

Troubleshooting	OpenVPN

Table	of	Contents

Troubleshooting	OpenVPN
Credits
About	the	Author
About	the	Reviewer
www.PacktPub.com

Why	subscribe?
Customer	Feedback
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Errata
Piracy
Questions

1.	Troubleshooting	Basics
A	recommended	toolkit

Log	search	and	filtering
grep
less,	more,	and	most
Regular	expressions

Network	sniffing	and	analysis
tcpdump
traceroute
mtr
ping
Wireshark

X.509	verification	and	inspection
OpenSSL
Wireshark

Troubleshooting	basics
Summary

2.	Common	Problems
Narrowing	the	focus

Sample	scenarios
Scenario	1--unable	to	access	VPN
Scenario	2--cannot	access	external	web	when	on	VPN

Suspecting	recent	changes
Supported	operating	systems

Embedded	devices
Semi-embedded	systems
Virtual	servers

IP	addresses
Firewalls
Duplicate	client	certificates
Overcomplication
Summary

3.	Installing	OpenVPN
Common	installation	problems

Compiling	OpenVPN
Packages	and	installers

The	advantages	of	precompiled	installers
Driver	installation

Alternative	clients
Summary

4.	The	Log	File
Logging	options
Logging	levels

Verbosity	0
Verbosity	1
Verbosity	4
Verbosity	7

Common	log	messages
Startup	messages

Version	and	compile	string
Option	warnings
Configuration	parameters

Operational	messages
Certificate	messages

Summary
5.	Client	and	Server	Startup

File	and	process	permissions
Privilege	de-escalation
Networking	privileges

Port	assignment	and	use
Multiple	daemons

Adapter	and	routing	table	changes
Chroot

Scripting
Up	and	down	scripts
Connect	and	disconnect	scripts

UDP	troubleshooting
UDP	and	firewalls

Summary

6.	Certificates	and	Authentication
File	permissions
Pre-shared	keys
Certificate	authentication

Certificate	chain	overview
The	Certificate	Revocation	List
System	date	and	time

Authentication	and	plugins
Usernames	and	passwords
--ccd-exclusive

Summary
7.	Network	and	Routing

Connectivity
Inbound	connection--server

Publicly	addressed	server
Privately	addressed	server	with	port	forwarding

Outbound	connection--client
Firewall	filters	and	inspection
TLS	authentication
Routing

Internal	routing
External	routing
Pushing	routes

Routes	behind	clients
Kernel	versus	process	routing
Route	conflicts

Redirect	gateway
General	network	concerns

Path	MTU	and	MSS
Summary

8.	Performance
Networking

Rate	limiting
Cryptographic	performance

Library	differences
Cipher	and	AES-NI
Result	summary

Single	thread
Summary

9.	External	Problems
Inspection	and	filtering

Obfuscation
Encryption
Geographic	and	source	address	exclusions

What	can	be	done

Source	IP	address
DNS	settings

Routing	path	performance
Summary

Useful	links
Manual	or	man	pages
Release	notes
Support	channels

Troubleshooting	OpenVPN

Troubleshooting	OpenVPN
Copyright	©	2017	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for
any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot
guarantee	the	accuracy	of	this	information.

First	published:	March	2017

Production	reference:	1150317

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	

B3	2PB,	UK.

ISBN	978-1-78646-196-4

www.packtpub.com

http://www.packtpub.com

Credits
Author

Eric	F	Crist

Copy	Editor

Dipti	Mankame

Reviewer

Krzee	King

Project	Coordinator

Judie	Jose	

Commissioning	Editor

Pratik	Shah

Proofreader

Safis	Editing

Acquisition	Editor

Divya	Poojari	

Indexer

Pratik	Shirodkar

Content	Development	Editor

Abhishek	Jadhav

Graphics

Kirk	D'Penha

Technical	Editor

Gaurav	Suri

Production	Coordinator

Shantanu	N.	Zagade

About	the	Author
Eric	F	Crist	hails	from	Cottage	Grove,	Minnesota,	and	he	works	as	a	product	and	systems	engineer	for
Abbott.	He	has	a	relatively	wide	range	of	professional	and	life	experience	starting	from	physical	security
and	access	control	as	a	low-voltage	technician	into	software	development,	system	administration,	and
software	development.

Eric	has	been	a	core	member	of	the	OpenVPN	community	since	2008	and	helps	manage	the	open	source
online	resources.	He	also	wrote	ssl-admin,	and	he	is	a	lead	for	Easy-RSA,	both	of	which	help	manage
Certificate	Authorities	and	chains.

Eric	collaborated	with	Jan	Just	Keisjer	for	the	book,	Mastering	OpenVPN,	in	2015,	also	for	Packt.

I	would	like	to	sincerely	thank	my	wife,	DeeDee,	for	encouraging	me	to	write	this	book.	Without
your	prompting,	encouragement,	and	motivation,	I	would	have	had	a	tremendous	amount	of
additional	free	time	and	sanity.

About	the	Reviewer
Krzee	King	is	a	self	taught	BSD/Linux	user.	He	began	helping	in	the	OpenVPN	community	in	2007,	when
he	and	the	author	Eric	took	control	of	the	IRC	channel,	and	later	founded	the	web	forum	with	Eric	and
dougy.	He	believes	very	strongly	in	the	importance	of	encryption,	and	the	need	for	strong	encryption	to	be
usable	by	all.	He	also	had	the	pleasure	of	reviewing	OpenVPN	2	Cookbook	by	Jan	Just	Keijser.

Thanks	to	my	lovely	wife	and	my	parents,	for	their	endless	support.	I	love	you	guys.

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print	book	customer,
you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more
details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a	range	of
free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt	books	and
video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal	development	and	advance
your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Customer	Feedback
Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our	editorial	process.	To	help	us
improve,	please	leave	us	an	honest	review	on	this	book's	Amazon	page	at
https://www.amazon.com/dp/178646196X.

If	you'd	like	to	join	our	team	of	regular	reviewers,	you	can	e-mail	us	at	customerreviews@packtpub.com.
We	award	our	regular	reviewers	with	free	eBooks	and	videos	in	exchange	for	their	valuable	feedback.
Help	us	be	relentless	in	improving	our	products!

https://www.amazon.com/dp/178646196X

Preface
OpenVPN	is	arguably	the	best	cross-platform	secure	networking	technology	currently	available.	The
development	community	is	large	and	active	every	day	of	the	year,	with	new	developers	popping	up
regularly	with	patches	and	feature	requests.	It	is	not	only	used	by	hobbyists,	but	also	by	for-pay	VPN
providers	strewn	about	the	Internet.

In	Troubleshooting	OpenVPN,	we	identify	the	most	common	problems	and	pitfalls	in	the	deployment	of
OpenVPN.	We	demonstrate	where	and	how	to	use	an	assortment	of	diagnostic	and	investigative	tools,
both	common	and	lesser	known.

By	the	end	of	this	book,	you	should	be	able	to	understand	and	identify	where	a	problem	resides,	both
within	your	VPN	infrastructure	and	also	from	external	causes.	The	log	file	is	fully	detailed	and	you	will
be	able	to	leverage	the	varying	logging	levels	to	suit	your	troubleshooting	efforts.

What	this	book	covers
Chapter	1,	Troubleshooting	Basics,	helps	the	reader	break	down	problems	into	digestible	portions	with
related	components.	Some	of	the	concepts	discussed	include	generic	techniques	useful	in	more	than	just
OpenVPN	problem	solving.

Chapter	2,	Common	Problems,	will	identify	the	issues	seen	most	frequently	by	both	novice	administrators
and	experienced	administrators	alike.

Chapter	3,	Installing	OpenVPN,	covers	compilation	and	installation	of	OpenVPN	on	a	variety	of
platforms.	Virtual	network	adapters,	alternative	client	packages,	and	software	dependencies	will	be
identified.

Chapter	4,	The	Log	File,	focuses	heavily	on	the	OpenVPN	log	file	and	how	to	adjust	and	decipher	the
verbosity	of	the	available	messages.	This	is	an	extremely	valuable	resource	when	identifying	and
correcting	problems.

Chapter	5,	Client	and	Server	Startup,	discusses	software	and	system	dependencies	necessary	for	process
startup.	Items	like	file	permissions,	scripting,	and	basic	networking	all	contribute	to	successfully	running
OpenVPN.

Chapter	6,	Certificates	and	Authentication,	illustrates	the	varying	authentication	paths	and	where
breakage	can	occur.	System	time,	authentication	backends	and	scripting	are	all	addressed.

Chapter	7,	Network	and	Routing,	shows	where	network	topology	and	routing	bring	complexity	to	the
OpenVPN	architecture.	Conflicting	routes,	address	inconsistency,	and	subnetting	will	all	be	covered.

Chapter	8,	Performance,	was	written	to	help	you	identify	performance	bottlenecks	and	places	where
efficiencies	can	be	improved.

Chapter	9,	External	Problems,	covers	where	and	when	problems	can	exist	outside	your	OpenVPN
infrastructure,	and	even	entirely	outside	your	network	or	control.

What	you	need	for	this	book
This	book	was	written	with	the	VPN	administrator	in	mind.	Many	of	the	examples	within	leverage	both
the	server	and	client	sides	of	a	connection,	and	lack	of	control	at	the	server	end	will	prove	frustrating.	I
am	assuming	you	either	have	access	to	a	server,	or	have	the	means	to	create	a	functioning	server,	with
your	operating	system	of	choice.

Examples	within	this	book	are	focused	primarily	on	Linux	or	BSD	command-line	tools,	but	there	are	a
number	of	Windows	examples	interspersed	within	the	content.	To	make	the	most	of	your	time,	try	to	have
the	following	available:

An	OpenVPN	server,	ideally	running	on	Linux	or	FreeBSD
An	OpenVPN	client,	running	any	operating	system	you	choose
The	ability	to	install	software	on	and	connect	to	the	OpenVPN	server	without	OpenVPN	running

Who	this	book	is	for
An	OpenVPN	server	administrator	is	most	likely	to	use	this	book	to	its	potential.	Enterprising	VPN	users
may	also	be	able	to	use	the	techniques	and	applications	described	within	to	their	own	benefit,	however.
Much	of	this	title	covers	basic	troubleshooting	skills	that	can	be	leveraged	in	nearly	any	situation,	not	just
with	OpenVPN.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of	information.
Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,	dummy
URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"The	--auth-user-pass-verify	script	is
the	last	in	a	long	chain	of	scripts	that	are	run."

Any	command-line	input	or	output	is	written	as	follows:

author@example:~->	sudo	openssl	s_server	-key	key.pem	–cert	cert.pem	-WWW	-accept	

443

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for	example,	in
menus	or	dialog	boxes,	appear	in	the	text	like	this:	"By	going	to	Preferences	|	Protocols	|	SSL,
Wireshark	provides	a	way	to	import	the	TLS	key	we	created	earlier."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book-what	you
liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that	you	will	really	get
the	most	out	of.	To	send	us	general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the
book's	title	in	the	subject	of	your	message.	If	there	is	a	topic	that	you	have	expertise	in	and	you	are
interested	in	either	writing	or	contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get	the	most
from	your	purchase.

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If	you	find
a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code-we	would	be	grateful	if	you	could
report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve	subsequent
versions	of	this	book.	If	you	find	any	errata,	please	report	them	by	visiting
http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the	Errata	Submission	Form
link,	and	entering	the	details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be
accepted	and	the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support	and
enter	the	name	of	the	book	in	the	search	field.	The	required	information	will	appear	under	the	Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,	we	take
the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal	copies	of	our
works	in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at	questions@packtpub.com,	and
we	will	do	our	best	to	address	the	problem.

Chapter	1.	Troubleshooting	Basics
Troubleshooting	a	failed	server	or	client	deployment	can	be	a	daunting	task,	particularly	for	a	novice	user.
A	vast	number	of	users	do	not	fall	into	the	typical	system	administration	role,	and	they	are	either	hobbyists
or	just	venturing	into	virtual	networking	and	cryptography.	By	the	end	of	this	chapter,	the	tools'	key	to
identifying	and	correcting	problems	will	be	illustrated,	and	their	utility	will	be	demonstrated.

The	general	concepts	of	troubleshooting	apply	not	only	to	fixing	a	problematic	OpenVPN	client	or	server
process	but	also	to	nearly	everything	encountered	in	day-to-day	work.	At	its	most	basic	level,	the	idea	of
divide	and	conquer	is	the	phrase	of	the	day.	Separating	components	that	are	functional	from	those	that	are
broken	will	quickly	absolve	the	administrator	from	needless	work	and	investigation.

The	book	is	structured	progressively,	and	it	aims	to	help	you	find	solutions	quickly.	This	book	will	cover
the	following	key	topics	surrounding	fixing,	identifying,	and	resolving	OpenVPN	problems:

A	troubleshooting	toolkit	is	a	key	to	gleaning	all	the	data	needed	to	focus	on	a	problem	and	resolve
it.
Common	OpenVPN	issues	are	explored.	Years	of	help	supporting	OpenVPN	administrators	on	the
forums	and	in	IRC	have	provided	a	plethora	of	data,	and	the	most	common	issues	faced	in	the	field
are	identified	and	solutions	are	provided.
The	OpenVPN	installation	on	various	operating	systems	is	covered.	The	best	client	for	each
operating	system	is	identified,	including	mobile	device	options.	Where	to	go	to	obtain	the	installers
and	files	needed.
Log	files	are	the	primary	source	of	troubleshooting	data.	When	to	use	what	verbosity	level	and	how
to	search	for	the	data	within	the	log	is	explained.
Startup	and	shutdown	of	the	OpenVPN	process	for	both	the	client	and	the	server	can	cause	stress	and
anguish.	OpenVPN	packaging	is	explained,	where	to	go	for	help	is	shown,	and	how	to	troubleshoot
those	startup	routines	will	be	demonstrated.
Routing	and	networking	can	be	a	difficult	concept	to	comprehend.	This	is	likely	the	number	one	area
of	difficulty	for	beginning	OpenVPN	administrators.
We	will	discuss	performance	issues	and	how	to	correct	performance-related	issues.	Also,	cipher
suite,	key	size,	compression,	and	routing	optimization	will	be	illustrated.
Finally,	problems	external	to	OpenVPN	will	be	explored.	Such	things	include	local	LAN	address
collisions	and	incorrect	firewall	filtering,	both	locally	and	at	an	ISP.

A	recommended	toolkit
There	are	a	number	of	common	utilities	needed	to	investigate	network	and	public	key	infrastructure
(PKI)	issues.	The	samples	within	this	book	will	be	from	a	variety	of	operating	systems.	The	server	will
be	on	FreeBSD	10.2,	and	we	will	show	macOS	X	and	Windows	7	and	10.

The	majority	of	diagnostics	will	be	done	at	the	server	side	of	the	connection,	but	there	are	useful	things	to
glean	from	client-side	utilities.	The	tools	listed	here	will	be	demonstrated,	but	this	book	isn't	a	manual	for
their	use.	For	full	documentation,	refer	to	the	documentation	links	provided.

Note

Both	the	FreeBSD	project	and	GNU	have	web	interfaces	for	browsing	man	pages.	The	main	page	for
these	can	be	found	at	the	following	paths:

FreeBSD:	https://www.freebsd.org/cgi/man.cgi
GNU:	http://www.gnu.org/manual/manual.en.html

https://www.freebsd.org/cgi/man.cgi
http://www.gnu.org/manual/manual.en.html

Log	search	and	filtering
Detailed	logging	is	available	from	OpenVPN	on	both	the	client	and	server	sides,	which	allows
configuration	issues	to	be	identified	quickly.	Having	the	ability	to	search	these	logs	for	the	pertinent
information	is	vital	to	successfully	correcting	problems	and	verifying	a	functional	service.	The	utilities
identified	here	will	aid	in	these	search	tasks.

grep

The	grep	utility	is	likely	to	be	one	of	the	first	utilities	learned	by	an	aspiring	Unix	user.	Finding	strings	or
keywords	within	a	file	or	a	set	of	files	quickly	is	the	first	step	in	tracking	down	entries	in	a	log	file	or	a
configuration	directive.	grep	allows	you	to	search	and	highlight	specific	lines,	context	around	those	lines,
filenames,	line	numbers,	and	more.	In	addition	to	finding	lines	of	text,	grep	can	also	omit	lines	you	do	not
want	to	see.

The	#openvpn	support	channel	on	Freenode	(irc.freenode.net)	IRC	as	well	as	on	the	OpenVPN	forum
(http://forums.openvpn.net),	for	example,	request	that	users	seeking	support	omit	comments	and	empty
lines	with	the	following	command:

				grep	-vE	'^#|^;|^$'	server.conf

Take	a	sample	config	file:

ecrist@meow:~->	cat	foo.conf

#	this	is	a	comment

;	this	is	also	a	comment

				#	the	line	above	is	empty

				config	argument

				;	another	comment

If	we	pipe	that	through	our	grep	filter:

ecrist@meow:~->	grep	-vE	'^#|^;|^$'	foo.conf

config	argument

less,	more,	and	most

Paging	applications	are	a	common	feature	of	Unix	and	Unix-like	operating	systems.	These	tools	allow	the
user	to	view	a	large	amount	of	content,	typically	text,	to	be	viewed	one	page	at	a	time.	In	general,	there
are	three	such	common	tools,	less,	more,	and	most.

The	more	utility	is	the	most	ubiquitous	of	the	three,	being	installed	by	default	on	every	Unix,	Linux,	or
other	similar	system	I	have	used	for	the	past	20	years.	Being	the	first	paging	utility,	the	more	utility's

http://irc.freenode.net
http://forums.openvpn.net

general	functionality	is	limited.	When	output	from	a	file	or	pipe	contained	more	content	than	what	could
be	displayed	on	a	single	screen,	the	content	would	be	paged.

Scrolling	down	through	the	content	was	possible	either	a	line	at	a	time,	using	a	down	arrow	key	press,	or
a	full	page/window	at	a	time	with	a	press	of	the	spacebar.	Scrolling	back	up	was	not	supported:

In	1983,	Mark	Nudelman	authored	the	less	utility	specifically	for	backward	scroll	capability.	It	was
released	in	May,	1985,	via	the	newsgroup	net.sources.	Many	features	have	been	added	to	less,	including
pattern	match	highlighting	and	vi-like	movement	through	the	stream.	To	date,	there	have	been	over	450

released	updates.

Modern	Unix	and	Linux	systems	typically	ship	just	the	less	utility	now,	with	more	being	a	hard-link	to	the
less	binary.	When	executed	this	way,	less	operates	in	a	compatibility	mode	similar	to	more.	This
behavior	can	also	be	evoked	by	setting	the	environment	variable	LESS_IS_MORE.

The	final	pager	of	note	is	most,	which	operates	similar	to	less,	but	adds	the	capability	for	multiple
windows	within	a	single	terminal	session.	The	most	pager	also	appears	to	support	color	escape
sequences	better	than	less.	The	following	screenshot	shows	most	displaying	two	windows,	one	with	the
less	man	page	and	the	other	with	the	most	man	page:

There	are	packages	for	most	available	for	FreeBSD,	macOS	X,	and	Linux,	but	the	latest	release	of	most
was	in	2007,	and	the	development	seems	to	have	stalled	entirely.	The	windowed	features	can	be	replaced
with	other	tools	such	as	tmux	and	screen,	which	fall	outside	the	scope	of	this	book.

Note

Project	pages	for	the	less	and	most	utilities	can	be	found	at	the	following	paths:

less:	http://www.greenwoodsoftware.com/less/
most:	http://www.jedsoft.org/most/index.html

Regular	expressions

Regular	expression	(regex)	is	a	syntax	that	can	be	leveraged	with	string	or	pattern	matching.	There	are
already	troves	of	other	books	and	online	guides	about	constructing	quality	regular	expressions,	but	some
basic	syntax	here	will	get	you	started	in	your	troubleshooting	endeavors.

This	book	will	primarily	use	regular	expressions	in	conjunction	with	the	grep	utility	described	earlier.
Coupling	regex	with	grep	will	allow	us	to	specifically	grab	or	omit	lines	from	a	log	file.	This	is
particularly	useful	when	looking	for	specific	client	errors,	or	omitting	a	slew	of	noisy	log	entries	from	the
view.

Regular	expressions	are	composed	of	a	sequence	of	pattern	matching	characters	and	character	classes.
Character	classes	are	simply	groups	of	characters	or	character	types.

Some	syntax	characters	to	note	are	as	follows:

Character Example Description	and	use

^

^foo

Line	must	start	with	foo.

[^ab]

Excludes	a	and	b.

Denotes	the	start	of	the	line.	Inside	a	character	class,	denotes	character
exclusion.

$

foo$

Line	must	end	with	foo.
Denotes	the	end	of	the	line.

\

Hello\.

Line	contains	Hello	followed	by	a	period.
Signifies	the	following	character	should	be	interpreted	literally.	To	match	a	\
character,	escape	itself:	\\.

()

(foobar)

Groups	foobar	together	as	a	single	string.
Start	and	end	of	a	group.

[]

[0-9a-f]

Matches	characters	0	through	9	and	a	through	f. Start	and	end	of	a	character	class.

\d

[\da-f]

Matches	characters	0	through	9	and	a	through	f.
Note	similarity	to	previous	example.

Matches	numeric	characters.	Same	as	[0-9].

http://www.greenwoodsoftware.com/less/
http://www.jedsoft.org/most/index.html

\w

^\d\w

Matches	0_foobar	but	not	foobar	(line	must
start	with	digit).

Matches	alphanumeric	characters	including	digits,	letters,	and	the	underscore.
Same	as	[0-9a-fA-F_].

\s	and	\t

[\w\s]

	Matches	any	word,	character,	or	space
character	one	time.

Matches	space	and	tab,	respectively.

.

foobar.

Matches	foobar	plus	any	other	character.
(foobars,	foobar1,	foobar_,	and	so	on).

A	period	matches	any	character.

{min,

max}

[0-9a-f]{1,9}

Characters	0-9	or	a-f	must	appear	at	least	once,
and	up	to	nine	times.

[\d]{3}

Any	digit	must	appear	exactly	three	times,	does
not	have	to	be	the	same	digit.

Specifies	the	minimum	and	maximum	of	the	previous	character	or	group.
When	only	a	single	quantity	is	defined,	indicates	an	exact	count.

?

(foobar)?

foobar	may	or	may	not	appear.
The	previous	character	or	group	may	or	may	not	appear.

+

\w+

Matches	any	word	character	one	or	more	times.
Indicates	the	previous	item	(group,	character	class,	or	character)	must	appear
at	least	once,	or	more.

|

(ab)|(bc)

Both	ab	and	bc	match.
A	separator,	like	a	logical	OR.

There	are	a	few	online	tools	that	can	be	used	to	validate	and	test	your	regular	expression	syntax.	This	is	a
good	idea	as	they	will	demonstrate,	graphically,	how	the	changes	to	your	pattern	affect	what	is	matched
within	a	string	or	series	of	strings.	Some	of	the	online	tools	available	online	are	as	follows:

Regex	Pal:	http://www.regexpal.com
Regexr:	http://regexr.com

For	additional	reading,	I	strongly	suggest	the	book	commonly	referred	to	as	the	camel	book	Programming
Perl,	4th	Edition,	by	Larry	Wall.	When	I	am	stumped	or	need	to	understand	how	a	regular	expression	is
functioning,	I	find	it	an	invaluable	resource	and	a	common	reference.

Note

You	can	also	find	tutorials	and	reading	by	navigating	to	http://www.regular-expressions.info.

http://www.regexpal.com
http://regexr.com
http://www.regular-expressions.info

Network	sniffing	and	analysis
There	will	be	times	when	log	files	and	OpenVPN	output	alone	are	not	enough	to	identify	a	problem.	It	is
possible	that	the	issue	resides	outside	of	the	OpenVPN	process	or	the	configuration	therein.	This	could
mean	that	there	is	a	protocol	error	for	some	program	being	encapsulated	within	the	tunnel	or	there	is	some
upstream	issue	not	readily	apparent.

The	tools	listed	here	will	provide	an	insight	to	the	protocols	and	environment	around	and	consuming	your
OpenVPN	setup.

tcpdump

The	ultimate	command-line	network	diagnostic	tool	is	the	venerable	tcpdump.	tcpdump	is	used	to	capture
network	traffic	on	an	interface,	and	it	provides	an	interface	to	filter-specific	traffic,	including	unique
destination	addresses,	ports,	packet	types,	protocols,	and	more.	This	tool	can	be	used	at	a	very	low	level
to	determine	maximum	transmission	unit	(MTU)	issues,	protocol	issues,	and	many	others.

Depending	on	your	level	of	networking	experience,	this	tool	may	or	may	not	be	directly	useful,	but	packet
captures	can	be	sent	to	more	experienced	people.

Tip

Do	not	rule	this	tool	out	even	if	you	do	not	fully	understand	it	yourself.

The	following	screenshot	shows	a	simple	single	ping	from	a	test	host	to	Google's	8.8.8.8	DNS	resolver
IP.	We	had	to	use	sudo	as	the	packet	capture	requires	root	privileges	on	the	network	interface.	Our	first
command	line	included	option	-A,	which	specifies	ASCII	output	and	is	the	unintelligible	at	the	end	of
each	packet	info	line.	The	second	example	shows	the	same	ping	without	the	-A	option	(same	screenshot):

A	much	more	detailed	introduction	to	tcpdump	is	available	by	going	to	Daniel	Miessler's	blog	at
https://danielmiessler.com/study/tcpdump/.

traceroute

On	Linux,	BSD,	and	macOS	X,	traceroute,	or	on	Windows	tracert,	knowing	the	path	to	assorted
destinations	is	a	crucial	tool.	You	can	quickly	ascertain	whether	traffic	is	departing	the	default	gateway	or
a	VPN	connection.	As	a	bonus,	response	time	to	each	hop	along	the	path	is	calculated,	which	may	indicate
slow	points	along	the	route.

Contrary	to	the	popular	belief,	these	commands	are	not	for	hacking	or	seeing	how	many	people	are	using	a
website;	you	will	not	improve	your	K/D	ratio	in	Call	of	Duty®.	These	are	legitimate	network	diagnostic
tools.

Note

Check	out	the	YouTube	video	by	NextGenHacker101	for	a	quick	laugh	at
https://www.youtube.com/watch?v=SXmv8quf_xM.

For	a	quick	change	of	pace,	here	is	a	screenshot	of	the	tracert	command	from	Windows	8.	From	the

https://danielmiessler.com/study/tcpdump/
https://www.youtube.com/watch?v=SXmv8quf_xM

output,	we	can	see	that	there	are	eight	hops	between	my	test	Windows	8	system	and	Google's	resolver:

mtr

My	traceroute	or	mtr	is	a	utility	that	combines	the	functionality	of	ping	and	traceroute.	This	tool	can
help	illustrate	where	along	a	network	path	latency	or	packet	loss	occurs.	I	still	prefer	to	use	ping	and
traceroute	individually	at	times,	but	use	mtr	to	quickly	identify	network	connectivity	issues.

Both	tcpdump	and	tracert	will	stop,	by	default,	after	the	last	hop	or	a	maximum	of	30	has	been	reached.
mtr,	on	the	other	hand,	will	continue	cycling	until	quit	with	a	Ctrl	+	C.	ping	on	*nix	system	functions	in	a
similar	manner	of	pinging	indefinitely.

Here	is	a	sample	output	from	mtr	between	my	test	system	and	the	Google	website:

Notice	the	Snt	column	and	that	all	list	20	apart	from	hop	seven.	I	pressed	Ctrl	+	C	just	as	the	cycle	hit
hop	seven,	so	the	twentieth	packet	was	never	sent.

ping

Good	ol'	ping.	This	is	usually	the	first	tool	in	the	network	troubleshooter's	toolbox.	This	is	generally	the
quickest	way	to	determine	if	a	remote	system	is	alive	or	not.	This	tool	is	very	much	cross-platform,	and	it
is	available	on	Linux,	Unix,	and	Windows	systems	by	default.	Only	the	most	hostile	or	ill-managed
corporate	networks	block	this.	The	following	screenshot	shows	an	example	of	ping:

Wireshark

Coupled	with	the	tcpdump	utility,	and	sometimes	on	its	own,	Wireshark	is	arguably	the	most	powerful
tool	in	our	network	troubleshooting	toolbox.	This	tool	provides	a	relatively	easy-to-use	graphical
interface	to	navigate	packet	captures.	In	addition,	it	provides	a	filtering	interface	that	allows	you	to
isolate	specific	streams,	protocols,	and	destinations.

One	particular	trick	Wireshark	can	do	is	to	decrypt	TLS	and	SSL	traffic,	given	the	private	and	public	keys
of	a	web	server	or	server/client	pair.	This	is	analogous	to	the	features	of	the	latest	next-generation
firewalls	that	do	decryption	at	the	border	for	corporate	networks.

The	following	screenshot	shows	a	short	eight-packet	transaction	for	a	short	IPv6	ping:

In	my	experience	in	the	scope	of	OpenVPN,	Wireshark	is	primarily	used	along	side	tcpdump.	Many
OpenVPN	servers	and	clients	will	have	tcpdump	readily	available,	already	installed,	or	easily	installed
when	needed.	Wireshark	requires	X11	or	other	graphical	tools	and	libraries	that	may	not	be	as	easy	to
install.

It	is	easy	to	take	a	packet	capture	using	tcpdump,	save	the	capture	to	a	file	(see	the	-w	option	for
tcpdump),	and	transfer	that	capture	to	a	system	with	Wireshark	installed.	The	observant	reader	may	have
noted	the	window	title	in	the	earlier	screenshot:	the	packet	capture	here	is	actually	being	read-in	from	a
file.

X.509	verification	and	inspection
Cryptography	and	PKI	are	often	difficult	to	understand	and	much	more	difficult	to	resolve	issues	with.
There	are	primarily	two	utilities,	OpenSSL	and	Wireshark,	that	can	aid	with	peering	into	the
cryptographic	components	of	OpenVPN.

