed in Figure 9.

Figure 9. Become familiar with the main toolbar functions—this is the fastest way to work in Wireshark.

Learn the Keyboard Shortcuts
Under Help | About Wireshark | Keyboard Shortcuts, you will find the list of shortcuts available. In addition,
right-clicking on many pop-up windows in Wireshark will bring up a list of keyboard shortcuts applicable to
that window.

Shortcut availability is based on your version of Wireshark and the operating system on which you installed
Wireshark.

The following lists keyboard shortcuts for Windows:

Shortcut Name Description

Ctrl+Shift+C As Filter Copy this item as a display filter

Ctrl+W Close Close this capture file

Ctrl+Left Collapse All Collapse all packet details

Ctrl+1 Color 1 Mark the current conversation with its own color.

Ctrl+2 Color 2 Mark the current conversation with its own color.

Ctrl+3 Color 3 Mark the current conversation with its own color.

Ctrl+4 Color 4 Mark the current conversation with its own color.

Ctrl+5 Color 5 Mark the current conversation with its own color.

Ctrl+6 Color 6 Mark the current conversation with its own color.

Ctrl+7 Color 7 Mark the current conversation with its own color.

Ctrl+8 Color 8 Mark the current conversation with its own color.

Ctrl+9 Color 9 Mark the current conversation with its own color.

Ctrl+Shift+A Configuration Profiles… Manage your configuration profiles

F1 Contents Help contents

Ctrl+Alt+1 Date and Time of Day (1970-
01-01 01:02:03.123456)

Show packet times as the date and time of day.

Ctrl+Shift+D Description Copy this item's description

Ctrl+Shift+E Enabled Protocols… Enable and disable specific protocols

Ctrl+Right Expand All Expand packet details

Shift+Right Expand Subtrees Expand the current packet detail

Ctrl+H Export Packet Bytes… Export Packet Bytes…

Ctrl+Shift+F Field Name Copy this item's field name

Ctrl+N Find Next Find the next packet

Ctrl+F Find Packet… Find a packet

Ctrl+B Find Previous Find the previous packet

Ctrl+Home First Packet Go to the first packet

Ctrl+G Go to Packet… Go to specified packet

Ctrl+Shift+D Ignore All Displayed Ignore all displayed packets

Ctrl+D Ignore/Unignore Packet Ignore or unignore this packet

Ctrl+End Last Packet Go to the last packet

Ctrl+Shift+M Mark All Displayed Mark all displayed packets

Ctrl+M Mark/Unmark Packet Mark or unmark this packet

Ctrl+Shift+N Next Mark Go to the next marked packet

Ctrl+Down Next Packet Go to the next packet

Ctrl+. Next Packet in Conversation Go to the next packet in this conversation

Ctrl+Alt+N Next Time Reference Go to the next time reference

Ctrl+0 Normal Size Return the main window text to its normal size

Ctrl+O Open Open a capture file

Ctrl+K Options… Capture options

Ctrl+Shift+P Preferences… Manage Wireshark's preferences

Ctrl+Shift+B Previous Mark Go to the previous marked packet

Ctrl+Up Previous Packet Go to the previous packet

Ctrl+, Previous Packet in
Conversation

Go to the previous packet in this conversation

Ctrl+Alt+B Previous Time Reference Go to the previous time reference

Ctrl+P Print… Print…

Ctrl+Q Quit Quit Wireshark

F5 Refresh Interfaces Refresh interfaces

Ctrl+R Reload Reload this file

Ctrl+Shift+L Reload Lua Plugins Reload Lua plugins

Ctrl+Shift+F Reload as File
Format/Capture

Reload as File Format/Capture

Ctrl+Space Reset Colorization Reset colorized conversations.

Ctrl+Shift+R Resize Columns Resize packet list columns to fit contents

Ctrl+R Restart Restart current capture

Ctrl+S Save Save this capture file

Ctrl+Shift+S Save As… Save as a different file

Ctrl+Alt+3 Seconds Since 1970-01-01 Show packet times as the seconds since the UNIX / POSIX
epoch (1970-01-01).

Ctrl+Alt+4 Seconds Since Beginning of
Capture

Show packet times as the date and time of day.

Ctrl+Alt+5 Seconds Since Previous
Captured Packet

Show packet times as the seconds since the previous
captured packet.

Ctrl+Alt+6 Seconds Since Previous
Displayed Packet

Show packet times as the seconds since the previous
displayed packet.

Ctrl+T Set/Unset Time Reference Set or unset a time reference for this packet

Ctrl+E Start Start capturing packets

Ctrl+E Stop Stop capturing packets

Master the Filter Toolbar
We use display filters to pull the “needle out of the haystack.” When you have thousands or hundreds of
thousands of packets to look through, use display filters to see traffic that is related to the task at hand. For

example, if you are troubleshooting someone’s web browsing session, you can use a display filter to remove
email sessions or virus update traffic from view.

Figure 10 highlights the purpose of each section of the filter toolbar.

Figure 10. Learn to use the display filter toolbar to save time analyzing traffic.

Summarize the Traffic Using the Packet List Pane
Wireshark has three panes (windows)—the Packet List pane, the Packet Details pane, and the Packet Bytes
pane.

The Packet List pane is the top pane, as shown in Figure 11.

Figure 11. When you select a frame in the Packet List pane, the Packet Details pane and Packet Bytes pane provide additional
information on the selected packet. [http-google101.pcapng]

Scroll through the Packet List pane to see which hosts are communicating, the protocols or applications in use,
and general information about the frames. Wireshark colors the frames based on a set of coloring rules. For
more information on coloring rules, see Identify Applied Coloring Rules.

You can add columns to the Packet List pane and sort on any column. This sorting ability can help you find
similar packets or large delays in the trace file. By default, the Packet List pane is sorted by the frame number
column (“No.” column on the far left side).

Figure 12 shows the Packet List pane of http-google101.pcapng. Each packet in the trace file contains information
in the default columns listed below.

• Number (“No.”) column—Each frame is assigned a number. By default, traffic is sorted on the No.
column from low to high. You can sort the Packet List pane by clicking on the desired column
heading. If you change the sort order and want to return to the default look of the Packet List pane,
sort on this column.

To the left of the No. column is the Related Packets Indicator which depicts the relationship between
packets in a stream and requests/responses. The Related Packets Indicator is only active for the
stream (or conversation) in which the currently selected packet resides.

• Time column—By default, Wireshark shows when each frame arrived compared to the first frame in
the Time column. We will use this column to find delays in Detect Latency Problems by Changing the
Time Column.

• Source and Destination columns—The Source and Destination columns show the highest layer
address available in each frame. Some frames only have a MAC address (ARP packets, for example),
so those MAC addresses will be displayed in the Source and Destination columns. In Figure 12, we
see that all of our frames have IP addresses shown in the Source and Destination columns.

• Protocol column—Wireshark displays the last dissector applied to the frame. This is a great place to
look if you’re trying to figure out what applications are in use. In Figure 12, we see DNS, TCP, and
HTTP listed in this column.

• Length column—This column indicates the total length of each frame. We can easily detect if an
application uses itty bitty stinkin’ packet sizes by looking at this column.

• Info column—This column provides basic information about the frame. Look at this column as you
scroll through this trace file. You will see many DNS queries and responses, many HTTP GET
requests, and data packets as the user loads the main Google page.

• Intelligent Scrollbar—Although this is not a column, it is important to mention this important feature
of the Packet List pane. The Intelligent Scrollbar provides a miniature view of the traffic coloring seen
in the trace file. We will examine the Intelligent Scrollbar in Navigate Manually on the Intelligent
Scrollbar.

Figure 12. The seven default columns of the Packet List pane. [http-google101.pcapng]

Related Packets Indicator
To the left side of the No. column, you will see the Related Packets Indicator. The Related Packets Indicator
depicts the relationship between packets in a stream (also referred to as a conversation).

The Related Packets Indicator only shows the relationship of packets in the same stream as the selected packet.
For example, if you select a DNS query packet, the Related Packet Indicator will connect this packet to the
associated DNS response is (if it exists in the trace file). If you select a frame in a TCP stream, you may see

more interesting information, such as the checkmark indicating the packet that has been acknowledged by the
selected packet.

Try this with http-google101.pcapng. Click on frame 1 and you will notice the Related Packets Indicator links
frame 1 with frame 2. Frame 1 is a DNS query and frame 2 is the associated response. Click on frame 6 and
you will see a line indicating the start of the stream and a checkmark next to frame 5 indicating that the
selected frame is acknowledging frame 5. Figure 13 depicts many of the Related Packets Indicator markings.

Figure 13. The Related Packets Indicator can help you quickly find related packets.

Sort Columns in the Packet List Pane
As mentioned earlier, you can sort the Packet List pane by clicking on the desired column heading. For
example, if you click on the Protocol column heading when viewing http-google101.pcapng, Wireshark reorders
the frames as DNS, HTTP, and TCP (ascending alphabetically), as shown in Figure 14.

Click the Number (“No.”) column heading once to reorder the Packet List pane in its original order (from low
to high).

Figure 14. Click once on any column heading to sort from low to high—click again to sort from high to low. [http-google101.pcapng]

Reorder the Columns
You can change the location of columns by clicking and dragging on a column heading to move it left or right.
In Figure 15 we moved the Time column to the right.

Figure 15. Just click and drag column headings left or right to reorder columns. [http-google101.pcapng]

Right-Click on Column Headings to Hide, Display, Rename, and Remove Columns
Right-click on any column heading to view your options in a drop-down menu. Click on column names to
toggle them on and off, as shown in Figure 168.

Figure 16. Right-click on any column heading to view the column options menu. When you do not want to see a column, simply
uncheck the column on the list. [http-google101.pcapng]

Select Remove This Column to remove it from the list, if desired.

8 We hid columns at various points in this book to enable us to show more information contained in other columns.

Right-Click in the Packet List Pane to View Available Options
Many of Wireshark’s windows and views support right-click functions. Right-click on any packet in the Packet
List pane to see what’s available, as shown in Figure 17.

In this book, we use this right-click functionality to apply filters, colorize traffic, reassemble traffic (follow
streams), force Wireshark to dissect something in a different way, and more.

Figure 17. Right-click on any packet in the Packet List pane to see the available functions. [http-google101.pcapng]

Use Packet Coloring to Your Advantage
Wireshark contains a set of default coloring rules to help you identify the traffic types and spot network
problems faster. You can easily change these coloring rules and create additional coloring rules to alert you to
unusual traffic. We will work with coloring rules in Identify Applied Coloring Rules.

Dig Deeper in the Packet Details Pane
When you click on a packet in the Packet List pane, Wireshark shows the details for that packet in the Packet
Details pane (the middle pane). The Packet Details pane shows the power of Wireshark’s dissectors.

As mentioned earlier, the Frame section is not part of a packet as it travels through a network—Wireshark
adds the Frame section for additional information about the frame, such as when the frame arrived, what
coloring rule is applied to the frame, the frame number, and frame length, as seen in Figure 18.

As you move through the Packet Details pane, click on the indicators to expand sections of the frames.
Alternately you can use right-click to expand an entire frame (Expand All) or expand just one collapsed
section (Expand Subtrees).

Figure 18. The Frame section includes metadata such as arrival timestamp, frame number, and dissectors applied to the frame.
[http-google101.pcapng]

Get Geeky in the Packet Bytes Pane
This is the “geek pane.” The Packet Bytes pane shows the contents of the frame in hex and ASCII formats, as
shown in Figure 19. If the frame doesn’t have any readable strings, the ASCII portion will look like a bunch of
junk. We may look at this pane when Wireshark sees “data” in a frame.

When you highlight a field in the Packet Details pane, Wireshark also highlights the location of that field and
the bytes contained in that field in the Packet Bytes pane. Wireshark also indicates the field directly under
your cursor when you hover over the bytes area.

If you don’t want to see the Packet Bytes pane, simply drag it to the bottom of the window. Drag your cursor
up from the bottom to bring it back.

Figure 19. The Packet Bytes pane shows ASCII strings contained in the packet. [http-google101.pcapng]

Pay Attention to the Status Bar
The Status Bar consists of two buttons and three columns. These columns can be resized as necessary.

Figure 20. The Status Bar content changes depending on what you click on in the Packet List pane, Packet Details pane, or Packet
Bytes pane. [http-google101.pcapng]

Find Problems with the Expert Information Button
The first button is the Expert Information button. This button is colored to show you the highest level of
information contained in the Expert Information window. The Expert Information window can alert you to
numerous network concerns seen in the trace file as well as packet comments. We will work with the Expert
Information window in Use the Expert Information Button on the Status Bar.

Add Notes to a Trace File with the Annotation Button
The second button is the trace file Annotation button. Click this button to add, edit, or view a trace file
comment. The trace file now has to be saved in .pcapng format to preserve the comment.

First Column: Get Field, Capture, or Trace File Information
The information shown in the first column (to the right of the Annotation button) changes depending on what
is highlighted in the panes above it or if you are running a live trace file. In Figure 20, we see a (plain English)
field name, the corresponding display filter field name, and the field length9. Click around inside the Packet
Details pane to see the contents of this first column change.

Second Column: Get Packet Counts (Total and Displayed)
When you open a saved trace file, the second column indicates the total number of packets in the file, the
number and percentage of packets currently displayed (in case we applied a display filter), the number and
percentage of marked packets (packets we marked as “of interest”), and the amount of time required to load
the trace file. During a live capture, this column displays the number of packets captured, displayed, and
marked.

In Figure 20, we can see that http-google101.pcapng contains 374 packets and we have applied a display filter.
Only 64 packets match the display filter.

Third Column: Determine the Current Profile
The third column indicates your current profile. Figure 20 indicates that we are working in a profile called
Wireshark101. Profiles are created so you can customize your Wireshark environment.

For more information on profiles, refer to Customize Wireshark for Different Tasks (Profiles).

There are two things you can do to improve efficiency using Wireshark.

First, try right-clicking on various packets, fields, and windows in Wireshark to determine if right-click functionality is available. Many
tasks are only available when you right-click. Other can just be performed faster using the right-click method.

Second, get to know Wireshark’s main toolbar and use that whenever possible.

Although Wireshark launches with the Start Page, once you leave the Start Page, you don’t return to it unless you close a trace file or
restart Wireshark. Use the main toolbar and the right-click method to work with trace files instead of returning to the Start Page.

9 This will be an important feature when you create display filters later in this book.

 Lab 1: Use Packets to Build a Picture of a Network
When you are analyzing traffic, try to get a feel for the network layout from what you can learn in the packets.
Who is sending the packets? Who are the targets? What are their MAC and IP addresses? If multiple hosts talk
through a device, it is likely a router. Switches are transparent, but you must assume that clients go through
switches to reach a router.

In this lab you will examine the MAC and IP addresses to build a picture of a portion of a network. In
addition, you will look at the Protocol column to determine what applications are running on various hosts.
Red text (visible in ebook versions only10) indicates that we just learned this information from the current
frame.

Launch Wireshark, click the File Open button on the main tool bar and double-click on general101.pcapng
to open this file.

Frame 1

Examine the Packet List pane. Frame 1 uses IPv6. Look in the Ethernet and IP headers for this frame in the
Packet Details pane (shown below). This appears to be an IPv6 multicast (note the IPv6mcast designation in the
destination Ethernet address field).

10 For those of you reading the paperback book version, you will need to open the trace file in Wireshark to see the colors.

Printing color books is still cost-prohibitive, so the paperback is in black and white. However, the ebook version is in
color.

Frame 2

Frame 2 is an ARP packet. Look inside the Ethernet header then inside the ARP portion of the packet. This
ARP request is sent to locate the MAC address of the Target IP Address.

Frame 3

Frame 3 is a TCP handshake packet to the HTTP port. Again, look in the Ethernet header and IP header to
build your picture of the network. Since the target has not responded, we really can’t say the target is there.
We will mark it with a question mark until we see it talk on the network.

Frame 4

Frame 4 is the reply to frame 3. We can now draw in the new HTTP server in our diagram. Look at the source
MAC address in frame 4. It comes from the router, not the source server.

Remember that routers strip off the received MAC header and apply a new MAC header. The new MAC
header contains the address of the router’s interface on this network as the new source MAC address and the
address of the next hop destination device as the new destination MAC address. This is how a router forwards
a packet. On your local network, you may see traffic from many different IP addresses come from the MAC
address of the local router.

Frame 5 finishes the TCP 3-way handshake.

Frame 6

Frame 6 is a Dropbox LAN Sync Discovery Protocol (DB-LSB-DISC) packet from our client. This packet is sent
to the broadcast address.

Frame 7

Frame 7 is another TCP handshake packet, but we have a new source and destination. We can now draw in a
new source MAC and IP address and a new destination IP address. We must wait for the target to send a
packet before we say it is definitely there.

Frame 8

Frame 8 is the answer from the HTTP server (199.59.150.9). We now know that this server is talking on the
wire. Frame 9 is the final piece of the TCP handshake.

Frame 10

Frame 10 indicates that the other local host is trying to connect to another server. This time the target is port
443, the HTTPS port.

Frame 11

Frame 11 is a response from the target. We can now assume the target is running. Frame 12 finishes the TCP
handshake and our drawing of the network we discovered just by looking at these first few packets in the
trace file.

As you can see, lots of different conversations are occurring simultaneously. We can build a picture of the
network based on the packets we see. Building an image of a network based on traffic is a common task used
in analysis.

0.9. Analyze Typical Network Traffic
What is “typical network traffic?” That is a loaded question. Every network is different. They may support
different applications and have different network designs. There are, however, some common packets that
you’ll see during most login procedures and web browsing sessions. There are also some basic TCP/IP
resolutions that take place and can usually be seen on the network.

Let’s just take a look at what you might see in a typical web browsing process and discuss the types of
background traffic that can be seen as well.

Analyze Web Browsing Traffic
Open http-google101.pcapng11 and follow along as we look at the traffic generated when someone visits
www.google.com12.

In a typical web browsing session, your trace file will probably include a DNS request to resolve a host name
to an IP address (referred to as an “A” record) [frame 1]. Hopefully a DNS reply will be sent back with at least
one IP address associated with that host name [frame 2].

If the client supports both IPv4 and IPv6, you’ll see a request to find an IPv6 address (referred to as an
“AAAA” record) next [frame 3]. The DNS server will respond with either an IPv6 address or miscellaneous
information [frame 4].

11 This trace file—and all the other trace files mentioned in this book—are available at www.wiresharkbook.com.
12 Your own web browsing traffic to www.google.com may be quite different. If you had recently accessed the site, your

browser will have parts of the Google web site in cache. You won’t see those elements being sent from the Google
server.

Next we see the TCP three-way handshake between the client and the web server [frames 5, 6, and 7] and then
the client’s request to GET the main page (“/”) [frame 8]. The server acknowledges receipt of the request
[frame 9] and sends the OK response [frame 10]13. Now the server begins sending the main page to the client
[frame 11].

Periodically, the client requests another element of the www.google.com page [frame 36] from the same server.

In addition, when there is a link on www.google.com to another web site, the client will make a DNS query for
that next site (as in frames 231, 232, and 233, for example). These DNS queries are triggered when the
JavaScript menu bar is loaded. Click on a DNS request and the Related Packets Indicator identifies the DNS
responses.

You can likely see the relationship between the DNS queries and the menu, shown below.

Continue to look through the trace file to get a feel for the traffic that crosses the network when someone
opens the main Google page.

Analyze Sample Background Traffic
You will surely see some “background traffic” on your network. Background traffic is generated when
automated processes run—no user interaction is required. Background traffic can be seen when Java looks for
updates, your virus detection tool looks for updates, Dropbox checks in, IPv6 tries to discover IPv6 routers,
and more.

Become familiar with your background traffic so you can recognize it when you are troubleshooting problems.
You don’t want to waste time troubleshooting a background process that has nothing to do with the problem
at hand.

13 If you see [TCP segment of a reassembled PDU] instead of OK in frame 10, don’t worry. By default, Wireshark

reassembles the OK response along with the data being sent to the client. You will work with this setting in Chapter 1.

Open mybackground101.pcapng to look at the background traffic seen from one of our lab machines. Here is a
breakdown of the background traffic on our lab host.

• Starting at frame 1, we see traffic to/from 67.217.65.244 (use an IP address lookup site such as
DomainTools.com to check the address and you’ll see this is Citrix) – sure enough, this lab host is
running GoToAssist, GoToMeeting, and GoToMyPC applets which are all owned by Citrix.

• In frame 25, we see ICMPv6 Neighbor Notifications generated by the IPv6 stack, which is enabled on
the lab host (it is a Windows 7 host).

• In frame 27, we see a Local Master Announcement. If we expand the Packet Details pane, we learn
that the lab host is called VID02.

• Starting at frame 28, we can see some DNS queries for javadl-esd-secure.oracle.com. It looks like our host
is updating Java from an Akamai host (we expanded the Packet Details pane to look inside the DNS
response for that tidbit).

• Frame 33 tells us that there is an IPv6 router on the network – we see ICMPv6 Router Advertisement
packets.

• Frame 83 is a DHCP ACK broadcast onto the network – it indicates the domain is comcast.net – yup,
that’s the ISP serving the lab network.

• Frame 95 is an SNMP get-request to 192. 168.1.105 – we don’t see an answer anywhere in the trace file.
This is an interesting one. It seems the lab host is configured to look for a network printer by that
address – but no such printer exists. (Guess we need to clean off that machine a bit, eh?).

• Starting at frame 96, we learn that our lab host is also running Dropbox – we see some Dropbox LAN
Sync Discovery Protocol traffic in there.

• Starting at frame 118, we learn the lab host also runs Memeo for backup – we see some HTTP traffic
going to www.memeo.info (frame 121 in the expanded HTTP part of the Packet Details) and
api.memeo.info (frame 134 in the expanded HTTP part of the Packet Details).

This is what a background traffic analysis session feels like—looking through the traffic to define what is
“normal.” Once we know what is normal, we can look past that to detect what is abnormal.

For example, frame 411 doesn’t match the regular traffic we expect to see in a background trace file.

In Figure 21, we see an incoming TCP connection attempt (SYN) which is not expected—this is a client, not a
server. In the Packet Details pane, we see the packet is sent to the Secure Shell port (22)—that’s a bit of a
concern. We also see that Wireshark indicates that something is wrong with the TCP header—there is an
unusual value in the Acknowledgment Number field.

Figure 21. Finding the needle in the haystack isn’t difficult if you know the haystack well and can just move it aside.
[mybackground101.pcapng]

So who is this 183.63.31.122 host?

Doing a bit of research on the source IP address, we gather the following information:

inetnum: 183.0.0.0 - 183.63.255.255
netname: CHINANET-GD
descr: CHINANET Guangdong province network
descr: Data Communication Division
descr: China Telecom
country: CN
status: ALLOCATED PORTABLE
remarks: service provider

And, of course, this address popped up at the Internet Storm Center14 with over 293,000 reports of folks being
scanned on port 22 from this host.

Networks can be pretty noisy with various background processes running, but if you can spend some time
getting familiar with the “normal” ones, it shouldn’t take you long to find the real stinkers.

In this book you will learn a lot about filtering. Once you learn what is “normal,” consider building a filter to remove this normal traffic
from view. What is left after filtering out the good traffic may be one or more shiny needles.

14 See isc.sans.edu/ipinfo.html?ip=183.63.31.122.

 Lab 2: Capture and Classify Your Own Background Traffic
Take a moment and capture your own background traffic as we did in this section. When you complete your
capture, perform some research on the resulting trace file to see if you can characterize all the traffic to/from
your machine when you are not touching the keyboard.

Step 1: Close all applications except for Wireshark and any normal background applications that run on
your machine.

Step 2: Click the Capture Options button on the main toolbar.

Step 3: Select the interface that indicates active traffic on its sparkline. If you don’t see any activity on the
sparkline(s), be patient or toggle out to the command prompt to ping another host or browse the
Internet to generate some traffic.

Step 4: Click Start. Let the capture run for at least five minutes (longer if you can wait).

Step 5: Click the Stop Capture button on the main toolbar.

 Spend some time going through the trace file to identify the applications that run in the
background on your machine. Focus on the Protocol column and the Info column.

 If you don’t recognize the application, perform some research on the IP addresses that your system
communicates with. Most likely you will also see broadcast or multicast traffic from other hosts on
your network.

Step 6: To save this file, click the Save button on the main toolbar, navigate to the target directory, and
name your file background1.pcapng.

Recognizing your own background traffic will help you remove this from consideration when looking for
unusual communications. Consider saving trace files of your “normal” traffic to refer to when
troubleshooting.

0.10. Open Trace Files Captured with Other Tools
Although Wireshark is considered the de facto standard in packet capture and analysis tools, there are
numerous other tools available. It is important to know which tools can interoperate with Wireshark.

Some traffic capture tools save files in a different file format than Wireshark’s default .pcapng format.
Wireshark uses its Wiretap Library to convert these other file formats into a format that Wireshark can
display. For example, if you receive a trace file captured using Sun Snoop (with the .snoop file extension),
Wireshark uses the Wiretap Library to perform the input/output function – handing the frames up to
Wireshark for analysis.

Click the File Open button on the main toolbar. Click on the arrow next to the Files of type section.
Wireshark lists all the file types recognized, as shown in Figure 22.

Figure 22. Click the arrow next to Files of type to see all the file formats that Wireshark recognizes.

If someone sends you a trace file and Wireshark doesn’t recognize the format, first just change the file extension to .pcap (the old
default trace file format) and try to open it in Wireshark. If that doesn’t work, ask them what #*$&@! tool they used to capture the traffic!
Wireshark understands so many formats. It is very unusual to receive a trace file in an unrecognized format.

 Lab 3: Open a Network Monitor .cap File
In this lab you will use Wireshark’s Wiretap Library to open a file captured with Microsoft’s Network
Monitor15.

Step 1: Click the File Open button on the main toolbar.

Step 2: Navigate to your trace file directory and click on http-winpcap101.cap. Wireshark looks inside the
trace file to identify what tool was used to capture the traffic, as shown below. Although this file
was captured with Microsoft’s Network Monitor (NetMon) v3.4, Wireshark marks it as NetMon v2
because that is the format that v3.4 saves in.

Step 3: Click Open. Once the file is open, select File | Save As and click the drop-down menu arrow next
to Files of Type. Select Wireshark – pcapng (*pcapng;*.pcapng.gz;*.ntar;*.ntar.gz) and name the
file http-winpcap101.pcapng.

Wireshark can recognize and open trace files created with most other industry tools. Once open, the fact that
this trace file was captured with Network Monitor is transparent to you.

15 Microsoft Network Monitor was replaced with Microsoft Message Analyzer, but Message Analyzer can still save trace

files in the native Network Monitor .cap format.

Chapter 0 Challenge
Open challenge101-0.pcapng and use the techniques covered in this chapter to answer these Challenge
questions. The answer key is located in Appendix A.

We will focus on what you can learn about communications based on the main Wireshark view.

Question 0-1. How many packets are in this trace file?

Question 0-2. What IP hosts are making a TCP connection in frames 1, 2, and 3?

Question 0-3. What HTTP command is sent in frame 4?

Question 0-4. What is the length of the largest frame in this trace file?

Question 0-5. What protocols are seen in the Protocol column?

Question 0-6. What responses are sent by the HTTP server?

Question 0-7. Is there any IPv6 traffic in this trace file?

Chapter 0 Challenge Answers
Answer 0-1. The Status Bar indicates this trace file contains 20 frames.

Answer 0-2. The Source and Destination columns indicate this TCP connection is between 192.168.1.108
and 50.19.229.205.

Answer 0-3. Frame 4 is an HTTP GET request.

Answer 0-4. Sorting on the Length column (or even just scrolling through the file and looking at the
Length column) indicates the largest frames are 1,428 bytes.

Answer 0-5. Wireshark displays only HTTP and TCP in the Protocol column.

Answer 0-6. The HTTP server sends 302 Found responses (frames 6, 8, 10, 13, and 16).

Answer 0-7. There are no IPv6 packets in this trace file—the Source and Destination columns only display

IPv4 addresses.

Chapter 1 Skills: Customize
Wireshark Views and Settings

To me, analyzing networks is a bit like practicing a sport like skiing or golf. When you start, it's tough and a bit
frustrating, but practice and persistence will make you accomplish amazing things. Remember that becoming a
master is a matter of improving your skills, but also of getting the best from your tools. Don't get discouraged if
things seem a bit overwhelming at the beginning—you’ll improve fast and it's going to be a ton of fun!

Loris Degioanni
Creator of WinPcap, SteelCentral™ Packet Analyzer and SysDig

Quick Reference: Overview of wireshark.org

(1) News—General news and events
(2) Get Acquainted—About, Download area and Gerald Combs’ blog
(3) Get Help—Q&A Forum, FAQ, documentation, mailing lists, online tools, Wiki page, Bug Tracker
(4) Develop—Get Involved, Developers’ Guide, browse the code, latest development builds
(5) Our Sponsor—Launches Riverbed site
(6) SharkFest—All about the yearly Wireshark User and Developer conference
(7) Download—Link to the download page (auto-detects your incoming OS)
(8) Learn—Link to training, documents, videos, and development information
(9) Go Beyond—Link to Riverbed, owner of the Wireshark trademark

1.1. Add Columns to the Packet List Pane
Wireshark contains a default set of columns that provide basic information. If you are focused on a particular
issue, however, adding columns can help you quickly detect behavior patterns.

There are two ways to add columns to the Packet List pane—the easy way and the hard way. You should
know both methods because sometimes columns can’t be created using the easier method.

Right-Click | Apply as Column (the “Easy Way”)
The Packet Details pane displays the fields and values contained in the frames. Open a trace file, such as http-
espn101.pcapng in the example that follows, and right-click on the Internet Protocol section in the Packet
Details pane. Select Expand Subtrees to see all the fields in the IP header.

To add any field as a column, right-click on the field and select Apply as Column, as shown in Figure 23. In
this example, we quickly created an IP Time to Live (TTL) column.

Figure 23. Right-click on any field and select Apply as Column. [http-espn101.pcapng]

Edit | Preferences | Columns (the “Hard Way”)
If you don’t have a packet that contains the desired field for the right-click method, you’ll need to use the hard
way to build columns. Select Edit | Preferences | Columns to see the existing columns, change the order of
the columns, and add columns.

Click the Add button to create a new column entry. On your new column row, double-click the Title area
and name the column Time to Live. Double-click the Type area and select Custom from the drop-down list. In
the Field Name area, type ip.ttl. Enter the Field Occurrence number of 0 to view all occurrences of a field.
Now click and drag your column above the Info column and Click OK when you are done.

It is much easier to just right-click on an IP TTL field and select Apply as Column.

Figure 24. You can add, edit, and rearrange columns in the Preferences window. We clicked and dragged the Time to Live column to
place it above the Info column.

Hide, Remove, Rearrange, Realign, and Edit Columns
You can use the Preferences window to perform functions on your columns, but this is not the fastest way to
work with columns. Simply right-click on a column heading in the Packet List pane to specify alignment, edit
the column title, temporarily hide (or display) a column, or even delete a column. Click and drag columns left
or right to reorder them.

For example, in Figure 25, we are working with http-espn101.pcapng. We right-clicked on our new Time to live
column to view the available column options. If we do not want to use this column again, we can select
Remove This Column.

Adding columns to the Packet List pane can save a lot of time when you’re comparing traffic characteristics. Be careful of going
column-crazy, however. Wireshark will process all displayed and hidden columns when it opens a trace file or applies a display filter. If
you create and hide 30 different columns, Wireshark is going to be much slower than if you just remove and recreate the columns as
you need them.

Figure 25. Right-click on a column heading to perform basic column functions. [http-espn101.pcapng]

Sort Column Contents
Columns make the analysis process faster, but there are two other great reasons to create columns: columns
can be sorted and column data can be exported.

Click on a column heading once to sort from low to high and click again to sort from high to low. If you have
added a column showing the delays between packets, you can sort this column to quickly find the largest
delays in the trace file. We will use this technique in Configure Time Columns to Spot Latency Problems.

For example, in Figure 26 we opened http-espn101.pcapng and clicked once on the Time to live column heading
to sort the column from low to high. Scrolling to the top of the trace file, we determined that the lowest TTL
value in the trace file is 44.

Figure 26. We sorted the Time to live field to find the lowest TTL value in the trace file. [http-espn101.pcapng]

Export Column Data
Another great reason to add columns to the Packet List pane is to export those columns for analysis with
another tool. For example, if you added a Time to Live column, you can select File | Export Packet
Dissections and choose As CSV (comma-separated value) format. Choose to export only the Packet summary
line (including the column headings) and you’ll end up with a CSV file containing your new column data.
You can now open this CSV file in a spreadsheet to manipulate the data further. You will get a chance to
practice exporting to CSV format in Lab 30 and Lab 41.

 Lab 4: Add the HTTP Host Field as a Column
During a browsing session, an HTTP client sends requests for HTTP objects to one or more HTTP servers. In
each of the requests, the client specifies the name or the IP address of the target HTTP server. This can be very
revealing.

Note: All frames from 24.6.173.220 will appear with a black background and red foreground if Wireshark is set to
validate IP header checksums. You will ensure this feature is disabled in Lab 5.

Step 1: Click the File Open button on the main toolbar and open http-disney101.pcapng.

Step 2: First we will hide the Time to Live column (if you created one while following along with the
previous section of this book). Right-click the Time to Live column heading and uncheck that
column in the drop-down menu. If you want to see that column again later, simply right-click on
any column heading and click it in the column list to enable it.

Step 3: Scroll down in the Packet List pane and select frame 15.

Step 4: The Packet Details pane shows the contents of frame 15. Click the in front of Hypertext Transfer
Protocol to expand this section of the frame.

Step 5: Right-click on the Host line (which contains www.disney.com\r\n) and select Apply as
Column. Your new Host column appears to the left of the Info column. You can click and drag the
right-hand edge of the column to widen or narrow the column.

Step 6: Click on the Host column heading twice to sort the column from high to low.

Step 7: Click the Go to Top button to jump to the top of the sorted trace file. You can now easily see all
the hosts to which the client sent requests, as shown below.

Step 8: LAB CLEAN-UP Right-click on your new Host column heading and uncheck it from the column list.

If you want to view this column again, right-click any column heading and click on the column
name to enable it. Click once on the No. column to return to the original sort order.

Adding and sorting columns are two key tasks that can shorten your analysis time significantly. Why go
searching through thousands of packets when you can have Wireshark quickly gather and display the
information you need?

1.2. Dissect the Wireshark Dissectors
Packet dissection is one of the most powerful features of Wireshark. The dissection process converts streams of
bytes into understandable requests, replies, refusals, retransmissions, and more.

Frames are handed up from either the Capture Engine or Wiretap Library to the Core Engine. The Core Engine
is referred to as the “glue code that holds the other blocks together.” This is where the real work begins.
Wireshark understands the format used by thousands of protocols and applications. Wireshark calls on
various dissectors to break apart fields and display their meanings in readable format.

For example, consider a host on an Ethernet network that issues an HTTP GET request to a web site. This
packet will be handled by five dissectors.

The Frame Dissector
The Frame dissector (seen in Figure 27) examines and displays the trace file basic information, such as the
timestamp set on each of the frames. Then the Frame dissector hands the frame off to the Ethernet dissector.

Figure 27. The Frame dissector displays metadata (extra information) about the frame.
[http-chappellu101c.pcapng]

Every once in a while a dissector bug surfaces. They typically appear as “exception occurred” in the Info column of the Packet List
pane. If you want to validate the bug, you can search for the protocol as a keyword on the Wireshark Bug Database at
bugs.wireshark.org/bugzilla/.

The Ethernet Dissector Takes Over
The Ethernet dissector decodes and displays the fields of the Ethernet II header and, based on the contents of
the Type field, hands the packet off to the next dissector. In Figure 28, the Type field value 0x0800 indicates
that an IPv4 header will follow. Notice that at this point, when we remove the Ethernet frame from the
dissection, we are using the term “packet.”

Figure 28. The Ethernet dissector looks at the Type field to determine the next required dissector. [http-chappellu101c.pcapng]

The IPv4 Dissector Takes Over
The IPv4 dissector decodes the fields of the IPv4 header and, based on the contents of the Protocol field, hands
the packet off to the next dissector. In Figure 29, the Protocol field value 6 indicates that TCP will follow.

Figure 29. The IPv4 dissector looks at the Protocol field to determine the next required dissector. [http-chappellu101c.pcapng]

The TCP Dissector Takes Over
The TCP dissector decodes the fields of the TCP header and, based on the contents of the Port fields, hands the
packet off to the next dissector. In Figure 30, the destination port value 80 indicates that HTTP will follow. We
will see how Wireshark handles traffic running over non-standard ports in the next section.

Figure 30. The TCP dissector looks at the port fields to determine the next required dissector. [http-chappellu101c.pcapng]

The HTTP Dissector Takes Over
In this example, the HTTP dissector decodes the fields of the HTTP packet. There is no embedded protocol or
application inside the HTTP packet, so this is the last dissector applied to the frame, as shown in Figure 31.

Figure 31. The HTTP dissector does not see any indication that the packet should be handed off to another dissector. [http-
chappellu101c.pcapng]

1.3. Analyze Traffic that Uses Non-Standard Ports
Applications running over non-standard ports are always a concern to network analysts, whether the
application is intentionally designed to use those non-standard ports or it is attempting to evade identification
on a network.

Wireshark uses two basic methods to figure out what dissector to apply to traffic: the static method and
heuristic method. In the static method, Wireshark examines the preceding header to determine what logical
dissector should be used next. Heuristic dissectors guess at what the next dissector should be.

What Happens When Non-Standard Ports are Used
If an application is running over a non-standard port, Wireshark may apply the wrong dissector to the traffic
(using the static method), determine the proper dissector to use and apply it (using the heuristic method), or
not apply any dissector (if both methods fail to determine the proper dissector to use).

In Figure 32, we have an FTP communication running over port number 137. Wireshark sees port 137 in use,
but the traffic does not match NetBIOS Name Service traffic behavior.

In this case, Wireshark does not continue dissecting the traffic after the TCP dissector. The last dissector
applied to the packets is listed in the Protocol column: TCP.

Note: You may want to turn off the coloring when working with this trace file. The packets were edited with a hex
editor and the Ethernet checksums were not recalculated. By default, Wireshark applies the Checksum Errors coloring
rule to the packets. You will disable Ethernet checksum validation in Lab 5.

Figure 32. If Wireshark cannot determine the proper dissector to apply for the application this trace file, it will stop dissecting
at TCP. Note that we have turned off coloring while working with this trace file.
[tcp-decodeas.pcapng]

How Heuristic Dissectors Work
When Wireshark cannot apply a dissector to data using the simple static method, Wireshark will hand the
data off to the first of many available heuristic dissectors, as illustrated in Figure 33. Each heuristic dissector
looks for recognizable patterns in the data to figure out what type of communication is contained in the
packet. If the heuristic dissector doesn’t recognize anything, it returns a failure indication to Wireshark.
Wireshark then hands the data off to the next heuristic dissector. Wireshark continues to hand the data off to
heuristic dissectors until (a) a heuristic dissector returns an indicator of success and decodes the traffic, or (b)
Wireshark runs out of heuristic dissectors to try.

Figure 33. Wireshark applies heuristic dissectors until it is successful or simply marks the undissected bytes as “data”.

Manually Force a Dissector on the Traffic
There are two reasons why you may want to manually force a dissector onto traffic: (1) if Wireshark applies
the wrong dissector because the non-standard port is already associated with a dissector, or (2) if Wireshark
doesn’t have a heuristic dissector for your traffic type.

To force a dissector on traffic, right-click on the undissected/incorrectly dissected packet in the Packet List
pane and select Decode As. In the Value column, select the port you would like to be forcibly dissected.
Finally, in the Current column select the desired dissector to be applied to the current trace file.

To remove your manually applied dissector settings, select Analyze | Decode As from the Main menu. Select
the manual dissector of interest and click the delete button .

Adjust Dissections with the Application Preference Settings (if possible)
If you know that certain traffic, such as HTTP traffic, runs over a non-standard port on your network, you can
add the port to the protocol’s preference settings. For example, perhaps you want Wireshark to dissect traffic
to or from port 81 as HTTP traffic. Select Edit | Preferences Protocols | HTTP and add 81 to the port list, as
shown in Figure 34.

Figure 34. We added port 81 to the list of TCP ports that should be dissected as HTTP traffic.

Not all protocol preferences have configurable port values. If your protocol is not listed in the Protocols
section, or your protocol does not allow you to add or change the port setting, you will need to manually force
a dissector on the traffic as shown in Manually Force a Dissector on the Traffic.

You can determine that Wireshark is unable to apply a dissector to some of your frames by selecting Statistics | Protocol Hierarchy
and looking for “data” under the TCP or UDP sections. You will work with the Protocol Hierarchy window in List Applications Seen on
the Network.

1.4. Change how Wireshark Displays Certain Traffic Types
Wireshark is a well-formed piece of clay. Nevertheless, it is in a default state when you install it. Customizing
Wireshark will make you and your analysis sessions more effective.

You learned how to add columns using the Preferences settings, but there is so much more you can do. Let’s
take a look at these key preference settings.

