
T H E B O O K
O F I M A P

T H E B O O K
O F I M A P

B U I L D I N G A M A I L S E R V E R W I T H C O U R I E R
A N D C Y R U S

P E E R H E I N L E I N A N D P E E R H A R T L E B E N

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

SHELVE IN:
EM

AIL

$49.95 ($54.95 CDN)

B U I L D A R E L I A B L E
S E R V E R W I T H I M A P

B U I L D A R E L I A B L E
S E R V E R W I T H I M A P

 “ I LAY F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

 Printed on recycled paper

IMAP (the Internet Message Access Protocol) allows
clients to access their email on a remote server,
whether from the office, a remote location, or a cell
phone or other device. IMAP is powerful and flexible,
but it’s also complicated to set up; it’s more difficult to
implement than POP3 and more error-prone for both
client and server.

The Book of IMAP offers a detailed introduction to IMAP
and POP3, the two protocols that govern all modern
mail servers and clients. You’ll learn how the protocols
work as well as how to install, configure, and maintain
the two most popular open source mail systems, Courier
and Cyrus.

Authors Peer Heinlein and Peer Hartleben have set up
hundreds of mail servers and offer practical hints about
troubleshooting errors, migration, filesystem tuning,
cluster setups, and password security that will help you
extricate yourself from all sorts of tricky situations. You’ll
also learn how to:

• Create and use shared folders, virtual domains, and
user quotas

• Authenticate user data with PAM, MySQL, PostgreSQL,
and LDAP

• Handle heavy traffic with load balancers and proxies

• Use built-in tools for server analysis, maintenance,
and repairs

• Implement complementary webmail clients like
Squirrelmail and Horde/IMP

• Set up and use the Sieve email filter

Thoroughly commented references to the POP and IMAP
protocols round out the book, making The Book of IMAP
an essential resource for even the most experienced
system administrators.

A B O U T T H E A U T H O R S

Peer Heinlein has been operating an independent ISP
in Berlin since 1992. He specializes in mail servers of
various sizes and enjoys ambitious Linux projects. Peer
Hartleben is a CTO and Linux Security Consultant with
a focus on Cyrus-based mail servers.

H
E

IN
L

E
IN

 A
N

D

H
A

R
T

L
E

B
E

N
T

H
E

 B
O

O
K

 O
F

 IM
A

P
T

H
E

 B
O

O
K

 O
F

 IM
A

P

®

The Book of IMAP

Peer Heinlein Peer Hartleben

The Book of IMAP
Building a Mail Server with Courier and Cyrus

Munich San Francisco

The Book of IMAP: Building a Mail Server with Courier and Cyrus. Copyright © 2008 Open Source
Press GmbH

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed on recycled paper in the United States of America.

1 2 3 4 5 6 7 8 9 10 — 08 07 06 05

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners.
Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the
names only in an editorial fashion and to the benefit of the trademark owner, with no intention of in-
fringement of the trademark.

Publisher: William Pollock
Cover Design: Octopod Studios
U.S. edition published by No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com

Original edition © 2007 Open Source Press GmbH
Published by Open Source Press GmbH, Munich, Germany
Publisher: Dr. Markus Wirtz
Original ISBN 978-3-937514-11-6
For information on translations, please contact
Open Source Press GmbH, Amalienstr. 45 Rg, 80799 München, Germany
phone +49.89.28755562; fax +49.89.28755563; info@opensourcepress.de; http://www.opensourcepress.de

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor Open Source Press GmbH nor
No Starch Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

Library of Congress Cataloging-in-Publication Data

Heinlein, Peer
[POP3 und IMAP. English]
The book of IMAP: building a mail server with Courier and Cyrus / Peer Heinlein

and Peer Hartleben.--
p. cm.

Includes index.
ISBN-13: 978-1-59327-177-0
ISBN-10: 1-59327-177-8

1. Electronic mail systems-Computer programs. 2. Electronic mail
systems-Standards. 3. Computer network protocols. 4. Web servers. I.
Hartleben, Peer. II. Title.

TK5105.73.H45 2008
004.692-dc22

2008012396

Contents

Introduction 13

I How To Set Up and Maintain IMAP Servers 15

1 Protocols and Terms 17

1.1 Why Is IMAP So Complex? . 19

1.2 Comparing Courier and Cyrus . 20

2 POP3 and IMAP at the Protocol Level 23

2.1 POP3 . 23

2.1.1 Test Session . 24

2.1.2 Authentication via APOP and KPOP 27

2.2 IMAP . 28

2.2.1 The Design of the IMAP Protocol 29

2.2.2 Transcript of an IMAP Session 31

2.2.3 A Practical View of IMAP 33

2.2.4 Subscribing to IMAP Folders 41

3 Load Distribution and Reliability 43

3.1 Load Balancer . 45

3.1.1 DNS Round Robin . 46

3.1.2 Round Robin via �������� 46

3.1.3 Linux Virtual Server . 47

3.2 IMAP Proxies . 50

5

Contents

4 Selecting a Filesystem 53

4.1 A Performance Test . 55

4.2 Tuning the Performance of the Filesystem 57

4.2.1 The ���	� . 57

4.2.2 Access Control Lists . 58

4.2.3 The Ext2/Ext3 Option
����

�� 58

4.2.4 Journal Mode . 60

4.2.5 Optimized ����� Entries 62

4.3 RAID . 62

4.4 NFS . 63

4.4.1 Disabling ���	� and Optimizing Block Size 64

4.4.2 NFS Version 3 . 64

4.4.3 Fast I/O . 65

5 Complementary Webmail Clients 67

5.1 Squirrelmail . 68

5.2 Horde/IMP . 70

5.3 Fast Access via the IMAP Cache Proxy 73

6 Migrating IMAP servers 75

6.1 Migration Using �	����
� . 76

6.2 Converting mbox to maildir . 78

6.3 Modifying Folder Names . 79

6.4 Determining Cleartext Passwords 81

II Courier-IMAP 83

7 Structure and Basic Configuration 85

7.1 Installing the Software . 86

7.2 What Is Where? . 87

7.3 Initial Start-Up . 89

7.4 Courier and MTAs . 90

7.4.1 Courier and Postfix . 92

7.4.2 Courier and QMail . 94

7.4.3 Courier and Exim . 94

6

Contents

7.5 Optimizing the Configuration . 95

7.5.1 Real and “False” Configuration Parameters 96

7.5.2 POP3 Configuration in �����������������
 96

7.5.3 Configuring the IMAP Daemon in �������������
�	��
 . 99

7.6 The Configuration Files for SSL 102

8 Maildir as Email Storage Format 107

8.1 The IMAP Namespace . 110

8.2 Filenames of Emails . 111

8.2.1 Keywords: Custom IMAP Flags 115

9 User Data 119

9.1 �������� and ����������� for Debugging Assistance 121

9.2 The ����
��	�

 . 122

9.3 Authentication via PAM . 123

9.4 The ��������
� Module . 124

9.4.1 Converting ����
 into a ����
� 125

9.4.2 Maintaining Account Data with ����
� 127

9.4.3 Creating a Binary Version of the User Database 128

9.4.4 Separating the ����
� into Multiple Files 129

9.4.5 The ���	� . 130

9.5 Using QMail’s !��"� Library for Authentication 130

9.6 Implementing Custom Authentication Methods 130

9.7 Integrating External Authentication Programs 131

9.8 Authentication via MySQL . 133

9.9 Authentication via PostgreSQL . 139

9.10 Authentication via LDAP . 140

9.11 Obsolete Authentication Modules 143

9.11.1 The �����
 Module . 143

9.11.2 The �������
� Module 143

9.11.3 The �������	 Module . 144

9.12 User Options . 144

9.12.1 Saving User Options in the ����
� 146

9.12.2 Individual User Options in an LDAP Directory 146

7

Contents

9.12.3 Storing User Options in Dedicated Fields in an SQL
Table . 147

9.13 Saving Passwords: Cleartext or Hash? 147

9.14 Username Selection When Maintaining Multiple Domains . . . 150

10 The Work of a Courier Administrator 153

10.1 Shared Folders . 153

10.1.1 Setting Up Virtual Shared Folders 154

10.1.2 Creating Filesystem-Based Shared Folders 163

10.2 Quotas . 166

10.2.1 Quotas for Courier . 167

10.2.2 Quotas and the MDA . 172

10.3 Building an IMAP Proxy with Courier 175

10.4 Push Instead of Pull: The ���� Command 176

10.5 Sending Emails via the IMAP Server 178

III Cyrus-IMAP 181

11 Structure and Basic Configuration 183

11.1 Installing Cyrus . 184

11.1.1 OpenSuSE/SuSE Linux Enterprise Server (SLES) 185

11.1.2 Fedora Core/Red Hat . 186

11.1.3 Debian . 186

11.2 The Cyrus Hierarchy and Permissions System 187

11.3 Features and Functions . 188

11.4 Quick Start . 190

11.4.1 Authentication and Mailboxes 194

11.4.2 Tests . 195

12 A Closer Look at the Configuration Files 199

12.1 ����������#��
� . 199

12.1.1 The $%&'%() Section . 200

12.1.2 The $�'*�+�$() Section 200

12.1.3 The �*��%$() Section . 201

12.2 ������	��
#��
� . 203

8

Contents

13 Authentication and Safeguards 207

13.1 Encrypting with SSL/TLS . 208

13.1.1 SSL Transmission Types . 208

13.1.2 Real and Fake Certificates 208

13.1.3 Creating and Integrating SSL Certificates 209

13.2 Cyrus SASL . 211

13.2.1 Cyrus SASL Modules . 212

13.2.2 The ������� Module . 213

13.2.3 The Authentication Process 214

13.3 Calling Different Data Sources . 215

13.3.1 Standard Authentication Methods for Unix 215

13.3.2 ����
�, . 216

13.3.3 Cyrus and MySQL . 216

13.3.4 Cyrus and LDAP . 220

13.3.5 Cyrus and Kerberos . 223

14 Advanced Cyrus Configuration 225

14.1 Mailbox Quotas . 225

14.1.1 Automatic Quotas . 226

14.1.2 Manual Quotas . 228

14.2 Shared Folders and ACLs . 230

14.3 Virtual Domains . 232

14.3.1 The Underlying Concept 232

14.3.2 Effects on ACLs . 236

14.3.3 Domain Administrators . 237

14.4 Sorting Emails into Subdirectories 237

14.5 Email Partitions . 239

14.6 The Sieve Email Filter . 240

14.6.1 The Email Filter Daemon ��	���!�
 240

14.6.2 Configuring and Testing 240

14.6.3 The ���!������ Administration Tool 242

14.6.4 The Sieve Script Language 246

14.6.5 Setting Up Sieve Scripts Automatically for New Accounts 251

14.6.6 Adapting Sieve Scripts . 252

9

Contents

14.7 The
�����
 Daemon . 252

14.7.1 Drums or Smoke Signals? 253

14.8 Cyrus and Other MTAs . 254

14.9 Backing Up and Restoring Data 255

14.9.1 Using ����
������ to Repair Mailboxes 255

14.9.2 Restoring Quotas . 257

14.10 Performance Tuning . 257

14.10.1 Parameters in ������	��
#��
� that influence per-
formance . 258

15 Internal Structure and Modules 261

15.1 The Cyrus Daemons . 262

15.2 Tools for Analysis, Maintenance, and Repairs 263

15.2.1 Statistics and Analysis . 263

15.2.2 Maintenance and Repair 266

15.2.3 Internal Tools . 268

15.3 Other In-House Tools . 269

15.4 The ����
	 Administration Tool 271

16 Cyrus at the Filesystem Level 275

16.1 The Email Directory . 275

16.2 The Administration Directory . 277

17 Cyrus in a Cluster 281

17.1 The Cyrus Aggregator . 281

17.1.1 The Aggregator Concept 282

17.1.2 The Cluster Setup . 283

17.2 Cyrus Replication . 291

17.2.1 Replicating the Authentication Data 291

10

Contents

Appendixes 293

A IMAP Command Reference 295

A.1 Commands Always Available to Clients 296

A.2 Commands Available in the Not-Authenticated Status 297

A.3 Commands Available in the Authenticated Status 298

A.4 Commands Available in the Selected Status 303

A.5 IMAP Extensions . 314

A.6 Experimental Commands . 316

B POP3 Command Reference 317

B.1 An Overview of All Commands . 318

C Installing from the Source Code 321

C.1 Courier . 321

C.2 Cyrus . 325

C.2.1 Cyrus Sources . 325

C.2.2 Creating a System User . 325

C.2.3 Installing Cyrus SASL . 326

C.2.4 Installing the Cyrus IMAP Server 329

C.2.5 Convenient Starting and Stopping 330

11

Introduction

There is very little specialist literature available on IMAP servers, and no
current documentation deals with the subject in sufficient depth.

There is a real need for a guide to IMAP. A quick look at relevant mailing
lists shows that they are full of questions and problems, indicating that the
software solutions now in use raise many issues. IMAP may seem to be a
simple affair and to require little in the way of configuration, but there are
plenty of pitfalls when an IMAP server is designed for a large number of
users or when elaborate additional features are added to a basic installa-
tion.

We have specialized in Courier and Cyrus during the last few years. Both
offer distinct advantages and disadvantages, so the appropriate choice of
software depends on the project. Peer Heinlein mainly works with Courier
IMAP, and he uses it to implement mail servers for large ISPs that are
designed to accommodate tens or hundreds of thousands of users. Peer
Hartleben uses Cyrus IMAP for mail servers in small and large compa-
nies, which require Cyrus user administration—sometimes via a console—
and server-based filtering of mail using Sieve. Peer Heinlein has therefore
written the introduction and the Courier section of this book, and Peer
Hartleben has written the section on Cyrus.

Neither Courier nor Cyrus have had suitable documentation (until now).
We have to admit: This book was hard work. There were many behaviors
and call parameters that we had to debug and test by trial and error, or
understand by analyzing the source code, because their significance was
not documented anywhere. The project mailing lists often were not helpful,
frequently containing more questions than answers.

The detailed work on this book took far longer than we had originally sus-
pected it would, and there were repeated delays in publication. But, finally,
we have an exhaustive and up-to-date reference on the subjects of IMAP,
Courier, and Cyrus. Considering the importance of email communication,
we hope that this book will help many administrators and postmasters in
their work.

This book is in its first edition and is still not truly complete. We had to
postpone discussion of some small details until the second edition. Also,

13

Introduction

when interpreting behavior that had no or insufficient documentation, we
ran as many tests as possible to try to gain an accurate picture; neverthe-
less, we cannot rule out errors and omissions.

We will therefore provide corrections and additions at ����-�� #�	��.
����#��	�. You are very welcome to leave helpful suggestions, references,
or corrections for us there. This kind of help is very important to us. Please
tell us which subjects you found interesting, which topics remained unclear
after you read our explanations, and where you suspect we made a mistake.
The website contains a link to the mailing list �	��.����, which, we hope,
will soon develop into a lively and competent discussion.

Once this book has been sent to the printers, many people will heave a
large sigh of relief. We are very grateful to these people. First, we have to
thank our editor, Patricia Jung, for her perseverance in adding the finishing
touches and questioning every detail. We authors often despaired of relief
from her scrutiny, but she is the reason for the high quality of this book.
Thanks to her specialist knowledge, she also was able to provide many sug-
gestions and explanations.

The rest of the Open Source Press team, Markus Wirtz and Ulrich Wolf, also
played an important part in making this book a reality—and gained not a
few grey hairs during the process. (Sorry!)

Arnt Gulbrandsen and his detailed knowledge of IMAP were also a great
help, and we would like to thank him for his commitment. We would also
like to thank Frank Richter from TU Chemnitz for helping us in our battle
with the Cyrus cluster.

We also had behind-the-scenes help from members of the Heinlein Support
team, who did the preliminary work, made measurements (to be honest,
they did the heavy lifting), researched details, and did some of our own
tasks as well, so that we were able to concentrate on the book itself: Thank
you, Stefan, Holger, Chrizz, Henri, Christian, Matthias, and Christiane.

As customary when writing a book, we want to thank our loved ones, and
tell them that “it will all get better now.” So we would like to tell our four
ladies: Now we can spend more time with you again! Thanks to our grown-
up ladies, Anja and Ivonne, who have gone through the whole process with
us, and who have had to live with the book hanging over every moment
of spare time like the sword of Damocles. And to our tiny women: Lara
Hartleben, who does not yet sleep through the night, and Heinlein Junior,
who does not yet have a name but has already entered the first contest of
her life: Who will be born first—her or The Book of IMAP? It seems as if the
book will win . . .

Peer Heinlein and Peer Hartleben Berlin, September 2007

14

Part I

How To Set Up and Maintain IMAP
Servers

1 Ch
ap

te
r

Protocols and Terms

What is a mail server? This term could describe the particular machine in a
computer center that is responsible for sending and receiving users’ emails.
However, such a mail server actually consists of a variety of components
and programs, which use various protocols to communicate among them-
selves. The same is true of commercial software applications that combine
the many necessary functions into one product. In most cases, the differ-
ent mail server tasks can be distributed to more than one computer, which
means that “the mail server” may in fact consist of several machines that
together fulfill the different functions.

Mail servers use the Simple Mail Transport Protocol (SMTP) to communi-
cate and to deliver emails. Clients such as Outlook, KMail, Thunderbird,
and Evolution usually deliver emails to the relay server via SMTP. How-
ever, SMTP is suitable only for sending emails, not for receiving them. This
means that SMTP cannot be used to query a mailbox or create email direc-
tories in it. Likewise, a Mail Transfer Agent (MTA) transports emails received

17

1 Protocols and Terms

from clients or other servers to their destination, but has nothing to do with
mail-receiving protocols such as POP3 or IMAP. This book will not deal with
SMTP servers such as Postfix, QMail, Exim, or Sendmail, except marginally.
We simply assume that they work correctly.1

Post Office Protocol Version 3 (POP3) is a comparatively simple protocol
with few configuration options, so pure POP3 servers require very little ad-
ministration. Once they have been started or entered in the configuration
of the X(Inet) Daemon, emails can be retrieved on port 110 using POP3.

Internet Message Access Protocol (IMAP), the “grown-up” version of POP3, is
far more complex. This book will focus on the numerous ways that email
retrieval can be configured and on the administration of emails. Once you
have read it, you will be able to implement even demanding mail-handling
scenarios. Common IMAP servers also contain a small POP3 daemon, so
programmers who deal with the complexity of managing the IMAP protocol
will have no difficulty in providing a POP3 protocol “on the side.”

This book deals with the two most common open source IMAP protocols:
Courier IMAP and Cyrus IMAP. Both contain a POP3 server. When we re-
fer to “IMAP servers,” we mean both services, unless we are specifically
discussing the features of one of them.

The Local Message Transfer Protocol (LMTP) is closely related to SMTP, but
it is only used locally; for example, to transfer an email from a Mail Transfer
Agent (such as Postfix) to another component of the mail system, specifi-
cally to a Mail Delivery Agent (MDA). In this case, LMTP has an advantage
over SMTP: With LMTP, it is possible to determine the email addresses for
which a local transfer succeeds. Unlike SMTP, LMTP returns a status mes-
sage for each recipient after the �&%& command. The status message speci-
fies the mailbox in which the email was actually saved. SMTP only indicates
whether the server was able to place an email for the recipient in a queue
for delivery at a later point in time. LMTP is also better in high-performance
environments.

You should only use LMTP locally within your own network; for example, to
transfer emails from the front relay (which receives via SMTP) to the actual
mail backend that does the saving. The protocol can be used, for example,
to connect Cyrus to the MTA (see section 11.4 on page 191).

Groupware is software that manages tasks, calendars, email contacts, and
address books on behalf of multiple users. Depending on the version, it
can also manage resources, rooms, files, or other kinds of objects. Email is
thus only a part of the functionality offered by groupware, but groupware
usually contains an email service. The IMAP servers introduced here are
not groupware servers, but some free groupware solutions such as Kolab,
OpenGroupware, and eGroupWare are based on IMAP, so this book may be
helpful when adapting such software to your needs as well.

1 See The Book of Postfix (No Starch Press, 2005) by Ralf Hildebrandt and Patrick Koetter
for more information on this subject.

18

1.1 Why Is IMAP So Complex?

1.1 Why Is IMAP So Complex?

The POP3 server waits until a user has logged on and then transfers the
unread messages that are saved in that user’s mailbox to the user’s mail
client. Depending on the client requirements, the messages are deleted
after transfer to save space, or flagged as read and retained. This is not
particularly demanding, so there is not much that can go wrong with the
software here.

An IMAP server operates differently: Not only does it deliver emails to users,
it also organizes the entire end-user email administration. The user’s email
client now functions as a kind of “remote control” for manipulating the
mailbox stored on the server.

An IMAP server provides storage space and stores all emails. For this rea-
son, it makes sense to use quotas, which force users to clean up occasion-
ally and free up valuable space. When a user creates folders for his or her
emails, the IMAP server has to represent this folder structure and sort the
emails correspondingly. IMAP also enables users to search messages for
specified senders or text and to flag emails, for example, as read, unread, or
answered. Users can also access shared folders in parallel.

An IMAP server enables a user to manage a mailbox from different com-
puters; the contents of the mailbox always consist of the same data records
no matter where it is accessed from, and the mailbox does not need to be
synchronized among the machines.

All these features make great demands on the IMAP protocol and the pro-
grammer. The configuration of an IMAP server does not require much at-
tention from the administrator once the server has been connected to a
user database. However, the operation of IMAP servers does contain a few
traps and technical difficulties, which we will examine in this book:

Performance
As the number of users increases, the load on the IMAP server be-
comes noticeable. In a large organization, the server has to manage
millions of emails, operate hundreds or thousands of IMAP connec-
tions in parallel, and deal with email searches and extensive copying
actions. Depending on the scenario, IMAP servers can consume con-
siderable RAM or create high I/O loads on the data carriers.

Availability
Nowadays, email needs to be available around the clock, as any ex-
tended outage can endanger business. Once a certain number of
users has been reached, the infrastructure should be secured by us-
ing multiple servers, even if a robust IMAP server has been selected.

Storage
Email storage can increase to sizeable proportions, which necessi-

19

1 Protocols and Terms

tates the use of an NAS or SAN. Also, when an IMAP server is part of a
server cluster, it is no longer sufficient to use a directly attached hard
disk for storage.

Quotas
Implementing storage restrictions as quotas is not always easy and
requires precise planning.

Legal Situation
Emails are subject to the laws on privacy of communications. Not
many people are aware that administrators can be prosecuted for
negligence. However, this is a general problem with all email man-
agement, and this book will not deal with the topic further.

1.2 Comparing Courier and Cyrus

The requirements and size of the installation play an important part in the
selection of an IMAP server. Both Courier and Cyrus make low demands on
the CPU; fast I/O is required in both cases if there are more than approxi-
mately 20,000 users.

Both Courier and Cyrus enable users to share IMAP folders and adminis-
trators to limit the number of simultaneous logins. The user data can be
transferred from Unix accounts, read out via PAM, and stored in a LDAP
directory or in a MySQL or a PostgreSQL database.

In terms of user management, the real difference between the two lies in
secure authentication via Simple Authentication and Security Layer (SASL),
which is specified as an Internet standard in RFC 2222 (and used by Postfix
and other MTAs). In Cyrus, it is simple to implement, but in Courier, it
requires numerous kludges and dodges that are too much even for good
administrators. Instead, Courier uses a specially developed authentication
library, Authlib, whose central program is the ����
��	�

daemon. Cyrus
also supports the authentication library as an SASL module (see page 213).

Both servers allow POP3 and IMAP via SSL/TLS, either via the dedicated
ports 995 (POP3 via SSL) and 993 (IMAP via SSL) or via the commands
$%�$ (POP3, see page 319) and $%&'%%�$ (IMAP, see page 297), and both
support virtual domains.

The most noticeable difference between Courier and Cyrus is the way they
manage email accounts and metadata. Courier uses only the filesystem
and ASCII files. The benefit is that nothing can break down; as long as the
filesystem is okay, Courier works. Courier uses the maildir format, which is
suitable for use via NFS, as no file locking is required.

On a Courier IMAP server, accounts automatically exist as long as, and as
soon as, they are listed in the user database. On the other hand, once

20

1.2 Comparing Courier and Cyrus

Cyrus knows the login data of a new user, it creates the account structure
automatically when the user first logs in. It is also possible to initialize new
mailboxes using the administration tool ����
	.

Courier administrators can use shell scripts to intervene in the system, but
Cyrus administrators always use ����
	 to administer their servers.