Note

OpenVPN	also	supports	PolarSSL	(recently	known	as	ARM®	mbed™)	as	a	replacement	for	OpenSSL.
The	latest	package,	2.2.1,	includes	some	rudimentary	programs	for	certification	creation,	but	it	does	not
include	s_client	and	other	utilities	included	with	OpenSSL.	More	information	can	be	found	on	their
website	at	http://tls.mbed.org.

OpenSSL

OpenSSL	is	the	ubiquitous	library	for	X.509	certificate	PKI.	OpenVPN	has	supported	the	use	of	X.509
certificates	for	TLS	connections	since	before	2002.	The	OpenSSL	command-line	utilities	allow
certificate	chain	verification,	outputting	certificate	details	for	inspection,	build	Diffie-Hellman
parameters,	and	even	substantiating	an	SSL/TLS	server	or	client	instance.

I	have	used	the	s_client	subcommand	to	fetch	the	full	SSL	certification	chain	for	the	Google	website.
All	three	certificates	are	listed:	the	GeoTrust	CA	root	certificate,	the	Google	Intermediate	CA	(they	get	to
sign	their	own	certificates),	and	the	server	certificate	their	intermediate	CA	issued.	See	the	following
code:

author@example:~->	openssl	s_client	-showcerts	-connect	openvpn.net:443

With	this	command,	I	manually	copied	each	certificate	block	and	saved	them	to	individual	files,
GoogleSrv.crt	(certificate	0),	GoogleCA.crt	(certificate	1),	and	GeoTrustCA.crt	(certificate	2).

A	certificate	block	looks	like	the	following:

-----BEGIN	CERTIFICATE-----

MIIDfTCCAuagAwIBAgIDErvmMA0GCSqGSIb3DQEBBQUAME4xCzAJBgNVBAYTAlVT

[snip]

NhGc6Ehmo21/uBPUR/6LWlxz/K7ZGzIZOKuXNBSqltLroxwUCEm2u+WR74M26x1W

b8ravHNjkOR/ez4iyz0H7V84dJzjA1BOoa+Y7mHyhD8S

-----END	CERTIFICATE-----

Wireshark

Wireshark	was	discussed	previously,	but	this	is	where	that	utility	will	demonstrate	its	capability.	In
addition	to	the	ability	to	decode	and	illustrate	various	(nearly	all)	protocol	streams,	given	the	private	and
public	keys	available	to	a	VPN	admin,	it	can	decipher	SSL	and	TLS	encrypted	streams,	including
OpenVPN	streams.

To	demonstrate	the	ability	to	decrypt	a	TLS	session,	we	will	use	the	OpenSSL	s_server	command	to
create	a	generic	HTTPS	server.	I	have	created	a	very	simple	web	page	that	simply	reads,	This	content	is

http://tls.mbed.org

encrypted.	I	used	the	following	command	to	create	the	server.	Note	that	to	start	the	daemon	on	port	443,
you	need	to	use	root	or	sudo.	To	avoid	escalating	privileges,	you	can	use	a	port	1024,	such	as	4443.

To	begin,	create	a	certificate/key	pair:

author@example:~->	openssl	req	-x509	-newkey	rsa:2048	-keyout

				key.pem	-out	cert.pem	-days	365	-nodes

Then,	we	start	our	server:

author@example:~->	sudo	openssl	s_server	-key	key.pem	-cert

				cert.pem	-WWW	-accept	443

The	s_server	process	will	use	the	current	working	directory	for	its	web	root,	so	I	placed	our	web
content	there	as	index.html.

Tip

The	preceding	command	used	sudo	because	it	opened	a	listening	port	on	a	privileged	port.	All	TCP/UDP
ports	numbered	1024	and	lower	are	considered	privileged,	and	they	require	root	or	administrator
permissions	to	open.

Now,	I	will	start	Wireshark	and	set	it	to	capture	traffic	on	the	loopback	interface.	Because	we	are	going
to	connect	to	the	localhost	address	(127.0.0.1	or	::1),	the	traffic	will	use	this	interface.	If	we	connect
to	the	actual	system	IP	address,	then	capture	traffic	on	the	real	interface.

Now,	open	a	web	browser	to	the	system.	In	my	case,	this	is	the	local	machine.	The	URL	I	will	use
https://localhost/index.html,	if	you	changed	the	port,	add	it	to	the	URL	such	as
https://localhost:4443/index.html.

If	all	the	steps	mentioned	earlier	were	performed	correctly,	you	should	have	a	browser	window	with	a
simple	message	and	a	Wireshark	window	with	approximately	25	packets	captured:

In	the	packet	capture,	you	will	see	some	protocol	data	that	is	indicative	of	what	is	happening.	We	will
touch	on	the	protocol	exchanges	later,	but	you	can	clearly	see	the	TLS	handshake	and	cipher	exchange

taking	place:

The	lines	in	the	capture	have	a	black	background,	indicating	the	transmission	carried	encrypted	payload
data.	Next,	we	will	take	the	certificate	and	the	key	we	created	earlier	and	import	those	into	Wireshark.
This	will	allow	us	to	view	the	transaction.

Before	we	do	that,	we	will	examine	packets	17	and	19.	Both	of	these	are	labeled	with	the	generic	phrase
Application	Data	and	contain	our	actual	HTML.	These	packets	are	encrypted,	and	they	examine	them
by	clicking	on	them.

By	going	to	Preferences	|	Protocols	|	SSL,	Wireshark	provides	a	way	to	import	the	TLS	key	we	created
earlier.	On	macOS	X,	the	dialog	resembles	the	following	screenshot.	You	can	specify	the	port	here,	but	it
is	optional.	In	my	case,	I	simply	listed	the	IP	127.0.0.1	and	the	key	file:

If	we	go	back	and	inspect	our	packets	now,	we	can	see	a	new	tab	in	the	payload	pane.	The	first	is	labeled
Frame,	and	the	second	is	Decrypted	SSL	data:

Click	on	the	second	tab	for	packet	19,	and	we	can	actually	see	the	decrypted	page	content:

<html>

				<head>

								<title>

												Hello!

								</title>

				</head>

				<body>

								<p>This	content	is	encrypted.</p>

				</body>

</html>

Note

The	ability	to	decrypt	the	OpenVPN	TLS	streams	is	significant	enough	that	the	Wireshark	wiki	itself	has	a
page	specifically	demonstrating	this	capability:	https://wiki.wireshark.org/OpenVPN.

https://wiki.wireshark.org/OpenVPN

Troubleshooting	basics
The	concept	of	breaking	apart	a	problem	in	any	system,	whether	it	be	electronic,	software,	physical,	or
even	behavioral,	is	a	common	principle.	The	phrase,	divide	and	conquer	is	often	seen,	and	true	to	reality.

Readers	of	this	book	are	likely	familiar	with	the	common	light	bulb.	You	may	not	realize	it,	but	there	is	a
series	of	automatic	troubleshooting	steps	performed.

Imagine	the	following	scenario:

You	walk	into	the	office,	many	are	already	at	work.	You	step	into	your	office	and	flip	on	the	light,	nothing
happens.	You	flip	the	switch	back	and	forth	a	couple	times	before	sitting	down	and	turning	on	the
computer	in	the	dark.

You	then	pick	up	the	handset	on	your	Cisco	IP	phone,	calling	building	maintenance.	You	speak	with
someone	at	the	other	end,	exclaiming	that	the	bulbs	are	out	in	your	office.

What	just	happened?

A	large	number	of	things	occurred	that	weren't	directly	acknowledged.	Most	of	these	steps	happened
automatically	without	realization:.

1.	 Walking	into	the	office.	Nothing	is	out	of	the	ordinary.

In	reality,	everyone	else	was	working.	There	wasn't	an	uncomfortable	silence	or	notable	lack	of
work	or	exceptional	amount	of	generalized	confusion.

2.	 You	walk	in	and	flip	the	light	switch	in	your	office;	more	than	once.

You've	tried	to	turn	on	the	light.	After	the	first	failure	to	exhibit	illumination,	you've	automatically
tested	the	switch	by	flipping	it	a	couple	times.	Sure,	it	is	not	overly	scientific,	but	it's	a	general
functional	test.

3.	 You	start	working	at	your	own	computer,	contacting	support	on	your	VOIP	phone.

Power	works	in	your	office.	The	computer	works,	and	network	PoE	is	functioning.
4.	 You've	ascertained	the	only	thing	not	working	is	the	light	in	your	office.

What's	neat	about	this	generic	situation	is	many	people	do	so	without	realizing	it.	Some	have	cars	and	do
this	when	it	starts	or	doesn't	start,	maybe	on	a	cold	morning.	Maybe	after	leaving	the	light	on	over	night.
We	need	to	apply	this	concept	and	method	to	OpenVPN	or	anything	really.

Summary
This	chapter	touched	on	some	of	the	most	common	tools	used	to	identify	and	resolve	configuration	or
network	issues	within	the	scope	of	OpenVPN.	Some	subjects,	such	as	regular	expressions,	were
identified;	however,	that	may	not	be	obviously	useful	to	a	novice	administrator.

Some	extremely	powerful	capabilities	were	also	demonstrated	with	Wireshark's	ability	to	decrypt	SSL
streams	and	tcpdump	able	to	capture	packets.	Although	these	are	most	useful	to	an	experienced	network
administrator,	they	can	still	be	leveraged	by	a	new	or	novice	administrator.	Having	the	ability	to	extract
troubleshooting	data	is	most	critical	when	seeking	help	from	others.

Chapter	2.	Common	Problems
There	is	a	fairly	consistent	theme	within	the	OpenVPN	support	channels,	IRC,	the	web	forums,	and	the
mailing	list.	The	novice	users	of	OpenVPN	generally	ask	the	same	questions.	Most	common	issues	can	be
resolved	by	simply	dutifully	reading	the	OpenVPN	manual	(http://openvpn.net/man)	and	taking	notes.
Although	this	book	aims	to	inform	the	reader	of	additional	techniques	and	tools,	the	man	page	is	a
considerable	wealth	of	knowledge,	and	the	close	scrutiny	of	its	contents	will	be	beneficial	in	the	long	run.

Based	on	questions	found	in	IRC	and	on	the	forums,	the	novice	OpenVPN	administrator	struggles	most
with	identifying	the	root	cause	of	a	problem	and	is	generally	lost	with	how	to	find	that	cause.	The	vast
majority	of	problems	can	be	grouped	pretty	easily	into	a	small	subset	of	issues,	often	quickly	realized
with	initial	configurations:

Certificate	problems
Incompatible	tun/tap	configuration	settings	between	a	server	and	a	client
IP	range	conflicts	with	VPN	and	remote	local	LAN
Routing	misconceptions
Incorrect	assumptions	on	utility	and	layer	4	integration

Outside	the	common	areas	mentioned	earlier,	easily	addressed	issues,	lying	just	beyond	the	OpenVPN
program	influence	can	confound	even	the	most	experienced	system	administrator.	Ensuring	that	the
operating	system	that	the	server	or	client	is	attempting	to	use	is	supported	can	prevent	a	configuration
from	working,	right	out	the	gate.

In	this	chapter,	we	will	cover	some	of	the	most	common	problems	associated	with	OpenVPN	server	and
client	implementations.	To	that	end,	methods	for	segregating	various	components	of	OpenVPN	and
identifying	and	validating	those	components	that	are	working	will	be	covered.	At	the	end	of	this	chapter,
we	will	prioritize	assorted	functions,	features,	and	processes	to	aid	in	quick	problem	resolution.

http://openvpn.net/man

Narrowing	the	focus
When	your	VPN	fails	to	work	the	way	it	was	expected,	it's	best	to	narrow	down	the	cause	of	the	problem.
In	the	simplest	case,	a	VPN	is	used	by	a	client	wanting	to	talk	to	a	resource	that	exists	on	the	VPN.	Having
a	diagram	or	flow	chart	of	your	finished	VPN	topology,	including	the	VPN,	the	server-side	LAN,	and
resources	that	will	be	exposed	to	the	clients,	will	help	rule	out	working	components.

Here	is	a	sample	network	diagram	depicting	a	simple	corporate	network	with	an	OpenVPN	server.	There
are	a	number	of	internal	components	that	are	inaccessible	to	the	general	Internet,	an	application	server,
and	an	internal	website.	Externally	accessible	are	a	public	website,	the	corporate	e-mail	server,	and	the
OpenVPN	server.

The	dotted	lines	show	our	protected	or	internal	traffic,	and	the	solid	lines	show	general	Internet	routed
traffic:

Example	network	diagram	used	in	scenario	1	and	2

Sample	scenarios
The	utility	of	the	diagram	mentioned	earlier	are	best	demonstrated	with	some	useful	scenarios.	Having	the
ability	to	identify	a	specific	component	of	the	network	as	a	potential	culprit	to	a	problem,	small	or	large,
is	important	and	easiest	to	understand	in	a	simple,	nonproduction	case.

In	our	following	scenarios,	we	have	a	remote	worker,	also	known	as	a	road	warrior.	These	users	have
historically	been	sales	staff	but	are	increasingly	becoming	engineers	and	executives.

Scenario	1--unable	to	access	VPN

The	remote	worker	has	reported	that	she	is	unable	to	connect	to	the	VPN.	She	has	stated	that	the
OpenVPN	client	indicates	that	she	is	connected,	but	she	cannot	fetch	e-mails	or	see	the	internal	corporate
website.	Normal	web	browsing	is	working.	Here	are	the	questions	you	could	ask	the	user:

Does	the	remote	worker	have	an	Internet	access?	We	can	assume	so	because	she	has	stated	that
normal	web	browsing	works.
Does	the	client	connect	to	the	VPN	server?	The	remote	worker	states	that	the	OpenVPN	client
shows	that	she	is	connected	to	the	VPN.	This,	itself,	isn't	necessarily	telling,	as	the	client	can	still
have	routing	or	other	errors	that	will	be	more	apparent	in	the	logs.	The	simplest	log	check	is	to	look
for	the	following	in	the	log	on	the	client	or	server	side:

2016-04-10	10:11:19	Initialization	Sequence	Completed

Can	the	remote	worker	ping	the	VPN	server's	internal	VPN	IP	address?	We	have	omitted	IPs
within	the	diagram	earlier.	The	VPN	server	will	have	a	LAN	address	as	well	as	a	VPN	address.
Once	connected	to	the	VPN,	you	can	look	at	the	tun	or	tap	device	or	look	in	the	logs.	On	Windows,
this	would	be	in	the	normal	Network	Connections	control	panel;	on	a	Unix	system,	using	ifconfig
on	the	correct	device	is	enough,	in	our	case,	utun1:

Successful	ping	of	VPN	server	from	the	client.

We	have	now	validated	that	the	VPN	is	up	and	the	client	is	connected.	Troubleshooting	from	here	passes
to	other	systems	outside	the	direct	control	of	OpenVPN.	There	could	be	a	faulty	rule	in	the	firewall,	or	the
mail	or	web	server	could	be	offline.

In	Chapter	4,	The	Log	File,	we	will	dig	into	the	log	file	to	ensure	all	aspects	of	the	configuration	were
accepted	and	properly	configured.	In	later	chapters,	identifying,	routing,	and	other	network	issues	will
also	be	explained.	For	now,	we	have	passed	troubleshooting	on	to	the	corporate	firewall	team	because
we	have	verified	that	actual	connectivity	to	the	VPN	itself	is	functional.

Scenario	2--cannot	access	external	web	when	on	VPN

Our	hardworking	remote	worker	is	finally	able	to	connect	to	the	VPN.	Checking	e-mails	is	working	great,
and	all	the	internal	company	web	resources	are	available	to	her.	Quickly,	however,	she	realizes	that
browsing	websites	not	belonging	to	the	company	is	no	longer	possible.	She	has	tried	some	of	the	common
web	pages,	and	checking	her	personal	e-mail	account	also	fails.	Another	call	for	support!	Here	are	the
questions	to	ask	the	user:

Does	a	normal	function	return	after	disconnecting?	Having	the	client	side	disconnected	is	useful
in	isolating	the	issue	to	the	local	LAN.	If	the	problem	goes	away,	there	is	a	good	chance	that	some
configuration	property	is	the	cause	of	the	issue.
Does	the	issue	reoccur	once	reconnected	to	the	VPN?	Once	the	VPN	connection	has	been	re-
established,	test	that	the	failure	case	has	returned.	If	so,	we	can	assign	some	blame	to	the	VPN	as	the
cause	of	the	issue.
What	route	is	the	Internet-bound	traffic	taking?	A	common	option	used	by	OpenVPN
administrators	is	to	route	all	traffic	through	the	VPN	(see	the	option	--redirect-gateway).

Take	the	following	diagram	into	consideration.	We	have	the	same	corporate	network	we	had	earlier,	with
some	external	resources,	a	web	server	and	a	personal	e-mail	server.	Without	the	--redirect-gateway
option,	the	traffic	flows	might	resemble	the	lines	in	this	diagram:

Normal	Internet-bound	traffic	flow

When	the	--redirect-gateway	option	is	added,	the	the	web	traffic	is	also	routed	through	the	VPN
gateway.	Through	finer,	more	specific	routing	table	entries,	the	VPN	effectively	overrides	the	client's
default	gateway,	causing	the	path	of	Internet-bound	traffic	to	flow	from	the	client,	to	the	VPN	server,	and
back	out	to	the	VPN	server's	default	gateway.

If	the	gateway	isn't	configured	correctly	and	the	VPN	is	configured	to	route	all	traffic,	including	Internet-
bound	traffic,	it	could	be	blocked.	Some	issues	could	include	incorrect	Network	Address	Translation
(NAT)	or	firewall	rules.	In	this	scenario,	the	LAN	resources	are	functional,	but	Internet	browsing	from
the	client	would	be	dysfunctional.

The	following	diagram	shows	traffic	passing	to	the	VPN	server	which	is	sort	of	a	dead	end	there.	Either
the	kernel	of	the	operating	system	doesn't	know	what	to	do	with	it,	or	traffic	is	being	blocked	by	a
firewall:

Internet	traffic	routed	to	VPN	server,	blocked	at	server

If	NAT	is	properly	configured,	and	the	firewall	rules	necessary	are	defined,	a	traffic	flow	should	progress
from	a	VPN	client	to	a	VPN	server,	and	back	out	to	the	Internet.	Based	on	your	requirements	and
configuration,	the	corporate	firewall	may	come	into	play,	both	on	inbound	and	outbound	traffic	or	only	on
one	leg.

Note	that	the	following	diagram	shows	the	VPN	connection	passing	through	the	firewall	for	both	the
inbound	VPN	connection	and	the	outbound	Internet	traffic.	This	is	subject	to	the	overall	network
configuration	and	is	demonstrated	as	a	typical	example.	Please	don't	take	this	too	literally:

Internet	traffic	routed	to	a	VPN	server:	successful	flow	to	Internet

This	second	scenario	was	much	easier	to	troubleshoot	with	the	aid	of	diagrams.	Even	if	you're	just
creating	a	VPN	for	your	home	network	or	a	quick	impromptu	VPN	at	work,	a	diagram	or	even	a	quick
sketch	will	help	to	identify	any	problems	that	may	arise.

Network	diagrams	and	flowcharts	can	be	quickly	and	easily	created	with	a	variety	of	software	and	tools.
Both	Microsoft	Visio	and	Gliffy	(https://www.gliffy.com)	are	paid	options;	Visio	is	used	for	the	majority
of	diagrams	in	this	book.	A	good	free	option	is	Dia	(http://dia-installer.de).

I	attempted	to	use	Gliffy	for	the	diagrams	in	the	book,	initially.	However,	I	found	that	transparency,
connection	curves,	and	image	setting	were	much	more	difficult	or	unsupported.	Overall,	it's	a	good	tool,
and	many	of	my	difficulties	were	related	to	some	of	the	constraints	I	had	to	overcome	authoring	this	book.

https://www.gliffy.com
http://dia-installer.de

Suspecting	recent	changes
Once	a	VPN	is	up	and	running	successfully,	it's	a	good	practice	to	document	the	configuration	of	all
aspects.	This	should	include	kernel	changes	such	as	sysctl,	compiled	options,	network	interface	values,
firewall	rules,	and	routing	tables.	Having	a	flow	chart	of	your	authentication	scheme	is	also	useful.

Any	time	a	change	is	made	to	any	of	the	components	of	the	VPN,	be	sure	to	update	your	documentation
and	keep	copies	of	the	old	versions.	Quite	often,	a	seemingly	innocuous	change	will	prove	to	be	the
culprit	when	there	is	a	later	failure.	Solid	documentation	will	aid	in	identifying	what,	specifically,
changes	from	your	working	state	to	your	non-working	state.

One	specific	example	from	IRC	involved	a	long	time	idler	who	is	relatively	knowledgeable	with
OpenVPN	and	routinely	helps	other	users.	This	user	had	a	working	OpenVPN	setup	with	Amazon	Web
Services	(AWS)	and	switched	to	another	provider,	but	both	companies	provided	Red	Hat	6	VMs.	The
existing	configuration	files,	certificate,	and	key	would	be	copied	to	the	new	host.	The	only	change	was	to
be	the	external	IP	address	of	the	new	VM.

I	worked	with	this	user	for	hours	over	the	course	of	a	few	days	analyzing	firewall	rules,	configuration,
network	settings,	to	no	avail.	Finally,	another	user	was	following	our	dialogue	and	poked	at	the	new
provider's	website	and	chimed	in,	Oh,	they	use	OpenVZ.	Did	they	grant	your	VM	tun/tap	access?

Sure	enough,	the	user	was	able	to	log	in	to	the	support	portal	to	request	the	device	access	and	the	VPN
started	working.

Supported	operating	systems
Arguably,	the	easiest	thing	to	resolve	is	identifying	an	operating	system	that	has	proper	support	for
OpenVPN.	If	the	tun	or	tap	device	is	not	supported,	it	quickly	rules	out	OpenVPN	or	limits	the	specific
features	of	OpenVPN,	but	is	often	overlooked.	Both	iOS	(all	versions	as	of	this	writing)	and	Android
(also,	all	versions	as	of	this	writing)	do	not	support	the	tap	device.

There	are	other	operating	systems	that	don't	support	virtualized	network	devices	at	all.	FreeBSD	jails,	for
example,	don't	support	the	tun	or	tap	devices	without	some	significant	configuration	and	startup	tricks.
Many	embedded	operating	systems,	generally	on	routers	and	switches,	do	not	fully	support	OpenVPN.
Even	if	your	platform	of	choice	claims	to	support	the	virtual	network	devices,	it's	best	to	do	some	digging
to	ensure	that	OpenVPN	runs	reliably.

Embedded	devices
There	is	a	long	list	of	embedded	devices	that	support	OpenVPN.	Snom	VOIP	phones	have	the	ability	to
support	OpenVPN	for	secure	telephony
(http://wiki.snom.com/Networking/Virtual_Private_Network_(VPN))	using	a	custom	firmware	available
on	the	Snom	website.	Some	off-the-shelf	(OTS)	home	routers,	such	as	Asus	RT-AC5300,	support
OpenVPN	right	out	of	the	box:

Many	other	router	firmware	packages	support	OpenVPN.	OpenWrt	(https://openwrt.org),	DD-WRT
(http://www.dd-wrt.com/site/index),	and	Tomato	Firmware	(http://www.polarcloud.com/tomato)	are
likely	the	most	commonly	known.	These	firmware	packages	fully	support	OpenVPN	and,	most
importantly,	the	required	virtual	networking	devices.

When	evaluating	an	embedded	firmware	or	platform,	make	certain	that	it	supports	either	the	tap	or	tun
virtual	network	devices.	The	latter	is	most	important,	as	(you'll	find	out	later)	it	is	the	most	common,	and
correct,	device	to	use.	Without	one	or	the	other,	you	can	safely	rule	out	OS.

Most	of	these	systems	provide	a	web	interface	to	help	configure	the	OpenVPN	server,	often	with	a	limited

http://wiki.snom.com/Networking/Virtual_Private_Network_(VPN)
https://openwrt.org
http://www.dd-wrt.com/site/index
http://www.polarcloud.com/tomato

feature	set.	The	disadvantage	with	these	is	that	some	advanced	features	are	either	missing	entirely	or
confusing	to	set	up.	For	the	best	troubleshooting	and	configuration	experience,	I	recommend	you	to	find
some	way	to	access	the	underlying	text	configuration	or	at	a	minimum,	the	command-line	arguments
passed	on	execution.

OpenVPN	is	a	unique	protocol	in	a	family	of	SSL-based	VPNs.	OpenVPN	will	not	work	with	other
protocols	including	other	SSL	VPNs,	such	as	Cisco's	AnyConnect	or	non-SSL-based	VPN	protocols	such
as	IPSec,	Point-to-Point	Tunneling	Protocol	(PPTP),	or	others.

Semi-embedded	systems
There	is	a	class	of	systems	that	I	have	termed	semi-embedded.	These	systems	run	a	firmware	that	resides
on	a	relatively	normal	PC	or	computer	system,	but	is	highly	tailored	to	a	specific	use.	A	couple	of	these
systems	including	FreeNAS	(http://freenas.org),	an	open	source	network	filer,	and	pfSense
(http://pfsense.org),	an	open	source	firewall	and	network	gateway	device,	have	OpenVPN	plugins	or
modules.	Some	additional	systems	that	support	OpenVPN	in	this	category,	both	open	source	and	closed,
are:

ReadyNAS	(via	external	package):	http://readynas.com
TrueNAS	(based	on	FreeNAS,	similar	packages	work):	https://www.ixsystems.com/truenas/
Synolgoy:	https://www.synology.com/en-us/
QNAP:	https://www.qnap.com/

At	the	time	of	writing	this,	these	systems	support	OpenVPN.	It's	important	to	note	that	these	systems	can
pull	or	remove	support	at	any	time,	and	may	not	support	OpenVPN	in	specific	use	case	scenarios	(lack	of
support	for	tap	is	common).

An	administrator	should	evaluate	if	their	use,	either	with	a	private	network,	or	with	a	particular	version
of	firmware,	supports	the	use	of	the	correct	virtual	adapter	or	OpenVPN	software	package.

The	Transport	Layer	Security	(TLS)	list	of	supported	ciphers	will	vary	on	these	embedded	devices	as
well.	Ciphers	using	Advanced	Encryption	Standard	(AES)	may	perform	well	on	desktop	systems,	but
will	show	a	performance	bottleneck	over	other	ciphers	on	some	embedded	systems.	Most	modern
processors	support	AES	New	Instruction	(AES-NI),	which	offloads	AES	calculations	to	a	subprocessor
specifically	designed	for	that	workload.	Embedded	systems	tend	to	be	low	power	and	purpose	built,	so
are	likely	to	lack	this	feature.	Cipher	differences	will	be	further	discussed	in	Chapter	8,	Performance.

http://freenas.org
http://pfsense.org
http://readynas.com
https://www.ixsystems.com/truenas/
https://www.synology.com/en-us/
https://www.qnap.com/

Virtual	servers
Virtual	private	servers	(VPSs)	are	likely	the	most	common	point	of	pain	for	an	aspiring	OpenVPN
administrator.	Particularly	with	Linux,	there	is	a	plethora	of	environments	in	which	a	Linux	system	can	be
deployed	virtually	including	Kernel-based	Virtual	Machine	(KVM),	Quick	EMUlator	(QEMU),	and
OpenVZ	(Virtuozzo	Containers).

OpenVZ	is	particularly	difficult	to	configure.	When	VPS	is	purchased	from	a	larger	provider,	cooperation
is	required	from	that	provider.	With	OpenVZ,	the	container	needs	to	be	specifically	granted	access	to	the
tun	and	tap	adapters.	With	FreeBSD	jails,	the	routing	of	VPN	traffic	actually	takes	place	outside	the	jail
in	the	host	kernel.

Note

OpenVZ	is	a	very	popular	virtualization	technology	for	Linux	with	various	hosting	providers.	The
OpenVZ	wiki	has	a	good	write-up	on	working	with	OpenVPN	and	the	changes	needed	to	make	it	work
at	http://wiki.openvz.org/VPN_via_the_TUN/TAP_device.

http://wiki.openvz.org/VPN_via_the_TUN/TAP_device

IP	addresses
It	is	important	to	choose	an	IP	address	range	that	does	not	have	or	has	goods	odds	against,	conflicting	with
remote	client	address	pools.	If	VPN	uses	IP	addresses	from	a	range	shared	by	a	remote	client	address
pool,	packets	meant	for	the	client	LAN	may	attempt	to	traverse	the	VPN	to	the	wrong	system	or	to	a
system	that	doesn't	exist	at	all.	Alternatively,	the	traffic	may	never	leave	the	client	LAN	and	be	routed	to	a
local	resource,	instead.

The	following	diagram	illustrates	a	fairly	severe	case	of	what	I'm	describing.	There	are	various	resources
identified	with	their	associated	LAN	address	on	both	sides.

On	the	left,	there	is	a	network	where	the	VPN	server	resides.	The	LAN	on	the	server	network	uses	the
10.4.0.0/24	subnet.	For	the	VPN,	the	10.8.0.0/24	subnet	is	used.	This	will	facilitate	VPN	traffic,	and
a	route	will	be	pushed	for	the	server-side	LAN	subnet.	There	are	two	internal	servers	for	which	the	VPN
was	created.	The	first	is	an	application	server	using	LAN	IP	10.4.0.76	and	an	internal	web	server	using
IP	10.4.0.33.

On	the	right	side	of	the	diagram,	we	show	the	client	network.	The	client	network	also	uses	the
10.4.0.0/24	subnet.	A	laptop	is	on	the	network	with	a	VPN	address	of	10.0.8.6	and	a	LAN	address	of
10.4.0.76.	There	is	also	a	local	printer	with	IP	10.4.0.33:

Network	diagram	showing	IP	conflicts	between	network	segments

There	are	quite	a	few	problems	with	this	setup.	Generally,	these	can	all	be	resolved	by	changing	one	IP
range	or	the	other.	If	the	VPN	server	pushes	a	route	for	the	10.4.0.0/24	subnet,	the	remote	client	will
lose	its	connection	to	all	local	resources,	such	as	the	printer,	but	also	it's	a	default	gateway.	Once	the
default	gateway	is	overridden,	the	client	will	drop	the	VPN	connection,	beginning	a	vicious	cycle	of

connecting,	dropping,	and	reconnecting.