Define User Interface Settings
Select Edit | Preferences |Appearance to change many of the basic preferences for your interface here. You
will change two of the User Interface settings in Lab 5.

Adjust Capture Settings
Select Edit | Preferences | Capture to set a default interface and adjust other capture parameters.

• Capture packets in promiscuous mode: If an adapter is capturing in promiscuous mode, that adapter
is capturing and passing up packets that are addressed to any hardware address, not just the local
hardware address. This is an essential function in network analysis.

• Capture packets in pcapng format: The .pcapng format is a newer format for packet capture. Trace
files captured directly into .pcapng format include metadata about the capture interface and any
capture filter that may have been applied during the capture process.

• Update list of packets in real time: Rather than wait for you to stop a capture to view the packets, this
setting enables you to begin your analysis of the traffic as packets are being captured.

• Automatic scrolling in live capture: This feature scrolls the Packet List pane so the most recently
captured packets are always in view. On a busy network, you likely will not be able to do a live
analysis as thousands of packets scroll past you on the screen, but this is a nice feature on a quieter
network or when filtering is in place.

Typically, you will leave all these items with the default settings.

Define Filter Expression Buttons
You can select Edit | Preferences | Filter Expressions to save your favorite display filters as buttons to apply
them more quickly to your trace files. There is a faster way to create these buttons, however. We will cover the
process of making Filter Expression buttons in Turn Your Key Display Filters into Buttons.

Set Name Resolution Settings
Select Edit | Preferences | Name Resolution to view or change the way Wireshark deals with MAC address,
port, and IP address resolution.

• Resolve MAC addresses: By default, Wireshark resolves the first three bytes of the MAC addresses
(the OUI) to friendly names using the manuf file in the Wireshark program file directory.

• Resolve transport names: Transport names, such as “ftp” instead of port 21 are resolved using the
services file in the Wireshark program file directory.

• Resolve network (IP) addresses: If you want Wireshark to resolve host names (for example, showing
www.wireshark.org instead of an IP address), enable Network Name Resolution. There are five extra
configuration options for resolving network addresses.

o Use captured DNS packet data for address resolution: If enabled, Wireshark examines all the
name resolution packets (such as DNS) in the trace file and uses that information to resolve
host names. This is an excellent method for resolving names without transmitting any queries
onto the network.

o Use an external network name resolver: If enabled, Wireshark will send DNS Pointer (PTR)
queries to obtain host names if they can’t be obtained from another source, such as the DNS
cache, a hosts file, or from DNS packets that are already in the trace, not sent by Wireshark.
This extra traffic will show up in your trace files and may create extra work for your DNS
server (see Maximum concurrent requests below).

o Enable concurrent DNS name resolution: This function speeds up the name resolution
process by allowing multiple DNS queries to be sent from Wireshark. This is only used if
external name resolution is enabled.

o Maximum concurrent requests: This number indicates how many concurrent queries can be
sent to the DNS server. Keeping this number low will reduce the load on your DNS server.

o Only use the profile “hosts” file: This is nice option to resolve names of internal hosts that
can’t be resolved using DNS information. You must create a simple text file called hosts that
lists IP addresses and names. You can locate the profile directory using Help | About
Wireshark | Folders. You will learn more about working with profiles in The Basics of Profiles
starting.

• SNMP Resolution Options: There are several options to resolve SNMP (Simple Network
Management Protocol) information contained in trace files. Although Wireshark has some ability to
resolve the MIB (Management Information Base) and PIB (Policy Information Base) objects into
readable form, you can add additional PIB/MIB modules and paths if desired.

• GeoIP database directories: Wireshark can use GeoIP database files to plot IP addresses on a map of
the world. You can obtain the Geo*.dat files from MaxMind (www.maxmind.com)16. You will get a
chance to enable/disable this feature and use this skill in Lab 32.

You can also set name resolution through View | Name Resolution, however this is only a temporary setting.
Settings changed in the Preferences window are retained with the current profile.

16 At the time this book was released, the full URL for obtaining the necessary Geo*.dat files was

http://dev.maxmind.com/geoip/legacy/geolite/. This may change, of course.

Set Protocol and Application Settings
Although you can select Edit | Preferences Protocols to view all the protocols and applications that contain
editable settings, the right-click method is a faster way to define protocol settings. In Lab 5 you will use the
right-click method to view and change several protocol settings:

• Allow subdissector to reassemble TCP streams: This setting is enabled by default, but it can cause
problems when analyzing HTTP traffic. If an HTTP server answers a client request with a response
code (such as 200 OK) and it includes some of the requested data in the packet, Wireshark does not
display the response code in the Info column of that response packet. Instead, Wireshark displays
“[TCP Segment of a Reassembled PDU]” (Protocol Data Unit). In addition, the HTTP response time
measurement will measure from the request to the end of the file download rather than from the
request to the response. We would much rather see the response code on the correct packet.

 TCP reassembly enabled:

 TCP reassembly disabled:

 You can disable the TCP reassembly preference setting until you want to export files that were
transferred in an HTTP communication (see View all HTTP Objects in the Trace File).

• Track number of bytes in flight: Data bytes that are sent across a TCP connection, but are not
acknowledged yet, are considered “bytes in flight.” We can configure Wireshark to show us how
much unacknowledged data is currently seen in a TCP communication. If the number seems to hit a
“ceiling,” some TCP setting may be limiting data flow capabilities. When you enable this setting, a
new section (shown below) is appended to the TCP header [SEQ/ACK analysis] section in the Packet
Details pane. This new field will not be displayed until after the TCP connection is established.

 Track number of bytes in flight enabled:

• Calculate conversation timestamps: This TCP setting tracks time values within each separate TCP
conversation. This enables you to obtain timestamp values based on the first frame in a single TCP
conversation or the previous frame in a single TCP conversation. When this TCP setting is enabled, a
new section (shown below) is appended to the TCP header section in the Packet Details pane.

You will work with these settings in Lab 5 and examine their effect on the Wireshark Packet List pane and
Packet Details pane.

 Lab 5: Set Key Wireshark Preferences (IMPORTANT LAB)17
Wireshark offers several key preference settings to enhance your analysis sessions. In this lab you will use Edit
| Preferences on the main menu and the right-click method to view and change the preference settings.

These are the settings we will work with in this lab:

• Display filters that Wireshark will remember

• Recently opened files that Wireshark will remember

• Ethernet, IP, UDP, and TCP checksum validations

• TCP Calculate conversation timestamps setting

• TCP Track number of bytes in flight setting

• TCP Allow subdissector to reassemble TCP streams setting

Note: Your Wireshark system should retain all of these settings through the rest of this book with the
exception of the TCP Allow subdissector to reassemble TCP streams setting, which you will work with during
various labs.

Step 1: Open http-pcaprnet101.pcapng.

Step 2: Select Edit | Preferences on the main menu.

Step 3: Change both the filter entries and recent files settings to 30.

 These two settings allow you to quickly recall more of your recent filter settings and opened files.

Step 4: Click OK. This automatically applies and saves your settings in this Default profile and closes the
Preferences window. Next we will use the right-click method to check and change the Ethernet, IP,
UDP, and TCP settings.

 We will begin by disabling the Ethernet checksum validation (which is enabled by default).

 Next, we will ensure IP, UDP, and TCP checksum validations are disabled18. These three checksum
validations should already be disabled unless you updated Wireshark while retaining previous
settings.

17 The remaining labs in this book assume you have successfully completed this lab.
18 Most systems support checksum offloading. If Wireshark obtains a copy of an outbound frame before the checksum

values have been calculated, it will mark the checksums invalid. This is a false positive when capturing traffic directly
on a host that supports checksum offloading.

Step 5: With frame 1 selected in the Packet List pane, right-click on the Ethernet II section of the Packet
Details pane and hover over the Protocol Preferences option on the drop-down menu. If this
setting is enabled (checked), click on the Validate the Ethernet checksum if possible setting to
disable it.

Step 6: With frame 1 still selected in the Packet List pane, right-click on the Internet Protocol section of the

Packet Details pane and hover over the Protocol Preferences option on the drop-down menu. If
this setting is enabled (checked), click on the Validate the IPv4 checksum if possible setting to
disable it.

Step 7: Again, in frame 1, right-click the User Datagram Protocol section of the Packet Details pane and
hover over the Protocol Preferences option from the drop-down menu. Uncheck Validate the
UDP checksum if possible setting if it is currently enabled.

Step 8: Select frame 5 in the Packet List pane. Right-click the Transmission Control Protocol section of the
Packet Details pane and, under Protocol Preferences, disable the Validate the TCP checksum if
possible setting if it is currently enabled.

Step 9: Since Wireshark closes the TCP protocol settings menu after you select an option, you must right-
click again on the Transmission Control Protocol section of the Packet Details pane to review or
change the following additional settings.

 Disabled: Allow subdissector to reassemble TCP streams
 Enabled: Track number of bytes in flight
 Enabled: Calculate conversation timestamps

Step 10: Now let’s see how a few of these settings affect the packet displays. Click on frame 8 in http-

pcaprnet101.pcapng. Expand the Transmission Control Protocol line, the SEQ/ACK analysis, and
Timestamps section in the Packet Details pane.

 We can see that Wireshark is not validating the TCP checksum and that 287 bytes of data have
been sent, but not acknowledged. In addition, we can see that this frame arrived about 20
milliseconds (0.020 seconds) after the first frame of the TCP conversation (also referred to as the
TCP stream) and 778 microseconds (0.000778 seconds) after the previous frame of this
TCP conversation.

You can easily use the right-click method to change protocol preferences, such as tracking time in each TCP
conversation and the number of unacknowledged bytes in a conversation. There are many other application
and protocol preference settings that can be set in either the Preferences window or through the right-click
method.

1.5. Customize Wireshark for Different Tasks (Profiles)
There are certain customization characteristics that fit troubleshooting tasks while other customized settings
may fit network forensics tasks. Profiles enable you to define separate Wireshark configurations for these
different analysis processes.

The Basics of Profiles
Profiles are basically directories that contain Wireshark configuration and support files that are loaded by
Wireshark when you select to work in each profile. For example, you may create a profile focused on security
concerns. This “security profile” may contain filters to display all ICMP traffic or connection attempts
traveling in the direction of clients (as opposed to servers) and coloring rules that highlight suspicious traffic
that contains known signatures.

Create a New Profile
Right-click on the Profile column in the Status Bar and select New to create a new profile, name it
Troubleshooting, and press Enter. Click OK to begin working with your new profile. All the capture filter
settings, display filter settings, coloring rules, columns, and preference settings you set now will be saved in
that Troubleshooting profile.

Alternately you can select Edit | Configuration Profiles… and click the Add button to create a new
profile.19

The name of the profile you are working in is displayed in the right-hand column of the Status bar. In Figure
35, we are working in our Troubleshooting profile. Consider creating a different profile for security analysis,
WLAN analysis, or any other type of analysis functions you perform.

Figure 35. The right column in the Status Bar indicates the profile in use.

Profiles are a collection of simple text files that define preference settings, capture filters, display filters, coloring rules, and more. If you
want to copy part or all of a profile to another Wireshark host, simply copy the profile directory (or the individual files in the profile’s
directory) to the other host.

19 You can create new profiles based on existing profiles by clicking the Copy button in the Edit | Configuration

Profiles window or right-click on the Profile area on the Status Bar, select New, select an existing profile from the list,
and then click the Copy button. You will create a new profile based on the Default profile in Lab 6.

 Lab 6: Create a New Profile Based on the Default Profile
Profiles enable you to work with customized settings to be more efficient when analyzing traffic. In this lab
you will create a new profile called “wireshark101.” You will base it on your Default profile to ensure any
previously created settings will be copied over to your new profile.

Step 1: Right-click on the Profile column in the Status Bar and select Manage Profiles. (It does not matter
what profile is currently listed in the Profile column.)

Step 2: Select Default from the list of available profiles and click the Copy button . Type the name
wireshark101 and click OK.

 Wireshark now displays your new profile in the Status Bar.

 In Lab 5 we worked with some key preference settings (such as Track number of bytes in flight and
Calculate conversation timestamps) in the Default profile. Since your new profile is based on the
Default profile, these preference settings are also set in your wireshark101 profile.

Wireshark remembers the last profile used when it is restarted. To change to another profile, click on the
Profile area of the Status Bar and select another profile.

1.6. Locate Key Wireshark Configuration Files
Wireshark configuration settings are stored in two places: the global configuration directory and the personal
configuration directories. Learning where Wireshark stores settings enables you to quickly alter settings or
share individual configurations with other people or other Wireshark systems.

The location of these directories may be different based on the operating system on which Wireshark is
installed and where you chose to place Wireshark during the installation process. Select Help | About
Wireshark | Folders to locate these directories on your system, as shown in Figure 36.

Figure 36. Use Help | About Wireshark | Folders to find your configuration files.

Your Global Configuration Directory
The global configuration directory contains the default configuration for Wireshark. When you create a new
profile (without copying an existing profile), Wireshark pulls the basic settings from the files in the global
configuration directory.

The following lists some of the files that may be found in your configuration directories:

• cfilters contains the capture filters for a profile.

• colorfilters contains the coloring rules for a profile.

• dfilters contains the display filters for a profile.

• io_graphs contains the default settings for IO graphs. (We will examine IO graphs in Graph Application
and Host Bandwidth Usage starting).

• preferences contains the settings defined when you select Edit | Preferences when those settings do not
have their own separate configuration file; this includes name resolution settings, Filter Expression
button settings, and protocol settings.

• recent contains miscellaneous settings such as column widths, zoom level, toolbar visibility, and the
recent directory used for loading trace files.

Your Personal Configuration (and profiles) Directory
When you make changes to the Default profile or create and customize other profiles, Wireshark stores those
changes in your personal configuration directories.

The configuration files for any customized settings made to the Default profile reside directly in your personal
configuration directory. When you build your first custom profile, Wireshark creates a profiles directory in
your personal configuration directory.

Inside that profiles directory, you will see one directory for each of your custom profiles. Figure 37 shows the
directory structure of a Wireshark system that has two custom profiles named troubleshooting, and
wireshark101.

Figure 37. Custom profiles (and their configuration files) are stored under the profiles directory.

Don’t be afraid to edit the configuration files. They are just text files that can be altered in a text editor. Now that we’ve addressed that
issue, someday you may open up the colorfilters file in a text editor such as Notepad only to see a message that reads, “# DO NOT
EDIT THIS FILE! It was created by Wireshark” at the top of the file. Disregard that message—there is no reason to avoid editing this
file in a text editor. Manual changes will be visible when you reload the profile.

 Lab 7: Import a DNS/HTTP Errors Profile
Once you’ve created that fabulous profile that detects various types of HTTP or DNS problems perhaps,
consider installing that profile on your other Wireshark systems. Since Wireshark bases profiles on text files,
this is a simple process.

Step 1: Visit www.wiresharkbook.com and download the sample profile (httpdnsprofile101v2.zip). This
new profile’s directory and contents are zipped into a single file.

Step 2: Select Help | About Wireshark | Folders. Double-click on your personal configuration folder to
examine the directory structure.

Step 3: As mentioned earlier, Wireshark creates a profiles directory when you build your first custom
profile (as you did in Lab 6). If you do not see a profiles directory at this point, you can manually
create one or return to and complete Lab 6. Open the profiles directory.

Step 4: Extract the httpdnsprofile101v2.zip file contents into this profiles directory. You should see a new
directory called HTTP-DNS_Errors. Look inside this new directory to see the Wireshark
configuration files included in this profile.

Step 5: Return to Wireshark and click on the Profile column on the Status Bar. You should see the new
profile listed. Click on the HTTP-DNS_Errors profile to examine this new profile.

Step 6: Open dns-nmap101.pcapng while working in your HTTP-DNS_Errors profile. You should see some

interesting colors in the trace file and two new buttons in the display filter area.

Step 7: LAB CLEAN-UP Click the Profile column on the Status Bar and select your wireshark101 profile. You
will continue to enhance the wireshark101 profile in upcoming chapters of this book.

Remember that profiles are simply a collection of configuration text files. It is easy to move single elements of
a profile or entire profiles to other machines. If you work with a troubleshooting team, consider creating
common Wireshark profiles that the entire team can use.

Some configuration text files, such as the recent configuration file, contain directory paths. This may generate Wireshark startup errors
when you move these types of configuration files to another system that does not have the same directory paths in place. You could
either avoid moving these files to another system or edit the relevant configuration files to match the directory structure of the target
system.

1.7. Configure Time Columns to Spot Latency Problems
Latency is a measurement used to define time delay. As a host sends a request and waits for a reply, there is
always some latency. Excessive latency can be caused by problems along a path or at the endpoints.

The Time column and Info column can be used to detect three specific types of latency—path latency, client
latency, and server latency.

The Indications and Causes of Path Latency
Path latency is often referred to as round trip time (RTT) latency because we often measure how long it takes
for some packet to be transmitted and the response to be received. Using this measurement process, we can’t
tell if slow performance is in the outbound or the inbound direction. We just know it is slow somewhere along
the path between two devices.

Path latency can be caused by an infrastructure device, such as an enterprise router, that is prioritizing (quality
of service) traffic. If your low-priority traffic arrives at such a device when high-priority traffic is flowing
through, your lowly traffic may be queued for a bit while the mucky-mucks go flying through.

Path latency and packet loss can also be caused when there is a bandwidth bottleneck on a network. For
example, if you connect two heavily-loaded gigabit networks together with a 10 Mbps link, it’s like connecting
two fire hoses together with a garden hose20.

On Wireshark, we can see path latency by looking at the first two packets of a simple TCP three-way
handshake, as shown in Figure 38. Capture close to the client and watch the client send a SYN packet to the
server. How much time goes by before the SYN-ACK? We will look at a trace file that has high path latency in
this section.

Figure 38. Identify path latency by looking at the round trip time (RTT) between the SYN and SYN/ACK of a TCP three-way
handshake.

20 Don’t laugh at this one—I’ve seen this happen before. A slight misconfiguration among the IT team and an energetic

intern dragged this network to the ground. It began with big path delays and then deteriorated to monstrous packet
loss. I think the intern makes balloon animals at the mall for a living now.

The Indications and Causes of Client Latency
High client latency can be caused by users, applications or a lack of sufficient resources. There is the natural
“human-induced” latency (when you wait for a user to click on something on their screen), but there’s not
much we can do about that. We are looking for client latency problems caused by sluggish client applications.

Of the three latency problems mentioned (path, client and server latency), this is the one that is seen least
often. Most applications put the load on the server side of the communications. If, however, you happen to
have an application that balances the work load between the client and the server, then we have to consider
the client response times.

In Wireshark, client latency is indicated when we see a large delay before a packet from the client (ignoring
delays due to user interactions), as shown in Figure 39.

Figure 39. Watch for delays before client requests, but don’t worry about delays while we wait for a user to enter something on their
keyboard.

The Indications and Causes of Server Latency
Server latency occurs when a server is slow replying to incoming requests. This could be caused by a lack of
processing power at the server, a faulty (or poorly written) application, the requirement to consult another
server to get the response information (multi-tiered or middleware architecture), or some other type of
interference delaying the server responses.

On Wireshark, we can identify server latency by watching a client request heading to the server, a quick
acknowledgment from the server, and then a significant wait time before the requested information is
received, as shown in Figure 40. Sadly, this is becoming more common on networks as servers are required to
support more applications without getting the required upgrades.

Figure 40. Watch for delays between server ACKs and responses.

Detect Latency Problems by Changing the Time Column Setting
The default Time column setting is Seconds Since Beginning of Capture. In essence, Wireshark marks the first
packet’s arrival as 0.000000000. The Time column value for each packet after the first one is based on how
much later it arrived during the capture process.

To spot high delta times (the time from the end of one packet to the end of the next packet), select View |
Time Display Format | Seconds Since Previous Displayed Packet. This setting will be retained with the
profile in which you are working.

After changing this setting, click the Time column twice to sort from high to low to look for large delays in the
trace file.

In Figure 41, we opened http-openoffice101b.pcapng, set the Time column to Seconds Since Previous Displayed
Packet, and sorted the Time column from high to low. The first packet that appears is a SYN/ACK—the
second packet of the TCP handshake. This trace file was taken at the client and this is a perfect indication of
path latency.

In essence, this delay before the SYN/ACK packet indicates it took almost ¼ of a second (.226388 seconds) to
get to the HTTP server and back. You might as well walk there!21

Figure 41. Sort the Time column after setting it to Seconds Since Previous Displayed Packet. [http-openoffice101b.pcapng]

This method is great when you have a single conversation in the trace file, but if you have numerous
UDP/TCP conversations, the Seconds Since Previous Displayed Packet setting can hide problems.

For example, consider what this column would display if you had five different conversations intertwined in
the trace file. The Time column is now measuring the delta time between each of the packets with no regard to
the fact that there are five different intertwined conversations. We would want to see delays inside the
separate conversations.

Detect Latency Problems with a New TCP Delta Column
In Lab 5, you ensured that the Calculate conversation timestamps TCP preference was enabled. In Lab 6, you
created your wireshark101 profile based on the Default profile so you should already have this setting in place.
Now we will look at how we can create a column based on that preference setting so we can obtain separate
delta time values for each TCP conversation.

To add a column for the TCP delta time value, expand a TCP header Timestamps section. Right-click on the
Time since previous frame in this TCP stream and select Apply as Column, as shown in Figure 42. You now
have a new column in the Packet List pane.

21 Ok, walking probably isn’t an option—unless you are trying to distract yourself from the ridiculously long wait time

you will have trying to download a file from this HTTP server.

Figure 42. Enable Calculate conversation timestamps and add a new column to spot delays inside individual TCP conversations.
[http-openoffice101b.pcapng]

This new column name is too long. To rename a column, right-click the column heading and select Edit
Column. Type the new column name in the Title field and click OK to save the new name. In Figure 43, we
named our new column TCP Delta.

Figure 43. Right-click on a column heading and choose Edit Column to change the column name. [http-openoffice101b.pcapng]

Let’s examine the difference between the Time column value and this new TCP Delta column in a new trace
file.

In Figure 44, we opened http-pcaprnet101.pcapng, clicked on, and dragged the new TCP Delta column to the
right of the existing Time column. We sorted on the Time column from high to low to see the difference in
time values between the Time column and TCP Delta column.

Figure 44. SYN packets show up as high latency in this trace file, but these are false positives [http-pcaprnet101.pcapng]

Before we sort on the TCP Delta column to find delays inside individual TCP conversations, let’s examine
why some delays can be considered normal.

Don’t Get Fooled – Some Delays are Normal
Some delays are not noticed by the end user (such as the loading of an .ico file, the icon on the browser tab).
Other delays are just considered “normal” and acceptable. Do not spend your time troubleshooting delays
before these types of packets.

• .ico file requests are eventually launched by the browser to put an icon on your browser tab.

• SYN packets are sent to establish a new connection with a TCP peer. You may begin capturing and
then ask a user to connect to a web server. There will be a delay before the first packet of the TCP
connection (the SYN packet).

• FIN or RST packets are sent to either implicitly or explicitly terminate a connection. Browsers send
these packets when you click on another tab or when there has been no recent activity to a site or
when the browsing session is configured to automatically close after a page has loaded. Users do not
notice these delays.

• GET requests can be generated when a user clicks on a link to request the next page. Other times,
some GET requests may be launched by background processes that have no priority whatsoever (such
as in the .ico file GET requests).

• DNS queries may be sent at various times during a web browsing session, such as when a page that
has numerous hyperlinks loads at the client.

• TLSv1 encrypted alerts are often seen just before a connection close process (TCP Resets). Although
encrypted, the alert is likely a TLS Close request.

In Figure 44, the largest delays precede SYN packets and FIN packets. Don’t spend time troubleshooting these
delays as they are likely caused by waiting for a user to request a file or the eventual timeout process of a
connection.

In Figure 45, we are still working in http-pcaprnet101.pcapng. Previously, we sorted based on the Time column.
Now, when we sort the TCP Delta column from high to low we notice the 18 second delay before the three
background graphics are requested. That common delay is typical of a background process. The FIN/ACK
packets are never a concern as they happen transparently in the background to time out a TCP connection.

The OK responses in frame 20 and 43222, however, are a very real concern. This is high server latency. In this
trace file, there are delays of 1.898091 seconds and 1.780574 seconds that are worth looking into. We don’t
expect such large delays before the server sends the required web page element. The server is either
overloaded, it doesn’t hold the information locally, or perhaps the requested element is located in a database
that needs to be queried before responding.

In this situation, the latter is the case. When you load the pcapr.net web site and type in a protocol or
application name, that value is used to search a database for entries that match your query.

Also see Use Filters to Spot Communication Delays.

22 If packets 432 and 20 appear as [TCP segment of a reassembled PDU], you need to change your TCP preference settings

to disable Allow subdissector to reassemble TCP streams. Select Edit | Preferences Protocols | TCP to set this.

Figure 45. Sort your TCP Delta column from high to low when looking for delays in individual TCP conversations—do not get
distracted by “normal” delays (crossed out in the image above). [http-pcaprnet101.pcapng]

When you approach a complaint that the network is slow, always look at the latency times to see if that is part of the problem. If an
application runs over TCP, we can detect path and server latency by looking for delays during the TCP handshake (path latency) and
the delay between an ACK from the server (acknowledging a request from a client) and the actual data that follows.

 Lab 8: Spot Path and Server Latency Problems
Let’s practice using these two columns to detect latency. In this lab you will set the Time column to Seconds
Since Previous Displayed Packet and add the TCP Delta column.

You may have some of these columns set already if you followed along with the previous section.

Step 1: Open http-slow101.pcapng.

Step 2: Right-click the Length column heading and unselect the Length column to hide it. This provides
more room for your new column.

Step 3: Select View | Time Display Format | Seconds Since Previous Displayed Packet. Click on your
Time column heading twice to sort from high to low.

 Click the First Packet button on the main toolbar. We can see some very high delays in this
trace file.

 Now let’s see what happens when we add and work with a column that depicts TCP conversation
timestamps.

Step 4: Click on the No. (Number) column heading to return the trace file to its default sort order. Scroll
up or click the Go to First Packet button on the main toolbar to go to frame 1.

Step 5: Right-click the TCP header in the Packet Details pane of frame 1 and select Expand Subtrees.

Scroll down and right-click on the Time since previous frame in this TCP stream and select Apply
as Column. You now have a new column in the Packet List pane, as shown below.

Step 6: Right-click on the new column and select Edit Column. Type TCP Delta in the Title area and click
OK.

 As we sort on the TCP Delta column, keep in mind the types of traffic that can contain “normal
delays” as listed in

Don’t Get Fooled – Some Delays are Normal.

Step 7: Click on your new TCP Delta column heading and drag the column to the right of the existing
Time column. Click twice on your new TCP Delta column heading to sort from high to low. Since
there are multiple TCP conversations intertwined in this trace file, this TCP Delta column gives an
accurate display of latency times in the trace file.

 Do you see anything in common with the top delays in the traffic? There are several very large
delays before the HTTP server said “OK.” You can probably imagine that the user would complain
about terrible performance when browsing to this web site.

Step 8: LAB CLEAN-UP Click once on the No. (Number) column heading to sort from low to high. This is the
original sorting order of trace files.

 Right-click on the TCP Delta column heading and unselect that column from the list to hide it. If
you want to view this column again later, you can right-click on any column heading and select it
from the column list.

Look at the TCP delta times in your web browsing sessions, network logins, or email traffic. Get a feel for the
round trip latency times from your client to numerous hosts.

Chapter 1 Challenge
Open challenge101-1.pcapng and use the techniques covered in this chapter to answer these Challenge
questions. The answer key is located in Appendix A.

This trace file includes an HTTP communication running over a non-standard port. If you are using an earlier
version of Wireshark (Wireshark v1.x), you must force Wireshark to dissect this traffic as HTTP.

Question 1-1. In which frame number does the client request the default web page (“/”)?

Question 1-2. What response code does the server send in frame 14? (This will be in frame 17 if you have the
TCP reassembly feature enabled – see Lab 5.)

Question 1-3. What is the largest TCP delta value seen in this trace file?

Question 1-4. How many SYN packets arrived after at least a 1 second delay?

Chapter 1 Challenge Answers
Answer 1-1. If you are running an earlier version of Wireshark (Wireshark v1.x), you must add port 87 in

the HTTP preference setting (Edit | Preferences Protocols | HTTP), as shown below. You
may need to click the Reload button on the main toolbar to apply your new setting to the
trace file.

 Frame 13 is the GET request for the default page.

Answer 1-2. In frame 14, the server responds with 200 OK. This will appear in Frame 17 if you have the
TCP reassembly feature enabled (see Lab 5).

Answer 1-3. In order to view the TCP delta time, we must enable the Calculate conversation timestamps TCP

preference (Edit | Preferences Protocols | TCP). Then we can right-click on the new “Time
since previous frame in this TCP stream” line at the end of the TCP header, select Apply as
Column, and click twice on the new column’s heading to sort from high to low. Frame 285
contains the largest TCP delta time, 15.438012000 seconds.

Answer 1-4. Based on the TCP Delta column sorted in Question 1-3, we can look in the Info column and
TCP Delta column to see how many SYN packets have a value greater than 1 second. Four
SYN packets arrived after at least a 1 second delay (frames 3, 6, 2, and 5 in that order). This is
a sign that there are problems connecting to a TCP peer.

 These four SYN packets are denoted as TCP retransmissions, as well.

Chapter 2 Skills: Determine the
Best Capture Method and
Apply Capture Filters

Approach networking protocols like you would human conversations. Think of how people talk to each other,
how they act when they want something, how they show gratitude when they get it. Look for those types of
themes in the packets and network traffic will become easier to understand and communication nuances will be
easier to remember. The time investment is worth it. When you understand packets, you understand everything
in networking.

Betty DuBois
Chief Detective of Network Detectives and Wireshark University Certified Instructor

Quick Reference: Capture Options

(1) Interface List—Select one or more interfaces (multi-adapter capture)
(2) Capture Filter—Displays applied capture filter
(3) Manage Interfaces—Click here to add new local/remote interfaces
(4) Capture to Permanent File(s)—Save to multiple files, define when the next file should be

created, and set a ring buffer
(5) Display Options—Set auto-scroll and view packets while capturing
(6) Name Resolution—Enable/disable name resolution for MAC addresses, IP addresses, and ports

(transport names)
(7) Stop Capture—Set an auto-stop condition based on number of packets, number of files created,

quantity of data captured, or elapsed time

2.1. Identify the Best Capture Location to Troubleshoot Slow
Browsing or File Downloads

The first step in analyzing network performance problems is to capture traffic in the right spot. Place
Wireshark in the wrong spot and you may spend too much time dealing with unrelated traffic or following
“false positives.”

The Ideal Starting Point
Begin by capturing traffic at or near the host that is experiencing a performance problem, as depicted in Figure
46. This allows you to see traffic from that host’s perspective. You can detect the round trip latency times,
packet loss, error responses, and other problems that the host is experiencing. If a user complains about slow
email downloads, you want to see the performance problems from their perspective. If you capture
somewhere in the middle of the network, your packet capture tool may be upstream from the point where
performance issues are injected into the communications.

Figure 46. You can see the concerns from this host’s perspective when you start capturing as close to this host as possible.

Move if Necessary
After getting a general idea of what is happening from the complaining host’s perspective, you may have to
move your packet capture tool to another location to get a different perspective. For example, if packet loss
seems to be the cause of poor performance, you’ll want to move Wireshark (or set up a second Wireshark
system) on the other side of the switches or routers to determine where the packets are being dumped. Most
packet loss occurs at interconnecting devices, so that’s where you would focus.

Start capturing at the client system to get that client’s perspective. Watch for high round trip times to a target, indications of packet loss,
problems with buffer sizes (zero window condition—as discussed in Receive Buffer Congestion Indications), and suspicious or
unnecessary background traffic. Many times you won’t have to go any further than the client’s perspective.

2.2. Capture Traffic on Your Ethernet Network
There are lots of ways to capture traffic on your Ethernet network. Knowing your options will help ensure you
use the most efficient method to capture traffic. You have three options for capturing close to the complaining
host. Options 1 through 3 are displayed in Figure 47.

Figure 47. You have three basic options for capturing traffic on an Ethernet network.

Option 1: Capture directly on the complaining host
This may be a great option if you are allowed to install packet capture software on that host. You don’t have to
install Wireshark. Consider using a simple packet capture utility such as tcpdump.

Option 2: Span the host’s switch port
If the switch above the user supports port spanning and you have rights to configure that switch, consider
setting up that switch to copy all traffic to or from the user’s switch port down your Wireshark port. One
concern to note, however, is that switches will not forward link-layer error packets so you may not see all the
traffic related to poor performance.

Option 3: Set up a Test Access Port (TAP)
Taps23 are full-duplex devices that are installed in the path between the host of interest and the switch. By
default, taps forward all network traffic, including link-layer errors. Although taps can be expensive, they can
be a life-saver if you want to listen to all traffic to or from a host.

Prepare and practice your capture process well in advance. You don’t want to run around looking for the switch port spanning
configuration information while people are screaming about network problems. If you are going to use a tap to listen to traffic to/from a
server, consider keeping the tap in place, always ready when you need it.

23 The term “tap” is used as a general term for the acronym TAP.

2.3. Capture Traffic on Your Wireless Network
Wireshark can help you understand how wireless networks (WLANs) work and also help you find the cause
of lousy performance on your home or work network. You have a few options for capturing on the WLAN
side. First, determine what your native WLAN adapter can see while running Wireshark.

What can Your Native WLAN Adapter See?

Click the Close File button to return to the Start Page. Examine the sparklines to determine if your wireless
adapter is listed and if it sees traffic through Wireshark. If the sparkline is flat, but you know there is WLAN
traffic, your native adapter probably isn’t going to work with Wireshark.

If you do see some activity on your native adapter’s sparkline, double-click that adapter to begin a capture. If
your adapter can see WLAN beacons as well as data packets and you see 802.11 headers, your adapter might
work as a packet capture interface. However, if the adapter does not add metadata, such as the signal strength
at the time of capture, you are missing out on some important data required for analysis24.

Two other options exist for WLAN capture on a Windows host: the AirPcap adapter and the Npcap driver.

Use an AirPcap Adapter for Full WLAN Visibility
AirPcap adapters are specifically designed to capture all types of WLAN traffic, apply WLAN decryption keys
(if supplied), and add metadata about the captured frames.

AirPcap adapters can capture 802.11 control, management, and data frames. In addition, these adapters run in
monitor mode (also referred to as RF monitor or RFMON mode), which enables the adapter to capture all
traffic without having to associate with a specific Access Point. This means the AirPcap adapter can capture
traffic on any 802.11 network, not just the one to which the local host typically associates itself.

AirPcap adapters can be configured to affix either a PPI (Per-Packet Information) or RadioTap header to each
WLAN frame. These headers contain some great information, such as the frequency on which the frame
arrived, the signal strength and noise level at the moment and location of capture, and more. Figure 48 depicts
a trace file (wlan-ipadstartstop101.pcapng) captured with an AirPcap adapter. The Packet Details pane displays
the additional information contained in the RadioTap header.

If you need to capture WLAN traffic, the AirPcap adapters are an excellent option. For more information on
AirPcap adapters, visit www.riverbed.com.

24 The signal strength information is not contained in a field of the 802.11 header, so this information must be added by

the adapter or a special driver.

Figure 48. The AirPcap adapter enables you to see control, management, and data frames. In addition, the adapter prepends a Radiotap
or PPI header with 802.11 metadata to the frames. [wlan-ipadstartstop101.pcapng]

When troubleshooting or securing WLAN networks, begin as close as possible to the complaining/suspect
host (just like you did when capturing on a wired network).

Try capturing on your native adapter to determine its capabilities. You need to see true 802.11 headers as well as management, data,
and control frames. AirPcap adapters are a worthwhile investment if you are going to be analyzing wireless network traffic.

Use the Npcap Driver for WLAN/Loopback Visibility
The Npcap Project developed a new packet sniffing library for Windows systems. Although Npcap is based
on the WinPcap/Libpcap libraries, Npcap offers the following advantages:

• NDIS 6 support which is faster than the old deprecated NDIS 5 API (which Microsoft may kill off at
some point).

• Monitor Mode for capture on wireless networks.

• Security through the use of the User Account Control (UAC) dialog.

• WinPcap compatibility for programs that require the WinPcap libraries.

• Loopback packet capture by creating an adapter named Npcap Loopback Adapter.

• Monitor Mode for capture on wireless networks.

2.4. Identify Active Interfaces
If Wireshark can’t see an interface, you can’t capture traffic. If you have more than one interface, you need to
determine which one to use. Mastering the interface options is required to be successful as an analyst.

Determine Which Adapter Sees Traffic

Click the Capture Options button and examine the sparkline activity to quickly determine which interface
is seeing traffic and to which network each interface is connected.

Click the in front of an adapter to view addresses associated with that adapter.

Figure 49. We can easily tell which interface is able to capture traffic by looking at the sparkline activity.

Consider Using Multi-Adapter Capture
In the Capture Options window, you can use Ctrl+click (or Command+Click on a Mac) to select multiple
interfaces upon which to capture. This is useful if you want to capture on the wired and wireless network
simultaneously. For example, if you are trying to troubleshoot a WLAN client on the network, you can capture
on the client’s WLAN adapter and the wired network simultaneously, as shown in Figure 50.

Figure 50. You can simultaneously capture a client’s traffic as it travels through to wireless and wired networks.

2.5. Deal with TONS of Traffic
Inside a busy enterprise, the traffic can overload Wireshark25 leaving you with an incomplete trace file that
makes your analysis thoroughly inaccurate. Learn to deal with high rates of traffic to ensure you can track
down problems on any size network.

In Chapter 8 we will look at command-line capture techniques using Tshark and Dumpcap.

Why are You Seeing So Much Traffic?
If a user is complaining about slow web browsing, begin capturing traffic and then ask the user to browse to
some web sites. Keep capturing until your user has demonstrated the slow browsing problem. You will have
captured traffic that will help you determine if the performance problem is linked to the client, server, or path.

When you capture close to the client, you should see much less traffic than if you’d tapped into the middle of
the enterprise. It is likely that Wireshark can keep up with traffic rates to and from the client.

If you are dealing with a security issue (perhaps you think a host contains malware), you may want to capture
all traffic to or from this host for quite a while. During this capture process, don’t let a user access the
keyboard of this machine. You don’t want to capture user behavior.

You can get severe back pains from sleeping on the office floor or quickly fill up a hard drive if you don’t set
this up as an unattended capture process.

This is the Best Reason to Use Capture Filters
Dealing with too much data is one of the best reasons to use capture filters. By reducing the number of packets
Wireshark must capture, you reduce the load on Wireshark while reducing the amount of traffic you must
wade through. Keep in mind, however, that an overly restrictive capture filter may cause you to miss key
packets. Look at capturing to file sets as a safe option.

25 Since Dumpcap is the tool that is capturing traffic for Wireshark, it is actually Dumpcap that can be overwhelmed if

traffic is arriving faster to Dumpcap than Wireshark is picking it up from Dumpcap.

Capture to a File Set
Wireshark can capture traffic to file sets. File sets are individually linked files that can be examined using
Wireshark’s File | File Set | List Files feature.

Click the Capture Options button , select on the interface(s) on which to capture, and click the Output tab.
Enter the path and file name for the file set, as shown in Figure 51. Check Create a new file automatically
after… to define the criteria to create the next file.

In our example, Wireshark will create a set of 100 MB-sized files in .pcapng format. We didn’t set a stop criteria
so we’ll need to manually stop the capture process at some point.

Figure 51. We set up Wireshark to capture to a set of 100 MB-sized files.

In the example shown in Figure 51, since we suspect malware is running on a host, we will let Wireshark
capture the traffic to and from this host for the next 12 hours to see if there is a phone home process running in
the background. You may need to capture for longer or shorter times, depending on what you see in the trace
file(s).

When Wireshark saves to these file sets, the files will be named ginny_pc followed by a file number and
date/time stamp. For example, if we captured three files, they would be named something like:

• ginny_pc_00001_20170115180713.pcapng
• ginny_pc_00002_20170115184116.pcapng
• ginny_pc_00003_20170115190252.pcapng

Open and Move around in File Sets
To work with file sets, use File | Open and select any of the files in your file set. For example, open any one of
the book trace files that begin with “split250.” Each of these files is part of a file set. After opening the first file
from this set, use File | File Set | List Files to see all the files in your file set.

Click on each file to quickly move from one file to another. See also Use Special Capture Techniques to Spot
Sporadic Problems.

Consider a Different Solution—SteelCentral™ Packet Analyzer
It was evident back in 2007 that trace files were getting larger and larger as network speeds increased and file
sizes expanded to include multimedia elements. Wireshark suddenly became a cumbersome tool to use on
these files.

In 2009, Loris Degioanni, creator of WinPcap, began work on a product that is now known as SteelCentral™
Packet Analyzer (formerly Cascade Pilot)26. Packet Analyzer handles large trace files, offers graphing and
reporting capabilities missing in Wireshark, and integrates tightly so you can export specific packets for closer
inspection.

