THE BOOK
OF IMAP

IIIIIIIIIIIIIIIIIIIIIII COURIER

The Book of IMAP

Peer Heinlein = Peer Hartleben

The Book of IMAP

Building a Mail Server with Courier and Cyrus

=

NO STARCH
PRESS

Munich San Francisco

The Book of IMAP: Building a Mail Server with Courier and Cyrus. Copyright © 2008 Open Source
Press GmbH

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed on recycled paper in the United States of America.
123456789 10—08 070605

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners.
Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the
names only in an editorial fashion and to the benefit of the trademark owner, with no intention of in-
fringement of the trademark.

Publisher: William Pollock

Cover Design: Octopod Studios

U.S. edition published by No Starch Press, Inc.

555 De Haro Street, Suite 250, San Francisco, CA 94107

phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com

Original edition © 2007 Open Source Press GmbH

Published by Open Source Press GmbH, Munich, Germany

Publisher: Dr. Markus Wirtz

Original ISBN 978-3-937514-11-6

For information on translations, please contact

Open Source Press GmbH, Amalienstr. 45 Rg, 80799 Miinchen, Germany

phone +49.89.28755562; fax +49.89.28755563; info@opensourcepress.de; http://www.opensourcepress.de

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor Open Source Press GmbH nor
No Starch Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

Library of Congress Cataloging-in-Publication Data

Heinlein, Peer

[POP3 und IMAP. English]

The book of IMAP: building a mail server with Courier and Cyrus / Peer Heinlein
and Peer Hartleben.--

. cm.

Includes index.

ISBN-13: 978-1-59327-177-0

ISBN-10: 1-59327-177-8
1. Electronic mail systems-Computer programs. 2. Electronic mail
systems-Standards. 3. Computer network protocols. 4. Web servers. I.
Hartleben, Peer. II. Title.

TK5105.73.H45 2008

004.692-dc22

2008012396

Contents

Introduction

| How To Set Up and Maintain IMAP Servers

1 Protocols and Terms
1.1 Why Is IMAP So Complex?

1.2 Comparing Courier and Cyrus

2 POP3 and IMAP at the Protocol Level
21 POP3
2.1.1 TestSession
2.1.2 Authentication via APOP and KPOP
22 IMAP ...
2.2.1 The Design of the IMAP Protocol
2.2.2 Transcript of an IMAP Session
2.2.3 APractical Viewof IMAP
2.2.4 Subscribing to IMAP Folders

3 Load Distribution and Reliability
31 LoadBalancer
3.1.1 DNSRoundRobin
3.1.2 Round Robin via iptables
3.1.3 Linux Virtual Server

3.2 IMAP Proxies i i e

13

15

17
19
20

23
23
24
27
28
29
31
33
41

Contents

Selecting a Filesystem

4.1
4.2

4.3
4.4

A Performance Test
Tuning the Performance of the Filesystem
42,1 Theatime..
4.2.2 Access Control Lists
4.2.3 The Ext2/Ext3 Option dir_index.
424 JournalMode
4.2.5 Optimized fstabEntries
RAID . . .

4.4.1 Disabling atime and Optimizing Block Size.
442 NFSVersion3..........................
443 Fastl/O

Complementary Webmail Clients

5.1
5.2
5.3

Squirrelmail
Horde/IMP
Fast Access via the IMAP Cache Proxy

Migrating IMAP servers

6.1
6.2
6.3
6.4

Migration Using imapsync
Converting mbox tomaildir
Modifying Folder Names

Determining Cleartext Passwords

Courier-IMAP

Structure and Basic Configuration

7.1
7.2
7.3
7.4

Installing the Software
What IsWhere?
Initial Start-Up
Courier and MTAs
7.4.1 Courier and Postfix
74.2 CourierandQMail

743 Courierand Exim

53
55
57
57
58
58
60
62
62
63
64
64
65

67
68
70
73

75
76
78
79
81

83

85

87

Contents

7.5 Optimizing the Configuration
7.5.1 Real and “False” Configuration Parameters
7.5.2 POP3 Configuration in /etc/courier/pop3d

7.5.3 Configuring the IMAP Daemon in /etc/courier/
imapd

7.6 The Configuration Files for SSL

8 Maildir as Email Storage Format
8.1 The IMAP Namespaceouveneen.o...
8.2 Filenames of Emails
8.2.1 Keywords: Custom IMAP Flags

9 User Data
9.1 authtest and DEBUG_LOGIN for Debugging Assistance
9.2 The authdaemond
9.3 Authentication viaPAM
9.4 The authuserdbModule
9.4.1 Converting passwdintoauserdb
9.4.2 Maintaining Account Data with userdb
9.4.3 Creating a Binary Version of the User Database
9.4.4 Separating the userdb into Multiple Files
945 Theatime.
9.5 Using QMail’s vchkpw Library for Authentication
9.6 Implementing Custom Authentication Methods
9.7 Integrating External Authentication Programs
9.8 Authentication viaMySQL
9.9 Authentication via PostgreSQL
9.10 Authentication viaLDAP
9.11 Obsolete Authentication Modules
9.11.1 The authpwdModule
9.11.2 The authshadowModule
9.11.3 The authcramModule
9.12 User Options o o vttt i e e e e e
9.12.1 Saving User Options in theuserdb
9.12.2 Individual User Options in an LDAP Directory

95
96
96

99
102

107
110
111
115

Contents

9.12.3 Storing User Options in Dedicated Fields in an SQL

Table 147

9.13 Saving Passwords: Cleartext or Hash? 147
9.14 Username Selection When Maintaining Multiple Domains . . . 150
10 The Work of a Courier Administrator 153
10.1 Shared Folders 153
10.1.1 Setting Up Virtual Shared Folders 154

10.1.2 Creating Filesystem-Based Shared Folders 163

10.2 Quotas e e e e e e 166
10.2.1 Quotas for Courier, 167

10.2.2 Quotasandthe MDA 172

10.3 Building an IMAP Proxy with Courier 175
10.4 Push Instead of Pull: The IDLE Command 176
10.5 Sending Emails via the IMAP Server 178

Il Cyrus-IMAP 181
11 Structure and Basic Configuration 183
11.1 Installing Cyrus i 184
11.1.1 OpenSuSE/SuSE Linux Enterprise Server (SLES) 185

11.1.2 Fedora Core/Red Hat 186

11.1.3 Debian e 186

11.2 The Cyrus Hierarchy and Permissions System 187
11.3 Features and Functions 188
11.4 Quick Start e 190
11.4.1 Authentication and Mailboxes 194

11.4.2 Tests o o e 195

12 A Closer Look at the Configuration Files 199
12.1 /etc/cyrus.conf Lo 199
12.1.1 The START{} Section 200

12.1.2 The SERVICES{} Section 200

12.1.3 The EVENTS{} Section 201

12.2 /etc/imapd.confo 203

Contents

13 Authentication and Safeguards 207
13.1 Encrypting with SSL/TLS 208
13.1.1 SSL Transmission Types 208
13.1.2 Real and Fake Certificates 208
13.1.3 Creating and Integrating SSL Certificates 209

13.2 Cyrus SASLo 211
13.2.1 Cyrus SASLModules 212
13.2.2 The auxpropModule 213
13.2.3 The Authentication Process 214

13.3 Calling Different Data Sources 215
13.3.1 Standard Authentication Methods for Unix 215
1332 sasldb2 216
13.3.3 Cyrusand MySQL 216
13.3.4 Cyrusand LDAP i 220
13.3.5 Cyrus and Kerberos 223

14 Advanced Cyrus Configuration 225
14.1 Mailbox Quotas e 225
14.1.1 Automatic Quotas 226
14.1.2 Manual Quotas 228

14.2 Shared Folders and ACLs 230
14.3 Virtual Domains 232
14.3.1 The Underlying Concept 232
14.3.2 Effects on ACLs oottt 236
14.3.3 Domain Administrators 237

14.4 Sorting Emails into Subdirectories 237
14.5 Email Partitions L 239
14.6 The Sieve Email Filter 240
14.6.1 The Email Filter Daemon timsieved 240
14.6.2 Configuring and Testing 240
14.6.3 The sieveshell Administration Tool 242
14.6.4 The Sieve Script Language 246

14.6.5 Setting Up Sieve Scripts Automatically for New Accounts 251
14.6.6 Adapting Sieve Scripts L. 252

Contents

14.8 Cyrus and Other MTAs
14.9 Backing Up and Restoring Data
14.9.1 Using reconstruct to Repair Mailboxes
14.9.2 Restoring Quotas
14.10 Performance Tuning

14.10.1 Parameters in /etc/imapd.conf that influence per-
formance 0 .

15 Internal Structure and Modules
15.1 The Cyrus Daemons
15.2 Tools for Analysis, Maintenance, and Repairs
15.2.1 Statistics and Analysis
15.2.2 Maintenance and Repair
15.23 Internal Tools
15.3 Other In-House Tools

15.4 The cyradm Administration Tool

16 Cyrus at the Filesystem Level
16.1 The Email Directory

16.2 The Administration Directory

17 Cyrus in a Cluster
17.1 The Cyrus Aggregator
17.1.1 The Aggregator Concept
17.1.2 The Cluster Setup
17.2 Cyrus Replication o ...

17.2.1 Replicating the Authentication Data

261
262
263
263
266
268
269
271

275
275
277

10

Contents

Appendixes

A IMAP Command Reference

Al
A2
A3
A4
A5
A.6

Commands Always Available to Clients
Commands Available in the Not-Authenticated Status
Commands Available in the Authenticated Status . .
Commands Available in the Selected Status
IMAP Extensions

Experimental Commands

B POP3 Command Reference

B.1

An Overview of All Commands

C Installing from the Source Code

Cl1
C.2

Courier
CYIUS . . . v oo e
C2.1 CyrusSources.
C.2.2 CreatingaSystem User
C.2.3 Installing Cyrus SASL
C.2.4 Installing the Cyrus IMAP Server
C.2.5 Convenient Starting and Stopping

293

295
296
297
298
303
314
316

317
318

1

Introduction

There is very little specialist literature available on IMAP servers, and no
current documentation deals with the subject in sufficient depth.

There is a real need for a guide to IMAP. A quick look at relevant mailing
lists shows that they are full of questions and problems, indicating that the
software solutions now in use raise many issues. IMAP may seem to be a
simple affair and to require little in the way of configuration, but there are
plenty of pitfalls when an IMAP server is designed for a large number of
users or when elaborate additional features are added to a basic installa-
tion.

We have specialized in Courier and Cyrus during the last few years. Both
offer distinct advantages and disadvantages, so the appropriate choice of
software depends on the project. Peer Heinlein mainly works with Courier
IMAP, and he uses it to implement mail servers for large ISPs that are
designed to accommodate tens or hundreds of thousands of users. Peer
Hartleben uses Cyrus IMAP for mail servers in small and large compa-
nies, which require Cyrus user administration—sometimes via a console—
and server-based filtering of mail using Sieve. Peer Heinlein has therefore
written the introduction and the Courier section of this book, and Peer
Hartleben has written the section on Cyrus.

Neither Courier nor Cyrus have had suitable documentation (until now).
We have to admit: This book was hard work. There were many behaviors
and call parameters that we had to debug and test by trial and error, or
understand by analyzing the source code, because their significance was
not documented anywhere. The project mailing lists often were not helpful,
frequently containing more questions than answers.

The detailed work on this book took far longer than we had originally sus-
pected it would, and there were repeated delays in publication. But, finally,
we have an exhaustive and up-to-date reference on the subjects of IMAP,
Courier, and Cyrus. Considering the importance of email communication,
we hope that this book will help many administrators and postmasters in
their work.

This book is in its first edition and is still not truly complete. We had to
postpone discussion of some small details until the second edition. Also,

13

Introduction

when interpreting behavior that had no or insufficient documentation, we
ran as many tests as possible to try to gain an accurate picture; neverthe-
less, we cannot rule out errors and omissions.

We will therefore provide corrections and additions at http://www. imap-
buch. com/. You are very welcome to leave helpful suggestions, references,
or corrections for us there. This kind of help is very important to us. Please
tell us which subjects you found interesting, which topics remained unclear
after you read our explanations, and where you suspect we made a mistake.
The website contains a link to the mailing list imap-buch, which, we hope,
will soon develop into a lively and competent discussion.

Once this book has been sent to the printers, many people will heave a
large sigh of relief. We are very grateful to these people. First, we have to
thank our editor, Patricia Jung, for her perseverance in adding the finishing
touches and questioning every detail. We authors often despaired of relief
from her scrutiny, but she is the reason for the high quality of this book.
Thanks to her specialist knowledge, she also was able to provide many sug-
gestions and explanations.

The rest of the Open Source Press team, Markus Wirtz and Ulrich Wolf, also
played an important part in making this book a reality—and gained not a
few grey hairs during the process. (Sorry!)

Arnt Gulbrandsen and his detailed knowledge of IMAP were also a great
help, and we would like to thank him for his commitment. We would also
like to thank Frank Richter from TU Chemnitz for helping us in our battle
with the Cyrus cluster.

We also had behind-the-scenes help from members of the Heinlein Support
team, who did the preliminary work, made measurements (to be honest,
they did the heavy lifting), researched details, and did some of our own
tasks as well, so that we were able to concentrate on the book itself: Thank
you, Stefan, Holger, Chrizz, Henri, Christian, Matthias, and Christiane.

As customary when writing a book, we want to thank our loved ones, and
tell them that “it will all get better now.” So we would like to tell our four
ladies: Now we can spend more time with you again! Thanks to our grown-
up ladies, Anja and Ivonne, who have gone through the whole process with
us, and who have had to live with the book hanging over every moment
of spare time like the sword of Damocles. And to our tiny women: Lara
Hartleben, who does not yet sleep through the night, and Heinlein Junior,
who does not yet have a name but has already entered the first contest of
her life: Who will be born first—her or The Book of IMAP? It seems as if the
book will win...

Peer Heinlein and Peer Hartleben Berlin, September 2007

14

Part |

How To Set Up and Maintain IMAP
Servers

Protocols and Terms

What is a mail server? This term could describe the particular machine in a
computer center that is responsible for sending and receiving users’ emails.
However, such a mail server actually consists of a variety of components
and programs, which use various protocols to communicate among them-
selves. The same is true of commercial software applications that combine
the many necessary functions into one product. In most cases, the differ-
ent mail server tasks can be distributed to more than one computer, which
means that “the mail server” may in fact consist of several machines that
together fulfill the different functions.

Mail servers use the Simple Mail Transport Protocol (SMTP) to communi-
cate and to deliver emails. Clients such as Outlook, KMail, Thunderbird,
and Evolution usually deliver emails to the relay server via SMTP. How-
ever, SMTP is suitable only for sending emails, not for receiving them. This
means that SMTP cannot be used to query a mailbox or create email direc-
tories in it. Likewise, a Mail Transfer Agent (MTA) transports emails received

17

1 Protocols and Terms

from clients or other servers to their destination, but has nothing to do with
mail-receiving protocols such as POP3 or IMAP. This book will not deal with
SMTP servers such as Postfix, QMail, Exim, or Sendmail, except marginally.
We simply assume that they work correctly.!

Post Office Protocol Version 3 (POP3) is a comparatively simple protocol
with few configuration options, so pure POP3 servers require very little ad-
ministration. Once they have been started or entered in the configuration
of the X(Inet) Daemon, emails can be retrieved on port 110 using POP3.

Internet Message Access Protocol (IMAP), the “grown-up” version of POP3, is
far more complex. This book will focus on the numerous ways that email
retrieval can be configured and on the administration of emails. Once you
have read it, you will be able to implement even demanding mail-handling
scenarios. Common IMAP servers also contain a small POP3 daemon, so
programmers who deal with the complexity of managing the IMAP protocol
will have no difficulty in providing a POP3 protocol “on the side.”

This book deals with the two most common open source IMAP protocols:
Courier IMAP and Cyrus IMAP. Both contain a POP3 server. When we re-
fer to “IMAP servers,” we mean both services, unless we are specifically
discussing the features of one of them.

The Local Message Transfer Protocol (LMTP) is closely related to SMTP, but
it is only used locally; for example, to transfer an email from a Mail Transfer
Agent (such as Postfix) to another component of the mail system, specifi-
cally to a Mail Delivery Agent (MDA). In this case, LMTP has an advantage
over SMTP: With LMTP, it is possible to determine the email addresses for
which a local transfer succeeds. Unlike SMTP, LMTP returns a status mes-
sage for each recipient after the DATA command. The status message speci-
fies the mailbox in which the email was actually saved. SMTP only indicates
whether the server was able to place an email for the recipient in a queue
for delivery at a later point in time. LMTP is also better in high-performance
environments.

You should only use LMTP locally within your own network; for example, to
transfer emails from the front relay (which receives via SMTP) to the actual
mail backend that does the saving. The protocol can be used, for example,
to connect Cyrus to the MTA (see section 11.4 on page 191).

Groupware is software that manages tasks, calendars, email contacts, and
address books on behalf of multiple users. Depending on the version, it
can also manage resources, rooms, files, or other kinds of objects. Email is
thus only a part of the functionality offered by groupware, but groupware
usually contains an email service. The IMAP servers introduced here are
not groupware servers, but some free groupware solutions such as Kolab,
OpenGroupware, and eGroupWare are based on IMAP, so this book may be
helpful when adapting such software to your needs as well.

1 See The Book of Postfix (No Starch Press, 2005) by Ralf Hildebrandt and Patrick Koetter
for more information on this subject.

18

1.1 Why Is IMAP So Complex?

1.1 Why Is IMAP So Complex?

The POP3 server waits until a user has logged on and then transfers the
unread messages that are saved in that user’s mailbox to the user’s mail
client. Depending on the client requirements, the messages are deleted
after transfer to save space, or flagged as read and retained. This is not
particularly demanding, so there is not much that can go wrong with the
software here.

An IMAP server operates differently: Not only does it deliver emails to users,
it also organizes the entire end-user email administration. The user’s email
client now functions as a kind of “remote control” for manipulating the
mailbox stored on the server.

An IMAP server provides storage space and stores all emails. For this rea-
son, it makes sense to use quotas, which force users to clean up occasion-
ally and free up valuable space. When a user creates folders for his or her
emails, the IMAP server has to represent this folder structure and sort the
emails correspondingly. IMAP also enables users to search messages for
specified senders or text and to flag emails, for example, as read, unread, or
answered. Users can also access shared folders in parallel.

An IMAP server enables a user to manage a mailbox from different com-
puters; the contents of the mailbox always consist of the same data records
no matter where it is accessed from, and the mailbox does not need to be
synchronized among the machines.

All these features make great demands on the IMAP protocol and the pro-
grammer. The configuration of an IMAP server does not require much at-
tention from the administrator once the server has been connected to a
user database. However, the operation of IMAP servers does contain a few
traps and technical difficulties, which we will examine in this book:

Performance
As the number of users increases, the load on the IMAP server be-
comes noticeable. In a large organization, the server has to manage
millions of emails, operate hundreds or thousands of IMAP connec-
tions in parallel, and deal with email searches and extensive copying
actions. Depending on the scenario, IMAP servers can consume con-
siderable RAM or create high I/0 loads on the data carriers.

Availability
Nowadays, email needs to be available around the clock, as any ex-
tended outage can endanger business. Once a certain number of
users has been reached, the infrastructure should be secured by us-
ing multiple servers, even if a robust IMAP server has been selected.

Storage
Email storage can increase to sizeable proportions, which necessi-

19

1 Protocols and Terms

tates the use of an NAS or SAN. Also, when an IMAP server is part of a
server cluster, it is no longer sufficient to use a directly attached hard
disk for storage.

Quotas
Implementing storage restrictions as quotas is not always easy and
requires precise planning.

Legal Situation
Emails are subject to the laws on privacy of communications. Not
many people are aware that administrators can be prosecuted for
negligence. However, this is a general problem with all email man-
agement, and this book will not deal with the topic further.

1.2 Comparing Courier and Cyrus

The requirements and size of the installation play an important part in the
selection of an IMAP server. Both Courier and Cyrus make low demands on
the CPU; fast 1/0 is required in both cases if there are more than approxi-
mately 20,000 users.

Both Courier and Cyrus enable users to share IMAP folders and adminis-
trators to limit the number of simultaneous logins. The user data can be
transferred from Unix accounts, read out via PAM, and stored in a LDAP
directory or in a MySQL or a PostgreSQL database.

In terms of user management, the real difference between the two lies in
secure authentication via Simple Authentication and Security Layer (SASL),
which is specified as an Internet standard in RFC 2222 (and used by Postfix
and other MTAs). In Cyrus, it is simple to implement, but in Courier, it
requires numerous kludges and dodges that are too much even for good
administrators. Instead, Courier uses a specially developed authentication
library, Authlib, whose central program is the authdaemond daemon. Cyrus
also supports the authentication library as an SASL module (see page 213).

Both servers allow POP3 and IMAP via SSL/TLS, either via the dedicated
ports 995 (POP3 via SSL) and 993 (IMAP via SSL) or via the commands
STLS (POP3, see page 319) and STARTTLS (IMAP, see page 297), and both
support virtual domains.

The most noticeable difference between Courier and Cyrus is the way they
manage email accounts and metadata. Courier uses only the filesystem
and ASCII files. The benefit is that nothing can break down; as long as the
filesystem is okay, Courier works. Courier uses the maildir format, which is
suitable for use via NFS, as no file locking is required.

On a Courier IMAP server, accounts automatically exist as long as, and as
soon as, they are listed in the user database. On the other hand, once

20

1.2 Comparing Courier and Cyrus

Cyrus knows the login data of a new user, it creates the account structure
automatically when the user first logs in. It is also possible to initialize new
mailboxes using the administration tool cyradm.

Courier administrators can use shell scripts to intervene in the system, but
Cyrus administrators always use cyradm to administer their servers.

Cyrus stores emails and administration information in small filesystem-
based databases. This is intended to speed up access when there are a
large number of emails, but the disadvantage is that accessing mail mes-
sages via an index is more prone to errors. Simple manipulations to the
email store, such as the deletion or addition of messages, are complex to
carry out. As NFS accesses internal databases, and index files are destroyed
if multiple Cyrus nodes access them in parallel, a functioning file locking
system is essential. The suitability of NFS therefore mainly depends on
the NFS version and the maturity of the locking mechanisms it provides;
however, most administrators prefer not to use this solution.

Cyrus has the advantage of being able to use the mail filter language Sieve.
It also provides a system of permissions for shared IMAP folders that is
easier to use to implement access control policies.

21

POP3 and IMAP at the Protocol
Level

You should take the intended environment into account when choosing
whether to support POP3 or IMAP as the protocol for mail retrieval. One
is simple and robust, the other is powerful and flexible. Courier and Cyrus
speak both protocols, and by using them you can provide IMAP and POP3
to your users without any additional work.

2.1 POP3

Version 3 of the Post Office Protocol (POP3) is comparatively simple, and
only allows the user to download emails from the server to the client. The
user can log in to an account, view the contents of the mailbox, transfer
and delete emails, and log out, all via server port 110. This requires few
resources, and there is little to configure, which means few sources of error.

23

2 POP3 and IMAP at the Protocol Level

Emails are stored locally on the user’s PC, which saves precious storage
space on the server and reduces backup times. The user usually has to
download all emails before deciding which ones are worth reading, based
on the subject and/or the sender, although by now most clients support
filters for screening incoming mail messages.

Because email messages are stored locally, the user can process them of-
fline using the client application. This reduces the time spent online, and is
especially suitable for laptops. However, POP3 does not provide any mech-
anisms for ensuring that mail clients on different machines will all see the
same data if the user accesses a mailbox from several computers (from a
laptop and from a desktop PC, for example).

POP3 client software only allows the user to decide whether or not to delete
emails from the server after they are retrieved. A simple way to guarantee
that multiple clients are always in synch with each other is to never delete
any messages. If all the emails remain on the server, every mail client can
download them at all times. Good clients will recognize newly arrived mes-
sages by storing message IDs and avoid transferring old emails a second
time.

This method has some disadvantages: Because the emails are never deleted,
the mailbox on the server continually grows. In addition, each client re-
ceives all messages, including ones that have already been read and (lo-
cally) deleted by another client. There is also no automatically maintained,
common record of sent emails, since each client manages its outbox inde-
pendently.

2.1.1 Test Session

The POP3 protocol is simple enough to use directly, in an interactive ses-
sion:

user@linux:$ telnet mail.example.com 110
Trying 192.168.50.50...

Connected to mail.example.com.

Escape character is '*]1’.

+0OK Hello there.

USER tux

+0OK Password required.

PASS secret

+0OK logged in.

We are now in the POP3 INBOX. (It is not possible to access other types of
mail stores, such as IMAP folders, using a POP3 client.) The LIST command
summarizes all the messages it contains (nine in the following example)
and their lengths:

24

2.1 POP3

LIST

+0OK POP3 clients that break here, they violate STD53.
1 9586
1125022
53125
2451
5931
4943
4206
5231
9481

W W J oUW N

The message from Courier in the +0K answer refers to POP3 clients that
erroneously expect the server to return the number of messages in answer
to the LIST command:

LIST
+0K 2 messages (320 octets)
1120
2 200

The given example is listed in RFCs 1081, 1225, 1460, 1725, and 1939, but
the RFCs add that this example does not define how the server’s answer
should look, i.e. the number and size of messages shown in the exam-
ple are not a mandatory part of the answer. The authors of Courier could
have made the server reply more helpful (and less arrogant); an exam-
ple could have been POP3 clients that expect a specific string
here violate RFC 1939..

RETR is used to retrieve a message from the server:

RETR 2

Return-Path: <p.heinlein@heinlein-support.de>

X-Original-To: p.heinlein@heinlein-support.de

Delivered-To: tux@example.com

Received: from [10.0.42.2] (unknown [10.0.42.2])
(using TLSvl with cipher DHE-RSA-AES256-SHA (256/256 bits))
(Client did not present a certificate)
by plasma.heinlein-support.de (Postfix) with ESMTP id BEAO581A4B
for <tux@example.coms>; Sat, 7 Apr 2007 01:02:01 +0200 (CEST)

From: Peer Heinlein <p.heinlein@heinlein-support.de>

To: Tux <tux@example.com>

Subject: Test message 2

Date: Sat, 7 Apr 2007 01:02:01 +0200

User-Agent: KMail/1.9.5

MIME-Version: 1.0

Content-Type: text/plain; charset="iso-8859-1"

Content-Transfer-Encoding: quoted-printable

25

2 POP3 and IMAP at the Protocol Level

Content-Disposition: inline

Message-Id: <200704070102.01895.p.heinlein@heinlein-support.de>
X-Length: 1519

Status: R

X-Status: NC

X-UID: O

Hello!

I am a test message.

=2D-=20
Heinlein Professional Linux Support GmbH
Linux: Academy - Support - Hosting

http://www.heinlein-support.de

Legally required information according to =A735a HGB (German Commercial
Code)

HRB 93818 B / Amtsgericht Berlin-Charlottenburg, =20

Manager: Peer Heinlein =A0-- Seat: Berlin

Flagging message 2 for deletion after it has been read is just as simple:

DELE 2
DELE 2
+0OK Deleted.

However, it will not actually be deleted until the user logs out. This allows
us to undo the setting of the deletion flag:

RSET
+0OK Resurrected.

If we do not wish to transfer an entire message to the client, we can use the
TOP command to retrieve only the message headers and a specified number
of lines of the mail body, given in a second argument to the command
(seven in this case):

TOP 2 7

Return-Path: <p.heinlein@heinlein-support.de>

X-Original-To: p.heinlein@heinlein-support.de

Delivered-To: tux@example.com

Received: from [10.0.42.2] (unknown [10.0.42.2])
(using TLSvl with cipher DHE-RSA-AES256-SHA (256/256 bits))
(Client did not present a certificate)
by plasma.heinlein-support.de (Postfix) with ESMTP id BEAOS581A4B
for <tux@example.coms>; Sat, 7 Apr 2007 01:02:01 +0200 (CEST)

From: Peer Heinlein <p.heinlein@heinlein-support.de>

To: Tux <tux@example.com>

26

2.1 POP3

Subject: Test message 2

Date: Sat, 7 Apr 2007 01:02:01 +0200
User-Agent: KMail/1.9.5

MIME-Version: 1.0

Content-Type: text/plain; charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable
Content-Disposition: inline

Message-Id: <200704070102.01895.p.heinlein@heinlein-support.de>
X-Length: 1519

Status: R

X-Status: NC

X-UID: O

Hello!

I am a test message.

=2D-=20
Heinlein Professional Linux Support GmbH
Linux: Academy - Support - Hosting

There is also an “idle” command that enables the client to keep the con-
nection open:

NOOP
+0OK Yup.

The QUIT command is used to terminate the connection:

QUIT
+0K Bye-bye.
Connection closed by foreign host.

2.1.2 Authentication via APOP and KPOP

Unlike the “standard” login to the POP server described on page 24, the Au-
thenticated Post Office Protocol (APOP) authentication procedure protects
the password by encrypting it. This is tricky to accomplish, because if the
client/server communication is vulnerable to unauthorized eavesdropping
at all, then the eavesdropper can listen in on the entire connection, includ-
ing the initial exchange between the client and server that establishes the
encryption parameters as defined by the protocol.

When APOP is used, the POP3 server provides a timestamp at the beginning
of each connection, which differs for every POP session. In the sample
session below, the timestamp is highlighted in bold:

user@linux:$ telnet localhost 110
Trying 127.0.0.1...

27

2 POP3 and IMAP at the Protocol Level

Connected to localhost.

Escape character is '*]1’.

+0K ready <13226.1017708644@mail.example.com>
APOP tux c4c9334bac560ecc979e580001b3e22fb
+0OK maildrop has 42 messages 43231 octets

[...1

The email client can now use a standard cryptographic hash procedure to
calculate an encrypted login password from the cleartext password it al-
ready knows and the server-provided timestamp. Because this encrypted
password depends on the timestamp, it is valid only for the current con-
nection.

The server also knows the user’s unencrypted password and performs the
same calculation. If the encrypted password it receives from the client
agrees with the result it computes, the server can conclude that the client
genuinely represents the user and accept the login.

This is because it is (theoretically) not possible to calculate the original
password from the encrypted login data transferred by the client, even
when the hash procedure is known. Likewise, recording the APOP login
dialog for a legitimate connection and replaying it to the server later will
not allow an eavesdropper to impersonate the real user, because the times-
tamp for the eavesdropper’s session with the server will be different.

Kerberos Post Office Protocol (KPOP) is a Kerberos enhancement for POP3,
but it is rarely used. Like APOP, it does not transmit the password in clear-
text. However, it is not easy to implement a Kerberos system. A free im-
plementation of Kerberos is available from the Massachusetts Institute of
Technology (MIT).!

2.2 IMAP

The Internet Mail Access Protocol Version 4 (IMAP), provided by a server
on port 143, functions in an entirely different manner from POP3. It is far
more complex than POP3, supports mail subfolders on the server (includ-
ing those shared by multiple users) and complex search queries, and per-
mits emails to be uploaded onto the server. All emails always remain on the
server; clients simply keep local copies of the mail store and synchronize
them with the server.

Emails are only transferred to the client when they are accessed, and only
stored temporarily by the client (this is similar to the way websites are ac-
cessed by web browsers). This means that multiple email clients can ac-
cess the same mailbox in parallel—they all find the same set of data syn-

1 See http://web.mit.edu/kerberos/www.

28

2.2 IMAP

chronized by the server. Users can also use the contents directory of the
mailbox to decide which emails are transferred to the client.

Storing the data on the server requires valuable storage space. However,
this is offset by the fact that a simple backup of the server? will suffice
to preserve the emails for all users. If the hard disk of a client computer
breaks, the messages for that user’s email account are not affected, apart
from those that are only saved locally.

IMAP is designed to be used online and in real time. With dial-up con-
nections, email retrieval may be slow. Good mail clients are capable of an
offline IMAP mode of operation, which combines the behavior of POP3 (lo-
cal email storage) and IMAP (synchronizing emails with the server). This
means that an IMAP mailbox can be transferred to a laptop and then ma-
nipulated offline.

2.2.1 The Design of the IMAP Protocol

Unlike the SMTP and POP3 protocols, which have simple commands that
can be issued interactively in a terminal session if necessary, IMAP is very
complicated. To make up for this, it has far more functions than the other
mail protocols.

IMAP has almost no restrictions on the status information (read, unread,
important, new) that can be assigned to an email message. The system
flags specified by the IMAP standard are listed in Table 8.1 on page 113.
The server and client can agree their own additional permanent flags. In
addition to permanent flags, there are also session-based flags (see also sec-
tion 8.2.1 on page 115). Both types can be defined for each mail folder. The
server and the client have to agree on the flags that can be used, and on
their type.

IMAP provides the client with functions that perform search and selection
against the data stored on the server. These enable searches such as “All
emails with the unread flag AND from sender geeko@example.com AND
with message number larger than 300.”

IMAP also provides functions that enable the client to store many details
locally and to use them repeatedly in different logins—a locally saved di-
rectory of mail folder contents, for example. This is not trivial to imple-
ment, as changes could result to the underlying folder contents after the
local summary is created. For this reason, IMAP numbers email messages
sequentially using both an arithmetically increasing sequence number with-
out punctuation (1-399, for example) and unique IDs that are unambiguous
and should not change. Should does not mean must, and so the server and
client must communicate if any unique ID does change.

2 Using rsync in an ingenious manner for example.

29

2 POP3 and IMAP at the Protocol Level

Figure 2.1:

IMAP connections

can be in different

states.

This is made easier by the unique ID value, which the client and the server
both memorize. As long as this value does not change, the server’s assign-
ment of unique IDs to emails has not changed. When a change occurs in
the email folders on the server, the server changes the unique ID value as
well, so that it now differs from the value the client has. The client thus
knows it must import the complete list of emails, with their unique IDs,
anew.

Thanks to this complex design, IMAP is future-proof and flexible, as it is
possible to introduce new options and flags without changing the protocol.

Disconnected IMAP, also known as offline IMAP, is a good example of how
this can be used. The email client saves the entire contents of the mail-
box locally. The user can then create folders and move, flag, or delete
emails while working offline. The next time the client connects to the IMAP
server, the client and server synchronize all changes. In spite of some early
teething problems in its deployment, this method now works surprisingly
well and combines the advantages of POP3 and IMAP.

‘ Connection established ‘

v

‘ Server greeting ‘

v

‘ Not authenticated ‘

v

‘ Authenticated

v

‘ Selected

v v

‘ Logout ‘

v

‘ Connection will be taken down ‘

What makes IMAP sessions even more complex and exciting is that the
client can send multiple commands to the server without having to wait
for the server to answer—the server can send the answers in a different
sequence. This means it is possible to send a complex search query to the

30

2.2 IMAP

server and still upload emails or create folders while the search is being
processed. For this reason, all client requests are tagged, or provided with
a unique ID selected by the client. The server replies are marked with this
unique ID, which enables the client to identify the answer.

These tags must be used during login, too:

al login username password
al OK LOGIN OK

The choice of a1l as the tag was purely arbitrary; we could have used 001 or
abc instead.

Unfortunately, some server replies occupy more than one line. Therefore
we have to differentiate between tagged and untagged server replies. Un-
tagged server replies begin with a star, while tagged replies start with the
identifier selected by the user and mark the end of a complete reply to a
client request.

The NOOP command is a case in point; the server can send a multiline reply,
giving rise to untagged reply lines. NOOP is actually used to carry out no op-
eration. A client can send it to prevent a timeout and keep the connection
open. However, some servers react to it by returning the status information
of the mailbox, such as (in this example) the number of messages received
since login (3), the number of read messages (14), or the number of emails
flagged for deletion (22):

a2 NOOP

* 22 EXPUNGE

* 23 EXISTS

* 3 RECENT

%+ 14 FETCH (FLAGS (\Seen \Deleted))
a2 OK NOOP completed

The server reply consists of multiple untagged replies (beginning with *)
and ends with a tagged reply 0K NOOP.

2.2.2 Transcript of an IMAP Session

A successful IMAP session begins when the server has greeted the client,
and consists of four states as shown in Figure 2.1:

Not Authenticated
The status between connection and successful authentication of user-
name and password. Only a few commands, such as STARTLS, LOGIN,
LOGOUT, and NQOOP are available (see sections A.1 and A.2 on page
296).

31

2 POP3 and IMAP at the Protocol Level

Authenticated
The client has been authenticated but has not selected a folder. It
can get information on available folders, subscribe or unsubscribe to
them, create new folders, or delete existing ones (see section A.3 on
page 298).

It can not read or save emails here, as it is not clear which emails or
directories are being referred to.

Selected
The client has shown its colors and selected a directory using SELECT,
EXAMINE, or STATUS. It may now issue commands that apply to the
messages in this directory. If the client uses CLOSE or EXPUNGE to
deselect a directory, the connection state switches back to the Au-
thenticated status. For an overview of all commands available here,
see section A.4 on page 303.

Logout
The client has used LOGOUT to announce that it wishes to log out .
Only then does the server delete messages marked as \Deleted —if
the connection is terminated unintentionally, these messages should
not be deleted. The server then ends and terminates the connection.

A standard IMAP connection switches back and forth between “Authenti-
cated” and “Selected.” As a consequence, not all commands are available
all the time.

This means that IMAP is a session-based protocol, like FTP or SMTP, as
opposed to a stateless protocol such as HTTP, in which each client request
is independent of previous events. IMAP connections between the server
and the client are usually kept open indefinitely, and can remain so for
hours.

Usually, clients check for new emails every few minutes; however, the server
can also inform the client when new messages are received. PR and web ter-
minology refers to the first option as the pull procedure, and to the second
as the push procedure. From the server perspective, the push procedure
is more efficient and desirable. If the server monitors some directories for
change and then informs the client, this requires far fewer resources than
if the client roots through three dozen IMAP folders every few minutes,
only to discover that nothing has changed. Unfortunately, few clients have
the ability at present to support this mode of operation; we will examine
Courier’s functionality in section 10.4 on page 176. Cyrus implements this
in a daemon, idled (see page 200 and page 262).

There are some disadvantages when clients keep connections open perma-
nently: Assuming that a Courier IMAP server uses between 1.5 and 2MB
RAM for each session, it quickly becomes obvious that a mail server with
4GB RAM cannot serve 2,500 IMAP users simultaneously . In case of POP3,

32

2.2 IMAP

these resources would suffice for 25,000 active email accounts, as each
client logs out immediately and thereby frees up resources. There is more
information on this subject in Chapter 3, page 43.

2.2.3 A Practical View of IMAP

RFC 3501 defines the IMAP standard. This document is more than 100
pages long, but it only provides a limited explanation of the protocol. Its
author, Marc Crispin, admits: “Beyond the protocol overview in section 2, it
[the RF(C] is not optimized for someone trying to understand the operation
of the protocol.”®

In order to operate a mail server, you do not need to have read the RFCs
or even to know all the details of the protocol as described in Appendix A
on page 295; you certainly do not need to know it by heart. You should,
however, understand its basic workings and know the technical options the
server offers the client.

It is easier to remember procedures that you have carried out at least once,
so it is worth testing the IMAP commands discussed below on an IMAP
server. This experience will be useful when an error occurs, and it is always
pleasant to understand the server you are responsible for.

You do not require root permissions for the server; indeed, you can use
your own email account on the mail server of an Internet service provider
or other email provider, as long as you can access it through IMAP. Begin
by connecting to the IMAP port on the server (port 143):

user@linux:~$ telnet imap.example.com 143

Trying 192.0.2.12...

Connected to imap.example.com.

Escape character is [Ael KA

* OK [CAPABILITY IMAP4revl UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUB

JECT THREAD=REFERENCES SORT IDLE AUTH=CRAM-MD5 AUTH=CRAM-SHA1l ACL] Cour
ier-IMAP ready. Copyright 1998-2005 Double Precision, Inc. See COPYING
for distribution information.

In reply, the server will present its capabilities. Not every server supports
all IMAP features. IMAP extensions provide features that are not part of
the core protocol, and are therefore optional. In our example, the server
displays the version of the IMAP protocol (IMAP4revl) and the extensions
that it supports. Often, but not always, the extensions offer IMAP com-
mands with the same name to the client.

3 See http://www.fags.org/rfcs/rfc3501.html

33

2 POP3 and IMAP at the Protocol Level

Some extensions, including sorting functions such as THREAD* or SORT®
shift tasks from the client to the server, whereas others simplify the query-
ing of email and directory structures, which saves time and traffic (these
include UIDPLUS, described in RFC 2359, CHILDREN, described in RFC 3348,
and NAMESPACE, defined in RFC 2342).

IMAP prescribes only the login methods LOGIN and PLAIN, in which the
password is transmitted in plaintext. The server can offer alternative, better
authentication methods, such as CRAM-MD5 or CRAM-SHA1, as shown in the
example.

In the example, the server also states that it supports the extensions IDLE
(RFC 2177, see pages 176 and 200) and ACL (RFC 4314). The latter extension
enables multiple users to access a single IMAP folder (see section 10.1 on
page 153 and section 14.2 on page 230).

Next, log on with your username and (plaintext) password:

al LOGIN "tux" "hidden"
al OK LOGIN completed

The server returns the reply 0K, which lets us know that we have authenti-
cated ourselves successfully and now have the “Authenticated” status. Now
we can call up a list of all available directories:

a2 LIST "" "x"

* LIST (\HasNoChildren) "." "INBOX.Private.Holiday"

%+ LIST (\HasNoChildren) "." "INBOX.Private.Orchestra"
*+ LIST (\HasChildren) ", " "INBOX.Private"

% LIST (\HasNoChildren) "." "INBOX.ToDo"

* LIST (\HasNoChildren) "." "INBOX.Test"

%+ LIST (\HasChildren) " " "INBOX.Book stuff"

* LIST (\HasNoChildren) "." "INBOX.Book stuff.LPIC-1"
%+ LIST (\HasNoChildren) "." "INBOX.Book stuff.Postfix 3"
* LIST (\HasNoChildren) "." "INBOX.Book stuff.Snort"
% LIST (\HasNoChildren) "." "INBOX.Book stuff.IMAP"

%+ LIST (\Unmarked \HasChildren) "." "INBOX"

a2 OK LIST completed

The flags in the third column show whether the corresponding directory
contains subfolders (\HasChildren—yes, \HasNoChildren—no) and mes-
sages. If a folder is flagged as \Unmarked, no new messages have been
received since it was last accessed.

4 In the example shown here, the server states that it supports the threading algorithm
ORDEREDSUBJECT. This algorithm is very simple and assumes that all emails with iden-
tical subjects belong to a single shared thread. The THREAD extension itself is specified
in http://tools.ietf.org/rfcmarkup?doc=draft-ietf-imapext-thread. This
document also describes the threading algorithm REFERENCES.

5 See http://www3.tools.ietf.org/rfcmarkup?doc=draft-ietf-imapext-sort

34

2.2 IMAP

The fourth column specifies the hierarchy separator used in the next folder:
In our example, the full stop symbol (.) separates the hierarchies; if a back-
slash were used instead, the first directory specification would be INBOX/
Private/Holiday.

If you have many folders, you can also specify a restrictive pattern for folder
names:

a3 LIST "" "INBOX.Privs"

* LIST (\HasNoChildren) "." "INBOX.Private.Holiday"

* LIST (\HasNoChildren) "." "INBOX.Private.Orchestra"
%+ LIST (\HasChildren) ", " "INBOX.Private"

a3 OK LIST completed

You can now use the SELECT command to select a folder. Here we select
the Test folder, which is a subfolder of the INBOX:

a4 SELECT INBOX.Test

*+ FLAGS (\Draft \Answered \Flagged \Deleted \Seen \Recent)

* OK [PERMANENTFLAGS (\Draft \Answered \Flagged \Deleted \Seen)] Limited
* 3 EXISTS

* 1 RECENT

* OK [UIDVALIDITY 1175900586] Ok

* OK [MYRIGHTS "acdilrsw"] ACL

a4 OK [READ-WRITE] Ok

The server uses the FLAGS keyword to tell us which flags are permitted for
emails in this folder, as these may include ones not specified by the IMAP

standard. The following flags are usually available:

= \Answered shows that the email has been marked as answered.

\Deleted means that the email has been marked for deletion.

\Draft shows that an email is a draft message that has not yet been sent.

\Flagged shows that the email is important.

= \Seen shows that an email has been marked as read.

\Recent shows that a message has been received since the last login and
no other client has seen it yet.5 Unlike the other five system flags that
have been mentioned, the \Recent flag cannot be set using the STORE
command (see page 39).

= If the server announces the * flag (this flag does not appear in our ex-
ample), it is permissible to use custom flags (see section 8.2.1 on page
115).

6 If more than one client accesses a single mailbox, all of them see the same messages,
but only one of them will ever see a given email flagged as \Recent.

35

2 POP3 and IMAP at the Protocol Level

Table 2.1:

Permissions that can
be assigned for IMAP

folders

n EXISTS shows how many emails this folder contains in all—in this case,
three. n RECENT tells us how many new messages have been received since
the last login (here, only one).

OK [PERMANENTFLAGS (flagl flag2 ..

.)] lists all those flags that the

client can change permanently. If the server does not return this keyword,
the client can assume that all flags can be modified and stored.

OK [UIDVALIDITY n] shows the unique ID value that is currently valid.

OK [MYRIGHTS n] tells the client what read, write, or delete permissions it
has for emails in this directory (see Table 2.1).

Permission

Explanation

The user is permitted to view the contents of a mailbox.

The user may view the name of a mailbox. Users that
know the name of a folder can access it even if they pos-
sess only the r flag and not the 1 flag. This condition
does not apply to shared folders in Cyrus; here, users
that do not own the folder require both the r and the 1
permission to access it.

The user may flag a message as read or unread. The
effects of this permission depend on whether the server
sets flags by file or by email and user. Under Courier,
users who allow other users to access directories can use
this permission to determine whether third parties can
change the \Seen flag. If that is the case, the owner of
the directory sees the message as read if other users have
already accessed it. In contrast, Cyrus saves flags based
on users. If a user changes the \Seen flag on a message,
this will not affect the message status for other users of
the same folder.

The user has write permissions and may set flags and so
on. w does not permit the user to delete emails.

The user may add and delete messages.

This permission must be set on Cyrus for users to be
able to sort emails into directories and subdirectories
(the abbreviation stands for post); for example, if they
are addressed directly to a subfolder (see section 14.4 on
page 237) or if the messages are moved automatically
using filter scripts (see page 240). Without this permis-
sion, messages are placed in the INBOX. This permission
is not available in Courier, as the corresponding function
is not available.

36

2.2 IMAP

continued:

Permission Explanation

c The user may create a new mailbox or a mailbox subdi-
rectory. In Cyrus, the user may also rename or delete a
mailbox or mailbox subdirectory.

d This permission is only assigned in Cyrus and allows the
user to request the deletion of a message or mailbox.
In Courier, the combination tex is used for the same
permission.

t This permission is unique to Courier and allows users to
flag messages as \Deleted.

e This permission is unique to Courier and allows the user
to have messages deleted from the server if they have
already been flagged as \Deleted.

X This permission is unique to Courier and allows users to
delete or rename the directory.

a The user is permitted to set ACLs.

Finally, the answer 0K [READ-WRITE] Ok together with the tag of the query
shows that the reply to the SELECT command is now complete. If the client
has write permissions for the folder, the server should add the information
[READ-WRITE] to the OK keyword. If the client only has read permissions,
the server must return [READ-ONLY].

Viewing, Copying, and Deleting Emails

The client can now view messages or parts of messages. For example, only
the email headers are required to create a table of contents. You can use
the FETCH command to specify exactly which emails (the following example
specifies messages with sequence numbers from 1 to 3)7 and which parts of
these emails should be transmitted. If you use the ALL keyword, the server
returns the flags, the time of arrival, the message size in bytes, and the
header fields From, To, Cc, Reply-to, Message-1ID, Date, and Subject:

a5 FETCH 1:3 ALL
* 1 FETCH (FLAGS (\Seen) INTERNALDATE "07-Apr-2007 01:03:06 +0200" RFC822
.SIZE 1647 ENVELOPE ("Sat, 7 Apr 2007 01:01:51 +0200" "Test message 1" (

("Peer Heinlein" NIL "p.heinlein" "heinlein-support.de")) (("Peer Heinlei
n" NIL "p.heinlein" "heinlein-support.de")) (("Peer Heinlein" NIL "p.hein
lein" "heinlein-support.de")) (("Tux" NIL "tux" "example.com")) NIL NIL N

IL "<200704070101.52187.p.heinlein@heinlein-support.de>"))

7 If you wish to specify unique IDs instead of sequence numbers, you would use the UID
FETCH command (see page 313).

37

2 POP3 and IMAP at the Protocol Level

* 2 FETCH (FLAGS () INTERNALDATE "07-Apr-2007 01:03:06 +0200" RFC822.SIZE
1646 ENVELOPE ("Sat, 7 Apr 2007 01:02:01 +0200" "Test message 2" (("Pee
r Heinlein" NIL "p.heinlein" "heinlein-support.de")) (("Peer Heinlein" NI
L "p.heinlein" "heinlein-support.de")) (("Peer Heinlein" NIL "p.heinlein"
"heinlein-support.de")) (("Tux" NIL "tux" "example.com")) NIL NIL NIL "<2

00704070102.01895.p.heinlein@heinlein-support.de>"))

* 3 FETCH (FLAGS () INTERNALDATE "07-Apr-2007 01:03:06 +0200" RFC822.SIZE
1651 ENVELOPE ("Sat, 7 Apr 2007 01:02:10 +0200" "And test message 3" (("
Peer Heinlein" NIL "p.heinlein" "heinlein-support.de")) (("Peer Heinlein"
NIL "p.heinlein" "heinlein-support.de")) (("Peer Heinlein" NIL "p.heinle
in" "heinlein-support.de")) (("Tux" NIL "tux" "example.com")) NIL NIL NIL

"<200704070102.11133.p.heinlein@heinlein-support.de>"))
a5 OK FETCH completed.

Let’s look at the complete message for message number 2, using the FETCH
subcommand BODY []:

a6 FETCH 2 BODY[]

* 2 FETCH (BODY[] 1646

Return-Path: <p.heinlein@heinlein-support.dex>

X-Original-To: p.heinlein@heinlein-support.de

Delivered-To: p.heinlein@heinlein-support.de

Received: from [10.0.42.2] (unknown [10.0.42.2])
(using TLSvl with cipher DHE-RSA-AES256-SHA (256/256 bits))
(Client did not present a certificate)
by plasma.heinlein-support.de (Postfix) with ESMTP id BEA0S581A4B
for <tux@example.com>; Sat, 7 Apr 2007 01:02:01 +0200 (CEST)

From: Peer Heinlein <p.heinlein@heinlein-support.de>

To: Tux <tux@example.com>

Subject: Test message 2

Date: Sat, 7 Apr 2007 01:02:01 +0200

User-Agent: KMail/1.9.5

MIME-Version: 1.0

Content-Type: text/plain;

charset="1is0-8859-1"

Content-Transfer-Encoding: quoted-printable

Content-Disposition: inline

Message-Id: <200704070102.01895.p.heinlein@heinlein-support.de>

X-Length: 1519

Status: R

X-Status: NC

X-UID: O

Hello!
I am a test message.

=2D-=20
Heinlein Professional Linux Support GmbH
Linux: Academy - Support - Hosting

38

2.2

IMAP

http://www.heinlein-support.de

Obligatory information according to =A735a HGB (German Commercial Code)
HRB 93818 B / Berlin Charlottenburg Local Court, =20

Managing Director: Peer Heinlein =A0-- Registered Office: Berlin

)

a6 OK FETCH completed.

It is also possible to download individual header lines:

a7 FETCH 2 BODY [HEADER.FIELDS Message-ID]
* 2 FETCH (BODY [HEADER.FIELDS ("Message-ID")] 59
Message-Id: <200704070102.01895.p.heinlein@heinlein-support.de>

)
a7 OK FETCH completed.

We can also copy messages, either to another folder or (just to make life
easier) back to INBOX. Test.

a8 COPY 2:3 INBOX.Test
a8 OK [COPYUID 1175900586 2:3 4:5] COPY completed.

Messages 2 and 3 are now duplicated as messages 4 and 5. It does not
make sense to keep duplicates in a folder, so we assign the \Deleted flag
to them. This means that they will be deleted the next time an EXPUNGE,
SELECT, or CLOSE command is executed (see pages 304, 298, and 303):®

a9 STORE 2,3 +FLAGS \Deleted
* 2 FETCH (FLAGS (\Deleted))
* 3 FETCH (FLAGS (\Deleted))
a9 OK STORE completed

The IMAP server now provides updated status information for this folder.
It does not mention any new messages, even though our copying has in-
creased the number of messages significantly:

al0 NOOP

* 5 EXISTS

* 0 RECENT

al0 OK NOOP completed

It is still possible to use the messages that have been flagged for deletion.
The message only disappears from the server when we leave the folder, e. g.
by selecting a new directory.

8 _..but not when we leave the folder using UNSELECT, according to the IMAP extension

from RFC 3691.

39

2 POP3 and IMAP at the Protocol Level

Searching for Email Contents

There are many complex and powerful query methods available for search-
ing email on the server. You can search by age and size of the message, as
well as by sender, header line, IMAP flag, and actual content of the email.
The following query asks the server to return the sequence numbers of all
unread messages:

all SEARCH UNSEEN
* SEARCH 3 5
all OK SEARCH done

Email 1 is not returned, as it was flagged as \Seen when the session began
(as shown by the FETCH command on page 37).

If you wish to find all messages that are marked for deletion among first
four messages, you should use the command:

al2 SEARCH 1:4 DELETED
* SEARCH 2 3
al2 OK SEARCH done

You can also search message contents. The SEARCH command is not case
sensitive:

al3 SEARCH ALL TEXT Heinlein
* SEARCH 1 2 3 4 5
al3 OK SEARCH done

Warning: Because the TEXT option searches through the raw data, this
search query may overlook certain emails that contain the search term.
This example will not return any hits for messages in which the only oc-
currence of the word “heinlein” contains a soft line break in the quoted-
printable-coded email text and therefore looks like this: hein=(crlf)lein.
It usually makes more sense to use the SEARCH subcommand BODY[] in-
stead of TEXT (see page 305).

These simple examples show that the IMAP protocol offers the client mul-
tiple options that can transfer complex tasks efficiently to the server and
thereby reduce the volume of data transmitted. Unfortunately, implemen-
tations of the IMAP protocol in mail clients are of varying degrees of quality.

Even web mailers, who should be grateful for the variety of options, hardly
take advantage of them. Instead of pulling only those emails off the server
that are to be displayed and then preparing them for display, many access
all emails, and then make their selection in a manner that is cumbersome
and requires a lot of storage space.

40

2.2 IMAP

2.2.4 Subscribing to IMAP Folders

A client can use the SUBSCRIBE command to select a folder from the list of
all folders in an IMAP mailbox and subscribe to it, and use the UNSUBSCRIBE
command to unsubscribe from that folder again. The list of subscribed
folders is stored directly on the IMAP server, which must support this fea-
ture. Courier and Cyrus are both able to do this without any additional
configuration.

Whether a subscription exists for a directory only makes a difference for
the LIST and LSUB IMAP commands: LIST lists all IMAP folders, whether
they have been subscribed to or not. It returns all IMAP folders even if
the server contains a list of subscriptions. If the LSUB command (the name
is an abbreviation of list subscribed) is sent, the server returns only the
subscribed directories.

Apart from this difference, LIST and LSUB behave identically. Clients can
use these commands each time they retrieve emails to specify whether only
the subscribed directories or all directories are returned.

The second option is advantageous for clients on laptops that use UMTS
dial-up, or at locations that have expensive traffic or slow connections.
When the mailbox is retrieved, only the subscribed IMAP folders are syn-
chronized, if the IMAP client is configured correspondingly. This option
saves time and money when emails are retrieved on the go. On the other
hand, the IMAP client at a stationary machine can be configured not to
support subscribed folders for the same mailbox. It will continue to send
the LIST command and thereby synchronize itself with the entire set of
data.

Your IMAP client will determine how and where you can subscribe to IMAP
directories. You will usually find a function enabling you to select individual
directories for subscription from all folders listed; you should also be able
to configure whether subscriptions should be observed or not.

41

Load Distribution and Reliability

A web server can deal with many thousands of hits per hour, but IMAP
servers encounter new and far-reaching problems when dealing with that
many users. The Courier and Cyrus IMAP processes consume between 1.5
and 2MB RAM for each online session, even if the connection is idle and
the client is hardly active. A server with 4GB RAM can therefore run out of
memory when serving approximately 2,500 simultaneous connections.

Unlike POP3, where the client logs on separately for each query and the
memory used to process a query is freed up for other connections once
the server is finished with it (this is similar to HTTP and SMTP, where RAM
is only consumed when work is being processed), IMAP is unfortunately
far more greedy because clients often attempt to remain permanently con-
nected to the server when users wish to maintain a dedicated connection.

This is not a problem if there are only 20, 50, or even as many as 100 users,
as a server usually has 250MB RAM available. However, if there are a thou-
sand or more users and a corresponding number of parallel IMAP con-

43

3 Load Distribution and Reliability

nections, the main memory can quickly become a bottleneck. Besides the
amount of available RAM, the number of connections that can be served
efficiently is also limited by the physical (disk) storage. Processor perfor-
mance is rarely a problem for large IMAP servers. If, for example, clients
in 2,500 parallel connections retrieve emails every three minutes, this still
only amounts to 10 or 20 parallel requests per second. This is manageable
for a fast enough computer with a single processor. Disk I/0 is likely to
become a more noticeable limiting factor for overall system performance,
since hard drive performance has not changed significantly in recent years,
compared to CPU speed. At present, disk caching is used to attempt to
alleviate this problem as far as possible.

RAM and memory I/0O are the weak points when the number of users
reaches four or five digits; these weak points are balanced out by using
shared IMAP clusters or fast hard disks.

If your IMAP server can barely deal with the number of simultaneous logins
and/or the size of the mailboxes, there are two strategies available: You can
either use load balancers or proxies.

Under load balancing, multiple IMAP servers use a central filesystem (SAN/
NAS) to access all email data, so that every node can service every user
account. A central load balancer distributes the load to an arbitrary number
of identically configured IMAP servers. To prevent filenames from being
duplicated in the shared mail space, you should provide each node with a
different hostname. The advantages of this solution include the following:

= Load balancing can be done very simply, even using Round Robin DNS
(but without guarantee of system stability), although a load balancer is
better.

= Individual user accounts do not need to be assigned permanently to in-
dividual nodes.

= The load is balanced optimally between all the servers.

There are also disadvantages, though: A load balancer (an appliance or a
homegrown solution) is required, and the central filesystem bears the entire
I/0 load of the IMAP cluster. Furthermore, they both become single points
of failure unless they are designed to be redundant.

An IMAP proxy receives connection requests from all clients and transfers
each to the responsible IMAP server. Each of the IMAP servers therefore
manages only a certain part of the account base, for which it saves the
relevant mail data locally. There is an additional list of all accounts and
passwords that is maintained separately (for example, in a MySQL database
or in an LDAP directory). This has the following advantages:

44

3.1 Load Balancer

= No problems with a single I/O bottleneck, as multiple local hard disks are
used

= No (expensive) central mail storage

= No load balancer

However, a central proxy IMAP server can become overloaded if there is
a very large number of users; individual IMAP servers can become over-
loaded even though other nodes still have capacity available; and each in-
dividual IMAP server is a single point of failure for the accounts that reside
on it, although accounts on other servers are not affected by such a failure.

3.1 Load Balancer

If all mail hosts access a shared storage solution, as shown in Figure 3.1
(whether this is an NFS, a SAN, or an iSCSI with a cluster filesystem), it is
unimportant which host is used to connect the client. In this case, there
is no reason not to use a load balancer. Even on a simple Linux router, it
only takes a few steps to configure a load balancer; the Linux kernel offers
different options for distributing IP connections.

[Port 110 | [Port 143}
[[

Load balancer
Forwards all connections to any of the
servers, depending on their load (MySQL, LDAP, ...)

— 2 59—

Authentication server

POP3/IMAP server 1 POP3/IMAP server 2 POP3/IMAP server 3 POP3/IMAP Server 4

All accounts All accounts All accounts All accounts

L

Central storage system (SAN, NAS)
Saves all mail data for all users

If the central storage system becomes a performance bottleneck due to nu-
merous simultaneous accesses to numerous files, the only option is to use
a large number of very fast hard disks, which can make this system organi-
zation very expensive.

During configuration, you should ensure that persistence is maximized.
This means that the balancer attempts to assign a new client connection
to the same server that was last used for that client whenever possible, in

Figure 3.1:

If all mail servers
access the same
email database, every
incoming connection
can be assigned to a
server individually.

45

3 Load Distribution and Reliability

order to take advantage of any user and account information still present
in that server’s local disk cache.

3.1.1 DNS Round Robin

DNS enables a (very) simple load distribution technique. If you specify
several DNS entries for the name of your host, the clients are assigned an
IP number, and thus an actual host server, at random for each query.

The following entries in a DNS zone file ensure that all queries are (ran-
domly) assigned one of the three servers with the IP numbers mentioned:

mail.example.com. IN A 192.168.10.11
mail.example.com. IN A 192.168.10.12
mail.example.com. IN A 192.168.10.13

However, this makes you reliant on DNS data, which is often cached for a
long time, and which is correspondingly difficult to influence. This means
that DNS Round Robin is only a first attempt at load balancing rather than
a proper strategy. If necessary, you can adapt the iptables rule described
on the following pages and switch IPs on or off. This raises the question:
Why not do it like this from the start?

3.1.2 Round Robin via iptables

iptables can use the DNAT target to distribute connections to a number
of consecutive TP numbers. This does not achieve real load distribution, as
the connections are distributed via the round-robin method. Cache times
are of no importance here (unlike DNS Round Robin), which means the
solution can be adapted and changed as required.

If you use a Linux router as a central gateway anyway, little effort is required
to forward all POP3/IMAP connections to multiple servers with different IP
addresses in order to balance the load.

The following example illustrates how to externally provide a single POP3-
IMAP server under IP 192.168.10.10 while the requests are distributed
internally to the three servers 192.168.10.11,192.168.10.12, and 192.
168.10.13 via DNAT:!

linux: # iptables -A PREROUTING -t nat -p tcp --dport 110 -d 192.168.10.
10 -j DNAT --to-destination 192.168.10.11-192.168.10.13
linux: # iptables -A PREROUTING -t nat -p tcp --dport 143 -d 192.168.10.
10 -j DNAT --to-destination 192.168.10.11-192.168.10.13

1 Line breaks have been inserted in the single-line commands to make them easier to
read.

46

3.1 Load Balancer

linux: # iptables -A PREROUTING -t nat -p tcp --dport 993 -d 192.168.10.
10 -j DNAT --to-destination 192.168.10.11-192.168.10.13
linux: # iptables -A PREROUTING -t nat -p tcp --dport 995 -d 192.168.10.
10 -j DNAT --to-destination 192.168.10.11-192.168.10.13

You can also use the iptables targets BALANCE and CLUSTERIP to imple-
ment complex setups that exceed the scope of this book. For more infor-
mation, see man (5) iptables.

However, iptables is not able to divert queries that a failed host or service
receives in this manner; in the worst case, the client will receive a timeout
or “Connection Refused” message. Even if this option is unsuitable for high
availability requirements, it can be recommended as a simple, robust, and
functioning initial solution.

3.1.3 Linux Virtual Server

The Linux Virtual Server (LVS) project’ has nothing to do with virtual root
servers (VServers) as provided by some ISPs. Rather, it provides the kernel
function and control commands that can be used to set up a real load
balancer on any Linux system with very little effort. Unlike the simple
iptables DNAT method, LVS enables the connections to be distributed to
individual hosts according to available criteria; For example, it could favor
individual (higher-performance) servers or take existing connections into
account.

The LVS project connects to the target hosts in three different ways. In most
cases, Direct Routing will be the first choice.?

Direct Routing is based on the principle of supplying the servers with an ex-
ternal production IP, which is identical for all nodes (in this case, 192.168.
10.10), in addition to their actual maintenance IPs (in this case, 192.19.10
.11, 192.168.10.12, and 192.168.10.13). This IP is attached to the
loopback interface as a virtual IP on every server, so as to prevent IP con-
flicts and interference between the servers. The subnetwork must be set to
255.255.255.255 to prevent the server from attempting to contact other
nodes in the network via the loopback interface.

linux: # ifconfig lo:1 192.168.10.10 netmask 255.255.255.255 broadcast \
192.168.10.255

At the same time, the Linux kernel must be taught not to return the MAC
address of ethO to ARP queries for this IP. The Linux kernel usually returns
the IP of the receiving interface to ARP requests even if the requested IP

2 See http://www.linuxvirtualserver.org/
3 Itis described in detail at http://www.linuxvirtualserver.org/VS-DRouting.ht
ml.

47

3 Load Distribution and Reliability

address is on any of its interfaces. At the same time, it arbitrarily selects
one of its own IP addresses for outgoing requests.

In order to prevent this, you should enter the following entries into the file
/etc/sysctl.conf:

net.ipv4.conf.all.arp_ignore = 1
net.ipv4.conf.lo.arp ignore = 1

This ensures that the kernel only replies to ARP requests if they are received
on the intended interface. It ignores ARP requests for the IP address hidden
behind lo:1, as they are received on eth0. Instead, the kernel should only
use the actual IP address of the outgoing interface ethO. Add two more
entries to /etc/sysctl.conf:

net.ipv4.conf.all.arp_announce = 2
net.ipv4.conf.lo.arp_announce = 2

During setup you load these parameters manually; later on, they are acti-
vated automatically during booting. This is the call for SuSE:

linux: # /etc/init.d/boot.sysctl start

Setting current sysctl status from /etc/sysctl.conf
net.ipv4.icmp_echo_ignore_broadcasts = 1
net.ipvé4.conf.all.rp filter = 1
net.ipv4.conf.all.arp_ignore = 1
net.ipv4.conf.lo.arp ignore = 1
net.ipv4.conf.all.arp_announce = 2
net.ipv4.conf.lo.arp announce = 2

Debian users use the command /etc/init.d/procps.sh start instead.

Now, multiple servers have the same IP, but none of them reply to ARP re-
quests. This means that this IP is not available—at least until we introduce
the LVS load balancer.

Now enter the production IP in your load balancer; this time, enter it on
ethO or as an additional IP on ethO: 1. The settings in /etc/sysctl.conf
are no longer required on the balancer, as you want it to be available.

While you are here, you should also set up the IP forwarding. You can either
do this in the command line, as shown in this example, or enter the required
parameters in the corresponding configuration files of your distributor (or
use setup programs such as SuSE’s YaST):

linux: # ifconfig eth0:0 192.168.10.10 netmask 255.255.255.0 broadcast \
192.168.10.255 up
linux: # echo 1 > /proc/sys/net/ipv4/ip forward

48

3.1 Load Balancer

The LVS server now replies to this IP. If you wish to forward the POP/IMAP
requests to the host that currently has the fewest open connections, you
have to instruct LVS to distribute the connections according to the Least
Connection (1c) procedure. To do this, enter the actual 1P address of eth0
as the target on the individual hosts. For POP3 and IMAP, you will require
two sets of rules: one rule for TCP port 110 (POP3) and one rule for TCP
port 143 (IMAP):*

linux: # ipvsadm -A -t 192.168.10.10:110 -s lc

linux: # ipvsadm -a -t 192.168.10.10:110 -r 192.168.10.11 -g
linux: # ipvsadm -a -t 192.168.10.10:110 -r 192.168.10.12 -g
linux: # ipvsadm -a -t 192.168.10.10:110 -r 192.168.10.13 -g
linux: # ipvsadm -A -t 192.168.10.10:143 -s lc

linux: # ipvsadm -a -t 192.168.10.10:143 -r 192.168.10.11 -g
linux: # ipvsadm -a -t 192.168.10.10:143 -r 192.168.10.12 -g
linux: # ipvsadm -a -t 192.168.10.10:143 -r 192.168.10.13 -g

When a new connection is made, LVS determines the most suitable target
host. Then LVS replaces the MAC address in the TCP/IP package. The pack-
age is still addressed to the same production IP address (192.168.10.10),
but on the Ethernet level (layer 2 in the OSI layer model) it is addressed
to the ethO interface of a specific target host in the server pool. This host
receives the package without detecting the short detour. The package is
addressed to its IP address, which is linked to lo:1, but it is received via
the external interface eth0O because the MAC address has been replaced. As
it owns the target IP, it is immaterial which interface is used to transfer the
package.

Unlike the DNAT procedure, this procedure sends the reply packages directly
to the default gateway instead of rerouting them to the LVS balancer. This
entire setup scales well, because the LVS balancer channels very little data
from the client to the server, and because the large amount of data trans-
ferred from the server to the client does not place any load on the network
interface of the LVS.

As the LVS balancer maintains a table of existing connections, packages
that belong to a connection in that table are always transferred to the same
production server.

For more in-depth information on the subject of load balancing, please
refer to the comprehensive online documentation.’ This also describes in
detail how to monitor the availability of an individual host automatically,
and how to dynamically adapt the load balancing to handle failed hosts.

4 Enter the settings for ports 993 (POP3 via SSL) and 995 (IMAP via SSL) in the same
manner if you use SSL/TLS.
5 See http://www.linuxvirtualserver.org/.

49

3 Load Distribution and Reliability

3.2 IMAP Proxies

If you set up multiple IMAP servers with local hard disk systems, rather than
a single shared filesystem, these no longer need to know about all users or
have access to all email accounts; instead, each of them can manage a por-
tion of all the user mailboxes. A central IMAP proxy then no longer needs
to cache entire (IMAP) sessions (like the Squid HTTP proxy, for example);
instead, it assigns incoming connection requests to the responsible IMAP
server (see Figure 3.2).

Every user data set must contain a separate field specifying the IMAP server
the user’s account is stored on. The IMAP proxy queries this data during
login and then transfers the IMAP request transparently to the required
IMAP server. As every user is directed to his or her “own” server, no shared
file area is required. This means that no load distribution among different
servers is needed if this solution is used.

In very large environments, it may make sense to combine IMAP proxies
and the load balancing technique: The proxy assigns connections to bal-
ancers on the basis of the user ID, and each balancer distributes its share of
the connections to multiple IMAP servers. It is then possible to construct
separate mail stores if an individual storage system is overloaded.

Figure 3.2: [Port 110 [Port 143]
Autarkic mail servers ‘ ‘
with a local POP3/IMAP proxy server Authentication server
. Asks for the mail server incharge | |------ >
ﬂlesyStem are fast, Forwards the POP3/IMAP session (SQL, LDAP, ...)
but they are also A

single points of ‘ ‘ ‘ ‘ !

failure. The ¢ ¢ ¢ ¢

AuthServer knows

POP3/IMAP server 1 POP3/IMAP server 2 POP3/IMAP server 3 POP3/IMAP server 4

. Accounts 0-2000 | -| Accounts 2001-4000 |- { Accounts 4001-6000 |- - | Accounts 6001-8000 |- - - -'
is located. Local disk Local disk Local disk Local disk

where each account

However, most IMAP proxies consume as much RAM as the IMAP client,
as the entire authentication routine and the IMAP protocol have to be im-
plemented on them. As a result, the IMAP proxy itself can become over-
loaded and run out of RAM. This type of solution is therefore effective at
distributing the I/0 load rather than the RAM load. The following software
is suitable:

Courier IMAP Proxy
Courier IMAP contains the proxy function starting from version 4.0.
For a Courier server, the simplest choice is the internal proxy. The
implementation is described in section 10.3 on page 175.

50

3.2 IMAP Proxies

Cyrus Murder Cluster
The new versions of Cyrus also contain a native IMAP proxy, the
Cyrus-Aggregator used in Cyrus Murder Clusters (see section 17.1 on
page 281). At present (February 2008), it is still deployed “at your own
risk.”®

Perdition
Perdition” is designed to work with any IMAP server as a fully-featured
IMAP proxy. It can request the IMAP target host from a number of
different database sources: ODBC, MySQL, PostgreSQL, GDBM, and
NIS. It is also possible to assign usernames to IMAP hosts using reg-
ular expressions. Unfortunately, LDAP is not supported.

As Courier and Cyrus each contain their own proxy, it does not re-
ally make sense to use Perdition with these servers; after all, you can
only use user databases that are suitable for your IMAP backend. The
project also seems to be either "‘perfect”” (in the eyes of its devel-
opers) or hibernating, as there has been no new release since June
2005.

"ne

The following is not suitable for operating an IMAP cluster:

IMAP Proxy

Unlike the previously mentioned proxies, IMAP proxy® attempts to
cache the connections permanently instead of transferring them to
other IMAP servers. For this reason it is mainly used to speed up web
mailers, which have to log on to the IMAP server constantly because
of the individual PHP calls. The program in.imapproxyd keeps this
connection to the IMAP server open, which reduces the load on the
IMAP server and speeds up the PHP application. It is described in
section 5.3 on page 73.

6 See http://cyrusimap.web.cmu.edu/imapd/install-murder.html.
7 See http://www. vergenet.net/linux/perdition/.
8 See http://www. imapproxy.org/.

51

Selecting a Filesystem

On small mail servers for 20 users or so, performance is hardly affected by
the way the operating system organizes the data on the hard disk. When it
comes to Internet or mail service providers with hundreds or thousands of
users, it is a different story. Here, even if the emails are stored on fast hard
disks, it can be tricky to find a filesystem capable of efficiently handling
large numbers of small files, which is typical of the contents of an email
database.

There is a lot of disagreement on this subject, and it is unlikely that consen-
sus will be reached. Unfortunately, there is a wide variety of opinions and
evaluation criteria regarding the speed and advantages of different filesys-
tems; not only are they confusing, they are also often contradictory, as the
different kernel versions and distributions can differ widely. If one version
of a filesystem is slow, the very next kernel release may improve its speed
considerably.

53

4 Selecting a Filesystem

Focusing on common, tested, and stable free systems that include journal-
ing considerably reduces the number of available filesystems to consider.

Under Linux, the classic Ext2/Ext3 filesystems are not to be underestimated:
Processing speed has increased so much in recent years that it may no
longer be noticeably slower than ReiserFS, which has been praised for its
performance with tens of thousands of files. Without question, there used
to be a difference between them; however, this chapter contains test results
showing that Ext2/Ext3 has overtaken ReiserFS where speed is concerned.

Admittedly, ReiserFS utilizes disk space more efficiently than Ext2 and Ext3
when dealing with large numbers of small files, but it also continues to
encounter problems with data security. Whenever we have worked with
ReiserFS in recent years, we encountered corrupt Reiser filesystems and in-
explicable data loss. The final straw is that even fsck.reiserfs, when
it ostensibly runs without errors, cannot guarantee that the filesystem is
in a consistent state. In many cases, the only recovery solution was to use
fsck.reiserfs --rebuild-btree,and this is a tricky procedure that can
take several hours, causes an unacceptably long downtime on the server,
and pumps a year’s worth of adrenaline into the administrator’s blood-
stream.