Cyrus stores emails and administration information in small filesystem-
based databases. This is intended to speed up access when there are a
large number of emails, but the disadvantage is that accessing mail mes-
sages via an index is more prone to errors. Simple manipulations to the
email store, such as the deletion or addition of messages, are complex to
carry out. As NFS accesses internal databases, and index files are destroyed
if multiple Cyrus nodes access them in parallel, a functioning file locking
system is essential. The suitability of NFS therefore mainly depends on
the NFS version and the maturity of the locking mechanisms it provides;
however, most administrators prefer not to use this solution.

Cyrus has the advantage of being able to use the mail filter language Sieve.
It also provides a system of permissions for shared IMAP folders that is
easier to use to implement access control policies.

21

2 Ch
ap

te
r

POP3 and IMAP at the Protocol
Level

You should take the intended environment into account when choosing
whether to support POP3 or IMAP as the protocol for mail retrieval. One
is simple and robust, the other is powerful and flexible. Courier and Cyrus
speak both protocols, and by using them you can provide IMAP and POP3
to your users without any additional work.

2.1 POP3

Version 3 of the Post Office Protocol (POP3) is comparatively simple, and
only allows the user to download emails from the server to the client. The
user can log in to an account, view the contents of the mailbox, transfer
and delete emails, and log out, all via server port 110. This requires few
resources, and there is little to configure, which means few sources of error.

23

2 POP3 and IMAP at the Protocol Level

Emails are stored locally on the user’s PC, which saves precious storage
space on the server and reduces backup times. The user usually has to
download all emails before deciding which ones are worth reading, based
on the subject and/or the sender, although by now most clients support
filters for screening incoming mail messages.

Because email messages are stored locally, the user can process them of-
fline using the client application. This reduces the time spent online, and is
especially suitable for laptops. However, POP3 does not provide any mech-
anisms for ensuring that mail clients on different machines will all see the
same data if the user accesses a mailbox from several computers (from a
laptop and from a desktop PC, for example).

POP3 client software only allows the user to decide whether or not to delete
emails from the server after they are retrieved. A simple way to guarantee
that multiple clients are always in synch with each other is to never delete
any messages. If all the emails remain on the server, every mail client can
download them at all times. Good clients will recognize newly arrived mes-
sages by storing message IDs and avoid transferring old emails a second
time.

This method has some disadvantages: Because the emails are never deleted,
the mailbox on the server continually grows. In addition, each client re-
ceives all messages, including ones that have already been read and (lo-
cally) deleted by another client. There is also no automatically maintained,
common record of sent emails, since each client manages its outbox inde-
pendently.

2.1.1 Test Session

The POP3 protocol is simple enough to use directly, in an interactive ses-
sion:

user@linux:$ telnet mail.example.com 110

Trying 192.168.50.50...

Connected to mail.example.com.

Escape character is ’^]’.

+OK Hello there.

USER tux

+OK Password required.

PASS secret

+OK logged in.

We are now in the POP3 ����/. (It is not possible to access other types of
mail stores, such as IMAP folders, using a POP3 client.) The ��$% command
summarizes all the messages it contains (nine in the following example)
and their lengths:

24

2.1 POP3

LIST

+OK POP3 clients that break here, they violate STD53.

1 9586

2 1125022

3 53125

4 2451

5 5931

6 4943

7 4206

8 5231

9 9481

.

The message from Courier in the 0�1 answer refers to POP3 clients that
erroneously expect the server to return the number of messages in answer
to the ��$% command:

LIST

+OK 2 messages (320 octets)

1 120

2 200

.

The given example is listed in RFCs 1081, 1225, 1460, 1725, and 1939, but
the RFCs add that this example does not define how the server’s answer
should look, i. e. the number and size of messages shown in the exam-
ple are not a mandatory part of the answer. The authors of Courier could
have made the server reply more helpful (and less arrogant); an exam-
ple could have been 2�2� ����
�� ���� ������ � �������� ����
3
���� !������ '4+ 56�6#.

'�%' is used to retrieve a message from the server:

RETR 2

Return-Path: <p.heinlein@heinlein-support.de>

X-Original-To: p.heinlein@heinlein-support.de

Delivered-To: tux@example.com

Received: from [10.0.42.2] (unknown [10.0.42.2])

(using TLSv1 with cipher DHE-RSA-AES256-SHA (256/256 bits))

(Client did not present a certificate)

by plasma.heinlein-support.de (Postfix) with ESMTP id BEA0581A4B

for <tux@example.com>; Sat, 7 Apr 2007 01:02:01 +0200 (CEST)

From: Peer Heinlein <p.heinlein@heinlein-support.de>

To: Tux <tux@example.com>

Subject: Test message 2

Date: Sat, 7 Apr 2007 01:02:01 +0200

User-Agent: KMail/1.9.5

MIME-Version: 1.0

Content-Type: text/plain; charset="iso-8859-1"

Content-Transfer-Encoding: quoted-printable

25

2 POP3 and IMAP at the Protocol Level

Content-Disposition: inline

Message-Id: <200704070102.01895.p.heinlein@heinlein-support.de>

X-Length: 1519

Status: R

X-Status: NC

X-UID: 0

Hello!

I am a test message.

=2D-=20

Heinlein Professional Linux Support GmbH

Linux: Academy - Support - Hosting

http://www.heinlein-support.de

Legally required information according to =A735a HGB (German Commercial

Code)

HRB 93818 B / Amtsgericht Berlin-Charlottenburg,=20

Manager: Peer Heinlein =A0-- Seat: Berlin

Flagging message 2 for deletion after it has been read is just as simple:

DELE 2

DELE 2

+OK Deleted.

However, it will not actually be deleted until the user logs out. This allows
us to undo the setting of the deletion flag:

RSET

+OK Resurrected.

If we do not wish to transfer an entire message to the client, we can use the
%�2 command to retrieve only the message headers and a specified number
of lines of the mail body, given in a second argument to the command
(seven in this case):

TOP 2 7

Return-Path: <p.heinlein@heinlein-support.de>

X-Original-To: p.heinlein@heinlein-support.de

Delivered-To: tux@example.com

Received: from [10.0.42.2] (unknown [10.0.42.2])

(using TLSv1 with cipher DHE-RSA-AES256-SHA (256/256 bits))

(Client did not present a certificate)

by plasma.heinlein-support.de (Postfix) with ESMTP id BEA0581A4B

for <tux@example.com>; Sat, 7 Apr 2007 01:02:01 +0200 (CEST)

From: Peer Heinlein <p.heinlein@heinlein-support.de>

To: Tux <tux@example.com>

26

2.1 POP3

Subject: Test message 2

Date: Sat, 7 Apr 2007 01:02:01 +0200

User-Agent: KMail/1.9.5

MIME-Version: 1.0

Content-Type: text/plain; charset="iso-8859-1"

Content-Transfer-Encoding: quoted-printable

Content-Disposition: inline

Message-Id: <200704070102.01895.p.heinlein@heinlein-support.de>

X-Length: 1519

Status: R

X-Status: NC

X-UID: 0

Hello!

I am a test message.

=2D-=20

Heinlein Professional Linux Support GmbH

Linux: Academy - Support - Hosting

.

There is also an “idle” command that enables the client to keep the con-
nection open:

NOOP

+OK Yup.

The 7��% command is used to terminate the connection:

QUIT

+OK Bye-bye.

Connection closed by foreign host.

2.1.2 Authentication via APOP and KPOP

Unlike the “standard” login to the POP server described on page 24, the Au-
thenticated Post Office Protocol (APOP) authentication procedure protects
the password by encrypting it. This is tricky to accomplish, because if the
client/server communication is vulnerable to unauthorized eavesdropping
at all, then the eavesdropper can listen in on the entire connection, includ-
ing the initial exchange between the client and server that establishes the
encryption parameters as defined by the protocol.

When APOP is used, the POP3 server provides a timestamp at the beginning
of each connection, which differs for every POP session. In the sample
session below, the timestamp is highlighted in bold:

user@linux:$ telnet localhost 110

Trying 127.0.0.1...

27

2 POP3 and IMAP at the Protocol Level

Connected to localhost.

Escape character is ’^]’.

+OK ready <13226.1017708644@mail.example.com>

APOP tux c4c9334bac560ecc979e580001b3e22fb

+OK maildrop has 42 messages 43231 octets

[...]

The email client can now use a standard cryptographic hash procedure to
calculate an encrypted login password from the cleartext password it al-
ready knows and the server-provided timestamp. Because this encrypted
password depends on the timestamp, it is valid only for the current con-
nection.

The server also knows the user’s unencrypted password and performs the
same calculation. If the encrypted password it receives from the client
agrees with the result it computes, the server can conclude that the client
genuinely represents the user and accept the login.

This is because it is (theoretically) not possible to calculate the original
password from the encrypted login data transferred by the client, even
when the hash procedure is known. Likewise, recording the APOP login
dialog for a legitimate connection and replaying it to the server later will
not allow an eavesdropper to impersonate the real user, because the times-
tamp for the eavesdropper’s session with the server will be different.

Kerberos Post Office Protocol (KPOP) is a Kerberos enhancement for POP3,
but it is rarely used. Like APOP, it does not transmit the password in clear-
text. However, it is not easy to implement a Kerberos system. A free im-
plementation of Kerberos is available from the Massachusetts Institute of
Technology (MIT).1

2.2 IMAP

The Internet Mail Access Protocol Version 4 (IMAP), provided by a server
on port 143, functions in an entirely different manner from POP3. It is far
more complex than POP3, supports mail subfolders on the server (includ-
ing those shared by multiple users) and complex search queries, and per-
mits emails to be uploaded onto the server. All emails always remain on the
server; clients simply keep local copies of the mail store and synchronize
them with the server.

Emails are only transferred to the client when they are accessed, and only
stored temporarily by the client (this is similar to the way websites are ac-
cessed by web browsers). This means that multiple email clients can ac-
cess the same mailbox in parallel—they all find the same set of data syn-

1 See ����������	
��	��
�������������.

28

2.2 IMAP

chronized by the server. Users can also use the contents directory of the
mailbox to decide which emails are transferred to the client.

Storing the data on the server requires valuable storage space. However,
this is offset by the fact that a simple backup of the server2 will suffice
to preserve the emails for all users. If the hard disk of a client computer
breaks, the messages for that user’s email account are not affected, apart
from those that are only saved locally.

IMAP is designed to be used online and in real time. With dial-up con-
nections, email retrieval may be slow. Good mail clients are capable of an
offline IMAP mode of operation, which combines the behavior of POP3 (lo-
cal email storage) and IMAP (synchronizing emails with the server). This
means that an IMAP mailbox can be transferred to a laptop and then ma-
nipulated offline.

2.2.1 The Design of the IMAP Protocol

Unlike the SMTP and POP3 protocols, which have simple commands that
can be issued interactively in a terminal session if necessary, IMAP is very
complicated. To make up for this, it has far more functions than the other
mail protocols.

IMAP has almost no restrictions on the status information (read, unread,
important, new) that can be assigned to an email message. The system
flags specified by the IMAP standard are listed in Table 8.1 on page 113.
The server and client can agree their own additional permanent flags. In
addition to permanent flags, there are also session-based flags (see also sec-
tion 8.2.1 on page 115). Both types can be defined for each mail folder. The
server and the client have to agree on the flags that can be used, and on
their type.

IMAP provides the client with functions that perform search and selection
against the data stored on the server. These enable searches such as “All
emails with the unread flag AND from sender 3��"�8���	���#��	 AND
with message number larger than 300.”

IMAP also provides functions that enable the client to store many details
locally and to use them repeatedly in different logins—a locally saved di-
rectory of mail folder contents, for example. This is not trivial to imple-
ment, as changes could result to the underlying folder contents after the
local summary is created. For this reason, IMAP numbers email messages
sequentially using both an arithmetically increasing sequence number with-
out punctuation (1–399, for example) and unique IDs that are unambiguous
and should not change. Should does not mean must, and so the server and
client must communicate if any unique ID does change.

2 Using ����� in an ingenious manner for example.

29

2 POP3 and IMAP at the Protocol Level

This is made easier by the unique ID value, which the client and the server
both memorize. As long as this value does not change, the server’s assign-
ment of unique IDs to emails has not changed. When a change occurs in
the email folders on the server, the server changes the unique ID value as
well, so that it now differs from the value the client has. The client thus
knows it must import the complete list of emails, with their unique IDs,
anew.

Thanks to this complex design, IMAP is future-proof and flexible, as it is
possible to introduce new options and flags without changing the protocol.

Disconnected IMAP, also known as offline IMAP, is a good example of how
this can be used. The email client saves the entire contents of the mail-
box locally. The user can then create folders and move, flag, or delete
emails while working offline. The next time the client connects to the IMAP
server, the client and server synchronize all changes. In spite of some early
teething problems in its deployment, this method now works surprisingly
well and combines the advantages of POP3 and IMAP.

Figure 2.1:
IMAP connections

can be in different
states.

Connection will be taken down

Connection established

Logout

Selected

Authenticated

Not authenticated

Server greeting

What makes IMAP sessions even more complex and exciting is that the
client can send multiple commands to the server without having to wait
for the server to answer—the server can send the answers in a different
sequence. This means it is possible to send a complex search query to the

30

2.2 IMAP

server and still upload emails or create folders while the search is being
processed. For this reason, all client requests are tagged, or provided with
a unique ID selected by the client. The server replies are marked with this
unique ID, which enables the client to identify the answer.

These tags must be used during login, too:

a1 login username password

a1 OK LOGIN OK

The choice of �5 as the tag was purely arbitrary; we could have used 995 or
��� instead.

Unfortunately, some server replies occupy more than one line. Therefore
we have to differentiate between tagged and untagged server replies. Un-
tagged server replies begin with a star, while tagged replies start with the
identifier selected by the user and mark the end of a complete reply to a
client request.

The ���2 command is a case in point; the server can send a multiline reply,
giving rise to untagged reply lines. ���2 is actually used to carry out no op-
eration. A client can send it to prevent a timeout and keep the connection
open. However, some servers react to it by returning the status information
of the mailbox, such as (in this example) the number of messages received
since login (�), the number of read messages (5:), or the number of emails
flagged for deletion (,,):

a2 NOOP

* 22 EXPUNGE

* 23 EXISTS

* 3 RECENT

* 14 FETCH (FLAGS (\Seen \Deleted))

a2 OK NOOP completed

The server reply consists of multiple untagged replies (beginning with ;)
and ends with a tagged reply �1 ���2.

2.2.2 Transcript of an IMAP Session

A successful IMAP session begins when the server has greeted the client,
and consists of four states as shown in Figure 2.1:

Not Authenticated
The status between connection and successful authentication of user-
name and password. Only a few commands, such as $%&'%�$, �����,
�����%, and ���2 are available (see sections A.1 and A.2 on page
296).

31

2 POP3 and IMAP at the Protocol Level

Authenticated
The client has been authenticated but has not selected a folder. It
can get information on available folders, subscribe or unsubscribe to
them, create new folders, or delete existing ones (see section A.3 on
page 298).

It can not read or save emails here, as it is not clear which emails or
directories are being referred to.

Selected
The client has shown its colors and selected a directory using $���+%,
�/&<���, or $%&%�$. It may now issue commands that apply to the
messages in this directory. If the client uses +��$� or �/2���� to
deselect a directory, the connection state switches back to the Au-
thenticated status. For an overview of all commands available here,
see section A.4 on page 303.

Logout
The client has used �����% to announce that it wishes to log out .
Only then does the server delete messages marked as =������
 —if
the connection is terminated unintentionally, these messages should
not be deleted. The server then ends and terminates the connection.

A standard IMAP connection switches back and forth between “Authenti-
cated” and “Selected.” As a consequence, not all commands are available
all the time.

This means that IMAP is a session-based protocol, like FTP or SMTP, as
opposed to a stateless protocol such as HTTP, in which each client request
is independent of previous events. IMAP connections between the server
and the client are usually kept open indefinitely, and can remain so for
hours.

Usually, clients check for new emails every few minutes; however, the server
can also inform the client when new messages are received. PR and web ter-
minology refers to the first option as the pull procedure, and to the second
as the push procedure. From the server perspective, the push procedure
is more efficient and desirable. If the server monitors some directories for
change and then informs the client, this requires far fewer resources than
if the client roots through three dozen IMAP folders every few minutes,
only to discover that nothing has changed. Unfortunately, few clients have
the ability at present to support this mode of operation; we will examine
Courier’s functionality in section 10.4 on page 176. Cyrus implements this
in a daemon, �
��
 (see page 200 and page 262).

There are some disadvantages when clients keep connections open perma-
nently: Assuming that a Courier IMAP server uses between 1.5 and 2MB
RAM for each session, it quickly becomes obvious that a mail server with
4GB RAM cannot serve 2,500 IMAP users simultaneously . In case of POP3,

32

2.2 IMAP

these resources would suffice for 25,000 active email accounts, as each
client logs out immediately and thereby frees up resources. There is more
information on this subject in Chapter 3, page 43.

2.2.3 A Practical View of IMAP

RFC 3501 defines the IMAP standard. This document is more than 100
pages long, but it only provides a limited explanation of the protocol. Its
author, Marc Crispin, admits: “Beyond the protocol overview in section 2, it
[the RFC] is not optimized for someone trying to understand the operation
of the protocol.”3

In order to operate a mail server, you do not need to have read the RFCs
or even to know all the details of the protocol as described in Appendix A
on page 295; you certainly do not need to know it by heart. You should,
however, understand its basic workings and know the technical options the
server offers the client.

It is easier to remember procedures that you have carried out at least once,
so it is worth testing the IMAP commands discussed below on an IMAP
server. This experience will be useful when an error occurs, and it is always
pleasant to understand the server you are responsible for.

You do not require ���� permissions for the server; indeed, you can use
your own email account on the mail server of an Internet service provider
or other email provider, as long as you can access it through IMAP. Begin
by connecting to the IMAP port on the server (port 143):

user@linux:~$ telnet imap.example.com 143

Trying 192.0.2.12...

Connected to imap.example.com.

Escape character is ’^]’.

* OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUB

JECT THREAD=REFERENCES SORT IDLE AUTH=CRAM-MD5 AUTH=CRAM-SHA1 ACL] Cour

ier-IMAP ready. Copyright 1998-2005 Double Precision, Inc. See COPYING

for distribution information.

In reply, the server will present its capabilities. Not every server supports
all IMAP features. IMAP extensions provide features that are not part of
the core protocol, and are therefore optional. In our example, the server
displays the version of the IMAP protocol (�<&2:��!5) and the extensions
that it supports. Often, but not always, the extensions offer IMAP com-
mands with the same name to the client.

3 See ����������	����	����������������	��
�.

33

2 POP3 and IMAP at the Protocol Level

Some extensions, including sorting functions such as %>'�&�4 or $�'%5

shift tasks from the client to the server, whereas others simplify the query-
ing of email and directory structures, which saves time and traffic (these
include ���2��$, described in RFC 2359, +>���'��, described in RFC 3348,
and �&<�$2&+�, defined in RFC 2342).

IMAP prescribes only the login methods ����� and 2�&��, in which the
password is transmitted in plaintext. The server can offer alternative, better
authentication methods, such as +'&<.<�? or +'&<.$>&5, as shown in the
example.

In the example, the server also states that it supports the extensions ����
(RFC 2177, see pages 176 and 200) and &+� (RFC 4314). The latter extension
enables multiple users to access a single IMAP folder (see section 10.1 on
page 153 and section 14.2 on page 230).

Next, log on with your username and (plaintext) password:

a1 LOGIN "tux" "hidden"

a1 OK LOGIN completed

The server returns the reply �1, which lets us know that we have authenti-
cated ourselves successfully and now have the “Authenticated” status. Now
we can call up a list of all available directories:

a2 LIST "" "*"

* LIST (\HasNoChildren) "." "INBOX.Private.Holiday"

* LIST (\HasNoChildren) "." "INBOX.Private.Orchestra"

* LIST (\HasChildren) "." "INBOX.Private"

* LIST (\HasNoChildren) "." "INBOX.ToDo"

* LIST (\HasNoChildren) "." "INBOX.Test"

* LIST (\HasChildren) "." "INBOX.Book stuff"

* LIST (\HasNoChildren) "." "INBOX.Book stuff.LPIC-1"

* LIST (\HasNoChildren) "." "INBOX.Book stuff.Postfix 3"

* LIST (\HasNoChildren) "." "INBOX.Book stuff.Snort"

* LIST (\HasNoChildren) "." "INBOX.Book stuff.IMAP"

* LIST (\Unmarked \HasChildren) "." "INBOX"

a2 OK LIST completed

The flags in the third column show whether the corresponding directory
contains subfolders (=>��+���
��
—yes, =>����+���
��
—no) and mes-
sages. If a folder is flagged as =�
	��"�
, no new messages have been
received since it was last accessed.

4 In the example shown here, the server states that it supports the threading algorithm
�� !�! "#$%!&'. This algorithm is very simple and assumes that all emails with iden-
tical subjects belong to a single shared thread. The '(�!) extension itself is specified
in ������������	����	�������
���
�*���+�����,����,�
���-�,������. This
document also describes the threading algorithm �!.!�!/&!".

5 See �����������	�����	����	�������
���
�*���+�����,����,�
���-�,����.

34

2.2 IMAP

The fourth column specifies the hierarchy separator used in the next folder:
In our example, the full stop symbol (.) separates the hierarchies; if a back-
slash were used instead, the first directory specification would be ����/�
2��!����>���
��.

If you have many folders, you can also specify a restrictive pattern for folder
names:

a3 LIST "" "INBOX.Priv*"

* LIST (\HasNoChildren) "." "INBOX.Private.Holiday"

* LIST (\HasNoChildren) "." "INBOX.Private.Orchestra"

* LIST (\HasChildren) "." "INBOX.Private"

a3 OK LIST completed

You can now use the $���+% command to select a folder. Here we select
the %��� folder, which is a subfolder of the ����/:

a4 SELECT INBOX.Test

* FLAGS (\Draft \Answered \Flagged \Deleted \Seen \Recent)

* OK [PERMANENTFLAGS (\Draft \Answered \Flagged \Deleted \Seen)] Limited

* 3 EXISTS

* 1 RECENT

* OK [UIDVALIDITY 1175900586] Ok

* OK [MYRIGHTS "acdilrsw"] ACL

a4 OK [READ-WRITE] Ok

The server uses the 4�&�$ keyword to tell us which flags are permitted for
emails in this folder, as these may include ones not specified by the IMAP
standard. The following flags are usually available:

=&
� ���
 shows that the email has been marked as answered.

=������
 means that the email has been marked for deletion.

=����� shows that an email is a draft message that has not yet been sent.

=4��33�
 shows that the email is important.

=$��
 shows that an email has been marked as read.

='���
� shows that a message has been received since the last login and
no other client has seen it yet.6 Unlike the other five system flags that
have been mentioned, the ='���
� flag cannot be set using the $%�'�
command (see page 39).

If the server announces the =; flag (this flag does not appear in our ex-
ample), it is permissible to use custom flags (see section 8.2.1 on page
115).

6 If more than one client accesses a single mailbox, all of them see the same messages,
but only one of them will ever see a given email flagged as 0������.

35

2 POP3 and IMAP at the Protocol Level

� �/�$%$ shows how many emails this folder contains in all—in this case,
three. � '�+��% tells us how many new messages have been received since
the last login (here, only one).

�1 @2�'<&���%4�&�$ A����� ����� ���BC lists all those flags that the
client can change permanently. If the server does not return this keyword,
the client can assume that all flags can be modified and stored.

�1 @���*&����%D �C shows the unique ID value that is currently valid.

�1 @<D'��>%$ �C tells the client what read, write, or delete permissions it
has for emails in this directory (see Table 2.1).

Table 2.1:
Permissions that can

be assigned for IMAP
folders

Permission Explanation

� The user is permitted to view the contents of a mailbox.

� The user may view the name of a mailbox. Users that
know the name of a folder can access it even if they pos-
sess only the � flag and not the � flag. This condition
does not apply to shared folders in Cyrus; here, users
that do not own the folder require both the � and the �
permission to access it.

� The user may flag a message as read or unread. The
effects of this permission depend on whether the server
sets flags by file or by email and user. Under Courier,
users who allow other users to access directories can use
this permission to determine whether third parties can
change the =$��
 flag. If that is the case, the owner of
the directory sees the message as read if other users have
already accessed it. In contrast, Cyrus saves flags based
on users. If a user changes the =$��
 flag on a message,
this will not affect the message status for other users of
the same folder.

 The user has write permissions and may set flags and so
on. does not permit the user to delete emails.

� The user may add and delete messages.

