Eric F Crist

Troubleshooting
OpenVPN

Get the solutions you need to troubleshoot any issue you
may face to keep your OpenVPN up and running

L Packt

Troubleshooting OpenVPN

Table of Contents

Troubleshooting OpenVPIN
Credits
About the Author
About the Reviewer
www.PacktPub.com
Why subscribe?
Customer Feedback
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Errata
Piracy
Questions
1. Troubleshooting Basics

A recommended toolKkit

Log search and filtering
grep
less, more, and most
Regular expressions
Network sniffing and analysis

tcpdump
traceroute

mitr
ping
Wireshark
X.509 verification and inspection

OpenSSL
Wireshark

Troubleshooting basics
Summary

2. Common Problems
Narrowing the focus

Sample scenarios
Scenario 1--unable to access VPN

Scenario 2--cannot access external web when on VPN

Suspecting recent changes
Supported operating systems

Embedded devices
Semi-embedded systems
Virtual servers

IP addresses

Firewalls

Duplicate client certificates

Overcomplication

Summary
3. Installing OpenVPN
Common installation problems
Compiling OpenVPN
Packages and installers
The advantages of precompiled installers

Driver installation
Alternative clients

Summary
4. The Log File
Logging options
Logging levels
Verbosity 0
Verbosity 1
Verbosity 4
Verbosity 7
Common log messages
Startup messages
Version and compile string
Option warnings
Configuration parameters
Operational messages
Certificate messages
Summary
5. Client and Server Startup
File and process permissions
Privilege de-escalation
Networking privileges
Port assignment and use
Multiple daemons
Adapter and routing table changes
Chroot
Scripting
Up and down scripts

Connect and disconnect scripts
UDP troubleshooting

UDP and firewalls
Summary

6. Certificates and Authentication
File permissions
Pre-shared keys
Certificate authentication
Certificate chain overview
The Certificate Revocation List

System date and time
Authentication and plugins
Usernames and passwords
--ccd-exclusive
Summary
7. Network and Routing
Connectivity

Inbound connection--server
Publicly addressed server
Privately addressed server with port forwarding

Outbound connection--client

Firewall filters and inspection
TLS authentication
Routing

Internal routing

External routing

Pushing routes
Routes behind clients

Kernel versus process routing
Route conflicts

Redirect gateway
General network concerns
Path MTU and MSS
Summary
8. Performance
Networking
Rate limiting
Cryptographic performance
Library differences
Cipher and AES-NI
Result summary
Single thread
Summary
9. External Problems

Inspection and filtering
Obfuscation
Encryption

Geographic and source address exclusions
What can be done

Source IP address

DNS settings
Routing path performance
Summary
Useful links

Manual or man pages
Release notes

Support channels

Troubleshooting OpenVPN

Troubleshooting OpenVPN

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for
any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: March 2017
Production reference: 1150317
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-196-4

www.packtpub.com

http://www.packtpub.com

Credits

Author Copy Editor

Eric F Crist Dipti Mankame
Reviewer Project Coordinator
Krzee King Judie Jose
Commissioning Editor Proofreader

Pratik Shah Safis Editing
Acquisition Editor Indexer

Divya Poojari Pratik Shirodkar

Content Development Editor]|Graphics

Abhishek Jadhav Kirk D'Penha
Technical Editor Production Coordinato
Gaurav Suri Shantanu N. Zagade

S ——— N EEEEEEEEEESSShIie——————————————————————————————m—————...,;|

About the Author

Eric F Crist hails from Cottage Grove, Minnesota, and he works as a product and systems engineer for
Abbott. He has a relatively wide range of professional and life experience starting from physical security
and access control as a low-voltage technician into software development, system administration, and
software development.

Eric has been a core member of the OpenVPN community since 2008 and helps manage the open source
online resources. He also wrote ssl-admin, and he is a lead for Easy-RSA, both of which help manage
Certificate Authorities and chains.

Eric collaborated with Jan Just Keisjer for the book, Mastering OpenVPN, in 2015, also for Packt.

I would like to sincerely thank my wife, DeeDee, for encouraging me to write this book. Without
your prompting, encouragement, and motivation, I would have had a tremendous amount of
additional free time and sanity.

About the Reviewer

Krzee King is a self taught BSD/Linux user. He began helping in the OpenVPN community in 2007, when
he and the author Eric took control of the IRC channel, and later founded the web forum with Eric and
dougy. He believes very strongly in the importance of encryption, and the need for strong encryption to be
usable by all. He also had the pleasure of reviewing OpenVPN 2 Cookbook by Jan Just Keijser.

Thanks to my lovely wife and my parents, for their endless support. I love you guys.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more
details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

W Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and
video courses, as well as industry-leading tools to help you plan your personal development and advance
your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us
improve, please leave us an honest review on this book's Amazon page at

https://www.amazon.com/dp/178646196X.

If you'd like to join our team of regular reviewers, you can e-mail us at customerreviews@packtpub.com.
We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback.

Help us be relentless in improving our products!

https://www.amazon.com/dp/178646196X

Preface

OpenVPN is arguably the best cross-platform secure networking technology currently available. The
development community is large and active every day of the year, with new developers popping up
regularly with patches and feature requests. It is not only used by hobbyists, but also by for-pay VPN
providers strewn about the Internet.

In Troubleshooting OpenVPN, we identify the most common problems and pitfalls in the deployment of
OpenVPN. We demonstrate where and how to use an assortment of diagnostic and investigative tools,
both common and lesser known.

By the end of this book, you should be able to understand and identify where a problem resides, both
within your VPN infrastructure and also from external causes. The log file is fully detailed and you will
be able to leverage the varying logging levels to suit your troubleshooting efforts.

What this book covers

Chapter 1, Troubleshooting Basics, helps the reader break down problems into digestible portions with
related components. Some of the concepts discussed include generic techniques useful in more than just
OpenVPN problem solving,

Chapter 2, Common Problems, will identify the issues seen most frequently by both novice administrators
and experienced administrators alike.

Chapter 3, Installing OpenVPN, covers compilation and installation of OpenVPN on a variety of
platforms. Virtual network adapters, alternative client packages, and software dependencies will be
identified.

Chapter 4, The Log File, focuses heavily on the OpenVPN log file and how to adjust and decipher the
verbosity of the available messages. This is an extremely valuable resource when identifying and
correcting problems.

Chapter 5, Client and Server Startup, discusses software and system dependencies necessary for process
startup. Items like file permissions, scripting, and basic networking all contribute to successfully running
OpenVPN.

Chapter 6, Certificates and Authentication, illustrates the varying authentication paths and where
breakage can occur. System time, authentication backends and scripting are all addressed.

Chapter 7, Network and Routing, shows where network topology and routing bring complexity to the
OpenVPN architecture. Conflicting routes, address inconsistency, and subnetting will all be covered.

Chapter 8, Performance, was written to help you identify performance bottlenecks and places where
efficiencies can be improved.

Chapter 9, External Problems, covers where and when problems can exist outside your OpenVPN
infrastructure, and even entirely outside your network or control.

What you need for this book

This book was written with the VPN administrator in mind. Many of the examples within leverage both
the server and client sides of a connection, and lack of control at the server end will prove frustrating,. I
am assuming you either have access to a server, or have the means to create a functioning server, with
your operating system of choice.

Examples within this book are focused primarily on Linux or BSD command-line tools, but there are a
number of Windows examples interspersed within the content. To make the most of your time, try to have
the following available:

e An OpenVPN server, ideally running on Linux or FreeBSD
e An OpenVPN client, running any operating system you choose
e The ability to install software on and connect to the OpenVPN server without OpenVPN running

Who this book is for

An OpenVPN server administrator is most likely to use this book to its potential. Enterprising VPN users
may also be able to use the techniques and applications described within to their own benefit, however.
Much of this title covers basic troubleshooting skills that can be leveraged in nearly any situation, not just
with OpenVPN.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information.
Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy
URLs, user input, and Twitter handles are shown as follows: "The - -auth-user-pass-verify scriptis
the last in a long chain of scripts that are run.”

Any command-line input or output is written as follows:

author@example:~-> sudo openssl s_server -key key.pem -cert cert.pem -WWW -accept
443

New terms and important words are shown in bold. Words that you see on the screen, for example, in
menus or dialog boxes, appear in the text like this: "By going to Preferences | Protocols | SSL,
Wireshark provides a way to import the TLS key we created earlier."”

Note
Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you
liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get
the most out of. To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message. If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most
from your purchase.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find
a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you could
report this to us. By doing so, you can save other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and
enter the name of the book in the search field. The required information will appear under the Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take
the protection of our copyright and licenses very seriously. If you come across any illegal copies of our
works in any form on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and
we will do our best to address the problem.

Chapter 1. Troubleshooting Basics

Troubleshooting a failed server or client deployment can be a daunting task, particularly for a novice user.
A vast number of users do not fall into the typical system administration role, and they are either hobbyists
or just venturing into virtual networking and cryptography. By the end of this chapter, the tools' key to
identifying and correcting problems will be illustrated, and their utility will be demonstrated.

The general concepts of troubleshooting apply not only to fixing a problematic OpenVPN client or server
process but also to nearly everything encountered in day-to-day work. At its most basic level, the idea of

divide and conquer is the phrase of the day. Separating components that are functional from those that are
broken will quickly absolve the administrator from needless work and investigation.

The book is structured progressively, and it aims to help you find solutions quickly. This book will cover
the following key topics surrounding fixing, identifying, and resolving OpenVPN problems:

A troubleshooting toolkit is a key to gleaning all the data needed to focus on a problem and resolve
it.

Common OpenVPN issues are explored. Years of help supporting OpenVPN administrators on the
forums and in IRC have provided a plethora of data, and the most common issues faced in the field
are identified and solutions are provided.

The OpenVPN installation on various operating systems is covered. The best client for each
operating system is identified, including mobile device options. Where to go to obtain the installers
and files needed.

Log files are the primary source of troubleshooting data. When to use what verbosity level and how
to search for the data within the log is explained.

Startup and shutdown of the OpenVPN process for both the client and the server can cause stress and
anguish. OpenVPN packaging is explained, where to go for help is shown, and how to troubleshoot
those startup routines will be demonstrated.

Routing and networking can be a difficult concept to comprehend. This is likely the number one area
of difficulty for beginning OpenVPN administrators.

We will discuss performance issues and how to correct performance-related issues. Also, cipher
suite, key size, compression, and routing optimization will be illustrated.

Finally, problems external to OpenVPN will be explored. Such things include local LAN address
collisions and incorrect firewall filtering, both locally and at an ISP.

A recommended toolkit

There are a number of common utilities needed to investigate network and public key infrastructure
(PKI) issues. The samples within this book will be from a variety of operating systems. The server will
be on FreeBSD 10.2, and we will show macOS X and Windows 7 and 10.

The majority of diagnostics will be done at the server side of the connection, but there are useful things to
glean from client-side utilities. The tools listed here will be demonstrated, but this book isn't a manual for
their use. For full documentation, refer to the documentation links provided.

Note

Both the FreeBSD project and GNU have web interfaces for browsing man pages. The main page for
these can be found at the following paths:

e FreeBSD: https://www.freebsd.org/cgi/man.cgi
e GNU: http://www.gnu.org/manual/manual.en.html

https://www.freebsd.org/cgi/man.cgi
http://www.gnu.org/manual/manual.en.html

Log search and filtering

Detailed logging is available from OpenVPN on both the client and server sides, which allows
configuration issues to be identified quickly. Having the ability to search these logs for the pertinent
information is vital to successfully correcting problems and verifying a functional service. The utilities
identified here will aid in these search tasks.

grep

The grep utility is likely to be one of the first utilities learned by an aspiring Unix user. Finding strings or
keywords within a file or a set of files quickly is the first step in tracking down entries in a log file or a
configuration directive. grep allows you to search and highlight specific lines, context around those lines,
filenames, line numbers, and more. In addition to finding lines of text, grep can also omit lines you do not
want to see.

The #openvpn support channel on Freenode (irc.freenode.net) IRC as well as on the OpenVPN forum
(http://forums.openvpn.net), for example, request that users seeking support omit comments and empty
lines with the following command:

grep -vE '"A#|N;|N$' server.conf

Take a sample config file:

ecrist@meow:~-> cat foo.conf
this is a comment
; this is also a comment

the line above is empty
config argument

; another comment

If we pipe that through our grep filter:

ecrist@meow:~-> grep -vE 'A#|N; |N$' foo.conf
config argument

less, more, and most
Paging applications are a common feature of Unix and Unix-like operating systems. These tools allow the

user to view a large amount of content, typically text, to be viewed one page at a time. In general, there
are three such common tools, less, more, and most.

The more utility is the most ubiquitous of the three, being installed by default on every Unix, Linux, or
other similar system I have used for the past 20 years. Being the first paging utility, the more utility's

http://irc.freenode.net
http://forums.openvpn.net

general functionality is limited. When output from a file or pipe contained more content than what could
be displayed on a single screen, the content would be paged.

Scrolling down through the content was possible either a line at a time, using a down arrow key press, or
a full page/window at a time with a press of the spacebar. Scrolling back up was not supported:

. @ author@example
LESS(1) LESS(1)
NAME

less - opposite of more

SYNOPSIS
less -7
less --help
less -V

less --version
less [-[+]aABcCdeEfFgGiIJKLmMnNg(QrRsSulVwiNX~]
[-b space] [-h lines] [-3 line] [-k keyfile]
[-{o0} logfile] [-p pattern] [-P prompt] [-t tagl
[-T tagsfile] [-x tab,...] [-y lines] [-[z] lines]
[-# shift] [+[+]1cmd] [--] [filename]...
(5ee the OPTIONS section for alternate option syntax with long option
names.)

DESCRIPTION

Less is a program similar to more (1), but which allows backward move-
ment in the file as well as forward movement. Also, less does not have
to read the entire input file before starting, so with 1large input
files it starts up faster than text editors like wi (1). Less uses
termcap (or terminfo on some systems), so it can run on a wvariety of
terminals. There is even limited support for hardcopy terminals. (On
a hardcopy terminal, lines which should be printed at the top of the
screen are prefixed with a caret.)

Commands are based on both more and vi. Commands may be preceded by a
decimal number, called N in the descriptions below. The number is used
by some commands, as indicated.

COMMANDS
In the following descriptions, AX means control-X. ESC stands for the
ESCAPE key; for example ESC-v means the two character sequence

--More--(byte 2061))

In 1983, Mark Nudelman authored the less utility specifically for backward scroll capability. It was
released in May, 1985, via the newsgroup net.sources. Many features have been added to less, including
pattern match highlighting and vi-like movement through the stream. To date, there have been over 450

released updates.

Modern Unix and Linux systems typically ship just the 1ess utility now, with more being a hard-link to the
less binary. When executed this way, less operates in a compatibility mode similar to more. This
behavior can also be evoked by setting the environment variable LESS_IS_MORE.

The final pager of note is most, which operates similar to less, but adds the capability for multiple
windows within a single terminal session. The most pager also appears to support color escape
sequences better than less. The following screenshot shows most displaying two windows, one with the
less man page and the other with the most man page:

® "0 author@example
MOST(1) MOST(1)

NAME
most - browse or page through a text file

SYNOPSIS
most [-1bCcdMstuvwz] [+lineno] [+c] [+d] [+s] [+u] [+/string] [file-
name, . .]

DESCRIPTION
most 1s a paging program that displays, one windowful at a time, the
contents of a file on a terminal. It pauses after each windowful and
prints on the window status line the screen the file name, current line
number, and the percentage of the file so far displayed.

Unlike other paging programs, most is capable of displaying an arbi-
IESS(l) LESS(1)

NAME

less - opposite of more
SYNOPSIS

less -7

less —-help

less -V

less --version
less [-[+]aABcCdeEfFgGiLIKLmMnNgQrRsSullVwiX~]
[-b space] [-h lines] [-j line] [-k keyfile]
[-{00} logfile] [-p pattern] [-P prompt] [-t tag]
[-T tagsfile] [-x tab,...] [-y lines] [-[z] lines]
[-# shift] [+[+]omd] [--] [filename]...
(See the OPTIONS section for alternate option syntax with long option
names.)

Press Q" to quit, "H' for help, and SPACE to scroll.

There are packages for most available for FreeBSD, macOS X, and Linux, but the latest release of most
was in 2007, and the development seems to have stalled entirely. The windowed features can be replaced
with other tools such as tmux and screen, which fall outside the scope of this book.

Note

Project pages for the 1ess and most utilities can be found at the following paths:

e less: http://www.greenwoodsoftware.com/less/
e most: http://www.jedsoft.org/most/index.html

Regular expressions

Regular expression (regex) is a syntax that can be leveraged with string or pattern matching. There are
already troves of other books and online guides about constructing quality regular expressions, but some
basic syntax here will get you started in your troubleshooting endeavors.

This book will primarily use regular expressions in conjunction with the grep utility described earlier.
Coupling regex with grep will allow us to specifically grab or omit lines from a log file. This is
particularly useful when looking for specific client errors, or omitting a slew of noisy log entries from the
view.

Regular expressions are composed of a sequence of pattern matching characters and character classes.
Character classes are simply groups of characters or character types.

Some syntax characters to note are as follows:

Characterj|Example Description and use

Afoo

Line must start with foo. . .
Denotes the start of the line. Inside a character class, denotes character

[rab] exclusion.

Excludes a and b.

Line must end with foo.

Signifies the following character should be interpreted literally. To match a \
character, escape itself: \\.

(foobar)

] _ Start and end of a group.
Groups foobar together as a single string.

foo$ ‘

|Denotes the end of the line.

[0-9a-f]

Matches characters 0 through 9 and a through f. Start and end of a character class.

[\da-f]
\d Matches characters o through 9 and a through . [[Matches numeric characters. Same as [0-9].

Note similarity to previous example.

Hello\.
Line contains Hello followed by a period.

http://www.greenwoodsoftware.com/less/
http://www.jedsoft.org/most/index.html

Ad\w

W Matches ©_foobar but not foobar (line must Matches alphanumeric characters including digits, letters, and the underscore.
start with digit). Same as [0-9a-fA-F_].
[\w\s]
\s and \t Matches any word’ Character’ or space Matches Space and tab, respectiVely.
character one time.
foobar.
Matches foobar plus any other character. A period matches any character.
(foobars, foobari, foobar_, and so on).
[0-9a-f]{1,9}
Characters 0-9 or a-f must appear at least once,
and up to nine times. e . . .
{min, P Specifies the minimum and maximum of the previous character or group.
[nax} [\d]{3} When only a single quantity is defined, indicates an exact count.
Any digit must appear exactly three times, does
not have to be the same digit.
(foobar)?
? The previous character or group may or may not appear.

foobar may or may not appear.

\w+
Indicates the previous item (group, character class, or character) must appear

Matches any word character one or more times. [fat least once, or more.

(ab) [(bc)

A separator, like a logical OR.
Both ab and bc match.

There are a few online tools that can be used to validate and test your regular expression syntax. This is a
good idea as they will demonstrate, graphically, how the changes to your pattern affect what is matched
within a string or series of strings. Some of the online tools available online are as follows:

e Regex Pal: http:// www.regexpal.com
e Regexr: http://regexr.com

For additional reading, I strongly suggest the book commonly referred to as the camel book Programming
Perl, 4th Edition, by Larry Wall. When I am stumped or need to understand how a regular expression is
functioning, I find it an invaluable resource and a common reference.

Note

You can also find tutorials and reading by navigating to http://www.regular-expressions.info.

http://www.regexpal.com
http://regexr.com
http://www.regular-expressions.info

Network sniffing and analysis

There will be times when log files and OpenVPN output alone are not enough to identify a problem. It is
possible that the issue resides outside of the OpenVPN process or the configuration therein. This could
mean that there is a protocol error for some program being encapsulated within the tunnel or there is some
upstream issue not readily apparent.

The tools listed here will provide an insight to the protocols and environment around and consuming your
OpenVPN setup.

tcpdump

The ultimate command-line network diagnostic tool is the venerable tcpdump. tcpdump is used to capture
network traffic on an interface, and it provides an interface to filter-specific traffic, including unique
destination addresses, ports, packet types, protocols, and more. This tool can be used at a very low level
to determine maximum transmission unit (MTU) issues, protocol issues, and many others.

Depending on your level of networking experience, this tool may or may not be directly useful, but packet
captures can be sent to more experienced people.

Tip

Do not rule this tool out even if you do not fully understand it yourself.

The following screenshot shows a simple single ping from a test host to Google's 8.8.8.8 DNS resolver
IP. We had to use sudo as the packet capture requires root privileges on the network interface. Our first

command line included option -A, which specifies ASCII output and is the unintelligible at the end of
each packet info line. The second example shows the same ping without the -A option (same screenshot):

(] @ author@example
author@example author@example -+

author@example:~-> sudo tcpdump -A -i xn@ host 8.8.8.8

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on xn@, link-type EN1@OMB (Ethernet), capture size 65535 bytes

15:15:11.330053 IP terrance.secure-computing.net > google-public-dns-a.google.com: ICMP echo reque
st, id 44040, seq 0, length 64

E..T}G..@....fMS....... u....v.70.. 2.

.................. I"#3%& " (O*+,-./01234567

15:15:11.331025 IP google-public-dns-a.google.com > terrance.secure-computing.net: ICMP echo reply
, id 44040, seq O, length 64

E..T....9........ fMS...u....V.?0.. 2.

.................. I"#3%& ' (O*+,-./01234567

AC

2 packets captured

172 packets received by filter

@ packets dropped by kernel

author@example:~-> sudo tcpdump -1 xn@® host 8.8.8.8

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on xn@, link-type EN1@OMB (Ethernet), capture size 65535 bytes

15:18:18.769311 IP terrance.secure-computing.net > google-public-dns-a.google.com: ICMP echo reque
st, id 44808, seq 0@, length 64

15:18:18.771285 IP google-public-dns-a.google.com > terrance.secure-computing.net: ICMP echo reply
, id 44808, seq O, length 64

AC

2 packets captured

42 packets received by filter

@ packets dropped by kernel

author@example:~-> |

A much more detailed introduction to tcpdump is available by going to Daniel Miessler's blog at
https://danielmiessler.com/study/tcpdump/.

traceroute

On Linux, BSD, and macOS X, traceroute, or on Windows tracert, knowing the path to assorted
destinations is a crucial tool. You can quickly ascertain whether traffic is departing the default gateway or
a VPN connection. As a bonus, response time to each hop along the path is calculated, which may indicate
slow points along the route.

Contrary to the popular belief, these commands are not for hacking or seeing how many people are using a
website; you will not improve your K/D ratio in Call of Duty®. These are legitimate network diagnostic
tools.

Note

Check out the YouTube video by NextGenHacker101 for a quick laugh at
https://www.youtube.com/watch?v=S Xmv8quf xM.

For a quick change of pace, here is a screenshot of the tracert command from Windows 8. From the

https://danielmiessler.com/study/tcpdump/
https://www.youtube.com/watch?v=SXmv8quf_xM

output, we can see that there are eight hops between my test Windows 8 system and Google's resolver:

icrosoft Windows [Version 6.3.96008]
(c> 2013 Microsoft Corporation. All rights reserved.

:\Userssecrist>tracert 8.8.8.8

racing route to google—public—dns—a.google.com [8.8.8.8]
ver a maximum of 38 hops:

{1 {1 ms 21
2 5 2
2 2 ms 2

12 11 ms 17

i1 11 ms 11

12 12 ms 1

12 12 ms 13

22 22 ms 21

21 21 ms 21

21 21 ms 21

192.168.192.1
stpl-dsl-guld4.stpl.quest.net [207.1609.2.141
stpl-aguwl.inet.qwest.net [207.189.3.16851]
cer—edge—17.inet.quest.net [67.14.8.9681
216.111 .98.126

209.85.244.1

72.14.237.133

209.85.247.4

72.14.234.81

Request timed out.
google—public—dns—a.google.com [8.8.8.81]

L I
L% I I O

MW

1
2
3
4
5
b
7
8
9

2333333233

[I

S 33333333
(7o

3

a
=
7]

race complete.

NUsers\ecrist >

mtr

My traceroute or mtr is a utility that combines the functionality of ping and traceroute. This tool can
help illustrate where along a network path latency or packet loss occurs. I still prefer to use ping and
traceroute individually at times, but use mtr to quickly identify network connectivity issues.

Both tcpdump and tracert will stop, by default, after the last hop or a maximum of 30 has been reached.
mtr, on the other hand, will continue cycling until quit with a Ctrl + C. ping on *nix system functions in a
similar manner of pinging indefinitely.

Here is a sample output from mt r between my test system and the Google website:

N o] author@example

My traceroute [v@.86]

terrance.secure-computing.net (::) Sun Mar 27 15:54:22 2016
Resolver: Received error response 2. (server failure)er of fields quit
Packets Pings
Host Loss® Snt Last Avg Best Wrst StDev
1. 2607:fc50:1001:5200::1 0.0% 20 6.5 ©.5 @.4 0.8 0.0
2. 2607:fc50:1000:7::2 0.0% 20 a.5 ©.7 @.3 4.7 0.9
3. 7??
4. Google-level3-3x10G.Dallas.Level3.net 0.0% 20 77 2:7¢ 8.9 18.2 3.1
5. 2001:4860:0:1::1367 0.0% 20 1.6 1.7 1.5 2.3 0.0
6. 2001:4860:0:1::425 0.0% 20 1.4 2.1 1.1 18.9 3.9
7. dfw25s512-in-x@e.1e100.net 0.0% 19 1.6 1.1 1.9 1.6 0.0

author@example:~-> |}

Notice the snt column and that all list 26 apart from hop seven. I pressed Ctrl + C just as the cycle hit
hop seven, so the twentieth packet was never sent.

ping

Good ol' ping. This is usually the first tool in the network troubleshooter's toolbox. This is generally the
quickest way to determine if a remote system is alive or not. This tool is very much cross-platform, and it
is available on Linux, Unix, and Windows systems by default. Only the most hostile or ill-managed
corporate networks block this. The following screenshot shows an example of ping:

author@example:~-> ping -c 4 google.com

PING google.com (216.58.218.174): 56 data bytes

64 bytes from 216.58.218.174: icmp_seq=0 ttl=56 time=0.981 ms
64 bytes from 216.58.218.174: icmp_seq=1 ttl=56 time=1.042 ms
64 bytes from 216.58.218.174: icmp_seq=2 ttl=56 time=1.176 ms
64 bytes from 216.58.218.174: icmp_seq=3 ttl=56 time=18.653 ms

--- google.com ping statistics ---

4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.981/5.463/18.653/7.616 ms
author@example:~->

Wireshark

Coupled with the tcpdump utility, and sometimes on its own, Wireshark is arguably the most powerful
tool in our network troubleshooting toolbox. This tool provides a relatively easy-to-use graphical
interface to navigate packet captures. In addition, it provides a filtering interface that allows you to
isolate specific streams, protocols, and destinations.

One particular trick Wireshark can do is to decrypt TLS and SSL traffic, given the private and public keys
of a web server or server/client pair. This is analogous to the features of the latest next-generation
firewalls that do decryption at the border for corporate networks.

The following screenshot shows a short eight-packet transaction for a short IPv6 ping:

No. Time Source Destination Protocol Info

1 0.000000 2001:470:17f10:10b.. 2607:f8b0:.. ICMPVv6 request id=0x849a, seq=0, hop Llimit=..
. 2 8.102691 2607:18b0:4009:80.. 2001:470:1.. ICMPv6 Echo (ping) reply id=8x849a, seq=0, hop limit=58..
3 1.882274 2001:4790:1710:10b.. 2607:f8b@:.. ICMPvE Echo (ping) request id=0x849a, seg=1, hop limit=..
4 1.109870 2607:1f8b0:4009:80.. 2001:470:1.. ICMPv6E Echo (ping) reply id=@x849a, seq=1, hop limit=58..
5 2.833720 2001:470:1710:10b.. 2607:f8b@:.. ICMPVE Echo (ping) request id=@x849a, seg=2, hop limit=..
6 2.137835 2607:f8b0:4009:80.. 2001:470:1.. ICMPVvE Echo (ping) reply id=0x849a, seq=2, hop limit=58..
7 3.016386 2001:479:1710:10b.. 2607:f8b@:.. ICMPvE Echo (ping) request id=0x849a, seq=3, hop limit=..
8 3.121601 2687:T8b0:4009:80.. 2001:479:1.. ICMPvb Echo (ping) reply id=8x849a, seq=3, hop limit=58..

» Frame 1: 60 bytes on wire (480 bits), 6@ bytes captured (488 bits)

» Null/Loopback

v Internet Protocol Version 6, Src: 2001:478:1f10:1@bb::2, Dst: 2607:18b6:4009:804::200e
2110 = Version: 6

¥ 0000 0000c cess msse sses = Traffic class: @x@® (DSCP: CS@, ECN: Not-ECT)
. P00 P@.. vevr suss s2ss 2. = Differentiated Services Codepoint: Default (@)

vess sass 5500 iy wwes sess ssss sase = Explicit Congestion Notification: Not ECN-Capable Transport (@)
vass ssas wa.. 000D 0000 0000 0O0O 0000 = Flowlabel: @x000e0000
Payload length: 16
Next header: ICMPv6 (58)
Hop limit: 64
Source: 2001:470:1f1@:10bb::2
Destination: 26@7:f8b@:4009:804::200e

[Canmen CoanTls leloma]

BIBB 1c 00 00 00 60 00 00 00 00 10 3a 40 20 @1 04 70:@ ..p
geie 1f 1@ 10 bb @0 0@ 00 0 00 00 00 02 26 B7 fB DO ..vevvis wasibuns
40 09 98 @4 00 90 00 00 00 00 20 Pe BO 00 be 9C @ieevans wr senes
84 9a 00 @0 56 e9 9d 45 @0 @4 6d 39 vevaVaiE o 0m9

In my experience in the scope of OpenVPN, Wireshark is primarily used along side tcpdump. Many
OpenVPN servers and clients will have tcpdump readily available, already installed, or easily installed
when needed. Wireshark requires X11 or other graphical tools and libraries that may not be as easy to
install.

It is easy to take a packet capture using tcpdump, save the capture to a file (see the -w option for
tcpdump), and transfer that capture to a system with Wireshark installed. The observant reader may have

noted the window title in the earlier screenshot: the packet capture here is actually being read-in from a
file.

X.509 verification and inspection

Cryptography and PKI are often difficult to understand and much more difficult to resolve issues with.
There are primarily two utilities, OpenSSL and Wireshark, that can aid with peering into the
cryptographic components of OpenVPN.

Note

OpenVPN also supports PolarSSL (recently known as ARM® mbed™) as a replacement for OpenSSL.
The latest package, 2.2.1, includes some rudimentary programs for certification creation, but it does not
include s_client and other utilities included with OpenSSL. More information can be found on their

website at http://tls.mbed.org.
OpenSSL

OpenSSL is the ubiquitous library for X.509 certificate PKI. OpenVPN has supported the use of X.509
certificates for TLS connections since before 2002. The OpenSSL command-line utilities allow
certificate chain verification, outputting certificate details for inspection, build Diffie-Hellman
parameters, and even substantiating an SSL/TLS server or client instance.

I have used the s_client subcommand to fetch the full SSL certification chain for the Google website.
All three certificates are listed: the GeoTrust CA root certificate, the Google Intermediate CA (they get to
sign their own certificates), and the server certificate their intermediate CA issued. See the following
code:

author@example:~-> openssl s_client -showcerts -connect openvpn.net:443

With this command, I manually copied each certificate block and saved them to individual files,
GoogleSrv.crt (certificate 0), GoogleCA.crt (certificate 1), and GeoTrustCA.crt (certificate 2).

A certificate block looks like the following:

----- BEGIN CERTIFICATE-----
MIIDFTCCAuagAwIBAgIDErvmMAOGCSqGSIb3DQEBBQUAME4xCzAJBgNVBAYTALIVT

[snip]
NhGc6Ehmo21/uBPUR/6LW1xz/K7Z6zIZOKUXNBSqltLroxwUCEm2u+WR74M26xX1W
b8ravHNjkOR/ez4iyz0OH7V84dJzjA1BOoa+Y7mHyhD8S

----- END CERTIFICATE-----

Wireshark

Wireshark was discussed previously, but this is where that utility will demonstrate its capability. In
addition to the ability to decode and illustrate various (nearly all) protocol streams, given the private and
public keys available to a VPN admin, it can decipher SSL and TLS encrypted streams, including
OpenVPN streams.

To demonstrate the ability to decrypt a TLS session, we will use the OpenSSL s_server command to
create a generic HTTPS server. I have created a very simple web page that simply reads, This content is

http://tls.mbed.org

encrypted. I used the following command to create the server. Note that to start the daemon on port 443,
you need to use root or sudo. To avoid escalating privileges, you can use a port 1024, such as 4443.

To begin, create a certificate/key pair:

author@example:~-> openssl req -x509 -newkey rsa:2048 -keyout
key.pem -out cert.pem -days 365 -nodes

Then, we start our server:

author@example:~-> sudo openssl s_server -key key.pem -cert
cert.pem -WWW -accept 443

The s_server process will use the current working directory for its web root, so I placed our web
content there as index.html.

Tip

The preceding command used sudo because it opened a listening port on a privileged port. All TCP/UDP
ports numbered 1024 and lower are considered privileged, and they require root or administrator
permissions to open.

Now, I will start Wireshark and set it to capture traffic on the loopback interface. Because we are going
to connect to the localhost address (127.0.0.1 or : :1), the traffic will use this interface. If we connect
to the actual system IP address, then capture traffic on the real interface.

Now, open a web browser to the system. In my case, this is the local machine. The URL I will use
https://localhost/index.html, if you changed the port, add it to the URL such as
https://localhost:4443/index.html.

If all the steps mentioned earlier were performed correctly, you should have a browser window with a
simple message and a Wireshark window with approximately 25 packets captured:

& ® < localhost/index.htm! ¢ (3 M » 4

This content is encrypted.

In the packet capture, you will see some protocol data that is indicative of what is happening. We will
touch on the protocol exchanges later, but you can clearly see the TLS handshake and cipher exchange

taking place:

No. Time Source Destination Protocol Info

. 000000 ; TCP 56080 —+ https [SYN] Seq=0 Win=65..
B.000117 TCP https -+ 56080 [SYN, ACK] Seq=@ A..
.000124 TCP [ACK] Seg=1 Ack
.000130 TCP [TCP Window Update] https - 5

. 000637 TLSv1 Client Hello

p. 000649 TCP https -+ 56080 [ACK] Segq=1 Ack=21..
000717 TLSv1 Server Hello, Certificate, Serve..
0.000728 TCP 56080 - https [ACK] Seq=218 Ack=..
TLSv1 Client Key Exchange

TLSv1 Change Cipher Spec

TLSv1 Encrypted Handshake Message

TCP https - 56080 [ACK] Seq=1182 Ack..
TCP https -+ 56080 [ACK] Seq=1182 Ack..
TCP https + 56080 [ACK] Seq=1182 Ack..
TLSv1 Change Cipher Spec, Encrypted Ha..
TCP 56080 -+ https [ACK] Seq=416 Ack=..
TLSv1 Application Data

TCP https - 56088 [ACK] Seq=1241 Ack..
TLSv1 Application Data, Application Da..
TCP 56080 - https [ACK] Seq=805 Ack=..
TCP https - 56888 [FIN, ACK] Seq=147..
TCP 560808 -+ https [ACK] Seq=805 Ack=.
TCP [TCP Dup ACK 18#1] https - 56080..
TCP 56080 - https [FIN, ACK] Seq=8@5..
TCP https - 56080 [ACK] Seq=1476 Ack..

[0, I ST e

D ~J h

le]

0.007244
D, 007246
.007739
D.007758
). 008510
B.008547
B.008635
008653
P.008660
008677
B.008681
p. 008913
. 009075

=3
|

= =J

NN N

~d

o
0.0
0.0
0.
a.
Q.

0.6

.0.

NN
= ® W®

b b el el b el

. oa

> =2

- UV N]

P el b el el fed e el e e fed b e e e b e e e el el ed e
D e T T = T e e T = = |

(L B SN
;oA

The lines in the capture have a black background, indicating the transmission carried encrypted payload
data. Next, we will take the certificate and the key we created earlier and import those into Wireshark.
This will allow us to view the transaction.

Before we do that, we will examine packets 17 and 19. Both of these are labeled with the generic phrase
Application Data and contain our actual HTML. These packets are encrypted, and they examine them
by clicking on them.

By going to Preferences | Protocols | SSL, Wireshark provides a way to import the TLS key we created
earlier. On macOS X, the dialog resembles the following screenshot. You can specify the port here, but it
is optional. In my case, I simply listed the I[P 127.0.0.1 and the key file:

® ©o M SSL Decrypt

IP address Port Protocol Key File F

127.0.01 [Users/ecrist/Documents/T-Shoot OpenVPN/Ch. 1/x509/certs/TShoot_Server.key

o — L /Users/ecrist/wireshark/ssl_keys

Help Cancel “

If we go back and inspect our packets now, we can see a new tab in the payload pane. The first is labeled
Frame, and the second is Decrypted SSL data:

No. Time Source Destination Protocol Info
. 007502 TLSv1 Client Key Exchange
. 007510 TLSv1 Change Cipher Spec
p.007513 TLSv1 Finished
9.007535 TCP https - 56424 [ACK] 1182 Ack=357 Win=40793..
P.007539 TCP https - 56424 [ACK] Seq=1182 Ack=363 Win=40793..
P.0087542 TCP https - 56424 [ACK] Seg=1182 Ack=416 Win=40787..
).008112 TLSv1 Change Cipher Spec,
.008141 TCP 56424 - https [ACK] g=416 Ack=1241 Win=40704..
p.008816 GET /index.html HTTP/1.1
P.008854 5 . https - 56424 [ACK] Seq=1241 Ack=821 Win=40745..
» Frame 19: 290 bytes on wire (2320 bits), 290 bytes captured (2320 bits) on interface @
anee 48 54 54 50 2f 31 2e 30 20 32 30 30 20 6f 6b @d HTTP/1.8 200 ok.