One of Packet Analyzer’s most welcome features is the ability to handle larger trace files. For example, in a
recent test, it took 1 minute and 52 seconds to open a 1.3 GB file in Wireshark. Each time we added a display
filter, column, or coloring rule, Wireshark had to reload the file. Wireshark essentially became unusable. In
Packet Analyzer, we loaded the IP conversations view of the same file in less than 3 seconds.

Figure 52. Packet Analyzer offers a graphical view of the traffic and is a great item to have in your network analysis toolkit.

Try to keep your file size below 100 MB. Larger file sizes will cause Wireshark to become sluggish when you add columns, apply filters,
or build graphs. Wireshark is not very good at handling huge trace files. Packet Analyzer was created to work with the larger trace files
and to integrate seamlessly with Wireshark. If you must capture and work with very large trace files (well over 100 MB), look into
Packet Analyzer as a solution.

26 I was fortunate to sit with Loris during the initial design phase of this product before it even had an interface. The

underlying architecture was sleek and sophisticated. Watching the product take shape and discussing potential
features was a fabulous experience.

 Lab 9: Capture to File Sets
In this lab you will get a chance to practice capturing to file sets using an auto-stop condition.

Step 1: Click on the Capture Options button on the main toolbar.

Step 2: Select the adapter you are currently using to connect to the Internet.

Step 3: Click the Output tab. Click the Browse button to navigate to and select the directory in which you
want to save your trace files. Enter captureset101.pcapng in the File area.

Step 4: Check the Create a new file automatically after check box. Set the next file to be created after 10
seconds.

 Your Output settings should be similar to those shown below.

Step 5: Click the Options tab. Under Stop capture automatically after, click the check box for files and

enter 4 to indicate that you want Wireshark to stop capture after 4 files have been created.

Step 6: Click Start. (If the Start button is not active, click the Input tab and ensure an adapter has been
selected.)

Step 7: Open your browser and visit www.openoffice.org. Browse around the web site for at least 40
seconds.

 Toggle back to Wireshark and look at the Title Bar. You should see your file name stem
(captureset101) followed by a file number (_00004 shown below) and the date and timestamp.

Step 8: Select File | File Set | List Files. Wireshark displays all four files of your file set. Click one of the
listed files to quickly open it.

Step 9: LAB CLEAN-UP Close your File List window. Note that Wireshark retains many of your capture
options. You will need to check the capture option settings when you prepare for the next capture
process.

When you are dealing with a lot of traffic, consider saving to file sets. Wireshark will load the files faster if they are under 100 MB. You
will find yourself using file sets more often as you need to capture larger amounts of traffic.

2.6. Use Special Capture Techniques to Spot Sporadic Problems
Sporadic, roaming problems often plague analysts. Using a few key Wireshark functions, you can be ready to
catch these annoyingly elusive events.

If you have a sporadic problem, one that seems to appear on and off through a network, you will need to be a
bit more creative with your capture process. In this case, you should capture traffic continuously until the
problem occurs again.

Use File Sets and the Ring Buffer
In this situation, set up Wireshark to capture traffic to file sets, but use the ring buffer option. In Figure 53, we
defined a new file name (roamingprob.pcapng) and indicated that we want to keep a total of 5 files (ring buffer
setting of 5).

Figure 53. We are going to examine the last 500 MB of traffic leading up to the problem point in time.

When Wireshark finishes capturing the fifth 100 MB file, it will delete the first 100 MB file and create a sixth
100MB file. Let Wireshark run continuously. The file set feature won’t fill up the hard drive and you will have
the last 500 MB leading up to the problem.

Stop When Complaints Arise
When the user complains about performance, stop the capture process manually and look at the most recent
file to see what happened.

Wireshark will keep numbering the files so you know how many 100 MB files have been created and deleted
(if older than the last five files).

For example, we may see file names such as:

• roamingprob_00007_20170127203453.pcapng
(created at 8:34:53PM on January 27th, 2017)

• roamingprob_00008_20170127023321.pcapng
(created at 2:33:21AM on January 27th, 2017)

• roamingprob_00009_20170127091141.pcapng
(created at 9:11:41AM on January 27th, 2017)

• roamingprob_00010_20170127094214.pcapng
(created at 9:42:14AM on January 27th, 2017)

• roamingprob_00011_20170127100107.pcapng
(created at 10:01:07AM on January 27th, 2017)

This is a great way to let Wireshark automatically capture traffic for later review.

Practice this skill by configuring Wireshark to capture to file sets with a ring buffer as you are going about your daily work. As
Wireshark runs in the background, you are ready to capture the traffic leading up to any type of problem that arises. For example, if
you suddenly notice a web site loads more slowly than usual, you can toggle to Wireshark and stop the capture to see what recently
happened.

 Lab 10: Use a Ring Buffer to Conserve Drive Space
In this lab exercise, we will set up a ring buffer to ensure we see the most recent traffic. We will create a
problem and manually stop the capture to analyze the issue.

Step 1: Click on the Capture Options button on the main toolbar.

Step 2: Select the adapter you are currently using to connect to the Internet.

Step 3: Click the Output tab. Check the Capture to a permanent file check box and then click the Browse
button to navigate to and select the directory in which you want to save your trace files. Enter
stopproblem101.pcapng in the File area. Click Save.

Step 4: Check the Create a new file automatically after check box. Set the next file to be created after 10
seconds.

Step 5: Select the Ring Buffer option to 3 to limit the number of files to retain.

Step 6: Click Start.

Step 7: Open your browser and visit www.wireshark.org. Spend at least 30 seconds browsing around the
site.

Step 8: Now browse to www.chappellu.com/nothere.html. This should generate a 404 error because the
file does not exist.

Step 9: Quickly toggle back to Wireshark and click the Stop Capture button .

Step 10: Look in the Title Bar. You can see how many file numbers have been assigned to this point. When
you select File | File Set | List Files, you only see three files because your ring buffer was set up
to save only the last three files.

Step 11: Click the Last Packet button and scroll backwards through the trace file from the end towards
the start to locate the 404 error message from the server, as shown below.

 In Lab 18, you will use a display filter to quickly locate 404 error responses.

Step 12: LAB CLEAN-UP Note that Wireshark retains many of your capture options. You will need to check
the capture option settings when you prepare for the next capture process.

Using a ring buffer and manual stop process allows you to detect what happened up to and at the time
performance went awry.

2.7. Reduce the Amount of Traffic You have to Work With
Rather than prepare for a week of sifting through packets, consider reducing the work load significantly by
capturing at the proper location and filtering during the capture process.

If you must capture traffic inside the enterprise or on a server that is very busy, you may find that Wireshark
cannot keep up with the traffic rate.

Detect When Wireshark Can’t Keep Up
Wireshark launches Dumpcap.exe to capture traffic. Wireshark pulls the traffic from Dumpcap. If Dumpcap
cannot keep up with the traffic during a capture process (most likely because Wireshark is not pulling the
traffic from Dumpcap fast enough), the phrase “Dropped: x” will appear on Wireshark’s Status Bar in the
center column.

Most likely, your trace file will contain numerous ACKed Lost Segment indications. You cannot work with a
faulty trace file. Your assumptions and analysis would be as incomplete as the data from which you worked.
Such a trace file is unusable.

This is a perfect time to apply capture filters.27 Figure 54 shows that capture filters are applied before the
packets are sent to the capture engine. By applying capture filters at this point, you have a better chance of
avoiding dropped packets.

Figure 54. Capture filters reduce the load on the Capture Engine.

27 I generally tell folks to avoid capture filters whenever possible. This is because you can’t get those packets back after

you filter them out. An ideal time to use capture filters is when Dumpcap can’t keep up with the traffic. So let’s lighten
up the load heading to the Capture Engine.

Detect when a Spanned Switch Can’t Keep Up
Packet drops can also occur when you are spanning ports on a very busy switch. Consider what would
happen if you spanned a physical switch port that connects to a very busy network. You connect to the
network on a 1 Gb link (which is actually 2 Gb because of full-duplex operations). If this network is very busy
and you span several switch ports down your lowly 1 Gb downlink, that switch is likely going to drop some
packets. This situation is called oversubscription.

In this case, Wireshark won’t note Dropped: x in the Status Bar. Instead, you may see numerous ACKed Lost
Segment and Previous Segment Not Captured indications. Wireshark doesn’t indicate that it has dropped any
packets, because it hasn’t—the switch didn’t forward the packets to Wireshark.

This switch span capture configuration is not going to work. You’ll need to change where and how you
capture traffic. A full-duplex tap is a great solution in this case, as shown in Figure 55. Intelligent taps can
even offer some capture filtering capability at the tap.

Figure 55. Place the tap between the server and the switch.

You also might consider capturing to file sets with a maximum file size of 100 MB. Wireshark really doesn’t
like working with huge trace files. We covered using file sets in Use Special Capture Techniques to Spot Sporadic
Problems.

Apply a Capture Filter in the Capture Options Window

To apply a capture filter, click the Capture Options button . Select your desired adapter(s) and type your
capture filter directly into the Capture Filter for selected Interfaces area as shown in Figure 56.

Figure 56. Select an interface before entering a capture filter.

If you know the syntax of your capture filter, simply type it in the Capture Filter area. Remember—Wireshark
uses BPF (Berkeley Packet Filtering) syntax. This is the format supported by Dumpcap for capture filters.

Wireshark color codes the background as you type to alert you to capture filter errors. A red background
indicates the filter syntax is invalid. Most likely, the capture filter contains a typo or perhaps you used display
filter syntax. A green background means that the filter syntax is valid.

Wireshark offers a predefined set of capture filters. To view the saved capture filter list, click the Capture Filter
Bookmark arrow to the left of the Capture Filter area or select Capture | Capture Filters from the main
menu.

Figure 57 shows the list of predefined capture filters.

For more information on capture filtering techniques, see Capture Traffic based on Addresses (MAC/IP).

Figure 57. Wireshark provides a predefined set of capture filters.

For additional information on capture filters, visit wiki.wireshark.org/CaptureFilters.

2.8. Capture Traffic based on Addresses (MAC/IP)
Capturing traffic to and from a particular IP address (or range of IP addresses) or a MAC address is a key skill
that you will use when focusing on a particular problem, studying an application’s behavior, or investigating a
potentially breached host.

Capture filters use the BPF syntax and are actually applied by WinPcap or libpcap. Display filters, which you
will examine later in this book, use a proprietary Wireshark format. Display filters are not limited by the
capabilities of dumpcap and the BPF syntax.

Before you get too excited with all the options for using capture filters, let me make a recommendation. Use capture filters sparingly
and display filters liberally. If you filter something out using capture filters, you can never get those packets back. For example, if you
applied a capture filter for traffic to and from port 80 and found that the browsing session targeted a strange IP address for the web
server, it would be nice to see the DNS process that took place beforehand. Too late. You filtered those packets out. If you’d captured
without a capture filter, you would be able to work with display filters to focus on those port 80 packets and then look at the DNS traffic.

Capture Traffic to or from a Specific IP Address
If you are capturing in a location where you see many hosts communicating, you might consider using a
capture filter for the IP address of the hosts whose traffic you are analyzing. The following provides examples
of IP address capture filters.

host 10.3.1.1 Capture traffic to/from 10.3.1.1

host 2406:da00:ff00::6b16:f02d Capture traffic to/from the IPv6 address
2406:da00:ff00::6b16:f02d

not host 10.3.1.1 Capture all traffic except traffic to/from 10.3.1.1

src host 10.3.1.1 Capture traffic from 10.3.1.1

dst host 10.3.1.1 Capture traffic to 10.3.1.1

host 10.3.1.1 or
host 10.3.1.2

Capture traffic to/from 10.3.1.1 and any host it is
communicating with and traffic to/from 10.3.1.2
and any host it is communicating with

host www.espn.com Capture traffic to/from any IP address that
resolves to www.espn.com (this will only work if
the host name can be resolved by Wireshark
prior to capture)

Capture Traffic to or from a Range of IP Addresses
When you want to capture traffic to or from a group of addresses, you can use CIDR (Classless Interdomain
Routing) format or use the mask parameter.

net 10.3.0.0/16 Capture traffic to/from any host on network 10.3.0.0

net 10.3.0.0
mask 255.255.0.028

Same result as previous filter

ip6 net 2406:da00:ff00::/64 Capture traffic to/from any host on network
2406:da00:ff00:0000 (IPv6)

not dst net 10.3.0.0/16 Capture all traffic except traffic to an IP address

28 This would all be on one line in Wireshark—the line wraps in the book due to space issues.

starting with 10.3

dst net 10.3.0.0/16 Capture traffic to any IP address starting with 10.3

src net 10.3.0.0/16 Capture traffic from any IP address starting with
10.3

Capture Traffic to Broadcast or Multicast Addresses
You can learn a lot about hosts on the network by just listening to broadcast and multicast traffic.

ip broadcast Capture traffic to 255.255.255.255

ip multicast Capture traffic to 224.0.0.0 through 239.255.255.255
(also catches traffic to 255.255.255.255 unless you
add and not ip broadcast)

dst host ff02::1 Capture traffic to the IPv6 multicast address for all
hosts

dst host ff02::2 Capture traffic to the IPv6 multicast address for all
routers

If you are just interested in all IP or IPv6 traffic, use the capture filters ip or ip6, respectively.

Refer to Capture Traffic for a Specific Application for more capture filter examples.

Capture filters can be used during command-line capture as well. For more information, refer to Use Capture
Filters during Command-Line Capture. Also refer to wiki.wireshark.org/CaptureFilters.

Wireshark includes a default set of capture filters. Select Capture | Filters on the main menu to view the predefined capture filters.
You’ll find some good examples of common capture filters used with Wireshark. You can also add your own capture filters to this list.

Capture Traffic based on a MAC Address
When you want to capture IPv4 or IPv6 traffic to or from a host, create a capture filter based on the host’s
MAC address.

Since MAC headers are stripped off and applied by routers along a path, ensure you are on the same network
segment as the target host.

ether host 00:08:15:00:08:15 Capture traffic to or from 00:08:15:00:08:15

ether src 02:0A:42:23:41:AC Capture traffic from 02:0A:42:23:41:AC

ether dst 02:0A:42:23:41:AC Capture traffic to 02:0A:42:23:41:AC

not ether host 00:08:15:00:08:15 Capture traffic to or from any MAC address
except for traffic to or from 00:08:15:00:08:15

In Lab 12, you will create a NotMyMAC capture filter to listen in on the traffic to or from other hosts on the
network while not capturing your own traffic.

 Lab 11: Capture Only Traffic to or from Your IP Address
In this lab you will determine your current IP address and apply a capture filter for that traffic.

Step 1: Click the Capture Options button on the main toolbar.

Step 2: Expand the interface on which you typically connect to the Internet. Wireshark displays your IP
address(es) for the interfaces listed. You could also use either ipconfig or ifconfig to copy your IP
address and paste in to your filter if desired.

 You will use this address information to create your capture filter.

Step 3: Select the interface you want to use for this capture process. If an interface is not selected before
creating your capture filter, Wireshark will color the capture filter area background red.

 In the capture filter area, enter host x.x.x.x (replacing x.x.x.x with your IP address) to filter on
your IPv4 traffic. If you are going to capture on your IPv6 address, enter
host xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx.

Step 4: Click the Output tab and make sure you are not configured to capture to a file or file set. Ensure

your ring buffer option is not selected as well.

 Click the Options tab and ensure you do not have an autostop condition defined.

 Click Start to begin the capture process.

Step 5: Now open your command prompt and type ping www.chappellu.com.

Step 6: Toggle back to Wireshark and click the Stop Capture button . Examine your trace file. All the
traffic shown should be to or from your IP address. You should see the ICMP Echo packets used
for the ping process. You may also see background processes that communicate on the network to
and from your machine.

Step 7: LAB CLEAN-UP Note that Wireshark retains many of your capture options. You will need to check
the capture option settings when you prepare for the next capture process.

Consider following the same steps to build a filter to or from your MAC address (create a “MyMAC” filter). In
the next lab, we will create a filter for everyone else’s traffic (based on a MAC address filter) and we will save
our new capture filter.

 Lab 12: Capture Only Traffic to or from Everyone Else’s MAC Address
In this lab you will determine your current MAC address and apply a capture filter that filters out your
traffic—you are interested in everyone else’s traffic only29.

Step 1: Run either ipconfig /all or ifconfig /all at the command prompt to determine the MAC address of
your active interface30.

Step 2: Click on the Capture Options button on the main toolbar.

Step 3: Select the desired interface.

Step 4: In the Capture Filter area, enter not ether host xx.xx.xx.xx.xx.xx using your Ethernet
address. If you expand the Capture Interfaces window you will see your Capture Filter listed on
the row of the interface selected.

Step 5: To save this new capture filter, click the Capture Filter Bookmark button and select Save this
filter. Enter NotMyMAC in the Name area. The Filter value should already be set.

29 If you have a dual-stack host, it is much more effective to make a single filter based on your MAC address than to

make a more complex filter based on your IPv4 and IPv6 addresses.
30 On a Windows host select Start and select the Command Prompt from the program list or type cmd in the file search

area. On a MAC OS X host, open Applications | Utilities | Terminal. There are various terminal applications
available on Linux hosts—look for terminal or Xterm, for example.

Step 6: Click OK to close the Capture Filters window.

Step 7: Check your other capture settings under the Output tab and Options tab. We won’t set up
multiple file capture, ring buffer use, or auto-stop in this lab so leave those options unchecked.

Step 8: Click Start to begin the capture process. Now browse to various sites, log in to your server, or send
email.

Step 9: Toggle back to Wireshark and click the Stop Capture button .

Step 10: Scroll through your trace file to examine the traffic captured during your communications
processes. No traffic to or from your host will be captured. You will likely see some background
broadcast and multicast traffic, but none of those packets will be sent from your host since you
filtered your traffic out of the trace file during the capture process.

Step 11: LAB CLEAN-UP Note that Wireshark retains many of your capture options. You will need to check
the capture option settings when you prepare for the next capture process.

There’s no reason to capture your own traffic when you are analyzing someone else’s communications.
Running your NotMyMAC filter will ensure your traffic is not caught during the capture process.

2.9. Capture Traffic for a Specific Application
You will often want to look at traffic from a single application or even sets of applications. Get the unrelated
packets out of the way by applying a capture filter based on the TCP or UDP port used by your target
application(s).

The capture filter syntax (Berkeley Packet Filtering format) does not recognize application names. You need to
define an application based on the port in use.

It’s all About the Port Numbers
Here is a quick list of some of the most popular application capture filters. For more information on capture
filters, refer to wiki.wireshark.org/CaptureFilters.

port 53 Capture UDP/TCP traffic to or from port 53
(typically DNS traffic)

not port 53 Capture all UDP/TCP traffic except traffic to or
from port 53

port 80 Capture UDP/TCP traffic to or from port 80
(typically HTTP traffic)

udp port 67 Capture UDP traffic to or from port 67
(typically DHCP traffic)

tcp dst port 21 Capture TCP traffic to port 21 (typically the FTP
command channel)

portrange 1-80 Capture UDP/TCP traffic to or from ports from
1 through 80

tcp portrange 1-80 Capture TCP traffic to or from ports from 1
through 80

Combine Port-based Capture Filters
When you want to capture traffic to or from various non-contiguous port numbers, combine them with a
logical operator, as shown below.

port 20 or port 21 Capture all UDP/TCP traffic to or from port 20
or port 21 (typically FTP data and command
ports)

host 10.3.1.1 and port 80 Capture UDP/TCP traffic to or from port 80 that
is being sent to or from 10.3.1.1

host 10.3.1.1 and not port
80

Capture UDP/TCP traffic to or from 10.3.1.1
except traffic to or from port 80

udp src port 68 and
udp dst port 67

Capture all UDP traffic from port 68 to port 67
(typically traffic sent from a DHCP client to a
DHCP server)

udp src port 67 and
udp dst port 68

Capture all UDP traffic from port 67 to port 68
(typically traffic sent from a DHCP server to a
DHCP client)

Try to avoid capture filters whenever possible. I cannot stress this enough! It is much better to have too much
traffic to wade through than to find out you’re missing a piece of the picture. Once you capture this large
amount of traffic, use display filters (which offer many more filtering options) to focus on specific traffic.

If you need to make capture filters that look for a specific ASCII string in a TCP frame, use Wireshark’s String-Matching Capture Filter
Generator (http://www.wireshark.org/tools/string-cf.html). For example, if you only want to capture HTTP GET requests, simply enter in
the string GET and set the TCP offset to 0 (where HTTP request methods, or commands, reside).

2.10. Capture Specific ICMP Traffic
Internet Control Messaging Protocol (ICMP) is a protocol you should watch for when performance or security
issues plague a network.

The table below shows the structure of numerous ICMP capture filters. In this case we must use an offset to
indicate the field location in an ICMP packet. Offset 0 is the ICMP Type field and offset 1 is the location of the
ICMP Code field.

icmp Capture all ICMP packets.

icmp[0]=8 Capture all ICMP Type 8 (Echo Request)
packets.

icmp[0]=17 Capture all ICMP Type 17 (Address Mask
Request) packets.

icmp[0]=8 or icmp[0]=0 Capture all ICMP Type 8 (Echo Request)
packets or ICMP Type 0 (Echo Reply) packets.

icmp[0]=3 and not icmp[1]=4 Capture all ICMP Type 3 (Destination
Unreachable) packets except for ICMP
Type 3/Code 4 (Fragmentation Needed and
Don't Fragment was Set) packets.

Although we could have listed not icmp as a possible capture filter above, you likely would never want to
use that filter since ICMP provides so much information about network activity and configurations.

 Lab 13: Create, Save and Apply a DNS Capture Filter
In this exercise you will use several skills learned in this chapter. You will configure Wireshark to capture only
DNS traffic and save that traffic to a file called mydns101.pcapng.

Step 1: Click the Capture Options button on the main toolbar.

Step 2: Select the adapter you are currently using to connect to the Internet.

Step 3: In the Capture Filter area, enter port 53, as shown below. The background turns from white to red
to green as you type in the filter.

Step 4: To save this new capture filter, click the Capture Filter Bookmark button and select Save this
filter. Enter DNS in the Name area. The Filter value should already be set. Click OK.

Step 5: In the Capture Interfaces window, click the Output tab. Click the Browse button to navigate to and
select the directory in which you want to save your trace files. Enter mydns101.pcapng in the Name
area. Click Save. Your directory and file name should appear in the File section in the Capture
Interfaces Output area.

Step 6: Check the box in front of Create a new file automatically after and check both boxes for file size
and time definitions. Define the next file to be created after 1 megabyte and 10 seconds. Whichever
condition is met first causes the creation of the next file. Do not set a Ring Buffer value or auto-stop
condition (under the Options tab). You will manually stop the capture process.

Step 7: Click Start to begin the capture process.

 Launch a browser and browse to at least 5 different sites on the Internet. For example, you could
visit two news sites, a bank site, Amazon and www.wireshark.org. Try to visit sites that you have not
browsed to recently to ensure DNS information is not loaded from your cache.

Step 8: Toggle back to Wireshark and click the Stop Capture button .

Step 9: Scroll through your trace file(s) to examine the DNS traffic generated during your browsing
process. You may be surprised to see how many DNS queries are generated when you browse
these sites.

Step 10: LAB CLEAN-UP Note that Wireshark retains many of your capture options. You will need to check
the capture option settings when you prepare for the next capture process.

Consider saving any capture filter that you might use more than once. This will save you time if you need to
repeatedly use a complex capture filter.

Chapter 2 Challenge
This challenge requires access to the Internet. You will capture traffic to a web site and analyze your findings.
The answer key is located in Appendix A.

First, configure Wireshark to capture only traffic to and from your MAC address and TCP port 80, and save
the traffic to a file named mybrowse.pcapng. Then ping and browse to www.chappellU.com. Stop the capture and
examine the trace file contents.

Question 2-1. Did you capture any ICMP traffic?

Question 2-2. What protocols are listed for your browsing session to www.chappellU.com?

Now configure Wireshark to capture all your ICMP traffic, and save your traffic to a file called myicmp.pcapng.
Again, ping and browse to www.chappellU.com. Stop the capture and examine the trace file contents.

Question 2-3. How many ICMP packets did you capture?

Question 2-4. What ICMP Type and Code numbers are listed in your trace file?

Chapter 2 Challenge Answers
Answer 2-1. First you configured Wireshark to automatically capture only your traffic to and from TCP

port 80 and save the traffic to a file named mybrowse.pcapng. An example Capture Options
window is shown below. No ICMP traffic was captured because we were filtering on TCP.

Answer 2-2. After pinging and browsing to www.chappellU.com, you should only have captured your traffic
to or from port 80. The Protocol column will only list TCP and HTTP traffic.

Answer 2-3. Now you should have configured Wireshark to automatically capture and save all your ICMP

traffic to a file called myicmp.pcapng. An example Capture Options window is shown below.

After you pinged and browsed to www.chappellU.com again, you should have seen that the
trace file only contains ICMP traffic based on your capture filter. How many ICMP packets
you captured depends on the amount of ICMP traffic generated by your ping application and
any background ICMP traffic generated during your capture process.

Answer 2-4. If you look inside the ICMP portion of the packets, you should see Type 8/Code 0 (Echo
request) and Type 0/Code 0 (Echo reply). In the image below we right-clicked on the ICMP
Type field and selected Apply as Column.

Chapter 3 Skills: Apply Display
Filters to Focus on Specific
Traffic

Wireshark is an extraordinary tool for network analysis and discovery. It's obviously critical for debugging low-
level network problems, but I find it's often the best way to debug higher level applications too. Web traffic is one
such example. Sure, I could read the web server logs, but those often omit critical details. Network traffic, on the
other hand, doesn't lie. It shows me exactly what is going on.

Wireshark may appear complex and intimidating when you first start it up, but with a little guidance and practice
you'll find that it's easier than you think.

Gordon "Fyodor" Lyon
Founder of the Open Source Nmap Security Scanner Project

Quick Reference: Display Filter Area

(1) Bookmark (view, save, manage, and recall display filters)
(2) Display Filter Area (includes auto-complete and error detection)
(3) Clears the display filter area so no display filter is applied to the trace file
(4) Applies the currently shown display filter during a live capture or to an opened trace file
(5) Display filter drop-down history list
(6) Expressions to walk you through creating display filters
(7) Saves the display filter as a Filter Expression button
(8) Filter Expression button area (blank by default)
(9) Filter Expression Preferences (edit, activate/deactivate, reorder, or delete Filter Expression

buttons) – only visible when saving a Filter Expression button
(10) Filter Expression Button Label (define button label) – only visible when saving a Filter Expression

button
(11) Filter Expression Button Syntax (define button filter syntax) – only visible when saving a Filter

Expression button

3.1. Use Proper Display Filter Syntax
Becoming a master of display filters is absolutely essential to the network analyst. This is the skill you will use
to find the needle in the haystack. Learn to build, edit, and save key display filters to save yourself many
hours of frustration wading through “packet muck.”

Whereas capture filters use the BPF syntax, display filters use a Wireshark proprietary format. Except for a
few instances, Wireshark capture filters and display filters look very different.

The Syntax of the Simplest Display Filters
The simplest display filters are based on a protocol, application, field name, or characteristic. Display filters
are case sensitive. Most of these simple display filters use lower case31 characters.

Display Filter
Type Example Description

Protocol arp Displays all ARP traffic including
gratuitous ARPs, ARP requests, and
ARP replies

Protocol ip Displays all traffic that contains an
IPv4 header.

Protocol ipv6 Displays all IPv6 traffic including
IPv4 packets that have IPv6 headers
embedded in them, such as 6to4,
Teredo, and ISATAP traffic

Protocol tcp Displays all TCP-based
communications

Application bootp Displays all DHCP traffic (which is
based on BOOTP). See Determine Why
Your dhcp Display Filter Doesn’t Work

Application dns Displays all DNS traffic including
TCP-based zone transfers and the
standard UDP-based DNS requests
and responses

Application tftp Displays all TFTP (Trivial File
Transfer Protocol) traffic

Application http32 Displays all HTTP commands,
responses and data transfer packets,
but does not display the TCP
handshake packets, TCP ACK packets
or TCP connection teardown packets

Application icmp Displays all ICMP traffic

Field
existence

bootp.option.hostname Displays all DHCP traffic that
contains a host name (DHCP is based
on BOOTP)

Field
existence

http.host Displays all HTTP packets that have
the HTTP host name field. This packet
is sent by the clients when they send a
request to a web server

31 Watch out for VoIP display filters—for some reason there are several VoIP-related display filters that use upper case

and lower case characters.
32 Watch out when using display filters based on a TCP-based application name. Running a filter for “http” will not

show you the entire picture of a browsing session. For more information, see Be Cautious Using a TCP-based Application
Name Filter.

Field
existence

ftp.request.command Displays all FTP traffic that contains a
command, such as the USER, PASS, or
RETR commands

Characteristic tcp.analysis.flags Displays all packets that have any of
the TCP analysis flags associated with
them—this includes indications of
packet loss, retransmissions, or zero
window conditions

Characteristic tcp.analysis.zero_window Displays packets that are flagged to
indicate the sender has run out of
receive buffer space

The most common mistake made when entering a display filter is using capture filter syntax. Capture filters use the BPF format
whereas display filters use a proprietary format. There are a few times when the same filter works as both a capture and display filter.
For example, ip and icmp can be used both as capture filters and display filters.

In Figure 58, we filtered on the DNS traffic in a web browsing session. This is a great filter when you want to
know the interdependencies between web sites. Using this filter, we can see that browsing to
www.wireshark.org causes a storm of DNS queries to resolve the IP addresses associated with the links on the
page.

The Status Bar indicates that there are 208 DNS packets in this trace file.

Figure 58. We filtered on all the DNS traffic to see what host names were resolved. [http-browse101.pcapng]

Use the Display Filter Error Detection Mechanism
Remember that display filters are case sensitive. If you type DNS instead of dns, Wireshark will show a red
background in the display filter area to indicate this filter will not work. A yellow background is a warning
that your filter may not work as desired. A green background indicates your filter is properly formed, but be
careful. Wireshark does not do a logic test.

We will look into display filter problems in Determine Why Your dhcp Display Filter Doesn’t Work and Why
didn’t my ip.addr != filter work?

Learn the Field Names
Many of the display filters you will apply are based on field names (such as http.host). To learn a field
name, select the field in the Packet Display list and look at the Status Bar, as shown in Figure 59. In this
example, we clicked on frame 10 in the Packet List pane and then expanded the HTTP header in the Packet
Details pane. When we clicked on the Request Method line in the HTTP section of the packet, the Status Bar
indicated this field is called http.request.method.

Figure 59. Click on a field and look at the Status Bar to learn the field name. You may need to expand this column on the Status Bar to
see the entire field name. [http-browse101.pcapng]

In Figure 60, we typed http.request.method in the display filter area to display all packets that contain
this field33. Notice that the Status Bar indicates that this trace file, http-browse101.pcapng, contains 2,011 packets
and only 103 packets match our filter.

This is a great filter to determine what elements are requested by an HTTP client. Web servers do not send
HTTP request methods, they send HTTP response codes. In Lab 18 you will build a filter for the HTTP 404
response code.

33 You will learn to use the right-click Prepare a Filter and Apply as Filter features to create a filter based on a field name

and value in Quickly Filter on a Field in a Packet.

Figure 60. Look at the Status Bar to determine how many packets matched your filter. You may need to expand the Packets section of
the Status Bar to see the Displayed information. [http-browse101.pcapng]

Use Auto-Complete to Build Display Filters
As you type http.request.method in the filter area, Wireshark opens a window to “walk you through” the
filter options. When you type http. (including the dot), you see a list of all possible display filters that begin
with this string. Continue typing http.request. and you will see filters that begin with this phrase, as
shown in Figure 61.

Figure 61. The auto-complete feature can help you build your display filter. [http-browse101.pcapng]

You can use this auto-complete feature to discover available display filters. For example, if you type tcp.
(again including the dot), Wireshark lists all TCP filters available. If you type tcp.analysis., Wireshark
lists all of the TCP analysis filters dealing with TCP problems and performance, as shown in Figure 62. You
can click on any listed filter to use it in the display filter area.

Figure 62. Type tcp.analysis. to determine what TCP analysis flag filters are available. [http-browse101.pcapng]

Display Filter Comparison Operators
You can expand your filter to look for a particular value in a field. Wireshark supports numerous comparison
operators for this purpose. The following table lists Wireshark’s seven comparison operators.

Operation English Example Description

== eq ip.src == 10.2.2.2
Display all IPv4 traffic from
10.2.2.2

!= ne tcp.srcport != 80
Display all TCP traffic from
any port except port 8034

> gt frame.time_relative > 1

Display packets that arrived
more than 1 second after the
previous packet in the trace
file

< lt tcp.window_size < 1460
Display when the TCP
receive window size is less
than 1460 bytes

>= ge dns.count.answers >= 10
Display DNS response
packets that contain at least
10 answers

<= le ip.ttl <= 10
Display any packets that
have 10 or less in the IP Time
to Live field

 contains http contains "GET"
Display all the HTTP client
GET requests sent to HTTP
servers

Use comparison operators when filtering for TCP-based applications. For example, if you want to see your
HTTP traffic that runs over port 80, use tcp.port==80.

You do not need a space on either side of an operator. The filter ip.src==10.2.2.2 works the same as ip.src ==
10.2.2.2.

34 Be careful using the != operator. Refer to Why didn’t my ip.addr != filter work? for more details on issues with this

operator.

Use Expressions to Build Display Filters
If you absolutely have no idea how to filter on something, click the Expression button on the display filter
toolbar. In the Filter Expression window, you can type the name of the application or protocol in which you
are interested to jump to that point in the Field Name list. In Figure 63, we typed “SMB” in the Search area and
expanded the SMB – SMB (Server Message Block Protocol) listing to view the available fields.

The Relation option can be used to either create a field existence filter (field is present) or to add a comparison
operator. You may find predefined values for the field you select. Unfortunately, not all fields are broken out
as thoroughly as the smb.nt_status field.

We selected smb.nt_status as the field, > as the relation and STATUS_SUCCESS as the predefined value.
Wireshark displays the value 0x0 which is the value seen in the NT Status field in responses indicating
success. Since we selected the > operator, we are looking for responses that are not successful (when the value
is greater than 0x0 in the NT Status field). Wireshark placed smb.nt_status > 0x0 in the display filter
area. We clicked the OK and then the display filter Apply button the place the filter on the traffic. LCLC
NOTE that != is broken in Display Filter Expressions area.

Figure 63. We are using Expressions to create a filter for SMB error responses (SMB NT status values greater than 0x0,
STATUS_SUCCESS). [smb-join101.pcapng]

 Lab 14: Use Auto-Complete to Find Traffic to a Specific HTTP Server
In this lab we use Wireshark’s auto-complete feature to filter on specific HTTP communications. Ultimately,
we are interested in client requests to a particular server. This trace file, http-sfgate101.pcapng, was captured as
someone browsed a web site and then filled in a feedback form on that site asking about iPad support.

Step 1: Open http-sfgate101.pcapng. Look through the trace file to get a feel for the traffic. You should see
lots of DNS and HTTP traffic in this trace file. The target site, SF Gate, is an online paper focused
on events in San Francisco, California. The online paper is owned by the Hearst Corporation—you
will see numerous references to “Hearst” in the trace file35.

Step 2: We will use the auto-complete feature to begin this display filter. In the display filter area, type
http. (including the dot). A drop-down menu appears listing all the filters available that begin
with the http. pattern.

Step 3: Let’s use this list to find out what HTTP hosts were accessed in this trace file. Scroll down the list to
find and click http.host. Click the Apply button or press Enter. The Status Bar should
indicate that 464 packets matched your filter. Each of those packets contains an HTTP Host field.

35 Yes—that is the same “Hearst” as Patty Hearst, the famous Symbionese Liberation Army (SLA) bank

robber/millionaire socialite. The Hearst Corporation was founded by Patty Hearst’s grandfather, William Randolph
Hearst.

Step 4: You certainly do not want to scroll through 464 packets to look into the HTTP Host field of each
packet. Let’s add a column for this field so we can easily see which hosts were contacted.

 This Host column may already exist since you created this column in Lab 4. If your Host column is
hidden, right-click on any column heading and enable the Host column entry.

 If your Host column was not saved, click on any packet displayed, expand the Hypertext Transfer
Protocol section in the Packet Details pane (use right-click and select Expand Subtrees to fully
expand the HTTP section of the packet).

 Right-click on the Host field and select Apply as Column.

Step 5: Scroll through the trace file to see the numerous hosts that the client requested files from during

this web browsing session. Consider using this Host column when you are analyzing web
browsing sessions.

 Now let’s find out what the client sent to a particular server. As mentioned earlier in this lab, SF
Gate is owned by the Hearst Corporation.

 Type in the display filter area to expand your display filter to http.host contains "hearst".

 Only 10 packets should match your filter now. In the image below, we can see why packet 159 is
displayed. The word “hearst” appears in the http.host field.

Step 6: It’s time to look specifically for a POST command.

 First, examine the HTTP section of any packet in the Packet Details pane. Make sure the HTTP
section is fully expanded. Click on the Request Method field in one of these HTTP packets (just a
few lines above the Host field). Notice the name of the field in the Status Bar area—
http.request.method. We are looking for a POST request method in this field. We know the
field name and now we know the value we want to find.

 In the display filter area, replace your current filter with http.request.method=="POST" and
click the Apply button or press Enter 36.

 Twelve packets should match your new filter.

36 We could have also used http.request.method contains "POST".

Step 7: Scroll through the 12 packets to look for a reference to extras.sfgate.com in your Host column.
That’s the server on which the user posted the message about iPad support.

 You should be looking at frame 10,022. Look through the Packet Bytes pane to read the message
that was posted. You should see the name of the submitter too—Scooter. You could also see this
information at the end of the HTTP section in the Packet Details pane (see the HTML Form URL
Encoded section).

Step 8: LAB CLEAN-UP Right-click on your new Host column and unselect that column from the list to hide
it. If you want to view this column again later, you can right-click on any column heading and
select it from the column list.

 Click the Clear button to remove your display filter.

Practice with Wireshark’s display filters to extract just the traffic of interest. Keep reading through this chapter
to learn various tips and tricks for display filtering.

3.2. Edit and Use the Default Display Filters
You don’t need to start from scratch. Wireshark includes many default display filters that you can use as a
reference to make new display filters. Add to these default display filters to create a more efficient analysis
system.

Click the Bookmark button in the display filter area to view saved predefined or custom filters as shown in
Figure 64.

Figure 64. Consider removing any predefined display filters that you will not use. [http-sfgate101.pcapng]

Be careful before using a default display filter. The Ethernet and IP host filters have values that likely do not
match your network. You must edit these filters or use these filters as a “seed” to create your own set of
Ethernet or IP address filters. You will use this technique in Lab 15.

To quickly apply more complex filters to your traffic, you can easily add to this list of saved display filters.

Display filters are saved in a file called dfilters. It is just a text file and you can use any text editor to edit the file (to add filters, delete
filters, or rearrange filters, for example). To find out where your dfilters file is, first look at the name of the profile in which you are
working. The current profile name is shown on the right side of the Status Bar. If this area indicates you are in your “Default” profile,
select Help | About Wireshark | Folders and double-click the Personal Configuration folder hyperlink. The dfilters file is in this
directory.

If you are using a different profile, follow the same steps to open your Personal Configuration folder, but look for a profiles subdirectory.
There will be a subdirectory under profiles that is named after each available profile. Look inside the appropriate profile directory to find
the dfilters file.

 Lab 15: Use a Default Filter as a “Seed” for a New Filter
You can use the default display filters as a template to create and save new custom display filters. This method
helps you remember the display filter syntax and ensures that the syntax is correct. We will create a display
filter for all traffic to or from your IP address.

Step 1: To obtain your IP address, either click the Capture Options button and expand the interface
information or use the command-line tools ipconfig or ifconfig.

Step 2: Click the display filter Bookmark button (to the left of the display filter area) and select Manage
Display Filters.

Step 3: Select the IPv4 address 192.0.2.1 display filter and click the Copy button . This creates a new
copy of that default display filter and places it at the bottom of the display filter list.

Step 4: Change the new filter name to “My IP Address” and replace 192.0.2.1 with your IP address in the
Filter area. We used the IP address 10.1.0.1 in our example below.

Step 5: Click OK to save your new display filter and close the Display Filter window. When you want to
use this filter, you can now click the Bookmark button and select it off the saved display filter list.

Spend some time creating a set of filters based on your Wireshark system’s IP address and MAC address (an
Ethernet address filter). You might want to delete default filters that you do not need, for example, if you plan
to type the display filter for TCP only traffic (tcp), you can delete this filter. If you never plan on using one of
the display filters (IPX only, perhaps), delete it. Keep your filter list as clean as possible.

3.3. Filter Properly on HTTP Traffic
Being able to properly filter on browsing sessions is important when you are troubleshooting your own web
browsing session or helping determine why the company web site loads slowly. Don’t make the most
common mistake of all—using an application name in your filter.

There are two methods used to filter on HTTP traffic.

 http
 tcp.port==xx (where xx denotes the HTTP port in use)

The second filter method is a better option when analyzing traffic. Let’s examine why by comparing the use of
each filter on a trace file of a web browsing session.