� This permission must be set on Cyrus for users to be
able to sort emails into directories and subdirectories
(the abbreviation stands for post); for example, if they
are addressed directly to a subfolder (see section 14.4 on
page 237) or if the messages are moved automatically
using filter scripts (see page 240). Without this permis-
sion, messages are placed in the INBOX. This permission
is not available in Courier, as the corresponding function
is not available.

36

2.2 IMAP

continued:

Permission Explanation

� The user may create a new mailbox or a mailbox subdi-
rectory. In Cyrus, the user may also rename or delete a
mailbox or mailbox subdirectory.

 This permission is only assigned in Cyrus and allows the
user to request the deletion of a message or mailbox.
In Courier, the combination ��� is used for the same
permission.

� This permission is unique to Courier and allows users to
flag messages as =������
.

� This permission is unique to Courier and allows the user
to have messages deleted from the server if they have
already been flagged as =������
.

� This permission is unique to Courier and allows users to
delete or rename the directory.

� The user is permitted to set ACLs.

Finally, the answer �1 @'�&�.E'�%�C �" together with the tag of the query
shows that the reply to the $���+% command is now complete. If the client
has write permissions for the folder, the server should add the information
@'�&�.E'�%�C to the �1 keyword. If the client only has read permissions,
the server must return @'�&�.���DC.

Viewing, Copying, and Deleting Emails

The client can now view messages or parts of messages. For example, only
the email headers are required to create a table of contents. You can use
the 4�%+> command to specify exactly which emails (the following example
specifies messages with sequence numbers from 1 to 3)7 and which parts of
these emails should be transmitted. If you use the &�� keyword, the server
returns the flags, the time of arrival, the message size in bytes, and the
header fields 4��	, %�, +�, '����.��, <����3�.��, ����, and $��F���:

a5 FETCH 1:3 ALL

* 1 FETCH (FLAGS (\Seen) INTERNALDATE "07-Apr-2007 01:03:06 +0200" RFC822

.SIZE 1647 ENVELOPE ("Sat, 7 Apr 2007 01:01:51 +0200" "Test message 1" (

("Peer Heinlein" NIL "p.heinlein" "heinlein-support.de")) (("Peer Heinlei

n" NIL "p.heinlein" "heinlein-support.de")) (("Peer Heinlein" NIL "p.hein

lein" "heinlein-support.de")) (("Tux" NIL "tux" "example.com")) NIL NIL N

IL "<200704070101.52187.p.heinlein@heinlein-support.de>"))

7 If you wish to specify unique IDs instead of sequence numbers, you would use the #1

.!'&(command (see page 313).

37

2 POP3 and IMAP at the Protocol Level

* 2 FETCH (FLAGS () INTERNALDATE "07-Apr-2007 01:03:06 +0200" RFC822.SIZE

1646 ENVELOPE ("Sat, 7 Apr 2007 01:02:01 +0200" "Test message 2" (("Pee

r Heinlein" NIL "p.heinlein" "heinlein-support.de")) (("Peer Heinlein" NI

L "p.heinlein" "heinlein-support.de")) (("Peer Heinlein" NIL "p.heinlein"

"heinlein-support.de")) (("Tux" NIL "tux" "example.com")) NIL NIL NIL "<2

00704070102.01895.p.heinlein@heinlein-support.de>"))

* 3 FETCH (FLAGS () INTERNALDATE "07-Apr-2007 01:03:06 +0200" RFC822.SIZE

1651 ENVELOPE ("Sat, 7 Apr 2007 01:02:10 +0200" "And test message 3" (("

Peer Heinlein" NIL "p.heinlein" "heinlein-support.de")) (("Peer Heinlein"

NIL "p.heinlein" "heinlein-support.de")) (("Peer Heinlein" NIL "p.heinle

in" "heinlein-support.de")) (("Tux" NIL "tux" "example.com")) NIL NIL NIL

"<200704070102.11133.p.heinlein@heinlein-support.de>"))

a5 OK FETCH completed.

Let’s look at the complete message for message number 2, using the 4�%+>
subcommand ���D@C:

a6 FETCH 2 BODY[]

* 2 FETCH (BODY[] 1646

Return-Path: <p.heinlein@heinlein-support.de>

X-Original-To: p.heinlein@heinlein-support.de

Delivered-To: p.heinlein@heinlein-support.de

Received: from [10.0.42.2] (unknown [10.0.42.2])

(using TLSv1 with cipher DHE-RSA-AES256-SHA (256/256 bits))

(Client did not present a certificate)

by plasma.heinlein-support.de (Postfix) with ESMTP id BEA0581A4B

for <tux@example.com>; Sat, 7 Apr 2007 01:02:01 +0200 (CEST)

From: Peer Heinlein <p.heinlein@heinlein-support.de>

To: Tux <tux@example.com>

Subject: Test message 2

Date: Sat, 7 Apr 2007 01:02:01 +0200

User-Agent: KMail/1.9.5

MIME-Version: 1.0

Content-Type: text/plain;

charset="iso-8859-1"

Content-Transfer-Encoding: quoted-printable

Content-Disposition: inline

Message-Id: <200704070102.01895.p.heinlein@heinlein-support.de>

X-Length: 1519

Status: R

X-Status: NC

X-UID: 0

Hello!

I am a test message.

=2D-=20

Heinlein Professional Linux Support GmbH

Linux: Academy - Support - Hosting

38

2.2 IMAP

http://www.heinlein-support.de

Obligatory information according to =A735a HGB (German Commercial Code)

HRB 93818 B / Berlin Charlottenburg Local Court,=20

Managing Director: Peer Heinlein =A0-- Registered Office: Berlin

)

a6 OK FETCH completed.

It is also possible to download individual header lines:

a7 FETCH 2 BODY[HEADER.FIELDS Message-ID]

* 2 FETCH (BODY[HEADER.FIELDS ("Message-ID")] 59

Message-Id: <200704070102.01895.p.heinlein@heinlein-support.de>

)

a7 OK FETCH completed.

We can also copy messages, either to another folder or (just to make life
easier) back to ����/#%���.

a8 COPY 2:3 INBOX.Test

a8 OK [COPYUID 1175900586 2:3 4:5] COPY completed.

Messages 2 and 3 are now duplicated as messages 4 and 5. It does not
make sense to keep duplicates in a folder, so we assign the =������
 flag
to them. This means that they will be deleted the next time an �/2����,
$���+%, or +��$� command is executed (see pages 304, 298, and 303):8

a9 STORE 2,3 +FLAGS ��������

* 2 FETCH (FLAGS (\Deleted))

* 3 FETCH (FLAGS (\Deleted))

a9 OK STORE completed

The IMAP server now provides updated status information for this folder.
It does not mention any new messages, even though our copying has in-
creased the number of messages significantly:

a10 NOOP

* 5 EXISTS

* 0 RECENT

a10 OK NOOP completed

It is still possible to use the messages that have been flagged for deletion.
The message only disappears from the server when we leave the folder, e. g.
by selecting a new directory.

8 . . . but not when we leave the folder using #/"!2!&', according to the IMAP extension
from RFC 3691.

39

2 POP3 and IMAP at the Protocol Level

Searching for Email Contents

There are many complex and powerful query methods available for search-
ing email on the server. You can search by age and size of the message, as
well as by sender, header line, IMAP flag, and actual content of the email.
The following query asks the server to return the sequence numbers of all
unread messages:

a11 SEARCH UNSEEN

* SEARCH 3 5

a11 OK SEARCH done

Email 5 is not returned, as it was flagged as =$��
 when the session began
(as shown by the 4�%+> command on page 37).

If you wish to find all messages that are marked for deletion among first
four messages, you should use the command:

a12 SEARCH 1:4 DELETED

* SEARCH 2 3

a12 OK SEARCH done

You can also search message contents. The $�&'+> command is not case
sensitive:

a13 SEARCH ALL TEXT Heinlein

* SEARCH 1 2 3 4 5

a13 OK SEARCH done

Warning: Because the %�/% option searches through the raw data, this
search query may overlook certain emails that contain the search term.
This example will not return any hits for messages in which the only oc-
currence of the word “heinlein” contains a soft line break in the quoted-
printable-coded email text and therefore looks like this: ���
GA����B���
.
It usually makes more sense to use the $�&'+> subcommand ���D@C in-
stead of %�/% (see page 305).

These simple examples show that the IMAP protocol offers the client mul-
tiple options that can transfer complex tasks efficiently to the server and
thereby reduce the volume of data transmitted. Unfortunately, implemen-
tations of the IMAP protocol in mail clients are of varying degrees of quality.

Even web mailers, who should be grateful for the variety of options, hardly
take advantage of them. Instead of pulling only those emails off the server
that are to be displayed and then preparing them for display, many access
all emails, and then make their selection in a manner that is cumbersome
and requires a lot of storage space.

40

2.2 IMAP

2.2.4 Subscribing to IMAP Folders

A client can use the $��$+'��� command to select a folder from the list of
all folders in an IMAP mailbox and subscribe to it, and use the ��$��$+'���
command to unsubscribe from that folder again. The list of subscribed
folders is stored directly on the IMAP server, which must support this fea-
ture. Courier and Cyrus are both able to do this without any additional
configuration.

Whether a subscription exists for a directory only makes a difference for
the ��$% and �$�� IMAP commands: ��$% lists all IMAP folders, whether
they have been subscribed to or not. It returns all IMAP folders even if
the server contains a list of subscriptions. If the �$�� command (the name
is an abbreviation of list subscribed) is sent, the server returns only the
subscribed directories.

Apart from this difference, ��$% and �$�� behave identically. Clients can
use these commands each time they retrieve emails to specify whether only
the subscribed directories or all directories are returned.

The second option is advantageous for clients on laptops that use UMTS
dial-up, or at locations that have expensive traffic or slow connections.
When the mailbox is retrieved, only the subscribed IMAP folders are syn-
chronized, if the IMAP client is configured correspondingly. This option
saves time and money when emails are retrieved on the go. On the other
hand, the IMAP client at a stationary machine can be configured not to
support subscribed folders for the same mailbox. It will continue to send
the ��$% command and thereby synchronize itself with the entire set of
data.

Your IMAP client will determine how and where you can subscribe to IMAP
directories. You will usually find a function enabling you to select individual
directories for subscription from all folders listed; you should also be able
to configure whether subscriptions should be observed or not.

41

3 Ch
ap

te
r

Load Distribution and Reliability

A web server can deal with many thousands of hits per hour, but IMAP
servers encounter new and far-reaching problems when dealing with that
many users. The Courier and Cyrus IMAP processes consume between 1.5
and 2MB RAM for each online session, even if the connection is idle and
the client is hardly active. A server with 4GB RAM can therefore run out of
memory when serving approximately 2,500 simultaneous connections.

Unlike POP3, where the client logs on separately for each query and the
memory used to process a query is freed up for other connections once
the server is finished with it (this is similar to HTTP and SMTP, where RAM
is only consumed when work is being processed), IMAP is unfortunately
far more greedy because clients often attempt to remain permanently con-
nected to the server when users wish to maintain a dedicated connection.

This is not a problem if there are only 20, 50, or even as many as 100 users,
as a server usually has 250MB RAM available. However, if there are a thou-
sand or more users and a corresponding number of parallel IMAP con-

43

3 Load Distribution and Reliability

nections, the main memory can quickly become a bottleneck. Besides the
amount of available RAM, the number of connections that can be served
efficiently is also limited by the physical (disk) storage. Processor perfor-
mance is rarely a problem for large IMAP servers. If, for example, clients
in 2,500 parallel connections retrieve emails every three minutes, this still
only amounts to 10 or 20 parallel requests per second. This is manageable
for a fast enough computer with a single processor. Disk I/O is likely to
become a more noticeable limiting factor for overall system performance,
since hard drive performance has not changed significantly in recent years,
compared to CPU speed. At present, disk caching is used to attempt to
alleviate this problem as far as possible.

RAM and memory I/O are the weak points when the number of users
reaches four or five digits; these weak points are balanced out by using
shared IMAP clusters or fast hard disks.

If your IMAP server can barely deal with the number of simultaneous logins
and/or the size of the mailboxes, there are two strategies available: You can
either use load balancers or proxies.

Under load balancing, multiple IMAP servers use a central filesystem (SAN/
NAS) to access all email data, so that every node can service every user
account. A central load balancer distributes the load to an arbitrary number
of identically configured IMAP servers. To prevent filenames from being
duplicated in the shared mail space, you should provide each node with a
different hostname. The advantages of this solution include the following:

Load balancing can be done very simply, even using Round Robin DNS
(but without guarantee of system stability), although a load balancer is
better.

Individual user accounts do not need to be assigned permanently to in-
dividual nodes.

The load is balanced optimally between all the servers.

There are also disadvantages, though: A load balancer (an appliance or a
homegrown solution) is required, and the central filesystem bears the entire
I/O load of the IMAP cluster. Furthermore, they both become single points
of failure unless they are designed to be redundant.

An IMAP proxy receives connection requests from all clients and transfers
each to the responsible IMAP server. Each of the IMAP servers therefore
manages only a certain part of the account base, for which it saves the
relevant mail data locally. There is an additional list of all accounts and
passwords that is maintained separately (for example, in a MySQL database
or in an LDAP directory). This has the following advantages:

44

3.1 Load Balancer

No problems with a single I/O bottleneck, as multiple local hard disks are
used

No (expensive) central mail storage

No load balancer

However, a central proxy IMAP server can become overloaded if there is
a very large number of users; individual IMAP servers can become over-
loaded even though other nodes still have capacity available; and each in-
dividual IMAP server is a single point of failure for the accounts that reside
on it, although accounts on other servers are not affected by such a failure.

3.1 Load Balancer

If all mail hosts access a shared storage solution, as shown in Figure 3.1
(whether this is an NFS, a SAN, or an iSCSI with a cluster filesystem), it is
unimportant which host is used to connect the client. In this case, there
is no reason not to use a load balancer. Even on a simple Linux router, it
only takes a few steps to configure a load balancer; the Linux kernel offers
different options for distributing IP connections.

Figure 3.1:
If all mail servers
access the same
email database, every
incoming connection
can be assigned to a
server individually.

Forwards all connections to any of the
servers, depending on their load

Load balancer

All accounts

POP3/IMAP server 1

Authentication server

(MySQL, LDAP, ...)

Port 110 Port 143

All accounts

POP3/IMAP server 2

All accounts

POP3/IMAP server 3

All accounts

POP3/IMAP Server 4

Central storage system (SAN, NAS)

Saves all mail data for all users

If the central storage system becomes a performance bottleneck due to nu-
merous simultaneous accesses to numerous files, the only option is to use
a large number of very fast hard disks, which can make this system organi-
zation very expensive.

During configuration, you should ensure that persistence is maximized.
This means that the balancer attempts to assign a new client connection
to the same server that was last used for that client whenever possible, in

45

3 Load Distribution and Reliability

order to take advantage of any user and account information still present
in that server’s local disk cache.

3.1.1 DNS Round Robin

DNS enables a (very) simple load distribution technique. If you specify
several DNS entries for the name of your host, the clients are assigned an
IP number, and thus an actual host server, at random for each query.

The following entries in a DNS zone file ensure that all queries are (ran-
domly) assigned one of the three servers with the IP numbers mentioned:

mail.example.com. IN A 192.168.10.11

mail.example.com. IN A 192.168.10.12

mail.example.com. IN A 192.168.10.13

However, this makes you reliant on DNS data, which is often cached for a
long time, and which is correspondingly difficult to influence. This means
that DNS Round Robin is only a first attempt at load balancing rather than
a proper strategy. If necessary, you can adapt the �������� rule described
on the following pages and switch IPs on or off. This raises the question:
Why not do it like this from the start?

3.1.2 Round Robin via ��������

�������� can use the ��&% target to distribute connections to a number
of consecutive IP numbers. This does not achieve real load distribution, as
the connections are distributed via the round-robin method. Cache times
are of no importance here (unlike DNS Round Robin), which means the
solution can be adapted and changed as required.

If you use a Linux router as a central gateway anyway, little effort is required
to forward all POP3/IMAP connections to multiple servers with different IP
addresses in order to balance the load.

The following example illustrates how to externally provide a single POP3-
IMAP server under IP 56,#5HI#59#59 while the requests are distributed
internally to the three servers 56,#5HI#59#55, 56,#5HI#59#5,, and 56,#
5HI#59#5� via ��&%:1

linux: # iptables -A PREROUTING -t nat -p tcp --dport 110 -d 192.168.10.

10 -j DNAT --to-destination 192.168.10.11-192.168.10.13

linux: # iptables -A PREROUTING -t nat -p tcp --dport 143 -d 192.168.10.

10 -j DNAT --to-destination 192.168.10.11-192.168.10.13

1 Line breaks have been inserted in the single-line commands to make them easier to
read.

46

3.1 Load Balancer

linux: # iptables -A PREROUTING -t nat -p tcp --dport 993 -d 192.168.10.

10 -j DNAT --to-destination 192.168.10.11-192.168.10.13

linux: # iptables -A PREROUTING -t nat -p tcp --dport 995 -d 192.168.10.

10 -j DNAT --to-destination 192.168.10.11-192.168.10.13

You can also use the �������� targets �&�&�+� and +��$%�'�2 to imple-
ment complex setups that exceed the scope of this book. For more infor-
mation, see 	�
 A?B ��������.

However, �������� is not able to divert queries that a failed host or service
receives in this manner; in the worst case, the client will receive a timeout
or “Connection Refused” message. Even if this option is unsuitable for high
availability requirements, it can be recommended as a simple, robust, and
functioning initial solution.

3.1.3 Linux Virtual Server

The Linux Virtual Server (LVS) project2 has nothing to do with virtual root
servers (VServers) as provided by some ISPs. Rather, it provides the kernel
function and control commands that can be used to set up a real load
balancer on any Linux system with very little effort. Unlike the simple
�������� ��&% method, LVS enables the connections to be distributed to
individual hosts according to available criteria; For example, it could favor
individual (higher-performance) servers or take existing connections into
account.

The LVS project connects to the target hosts in three different ways. In most
cases, Direct Routing will be the first choice.3

Direct Routing is based on the principle of supplying the servers with an ex-
ternal production IP, which is identical for all nodes (in this case, 56,#5HI#
59#59), in addition to their actual maintenance IPs (in this case, 56,#56#59
#55, 56,#5HI#59#5,, and 56,#5HI#59#5�). This IP is attached to the
loopback interface as a virtual IP on every server, so as to prevent IP con-
flicts and interference between the servers. The subnetwork must be set to
,??#,??#,??#,?? to prevent the server from attempting to contact other
nodes in the network via the loopback interface.

linux: # ifconfig lo:1 192.168.10.10 netmask 255.255.255.255 broadcast \

192.168.10.255

At the same time, the Linux kernel must be taught not to return the MAC
address of ���9 to ARP queries for this IP. The Linux kernel usually returns
the IP of the receiving interface to ARP requests even if the requested IP

2 See ����������	���
-3���
�����3��	����.
3 It is described in detail at ����������	���
-3���
�����3��	����4", ��
����	��

�.

47

3 Load Distribution and Reliability

address is on any of its interfaces. At the same time, it arbitrarily selects
one of its own IP addresses for outgoing requests.

In order to prevent this, you should enter the following entries into the file
�����������#��
�:

net.ipv4.conf.all.arp_ignore = 1

net.ipv4.conf.lo.arp_ignore = 1

This ensures that the kernel only replies to ARP requests if they are received
on the intended interface. It ignores ARP requests for the IP address hidden
behind ��-5, as they are received on ���9. Instead, the kernel should only
use the actual IP address of the outgoing interface ���9. Add two more
entries to �����������#��
�:

net.ipv4.conf.all.arp_announce = 2

net.ipv4.conf.lo.arp_announce = 2

During setup you load these parameters manually; later on, they are acti-
vated automatically during booting. This is the call for SuSE:

linux: # /etc/init.d/boot.sysctl start

Setting current sysctl status from /etc/sysctl.conf

net.ipv4.icmp_echo_ignore_broadcasts = 1

net.ipv4.conf.all.rp_filter = 1

net.ipv4.conf.all.arp_ignore = 1

net.ipv4.conf.lo.arp_ignore = 1

net.ipv4.conf.all.arp_announce = 2

net.ipv4.conf.lo.arp_announce = 2

Debian users use the command ������
��#
�������#�� ����� instead.

Now, multiple servers have the same IP, but none of them reply to ARP re-
quests. This means that this IP is not available—at least until we introduce
the LVS load balancer.

Now enter the production IP in your load balancer; this time, enter it on
���9 or as an additional IP on ���9-5. The settings in �����������#��
�
are no longer required on the balancer, as you want it to be available.

While you are here, you should also set up the IP forwarding. You can either
do this in the command line, as shown in this example, or enter the required
parameters in the corresponding configuration files of your distributor (or
use setup programs such as SuSE’s YaST):

linux: # ifconfig eth0:0 192.168.10.10 netmask 255.255.255.0 broadcast \

192.168.10.255 up

linux: # echo 1 > /proc/sys/net/ipv4/ip_forward

48

3.1 Load Balancer

The LVS server now replies to this IP. If you wish to forward the POP/IMAP
requests to the host that currently has the fewest open connections, you
have to instruct LVS to distribute the connections according to the Least
Connection (��) procedure. To do this, enter the actual IP address of ���9
as the target on the individual hosts. For POP3 and IMAP, you will require
two sets of rules: one rule for TCP port 110 (POP3) and one rule for TCP
port 143 (IMAP):4

linux: # ipvsadm -A -t 192.168.10.10:110 -s lc

linux: # ipvsadm -a -t 192.168.10.10:110 -r 192.168.10.11 -g

linux: # ipvsadm -a -t 192.168.10.10:110 -r 192.168.10.12 -g

linux: # ipvsadm -a -t 192.168.10.10:110 -r 192.168.10.13 -g

linux: # ipvsadm -A -t 192.168.10.10:143 -s lc

linux: # ipvsadm -a -t 192.168.10.10:143 -r 192.168.10.11 -g

linux: # ipvsadm -a -t 192.168.10.10:143 -r 192.168.10.12 -g

linux: # ipvsadm -a -t 192.168.10.10:143 -r 192.168.10.13 -g

When a new connection is made, LVS determines the most suitable target
host. Then LVS replaces the MAC address in the TCP/IP package. The pack-
age is still addressed to the same production IP address (56,#5HI#59#59),
but on the Ethernet level (layer 2 in the OSI layer model) it is addressed
to the ���9 interface of a specific target host in the server pool. This host
receives the package without detecting the short detour. The package is
addressed to its IP address, which is linked to ��-5, but it is received via
the external interface ���9 because the MAC address has been replaced. As
it owns the target IP, it is immaterial which interface is used to transfer the
package.

Unlike the ��&% procedure, this procedure sends the reply packages directly
to the default gateway instead of rerouting them to the LVS balancer. This
entire setup scales well, because the LVS balancer channels very little data
from the client to the server, and because the large amount of data trans-
ferred from the server to the client does not place any load on the network
interface of the LVS.

As the LVS balancer maintains a table of existing connections, packages
that belong to a connection in that table are always transferred to the same
production server.

For more in-depth information on the subject of load balancing, please
refer to the comprehensive online documentation.5 This also describes in
detail how to monitor the availability of an individual host automatically,
and how to dynamically adapt the load balancing to handle failed hosts.

4 Enter the settings for ports 993 (POP3 via SSL) and 995 (IMAP via SSL) in the same
manner if you use SSL/TLS.

5 See ����������	���
-3���
�����3��	����.

49

3 Load Distribution and Reliability

3.2 IMAP Proxies

If you set up multiple IMAP servers with local hard disk systems, rather than
a single shared filesystem, these no longer need to know about all users or
have access to all email accounts; instead, each of them can manage a por-
tion of all the user mailboxes. A central IMAP proxy then no longer needs
to cache entire (IMAP) sessions (like the Squid HTTP proxy, for example);
instead, it assigns incoming connection requests to the responsible IMAP
server (see Figure 3.2).

Every user data set must contain a separate field specifying the IMAP server
the user’s account is stored on. The IMAP proxy queries this data during
login and then transfers the IMAP request transparently to the required
IMAP server. As every user is directed to his or her “own” server, no shared
file area is required. This means that no load distribution among different
servers is needed if this solution is used.

In very large environments, it may make sense to combine IMAP proxies
and the load balancing technique: The proxy assigns connections to bal-
ancers on the basis of the user ID, and each balancer distributes its share of
the connections to multiple IMAP servers. It is then possible to construct
separate mail stores if an individual storage system is overloaded.