Where loss of data is not too tragic—for example, on /tmp or in the cache
directory of a proxy server—and defective partitions can be reformatted,
there is no reason not to use ReiserFS. For older kernel versions, ReiserFS
is still the faster solution.

However, the authors refuse to entrust email directories that need to be
saved permanently to ReiserFS, and many concur in this view.

There are quite a few people who swear by XFS. It appears that people be-
gin to appreciate it once they have worked with it for some time. It is stable
and robust, but it does not, at present, contain features for reducing an ex-
isting filesystem (unlike Ext2/Ext3 or ReiserFS)—but enlarging is possible.
In addition, tests and benchmark results! returned diverging conclusions
on the performance of XFS when accessing small files.

The authors do not have much experience with using XFS, but it does not
appear to be suitable for use on high-performance servers with small files
due to insufficient speed.

OpenSolaris uses ZFS, which has only just been ported to Linux and *BSD.
In addition to the benefits of the journaling filesystems mentioned above,
it also contains a Logical Volume Manager (LVM). The system has one im-
portant advantage: It is aware of the physical structure of the underlying
hard disk, which enables it to fully exploit the I/O speeds when writing to
the hard disk. It is easy to manage, supports software RAID and snapshots,
uses checksum processes, and does not require a filesystem check after a

1 See http://www.debian-administration.org/articles/388.

54

4.1 A Performance Test

power failure. It is also regarded as very stable; however, software RAID and
checksum methods may reduce the speed and thereby diminish its advan-
tages in that respect.

If there is no need to save money on the SAN, administrators often choose
the NetApp filers from Network Appliance. WAFL, Network Appliance’s own
filesystem, is very capable of dealing with accesses to numerous small email
files, an access pattern typical for email stores.

4.1 A Performance Test

The standard test tools iozone and bonnie or bonnie++ are only of lim-
ited use when testing the performance of filesystems on mail servers, as
these tools perform very little switching between read and write accesses
to the data medium. NetApp’s tool postmark? simulates the work carried
out by mail and news servers. During the test, numerous small files are
read, written, and deleted in turn, in order to stress the index structure of
the filesystem.

The following test results are purely illustrative, as the observed results de-
pend strongly on the kernel in use: Different versions can give rise to very
different performance results for an identical filesystem. This explains why
there are so many different opinions on the quality of particular filesystems.

The tests confirm our subjective opinion, which is that ReiserFS has lost its
advantage in speed over Ext2/Ext3—it has landed firmly in second place.
The planned ReiserFS version 4, however, seems to have caught up again
and to now be ahead of Ext4 (which is also in the planning stages). A lot
may have changed since this book went to press, so you should not base
decisions solely on the results presented here.

15,000 RPM SCSI Ext3 ReiserFS 3 XFS Table 4.1:
Transactions per Test results of the
second 162 123 81 SCSl system
Files created per

second 1,225 411 457

Files deleted per

second 816 924 175

Read accesses per

second 81 61 40

2 This was previously at http://www.netapp.com/tech_library/postmark.html,
but the official website no longer seems to exist.

55

4 Selecting a Filesystem

Table 4.2:
Performance results
of the IDE systems

continued:

15,000 RPM SCSI Ext3 ReiserFS 3 XFS

Write accesses per

second 80 61 40

Average

Read throughput 769.75KB/s 578.73KB/s 370.87 KB/s
Average

Write throughput ~ 969.20KB/s 728.69 KB/s 466.96 KB/s

The tests with postmark 1.51 were done in the following conditions:

The default kernel of OpenSuSE 10.2 in version 2.6.18.8 was used as the
operating system.

The 15,000-RPM SCSI hard disk was (see Table 4.1) a Seagate Cheetah
ST336753LC FN with an 8 MB disk cache in a computer equipped with a
XEON 2.8 GHz dual core (512KB CPU Cache).

During tests on an IDE hard disk with 7,200 RPM (see Table 4.2), we used
a (fairly slow) IBM Deskstar IC35L060AVVA07-0 with 2 MB disk cache on
a Pentium-IV 3 GHz HT (512KB CPU Cache).

There was a maximum number of 125,000 files, distributed among 10,000
subdirectories, and the files contained between 1,500 and 15,000 bytes.

The test observed one million transactions in journaling mode ordered
while the kernel and disk caches were switched on.

Some initial test results for Ext4 and ReiserFS version 4 are available on
http://www.linuxinsight.com/first_benchmarks_of_the_ext4_fil
e_system.html.

7,200 RPM IDE Ext3 ReiserFS 3 XFS
Transactions per

second 47 41 26
Files created per

second 29 24 15
Files deleted per

second 29 24 15
Read accesses per

second 23 20 13

56

4.2 Tuning the Performance of the Filesystem

continued:

7,200 RPM IDE Ext3 ReiserFS 3 XFS

Write accesses per

second 23 20 12

Average

read throughput: 229.33KB/s 196.48KB/s 120.86 KB/s
Average

write throughput: 288.75KB/s 247.39KB/s 152.17 KB/s

4.2 Tuning the Performance of the Filesystem

Speed is affected not only by the choice of filesystem, but also by the way
it is used. There are some welcome configuration changes that improve
speed slightly and have no disadvantages.

421 The atime

By default, every read access to a file automatically involves a write access,
as Linux saves three timestamps for every file:

= Modification time (mtime) is the time displayed in the detailed (1s -1)
file listing and describes the point in time when the contents of the file
were last changed.

= Change time (ctime) saves the time of the most recent change to the
file permissions, that is to say the read, write, and execute flags and the
file owner. A chmod command ensures that a new ctime is set while the
mtime remains unchanged.

= Access time (atime) shows the most recent time a read access occurred.
Every read access, even a simple cat, causes a new atime to be saved.

This is a little performance killer. Even if the atime is usually only written
to the write cache at first, and even if the client only retrieves a few emails,
it still involves unnecessary file administration and disk I/0.

As the atime is not usually relevant for servers, it can be switched off. To
do this, mount the data partition with the option noatime, and/or enter
this option in the /etc/fstab. The Linux kernel will no longer change the

57

4 Selecting a Filesystem

atime when read accesses occur. This will not have any negative conse-
quences.?

4.2.2 Access Control Lists

For access to an individual file, the Unix filesystem differentiates users into
fixed classes: the owner of the file, users belonging to the same group as
the file owner, and all other users (other/world). Access control lists (ACLs)
have been added to improve flexibility. They are used to enable or block
file access by individual users according to specific criteria.

Naturally, it takes time to evaluate ACLs. Often it is practically no time,
but it does take some time, which can add up quickly on high-performance
mail servers. “Practically nothing” can become “10 million times practically
nothing” and turn into a relevant performance factor.

Unless you operate filesystem-based shared folders under Courier (see sec-
tion 10.1.2 on page 163), (filesystem-based) ACLs are not really useful in the
mail directories of an IMAP server. In this case, it makes sense to deactivate
them for the mail data partition.

In addition to the noatime option mentioned above, there is also a noacl
mount option that prevents the ACLs from being evaluated.* You can enter
it in the option column in /etc/fstab in the usual way.

4.2.3 The Ext2/Ext3 Option dir_index

Ext3 used to perform badly when accessing directories containing many
thousands of files. If a directory contained 100,000 files, there was literally
enough time to fetch a cup of coffee before a 1s -1a returned the output.

ReiserFS clearly had the edge here, but Ext2/Ext3 have caught up and intro-
duced the dir_index option, which sorts the files in a folder by a hash in-
dex and therefore enables much faster access to individual filenames. How-
ever, there is a caveat: This works in theory. The test results in Table 4.3 only
display a minor increase in speed if dir_index is active; the performance
actually deteriorates noticeably when it comes to deleting files.

Theodore “Ted” Tso, the central developer of the Ext2/Ext3 filesystem, pro-
vided the following explanation: dir_indexis actually a high-performance
solution, but it prevents files that were created in sequence from being
stored on the hard disk in order of ascending inode. Instead, they are sorted

by hash values. As a consequence, creating and deleting numerous files
3 You can usually mount all your system partitions with the noatime option, even the

root partition. However, as servers usually cause little activity on the root partition, this

latter option does not improve performance noticeably.

It is also valid for ReiserFS, even though man mount only lists it for Ext2.

58

4.2 Tuning the Performance of the Filesystem

causes more disk head movements than would result if the files could be
written in chronological order.

dir_index may speed up the access to individual files, but it results in
haphazard accesses to the hard disk when many files are accessed. The
positioning time required by the disk head (seek time) then causes delays.

This does not pose a problem in our case: Good mail server programs im-
port the file directory and then sort the files by their inode numbers in
ascending order before executing accesses or deletions; this prevents the
disk head from backtracking. Sam Varshavchik, the Courier author, has im-
plemented this sorting function in Courier, but the benchmark tool we used
does not contain it. This means that Courier IMAP is optimized for use with
dir_index, and the test results can not be applied in full to Courier. Un-
fortunately, the authors did not have the chance to adapt the behavior of
the benchmark tool.

Current distributions such as OpenSuSE 10.2 now set the option dir_index
automatically for Ext3 partitions. Depending on the distribution and ver-
sion you use, you may be able to skip the following instructions on activat-
ing dir_index.

For indexed directories, enter the option dir_index directly during for-
matting with mkfs.ext3:

linux: # mkfs.ext3 -0 dir_index /dev/sda5

If you wish to activate this feature on a partition that is already being used,
use tune2fs. In order to activate dir_index for directories that already
exist, run £sck once on the disk (which may not yet be mounted). The -£D
parameter enforces the optimization of the directory structure; as a result,
an index is also created for existing directories.

linux: # umount /dev/sda5

linux: # tune2fs -0 dir_ index /dev/sda5
linux: # fsck.ext3 -£fD /dev/sda5

linux: # mount /dev/sda5

15,000 RPM SCSI Ext3 without dir_index Ext3 with dir_index

Transactions per

second 91 95
Files created per

second 4,424 4,065
Files deleted per

second 1,360 1,283

Table 4.3:
Influence of the

dir_index option

59

4 Selecting a Filesystem

continued:
15,000 RPM SCSI Ext3 without dir_index Ext3 with dir_index
Read accesses per

second 45 47

Write accesses per

second 45 47

Average

read throughput 426.34KB/s 445.63 KB/s
Average

Write throughput ~ 651.37 KB/s 680.86 KB/s

4.2.4 Journal Mode

The Ext3 and ReiserFS journaling filesystems currently know three different
methods of journaling:

journal
This mode guarantees the highest possible data safety, as data is first
written to the journal and then to its final destination.

ordered (Default)
The kernel writes the data straight to its destination and then enters
information on this transaction in the journal.

writeback
In this method, the data can be written to the journal and the user
data area in any order.

In principle, this method provides as much data safety as journal;
however, it is possible that deleted data reappears in the filesystem
after a crash. You could say that this is an anomaly that is the oppo-
site of data loss. However, this should not be a problem on a maildir
system with Courier; the worst-case scenario is that some old emails
reappear.

The method is specified by the corresponding data option when the parti-
tion is mounted or the entry is made in the /etc/fstab.

Table 4.4 shows the differences in speed. The results indicate that ordered
provides the best performance for maildir-based mail servers. We have to
admit that we did not expect this result. We sent a query to Ted Tso, but
had received no reply when this book went to press. If you have a spare
moment, please take a look at http://www.imap-buch.com/!

60

4.2 Tuning the Performance of the Filesystem

Most of us expected writeback to come out on top; after all, tests keep on
stating that writeback improves performance by approximately 10 percent
(Ext3) or 30 percent (ReiserFS) in comparison to journal. Our tests have
put this statement in perspective in regard to the Ext3 system we tested: We
could not detect a performance increase of 10 percent, but most operations
were slightly faster. However, the main performance killer is the creation
of files, and this is where writeback lost out. Unlike a web server that
mainly delivers, a mail server constantly creates new files on a large scale.
writeback does not therefore seem suitable for mail servers based on Ext3,
in spite of popular opinion.

15,000 RPM SCSI ordered journal writeback Table 4.4:
The writeback

mode does not make

Transactions per

second 91 90 91 Ext3 faster.
Files created per

second 4,424 1,160 846

Files deleted per

second 1,360 1,244 1,320

Read accesses per

second 45 45 45

Write accesses per

second 45 45 45

Average

read throughput 426.34KB/s 416.95KB/s 419.01 KB/s
Average

Write throughput ~ 651.37KB/s 637.03KB/s 640.18 KB/s

Ted Tso confirmed the differences between the journal and writeback
modes, and provided the following explanation: writebackis slightly faster
during normal operation; this does not apply if the running software often
calls fsync(), forcing the system to write the data definitively from the
cache to the hard disk.

Frequent sync actions can have very different effects depending on the jour-
naling mode: In writeback mode, the user data has to be written to the
hard disk. This requires numerous single accesses and disk head move-
ments because the data blocks are scattered. In journal mode, it suffices
if the data is written to the journal when fsync() is executed. The filesys-
tem can do this in one access, and without much movement of the disk
head, which makes this method a lot faster.

61

4 Selecting a Filesystem

In practice, mail servers constantly call fsync () to ensure that the cache is
emptied and the emails are safely saved. As such, in the case of a crash or
reset, they lose next to no data. This means that writeback is now slower
rather than faster. In regard to this aspect, a mail server differs substantially
from a desktop PC running KDE/Gnome, OpenOffice.org, & Co.

4.2.5 Optimized fstab Entries

If you wish to combine all the options suggested here, you should make the
following entry in the /etc/fstab for Ext3:

/dev/sda5 /mail ext3 defaults,noatime,noacl,data=ordered 1 2

For a corresponding ReiserFS entry, you only need to change the informa-
tion on the filesystem: reiserfs instead of ext3.

4.3 RAID

Sensitive email data should be stored on a RAID system as standard prac-
tice. RAID 1 (data is mirrored on two hard disks) performs noticeably better
than RAID 5 (data is stored with single parity) and RAID 6 (data is stored
with double parity) in regard to computing and processing. This applies
especially to write accesses, where RAID 5 and RAID 6 systems provide far
less throughput than RAID 1.

In general, RAID 5/RAID 6 performs better for read access to large data
blocks and achieves significantly higher throughput rates than RAID 1. The
distribution of read accesses improves as the number of hard disks used in
RAID 5 increases. RAID 5/RAID 6 is, however, unsuitable for mail servers,
as mail servers (unlike web servers) are subject to constant write accesses.
RAID 5/RAID 6 cannot utilize its high read throughput, as a mail directory
consists of too many tiny files. Quite the opposite: The large number of
hard disks and the consequently increased positioning times required by
the disk heads slow down the access to many small files significantly when
compared to RAID 1. Our experience has shown that RAID 1 is therefore
more suitable for mail servers because its write throughput is better.

RAID 5 is no safer than RAID 1. RAID 1 and RAID 5 can both handle the
failure of only one disk. Only RAID 6 is able to cope if two disks fail at the
same time.

For this reason, it is safer (!) and more sensible to use three hard disks to
build a RAID 1 (two data disks, one spare disk) rather than a RAID 5 (two
data disks, one parity disk).

62

4.4 NFS

The RAID performs better when writing, and a spare disk is always avail-
able. However, a RAID 1 has 50 percent less storage space for user data than
a corresponding RAID 5, so you may have to invest in larger hard disks if
you require the same entire storage capacity.

Instead of spending money on a RAID 5 controller, you should instead in-
vest in a fourth hard disk and construct the cheaper (but faster) RAID 10,
which is a combination of RAID 1 (mirroring) and RAID 0 (striping). Even if
you have a spare disk for RAID 5 (two disks for data, one disk for the parity,
and one disk as a backup), it makes more sense to use the additional disk
for RAID 1 or RAID 10 from a performance point of view. You can combine
two disks to one RAID 1 and then combine the two RAIDs to a large filesys-
tem under LVM. You could also combine all four disks into a RAID 10. RAID
10 is currently the highest-performing RAID available.

Even if fast RAID 5 controllers are released in the near future and can
smooth out the write drawbacks, you should not underestimate the I/0
load caused by large mail directories. Bottlenecks in mail systems are often
caused by the shared I/0 load of the disk combination when thousands of
POP3 and IMAP users access the stored emails in parallel, and not by lack
of storage space.

Every hard disk has a limited capacity for I/O operations, resulting from
the positioning speed of the disk head and the revolution speed of the disk,
which are indirectly related. Disks with 10,000 RPM or 15,000 RPM have the
advantage here, but even they will be pushed to the limit if there are more
than a few thousand users. The only solution in this case is to parallelize
on a large scale; this means that you should use additional Autarkic read
heads in RAID 10. If you have a lot of space and many IMAP users, it may
be advisable to buy many small hard disks rather than a few large ones.

4.4 NFS

If you store emails on a central system, you can distribute the load onto
multiple physical IMAP servers without too much effort. As every server
then contains an identical file tree, it no longer matters which computer
the user is assigned to. You can use a load balancer or a simple DNS Round
Robin method to distribute the load, as described in section 3.1 on page 45.

Courier uses a maildir storage format for emails that was designed specifi-
cally for use with NFS. It does not need file locking, which can be tricky for
NFS, so multiple servers acting independently can use it in parallel. Courier
IMAP can use it to deliver emails, while Postfix and other such servers can
use it to store emails.

This is unfortunately not the case for Cyrus. Cyrus index files require file
locking. Current implementations of NFS contain a file locking daemon

63

4 Selecting a Filesystem

that is intended to solve this problem, but even the developers of Cyrus
are cagey about this. The most concrete statement in the Cyrus Wiki is
that “NFS4 seems to support the file-locking.”> However, various discus-
sion forums frequently mention locking errors in conjunction with NFS4.
We therefore do not recommend the production use of NFS as a storage
location for Cyrus. Because Cyrus (unlike Courier) is not able to write to an
identical data set using multiple instances, NFS looks less attractive any-
way.

It is fairly simple to mount the (Courier) mail repository via NFS, but there
are a few tuning hints that will speed up access considerably.

4.4.1 Disabling atime and Optimizing Block Size

NES offers the option of mounting the entire storage partition using noati
me (see section 4.2.1 on page 57) on the NFS server and on the NFS client.

You should also specify the options rsize=8192,wsize=8192 on the NFS
client; it will then increase the block size for read and write accesses.

If the client wishes to read or save a large email, it has to distribute it ac-
cording to the block size. A 16KB email normally is transferred in 16 blocks
of 1,024 bytes. The problem is that the parallel processing of NFS requests
is limited. The NFS client has to wait for confirmation by the server after
every block before it can send the next one. This takes up valuable time. If
the block size is increased to 8,192 bytes, a 16KB email can be processed in
two requests.

Small block sizes were introduced to limit the amount of data that has to be
retransmitted if blocks are lost or errors occur during transmission. How-
ever, transmission errors should occur only rarely within a LAN,® so there
is no reason to keep the blocks small.

Many kernel versions and distributions now use block sizes of 4,096 or 8,192
bytes instead of the original default value of 1,024 bytes.

4.4.2 NFS Version 3

Specify nfsvers=3 as the mount option on the NFS client, so that it will use
protocol version 3 to communicate with the server. Version 3 is currently
contained in the common distributions, but the clients of older distribu-
tions may use version 2 by default.

Protocol version 3 knows some additional NFS commands that can save
time and reduce the load on the client in some circumstances. This option

5 See http://cyrusimap.web.cmu.edu/twiki/bin/view/Cyrus/CyrusCluster.
6 1f they occur more frequently, you should troubleshoot this error!

64

4.4 NFS

will not have any negative side effects. If your Linux/Unix does not support
this version, your mount attempt will fail. You will then not be able to use
this trick, but there are no negative consequences.

4.43 Fastl/O

Do not underestimate the I/0 load on the server. Simple SATA or IDE disks
with 7,200 RPM already perform well on a normal server; normal RAID
controllers also return good results, as the speed of the entire system also
depends on the CPU and local data processing. Mediocre I/0 performance
does not have serious effects in this case.

The NES server, however, delivers the data rather than processing it. All
requests from all other hosts are bunched. The local I/0 can be a prob-
lem here. Mediocre RAID controllers or hard disks reach their limits very
quickly, and thereby slow down all other processes unnecessarily.

If you are using an NFS server, pay special attention to the tuning hints
for hard disks, mount options, journaling variants, and filesystems that are
listed in this chapter. A good disk cache is, as always, beneficial, and the
advantage provided by hard disks with 10,000 or 15,000 RPM becomes ap-
parent very quickly.

65

Complementary Webmail Clients

IMAP lets users access their email anywhere they can run an IMAP client,
so a web-based mail client is simply a logical extension of the basic idea.
There are two approaches: direct filesystem access to the email repository
or access via IMAP.

Large, monolithic email services sometimes contain a native webmail client,
which is often designed specifically for the particular system’s database for-
mat and accesses the email repository directly. Such webmail clients can
only be combined with Cyrus if the mail system explicitly supports Cyrus
databases. They can be used with Courier if the webmail client is able to
work directly with a maildir structure.

Most free webmailers simply use the IMAP protocol to access the email
server, so it is not relevant where and how the IMAP server stores emails.
This means that these webmailers can theoretically be combined with any
IMAP server, because they run in the web browser but communicate with
the mail server like standard mail clients that run on the desktop.

67

5 Complementary Webmail Clients

Figure 5.1:
A look at the
Squirrelmail inbox

This chapter will introduce the two best-known free webmailers that are
able to work with any IMAP server: Squirrelmail and Horde/IMP. Both are
written in PHP and run in a standard web space. They use the IMAP proto-
col to connect to the mail server, so they do not require access to the email
filesystem, and do not need to connect to the user database on the mail

server. They transfer the login name and password to the mail server via
the IMAP connection.

£ Heinlein - Professional Linux Support GmbH - Kongueror

A

Location Edit View Go Bookmarks ZIools Sefings Window Help

QOO0 OO WH N ES

B Location: [niips twww jpberlin.defsquirreimailisrcinebmail php - [& [
Folders Current Folder: INBOX Sign out
Last Refresh Compose Addresses Folders Options Search Help Calendar Notes Fetch
Fri. 12:00 pm
(Check mail)
‘Welcome, your last connection was from 10.0.42.2 (phei.heinlein-support.de)
- INBOX @) on Fri, February 29, 2008 11:36.
business — .
friends Toggle Al Wiewing Messages: 1 to 8 (8 total)
share1 Move Selected To: Transform Selected Messages:
ez || neox -
stuff Thread View
From @ Date @ Subjectm
[Nagios Monitoring 11:38am *RECOVERY alert - Typo3 WebserverLoad is OK **
L] stephan Joerges 11:33am Mailman Translation

[l Dimitrios Bogiatzoules,

Thu, 2:00 pm +Re: [Ipi-examdev] LPI-101 : 7 problematic question...

LPI Product Developer

L) sam varshavchik
[Tobias Franzén
[J JpBerlin Support Team

Feb 18, 2008+Re: [Courier-imap] GSSAPIKerberos support
Feb 18, 2008 [Courier-imap] GSSAPI/Kerberos support

11:13am Welcome at jpberlin.de!
Toggle Al

] 0TRS Notification 11:17 am Re: [Ticket¥# 2008021510000141] Change of domain-ow...
Master
LI Marcel Ahlburg 11:16am Re: Could you please fix a bug in MAIL:IMAPClient

Wiewing Messages: 1 to 8 (8 total)

5.1 Squirrelmail

Squirrelmail! (see Figure 5.1) is fast and easy to install. It also provides a
number of interesting features by means of numerous plugins, including

the following:

= A virtual keyboard during login, to prevent keylogging

Shared calendars and address books
= A current weather report for the region
= Spam protection and filters

1 See http://www.squirrelmail. org/.

68

5.1 Squirrelmail

= A fetchmail plugin for importing POP3 accounts to the IMAP server

= Safety functions for locking users or IP addresses, or for logging the source
of the most recent access

= Automatic signatures and headers

This package is recommended for basic distributions, as Debian and SuSE,
among others, contain Squirrelmail. The installation of the source code is
also simple, as Squirrelmail is only a collection of PHP scripts.

Place the archive into the document directory on your web server:?

linux: # tar -xvzf squirrelmail-1.4.9a.tar.gz

[...]

linux: # mv squirrelmail-1.4.9a /srv/www/htdocs/squirrelmail
linux: # cd /srv/www/htdocs/squirrelmail

Once Squirrelmail is installed, you can configure it via a menu-based inter-
face by invoking a short Perl script:

linux:/srv/www/htdocs/squirrelmail # ./configure
SquirrelMail Configuration : Read: config.php (1.4.0)
Main Menu --

Organization Preferences

Server Settings

Folder Defaults

General Options

Themes

Address Books

Message of the Day (MOTD)

Plugins

Database

H WO © 3 o0 01w N

0. Languages
D. Set pre-defined settings for specific IMAP servers
Turn color on

Save data
Quit

0 n N

Command >>

Make sure you set up the SMTP and IMAP servers under menu item 2.
Server Settings. Specify the language and character encoding under 10.
Languages:

2 We recommend that you give the directory an unusual name, rather than squirrel
mail or webmail, as this is a simple way to keep wannabe script hackers at bay.

69

5 Complementary Webmail Clients

Command >> 10

SquirrelMail Configuration : Read: config.php (1.4.0)

Language preferences

1. Default Language : en _US

2. Default Charset : 1s0-8859-1
3. Enable lossy encoding : false

R Return to Main Menu

¢ Turn color on

IS Save data

Q0 Quit

Command >> S

Data saved in config.php
Press enter to continue...

Call up the URL for Squirrelmail; for example, http://www.example. com/
squirrelmail. You should now be able to log on to your email account.
Because Squirrelmail uses your login data to log on to the IMAP server,
Squirrelmail does not need to be connected to the user database.

For more information on enhancing Squirrelmail, go to the project web
page, which contains a number of (more or less useful) plugins, including
the ones we mentioned previously (Virtual Keyboard, Calendar, and Shared
Calendar). The Show SSL Link plugin is also worth mentioning, as it en-
courages users to log on via SSL—though this only works if the webmailer
is run on an HTTPS secure web page.

During operation, you should keep an eye on the data subdirectory. This
is where the program stores personal user settings, filter settings, address
books, and calendar entries. Do not forget this folder during backups or
migrations. When you switch to IMAP server software with a different name
space, the filter settings may no longer be suitable. Users will no longer be
able to log in if the filter rules are faulty (see section 6.3 on page 79).

5.2 Horde/IMP

The IMP webmailer is part of the Horde project.®> This is a powerful but
complex framework for web and groupware applications, but the configu-
ration is not intuitive. The project has existed for nearly ten years and has
yielded “standard” webmailers, specialized Ajax and cell phone webmail-
ers, and projects such as (group) calendars, task management tools, file
managers, and address books or bookmark tools. Horde has also made its

3 Seehttp://www.horde.org/.

70

5.2 Horde/IMP |

way into the standard Linux distributions (the horde and imp packages in
SuSE, and the horde3 and imp4 packages in Debian).

In the following section, we will set up IMP so that it (like Squirrelmail) can
be used as a pure webmailer for an IMAP server. We will thereby leave out
the other impressive Horde functions, as well as Horde’s own user manage-
ment.

After installation, you should have a look at http://localhost/horde;
you will be logged in automatically. The menu item Administration/Configu-
ration contains the settings for Horde and IMP. Strangely enough, you have
to make your settings in both sections, even if you only wish to use the
webmailer.

You should first determine whether and how users need to be authenticated
in the Horde framework. If they use the entire Horde project suite, they will
access a MySQL database or LDAP directly at some stage. If they will only
use the webmailer, we recommend that you simply transfer the user data
to the IMAP server.

5@ Horde = Horde Setup - Konqueror < ? Flgu re 5.2:

Location Edit View Go Bookmarks Tools Seftings Window Hel R
- EAodew S0 B fools setings A e Confusing: Horde

QOO OO BXIANLAES configuration
E# Location hnptﬂwww heinlein-support.de/hordefindex php I'] ﬂ[|']I

2 a i : £ 3
Home Setup Users Groups Permissions Datalree Sessions PHP Shell SQL Shell CLI Opfions Problem Help Logout

o Horde General ” Database H Authentication || Sign Up ” Logging ” Preference System ” DataTree System H Gmups ‘
= v Cache System H Token System Iﬁﬁ& Virtual File Storage H Custom Session Handler H Image

MIME \ >Country Lookup H Problem Reporting H Menu Settings H Custom Function Hooks |
% Portal Block Configuration ” IMSP server settings H Kolab Groupware Server ‘
% Options Mailer
- gl Log out + What method should we use for sending ma"’[UseaSMTP oar |.l

The server fo connect fo [localhost] |

The portto connect to [25]
The local hostname / domain [localhost] |

& SMTP aulhentlcahun[Nc authentication |.]

The username to use for SMTP aulh‘ |
The password to use for SMTP auth

Generate Horde Configuration Revert Canfiguration

First, we require the Authentication tab in the Horde configuration. Go to
menu item What backend should we use for authenticating users to Horde?
and select the IMAP server menu item. Enter the hostname and port and
configure whether contact should be via an SSL/TLS encrypted connection.
This informs Horde that the webmailer may only be accessed after authen-
tication through an IMAP username and password.

Caution: Do not lock yourself out of your own web front end. Save your
own IMAP username under Which users should be treated as administrators
before saving your settings if you want to have administrator rights.

71

5 Complementary Webmail Clients

webmailer: IMP

Go to the Mailer tab to configure how the framework should send emails:
Do you want them to be forwarded to /usr/1ib/sendmail via a pipe or
transferred to a mail server via SMTP? In Figure 5.2, we chose SMTP. Click
Create Horde configuration to save the settings.

To choose a display option, specify email sizes, or determine other display
details, go to the IMP item in Administration/Configuration. Don’t forget to
save the settings by clicking Create webmail configuration.

Strangely enough, the most important setting is not available here: Which
IMAP mail server should the webmailer connect to? The IMAP server you
specified in the first step only served to verify the login to the Horde frame-
work and has nothing to do with email retrieval.

Now, you have to edit the configuration files: Go to the directory contain-
ing the Horde PHP files (/srv/www/htdocs/horde) and then choose the
imp/config/servers.php file. Now go to the IMAP server section and
complete the setup as described in the example below:

Sservers|[’/imap’] = array(
‘name’ => 'Web and Mail’,
‘server’ => 'mail.example.com’,
'hordeauth’ => false,
'protocol’ => ‘imap/notls’,
'port’ => 143,
‘maildomain’ => ’‘example.com’,
’smtphost’ => ’smtp.example.com’,
‘smtpport’ => 25,
‘realm’ => '’,

'preferred’ => ’true’,

Mail :: Inbox (2) - Konquerol

Location Edit View Go Bookmarks Tools Seftings Window Help

(eYSX Y+ WcXxIrE oy [syoyy-0"1

E# Location |IE http:#iwww_heinlein-support.de/t I'] A [
=
open Folder
Inbox 2) g ® 1to B of 8 Messages

Delete | Undelete | Forward | View Messages Hide Deleted | Purge Deleted
O A% Date From Subject [Thread] Size
D& 1 111229 AM JPBerlin Support Team Welcome at jpberlin.de! 2 KB
|| 2 02/18/2008 Taobias Franzén [Courier-imap] GSSAPIKerberas support S KB
|} 3 02/18/2008 Sam Varshavchik Re: [Courier-imap] GSSAPI/Kerberos support B KB
DA 4 11:16:45 AM Marcel Ahlburg Re: Could you please fix a bug in MAIL: IMAPClient 2KB
D&@ 5 11:17:50 AM OTRS Notification Master Re: [Ticket# 2008021510000141] Change of domain-owner 3KB
|| € 02/28/2008 Dimitrios Bogiatzoules. LPI PrRe: [Ipi-examdev] LPI-101 . 7 problematic questions 7KB
DA@ 7 11:33:48 AM Stephan Joerges Mailman Translation 3KB
D& 8 11:38:17 AM Magios Monitoring ** RECOVERY alert- Typo3 Webserver/Load is OK** 2KB
@Uns::n Answer:d \mponam Eueleted Draft @Persona\

\

72

5.3 Fast Access via the IMAP Cache Proxy

IMP is able to work with multiple IMAP servers in parallel. The user can
select the IMAP server during login. In single-server mode (the standard
mode), the preferred => true setting ensures that the specified server is
always used. In multiserver mode, you can suggest a server for preselection
by the user.

If possible, we also recommend that you set the protocol to ¢ imap/tls’
so that the connection to the IMAP server is tunneled via SSL/TLS. Now
you can log on to the webmailer under http://localhost/horde/imp
(see Figure 5.3).

5.3 Fast Access via the IMAP Cache Proxy

Webmailers generally have a problem: They are unable to keep a connec-
tion to the IMAP server open. Every time a user accesses the webmailer,
clicks on an email, or selects a directory, the webmailer’s PHP code has to
reconnect to the IMAP server. This takes time and puts strain on the server.

The IMAP proxy project has developed a not very well-known program,
in.imapproxyd, which keeps a connection to an IMAP server open even
after the webmailer ends its current session. When the webmailer next
accesses the IMAP server, the server recognizes that it is part of the same
user-level session by the cached login data, and forwards the request to
the IMAP server via the preserved IMAP session. The webmailer still has
to identify itself to in.imapproxyd, but this uses far less resources than
logging on from scratch to the IMAP server.

You will find the source code on http://www.imapproxy.org/; there is
also a mailing list.* The IMAP proxy software is stable and problem free
after installation, but it is not yet part of the distributions. There are only
a few Red Hat packages from third parties; one of us (Peer Heinlein) has
created a package for the current SuSE version, which you will find on the
website for this book.> This package does the compiling (described below)
for you, and also contains an init script more suitable for SuSE than the
original script.

The instructions below refer to version 1.2.5 under OpenSuSE 10.2, but the
procedure should be similar for other versions or distributions. You require
the source code package,6 gcc, the OpenSSL and NCurses libraries with
header files (from packages openssl-devel and ncurses-devel) and Wi-
etse Venema’s tcpd log utility for networks,” as well as the appropriate de-
velopment package (such as tcpd-devel).

See http://lists.andrew.cmu.edu/mailman/listinfo/imapproxy-info.
See http://www.imap-buch.com/.

See http://www.imapproxy.org/downloads/up-imapproxy-1.2.5.tar.gz.
See ftp://ftp.porcupine.org/pub/security/index.html.

INTIN= RS IS

73

5 Complementary Webmail Clients

Figure 5.4:
pimpstat shows the
potential savings
that IMAP proxy can
make

Use the commands configure, make, and make install from the un-
packed source directory to compile and install the IMAP cache proxy. The
original code also contains an init script, which links the supplied Makefile
underneath /etc/rc2.d. This is correct for Debian, but will result in an er-
ror message under SuSE.

= peer@atlas:~ - Shell- Konsole

Session Edit View Bookmarks Seftings Help

Serwver Start Time: Fri Oct Z6 17:08:01 Z007
Last Counter Reset Time: Fri Oct 26 17:08:01 2007

CLIENT COMMNECTIONS

current: o] peak :]
ACTIVE SERVER CONMNECTIONS

current: o] peak :]
CACHED SERVER CONMECTIONS

current: 16 peak : 47
CONNECTION TOTALS

client connections accepted: 279183
client logins: 266341
server connections created: 48936
server connectlon reuses: 217795
client login to serwver login ratio: 5.48 : 11
—SELECT CACHE TOTAL =

o | 1 shen

The /etc/init.d/imapproxy start script does run under OpenSuSE, but
is expected in /etc/init.d/rc3.dand rc5.d:

linux:~/up-imapproxy-1.2.5 # cd /etc/init.d
linux:/etc/init.d # 1ln -s ../imapproxy rc3.d/S99imapproxy
linux:/etc/init.d # 1ln -s ../imapproxy rc5.d/S99imapproxy

The pimpstat tool is installed along with the in.imapproxyd. Like top, it
provides an overview, constantly updated, of the number of connections,
the number of connections not made because of caching, and other infor-
mation (see Figure 5.4).

74

Migrating IMAP servers

When you change to new IMAP server software or migrate from POP3 to
IMAP, you will rarely find a suitable conversion program or import function
that will transfer the existing data records perfectly. Unless both programs
use identical storage methods for emails (mbox or maildir format), you will
not be able to migrate from the old system to the new one by simply copy-
ing the files.

However, there is a simple solution: Use the IMAP (or POP3) protocol itself.
After all, the software provides a corresponding interface. IMAP can be used
to upload all emails of an account to the target IMAP server while retaining
all defined IMAP flags (read, deleted, answered) and any custom flags, as
long as the target server supports them.

You can use the SELECT command to determine whether this is the case.
If the server returns a * when listing the flags, this means that any flag is
permitted. Cyrus supports a maximum of 128 flags per folder, while Courier
theoretically has no upper limit. This means that there could be problems

75

6 Migrating IMAP servers

when migrating from Courier to Cyrus if there are a very large number of
custom flags.

There are a number of tools that can carry out the migration. These include:

imapsync!
We recommend this flexible and mature migration tool by Gilles Lami-
ral.

pop2imap?
This is imapsync’s little brother. It synchronizes the data set of a
POP3 server with that of an IMAP server.

imap_migrate3
This PHP script expects an empty target mailbox, so it is not suitable
for continuous data synchronization. When you try to update an al-
ready populated mailbox, it creates duplicates of existing messages.
However, it can serve as a basis for any in-house developments.

imapcopy*
This tool is still under development, but it may be worth looking at if
imapsync or imap_migrate are not suitable.

imap_tools®
This is a collection of Perl scripts, which perform tasks such as copy-
ing IMAP server files to mbox files or uploading emails from mbox
files to an IMAP server. There is also a tool for migrating from POP3
to IMAP.

6.1 Migration Using imapsync

We have had very good experiences with imapsync. It is stable and under
active development, and allows continuous synchronization of IMAP fold-
ers. Thus you can migrate a mailbox from the old system to the new system
incrementally without creating duplicates of existing emails in the target
system.

This is important because migrating a large system via IMAP takes quite a
long time. imapsync permits you to begin the migration while the source
mail system is still operating. In this way the largest possible number of
emails from each account is copied to the target system at the beginning.

See http://www.linux-france.org/prj/imapsync/.

See http://www.linux-france.org/prj/pop2imap/.

See http://freshmeat.net/projects/imapmigration/.

See http://home.arcor.de/armin.diehl/imapcopy/imapcopy.html.
See http://www.athensfbc.com/imap_tools.

(& I N N

76

6.1 Migration Using imapsync

For thousands of accounts and many gigabytes of email content, the first
transfer cycle can take a number of days. However, as long as the old mail
system can continue to operate during this process, it does not really mat-
ter.

After the main bulk of data has been copied to the target system, the suc-
ceeding imapsync cycles take far less time. The time required for syn-
chronization decreases with each cycle. During the final migration period,
however, you have to bar user access to the old system and schedule down-
time so that all remaining emails and data can be completely transferred to
the new system without any new mail arrivals or user updates happening
in the meantime. If you have carried out the preparations just described,
the downtime for this final synchronization cycle is very short and can take
place during a night of the weekend, for example. imapsync now only
needs to copy all new emails, remove newly deleted emails from the target
system, and adapt any newly modified email flags.

The following example copies the INBOX and all other IMAP folders of the
user tux:

linux: # imapsync --hostl oldmail.example.com --userl tux \
--passwordl "secret" --host2 newmail.example.com --user2 t.tux \
--password2 "secret"

You can automate the processing of many hundreds or thousands of ac-
counts by creating a list of all usernames and passwords and a shell script
that feeds them to imapsync. However, there are some security concerns
when you transfer passwords as call parameters, because they are then en-
tered in the shell’s command history. Moreover, unprivileged (!) users can
view the invocation of imapsync with all entered passwords by displaying
the process list. imapsync therefore explicitly provides the option of read-
ing the passwords from separate files. These files should be stored in a
secure directory and only be readable by root:

linux: # cat /root/pwl

secretpasswordl

linux: # cat /root/pw2

secretpassword2

linux: # imapsync --hostl oldmail.example.com --userl tux \
--passfilel /root/pwl --host2 newmail.example.com --user2 t.tux \
--passfile2 /root/pw2

The following call parameters are also useful:

= If you add the --dry flag, imapsync runs the readonly synchronization
cycle and does not modify any data. This is perfect for a test run.

= —_delete deletes the emails on the source host specified in --host1l
after the migration has been completed successfully.

77

6 Migrating IMAP servers

= __delete2 deletes the emails on the target host specified in --host2 if
they (no longer) exist on the source host.

= --ssll and --ssl2 activate the SSL encryption on the source and tar-
get computers, respectively. These two parameters demonstrate how the
script works: It acts as a link befween the two servers and opens separate
connections to each of them.

= __help provides a list of the numerous available call parameters. It is
possible to specify complex criteria (size, age, folder name) for selecting
the emails that are to be migrated, and to adapt the names of the IMAP
folders.

When testing the migration, you should pay attention to the following stum-
bling blocks:

= Were all IMAP folder names converted correctly? Do IMAP folders on
the old system contain special characters that the new system cannot
interpret properly? In some cases, the old and new systems disagree on
whether IMAP folders may be parallel to the INBOX (see section 6.3 on
page 79).

imapsync also allows you to modify or transform folder names between
the old and new systems by using the parameter --regextrans2to spec-
ify a regular expression corresponding to the desired replacement: for
example, --regextrans2 s/INBOX/INBOX.old-inbox/.

= Do users need to subscribe to folders on the target system (see section
2.2.4 on page 41)?

If your users used subscribed folders on the old system, you have to trans-
fer the subscription list to the new server. imapsync accepts a suitable
call parameter in the --subscribe option.

If mail clients update all IMAP folders as a matter of course, you can
ignore this item. However, if a user’s client is configured to only synchro-
nize subscribed folders with the server, the user will see no emails if the
subscription list is empty.

= For a number of email servers and clients, POP3 users will see all mi-
grated emails as new emails and therefore have to download them all
completely. The only solution here is to explain this to users in advance.

6.2 Converting mbox to maildir

Even though an mbox contains all emails in one single file, whereas maildir
creates a separate file for each email, individual emails are identically for-

78

6.3 Modifying Folder Names

matted in both cases. For this reason, it is fairly easy to convert mbox files
to the maildir format.

Juri Haberland currently maintains a tool named mb2md.p1,% which per-
forms the required steps more or less automatically and is suitable for con-
verting large data sets. If your target system uses the maildir format, mi-
gration on the file level using it will probably be a lot faster than if you use
the IMAP tools we just described.

The following example shows how to convert an individual user’s mbox file.
Use -s to enter the path for the source file and -d to enter the path for the
target directory:

username@linux:$ mb2md.pl -s /var/mail/username \
-d /var/maildir/username/Maildir/
Converting /var/mail/username to maildir: /var/maildir/username/Maildir
Source Mbox is /var/mail/username
Target Maildir is /var/maildir/username/Maildir
666 messages.

You should execute this command under the user ID of the user rather than
as root. Otherwise, mb2md.pl will create the target maildir with incorrect
permissions, and the user will (probably) no longer have the necessary read
and write permissions to the converted files. When executing a loop to
convert the files of many users, you can use an su call to switch to the
corresponding user IDs; in this case, the command to invoke mb2md.pl is
specified via -c:

linux: # su username -c "mb2md.pl -s source file -d target directory"

6.3 Modifying Folder Names

You might need to modify the names of the IMAP folders during migration,
because the target system only permits folders beneath the INBOX. In this
case folder names such as Friends are no longer permitted; instead, you
have to convert them into INBOX.Friends. Two types of complications can
occur at this stage.

First, what happens if a user has Friends and INBOX.Friends on the old
system? This scenario could easily occur. After all, mail clients cannot
agree among themselves on whether the Trash, Sent, and Drafts fold-
ers should be created parallel to or beneath the INBOX. If you are unlucky,
a user’s desktop email client creates the directories in parallel, while the

6 See http://batleth.sapienti-sat.org/projects/mb2md/.

79

6 Migrating IMAP servers

webmailer creates them underneath INBOX; this scenario results in two di-
rectories being used for the same purpose. They can be copied together
during migration, but this has to be done manually.

Second, if you simply move the user’s folders without also modifying his
filter settings, some user settings can become invalid and have to be reset
after the migration. In this case, you have to inform your users in advance
and apologize for the inconvenience.

Squirrelmail, the popular webmailer, is particularly sensitive to this prob-
lem: Normally, Squirrelmail imports any modified folder structures from
the server after IMAP login. However, if filter settings refer to IMAP folders
that no longer exist (because the folder names have changed), Squirrelmail
freezes and the user can no longer log in. In this case, you should mod-
ify the user-specific profile files in the data folder under the Squirrelmail
folder. If users have defined their own rules, you will find entries of the
following form in their profiles:

filterO=From, tux@example.com, INBOX.Friends.tux
filterl=From, support@heinlein-support.de, INBOX.Work.heinlein-support

The grep command enables you to find these lines, so you can detect po-
tential problems at an early stage. If necessary, you can use a sed script to
modify the folder names appearing in a profile file appropriately:’

for FILE in % ; do
sed s/oldname/newname/ $SFILE > SFILE.WORK
cp $FILE $FILE.ORIG
mv SFILE.WORK SFILE

done

If nothing works, you have to delete the filter settings from the profile files
and explain this to your users. The following script removes all filter set-
tings:

for FILE in % ; do
grep -v “filter SFILE > S$SFILE.WORK
cp SFILE SFILE.ORIG
mv SFILE.WORK SFILE

done

In any case, check the results carefully before overwriting the original pro-
file files with new versions.

7 The following shell scripts are only examples and should be modified to suit the specific
situation.

80

6.4 Determining Cleartext Passwords

6.4 Determining Cleartext Passwords

Even though cleartext passwords usually increase security (see section 9.13
on page 147), many setups save only hashed user passwords in the user
data.

In principle there should be no problem with this, but in practice different
programs compute hash values differently. If you have to switch authenti-
cation sources during migration, this can lead to disaster. Even if the new
authentication database also does not save passwords in cleartext, it may
still require the cleartext passwords to calculate the new hashed passwords
that it will use. The existing password hashes cannot be used.

Even imapsync and other IMAP migration tools assume that you have ac-
cess to the user data and can log on as if you were the normal user. If you
do not have this data, you can not use these extremely convenient data
migration tools. At this point, you will wish you had stored the cleartext
passwords. But there is a solution.

Check whether the existing product contains a debug mode that logs the
passwords. This means you can collect the cleartext passwords of active
users as you go along. Pay special attention to ensure that restrictive file
permissions are set for the mail log file.

On a Courier-based server, you can use the option DEBUG_LOGIN=2 in the
configuration file authdaemonrc (previously pop3d and imapd). If Courier
is in operation, you can use this method to determine the passwords and
then enter them into the authentication database.

Systems that do not use cleartext passwords often restrict users to the au-
thentication methods PLAIN and LOGIN. These methods are not secure, as it
is easy to listen in on the network traffic while the password is transferred
in cleartext from the client to the server. On the other hand, this safety
risk enables you to sniff out login data continuously without much effort.
You can then evaluate it and update the authentication database. Standard
sniffing tools carry out these tasks automatically and then present a clear
list of the sniffed-out user data.?

Alternatively, if you need the cleartext passwords, you can also create a web
front end that users have to log into in order to trigger the migration of their
mailbox to the new server. The called script has to create the user account
on the new server and can then start tools such as imapsync. This method
is usually faster and more reliable than logging or sniffing out passwords.

This is also suitable for migration from MS Exchange servers to other pro-

8 In Germany, it is a criminal offense to use these tools, even if you are using them to
prevent user accounts from being hacked, and even if this is the only way you can
improve the safety of the system. We do not advise German administrators to use these
tools at home or abroad. Administrators of other nationalities may not use these tools
within Germany.

81

6 Migrating IMAP servers

grams and authentication services, as this software prohibits the logging of
passwords and the exporting of password data (in any form) from the active
directory. Even hashed password data remains hidden.® We have used this
method successfully in a variety of projects.

Ultimately, this is just password phishing by another name. The only dif-
ference is that it is being done by the good guys for a legitimate system
administration purpose. Do inform your users in advance (by letter if pos-
sible). Explain that this is an exceptional request, and that login data will
never be requested without such prior notification.

9 The authors would appreciate any information on how to access this data.

82

Part Il

Courier IMAP

Structure and Basic Configuration

Courier IMAP is part of a larger project that provides a full-fledged mail
server containing a mail transport agent (Courier-MTA), a webmailer dubb-
ed SqWebMail, a mail delivery agent with a filter engine (Maildrop), a com-
pact command-line mail client (Cone), a generic authentication library
(Courier Authlib) to replace the Simple Authentication and Security Layer
(SASL) described in RFC 4422, and the aforementioned IMAP and POP3
server with proxy capability.

All of these components can be used independently, which means that
Courier IMAP often functions as an IMAP server with, for example, Post-
fix or Exim as MTA, or with Squirrelmail or Horde/IMP as webmailer. These
are more modern, well-developed, and efficient than the corresponding
Courier components; of the Courier modules, only Courier IMAP and Mail-
drop are commonly used.

Work on the Courier project began in 1998, and the software has long
since found its way into all standard distributions. Nobody can claim that

85

7 Structure and Basic Configuration

new, ambitious developments will appear soon. The Courier IMAP CVS on
Sourceforge! shows some activity, and there are usually half a dozen new
emails on the corresponding mailing lists at any given time. However, we
probably cannot expect any major hype over a big release with numerous
new functions.

This is not really a problem, as the software is capable of all necessary
functions, is very robust, and performs very well overall. You can more or
less forget about the server once it has been installed properly; it works
in the background, requires almost no attention, and has not caused any
major security problems.

To simplify matters, we will refer to the IMAP server as Courier from now
on, even though this name actually refers to the entire software project.

7.1 Installing the Software

The installation process causes some binary programs and simple configu-
ration files to be placed on the system. No additional database systems or
configuration decisions are required, and the configuration itself is not ar-
duous. The only difficult part is integrating authentication mechanisms
into Courier so that you can use authentication data stored in MySQL,
LDAP, and the like.

You should first use shell accounts to get to know Courier and its basic fea-
tures. This reduces the possible sources of error and resulting annoyance.
After you understand how Courier works, you can then move on to includ-
ing LDAP and MySQL support and be better able to fill in the required
configuration fields.

In most cases you can simply install the Courier IMAP packages from the
Linux distributon. Debian and Ubuntu contain current .deb packages, en-
abling apt-get install courier-imap to do its work. If you require
a package with SSL support, you can additionally call apt-get install
courier-imap-ssl.

If you prefer to compile Courier IMAP yourself, you will find detailed in-
structions in section C.1 on page 321. When we went to press, there were
no RPM packages for Red Hat Enterprise or Fedora systems, so you will
have to do the compiling for these systems.

SuSE delivers Courier IMAP in two separate packages. yast -i courier-
imap installs the IMAP server. Support for LDAP is contained in a separate
RPM package. Use yast -i courier-imap-1ldap if you need to integrate
LDAP.

SuSE packages only contain support for MySQL starting from OpenSuSE

1 See http://www.courier-mta.org/cvs.html.

86

7.2 What Is Where?

version 10.2. If you use an earlier version and require support for MySQL,
you will have to compile it yourself as described in section C.1 on page 321.

In OpenSuSE 10.0 (and only in this version), the SSL start scripts are bun-
gled in such a way that it is impossible to start Courier so that it offers IMAP
and POP3 via SSL/TLS on port 993 or 995. The SSL start scripts use call pa-
rameters from the non-SSL start scripts: Instead of SSL_PORTS, it contains
PORTS. When Courier attempts to start imap-ssl on the already occupied
non-SSL port 143, this can only lead to chaos.? Instead of trying to correct
the scripts, you can run an online update immediately after installation.
This update corrects these errors automatically.

7.2 What Is Where?

In nearly all distributions, the configuration files (see section 7.5 on page
95) are located in /etc/courier. The Courier binaries can be found un-
der /usr/bin/ or /usr/sbin/. These also contain the IMAP daemon
/usr/sbin/imapd, the POP3 module /usr/sbin/pop3d, and the follow-
ing programs:

/usr/sbin/imaploginand /usr/sbin/pop3login
These two auxiliary login modules are called automatically by Courier.

/usr/sbin/couriertls
This program manages SSL/TLS connections. It is not really designed
for manual use.

/usr/bin/deliverquota
Every MTA can store emails in the maildir format. MTAs usually con-
tain a little program that functions as a mail delivery agent (MDA).
However, not all MDAs observe quotas. deliverquota does observe
quotas and is available for use by other MTAs; Postfix, for example,
can use it if a corresponding entry is made in the master.cf (see
section 10.2.2 on page 173).

/usr/bin/maildiracl
This permits maintenance of the IMAP folder Access Control Lists.
Clients usually import the required ACLs directly via the IMAP proto-
col. Administrators can use this tool to carry out this process manu-
ally.

/usr/bin/maildirkw
This enables the administrator to edit custom IMAP flags (keywords,

2 Clearly the maintainer could not have tried starting the courier-imap package even
once; certainly there were no tests. ..

87

7 Structure and Basic Configuration

see section 8.2.1 on page 115) for individual emails. Clients usually
use the STORE IMAP command to do this (see section A.4 on page
312).

/usr/bin/maildirmake
This little script creates the maildir directories for users. It invokes
several mkdir commands to create the directories Maildir, cur, new,
and tmp and to assign the correct permissions to them (see section
10.1.2 on page 164).

/usr/sbin/mkimapdcert and /usr/sbin/mkpop3dcert
These two bash scripts automatically generate SSL/TLS keys. They
are started automatically when Courier first launches, if SSL is used.
The configuration is situated in files /etc/courier/pop3d.cnf and
imapd.cnf.

/usr/sbin/sharedindexinstall
This script helps you to put in place the index file for email folders
shared by multiple users without a restart (see section 10.1.1 on page
156).

/usr/sbin/sharedindexsplit
This partitions a large index file for shared folders into multiple small
subfiles according to a number of criteria.

/usr/lib/courier-imap/couriertcpd
This is a type of inet daemon for the Courier project. It monitors
the TCP/IP ports and activates the submodules responsible for the
corresponding protocol when new connections are made.

As usual, the Courier init scripts are located under /etc/init.d/. This is
where the distributions provide an individual start script for every Courier
IMAP module:

linux: # 1ls -la /etec/init.d/courier-=

-rwxr-xr-x 1 root root 2307 Nov 18 2004 /etc/init.d/courier-authdaemon
-YWXY-Xr-X root root 2288 Nov 18 2004 /etc/init.d/courier-imap
-TWXT-Xr-X root root 2677 Nov 18 2004 /etc/init.d/courier-imap-ssl
root root 2234 Nov 18 2004 /etc/init.d/courier-pop3

root root 2657 Nov 18 2004 /etc/init.d/courier-pop3-ssl

“ITWXr-Xr-X

R R

“IrwXr-Xr-xX

In SuSE, the init scripts can be called directly as rccourier-authdaemon,
rccourier-imap, and so on, without entering a path; this is a pleasant
luxury not available to users of Debian or Red Hat. These rc scripts are
symbolic links to the actual start-stop scripts:

linux: # ls -la /usr/sbin/rccouriers
lrwxrwxrwx 1 root root 30 Mar 30 18:41 /usr/sbin/rccourier-authdaemon ->

88

7.3 Initial Start-Up

/etc/init.d/courier-authdaemon

lrwxrwxrwx 1 root root 24 Mar 30 18:41 /usr/sbin/rccourier-imap -> /etc/
init.d/courier-imap

lrwxrwxrwx 1 root root 28 Mar 30 18:41 /usr/sbin/rccourier-imap-ssl -> /
etc/init.d/courier-imap-ssl

lrwxrwxrwx 1 root root 24 Mar 30 18:41 /usr/sbin/rccourier-pop3 -> /etc/
init.d/courier-pop3

lrwxrwxrwx 1 root root 28 Mar 30 18:41 /usr/sbin/rccourier-pop3-ssl -> /
etc/init.d/courier-pop3-ssl

Unfortunately, there is no shared script that starts and stops all services
at once. This is particularly helpful at the beginning, when you are still
experimenting with the configuration files.

The following script provides this convenient option. You can install it as
/usr/local/bin/rccourier, for example, and make it executable through
chmod u+x:

linux: # cat /usr/sbin/rccourier
/etc/init.d/courier-authdaemon $1
/etc/init.d/courier-pop3 $1
/etc/init.d/courier-pop3-ssl $1
/etc/init.d/courier-imap $1
/etc/init.d/courier-imap-ssl $1

linux: # chmod u+x /usr/sbin/rccourier

It uses $1 to transfer the first call parameter to the start scripts. Thus,
the command rccourier start or rccourier stop starts or stops all
services at once, and their status can be queried as follows:

linux: # rccourier status

Checking for Courier Authentication Daemon running
Checking for Courier-POP3 running
Checking for Courier-POP3 (ssl) running
Checking for Courier-IMAP running
Checking for Courier-IMAP (ssl) running

7.3 Initial Start-Up

Regardless of the distribution, Courier should start directly after installation
without requiring any further configuration and should then be available
on ports 110 (POP3) and 143 (IMAP):

linux: # lsof -i :110
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
couriertc 4539 root 5u IPve 10832 TCP x:pop3 (LISTEN)

89

7 Structure and Basic Configuration

linux: # lsof -i :143

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

couriertc 4606 root S5u IPv6e 10931 TCP x:imap (LISTEN)

linux: # telnet localhost 110

Trying 127.0.0.1...

Connected to localhost.

Escape character is [Ael A

+0OK Hello there.

QUIT

+0OK Better luck next time.

Connection closed by foreign host.

linux: # telnet localhost 143

Trying 127.0.0.1...

Connected to localhost.

Escape character is [Ael KA

* OK [CAPABILITY IMAP4revl UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJ
ECT THREAD=REFERENCES SORT QUOTA IDLE ACL ACL2=UNION] Courier-IMAP ready
. Copyright 1998-2004 Double Precision, Inc. See COPYING for distributi
on information.

al logout

* BYE Courier-IMAP server shutting down

al OK LOGOUT completed

Connection closed by foreign host.

If you cannot contact the server at this stage, you should check your instal-
lation carefully and see whether the components start properly. /var/log/
messages or /var/log/mail often contains valuable error messages.

7.4 Courier and MTAs

Unlike Cyrus, Courier IMAP does not provide an interface that mail trans-
port agents might use to transfer emails to it (via LMTP, SMTP, or a similar
protocol). It expects that the MTA will store emails in a suitable location
within the appropriate maildir directory while observing the file permis-
sions. Courier and the MTA interact through these common directories,
as illustrated in Figure 7.1. This means that the MTA and the IMAP server
must run on the same computer or use a shared filesystem, for example,
NES.

On the other hand, there are no potentially problematic interfaces between
the SMTP mail server and Courier. We do not need to worry about the
socket or the transport protocol. If Courier and the mail relay are located
on different computers, they have to share a filesystem, for example, via
NES. Alternatively, if the mail relay for some reason must use SMTP, it is
possible to operate an additional local MTA, such as Postfix, on the Courier
server, and have the mail relay forward the emails via SMTP to the local
MTA for storage.

90

7.4 Courier and MTAs

Each service can function even when the other is inoperational or faulty.
Postfix can continue to receive emails and sort them into the maildir di-
rectories even if Courier is not running. Conversely, users can access the
emails stored on the IMAP server even when the SMTP mail relay is not
running.

Incoming mail traffic Clients access emails Figure 7.1:

via SMTP using POP3/IMAP MTA and Courier
both access the

Port 25 Port 110 || Port 143 | stored emails.
I I

Postfix/QMail/Exim Courier IMAP

/home/geeko/Maildir
/home/paul/Maildir
/homef/tux/Maildir

Postfix, Exim, and sendmail usually store emails in the mbox format: All of
a user’s emails are in one single file. This file is often stored in /var/mail
or /var/spool/mail.

The mbox format is not particularly suitable for IMAP servers, as IMAP
folder structures, flags, and other types of information such as quotas can-
not be mapped into this monolithic file. The mbox format also has some
disadvantages due to the way it is implemented:

= Deleting an individual email from a large 25MB mailbox requires exten-
sive file copying actions.

= If software crashes during write access to the mbox file, this can leave
incomplete emails that corrupt the internal structure of the mailbox.

= If a file write error occurs, it is difficult to determine afterward whether
or not an email was delivered successfully. This means that emails can
be lost without being detected.

= Many processes have simultaneous write access to the mbox, so you have
to set up file locking to prevent competing writes from destroying the file.
The NFS network filesystem is well known for its file-locking problems,
which can lead to email corruption when it is used.

Courier therefore relies on its own maildir process, which stores a user’s
emails in individual files in a filesystem directory (the maildir). This makes

91

7 Structure and Basic Configuration

it easy to determine whether an email was delivered successfully. Individual
faulty email files no longer destroy the entire mailbox. Because of the use
of temporary directories, file locking is no longer necessary, which means
that NFS can be used. Chapter 8 illustrates how maildir actually works.

Standard MTAs usually support the maildir format. Postfix, Exim, and send-
mail can be converted to use it in a few short steps, and QMail uses maildir
as standard. This makes Courier easy to integrate into any system with little
effort.

7.4.1 Courier and Postfix

The home_mailbox variable tells Postfix where to store emails. This variable
is empty in standard installations:

linux: # postconf home mailbox
home_mailbox =

In this case, the MTA stores all messages as an mbox file in the directory
specified in mail_spool_directory:

linux: # postconf mail spool directory
mail_ spool_directory = /var/spool/mail
linux: # 1ls -la /var/spool/mail/

total 36

drwxrwxrwt 2 root root 72 Dec 9 10:36 .
drwxr-xr-x 15 root root 392 Mar 3 10:31 ..
“rW------- 1 root root 34356 Dec 9 10:36 root
“rw------- 1 tux users 237932 Dec 10 12:27 tux
-rwW------- 1 geeko users 92883 Dec 7 21:22 geeko

If you enter a path in home_mailbox, Postfix will create the path to the
location for storing a user’s emails by taking the home directory ($HOME)
of the user and suffixing it with the specified path. If you set the fol-
lowing parameter in main.cf, Postfix will store all emails for tux under
/home/tux/Maildir/ in the maildir format:

home_mailbox = Maildir/

It selects the maildir format only because the path in home_mailbox ends
with /. The trailing slash tells Postfix that it is dealing with a directory, and
Postfix then understands that maildir is required. If you forget to enter the
/ here, Postfix will instead store all emails in the /home/tux/Maildir file,
which will be in the mbox format. Then it will not be able to collaborate
with Courier.

92

7.4 Courier and MTAs

If the maildir directory does not exist, Postfix will create it.> The parent
directory (/home/tux in this example) does have to exist.

As Postfix adopts the user’s permissions to store the emails, the parent di-
rectory must be writable for the MTA to be able to create the new maildir
structure.

Once you have set home_mailbox correctly and remembered to reload Post-
fix, you can attempt the first test:

linux: # echo "Hello" | mail tux@localhost

linux: # tail /var/log/mail

[...]

Apr 2 18:13:12 linux postfix/pickup[7915]: 7094F27FD9: uid=0 from=<root>
Apr 2 18:13:12 linux postfix/cleanup([7930]: 7094F27FD9: message-id=<442F
F7FA.mail5Z0117IBS@linux.site>

Apr 2 18:13:12 linux postfix/qmgr[7916]: 7094F27FD9: from=<root@peer.pos
t.fix>, size=394, nrcpt=1 (queue active)

Apr 2 18:13:12 linux postfix/local[7932]: 7094F27FD9: to=<tux@localhost.
post.fix>, orig_to=<tux@localhost>, relay=local, delay=30, status=sent (
delivered to maildir)

Apr 2 18:13:12 linux postfix/qmgr[7916]: 7094F27FD9: removed

linux: # ls -la /home/tux/Maildir

total 1

drwx------ 5 tux users 120 Apr 2 18:13
drwxr-xr-x 9 tux users 616 Apr 2 18:13
drwx------ 2 tux users 48 Apr 2 18:13 cur
drwx------ 2 tux users 104 Apr 2 18:13 new
drwx------ 2 tux users 48 Apr 2 18:13 tmp
linux: # ls -la /home/tux/Maildir/new

total 4

drwx------ 2 tux users 104 Apr 2 18:13
drwx------ 5 tux users 120 Apr 2 18:13 ..
STW------- 1 tux users 482 Apr 2 18:13 1143994392.V305I27fdeM695281.11
nux

linux: # cat /home/tux/Maildir/new/1143994392.V305I27£fdeM695281.1linux
Return-Path: <root@peer.example.com>
X-Original-To: tux@localhost
Delivered-To: tux@localhost.example.com
Received: by peer.example.com (Postfix, from userid 0)
id 7094F27FD9; Sun, 2 Apr 2006 18:12:42 +0200 (CEST)
Date: Sun, 02 Apr 2006 18:12:42 +0200
To: tux@localhost.post.fix
Message-ID: <442FF7FA.mail5Z0117IBS@example.com>
User-Agent: nail 11.4 8/29/04
MIME-Version: 1.0

Content-Type: text/plain; charset=us-ascii

3 This is pretty nice of Postfix—Courier simply crashes in this case, which is not partic-
ularly helpful. This problem is well known, but the Courier programmers believe that
Courier need not concern itself with the existence of the maildir and is therefore enti-
tled to terminate the connection in such cases. We therefore cannot expect a solution,
even though, as much as we like Courier, this state of affairs is unacceptable.

93

7 Structure and Basic Configuration

Content-Transfer-Encoding: 7bit
From: root@peer.example.com (root)

Hello

Because this newly delivered email has not yet been accessed via POP3 or
IMAP, it is stored in the new subdirectory.

If every POP3/IMAP user in your scenario has a shell account as a matter of
course, Postfix and Courier will work together after this small adjustment
has been made. If you wish to use virtual users, that is, email accounts that
do not correspond to existing Linux system users, you should define home
directories for them in the Postfix configuration somewhere outside of the
/home directory tree, for example, under /var/spool/mail.

7.4.2 Courier and QMail

As QMail is already set up for the maildir format, only a few simple steps are
required to use it with Courier. You have to set up the correct storage path.
If necessary, create the defaultdelivery file in the /var/qmail/control
directory. It contains the path to the storage location for the emails. As
in Postfix, a path ending in / indicates a directory and therefore that the
maildir format will be used.

Courier expects the maildir in the home directory of every user by default,
but QMail stores it under /var/spool/mail. Enter the following configu-
ration in defaultdelivery for QMail:

./Maildir/
Now you have to restart QMail:

linux:/var/gmail/control # gmailctl restart
Restarting gmail:

* Stopping gmail-smtpd.

* Sending gmail-send SIGTERM and restarting.
* Restarting gmail-smtpd.

Proceed for the first test email as you would for Postfix (see section 7.4.1 on
page 93).

7.4.3 Courier and Exim
Like Postfix, Exim requires only a few steps to switch from using the mbox

to the maildir format. You will find the required configuration files in
/etc/exim.

94

7.5 Optimizing the Configuration

Open exim.conf, search for the local_delivery section, and insert the
lines displayed in bold. These lines ensure that a maildir is created in the
home directory of every user:

local delivery:

driver = appendfile

group = mail

mode = 0660

mode_fail narrower = false
envelope to_add = true
return path_add = true

directory=${home}/Maildir
maildir format = true

prefix = """

If you have a more complex setup with virtual users and would like to store
all maildirs centrally, you should specify a fixed path instead of ${home}.
Don'’t forget to send a test email after changing the configuration (see sec-
tion 7.4.1 on page 93).

7.5 Optimizing the Configuration

Now that you are on your feet, you should have a look at the configura-
tion files in /etc/courier. Courier has a very modular structure, and each
component uses different files. The configuration files include the settings
for POP3 and POP3 via SSL/TLS (in pop3d and pop3d-ssl) and for IMAP
(imapd) and IMAP via SSL/TLS (imapd-ssl); often, one also finds the cen-
tral configuration file of the authorization daemon (authdaemonrc) and,
depending on the setup, the configuration files for the authorization mod-
ules (authldaprc in this example). The authorization configuration may
also be located in /etc/authlib.

linux: # ls -la /etc/courier
“rwW------- 1 root root 2688 Jul 20 06:02 authdaemonrc

“rW------- 1 root root 2697 Nov 18 2004 authdaemonrc.dist
-rW------- 1 root root 7318 Jul 15 06:49 authldaprc
“rwW------- 1 root root 12625 Mar 30 18:38 imapd
-rwW------- 1 root root 6093 Mar 30 18:38 imapd-ssl
SrW------- 1 root root 6093 Nov 18 2004 imapd-ssl.dist
-rW------- 1 root root 343 Nov 18 2004 imapd.cnf
-rW------- 1 root root 12625 Nov 18 2004 imapd.dist
“rw------- 1 root root 3809 Mar 30 18:38 pop3d
“rW--=--=-=-=- 1 root root 5704 Mar 30 18:38 pop3d-ssl
-rW------- 1 root root 5704 Nov 18 2004 pop3d-ssl.dist
~rW--=--=-= 1 root root 343 Nov 18 2004 pop3d.cnf
-rwW------- 1 root root 3809 Nov 18 2004 pop3d.dist

95

7 Structure and Basic Configuration

-r--r--r-- 1 root root 516 Nov 18 2004 quotawarnmsg.example
drwxr-xr-x 2 root root 4096 Jul 12 11:30 shared

Files pop3d.cnf and imapd.cnf are only required once, by mkpop3dcert
or mkimapdcert (see section 7.2 on page 88). If Courier has been config-
ured for SSL/TLS support (see section 7.6 on page 102) but does not find
any prepared SSL/TLS certificates, it uses mkpop3dcert, mkimapdcert, and
openssl to create them. It uses the information on the hostname, certifi-
cate owner, and server location from pop3d.cnf and imapd.cnf to do this
(see section 7.6 on page 104).

You can also ignore the .dist file. It documents the status of the file dur-
ing delivery by the distributor. As long as you do not modify the “real”
configuration files, they remain identical to the .dist files.

quotawarnmsg.example contains ASCII text, which the administrator can
use (by renaming the file as quotawarnmsg) to specify a warning message
triggered when a quota is exceeded. The shared directory is required for
the configuration files for shared folders (see section 10.1 on page 153).

7.5.1 Real and "False” Configuration Parameters

The Courier configuration files contain many parameters that come in pairs,
for example, POP3AUTH and POP3AUTH_ORIG. If you are using all of the
Courier components including the SMTP server, rather than only Courier
IMAP, you can configure the individual programs via a web interface. It
reads out the aforementioned ORIG variables to determine the options it
can make available to the administrator. If you use only Courier IMAP as
discussed in this book, the web interface is not available and the ORIG vari-
ables become superfluous.

They have nothing to do with actual operation. Courier IMAP ignores them
and reads out the parameters without the _ORIG suffix. The ORIG variables
can only provide information on the options available. Always make sure to
change only the “real” variables, otherwise your changes won't take effect.

By the way, if the variable values contain more than one word and therefore
contain spaces, you should enclose them in quotation marks.

7.5.2 POP3 Configuration in /etc/courier/pop3d
The parameters listed in the file /etc/courier/pop3d influence the way

that the POP3 server operates. This section introduces them in their default
configuration:

PIDFILE=/var/run/pop3d.pid

96

7.5 Optimizing the Configuration

This specifies the file where the ID of the POP3 server process is
stored. There is no reason to modify it.

MAXDAEMONS=40
This specifies the maximum number of POP3 daemons that may be
started simultaneously.

MAXPERIP=4
This restricts the number of permitted parallel connections per IP ad-
dress.* This prevents denial-of-service attacks by an individual host.
Bear in mind that a user may have more than one inbox on your
server, and therefore may legitimately create multiple simultaneous
connections.

For example, office routers using masquerading/NAT mean that indi-
vidual IPs (on the router) can create several dozen connections very
quickly, which limits the usefulness of this parameter. Do use it in
such a situation, but specify a value that is generous while still a lot
lower than MAXDAEMONS. This way, you can prevent one IP address
from using up all the connections, and you can reduce the threat of
denial-of-service attacks.

POP3AUTH=""
You can use this parameter to specify the password-transfer meth-
ods you wish the POP3 server to support. POP3AUTH_ORIG lists the
following options:

POP3AUTH_ORIG="LOGIN CRAM-MD5 CRAM-SHA1"

LOGIN (and PLAIN, which is not listed here), are cleartext methods,
whereas CRAM-MD5 and CRAM-SHA1 use secure password synchro-
nization. The background to this is described in more detail in sec-
tion 9.13 on page 147.

POP3AUTH_TLS=""
Here you can specify methods that the POP3 server should offer ad-
ditionally for SSL/TLS connections, usually authentication methods
without inherent cryptographic protection. POP3AUTH_TLS_ORIGper-
mits the values LOGIN and PLAIN. Further settings for SSL/TLS are
described in section 7.6 on page 102.

POP3_PROXY=0
If you wish Courier to run in proxy mode for POP3, you have to set
POP3_PROXY=1 (see section 10.3 on page 175).

PROXY_HOSTNAME
In proxy mode, you can enter the server’s own (!) hostname here, so

4 Did you read this as Max R.I.P? A well-known pun among Courier administrators. ..

97

7 Structure and Basic Configuration

that the proxy can determine whether to forward the connection (see
section 10.3 on page 175). This setting is not required if the server is
set up properly, as Courier will then use the real system name.

PORT=110

This specifies the port(s) that the POP3 daemon should listen to. You
can specify multiple ports if you separate them with commas. If the
server has more than one IP number, and you wish some ports to
be available only on certain IP numbers, you can not define them
according to the usual ip:port format, but have to specify them as
ip.port instead; for example, 192.168.0.20.110 for port 110 at IP
192.168.0.20.

ADDRESS=0

This specifies the IP address on which the ports will be opened. If
you set the value to 0 as shown in this example, the POP daemon will
listen on all available IP numbers. You can only specify either one
address, or, using 0, all the available addresses.

TCPDOPTS="-nodnslookup -noidentlookup"

This contains command-line parameters for calling couriertcpd,
which manages the TCP/IP connection and reloads the pop3d mod-
ule.

-nodnslookup prevents the reverse lookup for the IP number of the
client. This means that the hostname can not be listed in the log file,
but it also saves time and network traffic.

-noidentlookup prevents the server from using the ident protocol
for queries, which is barely relevant today. Earlier, it was used to ask
the client which user created the TCP connection. Who would answer
this question nowadays?

LOGGEROPTS="-name=pop3d"

The options specified in this parameter are transferred to the courier
logger program. This is a separate tool that Courier calls to write log
entries. The option given in this example specifies the name of the
module, so the log file can show what the entry refers to.

DEFDOMAIN="@example.com"

The value of DEFDOMAIN is automatically attached to every username
if the username does not contain the first character (usually @). In
other words, if a user logs in with the username instead of a complete
email address, Courier will add $DEFDOMAIN to the username before
authenticating it.

POP3DSTART=YES

This parameter is processed by the start script. If you set it to NO, no
POP3 server will be started.