.1
i |
.
i |
s |
o1
=1
e b
e |
o |

0010 @a 43 6f 6e 74 65 6e 74 2d 74 79 7@ 65 3a 20 74 .Content -type: t

1020 65 78 74 2f 68 74 6d 6¢c 0d @a @d @a 3c 68 74 6d ext/html<htm

weE0 bc 3e @a @9 3c 68 65 61 64 3e Ba @9 @9 3c 74 69 1>..<hea d=...<ti
74 6c 65 3e 0a 09 09 09 48 65 6¢c 6¢c 6f 21 0a @9 tle>.... Hellol!l..
@9 3c 2f 74 69 74 6c 65 3e Ba 09 3c 2f 68 65 61 .</title =..</hea
64 3e @a 09 3c 62 6f 64 79 3e Va 09 @9 3c 780 3e d>..<bod y>...<p>
54 68 69 73 20 63 6f 6e 74 65 6e 74 20 69 73 20 This con tent is
65 6e 63 72 79 70 74 65 64 2e 3c 2f 70 3e @a @9 encrypte d.</p>..
3c 2f 62 6f 64 79 3e @a 3c 2f 68 74 6d 6Cc 3e @a </body>. </html>.

Click on the second tab for packet 19, and we can actually see the decrypted page content:

<html>
<head>
<title>
Hello!
</title>
</head>
<body>
<p>This content is encrypted.</p>
</body>
</html>

Note

The ability to decrypt the OpenVPN TLS streams is significant enough that the Wireshark wiki itself has a
page specifically demonstrating this capability: https://wiki.wireshark.org/OpenVPN.

https://wiki.wireshark.org/OpenVPN

Troubleshooting basics

The concept of breaking apart a problem in any system, whether it be electronic, software, physical, or
even behavioral, is a common principle. The phrase, divide and conquer is often seen, and true to reality.

Readers of this book are likely familiar with the common light bulb. You may not realize it, but there is a
series of automatic troubleshooting steps performed.

Imagine the following scenario:

You walk into the office, many are already at work. You step into your office and flip on the light, nothing
happens. You flip the switch back and forth a couple times before sitting down and turning on the
computer in the dark.

You then pick up the handset on your Cisco IP phone, calling building maintenance. You speak with
someone at the other end, exclaiming that the bulbs are out in your office.

What just happened?

A large number of things occurred that weren't directly acknowledged. Most of these steps happened
automatically without realization:.

1. Walking into the office. Nothing is out of the ordinary.

In reality, everyone else was working. There wasn't an uncomfortable silence or notable lack of
work or exceptional amount of generalized confusion.
2. You walk in and flip the light switch in your office; more than once.

You've tried to turn on the light. After the first failure to exhibit illumination, you've automatically
tested the switch by flipping it a couple times. Sure, it is not overly scientific, but it's a general
functional test.

3. You start working at your own computer, contacting support on your VOIP phone.

Power works in your office. The computer works, and network PoE is functioning.
4. You've ascertained the only thing not working is the light in your office.

What's neat about this generic situation is many people do so without realizing it. Some have cars and do
this when it starts or doesn't start, maybe on a cold morning. Maybe after leaving the light on over night.
We need to apply this concept and method to OpenVPN or anything really.

Summary

This chapter touched on some of the most common tools used to identify and resolve configuration or
network issues within the scope of OpenVPN. Some subjects, such as regular expressions, were
identified; however, that may not be obviously useful to a novice administrator.

Some extremely powerful capabilities were also demonstrated with Wireshark's ability to decrypt SSL
streams and tcpdump able to capture packets. Although these are most useful to an experienced network
administrator, they can still be leveraged by a new or novice administrator. Having the ability to extract
troubleshooting data is most critical when seeking help from others.

Chapter 2. Common Problems

There is a fairly consistent theme within the OpenVPN support channels, IRC, the web forums, and the
mailing list. The novice users of OpenVPN generally ask the same questions. Most common issues can be
resolved by simply dutifully reading the OpenVPN manual (http://openvpn.net/man) and taking notes.
Although this book aims to inform the reader of additional techniques and tools, the man page is a
considerable wealth of knowledge, and the close scrutiny of its contents will be beneficial in the long run.

Based on questions found in IRC and on the forums, the novice OpenVPN administrator struggles most
with identifying the root cause of a problem and is generally lost with how to find that cause. The vast
majority of problems can be grouped pretty easily into a small subset of issues, often quickly realized
with initial configurations:

e Certificate problems
Incompatible tun/tap configuration settings between a server and a client
IP range conflicts with VPN and remote local LAN
Routing misconceptions
Incorrect assumptions on utility and layer 4 integration

Outside the common areas mentioned earlier, easily addressed issues, lying just beyond the OpenVPN
program influence can confound even the most experienced system administrator. Ensuring that the
operating system that the server or client is attempting to use is supported can prevent a configuration
from working, right out the gate.

In this chapter, we will cover some of the most common problems associated with OpenVPN server and
client implementations. To that end, methods for segregating various components of OpenVPN and
identifying and validating those components that are working will be covered. At the end of this chapter,
we will prioritize assorted functions, features, and processes to aid in quick problem resolution.

http://openvpn.net/man

Narrowing the focus

When your VPN fails to work the way it was expected, it's best to narrow down the cause of the problem.
In the simplest case, a VPN is used by a client wanting to talk to a resource that exists on the VPN. Having
a diagram or flow chart of your finished VPN topology, including the VPN, the server-side LAN, and
resources that will be exposed to the clients, will help rule out working components.

Here is a sample network diagram depicting a simple corporate network with an OpenVPN server. There
are a number of internal components that are inaccessible to the general Internet, an application server,
and an internal website. Externally accessible are a public website, the corporate e-mail server, and the
OpenVPN server.

The dotted lines show our protected or internal traffic, and the solid lines show general Internet routed
traffic:

= External Web Email \ Remote Worker|
Internal Web

S - . """

e .

v _." Corporate

Application ' Firewall

Server \:"

=

OpenVPN

| ? Server
Y

Local Workstation

Example network diagram used in scenario 1 and 2

Sample scenarios

The utility of the diagram mentioned earlier are best demonstrated with some useful scenarios. Having the
ability to identify a specific component of the network as a potential culprit to a problem, small or large,
is important and easiest to understand in a simple, nonproduction case.

In our following scenarios, we have a remote worker, also known as a road warrior. These users have
historically been sales staff but are increasingly becoming engineers and executives.

Scenario 1--unable to access VPN

The remote worker has reported that she is unable to connect to the VPN. She has stated that the
OpenVPN client indicates that she is connected, but she cannot fetch e-mails or see the internal corporate
website. Normal web browsing is working. Here are the questions you could ask the user:

¢ Does the remote worker have an Internet access? We can assume so because she has stated that
normal web browsing works.

e Does the client connect to the VPN server? The remote worker states that the OpenVPN client
shows that she is connected to the VPN. This, itself, isn't necessarily telling, as the client can still
have routing or other errors that will be more apparent in the logs. The simplest log check is to look
for the following in the log on the client or server side:

2016-04-10 10:11:19 Initialization Sequence Completed

e Can the remote worker ping the VPN server's internal VPN IP address? We have omitted IPs
within the diagram earlier. The VPN server will have a LAN address as well as a VPN address.
Once connected to the VPN, you can look at the tun or tap device or look in the logs. On Windows,
this would be in the normal Network Connections control panel; on a Unix system, using ifconfig
on the correct device is enough, in our case, utuni:

. author@example

author@example:~-> ifconfig utunl

utunl: flags=8@51<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1500
inet 192.168.80.2 --> 192.168.80.2 netmask Oxffffffo@

author@example:~-> ping -c 4 192.168.80.1

PING 192.168.80.1 (192.168.80.1): 56 data bytes

64 bytes from 192.168.80.1: icmp_seq=0 ttl=64 time=38.060 ms

64 bytes from 192.168.80.1: icmp_seg=1 ttl=64 time=38.601 ms

64 bytes from 192.168.80.1: icmp_seg=2 ttl=64 time=38.349 ms

64 bytes from 192.168.80.1: icmp_seg=3 ttl=64 time=38.397 ms

--- 192.168.80.1 ping statistics ---

4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 38.060/38.352/38.601/0.193 ms
author@example:~-> [

Successful ping of VPN server from the client.

We have now validated that the VPN is up and the client is connected. Troubleshooting from here passes
to other systems outside the direct control of OpenVPN. There could be a faulty rule in the firewall, or the
mail or web server could be offline.

In Chapter 4, The Log File, we will dig into the log file to ensure all aspects of the configuration were
accepted and properly configured. In later chapters, identifying, routing, and other network issues will
also be explained. For now, we have passed troubleshooting on to the corporate firewall team because
we have verified that actual connectivity to the VPN itself is functional.

Scenario 2--cannot access external web when on VPN

Our hardworking remote worker is finally able to connect to the VPN. Checking e-mails is working great,
and all the internal company web resources are available to her. Quickly, however, she realizes that
browsing websites not belonging to the company is no longer possible. She has tried some of the common
web pages, and checking her personal e-mail account also fails. Another call for support! Here are the
questions to ask the user:

¢ Does a normal function return after disconnecting? Having the client side disconnected is useful
in isolating the issue to the local LAN. If the problem goes away, there is a good chance that some
configuration property is the cause of the issue.

¢ Does the issue reoccur once reconnected to the VPN? Once the VPN connection has been re-
established, test that the failure case has returned. If so, we can assign some blame to the VPN as the
cause of the issue.

¢ What route is the Internet-bound traffic taking? A common option used by OpenVPN
administrators is to route all traffic through the VPN (see the option - -redirect-gateway).

Take the following diagram into consideration. We have the same corporate network we had earlier, with
some external resources, a web server and a personal e-mail server. Without the - -redirect-gateway
option, the traffic flows might resemble the lines in this diagram:

External Web

b

S
o

W

,

Internal Web %, Normal Traffic Flow

oy
Internet

Corporate
Firewall

LAl Remote Worker

v

E
S

Application
Server

OpenVPN
Server

Local Workstation

Normal Internet-bound traffic flow

When the - -redirect-gateway option is added, the the web traffic is also routed through the VPN
gateway. Through finer, more specific routing table entries, the VPN effectively overrides the client's
default gateway, causing the path of Internet-bound traffic to flow from the client, to the VPN server, and
back out to the VPN server's default gateway.

If the gateway isn't configured correctly and the VPN is configured to route all traffic, including Internet-
bound traffic, it could be blocked. Some issues could include incorrect Network Address Translation
(NAT) or firewall rules. In this scenario, the LAN resources are functional, but Internet browsing from
the client would be dysfunctional.

The following diagram shows traffic passing to the VPN server which is sort of a dead end there. Either
the kernel of the operating system doesn't know what to do with it, or traffic is being blocked by a
firewall:

External Web
Email
3 3
3

Remote Worker
—redirect-gateway Traffic Flow-

Internal Web
Internet
S
. { Corporate
Application i Firewall
Server
OpenVPN

Server

Local Workstation

Internet traffic routed to VPN server, blocked at server

If NAT is properly configured, and the firewall rules necessary are defined, a traffic flow should progress
froma VPN client to a VPN server, and back out to the Internet. Based on your requirements and
configuration, the corporate firewall may come into play, both on inbound and outbound traffic or only on
one leg.

Note that the following diagram shows the VPN connection passing through the firewall for both the
inbound VPN connection and the outbound Internet traffic. This is subject to the overall network
configuration and is demonstrated as a typical example. Please don't take this too literally:

External Web

Email

W e £

Remote Worker

s
Internal Web —redirect-gateway Traffic Fln'-y,.*"

—/r

Internet

W e £

. Corporate
Application i Firewall

Server

OpenVPN
Server

&

Local Workstation

Internet traffic routed to a VPN server: successful flow to Internet

This second scenario was much easier to troubleshoot with the aid of diagrams. Even if you're just
creating a VPN for your home network or a quick impromptu VPN at work, a diagram or even a quick
sketch will help to identify any problems that may arise.

Network diagrams and flowcharts can be quickly and easily created with a variety of software and tools.
Both Microesoft Visio and Gliffy (https://www.gliffy.com) are paid options; Visio is used for the majority
of diagrams in this book. A good free option is Dia (http://dia-installer.de).

I attempted to use Gliffy for the diagrams in the book, initially. However, I found that transparency,
connection curves, and image setting were much more difficult or unsupported. Overall, it's a good tool,
and many of my difficulties were related to some of the constraints I had to overcome authoring this book.

https://www.gliffy.com
http://dia-installer.de

Suspecting recent changes

Once a VPN is up and running successfully, it's a good practice to document the configuration of all
aspects. This should include kernel changes such as sysct1, compiled options, network interface values,
firewall rules, and routing tables. Having a flow chart of your authentication scheme is also useful.

Any time a change is made to any of the components of the VPN, be sure to update your documentation
and keep copies of the old versions. Quite often, a seemingly innocuous change will prove to be the
culprit when there is a later failure. Solid documentation will aid in identifying what, specifically,
changes from your working state to your non-working state.

One specific example from IRC involved a long time idler who is relatively knowledgeable with
OpenVPN and routinely helps other users. This user had a working OpenVPN setup with Amazon Web
Services (AWS) and switched to another provider, but both companies provided Red Hat 6 VMs. The
existing configuration files, certificate, and key would be copied to the new host. The only change was to
be the external IP address of the new VM.

I worked with this user for hours over the course of a few days analyzing firewall rules, configuration,
network settings, to no avail. Finally, another user was following our dialogue and poked at the new
provider's website and chimed in, Oh, they use OpenVZ. Did they grant your VM tun/tap access?

Sure enough, the user was able to log in to the support portal to request the device access and the VPN
started working.

Supported operating systems

Arguably, the easiest thing to resolve is identifying an operating system that has proper support for
OpenVPN. If the tun or tap device is not supported, it quickly rules out OpenVPN or limits the specific
features of OpenVPN, but is often overlooked. Both iOS (all versions as of this writing) and Android
(also, all versions as of this writing) do not support the tap device.

There are other operating systems that don't support virtualized network devices at all. FreeBSD jails, for
example, don't support the tun or tap devices without some significant configuration and startup tricks.
Many embedded operating systems, generally on routers and switches, do not fully support OpenVPN.
Even if your platform of choice claims to support the virtual network devices, it's best to do some digging
to ensure that OpenVPN runs reliably.

Embedded devices

There is a long list of embedded devices that support OpenVPN. Snom VOIP phones have the ability to
support OpenVPN for secure telephony

(http://wiki.snom.com/Networking/Virtual Private_Network (VPN)) using a custom firmware available
on the Snom website. Some off-the-shelf (OTS) home routers, such as Asus RT-AC5300, support
OpenVPN right out of the box:

=
&

® ® <] O mE e W T T TSN RS T R (5 (4]

ASUS Wireless Router RT-AC5300 - VPN Server | ==
/iSUS RT-AC5300 Logout Reboot English

TeT
, " Quick Internet Setup
VPN Server VPN Client

General
VPN Server - OpenVPN PPTP
Network Map
The wireless router currently uses a private WAN IP address (192.168.x.x, 10.x.x.x, or 172.16.x.x)¢ease configure DDNS
Guest Network service before starting the VPN server.
= - - 'g

Enable VPN Server

OpenVPN Configuration Tab

Adaptive QoS

USB Application

AiCloud 2.0

Advanced Settings

Many other router firmware packages support OpenVPN. OpenWrt (https://openwrt.org), DD-WRT

(http://www.dd-wrt.comy/site/index), and Tomato Firmware (http://www.polarcloud.com/tomato) are
likely the most commonly known. These firmware packages fully support OpenVPN and, most

importantly, the required virtual networking devices.

When evaluating an embedded firmware or platform, make certain that it supports either the tap or tun
virtual network devices. The latter is most important, as (you'll find out later) it is the most common, and
correct, device to use. Without one or the other, you can safely rule out OS.

Most of these systems provide a web interface to help configure the OpenVPN server, often with a limited

http://wiki.snom.com/Networking/Virtual_Private_Network_(VPN)
https://openwrt.org
http://www.dd-wrt.com/site/index
http://www.polarcloud.com/tomato

feature set. The disadvantage with these is that some advanced features are either missing entirely or
confusing to set up. For the best troubleshooting and configuration experience, I recommend you to find
some way to access the underlying text configuration or at a minimum, the command-line arguments
passed on execution.

OpenVPN is a unique protocol in a family of SSL-based VPNs. OpenVPN will not work with other
protocols including other SSL VPNs, such as Cisco's AnyConnect or non-SSL-based VPN protocols such
as IPSec, Point-to-Point Tunneling Protocol (PPTP), or others.

Semi-embedded systems

There is a class of systems that I have termed semi-embedded. These systems run a firmware that resides
on a relatively normal PC or computer system, but is highly tailored to a specific use. A couple of these
systems including FreeNAS (http://freenas.org), an open source network filer, and pfSense
(http://pfsense.org), an open source firewall and network gateway device, have OpenVPN plugins or
modules. Some additional systems that support OpenVPN in this category, both open source and closed,
are:

ReadyNAS (via external package): http://readynas.com
TrueNAS (based on FreeNAS, similar packages work): https://www.ixsystems.com/truenas/

Synolgoy: https://www.synology.com/en-us/
QNAP: https://www.gnap.com/

At the time of writing this, these systems support OpenVPN. It's important to note that these systems can
pull or remove support at any time, and may not support OpenVPN in specific use case scenarios (lack of
support for tap is common).

An administrator should evaluate if their use, either with a private network, or with a particular version
of firmware, supports the use of the correct virtual adapter or OpenVPN software package.

The Transport Layer Security (TLS) list of supported ciphers will vary on these embedded devices as
well. Ciphers using Advanced Encryption Standard (AES) may perform well on desktop systems, but
will show a performance bottleneck over other ciphers on some embedded systems. Most modern
processors support AES New Instruction (AES-NI), which offloads AES calculations to a subprocessor
specifically designed for that workload. Embedded systems tend to be low power and purpose built, so
are likely to lack this feature. Cipher differences will be further discussed in Chapter 8, Performance.

http://freenas.org
http://pfsense.org
http://readynas.com
https://www.ixsystems.com/truenas/
https://www.synology.com/en-us/
https://www.qnap.com/

Virtual servers

Virtual private servers (VPSs) are likely the most common point of pain for an aspiring OpenVPN
administrator. Particularly with Linux, there is a plethora of environments in which a Linux system can be
deployed virtually including Kernel-based Virtual Machine (KVM), Quick EMUlator (QEMU), and
OpenVZ (Virtuozzo Containers).

OpenVZ is particularly difficult to configure. When VPS is purchased from a larger provider, cooperation
is required from that provider. With OpenVZ, the container needs to be specifically granted access to the
tun and tap adapters. With FreeBSD jails, the routing of VPN traffic actually takes place outside the jail
in the host kernel.

Note
OpenVZ is a very popular virtualization technology for Linux with various hosting providers. The

OpenVZ wiki has a good write-up on working with OpenVPN and the changes needed to make it work
at http://wiki.openvz.org/VPN_via_the TUN/TAP_device.

http://wiki.openvz.org/VPN_via_the_TUN/TAP_device

IP addresses

It is important to choose an IP address range that does not have or has goods odds against, conflicting with
remote client address pools. If VPN uses IP addresses from a range shared by a remote client address
pool, packets meant for the client LAN may attempt to traverse the VPN to the wrong system or to a
system that doesn't exist at all. Alternatively, the traffic may never leave the client LAN and be routed to a
local resource, instead.

The following diagram illustrates a fairly severe case of what I'm describing. There are various resources
identified with their associated LAN address on both sides.

On the left, there is a network where the VPN server resides. The LAN on the server network uses the
10.4.0.0/24 subnet. For the VPN, the 10.8.0.0/24 subnet is used. This will facilitate VPN traffic, and
a route will be pushed for the server-side LAN subnet. There are two internal servers for which the VPN
was created. The first is an application server using LAN IP 10.4.0.76 and an internal web server using
IP10.4.0.33.

On the right side of the diagram, we show the client network. The client network also uses the
10.4.0.0/24 subnet. A laptop is on the network with a VPN address of 16.0.8.6 and a LAN address of
10.4.0.76. There is also a local printer with IP 16.4.0.33:

Corporate LAN
LAN Net: 10.4.0.0/24
VPN Met: 10.8.0.0/24

Internal Web
LAN: 10,4.0.33

VPN: 10.8.0.6

.t OVPN

K Client LAN
- Corporate

LAN Net: 10.4.0.0/24
. Firewall VPN Net: 10.8.0.0/24
LAN: 10.4.0.17
VPN: 10.8.0.1

OpenVPN
Server

LAN: 10.4.0.21

Network diagram showing IP conflicts between network segments

There are quite a few problems with this setup. Generally, these can all be resolved by changing one IP
range or the other. If the VPN server pushes a route for the 10.4.0.0/24 subnet, the remote client will
lose its connection to all local resources, such as the printer, but also it's a default gateway. Once the
default gateway is overridden, the client will drop the VPN connection, beginning a vicious cycle of

connecting, dropping, and reconnecting.

If the VPN server, instead, pushes the - -redirect-gateway directive with def 1 arguments, then the
client's local LAN and Internet routing will be overridden, but the default gateway of the LAN will be
preserved. This prevents the reconnect cycle, but will render the local printer unusable.

Another solution would be to translate all of the corporate resource to VPN range IPs. It involves creating
a mapping from a VPN address to the remote corporate LAN address. This allows the VPN clients to use
VPN addresses for all remote services, negating problems with IP conflict.

Using OpenBSD's pf syntax, all of the corporate resources have been NATed to VPN IPs here:

PF NAT rules for corporate resources

int_web = 10.4.0.33
int_app = 10.4.0.76
vpn_web = 10.8.0.200
vpn_app = 10.8.0.201

pass on eth® from $int_web to any binat-to $vpn_web
pass on eth® from $int_app to any binat-to $vpn_app

Tip

While I prefer the OpenBSD packet filter, many users will be most familiar with the Linux iptables. Karl
Rupp has a detailed write-up of iptables on Linux relating to NAT. Rather than rehashing his content,

check it out at http://www.karlrupp.net/en/computer/nat_tutorial!

Additional work would be needed for the solution to fully function. Pushing custom DNS servers with
VPN-specific DNS views would allow VPN clients to resolve http://internal.example.org to
10.8.0.200 instead of the normal 10.4.0.33, for example. The NAT rules allow the traffic to flow from
the VPN to the internal corporate network without having to push the corporate network subnet to the VPN
clients.

Fortunately, there are a lot of options out there. The Internet Engineering Task Force (IETF)

at http://ietf.org has defined a Request For Comments (RFC), RFC 1918
(https://www.ietf.org/rfc/rfc1918.txt). For IPv4, this RFC clearly defines the IP ranges that should be
used for private network subnets, and there is a relatively large set of subnets defined:

® 10.0.0.0 - 10.255.255.255 (10/8 prefix)
® 192.168.0.0-192.168.255.255 (192.168/16 prefix)
® 172.16.0.0 - 172.31.255.255 (172.16/12 prefix)

Of the preceding three groups, there has been a trend in utilization that can be easily worked around in
individual deployments. This is not a hard and fast rule or regulation. Any network administrator can
define whatever subnets they chose:

e 10.0.0.0: Used primarily on large corporate networks for the LAN.

e 192.168.0.0: Home and consumer routers, specifically 192.168.0.0/24 and 192.168.1.0/24.
The remainder of the /16 is up for grabs!

e 172.16.0.0: Corporations typically use this for DMZs and VPN subnet ranges.

http://www.karlrupp.net/en/computer/nat_tutorial
http://ietf.org
https://www.ietf.org/rfc/rfc1918.txt

If we convert our client-side LAN range to the common 192.168.0.0/24 subnet, we find a very different
traffic path. Both servers on the VPN side have a clear route and path from the client:

LAN: 192.168.0,33
Remote Worker

LAN: 192.168.0.76
VPN: 10.8.0.6

Corporate LAN
LAN Net: 10.4.0.0/24
VPN Net: 10.8.0.0/24

Internal Web
LAN: 10.4.0.33

S
o
LAN: 10.4.0.76 |& Client LAN
Corporate LAN Net: 192.168.0.0/24
Application Firewall VPN Net: 10.8.0.0/24

Server

‘ LAN: 10.4.0.17
WPN: 10.8.0.1

OpenVPN

Server

Local Workstation
LAN: 10.4.0.21

Tip

There is a similar RFC for IPv6 private address ranges, RFC 4193. You can read more details about it on

the IETF website: https://tools.ietf.org/html/rfc4193

The OpenVPN HOWTO (https://openvpn.net/howto) uses the 10.8.0.0/24 network in the examples
presented. This is a somewhat random subnet within the 10/8 class-a subnet, but there is a chance, with
large corporations, that this will conflict.

There is an even better chance, however, that this will remain unused for most home users. Ensure that
your VPN IP range selection is thought out and properly engineered with regard to the likely client
networks, and the known server-side network.

Setting up a VPN at home, it is recommended to avoid the 192.168.0.6/24 and 192.168.1.0/24 subnet
ranges. These two are most common on home routers as the default. While it will work fine from remote
offices, connecting from other routers with these default configurations will result in conflicting address
space.

Many corporate networks use 10.0.0.0/8 or some subnets within that range. For this reason, it is also a
good idea to avoid these addresses. It seems to be common to use 172.16.0.0/12 for VPNs and DMZs
in corporate environments, so it's likely safe to use this range for your own VPN as well.

https://tools.ietf.org/html/rfc4193
https://openvpn.net/howto

Firewalls

Incorrectly configured firewalls are one of the most prevalent problem areas, particularly for new users.
Experienced users are also apt for misunderstanding how firewall rules apply to OpenVPN routed
packets. In the past, firewalls were relatively monolithic devices at or near a network edge. Today,
however, firewalls exist on client devices, network devices, all along the path of a network packet. Any
switch in the path can have ACLs preventing or permitting traffic. This can include both the client- and
server-side LANs. The OpenVPN likely has a firewall element for translation or routing traffic, and also
for preventing or permitting said traffic.

The monolithic firewall also still exists and can be a pain point when troubleshooting traffic flow. The
current high-end firewalls also permit deep packet inspection, SSL decryption, and what some vendors
term zero-day patching. The latter generally requires SSL decryption be configured and permits the
firewall vendor to detect vulnerable applications or protocols and modify the traffic real time. In my
experience with both Palo Alto Networks and Sophos products, OpenVPN will not function through these
decryption profiles.

Note

The SSL decryption capabilities will generally work fine for normal web browsing traffic, but other
applications that use TLS will break when they pass through such a firewall with this feature enabled.
Apart from OpenVPN, both Bomgar and Dell KACE are also functionally broken when passing through
one of the firewalls.

The simplest method for troubleshooting firewall rules is to disable filtering for your VPN traffic and
work to re-enable rules until the problem filter has been identified.

Duplicate client certificates

By default, OpenVPN expects each remote client to connect using a unique certificate for identification
and encryption purposes. The common name (CN), is used to generate configuration options, identify a
persistent IP (- -ifconfig-pool-persist), and CCD (--client-config-dir) entries. In addition,
startup scripts may use the CN to generate dynamic routes, firewall rules, and other access policies.

For the majority of general road-warriors, special routing, and firewall rules are not the norm. In this
scenario, the user connects to the VPN, is given an IP address from the server, and they will then have
access to the resources of the corporate network. More advanced configurations may provide differing
pushed routes or IP assignments in varying subnets.

Overcomplication

It is important to have the intended use of your VPN well defined before starting your troubleshooting
endeavors. Understanding how the system is meant to be accessed and used will rule out unrelated
problems quickly. I have encountered a plethora of aspiring administrators with gross misconceptions for
how OpenVPN should behave, who are pulling their hair out in frustration.

You might want to start simple and get a basic VPN operational before rolling in all the custom routes,
authentication mechanisms, reporting, and so on. Following a simple how to and reading the man pages
will get you off on the right foot.

Break up complicated configurations into smaller components when attempting to identify the root cause
of a failure. Analyze general network settings and deployed configurations first, then move on to more
complex components. Assigning static IPs, client-specific configuration components, and firewall rules
can come second. As you progress through your setup and verify that a given element is functioning as
desired, add it back in to the mix.

Summary

Some of the most common configuration and deployment scenarios were covered in this chapter. In
addition to identifying specific potential problems, we've demonstrated how to properly document your
OpenVPN network and use diagrams for easier troubleshooting once problems occur. Preferably, identify
the entire installation base and your configuration components prior to publishing your VPN to your
customers or clients.

We have also helped to identify firewalls, IP address ranges, and operating system incompatibilities as
potential problem areas.

Chapter 3. Installing OpenVPN

There is a multitude of clients available to connect to an OpenVPN server. This chapter helps the
administrator troubleshoot client installation errors. We will cover both the open source clients as well as
a few commercial alternatives. This chapter will cover these topics and help the administrator resolve

common problems.

Common installation problems

OpenVPN installation problems can be classified into a few major categories: adapter or driver
problems, lack of necessary permissions, and broken installers. It is also possible that the existing
packages for your chosen operating system either do not exist or are greatly out of date.

Compiling OpenVPN

On Linux and Unix systems, compiling from source can sometimes be the only way to get OpenVPN
installed. There are packages available for the majority of operating system releases, but there are custom
systems (Raspberry Pi, BeagleBone, OpenWrt, and so on) that may not have the latest version of
OpenVPN available. Given a proper development environment, the OpenVPN installation should be
pretty straightforward.

The required development environment basically consists of the following software components:

e autoconf (http://www.gnu.org/software/autoconf/)
e automake (http://www.gnu.org/software/automake/)

e C code compilers, such as gcc, clang, msvc, and cc, should all work

To demonstrate a software built on a nontypical system, we will compile the OpenVPN 2.3.11 source
code on Raspbian, which is a Debian distribution compiled for the Raspberry Pi. In our case, we're using
Raspberry Pi B+.

First, download the source code. Links for downloading can be found on the OpenVPN community web
page at https://openvpn.net/index.php/open-source/downloads.html. Once downloaded, extract the GZIP-
compressed . tar file:

@® pi@raspberrypi: ~

root@raspberrypi:/home/pi# curl -o openvpn-2.3.11.tar.gz https://swupdate.openvpn.org/commun
ity/releases/openvpn-2.3.11.tar.gz

% Total % Received ¥ Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 1213k 100 1213k) 0 1220k Q@ --:1--1-- --1--1-- -—-:1--:1-- 1296k

root@raspberrypi:/home/pi# tar -xzf openvpn-2.3.11.tar.gz
root@raspberrypi:/home/pi# ls openvpn-2.3.11

aclocal .m4 config-msvc-version.h.in depcomp Makefile.am README

AUTHORS config.sub distro Makefile.in README . IPv6
build configure doc missing README . polarssl
Changelog configure.ac include msvc-build.bat sample
compat.m4 config-version.h.in INSTALL msvc-dev.bat src

compile contrib install-sh msvc-env.bat tests
config.guess COPYING INSTALL-win32.txt NEWS TODO.IPv6
config.h.in COPYRIGHT.GPL ltmain.sh openvpn.sln version.m4
config-msvc.h debug m4 PORTS version.sh.in

root@raspberrypi:/home/pi# |

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
https://openvpn.net/index.php/open-source/downloads.html

OpenVPN source download and extraction

Before open source software packaging was so common, software was downloaded in source form. To
install these software distributions, it needed to be compiled. Tools like those mentioned earlier
(autoconf and automake) made this process much easier by breaking the process down into the three
steps, namely using configure, make, and make install.

However, in the case of our Raspbian OpenVPN installation, we discover that the . /configure step fails
due to missing SSL libraries (see the second to the last line of output in the screenshot here):

@ e

pi@raspberrypi: ~

checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking

configure: error:

for net/if_tun.h... no
net/tun/if_tun.h usability... no
net/tun/if_tun.h presence... no
for net/tun/if_tun.h... no
linux/if_tun.h usability...
linux/if_tun.h presence...
for linux/if_tun.h... yes
tap-windows.h usability... no
tap-windows.h presence... no
for tap-windows.h... no

yes
yes

whether TUNSETPERSIST is declared...

setcon in -lselinux... no
pam_start in -lpam... no
PKCS11_HELPER... no
OPENSSL_CRYPTO... no

RSA_new in -lcrypto... no
OPENSSL_SSL... no
SSL_CTX_new in -1lssl... no
ssl_init in -lpolarssl... no

for
for
for
for
for
for
for
for
for
for
for

git checkout... no

aes_crypt_cbc in -1lpolarssl...
lzolx_1_15_compress in -11zo2...
lzolx_1_15_compress in -1llzo...

yes

no

no
no

ssl is required but misging
root@raspberrypi:/home/pi/openvpn-2.3.11# |

/configure failure at the end - ssl libraries are missing

OpenSSL has been the de facto standard of SSL libraries for quite a few years, but a relative new comer
is also supported by OpenVPN: mbed TLS.

Here, we back up one directory, download the mbed TLS source package, extract, and compile. A simple
make command is all that is needed to build mbed TLS once the software is extracted. Note that running
compile ona small embedded system such as Raspberry Pi will take considerably longer than it would
on a more robust desktop or server system. In our test case, the mbed TLS (PolarSSL) make process took
approximately 20 minutes.

Note
PolarSSL changed their name to mbed TLS in 2016 when ARM acquired the project. OpenVPN 2.3.11

and earlier need to use the older 1.3.x libraries, which are still named PolarSSL. The name and
references were changed in 2.3.12 and later (2.3-master, as of this writing).

pi@raspberrypi: ~

root@raspberrypi:/home/pi/openvpn-2.3.11# cd ..
root@raspberrypi:/home/pi# curl -o polarssl-1.3.9.tgz https://tls.mbed.org/download/polarss
1-1.3.9-gpl.tgz

% Total % Received ¥ Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 1700k 100 1700k) 0 273k @ 0:00:06 0:00:06 --:--:-- 364k

root@raspberrypi:/home/pi# tar -xzf polarssl-1.3.9.tgz
root@raspberrypi:/home/pi# cd polarssl-1.3.9
root@raspberrypi:/home/pi/polarssl-1.3.9# 1s

Changelog configs doxygen 1library Makefile README.rst tests
(Makelists.txt DartConfiguration.tcl 1include LICENSE programs scripts visualc
root@raspberrypi:/home/pi/polarssl-1.3.9# make

CC ges.c

cC aesni.c

Download and extraction of the mbed TLS software bundle

The default SSL library for OpenVPN is OpenSSL, so using mbed TLS requires an option for configure.
Note the configure command in the associated option in the following screenshot. For a full list of
configure options, run configure with -

-help:

®@ " @ pi@raspberrypi: ~
configure: creating ./config.status

config.status: creating version.sh

config.status: creating Makefile

config.status: creating build/Makefile

config.status: creating build/msvc/Makefile
config.status: creating build/msvc/msvc-generate/Makefile
config.status: creating distro/Makefile

config.status: creating distro/rpm/Makefile
config.status: creating distro/rpm/openvpn.spec
config.status: creating include/Makefile
config.status: creating src/Makefile

config.status: creating src/compat/Makefile
config.status: creating src/openvpn/Makefile
config.status: creating src/openvpnserv/Makefile
config.status: creating src/plugins/Makefile
config.status: creating src/plugins/auth-pam/Makefile
config.status: creating src/plugins/down-root/Makefile
config.status: creating tests/Makefile

config.status: creating sample/Makefile

config.status: creating doc/Makefile

config.status: creating tests/t_client.sh
config.status: creating config.h

config.status: executing depfiles commands
config.status: executing libtool commands
root@raspberrypi:/home/pi/openvpn-2.3.11# |

The configuration is complete without additional errors

After installing the PolarSSL libraries, I needed to export two environment variables, LDFLAGS and
CFLAGS, to tell configure where to find the new libraries. Once done, I was able to successfully

complete the configure operation:

root@raspberrypi:/home/pi/openvpn-2.3.11# export CFLAGS=
-I/home/pi/polarssl-1.3.9/include root@raspberrypi:/home/pi/
openvpn-2.3.11# export LDFLAGS=-L/home/pi/polarssl-1.3.9/1library
root@raspberrypi:/home/pi/openvpn-2.3.11# ./configure --with-crypto
-library=polarssl --disable-1zo

Note

Two additional libraries missing were found on our Raspbian installation besides the SSL libraries. We
opted to disable the LZO compression algorithm for expediency, but needed to install the 1ibpam-dev
package using apt-get:

apt-get install libpam-dev

Now that the build environment has been configured, thanks to autoconf, the OpenVPN software can be
compiled and installed. It is easiest to do this in a single command operation:
root@raspberrypi:/home/pi/openvpn-2.3.11# make && make install

The final screenshot in this section shows a successful software-build and installation. The which Unix

command shows that the openvpn binary has been installed in /usr/local/bin/. Running openvpn with
the - -version option shows the build date, compile time options, and supporting libraries.

Most notably, we've built OpenVPN with the PolarSSL 1.3.9 libraries on ARM:

. @® pi@raspberrypi: ~

/usr/bin/install -c -m 644 README README.IPv6 README.polarssl COPYRIGHT.GPL COPYING '/usr/1
ocal/share/doc/openvpn’

make[3]: Leaving directory '/home/pi/openvpn-2.3.11"

make[2]: Leaving directory '/home/pi/openvpn-2.3.11"
make[1]: Leaving directory '/home/pi/openvpn-2.3.11"
-root@raspberrypi:/home/pi/openvpn-2.3.11# which openvpn
/usr/local/sbin/openvpn
‘root@raspberrypi:/home/pi/openvpn-2.3.11# openvpn --version |
OpenVPN 2.3.11 armv6l-unknown-linux-gnueabihf [SSL (PolarSSL)] [EPOLL] [MH] [IPv6] built on
Jun 29 2016
library versions: PolarSSL 1.3.9
Originally developed by James Yonan
Copyright (C) 2002-2010 OpenVPN Technologies, Inc. <sales@openvpn.net>
Compile time defines: enable_crypto=yes enable_crypto_ofb_cfb=yes enable_debug=yes enable_de
f_auth=yes enable_dlopen=unknown enable_dlopen_self=unknown enable_dlopen_self_static=unknow
n enable_fast_install=yes enable_fragment=yes enable_http_proxy=yes enable_iproute2=no enabl
e_libtool_lock=yes enable_lzo=no enable_lzo_stub=no enable_management=yes enable_multi=yes e
nable_multihome=yes enable_pam_dlopen=no enable_pedantic=no enable_pf=yes enable_pkcsll=no e
nable_plugin_auth_pam=yes enable_plugin_down_root=yes enable_plugins=yes enable_port_share=y
es enable_selinux=no enable_server=yes enable_shared=yes enable_shared_with_static_runtimes=
no enable_small=no enable_socks=yes enable_ssl=yes enable_static=yes enable_strict=no enable
_strict_options=no enable_systemd=no enable_win32_dll=yes enable_x509_alt_username=no with_a
ix_soname=aix with_crypto_library=polarssl with_gnu_ld=yes with_mem_check=no with_plugindir=
'$(libdir)/openvpn/plugins' with_sysroot=no
root@raspberrypi:/home/pi/openvpn-2.3.11# [

Successful build, OpenVPN 2.3.11 with PolarSSL 1.3.9 built on June 29, 2016 on ARM architecture

Packages and installers

The OpenVPN project members release and maintain a few operating system packages directly, namely
Windows, Debian, Ubuntu, and FreeBSD. All other packages or installers are generated and maintained
by third-party developers, not generally associated with the OpenVPN development team.