Figure 3.2:
Autarkic mail servers

with a local
filesystem are fast,

but they are also
single points of

failure. The
AuthServer knows

where each account
is located.

Asks for the mail server in charge
POP3/IMAP proxy server

Forwards the POP3/IMAP session

Local disk
Accounts 0−2000

POP3/IMAP server 1

Local disk
Accounts 6001−8000

POP3/IMAP server 4

Local disk
Accounts 4001−6000

POP3/IMAP server 3

Local disk
Accounts 2001−4000

POP3/IMAP server 2

Port 110 Port 143

Authentication server

(SQL, LDAP, ...)

However, most IMAP proxies consume as much RAM as the IMAP client,
as the entire authentication routine and the IMAP protocol have to be im-
plemented on them. As a result, the IMAP proxy itself can become over-
loaded and run out of RAM. This type of solution is therefore effective at
distributing the I/O load rather than the RAM load. The following software
is suitable:

Courier IMAP Proxy
Courier IMAP contains the proxy function starting from version 4.0.
For a Courier server, the simplest choice is the internal proxy. The
implementation is described in section 10.3 on page 175.

50

3.2 IMAP Proxies

Cyrus Murder Cluster
The new versions of Cyrus also contain a native IMAP proxy, the
Cyrus-Aggregator used in Cyrus Murder Clusters (see section 17.1 on
page 281). At present (February 2008), it is still deployed “at your own
risk.”6

Perdition
Perdition7 is designed to work with any IMAP server as a fully-featured
IMAP proxy. It can request the IMAP target host from a number of
different database sources: ODBC, MySQL, PostgreSQL, GDBM, and
NIS. It is also possible to assign usernames to IMAP hosts using reg-
ular expressions. Unfortunately, LDAP is not supported.

As Courier and Cyrus each contain their own proxy, it does not re-
ally make sense to use Perdition with these servers; after all, you can
only use user databases that are suitable for your IMAP backend. The
project also seems to be either "‘perfect"’ (in the eyes of its devel-
opers) or hibernating, as there has been no new release since June
2005.

The following is not suitable for operating an IMAP cluster:

IMAP Proxy
Unlike the previously mentioned proxies, IMAP proxy8 attempts to
cache the connections permanently instead of transferring them to
other IMAP servers. For this reason it is mainly used to speed up web
mailers, which have to log on to the IMAP server constantly because
of the individual PHP calls. The program �
#�	�������
 keeps this
connection to the IMAP server open, which reduces the load on the
IMAP server and speeds up the PHP application. It is described in
section 5.3 on page 73.

6 See ����������
��
��	���	�

	��
��
�����������,

����	��
�.
7 See ����������	3�������	�������
-�����������.
8 See ����������	�
�����-�	����.

51

4 Ch
ap

te
r

Selecting a Filesystem

On small mail servers for 20 users or so, performance is hardly affected by
the way the operating system organizes the data on the hard disk. When it
comes to Internet or mail service providers with hundreds or thousands of
users, it is a different story. Here, even if the emails are stored on fast hard
disks, it can be tricky to find a filesystem capable of efficiently handling
large numbers of small files, which is typical of the contents of an email
database.

There is a lot of disagreement on this subject, and it is unlikely that consen-
sus will be reached. Unfortunately, there is a wide variety of opinions and
evaluation criteria regarding the speed and advantages of different filesys-
tems; not only are they confusing, they are also often contradictory, as the
different kernel versions and distributions can differ widely. If one version
of a filesystem is slow, the very next kernel release may improve its speed
considerably.

53

4 Selecting a Filesystem

Focusing on common, tested, and stable free systems that include journal-
ing considerably reduces the number of available filesystems to consider.

Under Linux, the classic Ext2/Ext3 filesystems are not to be underestimated:
Processing speed has increased so much in recent years that it may no
longer be noticeably slower than ReiserFS, which has been praised for its
performance with tens of thousands of files. Without question, there used
to be a difference between them; however, this chapter contains test results
showing that Ext2/Ext3 has overtaken ReiserFS where speed is concerned.

Admittedly, ReiserFS utilizes disk space more efficiently than Ext2 and Ext3
when dealing with large numbers of small files, but it also continues to
encounter problems with data security. Whenever we have worked with
ReiserFS in recent years, we encountered corrupt Reiser filesystems and in-
explicable data loss. The final straw is that even ���"#��������, when
it ostensibly runs without errors, cannot guarantee that the filesystem is
in a consistent state. In many cases, the only recovery solution was to use
���"#�������� ..������
.�����, and this is a tricky procedure that can
take several hours, causes an unacceptably long downtime on the server,
and pumps a year’s worth of adrenaline into the administrator’s blood-
stream.

Where loss of data is not too tragic—for example, on ��	� or in the cache
directory of a proxy server—and defective partitions can be reformatted,
there is no reason not to use ReiserFS. For older kernel versions, ReiserFS
is still the faster solution.

However, the authors refuse to entrust email directories that need to be
saved permanently to ReiserFS, and many concur in this view.

There are quite a few people who swear by XFS. It appears that people be-
gin to appreciate it once they have worked with it for some time. It is stable
and robust, but it does not, at present, contain features for reducing an ex-
isting filesystem (unlike Ext2/Ext3 or ReiserFS)—but enlarging is possible.
In addition, tests and benchmark results1 returned diverging conclusions
on the performance of XFS when accessing small files.

The authors do not have much experience with using XFS, but it does not
appear to be suitable for use on high-performance servers with small files
due to insufficient speed.

OpenSolaris uses ZFS, which has only just been ported to Linux and *BSD.
In addition to the benefits of the journaling filesystems mentioned above,
it also contains a Logical Volume Manager (LVM). The system has one im-
portant advantage: It is aware of the physical structure of the underlying
hard disk, which enables it to fully exploit the I/O speeds when writing to
the hard disk. It is easy to manage, supports software RAID and snapshots,
uses checksum processes, and does not require a filesystem check after a

1 See ����������	������,��
�����������	��������������55.

54

4.1 A Performance Test

power failure. It is also regarded as very stable; however, software RAID and
checksum methods may reduce the speed and thereby diminish its advan-
tages in that respect.

If there is no need to save money on the SAN, administrators often choose
the NetApp filers from Network Appliance. WAFL, Network Appliance’s own
filesystem, is very capable of dealing with accesses to numerous small email
files, an access pattern typical for email stores.

4.1 A Performance Test

The standard test tools ��J�
� and ��

�� or ��

��00 are only of lim-
ited use when testing the performance of filesystems on mail servers, as
these tools perform very little switching between read and write accesses
to the data medium. NetApp’s tool ����	��"2 simulates the work carried
out by mail and news servers. During the test, numerous small files are
read, written, and deleted in turn, in order to stress the index structure of
the filesystem.

The following test results are purely illustrative, as the observed results de-
pend strongly on the kernel in use: Different versions can give rise to very
different performance results for an identical filesystem. This explains why
there are so many different opinions on the quality of particular filesystems.

The tests confirm our subjective opinion, which is that ReiserFS has lost its
advantage in speed over Ext2/Ext3—it has landed firmly in second place.
The planned ReiserFS version 4, however, seems to have caught up again
and to now be ahead of Ext4 (which is also in the planning stages). A lot
may have changed since this book went to press, so you should not base
decisions solely on the results presented here.

Table 4.1:
Test results of the
SCSI system

15,000 RPM SCSI Ext3 ReiserFS 3 XFS

Transactions per

second 162 123 81

Files created per

second 1,225 411 457

Files deleted per

second 816 924 175

Read accesses per

second 81 61 40

2 This was previously at ����������	������	��
�����6������������
���	��
�,
but the official website no longer seems to exist.

55

4 Selecting a Filesystem

continued:

15,000 RPM SCSI Ext3 ReiserFS 3 XFS

Write accesses per

second 80 61 40

Average

Read throughput 769.75 KB/s 578.73 KB/s 370.87 KB/s

Average

Write throughput 969.20 KB/s 728.69 KB/s 466.96 KB/s

The tests with ����	��" 1.51 were done in the following conditions:

The default kernel of OpenSuSE 10.2 in version 2.6.18.8 was used as the
operating system.

The 15,000-RPM SCSI hard disk was (see Table 4.1) a Seagate Cheetah
ST336753LC FN with an 8 MB disk cache in a computer equipped with a
XEON 2.8 GHz dual core (512KB CPU Cache).

During tests on an IDE hard disk with 7,200 RPM (see Table 4.2), we used
a (fairly slow) IBM Deskstar IC35L060AVVA07-0 with 2 MB disk cache on
a Pentium-IV 3 GHz HT (512KB CPU Cache).

There was a maximum number of 125,000 files, distributed among 10,000
subdirectories, and the files contained between 1,500 and 15,000 bytes.

The test observed one million transactions in journaling mode ��
���

while the kernel and disk caches were switched on.

Some initial test results for Ext4 and ReiserFS version 4 are available on
����-�� #��
���
��3��#��	���������
��	��"������������:����
�������	#��	�.

Table 4.2:
Performance results

of the IDE systems

7,200 RPM IDE Ext3 ReiserFS 3 XFS

Transactions per

second 47 41 26

Files created per

second 29 24 15

Files deleted per

second 29 24 15

Read accesses per

second 23 20 13

56

4.2 Tuning the Performance of the Filesystem

continued:

7,200 RPM IDE Ext3 ReiserFS 3 XFS

Write accesses per

second 23 20 12

Average

read throughput: 229.33 KB/s 196.48 KB/s 120.86 KB/s

Average

write throughput: 288.75 KB/s 247.39 KB/s 152.17 KB/s

4.2 Tuning the Performance of the Filesystem

Speed is affected not only by the choice of filesystem, but also by the way
it is used. There are some welcome configuration changes that improve
speed slightly and have no disadvantages.

4.2.1 The ���	�

By default, every read access to a file automatically involves a write access,
as Linux saves three timestamps for every file:

Modification time (��	�) is the time displayed in the detailed (�� .�)
file listing and describes the point in time when the contents of the file
were last changed.

Change time (���	�) saves the time of the most recent change to the
file permissions, that is to say the read, write, and execute flags and the
file owner. A ��	�
 command ensures that a new ���	� is set while the
	��	� remains unchanged.

Access time (���	�) shows the most recent time a read access occurred.
Every read access, even a simple ���, causes a new ���	� to be saved.

This is a little performance killer. Even if the ���	� is usually only written
to the write cache at first, and even if the client only retrieves a few emails,
it still involves unnecessary file administration and disk I/O.

As the ���	� is not usually relevant for servers, it can be switched off. To
do this, mount the data partition with the option
����	�, and/or enter
this option in the ����������. The Linux kernel will no longer change the

57

4 Selecting a Filesystem

���	� when read accesses occur. This will not have any negative conse-
quences.3

4.2.2 Access Control Lists

For access to an individual file, the Unix filesystem differentiates users into
fixed classes: the owner of the file, users belonging to the same group as
the file owner, and all other users (other/world). Access control lists (ACLs)
have been added to improve flexibility. They are used to enable or block
file access by individual users according to specific criteria.

Naturally, it takes time to evaluate ACLs. Often it is practically no time,
but it does take some time, which can add up quickly on high-performance
mail servers. “Practically nothing” can become “10 million times practically
nothing” and turn into a relevant performance factor.

Unless you operate filesystem-based shared folders under Courier (see sec-
tion 10.1.2 on page 163), (filesystem-based) ACLs are not really useful in the
mail directories of an IMAP server. In this case, it makes sense to deactivate
them for the mail data partition.

In addition to the
����	� option mentioned above, there is also a
����
	��
� option that prevents the ACLs from being evaluated.4 You can enter
it in the option column in ���������� in the usual way.

4.2.3 The Ext2/Ext3 Option
����

��

Ext3 used to perform badly when accessing directories containing many
thousands of files. If a directory contained 100,000 files, there was literally
enough time to fetch a cup of coffee before a �� .�� returned the output.

ReiserFS clearly had the edge here, but Ext2/Ext3 have caught up and intro-
duced the
����

�� option, which sorts the files in a folder by a hash in-
dex and therefore enables much faster access to individual filenames. How-
ever, there is a caveat: This works in theory. The test results in Table 4.3 only
display a minor increase in speed if
����

�� is active; the performance
actually deteriorates noticeably when it comes to deleting files.

Theodore “Ted” Tso, the central developer of the Ext2/Ext3 filesystem, pro-
vided the following explanation:
����

�� is actually a high-performance
solution, but it prevents files that were created in sequence from being
stored on the hard disk in order of ascending inode. Instead, they are sorted
by hash values. As a consequence, creating and deleting numerous files

3 You can usually mount all your system partitions with the �����
� option, even the
root partition. However, as servers usually cause little activity on the root partition, this
latter option does not improve performance noticeably.

4 It is also valid for ReiserFS, even though
��
�
�� only lists it for Ext2.

58

4.2 Tuning the Performance of the Filesystem

causes more disk head movements than would result if the files could be
written in chronological order.

����

�� may speed up the access to individual files, but it results in
haphazard accesses to the hard disk when many files are accessed. The
positioning time required by the disk head (seek time) then causes delays.

This does not pose a problem in our case: Good mail server programs im-
port the file directory and then sort the files by their inode numbers in
ascending order before executing accesses or deletions; this prevents the
disk head from backtracking. Sam Varshavchik, the Courier author, has im-
plemented this sorting function in Courier, but the benchmark tool we used
does not contain it. This means that Courier IMAP is optimized for use with

����

��, and the test results can not be applied in full to Courier. Un-
fortunately, the authors did not have the chance to adapt the behavior of
the benchmark tool.

Current distributions such as OpenSuSE 10.2 now set the option
����

��
automatically for Ext3 partitions. Depending on the distribution and ver-
sion you use, you may be able to skip the following instructions on activat-
ing
����

��.

For indexed directories, enter the option
����

�� directly during for-
matting with 	"��#����:

linux: # mkfs.ext3 -O dir_index /dev/sda5

If you wish to activate this feature on a partition that is already being used,
use ��
�,��. In order to activate
����

�� for directories that already
exist, run ���" once on the disk (which may not yet be mounted). The .��
parameter enforces the optimization of the directory structure; as a result,
an index is also created for existing directories.

linux: # umount /dev/sda5

linux: # tune2fs -O dir_index /dev/sda5

linux: # fsck.ext3 -fD /dev/sda5

linux: # mount /dev/sda5

Table 4.3:
Influence of the
���6����- option

15,000 RPM SCSI Ext3 without
����

�� Ext3 with
����

��

Transactions per

second 91 95

Files created per

second 4,424 4,065

Files deleted per

second 1,360 1,283

59

4 Selecting a Filesystem

continued:

15,000 RPM SCSI Ext3 without
����

�� Ext3 with
����

��

Read accesses per

second 45 47

Write accesses per

second 45 47

Average

read throughput 426.34 KB/s 445.63 KB/s

Average

Write throughput 651.37 KB/s 680.86 KB/s

4.2.4 Journal Mode

The Ext3 and ReiserFS journaling filesystems currently know three different
methods of journaling:

F���
��
This mode guarantees the highest possible data safety, as data is first
written to the journal and then to its final destination.

��
���
 (Default)
The kernel writes the data straight to its destination and then enters
information on this transaction in the journal.

 �������"
In this method, the data can be written to the journal and the user
data area in any order.

In principle, this method provides as much data safety as F���
��;
however, it is possible that deleted data reappears in the filesystem
after a crash. You could say that this is an anomaly that is the oppo-
site of data loss. However, this should not be a problem on a maildir
system with Courier; the worst-case scenario is that some old emails
reappear.

The method is specified by the corresponding
��� option when the parti-
tion is mounted or the entry is made in the ����������.

Table 4.4 shows the differences in speed. The results indicate that ��
���

provides the best performance for maildir-based mail servers. We have to
admit that we did not expect this result. We sent a query to Ted Tso, but
had received no reply when this book went to press. If you have a spare
moment, please take a look at ����-�� #�	��.����#��	�!

60

4.2 Tuning the Performance of the Filesystem

Most of us expected �������" to come out on top; after all, tests keep on
stating that �������" improves performance by approximately 10 percent
(Ext3) or 30 percent (ReiserFS) in comparison to F���
��. Our tests have
put this statement in perspective in regard to the Ext3 system we tested: We
could not detect a performance increase of 10 percent, but most operations
were slightly faster. However, the main performance killer is the creation
of files, and this is where �������" lost out. Unlike a web server that
mainly delivers, a mail server constantly creates new files on a large scale.
 �������"does not therefore seem suitable for mail servers based on Ext3,
in spite of popular opinion.

Table 4.4:
The ���������

mode does not make
Ext3 faster.

15,000 RPM SCSI ��
���
 F���
�� �������"

Transactions per

second 91 90 91

Files created per

second 4,424 1,160 846

Files deleted per

second 1,360 1,244 1,320

Read accesses per

second 45 45 45

Write accesses per

second 45 45 45

Average

read throughput 426.34 KB/s 416.95 KB/s 419.01 KB/s

Average

Write throughput 651.37 KB/s 637.03 KB/s 640.18 KB/s

Ted Tso confirmed the differences between the F���
�� and �������"
modes, and provided the following explanation: �������" is slightly faster
during normal operation; this does not apply if the running software often
calls ���
�AB, forcing the system to write the data definitively from the
cache to the hard disk.

Frequent sync actions can have very different effects depending on the jour-
naling mode: In �������" mode, the user data has to be written to the
hard disk. This requires numerous single accesses and disk head move-
ments because the data blocks are scattered. In F���
�� mode, it suffices
if the data is written to the journal when ���
�AB is executed. The filesys-
tem can do this in one access, and without much movement of the disk
head, which makes this method a lot faster.

61

4 Selecting a Filesystem

In practice, mail servers constantly call ���
�AB to ensure that the cache is
emptied and the emails are safely saved. As such, in the case of a crash or
reset, they lose next to no data. This means that �������" is now slower
rather than faster. In regard to this aspect, a mail server differs substantially
from a desktop PC running KDE/Gnome, OpenOffice.org, & Co.

4.2.5 Optimized ����� Entries

If you wish to combine all the options suggested here, you should make the
following entry in the ���������� for Ext3:

/dev/sda5 /mail ext3 defaults,noatime,noacl,data=ordered 1 2

For a corresponding ReiserFS entry, you only need to change the informa-
tion on the filesystem: �������� instead of ����.

4.3 RAID

Sensitive email data should be stored on a RAID system as standard prac-
tice. RAID 1 (data is mirrored on two hard disks) performs noticeably better
than RAID 5 (data is stored with single parity) and RAID 6 (data is stored
with double parity) in regard to computing and processing. This applies
especially to write accesses, where RAID 5 and RAID 6 systems provide far
less throughput than RAID 1.

In general, RAID 5/RAID 6 performs better for read access to large data
blocks and achieves significantly higher throughput rates than RAID 1. The
distribution of read accesses improves as the number of hard disks used in
RAID 5 increases. RAID 5/RAID 6 is, however, unsuitable for mail servers,
as mail servers (unlike web servers) are subject to constant write accesses.
RAID 5/RAID 6 cannot utilize its high read throughput, as a mail directory
consists of too many tiny files. Quite the opposite: The large number of
hard disks and the consequently increased positioning times required by
the disk heads slow down the access to many small files significantly when
compared to RAID 1. Our experience has shown that RAID 1 is therefore
more suitable for mail servers because its write throughput is better.

RAID 5 is no safer than RAID 1. RAID 1 and RAID 5 can both handle the
failure of only one disk. Only RAID 6 is able to cope if two disks fail at the
same time.

For this reason, it is safer (!) and more sensible to use three hard disks to
build a RAID 1 (two data disks, one spare disk) rather than a RAID 5 (two
data disks, one parity disk).

62

4.4 NFS

The RAID performs better when writing, and a spare disk is always avail-
able. However, a RAID 1 has 50 percent less storage space for user data than
a corresponding RAID 5, so you may have to invest in larger hard disks if
you require the same entire storage capacity.

Instead of spending money on a RAID 5 controller, you should instead in-
vest in a fourth hard disk and construct the cheaper (but faster) RAID 10,
which is a combination of RAID 1 (mirroring) and RAID 0 (striping). Even if
you have a spare disk for RAID 5 (two disks for data, one disk for the parity,
and one disk as a backup), it makes more sense to use the additional disk
for RAID 1 or RAID 10 from a performance point of view. You can combine
two disks to one RAID 1 and then combine the two RAIDs to a large filesys-
tem under LVM. You could also combine all four disks into a RAID 10. RAID
10 is currently the highest-performing RAID available.

Even if fast RAID 5 controllers are released in the near future and can
smooth out the write drawbacks, you should not underestimate the I/O
load caused by large mail directories. Bottlenecks in mail systems are often
caused by the shared I/O load of the disk combination when thousands of
POP3 and IMAP users access the stored emails in parallel, and not by lack
of storage space.

Every hard disk has a limited capacity for I/O operations, resulting from
the positioning speed of the disk head and the revolution speed of the disk,
which are indirectly related. Disks with 10,000 RPM or 15,000 RPM have the
advantage here, but even they will be pushed to the limit if there are more
than a few thousand users. The only solution in this case is to parallelize
on a large scale; this means that you should use additional Autarkic read
heads in RAID 10. If you have a lot of space and many IMAP users, it may
be advisable to buy many small hard disks rather than a few large ones.

4.4 NFS

If you store emails on a central system, you can distribute the load onto
multiple physical IMAP servers without too much effort. As every server
then contains an identical file tree, it no longer matters which computer
the user is assigned to. You can use a load balancer or a simple DNS Round
Robin method to distribute the load, as described in section 3.1 on page 45.

Courier uses a maildir storage format for emails that was designed specifi-
cally for use with NFS. It does not need file locking, which can be tricky for
NFS, so multiple servers acting independently can use it in parallel. Courier
IMAP can use it to deliver emails, while Postfix and other such servers can
use it to store emails.

This is unfortunately not the case for Cyrus. Cyrus index files require file
locking. Current implementations of NFS contain a file locking daemon

63

4 Selecting a Filesystem

that is intended to solve this problem, but even the developers of Cyrus
are cagey about this. The most concrete statement in the Cyrus Wiki is
that “NFS4 seems to support the file-locking.”5 However, various discus-
sion forums frequently mention locking errors in conjunction with NFS4.
We therefore do not recommend the production use of NFS as a storage
location for Cyrus. Because Cyrus (unlike Courier) is not able to write to an
identical data set using multiple instances, NFS looks less attractive any-
way.

It is fairly simple to mount the (Courier) mail repository via NFS, but there
are a few tuning hints that will speed up access considerably.

4.4.1 Disabling ���	� and Optimizing Block Size

NFS offers the option of mounting the entire storage partition using
����
	� (see section 4.2.1 on page 57) on the NFS server and on the NFS client.

You should also specify the options ���J�GI56,K ��J�GI56, on the NFS
client; it will then increase the block size for read and write accesses.

If the client wishes to read or save a large email, it has to distribute it ac-
cording to the block size. A 16KB email normally is transferred in 16 blocks
of 1,024 bytes. The problem is that the parallel processing of NFS requests
is limited. The NFS client has to wait for confirmation by the server after
every block before it can send the next one. This takes up valuable time. If
the block size is increased to 8,192 bytes, a 16KB email can be processed in
two requests.

Small block sizes were introduced to limit the amount of data that has to be
retransmitted if blocks are lost or errors occur during transmission. How-
ever, transmission errors should occur only rarely within a LAN,6 so there
is no reason to keep the blocks small.

Many kernel versions and distributions now use block sizes of 4,096 or 8,192
bytes instead of the original default value of 1,024 bytes.

4.4.2 NFS Version 3

Specify
��!���G� as the mount option on the NFS client, so that it will use
protocol version 3 to communicate with the server. Version 3 is currently
contained in the common distributions, but the clients of older distribu-
tions may use version 2 by default.

Protocol version 3 knows some additional NFS commands that can save
time and reduce the load on the client in some circumstances. This option

5 See ����������
��
��	���	�

	��
�����������3����&��
��&��
�&�
����.
6 If they occur more frequently, you should troubleshoot this error!

64

4.4 NFS

will not have any negative side effects. If your Linux/Unix does not support
this version, your mount attempt will fail. You will then not be able to use
this trick, but there are no negative consequences.

4.4.3 Fast I/O

Do not underestimate the I/O load on the server. Simple SATA or IDE disks
with 7,200 RPM already perform well on a normal server; normal RAID
controllers also return good results, as the speed of the entire system also
depends on the CPU and local data processing. Mediocre I/O performance
does not have serious effects in this case.