98

7.5 Optimizing the Configuration

MAILDIRPATH=Maildir

This is the location of the directory containing the maildir structure
relative to the user’s home directory (in this case, the emails of the
user tux can be found in /home/tux/Maildir). This parameter is
equivalent to the Postfix parameter home_mailbox (see section 7.4.1
on page 92) or the entry in the defaultdelivery file in QMail (see
section 7.4.2 on page 94). Courier does not require a forward slash at
the end, so this must be a (maildir) directory.

Authentication issues are dealt with not in the POP3 configuration file, but
in the configuration file of the authdaemond (see section 9.2 on page 122).
In versions below 4.1.x, the configuration file of pop3d still contains two
parameters relevant to authentication:

AUTHMODULES="authdaemon"
This is the authentication method you wish the POP3 daemon to use
for logins. For an overview of possible values, see page 120. In the
configuration shown in this book, the server transfers all authentica-
tion data to the authentication daemon of the Courier project (see
section 9.2 on page 122).

The new Courier IMAP versions always refer to authdaemond, so it is
no longer necessary to specify AUTHMODULES in the pop3d file.

DEBUG_LOGIN=0
This specifies the information that Courier will log. If you specify
value 0, only the IP address of the client is logged, whereas the sys-
tem also logs the username if you specify the value as 1. If you specify
DEBUG_LOGIN=2, passwords are logged in cleartext (this can be a life-
saver when preparing for migration, see section 6.4 on page 81). No
other values are possible here.

In new versions of Courier IMAP, you specify these parameters in the
configuration of the authdaemond (see section 9.2 on page 122).

7.5.3 Configuring the IMAP Daemon in /etc/courier/
imapd

The names and meaning of many parameters for imapd are analogous to
ones used by pop3d (e.g., IMAPDSTART corresponds to POP3DSTART; see sec-
tion 7.5.2 on page 98). Some parameters, such as PORT or MAXPERIP, have
exactly the same name. The Courier imapd has the following additional
options:

HEADERFROM=X-IMAP-Sender
If you send emails using IMAP, Courier IMAP adds the email header

99

7 Structure and Basic Configuration

listed here to the message (the default value specifies an X- IMAP-Sen-
der: line), and then enters the sender’s login name. Yes, that’s right:
You can use IMAP to send emails. For more information, see section
10.5 on page 178.

IMAP_CAPABILITY="IMAP4revl UIDPLUS CHILDREN NAMESPACE

THREAD=ORDEREDSUBJECT THREAD=REFERENCES SORT

QUOTA IDLE"

This specifies the IMAP capabilities (see section 2.2.3 on page 33)
that the IMAP server will offer the client during login. This parame-
ter shows what Courier IMAP is capable of. Usually, you do not need
to change anything. There is one exception: If you want to offer en-
crypted login methods such as CRAM-MD5 or CRAM-SHA1, you have to
add values AUTH=CRAM-MD5 or AUTH=CRAM-SHA1 at this stage. Other-
wise, the IMAP server will not be able to inform clients that they can
use this method.

IMAP_CAPABILITY_TLS="$IMAP_CAPABILITY AUTH=PLAIN"

imapd provides these capabilities for SSL/TLS connections. In this
example, the server will provide the capabilities defined in IMAP_CAPA
BILITY, and the additional (usually insecure) PLAIN method for SSL/
TLS encryption.

As in shell scripts of Bourne-compatible shells, in Courier configura-
tion files the dollar character prefixed to a variable name expands the
value of the variables already defined in the same file.

IMAP_CHECK_ALL_FOLDERS=0

The IMAP server can actively inform the clients about new emails.
New emails are usually expected in the INBOX, which means that
Courier does not need to monitor the other IMAP folders. If filter
programs are used to sort emails into subfolders, you should activate
the IMAP_CHECK_ALL_FOLDERS parameter (i.e., set it to 1), even if
this increases the server load slightly.

IMAP_DISABLETHREADSORT=0

IMAP clients can use the IMAP commands THREAD and SORT from
the IMAP extensions with the same name (see section 2.2.3 on page
34) to request the server to sort emails in a folder. This reduces the
load on the client, but requires a lot of unnecessary extra work on
busy servers. If you set the value to 1 for IMAP_DISABLETHREADSORT,
Courier will block this type of request by the client.

IMAP_ENHANCEDIDLE=0

If you want Courier to support the IDLE command, you have to set
this value to 1. Courier can then inform clients actively and in real
time when new emails are received, as long as the clients support this
function (see section 10.4 on page 176).

100

7.5 Optimizing the Configuration

IMAP_IDLE_TIMEOUT=60
This specifies how often (in seconds) the server checks for changes to
the directories in IDLE mode.

IMAP_KEYWORDS=1
This activates support for permanent custom IMAP flags (see section
8.2.1 on page 115).

IMAP_MOVE_EXPUNGE_TO_TRASH=0
If you set this parameter to 1, Courier will move deleted emails to the
trash folder instead of actually deleting them. This means that the
deletion can be undone.

IMAP_TRASHFOLDERNAME=Trash
This defines the IMAP name of the trash folder if you have specified
IMAP_MQOVE_EXPUNGE_TO_TRASH=1. Courier does not permit folders
parallel to the INBOX, so the INBOX subfolder INBOX. Trash is created
in this example.

IMAP_EMPTYTRASH=Trash:7
This ensures that Courier deletes all emails in the Trash folder that
have been there for more than seven days. You can specify a differ-
ent time period for each folder; use commas to separate entries for
several folders:

IMAP_EMPTYTRASH=Trash:7,Sent:30

Courier only checks this option when a user logs in. If a user does
not log in for an extended period of time, emails can take up space
on the hard disk for longer than specified.

IMAP_OBSOLETE_CLIENT=0
Some email clients used to confuse the IMAP flags \NoInferiors (no
folders permitted under this folder) and \HasNoChildren (subfold-
ers are permitted, but there are none at present). If you have prob-
lems with subfolders, you can test whether changing this parameter
can solve those problems. It is not recommended that you set this
value to 1 without good reason.’

IMAP_SHAREDINDEXFILE=/etc/courier/shared/index
If you want to permit your users to share their IMAP directories with
other users (see section 10.1 on page 153), Courier requires a list of
the file paths and their shared names. Use IMAP_SHAREDINDEXFILE
to specify the location of this index file. The default file for Courier is
/etc/courier/shared/index.

The authors are not aware of any client that still has the problem mentioned here. If
you know of an example, any reports or information would be greatly appreciated.

101

7 Structure and Basic Configuration

IMAP_ACL=1

This activates the ACL IMAP extension. Clients can also configure
access permissions to IMAP folders for third parties. Set IMAP_ACL if
you use shared folders (see section 10.1 on page 153).

UMASK=022

This replaces the umask for the server process with the specified
value. This umask is used to create files; it can make sense to specify
more restrictive values for filesystem-based shared folders (see sec-
tion 10.1.2 on page 163) than are usually specified for the entire sys-
tem in /etc/profile.®

IMAP_ULIMITD=65536

If Courier is bombarded with work requests, whether coincidentally
or on purpose, there is a danger that the server process will need
too much RAM and crash; intentionally flooding a system with this
goal in mind is often called a denial-of-service attack. To prevent
this, Courier uses ulimit -d to limit the size of the data segments
for processes, and it uses ulimit -v to limit the size of the virtual
memory; both values are limited to the value specified here. This is
purely a precaution. The default value is 65,536KB (about 64MB), and
should be more than sufficient.

IMAP_USELOCKS=1

This specifies whether IMAP uses file locking. The maildir directory
structure makes this option unnecessary: After all, the maildir format
was practically designed to be used via NFS and without file-locking
mechanisms (more details on page 108).

On the other hand, it does no harm to use it, apart from slightly in-
creasing the I/0 load of the server. File locking can help prevent some
noncritical problems when multiple clients access the same IMAP
folder, or even the same email, in parallel. You should therefore set
IMAP_USELOCKS to 1 if you allow shared folders.

SENDMAIL=/usr/sbin/sendmail

The Courier IMAP daemon requires the path to the sendmail binary
(which can be provided by Postfix or Exim) to send emails.

7.6 The Configuration Files for SSL

Providing encrypted communication paths for users is not complicated and
is very much worthwhile. To do so, Courier IMAP starts two additional

6 The values in umask do not correspond to the file permissions used for chmod! This

means that it would be wrong, and even dangerous, to specify UMASK=644.

102

7.6 The Configuration Files for SSL

instances on ports 993 (IMAP via SSL) and 995 (POP3 via SSL). At the same
time, it supports the STARTTLS command on standard ports 110 (POP3)
and 143 (IMAP). The client can now choose between upgrading a cleartext
connection (using STARTTLS) and creating an encrypted connection on one
of the specially reserved ports.

The configuration files /etc/courier/pop3-ssland /etc/courier/imap
-ssl control the SSL/TLS encryption. Both contain additional parameters;
you do not need to repeat the standard POP3 and IMAP settings here. The
default file supplied in your distribution or source code package will usually
run without requiring configuration.

SSLPORT=995 and SSLPORT=993
This is the additional port for POP3 and IMAP via SSL. It should
be set to the default value 995 in the file pop3-ssl (as specified in
/etc/services), and to 993 in imap-ssl.

SSLADDRESS=0
If you specify 0, SSL/TLS is activated on all of the server’s existing
IP numbers; alternatively, you can specify one IP address from those
available.

SSLPIDFILE=/var/run/pop3d-ssl.pid
The path to the PID file: This is where the program’s process ID is
stored after it has been started. In the imap-ssl file, for example,
you can specify the filename /var/run/imapd-ssl.pid.

SSLLOGGEROPTS="-name=pop3d-ssl"
Using this parameter you can specify additional options that are trans-
ferred to courierlogger. In this example, we specify the component
name pop3d-ssl so that the relevant log lines will be uniquely identi-
fiable. In the file imapd-ssl you would specify the name imapd-ss1.

POP3DSSLSTART=YES and IMAPDSSLSTART=YES
These specify whether the program provides SSL/TLS connections on
the port reserved for POP3 and IMAP via SSL and defined in SSLPORT.

POP3DSTARTTLS=YES and IMAPDSTARTTLS=YES
These specify whether the program provides SSL/TLS connections
via STLS and STARTTLS on the standard port reserved for POP3 and
IMAP.

POP3_TLS_REQUIRED=0 and IMAPD_TLS_REQUIRED=0
If you want to prevent all unencrypted connections, specify POP3_TLS
_REQUIRED=1. Clients can then only authenticate themselves on port
110 or 143 once they have switched to encrypted mode using STLS or
STARTTLS.

103

7 Structure and Basic Configuration

COURIERTLS=/usr/sbin/couriertls
This is the path to the (supplied) program couriertls. It assists
POP3 and IMAP modules in controlling the SSL/TLS encryption.

TLS_PROTOCOL=SSL3
This is the SSL/TLS version to be used on the SSL-via-POP3 or SSL-
via-IMAP ports. The available values are SSL2, SSL3, and TLS1. Ports
993 and 995 are usually used by older clients, so it seems to pose
fewer compatibility problems to configure SSL3 instead of TLS1.

TLS_STARTTLS_PROTOCOL=TLS1
This is the SSL/TLS version to be used for the STLS or STARTTLS pro-
cess on ports 110 and 143. Clients that know and use these methods
usually understand TLS1.

TLS_CERTFILE=/usr/share/courier-pop3/pop3d.pem
This is the path to the SSL/TLS certificate. You can use the same
certificate for POP3 and IMAP (. e., specify the same file in both),
imap-ssl, and pop3-ssl.

TLS_VERIFYPEER=NONE
It is possible to permit SSL/TLS connections only from authorized
clients with certificates the server knows to be reliable. NONE switches
off these checks entirely, whereas PEER checks any certificates trans-
mitted by the client. REQUIREPEER requires a verifiable certificate
from the client and prevents the connection if such a certificate is
not received.

TLS_CACHEFILE=/var/run/couriersslcache
This is the path to a cache file that speeds up SSL/TLS accesses. This
file requires no maintenance by the administrator.

TLS_CACHESIZE=524288
This is the size in bytes of the SSL cache to be created.

If Courier finds no SSL certificate when it starts pop3d-ssl or imapd-ssl,
it will use mkpop3dcert or mkimapcert to create its own. It uses the entries
in files pop3d. cnf and imapd. cnf for this purpose.

These entries are not relevant to the encryption process, but users can (and
should) view the certificate, so it makes sense to use plausible and trust-
worthy entries for name, city, and country in order to reduce support work.
The hostname in the certificate should be the same as the hostname used
by the clients, in order to prevent warning messages by the client software
as far as possible (see section 13.1.3 on page 209). You should pay attention
to the entries marked in italics:

104

7.6 The Configuration Files for SSL

linux: # cat /etc/courier/pop3d.cnf
RANDFILE = /usr/share/courier-imap/pop3d.rand

[req]

default_bits = 1024
encrypt_key = yes
distinguished name = req dn
x509_extensions = cert_type
prompt = no

[regq dn]

C=DE

ST=Berlin

L=Berlin

O=My Company

OU=ICT services

CN=mail.example.com
emailAddress=postmaster@example.com

[cert_type]
nsCertType = server

105

Maildir as Email Storage Format

Courier always uses the maildir format to store emails. The server creates
a separate maildir hierarchy for each user, consisting of several directories
and pure ASCII files. There are no binary files, and everything is easy to
read and edit.

Users who have shell access to the email server (i.e., a Unix account in
/etc/passwd and a home directory) can have their emails delivered to a
maildir directory under their own home directory (e.g., /home/tux/Mail
dir). Messages are stored with the user’s permissions.

Local email programs such as pine or KMail can then read the emails
directly from the maildir without involving IMAP. Users who access their
emails from a remote host usually do so via TCP/IP.

Ideally, the only system users on mass email servers should be the mail
administrators. On these servers, you would store the database of email
users in MySQL, LDAP, or a similar repository. The email users do not have

107

8 Maildir as Email Storage Format

home directories on the server. Instead, you create a separate directory
structure (e.g., /maildir or /var/spool/maildir) with a personal maildir
directory (e.g., /maildir/tux or /maildir/geeko) for each user.

In such settings it is justifiable to use only one user ID which owns all
maildir directories. User administration thus becomes easier, as you do
not have to take separately managed system login IDs into account, and
trouble with data access permissions is avoided.

There are also no real security risks, because there are no shell accounts
for ordinary users: As long as mail users cannot work on the server, they
do not require protection from one another. The only system users are the
user root and Courier IMAP, both of which are able to access all directo-
ries in any case. The only danger is that an attacker can access the email
directories of other users by hacking into Courier IMAP after login, due to
the lack of different user IDs. This type of attack does not seem to have
occurred so far.

The maildir directory of a mail user’s mailbox contains at least three sub-
folders:

linux: # ls -la /home/tux/Maildir
drwx------ 7 h users 4096 Jul 27 12:07 .

drwxr-xr-x 8 h users 4096 Jul 27 12:04 ..

drwx------ 2 h users 4096 Jul 27 12:04 cur
drwx------ 2 h users 4096 Jul 27 12:04 new
drwx------ 2 h users 4096 Jul 27 12:04 tmp

The cur directory contains those messages that have been saved and read
at least once. new contains all messages that were received since the last
login, so the server can flag them as \Recent. After login, Courier moves
these emails into the cur directory.

Messages are moved to the tmp directory during saving. Once they have
been saved successfully, Courier moves them to new or to a different loca-
tion. This prevents the server from delivering an incomplete email to the
client if the client downloads the emails in the destination folder in the
middle of the save process.

File locking is therefore never used in the maildir format. This makes the
use of an NFS-mounted filesystem for mail storage far simpler.

Unlike for POP3, if IMAP users sort their emails into subfolders, these sub-
folders are saved on the server. The user’s maildir contains these subfolders
as additional subdirectories.

The names of these directories consist of a dot (.) and the actual folder
name. Thus, if the user has folders INBOX, Friends, and Company, the
maildir listing would be as follows:

linux: # 1ls -la /home/tux/Maildir

108

8 Maildir as Email Storage Format

drwx------ 7 h users 4096 Jul 27 12:07
drwxr-xr-x 8 h users 4096 Jul 27 12:04 ..
drwx------ 5 h users 4096 Jul 27 12:07 .Company
drwx------ 5 h users 4096 Jul 27 12:06 .Friends
drwx------ 2 h users 4096 Jul 27 12:04 cur
drwx------ 2 h users 4096 Jul 27 12:04 new
drwx------ 2 h users 4096 Jul 27 12:04 tmp

Each IMAP subfolder is an independent directory in the maildir format and
therefore contains its own copies of the folders cur, new, and tmp, in which
emails for that subfolder are stored:

linux:~ # 1ls -la /home/tux/Maildir/.Friends

drwx------ 5 h users 4096 Jul 27 12:06:00 PM .
drwx------ 7 h users 4096 Jul 27 12:07

-rw-r--r-- 1 h users 17 Jul 27 12:06 courierimapacl
drwx------ 2 h users 4096 Jul 27 12:06:00 PM cur
-rwW------- 1 h users 0 Jul 27 12:06 maildirfolder
drwx------ 2 h users 4096 Jul 27 12:06:00 PM new
drwx------ 2 h users 4096 Jul 27 12:06:00 PM tmp

The file maildirfolder is always empty and its presence signifies a sub-
folder. courierimapacl contains the access permissions for the folder if
the user specified any (e.g., in order to share the directory with other users).
This subject will be discussed in section 10.1.1 on page 154.

If the Friends folder contains further subfolders, Courier will create these
subfolders directly under the main maildir directory rather than in the di-
rectory .Friends (that is, as Maildir/.Friends.Holiday, rather than as
Maildir/.Friends/.Holiday).

Thus, the folder structure is mapped into directory names, with the dot
separating levels in the folder hierarchy:

linux:~ # 1ls -la /home/tux/Maildir
drwx------ 9 h users 4096 Jul 27 12:09:00 PM .

drwxr-xr-x 8 h users 4096 Jul 27 12:04 ..

drwx------ 5 h users 4096 Jul 27 12:07 .Company
drwx------ 5 h users 4096 Jul 27 12:06 .Friends
drwx------ 5 h users 4096 Jul 27 12:09 .Friends.Orchestra
drwx------ 5 h users 4096 Jul 27 12:09 .Friends.Holiday
drwx------ 2 h users 4096 Jul 27 12:04 cur

drwx------ 2 h users 4096 Jul 27 12:04 new

drwx------ 2 h users 4096 Jul 27 12:04 tmp

In this manner, an IMAP folder can contain messages as well as additional
subfolders.

If an IMAP client is subscribed to individual IMAP folders (see section 2.2.4
on page 41), there is a file named courierimapsubscribed that contains
the subscription list of the account stored line by line:

109

8 Maildir as Email Storage Format

linux: # ls -la /home/tux/Maildir

users 4096 Jul 27 12:09:00 PM .
users 4096 Jul 27 12:04 ..

users 4096 Jul 27 12:07 .Company
users 4096 Jul 27 12:06 .Friends

h
drwxr-xr-x 8 h
h
h

drwx------ 5 h users 4096 Jul 27 12:09 .Friends.Orchestra
h
h
h
h

drwx------ 5 users 4096 Jul 27 12:09 .Friends.Holiday
drwx------ 2 users 4096 Jul 27 12:04 cur
drwx------ 2 users 4096 Jul 27 12:04 new
drwx------ 2 users 4096 Jul 27 12:04 tmp

-rw-r--r-- 1 h users 842 Jul 27 12:45 courierimapsubscribed
linux: # cat /home/tux/Maildir/courierimapsubscribed

INBOX

INBOX.Company

INBOX.Friends.Orchestra

8.1 The IMAP Namespace

There has been a lot of discussion between the IMAP projects on whether
directories may be parallel to the INBOX or have to be under it. In other
words: Can we have directories INBOX, Friends, and Company? Or do they
have to be INBOX, INBOX.Friends, and INBOX.Company? IMAP implemen-
tations differ according to the developers’ preferences. Some IMAP servers
permit directories parallel to the INBOX and others do not.

The Courier programmers have decided that private folders may only be
located under the INBOX. The only exception is that folders shared by mul-
tiple users are not located under the INBOX, but under #shared or shared.

The Courier team has turned down repeated requests for changes and more
tolerance. Therefore, no changes to the system configuration can make
Courier use folders parallel to the INBOX. The program code just does not
support this option, and the Courier developers would have to change the
entire folder management system to make this option possible. This means
that there is no simple patch to get around this limitation.

As a consequence, there can be problems when migrating from one IMAP
system to another. There is more information on this subject in Chapter 6.

Apart from this, there are almost no restrictions when naming IMAP fold-
ers. In principle, special characters are permissible in folder names, as are
spaces, and there is no reason not to use them. However, in practice, spe-
cial characters do occasionally cause problems. The switch from ISO-8859
to UTF-8 caused a variety of problems, because afterward, different pro-
grams could expect different character sets. This led to complications with
filenames containing special characters.

110

8.2 Filenames of Emails

8.2 Filenames of Emails

Unlike Cyrus, for example, Courier does not maintain a database contain-
ing information on stored emails apart from the maildir. This makes the
server robust and reliable: It is not possible for a database index to be cor-
rupted or for databases to be inconsistent or faulty. Other programs can
access the maildir structure without any complicated programming.

On the other hand, emails can contain meta-information that is not saved
in the actual email text, such as the IMAP flags \Seen or \Flagged. It
is not particularly efficient to gather such information from the individual
mail files every time it is needed.

Courier therefore uses a few tricks to speed up the process. Many types of
information are coded in the filename itself of an individual email. This
means that a single directory listing can provide a lot of information about
the folder contents very quickly, so that it is not necessary to examine each
file individually (which would be time intensive and therefore expensive).

This is best demonstrated using a test email. If your IMAP server is con-
nected to an MTA, you can use email clients such as KMail, Outlook, or
Evolution to send the test email. However, the simplest and clearest way to
send it is to use the mail command directly on the server:

linux: # echo Hello World | mail tux@localhost

To see whether the email was delivered to user tux, go to the new folder in
the maildir of user tux:

linux: # ls -la /home/tux/Maildir/new

total 12

drwx------ 2 h users 4096 Jul 27 12:40:00 PM .

drwx------ 10 h users 4096 Jul 27 12:27:00 PM ..

~rW--=--=--=- 1 h users 483 Jul 27 12:40 1122460858.V301Ic964.linux

The filename of the “Hello World” email consists of a randomly chosen,
unique ID (containing, among others things, the date, time, and inode
number of the message) as well as the hostname of the server storing the
email (in this case, 1inux), so that accidental name conflicts can be avoided
on network drives.

Now log on to the IMAP server to access this email:

linux: # telnet localhost 143

Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]’.

* OK [CAPABILITY IMAP4revl UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUB
JECT THREAD=REFERENCES SORT QUOTA IDLE ACL ACL2=UNION] Courier-IMAP rea

111

8 Maildir as Email Storage Format

dy. Copyright 1998-2004 Double Precision, Inc. See COPYING for distrib
ution information.

al login tux password

al OK LOGIN Ok.

Use the following IMAP command to access the INBOX IMAP folder belong-
ing to user tux:

a2 SELECT INBOX

* FLAGS (\Draft \Answered \Flagged \Deleted \Seen \Recent)

+ OK [PERMANENTFLAGS (\Draft \Answered \Flagged \Deleted \Seen)] Limit
ed

* 1 EXISTS

* 1 RECENT

* OK [UIDVALIDITY 1122461011] Ok

* OK [MYRIGHTS "acdilrsw"] ACL

a2 OK [READ-WRITE] Ok

1 RECENT signifies that a new message has been added to this folder since
the last login.

You can view this email as follows:

a3 FETCH 1 RFC822

*» 1 FETCH (RFC822 {498}

Return-Path: <root@linux.locals>

X-Original-To: he@localhost

Delivered-To: h@localhost.linux.local

Received: by linux.local (Postfix, from userid 0)
id 91F23C46D8; Wed, 27 Jul 2005 12:40:58 +0200 (CEST)

Date: Wed, 27 Jul 2005 12:40:58 +0200

To: helocalhost.linux.local

Message-ID: <42E764BA.mail3U911TA51@linux>

User-Agent: nail 11.4 8/29/04

MIME-Version: 1.0

Content-Type: text/plain; charset=us-ascii

Content-Transfer-Encoding: 7bit

From: root@linux.local (root)

Hello World

)

%+ 1 FETCH (FLAGS (\Seen \Recent))
a3 OK FETCH completed.

The new folder in the filesystem is now empty, as the email was moved to
the cur folder as soon as it was accessed for the first time:

linux: # 1ls -la /home/tux/Maildir/new
total 8
drwx------ 2 h users 4096 Jul 27 12:43:00 PM

112

8.2 Filenames of Emails

drwx------ 11 h users 4096 Jul 27 12:43:00 PM ..
linux: # ls -la /home/tux/Maildir/cur
total 12
drwx------ 2 h users 4096 Jul 27 12:46:00 PM .
drwx------ 11 h users 4096 Jul 27 12:43:00 PM ..
B LT 1 h users 483 Jul 27 12:40 1122460858.V301Ic964.linux:2,8
Abbreviation IMAP flag Meaning
R \Answered Email was answered
F \Flagged Important
S \Seen Email has been viewed
P not implemented Email was forwarded!
in the IMAP protocol
D \Draft Email is flagged as a draft
T \Deleted Email is flagged for deletion
(the abbreviation is short for
trashed)

The filename has changed and now contains the flags :2,S at the end. S
stands for the IMAP flag \Seen, which Courier set automatically when read
access to the email occurred. You can set additional IMAP flags during an
IMAP session:

a4 STORE 1 +FLAGS (\Flagged \Answered)
* 1 FETCH (FLAGS (\Flagged \Answered \Seen \Recent))
a4 OK STORE completed.

\Answered usually appears when an email has been answered, whereas
email clients use \Flagged to flag important emails. Courier represents
these flags in the filename too, so \Answered becomes R for Reply, and
\Flagged becomes F:

linux: # 1ls -la /home/tux/Maildir/cur

total 12

drwx------ 2 h users 4096 Jul 27 12:54:00 PM .

drwx------ 11 h users 4096 Jul 27 12:43:00 PM ..

-rW------- 1 h users 483 Jul 27 12:40 1122460858.V301Ic964.1linux:2,FRS

The flags must appear in the filename in alphabetical order: 2,FRS is cor-
rect, but 2, SFR is not permitted. Table 8.1 shows which IMAP flag is repre-
sented by each maildir contraction.

Lo you operate a mailbox with several clients in parallel, this information cannot be syn-
chronized between the clients unless they access the maildir directly via the filesystem
and not via IMAP.

Table 8.1:

Maildir abbreviations
for the IMAP system
flags

113

8 Maildir as Email Storage Format

The exact filename is not prescribed; standards documents usually use the
verb should when describing the naming conventions.? However, the file-
name often corresponds to the following pattern:

time.microsecondsPpidvVdevIinode.host,S=bytes:2, flags

The exact filename, up to the optional specification of file size (S=bytes)
or the mandatory colon followed by the flag specification, is not important.
The only crucial thing is to avoid identical filenames being created for dif-
ferent messages. For this reason, a number of elements associated with
the message are combined, which always results in a unique name, even in
cluster operation. These elements include the time, hostname, process ID,
hard disk, and inode number involved in the processing of the message. In
more detail:

= The time is measured in seconds elapsed since January 1, 1970 (this is
1122460858 seconds for the file 1122460858.V301Ic964.1inux:2,FRS
mentioned above).

= The placeholder microseconds can be replaced with the specification of
microseconds. Postfix does not use this.

= One element is the process ID (pid) of the process doing the saving.
Including this information also helps to prevent filename conflicts. As
shown in the example file, Postfix omits this specification, along with the
preceding F.

= The placeholder dev can be replaced with the device number of the de-
vice on which the email file is stored (301 in our example).

= T is followed by the hexadecimal number of the inode containing the
beginning of the email file (c964 in this case). The file can be moved
to another location (and to other inodes) in the filesystem (for example,
by being copied) without harm, since the inode in the filename is only a
trick to ensure that the filename is unique.

= Another element is the name of the host saving the email file (1inux in
this example).

= Many programs do not specify the file size in the S=bytes element (the S
stands for size). Courier adds this information and recalculates the quota
load if necessary.

Although Courier logs the current quota load in a file named maildirsi
ze, it is easier and quicker for the server to calculate the volume of stor-
age used by the mails in a particular folder if the length of each email

2 See http://cr.yp.to/proto/maildir.html and http://www.qmail.org/man/
man5/maildir.html.

114

8.2 Filenames of Emails

(in bytes) is stored in its filename. Determining the space occupied by
even large directories with thousands of emails will thus not cause any
performance problems. For details on quotas, see section 10.2.1 on page
167.

= A colon is used in the filename to specify whether the subsequent flags
have been defined in an RFC (:2,flags) or are experimental flags (:1,
flags).

Postfix names stored files slightly differently than Courier does, but this
does not cause any problems.

Because emails in the tmp directory have not yet been saved to a destina-
tion folder, their associated device, inode, and size are not determined; for
this reason, the form of their filenames often differs from those of emails
saved in regular folders.

If you create a new email file in cur, new, or an IMAP subfolder with con-
tents conforming to RFC 2822, the file will appear as an email in the user’s
inbox. When such an email file is deleted, it disappears from the inbox. You
can use an ASCII text editor to edit the contents of the file as long as they
continue to conform to RFC.

It is only quotas (if used) that may become inexact if the contents of maildir
directories are manipulated by hand. This is not a particular problem,
as Courier occasionally checks the directories and then recalculates the
maildirsize files.

8.2.1 Keywords: Custom IMAP Flags

In addition to the five official IMAP flags listed in Table 8.1 on page 113,
IMAP clients can use additional custom flags.> These are also called key-
words; they differ from the system flags in that they do not have a preced-
ing backslash in their name: \Seen is an official IMAP flag, while Hello is
a custom flag. Apart from this small detail, custom flags and system flags
are treated in the same way.

Like normal IMAP flags, keywords can be temporary (which means they are
lost every time a new folder is selected) or saved permanently on the server
(so that they are retained after logout).

You have to set the option IMAP_KEYWORDS to 1 in imapd (see section 7.5.3
on page 101). Only then will Courier save permanent flags. If you set
IMAP_KEYWORDS=0, keywords are still permitted, but they will always be
temporary and not be saved in the filesystem.

3 Unfortunately, not many clients support these, and they have mostly been neglected so
far.

115

8 Maildir as Email Storage Format

Once you have activated support for permanent keywords, you can set ar-
bitrary flags via IMAP without further ado:

linux: # telnet mail.example.com 143

Trying 127.0.0.1...

Connected to mail.example.com.

Escape character is '*]1’.

* OK [CAPABILITY IMAP4revl UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJ
ECT THREAD=REFERENCES SORT QUOTA IDLE AUTH=CRAM-MD5 AUTH=CRAM-SHA1l ACL

ACL2=UNION XCOURIEROUTBOX=INBOX.Outbox-Test] Courier-IMAP ready. Copy ri
ght 1998-2005 Double Precision, Inc. See COPYING for distribution infor
mation.

al LOGIN tux supersecret

al OK LOGIN Ok.

a2 SELECT INBOX.Test

* FLAGS (\Draft \Answered \Flagged \Deleted \Seen \Recent)

* OK [PERMANENTFLAGS (* \Draft \Answered \Flagged \Deleted \Seen)] Limi
ted

* 3 EXISTS

* 0 RECENT

* OK [UIDVALIDITY 1175900586] Ok

* OK [MYRIGHTS "acdilrsw"] ACL

a2 OK [READ-WRITE] Ok

a3 STORE 3 +FLAGS Hello

*+ FLAGS (Hello \Draft \Answered \Flagged \Deleted \Seen \Recent)

* OK [PERMANENTFLAGS (Hello \x \Draft \Answered \Flagged \Deleted \Seen)]
Limited

* 3 FETCH (FLAGS (\Seen Hello))

a3 OK STORE completed.

a4 STORE 2:3 +FLAGS Testtest

*+ FLAGS (Hello Testtest \Draft \Answered \Flagged \Deleted \Seen \Recent)
* OK [PERMANENTFLAGS (Hello Testtest \x \Draft \Answered \Flagged \Delete
d \Seen)] Limited

* 3 FETCH (FLAGS (\Seen Testtest Hello))

a4 OK STORE completed.

a5 FETCH 1:3 FLAGS

%+ 1 FETCH (FLAGS (\Seen))

* 2 FETCH (FLAGS (\Seen Testtest))

* 3 FETCH (FLAGS (\Seen Testtest Hello))

a5 OK FETCH completed.

a6 LOGOUT

* BYE Courier-IMAP server shutting down

a6 OK LOGOUT completed

Connection closed by foreign host.

Now you should find the directory courierimapkeywords in the maildir
of this user (or, for this example, in the folder .Test). Courier creates this
directory to store flags:

linux:/home/tux/Maildir # cd .Test
linux:/home/tux/Maildir/.Test # ls -la

116

8.2 Filenames of Emails

total 100

drwx------ 6 10000 10000 4096 2007-08-31 00:02

drwxr-xr-x 43 10000 root 4096 2007-08-31 08:02 ..

-rw-r--r-- 1 10000 10000 43 2007-04-07 01:02 courierimapacl
drwx------ 2 10000 10000 4096 2007-09-02 13:23 courierimapkeywords
-rw-r--r-- 1 10000 10000 228 2007-08-31 00:02 courierimapuiddb
drwx------ 2 10000 10000 69632 2007-08-31 00:01 cur

“rW------- 1 10000 10000 0 2007-04-07 01:02 maildirfolder
drwx------ 2 10000 10000 4096 2007-04-07 01:02 new

drwx------ 2 10000 10000 4096 2007-09-02 13:45 tmp

It contains the file :1ist, which shows which flags exist and which mails
are flagged with these flags. In order to save the flags, Courier simply
records the filename and then lists the number of the corresponding flag(s)
after it: The first-mentioned flag is assigned number 0, and so on.

In the following example, only flag number 1 (Testtest) has been set for
the email that was email number 2 from the listing above. The other email
contains flags 0 and 1 (thus, Hello and Testtest). This message is obvi-
ously email number 3:

linux:/home/tux/Maildir/.Test # cd courierimakeywords
linux:/home/tux/Maildir/.Test/courierimapkeywords # ls -la
total 12

drwx------ 2 10000 10000 4096 02.09.07 1:23:00 PM
drwx------ 6 10000 10000 4096 2007-08-31 00:02

-rw-r--r-- 1 10000 10000 171 2007-09-02 13:10 :1list
linux:/home/tux/Maildir/.Test/courierimapkeywords # cat :list
Hello

Testtest

1175945397 .M261049P12647V0000000000000010I00B204AE_1.kjidder,S=1658:1
1175945397.M402948P12647V0000000000000010I00B204B0_2.kjidder,S=1670:1 0

If you manually edit this file, do not change the sequence of flags, as the
flags are addressed according to their position in the sequence.

This directory may occasionally also contain temporary work files, whose
names begin with a dot. These come and go. Courier only creates them
temporarily when an email is accessed.

117

User Data

Authentication in Courier is a modular affair, so there are many different
solutions. Courier supports the use of files, databases, and directory ser-
vices as repositories for storing information about email users. In order to
function correctly, Courier requires the username, the password (in clear-
text or as a crypt hash),! the Unix user ID and group ID for access to the
filesystem, and the path to the maildir directory for the mail user. In addi-
tion, Courier can also manage options for a user account that can be used
to tell Courier to change quotas, deactivate IMAP, or set up shared groups.
For more information, see section 9.12 on page 144.

If the user has a shell account and the emails are stored in the user’s /home
directory, all these specifications (apart from the user options) are located
in /etc/passwdor /etc/shadow. It is therefore not surprising that Courier
requires no further configuration for mail users with local Unix system ac-
counts.

Logf you use CRAM-MD5 or CRAM-SHA1, Courier requires a cleartext password. If you use
LOGIN or PLAIN, Courier can use a crypt hash.

119

9 User Data

On the other hand, shell accounts for ordinary mail users in large systems
cause security problems. These are solvable, but beyond a certain number
of users the system becomes impossible to administer sensibly. There are
also far too many root permissions involved in the normal functioning of
the system.

As long as the user information mentioned above can be stored in one of
the supported databases or in an LDAP directory, Courier allows an unlim-
ited number of virtual users to be maintained.

All Courier programs access the authlib authentication library, which is
specific to the Courier project and supplies the following modules:

authpwd
This module reads the mail account data with the passwords from
/etc/passwd. Now that PAM is so common, authpwd is considered
obsolete. The module is only created if Courier is configured ex-
plicitly with the --with-authpwd option.

authshadow
This module is similar to authpwd, apart from verifying passwords
via /etc/shadow. This module is also only compiled if it is explicitly
specified using the --with-authshadow option.

authuserdb
This module supports a mini-database that is made up of cleartext
files and is an alternative to /etc/passwd and /etc/shadow (see
section 9.4 on 124).

authcram
This module uses the same mini-database as authuserdb, but sup-
ports CRAM authentication. authcram is now obsolete, as authuser
db has taken over the CRAM function.

authpam
This module transfers authentication requests to PAM (see section
9.3 on page 123).

authvchkpw
This module transfers authentication requests to QMail’s vchkpw li-
brary.

authmysql
This module uses MySQL. It is better to use this module via the auth
daemond for access to the database, instead of using this module di-
rectly.

authpgsql
This module supports PostgreSQL. Again, it is more suitable to use
this module via the authdaemond than to use it directly.

120

9.1 authtest and DEBUG_LOGIN for Debugging Assistance

authldap
Using LDAP is also supported, but it is recommended that you access
LDAP directories using the authdaemond for authentication.

authdaemon
This is not really an authentication module, but rather an authenti-
cation proxy called authdaemond, which runs in the background and
supports all the modules described here.

authcustom
This module is a (functioning) template for an authentication mod-
ule; you can complete this module with your own code and imple-
ment a custom-built authentication procedure.

authpipe
This is a module that transfers authentication requests to another
program via a pipe. This module can also be used to integrate custom
authentication programs.

However, current versions of Courier do not support all the modules men-
tioned here (see section 9.11 on page 143).

9.1 authtest and DEBUG_LOGIN for Debugging
Assistance

Getting authentication up and running is not a simple matter. The auth
test tool supplied with Courier IMAP is helpful here; it plays the role of a
client and queries the authdaemond and the modules that are described in
what follows. There are three ways of calling it:

= If you specify the username as the only argument, authtest will call
up the account data for this user from the corresponding database and
display it in a clear manner. This enables you to check whether all data
was found and read out correctly. This tool is only available to root.

linux: # authtest tux
Authentication succeeded.

Authenticated: tux (uid 10000, gid 10000)
Home Directory: /mail/example.com/tux/
Maildir: Maildir/
Quota: (none)
Encrypted Password: (none)
Cleartext Password: supersecret
Options: sharedgroup=example.com

121

9 User Data

= If you also specify a password, authtest will check this password, and it
will only provide the user data if the password is correct. authtest will
announce an error message if an incorrect password is provided:

linux: # authtest tux secret
Authentication FAILED: Operation not permitted

= If you specify an additional password as the third parameter, authtest
will attempt to change the password changed using the authlib library:

linux: # authtest username oldpassword newpassword

[...]

This will only work if the old password was specified correctly.

You should also take a look at the DEBUG_LOGIN parameter, which is use-
ful for everyday operation (see section 7.5.2 on page 99). Courier ver-
sions from 4.1.x onward define this value in authdaemonrc, which will
be described a little later, whereas earlier versions expect this value in
/etc/courier/pop3dand /etc/courier/imapd.

9.2 The authdaemond

This is the authentication method that used to be specified in the pop3d
and imapd configuration files, specifically in the AUTHMODULES variable (see
section 7.5.2 on page 99).

It was possible to specify all of the mentioned modules in this variable,
although it has long been advisable to oblige all Courier components to use
the authdaemond, which could then carry out the actual authentication.
New Courier versions are designed to use the authdaemond as the central
authentication instance.

It runs in the background as a proxy and supports requests destined for
all authentication modules from the authlib. It caches the authentication
requests, which does not happen when these modules are used directly.

This function is essential when authenticating via MySQL, PostgreSQL, or
LDAP. The POP3 and IMAP modules are terminated when the POP/IMAP
connection is closed, so without the authdaemond they would have to con-
nect anew to the SQL or LDAP server at every login. This takes time and is a
waste of resources. If 40 IMAP or POP3 sessions run in parallel, this results
in 40 module instances running in parallel, which in turn means 40 parallel
connections to the database or directory containing the user data.

authdaemond, on the other hand, is permanently active and can keep its
connections to the database or directory server open. It also requires few

122

9.3 Authentication via PAM

connections for parallel requests, as it bundles all the authentication re-
quests of the authentication modules. All in all, it provides important ben-
efits without any drawbacks, and you should not miss out on taking advan-
tage of it.

As already mentioned, older versions of Courier refer explicitly to the auth
daemond in the pop3d and imapd configuration files. Newer versions lack
this entry, as the authdaemond should always be used. The AUTHMODULES
variable is set automatically and is therefore not included in any configura-
tion files.

Enter the modules to be used in the configuration file of the authdaemond,
under /etc/authlib/authdaemonrc (sometimes under /etc/courier/
authdaemonrc):

##NAME: authmodulelist:0

#

Specifies the authentication modules that will be called.
#

Remove a module from the list to deactivate it.

authmodulelist="authuserdb authldap authpam"

Courier calls the modules in sequence until a module is found that can
verify the login request. The login request is refused if the last module does
not return a positive reply.

9.3 Authentication via PAM

If you wish to use the Pluggable Authentication Modules® in your distribu-
tion for authentication (and your distribution contains Courier as a com-
plete package), you will usually find a functioning PAM configuration. Most
PAM implementations are located in /etc/pam.d and contain separate
configuration files for different services. Courier PAM requires both /etc/
pam.d/pop3 and /etc/pam.d/imap. These should usually be identical.
OpenSuSE 10.2 has prepared these files as follows:

linux:/etc/pam.d/ # cat pop3

#%PAM-1.0

auth include common-auth
account include common-account
password include common-password
session include common-session

The included common* files contain the PAM configurations required by
PAM for authentication (auth), for checking use permissions (account),

2 See http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html.

123

9 User Data

for changing the password (password), and for adapting the system envi-
ronment (session):

linux:/etc/pam.d/ # cat common-auth

auth required pam_env.so

auth required pam_unix2.so

linux:/etc/pam.d/ # cat common-account

account required pam_unix2.so

linux:/etc/pam.d/ # cat common-password

password requisite pam_pwcheck.so nullok cracklib
password required pam_unix2.so nullok use_authtok
linux:/etc/pam.d/ # cat common-session

session required pam_limits.so

session required pam_unix2.so

session optional pam_umask.so

The default setting is that Courier verifies only the password login and then
uses the PAM system to fetch details such as the home directory and the
user ID. It is not possible to change passwords via the IMAP protocol, so
it is unnecessary to include common-password if Courier IMAP is operated
on its own; on the other hand, including it does not cause any problems.?

If you have configured your system to verify local shell accounts in sources
other than passwd/shadow, this should work automatically in Courier or
be easy to transfer to the Courier system.

However, there is one tricky aspect: PAM can check the password for Cou-
rier, but it cannot return the required user and group IDs or the home di-
rectory. Courier must fetch this information from the (readable) file /etc/
passwd. Nevertheless, it is better to run Courier authentication via auth-
pam instead of authpasswd or authshadow, as the PAM variant is easier
to secure, and Courier does not have to access /etc/shadow with root
permissions. If you use authpam, you do not need to use authpwd and/or
authshadow.

9.4 The authuserdb Module

The authuserdb module permits you to create virtual mail accounts out-
side of passwd/shadow without using MySQL or LDAP. Unfortunately, some
distributions, such as SuSE, do not contain this module; if this is the case
for your installation, you will need to compile your own Courier.

authuserdb expects the account information in text file /etc/authlib/
userdb (sometimes the file is in /usr/local/authlib/ or wherever the

3 Itis possible to implement web frontends that use the authdaemond to change email
passwords and support such requests. One can also imagine that the authtest tool we
introduced previously could transfer such requests to the authdaemond.

124

9.4 The authuserdb Module

authlib directory is located on the current system). Alternatively, you can
create a directory /etc/authlib/userdb/ that contains several text files
with the login information. Courier combines these into one single tem-
porary file during operation, but the single files are easier to maintain (for
more information, see section 9.4.4 on page 129).

The information saved in userdb does not need to be entered into /etc/
passwd. This makes it simple to create email accounts for “virtual users”
who do not require a shell account with a Unix login.

The makeuserdb program also converts these userdb files into a GDBM or
a DB database, which, for large numbers of mail accounts, enables faster
access to account data than reading it from /etc/passwd. The database
format is prescribed when Courier is compiled; most distributions use the
GDBM format.

The Courier project provides some useful programs for managing the user
db databases.

9.4.1 Converting passwd into a userdb

The pw2userdb program writes the data from an existing /etc/passwdinto
a userdb database. It can only be used if /etc/authlib/userdb is empty
and has restrictive file permissions:

linux:/etc/authlib # touch userdb
linux:/etc/authlib # chmod 600 userdb
linux:/etc/authlib # pw2userdb > userdb

The userdb file then contains the accounts from /etc/passwd, but in a
different format:

geeko uid=1000|gid=100|home=/home/geeko|shell=/bin/bash|systempw=$2a$05$
mOWZvEaUKbuvK9BKTPyBKeAb1NYKb8 PHSPUQ6 0KEJA4ycK9j /EB4y | gecos=Geeko

1000= geeko

tux uid=1001|gid=100|home=/home/tux|shell=/bin/bash|systempw=52a$10%
8ZWLCc9MOH.vB913PJVRItuluHdzXc9BBcQ2ZJcAqrDJIJrUsB9jDvZm

1001= tux

Every user ID in the first column is followed by a list of the parameters
required by Courier (Unix user ID, Unix group ID, home directory, login
shell, and system password as a crypt or MD5 hash), separated from one
another by a pipe character (|). The following optional specifications are
also possible:

125

9 User Data

gecos
This is the real name of the user.*

pop3pw, imappw, esmtppw
Apart from the hashed system password stored in systempw and copi-
ed automatically by pw2userdb from /etc/shadow, you can assign
separate passwords for POP3, IMAP, and (E)SMTP. If no additional
passwords are specified, Courier accesses the systempw field.

By defining separate passwords, you can switch individual services
on and off for individual users: If you specify an invalid, arbitrar-
ily chosen imappw for an account, the user can log in via POP3 and
the systempw, but will be unable to log in via IMAP. However, it is
cleaner and more elegant to use user options such as disableimap
and disablepop3 (see section 9.12 on page 144).

hmac-md5-pop3pw, hmac-shal-pop3pw, hmac-sha256-pop3w
There are optional hmac variants for the fields pop3pw, imappw, and
esmtppw; these variants store the passwords for challenge-response
processes (see section 9.4.4 on page 129).

mail
This specifies the path to the maildir (not the user’s email address).

quota
This is where you can specify the quota settings for the account; see
section 10.2.1 on page 167. This field is only processed if you are
using the complete Courier-MTA suite. It is irrelevant if you are using
only the Courier IMAP server.

options
You can also save user options in the userdb; this provides a decisive
advantage over using traditional shell accounts that are specified in
the /etc/passwd. For more information, see section 9.12 on page
144.

Courier can deduce email account names from Unix user IDs. To imple-
ment this name-from-UID resolution, the userdb that arises from a passwd
converted via pw2userdb always contains a separate line after the informa-
tion for each each account (in this example 1000= geeko):

geeko uid=1000|gid=100|home=/home/geeko|shell=/bin/bash|systempw=$2a$053
mOWZvEaUKbuvK9BKTPyBKeAb1NYKb8 PHSPUQ6 0KEJA4ycK99 /EB4y | gecos=Geeko
1000= geeko

4 The term gecos is derived from a Unix system from the '70s and is short for General
Electric Comprehensive Operating Supervisor. This passwd field contains information
for identifying the account. The information stored there depends on the Unix version.
Current Linux systems no longer require it, so the field is usually used to save the real
name.

126

9.4 The authuserdb Module

However, this information is currently not evaluated anywhere in the pro-
gram code, so you do not need to provide it.

You can also create accounts in the userdb that contain an at sign (Q) in the
username; this is not possible if you only use /etc/passwd. If you simply
use the email address as the account name, you have to refer to the maildir
path of the actual account in the mail field.

The user can then also log in with his or her email address. The user will
be unaware of the shell account the access is readdressed to:

tuxeexample.com uid=1001|gid=100|home=/home/tux|shell=/bin/bash|syste
mpw=52a$10$8ZWLCIMOH . vB913PJVRItuluHdzXc9BBcQ2ZJcAqrDIrUsB9$DvZm |mail=/h
ome/tux/Maildir

1001= tux@example.com

9.4.2 Maintaining Account Data with userdb

You can use any ASCII text editor to maintain the userdb file. If, however,
there are a large number of accounts, or in shell scripts, it is advisable to
use the Perl script userdb. It saves effort in searching the file and checks
that the syntax in the file is correct, which prevents possible errors.

The set command

userdb account name set fieldl=valuel field2=value2 ...

sets the specified fields for accountname to the specified values. The unset
command

userdb accountname unset feldl feld2 ...

deletes the specified fields. The del command

userdb accountname del

deletes the entire account, though only from the userdb and not from
/etc/passwd and /etc/shadow. The -show option takes an argument

userdb -show accountname

and displays the userdb entry for accountname. If you omit the account-
name argument, userdb will return the data for all user accounts. The
script also recognizes option -f /path/to/file,which permits a file other
than /etc/authlib/userdb to be read out and modified.

Thus, if you want to set the maildir directory for account tux@example.com
to /home/vmail/tux-example and the user ID and group ID to 5001, the
userdb instruction to carry this out runs as follows:

127

9 User Data

linux: # userdb "tux@example.com" set home=/home/vmail/tux-example \
uid=5001 gid=5001

If no value is specified for a field, userdb will request one. This means that
a password can be changed without including it in the call parameters of
the invocation of userdb (which will appear in the process list, which in
turn can be examined by all system users). Passwords have to be encrypted
and may not be specified in cleartext. The userdbbpw program provides
assistance here. It requests a cleartext password from the standard input
and puts out the hashed version on the standard output. It is also easy to
combine with userdb:

linux: # userdbpw | userdb "tux@example.com" set systempw

If you make no further specifications, userdbpw uses the classic encrypt ()
function; if you add the call parameters -md5, ~-hmac-md5,° ~-hmac-shal, or
~-hmac-sha256,° it will use other procedures to generate checksums.

9.4.3 Creating a Binary Version of the User Database

Courier does not work on the userdb file; instead, it operates with an in-
dexed binary version stored in userdb.dat and userdbshadow.dat, which
is noticeably faster to search: userdbshadow.dat contains the passwords,
and userdb.dat contains the other data. The makeuserdb program cre-
ates both files from the userdb (Postfix administrators are aware of this
technique):

linux:/etc/authlib/ # 1ls -la userdbsx

-rw------- 1 root root 3044 Jan 28 17:49 userdb
linux:/etc/authlib/ # makeuserdb
linux:/etc/authlib/ # 1ls -la userdbsx

“rwW------- 1 root root 3044 Jan 28 17:49 userdb
-rw-r--r-- 1 root root 14897 Jan 28 18:14 userdb.dat
“rwW------- 1 root root 12885 Jan 28 18:14 userdbshadow.dat

Changes to the userdb do not affect the running system until makeuserdb
converts the account data; this can be done during operation.

Please pay attention to file permissions. userdb and userdbshadow.dat
contain passwords, so only root may read these files.

5 See http://en.wikipedia.org/wiki/HMAC
6 See http://en.wikipedia.org/wiki/SHA

128

9.4 The authuserdb Module

9.4.4 Separating the userdb into Multiple Files

If you have a large number of accounts, it makes sense to maintain the
user data for the authuserdb module in small files; that way you can sort
the users into independently managed groups—by domain, for example.
In addition to specifying an account name directly, all userdb commands
discussed earlier can also handle a combination that specifies the path to
the file containing the data for the specified user. They interpret this path
relative to the directory /etc/authlib/userdb/.

If you specify example.com/tux as the account name, the commands will
apply to user tux in file /etc/authlib/userdb/example. com:

linux: # mkdir /etc/authlib/userdb

linux: # chmod 700 /etc/authlib/userdb

linux: # userdb "example.com/tux@example.com" \

set home=/home/vmail/tux.example.com uid=1006 gid=100
linux: # cd /etc/authlib/userdb
linux:/etc/authlib/userdb # ls -la

“rw------- 1 root root 44 Jan 28 20:34 example.com

If you specify account domains/example. com/tux, this will refer to /etc/
authlib/userdb/domains/example.comand then to the entry tux within
this file. The other userdb actions function as usual with this address in-
formation:

linux: # userdbpw | userdb "example-com/geekoQexample.com" set imappw

A single call to makeuserdb combines all data in the files in directory /etc/
authlib/userdb/ into the database files userdb.dat and userdbshadow.
dat.

CRAM Authentication with userdb

The authcram module, which has now been integrated into authuserdb,
also used the userdb database. Unlike authuserdb, authcram also sup-
ported the challenge-response procedure (CRAM). However, READMEs and
Howtos referring to this module are outdated: The authcram module was
dissolved, and CRAM support has been integrated into authuserdb.

Unlike the other CRAM-capable modules authmysql, authpgsql, and auth
ldap, the password is not saved on the server in cleartext. Instead, auth
userdb requests a hash corresponding to the CRAM procedure in the user
db: HMAC-MD5 for CRAM-MD5, HMAC-SHA1 for CRAM-SHA1, and HMAC-
SHA256 for CRAM-SHA256.

Unlike its three colleagues, authuserdb can only provide different CRAM
procedures in parallel if it has the password hash for all hash procedures.

129

9 User Data

The hashing method used in the userdb also determines the CRAM proce-
dure.

9.4.5 The atime

There are detailed explanations of the CRAM procedure and cleartext pass-
words in section 9.13 on page 147.

If you use the userdb and want to offer secure authentication methods,
you have to make sure that the user passwords are hashed according to
the correct procedure and then saved. As well as the systempw field (stan-
dard crypt hash, which only enables PLAIN and LOGIN), userdb also offers
fields hmac-md5-pw (HMAC-MD5, enables CRAM-MD5) and hmac-shal-pw
(enables HMAC-SHA1), both of which are not very well documented.

When hashing the passwords using userdbpw, you must choose the correct
hash procedure:

linux: # userdbpw -hmac-md5 | userdb "tux@example.com" set hmac-md5-pw
linux: # userdbpw -hmac-shal | userdb "tux@example.com" set hmac-shal-pw
linux: # userdbpw -hmac-sha256 | userdb "tux@example.com" set \
hmac-sha256-pw

9.5 Using QMail's vchkpw Library for
Authentication

The authvchkpw module uses the vpopmail/vchkpw library of the QMail
MTA. If you have set these up so they are operational, authentication re-
quests will be forwarded to this library. For a detailed description, see the
QMail documentation.”

9.6 Implementing Custom Authentication Methods

The Courier source code contains the authcustom module, which is oper-
ational except that it does not contain authentication code of its own. As
long as you have sufficient knowledge of programming, you can enhance
it and compile it with the Courier code; it can then be used for Courier
authentication under the name authcustom.

7 See http://www.inter?7. com/7page=vpopmail.

130

9.7 Integrating External Authentication Programs

9.7 Integrating External Authentication Programs

authpipe enables you to use any external program for authentication. The
authdaemond starts this external program and uses the standard input and
output to communicate with it.

By default, the authdaemond refers to the required program as /etc/auth
lib/authProg. The name and path are already compiled in and can only
be changed by recompiling Courier using the configure option --with-pi
peprog.

To communicate with the external program, authdaemond uses the same
protocol that it uses for Courier modules. This protocol defines four differ-
ent requests to the authentication service: PRE, AUTH, PASSWD, and ENUMERA
TE. authdaemond uses the request

PRE . service username

followed by a newline character to inform the external program which mail
service is addressing it; this is indicated by service, which can be pop3 or
imap. If the requested username exists, the authentication service has to
return a list of the account attributes in Table 9.1.

Attribute Description

USERNAME=username Repeats the name of the requested
account

UID=uid Unix user ID of the account

GID=gid Unix group ID of the account

HOME=directory
ADDRESS=adress

NAME=name
MAILDIR=maildir

QUOTA=maxbytesS,maxfilesC

PASSWD=cryptpasswd
PASSWD2=plainpasswd
OPTIONS=optionl=wertl,

The user’s home directory containing
the maildir

The email address (not evaluated by
POP3 and IMAP)

The user’s real name (not evaluated)
Path to the maildir in relation to the
home directory

The quota specification: maxbytes
stands for the upper limit in bytes,
and maxfiles stands for the maxi-
mum number of files (and therefore
emails)

The encrypted password

The cleartext password

Possible user options for the account

Table 9.1:

Account attributes
that the
authentication
service has to return

131

9 User Data

continued:
Attribute Description
option2=wert2,... (see section 9.12 on page 144)

Here, USERNAME, UID, GID, HOME, and ADDRESS are required, along with the
trailing dot, which completes the reply:

USERNAME=tux

UID=5001

GID=5001

HOME=/home/tux
ADDRESS=tux@example.com

All other attribute specifications are optional. If an account does not exist,
the authentication program has to return FAIL and the newline charac-
ter. In case of temporary errors (e.g., in the database), the program has to
terminate without comment and may not return a reply.

To request the authentication service to verify a login attempt, the authen-
tication daemon uses the AUTH message, which requires the authentication
method as an argument. Subsequent individual fields are separated by line
breaks, but the initial request message must not end in a line break. This
is an example of a verification request for a login using the LOGIN cleartext
method:

AUTH login
username

password

For challenge-response procedures, the authentication daemon transmits
the challenge string and the response returned by the client to the authenti-
cation service, which then checks whether they are correct. In the following
example of CRAM-MD5, the username and password are coded in response:

AUTH cram-md5
challenge
response

You could also use CRAM-SHA1 or CRAM-SHA256 instead of the CRAM-MD5
procedure.

When a user wishes to change the webmail password for the Courier web-
mailer from old_password to new_password, the authdaemond transmits
the following request to the authentication service:

PASSWD service \t username \t old password \t new password

132

9.8 Authentication via MySQL

Each of the four arguments has to be separated from its neighbor(s) by a
tab, which is shown here as \t. The PASSWD command and the specifica-
tion of the service (imap or pop3) making the request (to which the answer
is returned) are only separated by a space. The entire request ends in a
newline character.

This function is not relevant for POP3/IMAP, as passwords cannot be chang-
ed via these protocols. The Courier project only provides this option on the
Web interface if all Courier components are working together, and provides
an interface for third-party tools.

If the authdaemond issues the ENUMERATE command (which also ends in a
line break), the authentication program has to return a list of all accounts.
For each account, all of the information is returned in one line, in which
the individual fields are separated by tabs (once again shown here as \t). A
single dot marks the end of the account list:

username \t uid \t gid \t home \t maildir \t optionl=vall,option2=val2,
option3=val3

Thus, the last data set is followed by a single line with a lone dot. Such user
lists are required to, for example, create shared folders (see section 10.1 on
page 153).

9.8 Authentication via MySQL

The data that Courier requires for POP3 and IMAP can also be maintained
in an SQL database such as MySQL. You need to set up an SQL table con-
taining a field for each of the following: the username (the account ID),
the Linux user ID and group ID, the password, and the path to the user’s
maildir. The entry in the maildir field is interpreted (as usual) relative to
the home directory, which is saved in a separate table field. However, the
maildir field can also contain an absolute path, as shown in the example
here; in this case, the contents of the home field are irrelevant.

Do not forget to create an index based on the account ID field, so that the
table can be searched efficiently.

The following MySQL listing creates database user courier, who is permit-
ted to access the mailbase database locally, and generates the authentica-
tion database (see also Figure 9.1):

linux: # mysql
mysgl> use mysql;
mysgl> insert into user (Host, User, Password)

133

9 User Data

Figure 9.1:

The mailusers
example table
contains the
mandatory fields and
some additional
information for
better
administration.

values (’localhost’, ’courier’, password(’supersecret’));
mysgl> insert into db (Host, Db, User, Select priv)
values ('’ localhost’, 'mailbase’, 'courier’,’Y’);
mysgl> create database mailbase;
mysgl> use mailbase;
mysgl> CREATE TABLE ‘mailusers' (
‘*id' INT(11) NOT NULL AUTO INCREMENT,
‘account' VARCHAR(240) NOT NULL ,
‘uid' VARCHAR(6) DEFAULT ’5001’ NOT NULL ,
‘gid' VARCHAR(6) DEFAULT ‘5001’ NOT NULL ,
‘maildir' VARCHAR(100) DEFAULT ’/var/spool/maildirs’ NOT NULL,
‘home‘ VARCHAR(100) NOT NULL ,
‘password' VARCHAR(255) NOT NULL ,
‘created by' VARCHAR(60) NOT NULL ,
‘created_on‘ DATE NOT NULL ,
‘memo_txt' VARCHAR(255) NOT NULL ,
‘memo_firstname' VARCHAR(60) NOT NULL ,
‘memo_lastname‘ VARCHAR(60) NOT NULL ,
PRIMARY KEY (‘id‘) ,
UNIQUE (‘account')
) TYPE = MYISAM ;
Query OK, 0 rows affected (0.01 sec)
mysgl> quit
linux: # mysqgladmin reload

g3 Server: localhost » 53 Database: mailbase) [Table: mailusers
Field Type Langthvaluss' Collation Aftributes. Null Dafaul? Extra
11

e —— 1

[=] [notrun [+] (001] [
— e
<) (1wt =] [ravspaotimar) [

]

]

]

]

]

[iw [auto_ncrement

[zccount [vARCHAR

o= VARCHAR

[gie [vARCHAR

Uo0ododooodoa

[=
[-
[-
[-
[atar VARCHER [7] [100 [-
[rome [varchar — [+] o0 [- <] [netnun [~]
[passwora | [vaRcHaR || [25 [- <] [rotrui [+
[ceatea vy | [vARCHAR || [[= [t]
[created_on | [DATE 5] i = [+] [nornun <]
[reme b | [vARcHAR |+] (25 [- <] e <)
[memosnel (vARCHER |+] [0 [-] [rotrur <]
[memo_tasing] [varcrar__|v] | [0 [- S| e | |
Table comments: Storage Engine: Callation:

[[Myisam =

‘ Save |OrAgafi | feldis)| Go |

In order to use this table, you have to specify in the authdaemonrc that the
authentication daemon should use the authmysql module:

authmodulelist="authmysqgl"

For the sake of clarity, the configuration for MySQL access is not located in
the authdaemonrc, but in the authmysqlrec. If you do not have this in your
system, it is either in a package that has to be installed separately (and that
you have not yet installed), or Courier was compiled without support for
MySQL. OpenSuSE, for example, only contains the courier-authlib-my
sql package starting from version 10.2. If you have an older version, you

134

9.8 Authentication via MySQL

may have to compile Courier yourself. As a rule of thumb, if your Courier
supports MySQL, the authmysqlrc will exist.

For each configuration parameter, the desired configuration setting is listed
following the parameter and separated from it by spaces or tabs. The fol-
lowing settings are mandatory:

MYSQL_SERVER
This field specifies the MySQL server to be used, by giving either the
hostname or the IP address:

MYSQL_SERVER mysql.example.com

It is not possible to specify more than one server.

MYSQL_USERNAME
This field contains the username that Courier is to use when logging
on to MySQL (courier in our current example).

MYSQL_PASSWORD
This field specifies the corresponding password (supersecret in our
example).

MYSQL_DATABASE
This field contains the name of the MySQL database containing the
account data (mailbase in our example).

MYSQL_USER_TABLE
This field tells which one of the tables in this database contains the
user data (mailusers in our example).

MYSQL_CRYPT_PWFIELD
Which field of this table contains the encrypted password? (It is pass-
word in this example.)

MYSQL_CLEAR_PWFIELD
This field specifies the field containing the cleartext password. If
you do not store cleartext passwords, you should remove this option.
However, it makes sense to store cleartext passwords, as discussed in
section 9.13 on page 147.

MYSQL_UID_FIELD
This is the field containing the user ID for the account (uid in our
example).

MYSQL_GID_FIELD
This is the field containing the group ID for the account (gid in our
example).

135

9 User Data

MYSQL_LOGIN_FIELD
This is the field containing the user’s login name (id in our example)—
the most important field in the table. The MySQL module uses this
value to find the data set and read the user ID, group ID, and other
parameters.

MYSQL_HOME_FIELD
This is the field containing the path to the user’s home directory
(home in our example). If the user’s maildir is not stored under the
name Maildir directly in the home directory, you have to specify the
table field containing the path in MYSQL_MAILDIR_FIELD (see the op-
tional parameters below).

MYSQL_NAME_FIELD
This is the field containing the actual name of the user (corresponds
to the gecos field in the passwd). This is irrelevant for POP3 and
IMAP and is only used for other Courier mail server modules or for
the web frontend.

There are also a number of optional parameters:

MYSQL_PORT
This field specifies the MySQL port if this differs from the default
value of 3306.

MYSQL_SOCKET
This is the path to the MySQL socket if MySQL is operated locally
(e.g., /var/mysql/mysql.sock).

MYSQL_OPT
This field provides additional options for the connection to MySQL.
This is for development purposes and is not required for everyday
operation.

MYSQL_MAILDIR_FIELD
By default, Courier searches for a user’s emails in the $HOME/Maildir
directory. If you wish the user’s maildir to be stored in a different
subdirectory, use the table field defined here to specify a different
directory (relative to $HOME) for each user (maildir in our current
example).

MYSQL_DEFAULTDELIVERY
This field defines the default transport method if the SMTP server
from the Courier project is used. If you are running the Courier IMAP
with a different MTA, this value is irrelevant.

136

9.8 Authentication via MySQL

MYSQL_QUOTA_FIELD
This field defines a table field with the quotas for a user (see section
10.2.1 on page 167). This is only available if the entire Courier mail
server suite is in use (and not if Courier IMAP is operated alone), so
it is irrelevant for us.

MYSQL_AUXOPTIONS_FIELD
This specifies the table field containing additional options for this
account (see section 9.12 on page 144). In this field, multiple options
have to be separated by commas, and spaces between the comma
and the following option are not permitted.

You can also save the options singly in different fields and then use
the SQL command CONCAT to combine them. Refer to section 9.12.3
on page 147 for instructions.

MYSQL_WHERE_CLAUSE
This field contains a condition that is integrated into the request as a
MySQL WHERE command:

MYSQL_WHERE_CLAUSE server='mailhost.example.com’

You can set multiple conditions:

MYSQL_WHERE_CLAUSE server='mailhost.example.com’ AND status='active’

MYSQL_SELECT_CLAUSE
If the username, uid, gid, and path to the maildir do not correspond
directly to the database schema—say, if these items are not stored in
individual columns of a single table—then this option allows an SQL
query to be specified that assembles, in some appropriate fashion,
this information from the data in the existing database tables.

For this purpose, the CONCAT SQL command can be used to create
strings containing elements that are retrieved directly from specified
tables and columns. Here we use it to, among other things, calculate
the user’s maildir path from pieces stored separately in two database
tables:

MYSQL_SELECT CLAUSE SELECT
CONCAT (popbox.local_part, ’'@’, popbox.domain_name),
CONCAT (' {MD5} ', popbox.password hash),
popbox.clearpw,
domain.uid,
domain.gid,

CONCAT (domain.path, ’/’, popbox.mbox_name),

o
'

domain.quota,

o
’

CONCAT ("disableimap=",disableimap, ",disablepop3=",

P g G

137

9 User Data

disablepop3,",disablewebmail=",disablewebmail, \
", sharedgroup=", sharedgroup) \
FROM popbox, domain \
WHERE popbox.local_part = ’$(local_part)’ \
AND popbox.domain name = ’$(domain)’ \

AND popbox.domain name = domain.domain name

The MySQL command returns the results in the following order and
separated by commas:

username, encrypted password, cleartextpassword, uid, gid,
home directory, maildir, quota, complete name, options

MYSQL_ENUMERATE_CLAUSE

This SELECT command is used when the fields for the index file (see
section 10.1.1 on page 156) is combined using the authenumerate
command (section 10.1.1 on page 160) in order to prepare for shared
folders. You only need to prepare this SQL command if the data still
needs to be assembled by the CONCAT command. If the data is stored
cleanly in separate table fields, this command is not necessary.

MYSQL_ENUMERATE_CLAUSE SELECT \
CONCAT (popbox.local_part, ‘@', popbox.domain_name), \
domain.uid, \
domain.gid, \
CONCAT (domain.path, ’/’, popbox.mbox name), \
", \
CONCAT (' sharedgroup=', sharedgroup) \
FROM popbox, domain \
WHERE popbox.local_part = ’$(local_part)’ \
AND popbox.domain name = ‘$(domain)’ \

AND popbox.domain name = domain.domain_name

The complete data set has to be returned as shown and in the follow-
ing order:

username, uid, gid, home directory, maildir, options

MYSQL_CHPASS_CLAUSE

This MySQL command is executed when a user changes the pass-
word. This option is designed for the SqWebMail Courier webmailer
and is not relevant if you are only operating Courier IMAP, as users
are not able to change their passwords in this case.

DEFAULT_DOMAIN

When a user attempts to log on with a username that is not a com-
plete email address, the domain in this parameter is automatically
attached to the request. If the DEFAULT_DOMAIN is example.com,

138

9.9 Authentication via PostgreSQL

for example, then the login ID user is automatically converted into
user@example.com.

Be careful: This parameter is called DEFAULT_DOMAINand not MYSQL_
DEFAULT_DOMAIN.

9.9 Authentication via PostgreSQL

If you have the authpgsqlrc configuration file, this means that your Courier
authlib was compiled with PostgreSQL support. You should then specify
authpgsql in authdaemonrc as the module to be used.

authmodulelist="authpgsqgl"

There are only a few small differences between using MySQL and using
PostgreSQL. Most, though not all, PostgreSQL parameters only differ from
their MySQL equivalents in the prefix of the name: MYSQL_PORT becomes
PGSQL_PORT, and the exception to the naming rule, DEFAULT_DOMAIN, re-
mains unchanged.

Unfortunately, Sam Varshavchik, the Courier author, has written one small
but essential parameter that defies logic and usability and causes annoy-
ance, confusion, and errors: The MySQL parameter MYSQL_SERVERis called
PGSQL_HOST in PostgreSQL.

Why this name change? It creates space for an additional trick that pre-
vents administrators from getting bored: Unlike in MySQL, there is no
PGSQL_SOCKET parameter.

If you want to contact PostgreSQL via a socket instead of the TCP port
5400, you have to set PGSQL_HOST to empty and enter the file ending of
the PostgreSQL socket in PGSQL_PORT. If your PostgreSQL socket is called
/tmp/.s.PGSQL. 5400, you enter the following settings:

PGSQL_HOST
PGSQL_PORT 5400

If you use the TCP port, the setup is as follows:

PGSQL_HOST pgsgl.example.com
PGSQL_PORT 5400

If you create the mailusers table according to the schema shown on page
133 (in the PostgreSQL installation on the computer pgsql.example. com),
then the authpgsql configuration file should look like this:

139

9 User Data

PGSQL_HOST pgsgl.example.com
PGSQL_PORT 5400

PGSQL_USERNAME courier
PGSQL_PASSWORD supersecret
PGSQL_DATABASE mailusers
PGSQL_USER_TABLE mailusers
PGSQL_CRYPT PWFIELD password
PGSQL_UID_FIELD uid

PGSQL_GID FIELD gid
PGSQL_LOGIN_FIELD account
PGSQL_HOME_FIELD home
PGSQL_NAME_FIELD memo_lastname

9.10 Authentication via LDAP

Courier can also query an LDAP directory in real time. If your Courier
authlib was compiled with LDAP support, you will find an already pre-
pared configuration file authldaprc, which sets the configuration options
discussed here. In the main file authdaemonrc, you first specify that au-
thentication is performed by the authldap module:

authmodulelist="authldap"
The following settings can be configured:

LDAP_URI
This is the URL for one or more LDAP servers:

LDAP_URI ldaps://ldap.example.com, ldaps://backup.example.com

LDAP_PROTOCOL_VERSION
This is the version of the LDAP protocol used:

LDAP_PROTOCOL_VERSION 3

LDAP_BASEDN
The accounts to be authenticated can be found under the Distin-
guished Name (DN) specified here:

LDAP_BASEDN o=example, c=com

LDAP_BINDDN
This specifies the DN that Courier uses to log on to the LDAP server:

LDAP_BINDDN cn=administrator, o=example, c=com

140

9.10 Authentication via LDAP

LDAP_BINDPW
This specifies the password that Courier uses to log on to the LDAP
Server.

LDAP_TIMEOUT
This specifies the number of seconds after which Courier should ter-
minate the connection to the LDAP server if the server is not respond-
ing. For example:

LDAP_TIMEOUT 5

LDAP_AUTHBIND

If you set this variable to 1, Courier verifies the username and pass-
word by using them to log on to the LDAP server and checking whether
this login is possible (“rebind”). CRAM procedures are not possi-
ble, as Courier cannot log on to LDAP without the user’s cleartext
password. For this reason, this method is usually not used. In this
case Courier uses the data from LDAP_BINDDN and LDAP_BINDPW to
search the LDAP directory.

LDAP_MATL
This is the LDAP attribute in which Courier searches for the login
name.

LDAP_DOMAIN
This automatically adds the specified domain (example.com in this
example) to the login name before executing search queries if the
client specifies only a username:

LDAP_DOMAIN example.com

LDAP_FILTER
This adds the LDAP filter rule mentioned to the search query; this
filter rule is placed in parentheses, as is usual for LDAP. You can use
this option to query, for example, only accounts of a certain class:

LDAP_FILTER (objectClass=AccountMail)

Logical conjunctions are also possible. The following filter requires
that the accounts belong to the AccountMail class and that their
LDAP attribute status is active:

LDAP_FILTER (& (objectClass=AccountMail) (status=active))

LDAP_ENUMERATE_FILTER
If this option is set, authenumerate (see section 10.1.1 on page 160)
will use LDAP_ENUMERATE_FILTER instead of LDAP_FILTER for LDAP
queries:

141

9 User Data

LDAP_ENUMERATE FILTER (& (objectClass=AccountMail) (! (disableshared=1
)))

This example shows how to negate a filter criterion. This query re-
turns all accounts of the AccountMail object class whose disable
shared attribute is not 1.

LDAP_HOMEDIR

This attribute contains the path to the user’s home directory. It does
not have to be /home/username; for a virtual user, it might be /var/
maildir/username or something similar.

LDAP_MAILROOT

This attribute can be used to specify the parent of the home directory,
if a relative path is entered in the attribute specified by LDAP_HOMEDIR.
Courier uses the value of the path expression $LDAP_MAILROOT/$LDAP
_HOMEDIR as the home directory. LDAP_MAILROOT is optional and is
not usually set.