Build-errors do occur, even with the official installers and software packages. These generally occur
when changes are made to the project-build structure and are quickly identified by the developers or
reported by users. A fix for such issues is usually published within a couple of days or less.

The advantage of the official packages is that the developers of OpenVPN are responsible for the
installers. They will know about configure and build option changes, so they will be able to adjust the
package build accordingly. In addition, the common support flow from end users will go to the OpenVPN
developers first, who can then make the corrections.

When the installer or package is not directly maintained by an OpenVPN developer, the flow of support
can be a bit disjointed from the user base. As mentioned earlier, the users of OpenVPN will first reach out
to the developer team when an issue is identified. Whether it be via IRC, the e-mail list, or the forums,
correcting the broken component may not be possible due to the lack of repository access or unfamiliarity
with the given distribution's packaging methods or policies. The general advice with these situations is to
contact the package maintainer directly. This isn't to say third-party packages are bad, but there are just
extra steps required when the support is needed.

Linux and other OS distributions will test their packages or installers prior to release. It's usually a safe
assumption that these released versions will be functional. The primary complaint seen in the support
channels is about out of date software packages. The OpenVPN project covers a wide swathe of different
operating systems, which leaves some less common ones to fend for their own installers. In these cases,
our suggestion is to simply build from source.

The advantages of precompiled installers

There are a few notable advantages of using precompiled installers or packages. The key advantage is the
startup and shutdown routines. OpenVPN, for the near future, will be capable of starting with a fairly
simple command line akin to the screenshot here, even on Windows, which is notoriously graphical-
interface centric:

® OO0 author@example

author@example:~-> openvpn --config /path/to/client.conf

The command-line example of OpenVPN startup using a configuration file

This startup meets the most basic needs, but does not integrate well with modern operating systems. The

upcoming 2.4 OpenVPN release is purported to support an OpenVPN service that would allow non-
administrators to start OpenVPN sessions without escalating privileges. This would be a multifaceted
approach to loading a daemon, and interfacing with that daemon, including authentication and
authorization, and triggering the startup of a given profile. This is far more complex than the simple
command-line example.

Red Hat Linux (and others) are supporting a centralized system control daemon known as systemd. With
systemd, a unit file defines a service, and systemd will start or stop a given service based on the
properties within the service's unit file.

The added complication of these newer mechanisms makes the bar to entry much higher, resulting in an
increased likelihood of errors and failed startup or shutdown. While newer and more complex, if you
stick to the OS-distributed release, these complexities will be handled for you. Deviating from that
release to the base source distribution may result in some headache. The disadvantage is many OS
package releases lag behind the project release cycle, sometimes, by a month or longer.

Driver installation

OpenVPN uses virtual network adapters to create point-to-point tunnels with remote systems. The tun
and tap adapters are used, based on what type of network traffic is required to flow across the network.
Layer 2 (data link) traffic in the OSI model requires the tap adapter. This is useful for various routing
protocols and applications or games that depend on broadcast traffic. More commonly, layer 3 (network)
traffic is all that is required, which uses the tun adapter.

Note

Further details about the Open Systems Interconnection (OSI) model can be found at Wikipedia
(https://en.wikipedia.org/wiki/OSI_model) or the International Organization for Standardization

(http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip)

websites.

On the majority of Linux and Unix platforms, there will be two distinct virtual network adapters, tun and
tap. Linux aliases the bridging Ethernet pseudo adapter to tap and bond, with a distinct tun kernel
module. FreeBSD, on the other hand, includes both the tun and tap functionality in the if_tap. ko kernel
module.

On Windows, the OpenVPN project provides the TAP-Windows virtual network adapter. The OpenVPN
GUI installer will normally install the driver for you, but the installer is available separately. The driver
is available in two forms: NDIS 5 (TAP-Windows, version 9.9.x) for Windows XP and NDIS 6 (TAP-
Windows6, 9.21.x) for Windows Vista and higher.

If more than a single OpenVPN instance will be running at once, an additional TAP-Windows adapter
device will need to be installed. Fortunately, OpenVPN provides the tools needed to create additional
interfaces. There are two distinct methods to install additional virtual network adapters:

e The tapinstall.exe utility
e The Control Panel new hardware wizard

The first method involves using the tapinstall.exe utility provided with current versions of OpenVPN.
The binary can be found in C:\Program Files\TAP-Windows\bin. This tool can be used to query what
adapters are currently installed, as well as adding or removing devices:

https://en.wikipedia.org/wiki/OSI_model
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip

C:\Program Files\TAP-Windows\bin>..\..\OpenvPN\bin\openvpn.exe --show-adapters
Available TAP-WIN32 adapters [name, GUID]:)
"Local Area Connection 2' {2878976F-EADO-4F7F-BF26-6ADB609C519A}

C:\Program Files\TAP-Windows\bin>tapinstall.exe hwids tap*
ROOT\NET\ 0001
Name: TAP-Windows Adapter V9
Hardware IDs:
tap0901
1 matching device(s) found.

C:\Program Files\TAP-Windows\bin>tapinstall.exe install ..\driver\OemVista.inf tap0901
Device node created. Install is complete when drivers are installed...

Updating drivers for tap0901 from C:\Program Files\TAP-Windows\driver\OemvVista.inf.
Drivers installed successfully.

C:\Program Files\TAP-Windows\bin>tapinstall.exe hwids tap*
ROOT\NET\0005
Name: TAP-Windows Adapter V9 #2
Hardware IDs:
tap0901
ROOT\NET\ 0001
Name: TAP-Windows Adapter V9
Hardware IDs:
tap0901
2 matching device(s) found.

C:\Program Files\TAP-Windows\bin>tapinstall.exe remove tap0901
ROOTY\NET'\ 0005 : Removed
ROOT\NET\0001 : Removed
2 device(s) were removed.

C:\Program Files\TAP-Windows\bin>tapinstall.exe hwids tap*
No matching devices found.

C:\Program Files\TAP-Windows\bin>tapinstall.exe install ..\driver\OemVista.inf tap0901
Device node created. Install is complete when drivers are installed...

Updating drivers for tap0901 from C:\Program Files\TAP-Windows\driver\OemVista.inf.
Drivers installed successfully.

C:\Program Files\TAP-Windows\bin>tapinstall.exe hwids foo*
ROOT\NET\0004
Hardware IDs:
foo
1 matching device(s) found.

C:\Program Files\TAP-Windows\bin>_

The preceding screenshot shows a full cycle using the utility, displaying the list of adapters (just one),
installing an additional adapter, removing all adapters, and reinstalling a new adapter. More information
about the tool can be found with the /? command-line option or by going to the TAP-Windows adapter

wiki page at https://community.openvpn.net/openvpn/wiki/ManagingWindows TAPDrivers.

The device drivers for the TAP-Windows adapter reside in the C:\Program Files\TAP-
windows\driver directory. This is where you should point the new hardware wizard when attempting
option two, mentioned earlier.

https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers

I recommend using this second method, particularly, if you are not comfortable on the Windows command
line. Also, the tapinstall.exe utility is fairly indiscriminate when removing the adapter: it's all or
nothing. The Device Manager option easily allows you to add or remove specific adapters. This
becomes more important once you become dependent on specifically named adapters for more complex
routing scenarios.

Alternative clients

From an open source project perspective, the only supported application is a build of the open source
project code. In practice, however, there are a multitude of exceedingly useful alternative builds. Some of
these builds are for commercial VPN providers, and support not just the OpenVPN protocol, but may
include support for PPTP, IPSec, or AnyConnect, or any other protocol. These applications usually
provide a single, simple, user interface, and couple with a custom configuration provided by the author or
provider.

Because of the added features or controls that may be built into the third-party application, it's likely
easiest to troubleshoot a non-working OpenVPN connection by reverting back to the open source client.
This helps to rule out the additional features.

There are a few circumstances where an official application does not exactly exist. Mobile platforms, for
instance, do not have a native OpenVPN open source build. The Android OpenVPN client, while using
the majority of the OpenVPN base source, still requires a frontend GUI to manipulate the connection.

There is an application (OpenVPN Connect), provided by the commercial venture of James Yonan, but
that currently uses a large amount of experimental and out-of-band source that isn't shared with the
community. James has put in quite a bit of effort to make it compatible, but there are known limitations
and certain incompatibilities between the commercial application and other applications.

Summary

In this chapter, we discussed how OpenVPN is installed and compiled, including some of the benefits of
using software packages distributed by your operating system of choice. There are many places where a
compilation or installation of OpenVPN can turn sour, and being cognizant of those will help you create a
successful and maintainable VPN.

I think the hardest market today is the mobile market, primarily due to the lockdown of some application
marketplaces and the restrictions placed on the environment and ecosystem. Being aware of these as well
as some of the limitations of a given platform should set up correct and workable expectations.

In the next chapter, we dig into the log file, helping you identify problems and recognize some of the
solutions indicated in the log messages. The previous chapters primarily covered the bases of how
OpenVPN functions, how it's built, but only works on functional setups.

Chapter 4. The Log File

Logs become irreplaceable resources when problems arise in almost anything. Meeting notes, registration
sheets, visitor comment cards, and Syslog entries are all signs of logs that can be used to track down
problem trends and identify troublesome changes that may have occurred.

OpenVPN has a multitude of logging capabilities that allow the system administrators to track active
connections, session setup and negotiation, authentication, and more. In addition, the level of verbosity
can be adjusted by making the logs more useful during changes and reducing disk consumption when the
VPN is stable.

This chapter will describe the various logging options in OpenVPN. The ability to mute repetitive log
entries, build responsive logging and usage interfaces, and tune the logs for the state of the VPN, such as
recent changes, new features, or problematic clients, are all possible with well-tuned configuration
options.

Logging options

The best source of information when troubleshooting OpenVPN connection and configuration problems is
the log file, whether it is on the server or the client. OpenVPN provides a multitude of logging options,
allowing an administrator to best gather the data necessary to resolve a problem. This book may be the
first comprehensive guide to what is logged by OpenVPN and how best to respond to the messages in that
log.

In order to successfully tune the logging of your OpenVPN client or server, it's important to understand
what the available logging options are and what impact they will have on the available troubleshooting
data. This section will provide a detailed description of every logging option found in the 2.3.11 release
of OpenVPN. The following command defines the file where log data will be written out:

--log file

It is suggested the entire path be included, but if - -cd is used, or when applying the option from the
command line, it's reasonable to use a relative path instead. It should be noted that if the file already
exists, it will be truncated upon startup. If the file does not exist, it will be created, assuming the user
executing the process has sufficient permissions.

® 0 author@example
author@example author@example ol =k

author@example:~-> sudo ./openvpn/openvpn --config config.ovpn --log /tmp/test.log
IACauthor@example:~-> sudo tail /tmp/test.log
ifconfig: ioctl (SIOCDIFADDR): Can't assign requested address
Sun Jul 31 @7:52:45 2016 us=368294 NOTE: Tried to delete pre-existing tun/tap instance -- No Problem if fa
ilure
Sun Jul 31 @7:52:45 2016 us=368395 /sbin/ifconfig utun® 192.168.80.2 192.168.80.2 netmask 255.255.255.0 mt
u 1500 up
Sun Jul 31 @7:52:45 2016 us=370632 /sbin/route add -net 192.168.80.0 192.168.80.2 255.255.255.0
add net 192.168.80.0: gateway 192.168.80.2
Sun Jul 31 @7:52:45 2016 us=375291 Initialization Sequence Completed
Sun Jul 31 @7:52:55 2016 us=642843 event_wait : Interrupted system call (code=4)
Sun Jul 31 @7:52:55 2016 us=643233 TCP/UDP: Closing socket
Sun Jul 31 @7:52:55 2016 us=643319 Closing TUN/TAP interface
Sun Jul 31 @7:52:55 2016 us=643672 SIGINT[hard,] received, process exiting
author@example:~-> sudo wc -1 /tmp/test.log
313 /tmp/test.log
author@example:~-> sudo ./openvpn/openvpn --config config.ovpn --log /tmp/test.log
ACauthor@example:~-> sudo tail /tmp/test.log
ifconfig: ioctl (SIOCDIFADDR): Can't assign requested address
Sun Jul 31 @7:53:26 2016 us=218168 NOTE: Tried to delete pre-existing tun/tap instance -- No Problem if fa
ilure
Sun Jul 31 07:53:26 2016 us=218244 /sbin/ifconfig utun® 192.168.80.2 192.168.80.2 netmask 255.255.255.0 mt
u 1508 up
Sun Jul 31 @7:53:26 2016 us=220705 /sbin/route add -net 192.168.80.0 192.168.80.2 255.255.255.0
add net 192.168.80.0: gateway 192.168.80.2
Sun Jul 31 07:53:26 2016 us=224283 Initialization Sequence Completed
Sun Jul 31 07:53:29 2016 us=446321 event_wait : Interrupted system call (code=4)
Sun Jul 31 @7:53:29 2016 us=446713 TCP/UDP: (losing socket
Sun Jul 31 @7:53:29 2016 us=446802 Closing TUN/TAP interface
Sun Jul 31 @7:53:29 2016 us=44719@ SIGINT[hard,] received, process exiting
author@example:~-> sudo wc -1 /tmp/test.log
313 /tmp/test.log
author@example:~-> [J

Demonstrating --log and the log file truncate behavior

In the preceding screenshot, we ran a simple OpenVPN connection in the active terminal tab. We
monitored the /tmp/test.log file in the inactive tab for connection initialization, so we would know
when we could press Ctrl + C and terminate the session.

Here, you can see that messages are properly written to /tmp/test.log and upon closing, that log has
313 lines. When we rerun the connection, the log is truncated and the second connection results in 313
lines written to the file. The --1og-append option works nearly identically to the - -1og option, except
that the file, if it already exists, will be appended to, rather than truncated:

--log-append file

If you are writing to a log file, it is suggested that you use this option:

® @ author@example
author@example author@example o B

author@example:~-> sudo ./openvpn/openvpn --config config.ovpn --log-append /tmp/test.log
ACaguthor@example:~-> sudo tail /tmp/test.log
ifconfig: ioctl (SIOCDIFADDR): Can't assign requested address
Sun Jul 31 07:54:21 2016 us=692467 NOTE: Tried to delete pre-existing tun/tap instance -- No Problem if fa
ilure
Sun Jul 31 @7:54:21 2016 us=692547 /sbin/ifconfig utun® 192.168.80.2 192.168.80.2 netmask 255.255.255.0 mt
u 1500 up
Sun Jul 31 @7:54:21 2016 us=694930 /sbin/route add -net 192.168.80.@ 192.168.80.2 255.255.255.9
add net 192.168.80.0: gateway 192.168.80.2
Sun Jul 31 @07:54:21 2016 us=697964 Initialization Sequence Completed
Sun Jul 31 07:54:25 2016 us=484441 event_wait : Interrupted system call (code=4)
Sun Jul 31 @7:54:25 2016 us=484821 TCP/UDP: Closing socket
Sun Jul 31 97:54:25 2016 us=484919 Closing TUN/TAP interface
Sun Jul 31 @7:54:25 2016 us=485386 SIGINT[hard,] received, process exiting
author@example:~-> sudo wc -1 /tmp/test.log
313 /tmp/test.log
author@example:~-> sudo ./openvpn/openvpn --config config.ovpn --log-append /tmp/test.log
ACauthor@example:~-> sudo tail /tmp/test.log
ifconfig: ioctl (SIOCDIFADDR): Can't assign requested address
Sun Jul 31 @7:54:54 2016 us=628008 NOTE: Tried to delete pre-existing tun/tap instance -- No Problem if fa
ilure
Sun Jul 31 @7:54:54 2016 us=628051 /sbin/ifconfig utun® 192.168.80.2 192.168.80.2 netmask 255.255.255.0 mt
u 1500 up
Sun Jul 31 @7:54:54 2016 us=630452 /sbin/route add -net 192.168.80.0 192.168.80.2 255.255.255.0@
add net 192.168.80.0: gateway 192.168.80.2
Sun Jul 31 @7:54:54 2016 us=633881 Initialization Sequence Completed
Sun Jul 31 @7:54:58 2016 us=870707 event_wait : Interrupted system call (code=4)
Sun Jul 31 07:54:58 2016 us=87108@ TCP/UDP: Closing socket
Sun Jul 31 @7:54:58 2016 us=871169 (Closing TUN/TAP interface
Sun Jul 31 @7:54:58 2016 us=871674 SIGINT[hard,] received, process exiting
author@example:~-> sudo wc -1 /tmp/test.log
627 /tmp/test.log
author@example:~-> I

Demonstrating--log-append no longer truncates the log

In the previous screenshot, - -1log-append is used on the command line instead of - -1og (verb 4 is
present within the testing configuration file). We removed the previous log file to avoid confusion and
demonstrate that the log file is created and, like before, we have 313 lines in the log after a successful
connect and disconnect cycle.

We run the connection a second time, and we are left with 627 lines in the log. Both execution logs now
remain. We noted that 627 is not the same as 313 x 2, so we dug into the log and discovered that our
second execution resulted in a repeated PUSH_REQUEST, likely due to a packet retransmission.

When using the - -daemon option, and lacking any - - 1og or - -log-append option, output will be
redirected to the default Syslog file. Any of the other log options will supersede the - -daemon option's
Syslog call:

--daemon [program_name]

If the [program_name] option is specified, program_name will be prepended to all Syslog lines related
to OpenVPN. If you have multiple OpenVPN instances on a single system or you send your Syslog entries
to a remote system, the [program_name] option may help differentiate between the various instances:

. @ author@example
author@example author@example 45

-RSA-AES256-GCM-SHA384, 1024 bit RSA

Jul 31 @8:38:58 meow troubleshooting_openvpnl[44207]: [tshoot-server] Peer Connection Initiated with [
AF_INET] mm s w ;1194

Jul 31 08:39:00 meow troubleshooting_openvpnl[442@]: SENT CONTROL [tshoot-server]: 'PUSH_REQUEST' (st
atus=1)

Jul 31 ©8:39:00 meow troubleshooting_openvpnl[44207]: PUSH: Received control message: 'PUSH_REPLY,rout
e-gateway 192.168.80.1,topology subnet,ifconfig 192.168.80.2 255.255.255.0'

Jul 31 98:39:00 meow troubleshooting_openvpnl[442@]: OPTIONS IMPORT: --ifconfig/up options modified
Jul 31 28:39:00 meow troubleshooting_openvpnl[442@]: OPTIONS IMPORT: route-related options modified
Jul 31 ©8:39:00 meow troubleshooting_openvpnl[4420]: Opened utun device utun@

Jul 31 @8:39:00 meow troubleshooting_openvpnl[4420]: do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_s
etup=0

Jul 31 @8:39:00 meow troubleshooting_openvpnl[442@]: /sbin/ifconfig utun® delete

Jul 31 @8:39:00 meow troubleshooting_openvpnl[4420]: NOTE: Tried to delete pre-existing tun/tap insta
nce -- No Problem if failure

Jul 31 @8:39:00 meow troubleshooting_openvpnl[4420]: /sbin/ifconfig utun® 192.168.80.2 192.168.80.2 n
etmask 255.255.255.0 mtu 1500 up

Jul 31 98:39:00 meow troubleshooting_openvpnl[4420@]: /sbin/route add -net 192.168.80.0 192.168.80.2 2
55.255.255.0

Jul 31 ©8:39:00 meow troubleshooting_openvpnl[4420]: Initialization Sequence Completed

i

Syslog output with program_name defined

Much like the - -daemon option, the - -syslog option allows us to send logs to the system Syslog:
--syslog [program_name]

This option is redundant when using - - daemon, but becomes useful when running OpenVPN on the
command line while still allowing logs to be directed to the system logging daemon. As with - -daemon,
the other logging directives will override the - - syslog option.

The - -verb option has a great impact on logging usefulness when it comes to troubleshooting;

--verb n

Set correctly, a working VPN can confirm correct functionality with confidence, while also presenting
useful information when a VPN experiences issues.

The higher the number passed to this directive ([n]), the more verbose the logging. The next section,
Logging levels, goes further in depth and provides the examples of both working logs as well as some
logs with errors.

The following option prevents OpenVPN from prepending timestamps to the output log lines:

--suppress-timestamps
I suggest this option not be used as it makes pinpointing where and when a problem actually occurred.

The - -mute directive prevents OpenVPN from repeating more than [n] log messages of the same mute
category:

--mute [n]

The mute category of a log entry does not directly follow the verbosity level defined in the table
mentioned earlier, but it is a relatively close correlation.

For detailed information about mute categories, refer to the errlevel.h file linked earlier. The mute
level is the second number defined for each entry. The following screenshot shows some of the mute
categories and verbosity levels:

]) author@example

#define D_XS5B89_ATTR LOGLEV(4, 59, @) /* show x5@9-track attributes on connection */
#define D_INIT_MEDIUM LOGLEV(4, 6@, @) /* show medium frequency init messages */
#define D_MTU_INFO LOGLEV(4, 61, @) /* show terse MTU info */

#define D_PID_DEBUG_LOW LOGLEV(4, 63, @) /* show low-freq packet-id debugging info */
#define D_PID_DEBUG_MEDIUM LOGLEV(4, 64, @) /* show medium-freq packet-id debugging info */
#define D_LOG_RW LOGLEV(5, 8, @) /* Print 'R" or 'W' to stdout for read/write */
#define D_LINK_RW LOGLEV(e, €9, M_DEBUG) /* show TCP/UDP reads/writes (terse) */
#define D_TUN_RW LOGLEV(e, 69, M_DEBUG) /* show TUN/TAP reads/writes */

#define D_TAP_WIN_DEBUG LOGLEV(6, 69, M_DEBUG) /* show TAP-Windows driver debug info */
#define D_CLIENT_NAT LOGLEV(6, 69, M_DEBUG) /* show client NAT debug info */

#define D_SHOW_KEYS LOGLEV(7, 7@, M_DEBUG) /* show data channel encryption keys */
#define D_SHOW_KEY_SOURCE LOGLEV(7, 7@, M_DEBUG) /* show data channel key source entropy */
#define D_REL_LOW LOGLEV(?, 7@, M_DEBUG) /* show low freguency info from reliable layer */
#define D_FRAG_DEBUG LOGLEV(7, 7@, M_DEBUG) /* show fragment debugging info */

#define D_WIN3Z_IO_LOW LOGLEV(7, 7@, M_DEBUG) /* low freq win32 I/0 debugging info */
#define D_MTU_DEBUG LOGLEV(?, 7@, M_DEBUG) /* show MTU debugging info */

#define D_MULTI_DEBUG LOGLEV(7, 7@, M_DEBUG) /* show medium-freq multi debugging info */
#define D_MSS LOGLEV(?7, 78, M_DEBUG) /* show MSS adjustments */

#tdefine D_COMP_LOW LOGLEV(7, 7@, M_DEBUG) /* show adaptive compression state changes */
#define D_CONNECTION_LIST LOGLEV(7?, 7@, M_DEBUG) /* show <connection> list info */

#define D_SCRIPT LOGLEV(7, 7@, M_DEBUG) /* show parms & env vars passed to scripts */
#define D_SHOW_NET LOGLEV(?, 7@, M_DEBUG) /* show routing table and adapter list */
#define D_ROUTE_DEBUG LOGLEV(?7, 7@, M_DEBUG) /* show verbose route.[ch] output */

#define D_TLS_STATE_ERRORS LOGLEV(?, 7@, M_DEBUG) /* no TLS state for client */

#define D_SEMAPHORE_LOW LOGLEV(7, 7@, M_DEBUG) /* show Win3Z2 semaphore waits (low freg) */
#define D_SEMAPHORE LOGLEV(7, 7@, M_DEBUG) /* show Win3Z semaphore waits */

#define D_TEST_FILE LOGLEV(7, 7@, M_DEBUG) /* show test_file() calls */

#define D_MANAGEMENT_DEBUG LOGLEV(3, 7@, M_DEBUG) /* show --management debug info */

#define D_PLUGIN_DEBUG LOGLEV(?7, 7@, M_DEBUG) /* show verbose plugin calls */

#define D_SOCKET_DEBUG LOGLEV(?, 7@, M_DEBUG) /* show socket.[ch] debugging info */

#define D_SHOW_PKCS11 LOGLEV(7, 7@, M_DEBUG) /* show PKCS#11 actions */

#define D_ALIGN_DEBUG LOGLEV(?, 7@, M_DEBUG) /* show verbose struct alignment info */

#define D_PACKET_TRUNC_DEBUG LOGLEV(?, 7@, M_DEBUG) /* PACKET_TRUNCATION_CHECK verbose */

Contents of errlevel.h showing verbosity levels and mute category definitions
Tip
The - -mute directive can be very useful on embedded devices where log storage is at a premium, or disk

writes are considered expensive tasks. It is generally recommended to remove or omit it, however, when
debugging a problematic VPN setup.

Apart from the normal event log, OpenVPN provides a separate log file used to indicate the current set of
connected clients along with some connection details:
--status file [n]

This log is useful to help identify OpenVPN internal routes, connection time, remote and VPN IP
addresses, and more.

The book Mastering OpenVPN includes some detailed examples of how to track connections and store
them in a database in the seventh chapter named Scripting and Plugins.

@ root@terrance

author@example root@terrance +

root@terrance:~-> cat /var/log/openvpn-status.log

OpenVPN CLIENT LIST

Updated,Sun Jul 31 ©09:59:30 2016

Common Name,Real Address,Bytes Received,Bytes Sent,Connected Since
tshoot-client, =™ m om, 5526,5758,Sun Jul 31 ©09:55:24 2016
ROUTING TABLE

Virtual Address,Common Name,Real Address,Last Ref
192.108.80.2,tshoot-client, ™ = =,Sun Jul 31 ©@9:55:24 2016
GLOBAL STATS

Max bcast/mcast queue length,®

END .

root@terrance:~-> §

OpenVPN status log output

There are three distinct versions of the - -status-file, the default being version one (shown earlier).
Version two includes additional data fields while retaining the comma separation of the version one file.
The version three file includes the same data as version two, but replaces the comma separator with a tab

delimiter:

--status-version [n]

Logging levels

The ability to vary the verbosity of log output is useful when switching between a troubleshooting session
and a normal operational session. The default logging level of 1 provides some useful informational
logging level of 1 provides some useful informational logs along with the fatal errors indicative of a
problem.

As of this writing, there are 108 different logging defines in the source, covered through 11 distinct
verbosity levels. The majority of troubleshooting at an administrative level I've seen has not needed to go
past verbosity 4 though there are exceptions, like when a firewall issue is suspected.

The following table provides a brief description of each level and provides the primary key log messages
provided at that level. After the table, log samples showing a few different key levels are provided to
illustrate the level of detail:

[n]

Included messages at verbosity level

Only fatal errors are logged.

Informational messages are also logged. Most critical task errors are 1ink, t1s, resolver, and push.

Additional informational messages: handshake, socket/interface close, and proxy errors.

Additional informational messages: routes, auth, plugin, - -port-share messages, ifconfig, and filter data, management console
debugging information.

Additional informational messages: runtime parameters, options compatibility, DHCP options, filter dropped packets, some maximum
transmission unit (MTU) data.

'Verbosity level 4 is the most useful in the majority of troubleshooting scenarios.

R and w characters are written to the log for each packet that is sent and received. Lower case r and w characters are used for
TUN/TAP packets.

Like verbosity 5, but READ and WRITE are used for TCP/UDP packets and lower case characters are used for TUN/TAP packets. Client
NAT and TAP-Windows adapter debug information is included.

Crypto and tunnel debug information. Channel keys and entropy, compression debugging information, verbose routing information, much
more.

Most process and schedule debugging, reliable routing debugging information.

Detailed tunnel and crypto data. Packet content prior to and post encryption is written, PKCS#11, TCP stream debug.

Traffic shaping debug information.

||i||W1n32 registry debugging, OpenSSL lock information.

The complete list of verbosity levels and the messages logged is available in the OpenVPN source code
insrc/openvpn/errlevel.h.

You can view the source on GitHub at
https://github.com/OpenVPIN/openvpn/blob/master/src/openvpn/errlevel.h.

For our examples here, we're using the following configurations. We have created a demonstration CA
and certificates needed already:

Server:

dh dh1024.pem

dev tun

server 192.168.80.0 255.255.255.0

ca ca.crt

cert tshoot-server.crt

key tshoot-server.key

topology subnet

status /var/log/openvpn-status.log 5
keepalive 10 60

Client:

client

dev tun

proto udp

port 1194

remote 192.168.19.37

----- BEGIN CERTIFICATE-----
CA PAYLOAD REMOVED

----- END CERTIFICATE-----
</ca>

<cert>

----- BEGIN CERTIFICATE-----
CERTIFICATE PAYLOAD REMOVED
----- END CERTIFICATE-----
</cert>

<key>

----- BEGIN PRIVATE KEY-----
KEY PAYLOAD REMOVED

----- END PRIVATE KEY-----
</key>

These same configurations, with noted option changes, will be used throughout this book. As above,
certificate and key payload data will be omitted elsewhere for brevity.

For the screenshots given later, any changes to configuration of the client or server will be evident in the
command-line options used and will be provided. Also, both screenshots will be taken after the server
has started up and the client has connected. Deviations from this will be described, as in the case of

https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h

attempting a connection to a known offline server for the purposes of demonstration.

Verbosity 0

Verbosity level o will only include messages deemed fatal. These will be errors that will prevent the
VPN from functioning properly or may indicate severe security problems.

Server:

author@server:~-> openvpn --config openvpn.conf --verb 0

The preceding command gives the following output:

. ® author@server
author@client author@server e

author@server:/usr/local/etc/openvpn-> openvpn --config openvpn.conf --verb @
Mon Aug 1 13:12:11 2016 WARNING: file 'tshoot-server.key' is group or others accessible
add net 192.168.80.@: gateway 192.168.80.1

The preceding logs displayed show a warning for the permissions set on the private key for the X.509
certificate used by the OpenVPN server. The OpenVPN process wants Unix permissions of 500 or 600,
and we have 644. Also logged is the defining of the route to our VPN with the kernel (we used
192.168.80.0/24).

Notably absent from the output is any indication that a client has connected. As evident later, however, we
did connect a client.

Client:

author@client:~-> sudo openvpn/openvpn --config config.ovpn --verb 0

The preceding command gives the following output:

. author@client
author@client author@server e

author@client:~-> sudo openvpn/openvpn --config config.ovpn --verb @

Password:

Mon Aug 1 20:18:55 2016 WARNING: No server certificate verification method has been enabled. See http://open
vpn.net/howto.html#mitm for more info.

ifconfig: ioctl (SIOCDIFADDR): Can't assign requested address

add net 192.168.80.0: gateway 192.168.80.2

The client log is also rather sparse. We get a security-related warning about certificate verification
method not being set (see --ns-cert-type and --remote-cert-tls for further details). We also see an
error about a failed ifconfig command execution. Further details about what command was run and the
results of the failure are not apparent at this level, we will need further details.

Finally, as with the server log, we see the setting of the route for the VPN within the kernel.

Verbosity 1

Increasing the verbosity from a o to the default of 1 reveals considerably more log entries in our sample
connection. Information about OpenVPN version, compilation options, and SSL library version
information is displayed.

Note

The screenshots and console output will show author@client or author@server. In most cases, this is
a cosmetic affect for the sake of this book, and privileges are likely root and sudo are unnecessary.

Server:

author@server:~-> openvpn --config openvpn.conf --verb 1

The preceding command gives the following output:

@® ® author@server
author@client @ author@server +

lauthor@server: /usr/local/etc/openvpn-> openvpn --config openvpn.conf --verb 1

Mon Aug 1 14:28:33 2016 OpenVPN 2.3.11 amd64-portbld-freebsd1®.1 [SSL (OpenSSL)] [LZO] [MH] [IPv6] built on J
ul 26 2016

Mon Aug 1 14:28:33 2016 library versions: OpenSSL 1.8.1j-freebsd 15 Oct 2014, LZ0O 2.09

Mon Aug 1 14:28:33 2016 WARNING: file 'tshoot-server.key' is group or others accessible
Mon Aug 1 14:28:33 2016 TUN/TAP device /dev/tun@ opened
Mon Aug 1 14:28:33 2016 do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0

Mon Aug 1 14:28:33 2016 /sbin/ifconfig tun@® 192.168.80.1 192.168.80.2 mtu 1500 netmask 255.255.255.0Q up

add net 192.168.80.0: gateway 192.168.80.1

Mon Aug 1 14:28:33 2016 UDPv4 link local (bound): [undef]

Mon Aug 1 14:28:33 2016 UDPv4 link remote: [undef]

Mon Aug 1 14:28:33 2016 Initialization Sequence Completed

Mon Aug 1 14:28:45 2016 192.168.19.104:1194 [tshoot-client] Peer Connection Initiated with [AF_INET]192.168.1
9.104:1194

Mon Aug 1 14:28:45 2016 tshoot-client/192.168.19.104:1194 MULTI_sva: pool returned IPv4=192.168.80.2, IPv6=(N
ot enabled)

Mon Aug 1 14:28:47 2016 tshoot-client/192.168.19.104:1194 send_push_reply(): safe_cap=940

From the server logs, we can still see our security warning about permissions on the private key file. We
also see more detailed information about the device used (/dev/tune), the IP address assignment to the
virtual interface, and a final startup message, Initialization Sequence Completed. This phrase in
both the client and server logs indicates that the OpenVPN is up and running and is generally capable of
passing traffic.

Once the server process was initialized, we connected the client. The server log show the evidence of the
remote IP address from which the client connected and the common name (CN) of the client certificate.

The final line of the log is an informational message about the safe capacity for the PUSH_REPLY message
from the client. This message may possibly come in handy when troubleshooting MTU problems:

® @ author@client
author@client author@server we | 7F

author@client:~-> sudo openvpn/openvpn --config config.ovpn --verb 1

Password:

Mon Aug 1 21:35:14 2016 OpenVPN 2.3.11 x86_64-apple-darwin [SSL (OpenSSL)] [LZO] [PKCS11] [MH] [IPv6] built o
n Jul 18 2016

Mon Aug 1 21:35:14 2016 library versions: OpenSSL 1.08.2h 3 May 2016, LZ0 2.09

Mon Aug 1 21:35:14 2016 WARNING: No server certificate verification method has been enabled. See http://open
vpn.net/howto.html#mitm for more info.

Mon Aug 1 21:35:14 2016 UDPv4 link local (bound): [undef]

Mon Aug 1 21:35:14 2016 UDPv4 link remote: [AF_INET]192.168.19.37:1194

Mon Aug 1 21:35:14 2016 [tshoot-server] Peer Connection Initiated with [AF_INET]192.168.19.37:1194
Mon Aug 1 21:35:16 2016 Opened utun device utun®

Mon Aug 1 21:35:16 2016 do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0

Mon Aug 1 21:35:16 2016 /sbin/ifconfig utun@® delete

ifconfig: ioctl (SIOCDIFADDR): Can't assign requested address

Mon Aug 1 21:35:16 2016 NOTE: Tried to delete pre-existing tun/tap instance -- No Problem if failure

Mon Aug 1 21:35:16 2016 /sbin/ifconfig utun@ 192.168.80.2 192.168.80.2 netmask 255.255.255.@ mtu 1500 up
add net 192.168.80.0: gateway 192.168.80.2

Mon Aug 1 21:35:16 2016 Initialization Sequence Completed

I

As with the server log, the previous error of the missing certificate verification method is listed at the
increased verbosity. The IP and port of the remote server is listed along with the local virtual interface
(utuno, the client is a Mac).

Like the certificate error, the failed ifconfig message is still present; only this time we see the reason.
OpenVPN attempts to remove the old interface if it already exists. In our case, that interface is not
present, so the ifconfig command naturally fails. The subsequent log message states this failure is not a
problem.

Finally, the functional ifconfig command is parroted, the kernel routing entry add is displayed, and the
Initialization Sequence Completed message is outputted. This line in both the server and client
context means that the VPN tunnel has been created and is functional. Note that this does not mean all
options and arguments were successfully implemented, just that there were no fatal errors. Routes may not
be set, or there may be other setup issues.

Verbosity 4

Setting verbosity up to 4 greatly increases the volume of messages sent to the log. Upon execution,
OpenVPN parses all of the configuration options and prints the list of options and functional arguments.

Server:

author@server:~-> openvpn --config openvpn.conf --verb 4

The preceding command gives the following output:

author@server

Mon Aug 1 15:39:23 2016 us=373116

built on Jul 26 2816

n-mtu 158@,proto
Mo Aug 1 15:43:27 2016 us=392389

Mon Awg 1 15:43:27 2016 us=3929@9
Mon Aug 1 15:43:27 2016 us=392919
Mon Aug 1 15:43:27 2016 us=392949
sid=67dc26b2 49eefbB2

Mon Aug 1 15:43:27 2016 us=40380Q
ouble Shooting OpenV¥PN, CN=Trouble
Mon Aug 1 15:43:27 2016 us=403891

Mon Aug 1 15:43:27 2016 us=485790
128 bit key

Mon Auwg 1 15:43:27 2016 us-4B5884
for HMAC outhenticotion

Mon Aug 1 15:43:27 2016 us=4@5843
128 bit key

Mon Aug 1 15:43:27 2016 us=-4@5850
for HMAC authenticotion

Mon Aug 1 15:43:27 2016 us-4@7115

E256-GOM-SHA3E4, 1024 bit HSA

Mon Aug 1 15:43:27 2016 us=4@7135

1192.168.19.1084:11%4

Mon Aug 1 15:43:27 2016 us=4@7155
2, IPvb=(Not enaobled)

us=1)

OpenVPN 2,.3.11 omd64-portbld-freebsdil@.1 [55L (Open5S5L)] [LZO] [MH] [IPvE]

Mon Aug 1 15:39:23 2016 us=373135 librory versions: Open55L 1.@.1j-freebsd 15 Oct 2014, LI0 2.9

Mon Aug 1 15:39:23 2016 us=374191 Diffie-Hellman initialized with 1824 bit key

Mon Aug 1 15:39:23 2016 us=374412 WARNING: file "tshoot-server.key' is group or others occcessible

Mon Aug 1 15:39:23 2016 us=374649 TLS-Auth MTU parms [L:1541 D:1212 EF:38 EB:@ ET:® EL:3]

Mon Aug 1 15:39:23 2016 us=374668 Socket Buffers: R=[4Z088->42088] S5=[9216->8218]

Mon Aug 1 15:39:23 2016 us=374394 TUN/TAP device Sdev/tun@ opened

Mon Aug 1 15:39:23 2016 us=374904 do_ifconfig, ti->ipvb=8, tt->did_ifconfig_ipvb_setup=0

Mon Aug 1 15:39:23 2016 us=374920 Sshin/ifconfig tun® 192.168.88.1 192,168 .808.2 mtu 1580 netmask 255,255.255.