If	the	VPN	server,	instead,	pushes	the	--redirect-gateway	directive	with	def	1	arguments,	then	the
client's	local	LAN	and	Internet	routing	will	be	overridden,	but	the	default	gateway	of	the	LAN	will	be
preserved.	This	prevents	the	reconnect	cycle,	but	will	render	the	local	printer	unusable.

Another	solution	would	be	to	translate	all	of	the	corporate	resource	to	VPN	range	IPs.	It	involves	creating
a	mapping	from	a	VPN	address	to	the	remote	corporate	LAN	address.	This	allows	the	VPN	clients	to	use
VPN	addresses	for	all	remote	services,	negating	problems	with	IP	conflict.

Using	OpenBSD's	pf	syntax,	all	of	the	corporate	resources	have	been	NATed	to	VPN	IPs	here:

#	PF	NAT	rules	for	corporate	resources

int_web	=		10.4.0.33	

int_app	=		10.4.0.76	

vpn_web	=		10.8.0.200	

vpn_app	=		10.8.0.201	

pass	on	eth0	from	$int_web	to	any	binat-to	$vpn_web

pass	on	eth0	from	$int_app	to	any	binat-to	$vpn_app

Tip

While	I	prefer	the	OpenBSD	packet	filter,	many	users	will	be	most	familiar	with	the	Linux	iptables.	Karl
Rupp	has	a	detailed	write-up	of	iptables	on	Linux	relating	to	NAT.	Rather	than	rehashing	his	content,
check	it	out	at	http://www.karlrupp.net/en/computer/nat_tutorial!

Additional	work	would	be	needed	for	the	solution	to	fully	function.	Pushing	custom	DNS	servers	with
VPN-specific	DNS	views	would	allow	VPN	clients	to	resolve	http://internal.example.org	to
10.8.0.200	instead	of	the	normal	10.4.0.33,	for	example.	The	NAT	rules	allow	the	traffic	to	flow	from
the	VPN	to	the	internal	corporate	network	without	having	to	push	the	corporate	network	subnet	to	the	VPN
clients.

Fortunately,	there	are	a	lot	of	options	out	there.	The	Internet	Engineering	Task	Force	(IETF)
at	http://ietf.org	has	defined	a	Request	For	Comments	(RFC),	RFC	1918
(https://www.ietf.org/rfc/rfc1918.txt).	For	IPv4,	this	RFC	clearly	defines	the	IP	ranges	that	should	be
used	for	private	network	subnets,	and	there	is	a	relatively	large	set	of	subnets	defined:

10.0.0.0	-	10.255.255.255	(10/8	prefix)
192.168.0.0	-	192.168.255.255	(192.168/16	prefix)
172.16.0.0	-	172.31.255.255	(172.16/12	prefix)

Of	the	preceding	three	groups,	there	has	been	a	trend	in	utilization	that	can	be	easily	worked	around	in
individual	deployments.	This	is	not	a	hard	and	fast	rule	or	regulation.	Any	network	administrator	can
define	whatever	subnets	they	chose:

10.0.0.0:	Used	primarily	on	large	corporate	networks	for	the	LAN.
192.168.0.0:	Home	and	consumer	routers,	specifically	192.168.0.0/24	and	192.168.1.0/24.
The	remainder	of	the	/16	is	up	for	grabs!
172.16.0.0:	Corporations	typically	use	this	for	DMZs	and	VPN	subnet	ranges.

http://www.karlrupp.net/en/computer/nat_tutorial
http://ietf.org
https://www.ietf.org/rfc/rfc1918.txt

If	we	convert	our	client-side	LAN	range	to	the	common	192.168.0.0/24	subnet,	we	find	a	very	different
traffic	path.	Both	servers	on	the	VPN	side	have	a	clear	route	and	path	from	the	client:

Tip

There	is	a	similar	RFC	for	IPv6	private	address	ranges,	RFC	4193.	You	can	read	more	details	about	it	on
the	IETF	website:	https://tools.ietf.org/html/rfc4193

The	OpenVPN	HOWTO	(https://openvpn.net/howto)	uses	the	10.8.0.0/24	network	in	the	examples
presented.	This	is	a	somewhat	random	subnet	within	the	10/8	class-a	subnet,	but	there	is	a	chance,	with
large	corporations,	that	this	will	conflict.

There	is	an	even	better	chance,	however,	that	this	will	remain	unused	for	most	home	users.	Ensure	that
your	VPN	IP	range	selection	is	thought	out	and	properly	engineered	with	regard	to	the	likely	client
networks,	and	the	known	server-side	network.

Setting	up	a	VPN	at	home,	it	is	recommended	to	avoid	the	192.168.0.0/24	and	192.168.1.0/24	subnet
ranges.	These	two	are	most	common	on	home	routers	as	the	default.	While	it	will	work	fine	from	remote
offices,	connecting	from	other	routers	with	these	default	configurations	will	result	in	conflicting	address
space.

Many	corporate	networks	use	10.0.0.0/8	or	some	subnets	within	that	range.	For	this	reason,	it	is	also	a
good	idea	to	avoid	these	addresses.	It	seems	to	be	common	to	use	172.16.0.0/12	for	VPNs	and	DMZs
in	corporate	environments,	so	it's	likely	safe	to	use	this	range	for	your	own	VPN	as	well.

https://tools.ietf.org/html/rfc4193
https://openvpn.net/howto

Firewalls
Incorrectly	configured	firewalls	are	one	of	the	most	prevalent	problem	areas,	particularly	for	new	users.
Experienced	users	are	also	apt	for	misunderstanding	how	firewall	rules	apply	to	OpenVPN	routed
packets.	In	the	past,	firewalls	were	relatively	monolithic	devices	at	or	near	a	network	edge.	Today,
however,	firewalls	exist	on	client	devices,	network	devices,	all	along	the	path	of	a	network	packet.	Any
switch	in	the	path	can	have	ACLs	preventing	or	permitting	traffic.	This	can	include	both	the	client-	and
server-side	LANs.	The	OpenVPN	likely	has	a	firewall	element	for	translation	or	routing	traffic,	and	also
for	preventing	or	permitting	said	traffic.

The	monolithic	firewall	also	still	exists	and	can	be	a	pain	point	when	troubleshooting	traffic	flow.	The
current	high-end	firewalls	also	permit	deep	packet	inspection,	SSL	decryption,	and	what	some	vendors
term	zero-day	patching.	The	latter	generally	requires	SSL	decryption	be	configured	and	permits	the
firewall	vendor	to	detect	vulnerable	applications	or	protocols	and	modify	the	traffic	real	time.	In	my
experience	with	both	Palo	Alto	Networks	and	Sophos	products,	OpenVPN	will	not	function	through	these
decryption	profiles.

Note

The	SSL	decryption	capabilities	will	generally	work	fine	for	normal	web	browsing	traffic,	but	other
applications	that	use	TLS	will	break	when	they	pass	through	such	a	firewall	with	this	feature	enabled.
Apart	from	OpenVPN,	both	Bomgar	and	Dell	KACE	are	also	functionally	broken	when	passing	through
one	of	the	firewalls.

The	simplest	method	for	troubleshooting	firewall	rules	is	to	disable	filtering	for	your	VPN	traffic	and
work	to	re-enable	rules	until	the	problem	filter	has	been	identified.

Duplicate	client	certificates
By	default,	OpenVPN	expects	each	remote	client	to	connect	using	a	unique	certificate	for	identification
and	encryption	purposes.	The	common	name	(CN),	is	used	to	generate	configuration	options,	identify	a
persistent	IP	(--ifconfig-pool-persist),	and	CCD	(--client-config-dir)	entries.	In	addition,
startup	scripts	may	use	the	CN	to	generate	dynamic	routes,	firewall	rules,	and	other	access	policies.

For	the	majority	of	general	road-warriors,	special	routing,	and	firewall	rules	are	not	the	norm.	In	this
scenario,	the	user	connects	to	the	VPN,	is	given	an	IP	address	from	the	server,	and	they	will	then	have
access	to	the	resources	of	the	corporate	network.	More	advanced	configurations	may	provide	differing
pushed	routes	or	IP	assignments	in	varying	subnets.

Overcomplication
It	is	important	to	have	the	intended	use	of	your	VPN	well	defined	before	starting	your	troubleshooting
endeavors.	Understanding	how	the	system	is	meant	to	be	accessed	and	used	will	rule	out	unrelated
problems	quickly.	I	have	encountered	a	plethora	of	aspiring	administrators	with	gross	misconceptions	for
how	OpenVPN	should	behave,	who	are	pulling	their	hair	out	in	frustration.

You	might	want	to	start	simple	and	get	a	basic	VPN	operational	before	rolling	in	all	the	custom	routes,
authentication	mechanisms,	reporting,	and	so	on.	Following	a	simple	how	to	and	reading	the	man	pages
will	get	you	off	on	the	right	foot.

Break	up	complicated	configurations	into	smaller	components	when	attempting	to	identify	the	root	cause
of	a	failure.	Analyze	general	network	settings	and	deployed	configurations	first,	then	move	on	to	more
complex	components.	Assigning	static	IPs,	client-specific	configuration	components,	and	firewall	rules
can	come	second.	As	you	progress	through	your	setup	and	verify	that	a	given	element	is	functioning	as
desired,	add	it	back	in	to	the	mix.

Summary
Some	of	the	most	common	configuration	and	deployment	scenarios	were	covered	in	this	chapter.	In
addition	to	identifying	specific	potential	problems,	we've	demonstrated	how	to	properly	document	your
OpenVPN	network	and	use	diagrams	for	easier	troubleshooting	once	problems	occur.	Preferably,	identify
the	entire	installation	base	and	your	configuration	components	prior	to	publishing	your	VPN	to	your
customers	or	clients.

We	have	also	helped	to	identify	firewalls,	IP	address	ranges,	and	operating	system	incompatibilities	as
potential	problem	areas.

Chapter	3.	Installing	OpenVPN
There	is	a	multitude	of	clients	available	to	connect	to	an	OpenVPN	server.	This	chapter	helps	the
administrator	troubleshoot	client	installation	errors.	We	will	cover	both	the	open	source	clients	as	well	as
a	few	commercial	alternatives.	This	chapter	will	cover	these	topics	and	help	the	administrator	resolve
common	problems.

Common	installation	problems
OpenVPN	installation	problems	can	be	classified	into	a	few	major	categories:	adapter	or	driver
problems,	lack	of	necessary	permissions,	and	broken	installers.	It	is	also	possible	that	the	existing
packages	for	your	chosen	operating	system	either	do	not	exist	or	are	greatly	out	of	date.

Compiling	OpenVPN
On	Linux	and	Unix	systems,	compiling	from	source	can	sometimes	be	the	only	way	to	get	OpenVPN
installed.	There	are	packages	available	for	the	majority	of	operating	system	releases,	but	there	are	custom
systems	(Raspberry	Pi,	BeagleBone,	OpenWrt,	and	so	on)	that	may	not	have	the	latest	version	of
OpenVPN	available.	Given	a	proper	development	environment,	the	OpenVPN	installation	should	be
pretty	straightforward.

The	required	development	environment	basically	consists	of	the	following	software	components:

autoconf	(http://www.gnu.org/software/autoconf/)
automake	(http://www.gnu.org/software/automake/)
C	code	compilers,	such	as	gcc,	clang,	msvc,	and	cc,	should	all	work

To	demonstrate	a	software	built	on	a	nontypical	system,	we	will	compile	the	OpenVPN	2.3.11	source
code	on	Raspbian,	which	is	a	Debian	distribution	compiled	for	the	Raspberry	Pi.	In	our	case,	we're	using
Raspberry	Pi	B+.

First,	download	the	source	code.	Links	for	downloading	can	be	found	on	the	OpenVPN	community	web
page	at	https://openvpn.net/index.php/open-source/downloads.html.	Once	downloaded,	extract	the	GZIP-
compressed	.tar	file:

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
https://openvpn.net/index.php/open-source/downloads.html

OpenVPN	source	download	and	extraction

Before	open	source	software	packaging	was	so	common,	software	was	downloaded	in	source	form.	To
install	these	software	distributions,	it	needed	to	be	compiled.	Tools	like	those	mentioned	earlier
(autoconf	and	automake)	made	this	process	much	easier	by	breaking	the	process	down	into	the	three
steps,	namely	using	configure,	make,	and	make	install.

However,	in	the	case	of	our	Raspbian	OpenVPN	installation,	we	discover	that	the	./configure	step	fails
due	to	missing	SSL	libraries	(see	the	second	to	the	last	line	of	output	in	the	screenshot	here):

/configure	failure	at	the	end	-	ssl	libraries	are	missing

OpenSSL	has	been	the	de	facto	standard	of	SSL	libraries	for	quite	a	few	years,	but	a	relative	new	comer
is	also	supported	by	OpenVPN:	mbed	TLS.

Here,	we	back	up	one	directory,	download	the	mbed	TLS	source	package,	extract,	and	compile.	A	simple
make	command	is	all	that	is	needed	to	build	mbed	TLS	once	the	software	is	extracted.	Note	that	running
compile	on	a	small	embedded	system	such	as	Raspberry	Pi	will	take	considerably	longer	than	it	would
on	a	more	robust	desktop	or	server	system.	In	our	test	case,	the	mbed	TLS	(PolarSSL)	make	process	took
approximately	20	minutes.

Note

PolarSSL	changed	their	name	to	mbed	TLS	in	2016	when	ARM	acquired	the	project.	OpenVPN	2.3.11
and	earlier	need	to	use	the	older	1.3.x	libraries,	which	are	still	named	PolarSSL.	The	name	and
references	were	changed	in	2.3.12	and	later	(2.3-master,	as	of	this	writing).

Download	and	extraction	of	the	mbed	TLS	software	bundle

The	default	SSL	library	for	OpenVPN	is	OpenSSL,	so	using	mbed	TLS	requires	an	option	for	configure.
Note	the	configure	command	in	the	associated	option	in	the	following	screenshot.	For	a	full	list	of
configure	options,	run	configure	with	--help:

The	configuration	is	complete	without	additional	errors

After	installing	the	PolarSSL	libraries,	I	needed	to	export	two	environment	variables,	LDFLAGS	and
CFLAGS,	to	tell	configure	where	to	find	the	new	libraries.	Once	done,	I	was	able	to	successfully

complete	the	configure	operation:

root@raspberrypi:/home/pi/openvpn-2.3.11#	export	CFLAGS=

				-I/home/pi/polarssl-1.3.9/include	root@raspberrypi:/home/pi/

				openvpn-2.3.11#	export	LDFLAGS=-L/home/pi/polarssl-1.3.9/library	

				root@raspberrypi:/home/pi/openvpn-2.3.11#	./configure	--with-crypto

				-library=polarssl	--disable-lzo

Note

Two	additional	libraries	missing	were	found	on	our	Raspbian	installation	besides	the	SSL	libraries.	We
opted	to	disable	the	LZO	compression	algorithm	for	expediency,	but	needed	to	install	the	libpam-dev
package	using	apt-get:

#	apt-get	install	libpam-dev

Now	that	the	build	environment	has	been	configured,	thanks	to	autoconf,	the	OpenVPN	software	can	be
compiled	and	installed.	It	is	easiest	to	do	this	in	a	single	command	operation:

root@raspberrypi:/home/pi/openvpn-2.3.11#	make	&&	make	install

The	final	screenshot	in	this	section	shows	a	successful	software-build	and	installation.	The	which	Unix
command	shows	that	the	openvpn	binary	has	been	installed	in	/usr/local/bin/.	Running	openvpn	with
the	--version	option	shows	the	build	date,	compile	time	options,	and	supporting	libraries.

Most	notably,	we've	built	OpenVPN	with	the	PolarSSL	1.3.9	libraries	on	ARM:

Successful	build,	OpenVPN	2.3.11	with	PolarSSL	1.3.9	built	on	June	29,	2016	on	ARM	architecture

Packages	and	installers
The	OpenVPN	project	members	release	and	maintain	a	few	operating	system	packages	directly,	namely
Windows,	Debian,	Ubuntu,	and	FreeBSD.	All	other	packages	or	installers	are	generated	and	maintained
by	third-party	developers,	not	generally	associated	with	the	OpenVPN	development	team.

Build-errors	do	occur,	even	with	the	official	installers	and	software	packages.	These	generally	occur
when	changes	are	made	to	the	project-build	structure	and	are	quickly	identified	by	the	developers	or
reported	by	users.	A	fix	for	such	issues	is	usually	published	within	a	couple	of	days	or	less.

The	advantage	of	the	official	packages	is	that	the	developers	of	OpenVPN	are	responsible	for	the
installers.	They	will	know	about	configure	and	build	option	changes,	so	they	will	be	able	to	adjust	the
package	build	accordingly.	In	addition,	the	common	support	flow	from	end	users	will	go	to	the	OpenVPN
developers	first,	who	can	then	make	the	corrections.

When	the	installer	or	package	is	not	directly	maintained	by	an	OpenVPN	developer,	the	flow	of	support
can	be	a	bit	disjointed	from	the	user	base.	As	mentioned	earlier,	the	users	of	OpenVPN	will	first	reach	out
to	the	developer	team	when	an	issue	is	identified.	Whether	it	be	via	IRC,	the	e-mail	list,	or	the	forums,
correcting	the	broken	component	may	not	be	possible	due	to	the	lack	of	repository	access	or	unfamiliarity
with	the	given	distribution's	packaging	methods	or	policies.	The	general	advice	with	these	situations	is	to
contact	the	package	maintainer	directly.	This	isn't	to	say	third-party	packages	are	bad,	but	there	are	just
extra	steps	required	when	the	support	is	needed.

Linux	and	other	OS	distributions	will	test	their	packages	or	installers	prior	to	release.	It's	usually	a	safe
assumption	that	these	released	versions	will	be	functional.	The	primary	complaint	seen	in	the	support
channels	is	about	out	of	date	software	packages.	The	OpenVPN	project	covers	a	wide	swathe	of	different
operating	systems,	which	leaves	some	less	common	ones	to	fend	for	their	own	installers.	In	these	cases,
our	suggestion	is	to	simply	build	from	source.

The	advantages	of	precompiled	installers

There	are	a	few	notable	advantages	of	using	precompiled	installers	or	packages.	The	key	advantage	is	the
startup	and	shutdown	routines.	OpenVPN,	for	the	near	future,	will	be	capable	of	starting	with	a	fairly
simple	command	line	akin	to	the	screenshot	here,	even	on	Windows,	which	is	notoriously	graphical-
interface	centric:

The	command-line	example	of	OpenVPN	startup	using	a	configuration	file

This	startup	meets	the	most	basic	needs,	but	does	not	integrate	well	with	modern	operating	systems.	The

upcoming	2.4	OpenVPN	release	is	purported	to	support	an	OpenVPN	service	that	would	allow	non-
administrators	to	start	OpenVPN	sessions	without	escalating	privileges.	This	would	be	a	multifaceted
approach	to	loading	a	daemon,	and	interfacing	with	that	daemon,	including	authentication	and
authorization,	and	triggering	the	startup	of	a	given	profile.	This	is	far	more	complex	than	the	simple
command-line	example.

Red	Hat	Linux	(and	others)	are	supporting	a	centralized	system	control	daemon	known	as	systemd.	With
systemd,	a	unit	file	defines	a	service,	and	systemd	will	start	or	stop	a	given	service	based	on	the
properties	within	the	service's	unit	file.

The	added	complication	of	these	newer	mechanisms	makes	the	bar	to	entry	much	higher,	resulting	in	an
increased	likelihood	of	errors	and	failed	startup	or	shutdown.	While	newer	and	more	complex,	if	you
stick	to	the	OS-distributed	release,	these	complexities	will	be	handled	for	you.	Deviating	from	that
release	to	the	base	source	distribution	may	result	in	some	headache.	The	disadvantage	is	many	OS
package	releases	lag	behind	the	project	release	cycle,	sometimes,	by	a	month	or	longer.

Driver	installation
OpenVPN	uses	virtual	network	adapters	to	create	point-to-point	tunnels	with	remote	systems.	The	tun
and	tap	adapters	are	used,	based	on	what	type	of	network	traffic	is	required	to	flow	across	the	network.
Layer	2	(data	link)	traffic	in	the	OSI	model	requires	the	tap	adapter.	This	is	useful	for	various	routing
protocols	and	applications	or	games	that	depend	on	broadcast	traffic.	More	commonly,	layer	3	(network)
traffic	is	all	that	is	required,	which	uses	the	tun	adapter.

Note

Further	details	about	the	Open	Systems	Interconnection	(OSI)	model	can	be	found	at	Wikipedia
(https://en.wikipedia.org/wiki/OSI_model)	or	the	International	Organization	for	Standardization
(http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip)
websites.

On	the	majority	of	Linux	and	Unix	platforms,	there	will	be	two	distinct	virtual	network	adapters,	tun	and
tap.	Linux	aliases	the	bridging	Ethernet	pseudo	adapter	to	tap	and	bond,	with	a	distinct	tun	kernel
module.	FreeBSD,	on	the	other	hand,	includes	both	the	tun	and	tap	functionality	in	the	if_tap.ko	kernel
module.

On	Windows,	the	OpenVPN	project	provides	the	TAP-Windows	virtual	network	adapter.	The	OpenVPN
GUI	installer	will	normally	install	the	driver	for	you,	but	the	installer	is	available	separately.	The	driver
is	available	in	two	forms:	NDIS	5	(TAP-Windows,	version	9.9.x)	for	Windows	XP	and	NDIS	6	(TAP-
Windows6,	9.21.x)	for	Windows	Vista	and	higher.

If	more	than	a	single	OpenVPN	instance	will	be	running	at	once,	an	additional	TAP-Windows	adapter
device	will	need	to	be	installed.	Fortunately,	OpenVPN	provides	the	tools	needed	to	create	additional
interfaces.	There	are	two	distinct	methods	to	install	additional	virtual	network	adapters:

The	tapinstall.exe	utility
The	Control	Panel	new	hardware	wizard

The	first	method	involves	using	the	tapinstall.exe	utility	provided	with	current	versions	of	OpenVPN.
The	binary	can	be	found	in	C:\Program	Files\TAP-Windows\bin.	This	tool	can	be	used	to	query	what
adapters	are	currently	installed,	as	well	as	adding	or	removing	devices:

https://en.wikipedia.org/wiki/OSI_model
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip

The	preceding	screenshot	shows	a	full	cycle	using	the	utility,	displaying	the	list	of	adapters	(just	one),
installing	an	additional	adapter,	removing	all	adapters,	and	reinstalling	a	new	adapter.	More	information
about	the	tool	can	be	found	with	the	/?	command-line	option	or	by	going	to	the	TAP-Windows	adapter
wiki	page	at	https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers.

The	device	drivers	for	the	TAP-Windows	adapter	reside	in	the	C:\Program	Files\TAP-
Windows\driver	directory.	This	is	where	you	should	point	the	new	hardware	wizard	when	attempting
option	two,	mentioned	earlier.

https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers

I	recommend	using	this	second	method,	particularly,	if	you	are	not	comfortable	on	the	Windows	command
line.	Also,	the	tapinstall.exe	utility	is	fairly	indiscriminate	when	removing	the	adapter:	it's	all	or
nothing.	The	Device	Manager	option	easily	allows	you	to	add	or	remove	specific	adapters.	This
becomes	more	important	once	you	become	dependent	on	specifically	named	adapters	for	more	complex
routing	scenarios.

Alternative	clients
From	an	open	source	project	perspective,	the	only	supported	application	is	a	build	of	the	open	source
project	code.	In	practice,	however,	there	are	a	multitude	of	exceedingly	useful	alternative	builds.	Some	of
these	builds	are	for	commercial	VPN	providers,	and	support	not	just	the	OpenVPN	protocol,	but	may
include	support	for	PPTP,	IPSec,	or	AnyConnect,	or	any	other	protocol.	These	applications	usually
provide	a	single,	simple,	user	interface,	and	couple	with	a	custom	configuration	provided	by	the	author	or
provider.

Because	of	the	added	features	or	controls	that	may	be	built	into	the	third-party	application,	it's	likely
easiest	to	troubleshoot	a	non-working	OpenVPN	connection	by	reverting	back	to	the	open	source	client.
This	helps	to	rule	out	the	additional	features.

There	are	a	few	circumstances	where	an	official	application	does	not	exactly	exist.	Mobile	platforms,	for
instance,	do	not	have	a	native	OpenVPN	open	source	build.	The	Android	OpenVPN	client,	while	using
the	majority	of	the	OpenVPN	base	source,	still	requires	a	frontend	GUI	to	manipulate	the	connection.

There	is	an	application	(OpenVPN	Connect),	provided	by	the	commercial	venture	of	James	Yonan,	but
that	currently	uses	a	large	amount	of	experimental	and	out-of-band	source	that	isn't	shared	with	the
community.	James	has	put	in	quite	a	bit	of	effort	to	make	it	compatible,	but	there	are	known	limitations
and	certain	incompatibilities	between	the	commercial	application	and	other	applications.

Summary
In	this	chapter,	we	discussed	how	OpenVPN	is	installed	and	compiled,	including	some	of	the	benefits	of
using	software	packages	distributed	by	your	operating	system	of	choice.	There	are	many	places	where	a
compilation	or	installation	of	OpenVPN	can	turn	sour,	and	being	cognizant	of	those	will	help	you	create	a
successful	and	maintainable	VPN.

I	think	the	hardest	market	today	is	the	mobile	market,	primarily	due	to	the	lockdown	of	some	application
marketplaces	and	the	restrictions	placed	on	the	environment	and	ecosystem.	Being	aware	of	these	as	well
as	some	of	the	limitations	of	a	given	platform	should	set	up	correct	and	workable	expectations.

In	the	next	chapter,	we	dig	into	the	log	file,	helping	you	identify	problems	and	recognize	some	of	the
solutions	indicated	in	the	log	messages.	The	previous	chapters	primarily	covered	the	bases	of	how
OpenVPN	functions,	how	it's	built,	but	only	works	on	functional	setups.

Chapter	4.	The	Log	File
Logs	become	irreplaceable	resources	when	problems	arise	in	almost	anything.	Meeting	notes,	registration
sheets,	visitor	comment	cards,	and	Syslog	entries	are	all	signs	of	logs	that	can	be	used	to	track	down
problem	trends	and	identify	troublesome	changes	that	may	have	occurred.

OpenVPN	has	a	multitude	of	logging	capabilities	that	allow	the	system	administrators	to	track	active
connections,	session	setup	and	negotiation,	authentication,	and	more.	In	addition,	the	level	of	verbosity
can	be	adjusted	by	making	the	logs	more	useful	during	changes	and	reducing	disk	consumption	when	the
VPN	is	stable.

This	chapter	will	describe	the	various	logging	options	in	OpenVPN.	The	ability	to	mute	repetitive	log
entries,	build	responsive	logging	and	usage	interfaces,	and	tune	the	logs	for	the	state	of	the	VPN,	such	as
recent	changes,	new	features,	or	problematic	clients,	are	all	possible	with	well-tuned	configuration
options.

Logging	options
The	best	source	of	information	when	troubleshooting	OpenVPN	connection	and	configuration	problems	is
the	log	file,	whether	it	is	on	the	server	or	the	client.	OpenVPN	provides	a	multitude	of	logging	options,
allowing	an	administrator	to	best	gather	the	data	necessary	to	resolve	a	problem.	This	book	may	be	the
first	comprehensive	guide	to	what	is	logged	by	OpenVPN	and	how	best	to	respond	to	the	messages	in	that
log.

In	order	to	successfully	tune	the	logging	of	your	OpenVPN	client	or	server,	it's	important	to	understand
what	the	available	logging	options	are	and	what	impact	they	will	have	on	the	available	troubleshooting
data.	This	section	will	provide	a	detailed	description	of	every	logging	option	found	in	the	2.3.11	release
of	OpenVPN.	The	following	command	defines	the	file	where	log	data	will	be	written	out:

--log	file

It	is	suggested	the	entire	path	be	included,	but	if	--cd	is	used,	or	when	applying	the	option	from	the
command	line,	it's	reasonable	to	use	a	relative	path	instead.	It	should	be	noted	that	if	the	file	already
exists,	it	will	be	truncated	upon	startup.	If	the	file	does	not	exist,	it	will	be	created,	assuming	the	user
executing	the	process	has	sufficient	permissions.

Demonstrating	--log	and	the	log	file	truncate	behavior

In	the	preceding	screenshot,	we	ran	a	simple	OpenVPN	connection	in	the	active	terminal	tab.	We
monitored	the	/tmp/test.log	file	in	the	inactive	tab	for	connection	initialization,	so	we	would	know
when	we	could	press	Ctrl	+	C	and	terminate	the	session.

Here,	you	can	see	that	messages	are	properly	written	to	/tmp/test.log	and	upon	closing,	that	log	has
313	lines.	When	we	rerun	the	connection,	the	log	is	truncated	and	the	second	connection	results	in	313
lines	written	to	the	file.	The	--log-append	option	works	nearly	identically	to	the	--log	option,	except
that	the	file,	if	it	already	exists,	will	be	appended	to,	rather	than	truncated:

--log-append	file

If	you	are	writing	to	a	log	file,	it	is	suggested	that	you	use	this	option:

Demonstrating--log-append	no	longer	truncates	the	log

In	the	previous	screenshot,	--log-append	is	used	on	the	command	line	instead	of	--log	(verb	4	is
present	within	the	testing	configuration	file).	We	removed	the	previous	log	file	to	avoid	confusion	and
demonstrate	that	the	log	file	is	created	and,	like	before,	we	have	313	lines	in	the	log	after	a	successful
connect	and	disconnect	cycle.

We	run	the	connection	a	second	time,	and	we	are	left	with	627	lines	in	the	log.	Both	execution	logs	now
remain.	We	noted	that	627	is	not	the	same	as	313	x	2,	so	we	dug	into	the	log	and	discovered	that	our
second	execution	resulted	in	a	repeated	PUSH_REQUEST,	likely	due	to	a	packet	retransmission.