LDAP_MAILDIR

This attribute contains the path to the maildir directory in the user’s
home directory. Courier searches for a user’s emails in $LDAP_MAIL
ROOT/$LDAP_HOMEDIR/$LDAP_MAILDIR.

This attribute is optional. If it is not set, Courier will automatically
assume that Maildir/ is in the user’s home directory.

LDAP_DEFAULTDELIVERY

This corresponds to MYSQL_DEFAULTDELIVERY (see 136). This option
only affects the SMTP servers of the Courier project and is irrelevant
for Courier IMAP.

LDAP_FULLNAME

This contains the user’s first and last names. This attribute is irrele-
vant for Courier IMAP.

LDAP_CRYPTPW

This contains the encrypted password.

LDAP_CLEARPW

This is the attribute containing the cleartext password. See also the
discussion in section 9.13 on page 147.

LDAP_GLOB_UID

This sets a globally identical user ID for every account:

LDAP_GLOB_UID 10000

142

9.11 Obsolete Authentication Modules

LDAP_UID
If LDAP_GLOB_UID is empty or has not been set, Courier will consult
this attribute for the account’s individual user ID.

LDAP_GLOB_GID
This sets a group ID that applies to all users.

LDAP_GID
If LDAP_GLOB_GID is empty or has not been set, Courier will consult
this attribute for the account’s group ID.

LDAP_AUXOPTIONS
This is the attribute containing the user options for the account (see
section 9.12 on page 144 and section 9.12.2 on page 146).

LDAP_DEREF
This specifies whether and how any returned LDAP aliases should be
resolved. These are LDAP entries that function like a symlink and
refer to other entries. LDAP aliases are not usually used.

The possible values correspond to the standard LDAP procedures
mentioned in man 5 ldap.conf: never, searching, finding, and
always.

LDAP_TLS
If value 1 is set, the connection to the LDAP server is SSL/TLS en-
crypted; if value O is set, the query data (which could include the
user password) is transmitted without encryption.

9.11 Obsolete Authentication Modules

Current versions of Courier no longer support the following modules auto-
matically, as their functions are now carried out by other modules.

9.11.1 The authpwd Module

This module reads account information and the password from /etc/pass
wd. It is no longer relevant, as passwords are stored in /etc/shadow in the
Unix systems used today. If for some reason /etc/passwd has to function
as the password source, it is advisable to use authpam.

9.11.2 The authshadow Module

This module corresponds to authpwd, except that it reads the password
from /etc/shadow. There are no advanced configuration settings for this

143

9 User Data

module. However, it is more flexible and secure to use authpam, because
access permissions can be handled more restrictively; most distributions
therefore use PAM.

As authshadow and authpwd are in direct competition, it makes no sense
to use authshadow and authpam at the same time.

9.11.3 The authcram Module

This module no longer exists, as authuserdb has taken over its function
(see section 9.4.4 on page 129).

9.12 User Options

With Courier IMAP, it is possible to evaluate additional options for indi-
vidual accounts, in addition to the basic user data. This requires an au-
thentication source that can store the additional fields. If you use shell
accounts, for example, user options are not available for authentication
based on /etc/passwd and /etc/shadow, but only in conjunction with
authuserdb, authmysql, authpgsql, and authldap. The following op-
tions can be set for a user account:

disableimap
If this flag is set to 1, the user cannot log in via IMAP:

disableimap=1

The value 0 enables this login. If this flag has not been set, the default
setting specified in the authdaemonrc file applies (see below).

disablepop3
This option is identical to disableimap, but applies to POP3.

disablewebmail
This option is designed for the SqWebMail Courier webmailer. Like
disableimap and disablepop3, it can be used to selectively disable
access via SqWebmail. This access restriction does not function for
other webmailers, as they do not evaluate this field. It is therefore
irrelevant if you are operating only Courier IMAP.

group
This option assigns the account to one or more groups. These can
be used for group-based assignment of access permissions (ACLs) to
shared email directories (see section 10.1.1 on page 154). An account
may belong to multiple groups, and group is the only option that can
be mentioned multiple times:

144

9.12 User Options

disableimap=1, group=groupl, group=group2,mailhost=mail.example.com

Please note: group and sharedgroup are two different parameters
and cannot be interchanged with one another.

sharedgroup
If you want to enable your users to share IMAP folders (see section
10.1 on page 153), you can use this option to assign them to a shared
group.

disableshared
When this flag is set to 1, authenumerate -s (see section 10.1.1 on
page 160) will ignore the corresponding account when generating the
list of shared folders, regardless of whether it is assigned to a shared
group or not.

mailhost
If you operate Courier IMAP as POP3/IMAP proxy, this option stores
the POP3/IMAP server that physically contains the mailbox and to
which the proxy should forward the connection. For more informa-
tion, see section 10.3 on page 175.

Specify the default values for these options in the authdaemonrc file for all
authentication modules using the DEFAULTOPTIONS parameter; separate
option-value pairs with a comma and without spaces (!):

DEFAULTOPTIONS="disableimap=0,disablepop3=0,disablewebmail=0"

Here, access is permitted by default via POP3, IMAP, or SqWebMail, and
users are not assigned to a shared group. These default settings are firmly
entrenched in the Courier source code, so they apply even if you do not
set the DEFAULTOPTIONS variable. Because the equal sign is used to specify
values for the individual user options as well as to assign the entire list
of option settings to the DEFAULTOPTIONS variable, you must not forget
to include the quotation marks around the list of system-specific default
values.

Individual settings in the user data overwrite these default values. There are
two ways of specifying who may use IMAP. First, you can set the disable
imap=1 option for users that may not have access. Make no specification
in the DEFAULTOPTIONS in the authdaemonrc, or set disableimap=0 ex-
plicitely (hence “documenting” the default).

Alternatively, you can use the reverse strategy, and specify DEFAULTOPTIONS
="disableimap=1" in the authdaemonrc. This disables IMAP access for
all users. You then set option disableimap=0 in the user data sets of priv-
ileged users, which explicitly permits them access.

145

9 User Data

All authentication modules apart from authldap expect these options in a
single field, separated by commas and without spaces; this is analogous to
the DEFAULTOPTIONS setting in the authdaemonrc file. In the configura-
tion files of the SQL modules, MYSQL_AUXOPTIONS_FIELD (see page 137) or
PGSQL_AUXOPTIONS_FIELD specify where the options are stored. For the
use of LDAP, each option is specified in a separate attribute.

9.12.1 Saving User Options in the userdb

It is not possible to store user options in /etc/passwd, as there is no free
field and the existing fields cannot be used for this purpose. For this reason,
it makes sense to use the userdb if you do not wish to use SQL databases
or LDAP.

The options field describes the list of specified options; multiple values
are separated by commas and without spaces:

tuxeexample.com uid=1001|gid=100|home=/home/tux|shell=/bin/bash|
systempw=$2a$10$8ZWLcOMOH. vB913PJVRItuluHdzXc9BBcQ2ZJcAqrDIrUsBISDvV
Zm|mail=/home/tux/Maildir|options=disableimap=1, sharedgroup=test,ma
ilhost=mail5.example.com

9.12.2 Individual User Options in an LDAP Directory

Unlike the other methods, LDAP stores each individual user option in a
separate attribute. If a user’s data is in an LDAP directory and that user
requires more than the default options, the configuration of the authldap
module has to assign the relevant attributes to the extra options.

Courier expects the LDAP attribute name to the left of the equal sign; this
is unfortunately not evident from the examples in the README texts pro-
vided by the Courier team, as the names they chose for the attribute and
the option are identical. Thus, in the following example, the individual
sharedgroup value is stored in the shared attribute, the disableimap op-
tion in the imap attribute, and the disablepop3 specification in pop3:

#

LDAP_AUXOPTIONS LDAP-Attribut=Courier-Option

#

LDAP_AUXOPTIONS shared=sharedgroup, imap=disableimap, pop3=disablepop3

As long as you are aware of which way to read the assignment, there is no
reason not to name the attribute after the Courier option. The settings in
the authldaprc will then be as follows:

LDAP_AUXOPTIONS sharedgroup=sharedgroup,disableimap=disableimap,
disablepop3=disablepop3

146

9.13 Saving Passwords: Cleartext or Hash?

9.12.3 Storing User Options in Dedicated Fields in an SQL
Table

With authmysql and authpgsql, a separate field in the table can also be
specified for each option. In this case, an SQL command should be spec-
ified in the file authmysqlrc or authpgsqlrc that assembles the option
settings from all of the relevant fields into a string in which the settings are
separated by commas and there are no spaces:

MYSQL_AUXOPTIONS_ FIELD CONCAT ("disableimap=",disableimap,",disablepop3=
",disablepop3,",disablewebmail=",disablewebmail, ", sharedgroup=", sharedgr

oup)

The following listing is the PostgreSQL equivalent that collects the data
from columns disableimap, disablepop3, disablewebmail, and shared

group:

PGSQL_AUXOPTIONS_FIELD ‘disableimap=' || disableimap || ’,disablepop3='
|| disablepop3 || ’,disablewebmail=' || disablewebmail || ’, sharedgroup="'
|| sharedgroup

9.13 Saving Passwords: Cleartext or Hash?

At first, it may seem sensible to store user passwords in the various data
stores only in hashed form according to crypt, or the MD5 or SHA algo-
rithms, and not in cleartext. Strictly speaking, a hash is not an encryption
mechanism, as there is supposedly no way to determine the original value
from the result of applying the hash to it.?

This has the advantage that neither administrators nor unauthorized third
parties can gain access to the cleartext passwords. However, this advan-
tage can become a very serious problem when migrating to different IMAP
software (see section 6.4 on page 81).

The LOGIN and PLAIN transfer methods transfer the password in cleartext,
so they should only be used when secured by SSL/TLS. However, only the

8 You could compare a hash value of a password to the sum of the digits of a number. 526
has a digit sum of 13, but the number 526 cannot be recovered from its digit sum of 13
alone. However, a certain sum of digits can arise from an unlimited number of original
input values, whereas there is only a probability of 264 that two distinct passwords will
give identical MD5 hashes. Of course, there are teams all across the world that are
attempting to prove that this might happen much more often. In fact, MD5 has already
been undermined in a way that, under certain circumstances, the possibility is less
than 2%4; hence MD5 must be considered, by and large, cracked. SHA is still viewed as
secure.

147

9 User Data

more secure CRAM procedures (Challenge-Response Authentication Meth-
od), such as CRAM-MD5, CRAM-SHA1, CRAM-SHA256, or APOP (see section
2.1.2 on page 27) make it practically impossible to sniff out the password
during transmission.

For these methods, the server generates an individual session key for every
login. The client and the server use this key to calculate the hash value of
the password; this hash value is only valid for that session. An attacker is
not able to use this value at a later stage to log in. However, the server has to
know the cleartext password so that it can carry out the same calculations
as the client.

In other words: If the password is saved in the supposedly safe hash form,
the client can only log in using the insecure methods LOGIN and PLAIN. Use
of safe methods such as CRAM-MD5, CRAM-SHA1, CRAM-SHA256, or APQOP is
only possible if the server can access the cleartext password. This is a basic
problem that has nothing to do with Courier.

However, there is one exception that should not exist: Surprisingly, some
programs offer CRAM-MD5 even though they only have the HMAC-MD5 hash-
es of the passwords.?

In this manner, the Courier authentication module authuserdb (previously
authcram) offers CRAM-MD5, but only if the passwords are saved in the
userdb as HMAC-MD5 hash. This means that the module cannot offer
a procedure based on CRAM-SHA at the same time.

The explanation is both simple and sobering. The first step of the challenge-

response procedure is to hash the password with the standard hash proce-

dure. For CRAM-MD5, secret becomes the HMAC-MD?5 hash f16f9cd57afa
d6931bf£9508ef68ea2db1b62513b604cf995e4£882bed6d4f 1a, for exam-
ple. The client then calculates this with the server’s challenge; this results

in the response. If CRAM-SHA1 is used, the client calculates the password

hash in the same way using HMAC-SHA1.

It seems secure if passwords are saved as HMAC-MD5 hashes. However, this
is not true. If an attacker gains access to the hash, the attacker can then
calculate all other steps of the challenge-response procedure and then log
in correctly. This means that the attacker, like the other parties involved,
does not require the cleartext password to succeed.

This means that using the HMAC-MD?5 hash is just as secure or insecure
as saving the password as cleartext. Or to put it another way: The actual
password used by the client and the server is the hash.

This is why we stick with our statement: Challenge-response procedures
are only possible if the server knows the cleartext password. Once a HMAC-

9 HMAC is short for Hash Message Authentication Code; HMAC-MDS5 is calculated in a
slightly different manner than the standard MD5. These two procedures are not iden-
tical, even though they are both often referred to as “an MD5 hash” (see http://en.
wikipedia.org/wiki/HMAC).

148

9.13 Saving Passwords: Cleartext or Hash?

MDS5 hash has been published, third parties are able to use CRAM-MD5 to log
in.

There is one tiny advantage if only the hash is stored: If an attacker gains
access to this data, he or she has to use the challenge-response procedure to
log in and is unable to log in using cleartext methods (such as logging on to
a web frontend). This may be an advantage for those users that always use
the same password, whether for mail servers, FTP accounts, online shops,
or social utilities. However, anyone who believes that such multifunction
passwords are not available to dozens of others as cleartext passwords is
badly mistaken.

In any case, storing the MD5 hash has more drawbacks than benefits, as
procedures based on other hashes are no longer possible: CRAM-SHA1 is
impossible if the password is not available in cleartext or as an HMAC-SHA
hash. This is why the authentication modules authmysql, authpgsql, and
authldap always require cleartext passwords in the user data; it is the only
way that they can offer all secure CRAM methods in parallel.

According to Courier developer Sam Varshavchik, authcram was the first
CRAM implementation in the project. He admits that it was a mistake that
this module did not store cleartext passwords in the userdb. The current
authuserdb took over this problem from authcram. Now, administrators
have to decide early on how to hash the passwords in the userdb, as it is
not possible to switch CRAM authentication methods at a later stage.

Nevertheless, most people feel uncomfortable with saving cleartext pass-
words. Those who are not aware of the background of CRAM procedures
are liable to make the (wrongful) allegation that saving cleartext passwords
is irresponsible and endangers security. It is therefore advisable to consider
the following arguments:

= The administrator can read all the user’s emails anyway, by simply look-
ing at the hard disk; a password is not required.

= [f a password is protected from the administrator, it is less protected from
about 6 billion other people. It means that the administrator who can
access everything anyway cannot read the cleartext password, while any
intern or attacker at a large ISP or backbone operator can listen in and
record the data when the login data is transmitted. Colleagues or neigh-
bors in an Internet cafe also find it easy to read the password. Last but
not least, the administrator can sniff out the password (with a simple
tcpdump), or the mail server software can log it in the debug mode.

= Users should always be reminded to use different passwords for different
providers and services. They may be hard to convince, but they should
not get angry just because the administrator now knows the “secret” pass-
word used for a dozen other applications ...

149

9 User Data

Sending a password publicly but hiding it from the administrator is not re-
ally logical. The only acceptable argument in its favor is that a successful
attacker would have access to the user database containing all the pass-
words. However, as we demonstrated earlier, it would be just as bad if an
attacker gained possession of the MD5 hashes.

What is the actual risk? Is the danger posed by normal password sniffers
not a lot more serious and likely? If an attacker gains access to all the user
data, won't he or she probably have access to the authentication service or
even to the entire set of emails, which means that the passwords are no
longer required?

Of course it is a laudable aim to secure a system as well as possible, but
it is also important to determine where the principal danger comes from.
This results from the standard data transport in the Internet, from a sniffing
attack from a neighboring computer, or from low password quality.

For all these reasons, it makes sense to grit your teeth, save the passwords in
cleartext and then try to explain to the users how this increases (!) security.
Do everything in your power to protect the user data from unauthorized
access. You have to do this anyway, as even hashed passwords must not fall
into the wrong hands.

If you decide to save cleartext passwords, do not forget to configure the
IMAP_CAPABILITY parameter in /etc/courier/imap so that Courier can
offer the secure authentication procedures:

IMAP_CAPABILITY="IMAP4revl UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUB
JECT THREAD=REFERENCES SORT QUOTA IDLE AUTH=CRAM-MD5 AUTH=CRAM-SHAl"

9.14 Username Selection When Maintaining
Multiple Domains

If you have experience with Postfix or other MTAs, you know of the dif-
ference between “real” and “virtual” domains. Postfix, for example, distin-
guishes whether a domain is mentioned in mynetworks or in the lookup
tables virtual_maps or virtual_alias_domains.

This procedure is based on the fact that classic shell accounts with user
data saved in passwd and shadow always consist of only a username and
lack a domain part. Naturally, this causes problems when you have to map
accounts such as info@ into different domains.

The classic method is to forward these domains to “real” accounts via vir-
tual maps. Confixx and Plesq, for example, create a vast number of ac-
counts according to the format web15p3: 15th domain, 3rd postbox.'” The

10 This does not necessarily imply high-quality software.

150

9.14 Username Selection When Maintaining Multiple Domains

user then has to enter this login data in the email client as the username
for POP3/IMAP access.

You can name your accounts as you wish; you can even number them,
for example, 1234567, but this is not particularly easy to remember. It
is particularly troublesome when you are clearing up and have to delete
old domains and mailboxes, unless you maintain an additional database
containing the account assignments.

There is an easier way. Even though the at sign (@) was not permitted in
the username for POP3/IMAP login in the past, clients have for quite some
time now specified complete email addresses as login names. The owner of
info@example.com can therefore enter infoQ@example.com in the email
client, and only needs to remember the password.

These usernames cannot be mapped using passwd and shadow, as the at
sign (@) is not permitted there. However, you can create corresponding
accounts in MySQL, PostgreSQL, LDAP, and the userdb.

The authentication modules use the login name to find the data set in the
database or the directory that contains this name in the ID field, and then
access the password, the user and group ID, and the path to the email di-
rectories. In this case, Courier does not need an account in the traditional
sense; it possesses all the information required to check the password and
access the files. If you have to administer different domains, MySQL, Post-
greSQL, and LDAP are far superior to traditional shell accounts when it
comes to storing user information.

151

The Work of a Courier
Administrator

Once authentication is functioning, setting up a POP3/IMAP server is fairly
straightforward. Using a few Courier tricks and features will endear you to
mail users and make life easier for the administrator.

10.1 Shared Folders

Courier knows two types of shared folders: virtual shared folders and filesys-
tem-based shared folders.

Virtual shared folders allow users to grant other users access to individual
IMAP folders through the IMAP protocol. Users do not require shell access
to the mail server, as IMAP directly supports shared folders. All well-known
clients have this function.

153

10 The Work of a Courier Administrator

In order to improve performance, Courier requires a configuration file /etc
/courier/shared/indexlisting all accounts containing shared IMAP fold-
ers; this file requires some configuration. It is possible to automate this us-
ing shell scripts. If everything is set up properly, the Courier script authenu
merate (see section 10.1.1 on page 160) will do the work automatically.

Filesystem-based shared folders use symlinks and a number of “dirty” but
efficient tricks to integrate individual IMAP folders or entire maildir struc-
tures into multiple accounts. This requires manual adjustments at the
filesystem level in order to set the required file permissions.

This type of shared folder is therefore not particularly suitable for use with
virtualized accounts or Internet service providers, as these mail users do
not usually have shell access. It is better suited to mail servers with a user
base of technically experienced individuals who are not afraid of (simple)
shell commands, for example, on work servers within small companies. As
a quick fix, administrators can use them to implement exceptions, provided
they have root permissions.

10.1.1 Setting Up Virtual Shared Folders

All good email clients allow mail users to grant access to other mail users’
IMAP folders using access control lists (ACLs). Other users are identified by
their IMAP login name, which does not have to be identical to their email
address.

The courierimapacl File

If user paul@example.com has granted tux@example.net permission to
access the folder Testshare via his own email client, paul’s maildir will
contain the file courierimapacl:

linux:/mail/example.com/paul/Maildir # cd .Testshare
linux:/mail/example.com/paul/Maildir/.Testshare # 1ls -la
total 24

-rw-r--r-- 1 10000 10000 78 18.11.06 11:40:00 PM courierimapacl
drwx------ 2 10000 10000 4096 18.10.05 12:56:00 AM courierimapkeywords
-rw-r--r-- 1 10000 10000 15 12.01.06 10:39:00 PM courierimapuiddb
drwx------ 2 10000 10000 4096 12.01.06 10:39:00 PM cur

“rW------- 1 10000 10000 0 18.10.05 12:56:00 AM maildirfolder
drwx------ 2 10000 10000 4096 18.10.05 12:56:00 AM new

drwx------ 2 10000 10000 4096 19.11.06 7:48:00 PM tmp

linux:/mail/example.com/paul/Maildir/.Testshare # cat courierimapacl
owner aceilrstwx

administrators aceilrstwx

user=tux@example.net aceilprstwx

154

10.1 Shared Folders

Table 10.1 shows the identifiers that can appear in the first column of this
file. By default, two entries for owner and administrators have to exist in
every courierimapacl file.

Identifier Meaning

owner The owner of this folder

anyone Every user

anonymous Every user (identical to anyone)
user=loginid The user loginid

group=name All users in group name

administrators All users in group administrators (identi-

cal to group=administrators)

The group user option (see section 9.12 on page 144) makes it possible
to associate individual accounts with groups. In this way, members of a
group can be assigned shared rights to folders. This is completely different
from the sharedgroup user option (see section 9.12 on page 145), which is
handled differently.

The third line in the example above assigns tux@example.net all possible
permissions; Table 2.1 on page 36 shows the meanings of these permis-
sions.

It is possible to remove an individual permission from an identifier (that is,
to specify “negative permissions”) by prefixing a minus sign; this is useful
when generous group or anyone permissions allow more permissions to
a particular user than desired. Courier evaluates all positive permissions
and then subtracts the negative permissions, so the order of these entries
within the file is irrelevant.

In the following example, all users receive read and write permissions for
the affected directory, but write permission is revoked for tux@example.
net:

linux:/mail/example.com/paul/Maildir/.Testshare # cat courierimapacl
owner aceilrstwx

administrators aceilrstwx

-user=tux@example.net w

anyone=1lrw

However, Courier now has the problem that the permissions are saved in
the IMAP folder, but not in tux@example.net’s data. In order to determine
the folders that this user can access, Courier would have to search through
the maildirs of every user.

Table 10.1:
Assigning
permissions through
identifiers in the

courierimapacl
file

155

10 The Work of a Courier Administrator

The index File

This is exactly what Courier does. In order to reduce the work involved, the
server processes the index file. It checks only the accounts listed in this
file to see whether they assign to other users permissions for IMAP folders.
The number of directories that need to be searched is thereby drastically
reduced.

Courier expects this file as /etc/courier/shared/index, or, as for indi-
vidually compiled Courier installations, /usr/local/etc/courier/shar
ed/index. This file contains five fields that must be specified, while a sixth
field containing user options is optional:

share _name uid gid home directory maildir options

The index file is a partial dump of the user database, whether this database
is stored in passwd, in an SQL database, or in an LDAP directory. Courier
currently requires only the fields share_name, home_directory,and mail-
dir. The columns uid and gid have to exist but are not evaluated. They
set the stage for future extensions.

Every time a user logs in, Courier searches all courierimapacl files in the
maildir directories mentioned in the index file in order to determine the
shared folders the user has been given access rights for. Courier uses the
share_name field only as a label that identifies the folders for the other
clients. Therefore, the maildir user’s actual login ID is not relevant to the
contents of this field, although the username of the corresponding account
is usually used. The index file on the server containing the accounts of
paul@example.comand tux@example.comlooks a bit like this:

linux:/etc/courier/shared # cat index
tux 1001 500 /home/tux Maildir/
paul 1002 500 /home/paul Maildir/

It could also just as well have had the following contents, though tux can
not log on as cheffe:

linux:/etc/courier/shared # cat index
cheffe 1001 500 /home/tux Maildir/
paul 1002 500 /home/paul Maildir/

There are no complications if some of the directories listed in the index file
do not exist. Courier simply ignores the corresponding entries and does not
display those shares. This means that an index file can be used simulta-
neously on more than one server, even though each server contains only
some of the maildir directories.

156

10.1 Shared Folders

Courier strictly separates the shared folders available to a user from the
user’s own IMAP folders. Virtual shared folders are not listed in INBOX, but
instead in the #shared.name_of_share tree.! This prevents mix-ups and
name conflicts:

#shared.cheffe.Testshare
#shared.cheffe.Holiday

But be careful: If the user’s login name contains a dot or slash, this de-
stroys the hierarchy of the IMAP namespace when used as a label for folder
sharing. Thus, an entry such as

linux:/etc/courier/shared # cat index
Caution: This does *NOTx work
paul.meier 1003 500 /home/paul Maildir/

would lead to a shared folder like this:

#shared.paul .meier.Testshare

The meier directory would then be a subfolder of paul (instead of paul.
meier being under #shared). Courier tries to solve this problem by replac-
ing each dot and slash with a space (which is permissible in folder names):

#shared.paul meier.Testshare

The names may no longer be unique in this case. It can also happen that
Courier is unable to calculate shared lists properly after such replacements.
Large parts of the list will no longer be displayed properly.

Thus, although Courier automatically replaces dots and slashes with spaces
in the display name, this replacement can be problematic. Even if the ac-
counts offering shared folders are actually called paul .meier or anna.ger
ber, for example, it is advisable to avoid using these two characters in the
first column of index. Remember that when the index file is processed,
the important thing is the share name, and not the account names, which
can still contain dots.

If you use dots and slashes in your usernames (perhaps because you use
complete email addresses for login names), it is a good idea to think of a
workaround here and make sure that you have clean labels in the index
file. paul.meier could have the display name paul-meier, for example.
However, blindly using search-and-replace hacks can run the risk of creat-
ing labels that are ambiguous.

1 Filesystem-based shared folders are shown in shared and not in #shared.

157

10 The Work of a Courier Administrator

You can also set the IMAP_SHAREDMUNGENAMES parameter to 1 in the con-
figuration file of the imapd. Courier will then replace an invalid . with a
\:, and an invalid / with a \ ;. This may not look nice, but it is a workable
solution and therefore worth testing.

Special characters are allowed in IMAP folder names (and in share names).
They have to be UTF-8-coded in this file.

Arranging Shared Files

If you are managing a large number of shared folders, the index file con-
taining the shared folders quickly becomes unmanageable, both for the ad-
ministrator and for the users, to whom the shared folders are displayed in
a lengthy list.

In order to avoid this, you can group shared folders and export them into a
separate index file. Each of these groups is assigned a special share name
of its own that is displayed as an additional hierarchy level.

The main index file index contains the definitions of the group names and
references to the index files corresponding to them:

groupname * indexfilename

The asterisk in the second column is a predefined special character and
indicates to Courier that this line is not a group definition itself, but gives
the name of the file which includes these group definitions. A split index
file can contain both:

linux:/etc/courier/shared # cat index

employees * index-employees
interns * index-interns
freelancers = index-freelancers

bueroorga 1000 1000 /home/bueroorga Maildir

The syntax for permissions in the subfiles is the same as for standard per-
missions:

linux:/etc/courier/shared # cat index-employees

tux 1000 1000 /home/buerocorga Maildir
paul 1000 1000 /home/paul Maildir
geeko 1000 1000 /home/geeko Maildir

The shared IMAP folders then have the following hierarchy:

#shared.bueroorga. folder
#shared.employees.tux. folder
#shared.employees.tux. folder
#shared.employees.geeko. folder

158

10.1 Shared Folders

These group definitions are not the same thing as shared groups, which we
will discuss later. Using the latter, you can ensure that users are unable to
see shared folders belonging to groups that they do not belong to. In the
groups mentioned above, users in the employees group are able to see the
shares of users in group interns or freelancers. Arranging these groups
affects the way shared folders appear in the IMAP namespace and makes
it possible to assign ACL permissions to groups (see section 10.1.1 on page
154).

Self-Contained Share Groups

If a user can view all share names and IMAP folders in the index file, re-
gardless of permissions assigned by other users in the courierimapacl
files, this can compromise security. The user would then be able to infer
the account names from the share permissions, which in turn means that a
complete list of users (customers?) is freely available. In addition, the user
may be able to tell which users belong to which groups.

This may be irrelevant in a company that has a company-wide address
book, but it can be a violation of security in a large organization or an
ISP.

Unfortunately, the Courier programmers are refusing to deal with this prob-
lem. They claim that it would negatively affect performance if Courier has
to parse all courierimapacl files. This is rather lame; after all the alterna-
tive is not using these shared folders at all. This problem will not be dealt
with unless someone else writes the patch. ...

Luckily, there is a solution. It is not perfect, but it works. Introduce separate
shared groups with their own index files by entering a group assignment in
the user options (see section 9.12 on page 145). Users are then only able to
view the permissions for their own shared groups (their universe). However,
they will still be able to view all share names and all IMAP folders within
the shared group.

Shared groups have another advantage. If the index file is large, Courier
has to search through a correspondingly large number of directories. This
solution is not suitable for several thousand accounts or for overworked
servers with many logins. If each shared group has an index file, Courier
has to search through far fewer directories.

If, for example, you are managing the email accounts for the three do-
mains example.com, example.net, and example.org, and these belong
to different companies and organizations, you could group all users of
one domain into a shared group. To do this, set a user option such as
sharedgroup=example.com for every one of these users. Each user can
only belong to one shared group.

When a user logs in, Courier determines the sharedgroup for that user.

159

10 The Work of a Courier Administrator

After authentication, the server searches for shared folders in the specific
index file for that shared group, instead of searching the global index file.
The index file for the shared group has a predefined filename, consisting of
index and the value of sharedgroup. If the sharedgroup=example.com
option is specified for a user, the file is named indexexample.com; for
sharedgroup=developerteam, the file is named indexdeveloperteam.

The index file of the shared group contains the maildir directories and their
share names as described in section 10.1.1 on page 156:

linux:/etc/courier/shared # cat indexexample.com

info 1000 1000 /mail/example.com/info Maildir/
accounting 1000 1000 /mail/example.com/accounting Maildir/
paul 1000 1000 /mail/example.com/paul.meier Maildir/
geeko 1000 1000 /mail/example.com/geeko Maildir/

Every user can only view shared folders for his or her shared group, so it
is possible to assign the same share name in different shared groups. The
labels info, accounting, and paul are now also permitted for entries in
example.org accounts:

linux:/etc/courier/shared # cat indexexample.org

info 1000 1000 /mail/example.org/info Maildir/
accounting 1000 1000 /mail/example.org/accounting Maildir/
paul 1000 1000 /mail/example.org/paul Maildir/

If you do not define the sharedgroup option for an account, Courier IMAP
will search the global index file.

Generating the index File Automatically

If you only wish to permit sharing for selected accounts, it makes sense to
manage the corresponding index files manually. If, however, you wish to
permit all or nearly all users to share folders, you can use the authenumera
te program to generate the index file automatically.

authenumerate uses the authlib library, which has access to the complete
user database, to generate a dump of all user data. You can then redirect
this dump to the index file:

linux: # authenumerate > /etc/courier/shared/index

Unfortunately, almost no documentation exists for this program. It has two
call parameters: -o tells the program to output the user options for the
accounts in the sixth column. This also includes the sharedgroup.

160

10.1 Shared Folders

authenumerate -s lists only those accounts that are permitted to share
folders. If the user option disableshared is set to 1 for an account, that
account is not listed.

Bear in mind that authenumerate uses the commands in parameters MYSQL
_ENUMERATE_CLAUSE, PGSQL_ENUMERATE_CLAUSE, and LDAP_ENUMERATE _
FILTER (see pages 138, 139, and 141) to read out the user data. This com-
mand can limit the accounts to be considered or manipulate the data (es-
pecially that in the first column).

Automatically Generating Index Files for Shared Groups

If you use shared groups, you require numerous group-specific index files.
The sharedindexsplit tool can split a global index file accordingly. If
the index file contains the user options in the sixth column (thanks to
authenumerate -o), this column will show which user belongs to which
shared group. sharedindexsplit then automatically prepares a suitable
index file for every shared group. You can run the following shell script, for
example, as a regular cron job:

#!/bin/sh
sysconfdir="/etc/courier"

sbindir="/usr/sbin"

Remove residues from previous run-throughs
rm -rf $sysconfdir/shared.tmp
mkdir $sysconfdir/shared.tmp || exit 1

Generate temporary index file containing user options
$sbindir/authenumerate -s -o >$sysconfdir/shared.tmp/.tmplist || exit 1

Split by sharedgroup
$sbindir/sharedindexsplit $sysconfdir/shared.tmp <S$sysconfdir/ \
shared.tmp/.tmplist || exit 1

Delete temporary file
rm -f $sysconfdir/shared.tmp/.tmplist

Move the completed files to $sysconf
$sbindir/sharedindexinstall

sharedindexsplit can also split the shared folders into different index
files according to the first n characters if you specify this number as the
second call parameter. It then ignores the sharedgroup user option. This
is what the shell script would look like:

#!/bin/sh
sysconfdir="/etc/courier"

161

10 The Work of a Courier Administrator

sbindir="/usr/sbin"

Remove residues from previous run-throughs
rm -rf $sysconfdir/shared.tmp
mkdir $sysconfdir/shared.tmp || exit 1

Generate temporary index file containing user options
$sbindir/authenumerate -s >$sysconfdir/shared.tmp/.tmplist || exit 1

Split by the first character
$sbindir/sharedindexsplit $sysconfdir/shared.tmp 1 <$sysconfdir/ \
shared.tmp/.tmplist || exit 1

Delete temporary file
rm -f $sysconfdir/shared.tmp/.tmplist

Move the completed files to $sysconf
$sbindir/sharedindexinstall

The sharedindexinstall shell script provided by Courier simply bundles
the temporary files and moves them to /etc/shared. Make sure that the
correct path is specified in sysconfdir:?

linux: # which sharedindexinstall

/usr/sbin/sharedindexinstall

linux: # cat /usr/sbin/sharedindexinstall

#! /bin/sh

$Id: sharedindexinstall.in,v 1.1 2004/01/11 02:47:33 mrsam Exp $

#
Copyright 2004 Double Precision, Inc.

See COPYING for distribution information.
#

#

Sample script to safely update shared folder index files.

prefix="/usr"
sysconfdir="/etc/courier"

[...1

Subscribing to Shared Folders

Usually IMAP users have to explicitly subscribe to shared folders for their
clients to display them (see section 2.2.4 on page 41).

Some email clients, such as KMail (see Figure 10.1), use the IMAP protocol
to ask the server for the correct namespace for personal folders (INBOX. *)
or virtual shared folders (#shared.x*) in order to display the directories

2 The prefix variable was previously used, but it is superfluous in the version used here
(1.1 from January 11, 2004), as it is not used in the script.

162

10.1 Shared Folders

properly. In that case, you will find the corresponding settings in the IMAP
account management.

Modify Account - KMail

Account Type: IMAP Account

General {Sg:urity |Ei\termg I

Account name: lsameZ

Login: Isamaz

Password: [-““

Host: l192.158.100‘135

Port: [143

[INBOX.
Namespaces: ¢V Other Users[
Shared [#snared,sharad

Personal

[X| Store IMAP password

[% Automatically compact folders (expunges deleted messages)
[% show hidden folders

[%| show only subscribed folders

[%| Show only locally subscribed folders

[Load attachments on demand

[List only open folders

[%| Include in manual mail check

[_] Enable interval mail checking

l k)
Trash folder: [Lucal Folders/trash]

10.1.2 Creating Filesystem-Based Shared Folders

Figure 10.1:

KMail automatically
queries the IMAP
namespace in order
to display the folders

properly.

If your users are technically experienced and have shell accounts on the
server, you can provide filesystem-based shared folders. In this case, the file
access permissions in the maildir directories determine each user’s access

permissions.

If user tux wants to prevent user geeko from viewing his maildir, tux has
to ensure that only he as the owner of the maildir has read and write per-

missions:

tux@linux:~$ ls -lad Maildir/
6 tux users 4096 10. Mar 22:30 Maildir/

If he changes the file permissions for his maildir directory or for individual
IMAP folders in that directory, other users can access them. You can modify
Courier so that it offers the shared maildir directories to other users for

subscription via IMAP.

163

10 The Work of a Courier Administrator

A shareable maildir is a special maildir with more relaxed access permis-
sions, allowing other users to view it. For this reason, this should not be a
user’s actual maildir (even though this is technically possible). Instead, a
user should create an additional directory in the personal home directory
as a shared maildir.

Folders in a shareable maildir are called shared folders. Other users can
subscribe to these folders.

If tux wishes to share a folder with colleagues, he uses maildirmake to
create a separate shareable maildir with open access permissions, without
letting other users access his actual maildir. The -S parameter tells the
program to generate a shareable maildir:

tux@linux:~$ maildirmake -S Maildir-Shared

tux@linux:~$ ls -lad Maildirs

drwx------ 7 tux users 4096 11. Mar 17:31 Maildir
drwxr-xr-x 9 tux users 4096 11. Mar 17:25 Maildir-Shared
tux@linux:~$

The only difference between the maildirs lies in the file permissions. tux
has now made the shared folder available, and the rest is up to his col-
leagues.

They can now create a shared-maildirs file in their own maildir. This
is where they enter the paths to the other available maildirs belonging to
other users:

geeko@linux:~$ cd Maildir
geeko@linux:~/Maildir$ cat shared-maildir

tux /home/tux/Maildir-Shared
paul /home/paul/Maildir2
group /home/gruppe/Maildir-groupaccess

Nothing else needs to be done at file/operating system level. Courier does
the rest of the work when somebody subscribes to a folder using the IMAP
protocol. When he next logs in, geeko can subscribe to a number of ad-
ditional folders available in the shared namespace.® In order to tell them
apart, Courier completes the short names of the maildirs in the shared-
maildirs file:

shared. tux.
shared.paul. *
shared.gruppe. *

Courier does all of this in the background using symlinks. To do this, it
creates an additional folder named shared-folders in geeko’s maildir;

3 Virtual shared folders are available from #shared.

164

10.1 Shared Folders

unlike geeko’s normal IMAP folders, this folder does not begin with a point.
This shared folder contains the three short names as directories:

geeko@linux:~/Maildir$ 1ls -1

drwx------ 2 geeko users 4096 10. Mar 22:35 courierimapkeywords
-rw-r--r-- 1 geeko users 187 10. Mar 22:19 courierimapuiddb
drwx------ 2 geeko users 4096 10. Mar 22:24 cur

drwx------ 2 geeko users 4096 10. Mar 22:19 new

drwx------ 3 geeko users 4096 11. Mar 17:27 shared-folders
-rw-r--r-- 1 geeko users 27 11. Mar 17:26 shared-maildirs
drwx------ 2 geeko users 4096 11. Mar 19:17 tmp
geeko@linux:~/Maildir$ cat shared-maildir
geeko@linux:~/Maildir/shared-folderss cd shared-folders
geeko@linux:~/Maildir/shared-folders$ 1ls -1

drwx------ 6 geeko users 4096 11. Mar 17:27 paul

drwx------ 6 geeko users 4096 11. Mar 17:27 tux

drwx------ 6 geeko users 4096 11. Mar 17:27 group

If geeko subscribes to tux’s Party folder, Courier creates a maildir named
tux/Party. This maildir contains the usual maildir directories cur, new,
and tmp, and also a symlink to tux’s actual maildir:

geeko@linux:~/Maildir/shared-folderss$ 1ls -1 tux/Party

total 24

drwx------ 2 geeko users 4096 11. Mar 5:30:00 PM courierimapkeywords
-rw-r--r-- 1 geeko users 234 11. Mar 5:30:00 PM courierimapuiddb
drwx------ 2 geeko users 4096 11. Mar 5:30:00 PM cur

drwx------ 2 geeko users 4096 11. Mar 5:30:00 PM new

lrwxrwxrwx 1 geeko users 32 11. Mar 17:27 shared -> /home/tux/Maildir-
Shared/.Party

-rwW------- 1 geeko users 1 11. Mar 17:30 shared-timestamp

drwx------ 2 geeko users 4096 11. Mar 5:30:00 PM tmp

Whenever geeko logs in, Courier compares the contents of shared/cur to
those of cur; for every file in tux’s original directory, it creates a symlink in
geeko’s cur directory:

geeko@linux:~/Maildir/shared-folders$ cd tux/Party
geeko@linux:~/Maildir/shared-folders/tux/Party$ 1ls -1 shared/cur

users 3737 11. Mar 17:30 1173630626.M516761P6734V000
0000000000302I000102C8_6.couriertest,S=3737:2,S

3795 11. Mar 17:30 1173630626.M900691P6734V000
0000000000302I000102D0_7.couriertest,S=3795:2,S

5052 11. Mar 17:30 1173630627.M359308P6734V000
0000000000302I000102D1_8.couriertest,S=5052:2,S
geeko@linux:~/Maildir/shared-folders/tux/Party$ 1ls -1 cur

total 12

lrwxrwxrwx 1 geeko users 111 11. Mar 17:30 1173630626.M516761P6734V00000
00000000302I000102C8_6.couriertest,S=3737:2, -> /home/tux/Maildir-Shared

-rw-r--r-- 1 tux

-rw-r--r-- 1 tux users

-rw-r--r-- 1 tux users

165

10 The Work of a Courier Administrator

/.groupwrite/cur/1173630626.M516761P6734VOOO00000000003021000102C8_6.cou
riertest,S=3737:2,8

lrwxrwxrwx 1 geeko users 111 11. Mar 17:30 1173630626.M900691P6734V00000
00000000302I000102D0_7.couriertest,S=3795:2, -> /home/tux/Maildir-Shared
/.groupwrite/cur/1173630626.M900691P6734VOOO00000000003021000102DO_7.cou
riertest,S=3795:2,8

lrwxrwxrwx 1 geeko users 111 11. Mar 17:30 1173630627.M359308P6734V00000
00000000302I000102D1_8.couriertest,S=5052:2, -> /home/tux/Maildir-Shared
/.groupwrite/cur/1173630627.M359308P6734VOOO00000000003021000102D1_8.cou
riertest,S=5052:2,8

Once this has been done, geeko can treat this IMAP folder like a personal
inbox, as long as he has the required file permissions. If tux grants only
read permissions, geeko does not have write permissions and may there-
fore neither delete nor add emails.

Access permissions are defined by the user ID and group ID at system level.
The owner of the maildir can only grant read and write permissions for his
or her own user group or for all users on the server. It is not possible to
grant permissions to individual accounts.

Do not forget that clients may still have to subscribe to these newly avail-
able directories.

10.2 Quotas

When asked about the capabilities an IMAP server should have, most ad-
ministrators name quotas as one of the most important. This is under-
standable: There is the constant fear that an ever-increasing volume of data
will become unmanageable, and too many users treat the technology and
infrastructure carelessly. These users often forget that the “couple of GBs”
that are unimportant on their personal computer can quickly add up to
huge amounts of data on company networks or ISP servers with hundreds
or thousands of users; this data is almost unmanageable, and the storage
costs in secure environments can be considerable.

On the other hand, it is worth considering whether and how quotas are
worth using; sometimes, they do more harm than good. In most cases, the
servers have more than enough memory. Quotas are set up to restrict indi-
viduals. If everyone did use this much space, there would not be enough
space. This means that emails are preemptively blocked, even though the
server could still process them.

Low quota limits also introduce vulnerability to denial-of-service attacks.
An account with a restricted quota is flooded on Friday evening, and the
problem is only detected on Monday morning, and by then all subsequent
legitimate emails (including those from paying customers) have been de-
nied.

166

10.2 Quotas

As long as the email server has a lot of free memory, lack of quotas is not
a problem. Also, with or without quotas, MTAs such as Postfix monitor
the free memory and refuse emails before the hard disk is full. Even when
quotas have been set, it is still necessary to monitor the server and the
free memory: Quotas are usually so generous that the sum of quotas for
all users exceeds the size of the hard disk, and so offer no protection from
filling up server memory.

You can still retain control over disk usage even if you do not use quotas.
Simply write a small shell script that determines the inbox size for indi-
vidual users. All you need to do is enter du -s * in the maildir’s main
directory; | sort will show the mailboxes with the largest memory con-
sumption. Now you can give a verbal warning and request the user in
person to tidy up the directory, or you can automatically send a warning
message to the user. This method is often more successful than locking the
account, which can create some bad feelings between you and the user.

Another interesting idea is to block SMTP sending if a user exceeds his
or her quota. You can use the monitoring scripts mentioned to set up this
block. While classic quota bounces affect innocent senders, the SMTP block
affects the owner of the account. If a user exceeds the quota, he or she is
unable to send out new emails.

Not only is this sanction very effective, it also makes sure that users will
notice much more quickly when they exceed quotas. If you use traditional
quota bounces, users will often only find out that they have exceeded the
quota once the senders of (unreceived) emails complain.

The most sensible course is to combine the two quota sanctions: prevent
emails from being sent, and only stop accepting new emails once the next
limit is reached. This prevents dead accounts from accumulating emails for
years.

In the free email sector, quotas can prevent misuse of mailboxes. It makes
sense to balance out the benefits and drawbacks: It can be embarrassing
for companies if emails are returned to external senders because the em-
ployees’ mailboxes are full.

10.2.1 Quotas for Courier

Courier permits quotas on two levels. At file level, the server uses the quota
capability of the Linux kernel and requires user accounts with an individual
user ID. The advantage here is that quotas have nothing to do with the email
system; instead, they are enforced because the email server can no longer
save new emails, which in turn causes the required bounce.

The maildir++ format permits quotas that Courier can evaluate. Quota files
saved in this format also have to be taken into account by the saving Mail

167

10 The Work of a Courier Administrator

Delivery Agent (MDA); maildrop, procmail, local, and deliverquota

do this. There are a few MDAs that require an extra patch for these quotas.

One of them is the MDA virtual, designed by Postfix for MySQL and LDAP
4

users.

Quotas at File Level

As long as you work with real shell accounts rather than with virtual ac-
counts, you can use standard filesystem quotas. As emails are stored under
the user ID of the user, they count towards that user’s quota. If the quota
is exceeded, the system prevents the mail server from saving additional
emails.

The mail server usually views such write errors as temporary errors. This
means that emails are not lost, but instead remain in the mail server’s mail
queue; the mail server continues to attempt to deliver them locally to the
hard disk. Emails are only returned to the sender as undeliverable if the
maximum queuing time has been exceeded. For Postfix, the default of
maximum_queue_lifetimeis five days.

The procedure for setting up quotas at file level differs slightly for different
kernel versions, both regarding the names of the commands and the files
to be modified. The following version should apply to 2.4.x and 2.6.x.

First, you have to use the options usrquota and grpquotato tell the mount
command that it should activate quotas for the corresponding partition at
the user or group level. To do this, complete the appropriate /etc/fstab
entry:

/dev/sda5 /var/maildir ext3 defaults,usrquota 1 1

Please note that the quotas have to be supported by the filesystem. This is
the case for Ext2, Ext3, and ReiserFS. After this, you have to remount the
partition:

linux: # mount -o remount /var/maildir

Next, you generate the quota database again so that existing files on all
partitions are included if they were mounted using the option usrquota or
grpquota:

linux: # quotacheck -avug

The top level of the quota partition (in this case, /var/maildir) should
contain the files aquota.user and/or aquota. group. For older kernel ver-
sions, these files are named quota.user and quota.group.

4 Seehttp://vda.sourceforge.net

168

10.2 Quotas

Even the best mount options are useless if quotas are deactivated in the
kernel. The commands quotaon and quotaoff switch this function on
and off:

linux: # quotaon

Use the edquota command followed by a username to specify the quotas
for that user:

linux: # edquota geeko
Disk quotas for user geeko (uid 1000) :

Filesystem blocks soft hard inodes soft hard
/dev/sdas 74 0 0 23 0 0

The second column shows the blocks on this partition currently used by
geeko. You can not modify this value, as it is determined by the files stored.
The next two columns show the soft and hard limits for the user in blocks.
The user may briefly exceed the soft limit, but the hard limit is an absolute
restriction.

Like free data blocks, the number of available inodes is limited, so you can
also specify quotas for inodes. Column five shows the current consump-
tion, and columns six and seven can be edited and show the soft and hard
quotas for inodes.

Simply modify the appropriate columns to change the quotas for a user. 0
means that no quotas have been set. The following example sets a soft limit
of 5,000KB and a hard limit of 7,500KB, as the default block size is currently
1,024 bytes.

Disk quotas for user geeko (uid 1001):
Filesystem blocks soft hard inodes soft hard
/dev/hdas 74 5000 7500 23 0 0

Enter repquota to read out all quotas:

linux: # repquota -a
x+x* Report for user quotas on device /dev/sda5
Block grace time: 7days; Inode grace time: 7days

Block limits File limits
User used soft hard grace used soft hard grace
root -- 2443081 0 0 99647 0 0
1p -- 55 0 0 18 0 0
mail -- 1 0 0 1 0 0
news -- 1 0 0 6 0 0
uucp -- 1 0 0 2 0 0

169

10 The Work of a Courier Administrator

games -- 6993 0 0 179 0 0
man -- 1302 0 0 999 0 0
at -- 1 0 0 3 0 0
WWWrun -- 1 0 0 1 0 0
postfix -- 2 0 0 39 0 0
ntp -- 17 0 0 5 0 0
mdnsd -- 1 0 0 6 0 0
messagebus -- 1 0 0 1 0 0
haldaemon -- 1 0 0 1 0 0
nobody -- 1 0 0 1 0 0
geeko -- 74 5000 7500 23 0 0

If your users have shell access to the mail server, they can use the quota
command to find out the current status:

user@linux:~$ quota
Disk quotas for user peer (uid 1001):
Filesystem Dblocks quota limit grace files quota limit
grace
/dev/hdas 74 5000 7500 23 0 0

Quotas through maildir++

Filesystem quotas are often unnecessary, as the maildir format enhanced
by Courier contains its own quotas. In addition to the three subdirectories
cur, new, and tmp, which are contained in a generic maildir directory
created by maildirmake, there are some Courier-specific files (maildir++
extensions), some of which are used for quotas.

You can use the maildirmake call parameter -q to activate quotas in an
existing maildir directory. You can specify a maximum mailbox size in
bytes and/or a maximum number of emails: The command maildirmake
-q 10000000S,1000C /path/to/Maildir sets a quota of approximately
10MB or 10,000,000 bytes (S is short for size) and permits up to 1,000 mes-
sages (C is short for count). The quotas are triggered if one of the two limits
is exceeded. As usual, Courier manages the settings in small ASCII files.

linux:/home/tux # su tux -c "maildirmake Maildir"
linux:/home/tux # ls -la Maildir

total 20

drwx------ 5 tux wusers 4096 Jul 28 22:11
drwxr-xr-x 8 tux users 4096 Jul 28 22:11
drwx------ 2 tux wusers 4096 Jul 28 22:11 cur
drwx------ 2 tux wusers 4096 Jul 28 22:11 new
drwx------ 2 tux users 4096 Jul 28 22:11 tmp

linux:/home/tux # maildirmake -gq 10000000S,1000C Maildir
linux:/home/tux # ls -la Maildir
total 24

170

10.2 Quotas

drwx------ 5 tux wusers 4096 Jul 28 10:12:00 PM .
drwxr-xr-x 8 tux users 4096 Jul 28 22:11 ..
drwx------ 2 tux users 4096 Jul 28 22:11 cur
-rw-r--r-- 1 tux users 36 Jul 28 22:12 maildirsize
drwx------ 2 tux wusers 4096 Jul 28 22:11 new
drwx------ 2 tux users 4096 Jul 28 10:12:00 PM tmp

You can also create the maildirsize file manually for empty maildir di-
rectories and edit it at a later stage to change the quota size:

linux:/home/tux # cat Maildir/maildirsize
10000000S.1000C
0 0

The maildirsize file will look different if the maildir contained emails
when the quotas were activated. In this case, maildirmake measures the
occupied memory and logs this information in the maildirsize file.

When new messages are written to the maildir directory, the maildirsize
file keeps a quota log: The first column contains the changes in occupied
memory, and the second column contains the number of new and deleted
messages. Courier does not add up the existing values; instead, each soft-
ware component adds one log line showing how much space and how many
emails it has used. Negative values signify that a message has been deleted
and the corresponding amount of storage volume has been freed up.

If tux has received a few messages in the meantime, the maildirsize file
would look like this:

linux:/home/tux # cat Maildir/maildirsize
10000000S.1000C
0
523
37909
2039
12976
-2039 -

N e i)

If a software component wants to check a user’s quotas, it reads the valid
quota settings from the first line and adds up the values from all other lines.
The result shows the occupied memory and the number of files used.

This list naturally increases over time, which means that using this method
to calculate quotas would take far too much time once several thousand
messages have been received. For this reason, Courier runs through all
maildirs from time to time (usually every 15 minutes) and recalculates the
maildirsize file based on the stored emails. Here is the result after such
a file cleanup, when the maildir showed 51,408 bytes in 3 files for tux:

171

10 The Work of a Courier Administrator

linux:/home/tux # cat Maildir/maildirsize
10000000S.1000C
51408 3

This quota monitoring method assumes that software components with
write access to the maildir understand the maildirsize file, process it,
and log new emails in it. This means that mail software not only has to be
compatible with maildir (which is standard), but also with the maildir++
extensions.

Naturally, Courier is capable of this, but the IMAP server is not the only
server with write access to maildirs. The MTA also saves new emails, and
if you use shell accounts, even the local email program may access the
maildir directly instead of via IMAP—pine, KMail, and other clients can
do this. If the maildirsize file is not processed during these interactions,
quotas can be exceeded without attracting notice.

In principle, this is not a problem, as Courier automatically cleans up the
maildirsize file, recalculates the quotas using all emails, and collects all
the correct data.

One problem remains: The IMAP server is not the most important compo-
nent for quota monitoring. It can be used to upload emails that increase the
data volume, but IMAP sessions usually ensure that messages are deleted
and memory is freed up.

The MTA (Postfix, QMail, Exim) is far more important. After all, when quo-
tas are exceeded it is the MTA that has to refuse emails for the account. For
this reason, the MTA must recognize and evaluate maildirsize, or else the
quotas will not be effective. Courier does calculate everything, but who will
activate the emergency brake?

10.2.2 Quotas and the MDA

Nearly all MTAs contain their own separate programs that save emails in
the filesystem. These programs are Mail Delivery Agents (MDAs). Post-
fix preferentially uses local or virtual; the best-known free MDAs are
procmail (popular for its filters) and maildrop (the Courier project MDA).
These MDAs are interchangeable.

Not all MDAs support quotas, as this function is not part of the original
maildir definition, but is part of the extended maildir++. The free MDAs
local, procmail, and maildrop are able to use quotas, whereas virtual
requires the VDA patch (discussed in the next section).

Check whether the MDA on your MTA can use maildir++ quotas before
you use them. You may have to replace the MDA. It is not really impor-
tant which program saves the file onto the hard disk in the maildir storage
format.

172

10.2 Quotas

Adding Maildir Quotas to virtual

Conflicts arise if you need the special capabilities of your original MDA. The
Postfix MDA virtual, for example, allows user data including maildir paths
to be stored in MySQL databases or LDAP directories. virtual, however,
is not able to use quotas, and often it cannot be replaced with maildrop.

Now there is a patch for virtual, the VDA patch.5 You will, however, have
to compile Postfix and the virtual module yourself. If you do not want to
build your own Postfix, you can add a patched virtual program to your
production system. You can compile this program elsewhere and operate it
in parallel to the unpatched version in the distribution package, so as not
to interfere with the update mechanisms of your distribution. Name the
patched version virtual-quota, for example, and copy it to the Postfix
modules (usually to /usr/1ib/postfix). Now change the module call in
/etc/postfix/master.cf by replacing the name of the MDA in the line

virtual unix - n n - - virtual
with this:
virtual unix - n n - - virtual-quotas

The deliverquota MDA

The deliverquota MDA from the Courier project naturally supports mail-
dir quotas. It expects the email at the standard input; for the call parameter,
it requires the absolute or relative path to the directory where the email is
to be saved:

linux: # cat mail file | deliverquota /home/tux/Maildir

If deliverquota serves as an auxiliary program for the MTA, it does not
make sense to specify an absolute path to the maildir where the email will
be saved, as emails could then only be delivered to one single inbox. Check
instead which variable(s) your MTA offers, or use a tilde as placeholder for
the home directory.

If you want to have quotas set when the maildir is accessed, deliverquota
can carry out this task. Simply enter the required quota definition as the
last parameter after the maildir path:

linux: # deliverquota -c -w 90 ~/Maildir 10000000S,1000C

As shown here, the program knows the following call options:

5 See http://vda.sourceforge.net/.

173

10 The Work of a Courier Administrator

= If you add c (create), it will automatically generate any missing maildir
directories, and it will even generate parent directories if necessary. This
makes a call to maildirmake for new users unnecessary, as the first email
received will trigger the creation of the maildir.

= _w percent will tell deliverquotato deliver a quota warning to a user’s
mailbox as soon as that user has used up more than percent of his or her
quota limit. You can store this warning as a complete RFC-822 email in
/etc/courier/quotawarnmsg, including the mail header and the body.
Courier will only update the message ID and the date:

linux: # cat /etc/courier/quotawarnmsg

From: Postmaster <postmaster@tux.locals>
Reply-To: support@tux.local

To: You;

Subject: Warning: Email quotas exceeded!
Mime-Version: 1.0

Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: 7bit

Dear user,

Your mailbox is more than 90% full. Please clean up your mailbox, or
you may be unable to receive new messages.

Bear in mind that only 7-bit characters are permitted in the mail header.
This means that special characters in the subject line are invalid unless
they are coded.

deliverquotahas no interest in your user database; it does not search for
the path to the maildir of the recipient, but instead insists on correct call
parameters. This has the advantage that deliverquotais fairly easy to use
as an MDA on different systems, as almost every MTA contains a part in
its configuration specifying which program is to save the email. For Postfix,
this information is located in the mailbox_command parameter in main. cf.
This parameter is usually empty:

linux: # postconf mailbox_ command
mailbox_command =

At this point we could use deliverquota and the call parameters:

linux: # postconf -e "mailbox command = deliverquota -c -w 90 ~/Maildir"

As Postfix accepts the user ID corresponding to the mailbox before sav-
ing the emails, we can use the tilde () to refer to the home directory and
thereby specify the maildir path.

Now use a few short test emails to check whether deliverquota and your
MTA work together properly. Check the following things:

174

10.3 Building an IMAP Proxy with Courier

= New emails are recorded in maildirsize

= The length of new emails is already coded in their filename by parameter
g=

10.3 Building an IMAP Proxy with Courier

Section 3.2 on page 50 discussed whether IMAP proxies are suitable and
when. Courier IMAP users have the advantage that they can easily recon-
figure their existing IMAP server into a proxy, as all essential questions such
as authentication or access to the email storage have already been resolved.

In order to decide where to transfer the client’s IMAP connection, Courier
evaluates the mailhost attribute (see section 9.12 on page 144) when a
user logs in. This attribute has to contain the name of the IMAP server that
physically contains the IMAP mailbox.

Three parameters are required in the /etc/courier/imapd file for the
proxy setup:

IMAP_PROXY=1 or POP3_PROXY=1
These parameters activate the proxy function. Courier searches for
the mailhost attribute. IMAP_PROXY=0, and POP3_PR0OXY=0 deacti-
vate the proxy function; the mailhost attribute may exist, but it is
ignored.

PROXY_HOSTNAME=hostname
If Courier IMAP finds its own hostname in the mailhost attribute,
it may not transfer the connection (to itself), as this would cause an
endless loop. In this case, Courier functions as a normal IMAP server
and accesses its local filesystem.

Courier uses the gethostname () function to determine its own host-
name; uname -n will also return this hostname.

If you prefer to specify the name of the IMAP server manually, you
can use PROXY_HOSTNAME to do this. This is necessary if the Unix
hostname differs from the name stored in the LDAP and Courier is
unable to recognize itself.

IMAP_PROXY_FOREIGN=0
If Courier transfers the IMAP connection to another Courier instance,
this setting specifies that Courier does not need to use the IMAP com-
mand CAPABILITY to determine the capabilities of the other IMAP
server, as it knows its own capabilities. If Courier is to transfer the
IMAP connection to some other IMAP software, you should set this
parameter to 1.

175

10 The Work of a Courier Administrator

10.4 Push Instead of Pull: The IDLE Command

It is a burden for the mail server if a connected email client searches all
IMAP folders for new messages every few minutes. As a large number of
clients are constantly connected to the server, this creates constant back-
ground activity, and the searches through email folders quickly turn into a
basic I/0 burden on the hard disk.

The IDLE command in the IMAP protocol deals with this problem: The
server actively informs the client of changes in the email directories. Un-
fortunately, not all email clients support it, even though it has a number of
benefits:

= The client is informed immediately when a new message is received, in-
stead of finding it during the next routine check made every few minutes.

= Jt is less work for the server to monitor file changes than for it to let the
email client carry out regular searches.

= There is less data traffic (this is why IMAP clients for cell phones in par-
ticular support the IDLE command).

As new emails are written to the maildir directories by the MTAs/MDAs,
Courier is not immediately aware of new emails. For this purpose it can
use a file alteration monitor such as FAM.® A prerequisite is that Courier
was linked to the FAM during compilation. This is the case for SuSE, for
example; SuSE also installs and starts FAM automatically.

Gamin is a second project that claims to be better than the traditional
FAM.”

Red Hat has already replaced FAM with Gamin. In principle, Courier should
work with both tools, as they use identical APIs, according to the Gamin
programmers. FAM and Gamin run in the background as daemons; other
programs can register directories and files with them, and they will then
monitor them for changes and signal when changes occur.

If your distribution allows FAM/Gamin to be used for Courier, you can ac-
tivate the IDLE command in the IMAP_ENHANCEDIDLE=1 configuration in
the imapd file. You should check the following three items:

= Courier has to announce during IMAP login that it supports IDLE. This
capability should be entered in /etc/courier/imap:

IMAP CAPABILITY="IMAP4revl UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSU
BJECT THREAD=REFERENCES SORT QUOTA IDLE AUTH=CRAM-MD5 AUTH=CRAM-SHAL"

6 See http://oss.sgi.com/projects/fam/.
7 See http://www.gnome.org/ veillard/gamin.

176

10.4 Push Instead of Pull: The IDLE Command

= The famd or gam_server needs to have been started and must be visible
in the process list:

linux: # ps ax | grep fam
2869 ? Ss 45:21 /usr/sbin/famd -t 240 -T 0 -1 -L

= You should also check for communication problems between Courier and
FAM/Gamin; they will be visible from the following type of entry in your
mail log file:

May 28 17:43:10 kjidder couriertcpd: Error: Input/output error

May 28 5:43:11 PM kjidder couriertcpd: Check for proper operation and
configuration

May 28 5:43:11 PM kjidder couriertcpd: of the File Access Monitor daem
on (famd) .

If you do not have performance problems on your IMAP server, you will not
usually need to make any further settings. However, on high-load servers
it is advisable to configure FAM to use fewer resources. The following famd
call parameters are helpful here:

= The FAM daemon terminates by default after five seconds if no client is
connected to it. This is not suitable when using it with IMAP servers.
Specify -T 0; this means that FAM will terminate after 0 seconds (. e.,
never).

= If FAM has to monitor an NFS filesystem, it can not receive information
on file changes from the local Linux kernel. Instead, it uses RPC to con-
nect to the FAM daemon of the NFS server, which then monitors and
transfers any changes locally.

If FAM has not been activated there, the local FAM will check for changes
via NFS every few seconds. You can specify this interval using -t secs.
The default value is 6 seconds, which can result in heavy background
activity on busy NFS servers. Usually this parameter is irrelevant, as an
FAM daemon typically operates on the NFS server. If you also specify
the option -1, FAM no longer runs queries via NFS and therefore silently
stops operating when the FAM daemon on the NFS server is not running.

= -L ensures that FAM accepts only local client queries. This is suitable for
the IMAP server, but you should never set -L on the NFS server.

You will usually find these configurations in /etc/famd.conf. The idle_
timeout configuration parameter corresponds to -T, nfs_polling_inter
val fulfils the same function as -t, no_polling corresponds to -1, and
local_only is identical to -L.

Be careful if you are using SuSE: This distribution contains a /etc/famd.
conf, but any entries you make have no effect (at least for OpenSuSE 10.2).

177

10 The Work of a Courier Administrator

Instead, the call parameters are generated from /etc/sysconfig/fam, for
some strange reason.

10.5 Sending Emails via the IMAP Server

Did you know that IMAP servers can send emails? This function is deacti-
vated by default in Courier. To activate it, simply define a specific outbox
folder in /etc/courier/imapd:

OUTBOX=.0Outbox

This corresponds to INBOX . Qutbox; that is, to a subfolder under the inbox,
as Courier does not permit directories parallel to the INBOX (see section
8.1 on page 110). You should probably use a name other than Outbox, as
even users unaware of the special meaning of this directory could set up an
outbox folder, which would then behave in an unexpected manner.

Once you have defined the OUTBOX variable, Courier IMAP uses SMTP to
send all emails saved in this directory by the client. Courier can add a
special X header to specify from which account the email was sent:

HEADERFROM=X-IMAP-Sender

This results in the following header entry in the sent email:

X-IMAP-Sender: tux@linux.local

This prevents emails from being sent from an undetectable sender, as the
IMAP login name of the sender is added to each outgoing email. You have
to judge for yourself whether this is desirable.

For each email in the outbox folder, Courier calls /usr/bin/sendmail and
transfers the entire email to it. This sendmail program contains all well-
known MTAs—not only Sendmail, but also Postfix, QMail, and Exim. For
this reason, the sending of emails is often controlled from PHP on web
Servers.

The tool reads the sender and the recipient from the mail header; then
the local MTA (installed on the IMAP server) sends the email in the usual
fashion.

By default you can only ever send one single email; this is to prevent rico-
chets when a copying action goes wrong. Imagine if you accidentally moved
20,000 messages from your trash folder to the outbox. .. You can switch off
this safety feature if you add the following line to imapd:

OUTBOX_MULTIPLE_SEND=1

178

10.5 Sending Emails via the IMAP Server

This method of sending emails from the IMAP server sounds unusual; in-
deed, we have only ever used it for test purposes. However, it is not unin-
teresting. More and more providers, WLAN hotspots, and universities are
locking the SMTP port for sending emails. The IMAP outbox solves this
problem, as IMAP connections are frequently possible.

In order to use the folder, you should configure the email client so that
it temporarily saves emails in the outbox instead of sending them imme-
diately via SMTP. At the same time, you set up a correctly named outbox
folder in your IMAP account.

If you can configure your email client to use this new outbox folder as the
outbox, the rest will happen automatically. If this does not work, you un-
fortunately have to drag and drop the messages you wish to send into the
outbox folder.

179

Part Il

Cyrus IMAP

Structure and Basic Configuration

Rumors of the death of the Cyrus IMAP mail server have been greatly exag-
gerated. For many years it was neglected and developed very little, which
led many to consider the project as dead. Four years ago, this changed.
The open source project developed by Carnegie Mellon University began to
gather momentum.

This mail system is named after Cyrus II (also known as Cyrus the Great), a
Persian king who is said to have invented the first postal system in the 6th
century.

Cyrus, as it is usually known, grew out of the Andrew mail and bulletin
board system, which was developed and used at the university in the early
’90s. In the following years the Internet expanded, increasing the require-
ments for mail systems. The existing bulletin board was no longer enough,
and so the Cyrus IMAP project was born.

Cyrus is a system that has grown over time. This is especially noticeable in
the configuration files, which often lack consistency, and where options can

183

11 Structure and Basic Configuration

Figure 11.1:
Basic structure of a
Cyrus mail server

be switched on and off using a number of values. For more information,
see section 12.2 on page 203.

A Cyrus mail server consists of a master process and a number of sub-
processes. Subprocesses are auxiliary programs that control and assist the
master process. They are described on page 261. The most important of
them are imapd (the service for IMAP access), pop3 for access via POP3,
and 1lmtpd and deliver, which receive emails from an SMTP server and
distribute them to the inboxes.

Figure 11.1 shows the path of an email from delivery by the MTA to delivery
to the user’s inbox, where it can be accessed using POP3 or IMAP.

SMTP ‘ POP3 u IMAP imsieved
port 25 { port 110 port 143 —port ‘2000

Mail Transfer Agent : ” Cyrus-IMAP
(Postfix, QMail, Exim, Sendmail, ...) socket (Manages mailboxes, saves emails)

SASL

(Authentication library)

If you want to use a graphical user interface to administer the Cyrus IMAP
daemon and the Sieve server, you have to use a web interface such as
Webmin! with a plugin.? Graphical interfaces are also available from Web-
cyradm?® and SmartSieve.* You should acquaint yourself with the command-
line tools and the configuration files, as otherwise you will not get far, even
with the help of Webmin & Co.

11.1 Installing Cyrus

The easiest way to install an IMAP server is to use the Cyrus packages of
your distribution. In this case, you should be able to rely on the distri-
bution for timely updates in case of security problems. This is why self-
compilation, demonstrated in section C.2 on page 325, has considerable
advantages.

The packages described here as optional contain program modules that you
can install if you require them. The distributions do differ in the way they

See http://www.webmin.com/.

See http://www.tecchio.net/webmin/cyrus/.
See http://www.web-cyradm.org/.

See http://smartsieve.sourceforge.net/.

N

184

11.1 Installing Cyrus

split the packages. For example, only Debian allows you to choose not to
install the POP3 server service. SUSE and Red Hat automatically install this
service, and you cannot individually deselect it when selecting the packages
to install.

11.1.1 OpenSuSE/SuSE Linux Enterprise Server (SLES)

On SuSE distributions, Cyrus SASL is usually already installed from the
cyrus-sasl package as the standard authentication service. You only have
to choose the mechanisms and methods it should support by installing the
required packages from the following selection:

= cyrus-sasl-crammdb permits challenge-response authentication using
the HMAC-MD5-MAC algorithm from RFC 2195 (optional).

= cyrus-sasl-digestmd5 permits digest-MD5 authentication according
to RFC 2831; this method is less susceptible to chosen-plaintext attacks®
than CRAM-MD)5, permits the use of external authentication servers, and
optimizes the authentication for clients that have recently logged on (op-
tional).

= cyrus-sasl-plain permits cleartext authentication (optional, but re-
quired for RFC-compatible servers).

= SASL uses cyrus-sasl-gssapi to support the Generic Security Services
Application Programming Interface (GSSAPI),® a generic API for client-
server authentication used specifically in connection with Kerberos (op-
tional).

= cyrus-sasl-otp enables one-time passwords (optional).

= cyrus-sasl-saslauthd provides the SASL authentication service for
Cyrus (optional; see section 13.2.1 on page 212).

= cyrus-sasl-sqlauxprop contains the SQL plugin for the auxprop SASL
authentication module (optional; see section 13.2.2 on page 213).

You require the following packages for the IMAP server itself:

= cyrus-imapd provides the POP3 and IMAP server services.

= perl-Cyrus-IMAP contains Perl modules required by the additional tools
described in section 15.2 on page 263.

5 See http://en.wikipedia.org/wiki/Chosen_plaintext_attack.
6 See http://www.fags. org/faqs/kerberos-faqg/general/section-84.html.

185

11 Structure and Basic Configuration

= perl-Authen-SASL-Cyrus installs Perl modules that are required for
controlling SASL using custom Perl scripts (optional).

= perl-Cyrus-SIEVE-managesieve provides the timsieved Sieve imple-
mentation described in section 14.6 on page 240 (optional).

11.1.2 Fedora Core/Red Hat

Before installation, check whether the imap package is already installed.
This deals with the UW-IMAP server. This service cannot be operated at
the same time as the Cyrus IMAP server, so you have to uninstall it if it is
there. These are the other packages:

= cyrus-imapd

® cyrus-imap-utils

= cyrus-sasl

® perl-Cyrus

= cyrus-sasl-plain (optional)

The last package in this list enables cleartext authentication, which you
should only use in conjunction with an SSL tunnel.

A source RPM of development version 2.3.8, which you can build in Red
Hat, Fedora, and CentOS, is available from http://www.invoca.ch/pub/
packages/cyrus-imapd/. However, the distributor does not provide up-
dates and bug fixes for this RPM.

11.1.3 Debian

Debian-DEB package management permits the installation of Cyrus ver-
sions 1.5, 2.0, and 2.2 as alternatives. The most up-to-date version, 2.2, is
recommended for new installations. Please also note that the system will
usually already contain a mail server, the UW IMAP daemon. You must
uninstall this before installing Cyrus.

You require the following packages to operate a Cyrus IMAP server in De-
bian:

® cyrus-admin-2.2
= cyrus-clients-2.2

® cyrus-common-2.2

186

11.2 The Cyrus Hierarchy and Permissions System

® cyrus-imapd-2.2

= cyrus-murder-2.2 (optional; if you want to set up a Cyrus cluster, see
page 281)

= cyrus-nntpd-2.2 (optional, if you want to integrate news group ser-
vices)

= cyrus-pop3d-2.2 (optional, if you want to offer POP3)

11.2 The Cyrus Hierarchy and Permissions System

The Cyrus IMAP server is organized hierarchically: The email directories,
access control via access control lists (ACLs), and storage space restriction
quotas are all organized in hierarchies. Any changes to the configuration of
a parent directory will automatically affect the descendant directories.

At the filesystem level, every inbox and any other folder is a directory, and
every email is a file in that directory. These files are numbered sequen-
tially. Bear this simple principle in mind, and you will soon know how to
administer your email accounts.

Let’s take user paul’s mail directory as an example. When his mailbox is set
up, he is automatically assigned an inbox corresponding to a standard di-
rectory format, here /var/spool/imap/user/paul/. User paul then cre-
ates the additional subdirectories sent, draft, trash, and a subdirectory
folders containing the folders important and unimportant, in order to
organize his emails. At the filesystem level, his inbox now looks like this:

linux: # 1s -1i /var/spool/imap/user/paul/

115656 -rw------- 1 cyrus mail 3408 Jun 13 13:29 cyrus.cache
115476 -rw------- 1 cyrus mail 184 Jun 10 13:27 cyrus.header
115650 -rw------- 1 cyrus mail 376 Jun 13 13:29 cyrus.index
131128 drwx------ 2 cyrus mail 4096 Jun 13 08:37 folders
115164 drwx------ 2 cyrus mail 4096 Jun 13 08:37 sent

115164 drwx------ 2 cyrus mail 4096 Jun 13 08:37 trash

115164 drwx------ 2 cyrus mail 4096 Jun 13 08:37 drafts
linux: # 1s -1i /var/spool/imap/user/paul/folders/

115164 drwx------ 2 cyrus mail 4096 Jun 13 08:37 important
115164 drwx------ 2 cyrus mail 4096 Jun 13 08:37 unimportant

When you specify a quota for the directory user/paul/folders, this af-
fects the folders user/paul/folders/important and user/paul/folder
s/unimportant.