Test an Application Filter Based on a TCP Port Number
First let’s open http-wiresharkdownload101.pcapng. This trace file contains a connection to www.wireshark.org and
a request to download a copy of Wireshark. We applied the tcp.port==80 display filter and find that,
indeed, all of the packets match our filter, as shown in Figure 65. That’s good because that’s all we have in the
trace file.

Figure 65. Our port number-based filter displays all the packets in this wireshark.org browsing session.
[http-wiresharkdownload101.pcapng]

Look closely at the Protocol column of packet 20 in Figure 65 (also shown below).

Notice that Wireshark indicates this is a TCP packet, not an HTTP packet. Wireshark doesn’t see any HTTP
commands or responses in the packet so the HTTP dissector wasn’t applied to the packet. It’s just a TCP
packet (TCP ACKs, FINs, RSTs, and the three-way TCP handshake are simply listed as TCP).

If you want to see the TCP connection establishment, maintenance and teardown packets, this is the filter to
use (and you always want to see those TCP packets, by the way).

Be Cautious Using a TCP-based Application Name Filter
Now let’s see what happened when we placed the http filter on the traffic. In Figure 66, you can see that
Wireshark displays 85 packets. Those are the packets that contain HTTP in the Protocol column.

Note: If you see only 12 frames, your TCP preference is set to reassemble TCP streams. Review Lab 5 to
properly configure Wireshark for this lab.

Figure 66. The http filter does not show the TCP handshake, ACKs, or connection teardown process.
[http-wiresharkdownload101.pcapng]

This is an incomplete picture of the web browsing session and we wouldn’t be able to detect TCP errors using
this http filter. It is always better to use a port number filter on applications that use TCP.

Unfortunately, Wireshark’s default filter for HTTP traffic is simply http. Consider editing this default filter to look for HTTP traffic
based on a port number.

 Lab 16: Filter on HTTP Traffic the Right Way
This is a quick lab. We will just compare the results from applying two different display filters to the traffic.
We will use http and then we will replace it with the proper filter for this web browsing traffic.

Step 1: Open http-disney101.pcapng. If you still have a filter applied from following along with the earlier
section, simply click the Clear button to remove it.

Step 2: Apply an http filter. How many frames matched your filter? You should see 4,093 frames. If 205
frames are displayed, your TCP preference is set to reassemble TCP streams. Follow the
instructions in Lab 5 to disable this TCP preference setting.

Step 3: Replace your filter with tcp.port==80 and click the Apply button or press Enter. How
many packets matched your filter now? (5,917 packets?) That’s much better—you are seeing the
full picture now.

 Scroll through the trace file with this new filter in place. Notice the Protocol column indicates that
many of the packets are TCP, not HTTP. Wireshark classifies all the TCP handshake packets and
TCP ACK packets as simply “TCP.” We want to see these packets because we want to analyze the
entire web browsing session, including the connection establishment process and
acknowledgments.

Step 4: LAB CLEAN-UP Click the Clear button to remove your display filter before continuing.

Always try to build application display filters based on port numbers. Although Wireshark’s display filtering
mechanism understands various application names, you won’t get a complete picture if you use application
names in your filters.

3.4. Determine Why Your dhcp Display Filter Doesn’t Work
This catches everyone who doesn’t have grey hair. We are so accustomed to talking about DHCP on an IPv4
network without acknowledging that DHCP is based on BOOTP. You only have to learn this frustrating rule
once, thank goodness.

If you type just dhcp as your display filter, the display filter area turns red indicating a syntax problem, as
shown in Figure 67. (Color images are only available in ebook format.)

Figure 67. Since DHCP over IPv4 is based on BOOTP, you must use bootp as your filter—dhcp won’t work.
[dhcp-serverdiscovery101.pcapng]

Although the Protocol column indicates the packets are DHCP, this filter will not work because DHCP is
based on BOOTP (Bootstrap Protocol).

The correct display filter syntax is bootp.

If you want to display DHCPv6 traffic, however, you can use dhcpv6 (DHCPv6 is not based on BOOTP).

3.5. Apply Display Filters based on an IP Address, Range of
Addresses, or Subnet

Instead of applying a capture filter (and possibly missing related traffic because it was tossed aside during the
capture process), use display filters to focus on someone’s traffic. These IP address display filters are probably
the most widely used filters. There are many options available when you want to see traffic to or from a
specific IP address, range of addresses, or subnet.

Filter on Traffic to or from a Single IP Address or Host
We will use the field names ip.src, ip.dst, ip.host, and ip.addr for IPv4 traffic and ipv6.src,
ipv6.dst, ipv6.host, and ipv6.addr for IPv6 traffic. Note that when you click on an IP address in the
Packet Details pane, it will be called ip.src, ip.dst, ipv6.src, or ipv6.dst. The field names ip.host
and ipv6.host and ip.addr and ipv6.addr do not exist in packets.

The ip.host and ipv6 host filters looks for any IPv4 or IPv6 addresses that resolve to a specific host
name in either the IPv4/IPv6 source address field or IPv4/IPv6 destination address field. The
ip.addr==[address] and ipv6.addr==[address] filters looks for specific IPv4/IPv6 addresses in
either the IPv4/IPv6 source address field or IPv4/IPv6 destination address field.

ip.addr==10.3.1.1 Display frames that have 10.3.1.1 in the
IP source address field or the IP
destination address field

!ip.addr==10.3.1.1 Display all frames except frames that
have 10.3.1.1 in the IP source address
field or 10.3.1.1 in the IP destination
address field

ipv6.addr==2406:da00:ff00::6b16:f02d Display all frames to or from
2406:da00:ff00::6b16:f02d

ip.src==10.3.1.1 Display traffic from 10.3.1.1

ip.dst==10.3.1.1 Display traffic to 10.3.1.1

ip.host==www.wireshark.org37 Display traffic to or from the IP
address that resolves to
www.wireshark.org

Filter on Traffic to or from a Range of Addresses
You can use the ip.addr or ipv6.addr filters with the > or < comparison operators and the logical
operator && (and) to look for packets that contain an address within a range.

ip.addr > 10.3.0.1 &&
ip.addr < 10.3.0.5

Display traffic to or from 10.3.0.2, 10.3.0.3 or 10.3.0.4

(ip.addr >= 10.3.0.1 &&
ip.addr <= 10.3.0.6) &&
!ip.addr==10.3.0.3

Display traffic to or from 10.3.0.1, 10.3.0.2, 10.3.0.4,
10.3.0.5 or 10.3.0.6—the IP address 10.3.0.3 is
excluded from the range specified

ipv6.addr >= fe80:: &&
ipv6.addr < fec0::

Display traffic to or from IPv6 addresses beginning
with 0xfe80 through 0xfec0.

37 You must enable Wireshark’s Resolve network (IP) addresses setting (Edit | Preferences | Name Resolution) in

order to use this display filter.

Filter on Traffic to or from an IP Subnet
You can define a subnet in CIDR (Classless Interdomain Routing) format with the ip.addr field name. This
format uses the IP address followed by a slash and a suffix that indicates the number of bits that define the
network portion of the IP address.

ip.addr==10.3.0.0/16 Display traffic that contains an IP address starting
with 10.3 in the source IP address field or
destination IP address field

ip.addr==10.3.0.0/16 &&
!ip.addr==10.3.1.1

Display traffic that contains an IP address starting
with 10.3 in the source IP address field or
destination IP address field except 10.3.1.1

!ip.addr==10.3.0.0/16 &&
!ip.addr==10.2.0.0/16

Display all traffic except traffic that contains an IP
address starting with 10.3 or 10.2 in the source IP
address field or destination IP address field

 Lab 17: Filter on Traffic to or from Online Backup Subnets
In this lab, we will apply a subnet display filter to examine traffic to or from a backup server for Memeo which
offers an online backup product. This traffic runs in the background, constantly checking in with the server.

Step 1: Open mybackground101.pcapng.

Step 2: Apply a display filter for DNS traffic. Note the IP addresses supplied for the api.memeo.info,
api.memeo.com, and memeo.info hosts. They all begin with 216.115.74. We will build a subnet filter
based on these starting bytes. We scrolled to the right in the image below to see more of the Info
column.

Step 3: Apply a display filter for ip.addr==216.115.74.0/24 to view all traffic to or from any of the
hosts on this subnet. There should be 51 packets that match your display filter.

Step 4: LAB CLEAN-UP Click the Clear button to remove your display filter before continuing.

If you want to filter the traffic to or from the Memeo subnets out of view, apply the same filter, but precede it
with the not (“!”) operator)—!ip.addr==216.115.74.0/24.

3.6. Quickly Filter on a Field in a Packet
When you’re looking for all traffic that contains a particular characteristic, you can go the long way or take the
short path. Unless you are training for a marathon, take the short path. Although you can type display filters
and click the Apply button or press Enter, using the right-click method is a faster way to build and apply
display filters.

You can right-click on any field or characteristic in a packet and select either Apply as Filter (which creates
and applies the filter right away) or Prepare a Filter (which puts the new filter in the display filter area, but
does not automatically apply it to the trace file).

Work Quickly – Use Right-Click | Apply as Filter
For example, in Figure 68 we opened http-espn101.pcapng. In the Packet Details pane of frame 8, we expanded
the HTTP section and right-clicked on the Request URI line that indicates the user wants to download the
main page of a web site (/). We selected Apply as Filter | Selected.

Figure 68. Use the right-click method to quickly apply a filter based on content in a field or on a packet characteristic. [http-
espn101.pcapng]

Wireshark creates the proper display filter (http.request.uri=="/") and applies it to the trace file. We
now have two packets displayed. It appears this user is requesting the main page from two different IP
addresses, as shown in Figure 69.

Figure 69. Two packets matched our filter for http.request.uri=="/". [http-espn101.pcapng]

If you want to exclude these types of HTTP requests from view, simply add an exclamation point or the word
not before the filter. This is called an exclusion filter. You can also create this exclusion filter by right-clicking on
a GET request for the default page and selecting Apply as Filter | Not Selected38.

Using this exclusion filter on the http-espn101.pcapng trace file would display 4,898 packets, but it would not be
a very interesting set of packets to wade through. Consider expanding this filter to indicate that you are
interested in the other HTTP GET requests.

Leaving your exclusion filter in the display filter area, locate an HTTP GET request packet (packet 70, for
example).

Expand the HTTP section so you can see the Request Method: GET request line. Right-click this line and select
Apply as Filter. This time you are going to add on to the existing filter using the …and Selected option.

The filter options beginning with … are used to add on to the filter shown in the display filter area.

After selecting … and Selected, your display filter should look as follows. Now 146 packets match your filter.
You are looking at all the HTTP GET requests except for the default page requests (/).

38 You do not need to clear the previous filter because the new filter will replace the existing one.

Be Creative with Right-Click | Prepare a Filter
Use Prepare a filter when you want to change the filter or check the syntax before it is applied. For example,
perhaps you want to know if anyone has made a request for a .jpg file. Right-click the Request URI line in
packet 70 of http-espn101.pcapng and select Prepare a Filter | Selected.

Wireshark places http.request.uri=="/prod/scripts/mbox.js" in the display filter area, but it does
not apply the filter to the traffic. Change the display filter to http.request.uri contains "jpg" and
click the Apply button or press Enter. Twenty-two packets should match your new filter, as shown in
Figure 70.

Figure 70. After right-clicking on the Request URI line and selecting Prepare a Filter, change your filter to look for frames that
contain “jpg” in this field. [http-espn101.pcapng]

Right-Click Again to use the “…” Filter Enhancements
When you performed the right-click Apply as Filter and Prepare a Filter operations, you saw four other filter
options that begin with “…”, as shown in Figure 71. In this example, we still have our http.request.uri
contains "jpg " filter and we also want to look for go.espn.com in the Referer39 line.

39 This is not a typo. The HTTP specifications spell Referer this way (with a missing “r”).

Any filter option that begins with “…” will be appended to the existing display filter.

Figure 71. Use the … filter options to expand an existing display filter. [http-espn101.pcapng]

Your new filter would look like this:

The following table demonstrates how the add-on filters can be used if we already have a tcp.port==80
filter in place.

Right-click on… Choose Filter Created (description)

Request Method: GET Selected http.request.method == "GET"

This will replace the current display
filter and display all HTTP packets that
contain the GET request method.

Request Method: GET Not Selected !(http.request.method ==
"GET")

This will replace the current display
filter and display any packets except
HTTP packets that contain the HTTP
GET request method.

Request Method: GET … and Selected (tcp.port==80) &&
(http.request.method ==
"GET")

This will display packets to or from
port 80 that contain the HTTP GET
request method.

Request Method: GET … or Selected (tcp.port==80) ||
(http.request.method == "GET")

This will display packets to or from
port 80 as well as any HTTP packets that
contain the GET request method. For
example, if your HTTP traffic uses
port 81, you will still see all the HTTP
GET requests from that traffic.

Request Method: GET … and not Selected (tcp.port==80) &&
!(http.request.method ==
"GET")

This will display all traffic to or from
port 80, but not any HTTP packets on
that port that contain the GET request
method.

IP Source Address 10.2.2.2 … or not Selected (tcp.port==80) ||
!(ip.src==10.2.2.2)

This will display packets to or from
port 80 or any traffic that is not from
10.2.2.2

Watch out for the …or not Selected option. Many times people use this by mistake when they want to add on to an exclusion filter
(something that hides specific traffic types).

For example, if you don’t want to see ARP traffic or DNS traffic, using the …or not Selected option would create !arp || !dns.
This filter would not do anything. DNS packets would be shown because they are not ARP packets (matching the first side of the or
operator) and ARP packets would be shown because they are not DNS packets (matching the second side of the or operator).

If you are trying to filter packets out of view, most likely you want the …and not Selected option.

 Lab 18: Filter on DNS Name Errors or HTTP 404 Responses
In this lab we will look for specific DNS or HTTP error responses using the right-click method. This is a great
filter that you may want to save.

Step 1: Open http-errors101.pcapng. Scroll through and look at the Info column of the Packet List pane to
see the problems in this web browsing session. If you applied a filter while following along in the
earlier section, clear it now.

Step 2: Click on frame 18. This is a DNS Name Error response. Expand the DNS subtrees so you can see
the fields inside the Flags section, as shown below. Right-click on the Reply code: No such name
(3) field and select Prepare a Filter | Selected. The first part of your filter appears in the filter area.

Step 3: Click on frame 9. This is an HTTP 404 Response. We will add on to our existing filter and view it
before applying it.

 In frame 9, expand the HTTP section of the packet. Right-click on the Status Code: 404 line, select
Prepare a Filter | …or Selected. Your display filter area should show the following:
(dns.flags.rcode==3) || (http.response.code==404).

Step 4: Click the Apply button or press Enter. Three frames should match your filter.

Step 5: LAB CLEAN-UP Click the Clear button to remove the filter. If you need to use this filter again
soon, click the arrow to the right of the filter area. We set Wireshark to remember the last 30
display filters in Lab 5.

This is a great filter, but it can be improved by looking for all DNS or HTTP error reply codes
(dns.flags.rcode != 0 or http.response.code > 399). Note that the display filter area turns
yellow because of the “!=”, but this filter will actually work fine.

3.7. Filter on a Single TCP or UDP Conversation
When you want to analyze communication between a client application and a server process, you are looking
for a “conversation.” That conversation is based on the IP addresses and port numbers of the client application
and the server process. Often your trace file will contain hundreds of conversations. Knowing how to quickly
locate and filter on the conversation you are interested in will move your analysis process forward quickly.

The following lists four ways to extract a single TCP or UDP conversation from a trace file:

• Extract a UDP/TCP conversation by right-clicking a UDP or TCP packet in the Packet List pane and
selecting Conversation Filter | [TCP|UDP].

• Extract a UDP/TCP conversation by right-clicking a UDP or TCP packet in the Packet List pane and
selecting Follow | [TCP|UDP] Stream.

• Extract a conversation from Wireshark Statistics | Conversations.

• Extract a UDP/TCP conversation based on the stream index number (in the UDP or TCP header).

Use Right-Click to Filter on a Conversation
When you browse through packets and you want to quickly filter on a TCP conversation, right-click on any
packet in the Packet List pane and select Conversation Filter | TCP, as shown in Figure 72.

Figure 72. Right-click on a packet to filter on a specific conversation. [http-espn101.pcapng]

We right-clicked on packet 508 in http-espn101.pcapng and selected Conversation Filter | TCP. Wireshark
created and applied the following display filter to the traffic:

(ip.addr eq 24.6.173.220 and ip.addr eq 184.84.222.48)
and (tcp.port eq 19953 and tcp.port eq 80)

You can use the same method to filter on a conversation based on IP addresses, Ethernet addresses, or UDP
address/port number combinations.

Use Right-Click to Follow a Stream
To view the application commands and data exchanged in a conversation as well as apply a conversation
filter, right-click on any packet in the Packet List pane and select Follow | [TCP|UDP] Stream, as shown in
Figure 73. If you select Follow | UDP Stream or Follow | TCP Stream, the display filter will be based on the
UDP or TCP Stream Index field value.

Figure 73. Right-click on a TCP or UDP packet in the Packet List pane and select Follow | [TCP|UDP] Stream. This creates a
conversation filter based on the selected packet while displaying the conversation in a separate window.

Filter on a Conversation from Wireshark Statistics
Select Statistics | Conversations to view, sort, and quickly filter on a conversation. Click one of the protocol
tabs at the top of the Conversations window to select the conversation type in which you are interested.

Right-click on a conversation line to select Apply as Filter, Prepare a Filter, Find, or Colorize.

When you select Apply as Filter or Prepare a Filter, some interesting options appear. In Figure 74, we selected
Statistics | Conversations and sorted on the Packets column. Next, we right-clicked on the top conversation
and saw the option to apply or prepare a filter using the standard options (Selected, Not Selected, etc.). We
can also choose to define the direction or inclusion of “Any” in the filter.

Under the UDP and TCP tabs, the term “A” refers to both columns labeled with “A” – the Address A column
and the Port A column (ip.addr==24.6.173.220 && tcp.port==19996).

Figure 74. Right-click on a row and select Apply as Filter to view special options for conversation filtering. [http-espn101.pcapng]

You can perform the same basic steps from the Statistics | Endpoints window, although you will not have the “A” and “B”
designations available.

Filter on a TCP or UDP Conversation Based on the Stream Index Field
In TCP or UDP headers, you can also right-click on the Stream Index field to create a conversation filter. In
Figure 75, we expanded a TCP header, right-clicked on the Stream Index field, and selected Apply as Filter,
which created a tcp.stream==2 conversation filter.

Figure 75. Wireshark gives each TCP and UDP conversation a unique Stream index number. [http-espn101.pcapng]

This stream index number can be a great help when you are working with a trace file that has many intertwined conversations. Right-
click on this field and select Apply as Column. Use the values in your TCP Stream index column to easily identify separate
conversations.

 Lab 19: Detect Background File Transfers on Startup
There may be a number of background processes that run when you start up your machine. Some of these
may update your virus detection mechanism, your operating system, or applications. In this lab, you will
detect and filter on the most active conversation of a host (24.6.169.43) that is just starting up.

Step 1: Open gen-startupchatty101.pcapng.

Step 2: Select Statistics | Conversations | TCP and sort the Bytes column from high to low to locate the
most active TCP conversation based on byte count.

Step 3: Right-click on the most active conversation and select Apply as Filter | Selected | A  B. The
Status Bar should indicate 2,886 packets matched your filter. The TCP peer in this conversation is
50.17.223.168.

 We can see this is a Transport Layer Security (TLS) conversation.

Step 4: Frame 311 is the first packet in this conversation. Click the Clear button to remove your filter
and look for a name resolution process before frame 311. Based on frames 309 and 310, this appears
to be a Dropbox server. The client must be checking in and downloading a file from their Dropbox
folder.

Step 5: LAB CLEAN-UP Click the Clear button to remove any unwanted display filters.

You can use the right-click method to quickly apply filters directly from many Wireshark statistics windows,
including the Conversations, Endpoints, and Protocol Hierarchy windows.

3.8. Expand Display Filters with Multiple Include and Exclude
Conditions

There will be many times when you want to filter on the values in more than one field. For example, you
might be interested in seeing all packets that contain the command GET in the HTTP Request Method field
and “.exe” in the HTTP Request URI field. You should combine these two conditions using a logical operator.

Use Logical Operators
Wireshark understands four logical operators. The next table provides examples of how Wireshark logical
operators can be used to expand your display filters by adding conditions.

Operator English Example Description

&& and ip.src==10.2.2.2 &&
tcp.port==80

View all IPv4 traffic from 10.2.2.2
that is to or from port 80

|| or
tcp.port==80 ||
tcp.port==443

View all TCP traffic to or from
ports 80 or 443

! not !arp View all traffic except ARP traffic

!= ne tcp.flags.syn != 1
View TCP frames that do not have
the TCP SYN flag (synchronize
sequence numbers) set to 1

Why didn’t my ip.addr != filter work?
People often get stuck on the != operator. Here are some tips on how Wireshark interprets this operator.

Incorrect: ip.addr != 10.2.2.2

Display packets that do not have 10.2.2.2 in the IP source address field or IP destination
address field. If an address other than 10.2.2.2 is contained in the source or destination IP
address fields, the packet will be displayed. This uses an implied or and will not filter out any
packets.

Correct: !ip.addr == 10.2.2.2

Display packets that do not have 10.2.2.2 in the IP source address field and also does not have
10.2.2.2 in the destination address field. This is the proper filter syntax when excluding traffic
to or from a specific IP address.

Why didn’t my !tcp.flags.syn==1 filter work?
Just when you begin to embrace the process of splitting up the “!” from the “=”… something isn’t quite right.
If you were trying to display all TCP packets that did not have the SYN bit set to 1, this filter will not work.

Incorrect: !tcp.flags.syn==1

This filter is interpreted as “display all packets that do not have a TCP SYN bit set to 1.” Other
protocol packets, such as UDP and ARP packets will match this filter, after all, they don’t have
a TCP SYN bit set to 1.

Correct: tcp.flags.syn != 1

This filter will only display TCP packets that contain a SYN set to 0.

On a Boolean field, such as the SYN bit field, it is much more efficient to simply filter on the bit set to a 0 if that
is what you are interested in. For example, just use tcp.flags.syn==0 in this case.

Don’t be afraid to use the != operator when you know there is only one field that matches your filter field name. Sometimes this is the
best filter operator to use. If you aren’t sure if only one field matches the filter field name, you can find the field in the Expressions
dialog (click on the Expressions button) and look for “or.” For example, ip.addr is listed as “Source or Destination address.”

3.9. Use Parentheses to Change Filter Meaning
Be aware how parentheses can change the meaning of your filters when you create and add conditions to your
filter.

For example, consider the following display filters:

(tcp.port==80 && ip.src==10.2.2.2) || tcp.flags.syn==1

tcp.port==80 && (ip.src==10.2.2.2 || tcp.flags.syn==1)

Placement of parentheses changes the meaning of these two filters.

In the first example above, port 80 traffic from 10.2.2.2 will be displayed. In addition, all TCP packets that have
the SYN bit set (regardless of port numbers or IP addresses) will be displayed.

In the second example above, port 80 traffic will be displayed as long as the traffic is either (a) from 10.2.2.2, or
(b) the traffic has the TCP SYN bit set.

Always use parentheses when you mix “and” with “or” in your filters. If you don’t, Wireshark will turn the display filter background area
yellow to warn you that you may not get the results you expected.

 Lab 20: Locate TCP Connection Attempts to a Client
Client processes send TCP connection requests to server processes. There are very few reasons to allow
incoming TCP connections to user machines on your network (as they typically won’t be running server
processes). In this lab we will create a display filter that detects incoming TCP connection attempts to anyone
on a particular subnet. We will focus on subnet 24.6.0.0/16.

Step 1: Open general101b.pcapng.

Step 2: We first want to detect TCP connection attempts based on the TCP flags area. The first frame in this
trace file is a TCP connection request as noted by the [SYN] in the Info column. The response
indicates [SYN, ACK] in the Info column.

 In the Packet List pane, expand the TCP header of frame 1 and right-click on the Flags line. Select
Prepare a Filter | Selected. This tcp.flags==0x0002 filter will display the first packet (SYN)
of the TCP handshake.

 If we had created a filter for just the TCP SYN bit set to 1 (tcp.flags.syn==1), we would see the
first two packets of each handshake (the SYN and SYN/ACK packets).

Step 3: Click the Apply button or press Enter to see what this filter does. Unfortunately, this filter
alone won’t help us. We want to see if anyone tries to make a TCP connection to any of our clients
on this network. Add && ip.dst==24.6.0.0/16 to your filter and click the Apply button
or press Enter again. Only 5 packets should match your new filter.

 Our results in this lab indicate that 121.125.72.180 and 24.6.169.43 are trying to make a connection
to 24.6.173.220. Since our 24.6.173.220 client doesn’t run server software, this is questionable traffic.

Step 4: LAB CLEAN-UP Click the Clear button to remove your display filter before continuing.

Run this same filter on mybackground101.pcapng to spot another suspicious incoming connection attempt. We
found this incoming connection attempt in Analyze Sample Background Traffic.

3.10. Determine Why Your Display Filter Area is Yellow
As you become more adventurous putting together display filters, you will likely hit a point when Wireshark
colors the display filter area yellow or even red. Wireshark performs error detection on every display filter
and, based on the error detection results, colors your display filter area background red (error), green (ok), or
yellow (what the heck?).

Red Background: Syntax Check Failed
When the display filter area is red, the filter will not work at all. When you click the Apply button or press
Enter, Wireshark will generate a message such as "ip.addr=10.2.2.2" isn't a valid display filter: "=" was unexpected
in this context. See the help for a description of the display filter syntax.

Green Background: Syntax Check Passed
When the display filter background is green, the filter will work based on the syntax checks. Wireshark does
not do a “logic check,” however. Consider the filter http && udp. Normal HTTP communications run over
TCP, not UDP. No packets should match this filter. Although the filter is illogical, it can be processed because
it passes the syntax check.

Yellow Background: Syntax Check Passed with a Warning (!=)
When the display filter background is yellow, the filter has passed the syntax check, but may not give you the
results you expect. This color is automatically triggered when Wireshark sees “!=” in a filter. Remember to
avoid this filter when you specify a field name that may match two actual fields in a packet. For example,
ip.addr indicates you are looking at both the source and destination IPv4 address fields. Another example
would be tcp.port which would look at both the source and destination port number fields.

If you use a field name that refers to a single-occurrence field, go ahead and use the “!=” syntax. For example,
ip.src != 10.2.3.1 would work perfectly even though Wireshark colored the display filter background
yellow. There is only one field that could match this filter.

The two most common causes of a red background are (1) a typo in the filter and (2) using capture filter syntax instead of display filter
syntax. No matter what you try to do, a filter with a red background will not run on Wireshark.

3.11. Filter on a Keyword in a Trace File
There will be times when you are looking for a particular word, such as “admin” in a trace file. You may want
to look through entire frames or in particular fields. You may even want to search for a text string in upper
case, lower case, or mixed case. All of these are possible.

Use contains in a Simple Keyword Filter through an Entire Frame
You can use frame contains "string" to look for a keyword throughout a frame. For example, frame
contains "admin" would look for the string admin (all in lower case) through the entire frame, from the
Ethernet header through the Ethernet trailer.

This is really a simple and lazy filter. It might yield too many false positives. For example, if you use this filter
when you are only interested in finding out if someone tried to log in to the admin FTP account, you might
also see people browsing to www.admin.com and file requests for adminhandbook.pdf.

Use contains in a Simple Keyword Filter based on a Field
Consider building your filter to look just at the field of interest to reduce false positives. For example, if you
look inside an FTP packet that contains a user name (packet 6 in ftp-clientside101.pcapng) and expand the FTP
portion fully in the Packet Details pane, you’ll see the FTP user’s name is in the ftp.request.arg field as
noted on the Status Bar in Figure 76. You can simply type the filter ftp.request.arg contains
"anonymous" to look for “anonymous” in the FTP request argument field. You should find one packet that
matches this filter in ftp-clientside101.pcapng.

Figure 76. Click on a field and look at the Status Bar to find out the field name to use in your filters. [ftp-clientside101.pcapng]

Use matches and (?i) in a Keyword Filter for Upper Case or Lower Case Strings
If you are looking for “Anonymous” with an initial upper case or lower case letter, you can expand your last
display filter with a logical operator. The filter ftp.request.arg contains "Anonymous" or
ftp.request.arg contains "anonymous" would work.

Wireshark supports Perl-Compatible Regular Expressions (PCRE) in display filters. Regular expressions are
special text strings used to define a search pattern. If you want to filter for an entire string in upper case or
lower case, consider using Regular Expressions (regex) and the matches operator.

For example, to look for “anonymous” in any variation of upper case or lower case letters in the FTP argument
field, use ftp.request.arg matches "(?i)anonymous". The matches operator indicates that you are
using Regular Expressions and the (?i)indicates that the search is case insensitive.

What if you are looking anywhere in a frame for a string that contains an upper case or lower case character at
a specific location in a string? For example, consider the following strings:

• buildingAeng

• buildingaeng

We know “building” and “eng” are always in lower case, but the character between those strings can be either
upper case or lower case.

In Wireshark, we can use frame matches "building[Aa]eng". That means we are looking for an “A” or
“a” between the lower case strings. If you are also interested in upper case or lower case B in that location,
expand your display filter to frame matches "building[AaBb]eng".

Use matches for a Multiple-Word Search
There is also a simple way to specify alternate search words with regex. Combine the words in parentheses
and separate them with “|”. For example, if we are interested in finding the words cat or dog in upper case or
lower case anywhere in a trace file, we can use the filter frame matches "(?i)(cat|dog)".

Take the time to learn regex. Visit Jan Goyvaerts’ www.regular-expressions.info web site. If you plan on adding more complex regex
filters to Wireshark, consider purchasing Regex Buddy and Regex Magic – both products were created by Jan Goyvaerts and are
fabulous tools for building, testing, and deciphering regex-based display filters. Regex is used in Wireshark, as well as Nmap, Snort,
Splunk, and many other popular tools.

 Lab 21: Filter to Locate a Set of Key Words in a Trace File
In this lab we will use the matches operator to find the keywords sombrero or football in upper case or lower
case anywhere in a trace file.

Step 1: Open http-pictures101.pcapng.

Step 2: Let’s begin with a simple keyword filter for sombrero. In the display filter area, type frame
contains "sombrero". One packet should match this filter.

Step 3: Now enhance your key word filter using the matches operator. Replace your previous filter
with frame matches "(?i)(sombrero|football)". Note that the monospace font makes it
appear as if there is a space before the “)” and after the “(“ and on either side of the “|.” There are
no spaces anywhere inside the quotes. Three packets should match this filter.

Step 4: LAB CLEAN-UP Click the Clear button to remove your filter before continuing.

Filtering on key words is simple using the matches operator and regular expressions. This is a useful skill
when looking for passwords or user account names or known-to-be-malicious patterns in your trace files.

3.12. Use Wildcards in Your Display Filters
Sometimes you may need to look for variations in a string. In this case, you need to use a wildcard in your
display filter. This is where a solid understanding of regular expressions really comes in handy.

Use Regex with “.”
In Wireshark, you can use regex with the matches operator to represent a string with variables. In regex, the
“.” represents any character except line break and carriage return. When you are looking for the literal “.”, you
must escape it with a backslash (“\”).

The display filter ftp.request.arg matches "me.r" uses “.” as a wildcard.

This filter will look at the string after an FTP command (ftp.request.arg) for the letters “me” followed by
any character (except a line break or a carriage return) and then an “r”. Try running this on ftp-crack101.pcapng.
This filter will display two packets that contain the string symmetry after the PASS command, as shown in
Figure 77.

Figure 77. Use the matches operator with repeating wildcards to find passwords in use. [ftp-crack101.pcapng]

Now change the filter to allow two wildcards in between your characters. The filter ftp.request.arg
matches "me..r" will find the string homework in the argument field.

Setting a Variable Length Repeating Wildcard Character Search
You can also specify that the wildcard should be repeated numerous times. The display filter would be
ftp.request.arg matches "me.{1,3}r". This filter will look for the “.” (any character) once, twice, and
three times in between me and r. In ftp-crack101.pcapng, this filter displays packets that contain mercury,
symmetry, and homework in the FTP argument field. You can also add (?i) in front of me to add case
insensitivity.

Once you create some great keyword filters, consider how you might combine them into a single filter and save that one filter as a
button, as explained in Turn Your Key Display Filters into Buttons.

 Lab 22: Filter with Wildcards between Words
In this lab we will use the matches operator to find the keywords baby and smiling in a trace file. We will see
how the repeating character option settings can affect what matches your filter.

Our display filter ftp.request.arg matches "me.{1,3}r" would look for the “.” up to three times
between the “me” and “r” as mentioned in this section.

This time we will look for the keywords baby and smiling with up to 3 characters separating the words.

Step 1: Open http-pictures101.pcapng.

Step 2: Type the filter http.request.uri matches "baby.{1,3}smiling". Two packets should
match this filter.

Step 3: Now change {1,3} to {1,20} and apply this new filter. Three packets should now match this
filter because the file stock-video-10195917-baby-on-belly-smiling.jpg has the two words within 20
characters.

Step 4: LAB CLEAN-UP Click the Clear button to remove your display filter before continuing.

This is another great type of filter to master. Many times, when looking for security breaches, we try to locate
strings within a certain distance from each other.

3.13. Use Filters to Spot Communication Delays
When someone complains of slow network performance, look for delays between packets as a sign that a
network path, client, or server is slow. Create a filter to look for these delays to spot these problems faster.

There are two time measurements that can be used to filter on delays in a trace file – basic delta time and TCP
delta time.

Filter on Large Delta Times (frame.time_delta)
The frame.time_delta field is located in the Frame section of each packet. You can create a filter for large
values in this field. To set a filter for delays over 1 second, use frame.time_delta > 1. Keep in mind,
however, that this filter looks at all the packets in the trace file to display the time from the end of one packet
to the end of the next packet. Conversations can be intermingled, however, and delays in a UDP or TCP
conversation can go unnoticed because of intervening packets from other conversations.

If you are troubleshooting a UDP-based application, filter on a specific UDP stream of interest then use
File | Export Specified Packets and save a new trace file. Apply your frame.time_delta filter to the new
trace file.

Filter on Large TCP Delta Times (tcp.time_delta)
The tcp.time_delta value can only be used after you enable Wireshark’s Calculate conversation timestamps
TCP preference.

In Lab 5, you checked to ensure the Calculate conversation timestamps TCP preference setting was enabled.
When this setting is enabled, a [Timestamp] section is added to the end of each expanded TCP header in the
Packet Details pane.

In Figure 78, we applied a filter for TCP delta delays over 1 second with tcp.time_delta > 1. There are
four packets that arrived over 1 second after the previous packet in their TCP stream.

Consider clicking the Add Filter Expression button on the display filter toolbar to make this a Filter
Expression button. See Turn Your Key Display Filters into Buttons.

Figure 78. The new [Timestamps] section only appears if Calculate conversation timestamps is enabled in your TCP preferences.
Now you can filter on the TCP delta value. [http-download101d.pcapng]

 Lab 23: Import Display Filters into a Profile
In this lab you will download a set of display filters from www.wiresharkbook.com and import them into your
existing display filter file (dfilters). Use this same technique if you want to move display filters from one profile
to another on a single host or other Wireshark systems.

Step 1: Look in the Status Bar to determine your current profile. You should be using the wireshark101
profile created in Lab 6.

Step 2: Open your personal configuration folder using Help | About Wireshark | Folders | Personal
configuration and double-click on the folder hyperlink.

 Navigate to the profiles directory and locate the wireshark101 directory, as shown below.

Step 3: You created a My IP Address filter in Lab 15, therefore you should already have a dfilters file. If
you don’t have that file, return to Lab 15.

 Open the dfilters file with a text editor.

Step 4: Now extract the dfilters_sample.txt file from the wireshark101filespart2.zip file that you downloaded
from www.wiresharkbook.com. If you haven’t downloaded these files yet, see the instructions in
About this Book. This file contains 6 display filters (and one heading line) that we will add to your
existing dfilters file.

Step 5: Open dfilters_sample.txt and copy the contents to your buffer.

Step 6: Toggle to the dfilters file in your Wireshark101 directory and paste the contents onto the end of the
display filters listed. Make sure you add a blank line at the end of the dfilters file or your last
filter will not be displayed. Close and save your edited dfilters file.

Step 7: Return to Wireshark. The dfilters file is loaded when you load your profile. Change to the Default
profile and return to the wireshark101 profile.

Step 8: Click on the Display filter bookmark on the filter toolbar. You should see your new display
filters at the bottom of the list40.

It is easy to share filters because filters are simple text files (cfilters for capture filters and dfilters for display
filters). If you are working on a team, consider creating a master set of filters that are created and shared by
the team.

40 The new display filter title “Wireshark 101 Book Sample Display Filters” uses the filter string frame. It will not filter

anything out of view if someone clicks on it by mistake.

3.14. Turn Your Key Display Filters into Buttons
You want your analysis processes to be as efficient as possible. In order to do this, make your most popular
display filters into buttons in the display filter area. This way you can quickly open a trace file and click a
button to filter on key packet characteristics.

Create a Filter Expression Button
It is very easy to turn a display filter into a button. Simply type your display filter in the display filter area and

click the Add a Display Filter button at the end of the display filter toolbar.

Provide a label name for your filter as shown in Figure 79 and click the OK button.

Figure 79. Click the Add a Display Filter button and simply name your Filter Expression button.

There are no limits to the number of Filter Expression buttons you can create. If you run out of room for your
buttons, Wireshark displays “ ”, which you can click on to see more buttons.

In Figure 80, we created five Filter Expression buttons to use when analyzing HTTP traffic. Not all of the Filter
Expression buttons can fit in the display filter area because we reduced the size of our Wireshark window.
Wireshark places two Filter Expression buttons in the display filter area, but we must click to view and
select one of the remaining three Filter Expression buttons.

If we keep adding to the Filter Expression buttons list, eventually, Wireshark will place a down arrow at the
bottom of the list so we can scroll further in the list.

Figure 80. Click to view Filter Expression buttons that won’t fit in the display filter area.

Edit, Reorder, Delete, and Disable Filter Expression Buttons
There are three ways to access the Filter Expression management window.

1. Select Edit | Preferences | Filter Expressions.

2. Click the Add Filter Expression button that resides at the end of the display filter toolbar and then
click the Filter Expression Preferences button.

3. Click the Bookmark button on the display filter toolbar and select Manage Filter Expressions, as
shown in Figure 81.

Figure 81. You must access Wireshark’s Preferences window to edit, reorder, delete, or disable Filter Expression buttons.

Edit the Filter Expression Area in Your preferences File
Filter Expression buttons are saved in the preferences file of the profile in which you are currently working.
Your current profile is shown in the right-hand column of the Status Bar. To find your profile’s preferences file,
select Help | About Wireshark | Folders and double-click the Personal Configuration folder hyperlink. The
preferences file for the Default profile is in this directory. The preferences files for any other profiles are in a
subdirectory under the profiles directory.

The preferences file is just a text file. Don’t be afraid to edit the file directly with a text editor. Filter Expression
button settings are maintained under the Filter Expressions heading.

The following is a sample of the Filter Expression area in the preferences file. These settings are used to create
the active Filter Expression buttons seen in Figure 81.

####### Filter Expressions ########
gui.filter_expressions.label: GET|POST
gui.filter_expressions.enabled: TRUE
gui.filter_expressions.expr: http.request.method matches "(GET|POST)"
gui.filter_expressions.label: CONNECT
gui.filter_expressions.enabled: TRUE
gui.filter_expressions.expr: http.request.uri contains "CONNECT"
gui.filter_expressions.label: HEAD
gui.filter_expressions.enabled: TRUE
gui.filter_expressions.expr: http.request.uri contains "HEAD"
gui.filter_expressions.label: HTTP4xx
gui.filter_expressions.enabled: TRUE
gui.filter_expressions.expr: http.response.code > 399 && http.response.code < 500
gui.filter_expressions.label: HTTP5xx
gui.filter_expressions.enabled: TRUE
gui.filter_expressions.expr: http.response.code > 499
gui.filter_expressions.label: HTTP3xx
gui.filter_expressions.enabled: TRUE
gui.filter_expressions.expr: http.response.code > 299 && http.response.code < 400

When you create some wonderful Filter Expression buttons, share them with your team. Simply copy the Filter Expressions section
from your preferences file out to a text file. Send the text file to your team members and instruct them to copy the desired button
settings into the preferences file of their desired profile. Each Filter Expression button requires three lines of information (label, enabled
and expr). If they are copying just one button, remind them to copy all three lines.

 Lab 24: Create and Import HTTP Filter Expression Buttons
We will begin by creating a single Filter Expression button and then we’ll import a set of Filter Expression
buttons. At the time this book was written, there wasn’t an easy way to turn all your display filters into Filter
Expression buttons. That would be a great feature and maybe we’ll see that someday and we can replace this
lab with another lab about conquering world hunger with customized profiles. Until then, follow along with
this lab to import the Filter Expression buttons show in Figure 81 into your wireshark101 profile.

Step 1: Open http-download-a.pcapng.