@ up

Mon Aug 1 15:39:23 2016 us=377867 /sbinfroute add -net 192.168.88.8 192.168.8@8.1 255.255.255.8@

odd net 192.168.80.8: gotewoy 192.168.80.1

Mon Aug 1 15:39:23 2016 us=380@7E Data Chaonnel MTU parms [L:1541 D:1458 EF:41 EB:12 ET:@ EL:3]

Mon Aug 1 15:;39:23 2016 ws=381464 UDPv4 link local (bound): [undef]

Mon Aug 1 15:39:23 2016 us=381473 UDPv4 link remote: [undef]

Mon Aug 1 15:39:23 2016 us=381489 MULTI: multi_init colled, r=256 v=256

Mon Aug 1 15:39:23 2016 us=381511 IFCONFIG POOL: bose=192.1GB.80.2 size=252, ipvb=@

Mon Aug 1 15:39:23 2016 us=381530 Initioglization Sequence Completed

Mon Aug 1 15:43:27 2016 ws=392635 MULTI: multi_create_instance caolled

Mon Aug 1 15:43:27 2016 us=3092689 192.168.19.104:1194 Re-using SSL/TLS context

Mon Aug 1 15:43:27 2016 us=392839 192.168.19.184:1194 Control Chonnel MTU porms [L:1541 D:1212 EF:38 EB:® ET
@ EL:3]

Mon Aug 1 15:43:27 2016 ws=392850 192.168.19.184:1194 Data Channel MTU porms [L:1541 D:1450 EF:41 EB:12 ET:@
EL:3]

Mon Aug 1 15:43:27 2016 us=392882 192.168.19.184:1194 Local Options String: 'V4 dev-type tun,link-mtu 1541, tu

UDPwa cipher BF-CBC,auth SHAL, keysize 128, key-method 2,tls-server’

192.168.19.184:1194 Expected Remote Options String: 'V4,dev-type tun,link-m

tu 1541, tun-mtu 1500,proto UDPv4,cipher BF-CBC,outh SHAL keysize 128, key-method 2Z,tls-client’

102.168.19,104:1194 Local Options hash (VER=V4): '239669a8’
192.168.19,104:1194 Expected Remote Options hash (VER=V4): '351437@b°
192.166.19,104:1194 TLS: Initiol pocket from [AF_INET]192.168.19,184:1194,

192.168.19,1984:1194 VERIFY OK: depth=1, C=U5, 5T=Minnesota, L=5t Paul, 0=Tr
Shooting OpenVPN, emaoilAddress=ecrist@secure-computing.net
192.166.19.1084:1194 VERIFY DK: depth=@8, (=U5, 5T=Minnesota, O=Trouble Shoot

ing Open¥PN, CN=tshoot-client, emailAddresseecrist@secure-computing.net

192.168.19.184:1194 Dato Chonnel Encrypt: Cipher "BF-CBC' initiolized with

192.168.19.184:1194 Data Channel Encrypt: Using 160 bit messoge hash "SHAL®

192.168.19.184:1194 Data Channel Decrypt: Cipher "BF-CBC" initialized with

192.168.19.104:1194 Doto Chonnel Decrypt: Using 16@ bit messoge hash 'SHAL®

197.168.19.104:1194 Control Chonnel; TLSv1.2, cipher TLSw1/55Lv3 DHE-RSA-AE
192 .168.19.184:1194 [tshoot-client] Peer Connection Initioted with [AF_INET

tshoot-client/192, 168,19, 184:1194 MULTI_sva: poal returned IPw4=192_ 168 80.

Mon Aug 1 15:43:27 2016 us=4@87183 tshoot-client/192.168.19.184:1194 MULTI: Learn: 192.168.88.2 -> tshoot-clie
nt/192.168.19,184:1194

Mon Aug 1 15:43:27 2016 us=407191 tshoot-client/192.168.19,.184:1194 MULTI: primary virtual IP for tshoot-clie
nt/192.168.19,104:1194; 192.168.80.2

Mon Aug 1 15:43:29 2016 us=447391 tshoot-client/192.168.19.184:1194 PUSH: Received control messoge: "PUSH_REQ
UEST®

Mon Aug 1 15:43:29 2016 us=447412 tshoot-client/192.168.19.184:1194 send_push_reply(): sofe_cap=94@

Mon Aug 1 15:43:29 2016 us=447429 tshoot-client/192.168,.19.184:1194 SENT CONTROL [tshoot-client]: "PUSH_REPLY

,Foute-goteway 192,168,801, topology subnet,ping 18,ping-restort 60,ifconfig 192.168.80.2 255,.255.255.8" (stat

With OpenVPN 2.3.11, the client startup produced 275 lines of options entries and the server startup
produced 226 lines. Those lines are omitted from the following screenshots to discuss the more useful
lines that follow.

The startup of the OpenVPN server process looks very similar at verbosity 4 as it does at level 1, apart
from the appearance of the runtime options and configuration. Once the client actually connects, however,

there is a significant amount of details provided.

Upon client connection, remote and local options are compared and messages are displayed about
compatibility. If there are differences, such as tun versus tap, the errors will show up here. Also listed,
are encryption cipher details. We can see that BF-CBC (see

https://en.wikipedia.org/wiki/Blowfish (cipher) for further details) with a 160 bit SHA1 message hash for
HMAC authentication for the data channel. Finally, the control channel is using TLSv1.2 with DHE -RSA-
AES256-GCM-SHA384 with a 1024 bit RSA key.

Upon termination of the OpenVPN process, messages about closing the device, socket, and destruction of
the interface are indicated. Also, the reason for the exit is shown, in our case a SIGINT, caused by my
Ctrl + C on the console.

Client:

author@client:~-> sudo openvpn/openvpn --config config.ovpn --verb 4

The client logs also show quite a bit of certificate detail at verbosity level 4. Within the log, we can see
the same data channel encryption setup using BF - CBC with 128-bit keys, HMAC message hash using 160-bit
SHA1. As indicated on the server, the control channel is using TLSv1.2 with DHE -RSA-AES256 - GCM-
SHA384 and a 1024-bit RSA key.

Further through the negotiation, we can see the details of PUSH REQUEST/PUSH REPLY and the interface
and routing setup. We also still see the ifconfig command failure (which still isn't a problem):

https://en.wikipedia.org/wiki/Blowfish_(cipher)

- i author@client
author@client ﬂ“ﬂﬂﬂﬁhﬂﬂﬁﬂf |‘%

Mon Aug 1 22:49:56 2016 us=4948B61 port_share_port = @
Mon Aug 1 22:49:56 2016 us=494863 client = EMABLED
Mon Aug 1 22:49:56 2016 us=494866 pull = EMABLED

Mon Aug 1 Z2:49:56 2016 us=494938 auth_user_pass_file = "[UNDEF]"

Mon Aug 1 Z2:49:56 2016 us=494954 OpenVPN 2.3.11 x86_64-apple-darwin [S5L (OpenSSL)] [LZ0] [PKCS11] [MH] [IPv
6] built on Jul 18 28916

Mon Aug 1 22:49:56 2016 ws=494971 library versions: OpenSS5L 1.6.2h 3 May 20816, LZI0 2.89

Mon Aug 1 22:49:56 2016 us=495@529 WARNING: No server certificote verification method has been enobled. See h
ttp://openvpn.net/howto. html#mitm for more info.

Mon Aug 1 22:49:56 2016 us=495686 Control Channel MTU parms [L:1541 D:1212 EF:38 EB:@® ET:@ EL:3]

Mon Aug 1 22:49:56 2016 wus=495773 Socket Buffers: R=[196724->196724] 5=[9216->9216]

Mon Aug 1 22:49:56 2016 us=496157 Data Channel MTU parms [L:1541 D:1450 EF:41 EB:12 ET:@ EL:3]

Mon Aug 1 22:49:56 2016 us=496192 Local Options String: 'V4,dev-type tun,link-mtu 1541,tun-mtu 1508,protoc UDP
wi, cipher BF-CBC,outh SHALl keysize 128, key-method 2,tls-client’'

Mon Aug 1 22:49:56 2016 us=496195 Expected Remote Options 5tring: 'V4,dev-type tun,link-mtu 1541, tun-mtu 158@
yproto UDPv4,cipher BF-CBC,auth SHAl keysize 128, key-method 2,tls-server’

Mon Aug 1 22:49:56 2016 us=496284 Local Options hash (VER=V4): '351437@b'

Mon Aug 1 22:49:56 2016 us=496210 Expected Remote Options hash (VER=V4): 'Z2396689q8"

Mon Aug 1 22:49:56 2016 us=496220 UDPv4 link local (bound): [undef]

Mon Aug 1 22:49:56 2016 us=496225 UDPv4 link remote: [AF_TNET]192.168.19.37:1194

Mon Aug 1 22:49:56 2016 us=5808299 TLS: Initial packet from [AF_INET]192.168.19.37:1194, sid=537f@eec 33d698dd
Mon Aug 1 22:49:56 2016 us=5@4089 VERIFY OK: depth=1, C=U%, ST=Minnesoto, L=5t Poul, O=Trouble Shooting OpenV

PN, CN=Trouble Shooting OpenVPN, emailAddress=ecristBsecure-computing.net

Mon Aug 1 22:49:56 2016 us=584256 VERIFY OK: depth=8, C=US, S5T=Minnesota, O=Trouble Shooting OpenVPN, CN=tsho
ot-server, emailAddress=ecristBsecure-computing.net

Mon Aug 1 22:49:56 2016 us=513296 Data Channel Encrypt: Cipher 'BF-CBC' initiolized with 128 bit key

Mon Aug 1 22:49:56 2816 us=513322 Dotao Channel Encrypt: Using 160 bit messoge hash 'SHA1' for HMAC authentica
tion

Mon Aug 1 22:49:56 2016 ws=513372 Daota Channel Decrypt: Cipher "BF-CBC' initiglized with 128 bit key

Mon Aug 1 22:49:56 2016 us=513378 Data Channel Decrypt: Using 16@ bit messoge hash '5HAL' for HMAC authenticae
tion

Mon Aug 1 22:49:56 2016 us=513417 Control Chonnel: TLSv1.2, cipher TLSv1/55Lv3 DHE-RSA-AESZ256-GOM-SHA3R4, 102
4 bit RS5A

Mon Aug 1 22:49:56 2016 us=513434 [tshoot-server] Peer Connection Initioted with [AF_INET]192.168.19.37:1194
Mon Aug 1 22:49:58 2016 us=55200G SENT CONTROL [tshoot-server]: 'PUSH_REQUEST' (status=1)

Mon Aug 1 22:49:58 2016 us=554948 PUSH: Received control messoge: 'PUSH_REPLY,route-gotewoy 192.168.88.1,topo
logy subnet,ping 1@,ping-restort 68,ifconfig 192.168.88.2 255.255.255.8°'

Mon Aug 1 22:49:58 2016 us=555002 OPTIONS IMPORT: timers and/or timeouts modified

Mon Aug 1 22:49:58 2016 us=555819 OPTIOMS IMPORT: --ifconfig/up options modified

Mon Aug 1 2Z2:49:58 2016 us=555@25 OPTIONS IMPORT: route-reloted options modified

Mon Aug 1 22:49:58 2016 us=555248 Opened utun dewvice utun@

Mon Aug 1 22:48:58 2816 us=555286 do_ifconfig, tt->ipve=0, tt-=did_ifconfig_ipve_setup=0

Mon Aug 1 22:49:58 2816 us=555329 /sbin/ifconfig utun@ delete

ifconfig: ioctl (SIOCDIFADDR): Can't ossign requested address

Mon Aug 1 22:49:58 2016 us=56@8@3 NOTE: Tried to delete pre-existing tun/top instance -- No Problem if failur
e

Mon Aug 1 22:49:58 2016 us=56@858 /sbin/ifconfig utun® 192.168.80.2 192.168.80.2 netmask 255.255.255.8 mtu 15
8 up

Mon Aug 1 22:49:58 2016 us=562873 /sbin/route add -net 192.168.80.0 192.16B.8@.2 255.255.255.0

odd net 192.168.80.9: gateway 192.168.8@.2

Mon Aug 1 22:49:58 2016 us=566095 Initializotion Sequence Completed

One indicator of a firewall problem is the RwRW pattern, or lack of, in the log file. For example, a working
ping transaction between two systems will show both R and w in the log file. When the remote endpoint is
blocking the traffic, you will only see w in the log file and can identify a notable lack of the R entries.

Verbosity 7

When we increase the verbosity once more from 4 up to 7, we get much of the same details on startup
we're accustom to at 4 and below. In addition, we will see some notably dense information surrounding
cryptographic activities, including encryption and decryption keys used (server log only).

Server:
author@server:~-> openvpn --config openvpn.conf --verb 7
The detail at - -verb 7 is too great to show in full via a screenshot, so the part of the information deemed

most useful is shown here. The full log for both the client and server will be available on the Packt
website.

As you can see in the illustration later, there is quite a bit of private information that should be protected.
The keys displayed can be used to later decrypt the traffic that used those keys.

It should not be necessary to use this level of debugging information unless you are testing new and/or as-
yet unsupported cryptographic ciphers or actually working on OpenVPN development. The typical system
administrator will likely not have much use for the amount of data available:

L puthor@server

Tue Aug 2 15:12:35 2816 ws=438387 192.168.19.184:1194 Client rondom?: odl6ol64 bb5361%e 44687281 Z12ec3l6 c36
Bosh7 DeZ27764 BT1482F5 BFFr@2af?

Tue Aug 2 15:12:35 20816 us=438359 192 168.19 184:119%4 Server pre_master! $Q220020 02922008 000002A0 J0a0Edpa

SABA0EAE AEIQEA00 BAGEARRE J003GI00 GAAEIGLD ABTILLAC BEC0DAEA BIRAGEIR

Tue Aug 2 15:12:35 2016 us=438486 192.168.19.104:11%4 Server rondoml: 82246714 Qded538a oco7ffobd 6e7@e493 186

@5ecd ed6clbod H4F2eB83 44faelds

Tue Aug 2 15:12:35 2016 ws=438414 192,168.19,104:1194 Server rondom?: @27b3fce qd4fadlbd Sdcd3472 A2928993 14d
fEfel 2b23e947 Goefbelf dBac3Sse

Tue Aug 2 15:12:35 2016 ws=43B423 192.168.19.184:1194 t1s1_P_hosh sec: F24@6015 efdb3chl Oboflled c8bTadfe 9e
534996 PolBfalk

Tue Aug 2 15:12:35 2016 ws=438449 192.168.19.104:1194 t1s1_P_hosh seed: 4f7@658e 56504020 6d617374 B5722873 6
5637265 T4d70eec aedciPes 1577@Ffeo TOBFITAT o5145c¢71 41480162 31FbfB31 2ba9fall GeB22de7 140ded53 Baoa?ffo GBE
eT@ed 9310625 cledbclb o4941Ze@ E344foel 45

Tue Aug 2 15:12:35 7816 us=438460 192.168.19.104:119%4 tlsl P_hosh out: fS6e5fdb ed4@BdcBZ 45593733 5892578 94
b25596 Tdd3333d 1bZcalbd dbS52a596 B3c82193 4bd3Bdlc 236%ala ad618872

Tue Aug 2 15:12:35 7816 us=43B467 192.168.19.104:1194 tls1 P_hosh sec: Tcll3ff6 dod?73412 c@S5d48cc 1o@3E@2E Ba
e34Bce ZEIbTSRE

Tue Aug 2 15:12:35 2816 ws=438483 192.168.19.184:11%4 t1s1_P_hosh seed: 4f7@8656e 56584e2@ 6d617374 BS57Z2873 6
5637265 T4d7@eec oe@c3Pes 1577@fea TBETIT4T oS145c7l 414801b2 31fbfE3L1 Zbof9foll GeB2Zd6? 14@ded53 Booa?ffo 606
ef@ed 9310685 cBed6cZE6 o494fZe@ B344foel 45

Tue Aug Z 15:12:35 2816 us=438531 192 .165.19.184:119%4 t1si1_P_hosh out: 677981le @@ofdchbf B4G6cBefl B3iebdod 91
27e592 cdocbal4 c4529d56 77fbld55 BGE4984b c2128bd? c357e@9c T2F16ebd

Tue Aug 2 15:12:35 2016 us=438543 192 .168.19.104:119%4 t1s1_PRF out[48]: 92175ec5 edofdd3dd cl3519ch dblcebdc @
595b3@4 39775919 dffedcde ocalblcl B5c42948 89clEbch e@3edofb 5298eell

Tue Aug 2 15:12:35 2016 us=43B551 192.168.19.104:1194 tlsl_P_hash sec: 92175ecS edofd@3d cl3519ch dbBcebdc @5

95pan4 397F5919

Tue Aug 2 15:12:35 2016 us=43B57@ 192.168.19.184:11%4 tlsl_P_hash seed: 4f7@656e 56594ell EbE65722@ BS7RTREL &
e73696f Geadlbol 64bb5361 %eddedVe @l212ecd 16cibbad bF9ed2?7 64071402 F58FFE@Za fTAZ7B3F cecdfd3dl bdSdcdis 720
29289 93144fBFf B12b23e9 478cefbe 1fdEoc35 Se3f@tbd 5Hc3BB24 62a291Bd fR57d15c =9

Tue Aug 2 15:12:35 20816 ws=-43B630 192,.168.19.184.:1194 t1s1 _P_hash out: bl242735 56005925 7cPel57b doodbdcl bS5
e5¢99¢ 33744633 1dBodfd3 ocB5e978 e344b187 lefdllded odfB7781 BEbe?@9@ Boclefld dofladSe 6450867b 1b4dd949 2661
BZ3c FZ1F27HY 5@4526c6 fBZ4dBoo c42d7ddd Q91fed84 3638F6dd eaB7cd73 Subedd8d b345@E35 40854059 Gabcbeal 57BeST
fa 1f@4208fb c238543d ebfElbde bO7@bdEY d5762469 3b7ZcchS bbedbf9a fedlB399 d5575bdE IccdeBhl afedddd? c3f9eila
o4 2che? 2f403473 430414d]l 1b7a7fdb Belb5c96 aoeb5B2f 33cfb524 d44366o4 oBSd47FE @142016c Gocdadid dfZb3léo ©
b@3ocfE bbafiGed edbedblo Bcd4fe@Sd 419d43feb F3230e7@ BdelBGe? 20481629 5b9cfend 1B6chd3c blddlak?

Tue Aug 2 15:12:35 2816 us=43B637 192, 168.19.184:1194 t1s1_P_hash sec: df7edc3e aca9b8c3 B5c42943 E9clbbch el
Jedallb 529@eell

Tue Aug 2 15:12:35 2816 us=43B656 192, 168.19.184:1194 tlsl P_haosh seed: 4f7@656e S6584e2@ GbE57220 BSTE7TOEL &
a73696T GeodlBal 64bb5361 9e4d6S7e @121Zecd 1bcI6Ead b7IedZ77 64871482 TSEfF@Za FPOZ7LIF cecdf431l bdSdcd34 720
29289 9314478 612b23e9 476cefbe 1fdooc35 Sedfdebd SBcIBE24 E£202918d F@STH1Sc =9

Tue Aug 2 15:12:35 2816 us=438735 192,.168.19.184:11%4 t1s1_P_hash out: 54b3d541 29676095 dbdoGele JeS5crB53 41
191clo B548de@f B2cc@f33 BcSelBeldb obEe@@37 7VOO3EES 798405830 TcladcdS c7@S5efce 4F7121b@ ZbA7dZEE aB2F7BSS bfea
BBdc #efc7ebe locBbd7c Bbbeaf%a @dZoZcol bolecSde 326cBS5dc ToBBOEFI Seldb@ed d5ci5420 14cEllb2 24957676 Fobf47
@c e4Bab3B2 7dc59312 3c3eli48 93dB2018 1B21FR@F Sbebidle 498%36a31 4Abeldflfe BE03Z5@3 BBZ1BcRS 351478208 d277eloa
leB@5cdd 929dd3of 15b7eb?S O4daF249 cZcP7chbl c7900da? 4cbc9126 cAc50B58 oB6BFfdal d51F51E@ c53ab@db cfESalb? C
cl4FBR6 oB2dlfc? deSed@cd 2d166086 PbobBBAF chf2fI0E BOZ14cl5 bFe?231f BfeU@Edd4 bARbac@3 7ZbZBaed

Tue Aug 2 15:12:35 2016 us=438779 192.168.19.104:119%4 t1sl _PRF owt[256]: e5%df274 ¥fcd33bd afodd4bbs edflcB2
F4fed5Ee de3cBBic OF46d0ed Z0dbET46 452ablb@ 696dbEb d47AdZB1 FaS4dcds adc7@fen 95838582 4fcd54F3 b362791c bl
Bbeoe@ 3cB359d9 4a83%ebo 93407738 c90751loo b5812c5a B45c7381 90BT518@ c4B7E9ed BEBASclc 54435beb 4ef918d1l odel
166 Fu@ed87d bffSci2f docb3ed6 ZaoBRd71l cdSVddbb GOOAFFFE Flel@S51lb b5019367 difdTedl bdeSbced 92f9a5E87 1bBebb
b@ B4cZ%obo bdd7eide 5653F2a4 1foedd9? codol@2? Bd7bcS88 df732482 1086cefc @93bba39 d45d5Gec offelded 184e299%bd
af17547@ 13022F27 33e@cbf3 al5980db 40365709 38d15ded @dcBead? 3dof3s3f 54F3287d o4671c3f c@efI@33

Tue Aug 2 15:12:35 2BL6 us=43B785 192.168.19.184:1194 Moster Encrypt (cipher): e59dF274 7fcd33b@ o7odsbbs e4f
1c892

Tue Aug 2 15:12:35 2816 us=43B791 192.168.19.184:1194 Moster Encrypt Chmoc): blBbece® 3cB8359d9 4o0B3%ebo 93407
738 c9d751oa

Tue Aug 2 15:12:35 2816 us=438797 192.168.19.184:1194 Moster Decrypt (cipher)}: 2ooB9d71 cd57d466 BEI4FFThH fle
1851k

Tue Aug 2 15:12:35 2816 us=435883 192.168.19.1084:1194 Maoster Decrypt (hmac): 1BE6cefc @93bbao59 d45d58ec offel
ded 1l@4ed9bd

Tue Aug 2 15:12:35 2816 us=438386 192 168.19.184:11%4 CRYPTD INFO: p_DES_cblocks=@

Tue Aug 2 15:12:35 2816 ws=438819 192.168.19.184:1194 CRYPTO INFO: n_DES_chblocks=@

A subset of logging output at --verb 7 showing actual cryptographic keys and seed data

Client:

author@client:~-> sudo openvpn/openvpn --config config.ovpn --verb 7

The preceding command gives the following output:

author@client

Tue Aug £
Tue Aug 2
tion

Tue Aug 2
Tue Aug 2
tion

Tue Aug 2
Tue Aug

4 bit RSA
Tue Aug 2
Tue Aug 2
Tue Aug 2

et

22

22

Tue Aug

Tue
Tue
Tue
Tue
Tue
Tue

Aug 2
Aug
Aug
Aug
Aug
Aug

Pl Pl Pl P Pl

Tue Aug 2 22:

pid=5 DATA len=221
£e:
2es:

22
22

22
:19:85

19:85

19:85
19:@5

19:85
19:@85

19:@85

119:85
22:
2Z:
=5 DATA len=42
Tue Aug 2 22:
Tue Aug 2 22:
i th DATA 1 EN= 1¢3
2 22:
logy subnet,ping 19,ping-restort 6@,ifconfig 192.168.80.2 255.255.255.9'
22:
22:
22:
22:
22:
22:
ifconfig: ioctl (SIOCDIFADDR): Can't assign requested oddress

2 22:19:@7 2016 us=546@44 NOTE: Tried to delete pre-existing tun/tap instance -- No Problem if failur

19:@7
19:@7

19:87
19:87

19:07

19:87
19:@7
19:@7
19:@7
19:@7
19:@7

2016 us=376674

2016 us=376835
2016 us=376844

2016 us=376801
2816 us=376000

2016 us=376918
2016 us=376949

2016 us=376965
2816 us=5392700
2016 us=539859

2016 us=542348
2016 us=542485

2016 us=542441

2016 us=547489
2016 us=542495
2016 us=542502
2016 us=542705
2016 us=542735
2016 us=542780

UDPv4 READ [247] from [AF_INET]192.168.19.37:1194: P_CONTROL.V1 kid=@ [4]

Dota
Data

Channel Encrypt:
Channel Encrypt:

Cipher "BF-CBC' initialized with 128 bit key
Using 16@ bit message haosh 'SHAL1' for HMAC outhentica

Data
Dota

Channel Decrypt:
Channel Decrypt:

Cipher 'BF-CBC' initialized with 128 bit key
Using 162 bit message hash 'SHA1' for HMAC authentica

UDPv4 WRITE [22] to [AF_INET]192.168.19.37:1194: P_ACK_V1 kid=0 [5]
Control Channel: TLSwv1.2, cipher TLSv1/55Lv3 DHE-RSA-AESZ256-GCM-5HA3B4, 1@2

[tshoot-server] Peer Connection Initiated with [AF_INET]192.168.19.37:1194
SENT CONTROL [tshoot-server]: 'PUSH_REQUEST' (status=1)
UDPw4 WRITE [56] to [AF_INET]192.168.19.37:1194: P_CONTROL_V1 kid=@ [] pid

UDPv4 READ [22] from [AF_INET]192.168.19.37:1194: P_ACK_V1 kid=0 [5]
UDPv4 READ [157] from [AF_INET]192.168.19.37:1194: P_CONTROL_V1 kid=@ [] p

PUSH: Received control messaoge: 'PUSH_REPLY,route-goteway 19Z2.168.808.1,topo

OPTIONS IMPORT: timers and/or timeouts modified
OPTIONS IMPORT: --ifconfig/up options modified

OPTIONS IMPORT: route-reloted options modified

Opened utun device utun@

do_ifconfig, tt->ipve=0, tt->did_ifconfig_ipvb_setup=0
/sbin/ifconfig utun@ delete

2 22:19:@7 2016 us=546898 Ssbin/ifconfig utun® 192.168.80.2 192.168.80.2 netmask 255.255.255.@ mtu 15

2 22:19:@7 2016 us=548422 /sbin/route aodd -net 192.168.80.0 192.168.80.2 255.255.255.0

Initiglization Sequence Completed
UDPv4 WRITE [22] to [AF_INET]192.168.19.37:1194: P_ACK_V1 kid=0 [&]
UDPv4 WRITE [125] to [AF_INET]192.168.19.37:1194: P_DATA_V1 kid=@ DATA len=

UbPv4 READ [125] from [AF_INET]192.168.19.37:1194: P_DATA_V1 kid=@ DATA len
UDPw4 WRITE [125] to [AF_INET]J192.168.19.37:1194: P_DATA_V1 kid=@ DATA len=
UDPv4 READ [125] from [AF_INET]192.168.19.37:1194: P_DATA_V1 kid=8 DATA len
Interrupted system coll (code=4)

Closing TUN/TAP interface

SIGINT[hard,] received, process exiting

PKCS#11: Terminating openssl

PKCS#11: Removing providers

PKC5#11: Releosing sessions
PKCS#11: Marking as uninitialized

Tue Aug

8

Tue Aug

@d up

Tue Aug

add net 192.168.80.0: goteway 192.168.808.2
Tue Aug 2 22:19:87 2016 us=551594

Tue Aug £ 22:19:@7 2016 us=551639

Tue Aug 2 22:19:07 2016 us=B09563

124

Tue Aug 2 22:19:07 2016 us=812080

=124

Tue Aug 2 22:19:08 2016 us=814797

124

Tue Aug 2 22:19:08 2016 us=B16178

=124

ACTue Aug 2 22:19:11 2016 us=127329 event_wait :
Tue Aug 2 22:19:11 2016 us=1277Z22 TCP/UDP: Closing socket
Tue Aug 2 22:19:11 2016 us=127878

Tue Aug £ 2£2:19:11 2016 us=129653

Tue Aug 2 22:19:11 2916 us=13438§

Tue Aug 2 22:19:11 2016 us=1344172

Tue Aug 2 22:19:11 2016 us=134419

Tue Aug 2 22:19:11 2016 us=134424
author@client:~-> [J

When I ran the client, I noted that an error was displayed right away. The client I'm using to write this is
the Tunnelblick (https://tunnelblick.net) build, which lacks debug support. The message was:

Tue Aug 2 22:19:05 2016 NOTE: debug verbosity (--verb 7) is enabled but this build

lacks debug support.

Looking into the OpenVPN source, the options.c file (https://git.io/v6kse) on line 4885 indicates that

https://tunnelblick.net
https://git.io/v6kse

either ENABLE_SMALL or ENABLE_DEBUG need to be enabled at compile time:

#if !'defined(ENABLE_DEBUG) && !defined(ENABLE_SMALL)
/* Warn when a debug verbosity is supplied when built
without debug support */
if (options->verbosity >= 7)
msg (M_WARN, "NOTE: debug verbosity (--verb %d) is enabled
but this build lacks debug support.",
options->verbosity);
#endif

Examining the output of . /configure --help, the first step to building OpenVPN, it is revealed that
debug is enabled by default, but the Tunnelblick-supplied build was compiled with - -disable-debug:

(O] @ author@example

--disable-debug disable debugging support (disable gremlin and verb =
7+ messages) [default=yes]

--enable-small enable smaller executable size (disable 0CC, usage
message, and verb 4 parm list) [default=no]

--enable-iproute2 enable support for iproute2 [default=no]

--disable-def-auth disable deferred authentication [default=yes]

--disable-pf disable internal packet filter [default=yes]

--disable-plugin-auth-pam

disable auth-pam plugin [default=platform specific]
--disable-plugin-down-root

disable down-root plugin [default=platform specific]

--enable-pam-dlopen dlopen libpam [default=no]

--enable-strict enable strict compiler warnings (debugging option)
[default=no]

--enable-pedantic enable pedantic compiler warnings, will not generate

./configure --help output showing --disable-debug

The full output is considerably longer than what is shown. There are roughly 36 compile options, in
addition to setting numerous options in order to set environment variables.

Tip

Strange problems can arise if the client and server are using significantly different compile-time options.

Common log messages

Understanding the most common log messages present at - -verb 4 allows you to quickly scan the log file
for errors while also comprehending the events taking place. The messages described here are a mix of
both affirmative (good) messages, as well as the most common messages indicating errors.

Startup messages

OpenVPN will evoke a number of messages upon startup. Some of these messages are informational,
others are warnings of perhaps new options, or options that are potentially dangerous if used or omitted.

Version and compile string

The first line to explore is the OpenVPN version string. This string will indicate the actual release of the
software used along with some important build and compile-time information. The first two examples
show OpenVPN version 2.3.11 compiled with OpenSSL, LZO, PKCS11, MH (extended IP packet
information), and IPv6.

The second piece of the string lists the processor platform and additional data about the system that
performed the compile. Our first example shows a 64-bit system (x86_64), on an Apple system, with
darwin as the indicated kernel version:

OpenVPN 2.3.11 x86_64-apple-darwin [SSL (OpenSSL)] [LzO] [PKCS11] [MH] [IPv6] built
on Jul 18 2016

The second example is also 64-bit (amd64, see note, later), built with the FreeBSD ports system
(packager), with kernel from freebsd10.1:

OpenVPN 2.3.11 amd64-portbhld-freebsd16.1 [SSL (OpenSSL)] [LzZO] [MH] [IPv6] built on
Jul 26 2016

If we look back to our compiled Raspberry Pi build on page six of Chapter 3, Installing OpenVPN, we
can see a slightly different list of options. In this case, PolarssL was used for the SSL library and EPOLL
was enabled. What is missing from earlier is the Lz0 and PKCS11 support. This system was compiled on a
generic Linux system on armél (low-power ARM). Note that these differences don't yet indicate a real
problem. These can help us identify where to start looking or which messages to seek out further into the
logs:

OpenVPN 2.3.11 arm6l-unknown-linux-gnueabihf [SSL (PolarSSL)] [EPOLL] [MH] [IPv6]
built on Jun 29 2016

Note

The 64-bit architecture is referred to by many different monikers, determined generally by the time frame
or initial system upon which development was started. All of the following are equivalent in meaning:
x86-64, x86_64, x64, and amd64. The Itanium 64 architecture (ia_64), is a different architecture. Read
more on Wikipedia at https://en.wikipedia.org/wiki/X86-64.

Option warnings

There are a few specific options OpenVPN looks for when starting up. For the clients, the first option

https://en.wikipedia.org/wiki/X86-64

defines the server certificate verification method. This is accomplished with the - -remote-cert-tls
[server|client] option. Without this option, OpenVPN will be unable to protect against a valid client
certificate being used as a server certificate. Since they are all children of the same CA, it would be
possible to use one client certificate to create a server instance posing as the official server, creating a
man-in-the-middle (MITM) vulnerability:

WARNING: No server certificate verification method has been enabled. See
http://openvpn.net/howto.html#mitm for more information.

Another set of option warnings is presented when - -script-security is set to level 2 or 3. At level 2,
user-defined scripts can be called from within the configuration or command-line arguments:

NOTE: the current --script-security setting may allow this configuration to call
user-defined scripts

At level 3, user credentials, including passwords, are made available in the environment to the scripts
defined:

WARNING: the current --script-security setting may allow passwords to be passed to
scripts via environmental variables

Finally, if a script is defined (in - - up, - -down, or others), and - -script-security has not been set to
allow user-defined scripts, the following message will be logged:

NOTE: starting with OpenVPN 2.1, '--script-security 2' or higher is required to
call user-defined scripts or executables

OpenVPN will alert you if there is an unrecognized option present within the configuration file or on the
command line. Note that the application will exit immediately upon the first instance of an invalid
configuration option.

In the following screenshot, we have added an invalid parameter, fake-option, to the openvpn.conf
configuration file. In the first execution attempt, the application recognizes the option and outputs the file
and line number: openvpn.conf:10, whichis line 10 of the openvpn.conf file:

. ® author@server

author@server: /usr/local/etc/openvpn-> openvpn --config openvpn.conf --verb 4

Options error: Unrecognized option or missing parameter(s) in openvpn.conf:10: fake-option (2.3.11)
Use --help for more information.

author@server:/usr/local/etc/openvpn-> openvpn --fake2 --config openvpn.conf --verb 4

Options error: Unrecognized option or missing parameter(s) in [CMD-LINE]:1: fakeZ (2.3.11)

Use --help for more information.

author@server:/usr/local/etc/openvpn->

Showing output when invalid options are applied

The second execution applies the option fake2 on the command line, before the configuration file is
indicated. Instead of a file name, [CMD-LINE] is stated. The number 1 can be ignored as everything will
be on line 1 for the command-line arguments.

Configuration parameters
There are a few messages displayed during initialization of the software that can later aid in

troubleshooting. Some of these messages illustrate the effect settings used, as in the case of MTU data.
Other messages are indicative of connection and setup progress.

There are two MTU-specific startup messages: one for the control channel and another for the data
channel. The latter is the most common source of headache, as it's the channel used to transmit and
encapsulate the actual traffic the VPN is used for:

Control Channel MTU parms [L:1541 D:1212 EF:38 EB:0 ET:0 EL:3]

The control channel is used to communicate between the OpenVPN instances at the local and remote ends.
Configuration parameters such as push and key negotiation, all take place over this channel:

Data Channel MTU parms [L:1541 D:1450 EF:41 EB:12 ET:0 EL:3]

The fields present are useful to identify where the breakdown of communication occurs later. The fields
are described in the table here. If you want full details about the data within the log message, and what it

really means, you can find it at http://build.openvpn.net/doxygen/html/structframe.html

Field name Description

Link MTU (L) Maximum packet size to be sent over the external interface. This is the physical interface (outside of OpenVPN's tun
link_mtu or tap device).

Link MTU Dynamic

(D) The dynamic MTU value for the external network interface. This is generally the usable packet size.

link_mtu_dynamic

Extra Frame (EF)

The maximum number of bytes that all processing can add to the frame header.
extra_frame

Extra Buffer (EB)

The maximum number of bytes processing may add to the internal work buffer.
extra_buffer

Extra Tun Bytes

(ET) The maximum number of bytes in excess of the TUN/TAP device MTU that may be read or written.

http://build.openvpn.net/doxygen/html/structframe.html

extra_tun "

Extra Link Bytes

(EL) The maximum number of bytes in excess of the external interface MTU that may be read or written.

extra_link

Arguably the most useful data points in the data is the Link MTU (L) and Dynamic MTU (D). More details
on troubleshooting MTU path issues, see Chapter 7, Network and Routing.

LZO compression must be either enabled or disabled at both ends of the OpenVPN connection. If the
following line is present on the server or the client, and missing from the other, the connection will
ultimately fail:

LZO compression initialized

During a connection initialization, the both endpoints perform a remote options hash to determine
compatibility of the other side in the context of configuration. When looking at the logs, the hash should
match between both side.