The configuration data of the IMAP server is distributed into two different
files. The /etc/cyrus. conf file contains the basic settings for the services

187

11 Structure and Basic Configuration

involved in email delivery. This is where the IMAP and POP3 services are
activated and where you specify paths for certain sockets, for example.

The /etc/imapd. conf file affects the special functions of the Cyrus server.
It contains, among other things, the global values for email and Sieve di-
rectories; you also define how virtual domains and SSL certificates are han-
dled, and you specify the Cyrus administrator here.

The interaction with the MTA is specified by the MTA’s configuration file(s);
in Postfix, these are /etc/postfix/main.cf and /etc/cyrus.conf. This
is discussed in more detail in the following section and in section 14.8 on
page 254.

The working directory for Cyrus is located in /var/spool/imap/. This is
where it creates the users’ mailboxes by default. Cyrus stores the emails in
the user directories and numbers them sequentially; each email is stored
in its own file. The benefit of this method is that an error in the filesystem
will only destroy a single message instead of the entire mailbox.

The /var/1ib/imap/ file contains the mailbox index databases and a num-
ber of administration files, including status information on the current sta-
tus of individual mail directories. This dual structure is designed to improve
performance when accessing mailboxes, especially when they contain large
files or a large number of small emails. These two directories are described
in more detail on page 275.

11.3 Features and Functions

Like Courier, Cyrus supports shared folders. Using ACLs, it is possible for a
mail user to share individual mailbox folders or entire mailboxes with other
users or the public; email clients can be used to subscribe to these folders.
You can also use these ACLs to assign explicit permissions for individual
directories or entire mailboxes.

You can specify memory restrictions through quotas; these can apply in
general to all newly generated mailboxes or to all mailboxes, and you can
even specify quotas individually for each subdirectory. However, you have
to take into account the directory hierarchy. Every subdirectory’s quota
depends on the quota of the parent directory. However, it is possible to
assign more memory to a subdirectory than to its parent directory.

By the way, Cyrus also allows you to display a quota message to users when
a certain utilization level is reached, which can be specified in percentages
or kilobytes. For more information, see section 14.1.1 on page 226.

When a new mailbox is created, the administrator can assign it in a stan-
dard partition or a dedicated directory, or even store it on an individual
storage device. The documentation always refers to these as mail parti-

188

11.3 Features and Functions

tions, whether they are physical partitions or directories. For more infor-
mation, see section 14.5 on page 239.

Cyrus uses the Cyrus SASL library to authenticate mailbox users.” Most
distributions contain the required package cyrus-sasl and also use it
for other services. Cyrus SASL is complicated but versatile, and it im-
plements a large number of authentication mechanisms. Use the option
sasl_pwcheck_methodin the configuration file /etc/imapd. conf to spec-
ify which of these mechanisms should be used. You can choose from the
modules saslauthd, auxprop, and authdaemond. These in turn provide
a number of authentication plugins and encryption mechanisms, such as
Digest-MD5. Cyrus can use these to call on a number of different data
sources.

By default, passwords are transferred in cleartext, but Cyrus naturally en-
ables encryption of login data. The following mechanisms are available,
depending on the authentication module used:

= Login, plain (cleartext)

= Digest-MD5 (encrypted)

CRAM-MDS5 (encrypted)

= Kerberos (encrypted)

Section 13.2 on page 211 deals with authentication in more detail.

Users can use the Sieve filter system to make very detailed configuration
settings for their mailbox. They can also have emails moved automatically
to other directories, set out-of-office notices, and specify other email filters.
Sieve email filters directly affect all incoming emails. When Cyrus receives
an email, it checks the Sieve definitions and then sorts, answers, or deletes
the email. For more information, see section 14.6 on page 240. Cyrus also
automatically detects duplicate emails from their ID number and prevents
them from being delivered a second time.

Cyrus is innately capable of administering mailboxes for virtual domains.
To do this, it simply incorporates the fully qualified domain name (FQDN)
when creating the users’ mailboxes.

In addition, it is possible to specify domain administrators who can access
only the mailboxes within their domain. This function is described in detail
in section 14.3.3 on page 237.

7 SASL is short for Simple Authentication and Security Layer.

189

11 Structure and Basic Configuration

11.4 Quick Start

In addition to the Cyrus IMAP daemon, you should also install the following
software, which will enable you to operate the Cyrus IMAP server properly:

Cyrus SASL

Without the SASL library, users cannot authenticate themselves with
the IMAP server or receive emails. Cyrus SASL consists of plugins that
provide the authentication methods and encryption mechanisms.

If necessary, you can install these at a later stage, for example, after
reading section 13.2 on page 211. In order to enable authentication,
cyrus-sasl-saslauthdis usually installed by default.

SuSE installs Cyrus SASL, as it is required for authentication by other
services, such as Postfix.

perl-Cyrus-SIEVE-managesieve (optional)

Perl

Perl modules required for the operation and control of Sieve email
filters.

A number of auxiliary programs for Cyrus, such as arbitronsort.pl
(see section 15.3 on page 269) or convert-sieve.pl (see section
15.3 on page 269) are written in Perl. A Perl interpreter is required if
you wish to use these modules.

OpenSSL (optional)

We highly recommend installing OpenSSL for encrypted transmission
of user data and emails via TLS/SSL.

MySQL/LDAP/BerkeleyDB (optional)

You will require a database suitable for administering your mail user
information. This database can run on an extra server and does not
need to be installed locally.

These data sources have to be integrated individually. For informa-
tion on specifying query parameters, see section 13.3 on page 215.

You can also use Unix system accounts or the sasldb2 minidatabase
provided by Cyrus SASL for user administration.

Postfix or another MTA

Cyrus requires a separate mail transfer agent to receive the emails
that are to be sorted into the IMAP mailboxes. We discuss (and rec-
ommend) Postfix; on page 191, we will describe the interaction be-
tween Cyrus and Postfix. Postfix is installed on the same computer as
Cyrus. However, you can also run the MTA on separate hardware.

190

11.4 Quick Start

The following descriptions are based on the current stable Cyrus version
2.2.12. Experience has shown that they also apply to all other 2.x versions.?

Select the ports you require from the following list and release them in the
firewall protecting the server:

= Select port 25 (SMTP) if the MTA runs on the same computer as Cyrus.
For external MTAs, the SMTP port of the IMAP server should only accept
packages from the MTA computer.

= Select port 110 (unencrypted POP3 or encrypted POP3) if the TLS tunnel
is initiated using STARTTLS.

= Select port 143 (unencrypted IMAP or encrypted IMAP) if the TLS tunnel
is initiated using STARTTLS.

= Select port 993 to use IMAP via SSL/TLS.

= Select port 995 to use POP3 via SSL/TLS.

Before Cyrus can provide emails to its users, you first have to set up the
interaction between Cyrus and the MTA. After all, the newly installed Postfix
and Cyrus servers are not yet aware of each other. Postfix receives emails
via SMTP and transfers them to Cyrus for one or more domains; Cyrus then
sorts the emails into the user mailboxes.

The most simple and reliable path is an LMTP socket, which both programs
can use to communicate using the Local Message Transport Protocol (see
page 18). A socket is a file that only exists while the programs are running,
which Postfix uses in this case to transfer the received emails to Cyrus. This
requires that both services run on the same system.

If you want to use the LMTP socket, you first have to modify the appropriate
configuration files for both mail services. First, you have to explain to Cyrus
where the socket for communication between the programs is located. En-
ter the full path (/var/spool/postfix/public/lmtp in this example) in
/etc/cyrus.conf:

Imtpunix cmd='1lmtpd' listen='/var/spool/postfix/public/lmtp' prefork=1

Use 1mtpunix to specify that this is a Unix-specific LMTP socket. The op-
tion cmd specifies how to call the service responsible for the socket, and
listen tells Imtpd the path to the socket. The value following prefork
specifies the number of Cyrus processes; you do not need to change the
default setting.® If your email server is very busy and reacts slowly, you can

8 There is an overview of the most up-to-date versions at http://cyrusimap.web.cmu.
edu/downloads.html#imap.
9 The prefork value 1 is the default in SuSE.

191

11 Structure and Basic Configuration

experiment by increasing this value. In that case, you should also increase
the working memory.

Cyrus uses the socket given in this example to “visit” Postfix in its work-
ing environment under /var/spool/postfix/. This is generally the best
choice of an interface; if Postfix runs from a chroot environment, it can-
not leave its working directory and is therefore unable to communicate with
Cyrus in a different manner.

Now we have to tell Postfix to be responsible for emails addressed to the
required domain(s) and to operate as a relay. To do this, go to the configu-
ration file /etc/postfix/main.cf and define the lookup table relay_do
mains that contains these domains:

relay domains = hash:/etc/postfix/relay_domains

If you want Postfix to accept emails for the domain example.net, enter the
following in this file (/etc/postfix/relay_domains in this case):

example.net lmtp:unix:public/lmtp

This entry specifies that Postfix should accept emails for domain example.
net. At the same time, specify the transport path in the second column:
Here, we first define the method 1mtp:unix (Unix LMTP socket) and use
public/lmtp to specify the path and name of the socket that Postfix should
open. This lets Postfix know where to send the emails it receives. Ob-
serve here that the default working directory of the Postfix master process
is /var/spool/postfix/. This is why you only enter the subdirectory pub
lic/lmtp, and not the entire path /var/spool/postfix/public/.

/etc/postfix/relay_domains now contains not only the domain, but
also the information on how to transport emails to this domain. Now com-
plete the transport_maps entry in the /etc/postfix/main. cf file so that
Postfix will actually use this information:

transport_maps = hash:/etc/postfix/transport,hash:/etc/postfix/relay_do
mains

Make sure that you add only the relay_domains file as the transport map.
Conversely, do not enter the transport file into the lookup table relay_
domains.

If you do this, every manual routing entry in transport causes Postfix
to accept emails for this domain without checking, which means that it
is an open relay. For this reason, you should continue to maintain two
files: transport should contain all routing rules for other domains, and
relay_domains should contain the domains for which Postfix should ac-
cept emails for Cyrus; both should contain the appropriate routing rules.

192

11.4 Quick Start

linux:~ # postmap /etc/postfix/relay domains

ensures that Postfix can use the file. The command converts the text file
you just edited into a database format that Postfix can read.

Once you have rebooted Cyrus and reloaded Postfix, they can communicate
via the LMTP socket. /var/spool/postfix/public/ should now contain
the socket file:

linux: # 1ls -1i /var/spool/postfix/public/
total 0

114777 Srw-rw-rw- postfix postfix May 9 20:17 cleanup
May 9 20:17 flush
May 22 11:40 lmtp
May 22 13:08 pickup
May 22 13:05 gmgr
May 9 20:17 showg

114815 Srw-rw-rw- postfix postfix
114774 prw--w--w-
114794 prw--w--w-
114848 Srw-rw-rw-

postfix postfix

1
1

114763 srwxrwxrwx 1 root root
1
1 postfix postfix
1

O O O o o o

postfix postfix

If the file is not there, it can mean one of two things: One of the services
is not running, or you have entered the wrong path to the socket in one of
the configuration files.

Even if everything seems okay so far, some distributions can still cause
problems. SuSE, among others, has recently begun to install the AppArmor
protection program by default. This program also monitors the way that
Postfix behaves. It compares the current server behavior to a predefined
profile. AppArmor views the behavior of Postfix as abnormal if it attempts
to open the newly created file relay_domains. The kernel blocks any at-
tempt by Postfix to open this newly created file with Permission denied
and logs this in the syslog.

To solve this problem, you have to add rules to the AppArmor configura-
tion that permit Postfix to read this file; unfortunately, describing how to
accomplish this task would exceed the scope of this book. Naturally, you
can (temporarily) deactivate AppArmor or even remove it completely.

The settings you have made so far cause Postfix to accept all emails for the
specified domain and transfer them to Cyrus. Cyrus then checks whether
the mailbox of the addressee actually exists. If it does not, Cyrus returns a
bounce email to Postfix, and Postfix attempts to deliver it to the sender.

In order to prevent unnecessary load on the email system, the receiving
MTA should check the entire email address and refuse to process the email
if this is appropriate. This can be achieved with shared user management
for Cyrus and Postfix (e. g., with LDAP or MySQL) and with changes to the
configuration of the MTA. Go to the relay_recipient_maps parameter in
Postfix and list all the email addresses for which the MTA should accept
emails.

193

11 Structure and Basic Configuration

11.4.1 Authentication and Mailboxes

At this point, you should consider how users will be authenticated. The
simplest way to separate the email users from the system accounts is to
use the minidatabase sasldb2. New mail users and their passwords are
then listed in a Berkeley database, which Cyrus SASL can query. To use this
method, set the authentication method to auxprop in the /etc/imapd.
conf file:

sasl_pwcheck method: auxprop

Cyrus SASL now uses the auxprop module, which queries the sasldb2
database by default.

Use the saslpasswd?2 tool to enter user information in the database. This
tool requests the passphrase for access to the IMAP server; the phrase may
also contain spaces.

First, create the main user cyrus; this user is the Cyrus administrator be-
cause the value admins: cyrus in the /etc/imapd.conf file specifies
this. Do not confuse this user with the Unix system account cyrus. If you
prefer, you can also specify a different user. The following example will use
the default administrator cyrus.

linux: # saslpasswd2 cyrus
Password: password for cyrus
Again (for verification): password for cyrus

In order to enable Cyrus to read the database, you have to specify the Unix
system user as the owner of the database, as the server uses the permissions
of that user to operate:

linux: # chown cyrus:mail /etc/sasldb2

If you forget to do this, the Cyrus administration tool cyradm (see section
15.4 on page 271) will return a very cryptic error message during login,
which does not mention the problem directly:

linux: # cyradm -auth login localhost -user username
IMAP Password: password for username
Login failed: user not found at /usr/lib/perl5/vendor perl
/5.8.8/x86_64-linux-thread-multi/Cyrus/IMAP/Admin.pm line 118
cyradm: cannot authenticate to server with login as username

Now, create a small number of user accounts for the initial tests:

194

11.4 Quick Start

linux: # saslpasswd2 geeko

Password: secret

Again (for verification): secret
linux: # saslpasswd2 horst

Password: more secret

Again (for verification): more secret
linux: # saspasswd2 paul

Password: most secret

Again (for verification): most secret

Now you still need the mailboxes for the individual users. Use the cyradm
program to create and administer them. Use the following call to log on as
an administrator in the command interface and then create the inboxes for
the three test users:

linux: # cyradm -auth login localhost -user cyrus
IMAP Password: password for cyrus

localhost> cm user.geeko
localhost> cm user.horst
localhost> cm user.paul
localhost> exit

At the filesystem level, the new inboxes are located in /var/spool/imap/
user/. This is defined by the entry partition-default: /var/spool/
imap in the file /etc/imapd. conf. You can modify this path to suit your
requirements, and even specify multiple mail partitions, as described in
section 14.5 on page 239.

11.4.2 Tests

The simplest way to test whether Cyrus and Postfix work together correctly
is to use telnet from the command line. If you use this method to deliver
an email, you will see any possible errors immediately. Ideally, you should
also run tail -f /var/log/mail at the same time to track the receipt
and delivery of the email.

user@linux:$ telnet localhost 25
Trying 127.0.0.1...

Connected to localhost.

Escape character is ‘*]1‘.

220 linux.example.net ESMTP Postfix
HELO mail.example.com

250 mail.example.net

MAIL FROM: <test@example.com>

250 Ok

RCPT TO: <geeko@example.net>

195

11 Structure and Basic Configuration

250 Ok

DATA

354 End data with <CR><LF>.<CR><LF>
Subject: A little test email

test test test

250 Ok: queued as 46201188B612
quit
221 Bye

On the server side, the file /var/log/mail should contain something like
this:

Apr 26 19:29:45 linux postfix/smtpd[12491]: connect from localhost[127.0
.0.1]

Apr 26 7:30:06 PM linux postfix/smtpd[12491]: 46201188B612: client=local

host [127.0.0.1]

Apr 26 7:30:14 PM linux postfix/cleanup([12548]: 46201188B612: message-id
=<20060426172956.46201188B612@mail .example.de>

Apr 26 7:30:14 PM linux postfix/qmgr[12458]: 46201188B612: from=<test@ex
ample.com>, size=349, nrcpt=1 (queue active)

Apr 26 19:30:14 linux postfix/lmtp[12581]: 46201188B612: to=<geeko@examp
le.net>, relay=public/lmtp [public/Imtp], delay=18, status=sent (250 2.1.5
Ok)

Apr 26 7:30:14 PM linux postfix/gmgr[12458]: 46201188B612: removed

This contains an exact log of the progress of the telnet connection, showing
the receipt and delivery of the email: The localhost computer delivers
a message created by user account test@example.com and addressed to
recipient geeko@example.net. The local Postfix next accepts this message
and transfers it to the email server via the LMTP socket; this is confirmed
by status=sent (250 2.1.5 0k). If you entered the wrong recipient or
have not created the target mailbox, you will see a log message like this:

Sep 3 11:21:38 linux postfix/smtpd[10476]: connect from localhost[127.0
.0.1]

Sep 3 11:22:18 AM linux postfix/smtpd[10476]: 4D49B1C187: client=localh
ost[127.0.0.1]

Sep 3 11:22:23 linux postfix/cleanup[10487]: 4D49B1C187: message-1d=<20
070903092218.4D49B1C187@mail.heinlein-support.de>

Sep 3 11:22:23 linux postfix/qmgr[6383]: 4D49B1C187: from=<test@example
.com>, size=368, nrcpt=1 (queue active)

Sep 3 11:22:23 linux postfix/lmtp[10488]: 4D49B1C187: to=<achime@example
.com>, relay=mail.heinlein-support.de.de[public/lmtp], delay=17, delays=
17/0.02/0.02/0.19, dsn=5.1.1, status=bounced (host mail.heinlein-support
.de.de[public/lmtp] said: 550-Mailbox unknown. Either there is no mailb
ox associated with this 550-name or you do not have authorization to see
it. 550 5.1.1 User unknown (in reply to RCPT TO command))

Sep 3 11:22:23 linux postfix/cleanup[10487]: 8C2001ClAC: message-1d=<20

196

11.4 Quick Start

070903092223.8C2001C1AC@mail.heinlein-support.de.de>

Sep 3 11:22:23 linux postfix/qmgr[6383]: 8C2001Cl1AC: from=<>, size=2548
, nrcpt=1 (queue active)

Sep 3 11:22:23 linux postfix/bounce[10490]: 4D49B1C187: sender non-deli
very notification: 8C2001C1AC

Sep 3 11:22:23 linux postfix/qmgr[6383]: 4D49B1C187: removed

Sep 3 11:22:23 linux postfix/lmtp[10488]: 8C2001C1AC: to=<test@example.
com>, relay=mail.heinlein-support.de.de[public/lmtp], delay=0.03, delays
=0.01/0/0/0.02, dsn=5.1.1, status=bounced (host mail.heinlein-support.de
[public/1lmtp] said: 550-Mailbox unknown. Either there is no mail

box associated with this 550-name or you do not have authorization to se
e it. 550 5.1.1 User unknown (in reply to RCPT TO command))

Sep 3 11:22:23 linux postfix/qmgr[6383]: 8C2001ClAC: removed

Sep 3 11:22:24 AM linux postfix/smtpd[10476]: disconnect from localhost
[127.0.0.1]

The delivery attempt ended in the removed status, which means that the
email was removed and not delivered. Instead, a bounce message was re-
turned to the sender.

If you did everything properly, the test email can be viewed in the mail-
box of user geeko@example.net. Take a look at the mailbox directory to
confirm this:

linux: # 1ls -1i /var/spool/imap/user/geeko/

total 44

115481 -rw------- 1 cyrus mail 1529 May 12 17:35 1.

115232 -rw------- 1 cyrus mail 5068 May 22 13:40 cyrus.cache

115144 -rw------- 1 cyrus mail 184 Nov 23 23:43 cyrus.header
115218 -rw------- 1 cyrus mail 376 May 22 13:40 cyrus.index

The file 1. contains the first email received in this mailbox. In order to
view it with an email client, the following data is required for IMAP user
geeko:

= The FQDN of the IMAP server (Localhost is sufficient for local access)
= The username geeko

= The password secret

Even if email collection now works for the email client, the email server is
still rather rudimentary. You need to change this. After all, what good is
an email server that cannot provide additional functions, safeguards, and
comfort?

197

A Closer Look at the
Configuration Files

The Cyrus server is controlled by two files: cyrus.conf and imapd.conf.

The first file controls the behavior of the auxiliary programs delivered with
Cyrus, which assist the mail servers and are used by Cyrus for a number
of other tasks. The second configuration file controls the behavior of the
Cyrus master process, which in turn influences Cyrus subprocesses such as
Sieve and notifyd. This means that imapd. conf controls imapd as well as
master and the subprocesses.

12.1 /etc/cyrus.conf

This configuration file consists of three sections enclosed in curly brackets:
START{}, SERVICES{}, and EVENTS{}. Many distributions, such as Open-

199

12 A Closer Look at the Configuration Files

SuSE and SLES, contain a configuration like that described below, whereas
you have to create it manually for other distributions (such as Debian and
Gentoo). Use a hash mark (#) as a comment character to deactivate entries
that you do not need.

12.1.1 The START{} Section

The START{} section specifies services and auxiliary programs that are to
be run when Cyrus is started and before the (email) services are started.
The recover entry ctl_cyrusdb -r, for example, defines a command that
tidies the Cyrus database when the program is started and restores it in case
of a crash:

START {
Do not delete this entry
recover cmd=‘ctl_cyrusdb -r'

Only required when using idled for IDLE
(default: activated)
idled cmd="idled"

idled informs the email client of changes to the user mailbox, for example,
when a new message is received. In order to do this, it uses the IDLE IMAP
command. You can deactivate this service, but then the email client has
to query the mailbox at regular intervals, regardless of whether it contains
new messages. For more information on this subject, see section 10.4 on
page 176.

12.1.2 The SERVICES{} Section

This section defines services that Cyrus uses to communicate with the out-
side world. You can specify, for example, which services should receive,
send, or filter emails. Use the listen option to specify a port or socket
that a service should use to exchange data.

SERVICES {
imap cmd="imapd' listen=‘imap‘' prefork=1

imaps cmd="'imapd -s' listen=‘imaps‘' prefork=1
pop3 cmd="pop3d"' listen=‘pop3‘' prefork=1

pop3s cmd="'pop3d -s' listen=‘pop3s‘' prefork=1
sieve cmd='timsieved' listen=‘sieve‘' prefork=1

You require one of the two LMTP types to receive emails from the MTA
lmtp cmd="'1lmtpd' listen=‘lmtp' prefork=0
lmtpunix cmd="1lmtpd' listen='/var/spool/postfix/lmtp' prefork=1

200

12.1 /etc/cyrus.conf

Only required if the notifyd notification service is used

(The contents of the following two commented-out lines should be

in one single line.)

notify cmd=‘notifyd' listen='/var/lib/imap/socket/notify' proto=‘udp‘
prefork=1

~ F#F H FH H I

The imap entry starts the IMAP service used by the email client to manage
the mailboxes. The service is to wait for client queries on the imap port (i.e.,
port 143) and should only run on one single instance (prefork=1). The
same applies to imaps, with the difference that imapd uses the -s switch to
create a secure SSL/TLS connection. For this purpose, you have to config-
ure Cyrus with TLS/SSL as described in section 13.1 on page 208. The en-
tries for unencrypted and encrypted POP3 access have the same structure,
but they use the pop3 command instead of the imapd command. sieve
starts the timsieved email filter service, which is discussed in detail in
section 14.6 on page 240.

1mtp defines the service that accepts emails from the MTA. It can do this on
the Imtp port or the 1mtp socket. If the socket is used, the service is started
with Imtpunix. If you run LMTP via a port, you first have to define it in the
/etc/services file, as there is no predefined port for LMTP. Port 24 is the
port designed for this purpose, so the additional entry in /etc/services
should look like this:

linux: # cat /etc/services

[...1]

lmtp 24 /tcp any private mail system
lmtp 24 /udp any private mail system
[...]

Once activated, the notify entry calls the Cyrus information service (see
section 14.7 on page 252), which notifies the user or administrator when
messages are received in a mailbox. The data protocol is set to udp for this
service.

If you want to test Cyrus and another email server simultaneously on the
same computer, you can replace the standard ports pop3, pop3s, imap, and
imaps with other port numbers or names (as defined in the /etc/services
file) after the 1isten attribute.

12.1.3 The EVENTS{} Section

The last section of the configuration file lists services and tools that are
executed at regular intervals by default. These are mainly services that carry
out regular maintenance tasks. This area could also be described as the

201

12 A Closer Look at the Configuration Files

“crontab” for Cyrus. These are the standard Cyrus maintenance programs
that are entered here:

EVENTS {
Always required
checkpoint cmd='ctl_cyrusdb -c' period=30

Only required if you want to activate the suppression of duplicate
emails
delprune cmd=‘cyr_expire -E 3' at=0400

Only required if the TLS cache should be deleted regularly
tlsprune cmd='tls_prune‘' at=0400

Only comment out the following entry if Cyrus

should regularly delete old messages for EVERY (!) user. In

this example, the ipurge service is called every 60 minutes and then
deletes all messages older than 30 days.

H oH H H I

‘man 8 ipurge’ provides more details on this service

cleanup cmd="'ipurge -d 30 -f' period=60

The ctl_cyrusdbcommand after checkpoint checks the Cyrus index data-
bases regularly (every 30 minutes in this example) and attempts to remove
any problems (thanks to option -c).

The delprune entry uses the cyr_expire command to prevent duplicate
emails from being delivered (in our example, this is done every day at 4
AM). An email could be duplicated, for example, because the sender has
sent it both to the list address and Cc:'d it to the user’s personal address.
The -E 3 switch in the example above ensures that only entries older than
3 days are affected.

Cyrus can “remember” TLS sessions so that it does not need to create a
new TLS encryption for every contact of that same client. The t1ls_prune
command entered after t1sprune cleans the TLS session cache, if it is in
use, at the time specified by at (every morning at 4AM in our example).

The ipurge command in the cleanup entry automatically deletes all emails
at specified intervals (every 60 minutes in our case). The -d 30 option in
the example above ensures that only entries older than 30 days are affected.
You can also filter emails by size in bytes (-b), kilobytes (-k), and megabytes
(-m), with each switch followed by a space and the desired value. The -f
switch means that emails are deleted not only from the inbox, but also
from all email directories underneath the inbox. You can use the -i option
to invert the specified filter value: thus, the -i -d 30 option only affects
emails newer than 30 days. You should only activate the cleanup entry if
you and your users require this cleanup, as emails cannot be restored once
they have been deleted.

202

12.2 /etc/imapd.conf

12.2 /etc/imapd.conf

The IMAP server’s main configuration file contains key-value pairs sepa-
rated by a colon, for example, configdirectory: /var/lib/imap. Mul-
tiple values are separated from each other with spaces.

Use one of the following values to activate an option: 1, yes, on, t, or true.
Conversely, 0, no, off, f, and false deactivate an option. Unfortunately,
the preconfigured imapd. conf files are inconsistent in the use of these val-
ues. The examples in this book also stem from production servers that use
inconsistent values, which mirrors the chaotic manner in which the original
configuration files developed; this is something you learn to deal with.

admins
This option defines the admin accounts for mailbox administration.
The default administrator is the user cyrus (see also section 14.3.3
on page 237):

admins: cyrus

allowanonymouslogin
If this option is set to a positive value such as yes, it permits visitors
to log in. By default, this is not permitted. It can make sense to
activate this option if, for example, you provide shared folders on
your mail system and want them to be accessible to users who do not
have an email account on your server.

These users then create an account for user anonymous on their email
clients, and this user can access the IMAP server with any password.
This account does not have an inbox, but visitors can use it to sub-
scribe to all shared folders available to the Cyrus user anyone.

autocreatequota

If you enter a value other than 0, Cyrus will automatically create mail-
boxes for new users when they first log in, and then limit the memory
available to these mailboxes to the quota value you specify here (see
section 14.1.1 on page 226). This only works if an account name and
password have been defined for that user account. If these have not
been defined, no mailbox is created. A negative value (-1, for ex-
ample) for autocreatequota removes the quota. This option only
affects newly created mailboxes, not existing ones.

configdirectory
This option specifies the storage location for the Cyrus administra-
tion directory. In SuSE, the default value is /var/lib/imap.

defaultdomain
This option defines the domain for email accounts without an ex-
plicit domain definition; these user mailboxes are unqualified user

203

12 A Closer Look at the Configuration Files

mailboxes. This option is required if your server handles virtual do-
mains (see page 232).

hashimapspool
If you activate this switch, Cyrus generates a hash value for every
mailbox directory. This improves performance, but it only affects in-
boxes with widely branching subdirectory structures.

Imtp_overquota_perm_failure
When this switch is activated and a user’s mailbox is full, Cyrus re-
fuses to accept emails via the LMTP socket and returns a permanent
error. This entry is only useful if you have set quotas.

Imtp_downcase_rcpt
If this switch is activated, it ensures that Cyrus automatically converts
the recipient’s email address into lowercase characters. Even though
the local section of an email should be case sensitive according to the
RFC, it can reduce the number of support requests if you only allow
lowercase characters.

maxmessagesize
If you specity a value for this option (in bytes), Cyrus refuses all emails
via the LMTP socket that exceed this value. However, this task should
really be carried out by the MTA operating as MX for the domain,
and not by Cyrus, so as to prevent the emails from getting into the
email system in the first place. This reduces the workload and thereby
improves performance.

partition-default
This option defines the storage location for mailboxes, usually /var/
spool/imap (see also section 14.5 on page 239).

poptimeout
This option specifies the time period (in minutes) after which an in-
active POP3 connection to an email client is terminated. The mini-
mum permitted value is 10 minutes.

quotawarn
This value (in percent of allowed maximum quota) specifies when a
quota message is sent to the client during login. You can also use
quotawarnkb to send a quota message when a certain mailbox size
in kilobytes is reached (see section 14.1.1 page 226).

reject8bit
If this switch is activated, Cyrus rejects emails if they have eight-bit
character sets in the email header instead of the standard seven-bit
character sets. If this option is deactivated, Cyrus replaces eight-bit
characters in the email header with an X.

204

12.2 /etc/imapd.conf

sievedir
This option specifies the working directory for the Sieve email filter
service (see section 14.6 on page 240); for SuSE, it is

sievedir: /var/lib/sieve

This directory contains the filter settings for the alphabetically sorted
user mailboxes that the Sieve daemon manages. It is usually not nec-
essary to access it manually.

sasl_pwcheck_method
This option specifies the method that Cyrus SASL uses to authenticate
users. You can use auxprop, saslauthd, and authdaemond. Section
13.2 on page 211 deals with authentication in more detail.

timeout
After how many minutes should the IMAP server terminate an inac-
tive connection to an email client? The minimum value is 30 minutes,
and there is no upper limit. Cyrus will ignore any values lower than
the minimum.

unixhierarchysep
This is an important switch if you use virtual domains (see also sec-
tion 5 on page 235). Usually, Cyrus uses a dot as the separator when
mapping mailbox structures. However, if you use mailboxes contain-
ing the users’ first and last names, you should use the Unix separator,
a forward slash (/), instead. To do this, activate unixhierarchysep.

username_tolower
If this option is active, all usernames are automatically converted to
lowercase. This makes authentication less prone to errors, but it is
only possible if the authentication source (LDAP, for example) is not
case sensitive.

virtdomains
If this switch is activated, Cyrus can handle virtual domains. For more
information on this subject, see section 14.3 on page 232.

If you wish to use SSL/TLS to encrypt the connection, you also have to
specify the paths to the SSL certificates and SSL keys:

tls_cert_file
This option specifies the path to the email server’s certificate:

tls_cert_file: /usr/ssl/certs/servercert.pem

tls_key_file
This option specifies the path to the email server’s key:

205

12 A Closer Look at the Configuration Files

tls_key file: /usr/ssl/certs/serverkey.pem

tls_ca_file
This option specifies the path to the certificate of the certification
authority (CA):

tls_ca_ file: /usr/ssl/CA/CAcert.pem

tls_ca_path
This option specifies the path to the directory containing the CA cer-
tificate and the file with its hash value:

tls_ca path: /usr/ssl/CA

If you use option t1ls_ca_file to explicitly specify the CA certificate,
you do not need to set t1s_ca_path.

For more information on SSL certificates, see section 13.1 on page 208.

The following two options are only mentioned because SuSE writes them
to /etc/imapd. conf, though they have no effect on their own even when
activated. They activate Dynamic Relay Authorization Control (DRAC),' a
technology enabling POP/IMAP before SMTP (also known as SMTP after
POP):

dracinterval
If you enter a value other than 0, you activate POP/IMAP before
SMTP. This value specifies how many minutes the client has to send
emails via SMTP after POP3 or IMAP login.

drachost
This is the hostname of the server providing the DRAC service. With
the exception of specific setups, this is always localhost.

Cyrus has to be patched manually for these options to have any effect,
as DRAC is not part of the official suite and is hardly ever used anymore.
SuSE distributions contain the patch; it is available under /usr/share/doc
/packages/cyrus-imapd/contrib/drac_auth.patch, along with the do-
cumentation. For more information, go to http://mail.cc.umanitoba.
ca/drac/.

There are other options that are required only for special scenarios; these
include the integration of authentication sources such as LDAP and MySQL
servers, as described in section 13.2 on page 211, and cluster setups, which
are described in more detail in section 17.1 on page 281.

1 Seehttp://mail.cc.umanitoba.ca/drac/.

206

Authentication and Safequards

You have cleared the first hurdle and the email server works. After a quick
breather, you should next consider the subject of safeguards. In principle,
you can transmit email data across the network in cleartext, but nowadays
every responsible postmaster should safeguard such an important means
of communication and protect users’ data as well as possible. This chap-
ter deals with two basic security measures: encrypting the data stream and
safeguarding the authentication process. You should always offer these op-
tions to your users, or even require them.

Administrators also need to know how to protect the communication of the
servers in their own network if not all system services, such as email servers
and authentication sources, operate on the same computer. In this case,
without additional measures, user and authentication data is sent across
a more or less unsafe network, and should therefore not be transmitted in
cleartext if at all possible.

207

13 Authentication and Safeguards

13.1 Encrypting with SSL/TLS

Authentication data from mail clients and the transmission of emails should
always be treated in a highly confidential manner. For the email server, this
means encrypting the data stream used by the clients to send authentica-
tion data and emails. This then permits the use of authentication mecha-
nisms that transmit passwords in cleartext.

Nearly all email servers and clients meet the requirements for building up
encrypted connections via SSL/TLS, as does the Cyrus daemon. The fol-
lowing practical example shows how to integrate OpenSSL into Cyrus.

13.1.1 SSL Transmission Types

The Cyrus IMAP server supports two implementations of Transport Layer
Security: with STARTTLS and as an SSL wrapper. The difference between
these methods is the point in time when encryption begins.

In the first case, the client connects to the normal IMAP port 143 and exe-
cutes the STARTTLS command. The client and server then encrypt the data
stream. This also applies for POP3 connections via port 110, but in that
case the command is STLS.

The SSL wrapper is an additional mode in which Cyrus listens on a port
dedicated to IMAP via SSL (port 993) or POP3-SSL (port 995). When the
client connects to one of these ports, the data stream is encrypted before
the IMAP session begins. Cyrus supports this function automatically if it
was compiled with OpenSSL support. Both of these methods require a key
infrastructure.

13.1.2 Real and Fake Certificates

The technical functioning of data stream encryption is not affected by your
choice of certificate; you can use a certificate from a commercial certifi-
cate authority (CA) or create your own SSL certificate. This is a cosmetic
decision as long as you do not permit cleartext authentication. However,
if clients transmit user passwords to the server in unencrypted form, the
users should be able to check that they are sending their sensitive data to
the correct server. This only works properly if the server certificate has been
certified by a trustworthy certificate authority or issued by a trustworthy
member of a trust network.

Most email clients contain a prepared list of trustworthy certificate authori-
ties. When a client connects to an email server that sends its public SSL key,
it checks its local list of trustworthy certificate authorities. If you use a cer-
tificate from a “real” certificate authority, the client finds the corresponding
entry and is satisfied.

208

13.1 Encrypting with SSL/TLS |

However, if you use a “fake” certificate or one you created yourself, the
client will not find it in this list. The user then receives a warning message
that the email server may not be trustworthy. Security-conscious users will
terminate the connection immediately and call up the support hotline. If
you do create your own certificates, you should inform your users in ad-
vance about the certificate your server uses, or provide a sample certificate
on your website that users can download.

In this case, even security-conscious users will usually accept the certificate
(once they have checked it), and the email client will trust your email server
from this point onward. There are clients that do not save this information
permanently and display the warning message to their users every time;
examples include older versions of Outlook and TheBat.

Unfortunately, free certificates such as those provided by OpenCA! or Ca-
Cert? can also cause problems: Although open source clients such as Mozilla
Thunderbird accept these certificates, Outlook and others insist on com-
mercial certificates, which are not cheap and pour money into the coffers
of the CA companies. If you use a free certificate, it is advisable to inform
your users that more and more people are joining together to form an al-
ternative trust network that provide real and free certificates for everyone.

13.1.3 Creating and Integrating SSL Certificates

You can create your own certificate with OpenSSL for test operation, even
if you plan to use a real certificate with a public key from a CA for actual
operation.

You can store the certificate in a directory (e.g., /usr/ssl); if it does not
exist, use mkdir /usr/ssl/ to create it before calling openssl. The fol-
lowing command creates an SSL certificate according to the X.509 standard.
This certificate is valid for 1,460 days (4 years); use the openssl-req op-
tion -nodes to store it in unencrypted form in directory /usr/ssl/, along
with the corresponding private key:

linux:/usr/ssl # openssl req -new -x509 -nodes -out /usr/ssl/server.pem \
-keyout /usr/ssl/server.pem -days 1460

Generating a 1024 bit RSA private key

.................... e+ttt
.. At

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a

1 See http://www.openca.org/.
2 See http://www.cacert.org/.

209

13 Authentication and Safeguards

DN.

There are quite a few fields but you can leave some blank
For some fields there will be a default value,

If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU] :DE

State or Province Name (full name) [Some-State] :Berlin

Locality Name (eg, city) []:Berlin

Organization Name (eg, company) [Internet Widgits Pty Ltd] :My company
Organizational Unit Name (eg, section) []:Email sending department
Common Name (eg, YOUR name) []:mail.example.com

Email Address []:peer@example.com

You have to enter the name of the email server in the Common Name field.
The users enter that name in their email clients as the email server name.
If these entries do not match, the clients will display a warning that the
connection is probably not trustworthy.

The /usr/ssl/server.pen file contains the private server key as well as
the public certificate, so only the root user may have read access to this
file. Use chmod 400 /usr/ssl/server.pemto change the permissions.

The current Cyrus IMAP version supports OpenSSL by default, whereas you
may have to add this support in older versions. For information on how
to do this, see section C.2.4 on page 329. Enter the following values in the
/etc/imapd. conf file to activate SSL support:

tls_cert_file: /usr/ssl/server.pem

tls_key file: /usr/ssl/server.pem

Enter the path to the certificate file in t1s_cert_file and the path to the
private key file in t1s_key_file. If you use a certificate from a real CA, you
should activate the following options so that the email server can evaluate
the correct CA certificate:

tls_ca file: /usr/ssl/CA/CAcert.pem
tls_ca_path: /usr/ssl/CA

This is where you enter the file containing the CA certificate and the path
to the directory containing the CA certificate as a hash value. This ensures
that the CA certificates have not been modified.

If authentication is done through a secure SSL tunnel, you can use authen-
tication methods that transmit the password in cleartext. In this case, you
should only permit encrypted connections via SSL. To make the necessary
settings in the /etc/cyrus.conf file, open the corresponding ports for
IMAP/IMAPs and POP3/POP3s in the Services section, or close them by
prefixing them with a comment character:

210

13.2 Cyrus SASL

UNIX sockets start with a slash and are put into /var/lib/imap/socket
SERVICES {
add or remove based on preferences

imap cmd="imapd" listen="imap" prefork=0
imaps cmd="imapd -s" listen="imaps" prefork=0
pop3 cmd="pop3d" listen="pop3" prefork=0
pop3s cmd="pop3d -s" listen="pop3s" prefork=0

[...]
}

This setting permits login via SSL and without encryption.

You can also configure the server so that cleartext passwords are only per-
mitted if the client has built a TLS/SSL tunnel. For more information, see
section 13.2 on page 211.

You have to restart the IMAP daemon before your Cyrus IMAP server will
provide data stream encryption via TLS/SSL to the clients. Use 1sof -i to
view the open IMAPs and POP3s ports:

[...1

master 10895 cyrus 5u IPve 35505 TCP *:1imap (LISTEN)
master 10895 cyrus 1lu IPv4 35509 TCP *:imap (LISTEN)
master 10895 cyrus l4u IPve 35513 TCP *:1imaps (LISTEN)
master 10895 cyrus 17u IPv4 35515 TCP *:imaps (LISTEN)
master 10895 cyrus 20u IPvé6 35519 TCP *:pop3 (LISTEN)
master 10895 cyrus 23u IPbPv4 35521 TCP *:pop3 (LISTEN)
master 10895 cyrus 26u IPv6 35525 TCP *:pop3s (LISTEN)
master 10895 cyrus 29u IPv4 35527 TCP *:pop3s (LISTEN)
master 10895 cyrus 32u IPv6 35531 TCP *:sieve (LISTEN)
master 10895 cyrus 35u IbPv4 35533 TCP %:sieve (LISTEN)

[...]

It is advisable to read /var/log/messages and /var/log/mail when you
modify or add configuration settings. This will enable you to detect errors
that are not mentioned when the program is started. You can also use a
packet sniffer such as tcpdump to check that the login is really encrypted
and that no user information is visible in the TCP packages.

13.2 Cyrus SASL

The makers of the Cyrus IMAP server also provide a library that implements
the Simple Authentication Security Layer (SASL). The Cyrus IMAP daemon
is not the only program to use libsasl, or Cyrus SASL, as it is also known;
third-party programs use it to access the modules it controls, which in turn
provide access to a number of authentication sources.

211

13 Authentication and Safeguards

13.2.1 Cyrus SASL Modules

The sasl_pwcheck_method entry in the /etc/imapd.conf file specifies
which module is used.

The saslauthd Authentication Service

saslauthdis not actually a module, but rather an independent authentica-
tion service that Cyrus addresses like a module. It simply receives cleartext
passwords and compares them to a number of data sources using plugins:

getpwent
This module permits access to passwords in the passwd configura-
tion file in Unix systems.

shadow
This module permits access to the user data in the complementary
Unix configuration files passwd and shadow.

kerberos4
This module permits access to Kerberos-4 servers.

kerberosb
This module permits access to Kerberos-5 servers.

pam
This module uses Pluggable Authentication Modules.

rimap
This module sends authentication requests to an IMAP server. This
plugin is only useful in conjunction with third-party programs such
as Postfix, which use the authentication sources set up for the IMAP
server.

ldap
This module queries the user data on an LDAP server.

saslauthd is an independent service, so it is controlled from its own con-
figuration file. You only need to specify in /etc/imapd.conf that sasl
authd is to be used. Specify which plugin should be used in /etc/syscon
fig/saslauthd:® SASLAUTHD_AUTHMECH=pam, for example, means that the
PAM plugin will be used. If you do not specify a plugin in the saslauthd
configuration file, shadow is used automatically.

3 This is a SuSE-specific path; in Debian and other distributions, you can often specify
this directly in /etc/saslauthd.

212

13.2 Cyrus SASL

PAM is an exception among plugins. It is not a method that directly queries
one data source, but a system that transfers this task to a real authentication
service. This makes the setup more complex, but this detour means that all
PAM data sources are available to the Cyrus mail server, including finger-
prints and iris scans. You can find such a module at http://www.kernel.
org/pub/linux/libs/pam/modules.html, among other sites.

13.2.2 The auxprop Module

The auxprop module also uses a collection of plugins for authentication. It
can use the following plugins to access data sources:

sasldb
This module permits access to the minidatabase sas1db2.*

ldapdb
This module queries an LDAP server.

sql
This module obtains the authentication data from an SQL server.

Unlike the saslauthd module, auxprop attaches great importance to secu-
rity and permits authentication by methods such as CRAM or DIGEST-MD5.
Both procedures transmit hash values instead of user passwords, and they
check these hash values during authentication. DIGEST-MD5 is newer and
is viewed as more secure.

If you do not specify a plugin in the /etc/imapd. conf configuration file,
sasldb will be used automatically.

Using the authdaemond

Cyrus SASL can also use the authdaemond module to call the Courier IMAP
authentication service (see section 9.2 on page 122) and thereby access
MySQL, LDAP, and PostgreSQL data. This is only suitable as an authen-
tication source for a Cyrus IMAP server in special circumstances, such
as migrating from Courier to Cyrus or adding a Cyrus IMAP server to an
existing Courier IMAP server. This module is only capable of handling
cleartext passwords. The following is an example of a suitable entry in
/etc/imapd.conf:

sasl_pwcheck method: authdaemond
sasl_authdaemon_path: /var/run/authdaemon.courier-imap/socket
sasl_mech list: PLAIN LOGIN

4 The predecessor, sasldb, is only used in very old versions of Cyrus-SASL 1.x and is no
longer relevant for current Cyrus IMAP versions.

213

13 Authentication and Safeguards

First specify the module. Then tell authdaemond where the socket for the
Courier authdaemon is located. Then specify the password encryption
method; in this case, it has to be cleartext, as the module is not capable
of encryption.

The Outdated pwcheck Module

This authentication service was used until Cyrus version 1.5; it can only
read the files passwd and shadow. It was replaced by saslauthd and is
only supported for reasons of backward compatibility. This service only
operates with cleartext passwords.

There are a number of patches by other providers for all authentication
modules, but these are not officially supported. One of these’ modifies
pwcheck so that this service can query an LDAP database.

13.2.3 The Authentication Process

As soon as an IMAP client contacts the Cyrus server, the server offers the
client all the supported authentication mechanisms. Depending on the
module, these can be as follows:

= PLAIN is the method used by Unix systems to transmit cleartext pass-
words, and LOGIN is the method adapted for Microsoft Outlook.

= CRAM-MD5 and DIGEST-MD5 both encrypt the user password and compare
the calculated value during authentication. DIGEST-MD5 is newer and
more secure than CRAM-MD5.

= KERBEROS_V4 and GSSAPI (Kerberos 5) are two methods that can be
used.

= EXTERNAL enables the integration of additional mechanisms (not dis-
cussed here).

When choosing a module, you should only make cleartext mechanisms
available to your users if the cleartext passwords are transmitted on a con-
nection encrypted with TLS/SSL.

The mechanisms provided by the client must also be available and sup-
ported by the authentication module. Only enter those mechanisms in the
/etc/imapd. conf file that are actually available, for example, sas1l_mech_
list: PLAIN LOGIN for transmission of passwords in cleartext. If you
want to provide more than one mechanism, simply write one after the other
and separate consecutive mechanisms with a space.

5 Seenhttp://www.surf.org.uk/downloads/.

214

13.3 Calling Different Data Sources

The client can then choose its favorite mechanism (usually the safest) from
that list and send a corresponding request to the email server. If you of-
fer authentication mechanisms that are not provided by the authentication
service and the data source, the system may not be able to authenticate the
user.

The Cyrus IMAP daemon uses libsasl to transfer the query from the
client to the authentication service configured with sasl_pwcheck_method
in the /etc/imapd.conf file. This service consults the appropriate data
source and returns the result to the daemon.

13.3 Calling Different Data Sources

If you wish to use the Cyrus IMAP daemon in a larger environment, you will
probably already have a central data source containing user data for other
services. Cyrus can access many of these once it has been configured to do
SO.

13.3.1 Standard Authentication Methods for Unix

In its default state, the Cyrus email server uses the saslauthd authentica-
tion method with the shadow plugin, which means that it uses Unix system
accounts. In this case, you have to use the usual tools to create a new
system user for every new mailbox, for example:

linux: # useradd zoidberg

linux: # passwd zoidberg

Changing password for zoidberg.

New Password: zoidbergs password

Reenter New Password: zoidbergs password
Password changed.

This command creates a Unix account for user zoidberg, which means
that it generates the required entries in /etc/passwd and /etc/shadow.
Once you have done this, Cyrus can authenticate the new user.

However, creating a new Unix system account for every new Cyrus user is
not only superfluous but also a potential security risk.

In general, it is advisable to use a different authentication mechanism, as
this method becomes unwieldy if you have more than a few hundred users.
It is also quicker to search databases if they are text files, which in turn
improves the email server performance.

215

13 Authentication and Safeguards

13.3.2 sasldb2

sasldb2 is a quick, easy, and relatively secure method for authenticat-
ing users. This method uses the authentication module auxprop with the
sas1ldb2 plugin. The required configuration for the Cyrus IMAP daemon is
described in section 11.4.1 on page 194.

However, this miniature user database quickly reaches its limits if, for ex-
ample, you want to map groups as well as usernames and passwords. sasl
db2 is not capable of this or of central user management for multiple ser-
vices. This is only possible with a real database management system (such
as MySQL) and with LDAP.

13.3.3 Cyrus and MySQL

When Cyrus was first conceived, it was not designed to be connected to a
MySQL database, but this connection works thanks to PAM. MySQL is now
easier to set up and connect than other external data sources such as LDAP.

The auxprop plugin

You can now use the SASL plugin sql, which connects to MySQL via the
libsasl authentication library. Make sure that Cyrus SASL is compiled
with support for MySQL. The prepared packages of current distributions
have already done this.

If you compile Cyrus SASL yourself, you have to set the configure param-
eter --with-mysql=/usr/local/mysql (see section C.2.3 on page 326).

In order to connect Cyrus to a MySQL database using the auxprop plugin
sql, you have to go to the /etc/imapd. conf file and define the access data
for the database and the SQL command that compares the transmitted user
data to that in the database:

sasl_pwcheck method: auxprop
sasl_auxprop plugin: sqgl
sasl_sqgl_engine: mysqgl
sasl_sqgl_hostnames: localhost
sasl_sqgl_user: sglusername
sasl_sqgl_passwd: sqglpassword
sasl_sqgl_database: cyrus
sasl_sql_verbose: no
sasl_sqgl_select: SELECT password FROM cyrus_email WHERE username = ’%u’
AND active='1’
sasl_sqgl_usessl: 0

You can specify multiple SQL servers in sasl_sql_hostnames. Separate
them with commas. You can also specify a port:

216

13.3 Calling Different Data Sources

sasl_sqgl_hostnames: localhost, 192.168.0.33:3306

Set sasl_sql_verboseto yes for debugging in order to make the log mes-
sages in the syslog more explicit.

sasl_sql_usessl: O specifies that the connection to the database server
will not be made via an SSL tunnel. Use the value 1, for example, to activate
this function.

In this example, the SQL command defined in sasl_sql_select searches
the cyrus_email database table for the password matching the username
specified during login (%u), but only if the value for activeis set to 1 in the
table. Defining such a table column is a simple way to activate or deactivate
a user account.

You can use the following SQL command, among others, to generate a
MySQL table suitable for the SQL query specified in sasl_sql_select:

CREATE TABLE "cyrus_email"(
"id" int (11) NOT NULL auto_increment,
"username" varchar (50) NOT NULL default ,
"password" varchar (50) NOT NULL default ,
"real name" varchar (150) NOT NULL default ,

"active" tinyint (4) NOT NULL default "1",
PRIMARY KEY ("id"),

UNIQUE KEY "id 2" ("id"),
KEY "id" ("id")
)i

You can also use the more convenient web interface from phpMyAdmin to
create this database. When Cyrus is restarted, it compares the data trans-
mitted during user authentication to the contents of the MySQL database
table that was just generated. If a queried value is not found, perhaps be-
cause a user account has not yet been created, MySQL returns an error
message, and Cyrus SASL does not permit the user to log in. You can test
this using the imtest tool, for example. This tool enables you to test entire
IMAP logins and the behavior of the IMAP server:

linux: # imtest -m login -a zoidberg localhost

* OK linux Cyrus IMAP4 v2.2.12 server ready

C01 CAPABILITY

* CAPABILITY IMAP4 IMAP4revl ACL QUOTA LITERAL+ MAILBOX-REFERRALS NAMESP
ACE UIDPLUS ID NO_ATOMIC_RENAME UNSELECT CHILDREN MULTIAPPEND BINARY SOR
T THREAD=ORDEREDSUBJECT THREAD=REFERENCES ANNOTATEMORE IDLE AUTH=DIGEST-
MD5 AUTH=CRAM-MD5 SASL-IR X-NETSCAPE

C01 OK Completed

Please enter your password: zoidbergs password

217

13 Authentication and Safeguards

L0l LOGIN zoidberg {5}

+ go ahead

<omitteds>

L0l NO Login failed: user not found
Authentication failed. generic failure
Security strength factor: 0

Q01 LOGOUT

Connection closed.

If the command is called with the -m login switch, this forces the use of
the SASL password-transfer method LOGIN. If you do not specify a switch,
imtest will automatically choose the safest mechanism. The last argu-
ment after the username is the hostname. If you do not enter a hostname,
imtest will automatically use localhost.

The key to the problem is the line LO1 NO Login failed: user not
found. It means that the specified user, zoidberg, does not exist.

This is what a successful login process looks like:

linux: # imtest -a zoidberg localhost

WARNING: no hostname supplied, assuming localhost

* OK linux Cyrus IMAP4 v2.2.12 server ready

C01 CAPABILITY

* CAPABILITY IMAP4 IMAP4revl ACL QUOTA LITERAL+ MAILBOX-REFERRALS NAMESPA
CE UIDPLUS ID NO_ATOMIC_RENAME UNSELECT CHILDREN MULTIAPPEND BINARY SORT

THREAD=ORDEREDSUBJECT THREAD=REFERENCES ANNOTATEMORE IDLE STARTTLS AUTH=C
RAM-MD5 SASL-IR X-NETSCAPE

C01 OK Completed

AQ1 AUTHENTICATE CRAM-MD5

+ PDQwMJjE1MDUzMjUuNDAOMzU4NOBndWNreT4=

Please enter your password: zoidbergs password

CcGF1bCBiMTM5Y2NjMmMMxYTU4Zj YyMmI5SY2JkYjNkOTY40TUwYg==

A0l OK Success (no protection)

Authenticated.

Security strength factor: 0

Q01 LOGOUT

Connection closed.

In this example, no password encryption mechanism was specified (using
-m), so it is nice to see that imtest uses the secure CRAM-MD5 mechanism:
AO1 AUTHENTICATE CRAM-MD5.”

6 When imtest calls the LOGIN command in this case, the command does not list the
password directly in cleartext as the second argument; instead, it uses {5} to tell the
server to enter a five-character string in a separate line (zoidberg’s password, which is
entered in reply to the request Please enter your password:). For more informa-
tion on this syntax, see section A.4 on page 305.

7 For information on the AUTHENTICATE command, see section A.2 on page 297.

218

13.3 Calling Different Data Sources

The Detour via PAM

The SASL plugin may be much more convenient, but in some setups you
may still want to use the older method of connecting via PAM. To do this,
make the following entries in the /etc/pam.d/imap file:

auth sufficient pam mysqgl.so user=mail passwd=secret host=localhost db=cy
rus table=cyrus_email usercolumn=username passwdcolumn=password crypt=
1 logtable=log logmsgcolumn=msg logusercolumn=user loghostcolumn=host log
pidcolumn=pid logtimecolumn=time

auth sufficient pam unix auth.so

account required pam mysqgl.so user=mail passwd=secret host=localhost db=c
yrus table=cyrus_email usercolumn=username passwdcolumn=password crypt=1
logtable=log logmsgcolumn=msg logusercolumn=user loghostcolumn=host logpi
dcolumn=pid logtimecolumn=time

account sufficient pam unix acct.so

The entries in this file are organized in columns separated by spaces. The
first column contains the module type that is to be used, the second column
contains the control flag, and the third column contains the name of the
PAM module to be used, followed by optional arguments. To connect to
MySQL, you must require the module types auth and account. The first
module is responsible for authentication, whereas account is responsible
for any restrictions.

The sufficient control flag signifies that no additional modules of the
specified type will be called if the specified module has carried out its ser-
vice successfully.

The pam_mysql.somodule requires access parameters to the MySQL data-
base as its arguments. In this example, you access the cyrus_email table
in the cyrus database and specify that the password can be found in the
password column and the username in the username column of that table.

If authentication via MySQL fails, a second attempt is made using module
pam_unix_auth.so, which queries the Unix files passwd and shadow.

If, in addition to the IMAP server, you want other Cyrus services to fetch
information from the MySQL database, copy the PAM configuration file and
rename it correspondingly:

linux: # cp /etc/pam.d/imap /etc/pam.d/pop
linux: # cp /etc/pam.d/imap /etc/pam.d/sieve
linux: # cp /etc/pam.d/imap /etc/pam.d/smtp

Now you only have to “explain” to Cyrus that it should use PAM as the au-
thentication module. To do this, set the sasl_pwcheck_method parameter

219

13 Authentication and Safeguards

in /etc/imapd.conf to saslauthd and use SASLAUTHD_AUTHMECH=pam to
specify the access plugin in /etc/sysconfig/saslauthd.

When Cyrus calls saslauthd, this module contacts PAM, which in turn
contacts the backend specified for PAM: In this case, the PAM module
pam_mysql.so authenticates the users via the MySQL database. You can
use PAM for other backends by applying this method as well.

13.3.4 Cyrus and LDAP

This is another way to authenticate users through their username and pass-
word. You can also map groups, but not ACL and quota settings for mail-
boxes. You have to use cyradm for this purpose.

Communication with the LDAP server can be local (via an LDAP socket) or
remote by TCP via port 389 or 636 (LDAP via SSL). For access to a remote
LDAP server, you have to ensure that the required ports are activated in the
firewall.

You should install OpenLDAP on the LDAP server, OpenSSL on the LDAP
client (i.e., the Cyrus server), and the LDAP server, and phpLDAPAdmin® on
the LDAP server. It is far easier to manage and oversee LDAP trees on this
web interface than on the console.

Configuring the LDAP Server

First, you have to set up a schema on the LDAP server that can map the
usernames and passwords. Once you have set up the LDAP schema, you
can administer it using the phpLDAPAdmin web interface, for example.

In most cases, the LDAP server already provides authentication data to
other services, so you only need to adapt the parameters on the client.

LDAP via auxprop

The auxprop SASL module can be used for querying an LDAP server, as
it has a suitable plugin (1dapdb) and uses shared-secret mechanisms for
encrypted password transmission. This means that the authentication data
will never be transmitted in cleartext.

Specify the following values in the /etc/imapd. conf file:

sasl_pwcheck method: auxprop
sasl_auxprop plugin: ldapdb
sasl_ldapdb_uri: ldap://ldap.example.com

8 See http://phpldapadmin. sourceforge.net/.

220

13.3 Calling Different Data Sources

sasl_ldapdb_id: ldap-username
sasl_ldapdb_pw: Ildap-password
sasl_ldapdb_mech: DIGEST-MD5

You can use DIGEST-MD5 as the password encryption method, as it is safer
than cleartext. In this case, the user passwords have to be stored as MD5
hashes instead of as cleartext in the LDAP directory. However, you should
try to encrypt the data stream to the LDAP server via SSL, as SASL is unaf-
fected by this method and continues to log on to the LDAP server in clear-
text.

Now you only need to specify the search path that will be used to read the
data from LDAP. To do this, make an entry in the /etc/slapd. conf file on
the LDAP server:

sasl-regexp uid=(.*),cn=.x,cn=auth ldap:///ou=training,o=example,c=com??
sub? (& (objectclass=inetOrgPerson) (mail=$1))

Now, when Cyrus SASL connects to the LDAP server, SASL attempts to log
in with the username and the password stored in the example. comdomain
in the inetOrgPerson LDAP object. If this works, the user is authenticated
and may log in.

LDAP via saslauthd

saslauthd can also access LDAP. However, you should use TSL/SSL to se-
cure the data stream in this case, as saslauthd only sends cleartext pass-
words. Secure the connection between the email client and the email server
and the connection between the email server and the LDAP server if these
are on different computers.

To connect Cyrus to an LDAP server that is set up properly and has a
suitable schema, you should begin by configuring the saslauthd in the
/etc/sysconfig/saslauthd file:

Path: System/Security/SASL

Type: list (getpwent, kerberos5, pam, rimap, shadow, 1dap)
Default: pam

ServiceRestart: saslauthd

#

Authentication mechanism to use by saslauthd.
See man 8 saslauthd for available mechanisms.
#

SASLAUTHD AUTHMECH= ldap

You can also make this entry in the /etc/imapd. conf file, from which it is
transmitted to the saslauthd.

221

13 Authentication and Safeguards

saslauthd requires an additional configuration file containing the param-
eters for the LDAP query. On most systems, you will have to create /etc/
saslauthd.conf:

ldap servers: ldap://ldap.example.com/
Path to the LDAP server

ldap_version: 3

ldap_search base: ou=schulung, o=example, c=com
Entry into the LDAP search path

ldap_bind dn: cn=root, o=example, c=com
Path to the login user

ldap_bind pw: xxxxx

Password of the login user
ldap_filter: (uid=%u)

Value that is being searched for:

#
#

u = evaluates the entire UID

o° o

U = only evaluates up to the @ character

ldap_scope: sub
sub searches recursively to the end from the point of entry.
Alternatives: base (non-recursive), one (only one element down)

HHHHHHHHHHHHHHHHHHHHH
If you want the connection between SASL and the LDAP server to be
encrypted, you should enter the TLS certificate data here.

+H

In this case, you have to configure the LDAP server with TLS support

+H*

as well.

ldap_tls_check peer: yes
ldap_tls_cacert_file: /usr/ssl/cacert.pem
ldap tls_cacert dir: /usr/ssl/
ldap_tls_cert: /usr/ssl/servercert.pem
ldap tls_key: /usr/ssl/serverkey.pem

H o H H

The 1dap_tls_check_peer: yes switch ensures that the certificates of
the client and the server are checked for authenticity. The other parameters
specify the paths to the SSL certificates of the server and the certificate
authority (as described in section 13.1 on page 208).

Now you have to restart both saslauthd and Cyrus so that the modi-
fied configuration files are loaded. Once you have done this, Cyrus will
query the LDAP server for authentication information. You can use the
testsaslauthd tool to check whether all of this worked:

222

13.3 Calling Different Data Sources

linux: # testsaslauthd -u zoidberg -p zoidbergs password

0: OK "Success."

-u specifies the username, and -p is followed by the password.

Once you have stored information on each user’s group in the LDAP tree in

some other attribute, you can use separate parameters to query this group

affiliation in the saslauthd.conf file. ldap_group_search_base spec-

ifies the LDAP path where the search is done. If none is specified, the

path specified in 1dap_search_baseis used. ldap_group_attr specifies

which attributes should be queried. ldap_group_match_method defines

the LDAP method that will be used to search for the result. 1dap_group_fil
ter specifies the search filter that will be used. The following is an example

of a definition of a group query:

ldap_group_search base: cn=gruppen,dc=example,dc=com
ldap _group_ attr: memberUid

ldap_group match method: filter

ldap group filter: (memberUid=%D)

You will find all other functions and switches in the /usr/share/doc/pack
ages/cyrus-sasl/LDAP_SASLAUTHD file, but these are irrelevant for group
affiliation queries using Cyrus.

13.3.5 Cyrus and Kerberos

PAM or saslauthd is required for authentication on a Kerberos-5 server.
The latter is the only SASL module containing a plugin for querying a
Kerberos server. To use it, set the sasl_pwcheck_method parameter in
/etc/imapd.conf to saslauthd, and set the variable SASLAUTHD_AUTH
MECH in /etc/sysconfig/saslauthd to kerberosb:

Path: System/Security/SASL

Type: list (getpwent, kerberos5, pam, rimap, shadow, 1dap)
Default: pam

ServiceRestart: saslauthd

#

Authentication mechanism to use by saslauthd.
See man 8 saslauthd for available mechanisms.
#

SASLAUTHD_ AUTHMECH=kerberos5

Now, all you need to add is the Kerberos identity for accessing the Ker-
beros server. To do this, enter the host key of the IMAP server in the file
/etc/krbb.keytab. Use the command-line tool kadmin to do this. Be-
fore calling it, you have to modify the parameters for access to the Kerberos
server in the /etc/krbb. conf file:

223

13 Authentication and Safeguards

[libdefaults]
default_realm = EXAMPLE.COM

[realms]
EXAMPLE.ORG = {
kdc = kerberos.example.com
admin_server = kerberos.example.com
}
[logging]

kdc = FILE:/var/log/krb5/krb5kdc.log
admin_ server = FILE:/var/log/krb5/kadmind.log
default = SYSLOG:NOTICE:DAEMON

The section 1ibdefaults specifies the realm for which this Kerberos server
is responsible (unless otherwise specified). Specity the key distribution cen-
ter (kdc) and the Kerberos server in realms to define the realm in more
detail. Use logging to specify the parameters for logging on the key and
the Kerberos servers.

Now change the file permissions so that user cyrus can read the /etc/krbb
.keytab file.

A functioning Kerberos system (server and client) is a prerequisite for this
scenario. This also means that you have to have installed the Kerberos
utilities and the Kerberos client on the Cyrus computer.

224

Advanced Cyrus Configuration

By now you have seen the basic functions of Cyrus and its overall struc-
ture, which is admittedly confusing at first. Once you've become familiar
with the material in the previous chapters, you should be able to set up
an operational email server, but it will still be missing the more interesting
aspects and functions that make the Cyrus IMAP daemon worth using in
the first place. The next section will describe these special features, which
ease (and, in some cases, enable) the administration of multiple mailboxes
and domains.

14.1 Mailbox Quotas

One convenience—at least for administrators—is the ability to restrict the
amount of memory available to mail users. You should carefully consider
how much storage to allocate to user accounts; after all, people send Power-

225

14 Advanced Cyrus Configuration

Point files and entire photo albums via email. Hard disks have become less
expensive, but as the amount of data that people send by email increases,
these trends almost cancel each other out.

Filesystem quotas, like those provided by Linux, are only helpful for manag-
ing storage use if you create a system user account for each mailbox. One of
Cyrus’s advantages is that it is independent of system-level user accounts.
In particular, it includes its own quota system, which is also independent
from operating system quotas.

Even if you have sufficient storage space, for example, on an SAN server, it
is advisable to use quotas with Cyrus, as the files containing administrative
information grow along with the mailboxes. If the partition containing the
mailboxes fills up, the mail system’s database files may become corrupted,
and in that case they cannot always be properly restored. The Cyrus email
server is unfortunately quite a delicate structure to troubleshoot.!

14.1.1 Automatic Quotas

The autocreatequota switch in the /etc/imapd. conf file is used to acti-
vate and deactivate quotas. It is easy to make mistakes while doing this, as
the documentation provided by Cyrus does not describe the option clearly.
There are three different configurations:

autocreatequota: O
Users may not create new mailboxes. Instead, the administrator has
to create mailboxes and set up quotas manually.

autocreatequota: number_larger_than_0
A mailbox structure is created automatically for new users. The mail-
box is only created automatically when a user first logs in if the user-
name and password are already stored in the authentication data
source. The user may save email in this mailbox until the capacity
(in kilobytes) specified by the value is reached.

autocreatequota: number_smaller than_0O
Cyrus creates a mailbox structure when a new user logs in for the
first time, as long as the username and password already exist in the
authentication data source. However, specifying a negative value (-1,
for example) means that no quota is set, and the user has unlimited
storage space.

The quotawarn option allows a parameter to be specified that tells Cyrus
when to send a warning message to the user’s email client if the user is
about to use up his or her quota. For example, quotawarn: 62 causes

1 For arguments against using quotas, see section 10.2 on page 166.

226

14.1 Mailbox Quotas

the warning to appear when 62 percent of the user’s quota has been used
up. Figure 14.1 illustrates this using Mozilla Thunderbird.

The quotawarnkb option works similarly, but specifies the amount of space
(in kilobytes) that is still available in the account when the email client
first shows the warning that the quota will be exceeded soon. For example,
quotawarnkb: 1024 alerts users that space is running low when 1,024KB
or less remains in the account.

Alert

Mailbox is at 17% of gquota

Cyrus uses the GETQUOTA? IMAP command to inform the client how much
of the available memory has been used (in percent or kilobytes). The client
can decide how (and, indeed, whether) to present this information to the
user (see Figure 14.2).

600 Account Info

Account: [& quotatest@imap-buc... |+!

{ Quota Limits =~ Mailbox Be... Subscriptio... Summary]

ol |

50% 100%
Currently Used: 1,0 KB

Capacity: 10,0 KB

This account sLupports quotas.

| Mailbox | Messages

7 Inbox 2 1,8 KB
@l Trash 0 0
[5ent 0 0

(Show Messages)

2 This command is part of the QUOTA extension described in RFC 2088 and implemented

by Cyrus.

Figure 14.1:

Once the other 83
percent of memory
has been filled, the
IMAP server refuses
to accept emails for
this account.

Figure 14.2:

The email client
(Mozilla Thunderbird
in this case) displays
activated quotas
with the mailbox
information.

227

14 Advanced Cyrus Configuration

14.1.2 Manual Quotas

The cyradm configuration tool, described in section 15.4 on page 271, can
be used to create and modify quotas. When reducing a quota, make sure
that the new quota value specified is greater than the amount of memory
currently used by the mailbox. Otherwise, user data is lost, and the mailbox
index will be damaged.

The following example shows how to manually specify a quota of 10,000KB
for user paul’s mailbox and all of its subdirectories:

linux: # cyradm -auth login localhost -user cyrus
IMAP Password: password for cyrus

localhost> listmailbox

user.paul (\HasNoChildren)

user.geeko (\HasNoChildren)

localhost> 1lg user.paul

localhost> sq user.paul 10000
quota:10000
localhost> 1lg user.paul

STORAGE 0/10000 (0%)
localhost> exit

1q is an abbreviation of the 1istquota command and shows the existing
quotas and current utilization: paul currently has only empty mailboxes,
which means that the entire quota is still available to him. Use setquota,
or sq for short, to set the quota. This command expects the quotaroot as its
first argument, that is, the mailbox or mailbox subdirectory to whose chil-
dren the quota applies. The second argument is a number specifying the
amount of available memory in kilobytes or the value none, which removes
a previously set quota. It is not possible to specify percentages here.

The following example shows how to set a quota for all mailboxes and sub-
directories underneath the Cyrus root directory user, list all the quotas
using 1q, and then delete them all again:

localhost> sq user 100000

quota:100000

localhost> 1lq user
STORAGE 0/100000 (0%)
localhost> sq user none
remove quota

If you specify a quota for the entire Cyrus root directory in this manner, all
mailboxes in that directory will be codependent. Once the quota limit has
been reached, none of the subordinate mailboxes can receive emails, and
the email clients of all the users receive a message like that shown in Figure

228

14.1 Mailbox Quotas

14.3. Anyone who tries to send a message to one of the users also receives a
bounce email, as can be seen by examining the mail log of the email server:

Jun 10 12:04:37 linux postfix/smtpd[3540]: connect from plasma.jpberlin.
de[213.203.238.10]

Jun 10 12:04:37 linux postfix/smtpd[3540]: 1AAB21C3B3: client=plasma.jpb
erlin.de.de[213.203.238.10

Jun 10 12:04:37 linux postfix/cleanup[3543]: 1AAB21C3B3: message-id=<466
BCCAE.9040904@heinlein-support.de>

Jun 10 12:04:37 linux postfix/qmgr [2486]: 1AAB21C3B3: from=<p.hartlebene
heinlein-support.de.de>, size=4541, nrcpt=1 (queue active)

Jun 10 12:04:37 linux postfix/smtpd[3540]: disconnect from plasma.jpberl
in.de[213.203.238.10]

Jun 10 12:04:37 linux postfix/lmtp[3544]: 1AAB21C3B3: to=<paul@example.c
om>, relay=public/lmtp[public/lmtp], delay=0, status=deferred (host publ

ic/lmtp [public/lmtp] said: 452 4.2.2 Over quota (in reply to RCPT TO com
mand))

Alert

Mailbox is over guota

You can see that the external email server plasma.jpberlin.de is at-
tempting to deliver an email to local user paul@exaple. com, but this at-
tempt is refused with 452 4.2.2 Qver quota.

listquotaroot, or 1gr for short, shows the amount of available memory
used in a mailbox or directory hierarchy. You can use it to detect quota
dependencies between a superdirectory and a subdirectory.

Let’s take a look at a mailbox with one quota. As no explicit quota is speci-
fied for the Trash subdirectory, 1q does not return any results:

localhost> 1lg user.quotatest.Trash

localhost> 1lgr user.quotatest.Trash
user.quotatest STORAGE 6/10 (60%)

Nevertheless, the quota settings for the entire mailbox apply; the 1qr com-
mand displays these quota settings. It is possible to allocate more memory
to a mailbox subdirectory than is specified for the entire mailbox.

Figure 14.3:

Email clients such as
Mozilla Thunderbird
inform the user
when a quota limit is
reached.

229

14 Advanced Cyrus Configuration

The quota tool in the /usr/lib/cyrus/bin/ directory provides a com-
plete overview of all quotas in the system. Invoke it as Unix user cyrus:

cyrus@linux:$ /usr/lib/cyrus/bin/quota

Quota % Used Used Root
10000 0 8 user/quotatest@example.com
0 user/quotatest/Trash@example.com
0 user
10 0 0 user/cyrus
10000 0 0 user/paul

It displays the quotas that are set for each mailbox, and the utilization in
percent and kilobytes. Section 14.9.2 on page 257 describes how to use
quota to repair defective quotas.

14.2 Shared Folders and ACLs

Cyrus is capable of handling shared directories and mailboxes. Access to
such shared folders is handled by the access control lists, or ACLs. These
contain user permissions for files. By default, every user has access only to
his or her own mailbox.

For example, suppose you want anna the secretary to have read access to
the Invoices subdirectory in the boss’s mailbox. Both users have to be
set up correctly on the system, and the user boss has to have created the
Invoices subdirectory.

Now use the cyradm tool to make the required settings. The cyradm com-
mand setaclmailbox (sam for short) sets the permissions, and listacl
mailbox or lam displays them:

linux: # cyradm -auth login localhost -user cyrus
IMAP Password: password for cyrus

localhost> setaclmailbox user.boss.Invoices anna 1lr
localhost> listaclmailbox user.boss.Invoices

boss lrswipcda

anna 1r

Now anna can subscribe to the boss’s Invoices directory and read it. The
1 permission makes a mailbox visible for a user. However, any subdirecto-
ries will not become visible.

The r permission is required to read the contents of a mailbox. r only refers
to the specified directory. If, for example, Invoices contains a further
subdirectory, anna will not be able to access it.