When	using	the	--daemon	option,	and	lacking	any	--log	or	--log-append	option,	output	will	be
redirected	to	the	default	Syslog	file.	Any	of	the	other	log	options	will	supersede	the	--daemon	option's
Syslog	call:

--daemon	[program_name]

If	the	[program_name]	option	is	specified,	program_name	will	be	prepended	to	all	Syslog	lines	related
to	OpenVPN.	If	you	have	multiple	OpenVPN	instances	on	a	single	system	or	you	send	your	Syslog	entries
to	a	remote	system,	the	[program_name]	option	may	help	differentiate	between	the	various	instances:

Syslog	output	with	program_name	defined

Much	like	the	--daemon	option,	the	--syslog	option	allows	us	to	send	logs	to	the	system	Syslog:

--syslog	[program_name]

This	option	is	redundant	when	using	--daemon,	but	becomes	useful	when	running	OpenVPN	on	the
command	line	while	still	allowing	logs	to	be	directed	to	the	system	logging	daemon.	As	with	--daemon,
the	other	logging	directives	will	override	the	--syslog	option.

The	--verb	option	has	a	great	impact	on	logging	usefulness	when	it	comes	to	troubleshooting:

--verb	n

Set	correctly,	a	working	VPN	can	confirm	correct	functionality	with	confidence,	while	also	presenting
useful	information	when	a	VPN	experiences	issues.

The	higher	the	number	passed	to	this	directive	([n]),	the	more	verbose	the	logging.	The	next	section,
Logging	levels,	goes	further	in	depth	and	provides	the	examples	of	both	working	logs	as	well	as	some
logs	with	errors.

The	following	option	prevents	OpenVPN	from	prepending	timestamps	to	the	output	log	lines:

--suppress-timestamps

I	suggest	this	option	not	be	used	as	it	makes	pinpointing	where	and	when	a	problem	actually	occurred.

The	--mute	directive	prevents	OpenVPN	from	repeating	more	than	[n]	log	messages	of	the	same	mute
category:

--mute	[n]

The	mute	category	of	a	log	entry	does	not	directly	follow	the	verbosity	level	defined	in	the	table
mentioned	earlier,	but	it	is	a	relatively	close	correlation.

For	detailed	information	about	mute	categories,	refer	to	the	errlevel.h	file	linked	earlier.	The	mute
level	is	the	second	number	defined	for	each	entry.	The	following	screenshot	shows	some	of	the	mute
categories	and	verbosity	levels:

Contents	of	errlevel.h	showing	verbosity	levels	and	mute	category	definitions

Tip

The	--mute	directive	can	be	very	useful	on	embedded	devices	where	log	storage	is	at	a	premium,	or	disk
writes	are	considered	expensive	tasks.	It	is	generally	recommended	to	remove	or	omit	it,	however,	when
debugging	a	problematic	VPN	setup.

Apart	from	the	normal	event	log,	OpenVPN	provides	a	separate	log	file	used	to	indicate	the	current	set	of
connected	clients	along	with	some	connection	details:

--status	file	[n]

This	log	is	useful	to	help	identify	OpenVPN	internal	routes,	connection	time,	remote	and	VPN	IP
addresses,	and	more.

The	book	Mastering	OpenVPN	includes	some	detailed	examples	of	how	to	track	connections	and	store
them	in	a	database	in	the	seventh	chapter	named	Scripting	and	Plugins.

OpenVPN	status	log	output

There	are	three	distinct	versions	of	the	--status-file,	the	default	being	version	one	(shown	earlier).
Version	two	includes	additional	data	fields	while	retaining	the	comma	separation	of	the	version	one	file.
The	version	three	file	includes	the	same	data	as	version	two,	but	replaces	the	comma	separator	with	a	tab

delimiter:

--status-version	[n]

Logging	levels
The	ability	to	vary	the	verbosity	of	log	output	is	useful	when	switching	between	a	troubleshooting	session
and	a	normal	operational	session.	The	default	logging	level	of	1	provides	some	useful	informational
logging	level	of	1	provides	some	useful	informational	logs	along	with	the	fatal	errors	indicative	of	a
problem.

As	of	this	writing,	there	are	108	different	logging	defines	in	the	source,	covered	through	11	distinct
verbosity	levels.	The	majority	of	troubleshooting	at	an	administrative	level	I've	seen	has	not	needed	to	go
past	verbosity	4	though	there	are	exceptions,	like	when	a	firewall	issue	is	suspected.

The	following	table	provides	a	brief	description	of	each	level	and	provides	the	primary	key	log	messages
provided	at	that	level.	After	the	table,	log	samples	showing	a	few	different	key	levels	are	provided	to
illustrate	the	level	of	detail:

[n] Included	messages	at	verbosity	level

0 Only	fatal	errors	are	logged.

1 Informational	messages	are	also	logged.	Most	critical	task	errors	are	link,	tls,	resolver,	and	push.

2 Additional	informational	messages:	handshake,	socket/interface	close,	and	proxy	errors.

3
Additional	informational	messages:	routes,	auth,	plugin,	--port-share	messages,	ifconfig,	and	filter	data,	management	console
debugging	information.

4

Additional	informational	messages:	runtime	parameters,	options	compatibility,	DHCP	options,	filter	dropped	packets,	some	maximum
transmission	unit	(MTU)	data.

Verbosity	level	4	is	the	most	useful	in	the	majority	of	troubleshooting	scenarios.

5
R	and	W	characters	are	written	to	the	log	for	each	packet	that	is	sent	and	received.	Lower	case	r	and	w	characters	are	used	for
TUN/TAP	packets.

6
Like	verbosity	5,	but	READ	and	WRITE	are	used	for	TCP/UDP	packets	and	lower	case	characters	are	used	for	TUN/TAP	packets.	Client
NAT	and	TAP-Windows	adapter	debug	information	is	included.

7
Crypto	and	tunnel	debug	information.	Channel	keys	and	entropy,	compression	debugging	information,	verbose	routing	information,	much
more.

8 Most	process	and	schedule	debugging,	reliable	routing	debugging	information.

9 Detailed	tunnel	and	crypto	data.	Packet	content	prior	to	and	post	encryption	is	written,	PKCS#11,	TCP	stream	debug.

10 Traffic	shaping	debug	information.

11 Win32	registry	debugging,	OpenSSL	lock	information.

The	complete	list	of	verbosity	levels	and	the	messages	logged	is	available	in	the	OpenVPN	source	code
in	src/openvpn/errlevel.h.

You	can	view	the	source	on	GitHub	at
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h.

For	our	examples	here,	we're	using	the	following	configurations.	We	have	created	a	demonstration	CA
and	certificates	needed	already:

Server:

dh	dh1024.pem	

dev	tun	

server	192.168.80.0	255.255.255.0	

ca	ca.crt	

cert	tshoot-server.crt	

key	tshoot-server.key	

topology	subnet	

status	/var/log/openvpn-status.log	5	

keepalive	10	60	

Client:

client	

dev	tun	

proto	udp	

port	1194	

remote	192.168.19.37	

	

<ca>	

-----BEGIN	CERTIFICATE-----	

CA	PAYLOAD	REMOVED	

-----END	CERTIFICATE-----	

</ca>	

<cert>	

-----BEGIN	CERTIFICATE-----	

CERTIFICATE	PAYLOAD	REMOVED	

-----END	CERTIFICATE-----	

</cert>	

<key>	

-----BEGIN	PRIVATE	KEY-----	

KEY	PAYLOAD	REMOVED	

-----END	PRIVATE	KEY-----	

</key>

These	same	configurations,	with	noted	option	changes,	will	be	used	throughout	this	book.	As	above,
certificate	and	key	payload	data	will	be	omitted	elsewhere	for	brevity.

For	the	screenshots	given	later,	any	changes	to	configuration	of	the	client	or	server	will	be	evident	in	the
command-line	options	used	and	will	be	provided.	Also,	both	screenshots	will	be	taken	after	the	server
has	started	up	and	the	client	has	connected.	Deviations	from	this	will	be	described,	as	in	the	case	of

https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h

attempting	a	connection	to	a	known	offline	server	for	the	purposes	of	demonstration.

Verbosity	0
Verbosity	level	0	will	only	include	messages	deemed	fatal.	These	will	be	errors	that	will	prevent	the
VPN	from	functioning	properly	or	may	indicate	severe	security	problems.

Server:

author@server:~->	openvpn	--config	openvpn.conf	--verb	0

The	preceding	command	gives	the	following	output:

The	preceding	logs	displayed	show	a	warning	for	the	permissions	set	on	the	private	key	for	the	X.509
certificate	used	by	the	OpenVPN	server.	The	OpenVPN	process	wants	Unix	permissions	of	500	or	600,
and	we	have	644.	Also	logged	is	the	defining	of	the	route	to	our	VPN	with	the	kernel	(we	used
192.168.80.0/24).

Notably	absent	from	the	output	is	any	indication	that	a	client	has	connected.	As	evident	later,	however,	we
did	connect	a	client.

Client:

author@client:~->	sudo	openvpn/openvpn	--config	config.ovpn	--verb	0

The	preceding	command	gives	the	following	output:

The	client	log	is	also	rather	sparse.	We	get	a	security-related	warning	about	certificate	verification
method	not	being	set	(see	--ns-cert-type	and	--remote-cert-tls	for	further	details).	We	also	see	an
error	about	a	failed	ifconfig	command	execution.	Further	details	about	what	command	was	run	and	the
results	of	the	failure	are	not	apparent	at	this	level,	we	will	need	further	details.

Finally,	as	with	the	server	log,	we	see	the	setting	of	the	route	for	the	VPN	within	the	kernel.

Verbosity	1
Increasing	the	verbosity	from	a	0	to	the	default	of	1	reveals	considerably	more	log	entries	in	our	sample
connection.	Information	about	OpenVPN	version,	compilation	options,	and	SSL	library	version
information	is	displayed.

Note

The	screenshots	and	console	output	will	show	author@client	or	author@server.	In	most	cases,	this	is
a	cosmetic	affect	for	the	sake	of	this	book,	and	privileges	are	likely	root	and	sudo	are	unnecessary.

Server:

author@server:~->	openvpn	--config	openvpn.conf	--verb	1

The	preceding	command	gives	the	following	output:

From	the	server	logs,	we	can	still	see	our	security	warning	about	permissions	on	the	private	key	file.	We
also	see	more	detailed	information	about	the	device	used	(/dev/tun0),	the	IP	address	assignment	to	the
virtual	interface,	and	a	final	startup	message,	Initialization	Sequence	Completed.	This	phrase	in
both	the	client	and	server	logs	indicates	that	the	OpenVPN	is	up	and	running	and	is	generally	capable	of
passing	traffic.

Once	the	server	process	was	initialized,	we	connected	the	client.	The	server	log	show	the	evidence	of	the
remote	IP	address	from	which	the	client	connected	and	the	common	name	(CN)	of	the	client	certificate.

The	final	line	of	the	log	is	an	informational	message	about	the	safe	capacity	for	the	PUSH_REPLY	message
from	the	client.	This	message	may	possibly	come	in	handy	when	troubleshooting	MTU	problems:

As	with	the	server	log,	the	previous	error	of	the	missing	certificate	verification	method	is	listed	at	the
increased	verbosity.	The	IP	and	port	of	the	remote	server	is	listed	along	with	the	local	virtual	interface
(utun0,	the	client	is	a	Mac).

Like	the	certificate	error,	the	failed	ifconfig	message	is	still	present;	only	this	time	we	see	the	reason.
OpenVPN	attempts	to	remove	the	old	interface	if	it	already	exists.	In	our	case,	that	interface	is	not
present,	so	the	ifconfig	command	naturally	fails.	The	subsequent	log	message	states	this	failure	is	not	a
problem.

Finally,	the	functional	ifconfig	command	is	parroted,	the	kernel	routing	entry	add	is	displayed,	and	the
Initialization	Sequence	Completed	message	is	outputted.	This	line	in	both	the	server	and	client
context	means	that	the	VPN	tunnel	has	been	created	and	is	functional.	Note	that	this	does	not	mean	all
options	and	arguments	were	successfully	implemented,	just	that	there	were	no	fatal	errors.	Routes	may	not
be	set,	or	there	may	be	other	setup	issues.

Verbosity	4
Setting	verbosity	up	to	4	greatly	increases	the	volume	of	messages	sent	to	the	log.	Upon	execution,
OpenVPN	parses	all	of	the	configuration	options	and	prints	the	list	of	options	and	functional	arguments.

Server:

author@server:~->	openvpn	--config	openvpn.conf	--verb	4

The	preceding	command	gives	the	following	output:

With	OpenVPN	2.3.11,	the	client	startup	produced	275	lines	of	options	entries	and	the	server	startup
produced	226	lines.	Those	lines	are	omitted	from	the	following	screenshots	to	discuss	the	more	useful
lines	that	follow.

The	startup	of	the	OpenVPN	server	process	looks	very	similar	at	verbosity	4	as	it	does	at	level	1,	apart
from	the	appearance	of	the	runtime	options	and	configuration.	Once	the	client	actually	connects,	however,

there	is	a	significant	amount	of	details	provided.

Upon	client	connection,	remote	and	local	options	are	compared	and	messages	are	displayed	about
compatibility.	If	there	are	differences,	such	as	tun	versus	tap,	the	errors	will	show	up	here.	Also	listed,
are	encryption	cipher	details.	We	can	see	that	BF-CBC	(see
https://en.wikipedia.org/wiki/Blowfish_(cipher)	for	further	details)	with	a	160	bit	SHA1	message	hash	for
HMAC	authentication	for	the	data	channel.	Finally,	the	control	channel	is	using	TLSv1.2	with	DHE-RSA-
AES256-GCM-SHA384	with	a	1024	bit	RSA	key.

Upon	termination	of	the	OpenVPN	process,	messages	about	closing	the	device,	socket,	and	destruction	of
the	interface	are	indicated.	Also,	the	reason	for	the	exit	is	shown,	in	our	case	a	SIGINT,	caused	by	my
Ctrl	+	C	on	the	console.

Client:

author@client:~->	sudo	openvpn/openvpn	--config	config.ovpn	--verb	4

The	client	logs	also	show	quite	a	bit	of	certificate	detail	at	verbosity	level	4.	Within	the	log,	we	can	see
the	same	data	channel	encryption	setup	using	BF-CBC	with	128-bit	keys,	HMAC	message	hash	using	160-bit
SHA1.	As	indicated	on	the	server,	the	control	channel	is	using	TLSv1.2	with	DHE-RSA-AES256-GCM-
SHA384	and	a	1024-bit	RSA	key.

Further	through	the	negotiation,	we	can	see	the	details	of	PUSH	REQUEST/PUSH	REPLY	and	the	interface
and	routing	setup.	We	also	still	see	the	ifconfig	command	failure	(which	still	isn't	a	problem):

https://en.wikipedia.org/wiki/Blowfish_(cipher)

One	indicator	of	a	firewall	problem	is	the	RWRW	pattern,	or	lack	of,	in	the	log	file.	For	example,	a	working
ping	transaction	between	two	systems	will	show	both	R	and	W	in	the	log	file.	When	the	remote	endpoint	is
blocking	the	traffic,	you	will	only	see	W	in	the	log	file	and	can	identify	a	notable	lack	of	the	R	entries.

Verbosity	7
When	we	increase	the	verbosity	once	more	from	4	up	to	7,	we	get	much	of	the	same	details	on	startup
we're	accustom	to	at	4	and	below.	In	addition,	we	will	see	some	notably	dense	information	surrounding
cryptographic	activities,	including	encryption	and	decryption	keys	used	(server	log	only).

Server:

author@server:~->	openvpn	--config	openvpn.conf	--verb	7

The	detail	at	--verb	7	is	too	great	to	show	in	full	via	a	screenshot,	so	the	part	of	the	information	deemed
most	useful	is	shown	here.	The	full	log	for	both	the	client	and	server	will	be	available	on	the	Packt
website.

As	you	can	see	in	the	illustration	later,	there	is	quite	a	bit	of	private	information	that	should	be	protected.
The	keys	displayed	can	be	used	to	later	decrypt	the	traffic	that	used	those	keys.

It	should	not	be	necessary	to	use	this	level	of	debugging	information	unless	you	are	testing	new	and/or	as-
yet	unsupported	cryptographic	ciphers	or	actually	working	on	OpenVPN	development.	The	typical	system
administrator	will	likely	not	have	much	use	for	the	amount	of	data	available:

A	subset	of	logging	output	at	--verb	7	showing	actual	cryptographic	keys	and	seed	data

Client:

author@client:~->	sudo	openvpn/openvpn	--config	config.ovpn	--verb	7

The	preceding	command	gives	the	following	output:

When	I	ran	the	client,	I	noted	that	an	error	was	displayed	right	away.	The	client	I'm	using	to	write	this	is
the	Tunnelblick	(https://tunnelblick.net)	build,	which	lacks	debug	support.	The	message	was:

Tue	Aug	2	22:19:05	2016	NOTE:	debug	verbosity	(--verb	7)	is	enabled	but	this	build	

lacks	debug	support.

Looking	into	the	OpenVPN	source,	the	options.c	file	(https://git.io/v6kse)	on	line	4885	indicates	that

https://tunnelblick.net
https://git.io/v6kse

either	ENABLE_SMALL	or	ENABLE_DEBUG	need	to	be	enabled	at	compile	time:

#if	!defined(ENABLE_DEBUG)	&&	!defined(ENABLE_SMALL)

								/*	Warn	when	a	debug	verbosity	is	supplied	when	built

								without	debug	support	*/	

				if	(options->verbosity	>=	7)	

						msg	(M_WARN,	"NOTE:	debug	verbosity	(--verb	%d)	is	enabled

						but	this	build	lacks	debug	support.",	

									options->verbosity);	

#endif	

Examining	the	output	of	./configure	--help,	the	first	step	to	building	OpenVPN,	it	is	revealed	that
debug	is	enabled	by	default,	but	the	Tunnelblick-supplied	build	was	compiled	with	--disable-debug:

./configure	--help	output	showing	--disable-debug

The	full	output	is	considerably	longer	than	what	is	shown.	There	are	roughly	36	compile	options,	in
addition	to	setting	numerous	options	in	order	to	set	environment	variables.

Tip

Strange	problems	can	arise	if	the	client	and	server	are	using	significantly	different	compile-time	options.

Common	log	messages
Understanding	the	most	common	log	messages	present	at	--verb	4	allows	you	to	quickly	scan	the	log	file
for	errors	while	also	comprehending	the	events	taking	place.	The	messages	described	here	are	a	mix	of
both	affirmative	(good)	messages,	as	well	as	the	most	common	messages	indicating	errors.

Startup	messages
OpenVPN	will	evoke	a	number	of	messages	upon	startup.	Some	of	these	messages	are	informational,
others	are	warnings	of	perhaps	new	options,	or	options	that	are	potentially	dangerous	if	used	or	omitted.

Version	and	compile	string

The	first	line	to	explore	is	the	OpenVPN	version	string.	This	string	will	indicate	the	actual	release	of	the
software	used	along	with	some	important	build	and	compile-time	information.	The	first	two	examples
show	OpenVPN	version	2.3.11	compiled	with	OpenSSL,	LZO,	PKCS11,	MH	(extended	IP	packet
information),	and	IPv6.

The	second	piece	of	the	string	lists	the	processor	platform	and	additional	data	about	the	system	that
performed	the	compile.	Our	first	example	shows	a	64-bit	system	(x86_64),	on	an	Apple	system,	with
darwin	as	the	indicated	kernel	version:

OpenVPN	2.3.11	x86_64-apple-darwin	[SSL	(OpenSSL)]	[LZO]	[PKCS11]	[MH]	[IPv6]	built	

on	Jul	18	2016

The	second	example	is	also	64-bit	(amd64,	see	note,	later),	built	with	the	FreeBSD	ports	system
(packager),	with	kernel	from	freebsd10.1:

OpenVPN	2.3.11	amd64-portbld-freebsd10.1	[SSL	(OpenSSL)]	[LZO]	[MH]	[IPv6]	built	on	

Jul	26	2016

If	we	look	back	to	our	compiled	Raspberry	Pi	build	on	page	six	of	Chapter	3,	Installing	OpenVPN,	we
can	see	a	slightly	different	list	of	options.	In	this	case,	PolarSSL	was	used	for	the	SSL	library	and	EPOLL
was	enabled.	What	is	missing	from	earlier	is	the	LZO	and	PKCS11	support.	This	system	was	compiled	on	a
generic	Linux	system	on	arm6l	(low-power	ARM).	Note	that	these	differences	don't	yet	indicate	a	real
problem.	These	can	help	us	identify	where	to	start	looking	or	which	messages	to	seek	out	further	into	the
logs:

OpenVPN	2.3.11	arm6l-unknown-linux-gnueabihf	[SSL	(PolarSSL)]	[EPOLL]	[MH]	[IPv6]	

built	on	Jun	29	2016

Note

The	64-bit	architecture	is	referred	to	by	many	different	monikers,	determined	generally	by	the	time	frame
or	initial	system	upon	which	development	was	started.	All	of	the	following	are	equivalent	in	meaning:
x86-64,	x86_64,	x64,	and	amd64.	The	Itanium	64	architecture	(ia_64),	is	a	different	architecture.	Read
more	on	Wikipedia	at	https://en.wikipedia.org/wiki/X86-64.

Option	warnings

There	are	a	few	specific	options	OpenVPN	looks	for	when	starting	up.	For	the	clients,	the	first	option

https://en.wikipedia.org/wiki/X86-64

defines	the	server	certificate	verification	method.	This	is	accomplished	with	the	--remote-cert-tls
[server|client]	option.	Without	this	option,	OpenVPN	will	be	unable	to	protect	against	a	valid	client
certificate	being	used	as	a	server	certificate.	Since	they	are	all	children	of	the	same	CA,	it	would	be
possible	to	use	one	client	certificate	to	create	a	server	instance	posing	as	the	official	server,	creating	a
man-in-the-middle	(MITM)	vulnerability:

WARNING:	No	server	certificate	verification	method	has	been	enabled.	See	

http://openvpn.net/howto.html#mitm	for	more	information.

Another	set	of	option	warnings	is	presented	when	--script-security	is	set	to	level	2	or	3.	At	level	2,
user-defined	scripts	can	be	called	from	within	the	configuration	or	command-line	arguments:

NOTE:	the	current	--script-security	setting	may	allow	this	configuration	to	call	

user-defined	scripts

At	level	3,	user	credentials,	including	passwords,	are	made	available	in	the	environment	to	the	scripts
defined:

WARNING:	the	current	--script-security	setting	may	allow	passwords	to	be	passed	to	

scripts	via	environmental	variables

Finally,	if	a	script	is	defined	(in	--up,	--down,	or	others),	and	--script-security	has	not	been	set	to
allow	user-defined	scripts,	the	following	message	will	be	logged:

NOTE:	starting	with	OpenVPN	2.1,	'--script-security	2'	or	higher	is	required	to	

call	user-defined	scripts	or	executables

OpenVPN	will	alert	you	if	there	is	an	unrecognized	option	present	within	the	configuration	file	or	on	the
command	line.	Note	that	the	application	will	exit	immediately	upon	the	first	instance	of	an	invalid
configuration	option.

In	the	following	screenshot,	we	have	added	an	invalid	parameter,	fake-option,	to	the	openvpn.conf
configuration	file.	In	the	first	execution	attempt,	the	application	recognizes	the	option	and	outputs	the	file
and	line	number:	openvpn.conf:10,	which	is	line	10	of	the	openvpn.conf	file:

Showing	output	when	invalid	options	are	applied

The	second	execution	applies	the	option	fake2	on	the	command	line,	before	the	configuration	file	is
indicated.	Instead	of	a	file	name,	[CMD-LINE]	is	stated.	The	number	1	can	be	ignored	as	everything	will
be	on	line	1	for	the	command-line	arguments.

Configuration	parameters

There	are	a	few	messages	displayed	during	initialization	of	the	software	that	can	later	aid	in
troubleshooting.	Some	of	these	messages	illustrate	the	effect	settings	used,	as	in	the	case	of	MTU	data.
Other	messages	are	indicative	of	connection	and	setup	progress.

There	are	two	MTU-specific	startup	messages:	one	for	the	control	channel	and	another	for	the	data
channel.	The	latter	is	the	most	common	source	of	headache,	as	it's	the	channel	used	to	transmit	and
encapsulate	the	actual	traffic	the	VPN	is	used	for:

Control	Channel	MTU	parms	[L:1541	D:1212	EF:38	EB:0	ET:0	EL:3]

The	control	channel	is	used	to	communicate	between	the	OpenVPN	instances	at	the	local	and	remote	ends.
Configuration	parameters	such	as	push	and	key	negotiation,	all	take	place	over	this	channel:

Data	Channel	MTU	parms	[L:1541	D:1450	EF:41	EB:12	ET:0	EL:3]

The	fields	present	are	useful	to	identify	where	the	breakdown	of	communication	occurs	later.	The	fields
are	described	in	the	table	here.	If	you	want	full	details	about	the	data	within	the	log	message,	and	what	it
really	means,	you	can	find	it	at	http://build.openvpn.net/doxygen/html/structframe.html:

Field	name Description

Link	MTU	(L)

link_mtu

Maximum	packet	size	to	be	sent	over	the	external	interface.	This	is	the	physical	interface	(outside	of	OpenVPN's	tun
or	tap	device).

Link	MTU	Dynamic
(D)

link_mtu_dynamic

The	dynamic	MTU	value	for	the	external	network	interface.	This	is	generally	the	usable	packet	size.

Extra	Frame	(EF)

extra_frame
The	maximum	number	of	bytes	that	all	processing	can	add	to	the	frame	header.

Extra	Buffer	(EB)

extra_buffer
The	maximum	number	of	bytes	processing	may	add	to	the	internal	work	buffer.

Extra	Tun	Bytes
(ET) The	maximum	number	of	bytes	in	excess	of	the	TUN/TAP	device	MTU	that	may	be	read	or	written.

http://build.openvpn.net/doxygen/html/structframe.html

extra_tun

Extra	Link	Bytes
(EL)

extra_link

The	maximum	number	of	bytes	in	excess	of	the	external	interface	MTU	that	may	be	read	or	written.

Arguably	the	most	useful	data	points	in	the	data	is	the	Link	MTU	(L)	and	Dynamic	MTU	(D).	More	details
on	troubleshooting	MTU	path	issues,	see	Chapter	7,	Network	and	Routing.

LZO	compression	must	be	either	enabled	or	disabled	at	both	ends	of	the	OpenVPN	connection.	If	the
following	line	is	present	on	the	server	or	the	client,	and	missing	from	the	other,	the	connection	will
ultimately	fail:

LZO	compression	initialized

During	a	connection	initialization,	the	both	endpoints	perform	a	remote	options	hash	to	determine
compatibility	of	the	other	side	in	the	context	of	configuration.	When	looking	at	the	logs,	the	hash	should
match	between	both	side.

Immediately,	prior	to	the	options	has	comparison,	the	expected	remote	and	local	configuration	parameters
are	briefly	listed.	The	parameters	here	can	be	used	to	quickly	identify	configuration	mismatches	between
the	two	sides	of	the	tunnel.Server:

Local	Options	String:	'V4,dev-type	tun,link-mtu	1541,tun-mtu	1500,proto	

UDPv4,cipher	BF-CBC,auth	SHA1,keysize	128,key-method	2,tls-server'

Expected	Remote	Options	String:	'V4,dev-type	tun,link-mtu	1541,tun-mtu	1500,proto	

UDPv4,cipher	BF-CBC,auth	SHA1,keysize	128,key-method	2,tls-client'

Local	Options	hash	(VER=V4):	'239669a8'

Expected	Remote	Options	hash	(VER=V4):	'3514370b'

Client:

Local	Options	String:	'V4,dev-type	tun,link-mtu	1541,tun-mtu	1500,proto	

UDPv4,cipher	BF-CBC,auth	SHA1,keysize	128,key-method	2,tls-client'

Expected	Remote	Options	String:	'V4,dev-type	tun,link-mtu	1541,tun-mtu	1500,proto	

UDPv4,cipher	BF-CBC,auth	SHA1,keysize	128,key-method	2,tls-server'

Local	Options	hash	(VER=V4):	'3514370b'

Expected	Remote	Options	hash	(VER=V4):	'239669a8'

The	final	important	message	is	the	essential	all	clear	from	the	startup	routine.	This	message	does	not
guarantee	that	you	have	a	working	and	useful	VPN,	OpenVPN	doesn't	truly	understand	your	entire	routing
table	and	the	entirety	of	devices	involved.	This	message	simply	illustrates	that	the	OpenVPN	process	at
both	ends	has	successfully	negotiated	cryptographic	keys,	option	parsing,	and	is	prepared	and	ready	to
start	doing	the	things	you've	asked	of	it:

Initialization	Sequence	Completed

Operational	messages
During	the	use	of	the	VPN,	there	will	be	a	number	of	messages	displayed,	particularly	at	the	higher
verbosity	levels.	Routing	errors,	certificate	verification,	and	other	errors	become	apparent	here.

Certificate	messages

Particularly	on	the	server,	certificate	messages	will	be	displayed	throughout	the	course	of	a	running
tunnel.	Verification,	Certificate	Revocation	List	(CRL),	and	validity	are	performed	upon	each
handshake.	Both	the	server	and	client	support	the	use	of	CRLs,	but	they	are	typically	only	used	on	the
server	side.

In	the	following	screenshot,	the	highlighted	text	demonstrates	a	CRL	check	with	a	valid	client	certificate:

I've	also	created	a	separate	certificate	and	revoked	it,	providing	the	updated	crl.pem	file	to	the
OpenVPN	process.	When	the	client	attempts	to	connect	with	the	revoked	certificate,	we	can	see	the
certificate	authority	(CA)	if	validated	(the	first	CRL	CHECK	OK)	followed	by	the	CRL	CHECK	FAILED
for	the	tshoot-revoke	certificate:

Tip

Unlike	the	OpenVPN	configuration	file,	the	CRL	file	is	reread	on	every	client	connection	and	each	time
the	TLS	keys	are	renegotiated.	The	OpenVPN	process	is	not	aware,	however,	of	when	the	file	is	updated,
so	clients	that	are	revoked	will	need	to	be	either	killed	via	the	management	console,	or	they	will	be
disconnected	at	the	next	re-key.