Step 2: Type http.request.method matches "(GET|POST)" in the filter area.

 Click the Add Filter Expression button that resides at the end of the display filter toolbar.

 Enter GET|POST in the label field and click OK.

 The new GET|POST Filter Expression button is displayed on the display filter toolbar.

Step 3: Click the GET|POST button to view the packets that match this filter. This is a great button to
quickly view requests or information sent to a web server.

 This is the standard process used to add a single Filter Expression button. Next we will import a
set of Filter Expression buttons directly into the preferences file for your Wireshark101 profile.

Step 4: Use a text editor, such as WordPad, to open your preferences file (contained in your wireshark101
profile directory).

 (If you can’t remember how to get to this directory, select Help | About Wireshark | Folders and
double-click on the hyperlink to your Personal configuration folder. Look inside the profiles folder
for your wireshark101 folder.)

Step 5: Use the Find feature of your text editor to locate the Filter Expressions area in your preferences file.
You will see that you already have a GET|POST Filter Expression button entry as shown in the
image below.

Step 6: Extract the filterexpressions101.txt file from the wireshark101filespart2.zip file that you downloaded
from www.wiresharkbook.com. If you haven’t downloaded these files yet, see the instructions. Copy
the contents of this file directly under your new GET|POST entry in the ####### Filter
Expressions ######## area. Save and close your preferences file.

Step 7: You must reload your wireshark101 profile to see your new Filter Expression buttons. Simply click
on the Profile area of the Status Bar, select another profile, and then perform the same steps to
return to your wireshark101 profile.

Step 8: LAB CLEAN-UP If you do not want these new Filter Expressions buttons to remain visible, click the
Edit Preferences button on the main toolbar and select Filter Expressions. Uncheck the Filter
Expressions listed and click OK.

Remember that if you have too many buttons to fit in your display filter area, Wireshark displays . Click on
the double arrows to expand your Filter Expression button list.

Chapter 3 Challenge
Open challenge101-3.pcapng and use your display filter and coloring rule skills to locate traffic based on
addresses, protocols and keywords to answer these Challenge questions. The answer key is located in
Appendix A.

You will practice your display filter to locate traffic based on addresses, protocols, and keywords.

Question 3-1. How many frames travel to or from 80.78.246.209?

Question 3-2. How many DNS packets are in this trace file?

Question 3-3. How many frames have the TCP SYN bit set to 1?

Question 3-4. How many frames contain the string “set-cookie” in upper case or lower case?

Question 3-5. How many frames contain a TCP delta time greater than 1 second?

Chapter 3 Challenge Answers
Question 3-1. Using the filter ip.addr==80.78.246.209, we determined that 32 packets traveled to or

from 80.78.246.209.

Question 3-2. Based on a dns filter, we determined that there are 8 DNS packets in the trace file.

Question 3-3. Based on a tcp.flags.syn==1 filter, we determined that there are 12 TCP packets with

the TCP SYN flag set on in this trace file.

Question 3-4. Based on a frame matches "(?i)set-cookie" filter, we determined that three packets
contained this string. We disabled Allow subdissector to reassemble TCP streams in TCP
Preferences in order to see the response code 200 OK in frame 9.

Question 3-5. Based on a tcp.time_delta > 1 filter, we determined that 18 TCP frames arrived with
over a 1 second delay preceding them.

Chapter 4 Skills:
Color and Export Interesting
Packets

Wireshark is one of those tools that every engineer is a bit afraid to use. It's like bringing the big guns on board.
Once you get familiar with it and tame the beast, this is the most powerful tool you will have on your networking
tool belt.

Lionel Gentil
iTunes Software Reliability Engineer, Apple, Inc.

Quick Reference: Coloring Rules Interface

(1) Enable/disable all coloring rules
(2) Enable/disable the selected coloring rule
(3) Coloring rule name (shows current foreground/background color scheme)
(4) Coloring rule display filter syntax (also shows rule color scheme)
(5) Add a coloring rule (placed in first position on list by default)
(6) Delete the selected coloring rule (select Clear to reload default coloring rules)
(7) Copy selected coloring rule
(8) Set foreground (text) color (launches Select Color window)
(9) Set background color (launches Select Color window)
(10) Import coloring rules (select a file that contains coloring rules; rules are added to the existing

colorfilters file)
(11) Export coloring rules (can be exported using any name)

4.1. Identify Applied Coloring Rules
Wireshark automatically colors packets based on a default set of coloring rules. If you become familiar with
this default set of colors, you can quickly identify packet types based on their colors instead of spending time
digging into the packets.

To quickly determine why a packet is colored a certain way, expand the Frame section of the packet and look
at the Coloring Rule Name and Coloring Rule String lines, as shown in Figure 82.

Figure 82. Look inside the Frame section of a packet to find out why a packet is colored a certain way. [sec-nessus101.pcapng]

Coloring rules are maintained in a text file called colorfilters. This file can be edited with a text editor, but since it is loaded when you
open a profile, you must switch to another profile and return to the current profile to see the changes.

 Lab 25: Add a Column to Display Coloring Rules in Use
Adding a column to identify coloring rules is a great idea when you are new to Wireshark or you just aren’t
familiar with the coloring rules set.

Step 1: Open http-sfgate101.pcapng.

Step 2: Click the Go To button on the main toolbar, type in 472 and click the Go to packet button or
press Enter.

 We see three different coloring rules applied to this area of the trace file. The highlight line for the
selected packet allows a bit of the original color to show through. If frame 473 has a black
background on your system, return to Lab 5 and follow the instructions to disable your IP, UDP,
and TCP checksum validation settings. To completely disable that coloring rule, see the
instructions contained in Disable Individual Coloring Rules.

Step 3: Expand the Frame section in the Packet Details pane for frame 472. Frame 472 matches the HTTP
coloring rule which uses a green background and black foreground (text).

Step 4: Right-click on the Coloring Rule Name field in the Frame section and select Apply as Column.

Use this column when you want to quickly list the coloring rule applied to each frame.

Step 5: LAB CLEAN-UP Right-click on the Coloring Rule Name column heading and unselect that column
from the list to hide it. If you want to view this column again later, you can right-click on any
column heading and select it from the column list.

We can see that we have packets that matched the HTTP, Bad TCP, and UDP coloring rules at this point in the
trace file. Learning the default set of coloring rules helps you quickly understand communications behaviors.

4.2. Turn Off the Checksum Error Coloring Rule
If you have Ethernet, TCP, UDP, and IP checksum validation preference settings enabled and you are
capturing on a host that uses task offload, the Checksum Error coloring rule will create false positive coloring
on your trace file. When a system supports task offloading, valid checksums are applied by the network
interface card before the frame is sent on the network. Wireshark captures a copy of the packets before that
valid checksum is calculated and applied to the frames. Consider disabling the Checksum Errors coloring rule
or disabling checksum validation (as we did in Lab 5).

Disable Individual Coloring Rules
To disable one or more coloring rules, open the Coloring Rules window by selecting View | Coloring Rules
on the main menu. Uncheck the enable/disable check box in front of a coloring rule to disable that coloring
rule. In Figure 83, we have disabled the Checksum Errors coloring rule.

Figure 83. Simple uncheck a coloring rule to disable it.

Disable All Packet Coloring
If you just can’t stand working with the coloring rules on, you can toggle all coloring on or off using View |
Colorize Packet List or click the Colorize Packet List button on the main toolbar.

One of the most irritating coloring rules is the Checksum Errors coloring rule. In earlier versions of Wireshark (prior to version 1.8.x),
Ethernet, IP, UDP, and TCP checksum validations were enabled in the respective protocols’ preference settings. Since lots of
machines use task offloading (with checksum calculations offloaded to the network card), it was common to find all outbound packets
from these systems colored with the “Bad Checksum” coloring rule although the adapter applied a perfectly good checksum to the
frame before sending it onto the network.

If you updated Wireshark, you may have retained earlier checksum validation settings and you might still see Bad Checksum coloring
in your trace file. To remove these inaccurate indications, the best option is to turn off the checksum validation setting for Ethernet, IP,
UDP, and TCP using Edit | Preferences Protocols and disabling the setting for Ethernet, IP, UDP, and TCP. Otherwise, you can
simply disable the Checksum Errors coloring rule, as shown in Figure 83. If you just disable the coloring rule, Wireshark may still
indicate that you have checksum errors inside the frame, but the Bad Checksum coloring rule will not be applied to the packets in the
Packet List pane.

4.3. Build a Coloring Rule to Highlight Delays
When users complain about slow network performance, look for delays between packets in their
communications. You can easily create a coloring rule to call your attention to these delays in UDP-based or
TCP-based communications.

Create a Coloring Rule from Scratch
In Use Filters to Spot Communication Delays, you learned how to filter on delays in a trace file. You can use a
similar technique to create a single coloring rule to detect packets that have a high delta time.

Since coloring rule strings use display filter syntax, you can easily turn any of your display filters into coloring
rules by copying the display filter into the coloring rule Filter area.

Select View | Coloring Rules and click the Add button . Enter the name T-Delays in the Name field.

In the Filter area, type frame.time_delta > 1 || tcp.time_delta > 1, as shown in Figure 84.

Figure 84. Enter the coloring rule name and filter before setting up the foreground and background colors.

Now it’s time to set the foreground (text) and background colors for your coloring rule.

While selecting your new coloring rule, click the Background button. Wireshark offers an array of basic colors
and the ability to define and save custom colors. If you want to use a color repeatedly, click the Add to
Custom Colors button to save it.

Alternately, you can use Pick Screen Color to pull a color from your display.

Over the years, I have settled on the color orange as my “butt-ugly color.” I’m just not a big fan of the color
orange, so I use that background color to alert me to potential problems in the trace file. In Figure 85 I have
selected orange from the basic colors set. (This will only be visible to you in the ebook version.)

The intelligent scrollbar works very well with colorized traffic. We will focus on the Intelligent Scrollbar later
in this chapter.

Figure 85. Wireshark offers basic colors and the ability to build and save custom colors.

Wireshark always shows the foreground and background coloring scheme in the Name field so you can
ensure it looks just the way you want, as shown in Figure 86 (color is visible in the ebook version).

Figure 86. Wireshark applies your foreground and background color scheme to the coloring rules list.

Your new coloring rule will automatically be placed at the top of the Coloring Rules set. Placement of coloring
rules is important. Coloring rules are processed in order from top to bottom, and the packet is colored
according to the first matching coloring rule.

Use the Right-Click Method to Create a Coloring Rule
The fastest way to create a new coloring rule is to select the field of interest in the Packet Details pane, right-
click and select Colorize with Filter | New Coloring Rule.

Plan your coloring and naming scheme in advance. For example, if a color highlights a performance problem, affix “T-” (for
“troubleshooting”) to the front of the coloring rule name and make all your troubleshooting coloring rule backgrounds orange. Affix “S-”
(for “security”) to the front of security coloring rules and set the background color of these rules to red and foreground to white. Affix “N-
” (for “notes”) to the front of packets of interest to you and set the background color of these rules to dark green and foreground to
white. This will help you quickly classify the traffic just based on the color displayed.

The example shown below includes one security coloring rule prefaced with “S-” and two troubleshooting coloring rules prefaced by “T-
”.

 Lab 26: Build a Coloring Rule to Highlight FTP User Names, Passwords, and More
In this lab you will create a coloring rule to call your attention to FTP request arguments, including those
associated with USER, PASS, TYPE, SIZE, MDTM, RETR, and CWD commands. We will use ftp-
crack101.pcapng again.

Step 1: Open ftp-crack101.pcapng. We began capturing in the middle of various FTP communications. In
frame 11 we can see “Request: PASS merlin” in the Info column of the Packet List pane.

Step 2: In the Packet Details pane of frame 11, fully expand the File Transfer Protocol (FTP) line. There are
two sections: Request command and Request arg(ument).

Step 3: Right-click on the Request arg line and select Colorize with Filter | New Coloring Rule, as shown
below.

Step 4: In the Coloring Rules window that appears, name your coloring rule “S-FTP Arguments.41” Edit

the filter to just ftp.request.arg.

 Click the Background button and select red in the Basic colors area. Click OK to save your
background color setting. Click the Foreground button and select white in the Basic Colors area.
Click OK to save your foreground color setting.

Step 5: Click OK to close the Coloring Rules window and then scroll through this trace file to identify the
frames that match your new coloring rule. You should easily be able to spot FTP user names and
passwords that were captured in this trace file.

Use the right-click method to quickly make coloring rules. At times you may just right-click and accept the
filter string “as is”—other times you might decide to edit the string to be less or more specific.

41 We are using the “S-” to indicate this is a security concern. This naming convention enables you to create and apply a

frame.coloring_rule.name contains "S-" to identify all packets that match your security coloring rules.

4.4. Quickly Colorize a Single Conversation
It can be confusing to analyze traffic when your network communications contain numerous intertwined
conversations. You can use coloring to visibly separate the conversations in the Packet List pane to
differentiate them as you scroll through a trace file.

Right-Click to Temporarily Colorize a Conversation
To temporarily colorize a TCP conversation, right-click on any conversation in the Packet List pane and select
Colorize Conversation | TCP | Color 1, as shown in Figure 87. Wireshark offers ten temporary colors. Some
of the colors are quite similar and may be difficult to distinguish from each other.

Temporary colors are retained until you change to another profile, restart Wireshark, or manually remove
them.

Figure 87. Right-click on a conversation in the Packet List pane, select the type of conversation, and choose a temporary color. [http-
jezebel101.pcapng]

In Figure 88, we applied a temporary coloring rule to the TCP conversation that was established to download
a site icon file (favicon.ico).

Figure 88. Coloring conversations helps distinguish them in a trace file. [http-jezebel101.pcapng]

Remove Temporary Coloring
Although we refer to these coloring rules as “temporary,” if you apply a temporary coloring rule to a
conversation and then close the trace file, and open it again, you will notice the color is still in place.

Temporary coloring rules are in effect until you switch profiles, close Wireshark, or remove them.

To remove all your temporary color settings, select View | Colorize Conversation | Reset Colorization or
use Ctrl+Space.

 Lab 27: Create Temporary Conversation Coloring Rules
In this lab, you will apply three temporary coloring rules to differentiate TCP conversations. When you scroll
through the trace file, you will be able to easily see when an earlier conversation begins to surface.

Step 1: Open http-browse101d.pcapng.

Step 2: Frame 1 is a TCP handshake packet (SYN). Right-click on frame 1 in the Packet List pane and select
Colorize Conversation | TCP | Color 1.

Step 3: Scroll down until you see the next SYN packet—frame 12. Right-click on frame 12 in the Packet
List pane and select Colorize Conversation | TCP | Color 4.

Step 4: Scroll down until you see the next SYN packet—frame 61. Right-click on frame 61 in the Packet
List pane and select Colorize Conversation | TCP | Color 8.

Step 5: Now scroll through the trace file to see if these three conversations appear later. When you get to
frame 138, you will see conversation 3 appearing again.

Step 6: LAB CLEAN-UP Select View | Colorize Conversation | Reset Colorization to remove your
temporary coloring rules.

This temporary coloring is very useful when analyzing applications that require many connections—think
Microsoft’s SharePoint! It’s easy to differentiate the various processes taking place on the network when we
colorize different conversations.

4.5. Master the Intelligent Scrollbar
The Intelligent Scrollbar was introduced in Wireshark version 2. This feature essentially gives you a very tall,
skinny view of the coloring seen on the Packet List pane so you can quickly locate areas of interest in your
trace file.

Note: This is another section of the book that focuses on coloring, which is visible only in the ebook format.

There is limited space on the Intelligent Scrollbar. In most cases the Intelligent Scrollbar will not display the
coloring of the entire trace file. You may need to drag the thumb on the scrollbar down to viewing the
Intelligent Scrollbar information for other points in the file.

In Figure 89, we have opened ftp-bounce.pcapng and moved the thumb of the scrollbar down to a point where
we can see a custom coloring rule being applied to packet 31.

We can also see red stripes in the Intelligent Scrollbar. Those represent the TCP Resets seen in the trace file.

Figure 89. The Intelligent Scrollbar is simply a miniature coloring view of the Packet List pane.
[ftp-bounce.pcapng].

Navigate Manually on the Intelligent Scrollbar
Although there is a right-click menu available for the Intelligent Scrollbar (covered next), I have found the
fastest way to get to a specific point on the Intelligent Scrollbar is to simply click on the area of interest on the
scrollbar. Wireshark jumps to that point in the trace file.

Navigate with the Intelligent Scrollbar Menu
There is a right-click menu available on the Intelligent Scrollbar. One of the options on the right-click menu is
Scroll here. On a large trace file, the Scroll here feature will get you to the general area of interest, but you can
simply click on that point on the Intelligent Scrollbar to jump to that point in the trace file.

Figure 90. The Scroll here feature on the Intelligent Scrollbar can get you to the general location of interest.

Note that turning off your coloring rules individually or with the Coloring Rules button will disable the
Intelligent Scrollbar.

The most efficient way to use this new Intelligent Scrollbar is to enhance your coloring rules so the spots of
interest stand out on the Intelligent Scrollbar. In Lab 28 you will have a chance to try this out.

 Lab 28: Use the Intelligent Scrollbar to Quickly Find Problems
In this lab we will create a new coloring rule to identify TCP retransmissions. TCP retransmissions are a sign
of packet loss on a network and are part of Wireshark’s TCP analysis flagged packets. We’d like to just look at
the Intelligent Scrollbar to know if retransmissions (packet loss indications) are seen.

Step 1: Open net-lost-route.pcapng.

Step 2: First we will make a new coloring rule to differentiate retransmissions from all other traffic. Select
View | Coloring Rules to open the coloring rules window.

Step 3: Click the Add button . Name your new coloring rule T-Retransmissions. The filter should be
tcp.analysis.retransmission.

Step 4: With your new coloring rule selected, click the Background button and select a vibrant color (such
as fuchsia or bright pink). Click OK to close your Select Color window. Click OK again to close
your Coloring Rules window.

 Click the Reload button on the main toolbar, if your new vibrant coloring does not appear on
the Intelligent Scrollbar.

 There should be no doubt that there is a packet loss issue in this trace file. By looking at the
Intelligent Scrollbar we can see the problem is much worse towards the end of the trace file.

 Again, if you are reading the ebook version, you will be able to see the colors in these screenshots.
If you are following along with the lab instructions, you can simply see all the colors on your
screen, however.

 Using our new coloring rule we can easily see where retransmissions really begin to hit a critical
level in this trace file. If we further define our coloring rules, we can differentiate between the
delays and HTTP/DNS errors (we made both coloring rules butt-ugly orange).

Step 5: LAB CLEAN-UP Select View | Coloring Rules and disable all of your custom coloring rules at this
point. You can enable them again after you finish the labs in this book.

The Intelligent Scrollbar is a great feature. Refining your coloring rules will make it even more useful and help
you spot specific issues faster.

4.6. Export Packets that Interest You
When you work with a large trace file that has numerous communication types, consider applying filters
based on conversations or protocols and exporting the packets to a new trace file. You will have fewer packets
to deal with and your statistics will only apply to the exported packets.

You can easily export displayed packets, marked packets, or a range of packets.

Let’s say you opened net-lost-route.pcapng and applied a display filter for all HTTP GET or POST traffic
(http.request.method matches "(GET|POST)"). To export these packets to a new trace file, select File
| Export Specified Packets, as shown in Figure 91.

Figure 91. Use File | Export Specified Packets to save the captured packets, displayed packets, marked packets, or a range of packets.
[net-lost-route.pcapng]

If you want to export packets that do not match neatly in a display filter, consider marking the packets before
selecting File | Export Specified Packets. Right-click on each packet of interest in the Packet List pane and
select Mark/Unmark Packet. You must mark each packet separately.

By default, marked packets appear with a black background and white foreground. When you select File |
Export Specified Packets, choose either Marked packets or First to last marked.

Packet marking is only temporary. When you open the exported packets in your new trace file, the packets
will not be marked.

 Lab 29: Export a Single TCP Conversation
When you are focused on a specific application or a specific file download, it helps to extract conversations
into separate trace files. In this lab, you will create and extract a new trace file after locating traffic from an
executable file download process.

Step 1: Open http-misctraffic101.pcapng.

Step 2: Using your display filtering techniques, filter on a frame that contains “.exe” in the HTTP Request
URI field (http.request.uri contains ".exe"). Only one frame should match your filter—
frame 211, as shown below.

 It appears someone is downloading Metasploit, a popular penetration testing program.

Step 3: Right-click on frame 211 in the Packet List pane. Select Conversation Filter | TCP to display this

single TCP conversation. The Status Bar should now indicate that 475 packets match your filter.

Step 4: To save this conversation in a separate trace file, select File | Export Specified Packets. Enter the
file name exportexe.pcapng and ensure the Displayed radio button is selected before clicking Save.

Step 5: LAB CLEAN-UP Click the Clear button to remove the conversation display filter before you
continue.

You’ve now created a new trace file that contains a single conversation from the original trace file. Working
with a single conversation is much easier than wading through thousands of conversations in a trace file.

4.7. Export Packet Details
If you are going to write a report about network communications or packet contents, it would be nice to show
some packets along with your analysis findings. It’s easy to export packet details, but be careful you don’t get
too much information during the process.

Export Packet Dissections
Select File | Export Packet Dissections to export packet details, as shown in Figure 92. There are six different
export options, but the most commonly used export types are plain text and CSV (comma separated value)
formats.

Figure 92. To include packet details in a report, select File | Export Packet Dissections. [http-browse101.pcapng]

Select the plain text format if you are going to include packet contents or summary information in a report.

Select CSV format to import packet information into another program (such as a spreadsheet program) for
further manipulation and analysis.

Define What should be Exported
There are additional options that can be defined. You can choose to export specific packets based on your
filters or marked packets. You can also define what packet information should be included in the output
process. As shown in Figure 93, you can export the Packet summary line (from the Packet List pane, including
any columns you’ve added), Packet details (choose All expanded, As displayed in the Packet Details pane, or
All collapsed), or the Packet Bytes (output with hex and ASCII details).

You can also select to have each packet on a different page. Be careful—you can run through reams of paper
this way. Practice exporting packet information to figure out which format would look best in a report.

Figure 93. Decide how much packet detail you need when exporting packet dissections.

Sample Text Output
The output below was created by exporting a single packet in plain text format (.txt) using the packet details
as displayed.

Frame 4: 77 bytes on wire (616 bits), 77 bytes captured (616 bits) on interface 0
Ethernet II, Src: HewlettP_a7:bf:a3 (d4:85:64:a7:bf:a3), Dst: Cadant_31:bb:c1 (00:01:5c:31:bb:c1)
Internet Protocol Version 4, Src: 24.6.173.220, Dst: 75.75.75.75
User Datagram Protocol, Src Port: 54997 (54997), Dst Port: 53 (53)
Domain Name System (query)
 [Response In: 7]
 Transaction ID: 0x8920
 Flags: 0x0100 Standard query
 Questions: 1
 Answer RRs: 0
 Authority RRs: 0
 Additional RRs: 0
 Queries

Sample CSV Output
Exporting to CSV format allows you to manipulate the information in another tool, such as Excel. The output
below was created by exporting the packet summary line of all the packets of a trace file in comma separated
value format (.csv).

"No.","Time","Length","TCP Delta","Source","Destination","Time to
live","Host","Protocol","Coloring Rule Name","Info"
"1","0.000000","77","","24.6.173.220","75.75.75.75","128","","DNS","UDP",
"Standard query 0x9ba8 A www.wireshark.org"
"2","0.021978","93","","75.75.75.75","24.6.173.220","59","","DNS","UDP",
"Standard query response 0x9ba8 A www.wireshark.org A 174.137.42.75"
"3","0.000783","77","","24.6.173.220","75.75.75.75","128","","DNS","UDP",
"Standard query 0x8920 AAAA www.wireshark.org"
"4","0.030017","77","","24.6.173.220","75.75.75.75","128","","DNS","UDP",
"Standard query 0x8920 AAAA www.wireshark.org"
"5","0.003284","135","","75.75.75.75","24.6.173.220","59","","DNS","UDP",
"Standard query response 0x8920 AAAA www.wireshark.org SOA ns1.softlayer.com"
"6","0.001704","66","0.000000000","24.6.173.220","174.137.42.75","128","",
"TCP","HTTP","42379 > 80 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1"
"7","0.008046","135","","75.75.75.75","24.6.173.220","59","","DNS","UDP",
"Standard query response 0x8920 AAAA www.wireshark.org SOA ns1.softlayer.com"
"8","0.013215","66","0.021261000","174.137.42.75","24.6.173.220","54","",

"TCP","HTTP","80 > 42379 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1460 SACK_PERM=1
WS=128"
"9","0.000197","54","0.000197000","24.6.173.220","174.137.42.75","128","",
"TCP","HTTP","42379 > 80 [ACK] Seq=1 Ack=1 Win=65700 Len=0"
"10","0.000853","345","0.000853000","24.6.173.220","174.137.42.75","128","www.wireshark.or
g","HTTP","HTTP","GET / HTTP/1.1 "
"11","0.020101","60","0.020101000","174.137.42.75","24.6.173.220","54","",
"TCP","HTTP","80 > 42379 [ACK] Seq=1 Ack=292 Win=6912 Len=0"

Before you export the Packet Summary information, right-click on any column heading and select Displayed Columns to check for
hidden columns. Hidden columns will automatically be included in the exported file. You might like this behavior because you can
export large amounts of column data without having all the columns visible as you work. Keep in mind, however, that more columns
means more work for Wireshark when it opens and displays files, applies display filters, and applies coloring rules. If you don’t want
these columns exported, you must remove them.

 Lab 30: Export a List of HTTP Host Field Values from a Trace File
In this lab, you will alter the Packet List pane to display the HTTP Host field before exporting information to
CSV format.

Step 1: Open http-au101b.pcapng.

Step 2: In Lab 14 you created an HTTP Host column. The column may be hidden right now. Right-click on
any column heading in the Packet List pane and select Displayed Column | Host (which is based
on the field http.host).

 If you did not retain your HTTP Host column in Lab 14, right-click the Hypertext Transfer
Protocol section in the Packet Details pane of frame 8 and select Expand Subtrees. Right-click on
the Host field and select Apply as Column. You may need to adjust the new Host column width to
see the full host name.

Step 3: Enter http.host as a display filter and click the Apply button or press Enter. Only packets
that contain this field are displayed. Those are the only packets we want to export in this lab.

 Note that all Packet List pane column information (even information in hidden columns) will be
exported. Keep this in mind before adding and hiding lots of columns that you never use. Instead
of hiding these columns, consider using Edit | Preferences | Columns, selecting the column to
delete and clicking the Delete button .

Step 4: Select File | Export Packet Dissections | As CSV.

Step 5: Under Packet Range, ensure All packets and Displayed are selected.

Step 6: Under Packet Format, uncheck Packet details. We are only interested in the packet summary line.
Displayed is already selected in the Export File window.

 Enter hostinformation.csv in the File Name field and click Save.

Step 7: Open your file in a spreadsheet program (such as Excel) and sort on the Host column to view a list
of all HTTP Host field values seen in the trace file.

Step 8: LAB CLEAN-UP Return to Wireshark and click the Clear button to remove your http.host

filter. Right-click on the Host column heading and unselect that column from the list to hide it. If
you want to view this column again later, you can right-click on any column heading and select it
from the column list.

There are many charts and graphs that cannot be created directly in Wireshark. Exporting the desired fields to
a third-party program opens up numerous options for visualizing the traffic.

In Chapter 8, you will learn how to export the HTTP hosts list quickly using the command-line tool Tshark.

Chapter 4 Challenge
Open challenge101-4.pcapng and use your packet coloring and export skills in this chapter to answer these
Challenge questions. The answer key is located in Appendix A.

Question 4-1. What coloring rule does frame 170 match?

Question 4-2. Temporarily color TCP stream 5 with a light blue background and apply a filter on this traffic.
How many packets match your filter?

Question 4-3. Create and apply a coloring rule for TCP delta delays greater than 100 seconds. How many
frames match this coloring rule?

Question 4-4. Export this filtered TCP delta information in CSV format. Using a spreadsheet program, what
is the average TCP delta time?

Chapter 4 Challenge Answers
Answer 4-1. Frame 170 matches the Bad TCP coloring rule that looks for TCP analysis flagged packets

(except Window Update packets).

Answer 4-2. We applied a filter for tcp.stream==5 and then right-clicked on one line in the Packet List
pane. We selected Colorize Conversation | TCP and selected Color 6. This TCP stream
contains 13 frames.

Answer 4-3. We created a coloring rule using the filter tcp.time_delta > 100. We used the same
string as a display filter and found 9 frames matched this filter. One packet still retained our
temporary coloring rule from Question 4-2.

Question 4-4. After creating a TCP Delta column, we selected File | Export Packet Dissections | As CSV.

We selected to export the displayed packets and only the Packet summary line.

We opened the .csv file in Excel and determined the average value of the exported TCP Delta
column as 115.2703762.

Chapter 5 Skills:
Build and Interpret Tables and
Graphs

When people ask me why they should use Wireshark, even when they don't have much network protocol
knowledge, I tell them to compare Wireshark to an X-ray image. Anyone who sees a pair of scissors on an X-ray
image of a person’s stomach can tell you what's wrong. There shouldn't be any scissors there.

In Wireshark, there are also things that stand out, like not getting a DNS response or seeing a TCP SYN
followed by a TCP RST. By looking more and more at network traces (and reading about the network protocols),
you will be able to extract more information from the packets. Just like a doctor who knows what certain tissues
should look like, you can extract more information from an X-ray image than the novice eye.

Sake Blok
Wireshark Core Developer
Founder, SYN-bit

Quick Reference: IO Graph Interface

(1) Graph area (Y axis)—The Y axis can be set to logarithmic scale42
(2) Graph area (X axis)—The X axis defaults to seconds; scroll right/left as necessary
(3) Graph check boxes—Click these check boxes to enable/disable graph items
(4) Name of graph item—This is used as the column heading when you use Copy
(5) Display Filter area—Enter a field name or filter to be graphed
(6) Color—Select a color for the graph item from a list
(7) Graph style—Select what you want your graphed item to look like
(8) Y Axis—Change Wireshark’s default Y interval setting; access Calc functions (such as SUM, COUNT,

AVG, MIN, and MAX) – used with Y Field setting
(9) Y Field—Used with the Calc functions
(10) Smoothing—Define the Smoothed Moving Average (SMA) values
(11) Add, Delete, and Copy graph items—Add as many graph lines as you need!
(12) Mouse behavior—Select whether the mouse should drag the graph or zoom in
(13) Interval—Change the X axis value
(14) Log Scale (Logarithmic scale)—Great when plotting disparate number values
(15) Save As—Save the graph in PDF, .png, .bmp, .jpg, or .csv format
(16) Copy—Buffers the graph item names and plot points to .csv format in memory

42 You will practice logarithmic graphing skills in Lab 36.

5.1. Find Out Who’s Talking to Whom on the Network
Whether you are capturing live traffic or are opening a saved trace file, you should always check to see what
hosts are communicating on the network.

There are two statistics windows available to determine what hosts are talking on the network: Conversations
and Endpoints.

Check Out Network Conversations
We opened the Conversations window in Filter on a Conversation from Wireshark Statistics. In Figure 94 and
Figure 95, we opened http-espn101.pcapng, selected the Statistics | Conversations and expanded the window
to see all the columns.

In Figure 94, we selected the TCP tab, and sorted the conversations based on the Bytes column.

If you have a filter in the display filter area, you can apply that filter to the Conversations window by checking
the box in front of Limit to display filter. You can also enable the Name resolution option, but you must also
enable Resolve network (IP) addresses under Edit | Preferences | Name Resolution.

Click Follow Stream (available under the TCP and UDP tabs) to reassemble the selected conversation. This
often makes it easier to understand communication between hosts.

Figure 94. Select Statistics | Conversations | TCP to see which hosts are communicating via TCP. [http-espn101.pcapng]

Figure 95. Expand the Conversations window to see the relative start time and duration of the conversations. [http-espn101.pcapng]

If you expand the Conversations window or scroll to the right, you will see the Relative Start (Rel Start) and
Duration columns. The Relative Start time indicates when the conversation started in the trace file. The
Duration column indicates how much time passed from the first packet of the conversation to the last packet
of the conversation.

Quickly Filter on Conversations
To filter on any conversation, right-click on a conversation and select either Apply as Filter or Prepare a Filter.
Unlike standard display filters, when filtering on conversations you can specify the direction you are
interested in, as shown in Figure 96.

“A” represents any column that has the “A” designation and “B” represents any column that has the “B”
designation. For example, if you click on the IPv4 tab, you can see Address A and Address B. If you click on
the TCP tab or UDP tab, you can see Address A, Port A and Address B, Port B.

Figure 96. Right-click on any conversation to apply a filter, prepare a filter, find a packet in the conversation, or to build a coloring rule
for the conversation. [http-espn101.pcapng]

Remember to expand the Conversations Window. There are some very important columns (relative time, duration, and bits per
second) hidden from view on the right side when this window opens.

5.2. Locate the Top Talkers
When you are trying to determine why a network or link is saturated with traffic, take a look at which hosts
are using the most bandwidth (based on bytes, not packets).

Sort to Find the Most Active Conversation
To determine which IPv4 or IPv6 conversations are using up the most bandwidth, select Statistics |
Conversations | IPv4 or IPv6 and click twice on the Bytes column to sort from high to low, as shown in
Figure 97.

Figure 97. Sort on the Bytes column under the IPv4 tab or IPv6 tab to identify the most active conversations in the trace file.
[http-espn101.pcapng]

Right-click on the top conversation line to apply or prepare a filter based on these top talkers, find a packet in
the conversation, or build a coloring rule for the conversation.

Sort to Find the Most Active Host
We need to go to another statistics window to find the top single talker on the network. Close the
Conversation window, select Statistics | Endpoints | IPv4 or IPv6, and click twice on the Bytes column to
sort from high to low, as shown in Figure 98. Since the top talker is generally based on bandwidth usage, the
Bytes column is the best column to use.

If you are interested in the most active transmitter on the network, sort the Tx Bytes column from high to low.

Figure 98. Sort from high to low on the Bytes column to find the top talker in the trace file. [http-espn101.pcapng]

Wireshark displays tabs based on the traffic in the trace file. You can define which tabs appear in this window
by clicking on the Endpoint Types button.

The Map button is only active when you are looking at the IPv4 and IPv6 tabs. This button can be used to plot the IP addresses on a
map of the world. You will get a chance to enable/disable this feature and use this skill in Lab 32.

 Lab 31: Filter on the Most Active TCP Conversation
Pulling out the most active conversation is a common network analysis task when trace files contain tens or
even hundreds of conversations.

Step 1: Open http-misctraffic101.pcapng.

Step 2: Select Statistics | Conversations.

Step 3: Click on the IPv4 tab to examine the two IPv4 conversations in this trace file. Based on the bytes
count, the most active IPv4 conversation is between 24.6.181.160 and 107.6.133.250.

Step 4: Click the TCP tab to identify the most active TCP conversation. Click twice on the Bytes column
heading to sort from high to low.

 We can see the most active TCP conversation is between 24.6.181.160 on port 1266 (a dynamic port
number) and 107.6.133.250 on port 80.

 Notice that clients use a dynamic port number when they communicate with an HTTP server. In
this case, the client has selected port 1266. If you’d prefer to see resolved port names rather than
port numbers, you must enable transport name resolution and check the Name resolution check
box on this screen.

Step 5: Right-click on the most active TCP conversation and select Apply as Filter | Selected | A  B.
Wireshark automatically creates and applies a display filter for this TCP conversation.

 The result of this filter is shown below. There are 475 packets that match this filter.

Step 6: LAB CLEAN-UP Click the Clear button to remove your display filter before continuing. Toggle to
the Conversations window and click Close.

You can add other conversations to your filter easily by returning to the Conversations window, right-clicking on another TCP
conversation and selecting Apply as Filter | …or Selected. Spend some time becoming proficient using this method for conversation
filtering. You can also click the Copy button in the Conversations window to buffer the current Conversations view in CSV format. You
can then paste the information into a text file, name the file with a .csv extension and open it in a spreadsheet program to further
analyze the information.

 Lab 32: Set up GeoIP to Map Targets Globally
Wireshark can use the MaxMind GeoLite database files to list the country, city, AS (Autonomous System)
number, latitude, and longitude of an IP address and map IPv4 and IPv6 addresses on a map of the earth. In
this lab, you will configure Wireshark to use this database and map IP addresses seen in a trace file.

Step 1: Open http-browse101c.pcapng.

Step 2: Visit www.maxmind.com and download the free legacy GeoLite database files (geo*.dat files).
These files can be found by clicking the link to the GeoIP databases and services link and looking
for the GeoLite database files link.43

Step 3: To enable the GeoIP feature, create a directory called maxmind on your drive and place the
maxmind files in that directory. Now select Edit | Preferences | Name Resolution and click the
GeoIP database directories Edit button.

 Click the Add button and browse to your maxmind directory. Click Select Folder. Click OK to
close the GeoIP Database Paths window and OK to close the Wireshark Preferences window.

Step 4: Select Statistics | Endpoints and click on the IPv4 tab. You should see information in the Country,
AS Number, City, Latitude, and Longitude columns.

Step 5: Click the Map button. Wireshark will launch a global view in your browser with the known IP
address points plotted on the map. This process uses ActiveX, which may require that you allow
the ActiveX process to run. Click on any of the plot points to find more information about the IP
address.

Step 6: LAB CLEAN-UP Close the browser window when you are finished. Spend some time capturing your
own traffic and mapping it globally. Learn where your packets are traveling.

43 At the time this book was written, the direct link to the MaxMind GeoLite database files was

dev.maxmind.com/geoip/legacy/geolite/, but this may change. Just look around their web site for any reference to the free
GeoIP database and the free GeoLite binary/gzip files.

GeoIP mapping is very helpful when you are concerned about the external destination of your traffic. For
example, if you work at a facility that should not have outbound traffic leaving the country, GeoIP maps can
help identify unwanted external targets.

5.3. List Applications Seen on the Network
If you are concerned about the type of traffic flowing over a network (perhaps you suspect a host is
compromised), use Wireshark to characterize TCP- and UDP-based applications.

View the Protocol Hierarchy
Select Statistics | Protocol Hierarchy to determine which protocols and applications are in a trace file. In
Figure 99, we opened http-browse101b.pcapng. We can see this trace file contains IPv4 and IPv6 traffic. There is
only UDP traffic running over IPv6 and only TCP traffic running over IPv4.

You cannot sort or reorder items in the Protocol Hierarchy because of the hierarchical structure of the list.

Figure 99. Wireshark creates a hierarchical view of the protocols and applications seen in the trace file. [http-browse101b.pcapng]

Right-Click to Filter or Colorize any Listed Protocol or Application
To perform further research on any type of traffic shown, right-click on a line and select Apply as Filter or
Prepare a Filter. You can also use right-click to build a coloring rule based on a protocol or application.

Look for Suspicious Protocols, Applications or “Data”
This is a great window to examine when you think a host may be compromised. For example, this window
would help you identify unusual network applications, such as (1) Distributed Computing
Environment/Remote Procedure Call (DCE/RPC) traffic directly under TCP, (2) Internet Relay Chat (IRC)
traffic, or (3) Trivial File Transfer Protocol (TFTP) traffic, as shown in Figure 100. When you see this suspicious
traffic, right-click to filter on the traffic and examine the traffic to determine if it is malicious44.

“Data” listed directly under TCP or UDP in the Protocol Hierarchy window indicates that Wireshark could
not apply a dissector to the traffic because it does not recognize the port number and no heuristic dissector
matched the packets.

Figure 100. Look for unusual applications or the word “data” directly under TCP or UDP. [sec-concern101.pcapng]

44 The only way to really know what is “unusual” is to know what is usual. Capture and analyze your traffic to learn

what applications are typically seen on your network.

 Lab 33: Detect Suspicious Protocols or Applications
When you are concerned that there may be a security issue in your trace file, open the Protocol Hierarchy
window first. Look for suspicious applications or protocols and the dreaded “data” directly under IP, UDP, or
TCP.

Step 1: Open general101c.pcapng.

Step 2: Select Statistics | Protocol Hierarchy. This trace file contains some traffic of concern. We see
Internet Relay Chat and Data under the TCP section.

Step 3: Right-click on the Internet Relay Chat line and select Apply as Filter | Selected to examine it
further. Expand the Internet Relay Chat section in the Packet Details pane to learn more about the
communications. Look for the user name and the target IRC server. Perform the same steps to
examine the traffic listed as “data.” In Chapter 6 you will revisit this file to reassemble the
communications for further analysis.

Step 4: LAB CLEAN-UP Click the Clear button to remove any display filters. Toggle back to the Protocol
Hierarchy window and click the Close button.

Remember to use the Protocol Hierarchy window first when you suspect malicious traffic on the network. It’s
a quick way to find breached hosts.

5.4. Graph Application and Host Bandwidth Usage
Although you can use the Protocol Hierarchy to determine the percent of total bytes or packets that an
application uses, a graph can help you analyze the flow of applications in a trace file.