In some cases, it is necessary for several colleagues to have access to a
shared directory. In this case, Cyrus enables you to work with groups, which

230

14.2 Shared Folders and ACLs

avoids the trouble of having to share the subdirectory with each user indi-
vidually. If you assign multiple users to a group and then assign r permis-
sion for a certain directory to that group, all members of the group will be
able to subscribe to and read the directory.

You need to use an authentication source that can map groups and mem-
bers. The simplest choice is the Unix permissions system, with the passwd,
shadow, and groups files. LDAP and MySQL databases are slightly more
complicated to set up. sasldb2 cannot map groups and is therefore not
suitable for this purpose. The following example shows how to share a
mailbox in such a case:

linux: # cyradm -auth login localhost -user cyrus

IMAP Password: password for cyrus

localhost> setaclmailbox user.information board group:sharedreader lr
localhost> exit

Now, all the members of the sharedreader group can view and read the
information_board mailbox.

Shared folders and shared mailboxes are simply mailboxes and subdirecto-
ries with an extended user group, so quotas apply here just like they do for
personal mailboxes.

Table 2.1 on page 36 lists all the permissions you can assign. Unlike Courier,
Cyrus only knows the permissions 1lrswipcda, and not e, t, and x.

Please also note that some permissions, such as 1 (/ist mailbox name) and r
(read mailbox), are codependent. If a user wishes to subscribe to a shared
folder and is only given the read permission, he or she will be unable to
find that shared folder, as this requires the list permission. If a user has r
but not 1, Cyrus will not display the contents of the corresponding shared
folder.

The Cyrus admin user needs to have the d permission in order to delete a
mailbox:

localhost> lam user.horst

horst lrswipcda

localhost> dm user.horst
deletemailbox: Permission denied
localhost> sam user.horst cyrus all
localhost> lam user.horst

horst lrswipcda

cyrus lrswipcda

localhost> dm user.horst

You can find aliases for the most common permission combinations in Ta-
ble 14.1. However, these combinations cannot be combined with additional

231

14 Advanced Cyrus Configuration

Table 14.1:

Abbreviations for

common permission

combinations

permissions, so you have to choose between aliases and permission com-
binations.

Alias Meaning

none Removes all permissions for a mailbox from a user
read Sets permissions 1rs

post Sets permissions 1rsp

append Sets permissions lrsip

write Sets permissions lrswipcd

all Sets all permissions (lrswipcda)

14.3 Virtual Domains

Cyrus creates a subdirectory for every user in the /var/spool/imap/user/
directory in accordance with the default settings in /etc/imap.conf. This
goes smoothly as long as every username is unique. However, simple name-
spaces cause problems as soon as there are two users with the same name,
for example, paul@example.net and paul@example.com. Many adminis-
trators set up creatively named directories like these:

example net_paul/
example_net_geeko/
example com_paul/

In extreme cases, domain names can be turned into sequential numbers, or
some other naming scheme can be used that has no relation to the actual
email addresses. This can work well for a while (and may even secure the
position of the mail administrator), but handling subdirectories becomes
more difficult.

Why choose complicated methods when there is an easy way? With virtual
domains, Cyrus provides a concept for managing extended namespaces.

14.3.1 The Underlying Concept

The Cyrus IMAP server considers every user as part of a domain, even
though we have only worked with simple user accounts without a domain
part. It assigns users, such as paul, geeko, and horst, to a domain, such
as the Postfix relay domain example.net in our example in section 11.4 on
page 192, for which the MTA accepts emails that it then forwards to Cyrus.

232

14.3 Virtual Domains

In this case, Cyrus jargon refers to unqualified users located in a default
domain. This domain is not mentioned explicitly in Cyrus, and all emails
addressed to the domain are sorted into the appropriate user account in
the /var/spool/imap/users/ directory. Figure 14.4 shows what this looks
like at the directory level.

Figure 14.4:

The structure of the
mailbox directory
without virtual

user/ geeko/ Trash/

cyrus.cache

cyrus.header

cyrus.index domains
/var/spool/imap/
cyrus.cache
cyrus.header
cyrus.index
Cyrus only shows its full ability when more than one domain has to be
managed. It then works with qualified users and an extended namespace,
that is, with multiple virtual domains. Figure 14.5 shows the structure of
the email directories in this case.
domain/ example.org/ user/ paul/ Rechnungen/ Figure 14.5:
cyrus.cache Far more complex:
T t Z::‘::::’ an email directory
when virtual

/var/spool /imap/ horst/ cyrus.cache

domains are used

cyrus.header

cyrus.index

example.com/ user/ achim/ cyrus.cache
cyrus.header

geeko/ Trash/ cyrus.index

cyrus.cache
cyrus.header
cyrus.index

paul/ memo/

—
cyrus.cache

cyrus.header

cyrus.index

Every user now has a personal email directory in his or her own domain.
This means the same username paul can be associated with accounts in
different domains. The username for authentication is then the complete
email address.

In order to implement this, Cyrus first needs to know that it is dealing
with multiple virtual domains. Use the virtdomains parameter in the
/etc/imapd. conf file to tell it so:

233

14 Advanced Cyrus Configuration

virtdomains: yes

Cyrus will now process virtual domain entries and create new user mail-
boxes within the domain structure. If you want the server to manage both
unqualified and qualified user mailboxes, you have to specify a default do-
main:

defaultdomain: example.net

The server will now assign unqualified mailboxes in the user/ directory
to the example.net domain. Unfortunately, Cyrus makes it impossible to
use symbolic links to match these unqualified names to their new qualified
names at the file level: Cyrus stores the entire directory structure in parallel
in administration databases, so it will crash at the latest during a recovery.
Hard links are also not possible, as they are not permitted for directories.

When switching from a single-domain configuration to a multiple-domain
configuration, you should always assign existing user mailboxes to the de-
fault domain. Otherwise, existing users will no longer be able to log on to
the email server using their unqualified usernames, and the email server
will be unable to deliver email correctly.

Restart Cyrus with rccyrus restart so that it will use the modified con-
figuration.

Assuming that users are authenticated via sasldb2, create new users for
the example. com domain as follows:

linux: # saslpasswd2 paul@example.com

Password: password for paul@example.com

Again (for verification): password for paul@example.com
linux: # chown cyrus:mail /etc/sasldb2

The mailboxes for Cyrus are created as follows:

linux: # cyradm -auth login localhost -user cyrus
IMAP Password: password for cyrus

localhost> cm user.paul@example.com

localhost> exit

After this command, the new directory should look like this:

linux: # 1ls -la /var/spool/imap/domain/example.com/user/paul/
total 20

drwx------ 2 cyrus mail 4096 2006-07-14 13:06

drwx------ 3 cyrus mail 4096 2006-07-14 13:06 ..
-rW------- 1 cyrus mail 4 2006-07-14 13:06 cyrus.cache
“rW---=-=-=-=- 1 cyrus mail 146 2006-07-14 13:06 cyrus.header
-rw------- 1 cyrus mail 76 2006-07-14 13:06 cyrus.index

234

14.3 Virtual Domains

The uppermost directory level contains the user/ subdirectory with the
mailboxes of the unqualified users, and a domain/ subdirectory for all of
the virtual domains:

linux: # 1ls -1 /var/spool/imap/

total 8
drwx------ 4 cyrus mail 4096 2006-07-14 13:06 domain
drwx------ 5 cyrus mail 4096 2006-07-13 15:23 user

There is one more small hurdle: Imagine that user paul wants to use an
email address containing his first and last names, of the form paul.meier@
example.com. In this case, there is a problem. If you use cyradm to cre-
ate such a mailbox, this tool interprets the dot between the first and last
names as a netnews separator and therefore creates an additional sub-
directory, /var/spool/imap/domain/example.com/user/paul/meier/.
In cyradm, it will look like this:

localhost> cm user.paul@example.com
localhost> cm user.paul.meier@example.com
localhost> 1lm

user.paul@example.com (/HasChildren)

user.paul .meier@example.com (HasNoChildren)

In the email client, meier will appear as a subdirectory of the INBOX of user
paul.

To avoid this, go to the /etc/imapd. conf file and enter unixhierarchy
sep: 1 to prevent Cyrus from using dots as the default level separator.
The positive value (1 in this example) ensures that Cyrus ignores the dot
and instead, like Unix, uses the slash (/) as a separator. If you now create
users paul@example.comand paul.meier@example.comin cyradm, this
will lead to the following result:

localhost> cm user/paul@example.com
localhost> cm user/paul.meier@example.com
localhost> 1lm

user/paul@example.com (HasNoChildren)
user/paul .meier@example.com (HasNoChildren)

user.paul@example.comand user.paul.meier@example.comare entire-
ly independent mailboxes. This change also has an effect at the filesystem
level:

linux: # 1ls -1 /var/spool/imap/domain/example.com/user/
total 4

drwx------ 4 cyrus mail 4096 May 22 20:02 paul
drwx------ 3 cyrus mail 4096 May 22 20:02 paul”meier

235

14 Advanced Cyrus Configuration

The dot in the mailbox name is represented by a caret (7). When cre-
ating mailboxes, you must now make sure to use the slash rather than
the dot as the separator between hierarchical levels. If, from habit, you
continue to use the previous syntax when creating new mailboxes, the
user.paul.meier.Trash@example.comsubdirectory created by the com-
mand cm user.paul.meier.Trash@example.comwill appear on one level
on the hard disk:

linux: # 1ls -1li /var/spool/imap/domain/example.com/

drwx------ 2 cyrus mail 4096 Nov 26 12:29 user”paul”’meier”Trash

In order to avoid mistakes, you should only create qualified mailboxes once
you have activated the virtdomains parameter. Otherwise, the result will
be top-level mailboxes with a domain part that cannot be edited, and can
only be deleted when you temporarily deactivate virtdomains.

Make sure that you always use the user prefix when creating mailboxes,
because otherwise they cannot be addressed correctly. If such an error oc-
curs, you have to deactivate support for virtual domains, delete the faulty
mailbox, reactivate support for virtual domains, and then create the mail-
box again.

14.3.2 Effects on ACLs

If Cyrus is used solely for unqualified user accounts, you can assign per-
missions for all mailboxes with cyradm, using the administrator account
cyrus. Every user can also assign permissions for his or her own directo-
ries to other users.

Things are slightly different if Cyrus is using virtual domains. The unqual-
ified admin user cyrus can still assign permissions globally, but all other
users can only assign permissions within their own domain (for unqualified
users, this is the default domain).

Cyrus does not allow permissions to be assigned between domains. Thus,
user paul@example.net is unable to assign read permission for his memo
mailbox folder to user geeko@example. com, either using the cyradm com-
mand sam or in the email client, as paul is in a different domain than
geeko. In this case, cyradm terminates the call with the following error
message:

localhost> sam user/paul/memo@example.net user/geeko@example.com lr
setaclmailbox: user/geeko@example.com: lr: Invalid identifier

Within a domain, this can be done:

236

14.4 Sorting Emails into Subdirectories

localhost> lam user/paul/memo@example.net

paul@eexample.net lrswipcda

localhost> sam user/paul/memo@example.net geeko@example.net lr
localhost> lam user/paul/memo@example.net

paul@example.net lrswipcda

geeko@example.net 1lr

14.3.3 Domain Administrators

Naturally, separate administrator accounts can be designated for each vir-
tual domain. These domain administrators have the same permissions
as the global administrator, but their scope is restricted to their own do-
main. To set up domain administrators, add the qualified usernames to the
admins entry in the imapd. conf:

admins: cyrus paul@example.net geeko@example.com

In this case, cyrus receives global administrator permissions, whereas paul
Q@example.net and geeko@example.net can only carry out administrator
tasks for their respective domains: paul for example.net and geeko for
example.org.

In general, if you enter a username without a domain part, this user will re-
ceive general Cyrus administrator permissions. Usernames with a domain
part are assigned these privileges only for their own domain. If you enter
a name with a domain section for which Cyrus is not responsible, the user
receives no permissions and can only see an empty cyradm console. If the
global Cyrus administrator is deleted, it is no longer possible to carry out
administrative tasks, but the email server continues to run.

Be careful when assigning administrator permissions, as a user with a global
administrator account can affect the entire Cyrus system and therefore
cause considerable damage.

If you loaded Sieve scripts onto the server before implementing virtual do-
mains, you will have to adapt these scripts. For more information, see
section 14.6.6 on page 252.

14.4 Sorting Emails into Subdirectories

One of the benefits of IMAP is that users can sort their emails into different
subdirectories on the server, which means they do not have to download
them and manage them locally. Most clients create these subfolders under
the INBOX.

237

14 Advanced Cyrus Configuration

If you want to automatically sort emails into subdirectories when they ar-
rive at the server, this usually requires the email client to have correspond-
ing functionality. The p permission (see Table 2.1 on page 36) is required
for all directories to which a filter script should move emails. In newly cre-
ated directories, the user automatically has this permission. You must be
given the p permission if you subscribe to another user’s mail directories.

There are no problems if a user only uses one client. If, however, a user
often changes computers or only has access via web clients from Internet
cafes, the user has to set up and synchronize the filter settings on every
email client that he or she will use. Luckily, the Cyrus email server provides
support here.

The sender must address the email in such a manner that the email server
can sort it into the correct subdirectory. The manner of address in turn
depends on the configuration of the directory separator, specified in the
unixhierarchysep parameter (see page 235).

If you use netnews separators, Cyrus separates the directory levels with a
dot. The sender can then directly address the target subdirectory in the
email address of the recipient by using a dot to separate it from the recipi-
ent name. For example, if you want to send an email to paul@example. com,
and the email is to be sorted directly into the Invoices subdirectory of the
INBOX, you would address the email to paul.Invoices@example. com.

If, on the other hand, Cyrus uses Unix separators, a slash separates levels in
the directory hierarchy. As discussed earlier, this is necessary, for example,
when email addresses consist of first and last names separated by dots. In
this case, an email for the Invoices subdirectory of the INBOX for email ad-
dress paul .meier@example.comshould be addressed to paul .meier/Inv
oices@example.com. If you address the email to paul.meier.Invoices@
example. com (with a dot instead of a slash), you will get the following error
message:

<paul .meier.Invoices@example.com>: host public/lmtp[public/lmtp]
said: 550-Mailbox unknown. Either there is no mailbox associated
with this 550-name or you do not have authorization to see it.
550 5.1.1 User unknown (in reply to RCPT TO command)

In this case, Cyrus searches for a mailbox named paul.meier.invoices
Q@example. com, but this mailbox does not exist.

This is not really a practical solution, as most senders will not know whether
Cyrus is in use, what the correct subdirectory is called, or even which sep-
arator the server uses. Automatic mail filtering only makes sense in con-
junction with Sieve scripts (see section 14.6 on page 240).

238

14.5 Email Partitions

14.5 Email Partitions

Enter the partition-default parameter in /etc/imapd. conf to specify
the location where Cyrus creates and expects the mailboxes by default. This
implies, however, that other locations could be specified for the storage of
user mailboxes. Cyrus calls these storage locations partitions, regardless of
whether these are physical partitions or directories.

In some cases additional mail partitions are advisable, for example, once
your system has reached a certain size and the default partition is run-
ning out of memory, or if the hard disk system is no longer able to process
queries effectively. I/0 bottlenecks are one of the most common causes of
slow systems, ahead of CPU overloads. In this case, you should consider
placing new mailboxes on other hard disks or partitions. You can define
these as follows:

partition-default: /var/spool/imap
partition-maill: /var/spool/maill

partition-mail2: /var/spool/mail2

partition-mail3: /var/spool/mail3

defaultpartition: mail3

Every mail partition receives a separate name. The name of the parameter
defining the mail partition consists of the character string partition- fol-
lowed by the name of the partition as the suffix. The partition-maillen-
try in the example specifies that directory /var/spool/maill forms mail
partition maill. For reasons of clarity, it is advisable to give the physical
email directory or mount point the same name as the mail partition, but
this consistency is not mandatory. If you do not specify a partition when
creating new mailboxes, Cyrus will create the mailboxes in the mail parti-
tion specified by defaultpartition, here mail3.

In order to create a new mailbox in a partition, enter the name of the mail-
box as an additional parameter for the cyradm command createmailbox:

localhost> createmailbox user.achim maill

The command in this example creates a mailbox for user achim in mail
partition maill. If cyradm returns the error message createmailbox:
System I/0 error in response to this command, you should have a look
at the system log: You probably forgot to give write permissions to Cyrus for
the new mail partition. To do this, use chown cyrus:mail /var/spool/
maill, for example, to assign ownership of the directory to the Cyrus sys-
tem user and his or her group.

If you do not specify a mail partition when creating the mailbox, it will
automatically be created in the location specified in partition-default:.

239

14 Advanced Cyrus Configuration

If even this partitioning of email storage no longer suffices to provide the
necessary performance, you should build a cluster to relieve your email
server. For instructions, see page 281.

14.6 The Sieve Email Filter

Its speed and operation may be matters of debate, but many administrators
choose Cyrus as their email server because of the server-side email filter-
ing it allows, using scripts written in a specially developed language, Sieve.
Many other email servers now have a Sieve interface, and email clients such
as KMail or Squirrelmail allow the creation and management of Sieve filter
scripts.

The Sieve script language has fewer functions than procmail, for example,
but seems to be much more intuitive to many users for exactly that reason.
Unlike procmail, users can place Sieve scripts on the server without having
to have a shell account. They only need to be able to log on as Cyrus users.

14.6.1 The Email Filter Daemon timsieved

The emalil filter daemon timsieved has been in development at Carnegie
Mellon University since 1994, along with the Cyrus IMAP daemon. It im-
ports filter scripts created by users for managing their mailboxes and uses
them to control the Cyrus master process. By default, it listens on port
2000. Tim Showalter, after whom the service is named, works at CMU and
is responsible for integrating the service into Cyrus. In addition to this
particular Sieve implementation for Cyrus, which is also known as Mana-
gesieve, there are Sieve implementations for other servers.

timsieved allows emails to be forwarded, refused, and moved to specific
mailbox directories, and it also allows the sending of out-of-office notices.
The notifyd service allows notification messages to be sent when specific
emails are received.

When Cyrus receives emails, timsieved applies the existing rules to these
emails. Emails can be deleted by sender or spam tag, moved to subdirecto-
ries, forwarded, or automatically replied to, for example, when the user is
away from the office.

14.6.2 Configuring and Testing
The required package has to be installed in order for the email filter service

to work. The package name usually contains sieve; in SuSE, for example,
it is called perl-Cyrus-SIEVE-managesieve.

240

14.6 The Sieve Email Filter

Specify the working directory for timsieved in /etc/imapd.conf:
sievedir: /var/lib/sieve

This is where the Sieve scripts uploaded by users are stored, sorted into
subdirectories A to Z by the first letter of the username.

By including the Sieve daemon in cyrus.conf in the SERVICES section,
you integrate it as a process in the Cyrus process chain:

sieve cmd="timsieved" listen="sieve" prefork=0

The first part is the name by which the service is known within Cyrus.
cmd indicates that the service will be provided by the timsieved program.
listen defines the port where the service should listen for commands. The
prefork switch specifies how often the service is started in order to wait in
idle mode. The default value is sufficient here.

sivtest is an aid that allows you to test the Sieve function after Cyrus has
been restarted.

This little program simulates a user login on the Sieve server. The output
shows whether the server has been configured correctly and whether the
authentication works:

linux: # sivtest -a paul localhost

"IMPLEMENTATION" "Cyrus timsieved v2.2.12"

"SASL" "DIGEST-MD5 PLAIN CRAM-MD5 LOGIN"

"SIEVE" "fileinto reject envelope vacation imapflags notify subaddress re
lational comparator-i;ascii-numeric regex"

OK

AUTHENTICATE "DIGEST-MD5"

{236}

bmouY2U9ImV3Q21Q0HkzU3dwYU91bFJIOMMNxbjRZOHIMS2050Dcr SNIHS3dhdELvQUUIIixyZ
WFsbT01Z3Vja3kiLHFvcD01iYXV0aCxhdXRoLWludCxhdXRoLWNvbmYiLGNpcGhlcjO0icmMOLT
QWLHJJNCO1NixyYzQsZGVzLDNKkZXMiLG1heGJ1Zj00MDk2LGNOYXJZzZXQ9dXRMLTgsYWxnb3J
pdGht PW1kNS1zZXNz

Please enter your password: most secret

{344+}

dXN1cm5hbWU9 InBhdWwiLHI1YWxtPSIndWNreSIsbmouY2U9ImV3Q21Q0HkzU3dwYU91bFJOM
mNxbJjRZOHIMS2050DcrSnIHS3dhdELvQUUIIixjbmouY2U9InI3ZH1rM1J4Mzg2UFZjRm5KQU
1YRzUwVjhQYjlOalZkdmhEOCsvekdgLzA9IixuYz0wMDAwWMDAWMSxxb3A9YXV0aCljb25mLGN
pcGhlcjlyYzQsbWF4YnVmPTEWM]QsZG1nZXNOLXVyaT01ic211dmUvbG9j YWxob3N0OIixyZXNw
b25zZT1kZTViY2E3MTFmYZRMYTQ1YjBmZGQ4 ZGQ2 ZTNhNGJIKNA==

OK (SASL "cnNwYXV0aD01ZmY5YjhkYzV1ZTA4MmZjMTB1ZWUXNmME30ODUxNzRkZQ==")
Authenticated.

Security strength factor: 128

logout

OK "Logout Complete"

Connection closed.

241

14 Advanced Cyrus Configuration

This test shows that paul has logged in successfully. -a is used to trans-
fer the username for authentication. If you do not specify this option,
sivtest will automatically use the name of the system user who is logged
on. localhost is used if you do not specify a hostname.

The server returns the name of the Sieve service and its version number,
the name of the password-transfer mechanisms available on the responsi-
ble authentication service, and the functions available in Sieve (see section
14.6.4 on page 246).

In this case, the user is authenticated using a challenge-response proce-
dure (DIGEST-MD5) based on the password. If the password digest calcu-
lated by the server matches the value calculated for the password entered
(dXN1cmbhbWU9. . .), the server confirms the action with authenticated.
If not, the login test terminates with NO "Authentication Error".

14.6.3 The sieveshell Administration Tool

Users can use sieveshell to upload, delete, activate, and deactivate filter
scripts on the server from a command line. They can write the scripts in
any text editor (see section 14.6.4 on page 246) and then store them in a
directory. They then call sieveshell in interactive mode in that directory.

As the argument, the command expects the name of the server that is to
be addressed. If the email user’s name does not correspond to that of the
Unix user who is currently logged on, the user uses the option -a name or
--authname=name to specify that name:

user@linux:$ sieveshell -a paul -u paul localhost
connecting to localhost
Please enter your password:

>

Usually, the authentication name (Who am I?) transferred by -a is automat-
ically used for authorization (What may I do?). However, this only works in
systems that use Kerberos for logging in. The sieveshell documentation
states succinctly that for every other login service, you should transfer the
name once again using -u. Otherwise, the user has to enter the password
three times in a row in order to log in.

If Kerberos is used for authentication, you can use the option -rrealm or
--realm=realm to specify the realm you are logging into.

You can place commands that you would usually enter at the sieveshell
prompt into a script file. If you call the program with option -e script
or --exec=script, it will process these commands non-interactively. This
process is suitable for automatically importing Sieve scripts.

242

14.6 The Sieve Email Filter

The following commands are permitted in sieveshell scripts and at the
sieveshell prompt:

help
This is the help function for the program.

list
This command lists the Sieve scripts that are currently loaded.

put file name
This command places the specified Sieve script on the server. sieve
shell does not display the filename suffix. Thus, vacation.script
becomes vacation. You can also use a second argument to specify
a name that sieveshell should use. Make sure not to use special
characters or spaces in your script names. Such characters can cause
problems when the scripts are imported.

get name
This command displays the specified script on the console. If you
enter a filename as a second argument, sieveshell will store the
script under this name in the filesystem.

delete name
This command deletes the specified script from the server.

activate name
This command activates the specified script on the server:

linux: # sieveshell -a paul -u paul localhost
connecting to localhost

Please enter your password: most secret

> put vacation.script

> put atwork.script

> activate vacation

> list

vacation <- active script

atwork

In this example, two Sieve scripts called vacation.script and at
work.script were loaded onto the Sieve server, but only atwork was
activated. The 1ist command shows the loaded scripts: vacation
is active, atwork inactive.

deactivate
This command deactivates the script that is currently active.

quit
This command ends the program.

243

14 Advanced Cyrus Configuration

Figure 14.6:

Filter rules are easy

to set up with the

web interface from

smartsieve.

It is not possible to overwrite an existing script on the server with a script
having the same name. If you want to change a script, you have to delete
it from the server and then upload and activate the new version. Each user
may upload a maximum of five scripts, but only one of these may be active.
For this reason, it makes sense to put all rules into a single script.

Most users will probably be overwhelmed by a command-line tool such
as sieveshell, especially since they have to enter the server address and
their email username explicitly. For this reason, it is advisable to offer web
interfaces such as smartsieve® (see Figure 14.6) or websieve,* which can
be operated without a Linux command line.

SmartSieve

€3 https:/ /mail.imap-buch.de/smartsieve/scripts.php @A coogle)

Logged in as "paul” L
Logout
Scripts >
Sieve Scripts
Script Status Size

=] address X not active
8 redirect X not active
= vacation + active | Obyles
=] stop X not active

Activate Deactivate | | Create new script Delete Rename script

The smartsieve project seems as though it will be successful, as it is both
more convenient to use and under active development. When we went to
press, there was a first release candidate of the stable version, whereas the
most recent beta version of websieve was published in July 2004.

The popular webmail client Squirrelmail® also has more capabilities than
simply interacting with IMAP servers. The plugin avelsieve® makes it
possible to edit filter criteria conveniently in a browser. It can also be used
to control the notifyd information service (see section 14.7 on page 252),
which provides information when certain emails are received.

The Webmin Cyrus plugin (see page 184) also allows Sieve scripts to be
managed on the server. However, only administrators should use this plu-
gin, as a lot of fine tuning is required to secure this web interface for use by
normal users.

Some email programs, such as KMail (see Figures 14.7 and 14.8), can also
be used to control a Sieve server. Where possible, you should recommend

See http://smartsieve.sourceforge.net/.

See http://sourceforge.net/projects/websieve/.

See section 5.1 on page 68.

See http://email.uoa.gr/projects/squirrelmail/avelsieve.php.

@D s W

244

14.6 The Sieve Email Filter

such an email client to your users. It is much more convenient than using
a web interface. If you do this, you should remember to activate the Sieve
port 2000 (TCP) in your firewall.

eno | Modify Account - KMail Figure 14.7:
You can activate

Account Type: IMAP Account

Sieve script
i Eilteri - .

General | Security | Eiltering administration in the

account settings of

the KMail client.

[%| Reuse host and login configuration

Managesieve port: [2000 I%]

Alternate URL: [|

Cancel

& O 7 [x] Manage Sieve Scri Figure 14.8:
KMail displays

|A\railable Scripts existing Sieve scripts

= 1 paul in a clear manner.

O address Right-click an email
O redirect account to create a
O stop new script.
@ wvacation

[quotatest

245

14 Advanced Cyrus Configuration

14.6.4 The Sieve Script Language

The Sieve script language is similar to C or PHP. When a Sieve script is
uploaded with sieveshell, it is checked and then written to the working
memory.

The script contains the filter criteria and the actions to be taken when each
criterion applies; these actions are placed in curly brackets. Instructions
have to end with a semicolon:

require "fileinto";

if address :is "from" "test@example.com" {
fileinto "INBOX.Testmails";
stop;

In this example, the emails from test@example.com (as determined by
the From: header) are automatically placed in the INBOX.Testmails of
the recipient, thanks to the fileinto operation. If, as in this case, an
instruction ends with stop, no other rules within the curly brackets are
processed for this email. In this way, any succeeding actions in the same
block can be temporarily deactivated. The stop command is also used
preemptively to stop an action safely. Here, if the fileinto command in
the example fails, the email is automatically forwarded to the INBOX.

For some actions, you may have to load additional modules using the requi
re operation. This applies to the functions fileinto, reject, vacation,
and envelope. Multiple modules are separated by commas and enclosed
in square brackets:

require ["fileinto", "vacation"];

Most rules in Sieve scripts are conditional queries that begin with if. After
the keyword come test commands.

The address test command is always used when you want to explicitly
check address fields in the email header (such as From:, To:, Cc:, and
Bcc:):

if address :is ["to", "cc"] "paul@example.com"

searches the To: and Cc: address fields for the specified address. Multiple
entries are combined in square brackets. If you do not specify anything
between the :is operator and the address, all address entries in the header
are checked.

If you want to evaluate the email envelope, load the envelope module,
which provides this function. The following, for example, deletes all emails
addressed to toeveryone@example.comin the SMTP dialog:

246

14.6 The Sieve Email Filter

require "envelope";
if envelope :all :is "to" "toeveryone@example.com" {
discard;

}

Header contents (often Date: or Subject:) can be evaluated using header.
This command can filter more exactly than address. You also use this

function if you want to use only a part of an address field (such as the To:

header) as a filter criterion:

require "fileinto";
if header :contains "To" "paul@example" {
fileinto "INBOX/memo";

}

This rule moves all emails that contain “paul@example” in a recipient
address into the memo directory; this includes emails addressed to paul@
example.comand to paul@example.net. The address function does not
have this ability.

The relational operators for header and for address are :is, :contains,
and :matches. A rule is satisfied when one of the following holds:

= The header matches the specified pattern exactly (:is).
= The header contains the specified pattern (: contains).

= The placeholder specified for :matches matches the header. The follow-
ing rule, for example, filters emails where the To: or Cc: header contains
an email address with user part finances and any domain part with the
top-level domain . com.

if header :matches ["To", "Cc"] "finances@x.com" {
discard;

}

If you want to use POSIX2-style regular expressions for comparison, you
would use :regex instead of :matches. For example,

require "regex";
if header :regex "Subject" "*\x**EROTIC" {
discard;

}

prevents emails whose subject line begins with “***EROTIC” from being
delivered.

If you want to check whether a header exists, use the exists command. To
find out whether a header does not exist, use not exists.

247

14 Advanced Cyrus Configuration

Use size if you want to use the size of an email with attachments as a
filter criterion. The condition if size :over 10Min a rule, for example,
stipulates that it applies to all emails larger than 10MB. For kilobytes and
gigabytes, specify K or G instead of M; if you want to filter by number of
bytes, you would specify only the number. Use :under 1M to search for
emails smaller than 1MB. It is not possible to directly determine whether
an email’s size corresponds exactly to a certain value.

If a rule applies, you can do the following with the filtered emails:

discard
This command deletes the email.

fileinto directory
This command moves the message to the specified directory. If the
directory does not yet exist, the email is placed in the INBOX.

keep
This command places the email in the INBOX, unless the recipient
address specifies a suitable subdirectory (see section 14.4 on page
237).

redirect email_address
This command returns the email to the MTA, which then redirects it
to the specified address. The recipient in the email envelope is then
only the address the email is redirected to. You can use this function
to formulate the most simple Sieve script possible:

redirect "paul@example.com";

This script forwards all emails addressed to the mailbox to paul@exa
mple.com.

reject text
This command returns the email to the sender, together with a mes-
sage.

require "reject";
reject "Spam not wanted";

This command returns all messages addressed to this mailbox to the
sender with the following comment in the email body:

Your message was automatically rejected by Sieve, a mail
filtering language.

The following reason was given:
Spam not wanted

248

14.6 The Sieve Email Filter

vacation text
The sender receives an out-of-office notification. The :days number
parameter prevents the sender from receiving an out-of-office reply
to every email addressed to this recipient. If you do specify the num-
ber of :days between notifications, the sender will receive the notifi-
cation no more often than every seven days:

require "vacation"; vacation "Am away on business until 6.20.";

You can also add the :addresses option followed by recipient ad-
dresses:

require "vacation"; vacation :days 2 :addresses ["geeko@example.co
m", "horst@example.com"] "Am away on business until 6.20.";

In this case, Sieve only sends an out-of-office reply to the sender if
the recipient is one of the addresses in the square brackets. :days
2 ensures that this reply is not sent out for every email to geeko@
example.com and horst@example.com, but is only sent every two
days. The recipient’s address can be specified not only in the To:
header, but also the Cc: or Bcc: headers; the email can even be a
forwarded email. It is not possible to create out-of-office replies for
third parties, as the rule only refers to the user’s own email account.

Conditional queries offer additional options:

if anyof (conditionl, condition2 ...){instructions;}
The instructions in the curly brackets are executed if at least one of
the specified conditions applies.

require "fileinto";
if anyof (header :is "From" "listadmin@example.com",
header :is "To" "user@list.example.com",) {
fileinto "INBOX/mailinglist";

For Sieve to sort an email into the mailinglist directory, the email
header must contain either the From: address 1istadmin@example.
com or the To: address user@list.example.com (or both).

if allof (conditionl, condition2 ...){instructions;}
This condition is like if anyof, but here all conditions have to ap-
ply:

if allof (address :is "listadmine@example.com", size :over 10M) {
[...]
}

249

14 Advanced Cyrus Configuration

In the example, the email address 1istadmin@example.commust be
in one of the header address fields, and the message has to be larger
than 10MB.

elseif allof (conditions){instructions;}
Alternative rules apply when the if condition is not met. You can use
anyof instead of allof.

else {instructions;}
Instructions are carried out when the if conditions and elseif con-
ditions are not met.

An example that uses these features is the following script, which requires
the modules fileinto and vacation containing the functions fileinto
and vacation.

require ["fileinto", "vacation"];
if address :is "paul.meier@example.com" {
fileinto "INBOX.Important";

1
elseif address :is "paul@example.com" {

keep;

}

else {
vacation :addresses ["admin-team@example.com", "support@example.com"]
"I'm on vacation ...";

}

Emails containing paul .meier@example.comin one of the header address
fields are sorted into the Important email directory, which is a subdirectory
of the INBOX. If the address is paul@example.com, the email is delivered
directly into the INBOX.

In all other cases, the vacation function evaluates the recipient. If the re-
cipient is admin-team@example. com or support@example.com, the sen-
der receives an out-of-office reply. This makes sense, for example, if your
email address is listed on email distribution lists or as a forwarding address.

When creating your filter script, remember that the first applicable rule is
executed and any rules that follow may no longer be applied.

There are other sample scripts that you can adapt to your own require-

ments, not only in the Sieve RFC 3028, but also on http://wiki.fastmail
.fm/index.php/SieveExamples, http://en.wikipedia.org/wiki/Sie
ve_(mail_filtering_language), and http://www.bath.ac.uk/bucs/
email/sieve.shtml.

250

14.6 The Sieve Email Filter

14.6.5 Setting Up Sieve Scripts Automatically for New
Accounts

There is very little documentation for a highly useful function that allows
Sieve scripts to be set up automatically for every newly created mailbox.
This function is very useful for fighting spam, for example. Activate it in file
/etc/imapd. conf using the switch autocreate_sieve_script, followed
by the path to the script to install:

autocreate_sieve_script: /var/lib/sieve/global/script-name

Make sure that the directory permissions in this directory allow the user
cyrus to access it.

Remember that the autocreatequotaswitch must have a value other than
0 for Cyrus to create a mailbox automatically when a new user first logs on
(see section 12.2 on page 203). The authentication data of the new user
must already be available.

Once Cyrus is restarted, it translates the specified script into byte code for
each new mailbox that is created automatically. You can follow this process
in the syslog:

Aug 27 07:52:14 linux imap[32729]:
login: [10.0.41.2] autol@example.com
plaintext User logged in
Aug 27 07:52:14 linux imap[32729]: autocreateinbox: User autol@example.
com, INBOX was successfully created in partition default
Aug 27 07:52:14 linux imap[32729]: autocreate_sieve: autocreate_sieve_c
ompiledscript option is not defined. Compiling it
Aug 27 07:52:14 linux imap[32729]: entered bc_action emit with filelen:
16
Aug 27 07:52:14 linux imap[32729]: entered bc_action emit with filelen:
200
Aug 27 07:52:14 linux imap[32729]: autocreate_sieve: User autol@example
.com, default sieve script creation succeeded

When user autol@example. comfirst logs on to the email server, the server
automatically creates a mailbox structure with an INBOX for that user. Then,
the global Sieve script (named redirect in this example) is compiled into
byte code suitable for Sieve and saved in the Sieve directory of the mailbox
in both byte code (redirect.bc) and cleartext:

linux: # 1ls -1 /var/lib/sieve/domain/e/example.com/a/autol/

total 8

lrwxrwxrwx 1 cyrus mail 12 Aug 27 07:52 defaultbc -> redirect.bc
-rW------- 1 cyrus mail 220 Aug 27 07:52 redirect.bc

-rw------- 1 cyrus mail 162 Aug 27 07:52 redirect.script

251

14 Advanced Cyrus Configuration

The Sieve directories for the individual mailboxes are stored in /var/lib/
sieve/, sorted alphabetically by the first letter of the domain and mailbox
name.

The user never sees this script and cannot edit it. It is still executed auto-
matically when emails are received for that user.

If you subsequently change the global script, this does not affect existing
mailboxes, only newly generated ones. If you want to update the Sieve
script for all mailboxes, you have to replace it manually in the Sieve direc-
tory for every user.

14.6.6 Adapting Sieve Scripts

When you migrate older Cyrus servers or introduce virtual domains, you
have to adapt the Sieve scripts that are on the server. To do this, call the tool
translatesieve, which you will find in /usr/share/doc/packages/cy
rus-imapd/tools/ in the tool collection:’

linux:/usr/share/doc/packages/cyrus-imapd/tools # ./translatesieve
you are using /var/lib/sieve as your sieve directory.
translating sievedir /var/lib/sieve... ab cde fghijklmnopg

rstuvwzxy z done

14.7 The notifyd Daemon

“T don’t think I've ever seen that in use,” “Does it even work?”, “I think that
daemon might be out of date, is it even included anymore?”. .. You usually
get answers like these when you try to tell people about the mysterious
Cyrus notification service. However, it is not true that this SERVICES entry
in the cyrus. conf file (see section 12.1.2 on page 201) is left over from the
early days and nobody remembered to delete it; the notify daemon really
works.

It operates in the background and receives its commands from the Cyrus
master process, if either the master process informs the information service
when new emails are received or a Sieve script provides notification that a
certain email has been received. The second option is also available to
normal users.

7 For some distributions, such as Debian or Fedora, you have to install the separate pack-
age cyrus-tools.

252

14.7 The notifyd Daemon

14.7.1 Drums or Smoke Signals?

To activate the notify service, simply enable the corresponding line in the
/etc/cyrus. conf file:

this is only necessary if using notifications
notify cmd="notifyd" listen="/var/lib/imap/socket/notify" proto="udp" pr
efork=1

Now you can decide whether you want to receive notifications and by what
mechanisms. The variables sievenotifierand mailnotifierin the /etc
/imapd. conf file determine whether you receive notifications, and you as-
sign the required delivery method as a value to one of these variables.

The mailnotifier parameter, if enabled, ensures that the notify daemon
sends out a notification every time an email is received. sievenotifier
specifies the type of notification for emails that correspond to a Sieve rule.

You can specify the values of these two options to make a global default
setting for the entire Cyrus system. You can override the default setting for
Sieve scripts with a :method specification, as shown in an example below.
If you do not set either option, the information service is disabled.

You can choose among the following delivery methods:

null
This method disables notifications. You can also leave out the entire
entry in the global configuration file. This value is useful in Sieve
scripts if you want to disable individual notification requests tem-
porarily without having to rewrite the entire script.

log
This method writes the message into the syslog. This setting is mainly
useful as a value for mailnotifierin the /etc/imapd. conf file and
can assist you when you track down errors. The logfile then contains
entries like this:

May 12 18:15:33 linux notifyd[13779]: do_notify using method ’log’
May 12 18:15:33 linux notifyd[13779]: MAIL, , paul@example.com, IN
BOX, "From: Peer Hartleben <mail@peer2peer.it> Subject: Tuesday T

o: paul@example.com "

Do not forget to set mailnotifier back to null (or to comment it
out) as soon as you have found the error, as logfiles can fill up quickly.

mailto
This delivery method is only available in Sieve scripts. It ensures that
the notify daemon sends an information email when an event occurs:

253

14 Advanced Cyrus Configuration

require "notify";
if header :contains "from" "boss@example.com" {
notify :method "mailto" :options ["paul@example.com"]
:message "The boss has sent a new email";

}

When an email is received from boss@example. com, this Sieve filter
rule sends a message to paul@example.com; the body of the email
contains the text The boss has sent a new email. The subject
line is always [SIEVE] New mail notification.

You can also enter the address of an SMS gateway® after :options if
you want the notify daemon to send you a text message.

Zephyr, sms, xmpp
There is no Cyrus documentation for these methods, and even fo-
rums and Internet drafts cannot provide an exact description. They
only mention that an appropriate “environment” is required for the
delivery of Zephyr, text message, or XMPP-(Jabber) notifications.

Zephyr is an ancient instant messaging system that was developed by
MIT between 1983 and 1993, but it is hardly ever used any more. If
you are interested, http://www.volker-wegert.de/node/455 pro-
vides instructions on how to install it on current Linux systems.

14.8 Cyrus and Other MTAs

Section 11.4 on page 191 explained how to dock Cyrus onto the Postfix
Mail Transfer Agent. However, you can use any MTA with this IMAP server.
The major difference from the Courier IMAP server is that Cyrus stores and
manages emails in own databases. For this reason, it is not enough for the
delivering MTAs to place the emails somewhere on the hard disk for Cyrus
to collect them.

Far too much work would be required to modify MTAs so that they store
emails in a format that Cyrus understands. Instead, the best solution is to
set up direct communication between Cyrus and the MTA. If both services
are running on the same computer, it makes sense to use a Unix socket for
the connection. If the MTA and the IMAP server run on different comput-
ers, a TCP socket is more suitable. You can also use a TCP socket locally,
but this will only incur unnecessary overhead, as the emails will have to be
assembled into TCP/IP packages.

Define the selected interface in the /etc/cyrus. conf file, in the SERVICES
section:

8 Your SMS gateway operator will provide this address.

254

14.9 Backing Up and Restoring Data

at least one LMTP is required for delivery
lmtp cmd="1lmtpd" listen="lmtp" prefork=0
Imtpunix cmd="1lmtpd" listen="/var/spool/postfix/public/lmtp" prefork=1

The LMTP socket, which is used when the MTA runs on a different com-
puter, has been commented out here. From Cyrus’s point of view, the
listen entry in the active definition of the Unix socket specifies the end of
the socket from which Cyrus receives the emails. Now you have to tell the
MTAs that they should use this socket to deliver emails.

If the MTA is unable to handle LMTP, it is also possible to deliver the emails
via the Cyrus deliver service. This is only possible if the MTA permits ex-
ternal commands for email delivery. Usually, only the Cyrus master process
uses the deliver service to sort the emails into mailboxes, but the service
can also be externally controlled.

In Exim, for example, you can do this with /usr/1ib/cyrus/bin/deliver
-m $local_part. The -m switch ensures that the mailbox name is speci-
fied; in Exim 4 it is read out of the local_part variable. You should only
use this method if you really have to, as delivery via deliver does not al-
ways work properly.

When any other error occurs, simply read the logfiles and observe which
service logs an error, so that you can determine where your troubleshoot-
ing should begin. Experience has shown that most errors are caused by
faulty paths, especially when Cyrus and the MTA are connected via the
LMTP socket, or by missing permissions—even if the error messages are
not always specific.

14.9 Backing Up and Restoring Data

Even though Cyrus email servers are rather stable, problems can still occur,
for example, when an error happens in the filesystem or when data is not
written correctly after a computer crashes. Cyrus then requires a lot of
work, as its data cannot simply be restored from a backup; this is due to the
fact that, in addition to storing emails on the hard disk, Cyrus also manages
index databases and status information. The mail store and administrative
databases must always agree, and only Cyrus can ensure this. If you do
have to make repairs, you can use the reconstruct program.

14.9.1 Using reconstruct to Repair Mailboxes

reconstruct searches for intact header files in the /var/spool/imap/ di-
rectory and then attempts to restore the status information and databases
in the /var/lib/imap/ directory. This tool only works properly for com-

255

14 Advanced Cyrus Configuration

plete mailboxes with complete index and header files. The program is in
the /usr/lib/cyrus/bin/ directory, and you start it as user cyrus.

If the database index is faulty, or if directories or mailbox contents have
been deleted from the command line, reconstruct will compare the index
of each mailbox with the existing data in the mailbox directory (if you call
reconstruct without options):

cyrus@linux:/usr/lib/cyrus/bin/$./reconstruct
user/paul@example.com
user/paul/Drafts@example.com
user/paul/Sent@example.com
user/paul/Test@example.com
user/paul/Trash@example.com
user/paul/mailclient@example.com
user/paul/memo@example . com

user/paul .hartleben@example.com
user/paul.hartleben/schrott@example.com
user/quotatest@example.com
user/quotatest/Sent@example.com
user/quotatest/Trash@example.com
user/geeko@example.com

user/cyrus

user/paul

user/pwtest

user.achim.Invoices

The command’s output simply shows that all mailboxes are being scanned.
You will only know that the repair has been successful if the mailbox is once
again available.

If you know where the error occurred, you can repair only the affected mail-
box in order to save time. Please note that you have to enter the mailbox
names using the appropriate separators. If unixhierarchysep:yes is set
in virtual domain environments, the call should look like this:

cyrus@linux:/usr/lib/cyrus/bin/$./reconstruct -r user/paul

When the -r switch is activated, reconstruct will recursively scan all the
mailboxes on the system, including the subdirectories, and will make any
required corrections. This takes quite a lot of time.

If a large number of index databases in /var/lib/cyrus/ are destroyed,
the -f option restores the mailboxes. You should only use this switch in
an emergency, as reconstruct will then search for cyrus.header files in
the /var/spool/imap/ directory and create a new mailbox for every file it
finds. All other information, such as quotas, is lost, and you have to enter
it again.

When loading backups onto a Cyrus system, you should proceed as follows:

256

14.10 Performance Tuning

Stop Cyrus.

Load the backup.

= Run reconstruct over the backup you just loaded.

Restart Cyrus.

14.9.2 Restoring Quotas

If quotas are defective or are missing after loading the backup, you can use
the quota tool to repair them. Call it as Unix user cyrus:

cyrus@linux:/usr/lib/cyrus/bin/$./quota -f mailboxname

If the -f switch is active, the tool repairs defective or inconsistent mail-
boxes.

Sometimes the quota information for a mailbox will be missing after you
have loaded a backup. If you cannot restore them using the cyradm tool,
the only option is to delete the quotaroot file. It is stored in /var/1lib/imap
/quota/ in the subdirectory of the mailbox. If a different configdirectory
is specified in /etc/imapd. conf, you should look for it there. Don't forget
to use quota -f mailboxname at the end to make the index database and
mail directory consistent with one another. Once you have done this, you
can use cyradm to set the quota again for that mailbox.

14.10 Performance Tuning

Thanks to indexes and minidatabases, Cyrus is known as a fast IMAP server.
However, this is usually a subjective assessment, as there are very few com-
parisons against other email servers.?

If you have enough time, you could have a detailed look at the system to see
if you can improve performance a little, as the state in which it is delivered
is usually far from the ideal state. Before fiddling with the workings, you
should bear the following in mind:

= Always work with a safety net—the key word is backup.

9 Carnegie Mellon University publishes many live statistics concerning Cyrus at
http://graphs.andrew.cmu.edu/, but as there are no comparisons to other mail
servers, these do not really serve as the basis for valid arguments.

257

14 Advanced Cyrus Configuration

= Design your test scenario so it fits everyday situations. Ready-made test
programs such as mstone!? can provide comparable results.

= Never change more than one value at a time, and test your system after
each change.

= And don't forget the backup.

The (positive) effects of tuning always depend directly on the performance
resources of your computer. These are disk I/0, CPU performance, and,
the most important of all, RAM. Cyrus shows off to advantage if there is a
lot of RAM. Mail servers are slowed down most by their searching of email
directories. For this reason, Cyrus saves all data required for the search in
small index databases. As the number of databases in the RAM increases,
the reaction time decreases.

14.10.1 Parameters in /etc/imapd. conf that Influence
Performance

The following options in the /etc/imapd. conf file affect the performance
of Cyrus:

berkeley_cachesize
This value specifies how much RAM each Cyrus index database may
use. You can specify a value between 20KB and 4GB, but you must
always specify the value in kilobytes. The default value is 512KB. You
should only increase this value cautiously, as it depends directly on
the following switch.

berkeley_txns_max
This is where you can specify how many simultaneous transactions
are permitted per database. You should be careful when making
changes here, and keep the system under careful observation; if you
set the value too high, busy computers can quickly be overloaded.
The default value is 100.

maxmessagesize
Use this to determine the maximum size of emails that can be trans-
ferred to Cyrus via the LMTP socket. The default value is 0, which
permits all emails to be transferred. Restrictions do not increase per-
formance directly, but they can help if your system is overloaded. But
be careful: You have to specify the value in bytes. (Can’'t programmers
ever agree on a single unit to use, at least for the same product?)

10 See http://mstone.sourceforge.net/.

258

14.10 Performance Tuning

poptimeout
By default, inactive POP3 connections are kept open for 10 minutes.
You can enter a shorter time (in minutes) to relieve the demand on
Sserver resources.

partition-name
You can distribute new mailboxes to additional mailbox partitions in
order to relieve the load on your RAID system, or if you are running
out of memory. For more information, see section 14.5 on page 239.

You can improve performance slightly by changing the format of the index
databases.

berkeley
Databases in this format react to queries fairly quickly and support
binary contents. They are often slightly unstable, which is usually
due to locking errors when accessed a lot.

berkeley-nosync
This option is identical to berkeley, but data is held in the cache
before being written. This increases the speed of write accesses. Un-
fortunately, it also reduces data security: If the cache is deleted for
some reason (a power outage, for example), the data is lost.

skiplist
This format was developed by the Cyrus programmers. If offers good
write and read access, supports binary contents, and is known to be
relatively stable. If locking problems occur with Berkeley databases,
skiplist is the next best option.

flat
Databases in this format are relatively easy to handle, as their con-
tents are text based. They are also fairly stable, but the speed for
write accesses is comparatively poor.

If you change the format of a database backend, it is not enough simply to
enter it in the /etc/imapd. conf file. You also have to convert the database
into the required format with the cvt_cyrusdb tool described on page 267.
Please also note that not every format is suitable for every Cyrus database:

seenstate_db
This is where you can specify the format of the index database for the
“read” status. The developers of Cyrus recommend skiplist, but
you can also use berkeley and flat.

annotation_db
This option specifies the format of the annotation database. This

259

14 Advanced Cyrus Configuration

contains server metadata, such as system information or the email
address of the server administrator. You can use berkeley and skip
list.

duplicate_db
In this database, Cyrus stores information that it requires to suppress
duplicate emails. This function is activated by default, but you can
deactivate it in the /etc/cyrus.conf file in the EVENTS{} section
(see section 12.1.3 on page 202).

You can use berkeley, berkeley-nosync, and skiplist. If you
use berkeley-nosync, Cyrus keeps changes in the cache and only
writes them into the database when the server is less busy. This value
is recommended here.

ptscache_db
This option specifies the format of a database that is used to opti-
mize the working memory management. You can use berkeley and
skiplist.

quota_db
The quota database contains the currently valid mailbox quotas. You
can use flat, berkeley, skiplist, and quotalegacy. The latter
option was developed specifically for managing quotas in Cyrus and
is therefore recommended.

subscription_db
The subscription database contains information on the mailboxes
that are currently in use. You can use flat, berkeley, and skiplist.

tlscache_db
The TLS cache memorizes TLS connection information. You can use
the database formats berkeley, berkeley-nosync, and skiplist.
We recommend berkeley-nosync, as caching information does not

have to be written immediately, and the I/O load on the disk is re-
duced.

You can also improve performance by using faster hard disks and choosing
an appropriate filesystem (see page 53). It is advisable to use a filesystem
that performs well when handling multiple small files. ReiserFS gets the
best results in most benchmark tests. However, we have found that ReiserFS
is not always stable and requires a lot of work and patience when problems
occur. Reiser4 makes an even better impression where speed is concerned,
but due to its beta status, it should be used carefully. When making your
decision, you should also check the repair tools available for your choice of
filesystem and take your skills with these tools into account.

260

Internal Structure and Modules

You do not necessarily need to know which modules a Cyrus IMAP server is
composed of and which internal auxiliary programs it uses, but this back-
ground information is important for troubleshooting. Cyrus is built ac-
cording to the classic Unix concept of “one service—one function,” which
means that it has a modular structure (as shown in Figure 15.1) and is con-
trolled by a master process, just like Postfix. The individual components of
Cyrus are listed in the /usr/1ib/cyrus/bin/ directory.

Nearly all the programs listed there are started exclusively by the Cyrus
master process and not manually. If you have to call any of them manually,
for example, when repairing a faulty mail server, you have to make each
call as the user cyrus.

The names can vary in different distributions; some Cyrus packages pro-
vided by distributions do not contain some of these tools, while others
contain additional special tools.

261

15 Internal Structure and Modules

Figure 15.1:

The most important
Cyrus processes and
their functions

Port 110 Port 143 Port 2004

—)

3d] [imapd] [ti

[

MTA

(Postfix)

relay_domains
transport_maps

[

pop

y I Cyrus-SASL
(ibsasl)

saslauthd
auxprop
authdaemond

master

User data
(File, SQL, LDAP, PAM)|

mailboxes

15.1 The Cyrus Daemons

The following programs are daemons that provide specific services in the
background. They are all started by the master process. This master pro-
cess is at the heart of Cyrus. It and all its dependent services run under
the cyrus Unix account, which provides additional security for the system.
Should an attacker hack into the IMAP server, he or she will only have the
permissions of cyrus.

idled
This service can be used to inform the mail client when new messages
have been received. Usually, mail clients check mailboxes regularly,
without knowing whether new emails have been received. The idle
daemon evaluates the signals from the LMTP daemon and forwards
this information to the mail client.

imapd
This daemon provides the IMAP function and opens the IMAP ports.

Imtpd
This service provides the LMTP socket and manages it according to
the configuration in /etc/cyrus.conf. It is the interface between
Cyrus and the delivering MTA.

Imtpproxyd
The LMTP proxy service is used in cluster setups and transfers the
emails received from the MTA to the backend server.

mupdate
This is the Cyrus Murder server service. It is required by Cyrus clus-
ters, where it synchronizes the information with that from the Cyrus
backend servers (see page 281).

262

15.2 Tools for Analysis, Maintenance, and Repairs

nntpd
This daemon downloads messages via the Net News Transfer Proto-
col.

notifyd
The Cyrus notification service (see section 14.7 on page 252) pro-
cesses the notification requests from the master process when an
email is delivered via LMTP. Depending on the configuration, it ei-
ther creates a log entry or sends a message (e.g., via email) when a
new email is received.

pop3d
This service provides the Cyrus POP3 function.

pop3proxyd
The POP3 proxy server is only used in cluster setups and transfers the
POP3 requests from mail clients from the frontend to the backend
server.

smmapd
Cyrus uses the Sendmail Socket Map Daemon to check whether a
mailbox exists and whether it is within its quota. If the mailbox does
not exist, or if it has reached its quota, smmapd provides this informa-
tion to the master process.

timsieved
This is the Sieve email filter service (see section 14.6.1 on page 240).

15.2 Tools for Analysis, Maintenance, and Repairs

Cyrus uses some of the following auxiliary programs internally; in many
distributions, they are already integrated in /etc/cyrus.conf. They can
also be called manually for analyses or repairs.

15.2.1 Statistics and Analysis

arbitron
This tool provides statistical information on all mailboxes, or on in-
dividual mailboxes if specified:

cyrus@linux:~/bin$./arbitron

Loading Mailboxes...Done

Loading USEeTrS. ..t inee e
example/net!user/quotatest 0 0
user.achim 0 0
example/com!user/paul/Trash 0 0

263

15 Internal Structure and Modules

example/com!user/paul .meier 0 0
example/com!user/paul /memo 0 0
example/com!user/paul 0 0
example/com!user/paul .meier/schrott 0 0

For each mailbox, this tool creates one line with the following infor-
mation: the mailbox name and the number of accounts that have
read this mailbox within the past 30 days, followed by the number of
subscribers to this mailbox directory.

The -d switch restricts the time period for which the statistical infor-
mation is supplied (-d 20, for example, will limit the statistical time
period to the past 20 days). The -p switch allows statistical evaluation
for more than one month (-p 10 provides statistical information for
the last ten months, for example).

chk_cyrus

This tool checks the consistency of the Cyrus databases by synchro-
nizing them with the email directories:

cyrus@linux:~/bins$./chk_cyrus
Examining partition: ALL PARTITIONS
checking: example.com!user.paul (/var/spool/imap/domain/example.com
/user/paul)

-> 5 records
checking: example.com!user.paul.Trash (/var/spool/imap/domain/examp
le.com/user/paul /Trash)

-> 0 records
checking: example.com!user.paul.memo (/var/spool/imap/domain/exampl
e.com/user/paul /memo)

-> 3 records
checking: example.com!user.paul”meier (/var/spool/imap/domain/examp
le.com/user/paul“meier)

-> 2 records
checking: example.com!user.paul”meier.schrott (/var/spool/imap/doma
in/example.com/user/paul “meier/schrott)

-> 2 records
checking: example.com!user.quotatest (/var/spool/imap/domain/exampl
e.com/user/quotatest)

-> 1 records
checking: sommer.top!user.geeko (/var/spool/imap/domain/sommer.top/
user/geeko)

-> 0 records
checking: user.paul (/var/spool/imap/user/paul)

-> 0 records
checking: user“horst (/var/spool/maill/user”horst)

-> 0 records

The list shows all existing mailbox directories, together with their
path in the filesystem and the number of emails found. If this in-
formation does not match the information in the Cyrus databases,

264

15.2 Tools for Analysis, Maintenance, and Repairs

the tool returns an inconsistency warning message. You should then
use reconstruct to repair the inconsistent mailbox.

mbexamine
This tool examines the mailbox, index, and header files and transfers
this information to another process, to the screen, or to a file. It is
useful if you need a detailed overview of the mailboxes.

If you call this command without a switch, it will provide information
on all mailboxes. You can also specify an individual mailbox:

cyrus@linux:~/bin$./mbexamine user/paul/memo@example.com
Examining user/paul/memo@example.com. . .

Mailbox Header Info:

Path to mailbox: /var/spool/imap/domain/example.com/user/paul/me
mo

Mailbox ACL: paul@example.com lrswipcda quotatest@example.
org lrs

Unique ID: l1la9e415d4564£279

User Flags: $NotJunk S$Junk JunkRecorded

Index Header Info:

Generation Number: 58

Format: NORMAL

Minor Version: 6

Header Size: 76 bytes Record Size: 60 bytes
Number of Messages: 1 Mailbox Size: 1499 bytes
Last Append Date: (1186641337) Thu Aug 9 08:35:37 2007
UIDValidity: 1164243577 Last UID: 12

Deleted: 0 Answered: 0 Flagged: 0

POP3 New UIDL: 1

Last POP3 Login: (0) Thu Jan 1 01:00:00 1970

Message Info:
000001> UID:00000012 INT DATE:1184694344 SENTDATE:1184666400 SIZE

:1499
> HDRSIZE:1497 LASTUPD :1186641337 SYSFLAGS:00000000 LINE
S:1 CACHEVER: 2
> USERFLAGS: 00000000 00000000 00000000 00000001
Envel>{278}("Tue, 17 Jul 2007 19:46:30 +0200" "Testtt" (("Peer Har
tleben" NIL "mail" "peer2peer.it")) (("Peer Hartleben" NIL "mail" "
peer2peer.it")) (("Peer Hartleben" NIL "mail" "peer2peer.it")) ((NI

L NIL "paul" "example.com")) NIL NIL NIL "<200707171946.30885.maile
peer2peer.it>")

deStr>{81}(“TEXT“ "PLAIN" ("CHARSET" "us-ascii") NIL NIL "7BIT" 2
1 NIL ("INLINE" NIL) NIL)

Body>{58}(“TEXT“ "PLAIN" ("CHARSET" "us-ascii") NIL NIL "7BIT" 2
1

CacHdr>{188}User-Agent: KMail/1.9.6

Content-Type: text/plain;
charset="us-ascii"

Content-Transfer-Encoding: 7bit

265

15 Internal Structure and Modules

Content-Disposition: inline
Message-Id: <200707171946.30885.mail@peer2peer.it>

From>{33}peerhartleben <mail@peer2peer.it>
To>{25}<paul@example.com>
Ce>{0}
Bce>{0}
Subjct>{8}"testtt"

This result shows the header information from the memo subdirectory
of paul@example. com’s mailbox; among other things, the header in-
formation shows the paths, the permissions, and the number, size,
and headers of the messages the mailbox contains. In the example,
the subdirectory contains a message with testtt in the subject line.

mbpath
This tool returns the path to the storage location in the system of the
specified mailbox’s contents (paul@example.com’s mailbox, in this
example):

cyrus@linux:~/bin$./mbpath user/paul@example.com
/var/spool/imap/domain/example.com/user/paul

15.2.2 Maintenance and Repair

The tools described here are useful aids for maintenance work on Cyrus.
Some applications can be run automatically, for example, as a cron job.

ctl_cyrusdb
This tool maintains and repairs all Cyrus databases. If you call the
program with the -r switch, it tidies up the database and attempts to
repair defects. This tool is executed automatically every 30 minutes
and whenever Cyrus is started. You can find it in the /etc/cyrus.
conf file in the sections START and EVENTS.

ctl_deliver
This tool carries out checks and maintenance on the deliver database
deliver.db. It is usually operated by Cyrus, but you can also use
it manually to read out the deliver database. This is done by call-
ing ctl_deliver -d, which lists the emails that were most recently
delivered.

ctl_mboxlist
This tool carries out internal checks and maintenance on the mailbo
xes.db database. This tool can also return the contents of that mail-
box if the -d switch is activated. The database contains a list of all
mailboxes and the permissions that have been assigned:

266

15.2 Tools for Analysis, Maintenance, and Repairs

cyrus@linux:~/bin$./ctl _mboxlist -d

example.com!user.paul default paul@example.com lrswipcda
example.com!user.paul.Drafts default paul@example.com lrswipcda
example.com!user.paul.Sent default paul@example.com lrswipcda
example.com!user.paul.Test default paul@example.com lrswipcda
example.com!user.paul.Trash default paul@example.com lrswipcda

cvt_cyrusdb
This tool converts Cyrus databases into different database formats.
When called without a switch, it shows the database formats that can
currently be converted. The conversion is done by issuing a com-
mand of the following form:

cvt_cyrusdb name of old db old db_format name of new db \
new_db_format

The following example converts annotations.dbfrom the skiplist
format to the flat format (see section 14.10.1 on page 259):

cyrus@linux:~/bin$./evt_cyrusdb /var/lib/imap/annotations.db \
skiplist /tmp/TEST-db flat

Converting from /var/lib/imap/annotations.db (skiplist) to /tmp/TE
ST-db (flat)

Warning: apparently empty database converted.

Make sure that you always enter the absolute paths to the databases,
as the tool will otherwise terminate with an error message.

cyrdump
This tool returns the contents of a mailbox on the standard output,
where the emails are shown one after another. You have to specify
the mailbox or subdirectory as the argument:

cyrus@linux:~/bin$./cyrdump user/paul@example.com > paul_ dump

creates a dump for paul@example. com’s mailbox and saves it in a file
named paul_dump.

quota
This tool manages and repairs the mailbox quota (see section 14.9.2
on page 257).

reconstruct
This tool initializes and repairs the Cyrus database directory (see sec-
tion 14.9.1 on page 255).

squatter
This program creates a squat fulltext index for every mailbox. It lists
all existing emails in this index so that they are easier to find for the

267

15 Internal Structure and Modules

mail client. Please note that the index can only account for existing
emails. When new emails are received, you have to run squatter
again. For this reason, it makes sense to activate this program as a
regular event in the /etc/cyrus. conf file, for example, by adding
the following line in the EVENTS section:

squatter cmd="/usr/bin/nice -n 19 /usr/lib/cyrus/bin/squatter" pe
riod=120

squatter now runs every two hours with a nice value of 19. After
activating squatter, you should observe your system load. If there
are a large number of large mailboxes, creating the index can take
some time and slow down the system. For this reason, you should
only start this service with a high nice value, so as not to put too
much unnecessary strain on your server.

15.2.3 Internal Tools

There are also service programs that only Cyrus can use and that are useless
for administrators.

compile_sieve
This tool translates Sieve scripts into byte code so they can run in
the Sieve daemon. It is almost identical to sievec and is used when
Sieve scripts are created automatically. There is more information on
this subject in section 14.6.5 on page 251.

cyr_expire
This tool marks messages as obsolete, thereby flagging them for dele-
tion. It has been entered as a regular command in the /etc/cyrus.
conf file in the EVENTS section (see section 12.1.3 on page 202).

deliver
This tool sorts delivered emails into the correct inboxes. It is usually
used only by the master process, but other MTAs can use it to deliver
emails (see section 14.8 on page 254).

fetchnews
This tool receives news from news servers approved as peering part-
ners and transfers these news messages to the Cyrus master process.

fud
This tool delivers master process information on the status of mail-
boxes and the emails they contain.

ipurge

This tool deletes emails from inboxes according to their age and ex-
piration date (see section 12.1.3 on page 202).

268

15.3 Other In-House Tools

sievec
Like compile_sieve, this tool translates Sieve scripts into binary
code so they can be executed by the Sieve daemon. It is executed
by default when Sieve scripts are uploaded.

tls_prune
This tool deletes expired TLS sessions from the tls_sessions.db
database (see section 12.1.3 on page 202).

15.3 Other In-House Tools

Some distributions contain additional Cyrus tools in the documentation
directory in /usr/share/doc/packages/cyrus-imap/tools/. This is a
collection of mostly undocumented scripts that can be used for additional
tasks.

arbitronsort.pl
This tool sorts the output of the arbitron statistics tool (see sec-
tion 15.2.1 on page 263) according to the number of users that have
selected and subscribed to a mailbox.

config2header
This tool is used to compile and patch the Cyrus source code; it is
called automatically during compilation.

config2man
This tool is also used to compile the source code and called automat-
ically during compilation.

convert-sieve.pl
This tool is required when upgrading Cyrus versions up to and in-
cluding 2.1.12. It adapts Sieve scripts to the namespace Cyrus uses
for virtual domains.

dohash
This tool is required for upgrading Cyrus versions up to and including
1.6.1. This tool creates a hash value for faster mailbox indexing.

masssievec
This upgrade tool for Cyrus versions up to and including 2.2.0 adapts
existing Sieve scripts to the modified byte code format.

mkimap
This tool creates the directory structure that Cyrus requires, which
consists of mailboxes and an index/administration section; it is usu-
ally only required when Cyrus is installed manually from the source

269

15 Internal Structure and Modules

code. During startup, the tool imports the working paths from the pa-
rameters configdirectory and partition-default in the /etc/
imap.conf file and creates the mailbox structure in these locations
in the filesystem:

linux:/usr/share/doc/packages/cyrus-imapd/tools # ./mkimap
reading configure file...

i will configure directory /var/lib/imap.

i saw partition /var/spool/imap.

i saw partition /var/spool/maill.

done

configuring /var/lib/imap. ..

creating /var/spool/imap. ..

creating /var/spool/maill. ..

done

mknewsgroups
This tool creates a Usenet newsgroup directory structure used to map
newsgroups in Cyrus. If the command is called with the -h switch, it
returns a list of all kinds of parameters.

mupdate-loadgen.pl
This Perl script creates load on the mupdate server in a Cyrus Murder
cluster (see page 281) by sending multiple requests:

linux:doc/packages/cyrus-imapd/tools # ./mupdate-loadgen.pl
RESERVE "test.mupdate-load.3830.0" "borked.andrew.cmu.edu"
FIND "test.mupdate-load.3830.112"

FIND "test.mupdate-load.3830.101"

FIND "test.mupdate-load.3830.82"

FIND "test.mupdate-load.3830.20"

RESERVE "test.mupdate-load.3830.1" "borked.andrew.cmu.edu"
FIND "test.mupdate-load.3830.25"

FIND "test.mupdate-load.3830.40"

FIND "test.mupdate-load.3830.101"

9 FIND "test.mupdate-load.3830.87"

10 FIND "test.mupdate-load.3830.141"

11 RESERVE "test.mupdate-load.3830.2" "borked.andrew.cmu.edu"
12 FIND "test.mupdate-load.3830.9"

13 FIND "test.mupdate-load.3830.25"

[...]

0w g 0 Uk W N E O

It is an important tool when testing Murder clusters.

rehash
If you activate the fulldirhash: 1 function in /etc/imapd.conf,
all mailbox directories are given a hash value of the entire username
for faster indexing. Use rehash to generate a new hash value.

270

15.4 The cyradm Administration Tool

translatesieve
When Cyrus is reconfigured to handle virtual domains, the names-
pace settings change. If you want to continue using the Sieve scripts
already on the server, you call translatesieveto adapt these scripts
to the modified namespace.

undohash
This tool removes hash values that have been set for mailboxes.

upgradesieve
In more recent versions of Cyrus, the Sieve directories have to be
adapted to a new structure. The following Perl script carries out this
task:

linux:/usr/share/doc/packages/cyrus-imapd/tools # ./upgradesieve
you are using /var/lib/sieve as your sieve directory.

upgrading sievedir /var/lib/sieve...ab cde fghijklmnop
grstuvwzixyz

done

If you need to upgrade, you can find more detailed information in the
change log of the new version.

15.4 The cyradm Administration Tool

The cyradm tool is the central point for administrators. It uses some of
the internal tools mentioned above and is controlled with the following
commands:

help
This lists all available commands.

listmailbox (1m for short)
This command lists the names of all mailboxes with reference to sub-
directories (children):

localhost> 1m

user/paul (\HasNoChildren)

user/paul .meier/schrott@example.com (\HasNoChildren)
user/paul .meier@example.com (\HasChildren)
user/paul/Draftseexample.com (\HasNoChildren)
user/paul/Sent@example.com (\HasNoChildren)
user/paul/Test@example.com (\HasNoChildren)
user/paul/Trasheexample.com (\HasNoChildren)
user/paul/mailclient@example.com (\HasNoChildren)
user/paul /memo@example.com (\HasNoChildren)
user/paul@example.com (\HasChildren)

271

15 Internal Structure and Modules

user/pwtest (\HasNoChildren)
user/quotatest/Sent@example.com (\HasNoChildren)
user/quotatest/Trash@example.com (\HasNoChildren)
user/quotatest@example.com (\HasChildren)

createmailbox (cm for short)

This command creates a top-level mailbox or a mailbox subdirectory:

localhost> cm user.exampleuser
localhost> cm user.exampleuser.Trash
localhost> 1m

user.exampleuser (\HasNoChildren)

user.exampleuser.Trash (\HasNoChildren)

deletemailbox (dm for short)

This command recursively deletes a mailbox (see section 14.2 on page
231).

renamemailbox (renm for short)

This command renames a mailbox:

localhost> 1lm

user.exampleuser (\HasNoChildren)

localhost> renm user.exampleuser user.testuser
localhost> 1m

user.testuser (\HasNoChildren)

setaclmailbox (sam for short)

This command sets ACLs for a mailbox (see section 14.2 on page 230).

deleteaclmailbox (dam for short)

This command removes all entries from the mailbox ACL. As param-
eters you have to specify the mailbox name and the user whose ACL
is to be removed:

localhost> lam user.testuser

anyone lrs

localhost> dam user.testuser anyone
localhost> lam user.testuser
localhost>

In this example, the 1rs ACL of user anyone was removed.

listaclmailbox (lam for short)

This command lists all active ACLs for a mailbox:

localhost> lam user.testuser
anyone lrs

The output shows that user anyone has permissions 1rs for mailbox
user.testuser (see Table 2.1 on page 36).

272

15.4 The cyradm Administration Tool

setquota (sq for short)
This command sets a quota for a mailbox or a subsidiary element (see
section 14.1.2 on page 228).

listquota (1q for short)
This command shows the active quota for a mailbox or a subsidiary
element (see section 14.1.2 on page 228).

listquotaroot (1qr for short)
This command shows how much of the quota of a mailbox hierarchy
has been used (see page 229).

setinfo
This command creates information messages that the mail client dis-
plays to the user when the user logs on, sets metadata that can be
read out with special commands, and activates a variety of functions.
It is called according to the syntax setinfo type value. The com-
mand knows the following functions:

= motd creates an information text that the mail client can display
during login:
localhost> setinfo motd "Have fun with Cyrus"

= comment allows the administrator to store a short description of the
server.

= admin sets the email address of the server administrator. This in-
formation can be read out with the GETMETADATA IMAP command,
but so far this has only been specified as an Internet draft.! Mail
clients that support it can show information on the server. How-
ever, the authors are not aware of any commonly used programs
that carry out this task for comment and admin. It is highly likely
that this will change, especially for clients that support the Lemon-
ade profile,> which has been much discussed lately. It will espe-
cially apply to mobile clients such as cell phones.

= shutdown makes it possible to specify a text that the user’s mail
client can show during login. The server then terminates the con-
nection immediately. This is very useful during maintenance, for
example.

= expire followed by a number specifies the number of days after
which an email is considered obsolete. You can use cyr_expire
to delete such emails. However, you should only call this function
if you really want to use it, as emails cannot be restored once you
have deleted them.

1 See http://tools.ietf. org/html/draft-daboo-imap-annotatemore.
2 See http://tools.ietf. org/html/draft-ietf-lemonade-profile-bis-05.

273

15 Internal Structure and Modules

= squat makes sure that all mailboxes receive a squat index (see sec-
tion 15.2.2 on page 267).

version
This function outputs the versions of the Cyrus server and the pro-
grams involved:

localhost> version

name : Cyrus IMAPD
version : v2.2.12 2005/02/14 16:43:51
vendor : Project Cyrus

support-url: http://asg.web.cmu.edu/cyrus
os : Linux
os-version : 2.6.16.21-0.15-xen
environment: Built w/Cyrus SASL 2.1.21

Running w/Cyrus SASL 2.1.21

Built w/Sleepycat Software: Berkeley DB 4.3.29: (Novem
ber 10, 2006)

Running w/Sleepycat Software: Berkeley DB 4.3.29: (Jun
e 16, 2006)

Built w/OpenSSL 0.9.8a 11 Oct 2005

Running w/OpenSSL 0.9.8a 11 Oct 2005

CMU Sieve 2.2

DRAC

TCP Wrappers

mmap = shared

lock = fentl

nonblock = fcntl

auth = unix

idle = idled

xfermailbox (xfer for short)
This function moves a mailbox from one backend server to another in
a Murder cluster. It is called according to the syntax xfer mailbox_
name target_mail_server.

localhost> xfer user.testuser mail.example.net

moves the user.testuser mailbox from the local computer to the
mail server mail.example.net.

quit
This function ends cyradm.