Apart	from	CRL-related	messages,	both	the	OpenVPN	server	and	client	will	verify	the	certificate	chain	to
ensure	the	remote	side	is	using	a	valid	certificate.	In	our	test	scenario,	the	certificate	chain	is	pretty	basic
with	a	CA,	and	all	signed	certificates	directly	below	it:

A	sample	certificate	chain	used	for	Troubleshooting	OpenVPN

The	first	VERIFY	log	line	indicates	the	depth	as	1.	This	depth	is	from	the	view	of	the	presented
certificate	by	the	server	because	this	is	the	client	log.	The	verification	will	proceed	from	the	deepest
certificate	first,	which	is	the	signing	authority.

Both	sides	have	access	to	the	CA	certificate	(via	the	--ca	parameter),	so	can	validate	the	signature.	In
this	case,	the	validity	is	confirmed:

VERIFY	OK:	depth=1,	C=US,	ST=Minnesota,	L=St	Paul,	O=Trouble	Shooting	OpenVPN,	

CN=Trouble	Shooting	OpenVPN,	emailAddress=ecrist@secure-computing.net

This	process	repeats	all	the	way	through	the	certificate	chain	to	the	server	certificate	(or	the	client
certificate,	in	the	case	of	the	server	performing	the	validation):

VERIFY	OK:	depth=0,	C=US,	ST=Minnesota,	O=Trouble	Shooting	OpenVPN,	CN=tshoot-

server,	emailAddress=ecrist@secure-computing.net

You	can	see	which	certificate	is	being	validated	by	looking	at	the	CN=	portion	of	the	string.	In	our	sample
chain,	I	used	Trouble	Shooting	OpenVPN	for	the	certificate	authority	and	tshoot-server	for	the
server	certificate.

When	--tls-remote-cert	is	applied,	additional	log	messages	are	printed,	showing	the	verification	of
certificate	usage.	The	first	screenshot	(note	highlighted	messages)	displays	a	successful	connection	to	a
server	with	the	extended	key	usage	for	server	applied:

Valid	EKU	applied	to	the	server	certificate

The	screenshot	here	shows	a	server	without	the	server	EKU	applied	to	the	certificate.	In	this	case,	there	is
a	cascading	list	of	TLS	errors	displayed	following	the	failed	EKU	verification.	These	occur	due	to	the
tear-down	of	the	TLS	exchange	once	an	error	is	discovered.

These	samples	are	from	the	view	of	the	OpenVPN	client.	Similar	messages	will	be	present	when	the
server	is	expecting	the	client	certificates	define	the	EKU	for	client:

Summary
OpenVPN	has	powerful	logging	capability	suited	well	for	the	end	user,	the	system	administrator,	and	the
software	developer.	Detailed	information	can	be	displayed	from	high-level	networking	and	configuration
options	down	to	very	low-level	cryptographic	components	information.

Understanding	the	log	file	and	the	various	affirmative	and	warning	messages	allows	you	to	quickly	and
reliably	determine	the	cause	of	a	fault	or	to	confirm	a	working	setup.	There	are	still	some	configuration
parameters	in	which	errors	will	not	be	apparent	within	the	log	file,	and	those	will	be	covered	in	later
chapters.

Chapter	5.		Client	and	Server	Startup
As	illustrated	in	Chapter	4,	The	Log	File,	many	of	problems	with	OpenVPN	arise	during	the	server	or
client	startup	procedure.	These	problems	can	involve	networking,	virtual	network	adapters,	and	differing
configuration	options	between	the	two	endpoints.	This	chapter	will	bring	to	light	the	common	sources	of
startup	problems	and	identify	the	fixes	for	those.

Some	network	configuration	will	be	addressed,	but	Chapter	7,	Network	and	Routing,	will	have	a
comprehensive	explanation	of	network	troubleshooting	and	core	network	and	routing	concepts.

File	and	process	permissions
For	OpenVPN	to	be	effective,	the	user	running	the	OpenVPN	process	will	need	to	have	the	necessary
privileges	and	access	to	the	system,	networking,	and	filesystem.	This	includes	access	to	writing	log	files,
modifying	network	adapter	settings	and	the	system	routing	tables,	and	executing	scripts	or	programs.

Privilege	de-escalation
As	stated	earlier,	to	make	many	of	the	network	and	routing	changes,	OpenVPN	will	need	some	initial
privileges	in	excess	of	a	typical	user.	Once	these	changes	have	been	made,	there	is	usually	no	need	to
retain	these	administrative	rights.	Using	the	--user	and	--group	configuration	parameters,	the
administrator	can	instruct	OpenVPN	that	unprivileged	user	to	operate	as	once	the	initialization	process
has	completed.

There	are	caveats	to	dropping	to	an	unprivileged	user,	however.	First,	all	files	that	the	OpenVPN	process
needs	to	use	during	normal	operation	must	be	readable	and/or	writable	by	the	unprivileged	user.	This
includes	--client-config-directory	and	the	files	within,	and	any	connect	or	disconnect	scripts.

The	permissions	of	the	Certificate	Revocation	List	(CRL)	is	an	easy	one	to	forget,	with	the	certificate
key	being	a	close	second.	There	is	a	configuration	option	(--persist-key),	which	keeps	the	key	resident
in	memory,	preventing	the	process	from	having	to	re-read	the	file	from	disk	during	SIGUSR1	or	restart
caused	by	--ping-restart.

In	the	following	screenshot,	all	files	are	owned	by	the	user	nobody	and	the	group	nobody,	except	the
tshoot-server.key	file,	which	is	still	owned	by	the	user	root	and	the	group	wheel:

A	key	file	owned	by	root	:	wheel,	inaccessible	to	the	"nobody"	user

If	we	were	to	apply	the	--user	nobody	and	--group	nobody	options,	a	soft	restart	of	the	server	would
fail	because	the	key	is	unreadable.

Networking	privileges
Changes	to	the	system	routing	tables,	adding	IP	addresses	to	interfaces,	and	changing	the	state	of	network
interfaces	typically	require	root	or	administrative	privileges.

Port	assignment	and	use

As	a	general	rule,	processes	attempting	to	bind	to	TCP	or	UDP	ports	below	1024	require	root	permission.
This	prevents	a	normal,	unprivileged	user,	from	standing	a	daemon	up	on	a	port	where	a	common	system
process	normally	runs	and	mimicking	an	official	process.

For	example,	on	a	server	where	SSH	was	not	running,	without	this	privileged	port	check,	a	user	could
start	their	own	SSH	daemon	that	was	customized	(or	compromised)	in	some	way	to	sniff	or	track	user
credentials	or	session	traffic.	An	administrator	could	unwittingly	connect	to	the	SSH	daemon,	log	in,	and
run	system	commands.

In	November,	2004,	the	Internet	Assigned	Numbers	Authority	(IANA)	reserved	port	1194	for
OpenVPN,	for	both	the	TCP	and	UDP	protocols.	Prior	to	this	assignment,	OpenVPN	defaulted	to	using
port	5000;	OpenVPN	2.0-beta17	and	later	default	to	the	IANA	assigned	port.	With	the	new	and	old	ports,
OpenVPN	falls	outside	the	lower	1024	privileged	port	reservation,	making	the	root	requirement	at	this
stage	moot.	It	is	required	for	other	parts,	which	are	described	later.

It	is	possible	to	override	the	default	port	by	specifying	the	--port	option	in	the	OpenVPN	server	or	client
configuration.	The	port	used	locally	and	remotely	is	expected	to	be	the	same	unless	the	--lport	and	--
rport	options	are	used.	These	should	be	mirror	images	of	each	other	if	used	and	only	apply	to	a	static
key	setup;	OpenVPN	will	use	a	dynamic	(random)	outbound	port	from	a	client	with	--tls-client	is
used.

Multiple	daemons

If	multiple	OpenVPN	process	is	going	to	be	used,	the	listen	address	of	each	must	be	different.	If	you
attempt	to	start	another	OpenVPN	process	using	a	port	that	is	already	in	use,	an	error	will	appear	in	the
logs.	In	addition,	all	the	major	operating	systems	provide	a	utility	named	netstat	to	help	identify	what
ports	are	in	use	on	your	system.	The	exact	syntax	varies	across	Windows,	BSD,	and	Linux,	but	the
command	name	is	the	same	on	all	three.

To	demonstrate	its	use,	the	following	screenshot	shows	the	first	page	of	output	on	Windows	7:

The	output	of	netstat	-a	on	Windows	7

This	system	has	an	IIS	7	server	running,	which	shows	up	as	the	first	entry	in	the	table.	The	command	I
used	for	this	was:

netstat	-a	|	more

The	address	of	0.0.0.0	denotes	that	the	entry	is	valid	for	all	IPs	on	the	system	and	:80	that	follows	is	the
port	number	(the	www	port).	The	State	column	indicates	the	system	as	LISTENING.	This	is	used	to	identify
services	that	are	awaiting	a	connection.

If	we	were	to	scroll	further	down	in	the	output,	active	connections	(whether	inbound	or	outbound)	will	be
denoted	with	the	state	ESTABLISHED.	If	cmd.exe	is	executed	with	administrative	privileges,	you	can	add
the	-b	and	-o	options	to	netstat	and	it	will	display	the	process	name	and	process	ID	(the	PID	column).
Note	that	IIS	does	not	show	the	W3P.exe	process	name	as	a	security	precaution;	however,	you	can	see
other	example	process	names:

netstat	-a	on	run	with	elevated	privileges

Adapter	and	routing	table	changes

Making	changes	to	the	networking	configuration	and	system	network	interfaces	almost	always	requires
administrator	or	root	permissions.	For	interactive	user	sessions,	there	are	utilities	such	as	sudo	that	allow
temporary	one-off	escalation	of	privileges.	This	can	be	tedious	to	maintain	and	difficult	to	implement	for
an	application	such	as	OpenVPN	that	provides	no	mechanism	in	order	to	instruct	it	to	leverage	sudo
outside	the	scripted	components.

Another	more	recent	advent	is	polkit,	which	allows	the	Linux	administrator	to	instruct	the	system	that
certain	users	or	groups	of	users	can	perform	specific	actions.	polkit	can	be	used	to	provide	a	normal
user	to	make	interface	and	routing	table	changes.

Chroot
An	established	concept	on	UNIX	and	Linux	systems	is	a	chroot	environment.	This	environment	segregates
a	process	or	set	of	processes	from	the	rest	of	the	system	by	setting	a	new	root	path.	Both	the	causes	of
problems	with	chroot,	as	well	as	the	benefit	of	using	it	are	the	same:	the	process	can	only	access	files	that
reside	within	this	new	root	path.

From	a	command	line,	you	can	run	any	command	within	a	chroot	environment	by	simply	running	the
chroot	command.	To	use	this	environment	with	OpenVPN,	the	similarly	named	--chroot	option	is
provided.	When	this	option	is	used,	everything	needed	must	reside	within	this	chroot	path,	including	any
dependent	commands	and	files.	Some	examples	include	the	following:

--client-connect	and	--client-disconnect	script	files
OpenVPN	certificates	and	keys
On	the	server,	the	CRL	file
--client-config-dir

The	following	screenshot	shows	what	happens	when	we	attempt	to	simply	add	the	--chroot	directive	to
our	known	working	configuration	file.	In	this	case,	we	defined	our	chroot	environment	as
/usr/local/etc/openvpn/,	which	has	the	default	configuration	location	on	FreeBSD	for	OpenVPN.
The	immediate	failures	are	the	pathing	to	our	CRL	and	a	valid	temporary	directory:

Failed	startup	with	--chroot	due	to	incorrect	relative	paths

Even	if	we	fix	these	errors	by	removing	the	line	to	our	CRL	and	creating	the	tmp	directory	in
/usr/local/etc/openvpn,	there	will	be	additional	errors,	at	the	very	least	at	shutdown.	Without
dependent	programs,	such	as	/sbin/ifconfig,	destroying	the	interface	fails.

Any	other	commands	will	need	to	be	copied	in	to	the	chroot	environment	with	correct	pathing.	With	a
well-built	environment,	you	will	end	up	with	a	directory	that	mimics	a	normal	root	file	system.

Writing	to	log	files	will	continue	to	work	since	the	file	descriptor	is	opened	prior	to	the	chroot
command.	This	makes	it	possible	to	put	the	log	and	status	file	outside	the	chroot	environment.

Missing	ifconfig	command	causes	failed	interface	shutdown

There	are	additional	caveats	to	these	restricted	environments	that	are	outside	the	scope	of	this	book.
Varying	operating	systems	handle	device	files	differently,	and	commands	such	as	ifconfig	will	require
access	to	the	device	in	a	known	location.	Some	make	this	easy	by	allowing	you	to	mount	the	/dev
filesystem	within	the	chroot	environment,	others	may	not.

The	key	to	remember	here	is	that	everything	you	intend	to	manipulate	(files,	interfaces,	commands,	scripts,
and	so	on)	must	reside	within	the	scope	of	the	chroot	path.	You	can	test	this	most	easily	by	putting
yourself	in	that	environment	and	attempting	to	execute	the	same	commands.

This	can	be	a	hairy	path,	too,	as	you	can	see	later.	In	addition	to	many	of	the	executables,	you	will	find
various	shared	libraries	are	missing	that	must	be	copied	in	to	the	environment:

Assorted	shared	libraries/objects	may	be	required,	depending	on	the	utility	run	inside	the	chroot
environment

Scripting
For	many	years,	I	worked	for	a	small	company	and	most	projects	where	completed	in	an	ad	hoc	manner.
We	identified	a	problem	and	went	straight	away	to	writing	a	script	or	making	a	software	change.

A	few	years	ago,	I	obtained	a	systems	engineering	role	for	a	much	larger	organization.	At	the	new
company,	there	was	a	much	more	formal	software	development	environment	that	included	an	exhaustive
process:

1.	 A	problem	report	must	be	filed,	indicating	the	specific	bug	or	feature	needing	work.	Many	times,	it
might	be	the	developer	him/herself	entering	the	issue	in	the	database.

2.	 The	issue	is	discussed	in	the	next	team	meeting	at	what	is	named	an	Software	Change	Control
Board	(SCCB).	This	team,	consisting	of	many	stakeholders,	dispositions	each	issue	and	determines
whether	it	is	accepted	for	work.

3.	 Once	an	issue	is	accepted,	any	requirements	changes	or	additions	is	considered.	The	software
requirements	help	drive	formal	software	testing	and	acceptance	later.

4.	 The	issue	and	the	requirement	is	assigned	to	the	developer	doing	the	work.	Any	changes	related	to
the	initial	issue	or	bug	are	made.

5.	 The	software	changes	are	routed	to	a	code	review	system	where	managers	and	senior	developers
can	comment,	reject,	or	ultimately	accept	the	changes	for	commit.

6.	 Automated	and	manual	tests	are	written	against	the	requirement	that	was	changed	or	created.	These
tend	to	be	strict	and	literal	to	the	wording	of	the	requirement.	For	example,	a	requirement	that	reads:

Username	shall	contain	alphanumeric	characters	from	letter	a	through	letter	z	and	number	0
through	9.

This	will	specifically	also	exclude	anything	else.
7.	 Finally,	the	tests	are	executed	against	the	software	and	further	changes	to	either	meet	requirements	or

changes	to	requirements	to	more	closely	match	software	needs	are	made.

Rinse	and	repeat.

Many	corporate	development	teams	follow	a	similar	model,	and	increasing	numbers	of	open	source
software	development	teams	are,	as	well.	The	OpenVPN	team	also	follows	a	similar	development	cycle,
though	not	quite	as	formal.

The	most	important	part	of	this	cycle,	from	a	smaller	scope,	is	the	requirement	definition.	I	find	it	is	much
easier	to	contain	my	scripting	to	a	given	task	if	I	take	some	time,	even	a	small	amount,	to	define	what,
exactly,	I	expect	from	the	program	once	complete.

Defining	a	requirement	or	set	of	requirements,	for	an	OpenVPN	script	can	not	only	help	with	writing	the
code	to	do	what	is	necessary,	but	will	ultimately	aid	in	troubleshooting,	either	during	development	or
when	problems	occur	later.

Up	and	down	scripts
There	are	many	moving	parts	with	client-	and	server-side	--up	scripts.	The	server	side	tends	to	be
relatively	static,	and	there	is	only	a	single	configuration.	Client	side,	however,	there	are	as	many	different
configurations	as	there	are	unique	client	computers.

Because	of	these	differences,	assumptions	made	within	a	client-side	script	may	be	incorrect.	These	may
include	virtual	adapter	device	names,	local	network	addresses	and	routing,	and	commands.	Also,	the
scripts	written	for	a	Windows	client	will	not	function	correctly	on	a	Linux	system	and	vice	versa.

In	my	experience,	if	the	start	up	script	is	working,	it	is	relatively	simple	to	apply	the	same	logic,	in
reverse,	to	create	a	working	--down	script.	All	the	permission,	pathing,	and	naming	idiosyncrasies	will
be	hashed	out	during	development	of	the	start	up	routine.

During	development	and	troubleshooting,	I	find	it	is	easiest	to	start	an	OpenVPN	process,	and	include
some	debugging	messages	in	the	--up	or	--down	script.	For	the	first	test,	we	can	use	the		following
script:

					#!/bin/sh

					#	Test	OpenVPN	--up	script

					set	-x

					exec	2>&1

					printenv	>	/tmp/ovpn-env.$$

					logger	-p	local3.notice	-t	LOGTEST	"Hello	world!	From:	`whoami`"

This	will	add	a	simple	log	entry	in	/var/log/messages	with	text	such	as:

Dec	25	10:23:09	tshoot-srvr	LOGTEST:	Hello	world!	From:	nobody

The	three	highlighted	lines	are	excellent	to	debug	scripts.	The	first	line	will	cause	each	executed
statement	to	print	in	the	OpenVPN	log	file.	This	shows	variable	expansion	and	actual	command	use,
helping	identify	errors	in	variable	names	and	command	pathing.

The	second	highlighted	line	will	cause	both	STDERR	and	STDOUT	to	output	the	same,	showing	error	output
that	may	be	hidden	from	the	log	file.

Finally,	the	third	highlighted	line	will	cause	it	to	print	out	the	entire	environment	variable	list	and	their
values	to	a	file	at	/tmp/ovpn-env.<PID>	where	<PID>	is	replaced	with	the	script	process	ID.	This	is
useful	when	debugging,	so	you	can	ensure	the	values	you	are	receiving	are	what	you	are	expecting.

I've	saved	this	file	as	/usr/local/etc/openvpn/up.sh	and	set	it	to	be	executable	by	everyone,	and	I've
added	the	--up	up.sh	parameter	to	our	openvpn.conf	file.	The	user	name	printed	after	From:	will	be
the	effective	user	running	the	OpenVPN	process.

Our	first	attempt	at	running	OpenVPN	shows	a	serious	error;	I've	forgotten	to	add	the	--script-
security	option	to	the	configuration,	which	would	allow	the	execution	of	external	scripts.	I've
highlighted	the	errors	in	the	following	screenshot:

The	execution	of	the	--up	script	fails	due	to	missing	--script-security	parameter

Once	the	--script-security	2	setting	is	defined,	the	VPN	is	initialized,	and	I	can	see	the	log	entry	in
/var/log/messages.	Note	that	both	my	test	log	entry,	when	I	ran	as	user	nobody,	as	well	as	the	entry
from	root	are	displayed	here:

Log	entries	appear	from	the	execution	of	the	--up	script

Now,	to	extend	our	script	a	bit,	we	can	show	the	context	in	which	it	is	being	executed.	You'll	notice	in	the
first	screenshot	at	our	--up	script	attempt,	the	first	line	of	the	highlighted	content	shows	our	script	being
executed,	along	with	a	series	of	parameters.	You	can	use	these	parameters	in	your	script	to	change	the
script	behavior	in	addition	to	a	list	of	environment	variables.	We	can	use	$script_type	to	change	the
output	of	our	log	message:

					#!/bin/sh

					#	Test	OpenVPN	combined	--up/--down	script

					#	this	should	just	added	a	log	entry	in	/var/log/messages

					logger	-p	local3.notice	-t	LOGTEST	"OpenVPN	running	as

					`whoami`	for	$script_type	script."

I've	added	--down	up.sh	to	the	openvpn.conf	file.	Running	a	quick	startup	and	shutdown	of	OpenVPN
again,	we	can	now	see	that	our	updated	message	shows	up	for	both	--up	and	--down:

Log	message	changes	for	$script_type	environment	variable

Connect	and	disconnect	scripts
The	--client-connect	and	--client-disconnect	scripts	are	very	similar	to	the	--up	and	--down
scripts,	but	are	only	used	on	the	server	side.	These	scripts	are	typically	used	for	logging,	reporting,	or
local	configuration	that	is	unique	to	a	given	client.	Troubleshooting	these	is	all	but	impossible	if	you	are	a
client	on	a	remote	OpenVPN	server	unless	you	have	direct	server	access.

The	connect	script	is	capable	of	authorization	and	route	assignments,	and	it	could	be	suspected	if	a	client
is	having	some	odd	connectivity	issues.

UDP	troubleshooting
As	a	general	rule,	UDP	is	a	better	option	for	VPN	traffic	than	TCP.	TCP	works	very	hard	to	ensure	that
every	single	packet	makes	it	across	the	wire	(or	any	other	medium)	uncorrupted	and	in	order.	For	some
things,	such	as	SSH,	file	transfers,	and	web	traffic,	this	is	a	good	thing;	we	expect	the	resulting	content	to
be	legible	and	generally	in	its	original	form.

When	connectivity	is	reliable	with	relatively	little	packet	loss,	TCP	can	function	just	fine	for	VPN.	When
that	link	drops	packets	and	becomes	unreliable,	the	problem	can	be	amplified	dramatically	when	the
encapsulated	traffic	is	also	using	TCP.	The	resulting	traffic	includes	retransmit	from	both	the	OpenVPN
processes	at	either	end	and	the	encapsulated	traffic	at	both	ends.	This	results	in	potentially	four	times	the
packet	count.

By	its	nature,	UDP	is	a	connectionless	protocol.	UDP	is	great	for	data	where	it	is	acceptable	to	receive
packets	out	of	order	or	when	packets	can	go	missing.	The	out-of-order	packets	are	typically	discarded
since	the	application	has	likely	already	moved	on	to	processing	the	later	packets	and	processing	earlier
packets	would	be	disruptive.

Voice	over	Internet	Protocol	(VoIP)	is	one	good	example	of	this	scenario.	In	a	voice	or	video
conversation	with	someone,	we	are	listening	and/or	viewing	the	conversation	in	real	time.	It	would	be
undesirable	to	hear	words	or	see	facial	expression	out	of	order.	The	conversation	quickly	would	become
incomprehensible;	it	is	much	preferable	to	simply	ignore	a	dropped	consonant	or	see	a	short	hang	in	the
video	stream.	On	a	smaller	scale,	rendering	a	portion	of	a	frame	or	part	of	a	word	that	is	a	second	or
more	old	is	of	little	use.

Traffic	across	a	VPN	is	similar.	The	encapsulated	traffic	is	already	going	to	be	engineered	to	handle
either	transmission	assurance	(TCP)	or	packet	loss	and	delay	in	a	graceful	manner.	So,	using	UDP	for	the
overall	VPN	traffic,	we	allow	the	application	transiting	the	VPN	to	handle	any	connection	quality	issues.

Note

Sometimes	using	TCP	for	a	VPN	tunnel	is	unavoidable,	but	do	so	if	you	can.	The	community	support	staff
often	references	two	links	for	why	TCP	within	TCP	is	a	bad	idea:	http://sites.inka.de/~bigred/devel/tcp-
tcp.html	and	http://www.openvpn.net/papers/BLUG-talk/14.html.

Because	of	this	connectionless	state	of	a	UDP	tunnel,	neither	the	client	or	server	truly	know	when	the	link
to	the	other	end	has	gone	away	or	failed.	To	help	deal	with	lost	connections,	OpenVPN	has	the	--ping
and	--ping-restart	options.

If	you	are	using	UDP	for	your	OpenVPN	tunnel	and	traffic	periodically	stops	working,	adding	the	--
ping-restart	option	will	help	OpenVPN	detect	connection	failures	and	reconnect	the	tunnel	to	a	useful
state.

http://sites.inka.de/~bigred/devel/tcp-tcp.html
http://www.openvpn.net/papers/BLUG-talk/14.html

UDP	and	firewalls
Because	UDP	is	connectionless,	another	hurdle	for	this	traffic	is	the	border	firewall.	Some	firewalls	will
attempt	to	perform	a	fake	keep-state	on	the	traffic	pattern	with	some	level	of	default	timeout	when	no
further	traffic	witnessed.

Using	the	--ping	option,	OpenVPN	will	spend	periodic	ping	packets	across	VPN	to	the	remote	endpoint
to	keep	these	fake	keep-state	sessions	active.	Without	this,	the	firewall	may	determine	no	further	traffic	is
expected	and	shut	down	the	session.	This	will	not	prevent	traffic	from	leaving	the	firewall,	but	will	block
the	other	side	from	talking	in	to	that	endpoint.

This	can	potentially	happen	for	either	side,	but	it	is	typically	a	client-side	problem.	The	server	side	will
normally	have	an	explicit	rule	in	the	firewall	that	allows	the	inbound	UDP	traffic,	whereas	the	client	side
uses	a	random	high-numbered	port.

If	the	client	is	having	connection	problems,	there	may	be	a	large	delay	on	the	server	side	before	that
system	is	listed	as	disconnected.	This	will	delay	updates	to	things	such	as	the	--status	log	or	the
execution	of	--client-disconnect.	There	is	a	client-side	option	available	named	--explicit-exit-
notify,	which	will	cause	the	client	system	to	notify	the	remote	OpenVPN	server	that	it	is	exiting.

Summary
This	chapter	was	much	less	about	what	an	administrator	can	do	to	fix	a	problem	and	more	about
identifying	specific	causes	of	a	given	problem.	Some	possibly	new	tools,	such	as	netstat,	were
introduced.	Permissions	at	multiple	levels	were	also	examined,	from	process	level	to	the	filesystem.

Chapter	6.	Certificates	and	Authentication
There	are	many	methods	of	authentication	available	within	OpenVPN.	At	its	introduction,	OpenVPN
supported	only	a	simple	pre-shared	key	but	today	supports	X.509	certificate	chains,	user	and	password
authentication,	and	third-party	authentication	plugins	and	scripts.	Each	of	these	can	be	used	separately,	or
they	can	be	combined	to	form	a	robust	authentication	and	authorization	framework.

Along	with	robustness,	complexity	creates	potential	confusion	and	adds	difficulty	in	troubleshooting
authentication	issues,	understanding	how	the	individual	components	affect	the	connection	process	and
where	logic	is	applied	in	accepting	or	rejecting	a	client	or	user.

Mismanagement	of	your	PKI	can	have	great	consequences,	whether	your	PKI	is	relatively	local	in	scope
(a	single	organization	or	hobbyist's	systems),	or	global,	such	as	a	public	certificate	authority	(CA)
providing	certificates	to	customers.	There	were	two	cases	in	2016	of	trusted	CAs	that	lost	trust	with
various	web	browser	vendors.	Both	WoSign	and	StartCom	lost	Apple's	(Safari)	trust	as	of	September	30,
2016,	and	Mozilla	(Firefox)	and	Google	(Chrome)	as	of	October	21,	2016.	This	was	due	to	poor	signing
practices	and	poor	key	management.

Note

You	can	read	more	about	these	events	at	eWeek	(http://www.eweek.com/security/why-browser-vendors-
chose-to-distrust-2-certificate-authorities.html)	or	at	The	Register
(http://www.theregister.co.uk/2016/11/02/google_punts_wosign_startcom_from_good_guy_certificate_club/

http://www.eweek.com/security/why-browser-vendors-chose-to-distrust-2-certificate-authorities.html
http://www.theregister.co.uk/2016/11/02/google_punts_wosign_startcom_from_good_guy_certificate_club/

File	permissions
Best	practice	often	dictates	that	once	operations	requiring	escalated	privileges	have	been	completed,	a
daemon	or	process	should	drop	to	an	unprivileged	user.	Many	of	the	OpenVPN	how-to	documents
illustrate	this	by	calling	the	--user	and	--group	configuration	parameters.	These	same	instructions,
along	with	other	guidance	suggest	that	your	configuration,	certificates,	keys,	and	other	related	files	have
root	ownership.	This	practice	prevents	an	unprivileged	user	or	process	from	surreptitiously	changing
keys,	routes,	and	other	parameters.

Once	OpenVPN	reduces	its	running	privileges,	it	will	be	unable	to	re-read	the	configuration	files,
certificates,	and	keys	without	some	additional	options.	This	may	be	the	desired	behavior,	and	it	is	the
more	secure	configuration	though	it	is	not	very	resilient.	When	an	option	such	as	--ping-restart	is
used,	the	OpenVPN	process	will	attempt	to	restart	itself,	requiring	a	re-read	of	the	certificate,	keys,	and
configuration.	If	privileges	have	been	dropped	to	a	user	that	does	not	have	read	access	to	these	files	or
paths,	the	restart	will	fail	and	OpenVPN	will	exit.

To	accommodate	this	scenario,	there	are	a	pair	of	options	that	allow	the	OpenVPN	process	to	reuse	or
retain	data	that	was	read	before	privileges	were	dropped.	The	--persist-tun	option	instructs	OpenVPN
to	reuse	the	existing	tun	or	tap	device	and	to	not	re-execute	the	--up	or	--down	scripts.	Without	this
option,	the	process	would	require	special	permissions	within	the	operating	system	to	modify	or	change
the	virtual	network	adapter,	its	settings,	and	routing.	Finally,	the	--persist-key	option	instructs
OpenVPN	not	to	re-read	key	files	during	SIGUSR1	or	--ping-restart.