Immediately, prior to the options has comparison, the expected remote and local configuration parameters
are briefly listed. The parameters here can be used to quickly identify configuration mismatches between
the two sides of the tunnel.Server:

Local Options String: 'V4,dev-type tun,link-mtu 1541, tun-mtu 1500, proto
UDPv4,cipher BF-CBC,auth SHA1, keysize 128, key-method 2,tls-server'

Expected Remote Options String: 'V4,dev-type tun,link-mtu 1541, tun-mtu 1500, proto
UDPv4,cipher BF-CBC,auth SHA1, keysize 128, key-method 2,tls-client'

Local Options hash (VER=V4): '239669a8'

Expected Remote Options hash (VER=V4): '3514370b'

Client:

Local Options String: 'V4,dev-type tun,link-mtu 1541, tun-mtu 1500, proto
UDPv4,cipher BF-CBC,auth SHA1, keysize 128, key-method 2,tls-client'

Expected Remote Options String: 'V4,dev-type tun,link-mtu 1541, tun-mtu 1500, proto
UDPv4,cipher BF-CBC,auth SHA1, keysize 128, key-method 2,tls-server'

Local Options hash (VER=V4): '3514370b'

Expected Remote Options hash (VER=V4): '239669a8'

The final important message is the essential all clear from the startup routine. This message does not
guarantee that you have a working and useful VPN, OpenVPN doesn't truly understand your entire routing
table and the entirety of devices involved. This message simply illustrates that the OpenVPN process at
both ends has successfully negotiated cryptographic keys, option parsing, and is prepared and ready to
start doing the things you've asked of it:

Initialization Sequence Completed

Operational messages

During the use of the VPN, there will be a number of messages displayed, particularly at the higher
verbosity levels. Routing errors, certificate verification, and other errors become apparent here.

Certificate messages
Particularly on the server, certificate messages will be displayed throughout the course of a running
tunnel. Verification, Certificate Revocation List (CRL), and validity are performed upon each

handshake. Both the server and client support the use of CRLs, but they are typically only used on the
server side.

In the following screenshot, the highlighted text demonstrates a CRL check with a valid client certificate:

. & author@server

Sun Aug 14 00:42:55 2016 us=742524 tshoot-client/192.168.19.104:1194 SENT CONTROL [tshoot-client]: 'PUSH_REPLY
,route-gateway 192.168.80.1,topology subnet,ping 1@,ping-restart 6@,ifconfig 192.168.80.2 255.255.255.0' (stat

us=1)

Sun Aug 14 00:44:06 2016 us=B@2436 tshoot-client/192.168.19.104:1194 TLS: new session incoming connection from
[AF_INET]192.168.19.104:1194

Sun Aug 14 00:44:06 2016 us=811659 tshoot-client/192.168.19.104:1194 CRL CHECK OK: C=US, ST=Minnesota, L=5t Pa

ul, O=Trouble Shooting OpenVPN, CN=Trouble Shooting OpenVPN, emailAddress=ecrist@secure-computing.net

Sun Aug 14 00:44:06 2016 us=811688 tshoot-client/192.168.19.104:1194 VERIFY OK: depth=1, (=US, ST=Minnesota, L

=St Paul, O0=Trouble Shooting OpenVPN, CN=Trouble Shooting OpenVPN, emailAddress=ecrist@secure-computing.net

Sun Aug 14 00:44:06 2016 us=811817 tshoot-client/192.168.19.104:1194 CRL CHECK OK: C=US, ST=Minnesota, O=Troub

le Shooting OpenVPN, CN=tshoot-client, emailAddress=ecrist@secure-computing.net

Sun Aug 14 00:44:06 2016 us=811830 tshoot-client/192.168.19.104:1194 VERIFY OK: depth=8, (=US, ST=Minnesota, 0

=Trouble Shooting OpenVPN, CN=tshoot-client, emailAddress=ecrist@secure-computing.net

Sun Aug 14 00:44:06 2016 us=813623 tshoot-client/192.168.19.104:1194 Data Channel Encrypt: Cipher 'BF-CBC' ini

tialized with 128 bit key

Sun Aug 14 9@:44:06 2016 us=813633 tshoot-client/192.168.19.104:1194 Data Channel Encrypt: Using 16@ bit messa

ge hash 'SHA1l' for HMAC authentication

Sun Aug 14 90:44:06 2016 us=813669 tshoot-client/192.168.19.104:1194 Data Channel Decrypt: Cipher 'BF-CBC' ini

tialized with 128 bit key

Sun Aug 14 00:44:06 2016 us=813672 tshoot-client/192.168.19.104:1194 Data Channel Decrypt: Using 16@ bit messa

ge hash "SHA1' for HMAC authentication

S5un Aug 14 00:44:96 2016 us=813680 tshoot-client/192.168.19.104:1194 TLS: move_session: dest=TM_ACTIVE src=TM_

UNTRUSTED reinit_src=1

Sun Aug 14 00:44:06 2016 us=813752 tshoot-client/192.168.19.104:1194 TLS: tls_multi_process: untrusted session
promoted to semi-trusted

Sun Aug 14 00:44:06 2016 us=815131 tshoot-client/192.168.19.104:1194 Control Channel: TLSv1.2, cipher TLSv1/S5S

Lv3 DHE-RSA-AES256-GCM-SHA384, 1024 bit RSA

Sun Aug 14 00:44:09 2016 us=218569 tshoot-client/192.168.19.104:1194 PUSH: Received control message: 'PUSH_REQ

UEST'

Sun Aug 14 00:44:09 201o us=218586 tshoot-client/192.168.19.104:1194 send_push_reply(): safe_cap=940

Sun Aug 14 90:44:09 2016 us=218598 tshoot-client/192.168.19.104:1194 SENT CONTROL [tshoot-client]: 'PUSH_REPLY
,route-gateway 192.168.80.1,topology subnet,ping 10,ping-restart 6@,ifconfig 192.168.80.2 255.255.255.8' (stat

us=1)

I've also created a separate certificate and revoked it, providing the updated cr1.pem file to the
OpenVPN process. When the client attempts to connect with the revoked certificate, we can see the
certificate authority (CA) if validated (the first CRL CHECK 0K) followed by the CRL CHECK FAILED
for the tshoot-revoke certificate:

. @ author@server

Sun Aug 14 00:49:18 2016 us=283108 Data Channel MTU parms [L:1541 D:145@ EF:41 EB:12 ET:0 EL:3]

Sun Aug 14 00:49:18 2016 us=Z83155 UDPv4 link local (bound): [undef]

Sun Aug 14 ©00:49:18 2016 us=283162 UDPv4 link remote: [undef]

Sun Aug 14 00:49:18 2016 us=283169 MULTI: multi_init called, r=256 v=256

Sun Aug 14 ©0:49:18 2016 us=283193 IFCONFIG POOL: base=192.168.80.2 size=252, ipv6=0

Sun Aug 14 00:49:18 2016 us=283208 Initializaotion Sequence Completed

Sun Aug 14 08:53:53 2016 us=201262 MULTI: multi_create_instance called

Sun Aug 14 @0:53:53 2016 us=201330 192.168.19.104:1194 Re-using SSL/TLS context

Sun Aug 14 08:53:53 2016 us=201463 192.168.19.104:1194 Contreol Channel MTU parms [L:1541 D:1212 EF:38 EB:@ ET
1@ EL:3]

Sun Aug 14 ©@@:53:53 2016 us=201473 192.168.19.104:1194 Data Channel MTU parms [L:1541 D:145@ EF:41 EB:12 ET:0@
EL:3]

Sun Aug 14 80:53:53 2016 us=201511 192.168.19.104:1194 Local Options String: 'V4,dev-type tun,link-mtu 1541, tu

n-mtu 15@@,proto UDPv4,cipher BF-CBC,auth SHAl,keysize 128, key-method 2,tls-server'

Sun Aug 14 08:53:53 2016 us=201518 197.168.19.104:1194 Expected Remote Options String: 'V4,dev-type tun,link-m

tu 1541, tun-mtu 1500,proto UDPv4,cipher BF-CBC,auth SHALl keysize 128, key-method 2,tls-client'

Sun Aug 14 ©0:53:53 2016 us=201536 192.168.19.104:1194 Local Options hash (VER=V4): '239669a8'

Sun Aug 14 @0:53:53 2016 us=201545 192.168.19.104:1194 Expected Remote Options hash (VER=V4): '3514378@b'

Sun Aug 14 0@:53:53 2016 us=201577 192.168.19.104:1194 TLS: Initial packet from [AF_INET]192.168.19.104:1194,

s1d=09d92907 ad90e?7d

Sun Aug 14 ©0:53:53 2016 us=212172 192.168.19.104:1194 CRL CHECK OK: C=US, ST=Minnesota, L=5t Paul, O=Trouble

Shooting OpenVPN, CN=Trouble Shooting OpenVPN, emailAddress=ecrist®secure-computing.net

Sun Aug 14 @0:53:53 2016 us=212198 192.168.19.104:1194 VERIFY OK: depth=1, C=US, ST=Minnesota, L=St Paul, 0=Tr

ouble Shooting OpenVPN, CN=Trouble Shooting OpenVPN, emailAddress=ecrist®secure-computing.net

Sun Aug 14 0@:53:53 2016 us=212319 192,.168.19.104:1194 CRL CHECK FAILED: C=US, ST=Minnesota, O=Trouble Shootin

g OpenVPN, CN=tshoot-revoke, emailAddress=ecrist@secure-computing.net (serial ©@3) is REVOKED

Sun Aug 14 00:53:53 2016 us=212379 192.168.19.104:1194 OpenSSL: error:140890B2:55L routines:SSL3_GET_CLIENT_CE

RTIFICATE:no certificate returned

Sun Aug 14 ©0@:53:53 2016 us=212387 192.168.19.104:1194 TLS_ERROR: BIOD read tls_read_plaintext error

Sun Aug 14 00:53:53 2016 us=212394 192.168.19.104:1194 TLS Error: TLS object -> incoming plaintext read error

Sun Aug 14 @0:53:53 2016 us=212398 192.168.19.104:1194 TLS Error: TLS handshaoke failed

Sun Aug 14 90:53:53 2016 us=212469 192.168.19.104:1194 SIGUSR1[soft,tls-error] received, client-instance resta

rting

Tip

Unlike the OpenVPN configuration file, the CRL file is reread on every client connection and each time
the TLS keys are renegotiated. The OpenVPN process is not aware, however, of when the file is updated,
so clients that are revoked will need to be either killed via the management console, or they will be
disconnected at the next re-key.

Apart from CRL-related messages, both the OpenVPN server and client will verify the certificate chain to
ensure the remote side is using a valid certificate. In our test scenario, the certificate chain is pretty basic
with a CA, and all signed certificates directly below it:

Troubles hooting O peny'F M

CA,
I o
tshoot-client tshoot-server tshoot-rewoke tshoot-server-nosku
01 02 03 i 04

EEL: None EKL: Sarver EEL: None : EEL: None

A sample certificate chain used for Troubleshooting OpenVPN

The first VERIFY log line indicates the depth as 1. This depth is from the view of the presented
certificate by the server because this is the client log. The verification will proceed from the deepest
certificate first, which is the signing authority.

Both sides have access to the CA certificate (via the - -ca parameter), so can validate the signature. In
this case, the validity is confirmed:

VERIFY OK: depth=1, C=US, ST=Minnesota, L=St Paul, 0=Trouble Shooting OpenVPN,
CN=Trouble Shooting OpenVPN, emailAddress=ecrist@secure-computing.net

This process repeats all the way through the certificate chain to the server certificate (or the client
certificate, in the case of the server performing the validation):

VERIFY OK: depth=0, C=US, ST=Minnesota, O=Trouble Shooting OpenVPN, CN=tshoot-
server, emailAddress=ecrist@secure-computing.net

You can see which certificate is being validated by looking at the CN= portion of the string. In our sample
chain, I used Trouble Shooting OpenVPN for the certificate authority and tshoot-server for the
server certificate.

When --tls-remote-cert is applied, additional log messages are printed, showing the verification of
certificate usage. The first screenshot (note highlighted messages) displays a successful connection to a
server with the extended key usage for server applied:

& & author@client

PN, CN=Trouble Shooting OpenVPN, emailAddress=ecrist@secure-computing.net

Sun Aug 14 08:33:32 2016 us=539781 Validating certificate key usage

Sun Aug 14 88:33:32 2016 us=539788 ++ Certificate has key usage 0@@a@, expects 00a@

Sun Aug 14 B8:33:32 2016 us=539792 VERIFY KU OK

Sun Aug 14 @8:33:32 2016 us=539797 Validating certificate extended key usage

Sun Aug 14 08:33:32 2016 us=539802 ++ Certificate has EKU (str) TLS Web Server Authentication, expects TLS Web
Server Authentication

Sun Aug 14 ©08:33:32 2016 us=539806 VERIFY EKU 0K

Sun Aug 14 @8:33:32 2016 us=539809 VERIFY OK: depth=@, C=US, ST=Minnesota, O=Trouble Shooting OpenVPN, CN=tsho

ot-server, emailAddress=ecrist@secure-computing.net

Sun Aug 14 08:33:32 2016 us=559323 Data Channel Encrypt: Cipher 'BF-CBC' initialized with 128 bit key

Sun Aug 14 @8:33:32 2016 us=559345 Data Channel Encrypt: Using 16@ bit message hash "SHA1' for HMAC authentica

tion

Sun Aug 14 @8:33:32 2016 us=559392 Data Channel Decrypt: Cipher 'BF-CBC' initialized with 128 bit key

Sun Aug 14 @8:33:32 2016 us=559399 Data Channel Decrypt: Using 16@ bit message hash "SHA1' for HMAC authentica

tion

Sun Aug 14 @8:33:32 2016 us=559429 Control Channel: TLSvl.Z2, cipher TLSv1/S5SLv3 DHE-RSA-AESZ56-GCM-SHA384, 102

4 bit RSA

Sun Aug 14 08:33:32 2016 us=559446 [tshoot-server] Peer Connection Initiated with [AF_INET]192.168.19.37:1194

Sun Aug 14 @8:33:34 2016 us=725287 SENT CONTROL [tshoot-server]: 'PUSH_REQUEST' (status=1)

Sun Aug 14 @8:33:34 2016 us=726842 PUSH: Received control message: 'PUSH_REPLY,route-gateway 192.168.80.1,topo

logy subnet,ping 1@,ping-restart 6@,ifconfig 192.168.80.2 255.255.255.0°'

Sun Aug 14 08:33:34 2016 us=726919 OPTIONS IMPORT: timers and/or timeouts modified

Sun Aug 14 08:33:34 2016 us=726929 OPTIONS IMPORT: --ifconfig/up options modified

Sun Aug 14 ©8:33:34 2016 us=726936 OPTIONS IMPORT: route-related options modified

Sun Aug 14 08:33:34 2016 us=727264 Opened utun device utun@

Sun Aug 14 ©8:33:34 2016 us=727297 do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0

Sun Aug 14 @8:33:34 2016 us=727337 /sbin/ifconfig utun® delete

ifconfig: ioctl (SIOCDIFADDR): Can't assign reguested address

Sun Aug 14 08:33:34 2016 us=732894 NOTE: Tried to delete pre-existing tun/tap instance -- No Problem if failur

e

Sun Aug 14 @8:33:34 2016 us=732948 /sbin/ifconfig utun@ 192.168.80.2 192.168.80.2 netmask 255.255.255.@ mtu 15

@0 up

Sun Aug 14 @8:33:34 2016 us=734969 /sbin/route add -net 192.168.80.0 192.168.80.2 255.255.255.0

Valid EKU applied to the server certificate

The screenshot here shows a server without the server EKU applied to the certificate. In this case, there is
a cascading list of TLS errors displayed following the failed EKU verification. These occur due to the
tear-down of the TLS exchange once an error is discovered.

These samples are from the view of the OpenVPN client. Similar messages will be present when the
server is expecting the client certificates define the EKU for client:

author@client

Sun Aug 14 08:
Sun Aug 14 08:
Sun Aug 14 08:
Sun Aug 14 @8:
Sun Aug 14 @8:
Sun Aug 14 08:
] built on Jul
Sun Aug 14 08:
Sun Aug 14 08:
Sun Aug 14 08:
Sun Aug 14 @8:
Sun Aug 14 08:
4, cipher BF-CB
Sun Aug 14 08:
proto UDPv4,ci
Sun Aug 14 08:
Sun Aug 14 08:
Sun Aug 14 @8:
Sun Aug 14 08:
Sun Aug 14 08&:
Sun Aug 14 08:
N, CN=Trouble
Sun Aug 14 08:
Sun Aug 14 08:
Sun Aug 14 @8:
verify failed
Sun Aug 14 08:
Sun Aug 14 08:
Sun Aug 14 @8:
Sun Aug 14 08:
Sun Aug 14 08:
Sun Aug 14 @8:
ACSun Aug 14 ©
author@client:

34:36 2016 us=47916 port_share_host = '[UNDEF]’

34:36 2016 us=47992 port_share_port = @

34:36 2016 us=480@09 client = ENABLED

34:36 2016 us=48@13 pull = ENABLED

34:36 2016 us=480@18 auth_user_pass_file = "'[UNDEF]'

34:36 2016 us=48023 OpenVPN 2.3.11 x86_64-apple-darwin [SSL (OpenSSL)] [LZ0] [PKCS11] [MH] [IPv6
18 2016

34:36 2016 us=48@31 library versions: OpenSSL 1.8.2h 3 May 2016, LZ0 2.09

34:36 2016 us=48730 Control Channel MTU parms [L:1541 D:1212 EF:38 EB:@ ET:@ EL:3]

34:36 2016 us=48789 Socket Buffers: R=[196724->196724] S5=[9216->9216]

34:36 2016 us=49@69 Data Channel MTU parms [L:1541 D:145@ EF:41 EB:12 ET:@ EL:3]

34:36 2016 us=49099 Local Options String: 'V4,dev-type tun,link-mtu 1541, tun-mtu 150@,proto UDPv

C,auth SHAl,keysize 128,key-method 2,tls-client’

34:36 2016 us=49117 Expected Remote Options String: 'V4,dev-type tun,link-mtu 1541, tun-mtu 1500,
pher BF-CBC,auth SHAl,keysize 128,key-method 2,tls-server’

34:36 2016 us=49126 Local Options hash (VER=V4): '3514370b°'

34:36 2016 us=49132 Expected Remote Options hash (VER=V4): '239669a8'

34:36 2016 us=49143 UDPv4 link local (bound): [undef]

34:36 2016 us=49148 UDPv4 link remote: [AF_INET]192,168.19.37:1194

34:36 2016 us=51775 TLS: Initial packet from [AF_INET]192.168.19.37:1194, sid=0al431d6 3@1a793c
34:36 2016 us=56336 VERIFY OK: depth=1, C=US, ST=Minnesota, L=St Paul, O=Trouble Shooting OpenVP
Shooting OpenVPN, emailAddress=ecrist@secure-computing.net

34:36 2016 us=56498 (ertificate does not have key usage extension

34:36 2016 us=56507 VERIFY KU ERROR

34:36 2016 us=56564 OpenSSL: error:14090086:S5L routines:ssl3_get_server_certificate:certificate

34:36 2016 us=56571 TLS_ERROR: BIO read tls_read_plaintext error

34:36 2016 us=56575 TLS Error: TLS object -»> incoming plaintext read error
34:36 2016 us=56579 TLS Error: TLS handshake failed

34:36 2016 us=5669@ TCP/UDP: Closing socket

34:36 2016 us=56752 SIGUSR1[soft,tls-error] received, process restarting
34:36 2016 us=56761 Restart pause, 2 second(s)

8:34i3? 2016 us=539931 SIGINT[hard,init_instance] received, process exiting
~—

Summary

OpenVPN has powerful logging capability suited well for the end user, the system administrator, and the
software developer. Detailed information can be displayed from high-level networking and configuration
options down to very low-level cryptographic components information.

Understanding the log file and the various affirmative and warning messages allows you to quickly and
reliably determine the cause of a fault or to confirm a working setup. There are still some configuration
parameters in which errors will not be apparent within the log file, and those will be covered in later
chapters.

Chapter 5. Client and Server Startup

As illustrated in Chapter 4, The Log File, many of problems with OpenVPN arise during the server or
client startup procedure. These problems can involve networking, virtual network adapters, and differing
configuration options between the two endpoints. This chapter will bring to light the common sources of
startup problems and identify the fixes for those.

Some network configuration will be addressed, but Chapter 7, Network and Routing, will have a
comprehensive explanation of network troubleshooting and core network and routing concepts.

File and process permissions

For OpenVPN to be effective, the user running the OpenVPN process will need to have the necessary
privileges and access to the system, networking, and filesystem. This includes access to writing log files,
modifying network adapter settings and the system routing tables, and executing scripts or programs.

Privilege de-escalation

As stated earlier, to make many of the network and routing changes, OpenVPN will need some initial
privileges in excess of a typical user. Once these changes have been made, there is usually no need to
retain these administrative rights. Using the - -user and - -group configuration parameters, the
administrator can instruct OpenVPN that unprivileged user to operate as once the initialization process
has completed.

There are caveats to dropping to an unprivileged user, however. First, all files that the OpenVPN process
needs to use during normal operation must be readable and/or writable by the unprivileged user. This
includes - -client-config-directory and the files within, and any connect or disconnect scripts.

The permissions of the Certificate Revocation List (CRL) is an easy one to forget, with the certificate
key being a close second. There is a configuration option (- -persist-key), which keeps the key resident
in memory, preventing the process from having to re-read the file from disk during SIGUSR1 or restart
caused by - -ping-restart.

In the following screenshot, all files are owned by the user nobody and the group nobody, except the
tshoot-server.key file, which is still owned by the user root and the group wheel:

. author@server
author@server:/usr/local/etc/openvpn-> 1s -1h

total 48

-rw-r--r-- 1 root nobody 1.4K Aug 1 12:@3 ca.crt

drwxr-xr-x 2 root nobody 512B Nov 25 04:00 ccd

-rw-r--r-- 1 root nobody 245B Aug 1 12:09 dhl1@24.pem
-rw-r--r-- 1 root nobody 3@5B Aug 14 @1:25 openvpn-noeku.conf
-rw-r--r-- 1 root nobody 342B Dec 17 22:06 openvpn.conf
-rw-r--r-- 1 root nobody 344B Dec 17 22:07 openvpnZ.conf
drwxr-xr-x 2 root nobody 512B Dec 17 @9:54 tmp

-rw-r--r-- 1 root nobody 4.0K Aug 1 12:04 tshoot-server.crt
-rPW------- 1 root wheel 916B Aug 1 12:04 tshoot-server.key

-rw-r--r-- 1 root nobody 4.0K Aug 1 12:04 tshoot-server.pem
author@server: /usr/local/etc/openvpn->

A key file owned by root : wheel, inaccessible to the "nobody" user

If we were to apply the - -user nobody and - -group nobody options, a soft restart of the server would
fail because the key is unreadable.

Networking privileges

Changes to the system routing tables, adding IP addresses to interfaces, and changing the state of network
interfaces typically require root or administrative privileges.

Port assignment and use

As a general rule, processes attempting to bind to TCP or UDP ports below 1024 require root permission.
This prevents a normal, unprivileged user, from standing a daemon up on a port where a common system
process normally runs and mimicking an official process.

For example, on a server where SSH was not running, without this privileged port check, a user could
start their own SSH daemon that was customized (or compromised) in some way to sniff or track user
credentials or session traffic. An administrator could unwittingly connect to the SSH daemon, log in, and
run system commands.

In November, 2004, the Internet Assigned Numbers Authority (IANA) reserved port 1194 for
OpenVPN, for both the TCP and UDP protocols. Prior to this assignment, OpenVPN defaulted to using
port 5000; OpenVPN 2.0-betal7 and later default to the IANA assigned port. With the new and old ports,
OpenVPN falls outside the lower 1024 privileged port reservation, making the root requirement at this
stage moot. It is required for other parts, which are described later.

It is possible to override the default port by specifying the - -port option in the OpenVPN server or client
configuration. The port used locally and remotely is expected to be the same unless the - -1port and - -
rport options are used. These should be mirror images of each other if used and only apply to a static
key setup; OpenVPN will use a dynamic (random) outbound port from a client with - -t1s-client is
used.

Multiple daemons

If multiple OpenVPN process is going to be used, the listen address of each must be different. If you
attempt to start another OpenVPN process using a port that is already in use, an error will appear in the
logs. In addition, all the major operating systems provide a utility named netstat to help identify what
ports are in use on your system. The exact syntax varies across Windows, BSD, and Linux, but the
command name is the same on all three.

To demonstrate its use, the following screenshot shows the first page of output on Windows 7:

Local Address Foreign Addre Stat

8.8.8.8:88 Wwinblows7 :8 L"'EH NG
8.08.6.6:135 wWwinblows7 :© LISTENING
6.68.6.0:445 winblows7 :8 LISTENING
6.8.8.68:515 winblows7 :8 LISTENING
6.8.8.8:554 Wwinblows7 :8 LISTENING
6.8.8.68:1625 winblows7:8 LISTENING
6.8.8.68:1626 winblows7 :8 LISTENING
6.8.8.68:1627 Wwinblows7 :8 LISTENING
8.8.8.8:1838 Wwinblows7:8 LISTENING
6.8.8.68:1639 winblows7 :8 LISTENING
68.8.8.68:168448 Wwinblows7 :8 LISTENING
8.8.8.8:2869 Wwinblows7:8 LISTENING
6.8.8.68:3390 winblows7 :8 LISTENING
8.8.08.08:4242 Wwinblows7 :8 LISTENING
6.8.8.68:5357 winblows7 :8 LISTENING
6.8.8.8:58680 Wwinblows7 :8 LISTENING
68.8.8.68:59606 winblows7:8 LISTENING
6.8.8.68:8819 winblows7 :8 LISTENING

The output of netstat -a on Windows 7

This system has an IIS 7 server running, which shows up as the first entry in the table. The command I
used for this was:

netstat -a | more

The address of 0.0.0.06 denotes that the entry is valid for all IPs on the system and : 86 that follows is the
port number (the www port). The State column indicates the system as LISTENING. This is used to identify
services that are awaiting a connection.

If we were to scroll further down in the output, active connections (whether inbound or outbound) will be
denoted with the state ESTABLISHED. If cmd. exe is executed with administrative privileges, you can add
the -b and -o options to netstat and it will display the process name and process ID (the PID column).
Note that IIS does not show the W3P . exe process name as a security precaution; however, you can see
other example process names:

Proto Local Address Foreign Address State

TCP 8.9.08.0:80 winblows7:8 ISTENING
Can not obtain ownership information

TCP 8.8.08.08:135 winblows7:8 ISTENING

[svch |

TCP 8.8.6.06:445 winblows7 : € LISTENING
Can not obtain ownership information

TCP B.6.8.8:515 winblows7 :€ LISTENING
[cenlpd.exe]

TCP 0.9.09.8:554 winblows7 :€ LISTENING
[wmpnetwk.exe]

TCP 0.9.9.9:1625 winblows7 :E LISTENING
[wininit. |

TCP 6.08.0.0:1626 winblows7 :E LISTENING
eventlog

[svchost.exe]

TCP 8.86.8.9:16827 winblows7 :E LISTENING
Schedule

-- More --

netstat -a on run with elevated privileges

Adapter and routing table changes

Making changes to the networking configuration and system network interfaces almost always requires
administrator or root permissions. For interactive user sessions, there are utilities such as sudo that allow
temporary one-off escalation of privileges. This can be tedious to maintain and difficult to implement for
an application such as OpenVPN that provides no mechanism in order to instruct it to leverage sudo
outside the scripted components.

Another more recent advent is polkit, which allows the Linux administrator to instruct the system that
certain users or groups of users can perform specific actions. polkit can be used to provide a normal
user to make interface and routing table changes.

Chroot

An established concept on UNIX and Linux systems is a chreot environment. This environment segregates
a process or set of processes from the rest of the system by setting a new root path. Both the causes of
problems with chroot, as well as the benefit of using it are the same: the process can only access files that
reside within this new root path.

From a command line, you can run any command within a chroot environment by simply running the
chroot command. To use this environment with OpenVPN, the similarly named - -chroot option is
provided. When this option is used, everything needed must reside within this chroot path, including any
dependent commands and files. Some examples include the following:

e --client-connect and --client-disconnect script files
e OpenVPN certificates and keys

¢ On the server, the CRL file

e --client-config-dir

The following screenshot shows what happens when we attempt to simply add the - -chroot directive to
our known working configuration file. In this case, we defined our chroot environment as
/usr/local/etc/openvpn/, which has the default configuration location on FreeBSD for OpenVPN.
The immediate failures are the pathing to our CRL and a valid temporary directory:

author@server: /usr/local/etc/openvpn-> cat openvpn.conf

dh dhl1@24.pem

dev tun

server 192.168.80.0 255.255.255.0

ca ca.crt

cert tshoot-server.crt

key tshoot-server.key

topology subnet

status /var/log/openvpn-status.log 5

keepalive 10 60

crl-verify /usr/local/etc/ssl-admin/prog/crl.pem

#log-append /var/log/openvpn.log

verb 4

proto udp

port 1194

client-config-dir ccd

chroot /usr/local/etc/openvpn/
author@server:/usr/local/etc/openvpn-> openvpn --config openvpn.conf
Options error: --crl-verify fails with '/usr/local/etc/openvpn///usr/local/etc/ssl-admin/prog/crl.pem': No such file or
directory

Options error: Temporary directory (--tmp-dir) fails with '/usr/local/etc/openvpn///tmp': No such file or directory
Options error: Please correct these errors.

Use --help for more information. .
author@server:/usr/local/etc/openvpn-> |

Failed startup with --chroot due to incorrect relative paths

Even if we fix these errors by removing the line to our CRL and creating the tmp directory in
/usr/local/etc/openvpn, there will be additional errors, at the very least at shutdown. Without
dependent programs, such as /sbin/ifconfig, destroying the interface fails.

Any other commands will need to be copied in to the chroot environment with correct pathing. With a
well-built environment, you will end up with a directory that mimics a normal root file system.

Writing to log files will continue to work since the file descriptor is opened prior to the chroot
command. This makes it possible to put the log and status file outside the chroot environment.

author@server: /usr/local/etc/openvpn-> tail /var/log/openvpn.log

Sat Dec 17 ©9:58:24 2016 us=122077 UDPv4 link remote: [undef]

Sat Dec 17 09:58:24 2016 us=122086 MULTI: multi_init called, r=256 v=256

Sat Dec 17 09:58:24 2016 us=122107 IFCONFIG POOL: base=192.168.80.2 size=252, ipv6=0
Sat Dec 17 09:58:24 2016 us=122123 Initialization Sequence Completed

Sat Dec 17 ©9:58:27 2016 us=476016 event_wait : Interrupted system call (code=4)

Sat Dec 17 09:58:27 2016 us=476150 TCP/UDP: (Closing socket

Sat Dec 17 09:58:27 2016 us=476176 Closing TUN/TAP interface

Sat Dec 17 @9:58:27 2016 us=476276 /sbin/ifconfig tun@ destroy

Sat Dec 17 @9:58:27 2016 us=476606 FreeBSD 'destroy tun interface' failed (non-critical): could not execute external pro
gram

Sat Dec 17 09:58:27 2016 us=476641 SIGINT[hard,] received, process exiting
author@server:/usr/local/etc/openvpn-> ||

Missing ifconfig command causes failed interface shutdown

There are additional caveats to these restricted environments that are outside the scope of this book.
Varying operating systems handle device files differently, and commands such as ifconfig will require
access to the device in a known location. Some make this easy by allowing you to mount the /dev
filesystem within the chroot environment, others may not.

The key to remember here is that everything you intend to manipulate (files, interfaces, commands, scripts,
and so on) must reside within the scope of the chroot path. You can test this most easily by putting
yourself in that environment and attempting to execute the same commands.

This can be a hairy path, too, as you can see later. In addition to many of the executables, you will find
various shared libraries are missing that must be copied in to the environment:

author@server:/usr/local/etc/openvpn-> chroot /usr/local/etc/openvpn/ /sbin/ifconfig
chroot: /sbin/ifconfig: No such file or directory
author@server:/usr/local/etc/openvpn-> mkdir sbin

author@server: /usr/local/etc/openvpn-> cp /sbin/ifconfig sbin/
author@server:/usr/local/etc/openvpn-> chroot /usr/local/etc/openvpn/ /sbin/ifconfig
Shared object "libbsdxml.so0.4" not found, required by "ifconfig"
author@server:/usr/local/etc/openvpn-> locate libbsdxml.so.4

/1ib/1libbsdxml.so0.4

/usr/1ib32/1ibbsdxml.so.4

author@server: /usr/local/etc/openvpn-> mkdir 1ib
author@server:/usr/local/etc/openvpn-> cp /lib/libbsdxml.so.4 1ib

author@server: /usr/local/etc/openvpn-> chroot /usr/local/etc/openvpn/ /sbin/ifconfig
Shared object "libsbuf.so.6" not found, required by "ifconfig"

author@server: /usr/local/etc/openvpn-> |

Assorted shared libraries/objects may be required, depending on the utility run inside the chroot
environment

Scripting

For many years, I worked for a small company and most projects where completed in an ad hoc manner.
We identified a problem and went straight away to writing a script or making a software change.

A few years ago, I obtained a systems engineering role for a much larger organization. At the new
company, there was a much more formal software development environment that included an exhaustive
process:

1.

A problem report must be filed, indicating the specific bug or feature needing work. Many times, it
might be the developer him/herself entering the issue in the database.

The issue is discussed in the next team meeting at what is named an Software Change Control
Board (SCCB). This team, consisting of many stakeholders, dispositions each issue and determines
whether it is accepted for work.

Once an issue is accepted, any requirements changes or additions is considered. The software
requirements help drive formal software testing and acceptance later.

The issue and the requirement is assigned to the developer doing the work. Any changes related to
the initial issue or bug are made.

The software changes are routed to a code review system where managers and senior developers
can comment, reject, or ultimately accept the changes for commit.

Automated and manual tests are written against the requirement that was changed or created. These
tend to be strict and literal to the wording of the requirement. For example, a requirement that reads:

Username shall contain alphanumeric characters from letter a through letter z and number 0
through 9.

This will specifically also exclude anything else.
Finally, the tests are executed against the software and further changes to either meet requirements or
changes to requirements to more closely match software needs are made.

Rinse and repeat.

Many corporate development teams follow a similar model, and increasing numbers of open source
software development teams are, as well. The OpenVPN team also follows a similar development cycle,
though not quite as formal.

The most important part of this cycle, from a smaller scope, is the requirement definition. I find it is much
easier to contain my scripting to a given task if I take some time, even a small amount, to define what,
exactly, I expect from the program once complete.

Defining a requirement or set of requirements, for an OpenVPN script can not only help with writing the
code to do what is necessary, but will ultimately aid in troubleshooting, either during development or
when problems occur later.

Up and down scripts

There are many moving parts with client- and server-side - -up scripts. The server side tends to be
relatively static, and there is only a single configuration. Client side, however, there are as many different
configurations as there are unique client computers.

Because of these differences, assumptions made within a client-side script may be incorrect. These may
include virtual adapter device names, local network addresses and routing, and commands. Also, the
scripts written for a Windows client will not function correctly on a Linux system and vice versa.

In my experience, if the start up script is working, it is relatively simple to apply the same logic, in
reverse, to create a working - -down script. All the permission, pathing, and naming idiosyncrasies will
be hashed out during development of the start up routine.

During development and troubleshooting, I find it is easiest to start an OpenVPN process, and include
some debugging messages in the - -up or - -down script. For the first test, we can use the following
script:

#!/bin/sh

Test OpenVPN --up script
set -Xx

exec 2>&1

printenv > /tmp/ovpn-env.$$

logger -p local3.notice -t LOGTEST "Hello world! From: “whoami™"

This will add a simple log entry in /var/log/messages with text such as:

Dec 25 10:23:09 tshoot-srvr LOGTEST: Hello world! From: nobody

The three highlighted lines are excellent to debug scripts. The first line will cause each executed
statement to print in the OpenVPN log file. This shows variable expansion and actual command use,
helping identify errors in variable names and command pathing.

The second highlighted line will cause both STDERR and STDOUT to output the same, showing error output
that may be hidden from the log file.

Finally, the third highlighted line will cause it to print out the entire environment variable list and their
values to a file at /tmp/ovpn-env.<PID> where <PID> is replaced with the script process ID. This is
useful when debugging, so you can ensure the values you are receiving are what you are expecting.

I've saved this file as /usr/local/etc/openvpn/up.sh and set it to be executable by everyone, and I've
added the - -up up.sh parameter to our openvpn.conf file. The user name printed after From: will be
the effective user running the OpenVPN process.

Our first attempt at running OpenVPN shows a serious error; ['ve forgotten to add the - -script-
security option to the configuration, which would allow the execution of external scripts. I've
highlighted the errors in the following screenshot:

Sun Dec 25 10:27:09 2016 us=681849 cf_max = @

Sun Dec 25 10:27:09 2016 us=681852 cf_per = @

Sun Dec 25 10:27:09 2016 us=681864 max_clients = 1024

Sun Dec 25 1@:27:Q9 2016 us=681867 max_routes_per_client = 256

Sun Dec 25 10:27:09 2016 us=681870 auth_user_pass_verify_script = '[UNDEF]'

Sun Dec 25 10:27:09 2016 us=681873 auth_user_pass_verify_script_via_file = DISABLED

Sun Dec 25 10:27:09 2016 us=681876 port_share_host = '[UNDEF]'

Sun Dec 25 10:27:09 2016 us=681879 port_share_port = @

Sun Dec 25 10:27:09 2016 us=681881 client = DISABLED

Sun Dec 25 1@:27:09 2016 us=681902 pull = DISABLED

Sun Dec 25 10:27:09 2016 us=681905 auth_user_pass_file = "[UNDEF]'

Sun Dec 25 10:27:09 2016 us=681909 OpenVPN 2.3.11 amd64-portbld-freebsd1®.1 [SSL (OpenSSL)] [LZ0] [MH] [I
Pve] built on Jul 26 2016

Sun Dec 25 10:27:09 2016 us=681916 library versions: OpenSSL 1.@.1j-freebsd 15 Oct 2014, LZ0 2.09

Sun Dec 25 10:27:09 2016 us=682002 NOTE: starting with OpenVPN 2.1, '--script-security 2' or higher is re

guired to call user-defined scripts or executables

Sun Dec 25 10:27:09 2016 us=682716 Diffie-Hellman initialized with 1024 bit key

Sun Dec 25 10:27:09 2016 us=683103 TLS-Auth MTU parms [L:1541 D:1212 EF:38 EB:@ ET:@ EL:3]

Sun Dec 25 10:27:09 2016 us=683121 Socket Buffers: R=[42080->4208@] S=[9216->9216]

Sun Dec 25 1@:27:09 2016 us=683203 TUN/TAP device /dev/tun@ opened

Sun Dec 25 10:27:09 2016 us=683217 do_ifconfig, tt->ipve=0, tt->did_ifconfig_ipvo_setup=0

Sun Dec 25 10:27:@9 2016 us=683233 /sbin/ifconfig tun® 192.168.80.1 192.168.80.2 mtu 15@0@ netmask 255.255
.255.0 up

Sun Dec 25 10:27:09 2016 us=684340 /sbin/route add -net 192.168.8@.0 192.168.80.1 255.255.255.0

add net 192.168.80.0: gateway 192.168.80.1

Sun Dec 25 10:27:09 2016 us=684921 up.sh tun@ 1500 1541 192.168.80.1 255.255.255.0 init

Sun Dec 25 16:27:09 2016 us=684950 WARNING: External program may not be called unless '--script-security
2' or higher is enabled. See --help text or man page for detailed info.