Have a look at the manual page for cyradm on your system, as the cen-
tral administration tool is given new functions in nearly every new Cyrus
version.

274

Cyrus at the Filesystem Level

If you want to see how Cyrus manages the emails it receives, it is worth
having a look at the pertinent directories in the filesystem. This knowledge
will be useful when creating backups, for example (see section 14.9 on page
255). Try not to change anything here. Cyrus manages its directories au-
tonomously, so manual changes can quickly lead to inconsistent mailboxes
and operational problems.

The Cyrus mail server stores and manages emails in two separate working
directories.

16.1 The Email Directory

Cyrus creates user mailboxes in the /var/spool/imap directory, and it also
stores the emails here. The directory contains the two main directories

275

16 Cyrus at the Filesystem Level

user/ and domain/. All unqualified mailboxes for users whose account
names do not have a domain part are stored in the first directory. The sec-
ond directory contains all qualified mailboxes belonging to user accounts
with a domain part (if virtual domains are in use). Upon receipt of the
first email, Cyrus creates an additional directory called stage./, where it
buffers all newly received emails before sorting them into the appropriate
user directories.

Mailboxes created by cyradm or created automatically always contain the
files cyrus.header, cyrus.cache, and cyrus.index, which are used to
manage the directory they are in. They have a binary format specific to

Cyrus.

linux: # ls -al /var/spool/imap/user/paul/

total 32

drwx------ 2 cyrus mail 4096 Nov 21 17:35 ./
drwx------ 3 cyrus mail 4096 Nov 21 16:29 ../
“rwW------- 1 cyrus mail 1989 Nov 21 17:10 1.
“rw------- 1 cyrus mail 1988 Nov 21 5:35:00 PM 2.
“rwW------- 1 cyrus mail 1988 Nov 21 5:35:00 PM 3.
-rwW------- 1 cyrus mail 2864 Nov 21 17:35 cyrus.cache
SrW------- 1 cyrus mail 169 Nov 21 16:29 cyrus.header
-rw------- 1 cyrus mail 256 Nov 21 17:35 cyrus.index
drw------- 2 cyrus mail 4096 Nov 21 16:35 memo/

cyrus.cache contains caching information that speeds up the display of
emails in this directory by the client, while cyrus.index saves index and
status information on the individual emails.

Figure 16.1: |FOIder = | Unread |T0ta| |
View of a mailbox in [EdlLocal Folders
Thunderbird with & L paul
£inbox
[EfDrafts
activated [Esent
[EdTest
[Edmailclient
[Ememo
& 1J quotatest
& inbox
[EdSent
[E@Trash
4, Searches

altnamespace

Cyrus stores the readable ACLs for the directory in cyrus.header:

linux:/var/spool/imap/user/paul/ # strings cyrus.header

Cyrus mailbox header

"The best thing about this system was that it had lots of goals."
--Jim Morris on Andrew

276

16.2 The Administration Directory

user.paul 7ab084d44544a02f
paul lrswipcda cyrus lrswipcda

In this case, users paul and cyrus have all permissions for this directory,
which is the user.paul mailbox. The character string following the mail-
box name uniquely identifies this mailbox.

Apart from administration files, the mailbox shown above contains a memo
subdirectory for user paul. If you enter the altnamespace option in the
imapd. conf file and activate it with value 1, for example, memo will appear
on the same level as the INBOX (thus, in the paul directory itself) in the
user’s email program (see Figure 16.1). Otherwise, all subdirectories are
arranged under the INBOX, and memo is then displayed in the client as a
subdirectory of the INBOX (see Figure 16.2). The altnamespace setting
only has a cosmetic effect for the user interface, and does not affect the
structure or processing of emails on the server.

|FOIder - | Unread |T0ta| | Fl'gure 16'2_'
[BLocal Folders View of mailbox
2 1 paul without

= & inbox 1
[EdlDrafts
[EdISent
[E=Test
[Emailclient
[Edmemo

& I quotatest

= 2 inbox - 2
[E=sent
[E&Trash

-4, Searches

altnamespace

The three numbered files show that paul’s mailbox has already received
three messages. Cyrus stores all emails as sequentially numbered files, and
the server adds a dot to the end of the name.

16.2 The Administration Directory

Cyrus creates all status information, databases, and index files for mail-
box administration under the /var/1ib/imap/ path. This is an extremely
sensitive area and should only be modified by Cyrus.

The contents of this directory are directly connected to the contents of
the mailbox directory. When a change is made to a mailbox, this change
has to be synchronized with the administration directory. This task is re-
served for the mail server, and may only be done manually with cyradm
or reconstruct. Making manual changes at the filesystem level nearly

277

16 Cyrus at the Filesystem Level

Figure 16.3:
This is how Mozilla
Thunderbird displays
the contents of the
msg/motd file.

always causes administration information to become inconsistent; in the
worst case, this can cause loss of emails.

/var/lib/imap/ contains the following individual files and directories:

annotations.db
This database contains internal information for Cyrus affecting the
mailboxes and the entire server, such as the email address of the post-
master entered with the setinfo! cyradm command, or text used to
store additional information concerning the server.

backup/
This directory contains automatically created backups of the mailbox
es.db database.

db/
This directory contains the current index database while the system is
running. These directories are newly generated every time the server
starts.

db.backupl/
This directory contains a copy of the annotations.db and mailbox
es.db databases currently in use.

deliver.db
This file is required for filtering and rejecting duplicate emails. It
contains a sender-recipient list of all delivered emails along with their
email ID. This information can be used to suppress duplicate emails.
This function is activated and deactivated in the /etc/cyrus.conf
file (see section 12.1.3 on page 202).

log/
This is where the IMAP server stores supplementary logging informa-
tion for entries in the syslog. The name of the logfile always corre-
sponds to the process ID of the IMAP server process.

mailboxes.db
This file is Cyrus’ main database, and contains information for all
mailboxes and their subdirectories, such as the mailbox name, user,
permissions, and so on.

Alert

Need coffee. Please call again later :)

1 See section 15.4 on page 273.

278

16.2 The Administration Directory

msg/
If the administrator saves a file called motd in this directory, the user
will see the text in this file when he or she logs in (see Figure 16.3).
The file could contain warning messages or information on using the
email system. Please note that only the text from the first line is
displayed, and that you may not use special characters.

proc/
This is a directory of the login processes of the email clients. This is
where Cyrus takes care of all active connections from IMAP clients.
Each of them gets an individual process ID which is used as a file-
name in this directory. Among other things, these files contain the IP
address of the mail client, the username, and the name of the mailbox
accessed by the client:

[10.0.41.2] paul@example.com example.com!user.paul

quota/
This directory contains files specifying the user quotas, which are
stored separately for each mailbox directory. The p/ subdirectory,
for example, contains the user.paul file, which in turn contains the
currently active mailbox quota.

socket/
This file contains the socket files that the Cyrus master process uses
to communicate with the subprocesses.

shutdown
If this file exists, Cyrus terminates all login attempts by clients and
requests the clients to display the first line of this text file as an alarm
message in the email client. This can be useful, for example, if you
want to prevent users from logging on during maintenance work on
the server, but still want to inform the users how long the server will
be down.

This function is supported by, among others, Thunderbird, Apple’s
Mail program, and even Microsoft Outlook email clients. Other pro-
grams, for example, KMail, do not display this information, but sim-
ply refuse to give the user access without providing an explanation.

tls_session.db
This database contains the session data of the SSL/TLS connections.
Once Cyrus has built a TLS connection to a client, it memorizes it in
this file and can therefore connect more quickly the next time that
same client logs in.

user/
This directory contains information on messages flagged as seen as

279

16 Cyrus at the Filesystem Level

well as a list of subscribed mailboxes. Cyrus stores them per mailbox
in subdirectories. Each subdirectory contains two files: userid.seen

contains the seen emails, while userid. sub contains the subscrip-
tion information.

280

Cyrus in a Cluster

As user mailboxes grow, but before the mail server reaches the limits of its
capacity, you should consider extending the system. For ways of doing this,
have a look at page 43.

For a long time, there was no stable solution that allowed Cyrus to be oper-
ated in a cluster. In the past three years, more work has been done on this
subject, as a good mail server has to be extendable.

The official answer to the problem is a Cyrus Aggregator or Cyrus Murder.
The term murder is another word for swarm, and refers to a murder of
crows, rather than to homicide.

17.1 The Cyrus Aggregator

This extension makes it possible to deal with load peaks by operating Cyrus
with frontend and backend mail servers. The Cyrus Aggregator is a type

281

17 Cyrus in a Cluster

Figure 17.1:

A Cyrus cluster setup
with two backend

servers

of load balancer that forwards requests to other Cyrus backend servers.
The required auxiliary programs have been part of the Cyrus distribution
from version 2.1. In some distributions, such as Debian, for example, it is
necessary to install the cyrus2x -murder package on all cluster computers.

According to the Cyrus programmers, this extension is still “relatively young
in the grand scheme of things,” and users deploy it at their own risk. The
authors know a few setups where the Murder clusters run smoothly and
stably; one of these setups is at Carnegie Mellon University.

LMTP POP3 IMAP Lt:imsieved
Pon‘ 24 Pon‘1 10 Port‘ 143 |Port ‘zooo
Cyrus mupdate server Cyrus frontend server SASL/
Knows the storage (<o Asks mupdate: "Which server is responsible?" | |==---~ > Authentication server
locations for all accounts Forwards the POP3/IMAP session (SQL, LDAP, etc.)

A A

e S T

POP3/IMAP server 1 POP3/IMAP server 2| | POP3/IMAP server 3 POP3/IMAP server 4 |
Accounts 0 — 2000 | -| Accounts 2001 — 4000/ - {Accounts 4001 — 6000|- - | Accounts 6001 — 8000/~ -~ -~
Local email storage Local email storage Local email storage Local email storage

Synchronize their account lists regularly using mupdate

17.1.1 The Aggregator Concept

A Cyrus cluster distributes administrative tasks onto three different server
types. During the first extension phase this increases performance as the
load of a large mail server is distributed to several small ones. Users will
not even notice this, as they still contact one mail server, just as before.

You require at least one frontend computer, one backend computer, and
one mupdate server (short for murder update) as the interface where mail-
box information is exchanged (see Figure 17.1).

The frontend server provides the interface with the clients and the MTA.
It is the first point of contact in the chain, and is responsible for receiving
user requests and balancing the load. It is also the direct point of contact
for the MTA. Users are authenticated on the frontend server, which also
reduces the computing load on the backend server. If the frontend server
fails, the entire system is brought to a standstill, as the mail clients then
cannot contact the mail server. In order to prevent this, you should operate
multiple frontend servers in parallel and regulate access to them with a load
balancer that distributes the user requests to different computers. Cyrus
itself does not do any load balancing here.

Backend servers are independent POP3/IMAP servers, as in our previously
described setups. Each of them manages a number of mailboxes and pro-
vides a list of these mailboxes to the mupdate server. A backend server

282

17.1 The Cyrus Aggregator

usually knows only one external “user”: the frontend server that collects
and delivers emails and has to be authenticated for this purpose. If one of
the backend servers fails, the mailboxes on this computer are unavailable,
but the other backend servers are unaffected.

The mupdate server, on the other hand, is essential. It functions as the
memory of the cluster, as it manages the lists showing which mailboxes are
stored on which backend server. The frontend servers require this infor-
mation so that they know which backend server to address. The mupdate
server synchronizes the lists regularly with the backend servers. If this com-
puter fails, the frontend servers are left in the dark and none of the users
are able to access their mailboxes. For this reason, you should always have
a reserve mupdate computer that is ready for operation.

When a user wishes to look at his or her mailbox, the mail client contacts
the frontend server. The frontend server checks the access data. If this
is correct, it attempts to determine the backend server where it will find
this user’s mailbox. It asks the mupdate server for this information. If the
requested mailbox exists, the frontend server contacts the corresponding
backend server and calls up the mailbox for the user.

17.1.2 The Cluster Setup

Before setting up a cluster, you should consider the mail partitions and the
required memory reserves (see also section 14.5 on page 239). Every back-
end server can have its own hard disk space or be connected to a central
storage system, which should be redundantly secured. The following setup
assumes that the backend servers use their own hard disk space.

Create additional Cyrus user accounts on the mupdate and backend servers
to enable the frontend, backend, and mupdate servers to authenticate one
another. You could use the same data source as that used for normal users,
but then you would have to (for example) connect the mupdate server to
an LDAP server, and this would make the setup even more complicated and
more difficult to troubleshoot. For this reason, it is advisable to store the
Cyrus update users in the sas1db2 database on the backend computers and
the mupdate server, and to use that database as an additional authentica-
tion source (see section 11.4.1 on page 194).

The Frontend Server

To enable the frontend server to authenticate mail clients making requests,
simply enter the data source you currently use in the /etc/imapd.conf
file. The following imapd.conf entries inform the frontend server of the
name of the mupdate server and how to log on to it.

283

17 Cyrus in a Cluster

servername: cyrus-frontend.example.com

specifies the fully qualified domain name (FQDN) of the frontend server,
which is to be used for communication between the individual cluster
servers. To specify the FQDN of the mupdate server, use the following:

mupdate_server: mupdate.example.com

The mupdate_port parameter specifies the port on which the mupdate
server listens:

mupdate_port: 3905

You have to enter the username twice, as Cyrus SASL authenticates the user
and then checks whether the user is authorized to communicate with the
mupdate server:

mupdate_username: cyrus-backend
mupdate_authname: cyrus-backend

You can use the same username as for the backend server—no additional
user entry for the frontend server is required. Unfortunately, you have to
enter the password in cleartext:

mupdate_password: secret

After the frontend server has logged on to the mupdate server, the mupdate
server tells the frontend server which backend server contains the mailbox
of the requesting client. The frontend server now logs on to the appropriate
backend server. The following imapd. conf entries specify how it does this:

proxy_authname: cyrus-frontend

This entry specifies the name the frontend server uses to log on to the
backend servers. You can specify a separate password for each backend
server:

cyrus-backend password: secret
cyrus-backend2_ password: secret

The part of the parameter name before the _password suffix has to corre-
spond to the host part of the FQDN of the corresponding backend server

284

17.1 The Cyrus Aggregator

(cyrus-backend and cyrus-backend?2 in this case). This means that the
different backend servers must have different hostnames.

Now you have to instruct the frontend server to forward all IMAP com-
mands to the appropriate backend server, as they cannot be processed lo-
cally anymore. To do this, set the following value in the /etc/imapd.conf
file:

proxyd disable mailbox_referrals: 1

The frontend server now has access to all cluster components involved and
is able to answer client requests.

If you use Sieve emalil filtering, Sieve now only runs on the backend servers;
the frontend server has to transfer Sieve commands from the user to the
proper backend server. As a single machine in a non-cluster (single-server)
setup, it would be responsible itself for redirecting Sieve requests to the
local Sieve server. For cluster operation, you have to switch this function
off in the /etc/imapd. conf file:

sieve_allowreferrals: 0
Deactivates referrals to the local Sieve service.

sieveuserhomedir: no
Deactivates the use of Sieve user directories
on the local computer.

sievedir: /var/lib/sieve
The directory containing the Sieve scripts on the
corresponding backend server.

To configure the additional services that communicate with the mupdate
server, go to the /etc/cyrus. conf file and add the following to the section
SERVICES:

mupdate cmd="mupdate" listen="mupdate" prefork=1l

This line activates the mupdate service that listens on port 3905 and makes
sure there is always a a running instance.

fud cmd="fud" proto="udp" listen ="4201" prefork=0 maxchild=10

This line collects and evaluates the information on the user mailboxes pro-
vided by the mupdate server. Fast UDP is used as the protocol here. The
service runs on port 4201 and may start a maximum of 10 subprocesses.
This is a suitable default value. If your clients have to wait for a long time,
you can increase this value step by step. If you do this, make sure to use
top to monitor the load on your system.

When you restart Cyrus, it will import and apply this configuration.

285

17 Cyrus in a Cluster

The Backend Server

A backend server is an independent Cyrus mail server without an authen-
tication source for the users. The configuration differs from the standard
configuration in that the computer informs the mupdate server regularly
about its mailboxes and has to allow the frontend server to log in.

Make the following entry in the /etc/imapd. conf file so that the frontend
can be authenticated in the sas1db2 database:

sasl_pwcheck method: auxprop

Now that backend server will use the auxprop module for authentication.
This module reads the sasldb2 database by default in distributions such
as SuSE; on other systems you may have to enter this information:

sasl_auxprop plugin: sasldb

You can also use ldapdb or sql instead of the sasldb plugin (for more
information, see section 13.2.1 on page 212).

To initialize this database, create the Cyrus user that the frontend server
will use for authentication on the backend server. In this example, we have
used cyrus-frontend:

linux: # saslpasswd2 cyrus-frontend
Password: secret

Again (for verification): secret

Now check whether the cyrus system user owns the database you have just
created and whether it is part of the mail group. If this is not the case, issue
chown cyrus:mail /etc/sasldb2at the command line to correct this.

You have to carry out this process once on every backend server and on
the mupdate server. The frontend server does not require this data source
because no other server from the cluster needs to be authenticated on the
frontend server. Only the frontend server needs to be able to log on to the
mupdate server and the backend servers.

To inform the backend server which mupdate server it should provide in-
formation on its mailboxes to, and to instruct it how to communicate with
that mupdate server, enter the following in the /etc/imapd. conf file:

mupdate-server: cyrus-mupdate.example.com
The FQDN where the server can reach the mupdate server

mupdate_port: 3905
The port where the server can communicate with the mupdate server

286

17.1 The Cyrus Aggregator

mupdate_username: cyrus-backend

mupdate_authname: cyrus-backend

mupdate_password: secret

The access data for authentication on the mupdate server.
You have to enter the password in cleartext.

Now you have to specify which frontend servers may access the backend
server:

proxyservers: cyrus-frontend
Hostname of the frontend server. You can specify more than one,
and separate them with spaces.

Use the admins parameter to specify the Cyrus users that have administra-
tor permissions for the backend server:

admins: cyrus cyrus-frontend

Give these permissions to the cyrus Cyrus administrator and to cyrus-
frontend, so that the frontend server can process the mailboxes.

If you want to move user mailboxes from one backend server to another,
you have to use allowusermoves explicitly to permit the frontend server
to begin the moving process:

allowusermoves: yes

The xfermailbox cyradm command will only function properly if you have
set this value on the backend server (see section 15.4 on page 274).

Users can only subscribe to IMAP directories on a backend server other
than their own if you permit this explicitly:

allowsubscribes: yes

Activate the cluster services in the /etc/cyrus. conf file. Go to the START
section and enter the following line:

mupdatepush cmd="ctl mboxlist -m"

This will ensure that the ctl_mboxlist program starts when the server
starts, and the -m switch ensures that the program synchronizes the local
mailboxes with the list on the mupdate server. If the mailboxes change, the
program will contact the mupdate server during regular operation. The

fud cmd="fud" proto="udp" listen="4201" profork=0 maxchilds=10

entry in the SERVICES section activates the service that manages the mail-
box information; the same applies for the frontend server.

287

17 Cyrus in a Cluster

The mupdate Server

The mupdate server is the link between the frontend and backend servers,
so it has to be able to communicate with both of them and always have an
up-to-date list of the mailboxes on the individual backend servers.

Set up the authentication in the /etc/imapd. conf file as you did for the
backend server:

sasl_pwcheck method: auxprop
sasl_auxprop plugin: sasldb

You also have to create the user that the backend server will use for au-
thentication on the mupdate server (using saslpasswd2 cyrus-backend
in this example). Do not forget to assign read permissions for the database
containing the login information to user cyrus with chown cyrus:mail
/etc/sasldb2.

The following configuration entries in /etc/imapd. conf will put Cyrus in
the mupdate mode:

admins: cyrus-backend
Cyrus account used by the backend server for authentication.

The backend server receives administrative permissions for this account.

servername: cyrus-mupdate.example.com
The hostname used by the mupdate server when communicating
with the other servers.

To activate the mupdate service, go to the SERVICES section in the /etc/
cyrus. conf file and add the following line:

mupdate cmd="mupdate -m" listen="mupdate" prefork=1

The -m switch starts the mupdate service as the master that listens on port
3905.! This service always keeps an instance on idle so that it can react
immediately to a request. You have to restart Cyrus to activate the mupdate
setup.

Testing

Once you have set up all of the three types of cluster machines, you should
observe the email and system logs (using tail -f /var/log/messages
and tail -f /var/log/mail, for example) so that you can detect any er-
rors immediately. If everything looks good, deliver an email to the frontend
server:

L Without this option, mupdate will start as the slave, which is the case on the backend
servers.

288

17.1 The Cyrus Aggregator

cyrus-frontend # telnet localhost 25

Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]1’.

220 cyrus-frontend.example.com ESMTP Postfix
HELO mail.heinlein-support.de

250 cyrus-frontend.example.com

MAIL FROM: <p.hartleben@heinlein-support.de>
250 Ok

RCPT TO: <paul@example.com>

250 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

Subject: This is a test email

Test

250 Ok: queued as 835281C3C2

quit

221 Bye

Connection closed by foreign host.

If this email reaches the mailbox on the backend server, you will know that
this part of operation works. Now check a user mailbox. The easiest way is
to check the mailbox on the frontend server with telnet:

linux: # telnet localhost 143

Trying 127.0.0.1...

Connected to localhost.

Escape character is [Bel KA

* OK linux Cyrus IMAP4 v2.2.12 server ready

a00l1 LOGIN paul@example.com secret

a001 OK User logged in

a002 SELECT inbox

* FLAGS (\Answered \Flagged \Draft \Deleted \Seen S$NotJunk S$Junk JunkRec
orded)

* OK [PERMANENTFLAGS (\Answered \Flagged \Draft \Deleted \Seen $NotJunk
$Junk JunkRecorded \«*)]

* 6 EXISTS

* 0 RECENT

* OK [UNSEEN 2]

* OK [UIDVALIDITY 1164122999]

* OK [UIDNEXT 66]

a002 OK [READ-WRITE] Completed

a003 fetch 2 body[header]

%+ 2 FETCH (FLAGS (\Seen $NotJunk JunkRecorded) BODY [HEADER] {1520}2
Return-Path: <paul@example.com>

2 This listing is also interesting because it shows the use of custom IMAP flags: Here, a
spam filter on the client flags all incoming emails as JunkRecorded and as $NotJunk
or $Junk.

289

17 Cyrus in a Cluster

Received: from gucky.heinlein-support.de ([unix socket])
by linux (Cyrus v2.2.12) with LMTPA;
Tue, 17 Jul 2007 19:47:58 +0200

X-Sieve: CMU Sieve 2.2

[...1]

From: Peer Hartleben <p.hartleben@heinlein-support.de>

To: paul@example.com

Subject: testttt

Date: Tue, 17 Jul 2007 7:48:49 PM +0200

User-Agent: KMail/1.9.6

MIME-Version: 1.0

Content-Type: text/plain;

charset="us-ascii"

Content-Transfer-Encoding: 7bit

Content-Disposition: inline

Message-Id: <200707171948.49989.paul@example.com>

)
a003 OK Completed (0.000 sec)

Should you encounter any trouble, one of the following hints will usually
help you solve your problems:

= All operations have to run on the frontend server. This applies to send-
ing and receiving emails and to creating and managing mailboxes. Do
not access the backend servers directly, as you will otherwise risk incon-
sistencies in your system.

= All Cyrus features in use must be active on the frontend and backend
servers. If, for example, you use altnamespace or virtdomains, you
have to enter these parameters identically in /etc/imapd.conf on all
computers apart from the mupdate server. Otherwise the users will be
unable to access their mailboxes or will only see a part of them.

= Make sure the hostnames are consistent. Unless you specify otherwise,
SASL will use the hostname of the machine for authentication on the
mupdate server, for example. If you change the hostname, the computer
can no longer log on. To be on the safe side, you should define the com-
puter name using the servername option in the /etc/imapd. conf file.
Cyrus will then use the name specified here instead of the actual host-
name.

= Mailboxes are no longer created automatically in a cluster. On single-
server systems, Cyrus automatically creates mailboxes for new users if
the users’ authentication data is available; in Murder clusters, you have
to create the mailboxes manually. Developers are currently working on
making this feature automatic in the Murder setup.

290

17.2 Cyrus Replication

17.2 Cyrus Replication

As we indicated previously, frontend servers can be cloned and addressed
through a load balancer, but we have not mentioned redundancy in con-
nection with backend servers. Every backend server contains different mail-
boxes. This means there is no backup for any of them: If one of these back-
end computers is unavailable, the affected users will not be able to access
their mailboxes by any other means.

A replication mechanism exists in Cyrus version 2.2 and higher, but it is
still in the beta stage. This is why Carnegie Mellon University has provided
a warning: Deploy at your own risk. Fearless administrators who wish to be
beta testers and use it should read the official how-to guide.® This replica-
tion mechanism can be used for backend servers in a Murder setup or for
independent Cyrus mail servers.

The only other alternative is to regularly copy the data on a Cyrus backend
to an identical system that can be activated if necessary and take over the
Cyrus tasks of that machine. This process is similar to the backup described
in section 14.9 on page 255.

17.2.1 Replicating the Authentication Data

Because authentication data is managed separately by the Cyrus system, it
also has to be replicated separately. You have to do this yourself, and you
can use the mechanisms of the data sources involved to help you where
possible. In the simplest case, where authentication is done via Unix sys-
tem accounts, you only need a cron job that uses rsync to regularly save
/etc/passwd, /etc/shadow, and /etc/groups, if required, or you can
use central user management with the Network Information Service (NIS).
For LDAP and MySQL databases, it is advisable to use the synchronization
mechanisms of these systems, but a description would exceed the scope
of this book. Starting from version 5, MySQL has an integrated replication
mechanism that is described in more detail on http://dev.mysql.com/
doc/refman/5.0/en/replication.html.

For LDAP databases you can use the slurpd service, which enables a master-
slave replication of LDAP servers and can therefore provide redundancy for

an authentication backend. For more information on operation and imple-

mentation, go to http://www.bind9.net/manual/openldap/2.2/repli

cation.html.

3 See http://cyrusimap.web.cmu.edu/imapd/install-replication.html.

291

Appendixes

IMAP Command Reference

IMAP is a complex protocol with a complex and versatile definition. In
addition to RFC 3501," which defines IMAP in version 4revl, the version
valid since March 2003, there are huge numbers of other RFCs and Internet
drafts containing numerous IMAP extensions.

This variety is not surprising, as the CAPABILITY command in the IMAP
protocol was intentionally designed as a foundation that servers can build
upon to provide flexible optional extensions and specialized functions that
the inventors of IMAP could never have imagined.

Unfortunately, a list of these innumerable extensions would exceed the
scope of this book, and many of the more recent extensions are not yet in-
cluded in current software versions. There are many wonderful extensions:

1 See http://www.faqs .org/rfcs/rfc3501.

295

A IMAP Command Reference

URLAUTH (RFC 44672) allows the specification of an IMAP server, login data,
IMAP folder, and messages in this style: imap://tux@example.com/INBOX
/;uid=425. This makes it possible to reference individual messages, and
to pass this reference to third parties. Other RFCs extend existing stan-
dards: RFC 47313 was published in November 2006 and provides additional
functions for the SEARCH commands.

The following reference introduces IMAP4revl and the main IMAP exten-
sions currently supported by Courier and Cyrus.

Some IMAP commands are only available during specific periods of an
IMAP session. For this reason, the commands are sorted according to the
statuses described in section 2.2.2 on page 31. IMAP commands and sub-
commands are not case sensitive.

In the IMAP protocol, lengths are measured in octets, or units containing
eight bits. Nearly all current systems use eight bits per byte, so octet and
byte can be used synonymously: 120 octets correspond to 120 bytes.

A.1 Commands Always Available to Clients

CAPABILITY
This command queries the capabilities of the server (see also section
2.2.3 on page 33). The server returns an untagged reply line that
starts with CAPABILITY IMAP4revl. Every server has to support the
capabilities STARTTLS, AUTH=PLAIN, and LOGINDISABLED:

a001 CAPABILITY
+* CAPABILITY IMAP4revl STARTTLS AUTH=GSSAPI LOGINDISABLED
a001l OK CAPABILITY completed

The server uses LOGINDISABLED to announce that it cannot receive
an authentication request from this client at this time. In the exam-
ple, the server will most probably not permit authentication until the
client uses STARTTLS to switch into encrypted mode.

NOOP
As in many other protocols, this command is short for no operation.
The client can use this command to keep the connection open and
reset any autologout timers:

a002 NOOP
a002 OK NOOP completed

When replying to NOOP, many servers provide the current message
status, which informs the client if new emails have been received:

2 Seehttp://www.ietf.org/rfc/rfc4467.txt.
3 Seenhttp://www.ietf.org/rfc/rfc4731.txt.

296

A.2 Commands Available in the Not-Authenticated Status

a003 NOOP

* 22 EXPUNGE

* 23 EXISTS

* 3 RECENT

* 14 FETCH (FLAGS (\Seen \Deleted))
a003 OK NOOP completed

LOGOUT
If a client logs out using LOGOUT, the server sends an untagged BYE
and then closes the connection:

a004 LOGOUT
* BYE IMAP4revl Server logging out
a004 OK LOGOUT completed

A.2 Commands Available in the Not-Authenticated
Status

AUTHENTICATE

This command starts the authentication of the client. The client and
the server then exchange additional information, depending on the
authentication method used. In challenge-response procedures, the
server sends the session key (the challenge to the client) in a line
marked with a plus sign (+), and the client uses the challenge, the
username, and the password to calculate the corresponding login
string (the response).

a001l AUTHENTICATE CRAM-MD5

+ PDUwWNJZGNEVFNDNGMONCQzIzODI1MEVERTc30Dg4Qjg4QGtqaWRkZXI+
cC50ZW1lubdVpbiBl1ZjlkzdQ5YjIxYzk3ZekzNzQ4MzUhMmMQ2NDYzZj1hOA==
a001 OK LOGIN Ok.

LOGIN
This command requests a simple login in cleartext; according to the
RFC, every server must support this type of login. For security rea-
sons, it should only be available in SSL/TLS mode, as the username
and password are transmitted without protection, which means they
are easy to detect during transmission unless further steps are taken
to secure the communication channel:

a00l LOGIN tux secret
a001l OK LOGIN completed

STARTTLS
The client uses this command to initiate the switch to SSL/TLS-en-
crypted communication. It continues to use the existing connection:

297

A IMAP Command Reference

a00l CAPABILITY

* CAPABILITY IMAP4revl STARTTLS LOGINDISABLED
a001 OK CAPABILITY completed

a002 STARTTLS

a002 OK Begin TLS negotiation now

The server is now able to return other CAPABILITY replies in SSL/TLS-

encrypted connections. It can offer a larger variety of login mecha-
; 4

nisms:

a003 CAPABILITY

* CAPABILITY IMAP4revl AUTH=PLAIN
a003 OK CAPABILITY completed

a004 LOGIN tux secret

a004 OK LOGIN completed

A.3 Commands Available in the Authenticated

Status

SELECT

This command selects a folder to function as the context for later
commands that operate on messages, and deletes the emails flagged
as \Deleted from the previous working folder. The server replies to
this command with a number of untagged lines that may be returned
in an arbitrary sequence; these lines provide information to the client
on the status of the folder:

a005 SELECT INBOX

* FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
* 172 EXISTS

* 1 RECENT

* OK [UNSEEN 12] Message 12 is first unseen

* OK [UIDVALIDITY 3857529045] UIDs valid

* OK [UIDNEXT 4392] Predicted next UID

* OK [PERMANENTFLAGS (\Deleted \Seen \x)] Limited
a005 OK [READ-WRITE] SELECT completed

The server uses FLAGS to provide information on the flags it is cur-
rently storing in the RAM (see section 2.2.3 on page 35), while 0K
[PERMANENTFLAGS (flagl flag2 ...)] specifies all flags that the
client can change permanently. If the server does not provide this in-
formation, the client can assume that it may change all flags during
the session, but that the server will not store any of these changes.

Because the communication between client and server is encrypted, it cannot be car-
ried out as shown here in a session initiated via telnet; instead, you have to use a tool
such as openssl.

298

A.3 Commands Available in the Authenticated Status

The number preceding the word EXISTS indicates how many mes-
sages the folder contains, while RECENT follows the number of mes-
sages flagged as \Recent or the new emails received since the last
login; the client is the first to view these emails. The server uses 0K
[UNSEEN number] to return the sequence number of the first unread
message (not the number of unread messages).

OK [UIDNEXT unique-id] informs the client of the next Unique ID;
OK [UIDVALIDITY unique-id-value]returns the Unique ID Value
that is currently valid (see section 2.2.1 on page 29).

The server uses tagged reply tag OK [READ-WRITE] SELECT comp
lete to indicate that it has finished executing the SELECT command.
If the client has write permissions for the folder, the server should
add the information [READ-WRITE] to the OK reply. If the client only
has read permissions, the server must return [READ-ONLY].

EXAMINE
This command corresponds to the SELECT command, but the client
selects the folder only for reading. The server returns the same reply
as that it returns to the SELECT command, but specifies [READ-ONLY]
in the concluding OK line:

a006 EXAMINE Test

* 17 EXISTS

* 2 RECENT

* OK [UNSEEN 8] Message 8 is first unseen

* OK [UIDVALIDITY 3857529045] UIDs valid

* OK [UIDNEXT 4392] Predicted next UID

* FLAGS (\Answered \Flagged \Deleted \Seen \Draft)

*+ OK [PERMANENTFLAGS ()] No permanent flags permitted
a006 OK [READ-ONLY] EXAMINE completed

Access via EXAMINE may not alter the \Recent flag of new messages,
as that would be a change to the directory by the server.

LIST
The LIST command returns a list of all directories available to the
client. The server also specifies the folder attributes and the applica-
ble hierarchy delimiter in its untagged replies:

a0l6 LIST "" "x"

* LIST (\HasNoChildren) "." "INBOX.Private.Holiday"

%+ LIST (\HasNoChildren) "." "INBOX.Private.Orchestra"

%+ LIST (\HasChildren) " "INBOX.Private"

* LIST (\HasNoChildren) "." "INBOX.ToDo"

%+ LIST (\HasNoChildren) "." "INBOX.Test"

%+ LIST (\HasChildren) ".," "INBOX.Book stuff"

%+ LIST (\HasNoChildren) "." "INBOX.Book stuff.LPIC-1"

% LIST (\HasNoChildren) "." "INBOX.Book stuff.Postfix 3"

299

A IMAP Command Reference

«+ LIST (\HasNoChildren) "." "INBOX.Book stuff.Snort"
* LIST (\HasNoChildren) "." "INBOX.Book stuff.IMAP"
%+ LIST (\Unmarked \HasChildren) "." "INBOX"

a0l6 OK LIST Completed

The LIST command has two parameters: the second consists of the
mailbox name or a wildcard pattern. The first is called a reference,
and it specifies the context in which the mailbox name is interpreted
in relation to the reference:

a0l17 LIST "INBOX.Private" "x"

* LIST (\HasNoChildren) "." "INBOX.Private.Holiday"

*+ LIST (\HasNoChildren) "." "INBOX.Private.Orchestra"
a0l17 OK LIST completed

The reference is important if the IMAP server allows access to a filesys-
tem or a news server in accordance with RFC 3501. As neither Courier
nor Cyrus permit this, the subject would exceed the scope of this
book.

During normal email operation, the reference argument remains emp-
ty, as shown in the command tagged as a016. The mailbox name is
then exactly the same as the folder name used in the SELECT com-
mand (see section A.3 on page 298).

The asterisk (*) wildcard can traditionally represent any character.
On the other hand, the percent sign (%) represents any character apart
from the hierarchy separator:

a01l8 LIST "" "INBOX.Privatex"

* LIST (\HasNoChildren) "." "INBOX.Private.Holiday"

«+ LIST (\HasNoChildren) "." "INBOX.Private.Orchestra"
* LIST (\HasChildren) ", " "INBOX.Private"

a018 OK LIST completed

a0l9 LIST "" "INBOX.Private%"

%+ LIST (\HasChildren) ", "INBOX.Private"

a0l9 OK LIST completed

If you specify an empty mailbox name as the second argument, the
LIST command simply returns the hierarchy separator:

a020 LIST wn nn
* LIST (\Noselect) ".n" nun
a020 OK LIST completed

CREATE

This command creates a new folder on the server. For subdirectories,
the client has to specify the complete path, including the hierarchy
delimiter specified by the server (this is a dot in the following ex-
ample). Should intermediate directories not exist, the server has to
create them automatically:

300

A.3 Commands Available in the Authenticated Status

a021 CREATE PRIVATE

a021 OK CREATE completed

a022 CREATE PRIVATE.FRIENDS.HOLIDAY
a022 OK CREATE completed

The server decides whether folders PRIVATE and Private can exist
at the same time, and it makes this decision for each directory. Only
the INBOX may not be case sensitive.

Unfortunately, the client cannot simply query the rules on case sen-
sitivity applied by the server to a folder, and instead has to rely on
trial and error.

DELETE
This command deletes the specified directory from the server. If it
contains subdirectories (as the new directory PRIVATE in the pre-
vious example contains the subfolder PRIVATE.FRIENDS.HOLIDAY),
the server may not delete these subdirectories automatically.

If you delete the PRIVATE directory along with all its messages, it
will continue to appear in the listings, but will be marked with the
\Noselect flag. The server uses this flag to show that the directory
can only map the name structure, but cannot contain actual mes-
sages.

This means that directories flagged as \Noselect cannot be deleted
using DELETE, as they have already been deleted.

RENAME
This command renames a folder on the server. If the folder contains
subfolders, their path will also be modified. If the parent directory of
the new folder does not yet exist, the server will create it automati-

cally:

a023 LIST "" «x

* LIST () "/" Test

*+ LIST (\Noselect) "/" foo
* LIST () "/" foo/bar

a023 OK LIST completed
a024 RENAME Test bla
a024 OK RENAME completed
a025 RENAME foo zowie
a025 OK RENAME Completed
a026 LIST "" =

%+ LIST () "/" bla
* LIST (\Noselect) "/" zowie
% LIST () "/" zowie/bar

a026 OK LIST completed

If the INBOX folder is renamed, the INBOX directory must continue to
exist as an empty folder; the emails are moved into the new directory.
If the INBOX contains subdirectories, these also continue to exist:

301

A IMAP Command Reference

a027 LIST "" =*
* LIST () "." INBOX
% LIST () "." INBOX.bar

a027 OK LIST completed
a028 RENAME INBOX old-mail
a028 OK RENAME completed

a029 LIST "" =*

* LIST () "." INBOX

% LIST () "." INBOX.bar
* LIST () "." old-mail

a029 OK LIST completed

SUBSCRIBE
This command places the specified directory onto the list of directo-
ries subscribed to by the client (or the user); the client can access it in
a targeted manner using the LSUB command (see below). See section
2.2.4 on page 41 for the advantages of this procedure.

The server may check whether the directory exists at the time the
SUBSCRIBE command is executed. It may not delete directories from
the subscription list of a client, even if these directories cease to exist.
It is therefore possible to keep a subscription to directories that no
longer exist, in case they are later recreated.

UNSUBSCRIBE
This command removes a directory from the list of subscribed direc-
tories.

LSUB
The parameters and server replies correspond to those of the LIST
command (see page 299), but LSUB (short for list subscribed) only
returns the directories subscribed to by the client.

STATUS
This command allows targeted querying of status information with-
out the server selecting the appropriate directory (for example, by
using EXAMINE, see page 299). This command is useful for determin-
ing the status of directories that are currently not selected.

STATUS queries often take some computing time, and Courier and
other servers find it hard to evaluate a directory in addition to the
selected mailbox, so RFC 3501 prohibits the use of the STATUS com-
mand for directories that have already been selected.

The client specifies the parameters it requires in parentheses:

a030 STATUS Test (UIDNEXT MESSAGES)
* STATUS Test (MESSAGES 231 UIDNEXT 44292)

APPEND
This command inserts a new email into the current folder. This email

302

A.4 Commands Available in the Selected Status

has to correspond to RFC 2822 (that is to say, it has to consist of
an email header and an email body separated by a blank line). The
server has to obey the following rules:

= If the email contains a Date: header line, the server will use the
date in that row to denote the time the email was received.

= If the target folder does not exist, the server may not create this di-
rectory. Instead, it can add [TRYAGAIN] to the reply, which signifies
to the client that it has to use CREATE to create this folder.

= If the client adds flags such as \Seen or \Answered in parentheses,
the server should save these flags:
a031 APPEND saved-messages (\Seen) {310}
+ Ready for literal data
Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
From: Tux <tux@example.com>

Hi Paul, can we meet tomorrow at 3.30?

a031 OK APPEND completed

If this information is missing, the server should not save any flags,
and simply show the \Recent flag to the client. The client must
also include the length of the new email in curly brackets (310 in
this case) so the IMAP server can detect the end of the transmis-
sion.

= If the server is unable to insert the email for some reason, it has to
restore the directory to its previous state so that it seems as if no
action had taken place.

A.4 Commands Available in the Selected Status

CHECK
The CHECK command allows programmers to debug their own IMAP
implementation. It does not provide any default return values. This
allows the software to reply with any debug output, or to return an
OK without carrying out any other action. Clients should always use
NOOP to keep the connection open.

CLOSE
This command physically deletes all emails flagged as \Deleted from
a folder. The affected folder is then deselected. The IMAP connection
then switches to the authenticated status.

If the client uses SELECT or EXAMINE to select a different folder, or if
it logs out with LOGOUT, the server implicitly executes a CLOSE so that
all emails flagged as \Deleted are deleted.

303

A IMAP Command Reference

EXPUNGE

EXPUNGE also deletes all messages flagged as \Deleted, but it keeps
the folder in the selected status and returns an untagged message for
each deleted email.

Be careful: When emails are deleted, this naturally affects the se-
quence numbers of the messages. As servers delete each email in-
dividually, they renumber the emails after each deletion to close the
gap. In the following example, messages 3, 4, 7, and 11 are deleted,
but the server returns the IDs of messages 3, 3, 5, and 8:

a032a STORE 3,4,7,11 +FLAGS (\Deleted)
* 3 FETCH (FLAGS (\Deleted \Seen))

* 4 FETCH (FLAGS (\Deleted))

* 7 FETCH (FLAGS (\Deleted \Flagged \Seen))
%+ 11 FETCH (FLAGS (\Deleted \Seen))
a032a OK STORE completed

a032b EXPUNGE

* 3 EXPUNGE

* 3 EXPUNGE

* 5 EXPUNGE

* 8 EXPUNGE

a032b OK EXPUNGE completed

If the client does not require a list of deleted messages, it should use
CLOSE instead of EXPUNGE.

SEARCH

This command orders the server to search through all messages in the
selected folder. The server returns an untagged list of the sequence
numbers of all emails corresponding to the search criteria. A number
of rules apply here:

= The text search is case insensitive.

= A text search is considered to be successful as soon as the search
pattern is found as a substring in an email.

= The search criteria are always linked by a logical AND unless the
client explicitly demands an OR.

= The search pattern can be a list of several search terms enclosed in
brackets if required by the logical combination with OR or NOT.

The order of search criteria is irrelevant.

The following search criteria are available:

sequencenumberl,sequencenumber?, . . .
If you specity the sequence number(s) of one or more emails,
the server will only search the specified email(s). You can use
enumerations such as (24,90, 30) or segments such as (80:100),
or you can combine these two options:

304

A.4 Commands Available in the Selected Status

a033 search TEXT "yesterday" 24,90,30,80:100
* SEARCH 24 90
a033 OK done

Here, the word yesterday appears in emails 24 and 90.

ALL
This option selects all emails in the mailbox.

ANSWERED
This option selects all messages flagged as \Answered.

BCC string
This option selects emails containing the specified string in
the Bec: field of the email header.®

BEFORE date
This option selects emails with an internal date previous to da-
te. This does not take the time into account. date has to be
specified in this format: 29-Sep-2007.

BODY string
This option selects messages containing the specified string
somewhere in the email body:
a034 SEARCH BODY "yesterday evening"

* SEARCH 218 587 1232 1421 2258 3696 4123
a034 OK SEARCH done.

You can also use the following alternative syntax for this com-
mand:

a034 SEARCH BODY {13}

+ OK

yesterday evening

*+ SEARCH 218 587 1232 1421 2258 3696 4123
a034 OK SEARCH done.

If you enter the length of the character string in bytes (13 in
this case) and end the command with a line break (CR/LF), the
server will then request the search string (Courier uses + OK in
this case). You can now enter the search string without enclos-
ing it in quotation marks, as shown.

You can use this method to search for special characters, such
as characters with a byte value above 127; these characters are
not permitted in the command itself. You have to specify the
character set with CHARSET:

a035 SEARCH CHARSET iso-8859-1 BODY {7}
+ OK
Minchen

5 Most email clients delete the Bcc: field from the email header because it is designed
for recipients who are to remain unknown by the other recipients. It is very likely that
a mailbox will not contain any emails with this information.

305

A IMAP Command Reference

4412 4416 4420 4427 4429 4430 4434 4435 4438 4440
a035 OK SEARCH done.

This command will search all email parts coded according to
ISO-8859-1, and will search for the Miinchen character string,
which is 7 bytes long (in this coding).

CC string
This command searches for messages containing the specified
string in the Cc: field of the email header.

DELETED
This command selects all messages flagged as \Deleted.

DRAFT
This command selects all messages flagged as \Draft.

FLAGGED
This command selects all messages flagged as \Flagged.

FROM string
This command searches for messages that contain the string
in the From: field of the email header.

HEADER fieldname string
This command searches messages with the specified header field
(in accordance with RFC 2822) for messages containing the given
string:
036 SEARCH HEADER X-Virus-Scanned amavisd

* SEARCH 90 194
036 OK done

If string is empty, the query will apply to all messages that
contain the header field, no matter what the contents are:
037 SEARCH HEADER X-Virus-Scanned ""

* SEARCH 24 29 90 98 194
037 OK done

KEYWORD flag
This command searches for messages containing the specified
flag.

LARGER n
This command selects emails larger than n bytes. A line break
corresponds to exactly fwo bytes, as emails conclude with CR/LF
instead of only CR or LF, in accordance with RFC 2822.

NEW
This command searches for all messages flagged as \Recent but
not as \Seen.

NOT search_option
This command selects emails that do not correspond to the
search option:

306

A.4 Commands Available in the Selected Status

a038 SEARCH FLAGGED BEFORE 1-Jan-2007 NOT FROM "geeko"
* SEARCH 3 6 7 9 10 11 12 15 16 20 21 22 24 25 29 31 32 33
a038 OK SEARCH completed.

OLD
This command selects all messages not flagged as \Recent.

ON date
This command slects emails whose internal date is the same as
date. This does not take the time into account.

OR searchoptionl searchoption2
This command selects messages that match searchoptionl or
searchoptionZ2:
039 SEARCH OR FROM tux@ FROM paul@
* SEARCH 25 29 31 32 33 55 64
039 OK done
040 SEARCH (OR FROM tux@ FROM paul@) BEFORE 1-Jan-2007
* SEARCH 25 29 31 32 33
040 OK done

RECENT
This command selects all messages flagged as \Recent.

SEEN
This command selects all messages flagged as \Seen.

SENTBEFORE date
This command selects messages with a date in the Date: header
that lies before the date. This does not take the time into ac-
count.

SENTON date
This command selects messages with a date in the Date: header
that matches the specified date. This does not take the time
into account.

SENTSINCE date
This command selects messages with a date in the Date: header
that lies after the specified date. This does not take the time
into account.

SINCE date
This command selects emails with an internal date stamp that
is the same or later than the date. This does not take the time
into account.

SMALLER n
This command selects emails smaller than n octets.

SUBJECT string
This command returns messages with string in the Subject:
field of the email header.

307

A IMAP Command Reference

TEXT string
This command selects emails containing the string in both,
the header or body:

a041 SEARCH TEXT "Holiday"
*+ SEARCH 4 23
a041 OK SEARCH completed.

TEXT usually searches the raw data on standard servers. In raw
data, special characters are usually coded as =FC or =C3=BC.%
For this reason, it makes more sense to use the SEARCH sub-
command B0ODY (see section A.4 on page 305).

TO string
This command selects messages containing the string in the
To: field of the email header.

UID uidl,uid2,...
This command selects messages with a unique identifier that
contains one of the numbers specified as search criteria.

UNANSWERED
This command selects all messages not flagged as \Answered.

UNDELETED
This command selects all messages not flagged as \Deleted.

UNDRAFT
This command selects all messages not flagged as \Draft.

UNFLAGGED
This command selects all messages not flagged as \Flagged.

UNKEYWORD flag
This command selects all the emails that do not contain the
specified flag.

UNSEEN
This command selects all messages not flagged as \Seen.

FETCH

This command requests the specified message(s). The client can use
concluding keywords to retrieve specific parts of an email. If, for
example, it wants to create a table of contents, it can retrieve only
the email headers required for the index, as the email body is not
required at that stage. The following keywords are available in FETCH:

BODY or BODYSTRUCTURE
This command fetches the MIME structure of the email:

6 Both strings are equivalent to the German umlaut {i.

308

A.4 Commands Available in the Selected Status

a042 FETCH 8 BODYSTRUCTURE

* 8 FETCH (BODYSTRUCTURE (("text" "plain" ("charset" "iso-8859
-1") NIL NIL "quoted-printable" 721 22 NIL ("inline" NIL) NIL)
("image" "jpeg" ("name" "Bildl anse_gaulettesl.jpg") NIL NIL))

a042 OK FETCH completed.

This example email contains 22 lines and is 721 octets (or bytes)
in length. Depending on interpretation, NIL is either short for
not in list or for nothing (Latin: nihil), and serves as a place-
holder for empty fields in the MIME structure.

BODY[] or RFC822
This command retrieves the entire specified email(s). When
these two commands are used, the server automatically sets
the \Seen flag. To prevent this, you should use BODY.PEEK[]
instead of BODY [], which is also capable of all the extensions
discussed here.

BODY [HEADER]
This command retrieves the entire header of a message in ac-
cordance with RFC 2822:

a043 FETCH 30 BODY [HEADER]

% 30 FETCH (BODY[HEADER] {1458}

Return-Path: <p.heinlein@heinlein-support.de>

X-Original-To: tux@example.com

Delivered-To: tux@example.com

[...1]

Message-Id: <200706062304.5047.p.heinlein@heinlein-support.de>

)
a043 OK FETCH completed.

The untagged reply line contains the length of the server reply
in curly brackets (1458 octets, or bytes, in this case).

RFC822.HEADER is a synonym for BODY . PEEK [HEADER].

BODY [HEADER.FIELDS (fieldl field2 ...)]
This command only retrieves the specified fields from the mes-
sage header:

a044 FETCH 30 BODY[HEADER.FIELDS (Message-ID)]
* 30 FETCH (BODY [HEADER.FIELDS ("Message-ID")] {67}
Message-Id: <200706062304.5047.p.heinlein@heinlein-support.de>

)

a044 OK FETCH completed.

a045 FETCH 30 BODY [HEADER.FIELDS (Message-ID Date)]

* 30 FETCH (BODY [HEADER.FIELDS ("Message-ID" "Date")] {105}
Date: Wed, 6 Jun 2007 23:04:04 +0200

Message-Id: <200706062304.5047.p.heinlein@heinlein-support.de>

)
a045 OK FETCH completed.

309

A IMAP Command Reference

BODY [HEADER.FIELDS.NOT (fieldl field2

0]

This command retrieves the header without the specified fields.

BODY[level.MIME]
Complex messages consist of several parts: the actual email text,
some binary attachments, and sometimes even an additional
message as an attachment. All this is held together by the MIME

structure.

You can use MIVME to retrieve the technical details of the different
encapsulated levels of the message. The actual email text is on

level 1:

a046 FETCH 8 BODY[1.MIME]

* 8 FETCH (BODY[1.MIME] {127}

Content-Type: text/plain;
charset="1is0-8859-1"

Content-Transfer-Encoding: quoted-printable

Content-Disposition: inline

)
a046 OK FETCH completed.

The first attachment is on level 2:

a047 FETCH 8 BODY[2.MIME]
*» 8 FETCH (BODY[2.MIME] {159}
Content-Type: image/jpeg;

name="Imagel.jpg"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
filename="Imagel.jpg"

)
a047 OK FETCH completed.

BODY [TEXT] or RFC822.TEXT
This command retrieves the entire contents of the email without

the header:

a048 FETCH 7040 BODY [TEXT]
% 7040 FETCH (BODY [TEXT] {843}
Dear all,

I would like to setup Debian Women for Indonesian

But I dunno What should I do=20

The first thing that in my mind is translating Debian Women =

site to Indonesian language

The other things are waiting Debian Women Bug Squashing and =

Debian package tutorial.

any suggestion ?=20

310

A.4 Commands Available in the Selected Status

Thanks in advance=20

[...]

)

a048 OK FETCH completed.

It is possible to restrict the output. In the following example, we
restrict it to the first 200 characters:

2049 FETCH 7040 BODY [TEXT]<0.200>

% 7040 FETCH (BODY [TEXT]<0> {200}
Dear all,

I would like to setup Debian Women for Indonesian

But I dunno What should I do=20

The first thing that in my mind is translating Debian Women =
site to Indonesian language

The other t)

a048 OK FETCH completed.

Do not insert a space between the last square bracket and the
first angle bracket. If you want to see the mail body between
characters 100 and 200, change the contents of the angle brack-
ets to <100.200>. However, RFC822.TEXT is not capable of this
extension to the syntax.
ENVELOPE

When it receives this command, the server generates a listing of
the most important data in the RFC 2822 header of the email;
this data can be used to display a message overview (subject,
date, sender, message ID). This has nothing to do with the SMTP
envelope used to deliver the email, as this ceases to exist when
the email is saved.

a050 FETCH 7040 ENVELOPE
* 7040 FETCH (ENVELOPE ("Thu, 28 Feb 2008 21:56:28 -0800 (PST)

" "Debian Women Indonesia" (("Nur Aini Rakhmawati" NIL "khaula
h tc" "yahoo.com")) NIL NIL (("Debian Women" NIL "debian-women
" "lists.debian.org")) NIL NIL NIL "<178623.17300.gqm@web38005.

mail.mud.yahoo.com>"))
a050 OK FETCH completed.

FLAGS

This command lists all the flags set for the specified message(s).
INTERNALDATE

This command returns the internal date of the message:

a051 FETCH 45,46 INTERNALDATE

* 45 FETCH (INTERNALDATE "30-Apr-2006 15:57:48 +0000")
* 46 FETCH (INTERNALDATE "30-Apr-2006 15:57:48 +0000")
a051 OK done

RFC822.SIZE
This command returns the size of the message according to RFC
2822 (with CR/LF at the end of the lines) in bytes:

311

A IMAP Command Reference

a052 FETCH 42 RFC822.SIZE
* 42 FETCH (RFC822.SIZE 3649)
a052 OK done

UID
This command returns the unique ID of the message:
a053 FETCH 42 UID

* 42 FETCH (UID 43)
a053 OK done

This shows that the sequence number and the UID are not usu-
ally the same.

It is possible to combine multiple keywords in parentheses:

a054 FETCH 56 (FLAGS INTERNALDATE RFC822.SIZE)

* 56 FETCH (RFC822.SIZE 3731 FLAGS (\Seen) INTERNALDATE "30-Apr-200
6 15:57:49 +0000")

a054 OK done

There are abbreviations for typical combinations:

ALL
This abbreviation is the same as (FLAGS INTERNALDATE RFC82
2.SIZE ENVELOPE).

FAST
This abbreviation is the same as (FLAGS INTERNALDATE RFC82
2.SIZE).

FULL
This abbreviation is like the combination (FLAGS INTERNALDA
TE RFC822.SIZE ENVELOPE BODY).

STORE

This command adds flags to one or more messages. The server replies
with one or more untagged FETCH replies in which it sums up the
flags that apply to the affected messages. The client can prevent this
FETCH reply (to save transmission volume and transmission time, for
example), by using the FLAGS.SILENT STORE option, which also has
three versions.

FLAGS (flagl flag2 ...)
This command sets all flags specified here. Any existing flags
not mentioned here are deleted. The exception is the \Recent
flag, which is not deleted.

+FLAGS (flagl flag2 ...)
This command adds all the flags specified here:

312

A.4 Commands Available in the Selected Status

a055 STORE 2:4 +FLAGS (\Deleted)

* 2 FETCH (FLAGS (\Deleted \Seen))

%+ 3 FETCH (FLAGS (\Deleted))

* 4 FETCH (FLAGS (\Deleted \Flagged \Seen))
a055 OK STORE completed

Custom flags (or keywords) are set like system flags, but there is
one difference: there is no preceding \ in custom flags:

a056 STORE 100 +FLAGS (project)
100 FETCH (UID 102 FLAGS (\Seen project))
a056 OK done

-FLAGS (flagl flag2 ...)
This command removes all flags specified here.

COPY
This command copies the specified message(s) to another folder. The
server should preserve flags, and it should set the \Recent flag, as the
emails are recent for the new location:

a057 COPY 2:4 MEETING
a057 OK COPY completed

As for the APPEND command (see page 302), the server should not
simply create missing folders, but instead return a NO reply to the
client along with [TRYCREATE], which in turn encourages the client
to create the directory.

If the COPY command fails for some reason, the server has to restore
the directory to its previous status.

UID
You can prefix this special command to COPY, FETCH, and STORE. It
signifies to these commands that the figure specified as the argument
refers to unchanging unique IDs rather than sequence numbers.

Thus, the following command copies the messages with sequence
numbers 2 to 4 into the INBOX.Private folder:

a058 COPY 2:4 INBOX.Private
a058 OK COPY completed

whereas the following command copies the messages with unique
IDs 400 to 403 (this does not imply that the folder necessarily con-
tains more than 400 messages):

a059 UID COPY 400:403 INBOX.Private
a059 OK COPY completed

313

A IMAP Command Reference

A.5

If you want to limit the range of emails to be processed to the high-
est unique ID in this folder, you can use the wildcard asterisk (*) as
follows: 403: *. Even if the highest unique ID is lower than the start-
ing value of 403, the server will still return one message (the message
with the highest unique ID), unless the folder is entirely empty.

The following example shows that unique IDs are not necessarily se-
quential:

a060 UID FETCH 4827313:4828442 FLAGS
% 23 FETCH (FLAGS (\Seen) UID 4827313)
*+ 24 FETCH (FLAGS (\Seen) UID 4827943)
%+ 25 FETCH (FLAGS (\Seen) UID 4828442)
a060 OK UID FETCH completed

The server ignores nonexistent unique IDs. If none of the speci-
fied UIDs exist, the server will reply OK even though it did noth-
ing. Sequence numbers are always sequential and without gaps, so
this problem cannot occur for normal COPY, FETCH, and STORE com-
mands.

If the client prefixes the UID command to a SEARCH command, this
informs the server that it should show the results as unique IDs (and
not as sequence numbers). The server still regards the message IDs
delivered by the client as sequence numbers:

a061 UID SEARCH 1:100 FROM "Smith"
«+ UID SEARCH 80 242 882
a061 OK SEARCH done.

Naturally you can continue to use the unique ID as a search criterion.
In the following example, the client is searching messages 1 to 100
for emails with a UID that is equal to or higher than 403. The server
returns the unique IDs in an untagged reply:

a062 UID SEARCH 1:100 UID 403:=*

* SEARCH 6924 8697 16600 16908 19373 19374
a062 OK SEARCH done.

IMAP Extensions

A large number of additional IMAP extensions have been defined over the

course of time, but they are unfortunately spread across a variety of RFCs.
This development is still ongoing, and additional extensions are under dis-
cussion; such extensions could offer additional translation or multilingual
options.

314

A.5 IMAP Extensions

The client can use the CAPABILITY command to determine which IMAP
extensions are supported by the server:

a CAPABILITY

* CAPABILITY IMAP4revl UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJECT
THREAD=REFERENCES SORT IDLE AUTH=CRAM-MD5 AUTH=CRAM-SHA1l ACL

a OK CAPABILITY completed

Many extensions provide exactly one new eponymous command, while
others provide no commands or a variety of differently named IMAP com-
mands. The following overview shows the most important IMAP exten-
sions.

UIDPLUS
The server sends extended replies according to RFC 4315 (previously
RFC 2359) that contain the unique IDs of the emails.” The client has
to send fewer queries, and the extension provides the foundation for
offline IMAP (also known as cached or disconnected IMAP).

CHILDREN
When servers return directory listings, they include the attributes
\HasChildren and \HasNoChildren.? The client once again re-
quires fewer queries, as it no longer needs to check whether an IMAP
folder contains additional subdirectories.

NAMESPACE
The IMAP namespace is not precisely defined, so the client can use
this command to query the supported name schema of the server.’

SORT
The server supports search commands using SORT.!°

THREAD=algorithm
The server supports the specified THREAD search method.'!

IDLE
The server supports push email via the IDLE command (see pages
176 and 200).1?

AUTH=method
This extension lists the login methods available in addition to LOGIN
and PLAIN.'

See http://www.ietf.org/rfc/rfc4315.txt.
See http://www.ietf.org/rfc/rfc3348.txt.
See http://www.ietf.org/rfc/rfc2342.txt.
See http://www.ietf.org/internet-drafts/draft-ietf-imapext-sort-18.txt.
See http://www.ietf.org/internet-drafts/draft-ietf-imapext-sort-18.txt.
See http://www.ietf.org/rfc/rfc2177.txt.
See http://www.ietf.org/rfc/rfc2060.txt.

315

A IMAP Command Reference

ACL
This extension supports ACLs (access control lists) via IMAP, so that
one user can share individual IMAP folders with other users; see
section 10.1 on page 153 (Courier) and section 14.2 on page 230
(Cyrus).'

QUOTA
If quotas have been set for an account, the client can use this exten-
sion to query the permitted maximum limit and the current utiliza-
tion.15

A.6 Experimental Commands

Commands beginning with X are not defined in standards; they are consid-
ered to be experimental or proprietary. The server may not send X-replies
unless a client has explicitly attempted to use such a command.

If a server supports proprietary X-commands, it provides this information
in reply to the CAPABILITY command. One example is the XCOURIEROUT
BOX Courier feature, which can be used to send emails via IMAP (see section
10.5 on page 178):

a CAPABILITY

* CAPABILITY IMAP4revl UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUB
JECT THREAD=REFERENCES SORT IDLE AUTH=CRAM-MD5 AUTH=CRAM-SHA1l ACL
XCOURIEROUTBOX=INBOX.Outbox-Test

a OK CAPABILITY completed

14 See http://www.ietf.org/rfc/rfc4314.txt.
15 See http://www.ietf.org/rfc/rfc2087.txt.

316

POP3 Command Reference

POP3 also has different connection statuses, but these statuses are simple
and logical:

Authorization State
The connection has been created, but the user has not yet logged in.
This means the user can ask the server to list its extensions, request
an SSL encryption, and execute the authentication commands USER,
PASS, AUTH, and APOP.

Transaction State
The user is logged in and can view emails; authentication commands
are no longer available.

317

B POP3 Command Reference

Update State

B.1

USER

PASS

STAT

LIST

RETR

DELE

NOOP

RSET

QUIT

The client has logged out with QUIT. The server now deletes the mes-
sages that were marked as deleted and then closes the connection.

If the connection between the client and the server was closed with-
out QUIT, the server does not go into the update state. Emails marked
for deletion therefore remain on the server.

An Overview of All Commands

username
This command transfers the username during login.

password
This command transfers the cleartext password during login.

This command lists the number of emails in the INBOX and the overall
size in bytes.

This command returns a numbered list of all emails and the size of
each email in bytes. If you enter one of these email numbers as an
argument, the server replies with the size of the email.

n
This command fetches email number n from the email server.

n
This command marks (!) email number n for deletion on the email
Server.

This command (the name stands for no operation) assists the client
in staying connected to the server even when the client is inactive.
You can also use it to see whether a connection exists.

This command removes the deletion mark from any email deleted
during the current POP3 session, so it could be described as an un-
delete command.

This command ends the POP3 session. All emails marked for deletion
are deleted at this time.

There are also a number of commands that are not mandatory for servers:

318

B.1 An Overview of All Commands

AUTH

APOP

CAPA

1

method

The client can suggest an authentication method to the server. If the
server supports this method, it will begin the appropriate protocol. If
not, the server will return an error code:

AUTH KERBEROS_V4
-ERR Authentication failed.

This command initiates login with an encrypted password.

This command asks the server which POP3 extensions are available:!

CAPA

+OK Here’s what I can do:

SASL CRAM-MD5 CRAM-SHAl LOGIN

STLS

TOP

USER

LOGIN-DELAY 10

PIPELINING

UIDL

IMPLEMENTATION Courier Mail Server

In this case, the server provides the following extensions:

STLS
STLS is actually the POP3 STARTTLS extension. This command
allows clients to request TLS encryption while in the authoriza-
tion state (see STARTTLS-RFC 2595).

TOP
This command uses syntax TOP n x to query the header and
the first x lines of email number n.

USER
This command indicates that cleartext login with the USER com-
mand is available.

LOGIN-DELAY n
This command tells the client how long it must wait between
logins.

PIPELINING
This command allows clients to give several POP3 commands in
direct succession without waiting for the reply from the server
after each one. The server has to return the replies in the se-
quence in which the commands were sent, as they cannot be
correlated properly otherwise.

See RFC 2449, http://wuw.ietf.org/rfc/rfc2449.txt.

319

B POP3 Command Reference

UIDL
This command calls up the unique ID of the email specified by

the client by number. The unique ID must remain the same for
all POP3 sessions, as it is used by the client to synchronize the
mailbox.

IMPLEMENTATION
This capability allows the server to identify itself with a person-
alized ID text specified in the argument, but it does not provide
any new POP3 commands.

320

Installing from the Source Code

If the version of the mail server supplied in your distribution is out of date,
if you urgently require a new feature, or if you want to modify the server to
suit your environment, you will have to compile your own executable from
the source code. However, when you build your own server, you are respon-
sible for finding and preventing security holes, since your installation is no
longer covered by the updates provided by the official distribution.

C.1 Courier

When compiling the Courier IMAP server from the source code, it is help-
ful to know about potential problems in advance. The following example

321

C Installing from the Source Code

shows how to set up a minimal installation for OpenSuSE 10.2. The pro-
cess is usually the same for other distributions, though the names of the
packages can vary.

If you have not done so already, you should first install the following pack-
ages:

= Tools required for compiling the source code: make, gcc, gcc-c++, and
all packages that these depend on

= The GDBM databases from packages gdbm and gdbm-devel

= openssl for SSL/TLS-encrypted connections.

Depending on the authentication backend(s) you require, you will also re-
quire the dev(el) packages for MySQL (mysql-devel), PostgreSQL (post
gresql-devel), and/or OpenLDAP (openldap2-devel). It is possible to
compile Courier without the appropriate C/C++ header files, but then you
will lack the configuration files and support for authentication methods.

Go to the official download page of the Courier project,’ download the most
recent versions of the packages courier-imapand courier-authlib, and
then unzip them. But be careful: For security reasons, you cannot compile
Courier with root permissions. For this reason, you must carry out the
following tasks with a normal user account:

user@linux:$ cd src

user@linux:src$ wget http://prdownloads.sourceforge.net/courier/ \
courier-imap-4.1.3.tar.bz2

[...]

user@linux:src$ wget http://prdownloads.sourceforge.net/courier/ \
courier-authlib-0.59.3.tar.bz2

[...1]

user@linux:src$ tar -xvjf courier-authlib-0.59.3.tar.bz2
courier-authlib-0.59.3/

courier-authlib-0.59.3/README

courier-authlib-0.59.3/configure.in
courier-authlib-0.59.3/aclocal.m4

[...1]

user@linux:src$ tar -xvjf courier-imap-4.1.3.tar.bz2
courier-imap-4.1.3/

courier-imap-4.1.3/packaging/

courier-imap-4.1.3/packaging/suse/
courier-imap-4.1.3/packaging/suse/courier-imap.init.in

[...1

Compile the package courier-authlibfirst. Make sure that you have nor-
mal user permissions when compiling the source code, but install it after
completion with root permissions.

1 See http://www.courier-mta.org/download.php.

322

C.1 Courier

user@linux:src$ cd courier-authlib-0.59.3
user@linux:src/courier-authlib-0.59.3$./configure

[...1]

checking for strchr... yes

configure: creating ./config.status

config.status: creating Makefile

config.status: creating config.h

config.status: executing depfiles commands
user@linux:~/src/courier-authlib-0.59.3$ make

[...]

Compiling authpasswd.c

Linking authpasswd

CONFIG_FILES=authlib.3 CONFIG_HEADERS= /bin/sh ./config.status
config.status: creating authlib.3

config.status: executing depfiles commands

make [2] : Leaving directory ‘/home/user/src/courier-authlib-0.59.3"
make [1] : Leaving directory ‘/home/user/src/courier-authlib-0.59.3"
user@linux:src/courier-authlib-0.59.3% su -c "make install"
Passwort: root-password

[...]

/usr/bin/install -c -m 644 -m 660 authdaemonrc.tmp /usr/local/etc/authl
ib/authdaemonrc.dist

rm -f authdaemonrc.tmp

chown daemon /usr/local/etc/authlib/authdaemonrc.dist

chgrp daemon /usr/local/etc/authlib/authdaemonrc.dist

make [4] : Leaving directory ‘/home/user/src/courier-authlib-0.59.3"
Now proceed to package courier-imap:

user@linux:src$ cd courier-imap-4.1.3
user@linux:src/courier-imap-4.1.3$./configure

[...1]

config.status: creating imapd.cnf

config.status: creating pop3d.cnf

config.status: creating config.h

config.status: executing depfiles commands
user@linux:~/src/courier-imap-4.1.3$ make

[...1]

cp imap/pop3d-ssl.dist

cp imap/imapd.cnf

cp imap/pop3d.cnf

cp -f ./maildir/quotawarnmsg quotawarnmsg.example

make [2] : Leaving directory ‘'/home/user/src/courier-imap-4.1.3"
make [1] : Leaving directory ‘/home/user/src/courier-imap-4.1.3"
user@linux:src/courier-imap-4.1.3$ make check

[...1]

INFO: LOGIN, user=confmdtest, ip=[127.0.0.1], protocol=SMAP1
INFO: LOGOUT, user=confmdtest, ip=[127.0.0.1], headers=0, body=0, rcvd=
2491, sent=6164, time=0

INFO: LOGIN, user=confmdtest, ip=[127.0.0.1], protocol=SMAP1l
INFO: LOGOUT, user=confmdtest, ip=[127.0.0.1], headers=0, body=0, rcvd=

323

C Installing from the Source Code

26, sent=610, time=0

make [2] : Leaving directory ‘/home/user/src/courier-imap-4.1.3/imap’
make [1] : Leaving directory ‘/home/user/src/courier-imap-4.1.3/imap’
make [1] : Entering directory ‘/home/user/src/courier-imap-4.1.3"
[...1]

make [1] : Leaving directory ‘'/home/user/src/courier-imap-4.1.3"
user@linux:src/courier-imap-4.1.3$ su -c "make install"

[...]

test -z "/usr/lib/courier-imap/share" || mkdir -p -- "/usr/lib/courier-
imap/share"

/usr/bin/install -c ‘mkimapdcert’ ’/usr/lib/courier-imap/share/mkimapd
cert’

/usr/bin/install -c ‘mkpop3dcert’ ’/usr/lib/courier-imap/share/mkpop3d
cert’
make [2] : Leaving directory ‘/home/user/src/courier-imap-4.1.3"
make [1] : Leaving directory ‘/home/user/src/courier-imap-4.1.3"
user@linux:src/courier-imap-4.1.3$ su -c "make install-configure"
[...]

TLS_CERTFILE: new

TLS_TRUSTCERTS: new

TLS_VERIFYPEER: new

TLS_CACHE: new

MAILDIRPATH: new

make [1] : Leaving directory ‘/home/user/src/courier-imap-4.1.3"

The procedure shown will ensure that program directories and configura-
tion files are all installed under /usr/local. Where /etc/courier/imapd
is mentioned in the book, you will now find the file under /usr/local/etc
/courier/imapd. This is advisable so that your own builds are separated
from the standard packages provided by the distributions. If you nonethe-
less want to install your self-compiled Courier directly in the root hierarchy,
you should add the --prefix="" parameter to the configure commands:

user@linux:src/courier-authlib-0.59.3$./configure --prefix=""
[...1]
user@linux:src/courier-imap-4.1.3$./configure --prefix=""

[...1

Do not forget to install the start and stop scripts. You can either move them
to the correct location or integrate them with a symlink. You require root
permissions for this step:

linux: # cd /etc/init.d
linux:init.d # 1n -s ../../usr/lib/courier-imap/libexec/imapd.rc .

linux:init.d # 1n -s ../../usr/lib/courier-imap/libexec/imapd-ssl.rc .
linux:init.d # 1n -s ../../usr/lib/courier-imap/libexec/pop3d.rc .
linux:init.d # 1n -s ../../usr/lib/courier-imap/libexec/pop3d-ssl.rc .

324

C.2 Cyrus

C.2 Cyrus

It is only possible to compile the Cyrus IMAP server from the source code
(as demonstrated below) if Cyrus SASL has already been installed. This is
the case on many Linux systems, as this library is used almost as a default
authentication mechanism for a variety of applications (such as Postfix). If
you cannot install it from the package management of your distribution,
you will have to compile it manually (as shown below). In some distri-
butions (such as SuSE Linux 9.3), you may encounter problems with the
distribution’s default settings when linking a custom-built Cyrus to a SASL
library installed by package management.

To perform the compilation, you will need the C/C++ compiler (contained
in packages gcc and gcc-c++ for SLES), make (from the maketools pack-
age), and the header files from packages glibc-develand libstdc++-dev
el.

C.2.1 Cyrus Sources

The best place to download the program sources for the IMAP server and
the SASL library is the Cyrus website of Carnegie Mellon University:?

user@linux:$ wget ftp://ftp.andrew.cmu.edu/pub/cyrus-mail/ \
cyrus-sasl-2.1.22.tar.gz

[...]

user@linux:$ wget ftp://ftp.andrew.cmu.edu/pub/cyrus/ \
cyrus-imapd-2.2.12.tar.gz

[...1]

Other sources are available on the Internet, but they usually differ from
the original and contain very specific modifications. You should always use
stable versions for production systems. If you want to experiment, you can
use the beta versions marked as unstable, but you do so at your own risk.

tar -xvzf unzips the source text archives into two separate subdirecto-
ries, cyrus-imapd-2.2.12and cyrus-sasl-2.1.22.

C.2.2 Creating a System User

Make sure that the user cyrus and the group mail exist on your system,
because your compiled programs will not function properly otherwise. Like
nearly every other important service, Cyrus IMAP and Cyrus SASL operate
with the permissions of a special-purpose user and a separate group.