The NFS server, however, delivers the data rather than processing it. All
requests from all other hosts are bunched. The local I/O can be a prob-
lem here. Mediocre RAID controllers or hard disks reach their limits very
quickly, and thereby slow down all other processes unnecessarily.

If you are using an NFS server, pay special attention to the tuning hints
for hard disks, mount options, journaling variants, and filesystems that are
listed in this chapter. A good disk cache is, as always, beneficial, and the
advantage provided by hard disks with 10,000 or 15,000 RPM becomes ap-
parent very quickly.

65

5 Ch
ap

te
r

Complementary Webmail Clients

IMAP lets users access their email anywhere they can run an IMAP client,
so a web-based mail client is simply a logical extension of the basic idea.
There are two approaches: direct filesystem access to the email repository
or access via IMAP.

Large, monolithic email services sometimes contain a native webmail client,
which is often designed specifically for the particular system’s database for-
mat and accesses the email repository directly. Such webmail clients can
only be combined with Cyrus if the mail system explicitly supports Cyrus
databases. They can be used with Courier if the webmail client is able to
work directly with a maildir structure.

Most free webmailers simply use the IMAP protocol to access the email
server, so it is not relevant where and how the IMAP server stores emails.
This means that these webmailers can theoretically be combined with any
IMAP server, because they run in the web browser but communicate with
the mail server like standard mail clients that run on the desktop.

67

5 Complementary Webmail Clients

This chapter will introduce the two best-known free webmailers that are
able to work with any IMAP server: Squirrelmail and Horde/IMP. Both are
written in PHP and run in a standard web space. They use the IMAP proto-
col to connect to the mail server, so they do not require access to the email
filesystem, and do not need to connect to the user database on the mail
server. They transfer the login name and password to the mail server via
the IMAP connection.

Figure 5.1:
A look at the

Squirrelmail inbox

5.1 Squirrelmail

Squirrelmail1 (see Figure 5.1) is fast and easy to install. It also provides a
number of interesting features by means of numerous plugins, including
the following:

A virtual keyboard during login, to prevent keylogging

Shared calendars and address books

A current weather report for the region

Spam protection and filters

1 See ����������	��
�����
���	����.

68

5.1 Squirrelmail

A fetchmail plugin for importing POP3 accounts to the IMAP server

Safety functions for locking users or IP addresses, or for logging the source
of the most recent access

Automatic signatures and headers

This package is recommended for basic distributions, as Debian and SuSE,
among others, contain Squirrelmail. The installation of the source code is
also simple, as Squirrelmail is only a collection of PHP scripts.

Place the archive into the document directory on your web server:2

linux: # tar -xvzf squirrelmail-1.4.9a.tar.gz

[...]

linux: # mv squirrelmail-1.4.9a /srv/www/htdocs/squirrelmail

linux: # cd /srv/www/htdocs/squirrelmail

Once Squirrelmail is installed, you can configure it via a menu-based inter-
face by invoking a short Perl script:

linux:/srv/www/htdocs/squirrelmail # ./configure

SquirrelMail Configuration : Read: config.php (1.4.0)

Main Menu --

1. Organization Preferences

2. Server Settings

3. Folder Defaults

4. General Options

5. Themes

6. Address Books

7. Message of the Day (MOTD)

8. Plugins

9. Database

10. Languages

D. Set pre-defined settings for specific IMAP servers

C Turn color on

S Save data

Q Quit

Command >>

Make sure you set up the SMTP and IMAP servers under menu item 2.
Server Settings. Specify the language and character encoding under 10.
Languages:

2 We recommend that you give the directory an unusual name, rather than ��
�����

��� or ���
���, as this is a simple way to keep wannabe script hackers at bay.

69

5 Complementary Webmail Clients

Command >> 10

SquirrelMail Configuration : Read: config.php (1.4.0)

Language preferences

1. Default Language : en_US

2. Default Charset : iso-8859-1

3. Enable lossy encoding : false

R Return to Main Menu

C Turn color on

S Save data

Q Quit

Command >> S

Data saved in config.php

Press enter to continue...

Call up the URL for Squirrelmail; for example, ����-�� #���	���#��	�
�L������	���. You should now be able to log on to your email account.
Because Squirrelmail uses your login data to log on to the IMAP server,
Squirrelmail does not need to be connected to the user database.

For more information on enhancing Squirrelmail, go to the project web
page, which contains a number of (more or less useful) plugins, including
the ones we mentioned previously (Virtual Keyboard, Calendar, and Shared
Calendar). The Show SSL Link plugin is also worth mentioning, as it en-
courages users to log on via SSL—though this only works if the webmailer
is run on an HTTPS secure web page.

During operation, you should keep an eye on the
��� subdirectory. This
is where the program stores personal user settings, filter settings, address
books, and calendar entries. Do not forget this folder during backups or
migrations. When you switch to IMAP server software with a different name
space, the filter settings may no longer be suitable. Users will no longer be
able to log in if the filter rules are faulty (see section 6.3 on page 79).

5.2 Horde/IMP

The IMP webmailer is part of the Horde project.3 This is a powerful but
complex framework for web and groupware applications, but the configu-
ration is not intuitive. The project has existed for nearly ten years and has
yielded “standard” webmailers, specialized Ajax and cell phone webmail-
ers, and projects such as (group) calendars, task management tools, file
managers, and address books or bookmark tools. Horde has also made its

3 See ����������	�����	����.

70

5.2 Horde/IMP

way into the standard Linux distributions (the ���
� and �	� packages in
SuSE, and the ���
�� and �	�: packages in Debian).

In the following section, we will set up IMP so that it (like Squirrelmail) can
be used as a pure webmailer for an IMAP server. We will thereby leave out
the other impressive Horde functions, as well as Horde’s own user manage-
ment.

After installation, you should have a look at ����-���������������
�;
you will be logged in automatically. The menu item Administration/Configu-
ration contains the settings for Horde and IMP. Strangely enough, you have
to make your settings in both sections, even if you only wish to use the
webmailer.

You should first determine whether and how users need to be authenticated
in the Horde framework. If they use the entire Horde project suite, they will
access a MySQL database or LDAP directly at some stage. If they will only
use the webmailer, we recommend that you simply transfer the user data
to the IMAP server.

Figure 5.2:
Confusing: Horde
configuration

First, we require the Authentication tab in the Horde configuration. Go to
menu item What backend should we use for authenticating users to Horde?
and select the IMAP server menu item. Enter the hostname and port and
configure whether contact should be via an SSL/TLS encrypted connection.
This informs Horde that the webmailer may only be accessed after authen-
tication through an IMAP username and password.

Caution: Do not lock yourself out of your own web front end. Save your
own IMAP username under Which users should be treated as administrators
before saving your settings if you want to have administrator rights.

71

5 Complementary Webmail Clients

Go to the Mailer tab to configure how the framework should send emails:
Do you want them to be forwarded to �����������

	��� via a pipe or
transferred to a mail server via SMTP? In Figure 5.2, we chose SMTP. Click
Create Horde configuration to save the settings.

To choose a display option, specify email sizes, or determine other display
details, go to the IMP item in Administration/Configuration. Don’t forget to
save the settings by clicking Create webmail configuration.

Strangely enough, the most important setting is not available here: Which
IMAP mail server should the webmailer connect to? The IMAP server you
specified in the first step only served to verify the login to the Horde frame-
work and has nothing to do with email retrieval.

Now, you have to edit the configuration files: Go to the directory contain-
ing the Horde PHP files (���!� ���
�������
�) and then choose the
�	����
��3����!���#��� file. Now go to the IMAP server section and
complete the setup as described in the example below:

$servers[’imap’] = array(

’name’ => ’Web and Mail’,

’server’ => ’mail.example.com’,

’hordeauth’ => false,

’protocol’ => ’imap/notls’,

’port’ => 143,

’maildomain’ => ’example.com’,

’smtphost’ => ’smtp.example.com’,

’smtpport’ => 25,

’realm’ => ’’,

’preferred’ => ’true’,

);

Figure 5.3:
A pleasant

webmailer: IMP

72

5.3 Fast Access via the IMAP Cache Proxy

IMP is able to work with multiple IMAP servers in parallel. The user can
select the IMAP server during login. In single-server mode (the standard
mode), the ��������
 GM ���� setting ensures that the specified server is
always used. In multiserver mode, you can suggest a server for preselection
by the user.

If possible, we also recommend that you set the �������� to N�	������O
so that the connection to the IMAP server is tunneled via SSL/TLS. Now
you can log on to the webmailer under ����-���������������
���	�
(see Figure 5.3).

5.3 Fast Access via the IMAP Cache Proxy

Webmailers generally have a problem: They are unable to keep a connec-
tion to the IMAP server open. Every time a user accesses the webmailer,
clicks on an email, or selects a directory, the webmailer’s PHP code has to
reconnect to the IMAP server. This takes time and puts strain on the server.

The IMAP proxy project has developed a not very well-known program,
�
#�	�������
, which keeps a connection to an IMAP server open even
after the webmailer ends its current session. When the webmailer next
accesses the IMAP server, the server recognizes that it is part of the same
user-level session by the cached login data, and forwards the request to
the IMAP server via the preserved IMAP session. The webmailer still has
to identify itself to �
#�	�������
, but this uses far less resources than
logging on from scratch to the IMAP server.

You will find the source code on ����-�� #�	�������#��3�; there is
also a mailing list.4 The IMAP proxy software is stable and problem free
after installation, but it is not yet part of the distributions. There are only
a few Red Hat packages from third parties; one of us (Peer Heinlein) has
created a package for the current SuSE version, which you will find on the
website for this book.5 This package does the compiling (described below)
for you, and also contains an init script more suitable for SuSE than the
original script.

The instructions below refer to version 1.2.5 under OpenSuSE 10.2, but the
procedure should be similar for other versions or distributions. You require
the source code package,6 3��, the OpenSSL and NCurses libraries with
header files (from packages ���
���.
�!�� and
������.
�!��) and Wi-
etse Venema’s ���
 log utility for networks,7 as well as the appropriate de-
velopment package (such as ���
.
�!��).

4 See ������������	������	�

	��
�
���
�������������
�����-�,����.
5 See ����������	�
��,�
��	��
�.
6 See ����������	�
�����-�	��������������
�,�
�����-�,�	7	�	���	�8.
7 See ���������	����
����	�����
�����
���������-	��
�.

73

5 Complementary Webmail Clients

Use the commands ��
��3���, 	�"�, and 	�"� �
����� from the un-
packed source directory to compile and install the IMAP cache proxy. The
original code also contains an init script, which links the supplied <�"�����
underneath �������,#
. This is correct for Debian, but will result in an er-
ror message under SuSE.

Figure 5.4:
��
����� shows the

potential savings
that IMAP proxy can

make

The ������
��#
��	������� start script does run under OpenSuSE, but
is expected in ������
��#
����#
 and ��?#
:

linux:~/up-imapproxy-1.2.5 # cd /etc/init.d

linux:/etc/init.d # ln -s ../imapproxy rc3.d/S99imapproxy

linux:/etc/init.d # ln -s ../imapproxy rc5.d/S99imapproxy

The ��	����� tool is installed along with the �
#�	�������
. Like ���, it
provides an overview, constantly updated, of the number of connections,
the number of connections not made because of caching, and other infor-
mation (see Figure 5.4).

74

6 Ch
ap

te
r

Migrating IMAP servers

When you change to new IMAP server software or migrate from POP3 to
IMAP, you will rarely find a suitable conversion program or import function
that will transfer the existing data records perfectly. Unless both programs
use identical storage methods for emails (mbox or maildir format), you will
not be able to migrate from the old system to the new one by simply copy-
ing the files.

However, there is a simple solution: Use the IMAP (or POP3) protocol itself.
After all, the software provides a corresponding interface. IMAP can be used
to upload all emails of an account to the target IMAP server while retaining
all defined IMAP flags (read, deleted, answered) and any custom flags, as
long as the target server supports them.

You can use the $���+% command to determine whether this is the case.
If the server returns a =; when listing the flags, this means that any flag is
permitted. Cyrus supports a maximum of 128 flags per folder, while Courier
theoretically has no upper limit. This means that there could be problems

75

6 Migrating IMAP servers

when migrating from Courier to Cyrus if there are a very large number of
custom flags.

There are a number of tools that can carry out the migration. These include:

�	����
�1

We recommend this flexible and mature migration tool by Gilles Lami-
ral.

���,�	��2

This is �	����
�’s little brother. It synchronizes the data set of a
POP3 server with that of an IMAP server.

�	���	�3����3

This PHP script expects an empty target mailbox, so it is not suitable
for continuous data synchronization. When you try to update an al-
ready populated mailbox, it creates duplicates of existing messages.
However, it can serve as a basis for any in-house developments.

�	������4

This tool is still under development, but it may be worth looking at if
�	����
� or �	���	�3���� are not suitable.

�	��������5

This is a collection of Perl scripts, which perform tasks such as copy-
ing IMAP server files to mbox files or uploading emails from mbox
files to an IMAP server. There is also a tool for migrating from POP3
to IMAP.

6.1 Migration Using ��������

We have had very good experiences with �	����
�. It is stable and under
active development, and allows continuous synchronization of IMAP fold-
ers. Thus you can migrate a mailbox from the old system to the new system
incrementally without creating duplicates of existing emails in the target
system.

This is important because migrating a large system via IMAP takes quite a
long time. �	����
� permits you to begin the migration while the source
mail system is still operating. In this way the largest possible number of
emails from each account is copied to the target system at the beginning.

1 See ����������	���
-,������	������9��
�������.
2 See ����������	���
-,������	������9����7�
���.
3 See ������������
���	�������9������
��
���������.
4 See ���������
�	�����	�����
��	�������
��������
������	��
�.
5 See ����������	���������	��
��
��6�����.

76

6.1 Migration Using ��������

For thousands of accounts and many gigabytes of email content, the first
transfer cycle can take a number of days. However, as long as the old mail
system can continue to operate during this process, it does not really mat-
ter.

After the main bulk of data has been copied to the target system, the suc-
ceeding �	����
� cycles take far less time. The time required for syn-
chronization decreases with each cycle. During the final migration period,
however, you have to bar user access to the old system and schedule down-
time so that all remaining emails and data can be completely transferred to
the new system without any new mail arrivals or user updates happening
in the meantime. If you have carried out the preparations just described,
the downtime for this final synchronization cycle is very short and can take
place during a night of the weekend, for example. �	����
� now only
needs to copy all new emails, remove newly deleted emails from the target
system, and adapt any newly modified email flags.

The following example copies the ����/ and all other IMAP folders of the
user ���:

linux: # imapsync --host1 oldmail.example.com --user1 tux \

--password1 "secret" --host2 newmail.example.com --user2 t.tux \

--password2 "secret"

You can automate the processing of many hundreds or thousands of ac-
counts by creating a list of all usernames and passwords and a shell script
that feeds them to �	����
�. However, there are some security concerns
when you transfer passwords as call parameters, because they are then en-
tered in the shell’s command history. Moreover, unprivileged (!) users can
view the invocation of �	����
� with all entered passwords by displaying
the process list. �	����
� therefore explicitly provides the option of read-
ing the passwords from separate files. These files should be stored in a
secure directory and only be readable by ����:

linux: # cat /root/pw1

secretpassword1

linux: # cat /root/pw2

secretpassword2

linux: # imapsync --host1 oldmail.example.com --user1 tux \

--passfile1 /root/pw1 --host2 newmail.example.com --user2 t.tux \

--passfile2 /root/pw2

The following call parameters are also useful:

If you add the ..
�� flag, �	����
� runs the readonly synchronization
cycle and does not modify any data. This is perfect for a test run.

..
����� deletes the emails on the source host specified in ..����5
after the migration has been completed successfully.

77

6 Migrating IMAP servers

..
�����, deletes the emails on the target host specified in ..����, if
they (no longer) exist on the source host.

..���5 and ..���, activate the SSL encryption on the source and tar-
get computers, respectively. These two parameters demonstrate how the
script works: It acts as a link between the two servers and opens separate
connections to each of them.

..���� provides a list of the numerous available call parameters. It is
possible to specify complex criteria (size, age, folder name) for selecting
the emails that are to be migrated, and to adapt the names of the IMAP
folders.

When testing the migration, you should pay attention to the following stum-
bling blocks:

Were all IMAP folder names converted correctly? Do IMAP folders on
the old system contain special characters that the new system cannot
interpret properly? In some cases, the old and new systems disagree on
whether IMAP folders may be parallel to the ����/ (see section 6.3 on
page 79).

�	����
� also allows you to modify or transform folder names between
the old and new systems by using the parameter ..��3�����
�, to spec-
ify a regular expression corresponding to the desired replacement: for
example, ..��3�����
�, ������/�����/#��
.�
����.

Do users need to subscribe to folders on the target system (see section
2.2.4 on page 41)?

If your users used subscribed folders on the old system, you have to trans-
fer the subscription list to the new server. �	����
� accepts a suitable
call parameter in the ..��������� option.

If mail clients update all IMAP folders as a matter of course, you can
ignore this item. However, if a user’s client is configured to only synchro-
nize subscribed folders with the server, the user will see no emails if the
subscription list is empty.

For a number of email servers and clients, POP3 users will see all mi-
grated emails as new emails and therefore have to download them all
completely. The only solution here is to explain this to users in advance.

6.2 Converting mbox to maildir

Even though an mbox contains all emails in one single file, whereas maildir
creates a separate file for each email, individual emails are identically for-

78

6.3 Modifying Folder Names

matted in both cases. For this reason, it is fairly easy to convert mbox files
to the maildir format.

Juri Haberland currently maintains a tool named 	�,	
#��,6 which per-
forms the required steps more or less automatically and is suitable for con-
verting large data sets. If your target system uses the maildir format, mi-
gration on the file level using it will probably be a lot faster than if you use
the IMAP tools we just described.

The following example shows how to convert an individual user’s mbox file.
Use .� to enter the path for the source file and .
 to enter the path for the
target directory:

username@linux:$ mb2md.pl -s /var/mail/username \

-d /var/maildir/username/Maildir/

Converting /var/mail/username to maildir: /var/maildir/username/Maildir

Source Mbox is /var/mail/username

Target Maildir is /var/maildir/username/Maildir

666 messages.

You should execute this command under the user ID of the user rather than
as ����. Otherwise, 	�,	
#�� will create the target maildir with incorrect
permissions, and the user will (probably) no longer have the necessary read
and write permissions to the converted files. When executing a loop to
convert the files of many users, you can use an �� call to switch to the
corresponding user IDs; in this case, the command to invoke 	�,	
#�� is
specified via .�:

linux: # su username -c "mb2md.pl -s source_file -d target_directory"

6.3 Modifying Folder Names

You might need to modify the names of the IMAP folders during migration,
because the target system only permits folders beneath the ����/. In this
case folder names such as 4���

� are no longer permitted; instead, you
have to convert them into ����/#4���

�. Two types of complications can
occur at this stage.

First, what happens if a user has 4���

� and ����/#4���

� on the old
system? This scenario could easily occur. After all, mail clients cannot
agree among themselves on whether the %����, $�
�, and ������ fold-
ers should be created parallel to or beneath the ����/. If you are unlucky,
a user’s desktop email client creates the directories in parallel, while the

6 See ��������������	��������,���	�������9�����
�7
��.

79

6 Migrating IMAP servers

webmailer creates them underneath ����/; this scenario results in two di-
rectories being used for the same purpose. They can be copied together
during migration, but this has to be done manually.

Second, if you simply move the user’s folders without also modifying his
filter settings, some user settings can become invalid and have to be reset
after the migration. In this case, you have to inform your users in advance
and apologize for the inconvenience.

Squirrelmail, the popular webmailer, is particularly sensitive to this prob-
lem: Normally, Squirrelmail imports any modified folder structures from
the server after IMAP login. However, if filter settings refer to IMAP folders
that no longer exist (because the folder names have changed), Squirrelmail
freezes and the user can no longer log in. In this case, you should mod-
ify the user-specific profile files in the
��� folder under the Squirrelmail
folder. If users have defined their own rules, you will find entries of the
following form in their profiles:

filter0=From,tux@example.com,INBOX.Friends.tux

filter1=From,support@heinlein-support.de,INBOX.Work.heinlein-support

The 3��� command enables you to find these lines, so you can detect po-
tential problems at an early stage. If necessary, you can use a ��
 script to
modify the folder names appearing in a profile file appropriately:7

for FILE in * ; do

sed s/oldname/newname/ $FILE > $FILE.WORK

cp $FILE $FILE.ORIG

mv $FILE.WORK $FILE

done

If nothing works, you have to delete the filter settings from the profile files
and explain this to your users. The following script removes all filter set-
tings:

for FILE in * ; do

grep -v ^filter $FILE > $FILE.WORK

cp $FILE $FILE.ORIG

mv $FILE.WORK $FILE

done

In any case, check the results carefully before overwriting the original pro-
file files with new versions.

7 The following shell scripts are only examples and should be modified to suit the specific
situation.

80

6.4 Determining Cleartext Passwords

6.4 Determining Cleartext Passwords

Even though cleartext passwords usually increase security (see section 9.13
on page 147), many setups save only hashed user passwords in the user
data.

In principle there should be no problem with this, but in practice different
programs compute hash values differently. If you have to switch authenti-
cation sources during migration, this can lead to disaster. Even if the new
authentication database also does not save passwords in cleartext, it may
still require the cleartext passwords to calculate the new hashed passwords
that it will use. The existing password hashes cannot be used.

Even �	����
� and other IMAP migration tools assume that you have ac-
cess to the user data and can log on as if you were the normal user. If you
do not have this data, you can not use these extremely convenient data
migration tools. At this point, you will wish you had stored the cleartext
passwords. But there is a solution.

Check whether the existing product contains a debug mode that logs the
passwords. This means you can collect the cleartext passwords of active
users as you go along. Pay special attention to ensure that restrictive file
permissions are set for the mail log file.

On a Courier-based server, you can use the option �����������G, in the
configuration file ����
��	�
�� (previously ����
 and �	��
). If Courier
is in operation, you can use this method to determine the passwords and
then enter them into the authentication database.

Systems that do not use cleartext passwords often restrict users to the au-
thentication methods 2�&�� and �����. These methods are not secure, as it
is easy to listen in on the network traffic while the password is transferred
in cleartext from the client to the server. On the other hand, this safety
risk enables you to sniff out login data continuously without much effort.
You can then evaluate it and update the authentication database. Standard
sniffing tools carry out these tasks automatically and then present a clear
list of the sniffed-out user data.8

Alternatively, if you need the cleartext passwords, you can also create a web
front end that users have to log into in order to trigger the migration of their
mailbox to the new server. The called script has to create the user account
on the new server and can then start tools such as �	����
�. This method
is usually faster and more reliable than logging or sniffing out passwords.

This is also suitable for migration from MS Exchange servers to other pro-

8 In Germany, it is a criminal offense to use these tools, even if you are using them to
prevent user accounts from being hacked, and even if this is the only way you can
improve the safety of the system. We do not advise German administrators to use these
tools at home or abroad. Administrators of other nationalities may not use these tools
within Germany.

81

6 Migrating IMAP servers

grams and authentication services, as this software prohibits the logging of
passwords and the exporting of password data (in any form) from the active
directory. Even hashed password data remains hidden.9 We have used this
method successfully in a variety of projects.

Ultimately, this is just password phishing by another name. The only dif-
ference is that it is being done by the good guys for a legitimate system
administration purpose. Do inform your users in advance (by letter if pos-
sible). Explain that this is an exceptional request, and that login data will
never be requested without such prior notification.

9 The authors would appreciate any information on how to access this data.

82

Part II

Courier IMAP

7 Ch
ap

te
r

Structure and Basic Configuration

Courier IMAP is part of a larger project that provides a full-fledged mail
server containing a mail transport agent (Courier-MTA), a webmailer dubb-
ed SqWebMail, a mail delivery agent with a filter engine (Maildrop), a com-
pact command-line mail client (Cone), a generic authentication library
(Courier Authlib) to replace the Simple Authentication and Security Layer
(SASL) described in RFC 4422, and the aforementioned IMAP and POP3
server with proxy capability.

All of these components can be used independently, which means that
Courier IMAP often functions as an IMAP server with, for example, Post-
fix or Exim as MTA, or with Squirrelmail or Horde/IMP as webmailer. These
are more modern, well-developed, and efficient than the corresponding
Courier components; of the Courier modules, only Courier IMAP and Mail-
drop are commonly used.

Work on the Courier project began in 1998, and the software has long
since found its way into all standard distributions. Nobody can claim that

85

7 Structure and Basic Configuration

new, ambitious developments will appear soon. The Courier IMAP CVS on
Sourceforge1 shows some activity, and there are usually half a dozen new
emails on the corresponding mailing lists at any given time. However, we
probably cannot expect any major hype over a big release with numerous
new functions.