Be	certain	to	always	protect	your	certificate	key	files.	Although	it	may	be	a	minor	inconvenience	to
configure	OpenVPN	to	execute	and	operate	as	an	unprivileged	user,	there	is	great	benefit	in	the	long	run.
Certificates	are	shared	clear,	over	the	wire,	and	the	public	portion	of	the	exchange.	If	your	private	keys
become	available	or	are	easy	to	read,	a	client	or	other	(OpenVPN,	LDAP,	mail,	and	so	on)	server	could
potentially	be	impersonated.	If	your	CA	key	is	exposed,	there	is	potential	for	rogue-signed	certificates	that
your	existing	systems	would	trust.

Pre-shared	keys
Using	pre-shared	key	(PSK)	is	where	OpenVPN	started.	The	static	key	how-to	on	the	OpenVPN	website
is	often	the	first	place	aspiring	VPN	administrators	begin.	Problems	with	PSKs	are	relatively	easy	to
identify	as	the	VPN	will	simply	fail	to	operate.

There	are	two	scenarios	where	PSKs	are	used,	in	a	static	key	point-to-point	VPN	and	with	the	--tls-
auth	directive	in	the	more	commonly	deployed	client-server	topology.	This	section	will	specifically
cover	the	prior,	static	key,	scenario.	The	latter,	the	--tls-auth	scenario,	is	specifically	covered	in	depth
in	Chapter	7,	Network	and	Routing.	The	advice	listed	there	equally	applies	to	VPNs	using	PSKs	for	the
data	channel,	as	well.	Pay	close	attention	to	--key-direction,	if	used.

Certificate	authentication
Since	the	release	of	OpenVPN	2.x,	certificate	authentication	has	been	the	most	prolific	deployment	of
OpenVPN	in	the	wild.	The	earlier	static	key	only	supported	two	remote	endpoints,	neither	really	being	a
client	nor	a	server.	This	is	not	useful	when	more	than	a	single	remote	client	is	desired.

Certificate	chain	overview
X.509	is	a	notable	standard	for	Public	Key	Infrastructure	(PKI),	defining	a	hierarchical	topology	of
CAs	and	their	signed	child	certificates.	The	general	concept	is	that,	at	that	root	of	the	chain,	is	an	authority
certificate,	the	CA.	This	CA	certificate	can	be	used	to	sign	child	certificates.	Anyone	(or	thing,	system,
and	so	on)	that	trusts	the	root,	inherently	trusts	the	child	certificates.

CA	has	the	ability	to	sign	child	certificates	with	varying	capabilities.	Some	will	have	differing	key	usage
or	KU;	others	might	have	subordinate	CA	rights.	With	cascading	trust,	subordinate	CAs	are	generally
given	the	same	trust	as	their	parent	CA	in	a	given	trust	store.

The	screenshot	given	later	shows	the	certificate	chain	for	the	OpenVPN	community	web	server.	In	this
case,	there	is	a	parent	CA	certificate,	Go	Daddy	Root	Certificate	Authority	-	G2,	a	subordinate	CA
certificate,	Go	Daddy	Secure	Certificate	Authority	-	G2,	and	the	OpenVPN	wildcard	certificate,
*.openvpn.net.

The	chain	of	trust	starts	from	the	presented	server	or	client	certificate,	in	our	case,	the	*.openvpn.net
certificate.	In	this	example,	the	Safari	web	browser	is	the	client	agent,	and	it	will	look	up	the	certificate
chain	in	the	local	trust	store	based	on	the	information	and	additional	certificates	presented	by	the	web
server.	If	Safari	and	my	Mac	have	the	subordinate	CA	in	the	key	store,	trust	will	be	dispositioned	based
on	the	settings	within	that	trust	store.	In	our	example	here,	Go	Daddy	Root	Certificate	Authority	-	G2	is
present	and	trusted	in	the	local	certificate	store.	The	web	server	presented	both	the	server	certificate,
*.openvpn.net,	as	well	as	the	intermediate	CA	certificate,	Go	Daddy	Secure	Certificate	Authority	-
G2:

In	nearly	every	OpenVPN	configuration	I	have	seen	deployed,	the	CA	is	going	to	be	a	self-signed	unit	that
will	not	pre-exist	in	the	operating	system	trust	store.	Some	larger	corporations	might	have	a	large	PKI
deployed,	so	may	have	several	CAs	deployed	on	client	workstations,	but	this	is	likely	an	exception	to	the
rule.

For	this	reason,	OpenVPN	client	packages	will	contain,	at	a	minimum,	a	configuration	file	and	the	CA
certificate.	These	can	be	combined	using	inline	certificates,	which	embed	the	CA	certificate	data	within
the	configuration	file.	If	this	data	is	not	embedded,	it	will	need	to	be	bundled	as	a	separate	file.	Most
clients	will	require	many	pieces	of	certificate	data:	the	CA	certificate,	the	client	certificate,	and	the	client
key.	All	of	these	can	be	embedded	inline:

Embedded	CA	certificate	payload	within	OpenVPN	client	configuration	file	(some	content	truncated	at	the
bottom)

Regardless	of	how	you	develop	your	certificate	chain,	it	is	important	that	the	clients	and	server	be	given
all	the	necessary	certificates	to	establish	a	full	chain	of	trust.	Missing	components	within	the	chain	will
result	in	validation	and	verification	errors,	preventing	successful	connections.	It	is	not	enough	to	include

only	the	topmost	root	CA	certificate;	intermediate/sub	CAs	must	also	be	included.

Using	the	OpenVPN	community	server	certificate,	we	can	leverage	the	OpenSSL	verify	command	to
verify	a	certificate	chain.	This	is	pretty	simple	with	a	single	root	certificate	and	a	single	client	certificate,
but	gets	more	complicated	when	an	intermediate	CA	is	involved.

I	downloaded	the	certificate	chain	via	the	SSL	Labs	interface,	but	there	are	many	ways	to	download	the
chain.	The	certificate	details	will	be	available	from	the	Packt	website	at
https://www.packtpub.com/networking-and-servers/troubleshooting-openvpn.	I	ended	up	with	three	files
after	separating	the	details.

It	required	two	commands	to	fully	verify	this	chain.	First,	OpenSSL	expects	the	certificate	that	is	passed
with	CA	file	to	be	a	self-signed	CA	certificate	(all	root	CAs	are	actually	self-signed).	It	will	not
recognize	the	intermediate	certificate	as	a	CA	file,	since	it	is	not	self-signed,	but	signed	by	the	root	CA.

For	the	first	step,	I	verified	the	intermediate	certificate	against	the	CA.	The	second	step	listed	the
intermediate	using	the	-untrusted	option	followed	by	the	final	server	certificate.	In	the	following	output,
you	can	see	the	list	of	files	and	the	result	of	the	verification	commands:

OpenSSL	certificate	chain	verification

https://www.packtpub.com/networking-and-servers/troubleshooting-openvpn

The	Certificate	Revocation	List
Thus	far,	we	have	only	talked	about	trusting	certificates	and	the	overall	chain	of	that	trust.	Another
important	component	and	feature	of	the	X.509	standard	is	the	Certificate	Revocation	List	(CRL).	The
purpose	of	the	CRL	is	to	provide	affirmative	information	to	interested	systems	about	which	certificates
should	no	longer	be	trusted.	Querying	the	CRL	or	refusing	to	trust	certificates	contained	within	the	CRL	is
ultimately	determined	by	the	client.

There	are	many	reasons	to	revoke	a	particular	certificate.	For	global	PKI	systems,	a	server	certificate	key
may	have	been	exposed	or	lost,	or	the	operator	may	have	needed	to	change	the	common	name	(CN)	of	the
certificate.

In	the	case	of	OpenVPN,	a	user	certificate	may	be	added	to	the	local	CRL	because	the	employee	left	the
company,	or	perhaps	a	given	OpenVPN	server	has	been	decommissioned	so	that	server	certificate	is	no
longer	required.

It	is	best	practice	to	deploy	the	CRL	with	OpenVPN	on	the	server	side.	Technically	speaking,	it	is
possible	to	deploy	the	CRL	on	the	client	side,	as	well,	but	the	utility	is	limited	and	the	logistics	of	pushing
an	updated	CRL	to	clients	is	difficult.	There	is	talk	of	OpenVPN	3.0	adding	support	for	CRL	Distribution
Points	(CDPs)	that	would	allow	the	client	to	query	a	special	URL,	LDAP,	or	other	source	to	pull	on-the-
fly	CRL	data.

When	the	OpenVPN	server	is	deployed	with	CRL,	it	will	be	queried	every	time	a	client	connects	or	the
certificate	handshake	reoccurs.	The	following	screenshots	show	the	client	side	of	a	connection	that	was
initiated	with	a	revoked	client	certificate.	As	of	OpenVPN	2.3.13,	there	is	no	message	passed	to	the	client
indicating	a	connection	failure	is	due	to	a	revoked	certificate.	Instead,	the	connection	dies	with	an
interrupted	system	call	message:

Client	side:	connected	with	revoked	certificate	-	no	CRL	error	listed

On	the	server	side,	however,	we	are	given	a	very	clear	CRL	error	(highlighted	content):

Server	side:	client	CRL	error	with	revoked	certificate

In	the	preceding	message,	OpenVPN	indicates	that	a	CRL	check	failed	and	calls	out	the	serial	number	of
the	certificate.	We	can	verify	this	by	querying	the	CRL	file	directly	using	the	OpenSSL	command-line
utility	with	the	following	command:

author@server:/usr/local/etc/openvpn->	openssl	crl

				-noout	-text	-in	../ssl-admin/prog/crl.pem

The	command	option	earlier	puts	OpenSSL	in	the	CRL	mode,	does	not	output	a	file,	outputs	the	CRL	in
text	form,	and	reads	in	the	CRL	file	from	../ssl-admin/prog/crl.pem.	Finally,	in	the	output,	we	can
see	the	presence	of	serial	number	(03),	the	timestamp	of	the	revocation,	and	the	signature	of	the
certificate:

Inspecting	the	CRL	and	identifying	serial	number	03

System	date	and	time
An	important	piece	of	data	within	an	X.509	certificate	is	the	timestamp	indicated	when	a	certificate
becomes	valid	and	when	it	expires.	Outside	the	time	frame	specified	with	the	certificate,	it	is	to	be
untrusted	or	invalid.	If	the	time	is	incorrect	on	a	client	system,	the	OpenVPN	server,	or	the	system	that
generated	the	signed	certificates,	then	the	certificate	validity	could	be	negatively	impacted.

The	following	screenshot	shows	the	OpenVPN	community	website's	SSL	certificate.	The	highlighted
section	illustrates	the	start	and	stop	of	validity	with	Not	Valid	Before	and	Not	Valid	After.	In	the	case	of
this	example,	the	certificate	begins	validity	on	Monday,	February	29,	2016	at	12:06:39	Central
Standard	Time-0600.

This	certificate	is	considered	invalid	after	Sunday,	March	5,	2017	at	12:22:38	Central	Standard	Time-
0600:

Since	I	took	this	screenshot	within	this	time	frame	(Wednesday,	November	16,	2016	at	05:32:23	CST),
the	certificate	shows	as	valid.	If	I	change	the	time	on	my	laptop	by	jumping	a	year	ahead,	the	validity
changes.	In	this	case,	my	laptop	considered	the	date	and	time	to	be	Thursday,	November	16,	2017	at
05:41:44	and	the	certificate	is	marked	as	expired:

Similarly,	if	we	set	the	date	on	the	local	machine	to	a	date	and	time	prior	to	when	the	certificate	is	valid,
we	get	a	message	indicating	that	it	is	not	yet	valid:

It	is	recommended	that	all	systems	participating	in	PKI	utilize	Network	Time	Protocol	(NTP)	or	some
other	trusted	mechanism	to	keep	the	system	time	current	and	in	sync.	National	Institute	of	Standards	and
Technology	(NIST)	maintains	a	list	of	publicly	accessible	NTP	servers.	You	can	view	their	list	by
navigating	to	http://tf.nist.gov/tf-cgi/servers.cgi.	The	NTP	Pool	Project	also	maintains	a	large	pool	of
publicly	available	NTP	servers	around	the	world.	More	information	and	server	addresses	are	available	at
http://www.pool.ntp.org/en/.

It	is	just	as	important	for	the	system	signing	and	issuing	certificates	to	have	the	correct	time	as	it	is	for	the
client.

Note

Further	details	of	the	X.509	standard,	including	PKI,	certificates,	and	CRLs	can	be	found	in	the	two	IETF
documents:	RFC	2459	(https://tools.ietf.org/html/rfc2459)	and	RFC	5280
(https://tools.ietf.org/html/rfc5280).

http://tf.nist.gov/tf-cgi/servers.cgi
http://www.pool.ntp.org/en/
https://tools.ietf.org/html/rfc2459
https://tools.ietf.org/html/rfc5280

Authentication	and	plugins
Apart	from	X.509	tools,	OpenVPN	provides	a	mechanism	to	use	authentication	plugins	along	with	client
connection	scripts.	It	is	possible	to	remove	the	requirement	for	client	certificates	using	--client-cert-
not-required	(deprecated	in	2.4,	removed	in	2.5	in	favor	of	--verify-client-cert).	In	this	case,
authentication	rests	solely	upon	the	--auth-user-pass-verify	option.

If	--client-config-dir	is	still	desired	without	client	certificates,	you	will	need	to	leverage	--
username-as-common-name.	Of	course,	if	you're	going	to	require	usernames	and	passwords,	it	is
necessary	to	add	the	--auth-user-pass	option	to	all	the	client	configuration	files.

The	--auth-user-pass-verify	script	is	the	last	in	a	long	chain	of	scripts	that	are	run.	The	majority	of
environment	details	are	available	to	all	of	these	scripts,	including	the	CN.	If	you	are	troubleshooting
problems	with	this	script,	ensure	that	the	connection	is	not	being	killed	due	to	logic	in	other	script
routines	prior	to	reaching	your	authentication	script.

Usernames	and	passwords
OpenVPN	can	read	usernames	and	passwords	from	a	file,	preventing	a	prompt	on	the	client	side.	Early
versions	of	the	OpenVPN	GUI	were	compiled	with	this	option	disabled.	The	compile	was	changed	with
the	first	2.2	release	candidate	in	February	of	2011.	This	is	used	with	the	--auth-user-pass	<file>
option	where	<file>	is	the	path	to	a	file	containing	the	username	and	password	on	separate	lines.

--ccd-exclusive
The	--client-config-dir	option	is	often	used	to	apply	client-specific	configuration	and	routing.
OpenVPN	provides	a	related	option,	--ccd-exclusive,	which	will	prevent	client	connections	from
clients	who	do	not	have	a	file	in	the	client-config	directory.	When	this	option	is	present,	even	an
empty	file	named	to	match	the	CN	is	sufficient	to	meet	this	constraint.

Unlike	some	of	the	certificate	errors,	failing	this	check	does	at	least	provide	an	authentication	error	to	the
client,	though	it	is	somewhat	generic:

Client	side:	AUTH_FAILED	is	apparent	in	the	log	file

The	server-side	log,	however,	does	contain	the	reason	for	the	authentication	error	(highlighted).	Also,
further	down,	you	can	see	the	push	command	for	the	AUTH_FAILED	message	to	the	client:

Server	side:	authentication	error	with	cause	identified

Summary
This	chapter	has	helped	to	illustrate	some	of	the	inner	workings	of	the	X.509	standard.	My	goal	was	to
demystify	certificate	chains	and	the	revocation	list	by	providing	tools	and	real-world	command	examples
and	allowing	an	OpenVPN	administrator	to	identify	connection	and	authentication	problems.

Due	to	some	limitations	of	how	OpenVPN	implemented	these	standards,	useful	clues	are	not	always
present	in	the	client-side	logs.	Some	of	the	most	common	and	difficult-to-diagnose	problems	have	been
identified	with	solutions	or	explanation	of	how	the	logic	is	executed	within	the	OpenVPN	binary.

Chapter	7.	Network	and	Routing
Building	a	network	is	the	core	functionality	OpenVPN	provides.	The	complexity	of	the	network	is	up	to
the	administrator,	but	I	have	seen	this	range	from	a	simple	client/server	with	a	few	resources	on	a	local
network	to	VPN	chaining,	client-side	routing,	and	the	encapsulation	of	other	network	streams.

In	order	to	build	a	quality	virtual	private	network,	it	is	necessary	to	understand	how	to	troubleshoot
issues.	In	addition,	it	is	useful	to	understand	how	some	of	these	network	topologies	relate	to	OpenVPN.
This	chapter	will	help	with	all	of	these	concepts.

Connectivity
The	first	step	in	connecting	to	a	remote	VPN	server	is	actually	having	the	ability	to	connect	outbound	from
the	current	network,	whether	that	is	from	home,	a	coffee	shop,	a	corporate	network,	or	via	your	favorite
mobile	hotspot.	If	the	outbound	connection	is	blocked,	none	of	the	other	configurations	will	matter.

Inbound	connection--server
On	the	server	side,	connectivity	can	prove	a	bit	more	difficult.	The	OpenVPN	server	needs	to	either
reside	directly	on	the	public	network,	or	port-forwarding	rules	need	to	be	applied	to	deliver	the	traffic	to
the	correct	system.	All	servers	used	across	the	general	Internet	will	require	some	form	of	routable	or
public	IP	address.

I	will	cover	both	a	simple	public	address	case	in	addition	to	the	slightly	more	complicated	port-
redirection	case.	It	is	good	to	keep	in	mind	that	many	corporate	networks	will	seldom	place	the	VPN
server	directly	on	the	public	Internet.	Instead,	they	will	usually	use	multiple	layers	of	firewalls,	intrusion
detection	system	(IDS),	and	intrusion	prevention	system	(IPS).	The	following	illustration	demonstrates
one	of	these	more	complicated	scenarios:

Corporate	deployment	using	DMZ	and	multiple	firewalls	and	IDS/IPS

The	arrows	in	the	preceding	image	demonstrate	the	path	traffic	would	take	from	a	potential	client	system.
Note	that	both	public	traffic	(that	is,	traffic	destined	for	hosts	available	on	the	general	Internet)	and	the
VPN	traffic	to	internal	systems	traverse	the	IDS/IPS	system(s)	and	the	DMZ	firewall.	Then,	the	OpenVPN

traffic	must	traverse	the	server	and	the	LAN	firewall	before	finally	reaching	the	internal	systems.

The	method	most	commonly	used	for	addressing	these	systems	involves	multiple	routes	and	some
network	address	translation	(NAT).	The	systems	within	a	demilitarized	zone	(DMZ)	will	normally
have	a	real	public	IP	associated	with	them,	generally	hosted	on	either	the	firewall	or	IDS/IPS	system,
often	known	as	a	virtual	IP	(VIP).

VIPs	will	be	publicly	routable	addresses.	The	hosting	system	will	forward	traffic,	after	inspection	and
rule	checks,	to	the	internal	system	within	the	DMZ.	Traffic	will	then	flow	from	the	DMZ-hosted	system	to
the	next	destination.	In	the	case	of	our	OpenVPN	server,	it	will	forward	that	traffic	into	LAN	after	some
final	firewall	policy	checks	by	the	LAN	firewall.

This	configuration	is	much	more	secure	than	most	typical	OpenVPN	setups	where	the	server	resides
directly	on	the	Internet.	These	configurations,	however,	are	complex,	and	can	be	much	more	complicated
than	the	server	administrator	requires	or	even	understands.

Publicly	addressed	server

Having	the	ability	to	assign	a	public	IP	address	directly	on	your	OpenVPN	is	the	easiest	method	of	hosting
a	server.	Hosting	an	OpenVPN	server	at	a	VPS	provider	is	likely	the	simplest	deployment	method.
Advantages	of	this	include	commercial-quality	uplinks,	server	and	hardware	reliability,	and	you	can	run
these	virtual	servers	at	a	multitude	of	providers	in	geographically	convenient	locations.	This	allows	the
administrator	to	place	the	VPN	server	closer	to	the	users	of	that	system	and	lowers	latency	and	potential
bandwidth	bottlenecks:

An	example	of	geographically	located	OpenVPN	servers	(Map	source:
https://commons.wikimedia.org/wiki/File:Winkel_triple_projection_SW.jpg)

Note

Multiple	OpenVPN	--remote	options	can	be	specified	in	client	configuration	files,	and	they	will	be	tried
in	the	order	listed.	Some	OpenVPN	service	providers	allow	users	to	generate	their	configuration	file
based	on	their	geographical	location,	resulting	in	a	series	of	--remote	entries	optimized	for	that	user's
location.

Fortunately	for	the	novice	or	aspiring	VPN	administrator,	the	majority	of	VPS	providers	place	the	system
directly	on	the	public	Internet.	Depending	on	the	operating	system	and	VPS	provider,	some	systems	may
come	preconfigured	with	some	basic	firewall	rules.	Tweaking	and	verifying	these	is	covered	in	a	later
section.

There	are	a	couple	of	things	you	can	do,	however,	to	ensure	the	OpenVPN	process	is	listening	for	new
connections.	Both	Unix	and	Windows	systems	use	the	netstat	command	to	list	open	ports.	This
command,	depending	on	the	arguments,	will	display	both	outbound	connections	as	well	as	ports	opened
by	listening	services.	On	Unix,	you	can	use	the	grep	command	to	filter	the	results,	looking	for	the
listening	port.	On	Windows,	you	can	filter	with	the	findstr	filter.

The	following	screenshots	show	what	this	would	look	like	for	both	a	Windows	and	a	FreeBSD	server.
Linux	or	other	*nix	flavors	will	behave	similarly:

Identifying	the	listening	OpenVPN	process	on	Windows

The	-aon	command-line	options	specify	to	list	all	sockets,	numerically,	and	by	process	ID.	If	you	have
administrative	privileges,	you	can	add	the	-b	option,	which	will	identify	the	process	name:

Showing	the	listening	port	for	OpenVPN	on	FreeBSD

You	can	use	the	netcat	or	nmap	utilities	to	verify	that	the	port	is	open	from	a	remote	system.	A	remote
verification	helps	to	ensure	that	all	the	necessary	firewall	rules	are	in	place	to	allow	the	traffic:

nmap	output	testing	UDP	port	1194	on	OS	X

On	*nix	operating	systems,	the	nmap	command	requires	root	privileges	to	scan	UDP	ports.	The	UDP
protocol	is	a	best-effort	dispatch	meaning	that	the	sender	will	not	wait	for	a	confirmation	before	sending
the	next	packet.	TCP,	on	the	other	hand,	will	respond	with	packet	reception	data	and	request
retransmission	of	lost	or	corrupt	packets.

Because	of	this	behavior,	nmap	requires	extra	privileges	to	intercept	ICMP	messages	from	the	kernel	as
UDP	does	not	provide	the	data	needed	alone:

netcat	does	not	require	root	and	serves	the	necessary	role

The	ncat	(or	netcat	or	nc)	command	does	not	require	root	permissions.	On	Windows,	neither	the	nmap
nor	netcat	tools	require	administrative	permissions.	As	a	regular	user,	I	was	able	to	run	both	without
escalated	privileges.	The	Windows	tools	provide	a	nice	graphical	interface,	but	the	overall	end	result	and
command	syntax	proves	identical	to	the	*nix	version	of	the	tool.

The	command	shown	in	the	following	screenshot	is	identical	to	what	you	would	run	on	the	Linux
command	line:

Both	tools	are	available	across	both	the	*nix	and	Windows	platforms	though	are	seldom	part	of	the	base
distribution.	You	can	download	them	both	by	going	to	http://nmap.org/download.html	for	netcat	and
nmap.	The	single	Windows	setup	will,	by	default,	install	both	utilities,	along	with	some	other	useful	ones
not	covered	here.

Privately	addressed	server	with	port	forwarding

Hosting	an	OpenVPN	server	on	a	home	network	connection	provides	its	own	benefits	and	complications.
This	is	most	often	deployed	when	someone	wants	to	access	resources	at	home	remotely.	Some	examples
include	network	file	servers	hosting	photos	and	movies	or	a	home	printer	or	a	DVR.

http://nmap.org/download.html

The	primary	complication	with	hosting	on	a	typical	home	or	consumer	Internet	connection	is	the	single	IP
address,	which	is	most	often	not	a	static	address.	In	this	case,	the	customer	premises	equipment	(CPE)
will	hold	the	public	IP	address.	Often,	CPE	is	an	ISP-provided	piece	of	equipment	that	offers	a	limited
subset	of	configuration	options	and	capabilities.	This	could	also	be	an	off-the-shelf	system	such	as	an
Apple	AirPort,	an	OpenWrt	device,	or	any	other	home	router.

Common	functionality	should	include	some	firewalling	capabilities	along	with	some	rudimentary	port
forwarding.	High-end	units	will	allow	the	configuration	of	Dynamic	DNS	(DynDNS)	registration.	For	the
purposes	of	this	example,	we	will	only	focus	on	port	forwarding.	In	addition,	we	will	assume	a	static	IP
address.	The	majority	of	providers	charge	extra	for	a	truly	static	IP	address,	but	it	is	common	according	to
Internet	testimonials	to	retain	the	same	public	IP	for	a	single	CPE	for	many	months	or	even	beyond	a	year.

With	port	forwarding,	an	administrator	will	take	a	port	on	a	publicly	accessible	system,	in	our	case	our
CPE,	and	forward	that	connection	to	an	internal	system.	The	default	port	for	SSH,	for	example,	is	22.	If
we	wanted	to	host	an	SSH	server	on	a	couple	of	internal	systems,	we	could	forward	port	22	from	our
CPE	to	internal	system	1.	The	second	system,	however,	would	have	to	be	a	separate	port	(any	arbitrary
port)	since	22	is	now	used.

In	the	earlier-mentioned	scenario,	let	us	assume	the	public	IP	address	is	192.0.2.5.	Our	internal	network
is	using	172.31.0.0/24,	with	our	two	SSH	servers	at	172.31.0.9	and	172.31.0.43.	We	can	redirect
port	22	from	our	CPE	to	server	1	(x.9),	but	we	need	to	use	another	port,	774	(or	any	arbitrary	port),	with
our	second	server	(x.43):

A	relationship	of	internal	hosts	to	CPE	in	port-forwarding	setup

Our	SSH	session	initiation	would	look	as	follows:

author@client:~->	ssh	-p	22	user@192.0.2.5	user@172.31.0.9:~->

author@client:~->	ssh	-p	774	user@192.0.2.5	user@172.31.0.43:~->

Note	that,	in	both	cases,	the	external	IP	is	identical,	but	the	port	number	changes.	Also,	the	internal	host
we	connect	to	changes,	but	the	SSH	process	on	each	host	remains	on	the	default	tcp/22.	I	will	touch	on	it

further	in	the	firewall	section	later	in	this	chapter,	but	it	is	important	that	those	internal	hosts	have
outbound	access	to	hosts	connecting	in	order	to	establish	those	connections.

For	testing	our	port-forwarding	rule	for	udp/1194	on	a	typical	home	network,	we	are	forwarding
udp/1194	on	our	public	interface	on	a	Ubiquiti	EdgeMAX	router	to	our	internal	OpenVPN	server	on
192.168.19.37:

Ubiquiti	EdgeMAX	port-forwarding	configuration

The	configuration	on	this	device	takes	a	few	details,	including	the	following:

Internal	IP	address:	192.168.19.37
Internal	port:	1194
Protocol:	UDP
External	IP	address:	Your	actual	public	IP	(the	test	here	used	a	real	port	forward	over	the	Internet;
our	public	IP	is	blurred)
External	port:	1194	(this	does	not	need	to	match;	internal	and	external	can	be	whatever	you	choose)

For	the	inbound	interface,	I	selected	pppoe0	since	this	is	the	interface	that	holds	the	publicly	routable	IP
address.	Once	the	configuration	is	saved,	it	is	live	and	ready	to	be	used.

To	test	the	new	rule,	we	will	use	the	netcat	utility,	without	starting	up	the	OpenVPN	process.	This
allows	for	a	simple	test	where	we	are	sending	raw	text	across	the	port.	On	the	server,	shut	down	the
OpenVPN	process	if	it	is	running,	and	execute	the	following	command:

author@server:-~>	nc	-ukl	1194

This	command	opens	udp/1194	and	listens	for	incoming	connections.	The	-k	option	keeps	netcat
listening	for	additional	connections.	Because	we	are	using	UDP,	there	is	no	real	concept	of	a	stateful
connection,	so	every	packet	is	a	new	connection.

Next,	from	outside	the	network,	again	using	netcat,	make	an	outgoing	connection	to	the	public	IP	and	port
combination	used	for	your	port-forwarding	rule.	On	the	external	test	system,	run	the	following	command:

author@external:-~>	nc	-u	203.0.113.9	1194	

With	both	windows	open,	you	should	be	able	to	type	into	the	external	window	and	see	the	message	appear
on	the	OpenVPN	server	console	after	each	press	of	the	enter	key.	If	you	do	not	see	your	messages	on	the
server	console,	there	is	either	a	problem	with	your	port-forwarding	rule,	or	there	may	be	a	firewall
somewhere	in	the	path	that	is	blocking	the	traffic.

Here	is	our	console	session	on	the	internal	OpenVPN	server	after	our	successful	test,	as	described
earlier.	The	communication	for	this	test	is	only	one-way,	so	typing	a	message	on	the	server	console	will
not	send	a	message	back	to	the	test	client:

Internal	OpenVPN	server	with	test	UDP	listening	running

The	following	screenshot	shows	the	messages	sent	by	simply	typing	into	the	window	and	pressing	Enter.
All	the	messages	show	up	on	the	server,	but	note	the	message	typed	on	the	server	did	not	show	up	in	the
client	window;	this	is	normal:

External	test	system	with	open	connection	to	public	IP	on	udp/1194

Outbound	connection--client
Much	of	the	testing	demonstrated	in	the	previous	section	properly	illustrates	testing	outgoing	connections
during	the	testing	of	the	incoming	connections.	It	should	be	readily	apparent	that	if	an	outgoing	connection
fails,	the	incoming	connection	on	the	other	end	would	not	succeed.