2 See http://cyrusimap.web.cmu.edu/downloads.html.

325

C Installing from the Source Code

linux: # grep mail /etc/group
maildrop:!:59:
linux: # grep cyrus /etc/passwd

Here, the user cyrus and group mail do not yet exist, so you have to create
them as follows:

linux: # groupadd mail

linux: # useradd -d /usr/lib/cyrus -g mail cyrus
linux: # passwd cyrus

Changing password for cyrus.

New Password: password-for-cyrus

Reenter New Password: password-for-cyrus
Password changed.

The useradd command shown above assigns the working directory /usr/
lib/cyrus to user cyrus, and then assigns the user to the mail group.

C.2.3 Installing Cyrus SASL

Use the configure option to determine which Cyrus SASL functions are
activated and which ones should remain inactive:

linux: # cd cyrus-sasl-2.1.22/

linux:cyrus-sasl-2.1.22 # ./configure \
--with-saslauthd=/var/run/saslauthd \
--with-plugindir=/usr/local/lib/sasl2 \
--with-mysgl=/usr/local/mysql \
--with-openssl=/usr/local/ssl \
--with-bdb-incdir=/usr/local/bdb/include \
--with-bdb-1libdir=/usr/local/bdb/1lib \
--with-dblib=berkeley \

--enable-anon \

--enable-login \

--enable-plain \

--enable-sqgl \

--enable-cram \

--enable-digest \

--disable-krb4 \

--disable-otp

configure: creating cache ./config.cache

checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking target system type... x86_64-unknown-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for gawk... gawk

checking whether make sets $(MAKE)... yes

checking for gcc... gcc

326

C.2 Cyrus

checking for C compiler default output... a.out
checking whether the C compiler works... yes
[...1]

Configuration Complete. Type ‘make’ to build.

--with-saslauthd=/var/run/saslauthd specifies the path to the pro-
cess directory of the SASL authentication service.

--with-plugindir=/usr/local/lib/sasl2 specifies the directory that
will contain the SASL plugins.

--with-mysql=/usr/local/mysql activates support for MySQL (via PAM).

You have to enter the path to the required PAM modules as the value for
the switch. The --enable-sql switch ensures that the compilation process
creates the SQL plugin which Cyrus SASL will later use to query a MySQL
database.

--with-openssl=/usr/local/sslrequests support for OpenSSL and de-
termines the path to the OpenSSL installation directory.

You can only use sasldb2 after you have specified the path to the Berkeley
database header files (using --with-bdb-incdir=/usr/local/bdb/inc
lude) and used --with-bdb-libdir=/usr/local/bdb/1lib to specify the
path to the Berkeley database libraries. You also have to use --with-dblib
=berkeley to request support for the Berkeley database.

SASL uses --enable-anonto allow anonymous login and --enable-login
to allow passwords to be transferred in cleartext compatible with Win-
dows. --enable-plain activates authentication using the PLAIN mecha-
nism (also in cleartext). --enable-cramensures that SASL accepts CRAM-
MD5 passwords; --disable-digest ensures that Digest-MD5 passwords
are refused. --disable-krb4 deactivates support for Kerberos-4, while
--disable-otp deactivates one-time passwords.

For additional ways of influencing library functions, see the documentation
in the doc/ directory of the unzipped source code or call ./configure
--help.

If you activate functions that use other services, these services have to ex-
ist on the system when you call configure. If, for example, you specify
--enable-sql and MySQL is not installed on your system, configure will
terminate with an error message.

In that case, you should take a close look at the last error message. In most
cases, a program required for compilation is missing; in the example shown
here, it is the compiler:

linux:cyrus-sasl-2.1.22 # ./configure

configure: loading cache ./config.cache

checking build system type... (cached) x86_64-unknown-linux-gnu
checking host system type... (cached) x86_64-unknown-linux-gnu

327

C Installing from the Source Code

checking target system type... (cached) x86_64-unknown-linux-gnu
checking for a BSD-compatible install... (cached) /usr/bin/install -c
checking whether build environment is sane... yes

checking for gawk... (cached) gawk

checking whether make sets $(MAKE)... (cached) yes

checking for gcc... (cached) gcc

checking for C compiler default output... configure: error: C compiler

cannot create executables

See ‘config.log’ for more details.

Simply install gcc and g++, and configure will run properly. If this works,
you can now begin the compilation and installation process:

linux:cyrus-sasl-2.1.22 # make && make install

You should set a symbolic link to the directory containing the library files
you have just created, because some programs expect the SASL library in
the /usr/1ib/ directory:

linux:cyrus-sasl-2.1.22 # ln -s /usr/local/lib/sasl2 /usr/lib/sasl2

Depending on your distribution and the architecture of your system, the
library location for SASL may have a different name. Common names are
/usr/1ib/sasl2 in 32-bit systems and /usr/1ib64/sasl2 in 64-bit sys-
tems.

To be on the safe side, you should compile the testsaslauthd test pro-
gram delivered along with the source code, and then copy it to the /usr/
local/bin directory. This does not take long, as you do not have to create
a makefile:

linux:cyrus-sasl-2.1.22 # cd saslauthd/
linux:saslauthd # make testsaslauthd
linux:saslauthd # cp testsaslauthd /usr/local/bin/

Call /usr/local/bin/testsaslauthdto test the saslauthd SASL plugin.
By default, it queries PAM on SuSE systems, and PAM then queries the Unix
system accounts. For this purpose, it is advisable to use an existing Unix
system user:

linux: # testsaslauthd -u username -p password -f /var/run/sasl2/mux0
OK "Success."

-u specifies the username, -p the password, and -f specifies the path to
the socket used to communicate with SASL.

328

C.2 Cyrus

C.2.4 Installing the Cyrus IMAP Server

The installation of the Cyrus IMAP server follows the same principle as that
of Cyrus SASL:

linux: # cd /usr/local/src/cyrus-imapd-2.2.12
linux:cyrus-imapd-2.2.12 # export CPPFLAGS="-I/usr/include/et"
linux:cyrus-imapd-2.2.12 # ./configure \
--with-sasl=/usr/local/lib \

--with-perl \

--with-auth=unix \
--with-dbdir=/usr/local/bdb \
--with-bdb-libdir=/usr/local/bdb/1lib \
--with-bdb-incdir=/usr/local/bdb/include \
--with-openssl=/usr/local/ssl \

- -without-ucdsnmp

checking build system type...

[...]

Cyrus requires the com_err.h header file that belongs to the Common Er-
ror library and is missing from many systems. You therefore are likely to
have to install it; in Debian and Ubuntu you will find it in the comerr-dev
package. The header file is usually located in the /usr/include/et/ direc-
tory, and you can use the CPPFLAGS environment variable to specify this.

--with-sasl=/usr/local/libensures that Cyrus uses the Cyrus SASL li-
brary installed in /usr/local/1lib. --with-perl allows the server to sup-
port Perl scripts, which are used for the majority of Cyrus scripts and mod-
ules. --with-auth=unix sets unix as the default authentication method.
This means that Cyrus evaluates the files /etc/passwd and /etc/shadow
when email users log on.

Use --with-dbdir=/usr/local/bdb to specify the path to the subtree for
the Berkely database files; the files are now activated and you can use them
to store user data in an sasldb2 database. However, you have to use
--with-bdb-libdir=/usr/local/bdb/lib and --with-bdb-incdir=/
usr/local/bdb/include to explicitly specify the path to the Berkeley da-
tabase libraries and header files. --with-openssl=/usr/local/ssl ac-
tivates support for OpenSSL and specifies the path to the SSL installation
folder.

--without-ucdsnmp disables SNMP support. Even though this has not
been officially documented, you can monitor Cyrus using SNMP. If you
want to find out more, you should have a look at http://osdir.com/ml/
mail.imap.cyrus/2003-01/msg00517 .html.

./configure --help lists all the options you can use to adapt Cyrus to
your own needs during compilation.

Once ./configure has run successfully, you should use make && make
install to initiate the compilation and installation process. Once instal-

329

C Installing from the Source Code

lation is complete, you have to use the mkimap program to create the work-
ing directories for Cyrus. The paths are stored in the /etc/imapd.conf
configuration file, which is processed by mkimap:

linux: # /usr/local/cyrus/bin/mkimap
reading configure file...

i will configure directory /var/lib/imap.
i saw partition /var/spool/imap.

done

configuring /var/lib/imap. ..

creating /var/spool/imap...

done

Now check that user cyrus has read and write permissions for these direc-
tories and files, and that the mail group has read permissions.

C.2.5 Convenient Starting and Stopping

A start-and-stop script for simple activation and termination will provide
the finishing touch to the Cyrus IMAP daemon:

#!/bin/bash
#
Cyrus-Startup-Skript

case "$1" in

start)
Cyrus-SASL starten
/usr/local/sbin/saslauthd -c¢ -a shadow &

Cyrus-IMAP-Daemon starten

/usr/cyrus/bin/master &
stop)

Cyrus-SASL beenden

killall saslauthd

Cyrus-IMAP-Server beenden
killall /usr/cyrus/bin/master

i

Ausgabe der moéglichen Optionen
echo "Usage: $0 start|stop"
exit 1

esac

Naturally, you can modify the more complex start and stop scripts provided
by the distributions so that they will run with the Cyrus you have compiled.

330

Symbols

*, in server reply 31

*, wildcard for LIST 300

., as mailbox separator (Cyrus) 205, 235, 238
/, as mailbox separator (Cyrus) 205, 235, 238
% (wildcard), for LIST 300

8-bit characters see eight-bit characters

A
a (permission) 37
access permissions see ACLs
access time, of a file see atime
account options see user options (Courier)
ACLs 34, 36, 37, 154

Cyrus 231, 232

group-based (Courier) 144

identifier 154

IMAP extension 34, 316

activating (Courier) 102

listing (Cyrus) 272

manipulating (Courier) see maildiracl (tool)

negative permissions 155

removing (Cyrus) 272

saving in Courier see courierimapacl (file)

setting (Cyrus) 272

switching off at filesystem level 58

for virtual domains (Cyrus) 236, 237
active directory with user data 81
ADDRESS (Courier parameter) 98
address (Sieve command) 246
administration directory (Cyrus) 203
administrator, creating (Cyrus) 194
admins (Cyrus option) 203, 287, 288
aggregator 51, 281-290

backend server 282, 286-287

Index

frontend server 282-285
allowanonymouslogin (Cyrus option) 203
allowsubscribes (Cyrus option) 287
allowusermoves (Cyrus option) 287
altnamespace (Cyrus option) 277
annotation database (Cyrus) 259
annotation_db (Cyrus parameter) 259
annotations.db (file) 267, 278
\Answered (flag) 35

in the filename (maildir) 113

searching for 305
APOP 27, 28, 148

POP3 command 317, 319
AppArmor 193
APPEND (IMAP command) 302
Apple Mail 279
aquota.user (file) 168
arbitron 263
arbitronsort.pl (tool) 190, 269
atime, switching off 57-58, 64
attachments, retrieving individually (IMAP) 310
AUTH (IMAP extension) 315
AUTH (POP3 command) 317, 319
AUTH=PLAIN (capability) 296
authcram (Courier) 120, 129, 144, 148
authcustom (Courier) 121, 130
authdaemond (Courier)

activating 99

configuration file see authdaemonrc

starting 88

daemon 20, 121-123

configuration file see authdaemonrc

custom authentication modules see
authcustom

using with Cyrus SASL 189, 213

331

Index

authdaemonrc (Courier configuration file) 95,
123, 134, 145
AUTHENTICATE (IMAP command) 218, 297
Authenticated (IMAP status) 32
available commands 298-303
switching to 303
Authenticated Post Office Protocol see APOP
authentication see logging in
by fingerprint 213
by hash values instead of passwords 213
by iris scan 213
Cyrus 207-224
via Kerberos 212, 214, 223-224
via LDAP 212-214, 220-223
via MySQL 213, 216-220
via PAM 219-220
via SQL database 213
daemon (Courier) see authdaemond
choosing method (POP3) 319
choosing method (Courier) 99, 122
IMAP commands 297
library (Courier) see Courier Authlib
password in cleartext 210
POP3 commands 317
programs, custom (Courier) 121
proxy (Courier) see authdaemond
authenumerate 160
tool 138, 145
authldap (authentication module for Courier)
121, 140-146
caching requests 122
authldaprc (file) 95, 140
authlib 120-144
AUTHMODULES (Courier parameter) 99, 122,
123
authmysql (authentication module for Courier)
120, 133-139, 144, 147
caching requests 122
authmysqlrc (file) 134-139
authorization state (POP3) 317
authpam (Courier) 120, 123-124
authpgsql
authentication module for Courier 120, 139,
140, 144, 147
caching requests 122
file 139
authpipe (Courier) 121, 131-133

authProg (authentication tool) 131

authpwd (authentication module for Courier)
120, 143

authshadow (authentication module for Courier)
120, 143

authtest (tool) 121-122

authuserdb (authentication module for Courier)
120, 124-129, 144

authvchkpw (authentication module for Courier)
120

autocreate_sieve_script (Cyrus option) 251

autocreatequota (Cyrus option) 203, 226, 251

autologout timer, resetting 296

auxprop (Cyrus SASL module) 189, 194, 213
LDAP connection via 220, 221
MySQL connection via 216

availability 19, 43-51

avelsieve (Squirrelmail plugin) 244

B
backup (IMAP folders) 29
backup (main Cyrus database) 278
backup/ (directory) 278
BALANCE (iptables) 47
Bcc header, searching in 305
benchmark tools 55
berkeley (Cyrus database format) 259
berkeley-nosync (Cyrus database format) 259
berkeley_cachesize (Cyrus parameter) 258
berkeley_txns_max (Cyrus parameter) 258
block size, for NFS 64
body
retrieving (IMAP) 310
retrieving partially IMAP) 311
retrieving partially (POP3) see TOP (POP3
command)
searching in 305
bonnie 55
byte-octet conversion 296

C
¢ (permission) 37
CA see certificate authority (CA)
cache proxy 51, 73-74
cached IMAP see offline IMAP
CAPA (POP3 command) 319
capabilities 33

332

Index

for encrypted communication (IMAP) 297
polling (IMAP) 296
polling (POP3) 319
specifying for Courier 100
CAPABILITY (IMAP command) 175, 295, 296, 314
for encrypted communication 297
case sensitive
folder names 301
search 40
Cc header, searching in 306
cell phone (and IMAP) 176, 273
certificate authority (CA) 208
list in email clients 208
trustworthy 208
certificates see SSL certificates
challenge-response procedure 129, 148, 242, 297
change time, of a file see ctime
character encoding, considering during a search
305
character set, considering during a search 305
CHECK (IMAP command) 303
CHILDREN (IMAP extension) 34, 315
chk_cyrus 264
chmod, influence on ¢ and mtime 57
cleartext
login see LOGIN (IMAP command)
passwords 81
client, workaround for faulty 101
CLOSE (IMAP command) 32, 303
cluster 20
Cyrus 281, 291
Cluster filesystem, as email repository 45
CLUSTERIP (iptables) 47
cm see createmailbox
com_err.h (Common Error library) 329
compile_sieve (tool) 268
compiling
Courier 321, 324
Cyrus 325, 330
CONCAT (SQL command) 137
conditional query (Sieve) see if (Sieve)
Cone 85
config2header (tool) 269
config2man (tool) 269
configdirectory
Cyrus option 203
Cyrus parameter 270

configuration parameters
Courier 96-105
reading out (Courier) 100
connection
information, caching (SSL) 260
keeping open see NOOP
terminating
automatically for POP3 (Cyrus) 259
with IMAP see LOGOUT (IMAP com-
mand)
with POP3
mand) 318
unintended (IMAP) 32
testing see NOOP
contents, of an email see body
convert-sieve.pl (tool) 190, 269
COPY (IMAP command) 313
using the Unique ID 313
Courier 18, 85-179
configuration 95-105
configuring SSL encryption 102-105
crashing 93
vs. Cyrus 20-21
downloading 322
IMAP proxy 50, 145
installation 86-87
installing from the source code 321, 324
migration problems 110
misleading reply to LIST (POP3) 25
MTA 85
paths 87
project 85
Courier Authlib 85
Courier team
reaction to bug reports 93
reaction to change requests 110
courierimapacl (file) 109, 154-155
courierimapkeywords (directory) 116
courierimapsubscribed (file) 109
courierlogger (tool) 98, 103
couriertcpd 88
specifying command-line parameters 98
COURIERTLS (Courier parameter) 104
couriertls (tool) 87, 104
CPU see processor
CRAM 129
CRAM-MD5 100, 119, 148, 214

see QUIT (POP3 com-

333

Index

using with Cyrus 213
when testing the login with imtest 218
CRAM-SHA1 100, 119, 148
CRAM-SHA256 148
crash, Courier 93
CREATE (IMAP command) 300
createmailbox
cyradm command 239
cyradmin command 272
creating users
Cyrus 194
with saslpasswd2 194
Crispin, Mark 33
crypt

hash, instead of cleartext password 119

as password hash algorithm 147
ctime 57
ctl_cyrusdb (tool) 266
ctl_deliver 266
ctl_mboxlist 266
cur
for creating directories 88

for listing contents of a directory 108, 112

for listing purpose of a directory 108
cvt_cyrusdb 267
cyr_expire (tool) 202, 268
cyradm (tool) 21, 194, 271-274, 277
setting quotas 228
setting up shared folders 230
cyrdump (tool) 267
Cyrus 18, 183-291
activating SSL support 210
administration information 277-280

as administration tool see cyradm, (tool)

allowing anonymous users 203
connecting to MySQL 213, 216-220
connecting to PostgreSQL 213
vs. Courier 20-21
creating an administrator 194
creating users 194

with saslpasswd2 194
directory hierarchy 187
downloading 325
encrypting access data 189
and firewalls 191, 220
function test 195-197
IMAP proxy 51

installation 184-187
under Debian 186
under Red Hat 186
from source code 325, 330
under SuSE 185
LMTP see LMTP
location in the filesystem 204
lowercase addresses 204
maximum email size 204
Murder cluster 51, 281-290
ports 191
and Postfix 191-197
project origins 183
Red Hat source RPM for 186
refusing to accept email (quota) 204
SASL authentication methods 205
Sieve directory 205
SSL certificates 205
user vs. Unix system account 215
working directory 188
Cyrus (IMAP server)
data security 255, 257
domain administrators 237
notify daemon 252
operating with other MTAs 254, 255
sorting email 237
specifying a timeout 205
virtual domains 232
Cyrus Aggregator see aggregator
Cyrus SASL see libsasl
library 190
cyrus-admin-2.2 (Debian package) 186
cyrus-clients-2.2 (Debian package) 186
cyrus-common-2.2 (Debian package) 186
cyrus-imap-utils (Red Hat package) 186
cyrus-imapd
Red Hat package 186
SuSE package 185
cyrus-imapd-2.2 (Debian package) 187
cyrus-murder-2.2 (Debian package) 187
cyrus-nntpd-2.2 (Debian package) 187
cyrus-pop3d-2.2 (Debian package) 187
cyrus-sasl
package 189
Red Hat package 186
cyrus-sasl-crammd5 (SuSE package) 185
cyrus-sasl-digestmd5 (SuSE package) 185

334

Index

cyrus-sasl-otp (SuSE package) 185
cyrus-sasl-plain
Red Hat package 186
SuSE package 185
cyrus-sasl-saslauthd (SuSE package) 185
cyrus-sasl-sqlauxprop (SuSE package) 185
cyrus.cache (file) 276
cyrus.conf 188, 199-202, 266
checkpoint 202
cleanup 202
configuring
the mupdate server 288
the murder backend 287
the murder frontend 285
defining the LMTP socket 191
delprune 202
EVENTS{} section 201-202, 260, 268
idled 200
imap 201
listen 200, 201
Imtp 201, 254
Imtpunix 254
notify 201, 253
pop3d 201
recovering 200
SERVICES{} section 200-201, 210, 241, 254,
285, 288
sieve 201, 241
specifying nice values for events 268
START{} section 200
structure 199
tlsprune 202
cyrus.header (file) 256, 276
cyrus.index (file) 276

D

d (permission) 37

dam see deleteaclmailbox

data (Squirrelmail directory) 70

data loss, through ReiserFS 54

data protection 159

data segment, limiting size of (Courier) 102

database format
annotation database (Cyrus) 259
berkeley-nosync (Cyrus) 260
converting (Cyrus) 267
duplicate database (Cyrus) 260

possible (Cyrus) 259
quota database (Cyrus) 260
quotalegacy (Cyrus) 260
subscription database (Cyrus) 260
date
as search criterion 305, 307
determining the internal (IMAP) 311
format in IMAP commands 305
db.backupl/ (directory) 278
db/ (directory) 278
DEBUG_LOGIN (Courier parameters) 81, 99, 122
debugging, an IMAP implementation 303
default domain (Cyrus) 234
DEFAULT_DOMAIN (Courier parameter) 138, 139
defaultdelivery (QMail configuration file) 94
defaultdomain (Cyrus option) 203, 234
DEFAULTOPTIONS (Courier parameter) 145
defaultpartition (Cyrus option) 239
DEFDOMAIN (Courier parameter) 98
DELE (POP3 command) 26, 318
DELETE (IMAP command) 301
delete permission see ACLs
deleteaclmailbox (cyradmin command) 272
\Deleted (flag) 31, 32, 35, 303, 304
searching for email with 40, 306
number of 31
deletemailbox (cyradmin command) 272
deleting
email (IMAP) 39, 298, 303, 304
email (POP3) 26, 318
folders (IMAP) see DELETE (IMAP command)
undoing the deletion of email (POP3) 26, 318
deliver
Cyrus service 255
tool 268
deliver databases (Cyrus) 266
deliver.db (file) 266, 278
deliverquota
MDA 173
tool 87
denial-of-service attack 166
preventing (Courier) 97, 102
dialup, and IMAP 29
DIGEST-MD5 (password-transfer method) 214
using with Cyrus 213, 242
when using an LDAP server 221
dir_index (mount option) 58-60

335

Index

Direct Routing (LVS) 47
directory see folders
permissions 163
disableimap (user option) 126, 144
disablepop (user option) 144
disablepop3 (user option) 126
disableshared (user option, Courier) 145, 161
disableweb (user option) 144
discard (Sieve command) 248
disconnected IMAP see offline IMAP
.dist file (Courier) 96
dm see deletemailbox (cyradmin command)
DNAT (iptables) 46-47
DNS 46
dohash (tool) 269
domain administrators (Cyrus) 237
domains, in the login name 150
DoS see denial-of-service attack
dot (.), as mailbox separator (Courier) 109
downloading
Courier 322
Cyrus 325
Cyrus SASL 325
DRAC, using with Cyrus 206
drachost (Cyrus option) 206
dracinterval (Cyrus option) 206
\Draft (flag) 35
in the filename (maildir) 113
searching for 306
dump, of a mailbox (Cyrus) 267
duplicate database (Cyrus) 260, 278
duplicate emails, avoiding (Cyrus) 260, 278
duplicate_db (Cyrus parameter) 260

E
e (permission) 37
edquota 169
eGroupWare 18

eight-bit characters, in headers, rejecting email

with 204
email
addressing to subfolders 36, 237, 238
copying 39, see COPY (IMAP command)
deleted (number of) 31
deleting
IMAP 39
obsolete automatically 268

POP3 26, 318
Sieve see discard (Seive command)
determining the MIME structure of 308
determining the size of (IMAP) 311
determining the Unique ID for 312
drafts see \Draft (flag)
envelope see envelope
fetching from server
IMAP see FETCH (IMAP command)
POP3 25, 318
file size in the filename (maildir) 114
filenames (Courier) 111-117
format, RFC 306
ID, Unique see Unique ID
informing the client of new 100, 101
inode of file 114
meta-information 111
moving
instead of deleting (Courier) 101
in Sieve see fileinto (Seive command)
new (number of) 31, 112, 299
placing in folder see APPEND (IMAP com-
mand)
reading
number of 31
offline 24
redirecting (Sieve) see redirect
rejecting (Sieve) see reject
remaining on the server 24
repository, central 45
saving see backup
searching see searching, in email
sending a test see test email, sending
sending via IMAP 99
sequence number 29
of the first unread 299
size as search criterion 306, 307
sorting into inboxes (Cyrus) 268
storage location
Courier 99
Exim 94
Postfix see home_mailbox
QMail 94
suppressing duplicates in Cyrus 260, 278
Unique ID 299
unread 40, 299
viewing see FETCH (IMAP command)

336

Index

email addresses
as login IDs 157
as login names 150
storing server administrator’s 273
as usernames for shell accounts 127
email clients see client
and certificates 208
encryption
activating with SSL/TLS (Courier) 103
and certificates 208
configuring with SSL/TLS (Courier) 102-105
forcing (Courier) 103
of the database connection (Cyrus) 217
with SSL/TLS 102, 208, 211
envelope
evaluating (Sieve) 246
querying data in (IMAP) 311
Sieve command 246
/etc/authlib/ 95
/etc/cyrus.conf see cyrus.conf
/etc/fstab see fstab
/etc/groups see groups (file)
/etc/imapd.conf see imapd.conf
/etc/passwd see passwd
/etc/shadow see shadow (file)
/etc/userdb see userdb
Evolution 17
EXAMINE (IMAP command) 32, 299
and CLOSE 303
exchange, migrating 81
Exim 18
connecting to Cyrus 255
integration into Courier 94-95
exim.conf 94
exists (Sieve command) 247
EXPUNGE (IMAP command) 32, 304
Ext2/Ext3
as email data storage 54-62
journal mode 60-62
speeding up see dir_index (mount option)
Ext4, as email storage medium 56
extensions see IMAP, extensions

F
FAM (File Alteration Monitor) 176
famd (daemon) 177
FETCH (IMAP command) 37, 112, 308, 312

using the Unique ID 313
fetchnews (tool) 268
File Alteration Monitor (FAM) 176
file locking, activating (Courier) 102
fileinto (Sieve command) 246, 248
filenames, for email (Courier) 111, 117
filesystem
performance 55-57
selecting 53, 57
tuning the performance of 57, 62
filter settings
for mailboxes 205
migrating 80
removing from Squirrelmail 80
fingerprint, authentication by 213
firewall, Sieve ports 245
fishing, for passwords 82
\Flagged (flag) 35
in the filename (maildir) 113
searching for 306
flags 29
\Answered see \Answered (flag)
\Deleted see \Deleted (flag)
\Draft see \Draft (flag)
\Flagged see \Flagged (flag)
\Recent see \Recent (flag)
\Seen see \Seen (flag)
abbreviation in the maildir 113
activating custom (Courier) 101
adding 312
custom 35, 75, 87, 115-117, 289, 313
excluding in a search 308
modifiable by client 36
permanent 29, 36, 101, 115, 298
permitted in the email folder 35, 298
querying in a message 311
removing 313
save type 36
searching for 306
session-based 29, 115
setting see STORE (IMAP command)
temporary see flags, session-based
flat (Cyrus database format) 259
folders
adapting names during migration 78
case-sensitive names of 301
creating see CREATE (IMAP command)

337

Index

deleting see DELETE (IMAP command)
after a specified period (Courier) 101
leaving see UNSELECT (IMAP command)
listing subscribed see LSUB (IMAP command)
moving during migration 78
naming 110
parallel to the INBOX 78, 79, 110
permissions for see ACLs
permitted flags 35
renaming 79-80
IMAP see RENAME (IMAP command)
selecting see SELECT (IMAP command)
selecting to read see EXAMINE (IMAP com-
mand)
spaces in names of 110
special characters in names of 110, 158
sub- see subfolders (Courier)
subscribed (Cyrus) 280
subscribing see SUBSCRIBE (IMAP com-
mand)
to folders on different backends 287
synchronizing continuously 76
unsubscribing see SUBSCRIBE (IMAP com-
mand)
format
for an annotation database see annotation_db
for a duplicate database see duplicate_db
for a quota database see quota_db
for a subscription database see subscription
_db
From header, searching in 306
fsck.reiserfs 54
fstab
command, activating quotas 168
optimizations 62
fud (tool) 268
fulldirhash (Cyrus option) 270
fulltext index 267

G
gam-server (tool) 177
Gamin 176
gecos 126, 136
GETMETADATA (IMAP command) 273
getpwent (saslauthd plugin) 212
GETQUOTA (IMAP command) 227
GID see group ID

group (user option) 155
group management with Courier via 144
group affiliation (of a user) 155
group ID
field in a MySQL table (Courier) 135
field in a PostgreSQL table (Courier) 139
groups (file), Cyrus group management via 231
groupware 18
Horde see Horde
grpquota (mount option) 168
GSSAPI 185
using with Cyrus 214

H
HA see availability
Haberland, Juri 79
hard disk I/O see 1/0
\HasChildren (folder flag) 34
hash procedure, for password transmission 148
hashimapspool (Cyrus option) 204
\HasNoChildren (folder flag) 34
error in the client 101
header lines
calling individual (IMAP) 39, 309
searching in 306
header rows, evaluating (Sieve) 247
HEADERFROM (Courier parameter) 99, 178
headers
refusing eight-bit characters in 204
retrieving (IMAP) 309
retrieving (POP3) see TOP (POP3 command)
Sieve command 247
hierarchy separators
Courier 109
Cyrus 235, 238
determining 35, 300
HMAC-MD5 (hash procedure) 148
home_mailbox (Postfix variable) 92
Horde 70-73
hostname, logging the client’s (Courier) 98

|

i (permission) 36

1/0, as limiting factor 44, 65

ident lookup (Courier) 98

IDLE (IMAP command) 34, 100, 101, 176-178,
200, 315

338

Index

idled 200, 262
if (Sieve) 246
IMAP 18, 28, 41, 295, 316
daemon
configuration (Courier) 99-102
configuration (Cyrus) see imapd.conf
Courier 87
Cyrus 262
exporting data set to mbox files 76
mode of operation 19
starting (Courier) 88
disabling login (Courier) see disableimap
email sending via 99, 316
experimental commands 316
extensions 33, 295, 314
functions 19
offline see offline IMAP
proxy see proxy
Proxy (project) 51, 73-74
RFC 33
separate password for (Courier) 126
session, process 31-33
imap (Red Hat package) 186
imap.conf (file) 258, 260
IMAP4revl (RFC) 295
IMAP_ACL (Courier parameter) 102
IMAP_CAPABILITY (Courier parameter) 100, 150
IMAP_CAPABILITY_TLS (Courier parameter) 100
IMAP_CHECK_ALL_FOLDERS (Courier parame-
ter) 100
IMAP_DISABLETHREADSORT (Courier parame-
ter) 100
IMAP_EMPTYTRASH (Courier parameter) 101
IMAP_ENHANCEDIDLE (Courier parameter) 100
IMAP_IDLE_TIMEOUT (Courier parameter) 101
IMAP_KEYWORDS (Courier parameter) 101, 115
imap_migrate 76
IMAP_MOVE_EXPUNGE_TO_TRASH (Courier pa-
rameter) 101
IMAP_OBSOLETE_CLIENT (Courier parameter)
101
IMAP_PROXY (Courier parameter) 175
IMAP_PROXY_FOREIGN (Courier parameter) 175
IMAP_SHAREDINDEXFILE (Courier parameter)
101
IMAP_SHAREDMUNGENAMES (Courier parame-
ter) 157

imap_tools 76
IMAP_TRASHFOLDERNAME (Courier parameter)
101
IMAP_ULIMITD (Courier parameter) 102
IMAP_USELOCKS (Courier parameter) 102
imapcopy 76
imapd see IMAP, daemon
Courier configuration file 95, 99-102, 115,
122, 123
Cyrus daemon see IMAP, daemon
imapd-ssl (Courier configuration file) 95, 103
imapd.cnf (Courier configuration file) 88, 96, 104
imapd.conf 188, 189, 203-206
admins 203, 237, 287, 288
allowanonymouslogin 203
allowsubscribes 287
allowusermoves 287
althamespace 277
annotation_db 259
authentication via sasldb2 (Cyrus) 194
autocreate_sieve_script 251
autocreatequota 203, 226, 251
berkeley_cachesize 258
berkeley_txns_max 258
configdirectory 203, 270
configuring the mupdate server 288
configuring the murder backend 286-287
configuring the murder frontend 283-285
connecting to MySQL 216
defaultdomain 203, 234
defining the directory for mailboxes 195
drachost 206
dracinterval 206
duplicate_db 260
fulldirhash 270
hashimapspool 204
Imtp_downcase_rcpt 204
Imtp_overquota_perm_failure 204
mailnotifier 253
maxmessagesize 204, 258
mupdate-port 286
mupdate-server 286
mupdate_authname 284, 286
mupdate_password 284, 286
mupdate_port 284
mupdate_server 284
mupdate_username 284, 286

339

Index

partition-default 204, 239, 270

partition-name 259

poptimeout 204, 259

proxy_authname 284

proxyd_disable_mailbox_referrals 285

proxyservers 287

ptscache_db 260

quota_db 260

quotawarn 204, 226

quotawarnkb 204, 227

reject8bit 204

sasl_mech_list 214

sasl_pwcheck_method 205, 215, 219

sasl_sql_hostnames 216

sasl_sql_select 217

sasl_sql_usessl 217

sasl_sql_verbose 217

seenstate_db 259

servername 283, 288, 290

sieve_allowreferrals 285

sievedir 205, 241, 285

sievenotifier 253

sieveuserhomedir 285

structure 203

subscription_db 260

timeout 205

tls_ca_file 206, 210

tls_ca_path 206, 210

tls_cert_file 205, 210

tls_key_file 205, 210

tlscache_db 260

unixhierarchysep 205, 235

username_tolower 205

virtdomains 205, 233
IMAPD_TLS_REQUIRED (Courier parameter) 103
IMAPDSSLSTART (Courier parameter) 103
IMAPDSTART (Courier parameter) 99
IMAPDSTARTTLS (Courier parameter) 103
imaplogin (Courier) 87
imapsync 76-78

tool 76, 81
IMP 70-73
IMPLEMENTATION (POP3 capability) 320
important emails see \Flagged (flag)
imtest (tool) 217-218
in.imapproxyd see IMAP, Proxy (project)
INBOX

folders parallel to 78, 79, 110
renaming 301
index (file) 153, 156-158
generating automatically 160
on multiple servers 156
for a shared group 159
for shared folders (Courier) 88, 101, 138
splitting 161
index databases (Cyrus) 259, 260, 278
changing format of 267
maximum RAM consumption 258
initscript, Courier 88-89
inode, of an email file 114
installing
Courier 86-87
from the source code
Courier 321, 324
Cyrus 325, 330
Internet interface
for Cyrus administration 184
Internet Message Access Protocol see IMAP
iozone 55
IP address
limiting the number of connections per 97
logging the client’s (Courier) 98, 99
of the POP3/IMAP server (Courier) 98
iptables, load distribution via 46, 47
ipurge (tool) 202, 268
iris scan, authentication by 213

J
Jabber notification (Sieve) 254
journal mode 60-62

K
keep (Sieve command) 248
Kerberos 185

support for Cyrus 212

using with Cyrus 214, 223-224

using with Sieve 242
Kerberos Post Office Protocol see KPOP
kerberos4 (saslauthd plugin) 212
kerberos5 (saslauthd plugin) 212
key, for challenge-response 148
keywords see flags, custom
KMail 17, 279

and Sieve 244

340

Index

Kolab 18
KPOP 28

L
1 (permission) 36
lam see listaclmailbox
Lamiral, Gilles 76
laptops, subscribing to folders and 41
LDAP
configuration file (Courier) see authldaprc
replication 291
using with Courier see authldap, 140-146
using with Cyrus 212-214, 220-223, 231
Idap (saslauthd-Plugin) 212
LDAP_AUTHBIND (Courier option) 141
LDAP_AUXOPTIONS (Courier option) 143, 146
LDAP_BASEDN (Courier option) 140
LDAP_BINDDN (Courier option) 140, 141
LDAP_BINDPW (Courier option) 141
LDAP_CLEARPW (Courier option) 142
LDAP_CRYPTPW (Courier option) 142
LDAP_DEFAULTDELIVERY (Courier option) 142
LDAP_DEREF (Courier option) 143
LDAP_DOMAIN (Courier option) 141
LDAP_ENUMERATE_CLAUSE (Courier parame-
ter) 161
LDAP_ENUMERATE_FILTER (Courier option) 141
LDAP_FILTER (Courier option) 141
LDAP_FULLNAME (Courier option) 142
LDAP_GID (Courier option) 143
LDAP_GLOB_GID (Courier option) 143
LDAP_GLOB_UID (Courier option) 142
Idap_group_attr (Cyrus option) 223
Idap_group_filter (Cyrus option) 223
Idap_group_match_method (Cyrus option) 223
Idap_group_search_base (Cyrus option) 223
LDAP_HOMEDIR (Courier option) 142
LDAP_MAIL (Courier option) 141
LDAP_MAILDIR (Courier option) 142
LDAP_MAILROOT (Courier option) 142
LDAP_PROTOCOL_VERSION (Courier
140
Idap_search_base (Cyrus option) 223
LDAP_TIMEOUT (Courier option) 141
LDAP_TLS (Courier option) 143
Idap_tls_check_peer (Cyrus option) 222
LDAP_UID (Courier option) 143

option)

LDAP_URI (Courier option) 140
Idapdb (auxprop plugin) 213
Least Connection (LVS) 49
legal situation 20
Lemonade 273
libsasl 211-215
compiling MySQL support 216
Linux Virtual Server see IVS
LIST (IMAP command) 34, 41, 299
LIST (POP3 command) 24, 25, 318
misleading Courier reply 25
listaclmailbox
cyradm command 230
cyradmin command 272
listmailbox (cyradmin command) 271
listquota
cyradm command 228
cyradmin command 273
listquotaroot
cyradm command 229
cyradmin command 273
Im see listmailbox
LMTP 18
between Cyrus and Postfix 191-192
Cyrus 254
daemon (Cyrus) see Imtpd (daemon)
maximum email size (Cyrus) 258
proxy (Cyrus) see Imtpproxyd (daemon)
socket, defining (Cyrus) 191
specifying port for 201
Imtp_downcase_rcpt (Cyrus option) 204
Imtp_overquota_perm_failure (Cyrus option) 204
Imtpd (daemon) 262
Imtpproxyd (daemon) 262
Imtpunix (definition) 191
load balancer 44-49
combining with proxy 50
Cyrus 282, 291
load distribution 43-51
load test, on the mupdate server 270
local (MDA) 172
Local Message Transfer Protocol see LMTP
log files (Cyrus) 278
log information (Courier) see DEBUG_LOGIN
LOGGEROPTS (Courier parameter) 98
logging in
Courier 119, 151

341

Index

disabling (SqWebMail) see disableweb
via external authentication programs (Courier)
131-133
IMAP 31, 34, 297
disabling (Courier) see disableimap
encrypting 210
methods see authentication method
via MySQL database (Courier) see authmysql
via MySQL database (Cyrus) 213, 216-220
via PostgreSQL database (Courier) see auth-
pgsal
POP3 24, 318
disabling (Courier) see disablepop
encrypting 27
via PostgreSQL database (Cyrus) 213
via shell account see shell account
via SQL database (Cyrus) 213
testing (Cyrus) see imtest (tool)
testing on the Sieve server 241
logging out
IMAP status 32
POP3 see QUIT (POP3 command)
logging tool (Courier) see courierlogger
LOGIN (IMAP command) 31, 34, 297
LOGIN (password transfer method) 81
LOGIN (password-transfer method) 34, 97, 119,
147, 214
forcing with imtest 218
login data, determining via SQL query
Courier 137
Cyrus 217
login ID (email address) 157
LOGIN-DELAY (POP3 command) 319
LOGINDISABLED (capability) 296
LOGOUT (IMAP command) 32, 297
and CLOSE 303
lq see listquota
Igr see listquotaroot
Isof, testing the POP/IMAP function 89
LSUB (IMAP command) 41, 302
LVS 47-49

M
mail see email
mail contents see body
Mail Delivery Agent see MDA
mail partitions 189, 239

default partitions 239
defining 239
mail repository
overloaded 50
mail server 17
Mail Transfer Agent see MTA
mail_spool_directory (Postfix variable) 92
mailbox contents
listing (Cyrus) see listmailbox
listing (IMAP) 34, 299
listing (POP3) 24, 318
mailbox_command (Postfix) 174
mailboxes
creating (Cyrus) see createmailbox
creating directories 17
Cyrus, listing 266
deleting (Cyrus) see deletemailbox
location in the filesystem (Cyrus) 195, 204
moving in a cluster see xfermailbox
moving to another murder backend 287
partitions (Cyrus) 259
putting out on the standard output 267
querying 17
renaming (Cyrus) see renamemailbox
repairing (Cyrus) 255, 257
saving see backup
searching see searching, in email
mailboxes.db 278
file 266, 278
maildir 107-117
creating directories 88
creating from mbox 78-79
location (Courier) 99
vs. mbox 91
and NFS 63, 108
operating Exim with 94, 95
operating Postfix with 92
specifying in a MySQL table (Courier) 136
specifying in userdb 126
maildir+ 172
maildiracl (tool) 87
maildirfolder (file) 109
maildirkw (tool) 87
maildirmake 164, 174
tool 88
MAILDIRPATH (Courier parameter) 99
maildirsize (file) 114, 115, 170

342

Index

Maildrop 85
maildrop (MDA) 172
mailheader see header
mailhost

user option 145

Courier 175

mailnotifier (Cyrus option) 253
main.cf (Postfix configuration file) 92
maintenance, announcing 279
makeuserdb (tool) 125, 128, 129
Managesieve 240
masssievec (tool) 269
MAXDAEMONS (Courier parameter) 97
maxmessagesize

Cyrus option 204

Cyrus parameter 258
MAXPERIP (Courier parameter) 97
mb2md.pl 79
mbexamine 265
mbox files 91-92

converting to the maildir format 78-79

importing to an IMAP server 76
mbpath (tool) 266
MDS5, as password hash algorithm 147
MDA 18

of the Courier project see Maildrop

with quota capability see deliverquota
message text see body
meta-information, for email 111
migration 75-82

the exchange 81

filter settings 80

problems with Courier 110
MIME

attachment see attachments

structure, determining for an email 308
mirroring see RAID
mkfs.ext3 59
mkimap (tool) 269
mkimapdcert (tool) 88, 96, 104
mknewsgroups (tool) 270
mkpop3dcert (tool) 88, 96, 104
modification time

of a file see mtime

of file permissions see mtime

of ownership see mtime
motd (file) 279

mount (command), activating quotas 168
Mozilla Thunderbird see Thunderbird
msg/ 279
MTA 17, 18
connection to Courier 90-95
of the Courier project 85
mtime 57
mupdate
daemon 262
server 282, 286, 288
load test 270
port 284, 286
mupdate-loadgen.pl (tool) 270
mupdate-port (Cyrus option) 286
mupdate-server (Cyrus option) 286
mupdate_authname (Cyrus option) 284, 286
mupdate_password (Cyrus option) 284, 286
mupdate_port (Cyrus option) 284
mupdate_server (Cyrus option) 284
mupdate_username (Cyrus option) 284, 286
Murder cluster see aggregator
MySQL
creating table for user management 133
replication 291
specifying authentication server (Courier) 135
support for Courier (OpenSuSE) 86, 134
table, for user data (Courier) 135
using with Courier 147, see authmysql
using with Cyrus 231
MYSQL_AUXOPTIONS_FIELD (Courier parame-
ter) 137, 146
MYSQL_CHPASS_CLAUSE (Courier parameter)
138
MYSQL_CLEAR_PWFIELD (Courier parameter)
135
MYSQL_CRYPT_PWEFIELD (Courier parameter)
135
MYSQL_DATABASE (Courier parameter) 135
MYSQL_DEFAULTDELIVERY (Courier parameter)
136
MYSQL_ENUMERATE_CLAUSE (Courier parame-
ter) 138, 161
MYSQL_GID_FIELD (Courier parameter) 135
MYSQL_HOME_FIELD (Courier parameter) 136
MYSQL_LOGIN_FIELD (Courier parameter) 136
MYSQL_MAILDIR_FIELD (Courier parameter)
136

343

Index

MYSQL_NAME_FIELD (Courier parameter) 136
MYSQL_OPT (Courier parameter) 136
MYSQL_PASSWORD (Courier parameter) 135
MYSQL_PORT (Courier parameter) 136
MYSQL_QUOTA_FIELD (Courier parameter) 137
MYSQL_SELECT_CLAUSE (Courier parameter)
137
MYSQL_SERVER (Courier parameter) 135
MYSQL_SOCKET (Courier parameter) 136
MYSQL_UID_FIELD (Courier parameter) 135
MYSQL_USER_TABLE (Courier parameter) 135
MYSQL_USERNAME (Courier parameter) 135,
139
MYSQL_WHERE_CLAUSE
137

(Courier parameter)

N
NAMESPACE

IMAP command 315

IMAP extension 34
naming

IMAP folders 110

emails (Courier) 111-117
NAS, as email repository 20
negation see NOT (search link)
NetApp filer 55
netnews separators 238
new

contents of directory 111

creating directories 88

directories 94, 108

messages see \Recent (flag)

number of 31, 299

NFS

and Cyrus 63

as email repository 45, 63-65

for email storage 21

FAM tuning 177

and IDLE 177

and maildir 63, 108

and mbox 91
nfsvers (mount option) 64
nice value, specifying for events (cyrus.conf) 268
NIL (definition) 309
nntpd (daemon) 263
noacl (mount option) 58
noatime (mount option) 57, 64

\Nolnferiors (folder flag) 101
NOOP
IMAP command 31, 296
POP3 command 27, 318
\Noselect (flag) 301
NOT (search link) 306
Not Authenticated (IMAP status) 31
available commands 297-298
notify (daemon) 252, 254
notifyd 240
daemon 263
numbering, emails 29

0
obsolete email, deleting automatically 268
octet, definition 296, 309
octet-byte conversion 309
offline IMAP 29, 30, 315
old email, deleting automatically 268
one-time passwords (Cyrus) 185
OpenGroupware 18
OpenLDAP see LDAP
OpenSSL
integrating in Cyrus 208
support in older Cyrus versions 210
openssl 298
ordered (journal mode) 60, 61
_ORIG variables (Courier) 96
out-of-office notices see vacation (Sieve com-
mand)
outbox 178
OUTBOX (Courier parameter) 178
OUTBOX_MULTIPLE_SEND (Courier parameter)
178
Outlook 17, 209, 279

P
p (permission) 36, 238
PAM

support in Courier see authpam

support in Cyrus 212, 219-220
pam (saslauthd plugin) 212
partition-default (Cyrus)

option 204, 239

parameter 239, 270
partition-name (Cyrus parameter) 259
partitions (Cyrus) see mail partitions

344

Index

PASS (POP3 command) 24, 317, 318
passwd
converting into userdb see pw2userdb
file
authentication via (Courier) 119, 120,
143
authentication via (Cyrus) 212, 214,
219
restrictions on usernames 151
passwords
additional SSL transfer methods for Courier
POP 97
changing 138
checking as hash 148
cleartext 81
cleartext transmission vs. hashing 147-150
determining in cleartext 81
encrypting (POP3) 27
entering in userdb 128
entry (IMAP) see LOGIN (IMAP command)
entry (POP3) see PASS (POP3 command)
field in a MySQL table (Courier) 135
field in a PostgreSQL table (Courier) 139
fishing, as a migration method 82
logging (Courier) 99
separate for different services 126
sniffing 149
transfer methods
cleartext 97
as crypt hash 119
Courier POP server 97
in plaintext 34, 119, 210
Perdition 51
performance 19
of filesystems 55-57
influencing the Cyrus performance 215, 257,
260
of RAID 63
shared folders 159
tuning, of the filesystem 57-62
perl-Authen-SASL (SuSE package) 186
perl-Cyrus (Red Hat package) 186
perl-Cyrus-IMAP (SuSE package) 185
perl-Cyrus-SIEVE-managesieve 190
SuSE package 186
permanent flags 29, 36, 298
activating (Courier) 101

permissions see ACLs

persistence 45

PGSQL_AUXOPTIONS_FIELD (Courier parameter)
146

PGSQL_CRYPT_PWFIELD
139

PGSQL_DATABASE (Courier parameter) 139

PGSQL_ENUMERATE_CLAUSE (Courier parame-
ter) 161

PGSQL_GID_PWFIELD (Courier parameter) 139

PGSQL_HOME_PWFIELD (Courier parameter)
139

PGSQL_HOST (Courier parameter) 139

(Courier parameter)

PGSQL_LOGIN_PWEFIELD (Courier parameter)
139

PGSQL_NAME_PWFIELD (Courier parameter)
139

PGSQL_PASSWORD (Courier parameter) 139
PGSQL_PORT (Courier parameter) 139
PGSQL_UID_PWFIELD (Courier parameter) 139
PGSQL_USER_TABLE (Courier parameter) 139
phpLDAPAdmin (tool) 220
PID

file (Courier) 97

of the saving process 114
PIDFILE (Courier parameter) 97
PIPELINING (POP3 command) 319
PLAIN (password-transfer method)

100, 119, 147, 214
Pluggable Authentication Modules see PAM
POP/IMAP before SMTP, using with Cyrus 206
pop2imap 76
POP3 18, 23, 28

connection status 317

disabling login (Courier) see disablepop

email remains on the server 24

extensions 319

migrating to IMAP 76

problems during migration 78

providing for Debian (Cyrus) 187

separate password for (Courier) 126

server see POP3 daemon

specifying a timeout (Cyrus) 259
POP3 daemon 18

configuration (Courier) 96-99

Courier 87

Cyrus 263

34, 81, 97,

345

Index

mode of operation 19
number simultaneously started (Courier) 97
PID file (Courier) 97
preventing from starting (Courier) 98
starting (Courier) 88, 98
POP3_PROXY (Courier parameter) 97, 175
POP3_TLS_REQUIRED (Courier parameter) 103
POP3AUTH (Courier parameter) 96, 97
POP3AUTH_ORIG (Courier) 96
POP3AUTH_TLS (Courier parameter) 97
pop3d see POP3 daemon 87
pop3d (Courier configuration file) 95-99, 122, 123
pop3d-ssl (Courier configuration file) 95, 103
pop3d.cnf (Courier configuration file) 88, 96, 104
POP3DSSLSTART (Courier parameter) 103
POP3DSTART (Courier parameter) 98
POP3DSTARTTLS (Courier parameter) 103
pop3login (Courier) 87
pop3proxyd (daemon) 263
poptimeout
Cyrus option 204
Cyrus parameter 259
PORT (Courier parameter) 98
ports
IMAP 33, 89
via SSL 103, 208
IMAP via SSL 87
LDAP 220
via SSL 220
monitoring 89
mupdate server 284, 286
in the murder cluster 285
POP3 18, 23, 89
via SSL 87, 103
PostgreSQL 139
Sieve 245
specifying for MySQL
Courier 136
Cyrus 216
specifying for POP3/IMAP server (Courier) 98
specifying SSL for Courier 103
to be released for Cyrus 191
PosgreSQL table
for user data (Courier) 139
Post Office Protocol see POP3
Postfix 18
configuring as a relay 192

integration into Courier 92-94
naming for email in maildirs 114
PostgreSQL
contacting via the socket (Courier) 139
using with Courier see authpgsql, 139-140,
147
using with Cyrus 213
postmark 55
process ID see PID
Cyrus 279
processor, requirements (IMAP) 44
procmail (MDA) 172
profile files (Squirrelmail) 80
proxy
caching for IMAP 51, 73-74
Courier as 175
IMAP server as 44, 50, 51
mode of the Courier POP3 server 97
proxy_authname (Cyrus option) 284
PROXY_HOSTNAME (Courier parameter) 97, 175
proxyd_disable_mailbox_referrals (Cyrus option)
285
proxyservers (Cyrus option) 287
ptscache_db (Cyrus parameter) 260
pull procedure (IMAP) 32
push procedure (IMAP) 32
pw2userdb (tool) 125
pwcheck (Cyrus SASL module) 214

Q
QMail 18
integration into Courier 94
using the vchkpw library with Courier 120,
130
qualified users (Cyrus) 233, 276
quit (cyradm command) 274
QUIT (POP3 command) 27, 318
quota
Cyrus tool 257
tool 230
QUOTA (IMAP extension) 316
QUOTA extension 227
quota.user (file) 168
quota/ (directory, Cyrus) 279
quota_db (Cyrus parameter) 260
quotacheck (tool) 168
quotaoff (command) 168

346

Index

quotaon (command) 168
quotaroot 228, 257
quotas 20, 166, 167, 267
and MDAs 172
calculating (Courier) 115
Courier 167, 175
calculating 114
specifying in MySQL 137
specifying in userdb 126
warning message when exceeded 96
when manually storing email 115
Cyrus 225, 230, 279
automatic 226
checking 263
listing 273
manual 228
restoring 257
setting 273
showing utilization 273
warning message when exceeded 204
database, Cyrus 260
filesystem 168
maildirsize 170
monitoring 167
via maildir+ 170
warning 174
quotawarn (Cyrus option) 204, 226, 227
quotawarnkb (Cyrus option) 204
quotawarnmsg
Courier configuration file 96
file 174

R
r (permission) 36
RAID 62-63
RAM consumption
Cyrus index database 258
IMAP 43
rccourier-authdaemon (script) 88
rccourier-imap (script) 88
rccourier-imap-ssl (script) 88
rccourier-pop (script) 88
rccourier-pop-ssl (script) 88
read messages see \Seen (flag)
number of 31
read permission see ACLs
read throughput 56, 57, 60, 61

for RAID 62
receiving email see retrieving email
\Recent (flag) 35
searching for 306, 307
recipient see To header
reconstruct
Cyrus tool 255, 257
tool 267, 277
redirect (Sieve command) 248
redundancy 19
regular expressions, in Sieve 247
rehash (tool) 270
ReiserFS
as email storage medium 54-62
data loss 54
journal mode 60-62
version 4 56
reject (Sieve command) 246, 248
reject8bit (Cyrus option) 204
relay server 17
reliability see availability
RENAME (IMAP command) 301
renamemailbox (cyradmin command) 272
renaming
folders (IMAP)
mand)
renm see renamemailbox
replication (Cyrus) 291
repquota 169
resource consumption 32
retrieving email 18
via IMAP 111
reverse lookup, on client IP (Courier) 98
RFC
ACL extension 34
CHILDREN extension 34
email format 115, 306
IDLE extension 34
IMAP 33
IMAP4revl 295
NAMESPACE extension 34
POP3 25
extensions 319
QUOTA extension 227
SASL 20, 85
Sieve 250
STARTTLS 319

see. RENAME (IMAP com-

347

Index

UIDPLUS extension 34

UNSELECT 39

URLAUTH extension 296
rimap (saslauthd plugin) 212
round robin

via DNS 46

via iptables 46-47
RSET (POP3 command) 26, 318

S
s (permission) 36
safeguards (Cyrus) 207-224
sam see setaclmailbox
SAN, as email repository 20, 45, 55
SASL

authentication methods (Cyrus) 205

and Courier 20

downloading 325

REC 20, 85
sasl_mech_list (Cyrus option) 214
sasl_pwcheck_method 212

Cyrus option 205, 215, 219

option 189
sasl_sql_hostnames (Cyrus option) 216
sasl_sql_select (Cyrus option) 217
sasl_sql_usessl (Cyrus option) 217
sasl_sql_verbose (Cyrus option) 217
saslauthd (Cyrus SASL module) 189, 212, 215

using LDAP with 221, 223
saslauthd.conf (file) 222
sasldb (saslauthd plugin) 213, 216
sasldb2

as authentication for Cyrus 194, 216

lack of group management 216, 231
saslpasswd2 (command) 194
scaling see performance
SEARCH (IMAP command) 40, 296, 304, 308

returning the Unique ID 314
searching

conjunction 304

for deleted email 40

in email 29, 40, 304, 308

negation see NOT (search link)

OR link 307

specifying a character set 305

for text containing special characters 305
\Seen (flag) 31, 35

Cyrus database 259, 279
in the filename (maildir) 113
permit change 36
preventing when retrieving emails via FETCH
309
searching for 307
searching for email without 40
seenstate_db (Cyrus parameter) 259
SELECT (IMAP command) 32, 35, 75, 298
and CLOSE 303
Selected (IMAP status) 32
available commands 303, 314
sending email 17
via IMAP 178
sendmail 18, 178
path to the program (Courier) 102
SENDMAIL (Courier parameter) 102
sequence number
changing when emails are deleted 304
of an email 29
of the first unread email 299
server reply (IMAP) 31
servername (Cyrus option) 283, 288, 290
session-based flags 29
setaclmailbox (cyradm command) 230
setaclmailbox (cyradmin command) 272
setinfo (cyradm command) 273, 278
setquota
cyradm command 228
cyradmin command 273
SHA, as password hash algorithm 147
shadow (file)
authentication via (Courier) 119, 120, 143
authentication via (Cyrus) 212, 214, 215, 219
restrictions on usernames 151
shadow (saslauthd plugin) 212
share groups 158
share name 156
shareable maildir 163
#shared (directory) 110, 156
shared directory 157, 164
Courier 96
shared folder 34, 164
Courier 153, 166
activating 101
filesystem-based 163
group mapping 145

348

Index

grouping 158
index file see index (file)
name space 156
share name 156
storage location 110
virtual 154-163
Cyrus 188, 230
authentication sources 231
setting permissions 230
shared groups
Courier 159, 162
index file 161
sharedgroup (user option) 145, 155
Courier 159-161
sharedindexinstall (tool) 88, 162
sharedindexsplit (tool) 88, 161
shell account
authentication via (Courier) 94, 119
authentication via (Cyrus) 215
creating 215
email address as username 127
shutdown (file, Cyrus) 279
Sieve 21, 240, 252
administration see sieveshell
changing a script 244
configuring 241
evaluating the envelope 246
evaluating the header 247
and KMail 244
loading additional modules 246
in the murder cluster 285
notification (SMS, IM) 254
packages 240
regular expressions 247
reject spam 248
required Perl modules 190
RFC 250
script language 246, 250
setting up scripts automatically for new ac-
counts 251, 252
and Squirrelmail 244
testing the configuration 241
translating into byte code 268, 269
with virtual domains 252
and Webmin 244
working directory 240
Cyrus 205

sieve (option) 241
sieve_allowreferrals (Cyrus option) 285
sievec (tool) 269
sievedir (Cyrus option) 205, 241, 285
sievenotifier (Cyrus option) 253
sieveshell (tool) 242, 245
authentication 242
commands 242, 244
sieveuserhomedir (Cyrus option) 285
Simple Authentication and Security Layer see
SASL
Simple Mail Transport Protocol see SMTP
sivtesti (tool) 241
size
determining for an email 311
of an email as search criterion 306, 307
of an email file 114
limiting a data segment’s (Courier) 102
limiting the virtual memory’s (Courier) 102
maximum for email (Cyrus) 204
restricting for an email for LMTP (Cyrus) 258
skiplist (Cyrus database format) 259
SmartSieve 184, 244
smmapd (daemon) 263
SMTP 17
after POP, using with Cyrus 206
separate password for (Courier) 126
server see MTA
sniffing 149
passwords 81
SNMP support (Cyrus) 329
sockets
Cyrus 279
defining for LMTP (Cyrus) 191
specifying for MySQL (Courier) 136
specifying for PostgreSQL (Courier) 139
SORT (IMAP command) 34, 100, 315
sorting, on the server 34, 100
spaces, in folder names 110
spam
fighting via Sieve script 248, 251
fighting with custom IMAP flags 289
special characters
in folder names 110, 158
searching for 305
specifying the default domain (Cyrus) 203
sq Ssee setquota

349

Index

sql (auxprop plugin) 213
squat index 267, 274
squatter (tool) 267
Squirrelmail 68-70
and Sieve 244
migration problems 80
problems with filter settings 80
user profiles 80
SqWebMail 85, 138
disabling login (Courier) see disableweb
SSL
activating (Courier) 103
caching connection information 260
configuring (Courier) 102-105
encryption
of the database connection (Cyrus)
217
starting see STARTTLS (IMAP com-
mand)
forcing (Courier) 103
generating keys (Courier) 88
password-transfer methods
Courier IMAP server 100
Courier POP server 97
start scripts for Courier (OpenSuSE) 87
version, selecting (Courier) 104
wrapper 208
SSL certificates
checking the client’s (Courier) 104
commercial vs. free 208
creating 209
with Courier 96, 104
paths to (Cyrus) 205
specifying the path
Courier 104
Cyrus 205, 210
LDAP server 222
warning for custom 208
SSL/TLS (Courier) 102
SSLADDRESS (Courier parameter) 103
SSLLOGGEROPTS (Courier parameter) 103
SSLPIDFILE (Courier parameter) 103
SSLPORT (Courier parameter) 103
start/stop script see initscript
STARTTLS
capability 296
IMAP command 103, 208, 296, 297

activating (Courier) 103
for POP3 see STLS (POP3 command)
POP3 command
selecting SSL version (Courier) 104
RFC 319
STAT (POP3 command) 318
STATUS (IMAP command) 32, 302
status information
for a mailbox 31, 296
for an email see flags
for an IMAP folder 35, 39, 296, 298, 302
STLS (POP3 command) 103, 208, 319
activating (Courier) 103
selecting SSL version (Courier) 104
storage see email, repository, central
restrictions see quotas
STORE (IMAP command) 35, 113, 116, 312
using the Unique ID 313
subfolders (Courier)
format 109
names 108
subject header
as search criterion 307
SUBSCRIBE (IMAP command) 41, 302
subscribed folders
list (Courier) 109
list (Cyrus) 280
listing see LSUB (IMAP command)
migrating 78
on different backend servers 287
subscribing to (folders) see SUBSCRIBE (IMAP
command)
shared folders 166
and visibility in the mail client 162
subscription_db (Cyrus parameter) 260
symlinks 164
shared folder 154
system flags 35, 113

T
t (permission) 37

tagged server replies 31

tags 31

tcpd 73

TCPDOPTS (Courier parameter) 98
tcpdump 149

telnet

350

Index

setting IMAP flags 116

testing the POP/IMAP function 89, 289
test email, sending 93-94, 288
testsaslauthd (tool) 222
text message, when email is received 254
TheBat 209
THREAD

IMAP command 315

IMAP extension 34, 100
threading, on the server 34
Thunderbird 17, 279
timeout

Cyrus option 205

specifying for POP3 (Cyrus) 259
timsieved 240

daemon 263

SuSE package 186
TLS see SSL

cache (Cyrus) 260

Courier 102
tls_ca_file (Cyrus option) 206, 210
tls_ca_path (Cyrus option) 206, 210
TLS_CACHEFILE (Courier parameter) 104
TLS_CACHESIZE (Courier parameter) 104
tls_cert_file (Cyrus option) 205, 210
TLS_CERTFILE (Courier parameter) 104
tls_key_file (Cyrus option) 205, 210
TLS_PROTOCOL (Courier parameter) 104
tls_prune (tool) 202, 269
tls_session.db (file) 269, 279
TLS_STARTTLS_PROTOCOL (Courier parameter)

104
TLS_VERIFYPEER (Courier parameter) 104
tlscache_db (Cyrus parameter) 260
tmp

creating directories (maildir) 88

directories (maildir) 108, 115
To header, as search criterion 308
TOP (POP3 command) 26, 319
transaction state (POP3) 317
transactions

simultaneous per Cyrus database 258
translatesieve (tool) 252, 271
trash folder (Courier) 101

emptying after a specified period 101
\Trashed (flag) 113
trust network 208

TRYCREATE (server reply) 313
Tso, Theodore “Ted” 58, 61
tune2fs 59

u
UID see Unique ID
IMAP command 313, 314
UIDL (POP3 command) 320
UIDPLUS (IMAP extension) 34, 315
ulimit 102
umask, of the Courier server process 102
UMASK (Courier parameter) 102
uname -n 175
unanswered email, searching for 308
undelete (POP3) 26, 318
undo, when deleting email (Courier) 101
undohash (tool) 271
unique email ID (POP3) 320
Unique ID 29, 299
determining 312, 315
as search criterion 308
using in IMAP commands 313-314
Value 29, 36, 299
universe 159
Unix account see shell account
Unix separators see /, as mailbox separator
unixhierarchysep (Cyrus option) 205, 235
\Unmarked (folder flag) 34
unqualified users (Cyrus) 233, 276
unread email
finding 308
number of the first 299
querying for 40
UNSELECT (IMAP command) 39
UNSUBSCRIBE (IMAP command) 41, 302
unsubscribing (folders) see SUBSCRIBE (IMAP
command)
untagged server replies 31
Update state (POP3) 318
upgradesieve (tool) 271
URLAUTH (IMAP command) 296
URLSs, for IMAP messages see URLAUTH
USER (POP3 command) 24, 317-319
user ID
field in a MySQL table (Courier) 135
field in a PostgreSQL table (Courier) 139
user options (Courier) 144-147

351

Index

maintaining in LDAP) 143, 146
saving in the userdb 146
specifying in MySQL) 137, 147
specifying in PostgreSQL) 147
user profiles see profile files (Squirrelmail)
user/ (directory, Cyrus) 280
userdb
creating file from passwd see pw2userdb
directory 125, 129
file 125
converting into a database 128
displaying an entry 127

maintaining separately by domain 129

manipulating an entry 127
saving user options in 146
separating 129
file structure 125-127
tool 127-129
userdb.dat (file) 128
userdbbpw (tool) 128
userdbpw (tool) 129, 130
userdbshadow.dat (file) 128
userid.seen (file) 280
userid.sub (file) 280
username
converting to lowercase 205
entry (IMAP) see LOGIN (IMAP command)
entry (POP3) see USER (POP3 command)
field in a MySQL table (Courier) 136
field in a PostgreSQL table (Courier) 139
logging (Courier) 99
selecting 150-151
username_tolower (Cyrus option) 205
users, virtual see virtual accounts
usrquota (mount option) 168
UW-IMAP 186

\'
vacation (Sieve command) 246, 249, 250
variables see configuration parameters
/var/lib/imap 188, 203, 277
/var/lib/sieve 205
Varshavchik, Sam 59, 139, 149
/var/spool/imap 188, 204, 275
/var/spool/imap/user 195
vchkpw library see QMail
VDA patch 173

Venema, Wietse 73
version (cyradm command) 274
virtdomains (Cyrus option) 205, 233
virtual (MDA) 172

quota patch 173
virtual accounts 120

per authuserdb see authuserdb
virtual domains (Cyrus) 232

activating 205

adapting Sieve scripts 252, 271

and assigning permissions 236
virtual memory, limiting size of (Courier) 102
virtual users see virtual accounts, 94, 120,

with Postfix 94
vpopmail library see vchkpw library

W
w (permission) 36
WAFL, as email storage medium 55
Web-cyradm 184
webmailer 67-73
accelerating the see IMAP, Proxy (project)
for cell phones 70
for the Courier project 85, 132, 138
migration problems 80
problems with filter settings 80
Webmin
Cyrus plugin 184
and Sieve 244
websieve (web interface) 244
WHERE (SQL command) 137
write permission see ACLs
write throughput 56, 57, 60, 61
for RAID 62
writeback (journal mode) 60-62

X
X (permission) 37
X-commands (IMAP) 316
X-IMAP-Sender (header) 99, 178
xfermailbox (cyradm command) 274, 287
XFS, as email storage medium 54-56
XMPP notification (Sieve) 254

YA
Zephyr 254
ZFS, as email storage medium 54

352

IMAP (the Internet Message Access Protocol) allows
clients to access their email on a remote server,
whether from the office, a remote location, or a cell
phone or other device. IMAP is powerful and flexible,
but it's also complicated to set up; it's more difficult to
implement than POP3 and more error-prone for both
client and server.

The Book of IMAP offers a detailed introduction to IMAP
and POP3, the two protocols that govern all modern
mail servers and clients. You'll learn how the protocols
work as well as how to install, configure, and maintain
the two most popular open source mail systems, Courier
and Cyrus.

Authors Peer Heinlein and Peer Hartleben have set up
hundreds of mail servers and offer practical hints about
troubleshooting errors, migration, filesystem tuning,
cluster setups, and password security that will help you
extricate yourself from all sorts of tricky situations. You'll
also learn how to:

¢ Create and use shared folders, virtual domains, and
user quotas

THE FINEST IN GEEK ENTERTAINMENT™

ISBN: 978-1-59327-177-0

www.nostarch.com

\ .. “I LAY FIAT.”
This book uses RepKover—a durable binding that won't snap shut.

open
& Printed on recycled paper

BUILD A RELIABLE

SERVER WITH IMAP

o Authenticate user data with PAM, MySQL, PostgreSQL,
and LDAP

Handle heavy traffic with load balancers and proxies

Use built-in tools for server analysis, maintenance,
and repairs

¢ Implement complementary webmail clients like

Squirrelmail and Horde/IMP
e Set up and use the Sieve email filter

Thoroughly commented references to the POP and IMAP
protocols round out the book, making The Book of IMAP
an essential resource for even the most experienced
system administrators.

ABOUT THE AUTHORS

Peer Heinlein has been operating an independent ISP
in Berlin since 1992. He specializes in mail servers of
various sizes and enjoys ambitious Linux projects. Peer
Hartleben is a CTO and Linux Security Consultant with
a focus on Cyrus-based mail servers.

$49 95 ($54.95 CON)

5

89145771778

54995

“
2
=
=<
=
=

81593727177

	Introduction
	PART I: How to Set Up and Maintain IMAP Servers
	1: Protocols and Terms
	Why is IMAP so Complex?
	Comparing Courier and Cyrus

	2: POP3 and IMAP at the Protocol Level
	POP3
	Test Session
	Authentication via APOP and KPOP

	IMAP
	The Design of the IMAP Protocol
	Transcript of an IMAP Session
	A Practical View of IMAP
	Subscribing to IMAP Folders

	3: Load Distribution and Reliability
	Load Balancer
	DNS Round Robin
	Round Robin via iptables
	Linux Virtual Server

	IMAP Proxies

	4: Selecting a Filesystem
	Tuning the Performance of the Filesystem
	The atime
	Access Control Lists
	The Ext2/Ext3 Option dir_index
	Journal Mode
	Optimized fstab Entries

	RAID
	NFS
	Disabling atime and Optimizing Block Size
	NFS Version 3
	Fast I/O

	A Performance Test

	5: Complementary Webmail Clients
	Squirrelmail
	Horde/IMP
	Fast Access via the IMAP Cache Proxy

	6: Migrating IMAP Servers
	Migrating using imapsync
	Converting mbox to maildir
	Modifying Folder Names
	Determining Cleartext Passwords

	PART II: Courier IMAP
	7: Structure and Basic Configuration
	Installing the Software
	What is Where?
	Initial Start-Up
	Courier and MTAs
	Courier and Postfix
	Courier and QMail
	Courier and Exim

	Optimizing the Configuration
	Real and "False" Configuration Parameters
	POP3 Configuration in /etc/courier/pop3d
	Configuring the IMAP Daemon in /etc/courier/imapd

	The Configuration Files for SSL

	8: Maildir as Email Storage Format
	The IMAP Namespace
	Filenames of Emails
	Keywords: Custom IMAP Flags

	9: User Data
	authtest and DEBUG_LOGIN for Debugging Assistance
	The authdaemond
	Authentication via PAM
	The authuserdb Module
	Converting passwd into a userdb
	Maintaining Account Data with userdb
	Creating a Binary Version of the User Database
	Separating the userdb into Multiple Files
	The atime

	Using QMail's vchkpw Library for Authentication
	Implementing Custom Authentication Methods
	Integrating External Authentication Programs
	Authentication via MySQL
	Authentication via PostgreSQL
	Authentication via LDAP
	Obsolete Authentication Modules
	The authpwd Module
	The authshadow Module
	The authcram Module

	User Options
	Saving User Options in the userdb
	Individual User Options in an LDAP Directory
	Storing User Options in Dedicated Fields in an SQL Table

	Saving Passwords: Cleartext or Hash?
	Username Selection When Maintaining Multiple Domains

	10: The Work of a Courier Administrator
	Shared Folders
	Setting Up Virtual Shared Folders
	Creating Filesystem-Based Shared Folders

	Quotas
	Quotas for Courier
	Quotas and the MDA

	Building an IMAP Proxy with Courier
	Push Instead of Pull: The IDLE Command
	Sending Emails via the IMAP Server

	PART III: Cyrus IMAP
	11: Structure and Basic Configuration
	Installing Cyrus
	OpenSuSE/SuSE Linux Enterprise Server (SLES)
	Fedora Core/Red Hat
	Debian

	The Cyrus Hierarchy and Permissions System
	Features and Functions
	Quick Start
	Authentication and Mailboxes
	Tests

	12: A Closer Look at the Configuration Files
	/etc/cyrus.conf
	The START{} Section
	The SERVICES{} Section
	The EVENTS{} Section

	/etc/imapd.conf

	13: Authentication and Safeguards
	Encrypting with SSL/TLS
	SSL Transmission Types
	Real and Fake Certificates
	Creating and Integrating SSL Certificates

	Cyrus SASL
	Cyrus SASL Modules
	The auxprop Module
	The Authentication Process

	Calling Different Data Sources
	Standard Authentication Methods for Unix
	sasldb2
	Cyrus and MySQL
	Cyrus and LDAP
	Cyrus and Kerberos

	14: Advanced Cyrus Configuration
	Mailbox Quotes
	Automatic Quotas
	Manual Quotas

	Shared Folders and ACLs
	Virtual Domains
	The Underlying Concept
	Effects on ACLs
	Domain Administrators

	Sorting Emails into Subdirectories
	Email Partitions
	The Sieve Email Filter
	The Email Filter Daemon timsieved
	Configuring and Testing
	The sieveshell Administration Tool
	The Sieve Script Language
	Setting Up Sieve Scripts Automatically for New Accounts
	Adapting Sieve Scripts

	The notifyd Daemon
	Drums or Smoke Signals?

	Cyrus and Other MTAs
	Backing Up and Restoring Data
	Using reconstruct to Repair Mailboxes
	Restoring Quotas

	Performance Tuning
	Parameters in /etc/imapd.conf that Influence Performance

	15: Internal Structure and Modules
	The Cyrus Daemons
	Tools for Analysis, Maintenance, and Repairs
	Statistics and Analysis
	Maintenance and Repair
	Internal Tools

	Other In-House Tools
	The cyradm Administration Tool

	16: Cyrus at the Filesystem Level
	The Email Directory
	The Administration Directory

	17: Cyrus in a Cluster
	The Cyrus Aggregator
	The Aggregator Concept
	The Cluster Setup

	Cyrus Replication
	Replicating the Authentication Data

	A: IMAP Command Reference
	Commands Always Available to Clients
	Commands Available in the Not-Authenticated Status
	Commands Available in the Authenticated Status
	Commands Available in the Selected Status
	IMAP Extensions
	Experimental Commands

	B: POP3 Command Reference
	An Overview of All Commands

	C: Installing from the Source Code
	Courier
	Cyrus
	Cyrus Sources
	Creating a System User
	Installing Cyrus SASL
	Installing the Cyrus IMAP Server
	Convenient Starting and Stopping

	Index