This is not really a problem, as the software is capable of all necessary
functions, is very robust, and performs very well overall. You can more or
less forget about the server once it has been installed properly; it works
in the background, requires almost no attention, and has not caused any
major security problems.

To simplify matters, we will refer to the IMAP server as Courier from now
on, even though this name actually refers to the entire software project.

7.1 Installing the Software

The installation process causes some binary programs and simple configu-
ration files to be placed on the system. No additional database systems or
configuration decisions are required, and the configuration itself is not ar-
duous. The only difficult part is integrating authentication mechanisms
into Courier so that you can use authentication data stored in MySQL,
LDAP, and the like.

You should first use shell accounts to get to know Courier and its basic fea-
tures. This reduces the possible sources of error and resulting annoyance.
After you understand how Courier works, you can then move on to includ-
ing LDAP and MySQL support and be better able to fill in the required
configuration fields.

In most cases you can simply install the Courier IMAP packages from the
Linux distributon. Debian and Ubuntu contain current #
�� packages, en-
abling ���.3�� �
����� �������.�	�� to do its work. If you require
a package with SSL support, you can additionally call ���.3�� �
�����
�������.�	��.���.

If you prefer to compile Courier IMAP yourself, you will find detailed in-
structions in section C.1 on page 321. When we went to press, there were
no RPM packages for Red Hat Enterprise or Fedora systems, so you will
have to do the compiling for these systems.

SuSE delivers Courier IMAP in two separate packages. ���� .� �������.
�	�� installs the IMAP server. Support for LDAP is contained in a separate
RPM package. Use ���� .� �������.�	��.�
�� if you need to integrate
LDAP.

SuSE packages only contain support for MySQL starting from OpenSuSE

1 See ����������	��
����,
��	�����3�	��
�.

86

7.2 What Is Where?

version 10.2. If you use an earlier version and require support for MySQL,
you will have to compile it yourself as described in section C.1 on page 321.

In OpenSuSE 10.0 (and only in this version), the SSL start scripts are bun-
gled in such a way that it is impossible to start Courier so that it offers IMAP
and POP3 via SSL/TLS on port 993 or 995. The SSL start scripts use call pa-
rameters from the non-SSL start scripts: Instead of $$��2�'%$, it contains
2�'%$. When Courier attempts to start �	��.��� on the already occupied
non-SSL port 143, this can only lead to chaos.2 Instead of trying to correct
the scripts, you can run an online update immediately after installation.
This update corrects these errors automatically.

7.2 What Is Where?

In nearly all distributions, the configuration files (see section 7.5 on page
95) are located in ������������. The Courier binaries can be found un-
der �������
� or ��������
�. These also contain the IMAP daemon
��������
��	��
, the POP3 module ��������
�����
, and the follow-
ing programs:

��������
��	����3�
 and ��������
�������3�

These two auxiliary login modules are called automatically by Courier.

��������
�����������
This program manages SSL/TLS connections. It is not really designed
for manual use.

�������
�
���!��L����
Every MTA can store emails in the maildir format. MTAs usually con-
tain a little program that functions as a mail delivery agent (MDA).
However, not all MDAs observe quotas.
���!��L���� does observe
quotas and is available for use by other MTAs; Postfix, for example,
can use it if a corresponding entry is made in the 	�����#�� (see
section 10.2.2 on page 173).

�������
�	���
�����
This permits maintenance of the IMAP folder Access Control Lists.
Clients usually import the required ACLs directly via the IMAP proto-
col. Administrators can use this tool to carry out this process manu-
ally.

�������
�	���
��"
This enables the administrator to edit custom IMAP flags (keywords,

2 Clearly the maintainer could not have tried starting the ��
����,�
�� package even
once; certainly there were no tests. . .

87

7 Structure and Basic Configuration

see section 8.2.1 on page 115) for individual emails. Clients usually
use the $%�'� IMAP command to do this (see section A.4 on page
312).

�������
�	���
��	�"�
This little script creates the maildir directories for users. It invokes
several 	"
�� commands to create the directories <���
��, ���,
� ,
and �	� and to assign the correct permissions to them (see section
10.1.2 on page 164).

��������
�	"�	��
���� and ��������
�	"����
����
These two bash scripts automatically generate SSL/TLS keys. They
are started automatically when Courier first launches, if SSL is used.
The configuration is situated in files �����������������
#�
� and
�	��
#�
�.

��������
������
�

���
�����
This script helps you to put in place the �

�� file for email folders
shared by multiple users without a restart (see section 10.1.1 on page
156).

��������
������
�

�������
This partitions a large �

�� file for shared folders into multiple small
subfiles according to a number of criteria.

����������������.�	�������������

This is a type of inet daemon for the Courier project. It monitors
the TCP/IP ports and activates the submodules responsible for the
corresponding protocol when new connections are made.

As usual, the Courier init scripts are located under ������
��#
�. This is
where the distributions provide an individual start script for every Courier
IMAP module:

linux: # ls -la /etc/init.d/courier-*
-rwxr-xr-x 1 root root 2307 Nov 18 2004 /etc/init.d/courier-authdaemon

-rwxr-xr-x 1 root root 2288 Nov 18 2004 /etc/init.d/courier-imap

-rwxr-xr-x 1 root root 2677 Nov 18 2004 /etc/init.d/courier-imap-ssl

-rwxr-xr-x 1 root root 2234 Nov 18 2004 /etc/init.d/courier-pop3

-rwxr-xr-x 1 root root 2657 Nov 18 2004 /etc/init.d/courier-pop3-ssl

In SuSE, the init scripts can be called directly as ���������.����
��	�
,
���������.�	��, and so on, without entering a path; this is a pleasant
luxury not available to users of Debian or Red Hat. These �� scripts are
symbolic links to the actual start-stop scripts:

linux: # ls -la /usr/sbin/rccourier*
lrwxrwxrwx 1 root root 30 Mar 30 18:41 /usr/sbin/rccourier-authdaemon ->

88

7.3 Initial Start-Up

/etc/init.d/courier-authdaemon

lrwxrwxrwx 1 root root 24 Mar 30 18:41 /usr/sbin/rccourier-imap -> /etc/

init.d/courier-imap

lrwxrwxrwx 1 root root 28 Mar 30 18:41 /usr/sbin/rccourier-imap-ssl -> /

etc/init.d/courier-imap-ssl

lrwxrwxrwx 1 root root 24 Mar 30 18:41 /usr/sbin/rccourier-pop3 -> /etc/

init.d/courier-pop3

lrwxrwxrwx 1 root root 28 Mar 30 18:41 /usr/sbin/rccourier-pop3-ssl -> /

etc/init.d/courier-pop3-ssl

Unfortunately, there is no shared script that starts and stops all services
at once. This is particularly helpful at the beginning, when you are still
experimenting with the configuration files.

The following script provides this convenient option. You can install it as
�������������
����������, for example, and make it executable through
��	�
 �0�:

linux: # cat /usr/sbin/rccourier

/etc/init.d/courier-authdaemon $1

/etc/init.d/courier-pop3 $1

/etc/init.d/courier-pop3-ssl $1

/etc/init.d/courier-imap $1

/etc/init.d/courier-imap-ssl $1

linux: # chmod u+x /usr/sbin/rccourier

It uses P5 to transfer the first call parameter to the start scripts. Thus,
the command ��������� ����� or ��������� ���� starts or stops all
services at once, and their status can be queried as follows:

linux: # rccourier status

Checking for Courier Authentication Daemon running

Checking for Courier-POP3 running

Checking for Courier-POP3 (ssl) running

Checking for Courier-IMAP running

Checking for Courier-IMAP (ssl) running

7.3 Initial Start-Up

Regardless of the distribution, Courier should start directly after installation
without requiring any further configuration and should then be available
on ports 110 (POP3) and 143 (IMAP):

linux: # lsof -i :110

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

couriertc 4539 root 5u IPv6 10832 TCP *:pop3 (LISTEN)

89

7 Structure and Basic Configuration

linux: # lsof -i :143

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

couriertc 4606 root 5u IPv6 10931 TCP *:imap (LISTEN)

linux: # telnet localhost 110

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^]’.

+OK Hello there.

QUIT

+OK Better luck next time.

Connection closed by foreign host.

linux: # telnet localhost 143

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^]’.

* OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJ

ECT THREAD=REFERENCES SORT QUOTA IDLE ACL ACL2=UNION] Courier-IMAP ready

. Copyright 1998-2004 Double Precision, Inc. See COPYING for distributi

on information.

a1 logout

* BYE Courier-IMAP server shutting down

a1 OK LOGOUT completed

Connection closed by foreign host.

If you cannot contact the server at this stage, you should check your instal-
lation carefully and see whether the components start properly. �!�����3�
	����3�� or �!�����3�	��� often contains valuable error messages.

7.4 Courier and MTAs

Unlike Cyrus, Courier IMAP does not provide an interface that mail trans-
port agents might use to transfer emails to it (via LMTP, SMTP, or a similar
protocol). It expects that the MTA will store emails in a suitable location
within the appropriate maildir directory while observing the file permis-
sions. Courier and the MTA interact through these common directories,
as illustrated in Figure 7.1. This means that the MTA and the IMAP server
must run on the same computer or use a shared filesystem, for example,
NFS.

On the other hand, there are no potentially problematic interfaces between
the SMTP mail server and Courier. We do not need to worry about the
socket or the transport protocol. If Courier and the mail relay are located
on different computers, they have to share a filesystem, for example, via
NFS. Alternatively, if the mail relay for some reason must use SMTP, it is
possible to operate an additional local MTA, such as Postfix, on the Courier
server, and have the mail relay forward the emails via SMTP to the local
MTA for storage.

90

7.4 Courier and MTAs

Each service can function even when the other is inoperational or faulty.
Postfix can continue to receive emails and sort them into the maildir di-
rectories even if Courier is not running. Conversely, users can access the
emails stored on the IMAP server even when the SMTP mail relay is not
running.

Figure 7.1:
MTA and Courier
both access the
stored emails.

/home/geeko/Maildir
/home/paul/Maildir
/home/tux/Maildir

via SMTP
Incoming mail traffic

Port 143Port 25 Port 110

Courier IMAP

Clients access emails
using POP3/IMAP

Postfix/QMail/Exim

Postfix, Exim, and sendmail usually store emails in the mbox format: All of
a user’s emails are in one single file. This file is often stored in �!���	���
or �!���������	���.

The mbox format is not particularly suitable for IMAP servers, as IMAP
folder structures, flags, and other types of information such as quotas can-
not be mapped into this monolithic file. The mbox format also has some
disadvantages due to the way it is implemented:

Deleting an individual email from a large 25MB mailbox requires exten-
sive file copying actions.

If software crashes during write access to the mbox file, this can leave
incomplete emails that corrupt the internal structure of the mailbox.

If a file write error occurs, it is difficult to determine afterward whether
or not an email was delivered successfully. This means that emails can
be lost without being detected.

Many processes have simultaneous write access to the mbox, so you have
to set up file locking to prevent competing writes from destroying the file.
The NFS network filesystem is well known for its file-locking problems,
which can lead to email corruption when it is used.

Courier therefore relies on its own maildir process, which stores a user’s
emails in individual files in a filesystem directory (the maildir). This makes

91

7 Structure and Basic Configuration

it easy to determine whether an email was delivered successfully. Individual
faulty email files no longer destroy the entire mailbox. Because of the use
of temporary directories, file locking is no longer necessary, which means
that NFS can be used. Chapter 8 illustrates how maildir actually works.

Standard MTAs usually support the maildir format. Postfix, Exim, and send-
mail can be converted to use it in a few short steps, and QMail uses maildir
as standard. This makes Courier easy to integrate into any system with little
effort.

7.4.1 Courier and Postfix

The ��	��	������variable tells Postfix where to store emails. This variable
is empty in standard installations:

linux: # postconf home_mailbox

home_mailbox =

In this case, the MTA stores all messages as an mbox file in the directory
specified in 	����������
��������:

linux: # postconf mail_spool_directory

mail_spool_directory = /var/spool/mail

linux: # ls -la /var/spool/mail/

total 36

drwxrwxrwt 2 root root 72 Dec 9 10:36 .

drwxr-xr-x 15 root root 392 Mar 3 10:31 ..

-rw------- 1 root root 34356 Dec 9 10:36 root

-rw------- 1 tux users 237932 Dec 10 12:27 tux

-rw------- 1 geeko users 92883 Dec 7 21:22 geeko

If you enter a path in ��	��	������, Postfix will create the path to the
location for storing a user’s emails by taking the home directory (P>�<�)
of the user and suffixing it with the specified path. If you set the fol-
lowing parameter in 	��
#��, Postfix will store all emails for ��� under
���	������<���
��� in the maildir format:

home_mailbox = Maildir/

It selects the maildir format only because the path in ��	��	������ ends
with �. The trailing slash tells Postfix that it is dealing with a directory, and
Postfix then understands that maildir is required. If you forget to enter the
� here, Postfix will instead store all emails in the ���	������<���
�� file,
which will be in the mbox format. Then it will not be able to collaborate
with Courier.

92

7.4 Courier and MTAs

If the maildir directory does not exist, Postfix will create it.3 The parent
directory (���	����� in this example) does have to exist.

As Postfix adopts the user’s permissions to store the emails, the parent di-
rectory must be writable for the MTA to be able to create the new maildir
structure.

Once you have set ��	��	������correctly and remembered to reload Post-
fix, you can attempt the first test:

linux: # echo "Hello" | mail tux@localhost

linux: # tail /var/log/mail

[...]

Apr 2 18:13:12 linux postfix/pickup[7915]: 7094F27FD9: uid=0 from=<root>

Apr 2 18:13:12 linux postfix/cleanup[7930]: 7094F27FD9: message-id=<442F

F7FA.mail5ZO117IBS@linux.site>

Apr 2 18:13:12 linux postfix/qmgr[7916]: 7094F27FD9: from=<root@peer.pos

t.fix>, size=394, nrcpt=1 (queue active)

Apr 2 18:13:12 linux postfix/local[7932]: 7094F27FD9: to=<tux@localhost.

post.fix>, orig_to=<tux@localhost>, relay=local, delay=30, status=sent (

delivered to maildir)

Apr 2 18:13:12 linux postfix/qmgr[7916]: 7094F27FD9: removed

linux: # ls -la /home/tux/Maildir

total 1

drwx------ 5 tux users 120 Apr 2 18:13 .

drwxr-xr-x 9 tux users 616 Apr 2 18:13 ..

drwx------ 2 tux users 48 Apr 2 18:13 cur

drwx------ 2 tux users 104 Apr 2 18:13 new

drwx------ 2 tux users 48 Apr 2 18:13 tmp

linux: # ls -la /home/tux/Maildir/new

total 4

drwx------ 2 tux users 104 Apr 2 18:13 .

drwx------ 5 tux users 120 Apr 2 18:13 ..

-rw------- 1 tux users 482 Apr 2 18:13 1143994392.V305I27fdeM695281.li

nux

linux: # cat /home/tux/Maildir/new/1143994392.V305I27fdeM695281.linux

Return-Path: <root@peer.example.com>

X-Original-To: tux@localhost

Delivered-To: tux@localhost.example.com

Received: by peer.example.com (Postfix, from userid 0)

id 7094F27FD9; Sun, 2 Apr 2006 18:12:42 +0200 (CEST)

Date: Sun, 02 Apr 2006 18:12:42 +0200

To: tux@localhost.post.fix

Message-ID: <442FF7FA.mail5ZO117IBS@example.com>

User-Agent: nail 11.4 8/29/04

MIME-Version: 1.0

Content-Type: text/plain; charset=us-ascii

3 This is pretty nice of Postfix—Courier simply crashes in this case, which is not partic-
ularly helpful. This problem is well known, but the Courier programmers believe that
Courier need not concern itself with the existence of the maildir and is therefore enti-
tled to terminate the connection in such cases. We therefore cannot expect a solution,
even though, as much as we like Courier, this state of affairs is unacceptable.

93

7 Structure and Basic Configuration

Content-Transfer-Encoding: 7bit

From: root@peer.example.com (root)

Hello

Because this newly delivered email has not yet been accessed via POP3 or
IMAP, it is stored in the
� subdirectory.

If every POP3/IMAP user in your scenario has a shell account as a matter of
course, Postfix and Courier will work together after this small adjustment
has been made. If you wish to use virtual users, that is, email accounts that
do not correspond to existing Linux system users, you should define home
directories for them in the Postfix configuration somewhere outside of the
���	� directory tree, for example, under �!���������	���.

7.4.2 Courier and QMail

As QMail is already set up for the maildir format, only a few simple steps are
required to use it with Courier. You have to set up the correct storage path.
If necessary, create the
������
���!���file in the �!���L	������
����
directory. It contains the path to the storage location for the emails. As
in Postfix, a path ending in � indicates a directory and therefore that the
maildir format will be used.

Courier expects the maildir in the home directory of every user by default,
but QMail stores it under �!���������	���. Enter the following configu-
ration in
������
���!��� for QMail:

./Maildir/

Now you have to restart QMail:

linux:/var/qmail/control # qmailctl restart

Restarting qmail:

* Stopping qmail-smtpd.

* Sending qmail-send SIGTERM and restarting.

* Restarting qmail-smtpd.

Proceed for the first test email as you would for Postfix (see section 7.4.1 on
page 93).

7.4.3 Courier and Exim

Like Postfix, Exim requires only a few steps to switch from using the mbox
to the maildir format. You will find the required configuration files in
��������	.

94

7.5 Optimizing the Configuration

Open ���	#��
�, search for the ������
���!��� section, and insert the
lines displayed in bold. These lines ensure that a maildir is created in the
home directory of every user:

local_delivery:

driver = appendfile

group = mail

mode = 0660

mode_fail_narrower = false

envelope_to_add = true

return_path_add = true

directory=${home}/Maildir

maildir_format = true

prefix = ""

If you have a more complex setup with virtual users and would like to store
all maildirs centrally, you should specify a fixed path instead of P(��	�).
Don’t forget to send a test email after changing the configuration (see sec-
tion 7.4.1 on page 93).

7.5 Optimizing the Configuration

Now that you are on your feet, you should have a look at the configura-
tion files in ������������. Courier has a very modular structure, and each
component uses different files. The configuration files include the settings
for POP3 and POP3 via SSL/TLS (in ����
 and ����
.���) and for IMAP
(�	��
) and IMAP via SSL/TLS (�	��
.���); often, one also finds the cen-
tral configuration file of the authorization daemon (����
��	�
��) and,
depending on the setup, the configuration files for the authorization mod-
ules (�����
���� in this example). The authorization configuration may
also be located in ������������.

linux: # ls -la /etc/courier

-rw------- 1 root root 2688 Jul 20 06:02 authdaemonrc

-rw------- 1 root root 2697 Nov 18 2004 authdaemonrc.dist

-rw------- 1 root root 7318 Jul 15 06:49 authldaprc

-rw------- 1 root root 12625 Mar 30 18:38 imapd

-rw------- 1 root root 6093 Mar 30 18:38 imapd-ssl

-rw------- 1 root root 6093 Nov 18 2004 imapd-ssl.dist

-rw------- 1 root root 343 Nov 18 2004 imapd.cnf

-rw------- 1 root root 12625 Nov 18 2004 imapd.dist

-rw------- 1 root root 3809 Mar 30 18:38 pop3d

-rw------- 1 root root 5704 Mar 30 18:38 pop3d-ssl

-rw------- 1 root root 5704 Nov 18 2004 pop3d-ssl.dist

-rw------- 1 root root 343 Nov 18 2004 pop3d.cnf

-rw------- 1 root root 3809 Nov 18 2004 pop3d.dist

95

7 Structure and Basic Configuration

-r--r--r-- 1 root root 516 Nov 18 2004 quotawarnmsg.example

drwxr-xr-x 2 root root 4096 Jul 12 11:30 shared

Files ����
#�
� and �	��
#�
� are only required once, by 	"����
����
or 	"�	��
���� (see section 7.2 on page 88). If Courier has been config-
ured for SSL/TLS support (see section 7.6 on page 102) but does not find
any prepared SSL/TLS certificates, it uses 	"����
����, 	"�	��
����, and
���
��� to create them. It uses the information on the hostname, certifi-
cate owner, and server location from ����
#�
� and �	��
#�
� to do this
(see section 7.6 on page 104).

You can also ignore the #
��� file. It documents the status of the file dur-
ing delivery by the distributor. As long as you do not modify the “real”
configuration files, they remain identical to the #
��� files.

L���� ��
	�3#���	��� contains ASCII text, which the administrator can
use (by renaming the file as L���� ��
	�3) to specify a warning message
triggered when a quota is exceeded. The �����
 directory is required for
the configuration files for shared folders (see section 10.1 on page 153).

7.5.1 Real and “False” Configuration Parameters

The Courier configuration files contain many parameters that come in pairs,
for example, 2�2�&�%> and 2�2�&�%>��'��. If you are using all of the
Courier components including the SMTP server, rather than only Courier
IMAP, you can configure the individual programs via a web interface. It
reads out the aforementioned �'�� variables to determine the options it
can make available to the administrator. If you use only Courier IMAP as
discussed in this book, the web interface is not available and the �'�� vari-
ables become superfluous.

They have nothing to do with actual operation. Courier IMAP ignores them
and reads out the parameters without the ��'�� suffix. The �'�� variables
can only provide information on the options available. Always make sure to
change only the “real” variables, otherwise your changes won’t take effect.

By the way, if the variable values contain more than one word and therefore
contain spaces, you should enclose them in quotation marks.

7.5.2 POP3 Configuration in �����������������

The parameters listed in the file �����������������
 influence the way
that the POP3 server operates. This section introduces them in their default
configuration:

2��4���G�!�����
�����
#��

96

7.5 Optimizing the Configuration

This specifies the file where the ID of the POP3 server process is
stored. There is no reason to modify it.

<&/�&�<��$G:9
This specifies the maximum number of POP3 daemons that may be
started simultaneously.

<&/2�'�2G:
This restricts the number of permitted parallel connections per IP ad-
dress.4 This prevents denial-of-service attacks by an individual host.
Bear in mind that a user may have more than one inbox on your
server, and therefore may legitimately create multiple simultaneous
connections.

For example, office routers using masquerading/NAT mean that indi-
vidual IPs (on the router) can create several dozen connections very
quickly, which limits the usefulness of this parameter. Do use it in
such a situation, but specify a value that is generous while still a lot
lower than <&/�&�<��$. This way, you can prevent one IP address
from using up all the connections, and you can reduce the threat of
denial-of-service attacks.

2�2�&�%>GQQ
You can use this parameter to specify the password-transfer meth-
ods you wish the POP3 server to support. 2�2�&�%>��'�� lists the
following options:

POP3AUTH_ORIG="LOGIN CRAM-MD5 CRAM-SHA1"

����� (and 2�&��, which is not listed here), are cleartext methods,
whereas +'&<.<�? and +'&<.$>&5 use secure password synchro-
nization. The background to this is described in more detail in sec-
tion 9.13 on page 147.

2�2�&�%>�%�$GQQ
Here you can specify methods that the POP3 server should offer ad-
ditionally for SSL/TLS connections, usually authentication methods
without inherent cryptographic protection. 2�2�&�%>�%�$��'��per-
mits the values ����� and 2�&��. Further settings for SSL/TLS are
described in section 7.6 on page 102.

2�2��2'�/DG9
If you wish Courier to run in proxy mode for POP3, you have to set
2�2��2'�/DG5 (see section 10.3 on page 175).

2'�/D�>�$%�&<�
In proxy mode, you can enter the server’s own (!) hostname here, so

4 Did you read this as Max R.I.P.? A well-known pun among Courier administrators. . .

97

7 Structure and Basic Configuration

that the proxy can determine whether to forward the connection (see
section 10.3 on page 175). This setting is not required if the server is
set up properly, as Courier will then use the real system name.

2�'%G559
This specifies the port(s) that the POP3 daemon should listen to. You
can specify multiple ports if you separate them with commas. If the
server has more than one IP number, and you wish some ports to
be available only on certain IP numbers, you can not define them
according to the usual 	
-
��
 format, but have to specify them as
	
#
��
 instead; for example, 56,#5HI#9#,9#559 for port 110 at IP
56,#5HI#9#,9.

&��'�$$G9
This specifies the IP address on which the ports will be opened. If
you set the value to 9 as shown in this example, the POP daemon will
listen on all available IP numbers. You can only specify either one
address, or, using 9, all the available addresses.