Export the Application or Host Traffic before Graphing
One of the easiest ways to determine how much bandwidth an application or host is using is to filter on that
traffic type and export the traffic to a separate trace file. For example, http-download101e.pcapng contains traffic
to and from a single host, 24.6.173.220. This trace file was created by exporting a host’s traffic from a larger
trace file.

Note: This is a large trace file (168 MB) and may be slow to load.

Select Statistics | I/O Graph to plot all the traffic in the trace file based on packets or bits. By default,
Wireshark plots the packets per second (Y axis). When we categorize the bandwidth usage of an application,
we talk about bits per second or megabits per second. In Figure 101, we changed the Y axis to Bits/s. This gives
us a clear view of the traffic to and from that single host. This download process averages 5 Mbps.

Figure 101. The IO Graph shows the flow of traffic in a trace file. [http-download101e.pcapng]

If you want to compare application usage in an IO Graph, define the application traffic in the filter areas.
When you graph TCP-based applications, be sure to base your filter on a port number (tcp.port==80)
rather than the application name to make sure you capture the connection setup and acknowledgments. For
UDP-based applications, such as DNS, you can filter based on the application name (dns) or port number. If
you are graphing a protocol, such as ICMP, simply filter on the protocol name (icmp) and export the packets
to a new trace file. We will cover applying port filters to IO Graphs after we examine applying IP address
filters to IO Graphs.

Apply ip.addr Display Filters to the IO Graph
If your trace file contains several IP conversations, you can use display filter syntax to graph the conversation
for you.

On the IO Graph, click the Add button and enter your IP address filter in the Display filter area. Click the
check box in front of your new graph item to activate it.

In Figure 102, we opened tr-twohosts.pcapng and graphed two IP addresses using ip.addr== filters for
192.168.1.72 (Paige) and 192.168.1.119 (Scott). We disabled the All packets graph item and the TCP errors
graph item. We also used two different styles to differentiate the graphed items.

This IO Graph indicates that traffic flowing to/from Paige’s machine is much more steady averaging
approximately 1,100 packets per second. The traffic to/from Scott’s machine appears to be sporadic with highs
around 2,200 packets per second and lows of 0 packets per second. You can use this type of filtered graph to
compare the traffic rates of two or more hosts.

Figure 102. Use the IO Graph to identify trends in traffic to or from separate hosts. [tr-twohosts.pcapng]

Apply ip.src Display Filters to the IO Graph
If you want to graph unidirectional traffic, use an ip.src , ip.dst, ipv6.src or ipv6.dst display filter.

For example, in Figure 103, we opened http-download101e.pcapng and launched the IO Graph. We added two
graph lines using the ip.src filter with the IP address of a client downloading a file (Jill at 24.6.173.220) and
the IP address of a server that is sending a file to this client in the trace file (199.255.156.18). We changed the Y
axis to Bits/s.

This graph indicates that Jill’s machine is more active at the very beginning of the trace file (as it
communicates with other servers and resolves addresses).

Approximately 10 seconds into the trace file, however, we see the majority of the traffic is transmitted by the
server (199.255.156.18). In fact, traffic from the server accounts for almost all the bits/s graphed.

Figure 103. Using ip.src, we applied a filter to compare the traffic flowing from two different hosts. [http-download101e.pcapng]

Apply tcp.port or udp.port Display Filters to the IO Graph
If you want to compare the bandwidth use of numerous applications in a trace file, simply filter on the port
number for TCP-based applications or on the application name or port number for UDP-based applications.

In Figure 104, we launched the IO Graph while we were running a live capture. We set the Y Axis to Bits/s. To
find out how much bandwidth was in use by HTTP traffic on port 80, we added a display filter
(tcp.port==80) as our third graph item. We added a filter for HTTPS traffic as the fourth graph item
(tcp.port==443). We disabled the All packets and TCP errors graph items. Our graph indicates that port 80
traffic appears to peak around 27 seconds into the trace process while port 443 traffic appears to peak
approximately 36 seconds into the trace process.

Figure 104. The IO Graph shows the flow of traffic during a live capture process or when opening a saved trace file. [live capture
process]

 Lab 34: Compare Traffic to/from a Subnet to Other Traffic
In this lab you will compare all the traffic to or from subnet 184.0.0.0/8 to all other traffic. To do this, you will
use two IP address filters—one inclusion filter and one exclusion filter.

Step 1: Open http-espn101.pcapng.

Step 2: Select Statistics | I/O Graph.

Step 3: Unselect the check boxes in front of the All packets and TCP errors graph items. We will not be
using them in this lab.

Step 4: First we will work with an inclusion filter. Click the Add button and enter
ip.addr==184.0.0.0/8 in the Display filter field. Set the graph style to Line. Set the Y Axis to
Bits/s.

 Click the check box in front of the name field (which we cleared) to enable the graph item.

Step 5: Now we will work with an exclusion filter. Click the Add button again and enter
!ip.addr==184.0.0.0/8 in the Display filter field. Set the graph style to Bar. Set the Y Axis to
Bits/s.

 Click the check box in front of the name field (which we cleared) to enable the graph item.

Step 5: LAB CLEAN-UP Close your IO Graph before you move on.

It is easy to graph traffic to or from various subnets. Consider capturing traffic on your network to determine
where it is flowing.

5.5. Identify TCP Errors on the Network
Wireshark understands many types of TCP network errors, such as packet loss and receiver congestion. When
Wireshark sees packets that indicate network problems have occurred, it makes a note in the Expert System.

Use the Expert Information Button on the Status Bar
We will leave the IO Graphing for a moment to view the Expert window. The Expert Information button is on
the far left side of the Status Bar. Click the Expert Information button to open the Expert Information
window. The Expert classifies information into five categories. The color on the Expert Information button
indicates the highest layer of Expert detail seen:

• Error: red
• Warn (Warning): yellow
• Note: cyan
• Chat: blue
• Comment: green

In Figure 105, the Expert Information button is yellow, which indicates that there are no Expert errors, but
there are warnings in http-espn101.pcapng.

Figure 105. The Expert Information button is color-coded to let you know the highest level of Expert detail seen. [http-espn101.pcapng
]

Examine Expert Severity Levels
In Figure 106, we clicked on the Expert Information button and we see six items listed. Each item is color-
coded. These are the colors that will appear on the Expert Information button. In this trace file we do not see
the Errors level – we just see Warn (Warnings), Note, and Chat.

Generally, I focus only on Errors and Warnings.

The Group column further classifies the items. “Malformed” means that a Wireshark dissector did not fully
dissect a field or protocol. This could be an indication of a non-standard packet structure, out-of-date packet
structure or field use, out-of-date dissector, or perhaps just a broken dissector.

Sequence group items relate to problems in sequential communications, such as TCP (as also indicated in the
Protocol column).

Figure 106. Expert items are broken up into separate severity levels and groups. [http-espn101.pcapng]

In Figure 107 we have expanded the top Warn group to examine the types of issues Wireshark detected. It
appears we have several indications that there is a receive buffer problem in the trace file (zero window
condition). Each line begins with the packet that triggered the warning. You can use the Expert to move
quickly around the trace file. If you click on the second item listed, Wireshark jumps to packet 256 in the trace
file.

Figure 107. The Warnings area indicates that a host has run out of receive buffer space (Zero window). [http-espn101.pcapng]

Filter on TCP Analysis Flag Packets
You can quickly obtain a count of the individual TCP analysis flag packets by right-clicking on an item listed
in the Expert and selecting Apply as Filter or Prepare a Filter. In Figure 108, we opened challenge101-5.pcapng
and launched the Expert Information window. We right clicked on Packet 8 under the Warn tab, selected
Apply as Filter | Selected.

Figure 108. You can use right-click filtering inside the Expert Information window. [challenge101-5.pcapng]

This created a filter for tcp.analysis.lost_segment. There are 172 instances of this warning in
challenge101-5.pcapng.

Alternately, you could simply type in a display filter for tcp.analysis.flags. If you are only interested in
viewing TCP problems in the trace file, explicitly exclude the Window Update packets by filtering for
tcp.analysis.flags && !tcp.analysis.window_update. TCP Window Update packets are marked
with a TCP analysis flag, but they are not a problem. They are an indication that a host has just increased its
advertised receive buffer space.

5.6. Understand what those Expert Information Errors Mean
Wireshark can detect many network problems, but it does not tell you what causes those problems.
Understanding the causes of the errors, warnings, and notes will help you figure out what may be affecting
network performance.

This section lists the most common causes of the various Expert errors, warnings, and notes.

Packet Loss, Recovery, and Faulty Trace Files
Before looking for application problems, check to see if there are TCP errors in the trace file. No application
can perform well when the underlying network is falling apart.

Previous Segment Not Captured (Warnings)
This warning indicates that Wireshark did not see the previous packet(s) in a TCP communication.
Wireshark tracks the packet ordering based on TCP Sequence Numbers and can therefore easily detect
when packets are missing. Packet loss typically occurs at an internetwork device, such as a switch or a
router. Compare the sender’s TCP Sequence Number in a packet marked this way to the sender’s
previous packet to see how many packets were lost.

ACKed Segment that Wasn’t Captured (Warnings)
This warning indicates that Wireshark saw a TCP ACK, but it did not see the data packet that is being
acknowledged. If you were capturing on a spanned switch, the switch may be overloaded and unable
to forward all the packets to Wireshark. A trace file containing numerous ACKed Segment that Wasn’t
Captured warnings should not be used for analysis. You do not have a complete view of traffic.

Duplicate ACK (Notes)
These notes indicate that a TCP host receiving data from another host believes a packet is missing.
This is, in essence, a complaint requesting a missing packet. When the sender receives three ACKs
requesting the same data packet (as noted in the Acknowledgment Number field of the ACKs), it
should resend the missing packet. These are part of the packet loss recovery process and are likely
caused by a switch or router dropping packets.

Retransmission (Notes)
These notes occur when Wireshark sees two data packets with the same sequence number. A sender
will retransmit a packet when it doesn’t receive a timely acknowledgment for a data packet that it
sent. This is another part of the packet loss recovery process (which is most likely caused by a switch
or router dropping packets).

Fast Retransmission (Notes)
These notes occur when Wireshark sees the data packet that someone requested through duplicate
ACKs within 20 ms or within the Initial Round Trip Time (iRTT) of one of those duplicate ACKs. This
is another part of the packet loss recovery process (which is also most likely caused by a switch or
router dropping packets).

Spurious Retransmission (Notes)
These notes occur when Wireshark sees the data packet being resent after it has witnessed the ACK
for that data packet. From Wireshark’s perspective, the sender of the retransmission is not behaving
properly. In truth, however, perhaps you are capturing traffic closer to the receiver and the ACK
simply did not arrive at the sender of the data packet. In that case, we may see the ACK, but it never
made it to the sender of the data packet. They should retransmit the data packet in that case.

Asymmetrical or Multiple Path Indications
Asymmetrical paths are indicated when packets travel one path outbound and another path inbound.
Multiple paths are indicated when the individual packets of a data stream can be separated and travel
different routes to the target. This can cause problems if one path is faster than another.

Out-of-Order (Warnings)
This warning indicates that Wireshark saw a packet that has a lower TCP sequence number than a
previous packet. This may indicate that traffic flowed along different paths to reach the target. This
typically is not a problem unless the receiver times out waiting for the out-of-order packet and begins
to complain by sending duplicate ACKs.

Keep-Alive Indication
The TCP keep-alive process is designed to hold an idle TCP connection open for future use. However, since
the connection establishment process doesn’t take much time, tearing down the connection when it is idle
relieves both TCP peers of the unnecessary overhead of maintaining the connection.

Keep-Alive (Warnings)
A TCP Keep-Alive packet is sent when a TCP host hasn’t received any communication from a peer for
a certain amount of time. If no Keep-Alive ACK is received, the connection may be terminated. The
amount of time that a host waits before generating a Keep-Alive can usually be configured on a TCP
host. This isn’t seen as a problem.

Keep-Alive ACK (Notes)
This note is the response to a Keep-Alive packet. It is not seen as a problem.

Receive Buffer Congestion Indications
Each side of a TCP connection maintains a receive buffer (receive window) for incoming data. If an application
is slow taking data out of the buffer, it may fill. When the buffer becomes full, a host advertises a zero window
condition—no more data can be sent to that host on that connection until the host indicates it has buffer space
through a Window Update packet.

Window Full (Notes)
This note indicates that Wireshark has calculated that the packet will fill the available receive buffer
space of the target. This packet itself is not a problem, but it can be the last packet before a zero
window condition.

Zero Window (Warnings)
Zero Window warnings indicate that the sender is advertising a TCP window size value of 0, meaning
it has no receive buffer space available. The other side of the TCP connection cannot send more data if
there is no receive buffer space available. The application running on the host that sent the zero
window packet is not picking up data from the receive buffer. This can be caused by a faulty
application, overloaded host, or even an intentional user-prompting process (for example, the prompt
to save a file to a specific location).

Zero Window Probe (Notes)
This note indicates that a host is trying to determine if the target has any receive buffer space
available. In general, this is an optional part of the zero window recovery process.

Zero Window Probe ACK (Notes)
This note indicates a host has responded to a Zero Window Probe. If the window size is still set at zero
then the zero window condition continues.

Window Update (Chats)
This chat detail indicates that the sender is advertising more TCP receive buffer space than in the
previous packet. This is commonly seen in TCP communications and it is the recovery packet seen
after a zero window condition.

TCP Connection Port Reuse Indication
Connection reuse can become a problem if an application simply allows connection timeout at its own leisure.
If the connection is not fully terminated before a host tries to use the port number again, it should receive a
service refusal (TCP Reset).

Reused Ports (Notes)
This note indicates that a host is using the same port number as a previous connection between the
same two hosts in the trace file. Some applications may reuse previous ports, but security scanning
tools do this as well. The source of these packets should be investigated.

Possible Router Problem Indication
It seems that as routers become smarter and smarter, they also become dumber. Always test router
configurations and enhancements to see if the router alters the packet in an unacceptable way, such as the
issue listed below.

4 NOPs in a Row (Warnings)
This warning indicates that the TCP option value 0x01, a NOP (No Operation) option, has been seen
four times in a row in a packet. Since these NOPs are used to pad a TCP header to end on a 4-byte
boundary, you should never see four in a row. This is typically caused by a misbehaving router along
the path.

Misconfiguration or ARP Poisoning Indication
This is an expert indication that must be investigated further to determine if you are facing an intentional or
unintentional problem.

Duplicate IP Address Configured (Warnings)
This warning indicates that two or more ARP (Address Resolution Protocol) response packets offer
different hardware addresses for the same IP address. This is very unusual and can either indicate that
a host IP address was configured incorrectly (a static address that conflicts with the same address as a
dynamically-assigned address) or a system is ARP poisoning the network.

When troubleshooting network communications, always open the Expert Information window to identify any
warnings or notes. Look for any problems related to TCP before pointing at an application as the cause of poor
performance.

 Lab 35: Identify an Overloaded Client
In this lab we use the Expert Information window to identify the cause of poor network performance. Not
only is the client overloaded in this trace file, but there is packet loss along the path as well.

Step 1: Open http-download101.pcapng.

Step 2: Click the Expert Information button on the Status Bar.

Step 3: Expand the Warn and Note sections to examine the problems detected in this trace file.

Step 4: In the Warn section, click on 363: TCP window specified by the receiver is now completely full.
Wireshark jumps to packet 363 in the trace file. This is where Wireshark indicates that the client is
going to run out of receive buffer space.

 If you look past the window zero problem in this trace file, you can see the client recover with
Window Update packets in frames 377 and 378. A quick glance at the Time column (set to Seconds
Since Previous Displayed Packet) and you’ll understand why this is a condition to watch for on your
network.

Step 5: LAB CLEAN-UP When you are finished looking through the Expert information, click the Close
button in the Expert Information window.

The Expert Information window is one of the first places you should look when analyzing network
performance issues.

5.7. Graph Various Network Errors
Wireshark understands many types of TCP network errors, such as packet loss and receiver congestion. When
Wireshark sees packets that indicate network problems have occurred, it tags the packets with
“tcp.analysis.flags.”

Just as you applied IP address and port filters in the previous tasks, you can also graph all TCP analysis flags
or specific flags.

Graph all TCP Analysis Flag Packets (Except Window Updates)
If you are going to graph all the TCP errors, you will need to exclude one type of tagged packet that was
tagged incorrectly. A window update packet is good. It indicates a host has more buffer space available to
receive data. Wireshark tags these packets with the tcp.analysis.flags setting. Most other items flagged
this way indicate that there are TCP problems so we must explicitly exclude the window update packets when
graphing TCP problems.

In Figure 109, we opened http-download101.pcapng and graphed All packets and TCP error packets. We
explicitly excluded the window update packets in our TCP errors filter (tcp.analysis.flags &&
!tcp.analysis.window_update).

If we look closely at this graph we can see a correlation between increases in TCP errors at the points where
we have a decrease in the packets/second rate. This indicates a relationship between TCP problems and
throughput issues.

f

Figure 109. We graphed all the tcp.analysis.flags packets while excluding the window update packets. [http-
download101.pcapng]

Graph Separate Types of TCP Analysis Flag Packets
In Figure 110, we graphed separate TCP problems to show the relationship between them. Lost segments lead
to duplicate ACKs which lead to retransmissions. In this graph we used the Stacked Bar style.

Figure 110. You can plot the separate TCP problems to observe the relationship between them. [http-download101.pcapng]

A picture really is worth a thousand words. By graphing the TCP analysis flag packets alongside the general flow of traffic, you can see
the relationship between TCP problems and drops in throughput.

 Lab 36: Detect and Graph File Transfer Problems
In this lab we examine a file transfer process that takes place over TCP. Before we can consider
troubleshooting the application itself, we must rule out TCP problems.

Step 1: Open general101d.pcapng.

Step 2: Click the Expert Information button on the Status Bar.

Step 3: Expand and examine the Warn and Note sections to see which problems were identified by
Wireshark in the trace file.

 You may notice the following:

• Wireshark does not indicate a very high number of Previous segment not captured
instances.

• Wireshark does indicate there are a lot of Duplicate ACKs (requests for retransmissions
after packet loss).

• Wireshark indicates that there are a fair number of retransmissions in this trace file.

 All of this points to significant packet loss occurring at a single time—one big chunk of data did
not make it to the receiver.

Step 4: Close the Expert Information window and select Statistics | I/O Graph.

Step 5: Graph all tcp.analysis.flags && !tcp.analysis.window_update in the Graph 2 filter
area.

 The graph isn’t very impressive at this point because we are graphing two very disparate values—
the packets per second vs. these specific analysis flag packets.

 One of the problems you will face over and over is the problem of graphing two very different
values. When you encounter this issue, change the Y axis scale to logarithmic.

Step 6: Click the Log scale check box to enable the logarithmic scale function. This will completely change
the look of your graph.

 We can now see that TCP errors spiked just before the drop in throughput. When you click on any
plotted point in the graph, Wireshark jumps to that spot in the trace file, allowing you to examine
the situation further.

Step 7: LAB CLEAN-UP Click the Close button when you are finished viewing the IO Graph.

You can build a graph on any display filter value. When performance problems arise, graphing TCP problems
alongside all traffic enables you to find out if the TCP problems are related to throughput drops.

Chapter 5 Challenge
Open challenge101-5.pcapng and use the techniques covered in this chapter to answer these Challenge
questions. The answer key is located in Appendix A.

Question 5-1. Create an IO Graph for this trace file. What is the highest packets-per-second value seen in
this trace file?

Question 5-2. What is the highest bits-per-second value seen in this trace file?

Question 5-3. How many TCP conversations are in this trace file?

Question 5-4. How many times has “Previous segment not captured” been detected in this trace file?

Question 5-5. How many retransmissions and fast retransmissions are seen in this trace file?

Chapter 5 Challenge Answers
Answer 5-1. We selected Statistics | I/O Graph and used the default Packets/s unit in the Y axis. The

highest packets-per-second value seen in this trace file is approximately 86 packets per
second.

Answer 5-2. After changing the Y axis to Bits/s, we can see the highest bits-per-second value seen in this
trace file is approximately 630,000 bits per second.

Answer 5-3: Selecting Statistics | Conversations | TCP, we can see there is only one TCP conversation in
the trace file.

Answers 5-4. After expanding the Warnings section in the Expert Information window, we can right-click

on one of the Previous segment not captured indications and select Apply as Filter | Selected. .
The Status Bar indicates there are 172 of these indications in the trace file. Most likely an
interconnecting device along a path is dropping packets.

Answer 5-5. Clicking on the Notes section and applying a filter for tcp.analysis.retransmission,
we can see there are a total of 183 Retransmissions and Fast retransmissions combined. These
are the recovery processes for packet loss.

Chapter 6 Skills: Reassemble
Traffic for Faster Analysis

Network analysis is all about the packets: what kind of story are the packets telling? Even if you speak fluent
binary, you need a tool that will quickly break down the packets and the protocols/packet structure. If your login
fails, what really failed? The packets will tell you. What if you are using LANDesk to capture an image and it gets
so far, looking successful, then just dies. No errors. Nothing. The packets tell the story (your imaging AD
account password expired…who knew?) Look at the packets first instead of “when all else fails.”

Lanell Allen
Wireshark Certified Network Analyst™

Quick Reference: File and Object Reassembly Options

(1) Select File | Export Objects | [DICOM|HTTP|SMB|TFTP] to export reassembled objects45
(2) Right-click in the Packet List pane and select Follow | TCP Stream46

(TCP stream filter)
(3) Right-click in the Packet List pane and select Follow | UDP Stream

(UDP port numbers and IP addresses filter)
(4) Right-click in the Packet List pane and select Follow | SSL Stream

(SSL port number and IP addresses filter)

45 Be sure to enable the Allow subdissector to reassemble TCP streams TCP preference setting before attempting reassembly.
46 Wireshark automatically detects if you right-clicked on a TCP, UDP or SSL stream. SSL streams must be decrypted to

be reassembled and viewed.

6.1. Reassemble Web Browsing Sessions
Whether you are troubleshooting a slow web browsing session or you just want to look “under the hood” of
an HTTP communication, you can use Wireshark’s reassembly feature to see what’s really going on by
rebuilding the conversations between HTTP clients and servers.

Use Follow | TCP Stream
Right-click on an HTTP packet in the Packet List pane and select Follow | TCP Stream. Wireshark rebuilds
the conversation without any MAC-layer, IPv4/IPv6, UDP/TCP headers or field names. The result is a clearer
picture of what is being said between hosts. In Figure 111, we opened http-browse101.pcapng, right-clicked on
packet 10 (an HTTP GET request) in the Packet List pane, and selected Follow | TCP Stream. The
conversation is color-coded: red for the first host seen in the conversation and blue for the second host seen in
the conversation47.

Figure 111. The communications become much clearer when you follow the stream. [http-browse101.pcapng]

If you look at the display filter area, you’ll note that Wireshark applies a filter based on the TCP Stream index
(tcp.stream eq 0). This is a unique number given to each TCP conversation. This is the first TCP stream in
the file, and is given stream index number 0.

TCP stream numbers are assigned by Wireshark. This field does not exist in the actual packet.

47 If you captured the browsing session beginning with the TCP handshake, the client communications will be in red and

the server communications will be in blue.

Use Find, Save, and Filter on a Stream
There are several options available after you follow a stream.

• Click Find to search for a text string.

• Click on the up/down arrows on the Stream field to reassemble different streams.

• Click Save As to save the conversation as a separate file. The Save As feature is great if you want to
export a file that was transported across a conversation.

• Select Hide this stream to create and apply an exclusion display filter for this stream (!tcp.stream
eq 0) . The ability to filter out conversations after examining them is crucial in narrowing down
suspicious traffic on a network.

You will use the Save As function in Lab 38.

 Lab 37: Use Reassembly to Find a Web Site’s Hidden HTTP Message
It is not unusual to have numerous “hidden” messages sent to your browser when you hit a web site. In this
lab you will analyze a trace file that contains two hidden messages. Afterwards, visit the same web site again
to catch other interesting messages.

Step 1: Open http-wiresharkdownload101.pcapng.

Step 2: The first three packets are the TCP handshake for the web server connection. Frame 4 is the client’s
GET request for the download.html page. Right-click on frame 4 and select Follow | TCP stream.

 Traffic from the first host seen in the trace file, the client in this case, is colored red. Traffic from the
second host seen in the trace file, the server in this case, will be colored blue.

Step 3: Wireshark displays the conversation without the Ethernet, IP, or TCP headers. Scroll through the
stream to look for the hidden message from Gerald Combs, creator of Wireshark. It is located in the
server stream and begins with X-Slogan.

Step 4: This isn’t the only message hidden in the web browsing session. Now that you know the message
begins with “X-Slogan,” how could you have Wireshark display every frame that has this ASCII
string?

 Click the Close button and then the Clear button to remove the TCP stream filter.

 Apply the display filter frame contains "X-Slogan".

Step 5: Right-click on the two other displayed frames and select Follow | TCP Stream to examine the
HTTP headers exchanged between hosts. Did you find the other message?

 Use stream navigation arrows to move from one stream to another.

Step 6: LAB CLEAN-UP Click the Close button on the Follow TCP Stream window when you have finished
following streams.

Rather than scroll through a trace file and examine each packet one at a time, follow the TCP, UDP, or SSL
streams. 48 This is a function you will use again and again in your analysis process.

48 You must configure Wireshark with a decryption key in the SSL preferences area in order to follow SSL streams and

view the decrypted traffic.

6.2. Reassemble a File Transferred via FTP
Wireshark’s ability to reassemble files transferred on a network might surprise some people. It should also
emphasize the importance of using a secure channel or even file encryption to protect against unwanted
interception and reassembly of confidential files.

FTP communications use two types of connections: a command channel and a data channel. The data channel
only consists of the TCP handshake to establish the connection and then the actual data transfer itself. Using
Follow | TCP Stream on the data channel, you can easily reassemble the transferred file into its original
format.

Check your TCP preference setting to ensure Allow subdissector to reassemble TCP streams is enabled. This
setting is required for proper reassembly.

Locate the data channel by either watching packets in the command channel leading up to it, locating “FTP-
DATA” in the Protocol column, or looking for maximum-sized packets following the RETR or STOR
command. Sometimes the FTP data channel will be established over the default port 20, but that’s not
required. In the command channel communications, another port number can be defined for the data channel.

To reassemble the file transferred on the FTP data channel, right-click on the data packet and select Follow |
TCP Stream, as shown in Figure 112.

Figure 112. Look for the FTP-DATA or full-sized packets after the RETR or STOR command. [ftp-download101.pcapng]

Wireshark displays the communications in ASCII format, indicating the direction of the data flows using color
coding (red is applied to the first communicating host while blue is applied to the second communicating
host). Change the format to Raw (set in the Show data as drop-down list), select Save As, and name your new
file based on the file name seen in the RETR or STOR command preceding this file transfer.

That’s it. You now have an exact duplicate of the file that was transferred over FTP.

When you follow streams that contain a file, you can usually identify the file based on the first few bytes. For example, .jpg image files
begin with JFIF whereas .png image files begin with the byte string 0x89-50-4E-47. It’s good to know what format the file uses if you
want to reassemble that file. Take a look at a tool called TRIDnet to identify file types (mark0.net/soft-tridnet-e.html).

 Lab 38: Extract a File from an FTP File Transfer
In this lab you will follow an FTP data stream to reassemble the file that was transferred. First you will
reassemble the command channel traffic to see the client login and file retrieval commands, and then you will
reassemble the data transfer channel traffic to view the file transferred.

Step 1: Open ftp-clientside101.pcapng.

 Check your TCP preference setting to ensure Allow subdissector to reassemble TCP streams is
enabled. This setting is required for proper reassembly.

Step 2: Scroll through the beginning of this trace file. You will see numerous FTP commands used to log
in, request a directory, define a port number for the data transfer, and retrieve a file.

Step 3: Right-click on frame 6 (USER anonymous) and select Follow | TCP Stream. You can easily read
the commands and responses exchanged between the client and server. The client logged in (USER
and PASS), requested the directory listing (NLST), set the transfer type to binary (TYPE), defined a
port to use for the data channel (PORT), requested a file (RETR), and ended the connection (QUIT).

Step 4: There are two data connections in this trace file: one for the directory list and another for the file
transfer. We are only interested in the data stream used for the file transfer.

 The Follow TCP Stream window is linked to the packets in the trace file. Click on the RETR
pantheon.jpg line and Wireshark jumps to that packet. Click Close.

Step 5: Click the Clear Filter button to remove the display filter that was created when you followed
the stream.

 Packet 34 should be selected. Immediately following that packet you will see the start of a new
TCP connection (SYN packet) in packet 35. This is the data connection used to transfer the file
pantheon.jpg.

 Right-click on packet 35 and select Follow | TCP Stream.

Step 6: You can view the file identifier that indicates this is a .jpg file (JFIF) and the metadata contained in
the graphic file.

Step 7: To reassemble the graphic image transferred in this FTP communication, first you must click the
Show data as drop-down arrow and change the data format to Raw.

 Then click the Save As button, select a target directory for the file, and set the file name as
pantheon.jpg. Click Save.

Step 8: Navigate to the target directory and open pantheon.jpg. You should see the following photo:

Step 9: LAB CLEAN-UP When you’ve finished examining the Pantheon image you extracted, close your
image viewer. Return to Wireshark to close the TCP Stream window and clear your display filter.

It is easy to reassemble files transferred over TCP or UDP using Follow | TCP Stream or Follow | UDP
Stream. When the data stream is clean (does not contain any commands), you can simply reassemble the
stream and select Save As.

6.3. Export HTTP Objects Transferred in a Web Browsing Session
When analyzing HTTP communications, it can be helpful to see what individual page elements (HTTP objects)
were transferred. You can reassemble html, graphics, JavaScript, videos, style sheet objects, and more.

Check Your TCP Preference Settings First!
Before beginning this process, ensure your TCP preference for Allow subdissector to reassemble TCP streams is
enabled.

If you don’t enable TCP reassembly, Wireshark cannot reassemble the HTTP objects. In fact, Wireshark will
list each packet used to transfer an object rather than each object.

View all HTTP Objects in the Trace File
After capturing HTTP traffic or opening an HTTP trace file, select File | Export Objects | HTTP. Wireshark
displays all the elements transferred in the HTTP traffic.

In Figure 113, we opened http-espn101.pcapng and selected File | Export Objects | HTTP to list the various
objects transferred when someone browsed to www.espn.com. Note that the client connected to numerous
servers when building the main view of the web site. Some of these objects were served by ad servers.

Figure 113. Select File | Export Objects | HTTP to export one or all of the objects. [http-espn101.pcapng]

The HTTP object list window lists all the files transferred in the trace file.

• The Packet column indicates the last packet of each reassembled object.

• The Hostname column provides the http.host value from the GET request that preceded each file
transfer.

• The Content Type column indicates the format of the objects. The objects may be graphics (.png, .jpg,
or .gif, for example), scripts (.js, for example), or even videos (.swf or .flv, for example).

• The Size column indicates the size of the transferred object.

• The Filename column provides the name of the object requested. The request for “\” indicates a
request for the default element (such as index.html) on a web page.

To export all the objects, select Save All and choose the directory where you want to save all the objects, click
Select Folder, and be patient. This may take a long time if lots of HTTP objects are listed.

To export a single object, select the object, select the directory where you want to save the object, and click
Save. Wireshark will fill out the file name based on the object name, so all you need to do is select an export
directory.

If you don’t recognize some of the file extensions shown in the HTTP Object List window (such as .css for Cascading Style Sheets),
visit www.fileinfo.com/help/file_extension. You can enter the file extension in the search box to look up the file type and a list of
programs that use that type of file.

 Lab 39: Carve Out an HTTP Object from a Web Browsing Session
In this lab, you will open a trace file that contains a web browsing session. Using the File | Export Objects
process, you will extract one of the images transferred during the web browsing session.

Step 1: Open http-college101.pcapng.

Step 2: If you didn’t already do so while reading the previous section, enable your Allow subdissector to
reassemble TCP streams setting (Edit | Preferences Protocols | TCP). When you finish this lab you
will disable the setting again. This setting is required for the File | Export Objects function.

Step 3: You created a Host column in Lab 1449. It may be hidden, however. Right-click any column
heading and enable your Host column. You may need to widen your Host column to see full host
names.

 When you scroll through the trace file, you can see the user is browsing www.collegehumor.com. We
will create a list of the HTTP objects transferred in this trace file and then extract one of the files.

 In Lab 38, you used Follow | TCP Stream to extract a file from an FTP data transfer process. It’s
much easier to extract HTTP objects.

Step 4: Select File | Export Objects | HTTP. Scroll through the list of objects to find a file called
7c7b8db9ca172221a20922a49e92a86b-definitely-real-trampoline-trick.jpg that begins downloading in
frame 307.

49 If you did not save your Host column, return to Lab 14 and follow the steps to create the column again.

Step 5: Click Save, select the target directory and let Wireshark use the actual file name. Click Save.

 Navigate to your target directory to view the saved file.

Step 6: LAB CLEAN-UP Close the HTTP Object List window and right-click on a TCP header in the Packet
List pane and disable the Allow subdissector to reassemble TCP streams setting.

Wireshark’s object exporting capability does a good job carving HTTP objects out of a web browsing session. It
does not do a good job helping you look through the exported files, however. You must use an external viewer
to see the files.

If you are a forensic investigator who needs to export thousands of files from traffic (also referred to as “data
carving”), check out NetworkMiner from Netresec, a free network forensic tool that can import .pcap50 files and
carve out and display the images. You can download NetworkMiner from www.netresec.com.

50 As of the writing of this book, the free version of NetworkMiner could not import .pcapng files, but the paid version

could process .pcapng files. To convert a .pcapng file to a .pcap file format, open the file and select File | Save As and
choose the Wireshark/tcpdump/… - libpcap format. Use the .pcap extension when you name your file.

Chapter 6 Challenge
Open challenge101-6.pcapng and use the techniques covered in this chapter to answer these Challenge
questions. The answer key is located in Appendix A.

Question 6-1. What two .jpg files can be exported from this trace file?

Question 6-2. On what HTTP server and in what directory does next-active.png reside?

Question 6-3. Export booksmall.png from this trace file. What is in the image?

Question 6-4. Reassemble TCP stream 7. What type of browser is the client using in this stream?

Chapter 6 Challenge Answers
Answer 6-1. First we made certain that the TCP Allow subdissector to reassemble TCP streams preference is

enabled. Then we selected File | Export Objects | HTTP to find out which HTTP objects
were transferred in the trace file. The two .jpg files are sample2b.jpg and featureb.jpg.

Answer 6-2. Scrolling down in the HTTP object list, we see next-active.png listed with arbornetworks.com.

When you click on this entry to jump to packet 1,214, however, we see a 301 Moved
Permanently response indicating the file is at
http://www.arbornetworks.com/modules/mod_arborslideshow/tmpl/img/icon/slider/next-active.png.

Answer 6-3. We selected booksmall.png and selected Save As. This file depicts the top half of the Wireshark
Network Analysis book on an orange background.

Answer 6-4. We filtered the trace file on tcp.stream eq 7 before right-clicking on a frame and

selecting Follow | TCP stream. This client is using Firefox to browse
www.wiresharktraining.com in this conversation.

Chapter 7 Skills: Add Comments
to Your Trace Files and Packets

Wireshark is like an X-ray machine. It gives you a look at what's going on inside (the network), but you need to
develop the skills to interpret what you see and know what to look for - practice makes perfect.

Anders Broman
Wireshark Core Developer
System Tester, Ericsson

Quick Reference: File and Packet Annotation Options

(1) Title bar—Wireshark adds an asterisk to the Title Bar to indicate that changes to the trace file (such as
trace file or packet annotations) have not been saved

(2) Pkt_comment filter—Apply a filter for pkt_comment to view all packets that contain comments
(3) Statistics | Capture File Properties—Displays trace file information, including trace file annotations and

packet comments
(4) Packet comments section—Packet comments are displayed above the Frame section
(5) Expert Information button—Click to open the Expert Information window, which contains a Comments

section, as shown in (7)
(6) Trace File Annotation button—Click to open or edit the Capture File Properties window where you can

add or edit a trace file comment51
(7) Expert Information window/Comments section—Click on a comment to jump to that packet in the trace

file
(8) Edit or Add Packet Comment—Right-click on a packet to create/edit a packet comment

51 Comments can only be saved in the .pcapng format. If you try to save a trace file that has comments in any format other

than .pcapng, Wireshark will pop up a warning dialog. You must save your files in .pcapng format if you wish to retain
trace file or packet annotations.

7.1. Add Your Comments to Trace Files
Before you hand your trace files off to another analyst, customer, or vendor, consider adding some notes on
the packets that interest you or on the trace file in general. Trace file and packet comments are saved with
.pcapng trace files and can be read in Wireshark version 1.8 and later.

To add a comment to the entire trace file, click the Annotation button on the Status Bar, as shown in Figure
114. Enter your text in the Capture file comments section and click Save Comments.

Figure 114. Click the Annotation button on the Status Bar to add a trace file comment.

Although you can type in any length comment, keep in mind that the trace file size will be affected by the note
size, so don’t write a novel in there. If you are going to hand this trace to other analysts who may add their
own comments, consider prefacing your comment with your name, as shown in Figure 115. Wireshark does
not keep track of who entered text in this window.

Remember to save your trace file after adding comments. Wireshark places an asterisk in front of the file name
in the title bar if there are unsaved comments in a trace file.

Figure 115. Type your trace file comments and click OK.

To determine if a file contains trace file comments, click on the Annotation button or select Statistics |
Capture File Properties.

7.2. Add Your Comments to Individual Packets
To add a comment to a single packet, right-click the packet in the Packet List pane and select Packet
Comment, as illustrated in Figure 116. Follow the same steps to edit a packet comment.

Figure 116. If people collaborate on analysis, add your name to your packet comments. [http-cheez101.pcapng]

Once you create a packet comment, a Packet comments section appears in the Packet Details window, as
shown in Figure 117. The color code for packet comments is a bright green.

Figure 117. Packet comments appear before the Frame section. [http-cheez101.pcapng]

To determine if a trace file contains packet comments, click on the Expert Information button on the Status
Bar and expand the Comments section, as shown in Figure 118. Click on a comment to jump to that packet.

Figure 118. Packet comments are listed in the Expert Information window. [http-cheez101.pcapng]

Use the .pcapng Format for Annotations
If you opened a trace file that uses an older trace file format (such as .pcap), be sure to save your trace file in
.pcapng format after adding packet or trace file comments. Saving in any other format will delete all your
comments.

Add a Comment Column for Faster Viewing
To view all your comments in the Packet List pane, simply expand the packet comment section in a frame that
contains a comment (frame 8 in http-cheez101.pcapng, for example). Right-click on the actual comment and
select Apply as Column, as shown in Figure 119.

Figure 119. Right-click on a comment and select Apply as Column. [http-cheez101.pcapng]

If you add or edit comments to the trace file, click the Save button to save the file with your new
comments.

You may need to click the Reload button to refresh your Comments column.

 Lab 40: Read Analysis Notes in a Malicious Redirection Trace File
It can be a blessing to have notes inside the trace file to assist other analysts (or even you) in following the
traffic flow. In this lab you will examine the notes left in a trace file that contains unusual communications.

Step 1: Open sec-suspicous101.pcapng.

Step 2: Click the Annotation button on the Status Bar to launch the Capture File Properties window.
Read the Capture file comments section.

 The trace file annotation recommends that you “See packet comments for more detail.”

 Click Close to close the Capture file comments window.

 Step 3: Click the Expert Information button and expand the Comment section to read the individual
comments in the packets in this trace file.

Step 4: Click once on any of the comments to jump to that packet in the trace file. Take some time to read
through the trace file and packet comments. You will see when a redirection sends the user to a
malicious site.

Step 5: LAB CLEAN-UP When you have finished looking through the packet comments, click the Close
button on the Expert Information window.

Trace file annotations can be very helpful when there are many separate events happening in a trace file. In
Lab 41 we will export all the packet comments in this trace file.

7.3. Export Packet Comments for a Report
If you plan to create a printed report of your analysis findings, consider adding packet comments and
exporting those comments into .txt or .csv format.

You can select Statistics | Capture File Properties | Copy to Clipboard and then paste the comment data into
another program.

In Lab 41 you will have a chance to practice exporting packet comments using the Export Packet Dissections
function. This is a function you should master to export field values.

First, Filter on Packets that Contain Comments
First, apply a pkt_comment filter to your trace file to view only commented packets.

Next, expand the Packet comments section of any displayed packet. Leave the rest of the packet compressed,
as shown in Figure 120.

Figure 120. Filter on pkt_comment and then expand the Packet comments section of a packet before your export operation. [sec-
suspicious101.pcapng]

Next, Export Packet Dissections as Plain Text
Select File | Export Packet Dissections | As Plain Text and choose All packets (Displayed), Packet details
(As displayed), as shown in Figure 121. Uncheck the Packet summary check box. Consider naming your text
file with the same stem as the trace file. For example, if your trace file is sec-suspicious101.pcapng, name your
text file sec-suspicious101.txt.

Figure 121. Set up your export to include displayed packets and only the Packet details “As displayed”.