It	needs	to	be	pointed	out	that	testing	for	open	UDP	ports	can	be	problematic.	The	netcat	tool,	for
example,	gives	frequent	false	positives,	depending	on	the	remote	operating	system	and	firewall	policies.

In	all	of	our	examples,	we	have	used	udp/1194,	which	is	the	OpenVPN	IANA-assigned	port.	If	we	use
netcat	to	test	udp/1000,	for	which	we	do	not	have	a	listening	daemon,	the	remote	FreeBSD	system,
combined	with	the	netcat	tool's	internal	logic,	lists	the	port	as	open.

If	we	use	nmap,	however,	we	can	see	that	the	port	is	correctly	identified	as	closed:

Demonstrating	differing	results	between	nmap	and	netcat	for	a	closed	port

Digital	Internals	has	a	decent	write-up	discussing	the	false	positives	at
http://www.digitalinternals.com/unix/unix-linux-netcat-check-port-open/511/.

http://www.digitalinternals.com/unix/unix-linux-netcat-check-port-open/511/

Firewall	filters	and	inspection
Some	service	providers	block	the	default	port	1194	(both	TCP	and	UDP)	from	some	client	networks.
Corporate	networks,	as	an	easy	example,	block	most	inbound	traffic	to	the	network,	preventing	a	rogue
service	like	a	web	server	or	OpenVPN	server.	On	a	much	larger	scale,	one	infamous	blockade	for	the
OpenVPN	service	is	the	Great	Firewall	of	China	(see	https://openvpn.net/archive/openvpn-devel/2004-
11/msg00028.html	for	more	information).

https://openvpn.net/archive/openvpn-devel/2004-11/msg00028.html

TLS	authentication
OpenVPN	provides	a	mechanism	using	a	set	of	pre-shared	keys	to	cryptographically	sign	every	packet
between	the	server	and	client.	The	mechanism	for	this	is	the	same	secret	key	used	for	a	static-key
OpenVPN	setup,	as	was	the	original	release.

The	advantage	to	this	signature	is	two-fold.	First,	it	helps	prevent	any	sort	of	denial	of	service	attack
using	cryptographic	routines	within	TLS	to	overload	an	OpenVPN	server.	The	OpenVPN	process	will
quite	simply	drop	any	packet	without	a	valid	signature	before	the	CPU-intensive	handshake	and	key
exchange	operations	take	place.

As	a	second	advantage,	--tls-auth	aids	in	preventing	keying	material	disclosure.	This	is	specifically
helpful	for	vulnerabilities	such	as	Heartbleed	or	DROWN.	If	a	cipher	is	completely	broken,	it	is	possible
to	still	snoop	the	traffic	from	OpenVPN	because	--tls-auth	doesn't	provide	any	additional
cryptographic	layers.

Note

You	can	read	more	about	the	Heartbleed	and	DROWN	OpenSSL	vulnerabilities	by	going	to	the	following
links:

Heartbleed	(CVE-2014-0160):	https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
DROWN	(CVE-2016-0800):	https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-0800

While	being	an	added	layer	of	protection	for	your	VPN,	--tls-auth	can	also	cause	connectivity
problems.	If	the	key	direction	is	incorrect,	or	the	pre-shared	keys	are	out	of	sync,	your	VPN	clients	will
be	unable	to	connect,	and	the	errors	will	manifest	as	connectivity	issues.

The	OpenVPN	manual	suggests	that	the	key	direction	should	not	be	defined	in	the	server	and	client
configuration	for	simplicity.	In	this	scenario,	only	one	key	is	used	for	packet	signatures	on	both	sides	of
the	connection.	If	set,	the	values	can	be	only	either	1	or	0,	with	the	server	set	to	one	value,	and	all	clients
set	to	the	other	value.

The	--tls-auth	key	can	either	be	expressed	inline	to	the	configuration	or	be	written	to	a	file	like	the
certificates.	When	using	a	file,	the	configuration	will	resemble	the	following:

tls-auth	/path/to/file.key	0	

The	preceding	example	provides	a	path	to	the	key	file,	and	specifies	a	key	direction	of	0.	If	this	was	for
the	server,	we	would	want	to	ensure	the	client	side	was	set	to	1.	Either	side	can	be	either	value	as	long	as
the	opposite	end	is	the	other	value.

When	using	an	inline	tls-auth	key,	it	would	look	like	the	following	example.	Notice	that	to	specify	the
key	direction,	there	is	a	distinct	--key-direction	parameter	value	present:

key-direction	0	

<tls-auth>	

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-0800

#	

#	2048	bit	OpenVPN	static	key	

#	

-----BEGIN	OpenVPN	Static	key	V1-----	

5f6a01fc8ed629aad7b26e6c6b474e5b	

4a5446d3c81df9fd619d0a685b56a4c7	

2997d8e5906a152687441a89742604cb	

a2eb51e68ef260507d6681b04e5932d4	

f35699b1fce29269dc75199df9281ac0	

bd85ac8f4d097e2b2abfd03854d91466	

d026c72f0ebd14b76cd3688e52dd1475	

8be2996a577b97c198c8130c4824e97c	

dd82dde648203f26a172385e4a36cc1d	

b8633c1f0bb8c7954db540357cb88f75	

571a21c4dae02e4cea767abb36713d3e	

1b863b6dc479cf4081e3929e0f3f26d3	

fa503629b587e5be01c95bd16cd8ae70	

abd902bb8b95dfdcbd2dc552ef3f3e9a	

01bdbc0e8df849aa6fc0aed7de6ce718	

f15b696eaf0daad496bbaf7b78c4f00a	

-----END	OpenVPN	Static	key	V1-----	

</tls-auth>	

If	the	secret	keys	do	not	match	or	the	key	direction	parameter	is	not	set	correctly,	both	set	to	0,	for
example,	there	will	be	TLS	key	errors	present	in	both	the	server-	and	client-side	logs.	On	the	client	side,
the	error	will	look	like	the	following:

TLS	Error:	local/remote	TLS	keys	are	out	of	sync:	[AF_INET]192.168.19.37:1194	[0]

On	the	server	side,	you	will	see	two	messages,	one	identifying	the	packet	error	and	another	identifying	the
offending	peer:

Authenticate/Decrypt	packet	error:	packet	HMAC	authentication	failed

	TLS	Error:	incoming	packet	authentication	failed	from	[AF_INET]192.168.19.104:1194

Note	that	modification	by	inline	network	intrusion	systems	that	change	values	to	the	packet	headers	may
introduce	problems	because	the	packet	signatures	will	not	validate.	If	you	are	seeing	this	behavior	and	are
confident	that	your	configuration	is	correct,	try	completely	removing	these	parameters	and	see	if	the
problem	goes	away.	If	so,	there	may	be	a	device	in	the	line	tampering	with	packets.

Routing
OpenVPN	provides	powerful	routing	capabilities	allowing	the	network	administrator	to	direct	traffic
from	clients	where	it	needs	to	go.	These	routes	can	place	entire	subnets	behind	specific	client
connections,	through	other	routers	on	the	server	side,	or	out	to	the	Internet.	There	are	two	distinct	zones
when	discussing	routing	and	VPNs.	I	like	to	classify	them	as	internal	and	external.

Regardless	of	which	bucket	your	routes	go	into,	it	is	vitally	important	to	consider	that	both	endpoints	in
the	route	need	to	know	how	to	reach	the	other.	There	are	varying	techniques	for	accomplishing	this:	static
routes,	dynamic	routes,	NAT/PAT,	and	so	on.	Failure	to	ensure	that	there	is	a	return	path	will	prevent
useful	traffic	from	flowing.

In	the	following	example	image,	the	OpenVPN	server	resides	behind	a	port-forwarding	network	gateway.
The	LAN	gateway,	nor	the	LAN	file	server,	however,	know	how	to	route	the	10.8.0.0/24	network.	The
OpenVPN	client	is	able	to	send	traffic	via	the	OpenVPN	server	to	the	file	server	on	LAN.	That	file	server
then	responds	via	the	default	gateway	because	it	does	not	have	a	more	specific	route	for	the	VPN	subnet.
At	this	point,	the	gateway	will	either	drop	it	(It	is	bad	practice	to	forward	RFC	1918	traffic	out	to	the
Internet)	or	forward	it,	only	to	be	discarded	upstream	as	unreachable	(see
https://tools.ietf.org/html/rfc1918,	section	3,	paragraph	8):

A	missing	return	path	causes	overall	communication	failure

The	simplest	solution	is	to	install	a	static	route	pointing	the	VPN	subnet,	10.8.0.0/24,	back	to	the	VPN
server	at	192.168.19.5	on	the	LAN	file	server.	If	we	are	only	dealing	with	a	single	or	small	handful	of
hosts,	this	might	be	the	best	option.	In	a	corporate	environment,	where	there	are	many	hosts,	however,	this
quickly	becomes	cumbersome.

The	second	option	is	to	install	the	same	route	to	the	VPN	subnet	on	the	LAN	gateway.	This	is	generally
less	desirable,	as	it	will	cause	the	gateway	to	send	an	ICMP	redirect	message	informing	the	LAN	file
server	of	the	more	direct	route	(via	the	VPN	server).	For	a	simple	home	network,	this	may	be	sufficient	as

https://tools.ietf.org/html/rfc1918

some	gateways	may	not	have	the	routing	features	enabled	to	set	static	routes	in	a	way	accessible	to	the
end	user	(homeowner/subscriber).

Another	solution	to	return-path	routing	is	to	NAT	VPN	traffic	from	the	VPN	subnet	out	to	the	VPN	server
LAN	address.	This	NAT	method	will	result	in	all	of	the	LAN	systems	only	seeing	the	VPN	server's	LAN
address,	which	they	already	know	how	to	route	because	it	is	local.	In	the	majority	of	cases,	this	should	be
sufficient.	This	does	not	work,	however,	if	there	are	VPN	resources	that	LAN	clients	want	to	access
directly.	We	will	discuss	this	in	a	later	section.

One	last	method	for	resolving	return-path	routing	is	if	the	OpenVPN	server	is	also	the	LAN	gateway
device.	This	is	possible	with	only	a	few	off-the-shelf	residential	gateways,	and	also	a	few	commercial
gateways,	but	there	are	some	alternate	firmware	for	some	devices	that	allow	for	this.	OpenWrt	and
pfSense	are	two	examples	of	gateway	devices	firmware	that	embed	OpenVPN.

When	troubleshooting	routing,	the	following	flow	chart	is	often	referenced,	and	we	consider	it	a	gold
standard	for	troubleshooting	with	regard	to	OpenVPN.	The	flowchart	is	designed	to	help	troubleshoot
routing	when	there	are	remote	LANs/networks	behind	an	OpenVPN	client:

Note

ICMP	redirect	(type	5)	messages	are	sent	when	the	next-hop	for	a	routed	packet	is	via	the	same	interface
on	which	the	packet	was	received.	Overall,	this	type	of	routing	is	inefficient,	and	it	is	better	to	route	those
packets	directly	to	the	proper	host.	More	information	about	this	is	available	at
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13714-43.html	or	at
https://ask.wireshark.org/questions/35826/what-does-icmp-redirect-redirect-for-host-mean.

http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13714-43.html
https://ask.wireshark.org/questions/35826/what-does-icmp-redirect-redirect-for-host-mean

Internal	routing
The	internal	routes	are	those	that	will	stay	inside	the	VPN.	These	do	not	pass	outside	the	general	context
of	OpenVPN	or	remain	very	close.	In	some	configurations,	the	only	thing	the	VPN	clients	will
communicate	with	are	either	the	VPN	server	(or	some	services	hosted	on	the	machine)	or	other	VPN
clients.

There	are	a	few	things	that	can	go	wrong	with	a	simple	setup	like	this.	For	example,	let	us	set	up	an
Apache	server	and	run	that	on	our	OpenVPN	server.	Normally,	users	would	connect	to	this	web	server
over	the	normal	system	IP	address	(LAN	or	WAN	is	irrelevant).

With	the	server	also	running	an	OpenVPN	server,	however,	the	VPN	clients	must	access	the	web	server
over	the	VPN	IP	or	they	could	run	into	split	routing.	The	server's	public	IP	cannot	be	routed	over	the	VPN.
Access	rules	may	allow	additional	privileges	for	VPN	clients	or	provide	virtual	hosts	that	only	reside
within	the	VPN	subnet.

There	are	no	specific	steps	to	verifying	internal	routing	issues,	but	make	sure	the	service	you	are	trying	to
connect	to	is:

Listening	on	the	VPN	IP	address
Providing	the	necessary	access	to	the	VPN	clients

Database	servers,	protected	web	paths,	and	other	similar	services	use	IP	addresses	as	one
component	to	determine	access	rules

External	routing
External	routes	are	those	that	pass	on	to	other	networks	whether	they	remain	within	the	LAN/WAN	or
extend	beyond	out	to	the	Internet.	I	see	the	external	routes	as	the	more	complicated	of	the	two	as	they
generally	involve	cooperation	of	some	sort	from	the	other	network.

A	common	use	for	passing	external	routes	is	to	bypass	geographical	limitations	enforced	by	various	video
streaming	providers.	Due	to	content	licensing,	translation,	and	local	laws	or	regulations,	access	to	various
content	is	restricted	for	use	based	on	their	perceived	geographical	location	based	on	the	IP	address.	Many
geolocation	services	attempt	to	place	ranges	of	IPs	within	a	physical	location,	often	based	on	registration
data	(ARIN,	APNIC,	and	others).	Another	more	modern	method	is	locating	Wi-Fi	access	points	based	on
GPS-enabled	cellular	phone	records.

By	connecting	to	a	VPN	server	in	a	remote	location,	a	user	can	appear	(and	functionally	does)	to	originate
from	a	different	location	than	where	they	physically	reside.	Some	of	these	content	providers	have	gone	to
great	lengths	recently	to	restrict	known	VPN	providers	from	access	at	all.

Pushing	routes
When	the	admin	wants	VPN	clients	to	connect	to	more	than	other	VPN	clients,	it	is	generally	necessary	to
push	additional	routes	to	those	clients.	These	routes	can	be	both	internal	and	external	to	the	VPN	and	can
even	include	other	OpenVPN	processes.	System	administrators,	for	example,	may	connect	to	a	different
set	of	VPN	servers	than	normal	users.

Routes	can	reside	behind	other	clients,	static	systems	on	the	server	LAN,	external	to	the	server	LAN,	or
even	be	a	new	default	route.

Routes	behind	clients

Through	--iroute	statements,	OpenVPN	can	be	made	aware	of	routes	behind	clients,	creating	a	route	in
the	internal	routing	table.	This	is	useful	when	you	have	a	central	office	and	one	or	more	remote	offices,
for	example.	Each	office	should	have	its	own	subnet.	The	gateway	device	or	a	router	behind	it	will	have	a
VPN	process	that	may	act	as	a	client	to	the	central	office's	OpenVPN	server.

The	--iroute	statement	must	be	placed	in	a	client-specific	configuration	file	within	--client-config-
dir	or	CCD.	If	you	place	this	directive	in	the	general	server	configuration,	it	will	be	applied	to	all	clients
connected,	rather	than	the	single,	correct,	client.	If	the	intent	is	to	only	have	VPN	clients	route	these
subnets,	there	is	no	reason	to	add	this	to	the	kernel	routing	table	(mentioned	later).

Applying	the	--push	route	"..."	to	clients,	along	with	--iroute	in	the	correct	CCD	file,	you	can
successfully	traverse	the	VPN	in	to	remote	client	subnets,	without	affecting	the	OpenVPN	server	itself.	It
is	important	to	remember	that	the	OpenVPN	server	can	push	routes	to	clients,	but	there	is	nothing	to	push
those	routes	to	the	OpenVPN	server.	It	is	a	good	rule	of	thumb	that	for	every	pushed	route,	there	should	be
a	route	in	the	server	configuration,	and	vice	versa.

Kernel	versus	process	routing

There	are	two	distinct	routing	tables	on	an	OpenVPN	server:	the	OpenVPN	process	internal	routing	table
and	the	kernel	routing	table.	Normally,	in	a	simple	OpenVPN	setup	with	no	additional	routes,	there	is	an
interface	route	within	the	kernel	routing	table	for	the	VPN	subnet.

Both	the	--route	and	--iroute	configuration	arguments	create	routing	table	entries.	The	former
propagates	those	routes	to	the	kernel	routing	table,	whereas	the	latter	only	tracks	the	routes	internal	to	the
OpenVPN	process.	The	distinction	is	that	if	the	kernel	is	unaware	of	a	given	route,	LAN	clients	behind
that	OpenVPN	system	will	be	unable	to	reach	those	subnets.	Likewise,	a	route	can	be	placed	within	the
kernel	routing	table,	which	will	pass	that	route	to	the	OpenVPN	system,	but	the	process	needs	to	know	to
which	client	that	goes	in	order	to	process	it.

There	are	three	primary	steps	to	establish	a	full	route	within	OpenVPN:

1.	 Establish	process-specific	routes	(--iroute).
2.	 Apply	necessary	kernel	routes	(--route).
3.	 Push	routes	to	clients	(--push	"route	...").

In	order	for	kernel	routes	that	route	across	interfaces	to	be	honored,	IP	forwarding	needs	to	be	enabled.
This	allows	the	system	kernel	to	forward	packets	from	one	interface	to	another.	Without	this	set,	traffic
routing	will	stop	dead	at	the	kernel.	Both	*nix	and	Windows	have	the	concept	of	IP	forwarding.

Modern	Linux	and	Unix	systems	have	sysctls	or	system	controls	that	define	some	runtime	kernel	options.
Most	will	use	a	separate	IPv4	and	IPv6	setting,	net.inet.ip.forwarding	and
net.inet6.ip6.forwarding.	These	will	vary	somewhat,	but	good	bet	to	find	them	shown	here:

For	Windows,	there	is	a	similar	mechanism	within	the	system	registry.	You	can	find	the	necessary	keys	in
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters	as	the	value
IPEnableRouter.	You	can	reference	https://support.microsoft.com/EN-US/kb/230082	for	further	details.

Route	conflicts

Be	careful	when	selecting	the	IP	range	to	use	for	your	VPN.	There	are	a	couple	of	common	home	network
subnets	(192.168.0.0/24	and	192.168.1.0/24)	that	should	never	be	used	for	a	VPN.	Other	corporate
ranges	should	also	be	avoided,	like	anything	in	the	10/8	subnet.	Most	importantly,	make	sure	that
whatever	you're	using	doesn't	conflict	with	what	you	want	to	connect	to.

https://support.microsoft.com/EN-US/kb/230082

Redirect	gateway
Many	VPN	providers	will	push	a	new	default	route	to	their	client	systems.	Some	third-party	OpenVPN
client	GUIs	will	even	go	so	far	as	to	provide	an	option	that	notifies	the	user	if	the	apparent	external	IP
doesn't	change	once	connected	to	a	VPN.

Routes	are	followed	by	the	most	specific	route	and	then	by	the	routing	metric.	In	general,	OpenVPN	routes
all	will	have	the	same	metric,	so	specificity	matters.	If	OpenVPN	actually	replaced	the	core	default	route,
the	client	would	be	unable	to	talk	to	the	gateway,	causing	the	connection	to	drop.

To	push	a	new	default	gateway	to	OpenVPN	clients,	the	--redirect-gateway	configuration	directive	is
provided.	With	the	def1	flag,	all	network	traffic	except	local	LAN	traffic	will	be	routed	to	the	VPN
server,	even	Internet-bound	traffic	such	as	web	browsing.	This	directive	does	two	primary	things	to
create	a	new	default	route.	First,	it	creates	a	static	route	for	the	OpenVPN	server,	pointing	to	the	current
default	gateway.	Second,	it	creates	two	less-specific	routes	functionally	providing	a	new	default,	without
deleting	the	original	route.

As	I	stated	earlier,	the	routing	table	will	follow	the	most	specific	route	first.	The	normal	default	route	is
defined	with	the	subnet	0.0.0.0/0.	This	subnet	includes	all	IPs.	OpenVPN,	to	create	more	specific
routes,	applies	0.0.0.0/1	and	128.0.0.0/1.	These	define	the	first	half	of	the	IPv4	address	space,	then
the	second	half	of	the	IPv4	address	space.

Because	these	two	routes	are	more	direct	than	the	initial	default,	they	are	chosen	in	favor,	causing	all
traffic	to	flow	to	the	OpenVPN	server.	The	server	still	needs	to	route	traffic	from	the	clients	to	the	general
Internet.

Routing	VPN	traffic	from	clients	out	to	the	general	Internet	is	often	hidden	behind	a	single	IP	address.	The
technique	is	named	NAT.	This	masquerades	all	outbound	traffic,	regardless	of	origin,	to	a	set	of	external
IPs.	Since	your	VPN	will	be	composed	of	RFC	1918	addresses,	they	would	be	dropped	by	upstream
routers.	Besides	this,	many	networks	share	the	same	common	subnets,	so	the	Internet	routers	would	be
confused	and	uncertain	about	where	to	send	that	traffic.

The	OpenVPN	server	needs	to	NAT	the	VPN	client	traffic,	and	IP	forwarding	needs	to	be	enabled.

General	network	concerns
Apart	from	routing,	there	are	a	few	additional	networking	components	that	tend	to	trip	up	even	some
advanced	server	administrators.

Path	MTU	and	MSS
Maximum	transmission	unit	(MTU)	problems	are	some	of	the	most	difficult	problems	to	identify.	In	part,
this	is	due	to	the	odd	symptoms	that	arise	when	an	MTU	incompatibility	is	present.	During	such	a
condition,	some	traffic	will	seem	to	function	without	a	problem,	whereas	other	traffic	will	inexplicably
fail.

MTU	is	the	largest	packet	that	can	traverse	a	network	link	intact.	In	the	event	that	a	larger	packet	transfer
is	attempted,	it	will	either	fail	to	reach	the	remote	endpoint,	or	a	fragmentation	request	will	be	sent	back
to	the	sender.	This	request	tells	the	previous	hop	that	the	packet	was	too	big	and	specifies	how	big	the
next	packet	should	be:

In	general,	when	MTU	problems	exist,	traffic	with	typically	small	packets	will	work	without	any	issue.
SSH,	for	example,	sends	many	small	packets	during	console	sessions,	often	only	a	few	keystrokes	in	an
encrypted	format.	In	my	simple	test,	for	example,	the	text	a\n	(the	letter	a	followed	by	a	newline)	shows
up	across	the	wire	as	a	2-byte	data	segment.	The	same	traffic	generates	72	bytes	of	encrypted	data:

Note	the	relatively	small	amount	of	space	used	by	the	SSH	packet

Because	these	packets	have	so	little	real	data,	there	is	little	risk	of	exceeding	the	MTU,	even	if	it	is
relatively	small.	Larger	transfers,	like	using	SCP	to	send	a	file	to	a	remote	system,	however,	will	use
much	more	of	the	data	segment.	If	the	file	being	transferred	is	larger	than	the	MTU,	packets	carrying	file
data	will	generally	max	out	the	data	segment:

Data	packet	is	too	large	for	the	available	packet	space

On	normal	Ethernet	networks,	the	MTU	is	most	commonly	defined	as	1500	bytes.	All	of	the	packet	header
data	and	application	data	must	fit	inside	one	of	these	packets.	In	the	case	of	application	data,	larger
chunks	may	be	broken	up	across	multiple	packets:

The	same	2000	byte	data	split	between	two	separate	packets

There	is	inherent	cost	to	processing	packets	for	a	switch	or	a	router,	as	each	packet	must	have	its	headers
analyzed,	a	decision	made	on	routing,	and	then	outputting	that	packet	where	it	needs	to	go.

With	OpenVPN,	additional	encapsulation	is	added,	which	reduces	the	useful	size	of	the	overall	data	space
in	a	given	packet.	The	following	diagram	is	simplified	slightly	from	the	real	world,	but	the	concept
applies.	When	a	packet	is	encapsulated	within	another,	the	entire	child	packet,	including	headers,	must	fit
within	the	application	data	space:

VPN	data	space	is	reduced	per	packet	compared	with	a	local	network	packet

Fortunately,	OpenVPN	comes	prepacked	with	a	tool	you	can	leverage	to	identify	the	proper	MTU	for	your
VPN,	--mtu-test.	By	adding	the	--mtu-test	option	to	your	configuration	or	passing	it	on	the	command
line,	OpenVPN	will	attempt	to	calculate	the	largest	packet	your	VPN	is	capable	of	processing.

The	ping	command	can	be	very	useful	in	determining	MTU,	but	there	are	a	lot	of	different
implementations	of	ping	across	different	platforms.	Essentially,	using	the	following	examples,	depending
on	your	OS	of	choice,	you	can	send	varying	ping	packets	until	a	size	is	reached	that	begins	to	emit
fragmentation	needed	or	packet	too	large	messages.

The	BSD	(on	both	OS	X	and	FreeBSD)	ping	has	some	sweeping	options	for	the	packet	size	argument.
This	allows	you	to,	without	the	need	for	an	external	for-loop,	gradually	increase	the	packet	size	until
one	begins	to	fail:

Using	a	ping	on	OS	X	to	find	the	usable	MTU

In	this	case,	the	command	provides	a	maximum	sweep	(-G)	we	set	to	1500,	a	minimum	sweep	(-g)	set	to
1350,	the	increase	interval	(-h)	set	to	10	bytes,	and	an	option	to	set	the	Do	Not	Fragment	bit.	At	a
spacing	of	10	bytes,	our	largest	usable	MTU	would	be	1470	(1478	-	8-bit	ICMP	header).

On	Linux	systems,	you	could	write	a	for-loop	to	increase	packet	size	for	your	selected	bounds.	Such	a
script	might	look	like	the	following	shell	script:

Linux	shell	script	looping	through	various	packet	sizes	to	find	MTU

Finally,	on	Windows,	we	use	a	simple	manual	increment	and	run	the	ping	command	until	it	fails:

Windows	manual	test,	incrementing	until	packet	failure

Now	that	we	know	our	magic	number	is	1478,	we	can	use	the	--fragment	and	--mssfix	configuration
parameters	to	resolve	packet	size	problems.	The	--fragment	option	forces	the	OpenVPN	process	to
handle	packet	fragmentation	for	UDP	packets.	In	our	case,	if	we	were	experiencing	packet	loss	for	larger
payloads,	we	would	add	--fragment	1472	to	our	configuration.	We	can	also	add	--mssfix	to	notify
TCP	connections	of	our	reduced	MTU,	which	will	offload	the	packet	fragmentation	to	the	application	or
client	system,	reducing	the	load	on	the	OpenVPN	process.

Summary
This	chapter	covered	some	deep	details	about	how	to	troubleshoot	core	network	issues.	Some	tools,
including	Wireshark	and	netcat,	were	demonstrated,	and	the	reader	should	be	able	to	use	these	tools
with	some	confidence.	Like	any	tool,	practice	makes	perfect,	so	I	encourage	you	to	use	these	for
troubleshooting,	investigation,	and	learning.

This	chapter	also	provided	some	knowledge	and	reasoning	behind	how	these	technologies	work.	By
understanding	some	of	the	theory	behind	the	technology,	it's	my	hope	that	you	will	be	better	prepared
when	finding	and	resolving	a	problem.

Chapter	8.	Performance
In	a	perfect	scenario,	your	VPN	users	will	have	high-speed,	dedicated	connections	over	some	sort	of	hard
line	to	reach	your	server.	Not	only	that,	these	same	users	will	have	top-end	systems,	equipped	with	an
exorbitant	amount	of	RAM,	and	high	clock-speed	CPUs	equipped	with	the	latest	crypto-offload	chipsets.

In	reality,	however,	there	are	a	variety	of	remote	locations	and	devices	that	users	will	leverage	to	connect
to	a	VPN.	Some	of	these	are	out	of	necessity,	such	as	a	high-latency	satellite	connection,	and	others	are
out	of	convenience,	such	as	using	a	mobile	device.	For	the	majority	of	your	users,	you	should	be	able	to
provide	sufficient	cryptographic	protections	while	still	maintaining	a	comfortable	performance	level.

Networking
Network	components	on	the	client	and	server	LAN	can	greatly	affect	the	overall	performance	of	the
client-server	connection.	If	the	client	is	used	in	--iroute,	other	client	connections	to	the	distant	LAN
will	also	be	affected.

Physical	problems,	such	as	improperly	terminated	fiber	connections,	poorly	crimped	RJ45	ends,	and
frayed	or	split	Ethernet	cables	can	introduce	noise,	resulting	in	packet	transmission	errors.

Network	congestion	from	other	LAN	systems	or	uplink	usage	will	not	be	readily	apparent	from	within	the
VPN.

Rate	limiting
Prior	to	around	2010,	Internet	connections	were	considered	more	or	less	a	simple	pipe	in	the	consumer
world.	If	you	were	given	a	10	Mbps	(megabits	per	second)	connection,	you	were	allowed	to	use	the
entirety	of	that	connection	for	the	duration	of	the	month	(or	billing	cycle).	Commercial	connections	have
long	been	treated	in	an	entirely	different	manner.

For	commercial	connection,	hosting,	or	uplink,	the	bandwidth	has	been	metered	in	some	regard	for	quite
some	time.	There	are	a	couple	of	ways	you	can	purchase	this	bandwidth.	First,	you	can	purchase	a
dedicated	pipe,	which	allows	you	to	fully	use	that	connection	for	the	entire	billing	period.	If	you're	paying
for	10	Mbps,	you	can	use	all	10	Mbps,	24	hours	per	day,	every	day.

Another	metering	method,	named	95th	percentile,	can	also	be	used.	In	this	scenario,	a	business	may	order
a	10	Mbps	uplink,	but	pay	a	rate	based	on	1	Mbps.	This	means	that	the	customer	can	use	1	Mbps	the	entire
time,	with	no	additional	charge.	Because	the	pipe	is	larger	than	1	Mbps,	this	customer	may	burst	to	faster
speeds	for	a	potentially	added	rate.	This	burstability	is	where	the	95th	percentile	measurement	comes
from;	the	top	5%	of	traffic	is	lopped	off/ignored,	and	the	customer	is	billed	for	everything	less.