%+2��2%$GQ.
�

����"�� .
��
�
����"��Q
This contains command-line parameters for calling ����������
,
which manages the TCP/IP connection and reloads the ����
 mod-
ule.

.
�

����"�� prevents the reverse lookup for the IP number of the
client. This means that the hostname can not be listed in the log file,
but it also saves time and network traffic.

.
��
�
����"�� prevents the server from using the �
�
� protocol
for queries, which is barely relevant today. Earlier, it was used to ask
the client which user created the TCP connection. Who would answer
this question nowadays?

�����'�2%$GQ.
�	�G����
Q
The options specified in this parameter are transferred to the �������
��33�� program. This is a separate tool that Courier calls to write log
entries. The option given in this example specifies the name of the
module, so the log file can show what the entry refers to.

��4��<&��GQ8���	���#��	Q
The value of ��4��<&�� is automatically attached to every username
if the username does not contain the first character (usually 8). In
other words, if a user logs in with the username instead of a complete
email address, Courier will add P��4��<&�� to the username before
authenticating it.

2�2��$%&'%GD�$
This parameter is processed by the start script. If you set it to ��, no
POP3 server will be started.

98

7.5 Optimizing the Configuration

<&����'2&%>G<���
��
This is the location of the directory containing the maildir structure
relative to the user’s home directory (in this case, the emails of the
user ��� can be found in ���	������<���
��). This parameter is
equivalent to the Postfix parameter ��	��	������ (see section 7.4.1
on page 92) or the entry in the
������
���!��� file in QMail (see
section 7.4.2 on page 94). Courier does not require a forward slash at
the end, so this must be a (maildir) directory.

Authentication issues are dealt with not in the POP3 configuration file, but
in the configuration file of the ����
��	�

 (see section 9.2 on page 122).
In versions below 4.1.x, the configuration file of ����
 still contains two
parameters relevant to authentication:

&�%><�����$GQ����
��	�
Q
This is the authentication method you wish the POP3 daemon to use
for logins. For an overview of possible values, see page 120. In the
configuration shown in this book, the server transfers all authentica-
tion data to the authentication daemon of the Courier project (see
section 9.2 on page 122).

The new Courier IMAP versions always refer to ����
��	�

, so it is
no longer necessary to specify &�%><�����$ in the ����
 file.

�����������G9
This specifies the information that Courier will log. If you specify
value 9, only the IP address of the client is logged, whereas the sys-
tem also logs the username if you specify the value as 5. If you specify
�����������G,, passwords are logged in cleartext (this can be a life-
saver when preparing for migration, see section 6.4 on page 81). No
other values are possible here.

In new versions of Courier IMAP, you specify these parameters in the
configuration of the ����
��	�

 (see section 9.2 on page 122).

7.5.3 Configuring the IMAP Daemon in �������������

�	��

The names and meaning of many parameters for �	��
 are analogous to
ones used by ����
 (e.g., �<&2�$%&'%corresponds to 2�2��$%&'%; see sec-
tion 7.5.2 on page 98). Some parameters, such as 2�'% or <&/2�'�2, have
exactly the same name. The Courier �	��
 has the following additional
options:

>�&��'4'�<G/.�<&2.$�

��
If you send emails using IMAP, Courier IMAP adds the email header

99

7 Structure and Basic Configuration

listed here to the message (the default value specifies an /.�<&2.$�
.

��- line), and then enters the sender’s login name. Yes, that’s right:
You can use IMAP to send emails. For more information, see section
10.5 on page 178.

�<&2�+&2&����%DGQ�<&2:��!5 ���2��$ +>���'�� �&<�$2&+�
%>'�&�G�'��'��$��R�+% %>'�&�G'�4�'��+�$ $�'%
7��%& ����Q
This specifies the IMAP capabilities (see section 2.2.3 on page 33)
that the IMAP server will offer the client during login. This parame-
ter shows what Courier IMAP is capable of. Usually, you do not need
to change anything. There is one exception: If you want to offer en-
crypted login methods such as +'&<.<�? or +'&<.$>&5, you have to
add values &�%>G+'&<.<�? or &�%>G+'&<.$>&5 at this stage. Other-
wise, the IMAP server will not be able to inform clients that they can
use this method.

�<&2�+&2&����%D�%�$GQP�<&2�+&2&����%D &�%>G2�&��Q
�	��
 provides these capabilities for SSL/TLS connections. In this
example, the server will provide the capabilities defined in �<&2�+&2&
����%D, and the additional (usually insecure) 2�&�� method for SSL/
TLS encryption.

As in shell scripts of Bourne-compatible shells, in Courier configura-
tion files the dollar character prefixed to a variable name expands the
value of the variables already defined in the same file.

�<&2�+>�+1�&���4����'$G9
The IMAP server can actively inform the clients about new emails.
New emails are usually expected in the ����/, which means that
Courier does not need to monitor the other IMAP folders. If filter
programs are used to sort emails into subfolders, you should activate
the �<&2�+>�+1�&���4����'$ parameter (i. e., set it to 5), even if
this increases the server load slightly.

�<&2���$&���%>'�&�$�'%G9
IMAP clients can use the IMAP commands %>'�&� and $�'% from
the IMAP extensions with the same name (see section 2.2.3 on page
34) to request the server to sort emails in a folder. This reduces the
load on the client, but requires a lot of unnecessary extra work on
busy servers. If you set the value to 5 for �<&2���$&���%>'�&�$�'%,
Courier will block this type of request by the client.

�<&2���>&�+������G9
If you want Courier to support the ���� command, you have to set
this value to 5. Courier can then inform clients actively and in real
time when new emails are received, as long as the clients support this
function (see section 10.4 on page 176).

100

7.5 Optimizing the Configuration

�<&2������%�<���%GH9
This specifies how often (in seconds) the server checks for changes to
the directories in ���� mode.

�<&2�1�DE�'�$G5
This activates support for permanent custom IMAP flags (see section
8.2.1 on page 115).

�<&2�<�*���/2�����%��%'&$>G9
If you set this parameter to 5, Courier will move deleted emails to the
trash folder instead of actually deleting them. This means that the
deletion can be undone.

�<&2�%'&$>4����'�&<�G%����
This defines the IMAP name of the trash folder if you have specified
�<&2�<�*���/2�����%��%'&$>G5. Courier does not permit folders
parallel to the ����/, so the ����/ subfolder ����/#%���� is created
in this example.

�<&2��<2%D%'&$>G%����-S
This ensures that Courier deletes all emails in the %���� folder that
have been there for more than seven days. You can specify a differ-
ent time period for each folder; use commas to separate entries for
several folders:

IMAP_EMPTYTRASH=Trash:7,Sent:30

Courier only checks this option when a user logs in. If a user does
not log in for an extended period of time, emails can take up space
on the hard disk for longer than specified.

�<&2���$���%��+����%G9
Some email clients used to confuse the IMAP flags =���
������� (no
folders permitted under this folder) and =>����+���
��
 (subfold-
ers are permitted, but there are none at present). If you have prob-
lems with subfolders, you can test whether changing this parameter
can solve those problems. It is not recommended that you set this
value to 5 without good reason.5

�<&2�$>&'������/4���G������������������
��

��
If you want to permit your users to share their IMAP directories with
other users (see section 10.1 on page 153), Courier requires a list of
the file paths and their shared names. Use �<&2�$>&'������/4���
to specify the location of this index file. The default file for Courier is
������������������
��

��.

5 The authors are not aware of any client that still has the problem mentioned here. If
you know of an example, any reports or information would be greatly appreciated.

101

7 Structure and Basic Configuration

�<&2�&+�G5
This activates the &+� IMAP extension. Clients can also configure
access permissions to IMAP folders for third parties. Set �<&2�&+� if
you use shared folders (see section 10.1 on page 153).

�<&$1G9,,
This replaces the �	��" for the server process with the specified
value. This �	��" is used to create files; it can make sense to specify
more restrictive values for filesystem-based shared folders (see sec-
tion 10.1.2 on page 163) than are usually specified for the entire sys-
tem in ������������.6

�<&2����<�%�GH??�H
If Courier is bombarded with work requests, whether coincidentally
or on purpose, there is a danger that the server process will need
too much RAM and crash; intentionally flooding a system with this
goal in mind is often called a denial-of-service attack. To prevent
this, Courier uses ���	�� .
 to limit the size of the data segments
for processes, and it uses ���	�� .! to limit the size of the virtual
memory; both values are limited to the value specified here. This is
purely a precaution. The default value is 65,536KB (about 64MB), and
should be more than sufficient.

�<&2��$���+1$G5
This specifies whether IMAP uses file locking. The maildir directory
structure makes this option unnecessary: After all, the maildir format
was practically designed to be used via NFS and without file-locking
mechanisms (more details on page 108).

On the other hand, it does no harm to use it, apart from slightly in-
creasing the I/O load of the server. File locking can help prevent some
noncritical problems when multiple clients access the same IMAP
folder, or even the same email, in parallel. You should therefore set
�<&2��$���+1$ to 5 if you allow shared folders.

$���<&��G��������
���

	���
The Courier IMAP daemon requires the path to the sendmail binary
(which can be provided by Postfix or Exim) to send emails.

7.6 The Configuration Files for SSL

Providing encrypted communication paths for users is not complicated and
is very much worthwhile. To do so, Courier IMAP starts two additional

6 The values in

��� do not correspond to the file permissions used for ��
��! This
means that it would be wrong, and even dangerous, to specify #:)";+<==.

102

7.6 The Configuration Files for SSL

instances on ports 993 (IMAP via SSL) and 995 (POP3 via SSL). At the same
time, it supports the $%&'%%�$ command on standard ports 110 (POP3)
and 143 (IMAP). The client can now choose between upgrading a cleartext
connection (using $%&'%%�$) and creating an encrypted connection on one
of the specially reserved ports.

The configuration files �����������������.���and ��������������	��
.��� control the SSL/TLS encryption. Both contain additional parameters;
you do not need to repeat the standard POP3 and IMAP settings here. The
default file supplied in your distribution or source code package will usually
run without requiring configuration.

$$�2�'%G66? and $$�2�'%G66�
This is the additional port for POP3 and IMAP via SSL. It should
be set to the default value 66? in the file ����.��� (as specified in
��������!����), and to 66� in �	��.���.

$$�&��'�$$G9
If you specify 9, SSL/TLS is activated on all of the server’s existing
IP numbers; alternatively, you can specify one IP address from those
available.

$$�2��4���G�!�����
�����
.���#��

The path to the PID file: This is where the program’s process ID is
stored after it has been started. In the �	��.��� file, for example,
you can specify the filename �!�����
��	��
.���#��
.

$$������'�2%$GQ.
�	�G����
.���Q
Using this parameter you can specify additional options that are trans-
ferred to ���������33��. In this example, we specify the component
name ����
.��� so that the relevant log lines will be uniquely identi-
fiable. In the file �	��
.��� you would specify the name �	��
.���.

2�2��$$�$%&'%GD�$ and �<&2�$$�$%&'%GD�$
These specify whether the program provides SSL/TLS connections on
the port reserved for POP3 and IMAP via SSL and defined in $$�2�'%.

2�2��$%&'%%�$GD�$ and �<&2�$%&'%%�$GD�$
These specify whether the program provides SSL/TLS connections
via $%�$ and $%&'%%�$ on the standard port reserved for POP3 and
IMAP.

2�2��%�$�'�7��'��G9 and �<&2��%�$�'�7��'��G9
If you want to prevent all unencrypted connections, specify 2�2��%�$
�'�7��'��G5. Clients can then only authenticate themselves on port
110 or 143 once they have switched to encrypted mode using $%�$ or
$%&'%%�$.

103

7 Structure and Basic Configuration

+��'��'%�$G��������
�����������
This is the path to the (supplied) program ����������. It assists
POP3 and IMAP modules in controlling the SSL/TLS encryption.

%�$�2'�%�+��G$$��
This is the SSL/TLS version to be used on the SSL-via-POP3 or SSL-
via-IMAP ports. The available values are $$�,, $$��, and %�$5. Ports
993 and 995 are usually used by older clients, so it seems to pose
fewer compatibility problems to configure $$�� instead of %�$5.

%�$�$%&'%%�$�2'�%�+��G%�$5
This is the SSL/TLS version to be used for the $%�$ or $%&'%%�$ pro-
cess on ports 110 and 143. Clients that know and use these methods
usually understand %�$5.

%�$�+�'%4���G������������������.���������
#��	
This is the path to the SSL/TLS certificate. You can use the same
certificate for POP3 and IMAP (i. e., specify the same file in both),
�	��.���, and ����.���.

%�$�*�'�4D2��'G����
It is possible to permit SSL/TLS connections only from authorized
clients with certificates the server knows to be reliable. ���� switches
off these checks entirely, whereas 2��' checks any certificates trans-
mitted by the client. '�7��'�2��' requires a verifiable certificate
from the client and prevents the connection if such a certificate is
not received.

%�$�+&+>�4���G�!�����
����������������
This is the path to a cache file that speeds up SSL/TLS accesses. This
file requires no maintenance by the administrator.

%�$�+&+>�$�T�G?,:,II
This is the size in bytes of the SSL cache to be created.

If Courier finds no SSL certificate when it starts ����
.��� or �	��
.���,
it will use 	"����
����or 	"�	������ to create its own. It uses the entries
in files ����
#�
� and �	��
#�
� for this purpose.

These entries are not relevant to the encryption process, but users can (and
should) view the certificate, so it makes sense to use plausible and trust-
worthy entries for name, city, and country in order to reduce support work.
The hostname in the certificate should be the same as the hostname used
by the clients, in order to prevent warning messages by the client software
as far as possible (see section 13.1.3 on page 209). You should pay attention
to the entries marked in italics:

104

7.6 The Configuration Files for SSL

linux: # cat /etc/courier/pop3d.cnf

RANDFILE = /usr/share/courier-imap/pop3d.rand

[req]

default_bits = 1024

encrypt_key = yes

distinguished_name = req_dn

x509_extensions = cert_type

prompt = no

[req_dn]

C=DE

ST=Berlin

L=Berlin

O=My Company

OU=ICT services

CN=mail.example.com

emailAddress=postmaster@example.com

[cert_type]

nsCertType = server

105

8 Ch
ap

te
r

Maildir as Email Storage Format

Courier always uses the maildir format to store emails. The server creates
a separate maildir hierarchy for each user, consisting of several directories
and pure ASCII files. There are no binary files, and everything is easy to
read and edit.

Users who have shell access to the email server (i. e., a Unix account in
���������
 and a home directory) can have their emails delivered to a
maildir directory under their own home directory (e. g., ���	������<���

��). Messages are stored with the user’s permissions.

Local email programs such as ��
� or KMail can then read the emails
directly from the maildir without involving IMAP. Users who access their
emails from a remote host usually do so via TCP/IP.

Ideally, the only system users on mass email servers should be the mail
administrators. On these servers, you would store the database of email
users in MySQL, LDAP, or a similar repository. The email users do not have

107

8 Maildir as Email Storage Format

home directories on the server. Instead, you create a separate directory
structure (e.g., �	���
�� or �!���������	���
��) with a personal maildir
directory (e.g., �	���
������ or �	���
���3��"�) for each user.

In such settings it is justifiable to use only one user ID which owns all
maildir directories. User administration thus becomes easier, as you do
not have to take separately managed system login IDs into account, and
trouble with data access permissions is avoided.

There are also no real security risks, because there are no shell accounts
for ordinary users: As long as mail users cannot work on the server, they
do not require protection from one another. The only system users are the
user ���� and Courier IMAP, both of which are able to access all directo-
ries in any case. The only danger is that an attacker can access the email
directories of other users by hacking into Courier IMAP after login, due to
the lack of different user IDs. This type of attack does not seem to have
occurred so far.

The 	���
�� directory of a mail user’s mailbox contains at least three sub-
folders:

linux: # ls -la /home/tux/Maildir

drwx------ 7 h users 4096 Jul 27 12:07 .

drwxr-xr-x 8 h users 4096 Jul 27 12:04 ..

drwx------ 2 h users 4096 Jul 27 12:04 cur

drwx------ 2 h users 4096 Jul 27 12:04 new

drwx------ 2 h users 4096 Jul 27 12:04 tmp

The ��� directory contains those messages that have been saved and read
at least once.
� contains all messages that were received since the last
login, so the server can flag them as ='���
�. After login, Courier moves
these emails into the ��� directory.

Messages are moved to the �	� directory during saving. Once they have
been saved successfully, Courier moves them to
� or to a different loca-
tion. This prevents the server from delivering an incomplete email to the
client if the client downloads the emails in the destination folder in the
middle of the save process.

File locking is therefore never used in the maildir format. This makes the
use of an NFS-mounted filesystem for mail storage far simpler.

Unlike for POP3, if IMAP users sort their emails into subfolders, these sub-
folders are saved on the server. The user’s maildir contains these subfolders
as additional subdirectories.

The names of these directories consist of a dot (#) and the actual folder
name. Thus, if the user has folders ����/, 4���

�, and +�	��
�, the
maildir listing would be as follows:

linux: # ls -la /home/tux/Maildir

108

8 Maildir as Email Storage Format

drwx------ 7 h users 4096 Jul 27 12:07 .

drwxr-xr-x 8 h users 4096 Jul 27 12:04 ..

drwx------ 5 h users 4096 Jul 27 12:07 .Company

drwx------ 5 h users 4096 Jul 27 12:06 .Friends

drwx------ 2 h users 4096 Jul 27 12:04 cur

drwx------ 2 h users 4096 Jul 27 12:04 new

drwx------ 2 h users 4096 Jul 27 12:04 tmp

Each IMAP subfolder is an independent directory in the maildir format and
therefore contains its own copies of the folders ���,
� , and �	�, in which
emails for that subfolder are stored:

linux:~ # ls -la /home/tux/Maildir/.Friends

drwx------ 5 h users 4096 Jul 27 12:06:00 PM .

drwx------ 7 h users 4096 Jul 27 12:07 ..

-rw-r--r-- 1 h users 17 Jul 27 12:06 courierimapacl

drwx------ 2 h users 4096 Jul 27 12:06:00 PM cur

-rw------- 1 h users 0 Jul 27 12:06 maildirfolder

drwx------ 2 h users 4096 Jul 27 12:06:00 PM new

drwx------ 2 h users 4096 Jul 27 12:06:00 PM tmp

The file 	���
�����
�� is always empty and its presence signifies a sub-
folder. ��������	����� contains the access permissions for the folder if
the user specified any (e.g., in order to share the directory with other users).
This subject will be discussed in section 10.1.1 on page 154.

If the 4���

� folder contains further subfolders, Courier will create these
subfolders directly under the main maildir directory rather than in the di-
rectory #4���

� (that is, as <���
���#4���

�#>���
��, rather than as
<���
���#4���

��#>���
��).

Thus, the folder structure is mapped into directory names, with the dot
separating levels in the folder hierarchy:

linux:~ # ls -la /home/tux/Maildir

drwx------ 9 h users 4096 Jul 27 12:09:00 PM .

drwxr-xr-x 8 h users 4096 Jul 27 12:04 ..

drwx------ 5 h users 4096 Jul 27 12:07 .Company

drwx------ 5 h users 4096 Jul 27 12:06 .Friends

drwx------ 5 h users 4096 Jul 27 12:09 .Friends.Orchestra

drwx------ 5 h users 4096 Jul 27 12:09 .Friends.Holiday

drwx------ 2 h users 4096 Jul 27 12:04 cur

drwx------ 2 h users 4096 Jul 27 12:04 new

drwx------ 2 h users 4096 Jul 27 12:04 tmp

In this manner, an IMAP folder can contain messages as well as additional
subfolders.

If an IMAP client is subscribed to individual IMAP folders (see section 2.2.4
on page 41), there is a file named ��������	�����������
 that contains
the subscription list of the account stored line by line:

109

8 Maildir as Email Storage Format

linux: # ls -la /home/tux/Maildir

drwx------ 9 h users 4096 Jul 27 12:09:00 PM .

drwxr-xr-x 8 h users 4096 Jul 27 12:04 ..

drwx------ 5 h users 4096 Jul 27 12:07 .Company

drwx------ 5 h users 4096 Jul 27 12:06 .Friends

drwx------ 5 h users 4096 Jul 27 12:09 .Friends.Orchestra

drwx------ 5 h users 4096 Jul 27 12:09 .Friends.Holiday

drwx------ 2 h users 4096 Jul 27 12:04 cur

drwx------ 2 h users 4096 Jul 27 12:04 new

drwx------ 2 h users 4096 Jul 27 12:04 tmp

-rw-r--r-- 1 h users 842 Jul 27 12:45 courierimapsubscribed

linux: # cat /home/tux/Maildir/courierimapsubscribed

INBOX

INBOX.Company

INBOX.Friends.Orchestra

8.1 The IMAP Namespace

There has been a lot of discussion between the IMAP projects on whether
directories may be parallel to the INBOX or have to be under it. In other
words: Can we have directories ����/, 4���

�, and +�	��
�? Or do they
have to be ����/, ����/#4���

�, and ����/#+�	��
�? IMAP implemen-
tations differ according to the developers’ preferences. Some IMAP servers
permit directories parallel to the ����/ and others do not.

The Courier programmers have decided that private folders may only be
located under the ����/. The only exception is that folders shared by mul-
tiple users are not located under the ����/, but under U�����
 or �����
.

The Courier team has turned down repeated requests for changes and more
tolerance. Therefore, no changes to the system configuration can make
Courier use folders parallel to the ����/. The program code just does not
support this option, and the Courier developers would have to change the
entire folder management system to make this option possible. This means
that there is no simple patch to get around this limitation.

As a consequence, there can be problems when migrating from one IMAP
system to another. There is more information on this subject in Chapter 6.

Apart from this, there are almost no restrictions when naming IMAP fold-
ers. In principle, special characters are permissible in folder names, as are
spaces, and there is no reason not to use them. However, in practice, spe-
cial characters do occasionally cause problems. The switch from ISO-8859
to UTF-8 caused a variety of problems, because afterward, different pro-
grams could expect different character sets. This led to complications with
filenames containing special characters.

110

8.2 Filenames of Emails

8.2 Filenames of Emails

Unlike Cyrus, for example, Courier does not maintain a database contain-
ing information on stored emails apart from the maildir. This makes the
server robust and reliable: It is not possible for a database index to be cor-
rupted or for databases to be inconsistent or faulty. Other programs can
access the maildir structure without any complicated programming.

On the other hand, emails can contain meta-information that is not saved
in the actual email text, such as the IMAP flags =$��
 or =4��33�
. It
is not particularly efficient to gather such information from the individual
mail files every time it is needed.

Courier therefore uses a few tricks to speed up the process. Many types of
information are coded in the filename itself of an individual email. This
means that a single directory listing can provide a lot of information about
the folder contents very quickly, so that it is not necessary to examine each
file individually (which would be time intensive and therefore expensive).

This is best demonstrated using a test email. If your IMAP server is con-
nected to an MTA, you can use email clients such as KMail, Outlook, or
Evolution to send the test email. However, the simplest and clearest way to
send it is to use the 	��� command directly on the server:

linux: # echo Hello World | mail tux@localhost

To see whether the email was delivered to user ���, go to the
� folder in
the maildir of user ���:

linux: # ls -la /home/tux/Maildir/new

total 12

drwx------ 2 h users 4096 Jul 27 12:40:00 PM .

drwx------ 10 h users 4096 Jul 27 12:27:00 PM ..

-rw------- 1 h users 483 Jul 27 12:40 1122460858.V301Ic964.linux

The filename of the “Hello World” email consists of a randomly chosen,
unique ID (containing, among others things, the date, time, and inode
number of the message) as well as the hostname of the server storing the
email (in this case, ��
��), so that accidental name conflicts can be avoided
on network drives.

Now log on to the IMAP server to access this email:

linux: # telnet localhost 143

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^]’.

* OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUB

JECT THREAD=REFERENCES SORT QUOTA IDLE ACL ACL2=UNION] Courier-IMAP rea

111

8 Maildir as Email Storage Format

dy. Copyright 1998-2004 Double Precision, Inc. See COPYING for distrib

ution information.

a1 login tux password

a1 OK LOGIN Ok.

Use the following IMAP command to access the ����/ IMAP folder belong-
ing to user ���:

a2 SELECT INBOX

* FLAGS (\Draft \Answered \Flagged \Deleted \Seen \Recent)

* OK [PERMANENTFLAGS (* \Draft \Answered \Flagged \Deleted \Seen)] Limit

ed

* 1 EXISTS

* 1 RECENT

* OK [UIDVALIDITY 1122461011] Ok

* OK [MYRIGHTS "acdilrsw"] ACL

a2 OK [READ-WRITE] Ok

5 '�+��% signifies that a new message has been added to this folder since
the last login.