The result will be a file that includes packet comments preceding the Frame summary of each packet, as
shown in Figure 122.

Figure 122. Export your packet comments into a .txt file to copy into a report.

In Wireshark 2.x, only 127 characters of the Packet Comments field are exported.

As mentioned earlier, you can also select Statistics | Capture File Properties | Copy to Clipboard to export
all packet comments and basic trace file statistics. Figure 123 shows the Capture File Properties window.
Simply click the Copy to Clipboard button to buffer the contents of this window and paste the contents into
another program.

 Figure 123. To quickly export trace file and packet comments, use the Statistics | Capture File Properties feature and then select
Copy To Clipboard. [sec-suspicous101.pcapng]

Since Wireshark supports packet and file anotations, consider building your troubleshooting and network
forensics reports directly in Wireshark by adding comments in the trace files. When you have finished
annotating your findings, export your packet comments for quick inclusion in your reports.

 Lab 41: Export Malicious Redirection Packet Comments

We will use the sec-suspicious101.pcapng trace file again in this lab. We will use a two-step process for comment
export. First we will prepare the trace file to export the field information we are most interested in. We will
export the fields in text format. Unlike in the previous section, we will export the packet comments using the
Packet summary line.

Step 1: Open sec-suspicious101.pcapng.

Step 2: In frame 1, right-click on the Packet comments line in the Packet Details area and select Apply as
Filter | Selected. Only 19 packets should match your display filter.

Step 3: Now expand the Packet comments section of frame 1. Right-click on the actual comment starting
with “This is the original…” and select Apply as Column.

Step 4: Select File | Export Packet Dissections | As CSV.

If you find yourself building many reports detailing your analysis findings, consider looking into SteelCentral™ Packet Analyzer by
Riverbed (seeConsider a Different Solution—SteelCentral™ Packet Analyzer). This product was designed to accept comments and
export the comments into a report along with charts and graphs depicting the traffic patterns.

Step 5: Navigate to the directory where you want to save your text file and name your file sec-
suspicous101.csv. Ensure Displayed and Packet summary line are selected and Packet details is
not selected before clicking Save.

Step 6: Open your CSV file in a spreadsheet program to review the exported information. You will notice
that your hidden columns are exported as well. This is a good reason to keep your hidden column
count to a minimum. If you just have too many hidden columns, you could simply switch to a nice,
clean profile and export a CSV file from there.

Step 7: LAB CLEAN-UP Return to Wireshark and click the Clear button to remove your display filter.
Right-click on your Comment column heading and select Remove This Column or unselect that
column from the list to hide it.

You should master the skill of adding columns to use for exported reports. Also, it’s very easy to use the
Statistics | Capture File Properties | Copy To Clipboard feature to begin building reports for your analysis
sessions.

Chapter 7 Challenge
Open challenge101-7.pcapng and use the techniques covered in this chapter to answer these Challenge
questions. The answer key is located in Appendix A.

Question 7-1. What information is contained in the trace file annotation?

Question 7-2. What packet comments are contained in this trace file?

Question 7-3. Add a comment to the POST message in this trace file. What packet did you alter?

Chapter 7 Challenge Answers
Answer 7-1. We clicked on the trace file Annotation button on the Status Bar to see a copyright notice and

some basic information about the trace file.

Answer 7-2. We clicked on the Expert Information button on the Status Bar and expanded the Comment

section to view three packet comments.

Answer 7-3. We applied a filter for http.request.method contains "POST" to find the POST
packet (938). Then we right-clicked on that packet and selected Packet Comment before
typing in our message.

 The filter http.request.method=="POST" or even http.request.method matches
"POST" would have worked as well.

Chapter 8 Challenge Answers
Answer 8-1. You should use the –D parameter to list active interfaces on your Wireshark system.

Answer 8-2. Using tshark –r challenge101-8.pcapng –qz io,phs, we determined that there are
62 UDP frames in challenge101-8.pcapng.

Chapter 8 Skills: Use Command-
Line Tools to Capture, Split, and
Merge Traffic

The command-line tools referenced in this chapter are included with Wireshark and are installed in the
Wireshark program directory.

Network communication is a conversation. We don’t usually think about the subtle rules of human conversation:
what to say first, next, and when we can say that, and when it’s going to be rude, impolite, and maybe cause our
partner to quit talking. Once we learn the rules of the protocols and know what the calls and responses should
be, we can examine what actually happened and see where things went wrong. The better we know the
etymology and anthropology of the protocols, the better we understand the trace.

SYN= “Hi, Paris! I’d love to meet you!”
RST= “Sorry, I’m too sexy for you!”

John Gonder
Cisco Academy Director, Las Positas College

Quick Reference: Command-Line Tools Key Options

EDITCAP

editcap –h View Editcap parameters.

editcap –i 360 big.pcapng 360secs.pcapng Split big.pcapng into separate
360secs*.pcapng files with up to
360 seconds of traffic in each
file.

editcap –c 500 big.pcapng 500pkts.pcapng Split big.pcapng into separate
500pkts*.pcapng files with up to
500 packets in each file.

MERGECAP

mergecap –h View Mergecap parameters.

mergecap -w merged.pcapng files*.pcapng Merge files*.pcapng into a single
file called merged.pcapng
(merge based on packet
timestamps).

mergecap -a -w ab.pcapng a.pcapng b.pcapng Merge a.pcapng and b.pcapng
into a single file called
ab.pcapng (merge based on the
order files are listed).

TSHARK

tshark –h View Tshark parameters.

tshark –D List the available capture
interfaces that can be used with
the –i parameter.

tshark –i2 –f "tcp" –w tcp.pcapng Capture only TCP-based traffic
on interface 2 and save it to
tcp.pcapng.

tshark –i1 –Y "ip.addr==10.2.1.1" Capture all traffic on interface
1, but only display traffic to or
from 10.2.1.1.

tshark –r "myfile.pcapng"
–Y "http.host contains ".ru""
–w myfile-ru.pcapng

Open myfile.pcapng, apply a
display filter for the value
“.ru” in the HTTP host field,
save the results to a file called
myfile-ru.pcapng.

8.1. Split a Large Trace File into a File Set
Wireshark can become sluggish or even non-responsive when working with large trace files. Once you get
above that 100 MB size, applying display filters, adding columns, and building graphs may be too slow.
Consider splitting larger files into file sets for faster analysis. File sets are groups of trace files that begin with a
common stem name followed by a trace file number and a date and time stamp.

Add the Wireshark Program Directory to Your Path52
Use Editcap to split a large file into smaller files that are linked together. Editcap.exe is located in the
Wireshark program file directory (see Help | About Wireshark | Folders to locate this directory). To use
Editcap (or any of the included command-line tools) from any directory, add the Wireshark program directory
to your path.

Once you’ve added the Wireshark program directory to your path, open the command prompt/terminal
window and navigate to the folder that contains the large file that you want to split into a file set. Type
editcap –h to view all Editcap parameters. You can split a file based on number of packets (-c option) or
amount of time in seconds (-i option).

52 For step-by-step instructions for adding the Wireshark program directory to your path, perform a Google search for

“add directory to path for <operating system>.”

Use Capinfos to Get the File Size and Packet Count
Capinfos is a command-line tool that provides basic information about trace files, as shown in Figure 124.
Capinfos resides in the Wireshark program directory. The basic syntax for Capinfos is simply capinfos
<filename>. Use Capinfos to find the capture duration (seconds) and packet count of a trace file before
splitting it. We will use Capinfos again in Lab 42.

Figure 124. Use Capinfos to obtain basic trace file information before splitting the file. [a.pcapng]

Split a File Based on Packets per Trace File
In Figure 125, we typed editcap –c 10000 a.pcapng a10000set.pcapng to split a single trace file
called a.pcapng into a set of files (a10000set*.pcapng) that contain a maximum of 10,000 packets each. The last
trace file of the set will likely have less than 10,000 packets, unless the original file ended on a 10,000-packet
boundary.

Figure 125. Use the –c parameter to split a trace file based on packet count. [a.pcapng]

Split a File Based on Seconds per Trace File
In Figure 126, we typed editcap –i 60 a.pcapng a60set.pcapng to split a single trace file called
a.pcapng into a set of files (a60set*.pcapng) that contain up to 60 seconds of traffic each. Wireshark will not split
a packet at the 60-second mark, so your files may have slightly less than 60 seconds of traffic in them.

The last trace file of the set will likely have less than 60 seconds of traffic in it unless the original file ended on
a sixty-second boundary.

In our example, Editcap split our a.pcapng trace file into five linked trace files numbered 00000 to 00004.

Figure 126. Use the –i parameter to split a trace file based on number of seconds. [a.pcapng]

Open and Work with File Sets in Wireshark
When working with file sets in Wireshark, open any file of a file set using File | Open. Then use File | File
Set | List Files to switch between files of a file set quickly.

In Figure 127, we are looking at the file list for a file set that contains 15 files. Click on any file to open that file
in Wireshark. If you have a display filter in place, that display filter will be applied to each file you open.

Figure 127. Click files to move quickly through the file set.

 Lab 42: Split a File and Work with Filtered File Sets
You will be working with http-download-c.pcapng in this lab. This trace file is only 27 MB, but we will use it to
practice splitting a file. After splitting the file, we will move through the file set while a display filter is
applied. Wireshark automatically applies the display filter to each file as it is opened.

Step 1: Open the command prompt (Windows) or a terminal window (Linux/Macintosh).

Step 2: Navigate to your trace file directory53.

Step 3: We are going to split this file based on the packet count. Type capinfos "http-download-
c.pcapng"54.

 This file contains is 141,531 packets. Capinfos displays 141 k as the number of packets. We will split
this trace file into a file set containing up to 20,000 packets in each file.

53 Be certain to add the Wireshark program directory to your path as mentioned.
54 You only need to use quotes around a file name if it contains spaces. Adding quotes around all file names may be a

good habit to get into, however.

Step 4: Type editcap –c 20000 http-download-c.pcapng
http-download-c20000.pcapng. Press enter. Wireshark will create eight files which begin
with http-download-c20000 and contain a file number followed by a date and timestamp, as shown
below.

Step 5: Launch Wireshark and select File | Open and select the file numbered “_00002” from the file set
you created in Step 4.

Step 6: Type tcp.analysis.flags && !tcp.analysis.window_update in the display filter area.
None of the packets in the _00002 file match our filter, as shown below.

Step 7: Select File | File Set | List Files. Click on each file name to browse the files.

 Wireshark applies the current display filter as you open the various files.

 As you move through the files, look at the Status Bar to determine how many packets matched
your filter in each of the trace files. Every file except for “00002” and “00007” contains these
flagged TCP packets.

Step 8: LAB CLEAN-UP Click the Close button on the File Set window and then click the Clear button to
remove your display filter.

Since Wireshark maintains the display filter setting as you move through files within a file set, it is easy to
determine how many packets matched the filter.

8.2. Merge Multiple Trace Files
You may want to merge several smaller files to create an IO Graph of all the traffic, save time applying display
filters to look for key words, or launch the Protocol Hierarchy window to detect suspicious protocols or
applications.

Ensure the Wireshark Program Directory is in Your Path
Use Mergecap to combine smaller files into one larger file. Mergecap.exe is located in the Wireshark program
file directory (see Help | About Wireshark | Folders | Program to locate this directory).

To use Mergecap from any directory, add the Wireshark program directory to your path.

Run Mergecap with the –w Parameter
Assuming you’ve added the Wireshark program directory to your path, open the command prompt and
navigate to the folder that contains the files you want to merge. Type mergecap –h to view all Mergecap
parameters.

You can merge a file based on frame timestamps (the default) or use the –a parameter to merge the files based
on the order in which you list them during the merge process. Use the –w parameter to write the new merged
file to disk. In Figure 128, we created a file called c.pcapng by merging all files that have a name starting with
httpset.

Figure 128. Use Mergecap to combine trace files based on frame timestamps. [httpset*.pcapng]

You will notice that the merged file is smaller than the sum of bytes of the separate trace files. This change in
file size is because there is only one trace file header in the new file instead of the three trace file headers
counted in the total bytes count before the merge.

In Lab 43 you will get a chance to try out this merging skill.

 Lab 43: Merge a Set of Files using a Wildcard
In this lab you will merge the six-file http-download-c20000*.pcapng set that you created in Lab 42. You will use
a wildcard to make this process a bit easier and less error-prone.

Step 1: Open the command prompt (Windows) or a terminal window (Linux/Macintosh).

Step 2: Navigate to your trace file directory. Type dir http-download-c20000*.* (Windows) or ls
http-download-c20000*.* (UNIX-based systems) to view the trace files you created in Lab 42.

Step 3: Type mergecap –w http-downloadc2kset.pcapng
http-download-c20000*.*. Press enter.

 Type dir http-downloadc2kset.pcapng (Windows) or
ls http-downloadc2kset.pcapng (UNIX-based systems) to view your new file.

If you compare the size of http-downloadc2kset.pcapng to http-download-c.pcapng, you will notice a
size difference. During the file splitting process, the trace file annotation is removed. During the
merging process a new trace file annotation is created that lists the merged files as shown in the
image below.

In this lab exercise, you used the default setting for the order of the merged files—merge based on packet
timestamps. If you want to merge the files in a particular order, you must use the –a parameter and list each
trace file in the order you want them to be merged.

8.3. Capture Traffic at Command Line
Use dumpcap.exe or tshark.exe to capture traffic at the command line when Wireshark can’t keep up with the
traffic (drops appear on the Status Bar), or you are deploying a streamlined remote capture host, or you are
scripting an unattended capture.

Dumpcap or Tshark?
This is an interesting question. Dumpcap is a capture tool only. When you run Tshark, it actually calls
dumpcap.exe for capture functionality. Tshark contains extra post-capture parameters which makes it a better
option for many situations. If you are really struggling with memory limitations, just use Dumpcap directly.
Otherwise, Tshark is the answer.

You can run either tool at the command line to capture traffic to .pcapng files. Both tools are located in the
Wireshark program file directory (see Help | About Wireshark | Folders | Program to locate this directory).
Both can use capture filters and various other capture settings.

To use Dumpcap or Tshark from any directory, add the Wireshark program directory to your path55. Open the
command prompt/terminal window and navigate to the folder where you want to save trace files. Run both
tools from this directory.

Capture at the Command Line with Dumpcap
Type dumpcap –h to view Dumpcap parameters.

Type dumpcap –D to view your available interfaces, as shown in Figure 129. Use the number preceding the
interface name when you capture. In the image below, we can use 1, 2, or 3 to select an interface for capture.

Figure 129. Use dumpcap –D to view available interfaces.

55 We keep mentioning this—have you done it yet?

Use the –c option to stop capturing after a certain number of packets have been captured. For example,
dumpcap –c 2000 –w smallcap.pcapng will automatically stop the capture after 2,000 packets have
been captured to a file called smallcap.pcapng.

Use the –a option with duration:n (seconds) or filesize:n (KB) to stop capturing after a certain number
of seconds have elapsed or until your trace file has reached a certain size. For example, in Figure 130 we typed
dumpcap –i3 –a filesize:1000 -w 1000kb.pcapng to automatically stop the capture as soon as the
file size reaches 1000 KB.

Figure 130. Use –a with an autostop condition such as filesize:1000.

Capture at the Command Line with Tshark
Tshark relies on Dumpcap to capture traffic, so when you type tshark –c 100 -w 100.pcapng, Tshark
launches Dumpcap to do the actual capturing.

Tshark can be used for command-line capture, but it also offers some processing options for existing trace
files. Use tshark –h to explore more possibilities for command-line capture with Tshark.

Use tshark –D to view the available interfaces. Just as you did with Dumpcap, use the number preceding
the interface name with the –i parameter when capturing. Use –w to define the name of your capture file and
–a with autostop parameters.

Save Host Information and Work with Existing Trace Files
Why would someone use Tshark instead of Dumpcap? There are a few advantages. For example, Tshark can
use the –H <hosts file> option during the capture process. When your packets are saved to a trace file, the
name resolution information contained in the <hosts file> is saved with your trace file.

Tshark can also process existing trace files. For example, you can specify an input trace file, apply a display
filter, and save a new file based on the display filter. In Figure 131, we applied a dns.flags.response==1
display filter to http-espn101.pcapng and saved a new trace file called dns-espn-responsesonly.pcapng.

Figure 131. Tshark can be run against existing trace files. [http-espn101.pcapng]

Practice with the Tshark parameters listed when you type tshark –h.

 Lab 44: Use Tshark to Capture to File Sets with an Autostop Condition
In this lab, you will get a chance to use Tshark with various parameters. We’ll define file set “next file”
parameters and include an autostop condition for unattended capture.

Step 1: Open the command prompt (Windows) or a terminal window (Linux/Macintosh).

Step 2: Navigate to your trace file directory. Type tshark -D to view the list of available interfaces. If
you aren’t certain which interface sees traffic, return to the Wireshark Start Page and look at the
sparklines.

Step 3: Once you have determined which interface to use, type tshark –h to view the available
parameters for saving to multiple files and setting an autostop condition.

 Look at the Capture stop conditions and Capture output sections56. For this lab, we will switch to
the next file after 30 seconds and stop after 6 files have been created.

56 Note that the Capture output option area implies that you must use a ring buffer. You don’t. We will just use the

duration:NUM(secs) capability of this parameter.

We will need to use the following parameters during this capture process:

 -i 3 to capture on the 3rd interface

 -a files:6 to automatically stop capturing after 6 files

 -b duration:30 to create the next file after 30 seconds

 -w mytshark.pcapng to save to this trace file stem name

Step 4: At the command line, put it all together by typing tshark –i3 –a files:6 –
b duration:30 –w mytshark.pcapng and press Enter.57

 Open your browser and spend some time browsing www.wireshark.org. Return to Wireshark. Be
patient if the capture process is still running. It may take longer than the time allocated (3 minutes
in this case) for Wireshark to write all the buffered files.

Step 5: Type dir mytshark*.* to view your files. Notice the timestamp detail that matches your
setting to switch to the next file after 30 seconds.

Spend some time practicing with Tshark. It’s best to be comfortable with the parameters and capabilities of
Tshark before someone comes screaming into your office with network complaints58.

If you use the same parameters and a very long, detailed Tshark string, consider building a batch file with variables to reduce the
chance of typing mistakes. For example, you might create a batch file called t1.bat that contains the following:

tshark –i%1 –a files:6 –b duration:30 –w %2.pcapng

To use the batch file, type t1, the interface number (%1 variable) and file stem (%2 variable), such as t1 4 test1. This will
capture traffic on interface 4, create six files containing 30 seconds of traffic each, and name each file beginning with the stem
test1_00001<date/timestamp> through test1_00006<date/timestamp>.

57 This command will work with or without a space between the –i parameter and the interface number.
58 Time to get a lock on your door, eh?

8.4. Use Capture Filters during Command-Line Capture
Use capture filters with Dumpcap or Tshark when you are capturing on a busy network or you just want to
focus on specific traffic during the capture process.

Both Dumpcap and Tshark use the –f option to specify a capture filter using the capture filter (BPF) format.
Use the –w option to set the name of your new trace file. For example, if you are interested in capturing all
traffic running on TCP port 21, enter dumpcap –i3 -f "tcp port 21" –w port21.pcapng, as shown
in Figure 132. You will have to manually stop the capture process (Ctrl+C).

Figure 132. You will need to manually stop the capture unless you’ve defined a stop condition.

Capture filtering with Tshark uses the same parameters. For example, in Figure 133 we are capturing all TCP
port 21 traffic to or from 192.168.44.7 to a file called myport21.pcapng using the -i, -f, and -w parameters.

The command would be tshark –i3 –f "tcp port 21 and host 192.168.44.7" –w
myport21.pcapng.

Figure 133. Both Tshark and Dumpcap use the Berkeley Packet Filtering (BPF) capture filter syntax.

Wireshark doesn’t recognize capture filter names, such as NotMyMAC (created in Lab 12). Use the capture filter string and enclose the
filter string in quotes. Quotes are necessary if you have spaces in your filter, as we see in Figure 133.

8.5. Use Display Filters during Command-Line Capture
Display filters have many more options than capture filters. When capturing at command line, however, there
is a display filter limitation that you must be aware of. You can use display filters with the –Y parameter
during a live capture, but you can cannot save the trace file while using that parameter.

Because of this limitation, consider capturing all traffic, saving the packets to a file (or file sets if necessary),
applying display filters to the saved trace file, and saving the subset to a new trace file.

If you want to capture only packets that match the tcp.analysis.flags filter, for example, first use a
capture filter to capture all TCP traffic and save that traffic to a file. In Figure 134, we are capturing and saving
TCP traffic to a file called tcptraffic.pcapng. That is the first step.

Figure 134. Begin with a capture filter and save the packets to a file.

The second step is to use the –r parameter to read the trace file you created, the –Y parameter to specify a
display filter, and the –w parameter to save a new trace file, as shown in Figure 135.

Figure 135. Use the –Y and –w parameters to apply display filters and save a subset of the packets.

In Lab 45 you will use the –Y parameter to extract HTTP GET requests from a trace file and save these GET
requests in a new trace file.

 Lab 45: Use Tshark to Extract HTTP GET Requests
In this lab you will use the –r parameter to read a trace file and then apply a display filter with the –Y
parameter. Finally you will save a trace file that contains only the HTTP GET requests.

Step 1: Open the command prompt (Windows) or a terminal window (Linux/Macintosh).

Step 2: Navigate to your trace file directory.

 Type tshark –r "http-espn101.pcapng" -Y "http.request.method==GET"
-w "httpGETs.pcapng" and press Enter.

That’s it. Now you can open your trace file in Wireshark for further analysis.

The best way to use display filters and Tshark is to capture and save all the traffic using Tshark and then open the trace file in
Wireshark to apply display filters and perform analysis tasks.

8.6. Use Tshark to Export Specific Field Values and Statistics from a
Trace File

Sometimes you may want to get a general feel for the traffic with or without capturing the traffic. This is
where Tshark is the only command-line tool to use.

Run tshark –h to view the available options. Field export options and export statistics are listed under the
Output area.

Export Field Values
You must use –T fields first. Then you can list the fields you are interested in after the -e parameter. You
can combine these parameters with display filters as needed. For example, in Figure 136 we typed tshark –
i3 –f "dst port 80 and
host 192.168.44.7" -T fields -e frame.number –e ip.src –e ip.dst
–e tcp.window_size to capture traffic to/from 192.168.44.7 to destination port 80 on interface 3 and
display the frame number, source and destination IP addresses, and TCP window size value.

You will need to manually stop the capture process using Ctrl+C. If you can’t manually stop the process,
consider adding a stop condition to your Tshark command.

Figure 136. You will need to manually stop the capture process

Use the –E parameter to add options to make the exported information easier to read. For example, add -E
header=y to add a field header.

To analyze the information in a spreadsheet, use –E separator=, to set up the exported information in
comma-separated format.

You can use > stats.txt at the end of your command to save this information to a file named stats.txt.

Again, use tshark –h to view all available options.

Export Traffic Statistics
Use the –z parameter to view numerous statistics about your traffic. You might also consider using the -q
parameter to quiet down Tshark from displaying each frame on the screen. For example, in Figure 137 we ran
tshark –i3 –qz io,phs to display the Protocol Hierarchy Statistics (phs) seen on interface number 3.

Figure 137. We can see the various protocols and applications in use without capturing traffic.

If you want to export any of the statistics to a text file, simply redirect the results to a file, as mentioned earlier.
For example, tshark –i3 –qz io,phs > stats.txt. As you continue to gather statistics, use >> instead
of > to append additional information to the existing text file.

One of the most interesting statistics is the list of hosts that are communicating on the network. In Figure 138,
we typed tshark –i3 –qz hosts to extract the list of active hosts seen on interface number 3.

Figure 138. It is easy to build a list of active hosts seen on the network using tshark -qz hosts.

If you want to extract the Expert warnings, notes, and errors from an existing trace file, use the –r parameter.
For example, in Figure 139 we typed tshark -r "http-download101.pcapng" –qz expert,warns to
see we have packet loss and a zero window condition in the trace file.

Figure 139. Pulling the expert warnings, we can see some indications of segments not captured. [http-download101.pcapng]

See www.wireshark.org/docs/man-pages/tshark.html for more details on the –z parameter.

Export HTTP Host Field Values
You can easily use Tshark to capture all the HTTP Host field values currently seen on the network and save
that information to a text file. To do this, include a display filter for packets that contain the http.host field. In
addition, define http.host as the exported field name and export the information to a text file. In Figure 140, we
saved the HTTP Host field values to a file called httphosts.txt.

Figure 140. We used a display filter and field value of http.host to create a host list file.

The resulting text file only includes the HTTP Host field values, as shown in Figure 141. We could add another
field parameter to save the destination IP address (ip.dst), as well. We will do this in Lab 46.

Figure 141. You can create a list of all the HTTP Host field values seen in the trace file.

 Lab 46: Use Tshark to Extract HTTP Host Names and IP Addresses
In this lab we will use a combination of display filters and field names to create a file that contains both the IP
addresses and host names of HTTP servers contacted on the network.

Step 1: Open the command prompt (Windows) or a terminal window (Linux/Macintosh).

Step 2: Navigate to the directory in which you want to save your new HTTP host name/address file.

 Type tshark –i3 -Y "http.host" -T fields -e http.host
–e ip.dst –E separator=, > httphostaddrs.txt and press Enter. Substitute the
appropriate interface number for your system for “-i3.”

Step 3: Toggle to your browser and visit various web sites. After a few minutes, toggle back to your
command prompt or terminal window and manually stop the capture process (Ctrl+C on
windows, for example).

 Wireshark displays the captured packet count, which is the number of host names/destination IP
address sets you have in your text file.

Step 4: Open and examine your httphostaddrs.txt file.

Practice working with the fields and filters to extract just the information in which you are interested.
Consider creating a batch file or script to run Tshark commands you use often.

8.7. Continue Learning about Wireshark and Network Analysis
By this point you’ve covered the most important Wireshark skills and network analysis functions. You’ve run
through 46 labs and you’re about to finish Challenge 8. Once that is complete, what’s next?

Here are some recommendations for continuing your education in network analysis:

• Visit www.wiresharkbook.com and check out the supplements for this book and other books listed on
that site.

• Visit www.wireshark.org to sign up for the Wireshark-Announce mailing list to receive notifications
when a new Wireshark version is available for download.

• Sign up for the newsletter at www.chappellU.com to participate in free online Wireshark events.

• Practice capturing your own traffic to become accustomed to the type of traffic that is generated when
you browse web sites, send email, or log in to the company server.

• Continue customizing Wireshark by adding new profiles and new display filters, coloring rules, and
Filter Expression buttons.

• Share your customized settings with other IT team members to create a master profile that improves
your team’s network analysis efficiency.

• If you want to validate your Wireshark proficiency, consider the Wireshark Certified Network Analyst
(WCNA) certification. For information on the WCNA program, visit
www.wiresharktraining.com/certification.html.

As you’ve read on the title page for each chapter, there are many benefits to becoming proficient at network
analysis. Now is the time to start delving into your network traffic to spot problems and detect those network
anomalies faster.

Chapter 8 Challenge
Use challenge101-8.pcapng and the command-line tool techniques covered in this chapter to answer these
Challenge questions. The answer key is located in Appendix A.

Question 8-1. What Tshark parameter should you use to list active interfaces on your Wireshark system?

Question 8-2. Using Tshark to extract protocol hierarchy information, how many UDP frames are in
challenge101-8.pcapng?

Question 8-3. Use Tshark to export all DNS packets from challenge101-8.pcapng to a new trace file called
ch8dns.pcapng. How many packets were exported?

Chapter 8 Challenge Answers
Answer 8-1. You should use the –D parameter to list active interfaces on your Wireshark system.

Answer 8-2. Using tshark –r challenge101-8.pcapng –qz io,phs, we determined that there are
62 UDP frames in challenge101-8.pcapng.

Answer 8-3. Using the command tshark –r challenge101-8.pcapng –Y "dns" –w

ch8dns.pcapng, we exported the DNS traffic and found that there are 62 DNS packets.
Apparently all the UDP traffic is DNS.

 We could have used capinfos ch8dns.pcapng to obtain the packet count as well.

Appendix A:
Trace File Descriptions

Protocol Analysis is the only way to really see how applications and networks behave.
Unfortunately, the tools are only as good as the training and knowledge you gain.
More practice = more knowledge.

Tony Fortunato
Senior Network Performance Specialist, The Technology Firm

Practice Trace Files
The book web site (www.wiresharkbook.com) contains all the trace files mentioned in this book. Please note the
license for use below and on the book web site.

You agree to indemnify and hold Protocol Analysis Institute and its subsidiaries, affiliates, officers, agents,
employees, partners and licensors harmless from any claim or demand, including reasonable attorneys' fees,
made by any third party due to or arising out of your use of the included trace files, your violation of the TOS,
or your violation of any rights of another.

NO COMMERCIAL REUSE
You may not reproduce, duplicate, copy, sell, trade, resell, or exploit for any commercial purposes, any of the
trace files available at www.wiresharkbook.com.

a.pcapng

This trace file contains a download session – the client is getting the OpenOffice application. Note the server is
a bit sluggish in its first response to the client. Is it experiencing performance problems? [Chapter 8]

dhcp-serverdiscovery101.pcapng

This trace file only contains DHCP traffic. Note that the display filter required to view DHCP traffic is simply
bootp. [Chapter 3]

dns-nmap101.pcapng

We saved the DNS traffic from a browsing session that inclu ded an attempt to reach www.nmap.org and
www.insecure.org (both managed by Fyodor, the creator of Nmap) as well as google.com and dropbox.com. It
seems there are some DNS problems that will prevent us from getting to Fyodor’s sites. [Chapter 1]

ftp-bounce.pcapng

This trace file depicts an unsuccessful FTP upload process. The FTP client is allowed to connect to the FTP
server, send the STOR command with the file name, and even establish the TCP connection for the data
transfer channel. When the client begins sending the data to the server, however, the server rudely sends TCP
resets in fear of an FTP bouncd attack. [Chapter 4]

ftp-clientside101.pcapng

Wireshark is running on a client to capture the FTP command and data channel traffic seen in this trace file.
The user name and password are visible in clear text. We can use Follow | TCP Stream to reassemble the file
transferred in this trace file. [Chapter 3 and Chapter 6]

ftp-crack101.pcapng

We started capturing in the middle of a password cracking attempt. This is a good trace file on which to
practice keyword filtering. Was the password cracking attempt successful? [Chapter 3 and Chapter 4]

ftp-download101.pcapng

The FTP banner is quite evident in the Packet List pane of this trace file. Follow the stream of the command
channel to see what the client wants from the server. Practice finding the most active conversations based on
bytes and applying a filter for that traffic. [Chapter 6]

general101.pcapng

This is the trace file we followed to build a picture of a network. We examined the MAC addresses and IP
addresses contained in the trace file. [Chapter 0]

general101b.pcapng

An outside host (121.125.72.180) and an inside host (24.6.169.43) are trying to make a connection to a local host.
Consider building a display filter for all TCP SYN packets to detect connection attempts and responses.
[Chapter 3 and Chapter 5]

general101c.pcapng

We used this trace file to detect suspicious traffic on a network. Look at the Protocol Hierarchy to identify the
IRC traffic and use Follow | TCP Stream to reassemble the traffic and identify commands. What is the name of
the IRC server? [Chapter 5]

general101d.pcapng

This trace file contains numerous TCP problems. Open the Expert Information window to identify the
problems on this network. [Chapter 5]

gen-startupchatty101.pcapng

We used this trace file to examine conversation statistics. The trace file contains 15 IPv4 conversations and 12
IPv6 conversations. Although there are only 6 TCP conversations, there are 52 UDP conversations. [Chapter 3]

http-au101b.pcapng
We used this trace file to track a web browsing session and export the HTTP Host field values. We then
exported the Packet List pane columns to a CSV file for further processing. [Chapter 4]

http-browse101.pcapng

This trace file contains a web browsing session. This is a good trace file to use to practice adding columns or
filtering on DNS traffic to identify web site dependencies. [Chapters 3, 4, and 6]

http-browse101b.pcapng

This trace file contains IPv4 and IPv6 traffic. We used this trace file to examine the Protocol Hierarchy
window. [Chapter 5]

http-browse101c.pcapng

This trace file contains traffic between a host in the United States and hosts in China. This is a great trace file to
use when practicing GeoIP mapping. [Chapter 5]

http-browse101d.pcapng

This trace file contains numerous intertwined conversations. Practice differentiating the conversations by
applying temporary coloring rules to the separate conversations. [Chapter 4]

http-chappellu101.pcapng

This trace file contains a very simple web browsing session. Use this file to practice reassembling web objects.
[Chapter 1]

http-chappellu101b.pcapng

In this browsing session, the user decided to open a PDF file located on the web site. Looking closely at the
trace file we can see the browser used an external PDF viewing software. Checking in to that viewer site, we
detected a 404 error. [Chapter 3]

http-chappellu101c.pcapng

This client browses to www.chappellu.com after making a DNS query to two separate DNS servers. Towards the
end of the trace file we see the client performing a series of DNS queries for all the domain names contained in
links on the main page. [Chapter 1]

http-cheez101.pcapng

This trace file depicts a browsing session to the infamous cheezburger.com site. Try opening this trace file with
the TCP Allow subdissector to reassemble TCP streams preference enabled and disabled. You can see the
difference in frame 10. [Chapter 7]

http-college101.pcapng

This is another good trace file that contains a large number of connections required to browse a single web
site. Peruse through the GET requests to see some interesting .jpg file names. [Chapter 6]

http-disney101.pcapng

It’s the “happiest place on Earth”… if you can get there. This trace file depicts DNS errors that are slowing
down the browsing session. [Chapters 1, 3, and 8]

http-download-c.pcapng

This is a nice big trace file depicting another download of the OpenOffice suite. There are a few problems in
this trace file and we notice the server is sluggish at first – just like in a.pcapng. [Chapter 8]

http-download101.pcapng

This trace file contains some very serious TCP problems. Use the Expert Information window to identify the
errors. Pay attention to the packet time information to determine how heavily these errors affected
performance. [Chapter 5 and Chapter 8]

http-download101c.pcapng

Filter on the GET requests to see what the client is downloading in this trace file. Consider creating a coloring
rule based on your findings. [Chapter 8]

http-download101d.pcapng

There are numerous problems in this trace file. Create an IO Graph that compares all traffic with the TCP
analysis flagged packets. [Chapter 3]

http-download101e.pcapng

Again, we have errors in the trace file that are affecting the throughput. Create another IO Graph with the TCP
analysis flagged packets. You probably need to set the Y axis to logarithmic to see the relationship between
TCP errors and drops in throughput. [Chapter 5]

http-errors101.pcapng

In this trace file a user is trying to load a page that does not exist. Practice setting up coloring rules for HTTP
error response codes using this trace file. [Chapter 3]

http-espn101.pcapng

When you browse to www.espn.com, you will find that there’s nothing there. This trace file shows the
interdependencies between web sites. You may think you are connecting to a single site, when you are
actually connecting to multiple sites. [Chapters 1, 3, 5, 6, and 8]

http-google101.pcapng

In this trace file we received IPv4 and IPv6 addresses in response to our DNS queries. Did any of our
communications travel over IPv6? [Chapter 0]

http-jezebel101.pcapng

Look in the Frame section in this trace file. It was taken the day after Hurricane Sandy hit the East Coast of the
United States. Numerous servers on the East Coast were knocked out by the floods. This site, jezebel.com, was
hosted on a Datagram server that was located in a flooded basement. Reassemble the TCP streams to clearly
read the responses from the temporary server to which traffic was directed. [Chapter 4]

http-misctraffic101.pcapng

Try to reassemble the executable transferred during this web browsing session. It is fully functional, but it may
not be the latest copy available. [Chapter 4 and Chapter 5]

http-nonstandard101.pcapng

In this trace file we have HTTP traffic traveling over a non-standard port. You can adjust the HTTP preference
settings to dissect this traffic properly. [Chapter 1]

http-openoffice101a.pcapng

This trace file depicts a slow server response. Use the Time column and the TCP Calculate conversation
timestamps feature to determine the length of the delay.

http-openoffice101b.pcapng

During this OpenOffice download, the client terminates the connection to the server. It takes the server a while
to receive the TCP Resets, however, so the trace file ends with a number of unacknowledged data packets.
[Chapter 1]

http-pcaprnet101.pcapng

There is a noticeable delay when accessing pcapr.net information. Use the Time column and the TCP
conversation timestamp details to analyze the performance of this browsing session. [Chapter 1]

http-pictures101.pcapng

We are browsing for images at istockphoto.com. Practice exporting HTTP objects using this file. Can you tell
what search term we used on the iStockphoto site? [Chapter 3]

http-sfgate101.pcapng

This trace file contains a browsing session to sfgate.com, an online newspaper owned by the Hearst
Corporation. Use your HTTP filtering capabilities to detect the POST message. [Chapter 3 and Chapter 4]

http-slow101.pcapng

This trace file depicts a really slow communication between an HTTP client and a server. It’s a great trace file
to practice your “high latency” coloring rules and display filters. [Chapter 1]

http-winpcap101.cap

This file was captured with Microsoft’s Network Monitor. Wireshark can open the trace file easily using
Wireshark’s Wiretap Library. [Chapter 0]

http-wiresharkdownload101.pcapng

Use this trace file to compare the results of an http filter with a tcp.port==80 filter. Notice the value of
the Protocol column as you apply these filters. [Chapter 3 and Chapter 6]

mybackground101.pcapng

This trace file was taken to determine what background traffic occurs on a lab system. As we removed
“normal” traffic from view, we detected an incoming connection attempt from a foreign host. [Chapter 0 and
Chapter 3]

net-lost-route.pcapng

Watch what happens when the network appears to have suffered a major “glitch.” Notice that the Intelligent
Scrollbar can help you spot the problems quickly in this trace file. [Chapter 4]

sec-concern101.pcapng

This trace file contains some very unsettling traffic. Open the Protocol Hierarchy window and export the
suspicious traffic to get a better feel for what is taking place. [Chapter 5]

sec-nessus101.pcapng

This trace file depicts a Nessus scan. You’ll notice a wide range of colors applied to the packets and a very
interesting Protocol Hierarchy view. [Chapter 4]

sec-suspicous101.pcapng

This browsing session illustrates a redirection to a cz.cc site. Note that in 2011, Google blacklisted all sites
under the cz.cc domain stating “Over the past 90 days, cz.cc appeared to function as an intermediary for the
infection of 13788 site(s) including uniform-net.jp/, nuxi-navi.com/, flashracingonline.com/.” [Chapter 7]

smb-join101.pcapng

This trace contains the SMB traffic from a Windows host that joins a domain. Use this trace file to test your
coloring rule or display filter for SMB errors. [Chapter 3]

split250*.pcapng

This set of trace files are linked together as a “file set.” Use the instructions in Chapter 2 to open and work
with this file set. [Chapter 2]

tcp-decodeas.pcapng

This traffic runs over a non-standard port. In fact, Wireshark does not have a dissector for the port used.
Follow the stream to figure out what the traffic is and then force a dissector using right-click Decode As.
[Chapter 1]

tr-twohosts.pcapng

It’s dueling FTP sessions. Use this trace to test your skills at comparing file transfer performance for two
separate conversations. Who wins? [Chapter 5]

wlan-ipadstartstop101.pcapng

This trace file contains the 802.11 traffic from an iPad during the startup and shut down procedure. This trace
file was taken with an AirPcap adapter and includes a Radiotap header. The data is not visible because the
traffic is encrypted. [Chapter 3]

Network Analyst’s Glossary
Note: This Glossary defines terms as they relate to network analysis and Wireshark functionality.

6to4 traffic—6to4 traffic contains IPv6 packets embedded inside IPv4 headers. These packets can be routed
through an IPv4 network to a target IPv6 host. Apply a display filter for ip and ipv6 to detect traffic that
contains both protocols.

ACK—Short for Acknowledgment, this term is used to refer to the packets that are sent to acknowledge
receipt of some packet on a TCP connection. For example, a handshake packet (SYN) containing an initial
sequence number is acknowledged with SYN/ACK. A data packet would also be acknowledged.

AirPcap—This specialized wireless adapter was originally created by CACE Technologies (now owned by
Riverbed) to capture wireless network traffic. Designed to work on Windows hosts, this adapter can capture
traffic in promiscuous mode (capture traffic sent to all target hardware addresses, not just the local hardware
address) and monitor mode (capture traffic on all wireless networks by not joining any wireless network). For
more information, visit www.riverbed.com.

Annotations—As of Wireshark 1.8, annotations, or comments, can be added to an entire trace file or to
individual packets. Trace file annotations can be seen by clicking on the Annotation button on the Status Bar
or by selecting Statistics | Summary. Packet annotations can be seen above the Frame section of a packet in
the Packet Details pane or by opening the Expert Information window and selecting the Packet Comments
tab. The display filter comment will show you all packets that contain comments. Add this as a column to
read all comments in the Packet List pane.

Apply as Filter—After right-clicking on a field, conversation, endpoint, or protocol/application you can apply
a display filter immediately using this option.

ARP (Address Resolution Protocol)—ARP packets are sent to determine if someone is using a particular IP
address on a network (gratuitous ARP) or to locate a local host’s hardware address (ARP requests/replies).
Both the capture and display filters for ARP are simply arp.