Sun Dec 25 10:27:09 2016 us=684968 WARNING: Failed running command (--up/--down): external program fork f
ailed

Sun Dec 25 10:27:09 2016 us=684982 Exiting due to fatal error

author@server: /usr/local/etc/openvpn-> ||

The execution of the --up script fails due to missing --script-security parameter

Once the - -script-security 2 setting is defined, the VPN is initialized, and I can see the log entry in
/var/log/messages. Note that both my test log entry, when I ran as user nobody, as well as the entry
from root are displayed here:

Sun Dec 25 10:37:37 2016 us=491906 Initialization Sequence Completed

ACSun Dec 25 10:37:53 2016 us=343531 event_wait : Interrupted system call (code=4)
Sun Dec 25 10:37:53 2016 us=343685 TCP/UDP: (Closing socket

Sun Dec 25 10:37:53 2016 us=343717 Closing TUN/TAP interface

Sun Dec 25 10:37:53 2016 us=343873 /sbin/ifconfig tun@® destroy

Sun Dec 25 10:37:53 2016 us=345149 SIGINT[hard,] received, process exiting
author@server: /usr/local/etc/openvpn-> grep LOGTEST /var/log/messages

Dec 25 10:23:@9 tshoot-srvr LOGTEST: Hello world! From: nobody

Dec 25 10:37:37 tshoot-srvr LOGTEST: Hello world! From: root
author@server:/usr/local/etc/openvpn-> I

Log entries appear from the execution of the --up script

Now, to extend our script a bit, we can show the context in which it is being executed. You'll notice in the
first screenshot at our - -up script attempt, the first line of the highlighted content shows our script being
executed, along with a series of parameters. You can use these parameters in your script to change the
script behavior in addition to a list of environment variables. We can use $script_type to change the
output of our log message:

#!/bin/sh
Test OpenVPN combined --up/--down script
this should just added a log entry in /var/log/messages

logger -p local3.notice -t LOGTEST "OpenVPN running as
“whoami® for $script_type script."

I've added - -down up.sh to the openvpn.conf file. Running a quick startup and shutdown of OpenVPN
again, we can now see that our updated message shows up for both - -up and - -down:

Sun Dec 25 10:52:29 2016 us=44363 (Closing TUN/TAP interface

Sun Dec 25 10:52:29 2016 us=44519 /sbin/ifconfig tun@ destroy

Sun Dec 25 10:52:29 2016 us=45878 up.sh tun@ 1500 1541 192.168.80.1 255.255.255.0 init
Sun Dec 25 10:52:29 2016 us=47642 SIGINT[hard,] received, process exiting
author@server: /usr/local/etc/openvpn-> grep LOGTEST /var/log/messages

Dec 25 10:23:09 tshoot-srvr LOGTEST: Hello world! From: nobody

Dec 25 10:37:37 tshoot-srvr LOGTEST: Hello world! From: root

Dec 25 10@:45:34 tshoot-srvr LOGTEST: Hello world! From: root

Dec 25 10:45:47 tshoot-srvr LOGTEST: Hello world! From: root

Dec 25 10:46:18 tshoot-srvr LOGTEST: Hello world! From: root

Dec 25 10:46:22 tshoot-srvr LOGTEST: Hello world! From: root

Dec 25 10:52:24 tshoot-srvr LOGTEST: OpenVPN running as root for up script.
Dec 25 10:52:29 tshoot-srvr LOGTEST: OpenVPN running as root for down script.
author@server: /usr/local/etc/openvpn-> ||

Log message changes for $script_type environment variable

Connect and disconnect scripts

The --client-connect and --client-disconnect scripts are very similar to the - -up and - -down

scripts, but are only used on the server side. These scripts are typically used for logging, reporting, or
local configuration that is unique to a given client. Troubleshooting these is all but impossible if you are a
client on a remote OpenVPN server unless you have direct server access.

The connect script is capable of authorization and route assignments, and it could be suspected if a client
is having some odd connectivity issues.

UDP troubleshooting

As a general rule, UDP is a better option for VPN traffic than TCP. TCP works very hard to ensure that
every single packet makes it across the wire (or any other medium) uncorrupted and in order. For some
things, such as SSH, file transfers, and web traffic, this is a good thing; we expect the resulting content to
be legible and generally in its original form.

When connectivity is reliable with relatively little packet loss, TCP can function just fine for VPN. When
that link drops packets and becomes unreliable, the problem can be amplified dramatically when the
encapsulated traffic is also using TCP. The resulting traffic includes retransmit from both the OpenVPN
processes at either end and the encapsulated traffic at both ends. This results in potentially four times the
packet count.

By its nature, UDP is a connectionless protocol. UDP is great for data where it is acceptable to receive
packets out of order or when packets can go missing. The out-of-order packets are typically discarded
since the application has likely already moved on to processing the later packets and processing earlier
packets would be disruptive.

Voice over Internet Protocol (VoIP) is one good example of this scenario. In a voice or video
conversation with someone, we are listening and/or viewing the conversation in real time. It would be
undesirable to hear words or see facial expression out of order. The conversation quickly would become
incomprehensible; it is much preferable to simply ignore a dropped consonant or see a short hang in the
video stream. On a smaller scale, rendering a portion of a frame or part of a word that is a second or
more old is of little use.

Traffic across a VPN is similar. The encapsulated traffic is already going to be engineered to handle
either transmission assurance (TCP) or packet loss and delay in a graceful manner. So, using UDP for the
overall VPN traffic, we allow the application transiting the VPN to handle any connection quality issues.

Note

Sometimes using TCP for a VPN tunnel is unavoidable, but do so if you can. The community support staff
often references two links for why TCP within TCP is a bad idea: http://sites.inka.de/~bigred/devel/tcp-

tcp.html and http://www.openvpn.net/papers/BLUG-talk/14.html.

Because of this connectionless state of a UDP tunnel, neither the client or server truly know when the link
to the other end has gone away or failed. To help deal with lost connections, OpenVPN has the - -ping
and - -ping-restart options.

If you are using UDP for your OpenVPN tunnel and traffic periodically stops working, adding the - -
ping-restart option will help OpenVPN detect connection failures and reconnect the tunnel to a useful
state.

http://sites.inka.de/~bigred/devel/tcp-tcp.html
http://www.openvpn.net/papers/BLUG-talk/14.html

UDP and firewalls

Because UDP is connectionless, another hurdle for this traffic is the border firewall. Some firewalls will
attempt to perform a fake keep-state on the traffic pattern with some level of default timeout when no
further traffic witnessed.

Using the - -ping option, OpenVPN will spend periodic ping packets across VPN to the remote endpoint
to keep these fake keep-state sessions active. Without this, the firewall may determine no further traffic is
expected and shut down the session. This will not prevent traffic from leaving the firewall, but will block
the other side from talking in to that endpoint.

This can potentially happen for either side, but it is typically a client-side problem. The server side will
normally have an explicit rule in the firewall that allows the inbound UDP traffic, whereas the client side
uses a random high-numbered port.

If the client is having connection problems, there may be a large delay on the server side before that
system is listed as disconnected. This will delay updates to things such as the - -status log or the
execution of - -client-disconnect. There is a client-side option available named - -explicit-exit-
notify, which will cause the client system to notify the remote OpenVPN server that it is exiting.

Summary

This chapter was much less about what an administrator can do to fix a problem and more about
identifying specific causes of a given problem. Some possibly new tools, such as netstat, were
introduced. Permissions at multiple levels were also examined, from process level to the filesystem.

Chapter 6. Certificates and Authentication

There are many methods of authentication available within OpenVPN. At its introduction, OpenVPN
supported only a simple pre-shared key but today supports X.509 certificate chains, user and password
authentication, and third-party authentication plugins and scripts. Each of these can be used separately, or
they can be combined to form a robust authentication and authorization framework.

Along with robustness, complexity creates potential confusion and adds difficulty in troubleshooting
authentication issues, understanding how the individual components affect the connection process and
where logic is applied in accepting or rejecting a client or user.

Mismanagement of your PKI can have great consequences, whether your PKI is relatively local in scope
(a single organization or hobbyist's systems), or global, such as a public certificate authority (CA)
providing certificates to customers. There were two cases in 2016 of trusted CAs that lost trust with
various web browser vendors. Both WoSign and StartCom lost Apple's (Safari) trust as of September 30,
2016, and Mozilla (Firefox) and Google (Chrome) as of October 21, 2016. This was due to poor signing
practices and poor key management.

Note
You can read more about these events at eWeek (http:// www.eweek.com/security/why-browser-vendors-

chose-to-distrust-2-certificate-authorities.html) or at The Register
(http://www.theregister.co.uk/2016/11/02/google_punts_wosign startcom from good guy certificate_cl

http://www.eweek.com/security/why-browser-vendors-chose-to-distrust-2-certificate-authorities.html
http://www.theregister.co.uk/2016/11/02/google_punts_wosign_startcom_from_good_guy_certificate_club/

File permissions

Best practice often dictates that once operations requiring escalated privileges have been completed, a
daemon or process should drop to an unprivileged user. Many of the OpenVPN how-to documents
illustrate this by calling the - -user and - -group configuration parameters. These same instructions,
along with other guidance suggest that your configuration, certificates, keys, and other related files have
root ownership. This practice prevents an unprivileged user or process from surreptitiously changing
keys, routes, and other parameters.

Once OpenVPN reduces its running privileges, it will be unable to re-read the configuration files,
certificates, and keys without some additional options. This may be the desired behavior, and it is the
more secure configuration though it is not very resilient. When an option such as - -ping-restart is
used, the OpenVPN process will attempt to restart itself, requiring a re-read of the certificate, keys, and
configuration. If privileges have been dropped to a user that does not have read access to these files or
paths, the restart will fail and OpenVPN will exit.

To accommodate this scenario, there are a pair of options that allow the OpenVPN process to reuse or
retain data that was read before privileges were dropped. The - -persist-tun option instructs OpenVPN
to reuse the existing tun or tap device and to not re-execute the - -up or - -down scripts. Without this
option, the process would require special permissions within the operating system to modify or change
the virtual network adapter, its settings, and routing. Finally, the - -persist-key option instructs
OpenVPN not to re-read key files during SIGUSR1 or --ping-restart.

Be certain to always protect your certificate key files. Although it may be a minor inconvenience to
configure OpenVPN to execute and operate as an unprivileged user, there is great benefit in the long run.
Certificates are shared clear, over the wire, and the public portion of the exchange. If your private keys
become available or are easy to read, a client or other (OpenVPN, LDAP, mail, and so on) server could
potentially be impersonated. If your CA key is exposed, there is potential for rogue-signed certificates that
your existing systems would trust.

Pre-shared keys

Using pre-shared key (PSK) is where OpenVPN started. The static key how-to on the OpenVPN website
is often the first place aspiring VPN administrators begin. Problems with PSKs are relatively easy to
identify as the VPN will simply fail to operate.

There are two scenarios where PSKs are used, in a static key point-to-point VPN and with the - -t1s-
auth directive in the more commonly deployed client-server topology. This section will specifically
cover the prior, static key, scenario. The latter, the - -t1s-auth scenario, is specifically covered in depth
in Chapter 7, Network and Routing. The advice listed there equally applies to VPNs using PSKs for the
data channel, as well. Pay close attention to - -key-direction, if used.

Certificate authentication

Since the release of OpenVPN 2.x, certificate authentication has been the most prolific deployment of
OpenVPN in the wild. The earlier static key only supported two remote endpoints, neither really being a
client nor a server. This is not useful when more than a single remote client is desired.

Certificate chain overview

X.509 is a notable standard for Public Key Infrastructure (PKI), defining a hierarchical topology of
CAs and their signed child certificates. The general concept is that, at that root of the chain, is an authority
certificate, the CA. This CA certificate can be used to sign child certificates. Anyone (or thing, system,
and so on) that trusts the root, inherently trusts the child certificates.

CA has the ability to sign child certificates with varying capabilities. Some will have differing key usage
or KU; others might have subordinate CA rights. With cascading trust, subordinate CAs are generally
given the same trust as their parent CA in a given trust store.

The screenshot given later shows the certificate chain for the OpenVPN community web server. In this
case, there is a parent CA certificate, Go Daddy Root Certificate Authority - G2, a subordinate CA
certificate, Go Daddy Secure Certificate Authority - G2, and the OpenVPN wildcard certificate,
*.openvpn.net.

The chain of trust starts from the presented server or client certificate, in our case, the *.openvpn.net
certificate. In this example, the Safari web browser is the client agent, and it will look up the certificate
chain in the local trust store based on the information and additional certificates presented by the web
server. If Safari and my Mac have the subordinate CA in the key store, trust will be dispositioned based
on the settings within that trust store. In our example here, Go Daddy Root Certificate Authority - G2 is
present and trusted in the local certificate store. The web server presented both the server certificate,

* . openvpn.net, as well as the intermediate CA certificate, Go Daddy Secure Certificate Authority -
G2:

Safari is using an encrypted connection to community.openvpn.net.

Encryption with a digital certificate keeps information private as it's sent to or from the
https website community.openvpn.net.

2] Go Daddy Root Certificate Authority - G2
L Go Daddy Secure Certificate Authority - G2
- * openvpn.net

*.openvpn.net
(f/f’f//‘/}fw/ﬂ e .
Issued by: Go Daddy Secure Certificate Authority - G2
. | Expires: Sunday, March 5, 2017 at 12:22:38 Central Standard Time-0600
& This certificate is valid
V¥ Trust

When using this certificate: Use System Defaults 7

? Hide Certificate

In nearly every OpenVPN configuration I have seen deployed, the CA is going to be a self-signed unit that
will not pre-exist in the operating system trust store. Some larger corporations might have a large PKI
deployed, so may have several CAs deployed on client workstations, but this is likely an exception to the
rule.

For this reason, OpenVPN client packages will contain, at a minimum, a configuration file and the CA
certificate. These can be combined using inline certificates, which embed the CA certificate data within
the configuration file. If this data is not embedded, it will need to be bundled as a separate file. Most
clients will require many pieces of certificate data: the CA certificate, the client certificate, and the client
key. All of these can be embedded inline:

& @ author@client

author@client:~-> cat config.ovpn
dev tun

client

proto udp

port 1194

remote 192.168.19.37

MIID+zCCA2SgAwIBAgIJAMknjCzAGIOOMAGGCSqGSIb3DQEBBAUAMIGLIMQswCQYD
VQQGEwJIVUzESMBAGALUECBMITWlubmVzb3RhMRAWDgYDVQQHEWdTdCBQYXVSMSEw
HwYDVQQKExhUcm91Ymx1IFNob29@aWSnIEOwWZWSWUE4XITAfBgNVBAMTGFRyb3Vi
bGUgUZ2hvb3RpbmcgT3B1lb1ZQTjEqMCgGCSqGSIb3DQEIJARYbZWNYaXNOQHNLY3Vy
Z51jb21wdXRpbmcubmV@OMB4XDTE2MDgwMTE2MjgzMFoXDTI2MDczMDE2ZMjgzMFow
gaUxCzAJBgNVBAYTALVTMRIWEAYDVQQIEWLNaWSuZXNvdGExXEDAOBgNVBACTBIN®G
IFBhdWwxITAfBgNVBAoTGFRyb3VibGUgUZ2hvb3RpbmcgT3B1b1ZQTjERMBEGALUE
AXMYVHIvdW]sZSBTaG9vdGluZyBPcGVuV1BOMSowKAYJKoZIhvcNAQkBFht1lY3Jp
c3RACc2VjdXI1LWNvbXB1dGluZyS5uZXQwgZ8wDQYIKoZIhvcNAQEBBQADgYQAMIG]
AoGBALb@1zWfDC74aX+gd0ghl/xe0JGPSKTA1y5xHg5GdX jDppEYu/Arg2SpoDka
hxMH4Pz0JsxxNg4NUBFU+ulQzelsAwUO8eEBnQbGTL90u8woBbvi@bLRDK9hEeal
jkFLH41iF22gHMSS50bTZNEe4Ks@DMB8+2M5fK+kxuZsmPcTjZAgMBAAGjggEVMIIB
KzAMBgNVHRMEBTADAQH/MB@GA1UdDgQWBBT7Vjj7Pr jNmsHutKv1LDQDD+c61z(CB
2gYDVROjBIHSMIHPGBT7V]j7PrjNmsHutKv1LDQDD+c616GBq6SBqDCBpTELMAKG
A1UEBhMCVVMxE jAQBgNVBAGTCU1pbm51c290YTEQMA4GALUEBXMHU3QgUGF1bDEh
MB8GA1UEChMYVHIvdWIsZSBTaG9vdGluZyBPcGVuV1BOMSEwHWYDVQQDExhUcm91
Ymx1IFNob290aW5nIEOWZWSWUE4xKjAoBgkghkiGOw@BCQEWG2VjcmlzdEBZZWN
cmUtY29tcHV@aW5nLm51dIIJAMknjCzAGIOOMB8GA1UdHWQYMBYWFKAS0oBCGDmh@
dHAGLY9DUkxfVVIIMABGCSqGSIb3DQEBBAUAA4GBAIL1JIZMNAsyKasz/187Rcerm
tkHcK7BHK2tMb7ev1u5S5xcl4XYdwHo5HsK8Vfccn9FhZX/NokzVg3v+ModStpcXDr
4j1E88xXMj2uRU+cIMBy@WpujuzwY+GW0e8r70HBn+A1zodBN8QbqfQfQbmNxVT1
ZRFDuFhr/14PUxbhbHy4

————— END CERTIFICATE-----

Embedded CA certificate payload within OpenVPN client configuration file (some content truncated at the
bottom)

Regardless of how you develop your certificate chain, it is important that the clients and server be given
all the necessary certificates to establish a full chain of trust. Missing components within the chain will
result in validation and verification errors, preventing successful connections. It is not enough to include

only the topmost root CA certificate; intermediate/sub CAs must also be included.

Using the OpenVPN community server certificate, we can leverage the OpenSSL verify command to
verify a certificate chain. This is pretty simple with a single root certificate and a single client certificate,
but gets more complicated when an intermediate CA is involved.

I downloaded the certificate chain via the SSL Labs interface, but there are many ways to download the
chain. The certificate details will be available from the Packt website at

https://www.packtpub.com/networking-and-servers/troubleshooting-openvpn. I ended up with three files
after separating the details.

It required two commands to fully verify this chain. First, OpenSSL expects the certificate that is passed
with CA file to be a self-signed CA certificate (all root CAs are actually self-signed). It will not
recognize the intermediate certificate as a CA file, since it is not self-signed, but signed by the root CA.

For the first step, I verified the intermediate certificate against the CA. The second step listed the
intermediate using the -untrusted option followed by the final server certificate. In the following output,
you can see the list of files and the result of the verification commands:

® author@client
author@client:~/covpn.verify-> 1s -larth

total 16

-rW-rw-r-- 1 ecrist staff 1.3K Nov 25 1@:14 ca-root.crt
-rW-rw-r-- 1 ecrist staff 1.7K Nov 25 1@:15 ca-int.crt
-rW-rw-r-- 1 ecrist staff 1.8K Nov 25 1@:15 server.crt

drwxr-xr-x+ 376 ecrist staff 12K Nov 25 1@:15 ..

drwxrwxr-x 6 ecrist staff 204B Nov 25 10:26 .

-rw-rw-r-- 1 ecrist staff 3.@K Nov 25 1@:27 ca.crt

author@client:~/covpn.verify-> openssl verify -CAfile ca-root.crt ca-int.crt

ca-int.crt: OK

author@client:~/covpn.verify-> openssl verify -CAfile ca-root.crt -untrusted ca-int.crt server.crt
server.crt: 0K

author@client:~/covpn.verify->

OpenSSL certificate chain verification

https://www.packtpub.com/networking-and-servers/troubleshooting-openvpn

The Certificate Revocation List

Thus far, we have only talked about trusting certificates and the overall chain of that trust. Another
important component and feature of the X.509 standard is the Certificate Revocation List (CRL). The
purpose of the CRL is to provide affirmative information to interested systems about which certificates
should no longer be trusted. Querying the CRL or refusing to trust certificates contained within the CRL is
ultimately determined by the client.

There are many reasons to revoke a particular certificate. For global PKI systems, a server certificate key
may have been exposed or lost, or the operator may have needed to change the common name (CN) of the
certificate.

In the case of OpenVPN, a user certificate may be added to the local CRL because the employee left the
company, or perhaps a given OpenVPN server has been decommissioned so that server certificate is no
longer required.

It is best practice to deploy the CRL with OpenVPN on the server side. Technically speaking, it is
possible to deploy the CRL on the client side, as well, but the utility is limited and the logistics of pushing
an updated CRL to clients is difficult. There is talk of OpenVPN 3.0 adding support for CRL Distribution
Points (CDPs) that would allow the client to query a special URL, LDAP, or other source to pull on-the-
fly CRL data.

When the OpenVPN server is deployed with CRL, it will be queried every time a client connects or the
certificate handshake reoccurs. The following screenshots show the client side of a connection that was
initiated with a revoked client certificate. As of OpenVPN 2.3.13, there is no message passed to the client
indicating a connection failure is due to a revoked certificate. Instead, the connection dies with an
interrupted system call message:

@ 8 author@client

Fri Nov 25 ©9:52:41 2016 us=707312 port_share_host ' [UNDEF]"

Fri Nov 25 ©@9:52:41 2016 us=7@7315 port_share_port = @

Fri Nov 25 @9:52:41 2016 us=7@07319 client = ENABLED

Fri Nov 25 ©09:52:41 2016 us=707323 pull = ENABLED

Fri Nov 25 ©9:52:41 2016 us=707327 auth_user_pass_file = "[UNDEF]'

Fri Nov 25 09:52:41 2016 us=707332 OpenVPN 2.3.13 x86_64-apple-darwin [SSL (OpenSSL)] [LZ0] [PKCS11] [MH] [IPv6] built on N
ov 17 2016

Fri Nov 25 @9:52:41 2016 us=707340 library versions: OpenSSL 1.0.2j 26 Sep 2016, LZ0 2.0@9

Fri Nov 25 @9:52:41 2016 us=707430 WARNING: No server certificate verification method has been enabled. See http://openvpn
.net/howto.html#mitm for more info.

Fri Nov 25 ©09:52:41 2016 us=708068 Control Channel MTU parms [L:1541 D:1212 EF:38 EB:@ ET:® EL:3]

Fri Nov 25 ©9:52:41 2016 us=708128 Socket Buffers: R=[196724->196724] 5=[9216->9216]

Fri Nov 25 @9:52:41 2016 us=708832 Data Channel MTU parms [L:1541 D:1450 EF:41 EB:12 ET:@ EL:3]

Fri Nov 25 @9:52:41 2016 us=708854 Local Options String: 'V4,dev-type tun,link-mtu 1541,tun-mtu 150@,proto UDPv4,cipher BF-
CBC,auth SHA1l, keysize 128, key-method 2,tls-client'

Fri Nov 25 @9:52:41 2016 us=70886@0 Expected Remote Options String: 'V4,dev-type tun,link-mtu 1541,tun-mtu 1500,proto UDPv4,
cipher BF-CBC,auth SHAl,keysize 128,key-method 2,tls-server’

Fri Nov 25 ©9:52:41 2016 us=70B87@ Local Options hash (VER=V4): '351437@b’

Fri Nov 25 ©9:52:41 2016 us=708876 Expected Remote Options hash (VER=V4): '239669a8'

Fri Nov 25 ©9:52:41 2016 us=708889 UDPv4 link local (bound): [undef]

Fri Nov 25 ©99:52:41 2016 us=708895 UDPv4 link remote: [AF_INET]192.168.19.37:1194

Fri Nov 25 @9:52:41 2016 us=712626 TLS: Initial packet from [AF_INET]192.168.19.37:1194, sid=84128882 1la31lf3e4

Fri Nov 25 ©9:52:41 2016 us=746857 VERIFY 0K: depth=1, (=US, ST=Minnesota, L=St Paul, O=Trouble Shooting OpenVPN, CN=Troubl
e Shooting OpenVPN, emailAddress=ecrist@secure-computing.net

Fri Nov 25 ©09:52:41 2016 us=747571 VERIFY OK: depth=0, C=US, ST=Minnesota, O=Trouble Shooting OpenVPN, CN=tshoot-server, em
ailAddress=ecrist@secure-computing.net

ACFri Nov 25 @9:52:43 2016 us=677308 event_wait : Interrupted system call (code=4)

Fri Nov 25 ©9:52:43 2016 us=677602 TCP/UDP: Closing socket

Fri Nov 25 ©9:52:43 2016 us=677729 SIGINT[hard,] received, process exiting

author@client:~-> [J

Client side: connected with revoked certificate - no CRL error listed

On the server side, however, we are given a very clear CRL error (highlighted content):

. & author@server

Fri Nov 25 @2:44:22 2016 us=243312 MULTI: multi_create_instance called

Fri Nov 25 @2:44:22 2016 us=243343 192.168.19.104:1194 Re-using SSL/TLS context

Fri Nov 25 ©2:44:22 2016 us=243432 192.168.19.104:1194 Control Channel MTU parms [L:1541 D:1212 EF:38 EB:@ ET:@ EL:3]

Fri Nov 25 82:44:22 2016 us=243440 192.168.19.104:1194 Data Channel MTU parms [L:1541 D:1450 EF:41 EB:12 ET:@ EL:3]

Fri Nov 25 @2:44:22 2016 us=243464 192.168.19.104:1194 Local Options String: 'V4,dev-type tun,link-mtu 1541,tun-mtu 1500,pr
oto UDPv4,cipher BF-CBC,auth SHAl,keysize 128,key-method 2,tls-server’

Fri Nov 25 ©82:44:22 2016 us=243469 192.168.19.104:1194 Expected Remote Options String: 'V4,dev-type tun,link-mtu 1541, tun-m
tu 150@,proto UDPv4,cipher BF-CBC,auth SHAl,keysize 128,key-method 2,tls-client’

Fri Nov 25 ©2:44:22 2016 us=243486 192.168.19.1084:1194 Local Options hash (VER=V4): '239669a8'

Fri Nov 25 ©02:44:22 2016 us=243495 192.168.19.104:1194 Expected Remote Options hash (VER=V4): '351437@b"'

Fri Nov 25 ©02:44:22 2016 us=243515 192.168.19.104:1194 TLS: Initial packet from [AF_INET]192.168.19.104:1194, sid=e34@7daf

7da54daa

Fri Nov 25 ©@2:44:22 2016 us=297211 192.168.19.104:1194 CRL CHECK OK: C=US, ST=Minnesota, L=St Paul, 0=Trouble Shooting Open
VPN, CN=Trouble Shooting OpenVPN, emailAddress=ecrist®secure-computing.net

Fri Nov 25 @2:44:22 2016 us=297234 192.168.19.104:1194 VERIFY OK: depth=1, C=US, ST=Minnesota, L=St Paul, O=Trouble Shootin
g OpenVPN, CN=Trouble Shooting OpenVPN, emailAddress=ecrist®secure-computing.net

Fri Nov 25 ©2:44:22 2016 us=297347 192.168.19.104:1194 CRL CHECK FAILED: C=US, ST=Minnesota, 0=Trouble Shooting OpenVPN, CN
=tshoot-revoke, emailAddress=ecrist@secure-computing.net (serial @3) is REVOKED

Fri Nov 25 02:44:22 2016 us=297397 192.168.19.104:1194 OpenSSL: error:14@890B2:SSL routines:SSL3_GET_CLIENT_CERTIFICATE:no

certificate returned

Fri Nov 25 @2:44:22 2016 us=297404 192.168.19.104:1194 TLS_ERROR: BIO read tls_read_plaintext error

Fri Nov 25 82:44:22 2016 us=297410 192.168.19.184:1194 TLS Error: TLS object -> incoming plaintext read error

Fri Nov 25 ©2:44:22 2016 us=297413 192.168.19.104:1194 TLS Error: TLS handshake failed

Fri Nov 25 @2:44:22 2016 us=297465 192,168.19.104:1194 SIGUSR1[soft,tls-error] received, client-instance restarting

ACFri Nov 25 ©2:44:32 2016 us=313525 event_wait : Interrupted system call (code=4)

Fri Nov 25 ©2:44:32 2016 us=313652 TCP/UDP: (losing socket

Fri Nov 25 @2:44:32 2016 us=313677 Closing TUN/TAP interface

Fri Nov 25 02:44:32 2016 us=313829 /sbin/ifconfig tun® destroy

Fri Nov 25 ©2:44:32 2016 us=314997 SIGINT[hard,] received, process exiting

author@server:/usr/local/etc/openvpn-> [

Server side: client CRL error with revoked certificate

In the preceding message, OpenVPN indicates that a CRL check failed and calls out the serial number of
the certificate. We can verify this by querying the CRL file directly using the OpenSSL command-line
utility with the following command:

author@server:/usr/local/etc/openvpn-> openssl crl
-nhoout -text -in ../ssl-admin/prog/crl.pem

The command option earlier puts OpenSSL in the CRL mode, does not output a file, outputs the CRL in
text form, and reads in the CRL file from . ./ss1-admin/prog/crl.pem. Finally, in the output, we can
see the presence of serial number (03), the timestamp of the revocation, and the signature of the
certificate:

. @ author@server

Fri Nov 25 02:44:22 2016 us=297404 192.168.19.104:1194 TLS_ERROR: BIO read tls_read_plaintext error
Fri Nov 25 02:44:22 2016 us=297410 192.168.19.104:1194 TLS Error: TLS object -> incoming plaintext read error
Fri Nov 25 @2:44:22 2016 us=297413 192.168.19.104:1194 TLS Error: TLS handshake failed
Fri Nov 25 02:44:22 2016 us=297465 192.168.19.104:1194 SIGUSR1[soft,tls-error] received, client-instance restarting
ACFri Nov 25 ©02:44:32 2016 us=313525 event_wait : Interrupted system call (code=4)
Fri Nov 25 02:44:32 2016 us=313652 TCP/UDP: Closing socket
Fri Nov 25 02:44:32 2016 us=313677 Closing TUN/TAP interface
Fri Nov 25 02:44:32 2016 us=313829 /sbin/ifconfig tun@ destroy
Fri Nov 25 02:44:32 2016 us=314997 SIGINT[hard,] received, process exiting
author@server:/usr/local/etc/openvpn-> openssl crl -noout -text -in ../ssl-admin/prog/crl.pem
Certificate Revocation List (CRL):
Version 1 (@x@)
Signature Algorithm: shalWithRSAEncryption
Issuer: /C=US/ST=Minnesota/L=St Paul/0=Trouble Shooting OpenVPN/CN=Trouble Shooting OpenVPN/emailAddress=ecrist@sec
ure-computing.net
Last Update: Aug 14 05:48:40 2016 GMT
Next Update: Sep 13 05:48:40 2016 GMT
Revoked Certificates:
Serial Number: @3
Revocation Date: Aug 14 05:48:40 2016 GMT
Signature Algorithm: shalWithRSAEncryption
8c:c9:4e:4c:72:0a:26:fb:64:95:fa:71:9d:8c:2d:c5:a6:8f:
7b:be:11:e1:42:4c:f5:0b:b9:de:fc:b2:40:16:dB8:67:f6:ab:
Qe:95:66:d3:b2:d6:47:5e:07:e9:7d:cb:a4:04:8a:91:67:fb:
33:5a:c4:b7:2e:9f:5b:8d:77:c6:8c:8f:@d:62:df:c3:ee:48:
6c:9a:2b:38:20:05:cf:34:7f:86:1e:7a:64:c5:b8:30:68:1f:
bd:ac:ed:f9:8f:9d:00:9a:70:c2:52:27:1a:76:b5:93:65:28:
8b:9d:d0:2f:64:9d:97:6c:be:7f:91:e0:79:f9:2c:%e:e2:df:
3b:45
author@server: /usr/local/etc/openvpn-> [

Inspecting the CRL and identifying serial number 03

System date and time

An important piece of data within an X.509 certificate is the timestamp indicated when a certificate
becomes valid and when it expires. Outside the time frame specified with the certificate, it is to be
untrusted or invalid. If the time is incorrect on a client system, the OpenVPN server, or the system that
generated the signed certificates, then the certificate validity could be negatively impacted.

The following screenshot shows the OpenVPN community website's SSL certificate. The highlighted
section illustrates the start and stop of validity with Not Valid Before and Not Valid After. In the case of
this example, the certificate begins validity on Monday, February 29, 2016 at 12:06:39 Central
Standard Time-0600.

This certificate is considered invalid after Sunday, March 5, 2017 at 12:22:38 Central Standard Time-
0600:

Safari is using an encrypted connection to community.openvpn.net.

Encryption with a digital certificate keeps information private as it's sent to or from the
https website community.openvpn.net.

Go Daddy Root Certificate Authority - G2
s Go Daddy Secure Certificate Authority - G2

- *.openvpn.net |

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before

Not Valid After

880211265337368331

3

SHA-256 with RSA Encryption (1.2.840.113549.1.1.11)
none

Monday, February 29, 2016 at 12:06:39 Central Standard Time-0600
Sunday, March 5, 2017 at 12:22:38 Central Standard Time-0600

Algorithm
Parameters
Public Key
Exponent
Key Size
Key Usage

Hide Certificate

RSA Encryption (1.2.840.113549.1.1.1)
none

256 bytes : BD 51 2E 28 5D 79 4A EF ...
65537

2048 bits

Encrypt, Verify, Wrap, Derive

Since I took this screenshot within this time frame (Wednesday, November 16, 2016 at 05:32:23 CST),
the certificate shows as valid. If I change the time on my laptop by jumping a year ahead, the validity
changes. In this case, my laptop considered the date and time to be Thursday, November 16, 2017 at
05:41:44 and the certificate is marked as expired:

*.openvpn.net

Issued by: Go Daddy Secure Certificate Authority - G2

Expired: Sunday, March 5, 2017 at 12:22:38 Central Standard Time-0600
@ This certificate has expired

. éﬁr*f‘f%'r-fffﬂ

¥ Trust

When using this certificate: Use System Defaults 7

Similarly, if we set the date on the local machine to a date and time prior to when the certificate is valid,
we get a message indicating that it is not yet valid:

*.openvpn.net

Issued by: Go Daddy Secure Certificate Authority - G2

Expires: Sunday, March 5, 2017 at 12:22:38 Central Standard Time-0600
@ This certificate is not yet valid

: (ﬁﬁ‘/%?*ﬂ/r’

¥ Trust

When using this certificate: Use System Defaults 7

It is recommended that all systems participating in PKI utilize Network Time Protocol (NTP) or some
other trusted mechanism to keep the system time current and in sync. National Institute of Standards and
Technology (NIST) maintains a list of publicly accessible NTP servers. You can view their list by
navigating to http://tf.nist.gov/tf-cgi/servers.cgi. The NTP Pool Project also maintains a large pool of
publicly available NTP servers around the world. More information and server addresses are available at

http://www.pool.ntp.org/en/.

It is just as important for the system signing and issuing certificates to have the correct time as it is for the
client.

Note

Further details of the X.509 standard, including PKI, certificates, and CRLs can be found in the two IETF
documents: RFC 2459 (https://tools.ietf.org/html/rfc2459) and RFC 5280

(https://tools.ietf.org/html/rfc5280).

http://tf.nist.gov/tf-cgi/servers.cgi
http://www.pool.ntp.org/en/
https://tools.ietf.org/html/rfc2459
https://tools.ietf.org/html/rfc5280

Authentication and plugins

Apart from X.509 tools, OpenVPN provides a mechanism to use authentication plugins along with client
connection scripts. It is possible to remove the requirement for client certificates using - -client-cert-
not-required (deprecated in 2.4, removed in 2.5 in favor of - -verify-client-cert). In this case,
authentication rests solely upon the - -auth-user-pass-verify option.

If --client-config-dir is still desired without client certificates, you will need to leverage - -
username-as-common-name. Of course, if you're going to require usernames and passwords, it is
necessary to add the - -auth-user-pass option to all the client configuration files.

The - -auth-user-pass-verify script is the last in a long chain of scripts that are run. The majority of
environment details are available to all of these scripts, including the CN. If you are troubleshooting
problems with this script, ensure that the connection is not being killed due to logic in other script
routines prior to reaching your authentication script.

Usernames and passwords

OpenVPN can read usernames and passwords from a file, preventing a prompt on the client side. Early
versions of the OpenVPN GUI were compiled with this option disabled. The compile was changed with
the first 2.2 release candidate in February of 2011. This is used with the - -auth-user-pass <file>
option where <file> is the pathto a file containing the username and password on separate lines.

--ccd-exclusive

The --client-config-dir optionis often used to apply client-specific configuration and routing.

OpenVPN provides a

related option, - -ccd-exclusive, which will prevent client connections from

clients who do not have a file in the client-config directory. When this option is present, even an
empty file named to match the CN is sufficient to meet this constraint.

Unlike some of the certificate errors, failing this check does at least provide an authentication error to the
client, though it is somewhat generic:

@0 e

author@client

author@client:~-> /Applications/Tunnelblick.app/Contents/Resources/openvpn/openvpn-2.3.13-openssl-1.0.2j/openvpn config.ovp

n

Fri Nov 25 11:11:36 2016
Fri Nov 25 11:11:36 2016
Fri Nov 25 11:11:36 2016
.html#mitm for more info.
Fri Nov 25 11:11:36 2016
Fri Nov 25 11:11:36 2016
Fri Nov 25 11:11:36 2016
ET32. Mitigate by using
Fri Nov 25 11:11:36 2016
ET32. Mitigate by using
Fri Nov 25 11:11:36 2016
Fri Nov 25 11:11:38 2016
Fri Nov 25 11:11:38 2016
author@client:~-> [

OpenVPN 2.3.13 x86_64-apple-darwin [SSL (OpenSSL)] [LZO] [PKCS11] [MH] [IPv6] built on Nov 17 2016
library versions: OpenSSL 1.0.2j 26 Sep 2016, LZ0 2.09
WARNING: No server certificate verification method has been enabled. See http://openvpn.net/howto

UDPv4 1link local (bound): [undef]

UDPv4 link remote: [AF_INET]192.168.19.37:1194

WARNING: INSECURE cipher with block size less than 128 bit (64 bit). This allows attacks like SWE
a --cipher with a larger block size (e.g. AES-256-CB(C).