For	the	consumer	market,	Internet	service	providers	have	opted,	instead,	to	institute	bandwidth	caps	that
are	based	on	an	aggregate	of	consumed	transfer.	This	allows	the	consumer	to	use	the	full	or	maximum
speed	available	when	it	is	needed.	This	bandwidth	cap	started	with	cellular	data	plans.	Once	it	was
reached,	the	provider	would	rate	limit	the	customer	to	a	slower	speed,	typically	around	144	Kbps	(also
known	as	3G	speeds),	until	the	next	billing	cycle.

Rate	limiting	is	an	artificial	limit	to	the	physical	or	technical	capabilities	of	a	specific	platform	or	system.
These	limits	can	be	difficult	to	diagnose	because	there	is	nothing	informing	the	user	of	this	state.	In	the
case	of	a	VPN	connection,	the	link	can	go	quite	suddenly	from	a	satisfactory	speed	down	to	an	unusable
speed	or	one	that	is	considered	unusable	by	many	people	by	today's	standards.

There	are	tools	that,	if	used	sporadically	over	a	period	of	time,	can	help	identify	when	rate	limiting	has
kicked	in.	This	will	only	work	when	there	is	a	change	of	rate	limiting	and	not	when	it	is	a	state	common	to
every-day	traffic.

First,	there	are	sites	such	as	Speedtest	(http://speedtest.net)	that	allows	you,	using	only	a	standard	web
browser,	to	determine	your	real-world	transfer	speeds.	I	tend	to	think	of	this	as	a	good	test	since	it	shows
a	real	transfer	between	a	client	system	somewhere	on	the	Internet	out	to	another	test	system	somewhere
else	on	the	Internet.	In	this	case,	the	data	transfer	traverses	your	ISP	and	the	ISP	of	the	server	host,
demonstrating	an	end-to-end	transfer.

There	are	other,	similar	tests	available	to	customers	of	various	ISPs.	CenturyLink,	for	example,
provides	a	supposedly	more-direct	test	to	your	ISP's	hosted	test	server.	Running	this	test	from	the
Speedtest	server,	a	Slashdot	server,	and	the	CenturyLink	server	show	odd	results.	The	test	is	for	my	own
personal	home	Internet	connection,	and	it	is	executed	outside	a	VPN.	The	purpose	of	this	test	is	to	see
what	the	performance	of	the	uplink	is	before	we	add	the	complexity	of	a	VPN.

The	first	test	is	executed	from	the	Speedtest	website,	which	actually	uses	a	server	hosted	on	CenturyLink's

http://speedtest.net

network.	This	test	results	in	an	abysmal	30.66	Mb/s	download	speed	and	a	491.71	Mb/s	upload	speed.
Neither	is	close	to	my	paid	for	speed	of	1	Gbps:

Speedtest	result

The	second	result	is	a	courtesy	of	http://Slashdot.org/speedtest/	and	shows	marginally	better	results.	I	see
a	347	Mbps	download	speed,	11	times	faster,	and	197	Mbps	upload,	40%	of	the	Speedtest	result:

http://Slashdot.org/speedtest/

Slashdot	result

Disappointingly,	and	despite	a	wired	connection	to	my	home	router,	I'm	unable	to	realize	the	full	potential
of	the	connection	I	pay	for.	Based	on	these	tests,	I	plan	on	reaching	out	to	CenturyLink	to	identify	the
bottleneck.	I	have	been	told	by	various	network	engineers	that	the	oversubscribed	rate	is	about	12-1.
Knowing	that,	I	shouldn't	expect	to	see	my	full	billed	rate	100%	of	the	time,	but	I	think	it	should	be	better
than	50%:

CenturyLink	speed	test	result

Cryptographic	performance
Cryptographic	algorithms	are	complex	mathematical	formulas	that	require	powerful	microprocessors
and	good	entropy	(random	data).	The	more	advanced	and	complex	an	algorithm	is,	the	more	complex
calculation	will	become.	Older,	slower	processors	will	take	substantially	longer	than	newer	and	faster
processors.

Library	differences
Both	OpenSSL	and	mbed	TLS	are	constantly	making	improvements	to	both	security	and	performance.
While	writing	this	book,	I	was	using	my	MacBook	Pro	with	the	latest	version	of	macOS	(10.12.2)	and	I
was	going	to	show	performance	numbers	for	the	AES	cipher	set	using	the	openssl	speed	-evp	aes-
128-cbc	command.	The	purpose	is	to	show	a	reproducible	performance	metric	on	various	platforms.

As	you	can	see	in	the	following	screenshot,	my	Mac	has	OpenSSL	version	0.9.8zh	installed.	OpenSSL
included	support	for	AES-NI	with	version	1.0,	and	the	performance	gains	are	evident	in	the	first	set	of
table	entries	(in	the	Result	summary	section,	given	later).

Performance	results	for	mbed	TLS	are	not	included	here	since	there	are	no	easy-to-use	cross-platform
utilities	available:

Cipher	and	AES-NI
In	2008,	Intel	and	AMD	released	an	extension	to	the	x86	instruction	set	that	improved	encryption	and
decryption	workloads	that	used	Advanced	Encryption	Standard	(AES).

Note

You	can	read	additional	information	about	AES-NI	on	Wikipedia	at
https://en.wikipedia.org/wiki/AES_instruction_set.	If	you	are	looking	for	more	specific	information	about
the	instruction	set,	take	a	look	at	the	development	information	available	on	Intel's
website,	https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms.

https://en.wikipedia.org/wiki/AES_instruction_set
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms

Result	summary
I've	published	some	results	for	the	aes-128-cbc	cipher	test	with	a	few	versions	of	OpenSSL	and
highlighted	the	highest	performers	for	overall.	This	is	by	no	means	a	scientific	test,	and	I	encourage	you	to
perform	your	own	testing	to	determine	what	cipher	works	best	for	your	hardware	systems.

The	numbers	in	the	results	indicate	how	many	iterations	were	completed	in	a	three-second	loop	for	a
given	block	size	of	data.	Using	the	first	row	as	an	example,	the	Core	i7	processor	with	0.9.8zh	OpenSSL
processed	a	64-byte	block	of	data	119,176	k	(119,176,000)	times	in	three	seconds:

Processor OpenSSL AES-NI 64b 256b 1024b 8192b

Core	i7 0.9.8zh No 199176k 200787k 200551k 202035k

1.1.0c No 155980k 167962k 164110k 169149k

1.1.0c Yes 850780k 881499k 870568k 791729k

Xeon	E5620 1.0.1p No 74303k 76464k 159140k 161211k

Xeon	E5-2667	(VM) 1.0.1s No 148654k 150422k 320264k 272821k

1.0.1s Yes 713594k 689075k 628269k 606528k

Xeon	E5-2667 1.0.1t No 118538k 120478k 129010k 121615k

1.0.1t Yes 575961k 778077k 799980k 669006k

Xeon	E5-2620 1.0.1s No 114402k 116569k 117204k 117861k

1.0.1s Yes 568017k 579300k 583670k 584672k

Xeon	E5420 1.0.1s No 78946k 80695k 169830k 174044k

1.0.1s Yes 208732k 215091k 217418k 217629k

Xeon	E5-2640	v3 1.0.1e No 148663k 152249k 152971k 153944k

1.0.1e Yes 350461k 354483k 357717k 356810k

There	are	a	few	notable	results	in	the	preceding	table.	First,	the	Xeon	E5-2620	through	VMware	with	a
FreeBSD	10.3	system.	Despite	the	virtualization	involved,	the	raw	throughput	was	right	on	par	with	the
performance	of	bare-metal	systems.	For	the	Xeon	E5-2667	results,	I	have	posted	data	for	both	virtualized

and	bare-metal.	The	results	are	so	close,	it	is	difficult	to	tell	if	the	performance	delta	is	due	to
virtualization	or	the	minor	version	difference	between	the	VM	and	host	system.

Single	thread
A	final,	significant	item	to	note	is	that	OpenVPN	is	single-threaded	(inclusive	of	OpenVPN	2.4).
Regardless	of	how	many	processors	or	threads	provided	by	the	CPU,	OpenVPN	will	be	limited	to	a
single	thread.	In	various	tests	in	recent	years,	a	realistic	limit	of	about	200	client	connections	is
considered	the	maximum	before	performance	falls	off	considerably.

It	is	possible	to	work	around	this	limitation	using	load	balancing	across	multiple	OpenVPN	server
instances.	These	scenarios	are	more	complicated	as	they	require	the	administrator	do	additional
configuration	to	ensure	the	two	(or	more)	instances	are	able	to	communicate	and	clients	are	able	to
connect	to	the	appropriate	server(s).

The	inclusion	of	AES-NI	helps	with	this	single-threading,	as	the	cryptographic	operations	can	be
offloaded,	speeding	up	the	processing	of	each	packet.	On	slow	systems	and	those	systems	that	do	not
include	crypto-offloading,	performance	will	be	significantly	slower.

Summary
There	are	a	number	of	different	factors	that	can	affect	the	performance	of	your	VPN.	Some	of	these
components	will	affect	the	client	or	server	independently,	but	the	overall	VPN	functionality	will	be
influenced.	Network	conditions	on	the	hosting	Internet	service	provider,	CPU	and	resource	availability,
and	transport	technology	are	but	a	few	things	to	look	at	when	troubleshooting	performance	problems.

In	this	chapter,	I	have	illustrated	some	tools	that	can	help	determine	performance	as	well	as	provided
hints	as	to	what	can	lead	to	performance	degradation.	At	this	juncture,	you	should	be	able	to	identify	these
items,	along	with	many	that	were	not	mentioned.

Your	troubleshooting	should	concentrate	on	the	things	you	can	quantitatively	test	and	measure,	followed
by	those	components	or	variables	you	have	control	of.

Chapter	9.	External	Problems
OpenVPN,	by	itself,	can	be	a	complex	system,	with	given	certificates,	keys,	configuration,	scripts,
hardware,	and	so	on.	The	previous	eight	chapters	of	this	book	have	touched	on	troubleshooting	techniques
and	points	on	where	to	look	within	OpenVPN	to	address	problems.	However,	once	all	the	internal
problems	have	been	addressed,	there	are	still	several	external	influencers	that	can	create	additional
hassles	for	your	VPN.

Troubleshooting	external	factors	for	many	things	can	be	a	difficult	endeavor.	In	most	cases,	you'll	be
looking	into	a	veritable	black	box	for	which	you	don't	have	a	key.	By	setting	up	a	VPN	server,	you	are
relying	upon	your	Internet	Service	Provider	(ISP)	to	allow	transit	for	your	VPN	traffic	on	both	the
server	and	client	side	of	the	connection.

Inspection	and	filtering
Whether	you	are	operating	a	server	as	a	corporate	tool	or	setting	up	a	system	to	escape	a	hostile
environment,	there	may	be	network	policies	in	place	that	may	prevent	the	successful	operation	of	an
OpenVPN	connection.	If	you	are	a	user	on	a	large	corporate	or	government	network,	it	may	be	against
usage	policy	to	create	a	VPN	tunnel	and	technology	may	be	deployed	to	actively	thwart	such	a	tunnel.

Both	corporate	network	administrators	and	many	governments	around	the	world	are	doing	something
named	Deep	Packet	Inspection	(DPI).	A	traditional	firewall	will	only	look	at	what	the	protocol	and	port
traffic	is	using	and	allow	or	deny	the	traffic.	This	method	will	not	prevent	someone	from	moving	a	service
that	is	blocked	to	an	allowed	port	to	circumvent	the	firewall.

A	firewall	or	border	gateway	enabled	with	DPI	is	able	to	look	beyond	just	the	protocol	and	port	and
actually	look	at	what	the	traffic	is.	In	some	cases,	this	can	be	to	ensure	TLS	traffic	is	actually	taking	place.
The	inspection	can	go	further,	looking	for	prohibited	patterns	of	data	such	as	social	security	or	credit	card
numbers,	password	hashes,	and	more.	The	Great	Firewall	of	China	(aka	Golden	Shield	Project)	is	a	well-
known	example	of	DPI	at	a	national	scale,	and	is	known	to	filter	according	to	strict	rules.

OpenVPN	does	not	do	anything	to	obfuscate,	or	hide,	tunnel	traffic.	The	encapsulated	data	is	secure,	but
someone	looking	at	the	traffic	will	know	there	is	an	encrypted	tunnel	in	place.	Wireshark	even	has	an
OpenVPN	protocol	filter	(see	the	Wireshark	Wiki	at	https://wiki.wireshark.org/OpenVPN	for	additional
information).	The	simplest	analogy	I	can	use	is	that	of	a	locked	tractor	trailer.	You	know	someone	is
transporting	goods,	of	some	sort,	between	two	places,	but	without	the	key,	you	don't	know	what	is	inside
the	trailer.

There	are	a	few	unique	ways	an	ISP	or	other	transit	provider	may	filter	OpenVPN.	First,	many	OpenVPN
tunnels	use	the	Internet	Assigned	Numbers	Authority	(IANA)	assigned	port	of	1194.	The	simplest
firewall	can	simply	restrict	udp/1194	and	tcp/1194	(or	not	allow	them,	in	the	case	of	default-deny
policies).

To	illustrate	some	of	the	traffic	inspection	capabilities,	we	can	see	in	the	following	screenshot	how
Wireshark	is	able	to	identify	the	OpenVPN	traffic	in	the	data	stream:

https://wiki.wireshark.org/OpenVPN

Wireshark	recognizing	the	OpenVPN	protocol	and	HMAC	headers

If	you	suspect	that	your	traffic	is	a	victim	of	DPI,	you	can	do	a	few	things	to	test	the	theory.

The	simplest	test	is	to	simply	change	the	server	port	number	away	from	the	known	OpenVPN	ports	(1194
and	the	older	5000).	Initially,	I	suggest	retaining	the	current	protocol	you're	using,	whether	it	be	UDP	or
TCP.	If	your	traffic	begins	working,	it's	possible	that	there	is	an	explicit	block	of	the	OpenVPN	ports.	It
may	be	useful	to	open	a	support	ticket	to	request	the	port	be	opened	or	unblocked.

The	next	step	in	troubleshooting	OpenVPN	filtering	is	to	attempt	to	piggy	back	on	the	outbound	tcp/443
firewall	rule.	Many	organizations	do	not	currently	possess	the	means	to	perform	full	DPI,	so	we	allow
outbound	HTTPS	connections.	In	my	experience,	even	some	systems	that	do	full	inspection	fail	to	follow
the	HTTPS	stream	so	ignore,	but	do	not	block,	the	traffic.

Tip

The	intent	of	this	section	is	not	to	encourage	rogue	network	traffic	or	to	enable	a	user	to	bypass	normal

security	controls.	In	a	hostile	environment,	this	behavior	may	trigger	other	alerts	however,	attracting	the
attention	of	the	network	operator	and	further	scrutiny.

Obfuscation
There	is	an	apparent	misunderstanding	about	the	differences	of	encrypting	data	and	hiding	or	anonymizing
that	data.	These	are	two	separate,	distinct,	concepts,	and	I	feel	that	it	needs	to	be	cleared	up	for	many
novice	VPN	users.

First,	let's	discuss	obfuscation.

	 obfuscate:	1.	to	make	dark	or	obscure	2.	Confuse 	

	 --The	Merriam-Webster	dictionary.	Eleventh	edition.	2004.	Print.

The	concept	of	obfuscation	is	to	confuse,	misdirect,	or	hide,	VPN	traffic.	The	idea	here	is	to	make	the
traffic	blend	in	to	the	background	in	such	a	way	as	it	appears	as	other,	normal	traffic.	The	end	goal	of
these	solutions	is	to	completely	hide	the	fact	that	a	VPN	is	running	at	all.

In	the	wild,	projects	such	as	obfsproxy	(https://www.torproject.org/docs/pluggable-transports.html.en)
encapsulate	VPN	or	other	traffic	inside	an	HTTPS	tunnel,	making	it	appear	as	normal	web	browsing.	You
can	read	more	on	using	obfsproxy	with	OpenVPN	on	the	community	Wiki	page	at
https://community.openvpn.net/openvpn/wiki/TrafficObfuscation.

https://www.torproject.org/docs/pluggable-transports.html.en
https://community.openvpn.net/openvpn/wiki/TrafficObfuscation

Encryption
Now	that	we	have	defined	obfuscation,	we	can	move	on	to	understanding	encryption.	Encryption	is	the
act	of	coding	something	in	such	a	way	that	only	the	sender	and	receiver	understand	the	intended	message,
even	if	other	parties	can	view,	or	overhear,	the	coded	message.

	 encrypt:	1:	ENCIPHER	encipher:	to	convert	(a	message)	into	cipher	cipher:	2a:	a	method	of	transforming	a	text	in	order	to
conceal	its	meaning															b:	a	message	in	code

	

	 --The	Merriam-Webster	website

OpenVPN	provides	the	encryption	via	the	OpenSSL	or	PolarSSL	libraries.	Making	use	of	static	keys	or
certificate/key	pairs	provides	a	method	to	encode	data	within	the	tunnel	in	such	a	way	that	only	the	two
endpoints	can	decrypt	the	data.

Note

Anonyproz	has	a	decent	write	up	about	disguising	OpenVPN	traffic	as	HTTPS	on	their	website	at
https://www.anonyproz.com/supportsuite/index.php?
_m=knowledgebase&_a=viewarticle&kbarticleid=174.

https://www.anonyproz.com/supportsuite/index.php?_m=knowledgebase&_a=viewarticle&kbarticleid=174

Geographic	and	source	address	exclusions
In	the	past	couple	of	years,	some	online	music	and	video	streaming	services	have	been	known	to	block
users	based	on	their	geographic	location	(geo-blocking).	This	blocking	is	accomplished	using	tools	that
lookup	the	known	physical	location	of	IP	addresses,	either	via	Wi-Fi	router	mapping	(Google	Maps,	for
example)	or	through	registrar	lookup	data	when	more	specific	details	are	unknown.

Distribution	licenses	or	agreements	and	local	laws	help	determine	where	a	distributor	may	want	to	make
content	available,	even	when	the	user	base	has	a	differing	opinion	on	the	matter.	Almost	as	soon	as	geo-
blocking	was	invented,	users	began	using	VPNs	to	work	around	these	restrictions.

Services	such	as	StrongVPN	and	HideMyAss	popped	up	to	defeat	these	blockages,	promising	users	while
traveling,	or	users	that	reside	outside	a	distribution	region,	access	to	that	content:

Netflix	when	attempting	to	bypass	geo-blocking

What	can	be	done

Fortunately,	many	hobbyists	and	home	users	will	not	see	a	problem	with	streaming	services	getting
blocked	when	using	a	private	VPN.	There	are	a	few	things	these	providers	look	for	to	determine
connection	proxying.

Source	IP	address

The	first	thing	that	is	looked	at	is	the	IP	from	where	a	streaming	session	is	requested.	Using	GeoIP
services,	the	provider	will	look	up	the	known	or	assumed	geographical	location	and	base	filtering	on	that
data.

Through	the	use	of	a	VPN,	the	user	can	change	the	apparent	requesting	IP	to	a	location	favorable	for	the
desired	content.	For	example,	a	user	in	Canada	can	bounce	or	route	through	a	VPN	system	hosted	in
Dallas,	Texas,	to	access	USA-locked	content,	as	shown	in	the	following	graphic:

Routing	streaming	traffic	through	a	VPN	in	another	region

With	a	small	number	of	users,	this	will	likely	work,	where	things	will	go	sideways.	However,	if	too	many
users	begin	using	the	same	single	IP	address	for	streaming,	the	service	provider	will	likely	realize	this
behavior	and	begin	blocking	the	content.

DNS	settings

Content	providers	and	Content	Distribution	Networks	(CDNs)	alike	use	DNS,	along	with	some	tricks
using	BGP,	to	point	systems	to	a	local	cache	server.	This	saves	on	transit	costs,	overall,	for	both	the	CDN
as	well	as	the	ISP	hosting	the	cache.

In	my	failed	attempt,	described	previously,	I	used	only	a	DNS	provider	to	change	my	apparent	location
and	the	Netflix	servers	were	able	to	see	my	apparent	proxy.	This	was	due	to	my	DNS	query	result
differing	from	my	IP	route.

When	using	geographically	sensitive	DNS	queries,	ensure	that	the	DNS	queries	originate	from	the
locations	that	will	be	requesting	the	data.

Routing	path	performance
Another	component	that	is	generally	outside	the	control	of	a	network	operator	is	the	overall	network	path.
Peering	agreements	between	upstream	providers	will	determine	the	final	path	traffic	with	traverse.	This
path	will	often	be	weighted	toward	monetary	cost	and	not	always	network	path	cost.

For	many	years,	I	ran	the	network	for	a	small	company	in	Minneapolis,	MN,	with	the	majority	of	our
customers	being	local	to	Minneapolis.	On	occasion,	I	would	receive	complaints	of	slow	performance	of
our	network	as	customers	attempted	to	communicate	with	our	systems.

After	troubleshooting,	we	would	identify	a	slow	hop	in	the	path	between	their	systems	and	our	systems.
The	most	frustrating	part	was,	physically,	our	facilities	were	only	10	or	so	miles	apart	(16	km),	but	the
network	path	would	go	approximately	400	miles	(645	km)	to	Chicago	and	another	400	miles	back.

At	the	time,	due	to	our	hosting	situation,	we	did	not	have	the	tools	or	agreements	in	place	to	change	the
network	routing.	Eventually,	we	were	able	to	make	an	agreement	with	the	Midwest	Internet	Cooperative
Exchange	(http://micemn.net).	Using	this	exchange,	other	ISPs	connected	to	the	exchange,	large	and	small,
would	keep	local	traffic	local.

As	a	VPN	administrator,	it	may	be	useful	to	consider	the	geographic	needs	of	the	business	or	use	and
route	traffic	sensibly.	Some	useful	tools,	such	as	mtr,	were	presented	in	Chapter	1,	Troubleshooting
Basics.	Knowing	how	traffic	is	routed	for	your	customers	and	clients	will	reduce	potential	performance
problems.

http://micemn.net

Summary
The	most	basic	VPN	tunnel,	like	the	one	created	using	the	Static	Key	Mini-Howto
(https://openvpn.net/index.php/open-source/documentation/miscellaneous/78-static-key-mini-
howto.html),	involves	only	a	few	components	and	can	be	relatively	easy	to	troubleshoot.	As	functionality
and	capability	is	added,	however,	additional	components	are	leveraged,	which	will	require	their	own	set
of	troubleshooting	techniques.	By	writing	Troubleshooting	OpenVPN,	it	was	my	goal	to	provide	two
specific,	unique,	sets	of	information.

The	first	tool	is	the	OpenVPN	specific	knowledge	and	known	issues	presented	here.	This	spans
the	breadth	of	issues	identified	by	users	on	Internet	Relay	Chat	(IRC),	the	web	forums
(https://forums.openvpn.net),	and	the	mailing	list	(http://sourceforge.net/p/openvpn/mailman/).	These	are
the	most	common	occurring	problems	or	sticking	points	encountered	by	both	experts	and	novices,	alike.

The	second	tool	I	tried	to	provide	is	a	more	general	technique	for	troubleshooting.	This	techniques
applies	to	anything	from	fixing	a	broken	lamp	to	a	complex	OpenVPN	deployment.	Throughout	the	book,	I
demonstrated	splitting	a	failure	into	the	functional	components,	how	to	identify	what	is	working,	and	how
to	tackle	the	non-working	piece.

As	I'm	finishing	this	book,	the	developers	are	working	hard	on	the	final	release	for	OpenVPN	2.4	(as	this
is	written,	2.4	release	candidate	2	is	already	out).	The	new	release	has	a	long	list	of	new	features	and
enhancements.	While	exciting,	these	will	all	present	their	own	troubleshooting	and	deployment
challenges.	You	can	check	the	release	notes	for	2.4
at	https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn24.

https://openvpn.net/index.php/open-source/documentation/miscellaneous/78-static-key-mini-howto.html
https://forums.openvpn.net
http://sourceforge.net/p/openvpn/mailman/
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn24

Useful	links
In	case	they	were	missed	throughout	the	book,	here's	a	list	of	some	useful	links	related	to	the	OpenVPN
project.

Manual	or	man	pages

The	manual	or	man	pages	provide	the	detailed	documentation	of	the	various	configuration	parameters
and	limitations	for	configuration	of	OpenVPN.	These	documents	will	illustrate	each	given	version's
capabilities	and	how	to	use	them.	The	man	pages	should	be	a	first-resort	reference.	The	various	man
pages	are	as	follows:

2.0:	https://openvpn.net/index.php/open-source/documentation/manuals/openvpn-20x-manpage.html
2.1:	https://openvpn.net/index.php/open-source/documentation/manuals/openvpn-21.html
2.2:	https://community.openvpn.net/openvpn/wiki/Openvpn22ManPage
2.3:	https://community.openvpn.net/openvpn/wiki/Openvpn23ManPage
2.4:	https://community.openvpn.net/openvpn/wiki/Openvpn24ManPage

Release	notes

For	each	release,	the	OpenVPN	developers	publish	a	change	list	and	a	set	of	release	notes.	Typically,
these	will	document	the	most	notable	changes	between	the	previous	release	and	the	current	release.	When
upgrading,	it	is	recommended	to	read	through	the	entirety	of	release	notes	between	your	current	version
and	the	version	to	which	you	are	upgrading.	The	various	release	notes	are	as	follows:

2.0:	https://openvpn.net/index.php/open-source/documentation/release-notes.html
2.1:	https://openvpn.net/index.php/open-source/documentation/change-log/changelog-21.html
2.2:	https://openvpn.net/index.php/open-source/documentation/change-log/45-open-source/change-
log/425-changelog-for-openvpn-22.html
2.3:	https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
2.4:	https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn24

Support	channels

There	are	a	few	different	sources	of	support	available	to	you	for	the	open	source	(aka	community)	version
of	OpenVPN.	The	mailing	list	is	probably	the	most	commonly	used	medium,	but	there	can	be	a	delay,	like
the	forums,	due	to	the	asynchronous	communication	method.	Often,	however,	you	will	receive	a	thoughtful
and	detailed	reply.	IRC	offers	the	most	real-time	support	option,	but	active	users,	versus	those	only
idling,	varies	by	time	of	day.	Use	whichever	of	the	following	you	are	most	comfortable	with:

IRC:	https://freenode.net,	#openvpn	and	#openvpn-devel
Web	forum:	https://forums.openvpn.net
Mailing	list:	https://sourceforge.net/p/openvpn/mailman/
Bug	tracker:	http://community.openvpn.net/openvpn/report/1
Source/contributions:	https://github.com/openvpn/

https://openvpn.net/index.php/open-source/documentation/manuals/openvpn-20x-manpage.html
https://openvpn.net/index.php/open-source/documentation/manuals/openvpn-21.html
https://community.openvpn.net/openvpn/wiki/Openvpn22ManPage
https://community.openvpn.net/openvpn/wiki/Openvpn23ManPage
https://community.openvpn.net/openvpn/wiki/Openvpn24ManPage
https://openvpn.net/index.php/open-source/documentation/release-notes.html
https://openvpn.net/index.php/open-source/documentation/change-log/changelog-21.html
https://openvpn.net/index.php/open-source/documentation/change-log/45-open-source/change-log/425-changelog-for-openvpn-22.html
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn24
https://freenode.net
https://forums.openvpn.net
https://sourceforge.net/p/openvpn/mailman/
http://community.openvpn.net/openvpn/report/1
https://github.com/openvpn/

	Troubleshooting OpenVPN
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Customer Feedback
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Troubleshooting Basics
	A recommended toolkit
	Log search and filtering
	grep
	less, more, and most
	Regular expressions
	Network sniffing and analysis
	tcpdump
	traceroute
	mtr
	ping
	Wireshark
	X.509 verification and inspection
	OpenSSL
	Wireshark
	Troubleshooting basics
	Summary
	2. Common Problems
	Narrowing the focus
	Sample scenarios
	Scenario 1--unable to access VPN
	Scenario 2--cannot access external web when on VPN
	Suspecting recent changes
	Supported operating systems
	Embedded devices
	Semi-embedded systems
	Virtual servers
	IP addresses
	Firewalls
	Duplicate client certificates
	Overcomplication
	Summary
	3. Installing OpenVPN
	Common installation problems
	Compiling OpenVPN
	Packages and installers
	The advantages of precompiled installers
	Driver installation
	Alternative clients
	Summary
	4. The Log File
	Logging options
	Logging levels
	Verbosity 0
	Verbosity 1
	Verbosity 4
	Verbosity 7
	Common log messages
	Startup messages
	Version and compile string
	Option warnings
	Configuration parameters
	Operational messages
	Certificate messages
	Summary
	5. Client and Server Startup
	File and process permissions
	Privilege de-escalation
	Networking privileges
	Port assignment and use
	Multiple daemons
	Adapter and routing table changes
	Chroot
	Scripting
	Up and down scripts
	Connect and disconnect scripts
	UDP troubleshooting
	UDP and firewalls
	Summary
	6. Certificates and Authentication
	File permissions
	Pre-shared keys
	Certificate authentication
	Certificate chain overview
	The Certificate Revocation List
	System date and time
	Authentication and plugins
	Usernames and passwords
	--ccd-exclusive
	Summary
	7. Network and Routing
	Connectivity
	Inbound connection--server
	Publicly addressed server
	Privately addressed server with port forwarding
	Outbound connection--client
	Firewall filters and inspection
	TLS authentication
	Routing
	Internal routing
	External routing
	Pushing routes
	Routes behind clients
	Kernel versus process routing
	Route conflicts
	Redirect gateway
	General network concerns
	Path MTU and MSS
	Summary
	8. Performance
	Networking
	Rate limiting
	Cryptographic performance
	Library differences
	Cipher and AES-NI
	Result summary
	Single thread
	Summary
	9. External Problems
	Inspection and filtering
	Obfuscation
	Encryption
	Geographic and source address exclusions
	What can be done
	Source IP address
	DNS settings
	Routing path performance
	Summary
	Useful links
	Manual or man pages
	Release notes
	Support channels