ASCII (American Standard Code for Information Interchange)–ASCII is a character encoding mechanism
seen in the Packet Bytes pane. When you highlight a text field in the Packet Details pane, the hex and ASCII
location of that field is highlighted in the Packet Bytes pane.

background traffic—This traffic type occurs with no user-intervention. Typical background traffic may
include virus detection tool updates, OS updates, and broadcasts, or multicasts from other devices on the
network. Start capturing traffic on your own computer and then walk away. Let the capture run for a while to
get a baseline of your machine’s background traffic.

Berkeley Packet Filtering (BPF) Syntax—This is the syntax used by Wireshark capture filters. This filtering
format was originally defined for tcpdump, a command-line capture tool. For more information on Wireshark
capture filter syntax, see wiki.wireshark.org/CaptureFilters.

Bootstrap Protocol, see BOOTP

BOOTP (Bootstrap Protocol)—This protocol offered dynamic address assignment and is the predecessor of
DHCP (Dynamic Host Configuration Protocol). IPv4 DHCP packets contain a BOOTP header and can be
filtered on using the bootp display filter for DHCPv4 and dhcpv6 for DHCPv6. Also see DHCP.

broadcast—Broadcast is a type of address that indicates “everyone” on this network. The Ethernet MAC-layer
broadcast address is 0xFF:FF:FF:FF:FF:FF. The IPv4 broadcast address is 255.255.255.255 whereas a subnet
broadcast would be 10.2.255.255 on network 10.2.0.0. Broadcasts to the 255.255.255.255 address are not
forwarded by routers, but they are forwarded out all switch ports. Subnet broadcasts may be forwarded by a
router if that router is configured to do so.

Capinfos–This command-line tool is included in the Wireshark download and can be used to obtain basic
information about a trace file such as file size, capture duration and checksum value. If you are going to use a
trace file as evidence of a security breach, consider obtaining file checksum values immediately after saving

trace files to prove the trace file has not been tampered with. The command capinfos –H <filename> will
generate SHA1, RMD160 and MD5 checksum values only whereas capinfos <filename> will generate
checksum values as well as all other file information.

Capture Engine–The Capture Engine is responsible for working with the link layer interfaces for packet
capture. Wireshark uses dumpcap.exe for the actual capture process.

capture filter—This is a filter that is applied during the capture process only. This filter cannot be applied to
saved trace files. Use this filter type sparingly as you can’t retrieve and analyze the traffic you drop with a
capture filter. Use the –f parameter to apply capture filters with Tshark and Dumpcap.

capture interface—The capture interface is the hardware device upon which you can capture traffic. To view
available capture interfaces, click on the Interfaces button on the main toolbar. If Wireshark does not see any
interfaces, you cannot capture traffic. Most likely the link-layer driver (libpcap, WinPcap, or AirPcap) did not
load properly.

checksum errors—When you enable checksum validation for IP, UDP, or TCP in the protocol preferences
area, Wireshark calculates the checksum values in each of those headers. If the checksum value is incorrect,
Wireshark marks the packet with a checksum error. Since so many machines support checksum offloading, it
is not uncommon to see outbound packets marked with a bad checksum because the checksum hasn’t been
applied yet. Turn off checksum validation and/or disable the Bad Checksum coloring rule to remove these
false positives. See also task offloading.

CIDR (Classless Interdomain Routing) Notation—This is a way of representing the network portion of an IP
address by appending a bit count value. This value indicates the number of bits that comprise the network
portion of the address. For example, 130.57.3.0/24 indicates that the network portion of the address is 24-bits
long (130.57.3).

Classless Interdomain Routing, see CIDR Notation

Comma-Separated Value format, see CSV format

comparison operators—Comparison operators are used to look for a value in a field. For example,
ip.addr==10.2.2.2 uses the “equal” comparison operator. Other comparison operators include >, >=, <,
<=, and !=.

core engine—This area of the Wireshark application is considered the “work horse” of Wireshark. Frames
come into the capture engine from the Wiretap Library or from the Capture Engine. Packet dissectors, display
filters, and plugins all work as part of the Core Engine.

CSV format—Saving to CSV format is available when exporting packet dissections. Using this format,
Wireshark can export all Packet List pane column information for evaluation by another program, such as a
spreadsheet program.

delta time (general)—This time value measures the elapsed time from the end of one packet to the end of the
next packet. Set the Time column to this measurement using View | Time Display Format | Seconds Since
Previous Displayed Packet. This field is inside the Frame section of the Packet Details pane (called Time delta
from previous displayed frame).

delta time (TCP)—This time value can be enabled in TCP preferences (Calculate conversation timestamps) and
provides a measurement from the end of one TCP packet in a stream to the end of the next TCP packet in that
same stream. The field is added to the end of the TCP header in the [Timestamps] section. To filter on high
TCP delta times, use tcp.time_delta > x, where x is a number of seconds (x.xxxxxx format is supported
as well).

DHCP (Dynamic Host Configuration Protocol)—This protocol is used to dynamically assign IP addresses
and other characteristics to IP clients. The capture filter for IPv4 DHCP traffic is port 67 (alternately you can
use port 68). The display filter for IPv4 DHCP traffic is bootp. The capture filter for DHCPv6 traffic is
port 546 (alternately you can use port 547). The display filter for DHCPv6 traffic is dhcpv6.

Dynamic Host Configuration Protocol, see DHCP

Differentiated Services Code Point, see DSCP

display filter—This filter can be applied during a live capture or to a saved trace file. Display filters can be
used to focus on specific types of traffic. Wireshark’s display filters use a proprietary format. Display filters

are saved in a text file called dfilters. Use the –R parameter to apply display filters while using Tshark.
Dumpcap does not support display filters.

dissectors—Dissectors are the Wireshark software elements that break apart applications and protocols to
display their field names and interpreted values. To view the master list of Wireshark dissectors, visit
anonsvn.wireshark.org/viewvc/, select a Wireshark version and navigate to the epan/dissectors directory.

DNS (Domain Name System)—DNS is used to resolve names to IP addresses and much more. We are most
familiar with hosts using DNS to obtain the IP address for a host name typed into a URL field of a browser,
but DNS can provide additional information, such as the mail exchange server or canonical name (alias)
information. Although most often seen over UDP, DNS can run over TCP for requests/responses and always
runs over TCP for DNS zone transfers (transfer of information between DNS servers). The capture filter syntax
for DNS traffic is port 53; the display filter syntax is simply dns.

Domain Name System, see DNS

DSCP (Differentiated Services Code Point)—This feature adds prioritization to the traffic using the DSCP
fields in the IP header. To determine if DSCP is in use, apply a display filter for ip.dsfield.dscp != 0.

Dumpcap—This command-line tool is referred to as a “pure packet capture application” and is included with
Wireshark. Dumpcap is used for packet capture by Wireshark and Tshark. Type dumpcap -h at the
command line to learn what options are available when running Dumpcap alone.

Editcap—This command-line tool is included with Wireshark and is used to split trace files into file sets,
remove duplicates, and alter trace file timestamps. To see the options available with Editcap, type editcap
-h at the command prompt.

Ethereal—This is the former name of the Wireshark project. On June 7, 2006, Gerald Combs and the entire
development team moved from Ethereal to the new Wireshark home. This name change was prompted by a
trademark issue when Gerald Combs, the creator of Ethereal, moved to his new job at CACE Technologies.

Ethernet—Developed at Xerox PARC in 1973-1974, Ethernet defines a networking technology that consists of
a physical connection to a shared medium (wire), the bit transmission mechanism, and the frame structure.

Ethernet header—This header is placed in front of the network layer header (such as IP) to get a packet from
one machine to another on a local network. Once the Ethernet header is placed on the packet, we refer to it as a
frame. The common Ethernet header format is Ethernet II and contains a destination hardware address (6
bytes), source hardware address (6 bytes) and Type field (2 bytes). Wireshark looks at the Type field to
determine which dissector should receive the packet next. There is also an Ethernet trailer that consists of a
4-byte Frame Check Sequence field. See also Ethernet trailer.

Ethernet trailer—This 4-byte trailer is added to the end of a packet and consists of a Frame Check Sequence
field (checksum field). Upon receipt of a frame, each device strips off the Ethernet header and trailer and
performs a checksum calculation on the packet content. The receiving device compares its checksum result
against the value seen in the checksum field to determine if the packet is corrupt. Most NICs strip off the
Ethernet trailer before handing the frame to the computer/operating system/Wireshark.

exclusion filter—This type of filter either drops frames during the capture process (exclusion capture filter) or
removes the frame from view (exclusion display filter). An example of an exclusion capture filter is not
port 80. An example of an exclusion display filter is !ip.addr==10.2.2.2.

Expert Information—This Wireshark window displays and links to various errors, warnings, notes, and
additional information detected in the trace file. This window also displays packet comments. You can launch
the Expert Information window by clicking on the Expert Information button on the Status Bar.

File Transfer Protocol, see FTP

FIN (Finish)—This bit is set by a TCP host to indicate that it is finished sending data on the connection. Once
both sides of a TCP connection send a packet with the FIN bit set, each side will begin timing out the
connection.

frame—The term used to define a unit of communications that consists of a packet surrounded by a MAC-
layer header and trailer. Wireshark numbers each frame as it is captured or opened (in the case of a saved

trace file). From that point on, however, Wireshark often refers to these frames as “packets” (File | Export
Specified Packets for example).

FTP (File Transfer Protocol)—FTP is an established application to transfer data between devices. FTP runs
over TCP using port 21 as a default for the command channel while allowing a dynamic port number to be
assigned to the data channel. The capture filter for FTP command channel traffic on the default port is port
21. The display filter syntax is tcp.port==21. Although Wireshark recognizes the filter ftp, this filter will
not display the TCP connection establishment, maintenance or tear down process.

GIMP (GNU Image Manipulation Program) Graphical Toolkit (GTK)—This is the toolkit used to present the
graphical interface—the windows, dialogs, buttons, columns, etc.

heuristic dissector—A heuristic process can be considered “trial and error.” Wireshark hands packets over to
the dissectors that match the port in use (the “normal dissector”). If Wireshark does not have a normal
dissector, it hands the packet off to a heuristic dissector. The heuristic dissector will look at the information
received and, by trial and error, try to see if it fits within the dissector’s definition of a certain protocol or
application. If not, it sends an error to Wireshark which sends the packet to the next heuristic dissector.

hex—Short for hexadecimal, hex refers to the base 16 counting system, in which the digits are 0-9 and A-F. The
Packet Bytes pane displays frame contents in hex format on the left and ASCII format on the right.

hosts file—Wireshark refers to its own hosts file to resolve names when network name resolution is enabled.
This file is located in the Wireshark program file directory. You can place a hosts file in your profile directory
and configure Wireshark’s name resolution process to look at that file when resolving names.

HTTP (Hypertext Transfer Protocol)—This is the file transfer protocol used when you browse a web site.
Typically seen over TCP port 80, you can create a capture filter using tcp port 80 or a display filter using
tcp.port==80. Although you could use an http display filter, that filter will not display the TCP
connection establishment, maintenance or tear down process packets.

HTTPS (Hypertext Transfer Protocol Secure)—HTTPS is defined as the secure version of HTTP. In essence,
HTTPS is simply HTTP running over SSL/TLS (Secure Socket Layer/Transport Layer Security), which are
cryptographic protocols. The capture filter for HTTPS traffic is port 443 whereas the display filter is ssl.

Hypertext Transfer Protocol, see HTTP

Hypertext Transfer Protocol Secure, see HTTPS

IANA (Internet Assigned Numbers Authority)—Based in Marina del Rey, California, IANA is “responsible for
the global coordination of the DNS Root, IP addressing, and other Internet protocol resources.” For network analysts,
www.iana.org is an invaluable resource for field values, assigned multicast addresses, assigned port numbers,
and more.

ICMP (Internet Control Message Protocol)—This protocol is used as a messaging service on a network. Most
people are familiar with the ICMP-based ping operation. ICMP communications should always be considered
when you are troubleshooting network performance. The capture filter and display filter syntax for ICMP is
just icmp.

Initial Round Trip Time (iRTT) —The amount of time to travel round trip between TCP peers as measured in
the TCP handshake process. This value is used to differentiate between a Fast Retransmission and an Out-of-
Order packet.

Internet Assigned Numbers Authority, see IANA

Internet Control Message Protocol, see ICMP

Internet Protocol (IPv4/v6)—IP is the routed protocol (not the routing protocol) used to get packets through
an internetwork. The capture filter syntax for IPv4 and IPv6 are ip and ip6, respectively. The display filter
syntax for IPv4 and IPv6 are ip and ipv6, respectively.

Internet Storm Center (ISC)—Created by SANS, the ISC offers daily information on security risks and
vulnerabilities. For more information, visit isc.sans.edu.

IP address—This address identifies a single host, group of hosts, or all hosts on a network. To create a capture
filter based on an IPv4 address, the syntax is host x.x.x.x. The syntax of an IPv4 display filter is
ip.addr==x.x.x.x. To create a capture filter based on an IPv6 address, use host

xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx. For an IPv6 use
ipv6.addr==xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx.

ISATAP (Intra-Site Automatic Tunnel Addressing Protocol) traffic— ISATAP is a method to encapsulate
IPv6 packets inside IPv4 headers to be forwarded through an IPv4 network.

key hosts—We use the term “key hosts” to refer to the devices that are critical on the network. They may
include the server that maintains the customer database or the CEO’s laptop. You define which host should be
tracked and analyzed as a key host.

libpcap—This is the link-layer driver used for packet capture tools, such as Wireshark. There are numerous
other tools that use libpcap for packet capture. For more information, see sourceforge.net/projects/libpcap/.

link-layer driver—This is the driver that hands frames up to Wireshark. WinPcap, libpcap, and AirPcap are
three link layer drivers used with Wireshark.

logical operators—These operators are used to expand filters to determine if a value is matched in some form
or another. Examples of logical operators are &&, and, ||, or, !, and not. An example of logical
operator use is tcp.analysis.flags && ip.addr==10.2.2.2.

MAC (Media Access Control) address—This address is associated with a network interface card or chipset.
On an Ethernet network, MAC addresses are 6 bytes long. Switches use MAC addresses to differentiate and
identify devices connected to switch ports. They use these addresses to make forwarding decisions. To build a
capture filter based on a MAC address, use the syntax ether host 00:08:15:00:08:15, for example. To
build a display filter based on a MAC address, use eth.addr==00:08:15:00:08:15, for example.

manuf file—This Wireshark file contains a list of manufacturer OUI (Organizational Unit Identifiers) as
defined by the IEEE (Institute of Electrical and Electronics Engineers). These three-byte values are used to
distinguish the maker of a network interface card or chipset. In Wireshark, MAC name resolution is on by
default so you will see these OUI values in the MAC addresses (such as Hewlett-_a7:bf:a3). This manuf file
resides in the Wireshark program file directory.

Maximum Segment Size, see MSS

Media Access Control address, see MAC address

Mergecap—This command-line tool is used to merge or to concatenate trace files. If you have a set of trace
files, but you want to create a single IO Graph of all the communications in those trace files, consider using
Mergecap to combine the files into a single file before opening an IO Graph. To identify the options available
with Mergecap, type mergecap -h.

metadata—This is basically “extra data.” In Wireshark, we see metadata in the Frame section at the top of the
Packet Details pane. Using the .pcapng format, you can also add your own metadata through trace file
annotations and packet annotations.

MSS (Maximum Segment Size)—This value defines how many bytes can follow a TCP header in a packet.
During the TCP handshake, each side of the conversation provides their MSS value. A common MSS value on
an Ethernet network is 1,460.

multicast—This is a type of address that targets a group of hosts. At the MAC layer, most multicast addresses
begin with 01:00:5e while IPv4 multicasts begin with a number 224 through 239 in the first IP address byte
location. An example of an IPv4 multicast is 224.0.0.2, which is targeted at all local routers. IPv6 multicasts
have the preface ff00::/8 (the “8” signifying that the first 8 bits are the bits we are interested in).

name resolution—This feature is used to associate a name with a device, network interface card/chip, or port.
Wireshark supports three types of name resolution: MAC name resolution, transport name resolution, and
network name resolution. MAC name resolution is on by default and resolves the first three bytes of hardware
addresses to a manufacturer name (such as Apple_70:66:f5). Transport name resolution is on by default and
resolves port numbers to port names (such as port 80 resolved to http). Network name resolution is off by
default and resolves an IP address to a host name (such as 74.125.19.106 resolving to www.google.com). In
Wireshark, when you enable network name resolution, Wireshark may generate a series of DNS Pointer

queries to obtain host names. Wireshark can be configured to look at a hosts file for network name resolution,
rather than generating DNS Pointer queries. You can even have a separate hosts file for each profile.

NAT (Network Address Translation)—NAT devices alter the IP address of hosts while maintaining a master
list of all the original IP addresses and the new addresses in order to forward traffic back to the correct
address. NAT is often used to hide internal addresses from the outside world or enable an organization to use
simple private IP addresses, such as 10.2.0.1.

NetBIOS (Network Basic Input/Output System)—This is the session-level protocol used by applications,
such as SMB, to communicate among hosts on a network, typically a Microsoft-product network. In
Wireshark, you can apply a display filter for nbss (NetBIOS Session Service) or nbns (NetBIOS Name
Service).

Network Address Translation, see NAT

Network Basic Input/Output System, see NetBIOS

network interface card (NIC)—This card, which is typically just a chipset, offers the physical connection to the
network. NICs now offer greater capability than just applying a MAC header to the packets. Some hosts now
support task offloading, which relies on the NIC for various functions such as segmenting TCP data and
applying IP, UDP, and TCP checksum values. See also Task offload.

Nmap—This network mapping tool was created by Gordon Lyon (Fyodor) to discover and characterize
network hosts. For more information, visit nmap.org.

Packet Bytes pane—This is the bottom pane displayed by default in Wireshark. The Packet Bytes pane shows
the contents of the frame in both hexadecimal and ASCII formats. When you click on a field in the Packet
Details pane, Wireshark highlights those bytes and the related ASCII characters in the Packet Bytes pane. To
toggle this pane between hidden and displayed, select View | Packet Bytes.

packet comments (aka packet annotations)—As of Wireshark 1.8, you can right-click on a packet in the
Packet List pane and choose Add or Edit Packet Comments. This feature is only supported in trace files saved
in the .pcapng format. Packet comments are shown above the Frame section in the Packet Details pane. To view
packet comments, open the Expert Information window and click on the Packet Comments tab. You can
export all trace file and packet comments using Statistics | Capture File Properties | Copy to Clipboard.

Packet Details Pane—This is the middle pane displayed by default in Wireshark. This pane shows the
individual fields and field interpretations offered by Wireshark. When you select a frame in the Packet List
pane, Wireshark displays that frame’s information in the Packet Details pane. To toggle this pane between
hidden and displayed, select View | Packet Details. This is likely a pane you will use very often in Wireshark
because you can right-click on a field and quickly apply a display filter or coloring rule based on that field.

Packet List pane—This is the top pane displayed by default in Wireshark. This pane shows a summary of the
individual frame values. When you select a frame in the Packet List pane, Wireshark displays that frame’s
information in the Packet Details pane. To toggle this pane between hidden and displayed, select View |
Packet List. This is likely a pane you will use very often in Wireshark as you can right-click on a frame and
quickly apply a conversation filter or reassemble communications using Follow | TCP stream, Follow | UDP
stream, or Follow SSL stream.

packet—This is the term used to describe the elements inside a MAC frame. Once you strip off the frame, you
are looking at a packet. We use this term loosely in analysis. Although Wireshark displays frames, we often
refer to them as “packets”.

.pcap (Packet Capture)—This trace file format is the default format for earlier versions of Wireshark (before
Wireshark 1.8). This format is also referred to as the tcpdump or libpcap trace file format.

.pcapng, also .pcap-ng (.pcap Next Generation)—This trace file format is the successor to the .pcap format.
This new format facilitates saving metadata, such as packet and trace file comments, local interface details,
and local IP address, with a trace file. For more information about the .pcapng format, see
wiki.wireshark.org/Development/PcapNg.

PCRE (Perl-Compatible Regular Expressions)—Regular expressions is a search-pattern language used to
match strings of characters, numbers, or symbols. “Perl-Compatible” defines the flavor of regular expressions
that Wireshark supports. See also Regular expressions (regex).

Perl-Compatible Regular Expressions, see PCRE

Per-Packet Interface, see PPI

Pilot, see SteelCentral™ Packet Analyzer

port spanning—This process is used to configure a switch to copy the traffic to and from one or more switch
ports down the port to which Wireshark is connected. Not all switches support this capability. Some people
refer to this as port mirroring. Note that port spanned switches will not forward corrupt packets to Wireshark.
See also Tap.

PPI (Per-Packet Interface)—PPI is an 802.11 header specification that provides out-of-band information in a
pseudoheader that is prepended to the 802.11 header. Used by AirPcap adapters, the PPI pseudoheader
includes channel-frequency information, signal power, noise level, and more.

preferences file—This file contains the protocol preference settings, name resolution settings, column settings,
and more. Each profile has its own preferences file, which is contained in the personal configurations folder.

Prepare a Filter—This task can be performed by right-clicking on a packet in the Packet List pane. Prepare a
Filter creates, but does not apply, a display filter based on the selected element. See also Apply as Filter.

profiles—Profiles contain the customized configurations for Wireshark. There is a single profile available on a
new Wireshark system—the Default profile. The current profile in use is displayed in the right side of the
Status Bar. To switch between profiles, click on the Profile area in the Status Bar. To create a new profile, right-
click on the Profile area.

Protocol Data Unit (PDU)—This is a set of data transferred between hosts. In Wireshark, you will see [TCP
segment of a reassembled PDU] when you allow the TCP subdissector to reassemble TCP streams. In essence,
these packets contain segments of a file that is being transferred.

Protocol Hierarchy window—This window breaks down the traffic according to the protocols in use and
provides details regarding packet percentages and byte percentages. This window is available under the
Statistics menu option. Watch for unusual protocols or applications or the dreaded “data” under TCP, UDP, or
IP. This designation means that Wireshark does not recognize the traffic, which is unusual considering the
number of dissectors included in Wireshark.

protocol preferences—These preferences define how Wireshark handles various protocols and applications.
Protocol preferences are set by right-clicking on a protocol in the Packet Details pane, by selecting Edit |
Preferences from the menu or by clicking the Edit Preferences button on the main toolbar.

QoS (Quality of Service)—This term refers to a method of prioritizing traffic as it travels through a network.
QoS settings can be defined on interconnecting devices (forward web browsing traffic before email traffic, for
example) or by an application. When defined by an application, the DSCP bits can be set to prioritize the
traffic over other traffic. See also DSCP.

Quality of Service, see QoS

Regular Expressions (regex)—Regex is a search-pattern language used to match strings of characters,
numbers, or symbols. Wireshark uses Perl-Compatible Regular Expressions (PCRE) when you use the
matches operator in display filters. For more information on regular expressions, see www.regular-
expressions.info. See also PCRE.

relative start (Rel.Start)—This value is shown in the Conversations window and indicates the first time this
conversation was seen in the trace file. You may need to expand the Conversations window to see this column.
The time is based on seconds since the first packet in the trace file.

remote capture—This term describes the process of capturing traffic at one location and analyzing it at
another location. WinPcap includes a remote capture tool (rpcapd.exe) that Wireshark can access through the
Capture Options window (Manage Interfaces).

RST (Reset)—This bit is set by a host to terminate a TCP connection. Once this bit has been set in an outbound
packet, the sender cannot send any further data on that connection. In a typical TCP connection termination
process, each side of the connection sends a packet with the RST bit set and the connection is immediately
closed.

Server Message Block, see SMB

services file—This file contains a list of port numbers and service names. All TCP/IP hosts have a services file
and Wireshark has its own services file as well. This file resides in the Wireshark program file directory. When
transport name resolution is enabled, Wireshark replaces port numbers with service names. For example, port
80 would be replaced with “http.” You can edit this file if you do not like the service names displayed.

Simple Network Management Protocol, see SNMP

SMB (Server Message Block)—Also referred to as Common Internet File System (CIFS), SMB is an application
layer protocol used to provide network access, file transfer, printing, and other functions on a Microsoft-based
network.

SNMP (Simple Network Management Protocol)—This device management protocol requires that a managed
device maintain a database of managed items. Managing hosts view and/or edit that database. You may see
SNMP traffic flowing between network hosts and network printers, which often have SNMP enabled to track
information such as ink levels, paper levels, and more. To filter on SNMP traffic use the capture filter port
161 or port 162 or the display filter snmp.

Snort—Snort is a Network Intrusion Detection System (NIDS) that was created in 1998 by Martin Roesch and
is currently maintained by Sourcefire. Snort relies on a set of rules to identify and generate alerts on network
scans and attack traffic. For more information, see snort.org.

SteelCentral™ Packet Analyzer—The traffic visualization tool created by Loris Degioanni and available from
Riverbed. SteelCentral™ Packet Analyzer can open, analyze, and visually represent very large trace files with
ease. In addition, SteelCentral™ Packet Analyzer can build reports based on the charts and graphs, and export
key traffic elements to Wireshark for further analysis. For more information on SteelCentral™ Packet
Analyzer, visit www.riverbed.com.

Stream index number—This number is applied to each TCP conversation seen in the trace file. The first
stream index number is set at 0. When you right-click on a TCP communication in the Packet List pane and
choose Follow | TCP stream, Wireshark applies a display filter based on this Stream Index field number (for
example, tcp.stream==3.

stream reassembly—This is the process of reassembling everything after the transport-layer header (TCP or
UDP) enabling you to clearly read through the requests and replies in a conversation. Communications from
the first host seen are colored red; communications from the second host seen are colored blue.

subdissector—This is a dissector that is called by another dissector. You will see this term when you view TCP
preferences (Allow subdissector to reassemble TCP streams). In the case of web browsing traffic, the HTTP
dissector is a subdissector of the TCP dissector.

subnet—This term defines a subset of a network and is applied by lengthening network masks. For example,
if you want to create two subnets out of a single network, network 10.2.0.0/16 for example, lengthen the
subnet to /24 (24-bits) and assign 10.2.1.0/24 to some hosts and 10.2.2.0/24 to other hosts. The network mask
indicates that we have two networks now.

SYN (Synchronize Sequence Numbers)—This bit is set in the first two packets of the TCP handshake to
synchronize the initial sequence numbers (ISNs) from each TCP peer. You can use a display filter based on this
bit to view the first two packets of each handshake (tcp.flags.syn==1) which can be used to determine the
round trip time between hosts.

TAP, aka tap (Test Access Port)—These devices are used to intercept network communications and copy the
traffic down a monitor port. Basic taps do not make any forwarding decisions on traffic and offer a transparent
view of network communications. NetOptics is a company that makes network taps (see www.netoptics.com).
See also port spanning.

task offload—This process offloads numerous processes to the network interface card to free up the host’s
CPU for other tasks. Task offload can affect your analysis session when checksums are calculated by the
network interface card on a host upon which you are running Wireshark. Since checksum values haven’t been
calculated yet, they are incorrect at the point of capture. If you enable IP, UDP, or TCP checksum validation, or
you have the Checksum Errors coloring rule enabled, you may see numerous false positives caused by task
offload of the checksum calculation.

TCP/IP (Transmission Control Protocol/Internet Protocol)—This term refers to an entire suite of protocols
and applications that provide connectivity among worldwide computer systems. The term “TCP/IP” refers to
more than TCP and IP, it refers to UDP, ICMP, ARP, and more.

Teredo IPv6 traffic—Teredo is a tunneling method that encapsulates an IPv6 header inside a UDP packet.
This technology was developed to assist with crossing Network Address Translation (NAT). Teredo is covered
in RFC 4380, Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs).

TFTP (Trivial File Transfer Protocol)—This file transfer protocol runs over UDP offering minimal file transfer
functionality. Most commonly, TFTP uses port 69, but you must keep in mind that many applications can be
configured to run over non-standard port. Unexpected TFTP traffic can be a symptom of a security breach on
your network.

Time to Live, see TTL

Trivial File Transfer Protocol, see TFTP

trace file—This general term refers to all files that contain network traffic, regardless of the format of the file.
Wireshark currently uses the .pcapng trace file format, but it can understand most other common trace file
formats. Trace files generally include a file header (which contains information about the entire trace file,
including the indication of the trace file format in use) and packet headers that include metadata (such as
comments) about individual packets.

Transport Layer Security, see TLS

TLS (Transport Layer Security)—TLS is a cryptographic protocol based on Secure Socket Layer (SSL). When
analyzing TLS traffic, you can look at the initial TLS handshake packets to identify connection establishment
problems. To decrypt this traffic, you must have the appropriate decryption key. TLS preferences are
configured under the SSL preference area in Wireshark. To capture TLS/SSL-based traffic, use a port-based
capture filter, such as port 443. The display filter syntax for TLS/SSL-based traffic is SSL.

Tshark—This command-line tool can be used to capture, display, and obtain basic statistics on live traffic or
saved trace files. Tshark relies on Dumpcap to actually capture the traffic. By far the most feature-rich version
of the command-line capture tools, you can type tshark -h to find the list of available Tshark parameters.

TTL (Time to Live)—This IP header field is decremented by each router as it is forwarded along a network
path. If a packet arrives at a router with a TTL value of 1, it cannot be forwarded because you cannot
decrement the TTL to zero and forward the packet. The packet will be discarded.

UDP (User Datagram Protocol)—This connectionless transport protocol is used by many basic network
communications, including all broadcasts, all multicasts, DHCP, DNS requests, and more. The capture filter
and display filter syntax to capture UDP is udp.

Uniform Resource Indicator, see URI

URI (Uniform Resource Indicator)—This term defines the actual element being requested in an HTTP
communication. For example, when you analyze a web browsing session, you might see a request for the “/”
URI. This “/” is a request for the default page (index.html, for example). To build a display filter to show any
packets that contain a URI, use http.request.uri.

User Datagram Protocol, see UDP

WinPcap (Windows Packet Capture)—This Windows-specific link-layer driver is used by Wireshark to
capture traffic on a wired network. Originally created by Loris Degioanni. WinPcap is the industry leading
utility for various network tools. For more information, see www.winpcap.org.

Wiretap Library—This library gives you the raw packet data from trace files. Wireshark’s Wiretap Library
understands many different trace file formats and can be seen when you select File | Open and click the drop-
down arrow next to Files of Type.

WLAN (Wireless Local Area Network)—This term describes networks that rely on RF (radio frequency)
media to communicate between hosts. Wireshark contains dissectors for various WLAN traffic elements. The
AirPcap adapter is a great adapter for capturing WLAN traffic.

Want to learn more?
Register for the All Access Pass (AAP) Online

Training

Register Online Log in at https://www.lcuportal2.com.
Enroll in Classes View available course information (including credit hours) and register for your online

courses. You can enter a course immediately after registering.
My Classes View the list of courses for which you are registered and your status (completed or in

progress).
My Transcript Print or email your training transcript (in progress and completed courses) including

course CPE credits and completion dates.
AAP Special Events Register for live AAP events or access AAP event handouts from past or upcoming

events.

SAMPLE COURSE LIST

- Core 1-Wireshark Functions & TCP/IP
- Core 2-Troubleshoot/Secure Networks with Wireshark
- Combo Core 1 and 2 Update
- Wireshark Jumpstart 101
- Hacked Hosts
- Analyze and Improve Throughput
- Top 10 Reasons Your Network is Slow
- TCP Analysis In-Depth
- DHCP/ARP Analysis
- Nmap Network Scanning 101
- WLAN Analysis 101
- Wireshark 201 Filtering
- New Wireshark Features
- ICMP Analysis
- Analyzing Google Secure Search
- Slow Networks - NOPs/SACK
- TCP Vulnerabilities (MS09-048)
- Packet Crafting to Test Firewalls
- Capturing Packets (Security Focus)
- Troubleshooting with Coloring
- Tshark Command-Line Capture
- AAP Event: Analyzing the Window Zero Condition
- Trace File Analysis - Set 1
- Trace File Analysis - Set 2
- Trace File Analysis - Set 3
- Whiteboard Lecture Series 1
- Translate Snort Rules to Wireshark
- …and more
-
We also offer customized onsite and online training. Visit www.chappellU.com for sample course outlines and
more information. Contact us at info@chappellU.com if you have questions regarding your All Access Pass
membership.

	Title Page
	Copyright
	Acknowledgments
	Dedication
	About this Book
	Book Trace Files
	Foreword by Gerald Combs
	Chapter 0 Skills: Explore Key Wireshark Elements and Traffic Flows
	Ch. 0 Quick Reference: Key Wireshark Graphical Interface Elements
	0.1 Understand Wireshark’s Capabilities
	0.2 Get the Right Wireshark Version
	0.3 Learn how Wireshark Captures Traffic
	0.4 Understand a Typical Wireshark Analysis Session
	0.5 Differentiate a Packet from a Frame
	0.6 Follow an HTTP Packet through a Networ
	0.7 Access Wireshark Resources
	0.8 Analyze Traffic Using the Main Wireshark View
	Lab 1: Use Packets to Build a Picture of a Network
	0.9 Analyze Typical Network Traffic
	Lab 2: Capture and Classify Your Own Background Traffic
	0.10 Open Trace Files Captured with Other Tools
	Lab 3: Open a Network Monitor .cap File
	Chapter 0 Challenge
	Chapter 0 Challenge Answers
	Chapter 1 Skills: Customize Wireshark Views and Settings
	Ch. 1 Quick Reference: Overview of wireshark.org
	1.1 Add Columns to the Packet List Pane
	Lab 4: Add the HTTP Host Field as a Column
	1.2 Dissect the Wireshark Dissectors
	1.3 Analyze Traffic that Uses Non-Standard Ports
	1.4 Change how Wireshark Displays Certain Traffic Types
	Lab 5: Set Key Wireshark Preferences (IMPORTANT LAB)
	1.5 Customize Wireshark for Different Tasks (Profiles)
	Lab 6: Create a New Profile Based on the Default Profile
	1.6 Locate Key Wireshark Configuration Files
	Lab 7: Import a DNS/HTTP Errors Profile
	1.7 Configure Time Columns to Spot Latency Problems
	Lab 8: Spot Path and Server Latency Problems
	Chapter 1 Challenge
	Chapter 1 Challenge Answers
	Chapter 2 Skills: Determine the Best Capture Method and Apply Capture Filters
	Ch2 Quick Reference: Capture Options
	2.1 Identify the Best Capture Location to Troubleshoot Slow Browsing or File Downloads
	2.2 Capture Traffic on Your Ethernet Network
	2.3 Capture Traffic on Your Wireless Network
	2.4 Identify Active Interfaces
	2.5 Deal with TONS of Traffic
	Lab 9: Capture to File Sets
	2.6 Use Special Capture Techniques to Spot Sporadic Problems
	Lab 10: Use a Ring Buffer to Conserve Drive Space
	2.7 Reduce the Amount of Traffic You have to Work With
	2.8 Capture Traffic based on Addresses (MAC/IP)
	Lab 11: Capture Only Traffic to or from Your IP Address
	Lab 12: Capture Only Traffic to or from Everyone Else’s MAC Address
	2.9 Capture Traffic for a Specific Application
	2.10 Capture Specific ICMP Traffic
	Lab 13: Create, Save and Apply a DNS Capture Filter
	Chapter 2 Challenge
	Chapter 2 Challenge Answers
	Chapter 3 Skills: Apply Display Filters to Focus on Specific Traffic
	Ch. 3 Quick Reference: Display Filter Area
	3.1 Use Proper Display Filter Syntax
	Lab 14: Use Auto-Complete to Find Traffic to a Specific HTTP Server
	3.2 Edit and Use the Default Display Filters
	Lab 15: Use a Default Filter as a “Seed” for a New Filter
	3.3 Filter Properly on HTTP Traffic
	Lab 16: Filter on HTTP Traffic the Right Way
	3.4 Determine Why Your dhcp Display Filter Doesn’t Work
	3.5 Apply Display Filters based on an IP Address, Range of Addresses, or Subnet
	Lab 17: Filter on Traffic to or from Online Backup Subnets
	3.6 Quickly Filter on a Field in a Packet
	Lab 18: Filter on DNS Name Errors or HTTP 404 Responses
	3.7 Filter on a Single TCP or UDP Conversation
	Lab 19: Detect Background File Transfers on Startup
	3.8 Expand Display Filters with Multiple Include and Exclude Conditions
	3.9 Use Parentheses to Change Filter Meaning
	Lab 20: Locate TCP Connection Attempts to a Client
	3.10 Determine Why Your Display Filter Area is Yellow
	3.11 Filter on a Keyword in a Trace File
	Lab 21: Filter to Locate a Set of Key Words in a Trace File
	3.12 Use Wildcards in Your Display Filters
	Lab 22: Filter with Wildcards between Words
	3.13 Use Filters to Spot Communication Delays
	Lab 23: Import Display Filters into a Profile
	3.14 Turn Your Key Display Filters into Buttons
	Lab 24: Create and Import HTTP Filter Expression Buttons
	Chapter 3 Challenge
	Chapter 3 Challenge Answers
	Chapter 4 Skills: Color and Export Interesting Packets
	Ch. 4 Quick Reference: Coloring Rules Interface
	4.1 Identify Applied Coloring Rules
	Lab 25: Add a Column to Display Coloring Rules in Use
	4.2 Turn Off the Checksum Error Coloring Rule
	4.3 Build a Coloring Rule to Highlight Delays
	Lab 26: Build a Coloring Rule to Highlight FTP User Names, Passwords, and More
	4.4 Quickly Colorize a Single Conversation
	Lab 27: Create Temporary Conversation Coloring Rules
	4.5 Master the Intelligent Scrollbar
	Lab 28: Use the Intelligent Scrollbar to Quickly Find Problems
	4.6 Export Packets that Interest You
	Lab 29: Export a Single TCP Conversation
	4.7 Export Packet Details
	Lab 30: Export a List of HTTP Host Field Values from a Trace File
	Chapter 4 Challenge
	Chapter 4 Challenge Answers
	Chapter 5 Skills: Build and Interpret Tables and Graphs
	Ch. 5 Quick Reference: IO Graph Interface
	5.1 Find Out Who’s Talking to Whom on the Network
	5.2 Locate the Top Talkers
	Lab 31: Filter on the Most Active TCP Conversation
	Lab 32: Set up GeoIP to Map Targets Globally
	5.3 List Applications Seen on the Network
	Lab 33: Detect Suspicious Protocols or Applications
	5.4 Graph Application and Host Bandwidth Usage
	Lab 34: Compare Traffic to/from a Subnet to Other Traffic
	5.5 Identify TCP Errors on the Network
	5.6 Understand what those Expert Information Errors Mean
	Lab 35: Identify an Overloaded Client
	5.7 Graph Various Network Errors
	Lab 36: Detect and Graph File Transfer Problems
	Chapter 5 Challenge
	Chapter 5 Challenge Answers
	Chapter 6 Skills: Reassemble Traffic for Faster Analysis
	Ch. 6 Quick Reference: File and Object Reassembly Options
	6.1 Reassemble Web Browsing Sessions
	Lab 37: Use Reassembly to Find a Web Site’s Hidden HTTP Message
	6.2 Reassemble a File Transferred via FTP
	Lab 38: Extract a File from an FTP File Transfer
	6.3 Export HTTP Objects Transferred in a Web Browsing Session
	Lab 39: Carve Out an HTTP Object from a Web Browsing Session
	Chapter 6 Challenge
	Chapter 6 Challenge Answers
	Chapter 7 Skills: Add Comments to Your Trace Files and Packets
	Ch. 7 Quick Reference: File and Packet Annotation Options
	7.1 Add Your Comments to Trace Files
	7.2 Add Your Comments to Individual Packets
	Lab 40: Read Analysis Notes in a Malicious Redirection Trace File
	7.3 Export Packet Comments for a Report
	Lab 41: Export Malicious Redirection Packet Comments
	Chapter 7 Challenge
	Chapter 7 Challenge Answers
	Chapter 8 Skills: Use Command-Line Tools to Capture, Split, and Merge Traffic
	Ch. 8 Quick Reference: Command-Line Tools Key Options
	8.1 Split a Large Trace File into a File Set
	Lab 42: Split a File and Work with Filtered File Sets
	8.2 Merge Multiple Trace Files
	Lab 43: Merge a Set of Files using a Wildcard
	8.3 Capture Traffic at Command Line
	Lab 44: Use Tshark to Capture to File Sets with an Autostop Condition
	8.4 Use Capture Filters during Command-Line Capture
	8.5 Use Display Filters during Command-Line Capture
	Lab 45: Use Tshark to Extract HTTP GET Requests
	8.6 Use Tshark to Export Specific Field Values and Statistics from a Trace File
	Lab 46: Use Tshark to Extract HTTP Host Names and IP Addresses
	8.7 Continue Learning about Wireshark and Network Analysis
	Chapter 8 Challenge
	Chapter 8 Challenge Answers
	Appendix A: Trace File Descriptions
	Network Analyst’s Glossary
	All Access Pass Information

		2017-03-21T22:53:11+0000
	Preflight Ticket Signature