WARNING: INSECURE cipher with block size less than 128 bit (64 bit). This allows attacks like SWE
a --cipher with a larger block size (e.g. AES-256-CBC).

[tshoot-server] Peer Connection Initiated with [AF_INET]192.168.19.37:1194

AUTH: Received control message: AUTH_FAILED

SIGTERM[soft,auth-failure] received, process exiting

Client side: AUTH_FAILED is apparent in the log file

The server-side log, however, does contain the reason for the authentication error (highlighted). Also,
further down, you can see the push command for the AUTH_FAILED message to the client:

®@"e author@server

Fri Nov 25 04:03:16 2016 us=653767 192.168.19.104:1194 Re-using SSL/TLS context

Fri Nov 25 04:03:16 2016 us=653856 192.168.19.104:1194 Control Channel MTU parms [L:1541 D:1212 EF:38 EB:@ ET:@ EL:3]

Fri Nov 25 @4:03:16 2016 us=653865 192.168.19.104:1194 Data Channel MTU parms [L:1541 D:145@ EF:41 EB:12 ET:0 EL:3]

Fri Nov 25 ©4:083:16 2016 us=653889 192.168.19.104:1194 Local Options String: 'V4,dev-type tun,link-mtu 1541, tun-mtu 1500,pr
oto UDPv4,cipher BF-CBC,auth SHALl,keysize 128, key-method 2,tls-server'

Fri Nov 25 @4:03:16 2016 us=653894 192.168.19.104:1194 Expected Remote Options String: 'V4,dev-type tun,link-mtu 1541, tun-m

tu 1500,proto UDPv4,cipher BF-CBC,auth SHAL,keysize 128, ,key-method 2,tls-client’

Fri Nov 25 04:03:16 2016 us=653911 192.168.19.104:1194 Local Options hash (VER=V4): '239669a8"’

Fri Nov 25 @4:83:16 2016 us=65392@ 192.168.19.184:1194 Expected Remote Options hash (VER=V4): '351437@b’

Fri Nov 25 ©4:03:16 2016 us=653941 192.168.19.104:1194 TLS: Initial packet from [AF_INET]192.168.19.104:1194, sid=478ablf6

B7eb55%b
Fri Nov 25 ©04:083:16 2016 us=664351 192.168.19.1@4:1194 CRL CHECK OK: C=US, ST=Minnesota, L=5t Paul, O=Trouble Shooting Open

VPN, CN=Trouble Shooting OpenV¥PM, emailAddress=ecrist@secure-computing.net

Fri Nov 25 @4:83:16 2016 us=664375 192.168.19.1084:1194 VERIFY OK: depth=1, (=US, S5T=Minnesota, L=5t Paul, O=Trouble Shootin

g OpenVPN, CN=Trouble Shooting OpenVPN, emailAddress=ecrist@secure-computing.net

Fri Nov 25 04:083:16 2016 us=664491 192.168.19.104:1194 CRL CHECK OK: C=US, ST=Minnesota, O=Trouble Shooting OpenVPN, CN=tsh

oot-client, emailAddress=ecrist@secure-computing.net

Fri Nov 25 @4:83:16 2016 us=664505 192.168.19.104:1194 VERIFY O0K: depth=@, C=US, ST=Minnesota, O=Trouble Shooting OpenVPN,

CN=tshoot-client, emailAddress=ecrist@secure-computing.net

Fri Nov 25 @4:03:16 2016 us=666571 192.168.19.104:1194 TLS Auth Error: --client-config-dir authentication failed for common
name 'tshoot-client' file='ccd/tshoot-client’

Fri
24,
Fri

Nov 25 84:83
1824 bit RSA
Nov 25 ©04:83

04:1194

Fri
Fri
Fri
Fri

Nov 25 84:83
Nov 25 ©94:03
Nov 25 04:03
Nov 25 ©04:03

:16 2016 us=669738 192.168.19.104:1194 Control Channel: TLSvl1.2, cipher TLSv1/55Lwv3 DHE-RSA-AES256-GCM-SHA3
:16 2016 us=669752 192.168.19.104:1194 [tshoot-client] Peer Connection Initiated with [AF_INET]192.168.19.1

:18 2016 us=709105 192,168.19.104:1194 PUSH: Received control message: 'PUSH_REQUEST'

118 2016 us=709122 192.168.19.104:1194 Delayed exit in 5 seconds

118 2016 us=7@9130 192.168.19.1@04:1194 SENT CONTROL [tshoot-client]: 'AUTH_FAILED' (status=1)

124 2016 us=112198 192.168.19.104:1194 SIGTERM[soft,delayed-exit] received, client-instance exiting

Server side: authentication error with cause identified

Summary

This chapter has helped to illustrate some of the inner workings of the X.509 standard. My goal was to
demystify certificate chains and the revocation list by providing tools and real-world command examples
and allowing an OpenVPN administrator to identify connection and authentication problems.

Due to some limitations of how OpenVPN implemented these standards, useful clues are not always
present in the client-side logs. Some of the most common and difficult-to-diagnose problems have been
identified with solutions or explanation of how the logic is executed within the OpenVPN binary.

Chapter 7. Network and Routing

Building a network is the core functionality OpenVPN provides. The complexity of the network is up to
the administrator, but I have seen this range from a simple client/server with a few resources on a local
network to VPN chaining, client-side routing, and the encapsulation of other network streams.

In order to build a quality virtual private network, it is necessary to understand how to troubleshoot
issues. In addition, it is useful to understand how some of these network topologies relate to OpenVPN.
This chapter will help with all of these concepts.

Connectivity

The first step in connecting to a remote VPN server is actually having the ability to connect outbound from
the current network, whether that is from home, a coffee shop, a corporate network, or via your favorite
mobile hotspot. If the outbound connection is blocked, none of the other configurations will matter.

Inbound connection--server

On the server side, connectivity can prove a bit more difficult. The OpenVPN server needs to either
reside directly on the public network, or port-forwarding rules need to be applied to deliver the traffic to
the correct system. All servers used across the general Internet will require some form of routable or
public IP address.

I will cover both a simple public address case in addition to the slightly more complicated port-
redirection case. It is good to keep in mind that many corporate networks will seldom place the VPN
server directly on the public Internet. Instead, they will usually use multiple layers of firewalls, intrusion
detection system (IDS), and intrusion prevention system (IPS). The following illustration demonstrates
one of these more complicated scenarios:

Corporate LAN — 10.5.0.0/24 DMZ —172.16.55.0/24
_ : OpenVPN
g g g Server =
Email Intranet Mail Relay
‘f Web Server
U : DMZ Firewall
LAN Firewall

S

OpenVPN Client

Internet

Corporate deployment using DMZ and multiple firewalls and IDS/IPS

The arrows in the preceding image demonstrate the path traffic would take from a potential client system.
Note that both public traffic (that is, traffic destined for hosts available on the general Internet) and the
VPN traffic to internal systems traverse the IDS/IPS system(s) and the DMZ firewall. Then, the OpenVPN

traffic must traverse the server and the LAN firewall before finally reaching the internal systems.

The method most commonly used for addressing these systems involves multiple routes and some
network address translation (NAT). The systems within a demilitarized zone (DMZ) will normally
have a real public IP associated with them, generally hosted on either the firewall or IDS/IPS system,
often known as a virtual IP (VIP).

VIPs will be publicly routable addresses. The hosting system will forward traffic, after inspection and
rule checks, to the internal system within the DMZ. Traffic will then flow from the DMZ-hosted system to
the next destination. In the case of our OpenVPN server, it will forward that traffic into LAN after some
final firewall policy checks by the LAN firewall.

This configuration is much more secure than most typical OpenVPN setups where the server resides
directly on the Internet. These configurations, however, are complex, and can be much more complicated
than the server administrator requires or even understands.

Publicly addressed server

Having the ability to assign a public IP address directly on your OpenVPN is the easiest method of hosting
a server. Hosting an OpenVPN server at a VPS provider is likely the simplest deployment method.
Advantages of this include commercial-quality uplinks, server and hardware reliability, and you can run
these virtual servers at a multitude of providers in geographically convenient locations. This allows the

administrator to place the VPN server closer to the users of that system and lowers latency and potential
bandwidth bottlenecks:

f
i . |
| OpenVpn

/1 @penVpn

i Server
d

DipenVpn

Server

An example of geographically located OpenVPN servers (Map source:
https://commons.wikimedia.org/wiki/File:Winkel_triple_projection_SW.jpg)

Note

Multiple OpenVPN - -remote options can be specified in client configuration files, and they will be tried
in the order listed. Some OpenVPN service providers allow users to generate their configuration file
based on their geographical location, resulting in a series of - -remote entries optimized for that user's
location.

Fortunately for the novice or aspiring VPN administrator, the majority of VPS providers place the system
directly on the public Internet. Depending on the operating system and VPS provider, some systems may
come preconfigured with some basic firewall rules. Tweaking and verifying these is covered in a later
section.

There are a couple of things you can do, however, to ensure the OpenVPN process is listening for new
connections. Both Unix and Windows systems use the netstat command to list open ports. This
command, depending on the arguments, will display both outbound connections as well as ports opened
by listening services. On Unix, you can use the grep command to filter the results, looking for the
listening port. On Windows, you can filter with the findstr filter.

The following screenshots show what this would look like for both a Windows and a FreeBSD server.
Linux or other *nix flavors will behave similarly:

=

B Command Prompt ||| |

Microsoft Windows [Version 6.1.7661] -
ight (c) 2889 Microsoft Corporation. All rights reserved.

C:\Users\Eric F Cristrnetstat -aon findstr 1194
upp g.8.8.8:1194 e bo6d

ers\Eric F Crist>

Identifying the listening OpenVPN process on Windows

The -aon command-line options specify to list all sockets, numerically, and by process ID. If you have
administrative privileges, you can add the -b option, which will identify the process name:

® ® ecrist@meow

root@tshoot-srvr:~ # netstat -an | grep 1194
udp4 0 0 *.1194 o
root@tshoot-srvr:~ #

Showing the listening port for OpenVPN on FreeBSD

You can use the netcat or nmap utilities to verify that the port is open from a remote system. A remote
verification helps to ensure that all the necessary firewall rules are in place to allow the traffic:

@ ® author@client

author@client:~-> nmap -sU -p 1194 192.168.19.37

You requested a scan type which requires root privileges.
QUITTING!

author@client:~-> sudo nmap -sU -p 1194 192.168.19.37
Password:

Starting Nmap 6.49BETA5 (https://nmap.org) at 2016-@9-11 @9:52 CDT
Nmap scan report for 192.168.19.37

Host is up (0.0024s latency).

PORT STATE SERVICE

1194/udp closed openvpn

MAC Address: 00:0C:29:08:99:29 (VMware)

Nmap done: 1 IP address (1 host up) scanned in @.15 seconds
author@client:~->

nmap output testing UDP port 1194 on OS X

On *nix operating systems, the nmap command requires root privileges to scan UDP ports. The UDP
protocol is a best-effort dispatch meaning that the sender will not wait for a confirmation before sending
the next packet. TCP, on the other hand, will respond with packet reception data and request
retransmission of lost or corrupt packets.

Because of this behavior, nmap requires extra privileges to intercept ICMP messages from the kernel as
UDP does not provide the data needed alone:

© @ author@client

author@client:~-> nc -vz -u 192.168.19.37 1194
found @ associations
found 1 connections:
1: flags=82<CONNECTED,PREFERRED>

outif (null)

src 192.168.19.104 port 53604

dst 192.168.19.37 port 1194

rank info not available

Connection to 192.168.19.37 port 1194 [udp/openvpn] succeeded!
author@client:~-> |

netcat does not require root and serves the necessary role

The ncat (or netcat or nc) command does not require root permissions. On Windows, neither the nmap
nor netcat tools require administrative permissions. As a regular user, I was able to run both without
escalated privileges. The Windows tools provide a nice graphical interface, but the overall end result and
command syntax proves identical to the *nix version of the tool.

The command shown in the following screenshot is identical to what you would run on the Linux
command line:

© Zenmap =N el
Scan Tools Profile Help

Target: | 192.168.19.37 -~ | Profile -] [Scan| |Caneel

Command: |nmap -sT -p 1194 192168.19.37

[Hosts “ Services | MNmap Cutput [F'r:rrtsf Hr:kstsy Tnpr:rlcrg-yi Host Details Scans‘

0S 1 Host - nmap -s1 -p 1194 192.168.19.37 IEI | Detail-s|
W 1921681937

Starting Nmap 7.12 (https://nmap.org) at 2816-89-11
21:46 Central Daylight Time

Nmap scan report for 192.168.19.37

Host is up (8.8824s latency).

PORT 5TATE SERVICE

1194 /tcp open openvpn

MAC Address: @8:8C:29:88:99:29 (VMware)

Mmap done: 1 IP address (1 host up) scanned in 1.85
seconds

Filter Hosts

Both tools are available across both the *nix and Windows platforms though are seldom part of the base
distribution. You can download them both by going to http://nmap.org/download.html for netcat and
nmap. The single Windows setup will, by default, install both utilities, along with some other useful ones
not covered here.

Privately addressed server with port forwarding
Hosting an OpenVPN server on a home network connection provides its own benefits and complications.

This is most often deployed when someone wants to access resources at home remotely. Some examples
include network file servers hosting photos and movies or a home printer or a DVR.

http://nmap.org/download.html

The primary complication with hosting on a typical home or consumer Internet connection is the single IP
address, which is most often not a static address. In this case, the customer premises equipment (CPE)
will hold the public IP address. Often, CPE is an ISP-provided piece of equipment that offers a limited
subset of configuration options and capabilities. This could also be an off-the-shelf system such as an
Apple AirPort, an OpenWrt device, or any other home router.

Common functionality should include some firewalling capabilities along with some rudimentary port
forwarding. High-end units will allow the configuration of Dynamic DNS (DynDNS) registration. For the
purposes of this example, we will only focus on port forwarding. In addition, we will assume a static IP
address. The majority of providers charge extra for a truly static IP address, but it is common according to
Internet testimonials to retain the same public IP for a single CPE for many months or even beyond a year.

With port forwarding, an administrator will take a port on a publicly accessible system, in our case our
CPE, and forward that connection to an internal system. The default port for SSH, for example, is 22. If
we wanted to host an SSH server on a couple of internal systems, we could forward port 22 from our
CPE to internal system 1. The second system, however, would have to be a separate port (any arbitrary
port) since 22 is now used.

In the earlier-mentioned scenario, let us assume the public IP address is 192.0.2.5. Our internal network
isusing 172.31.0.0/24, with our two SSH servers at 172.31.0.9 and 172.31.0.43. We can redirect
port 22 from our CPE to server 1 (x.9), but we need to use another port, 774 (or any arbitrary port), with
our second server (x.43):

LAN

DSL Gateway
LAN: 172.31.0.1/24
e WAN: 192.0.2.5

-

ssh -p 22 192.8.2.5
S55H Server 1
IP: 172,31.0.9/24

S5H Client
Machine

Port Forwarding Rules

“ssh -p 774 192.0.2.5

SSH Server 2
IP: 172.31.0.43/24

A relationship of internal hosts to CPE in port-forwarding setup

Our SSH session initiation would look as follows:

author@client:~-> ssh -p 22 user@192.0.2.5 user@172.31.0.9:~->
author@client:~-> ssh -p 774 user@192.0.2.5 user@172.31.0.43:~->

Note that, in both cases, the external IP is identical, but the port number changes. Also, the internal host
we connect to changes, but the SSH process on each host remains on the default tcp/22. 1 will touch on it

further in the firewall section later in this chapter, but it is important that those internal hosts have
outbound access to hosts connecting in order to establish those connections.

For testing our port-forwarding rule for udp/1194 on a typical home network, we are forwarding
udp/1194 on our public interface on a Ubiquiti EdgeMAX router to our internal OpenVPN server on
192.168.19.37:

Destination NAT Rule Configuration

Description

Enable
Inbound Interface #*

Translations *

Exclude from NAT

Enable Logging

Protocol

Src Address
Src Port

Src Address Group
Src Network Group

Src Port Group
Dest Address
Dest Port

Dest Address Group
Dest Network Group

Dest Port Group

OpenVPN Server

pppoe0 E

Address 192.168.19.37

Port 1194

All protocols

TCP

© uor

Both TCP and UDP
Choose a protocol by name

Enter a protocol number

-- a or Interface Addr --
- B
- B

1194

- ﬂ or Interface Addr --
- B

- B

0

Ubiquiti EdgeMAX port-forwarding configuration

The configuration on this device takes a few details, including the following:

e Internal IP address: 192.168.19.37

¢ Internal port: 1194

¢ Protocol: UDP

e External IP address: Your actual public IP (the test here used a real port forward over the Internet;
our public IP is blurred)

e External port: 1194 (this does not need to match; internal and external can be whatever you choose)

For the inbound interface, I selected pppoe0 since this is the interface that holds the publicly routable IP
address. Once the configuration is saved, it is live and ready to be used.

To test the new rule, we will use the netcat utility, without starting up the OpenVPN process. This
allows for a simple test where we are sending raw text across the port. On the server, shut down the
OpenVPN process if it is running, and execute the following command:

author@server:-~> nc -ukl 1194

This command opens udp/1194 and listens for incoming connections. The -k option keeps netcat
listening for additional connections. Because we are using UDP, there is no real concept of a stateful
connection, so every packet is a new connection.

Next, from outside the network, again using netcat, make an outgoing connection to the public IP and port
combination used for your port-forwarding rule. On the external test system, run the following command:

author@external:-~> nc -u 203.0.113.9 1194

With both windows open, you should be able to type into the external window and see the message appear
on the OpenVPN server console after each press of the enter key. If you do not see your messages on the
server console, there is either a problem with your port-forwarding rule, or there may be a firewall
somewhere in the path that is blocking the traffic.

Here is our console session on the internal OpenVPN server after our successful test, as described
earlier. The communication for this test is only one-way, so typing a message on the server console will
not send a message back to the test client:

L]

author@server:~-> nc -ukl 1194

Is this thing on?

Typing from the remote client.

Typing from the server console.

Typing again from the remote client. No server message seen.

Internal OpenVPN server with test UDP listening running

The following screenshot shows the messages sent by simply typing into the window and pressing Enter.
All the messages show up on the server, but note the message typed on the server did not show up in the

client window; this is normal:

@® ecrist@terrance

ecrist@terrance:~-> nc -u 203.0.113.9 1194

Is this thing on?

Typing from the remote client.

Typing again from the remote client. No server message seen.

External test system with open connection to public IP on udp/1194

Outbound connection--client

Much of the testing demonstrated in the previous section properly illustrates testing outgoing connections
during the testing of the incoming connections. It should be readily apparent that if an outgoing connection
fails, the incoming connection on the other end would not succeed.

It needs to be pointed out that testing for open UDP ports can be problematic. The netcat tool, for
example, gives frequent false positives, depending on the remote operating system and firewall policies.

In all of our examples, we have used udp/1194, which is the OpenVPN IANA-assigned port. If we use
netcat to test udp/1000, for which we do not have a listening daemon, the remote FreeBSD system,
combined with the netcat tool's internal logic, lists the port as open.

If we use nmap, however, we can see that the port is correctly identified as closed:

author@client

author@client:~-> nc -vz -u 192.168.19.37 1000
found @ associations
found 1 connections:
1: flags=82<CONNECTED,PREFERRED>

outif (null)

src 192.168.19.104 port 55598

dst 192.168.19.37 port 1000

rank info not available

Connection to 192.168.19.37 port 1000 [udp/cadlock2] succeeded!
author@client:~-> sudo nmap -sU -p 1000 192.168.19.37
Password:

Starting Nmap 6.49BETAS (https://nmap.org) at 2016-@9-12 21:16 CDT
Nmap scan report for 192.168.19.37

Host is up (0.0016s latency).

PORT STATE SERVICE

1000/udp closed ock

MAC Address: 00:0C:29:08:99:29 (VMware)

Nmap done: 1 IP address (1 host up) scanned in @.15 seconds
author@client:~-> |

Demonstrating differing results between nmap and netcat for a closed port

Digital Internals has a decent write-up discussing the false positives at

http://www.digitalinternals.com/unix/unix-linux-netcat-check-port-open/511/.

http://www.digitalinternals.com/unix/unix-linux-netcat-check-port-open/511/

Firewall filters and inspection

Some service providers block the default port 1194 (both TCP and UDP) from some client networks.
Corporate networks, as an easy example, block most inbound traffic to the network, preventing a rogue
service like a web server or OpenVPN server. On a much larger scale, one infamous blockade for the
OpenVPN service is the Great Firewall of China (see https://openvpn.net/archive/openvpn-devel/2004-
11/msg00028.html for more information).

https://openvpn.net/archive/openvpn-devel/2004-11/msg00028.html

TLS authentication

OpenVPN provides a mechanism using a set of pre-shared keys to cryptographically sign every packet
between the server and client. The mechanism for this is the same secret key used for a static-key
OpenVPN setup, as was the original release.

The advantage to this signature is two-fold. First, it helps prevent any sort of denial of service attack
using cryptographic routines within TLS to overload an OpenVPN server. The OpenVPN process will
quite simply drop any packet without a valid signature before the CPU-intensive handshake and key
exchange operations take place.

As a second advantage, - -t1ls-auth aids in preventing keying material disclosure. This is specifically
helpful for vulnerabilities such as Heartbleed or DROWN. If a cipher is completely broken, it is possible
to still snoop the traffic from OpenVPN because - -t1s-auth doesn't provide any additional
cryptographic layers.

Note

You can read more about the Heartbleed and DROWN OpenSSL vulnerabilities by going to the following
links:

¢ Heartbleed (CVE-2014-0160): https://web.nvd.nist.gov/view/vuln/detail ?vulnld=CVE-2014-0160
e DROWN (CVE-2016-0800): https://web.nvd.nist.gov/view/vuln/detail ?vulnld=CVE-2016-0800

While being an added layer of protection for your VPN, --tls-auth can also cause connectivity
problems. If the key direction is incorrect, or the pre-shared keys are out of sync, your VPN clients will
be unable to connect, and the errors will manifest as connectivity issues.

The OpenVPN manual suggests that the key direction should not be defined in the server and client
configuration for simplicity. In this scenario, only one key is used for packet signatures on both sides of
the connection. If set, the values can be only either 1 or 0, with the server set to one value, and all clients
set to the other value.

The --tls-auth key can either be expressed inline to the configuration or be written to a file like the
certificates. When using a file, the configuration will resemble the following:

tls-auth /path/to/file.key 0

The preceding example provides a path to the key file, and specifies a key direction of . If this was for
the server, we would want to ensure the client side was set to 1. Either side can be either value as long as
the opposite end is the other value.

When using an inline t1s-auth key, it would look like the following example. Notice that to specify the
key direction, there is a distinct - -key-direction parameter value present:

key-direction 0
<tls-auth>

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-0800

#
2048 bit OpenVPN static key

----- BEGIN OpenVPN Static key V1-----
5f6a0@l1fc8ed629aad7b26e6c6b474e5b
4a5446d3c81df9fd619d0a685b56a4c7
2997d8e5906a152687441a89742604cbh
a2eb51e68ef260507d6681b04e5932d4
£35699b1fce29269dc75199df9281acO
bd85ac8f4d097e2b2abfd03854d91466
do26c72f0ebd14b76cd3688e52dd1475
8be2996a577b97c198c8130c4824e97c
dd82dde648203f26a172385e4a36c¢ccld
b8633c1fObb8c7954db540357cb88f75
571a21c4dae@2e4cea767abb36713d3e
1b863b6dc479cTf4081e3929e0f3f26d3
fa503629b587e5be0®@1c95bd16cd8ae70
abd902bb8b95dfdcbd2dc552ef3f3e9a
O1bdbcOe8df849aa6fcOaed7deb6ce718
f15b696eaf@daad496bbaf7b78c4f00a
----- END OpenVPN Static key V1-----
</tls-auth>

If the secret keys do not match or the key direction parameter is not set correctly, both set to o, for
example, there will be TLS key errors present in both the server- and client-side logs. On the client side,
the error will look like the following:

TLS Error: local/remote TLS keys are out of sync: [AF_INET]192.168.19.37:1194 [0]

On the server side, you will see two messages, one identifying the packet error and another identifying the
offending peer:

Authenticate/Decrypt packet error: packet HMAC authentication failed
TLS Error: incoming packet authentication failed from [AF_INET]192.168.19.104:1194

Note that modification by inline network intrusion systems that change values to the packet headers may
introduce problems because the packet signatures will not validate. If you are seeing this behavior and are
confident that your configuration is correct, try completely removing these parameters and see if the
problem goes away. If so, there may be a device in the line tampering with packets.

Routing

OpenVPN provides powerful routing capabilities allowing the network administrator to direct traffic
from clients where it needs to go. These routes can place entire subnets behind specific client
connections, through other routers on the server side, or out to the Internet. There are two distinct zones
when discussing routing and VPNSs. I like to classify them as internal and external.

Regardless of which bucket your routes go into, it is vitally important to consider that both endpoints in
the route need to know how to reach the other. There are varying techniques for accomplishing this: static
routes, dynamic routes, NAT/PAT, and so on. Failure to ensure that there is a return path will prevent
useful traffic from flowing.

In the following example image, the OpenVPN server resides behind a port-forwarding network gateway.
The LAN gateway, nor the LAN file server, however, know how to route the 10.8.0.0/24 network. The
OpenVPN client is able to send traffic via the OpenVPN server to the file server on LAN. That file server
then responds via the default gateway because it does not have a more specific route for the VPN subnet.
At this point, the gateway will either drop it (It is bad practice to forward RFC 1918 traffic out to the
Internet) or forward it, only to be discarded upstream as unreachable (see

https://tools.ietf.org/html/rfc1918, section 3, paragraph 8):

OpenVPN Server
VPN: 10.8.0.1/24
LAN: 192.168.19.5/24

| N N OpenVPN Client
; VPN: 10.8.0.2/24
Vi e S
R N=
o e LAN Gateway
T LAN: 192.168.19.1/24

LAN File Server
LAN: 192.168.19.10/24
G/W: 192.168.19.1

A missing return path causes overall communication failure

The simplest solution is to install a static route pointing the VPN subnet, 16.8.0.0/24, back to the VPN
server at 192.168.19.5 on the LAN file server. If we are only dealing with a single or small handful of
hosts, this might be the best option. In a corporate environment, where there are many hosts, however, this
quickly becomes cumbersome.

The second option is to install the same route to the VPN subnet on the LAN gateway. This is generally
less desirable, as it will cause the gateway to send an ICMP redirect message informing the LAN file
server of the more direct route (via the VPN server). For a simple home network, this may be sufficient as

https://tools.ietf.org/html/rfc1918

some gateways may not have the routing features enabled to set static routes in a way accessible to the
end user (homeowner/subscriber).

Another solution to return-path routing is to NAT VPN traffic from the VPN subnet out to the VPN server
LAN address. This NAT method will result in all of the LAN systems only seeing the VPN server's LAN
address, which they already know how to route because it is local. In the majority of cases, this should be
sufficient. This does not work, however, if there are VPN resources that LAN clients want to access
directly. We will discuss this in a later section.

One last method for resolving return-path routing is if the OpenVPN server is also the LAN gateway
device. This is possible with only a few off-the-shelf residential gateways, and also a few commercial
gateways, but there are some alternate firmware for some devices that allow for this. OpenWrt and
pfSense are two examples of gateway devices firmware that embed OpenVPN.

When troubleshooting routing, the following flow chart is often referenced, and we consider it a gold
standard for troubleshooting with regard to OpenVPN. The flowchart is designed to help troubleshoot
routing when there are remote LANs/networks behind an OpenVPN client:

route 10.10.10.0 255.255.255.0
push "route 10.10.10.0 255.255.255.0"

In server config:

Do you have access
to the target machine
in the lan?

Turn on ip forwarding or
fix ip forwarding in your
firewall

do you have access
to the router for
the lan?

Add a route to the router so it
knows how to reach the vpn
subnet

No[

You must use
the nathack :{

YES]

Can the server ping the vpn ip
of the client?

Did you give the server and clients a
route to the client lan?

an the client ping the'
vpn ip of the server?

Did you correctly
configure the iroute?

Fix your vpn
YES
Fix your client's
firewall
In server config:
client-config-dir /pathito/ecd
In /path/to/ccd/CLIENT-NAME:

iroute 10.10.10.0 255.255.255.0

You should see the iroute added in the server log when the
client connects

Can you ping the lan
Ip of the client?

Can you ping another
machine in the lan?

It works!

Add a route to the lan machine
s0 it knows how to reach
the vpn subnet

Note

ICMP redirect (type 5) messages are sent when the next-hop for a routed packet is via the same interface
on which the packet was received. Overall, this type of routing is inefficient, and it is better to route those
packets directly to the proper host. More information about this is available at

http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13714-43.html or at
https://ask.wireshark.org/questions/35826/what-does-icmp-redirect-redirect-for-host-mean.

http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13714-43.html
https://ask.wireshark.org/questions/35826/what-does-icmp-redirect-redirect-for-host-mean

Internal routing

The internal routes are those that will stay inside the VPN. These do not pass outside the general context
of OpenVPN or remain very close. In some configurations, the only thing the VPN clients will
communicate with are either the VPN server (or some services hosted on the machine) or other VPN
clients.

There are a few things that can go wrong with a simple setup like this. For example, let us set up an
Apache server and run that on our OpenVPN server. Normally, users would connect to this web server
over the normal system IP address (LAN or WAN is irrelevant).

With the server also running an OpenVPN server, however, the VPN clients must access the web server
over the VPN IP or they could run into split routing. The server's public IP cannot be routed over the VPN.
Access rules may allow additional privileges for VPN clients or provide virtual hosts that only reside
within the VPN subnet.

There are no specific steps to verifying internal routing issues, but make sure the service you are trying to
connect to is:

¢ Listening on the VPN IP address
¢ Providing the necessary access to the VPN clients
o Database servers, protected web paths, and other similar services use IP addresses as one
component to determine access rules

External routing

External routes are those that pass on to other networks whether they remain within the LAN/WAN or
extend beyond out to the Internet. I see the external routes as the more complicated of the two as they
generally involve cooperation of some sort from the other network.

A common use for passing external routes is to bypass geographical limitations enforced by various video
streaming providers. Due to content licensing, translation, and local laws or regulations, access to various
content is restricted for use based on their perceived geographical location based on the IP address. Many
geolocation services attempt to place ranges of IPs within a physical location, often based on registration
data (ARIN, APNIC, and others). Another more modern method is locating Wi-Fi access points based on
GPS-enabled cellular phone records.

By connecting to a VPN server in a remote location, a user can appear (and functionally does) to originate
from a different location than where they physically reside. Some of these content providers have gone to
great lengths recently to restrict known VPN providers from access at all.

Pushing routes

When the admin wants VPN clients to connect to more than other VPN clients, it is generally necessary to
push additional routes to those clients. These routes can be both internal and external to the VPN and can
even include other OpenVPN processes. System administrators, for example, may connect to a different
set of VPN servers than normal users.

Routes can reside behind other clients, static systems on the server LAN, external to the server LAN, or
even be a new default route.

Routes behind clients

Through - -iroute statements, OpenVPN can be made aware of routes behind clients, creating a route in
the internal routing table. This is useful when you have a central office and one or more remote offices,
for example. Each office should have its own subnet. The gateway device or a router behind it will have a
VPN process that may act as a client to the central office's OpenVPN server.

The - -iroute statement must be placed in a client-specific configuration file within --client-config-
dir or CCD. If you place this directive in the general server configuration, it will be applied to all clients
connected, rather than the single, correct, client. If the intent is to only have VPN clients route these
subnets, there is no reason to add this to the kernel routing table (mentioned later).

Applying the - -push route "..." to clients, along with - -iroute in the correct CCD file, you can
successfully traverse the VPN in to remote client subnets, without affecting the OpenVPN server itself. It
is important to remember that the OpenVPN server can push routes to clients, but there is nothing to push
those routes to the OpenVPN server. It is a good rule of thumb that for every pushed route, there should be
a route in the server configuration, and vice versa.

Kernel versus process routing

There are two distinct routing tables on an OpenVPN server: the OpenVPN process internal routing table
and the kernel routing table. Normally, in a simple OpenVPN setup with no additional routes, there is an
interface route within the kernel routing table for the VPN subnet.

Both the - -route and - -iroute configuration arguments create routing table entries. The former
propagates those routes to the kernel routing table, whereas the latter only tracks the routes internal to the
OpenVPN process. The distinction is that if the kernel is unaware of a given route, LAN clients behind
that OpenVPN system will be unable to reach those subnets. Likewise, a route can be placed within the
kernel routing table, which will pass that route to the OpenVPN system, but the process needs to know to
which client that goes in order to process it.

There are three primary steps to establish a full route within OpenVPN:

1. Establish process-specific routes (- -iroute).
2. Apply necessary kernel routes (- -route).
3. Pushroutes to clients (--push "route ...").

In order for kernel routes that route across interfaces to be honored, IP forwarding needs to be enabled.
This allows the system kernel to forward packets from one interface to another. Without this set, traffic
routing will stop dead at the kernel. Both *nix and Windows have the concept of IP forwarding.

Modern Linux and Unix systems have sysct1s or system controls that define some runtime kernel options.
Most will use a separate IPv4 and IPv6 setting, net .inet.ip.forwarding and
net.inet6.ip6.forwarding. These will vary somewhat, but good bet to find them shown here:

author@server

author@server:~-> sysctl -a | grep forward
kern.smp.forward_signal_enabled: 1
net.inet.ip.forwarding: 0
net.inet.ip.fastforwarding: @
net.inet6.ip6.forwarding: 0
author@server:~->

For Windows, there is a similar mechanism within the system registry. You can find the necessary keys in
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters as the value
IPEnableRouter. You can reference https://support.microsoft.com/EN-US/kb/230082 for further details.

Route conflicts

Be careful when selecting the IP range to use for your VPN. There are a couple of common home network
subnets (192.168.0.0/24 and 192.168.1.0/24) that should never be used for a VPN. Other corporate
ranges should also be avoided, like anything in the 10/8 subnet. Most importantly, make sure that
whatever you're using doesn't conflict with what you want to connect to.

https://support.microsoft.com/EN-US/kb/230082

Redirect gateway

Many VPN providers will push a new default route to their client systems. Some third-party OpenVPN
client GUIs will even go so far as to provide an option that notifies the user if the apparent external IP
doesn't change once connected to a VPN.

Routes are followed by the most specific route and then by the routing metric. In general, OpenVPN routes
all will have the same metric, so specificity matters. If OpenVPN actually replaced the core default route,
the client would be unable to talk to the gateway, causing the connection to drop.

To push a new default gateway to OpenVPN clients, the - -redirect-gateway configuration directive is
provided. With the def1 flag, all network traffic except local LAN traffic will be routed to the VPN
server, even Internet-bound traffic such as web browsing. This directive does two primary things to
create a new default route. First, it creates a static route for the OpenVPN server, pointing to the current
default gateway. Second, it creates two less-specific routes functionally providing a new default, without
deleting the original route.

As I stated earlier, the routing table will follow the most specific route first. The normal default route is
defined with the subnet 0.0.0.0/0. This subnet includes all IPs. OpenVPN, to create more specific
routes, applies ©.0.0.0/1 and 128.0.0.0/1. These define the first half of the IPv4 address space, then
the second half of the IPv4 address space.

Because these two routes are more direct than the initial default, they are chosen in favor, causing all
traffic to flow to the OpenVPN server. The server still needs to route traffic from the clients to the general
Internet.

Routing VPN traffic from clients out to the general Internet is often hidden behind a single IP address. The
technique is named NAT. This masquerades all outbound traffic, regardless of origin, to a set of external
IPs. Since your VPN will be composed of RFC 1918 addresses, they would be dropped by upstream
routers. Besides this, many networks share the same common subnets, so the Internet routers would be
confused and uncertain about where to send that traffic.

The OpenVPN server needs to NAT the VPN client traffic, and IP forwarding needs to be enabled.

General network concerns

Apart from routing, there are a few additional networking components that tend to trip up even some
advanced server administrators.

Path MTU and MSS

Maximum transmission unit (MTU) problems are some of the most difficult problems to identify. In part,
this is due to the odd symptoms that arise when an MTU incompatibility is present. During such a
condition, some traffic will seem to function without a problem, whereas other traffic will inexplicably
fail.

MTU is the largest packet that can traverse a network link intact. In the event that a larger packet transfer
is attempted, it will either fail to reach the remote endpoint, or a fragmentation request will be sent back
to the sender. This request tells the previous hop that the packet was too big and specifies how big the
next packet should be:

Header S
Application Data
Data G2
23 bytes b 1472 bytes -
T T T T T

MTU (1500 Bytes)

In general, when MTU problems exist, traffic with typically small packets will work without any issue.
SSH, for example, sends many small packets during console sessions, often only a few keystrokes in an
encrypted format. In my simple test, for example, the text a\n (the letter a followed by a newline) shows
up across the wire as a 2-byte data segment. The same traffic generates 72 bytes of encrypted data:

Header
Data

23 bytes -

Application Data

& 55H Packet

1472 bytes »

MTU (1500 Bytes)

Note the relatively small amount of space used by the SSH packet

Because these packets have so little real data, there is little risk of exceeding the MTU, even if it is
relatively small. Larger transfers, like using SCP to send a file to a remote system, however, will use
much more of the data segment. If the file being transferred is larger than the MTU, packets carrying file
data will generally max out the data segment:

MTU (1500 Bytes)

Data packet is too large for the available packet space

On normal Ethernet networks, the MTU is most commonly defined as 1500 bytes. All of the packet header
data and application data must fit inside one of these packets. In the case of application data, larger
chunks may be broken up across multiple packets:

Packet 1 Packet 2

MTU (1500 Bytes) MTU (1500 Bytes)

The same 2000 byte data split between two separate packets

There is inherent cost to processing packets for a switch or a router, as each packet must have its headers
analyzed, a decision made on routing, and then outputting that packet where it needs to go.

With OpenVPN, additional encapsulation is added, which reduces the useful size of the overall data space
in a given packet. The following diagram is simplified slightly from the real world, but the concept
applies. When a packet is encapsulated within another, the entire child packet, including headers, must fit
within the application data space:

%

Header SR e
Application Data X

Data z
ST — 1472 bytes e n -

Header
Data

| 28 byles—pg—————1 444 hytes

Application Data |

VPN Packet

| MTU (1500 Bytes) |

VPN data space is reduced per packet compared with a local network packet

Fortunately, OpenVPN comes prepacked with a tool you can leverage to identify the proper MTU for your
VPN, --mtu-test. By adding the - -mtu-test option to your configuration or passing it on the command
line, OpenVPN will attempt to calculate the largest packet your VPN is capable of processing.

The ping command can be very useful in determining MTU, but there are a lot of different
implementations of ping across different platforms. Essentially, using the following examples, depending
on your OS of choice, you can send varying ping packets until a size is reached that begins to emit
fragmentation needed or packet too large messages.

The BSD (on both OS X and FreeBSD) ping has some sweeping options for the packet size argument.
This allows you to, without the need for an external for -1oop, gradually increase the packet size until

one begins to fail:

0@ author@client
author@client:~-= ping -0 15G0 -g 1359 -h 1o -0 192.162.20.1
PING 192.108.80.1 (192.168.80.15: (135@¢ ... 150@0 dato bytes
1358 bytes from 152.102.80.1: icmp_seg=@ ttl=0564 time=27.705 msz
1368 bytes from 1592.1602.88. icmp_seq=1l ttl=04 time=24.550 m=
1378 bytes from 152.1602.88. icmp_seq=2 ttl=04 time=75.542 m=
1388 bytes from 1592.1602.88. icmp_seq=3 ttl=04 time=22.574 m=
1398 bytes from 192.1602.88. icmp_seq=4 ttl=04 time=112.25%2 ms
1408 bytes from 152.1602.88. icmp_seq=5 ttl=04 time=31.206%9 m=
1418 bytes from 1592.1602.88. icmp_seq=0 ttl=04 time=20.5962 m=
1428 bytes from 1592.1602.88. icmp_seq=7 ttl=04 time=27.737 m=
1438 bytes from 152.1602.88. icmp_seq=2 ttl=04 time=34.@029 m=
1448 bytes from 1592.1602.88. icmp_seq=% ttl=04 time=22.523 m=
1458 bytes from 152.1602.88. icmp_seq=1@ ttl=04 time=27.340 ms
1468 bytes from 1592.1602.88. icmp_seq=11l ttl=04 time=35.972 ms
1478 bytes from 152.102.88.1: icmp_zeg=12 t11=064 time=29.77@ ms=
ping: zendto: Message too laong

ping: zendto: Message too laong

Fequest timeout for icmp_seq 13

ping: zendto: Message too laong

Fequest timeout for icmp_seq 14

el el

-—— 192.168.28.1 ping statistics ---

16 pockets transmitted, 13 pockets receiwed, 12.3% pocket loss
round-trip mindavg/max/stddev = 24.556/39.343/112.858/24.735 m=
author@client: ~—= |

Using a ping on OS X to find the usable MTU

In this case, the command provides a maximum sweep (-G) we set to 1500, a minimum sweep (-g) set to
1350, the increase interval (-h) set to 10 bytes, and an option to set the Do Not Fragment bit. At a
spacing of 10 bytes, our largest usable MTU would be 1470 (1478 - 8-bit ICMP header).

On Linux systems, you could write a for - loop to increase packet size for your selected bounds. Such a
script might look like the following shell script:

B B et

File Edit View Bookmarks Settings Help

L

ping ' 10.3.14.225

| ecrist : vim

Linux shell script looping through various packet sizes to find MTU

Finally, on Windows, we use a simple manual increment and run the ping command until it fails:

P =

EX Administrator Command Prompt = ” =] @
' stem3Z>ping -n 1 -1 1400 -t 10.3.14.225

Pinging 10.3.14.225 with 1400 bytes of data:
HHpT, from 10.3.14.225: bytes=1400 time=31ms TTL=61

cs for 10.3.14
: ent = 1, Rec
mate round trip times in milli-
H1n1m1m = 3ims, Maximum = 3ims, Average

C:\windows'\system32=ping -n 1 -1 1420 - 10.3.14.225

Pinging 10.3.14.225 with 1420 bytes of data:
Reply Trom 10.3.14.225: bytes=1420 time=31ms TTL=61

imate round trip times
Minimum = 31lms, Maximum =

IC:\windows\system32=ping -n 1 -1 1470 -f 10.3.14.225

Pinging 10.3.14.225 with 1470 bytes of data:
Reply from .3.14.225: bytes=1470 time=31ms TTL=61

2=ping -n 1 -1 1480 - 10.3.

Pinging 10.3.14.225 with 1480 bytes of data:
Request timed out.

C 2 \windows

Windows manual test, incrementing until packet failure

Now that we know our magic number is 1478, we can use the - -fragment and - -mssfix configuration
parameters to resolve packet size problems. The - - fragment option forces the OpenVPN process to
handle packet fragmentation for UDP packets. In our case, if we were experiencing packet loss for larger
payloads, we would add - -fragment 1472 to our configuration. We can also add - -mssfix to notify
TCP connections of our reduced MTU, which will offload the packet fragmentation to the application or
client system, reducing the load on the OpenVPN process.

Summary

This chapter covered some deep details about how to troubleshoot core network issues. Some tools,
including Wireshark and netcat, were demonstrated, and the reader should be able to use these tools
with some confidence. Like any tool, practice makes perfect, so I encourage you to use these for
troubleshooting, investigation, and learning.

This chapter also provided some knowledge and reasoning behind how these technologies work. By
understanding some of the theory behind the technology, it's my hope that you will be better prepared
when finding and resolving a problem.

Chapter 8. Performance

In a perfect scenario, your VPN users will have high-speed, dedicated connections over some sort of hard
line to reach your server. Not only that, these same users will have top-end systems, equipped with an
exorbitant amount of RAM, and high clock-speed CPUs equipped with the latest crypto-offload chipsets.

In reality, however, there are a variety of remote locations and devices that users will leverage to connect
to a VPN. Some of these are out of necessity, such as a high-latency satellite connection, and others are
out of convenience, such as using a mobile device. For the majority of your users, you should be able to
provide sufficient cryptographic protections while still maintaining a comfortable performance level.

Networking

Network components on the client and server LAN can greatly affect the overall performance of the
client-server connection. If the client is used in - - iroute, other client connections to the distant LAN
will also be affected.

Physical problems, such as improperly terminated fiber connections, poorly crimped RJ45 ends, and
frayed or split Ethernet cables can introduce noise, resulting in packet transmission errors.

Network congestion from other LAN systems or uplink usage will not be readily apparent from within the
VPN.

Rate limiting

Prior to around 2010, Internet connections were considered more or less a simple pipe in the consumer
world. If you were given a 10 Mbps (megabits per second) connection, you were allowed to use the
entirety of that connection for the duration of the month (or billing cycle). Commercial connections have
long been treated in an entirely different manner.

For commercial connection, hosting, or uplink, the bandwidth has been metered in some regard for quite
some time. There are a couple of ways you can purchase this bandwidth. First, you can purchase a
dedicated pipe, which allows you to fully use that connection for the entire billing period. If you're paying
for 10 Mbps, you can use all 10 Mbps, 24 hours per day, every day.

Another metering method, named 95th percentile, can also be used. In this scenario, a business may order
a 10 Mbps uplink, but pay a rate based on 1 Mbps. This means that the customer can use 1 Mbps the entire
time, with no additional charge. Because the pipe is larger than 1 Mbps, this customer may burst to faster
speeds for a potentially added rate. This burstability is where the 95th percentile measurement comes
from; the top 5% of traffic is lopped off/ignored, and the customer is billed for everything less.

For the consumer market, Internet service providers have opted, instead, to institute bandwidth caps that
are based on an aggregate of consumed transfer. This allows the consumer to use the full or maximum
speed available when it is needed. This bandwidth cap started with cellular data plans. Once it was
reached, the provider would rate limit the customer to a slower speed, typically around 144 Kbps (also
known as 3G speeds), until the next billing cycle.

Rate limiting is an artificial limit to the physical or technical capabilities of a specific platform or system.
These limits can be difficult to diagnose because there is nothing informing the user of this state. In the
case of a VPN connection, the link can go quite suddenly from a satisfactory speed down to an unusable
speed or one that is considered unusable by many people by today's standards.

There are tools that, if used sporadically over a period of time, can help identify when rate limiting has
kicked in. This will only work when there is a change of rate limiting and not when it is a state common to
every-day traffic.

First, there are sites such as Speedtest (http://speedtest.net) that allows you, using only a standard web
browser, to determine your real-world transfer speeds. I tend to think of this as a good test since it shows
a real transfer between a client system somewhere on the Internet out to another test system somewhere
else on the Internet. In this case, the data transfer traverses your ISP and the ISP of the server host,
demonstrating an end-to-end transfer.

There are other, similar tests available to customers of various ISPs. CenturyLink, for example,
provides a supposedly more-direct test to your ISP's hosted test server. Running this test from the
Speedtest server, a Slashdot server, and the CenturyLink server show odd results. The test is for my own
personal home Internet connection, and it is executed outside a VPN. The purpose of this test is to see
what the performance of the uplink is before we add the complexity of a VPN.

The first test is executed from the Speedtest website, which actually uses a server hosted on CenturyLink's

http://speedtest.net

network. This test results in an abysmal 30.66 Mb/s download speed and a 491.71 Mb/s upload speed.
Neither is close to my paid for speed of 1 Gbps:

DOWNLOAD

& PING: 12 ms K RATING: ####*

.] | 4 ; ‘ bl AW =T
' CENTURYLINK SAINT PAUL, MN

Speedtest result

The second result is a courtesy of http://Slashdot.org/speedtest/ and shows marginally better results. I see
a 347 Mbps download speed, 11 times faster, and 197 Mbps upload, 40% of the Speedtest result:

LATENCY / PING @ DOWNLOAD SPEED © UPLOAD SPEED © PACKET LOSS @

Latency Progress O Download Progress @ Upload Progress @

Jittar: 14 ms © Buffarbloat: 712 ms O Bufferbloal: 76 ms @

o ol B

ISP: ** 0O

http://Slashdot.org/speedtest/

Slashdot result

Disappointingly, and despite a wired connection to my home router, I'm unable to realize the full potential
of the connection I pay for. Based on these tests, I plan on reaching out to CenturyLink to identify the
bottleneck. I have been told by various network engineers that the oversubscribed rate is about 12-1.
Knowing that, I shouldn't expect to see my full billed rate 100% of the time, but I think it should be better

than 50%:

Latency | | Speed

Download Speed Upload Speed

Ty i

=

m 0 382.15 Mbps o 459.49 Mbps

CenturyLink speed test result

Cryptographic performance

Cryptographic algorithms are complex mathematical formulas that require powerful microprocessors
and good entropy (random data). The more advanced and complex an algorithm is, the more complex
calculation will become. Older, slower processors will take substantially longer than newer and faster

processaors.

Library differences

Both OpenSSL and mbed TLS are constantly making improvements to both security and performance.
While writing this book, I was using my MacBook Pro with the latest version of macOS (10.12.2) and I
was going to show performance numbers for the AES cipher set using the openssl speed -evp aes-
128-cbc command. The purpose is to show a reproducible performance metric on various platforms.

As you can see in the following screenshot, my Mac has OpenSSL version 0.9.8zh installed. OpenSSL
included support for AES-NI with version 1.0, and the performance gains are evident in the first set of
table entries (in the Result summary section, given later).

Performance results for mbed TLS are not included here since there are no easy-to-use cross-platform
utilities available:

author@client;~-> which openssl

/usr/bin/openssl

author@client:~-> openssl version

OpenSSL ©.9.8zh 14 Jan 2016

author@client:~-> openssl speed aes

To get the most accurate results, try to run this

program when this computer is idle.

Doing aes-128 cbc for 3s on 16 size blocks: 35570036 aes-128 cbc's in 3.@0@0s
Doing aes-128 cbc for 3s on 64 size blocks: 9349814 aes-128 cbc's in 3.00s
Doing aes-128 cbc for 3s on 256 size blocks: 2353870 aes-128 cbc's in 3.0@s
Doing aes-128 cbc for 3s on 1024 size blocks: 588339 aes-128 cbc's in 3.00s
Doing aes-128 cbc for 3s on 8192 size blocks: 74@87 aes-128 cbc's in 3.00s
Doing aes-192 cbc for 3s on 16 size blocks: 30401807 aes-192 cbc's in 3.0@s
Doing aes-192 cbc for 3s on 64 size blocks: 8000796 aes-192 cbc's in 3.0@s
Doing aes-192 cbc for 3s on 256 size blocks: 2012956 aes-192 cbc's in 3.0@s
Doing aes-192 cbc for 3s on 1024 size blocks: 513760 aes-192 cbc's in 3.0@s
Doing aes-192 cbc for 3s on 8192 size blocks: 63469 aes-192 cbc's in 3.00s
Doing aes-256 cbc for 3s on 16 size blocks: 26569804 aes-256 cbc's in 3.0@s
Doing aes-256 cbc for 3s on 64 size blocks: 7036132 aes-256 cbc's in 3.00s
Doing ages-256 cbc for 3s on 256 size blocks: 1742877 aes-256 cbc's in 3.@@0s
Doing aes-256 cbc for 3s on 1024 size blocks: 447951 aes-256 cbc's in 3.0@s
Doing aes-256 cbc for 3s on 8192 size blocks: 54663 aes-256 cbc's in 3.00s
OpenSSL ©.9.8zh 14 Jan 2016

built on: Oct 5 2016

options:bn(64,64) md2(int) rc4(ptr,char) des(idx,cisc,16,int) aes(partial) blowfish(idx)
compiler: -arch x86_64 -fmessage-length=0 -pipe -Wno-trigraphs -fpascal-strings -fasm-blocks -03 -D_REENTRANT -DDSO_DLFC
N -DHAVE_DLFCN_H -DL_ENDIAN -DMD32_REG_T=int -DOPENSSL_NO_IDEA -DOPENSSL_PIC -DOPENSSL_THREADS -DZLIB -mmacosx-version-m
in=10.6

available timing options: TIMEB USE_TOD HZ=1@@ [sysconf value]

timing function used: getrusage

The 'numbers' are in 100@s of bytes per second processed.

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
aes-128 chc 189699.08k 199176.48k 200787.21k 200551.31k 202035.70k
aes-192 cbc 161927.93k 17@0461.93k 171545.23k 175395.69k 173304.83k
aes-256 cbc 141506.31k 149907.52k 148539.98k 152712.42k 149300.87k
author@client:~-> clear

Cipher and AES-NI

In 2008, Intel and AMD released an extension to the x86 instruction set that improved encryption and
decryption workloads that used Advanced Encryption Standard (AES).

Note

You can read additional information about AES-NI on Wikipedia at
https://en.wikipedia.org/wiki/AES_instruction_set. If you are looking for more specific information about
the instruction set, take a look at the development information available on Intel's

website, https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms.

https://en.wikipedia.org/wiki/AES_instruction_set
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms

Result summary

I've published some results for the aes-128-cbc cipher test with a few versions of OpenSSL and
highlighted the highest performers for overall. This is by no means a scientific test, and I encourage you to
perform your own testing to determine what cipher works best for your hardware systems.

The numbers in the results indicate how many iterations were completed in a three-second loop for a
given block size of data. Using the first row as an example, the Core i7 processor with 0.9.8zh OpenSSL
processed a 64-byte block of data 119,176 k (119,176,000) times in three seconds:

Processor OpenSSL{|IAES-NI||64b 256b [|1024b ||8192b
Core i7 0.9.8zh [|[No 199176k{|200787 200551k| 202035
1.1.0c No 1559804 1679624 164110k 1691494
1.1.0c Yes 8507804 8814994 8705684 7917294
Xeon E5620 1.0.1p No 74303k [|76464k 1591404 161211k
Xeon E5-2667 (VM)|[1.0.1s No 1486544 1504224 3202644 2728214
1.0.1s Yes 713594L<| 689075L<| 628269k| 606528k|
Xeon E5-2667 1.0.1t No 118538k 1204784 1290104 1216154
1.0.1t Yes 5759614 778077k‘ 7999804 6690064
Xeon E5-2620 1.0.1s No 114402k||116569k||117204k[j117861k
1.0.1s Yes 5680174 5793004 5836704 5846724
Xeon E5420 1.0.1s No 78946k [180695k 1698304 1740444
1.0.1s Yes 208732L<| 215091L<| 217418k| 217629k|
Xeon E5-2640 v3 ||1.0.1e No 1486634 152249 1529714 1539444
1.0.1e Yes 3504614 35M83L<‘ 3577174 3568104

There are a few notable results in the preceding table. First, the Xeon E5-2620 through VMware with a
FreeBSD 10.3 system. Despite the virtualization involved, the raw throughput was right on par with the
performance of bare-metal systems. For the Xeon E5-2667 results, I have posted data for both virtualized

and bare-metal. The results are so close, it is difficult to tell if the performance delta is due to
virtualization or the minor version difference between the VM and host system.

Single thread

A final, significant item to note is that OpenVPN is single-threaded (inclusive of OpenVPN 2.4).
Regardless of how many processors or threads provided by the CPU, OpenVPN will be limited to a
single thread. In various tests in recent years, a realistic limit of about 200 client connections is
considered the maximum before performance falls off considerably.

It is possible to work around this limitation using load balancing across multiple OpenVPN server
instances. These scenarios are more complicated as they require the administrator do additional
configuration to ensure the two (or more) instances are able to communicate and clients are able to
connect to the appropriate server(s).

The inclusion of AES-NI helps with this single-threading, as the cryptographic operations can be
offloaded, speeding up the processing of each packet. On slow systems and those systems that do not
include crypto-offloading, performance will be significantly slower.

Summary

There are a number of different factors that can affect the performance of your VPN. Some of these
components will affect the client or server independently, but the overall VPN functionality will be
influenced. Network conditions on the hosting Internet service provider, CPU and resource availability,
and transport technology are but a few things to look at when troubleshooting performance problems.

In this chapter, I have illustrated some tools that can help determine performance as well as provided
hints as to what can lead to performance degradation. At this juncture, you should be able to identify these
items, along with many that were not mentioned.

Your troubleshooting should concentrate on the things you can quantitatively test and measure, followed
by those components or variables you have control of.

Chapter 9. External Problems

OpenVPN, by itself, can be a complex system, with given certificates, keys, configuration, scripts,
hardware, and so on. The previous eight chapters of this book have touched on troubleshooting techniques
and points on where to look within OpenVPN to address problems. However, once all the internal
problems have been addressed, there are still several external influencers that can create additional
hassles for your VPN.

Troubleshooting external factors for many things can be a difficult endeavor. In most cases, you'll be
looking into a veritable black box for which you don't have a key. By setting up a VPN server, you are
relying upon your Internet Service Provider (ISP) to allow transit for your VPN traffic on both the
server and client side of the connection.

Inspection and filtering

Whether you are operating a server as a corporate tool or setting up a system to escape a hostile
environment, there may be network policies in place that may prevent the successful operation of an
OpenVPN connection. If you are a user on a large corporate or government network, it may be against
usage policy to create a VPN tunnel and technology may be deployed to actively thwart such a tunnel.

Both corporate network administrators and many governments around the world are doing something
named Deep Packet Inspection (DPI). A traditional firewall will only look at what the protocol and port
traffic is using and allow or deny the traffic. This method will not prevent someone from moving a service
that is blocked to an allowed port to circumvent the firewall.

A firewall or border gateway enabled with DPI is able to look beyond just the protocol and port and
actually look at what the traffic is. In some cases, this can be to ensure TLS traffic is actually taking place.
The inspection can go further, looking for prohibited patterns of data such as social security or credit card
numbers, password hashes, and more. The Great Firewall of China (aka Golden Shield Project) is a well-
known example of DPI at a national scale, and is known to filter according to strict rules.

OpenVPN does not do anything to obfuscate, or hide, tunnel traffic. The encapsulated data is secure, but
someone looking at the traffic will know there is an encrypted tunnel in place. Wireshark even has an
OpenVPN protocol filter (see the Wireshark Wiki at https://wiki.wireshark.org/OpenVPN for additional
information). The simplest analogy I can use is that of a locked tractor trailer. You know someone is
transporting goods, of some sort, between two places, but without the key, you don't know what is inside
the trailer.

There are a few unique ways an ISP or other transit provider may filter OpenVPN. First, many OpenVPN
tunnels use the Internet Assigned Numbers Authority (IANA) assigned port of 1194. The simplest
firewall can simply restrict udp/1194 and tcp/1194 (or not allow them, in the case of default-deny
policies).

To illustrate some of the traffic inspection capabilities, we can see in the following screenshot how
Wireshark is able to identify the OpenVPN traffic in the data stream:

https://wiki.wireshark.org/OpenVPN

Source Port: 61621 (61621)
Destination Port: openvpn (1194)
Length: 5@
¥ Checksum: 8x36f9 [correct]
[Calculated Checksum: @x36f9]
[Good Checksum: Truel
[Bad Checksum: False]
[Stream index: 13]
v OpenVPN Protocol
» Type: 8x38 [opcode/key_id]
Session ID: 9485036932091629977
Packet-ID: 1
Net Time: Dec 25, 2016 20:02:19.000000000 CST
Message Packet-ID Array Length: @

v e i Wi-Fi: en0
F y = [. A s s ‘e — —— i

A = ® I RO QessEF |05 QA QA Q IF

|1 Ip.addr eq 192.168.19.66 and ip.addr eq 54.183,109.250 B3 ~| Ecpression..

No. Time Source Destination Pratocol Info

- 309 14.374097 192.168.19.66 54.,183.109.250 OpenVPN MessageType: P_CONTROL_HARD_RESET_CLIENT_V2

310 14,426624 54,183.109.250 192.168.19.66 DpenVPN MessageType: P_CONTROL_HARD_RESET_SERVER_V2
311 14.427243 192.168.19.66 54,183.189.250 OpenVPN MessageType: P_ACK V1
312 14.427421 192.168,19.66 54,183.109,250 TLSv1.2 Client Hello
313 14,480832 54,183.109.250 192.168.19.66 TLSV1.2 Server Hello
314 14.481137 192.168.19.66 54,183.109.2580 OpenVPN MessageType: P_ACK V1
315 14.482682 54.183.109.250 192.168.19.66 TLSv1.2 Ignored Unknown Record
316 14.482883 54.183,109.250 192.168.19.66 TLSv1.2 Ignored Unknown Record
317 14.482891 192.168.19.66 54.183.1089.250 OpenVPN MessageType: P_ACK_V1
318 14.49152@ 192.168.19.66 54,183.109.250 TLSv1.2 Client Key Exchange, Change Cipher Spec, Hello Request, Hello Request
319 14.545831 54,183.109,250 192,168.19.66 TLSv1.2 Change Cipher Spec, Encrypted Handshake Message
320 14.546162 192, 168.19.66 54,183.109.250 TLSv1.2 Application Data
321 14.683255 54.183.109,250 192.168.19.66 TLSv1.2 Application Data
322 14.683511 192.168,19.66 54,183,109.25@ DpenVPN MessageType: P_ACK_V1
328 15.834428 192.168.19.66 54.183.109.25@ TLSv1.2 Application Data
329 15.889101 54,183.109,250 192.168.19.66 OpenVPN MessageType: P_ACK_V1
330 15.889117 54,183.109.250 192.168.19.66 TLSV1.2 Application Data
345 17.715658 54.183.109.258 192.168.19.66 TLSv1.2 Application Data
375 18.146879 192.168.19.66 54.183.109.2580 OpenVPN MessageType: P_ACK_V1
376 18.147@7@ 192.168.19.66 54.183.109.25@ DpenVPN MessageType: P_ACK_V1

Message Packet-ID: @

ORGP B@ 2a aB 1c B2 fb ac bc 32 Bf 5d e7 B8 00 45 @0 2.1...E.
0p10 @@ 46 @f 3f @0 0@ 4@ 11 f2 cc c@ a8 13 42 36 b7 .F.7..@.B6.
6d fa f@ b5 @4 aa @0 32 36 9 38 83 al 9e d6 38 m...... 2 6.8....0

éé3é 6d 3a 99 81 4a 7c B4 da
2048 ce f3 a3 59 0a 6c 9a 0@
fose ee 00 ee ee

74 €8 93 92 T2 1b b8 OC m:..J|.. teniauns
0@ 00 81 58 66 7a 2b 8@ ...Y.L.. ... X

() 7 HMAC (openypn.nimac), 20 bytes Packets: 823 - Displayed: 20 (2.4%) - Dropped: 0 (0.0%)

unens =

St Dutault

Wireshark recognizing the OpenVPN protocol and HMAC headers
If you suspect that your traffic is a victim of DPI, you can do a few things to test the theory.

The simplest test is to simply change the server port number away from the known OpenVPN ports (1194
and the older 5000). Initially, I suggest retaining the current protocol you're using, whether it be UDP or
TCP. If your traffic begins working, it's possible that there is an explicit block of the OpenVPN ports. It
may be useful to open a support ticket to request the port be opened or unblocked.

The next step in troubleshooting OpenVPN filtering is to attempt to piggy back on the outbound tcp/443
firewall rule. Many organizations do not currently possess the means to perform full DPI, so we allow
outbound HTTPS connections. In my experience, even some systems that do full inspection fail to follow
the HTTPS stream so ignore, but do not block, the traffic.

Tip

The intent of this section is not to encourage rogue network traffic or to enable a user to bypass normal

security controls. In a hostile environment, this behavior may trigger other alerts however, attracting the
attention of the network operator and further scrutiny.

Obfuscation

There is an apparent misunderstanding about the differences of encrypting data and hiding or anonymizing
that data. These are two separate, distinct, concepts, and I feel that it needs to be cleared up for many
novice VPN users.

First, let's discuss obfuscation.

obfuscate: 1. to make dark or obscure 2. Confuse

--The Merriam-Webster dictionary. Eleventh edition. 2004. Print.

The concept of obfuscation is to confuse, misdirect, or hide, VPN traffic. The idea here is to make the
traffic blend in to the background in such a way as it appears as other, normal traffic. The end goal of
these solutions is to completely hide the fact that a VPN is running at all.

In the wild, projects such as obfsproxy (https://www.torproject.org/docs/pluggable-transports.html.en)

encapsulate VPN or other traffic inside an HTTPS tunnel, making it appear as normal web browsing. You
can read more on using obfsproxy with OpenVPN on the community Wiki page at

https://community.openvpn.net/openvpn/wiki/TrafficObfuscation.

https://www.torproject.org/docs/pluggable-transports.html.en
https://community.openvpn.net/openvpn/wiki/TrafficObfuscation

Encryption

Now that we have defined obfuscation, we can move on to understanding encryption. Encryption is the
act of coding something in such a way that only the sender and receiver understand the intended message,
even if other parties can view, or overhear, the coded message.

encrypt: 1: ENCIPHER encipher: to convert (a message) into cipher cipher: 2a: a method of transforming a text in order to
conceal its meaning b: a message in code

--The Merriam-Webster website

OpenVPN provides the encryption via the OpenSSL or PolarSSL libraries. Making use of static keys or
certificate/key pairs provides a method to encode data within the tunnel in such a way that only the two
endpoints can decrypt the data.

Note

Anonyproz has a decent write up about disguising OpenVPN traffic as HTTPS on their website at

https://www.anonyproz.com/supportsuite/index.php?
m=knowledgebase& a=viewarticle&kbarticleid=174.

https://www.anonyproz.com/supportsuite/index.php?_m=knowledgebase&_a=viewarticle&kbarticleid=174

Geographic and source address exclusions

In the past couple of years, some online music and video streaming services have been known to block
users based on their geographic location (geo-blocking). This blocking is accomplished using tools that
lookup the known physical location of IP addresses, either via Wi-Fi router mapping (Google Maps, for
example) or through registrar lookup data when more specific details are unknown.

Distribution licenses or agreements and local laws help determine where a distributor may want to make
content available, even when the user base has a differing opinion on the matter. Almost as soon as geo-
blocking was invented, users began using VPNs to work around these restrictions.

Services such as StrongVPN and HideMyAss popped up to defeat these blockages, promising users while
traveling, or users that reside outside a distribution region, access to that content:

www.netflix.com/wat

Whoops, something went wrong...

Streaming Error

You seem to be using an unblocker or proxy. Please turn off any of these
services and try again. For more help, visit netflix.com/proxy.

Error Code:

Netflix when attempting to bypass geo-blocking
What can be done

Fortunately, many hobbyists and home users will not see a problem with streaming services getting
blocked when using a private VPN. There are a few things these providers look for to determine
connection proxying.

Source IP address

The first thing that is looked at is the IP from where a streaming session is requested. Using GeolP
services, the provider will look up the known or assumed geographical location and base filtering on that
data.

Through the use of a VPN, the user can change the apparent requesting IP to a location favorable for the
desired content. For example, a user in Canada can bounce or route through a VPN system hosted in
Dallas, Texas, to access USA-locked content, as shown in the following graphic:

NU Greenland

Canada

Mexico

Cuba
M Puerto Rice

Guatemala

Nicaragua

Venezuela
Guvana

Routing streaming traffic through a VPN in another region

With a small number of users, this will likely work, where things will go sideways. However, if too many
users begin using the same single IP address for streaming, the service provider will likely realize this
behavior and begin blocking the content.

DNS settings

Content providers and Content Distribution Networks (CDNs) alike use DNS, along with some tricks
using BGP, to point systems to a local cache server. This saves on transit costs, overall, for both the CDN
as well as the ISP hosting the cache.

In my failed attempt, described previously, I used only a DNS provider to change my apparent location
and the Netflix servers were able to see my apparent proxy. This was due to my DNS query result
differing from my IP route.

When using geographically sensitive DNS queries, ensure that the DNS queries originate from the
locations that will be requesting the data.

Routing path performance

Another component that is generally outside the control of a network operator is the overall network path.
Peering agreements between upstream providers will determine the final path traffic with traverse. This
path will often be weighted toward monetary cost and not always network path cost.

For many years, I ran the network for a small company in Minneapolis, MN, with the majority of our
customers being local to Minneapolis. On occasion, I would receive complaints of slow performance of
our network as customers attempted to communicate with our systems.

After troubleshooting, we would identify a slow hop in the path between their systems and our systems.
The most frustrating part was, physically, our facilities were only 10 or so miles apart (16 km), but the
network path would go approximately 400 miles (645 km) to Chicago and another 400 miles back.

At the time, due to our hosting situation, we did not have the tools or agreements in place to change the
network routing. Eventually, we were able to make an agreement with the Midwest Internet Cooperative
Exchange (http://micemn.net). Using this exchange, other ISPs connected to the exchange, large and small,
would keep local traffic local.

As a VPN administrator, it may be useful to consider the geographic needs of the business or use and
route traffic sensibly. Some useful tools, such as mtr, were presented in Chapter 1, Troubleshooting
Basics. Knowing how traffic is routed for your customers and clients will reduce potential performance
problems.

http://micemn.net

Summary

The most basic VPN tunnel, like the one created using the Static Key Mini-Howto
(https://openvpn.net/index.php/open-source/documentation/miscellaneous/78-static-key-mini-
howto.html), involves only a few components and can be relatively easy to troubleshoot. As functionality
and capability is added, however, additional components are leveraged, which will require their own set
of troubleshooting techniques. By writing Troubleshooting OpenVPN, it was my goal to provide two
specific, unique, sets of information.

The first tool is the OpenVPN specific knowledge and known issues presented here. This spans
the breadth of issues identified by users on Internet Relay Chat (IRC), the web forums

(https://forums.openvpn.net), and the mailing list (http://sourceforge.net/p/openvpn/mailman/). These are
the most common occurring problems or sticking points encountered by both experts and novices, alike.

The second tool I tried to provide is a more general technique for troubleshooting. This techniques
applies to anything from fixing a broken lamp to a complex OpenVPN deployment. Throughout the book, I
demonstrated splitting a failure into the functional components, how to identify what is working, and how
to tackle the non-working piece.

As I'm finishing this book, the developers are working hard on the final release for OpenVPN 2.4 (as this
is written, 2.4 release candidate 2 is already out). The new release has a long list of new features and
enhancements. While exciting, these will all present their own troubleshooting and deployment
challenges. You can check the release notes for 2.4

at https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn24.

https://openvpn.net/index.php/open-source/documentation/miscellaneous/78-static-key-mini-howto.html
https://forums.openvpn.net
http://sourceforge.net/p/openvpn/mailman/
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn24

Useful links

In case they were missed throughout the book, here's a list of some useful links related to the OpenVPN
project.

Manual or man pages

The manual or man pages provide the detailed documentation of the various configuration parameters
and limitations for configuration of OpenVPN. These documents will illustrate each given version's
capabilities and how to use them. The man pages should be a first-resort reference. The various man
pages are as follows:

2.0: https://openvpn.net/index.php/open-source/documentation/manuals/openvpn-20x-manpage.html
2.1: https://openvpn.net/index.php/open-source/documentation/manuals/openvpn-21.html

2.2: https://community.openvpn.net/openvpn/wiki/Openvpn22ManPage

2.3: https://community.openvpn.net/openvpn/wiki/Openvpn23ManPage

e 2.4: https://community.openvpn.net/openvpn/wiki/Openvpn24ManPage

Release notes

For each release, the OpenVPN developers publish a change list and a set of release notes. Typically,
these will document the most notable changes between the previous release and the current release. When
upgrading, it is recommended to read through the entirety of release notes between your current version
and the version to which you are upgrading. The various release notes are as follows:

2.0: https://openvpn.net/index.php/open-source/documentation/release-notes.html

2.1: https://openvpn.net/index.php/open-source/documentation/change-log/changelog-21.html

2.2: https://openvpn.net/index.php/open-source/documentation/change-log/45-open-source/change-
log/425-changelog-for-openvpn-22.html

2.3: https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23

2.4: https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn24

Support channels

There are a few different sources of support available to you for the open source (aka community) version
of OpenVPN. The mailing list is probably the most commonly used medium, but there can be a delay, like
the forums, due to the asynchronous communication method. Often, however, you will receive a thoughtful
and detailed reply. IRC offers the most real-time support option, but active users, versus those only
idling, varies by time of day. Use whichever of the following you are most comfortable with:

IRC: https://freenode.net, #openvpn and #openvpn-devel

Web forum: https://forums.openvpn.net
Mailing list: https://sourceforge.net/p/openvpn/mailman/

Bug tracker: http://community.openvpn.net/openvpn/report/1
Source/contributions: https://github.com/openvpn/

https://openvpn.net/index.php/open-source/documentation/manuals/openvpn-20x-manpage.html
https://openvpn.net/index.php/open-source/documentation/manuals/openvpn-21.html
https://community.openvpn.net/openvpn/wiki/Openvpn22ManPage
https://community.openvpn.net/openvpn/wiki/Openvpn23ManPage
https://community.openvpn.net/openvpn/wiki/Openvpn24ManPage
https://openvpn.net/index.php/open-source/documentation/release-notes.html
https://openvpn.net/index.php/open-source/documentation/change-log/changelog-21.html
https://openvpn.net/index.php/open-source/documentation/change-log/45-open-source/change-log/425-changelog-for-openvpn-22.html
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn24
https://freenode.net
https://forums.openvpn.net
https://sourceforge.net/p/openvpn/mailman/
http://community.openvpn.net/openvpn/report/1
https://github.com/openvpn/

	Troubleshooting OpenVPN
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Customer Feedback
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Troubleshooting Basics
	A recommended toolkit
	Log search and filtering
	grep
	less, more, and most
	Regular expressions
	Network sniffing and analysis
	tcpdump
	traceroute
	mtr
	ping
	Wireshark
	X.509 verification and inspection
	OpenSSL
	Wireshark
	Troubleshooting basics
	Summary
	2. Common Problems
	Narrowing the focus
	Sample scenarios
	Scenario 1--unable to access VPN
	Scenario 2--cannot access external web when on VPN
	Suspecting recent changes
	Supported operating systems
	Embedded devices
	Semi-embedded systems
	Virtual servers
	IP addresses
	Firewalls
	Duplicate client certificates
	Overcomplication
	Summary
	3. Installing OpenVPN
	Common installation problems
	Compiling OpenVPN
	Packages and installers
	The advantages of precompiled installers
	Driver installation
	Alternative clients
	Summary
	4. The Log File
	Logging options
	Logging levels
	Verbosity 0
	Verbosity 1
	Verbosity 4
	Verbosity 7
	Common log messages
	Startup messages
	Version and compile string
	Option warnings
	Configuration parameters
	Operational messages
	Certificate messages
	Summary
	5. Client and Server Startup
	File and process permissions
	Privilege de-escalation
	Networking privileges
	Port assignment and use
	Multiple daemons
	Adapter and routing table changes
	Chroot
	Scripting
	Up and down scripts
	Connect and disconnect scripts
	UDP troubleshooting
	UDP and firewalls
	Summary
	6. Certificates and Authentication
	File permissions
	Pre-shared keys
	Certificate authentication
	Certificate chain overview
	The Certificate Revocation List
	System date and time
	Authentication and plugins
	Usernames and passwords
	--ccd-exclusive
	Summary
	7. Network and Routing
	Connectivity
	Inbound connection--server
	Publicly addressed server
	Privately addressed server with port forwarding
	Outbound connection--client
	Firewall filters and inspection
	TLS authentication
	Routing
	Internal routing
	External routing
	Pushing routes
	Routes behind clients
	Kernel versus process routing
	Route conflicts
	Redirect gateway
	General network concerns
	Path MTU and MSS
	Summary
	8. Performance
	Networking
	Rate limiting
	Cryptographic performance
	Library differences
	Cipher and AES-NI
	Result summary
	Single thread
	Summary
	9. External Problems
	Inspection and filtering
	Obfuscation
	Encryption
	Geographic and source address exclusions
	What can be done
	Source IP address
	DNS settings
	Routing path performance
	Summary
	Useful links
	Manual or man pages
	Release notes
	Support channels