You can view this email as follows:

a3 FETCH 1 RFC822

* 1 FETCH (RFC822 {498}

Return-Path: <root@linux.local>

X-Original-To: h@localhost

Delivered-To: h@localhost.linux.local

Received: by linux.local (Postfix, from userid 0)

id 91F23C46D8; Wed, 27 Jul 2005 12:40:58 +0200 (CEST)

Date: Wed, 27 Jul 2005 12:40:58 +0200

To: h@localhost.linux.local

Message-ID: <42E764BA.mail3U911TA51@linux>

User-Agent: nail 11.4 8/29/04

MIME-Version: 1.0

Content-Type: text/plain; charset=us-ascii

Content-Transfer-Encoding: 7bit

From: root@linux.local (root)

Hello World

)

* 1 FETCH (FLAGS (\Seen \Recent))

a3 OK FETCH completed.

The
� folder in the filesystem is now empty, as the email was moved to
the ��� folder as soon as it was accessed for the first time:

linux: # ls -la /home/tux/Maildir/new

total 8

drwx------ 2 h users 4096 Jul 27 12:43:00 PM .

112

8.2 Filenames of Emails

drwx------ 11 h users 4096 Jul 27 12:43:00 PM ..

linux: # ls -la /home/tux/Maildir/cur

total 12

drwx------ 2 h users 4096 Jul 27 12:46:00 PM .

drwx------ 11 h users 4096 Jul 27 12:43:00 PM ..

-rw------- 1 h users 483 Jul 27 12:40 1122460858.V301Ic964.linux:2,S

Table 8.1:
Maildir abbreviations
for the IMAP system
flags

Abbreviation IMAP flag Meaning

' =&
� ���
 Email was answered

4 =4��33�
 Important

$ =$��
 Email has been viewed

2 not implemented
in the IMAP protocol

Email was forwarded1

� =����� Email is flagged as a draft

% =������
 Email is flagged for deletion
(the abbreviation is short for
trashed)

The filename has changed and now contains the flags -,K$ at the end. $
stands for the IMAP flag =$��
, which Courier set automatically when read
access to the email occurred. You can set additional IMAP flags during an
IMAP session:

a4 STORE 1 +FLAGS (\Flagged \Answered)

* 1 FETCH (FLAGS (\Flagged \Answered \Seen \Recent))

a4 OK STORE completed.

=&
� ���
 usually appears when an email has been answered, whereas
email clients use =4��33�
 to flag important emails. Courier represents
these flags in the filename too, so =&
� ���
 becomes ' for Reply, and
=4��33�
 becomes 4:

linux: # ls -la /home/tux/Maildir/cur

total 12

drwx------ 2 h users 4096 Jul 27 12:54:00 PM .

drwx------ 11 h users 4096 Jul 27 12:43:00 PM ..

-rw------- 1 h users 483 Jul 27 12:40 1122460858.V301Ic964.linux:2,FRS

The flags must appear in the filename in alphabetical order: ,K4'$ is cor-
rect, but ,K$4' is not permitted. Table 8.1 shows which IMAP flag is repre-
sented by each maildir contraction.

1 If you operate a mailbox with several clients in parallel, this information cannot be syn-
chronized between the clients unless they access the maildir directly via the filesystem
and not via IMAP.

113

8 Maildir as Email Storage Format

The exact filename is not prescribed; standards documents usually use the
verb should when describing the naming conventions.2 However, the file-
name often corresponds to the following pattern:

time.microsecondsPpidVdevIinode.host,S=bytes:2,flags

The exact filename, up to the optional specification of file size ($G��
��)
or the mandatory colon followed by the flag specification, is not important.
The only crucial thing is to avoid identical filenames being created for dif-
ferent messages. For this reason, a number of elements associated with
the message are combined, which always results in a unique name, even in
cluster operation. These elements include the time, hostname, process ID,
hard disk, and inode number involved in the processing of the message. In
more detail:

The time is measured in seconds elapsed since January 1, 1970 (this is
55,,:H9I?I seconds for the file 55,,:H9I?I#*�95��6H:#��
��-,K4'$
mentioned above).

The placeholder �	���������� can be replaced with the specification of
microseconds. Postfix does not use this.

One element is the process ID (
	�) of the process doing the saving.
Including this information also helps to prevent filename conflicts. As
shown in the example file, Postfix omits this specification, along with the
preceding 4.

The placeholder ��� can be replaced with the device number of the de-
vice on which the email file is stored (�95 in our example).

� is followed by the hexadecimal number of the inode containing the
beginning of the email file (�6H: in this case). The file can be moved
to another location (and to other inodes) in the filesystem (for example,
by being copied) without harm, since the inode in the filename is only a
trick to ensure that the filename is unique.

Another element is the name of the host saving the email file (��
�� in
this example).

Many programs do not specify the file size in the $G��
�� element (the S
stands for size). Courier adds this information and recalculates the quota
load if necessary.

Although Courier logs the current quota load in a file named 	���
����
J�, it is easier and quicker for the server to calculate the volume of stor-
age used by the mails in a particular folder if the length of each email

2 See ���������	��	���������
������	��
� and ����������	�
���	����
���

����
������	��
�.

114

8.2 Filenames of Emails

(in bytes) is stored in its filename. Determining the space occupied by
even large directories with thousands of emails will thus not cause any
performance problems. For details on quotas, see section 10.2.1 on page
167.

A colon is used in the filename to specify whether the subsequent flags
have been defined in an RFC (-,K�����) or are experimental flags (-5K
�����).

Postfix names stored files slightly differently than Courier does, but this
does not cause any problems.

Because emails in the �	� directory have not yet been saved to a destina-
tion folder, their associated device, inode, and size are not determined; for
this reason, the form of their filenames often differs from those of emails
saved in regular folders.

If you create a new email file in ���,
� , or an IMAP subfolder with con-
tents conforming to RFC 2822, the file will appear as an email in the user’s
inbox. When such an email file is deleted, it disappears from the inbox. You
can use an ASCII text editor to edit the contents of the file as long as they
continue to conform to RFC.

It is only quotas (if used) that may become inexact if the contents of maildir
directories are manipulated by hand. This is not a particular problem,
as Courier occasionally checks the directories and then recalculates the
	���
����J� files.

8.2.1 Keywords: Custom IMAP Flags

In addition to the five official IMAP flags listed in Table 8.1 on page 113,
IMAP clients can use additional custom flags.3 These are also called key-
words; they differ from the system flags in that they do not have a preced-
ing backslash in their name: =$��
 is an official IMAP flag, while >���� is
a custom flag. Apart from this small detail, custom flags and system flags
are treated in the same way.

Like normal IMAP flags, keywords can be temporary (which means they are
lost every time a new folder is selected) or saved permanently on the server
(so that they are retained after logout).

You have to set the option �<&2�1�DE�'�$ to 5 in �	��
 (see section 7.5.3
on page 101). Only then will Courier save permanent flags. If you set
�<&2�1�DE�'�$G9, keywords are still permitted, but they will always be
temporary and not be saved in the filesystem.

3 Unfortunately, not many clients support these, and they have mostly been neglected so
far.

115

8 Maildir as Email Storage Format

Once you have activated support for permanent keywords, you can set ar-
bitrary flags via IMAP without further ado:

linux: # telnet mail.example.com 143

Trying 127.0.0.1...

Connected to mail.example.com.

Escape character is ’^]’.

* OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJ

ECT THREAD=REFERENCES SORT QUOTA IDLE AUTH=CRAM-MD5 AUTH=CRAM-SHA1 ACL

ACL2=UNION XCOURIEROUTBOX=INBOX.Outbox-Test] Courier-IMAP ready. Copy ri

ght 1998-2005 Double Precision, Inc. See COPYING for distribution infor

mation.

a1 LOGIN tux supersecret

a1 OK LOGIN Ok.

a2 SELECT INBOX.Test

* FLAGS (\Draft \Answered \Flagged \Deleted \Seen \Recent)

* OK [PERMANENTFLAGS (* \Draft \Answered \Flagged \Deleted \Seen)] Limi

ted

* 3 EXISTS

* 0 RECENT

* OK [UIDVALIDITY 1175900586] Ok

* OK [MYRIGHTS "acdilrsw"] ACL

a2 OK [READ-WRITE] Ok

a3 STORE 3 +FLAGS Hello

* FLAGS (Hello \Draft \Answered \Flagged \Deleted \Seen \Recent)

* OK [PERMANENTFLAGS (Hello * \Draft \Answered \Flagged \Deleted \Seen)]

Limited

* 3 FETCH (FLAGS (\Seen Hello))

a3 OK STORE completed.

a4 STORE 2:3 +FLAGS Testtest

* FLAGS (Hello Testtest \Draft \Answered \Flagged \Deleted \Seen \Recent)

* OK [PERMANENTFLAGS (Hello Testtest * \Draft \Answered \Flagged \Delete

d \Seen)] Limited

* 3 FETCH (FLAGS (\Seen Testtest Hello))

a4 OK STORE completed.

a5 FETCH 1:3 FLAGS

* 1 FETCH (FLAGS (\Seen))

* 2 FETCH (FLAGS (\Seen Testtest))

* 3 FETCH (FLAGS (\Seen Testtest Hello))

a5 OK FETCH completed.

a6 LOGOUT

* BYE Courier-IMAP server shutting down

a6 OK LOGOUT completed

Connection closed by foreign host.

Now you should find the directory ��������	��"�� ��
� in the maildir
of this user (or, for this example, in the folder #%���). Courier creates this
directory to store flags:

linux:/home/tux/Maildir # cd .Test

linux:/home/tux/Maildir/.Test # ls -la

116

8.2 Filenames of Emails

total 100

drwx------ 6 10000 10000 4096 2007-08-31 00:02 .

drwxr-xr-x 43 10000 root 4096 2007-08-31 08:02 ..

-rw-r--r-- 1 10000 10000 43 2007-04-07 01:02 courierimapacl

drwx------ 2 10000 10000 4096 2007-09-02 13:23 courierimapkeywords

-rw-r--r-- 1 10000 10000 228 2007-08-31 00:02 courierimapuiddb

drwx------ 2 10000 10000 69632 2007-08-31 00:01 cur

-rw------- 1 10000 10000 0 2007-04-07 01:02 maildirfolder

drwx------ 2 10000 10000 4096 2007-04-07 01:02 new

drwx------ 2 10000 10000 4096 2007-09-02 13:45 tmp

It contains the file -����, which shows which flags exist and which mails
are flagged with these flags. In order to save the flags, Courier simply
records the filename and then lists the number of the corresponding flag(s)
after it: The first-mentioned flag is assigned number 9, and so on.

In the following example, only flag number 5 (%�������) has been set for
the email that was email number , from the listing above. The other email
contains flags 9 and 5 (thus, >���� and %�������). This message is obvi-
ously email number �:

linux:/home/tux/Maildir/.Test # cd courierimakeywords

linux:/home/tux/Maildir/.Test/courierimapkeywords # ls -la

total 12

drwx------ 2 10000 10000 4096 02.09.07 1:23:00 PM .

drwx------ 6 10000 10000 4096 2007-08-31 00:02 ..

-rw-r--r-- 1 10000 10000 171 2007-09-02 13:10 :list

linux:/home/tux/Maildir/.Test/courierimapkeywords # cat :list

Hello

Testtest

1175945397.M261049P12647V0000000000000010I00B204AE_1.kjidder,S=1658:1

1175945397.M402948P12647V0000000000000010I00B204B0_2.kjidder,S=1670:1 0

If you manually edit this file, do not change the sequence of flags, as the
flags are addressed according to their position in the sequence.

This directory may occasionally also contain temporary work files, whose
names begin with a dot. These come and go. Courier only creates them
temporarily when an email is accessed.

117

9 Ch
ap

te
r

User Data

Authentication in Courier is a modular affair, so there are many different
solutions. Courier supports the use of files, databases, and directory ser-
vices as repositories for storing information about email users. In order to
function correctly, Courier requires the username, the password (in clear-
text or as a ����� hash),1 the Unix user ID and group ID for access to the
filesystem, and the path to the maildir directory for the mail user. In addi-
tion, Courier can also manage options for a user account that can be used
to tell Courier to change quotas, deactivate IMAP, or set up shared groups.
For more information, see section 9.12 on page 144.

If the user has a shell account and the emails are stored in the user’s ���	�
directory, all these specifications (apart from the user options) are located
in ���������
or ��������
� . It is therefore not surprising that Courier
requires no further configuration for mail users with local Unix system ac-
counts.

1 If you use &�):,: � or &�):,"()�, Courier requires a cleartext password. If you use
2�>1/ or ?2)1/, Courier can use a crypt hash.

119

9 User Data

On the other hand, shell accounts for ordinary mail users in large systems
cause security problems. These are solvable, but beyond a certain number
of users the system becomes impossible to administer sensibly. There are
also far too many ���� permissions involved in the normal functioning of
the system.

As long as the user information mentioned above can be stored in one of
the supported databases or in an LDAP directory, Courier allows an unlim-
ited number of virtual users to be maintained.

All Courier programs access the ������� authentication library, which is
specific to the Courier project and supplies the following modules:

�����

This module reads the mail account data with the passwords from
���������
. Now that PAM is so common, �����
 is considered
obsolete. The module is only created if Courier is ��
��3���d ex-
plicitly with the .. ���.�����
 option.

�������
�
This module is similar to �����
, apart from verifying passwords
via ��������
� . This module is also only compiled if it is explicitly
specified using the .. ���.�������
� option.

��������
�
This module supports a mini-database that is made up of cleartext
files and is an alternative to ���������
 and ��������
� (see
section 9.4 on 124).

�������	
This module uses the same mini-database as ��������
�, but sup-
ports CRAM authentication. �������	 is now obsolete, as ��������

� has taken over the CRAM function.

������	
This module transfers authentication requests to PAM (see section
9.3 on page 123).

����!��"�
This module transfers authentication requests to QMail’s !��"� li-
brary.

����	��L�
This module uses MySQL. It is better to use this module via the ����

��	�

 for access to the database, instead of using this module di-
rectly.

�����3�L�
This module supports PostgreSQL. Again, it is more suitable to use
this module via the ����
��	�

 than to use it directly.

120

9.1 �	
�
��
 and
���������� for Debugging Assistance

�����
��
Using LDAP is also supported, but it is recommended that you access
LDAP directories using the ����
��	�

 for authentication.

����
��	�

This is not really an authentication module, but rather an authenti-
cation proxy called ����
��	�

, which runs in the background and
supports all the modules described here.

���������	
This module is a (functioning) template for an authentication mod-
ule; you can complete this module with your own code and imple-
ment a custom-built authentication procedure.

��������
This is a module that transfers authentication requests to another
program via a pipe. This module can also be used to integrate custom
authentication programs.

However, current versions of Courier do not support all the modules men-
tioned here (see section 9.11 on page 143).

9.1 �	
�
��
 and
���������� for Debugging
Assistance

Getting authentication up and running is not a simple matter. The ����
���� tool supplied with Courier IMAP is helpful here; it plays the role of a
client and queries the ����
��	�

 and the modules that are described in
what follows. There are three ways of calling it:

If you specify the username as the only argument, �������� will call
up the account data for this user from the corresponding database and
display it in a clear manner. This enables you to check whether all data
was found and read out correctly. This tool is only available to ����.

linux: # authtest tux

Authentication succeeded.

Authenticated: tux (uid 10000, gid 10000)

Home Directory: /mail/example.com/tux/

Maildir: Maildir/

Quota: (none)

Encrypted Password: (none)

Cleartext Password: supersecret

Options: sharedgroup=example.com

121

9 User Data

If you also specify a password, �������� will check this password, and it
will only provide the user data if the password is correct. �������� will
announce an error message if an incorrect password is provided:

linux: # authtest tux secret

Authentication FAILED: Operation not permitted

If you specify an additional password as the third parameter, ��������
will attempt to change the password changed using the ������� library:

linux: # authtest username oldpassword newpassword

[...]

This will only work if the old password was specified correctly.

You should also take a look at the ����������� parameter, which is use-
ful for everyday operation (see section 7.5.2 on page 99). Courier ver-
sions from 4.1.x onward define this value in ����
��	�
��, which will
be described a little later, whereas earlier versions expect this value in
�����������������
 and ��������������	��
.

9.2 The �	
��������

This is the authentication method that used to be specified in the ����

and �	��
 configuration files, specifically in the &�%><�����$ variable (see
section 7.5.2 on page 99).

It was possible to specify all of the mentioned modules in this variable,
although it has long been advisable to oblige all Courier components to use
the ����
��	�

, which could then carry out the actual authentication.
New Courier versions are designed to use the ����
��	�

 as the central
authentication instance.

It runs in the background as a proxy and supports requests destined for
all authentication modules from the �������. It caches the authentication
requests, which does not happen when these modules are used directly.

This function is essential when authenticating via MySQL, PostgreSQL, or
LDAP. The POP3 and IMAP modules are terminated when the POP/IMAP
connection is closed, so without the ����
��	�

 they would have to con-
nect anew to the SQL or LDAP server at every login. This takes time and is a
waste of resources. If 40 IMAP or POP3 sessions run in parallel, this results
in 40 module instances running in parallel, which in turn means 40 parallel
connections to the database or directory containing the user data.

����
��	�

, on the other hand, is permanently active and can keep its
connections to the database or directory server open. It also requires few

122

9.3 Authentication via PAM

connections for parallel requests, as it bundles all the authentication re-
quests of the authentication modules. All in all, it provides important ben-
efits without any drawbacks, and you should not miss out on taking advan-
tage of it.

As already mentioned, older versions of Courier refer explicitly to the ����

��	�

 in the ����
 and �	��
 configuration files. Newer versions lack
this entry, as the ����
��	�

 should always be used. The &�%><�����$
variable is set automatically and is therefore not included in any configura-
tion files.

Enter the modules to be used in the configuration file of the ����
��	�

,
under �����������������
��	�
�� (sometimes under �������������
����
��	�
��):

##NAME: authmodulelist:0

#

Specifies the authentication modules that will be called.

#

Remove a module from the list to deactivate it.

authmodulelist="authuserdb authldap authpam"

Courier calls the modules in sequence until a module is found that can
verify the login request. The login request is refused if the last module does
not return a positive reply.

9.3 Authentication via PAM

If you wish to use the Pluggable Authentication Modules2 in your distribu-
tion for authentication (and your distribution contains Courier as a com-
plete package), you will usually find a functioning PAM configuration. Most
PAM implementations are located in �������	#
 and contain separate
configuration files for different services. Courier PAM requires both �����
��	#
����� and �������	#
��	��. These should usually be identical.
OpenSuSE 10.2 has prepared these files as follows:

linux:/etc/pam.d/ # cat pop3

#%PAM-1.0

auth include common-auth

account include common-account

password include common-password

session include common-session

The included ��		�
; files contain the PAM configurations required by
PAM for authentication (����), for checking use permissions (�����
�),

2 See ����������	������	�����
�����
-��������
�2��
-,?):,��
�.

123

9 User Data

for changing the password (���� ��
), and for adapting the system envi-
ronment (������
):

linux:/etc/pam.d/ # cat common-auth

auth required pam_env.so

auth required pam_unix2.so

linux:/etc/pam.d/ # cat common-account

account required pam_unix2.so

linux:/etc/pam.d/ # cat common-password

password requisite pam_pwcheck.so nullok cracklib

password required pam_unix2.so nullok use_authtok

linux:/etc/pam.d/ # cat common-session

session required pam_limits.so

session required pam_unix2.so

session optional pam_umask.so

The default setting is that Courier verifies only the password login and then
uses the PAM system to fetch details such as the home directory and the
user ID. It is not possible to change passwords via the IMAP protocol, so
it is unnecessary to include ��		�
.���� ��
 if Courier IMAP is operated
on its own; on the other hand, including it does not cause any problems.3

If you have configured your system to verify local shell accounts in sources
other than ����
/���
� , this should work automatically in Courier or
be easy to transfer to the Courier system.

However, there is one tricky aspect: PAM can check the password for Cou-
rier, but it cannot return the required user and group IDs or the home di-
rectory. Courier must fetch this information from the (readable) file �����
����
. Nevertheless, it is better to run Courier authentication via ����.
��	 instead of ��������
 or �������
� , as the PAM variant is easier
to secure, and Courier does not have to access ��������
� with ����
permissions. If you use ������	, you do not need to use �����
 and/or
�������
� .

9.4 The �	
�	����� Module

The ��������
� module permits you to create virtual mail accounts out-
side of ����
/���
� without using MySQL or LDAP. Unfortunately, some
distributions, such as SuSE, do not contain this module; if this is the case
for your installation, you will need to compile your own Courier.

��������
� expects the account information in text file �������������
����
� (sometimes the file is in ������������������� or wherever the

3 It is possible to implement web frontends that use the �
�����
��� to change email
passwords and support such requests. One can also imagine that the �
������ tool we
introduced previously could transfer such requests to the �
�����
���.

124

9.4 The �	
�	����� Module

������� directory is located on the current system). Alternatively, you can
create a directory �����������������
�� that contains several text files
with the login information. Courier combines these into one single tem-
porary file during operation, but the single files are easier to maintain (for
more information, see section 9.4.4 on page 129).

The information saved in ����
� does not need to be entered into �����
����
. This makes it simple to create email accounts for “virtual users”
who do not require a shell account with a Unix login.

The 	�"�����
� program also converts these ����
� files into a GDBM or
a DB database, which, for large numbers of mail accounts, enables faster
access to account data than reading it from ���������
. The database
format is prescribed when Courier is compiled; most distributions use the
GDBM format.

The Courier project provides some useful programs for managing the ����

� databases.

9.4.1 Converting �����
 into a ����
�

The � ,����
�program writes the data from an existing ���������
 into
a ����
� database. It can only be used if �����������������
� is empty
and has restrictive file permissions:

linux:/etc/authlib # ���	
 �����

linux:/etc/authlib # 	
��� ��� �����

linux:/etc/authlib # ��������
 � �����

The ����
� file then contains the accounts from ���������
, but in a
different format:

geeko uid=1000|gid=100|home=/home/geeko|shell=/bin/bash|systempw=$2a$05$

m0WZvfaUKbuvK9BKTPyBKeAblNYKb8PHSPuQ60KEJA4ycK9j/EB4y|gecos=Geeko

1000= geeko

tux uid=1001|gid=100|home=/home/tux|shell=/bin/bash|systempw=$2a$10$

8ZWLc9MOH.vB913PJVR9tuluHdzXc9BBcQ2ZJcAqrDJrUsB9jDvZm

1001= tux

Every user ID in the first column is followed by a list of the parameters
required by Courier (Unix user ID, Unix group ID, home directory, login
shell, and system password as a ����� or MD5 hash), separated from one
another by a pipe character (V). The following optional specifications are
also possible:

125

9 User Data

3����
This is the real name of the user.4

����� , �	��� , ��	���
Apart from the hashed system password stored in �����	� and copi-
ed automatically by � ,����
� from ��������
� , you can assign
separate passwords for POP3, IMAP, and (E)SMTP. If no additional
passwords are specified, Courier accesses the �����	� field.

By defining separate passwords, you can switch individual services
on and off for individual users: If you specify an invalid, arbitrar-
ily chosen �	��� for an account, the user can log in via POP3 and
the �����	� , but will be unable to log in via �<&2. However, it is
cleaner and more elegant to use user options such as
�������	��
and
���������� (see section 9.12 on page 144).

�	��.	
?.����� , �	��.���5.����� , �	��.���,?H.����
There are optional �	�� variants for the fields ����� , �	��� , and
��	��� ; these variants store the passwords for challenge-response
processes (see section 9.4.4 on page 129).

	���
This specifies the path to the maildir (not the user’s email address).

L����
This is where you can specify the quota settings for the account; see
section 10.2.1 on page 167. This field is only processed if you are
using the complete Courier-MTA suite. It is irrelevant if you are using
only the Courier IMAP server.

�����
�
You can also save user options in the ����
�; this provides a decisive
advantage over using traditional shell accounts that are specified in
the ���������
. For more information, see section 9.12 on page
144.

Courier can deduce email account names from Unix user IDs. To imple-
ment this name-from-UID resolution, the ����
� that arises from a ����

converted via � ,����
� always contains a separate line after the informa-
tion for each each account (in this example 5999G 3��"�):

geeko uid=1000|gid=100|home=/home/geeko|shell=/bin/bash|systempw=$2a$05$

m0WZvfaUKbuvK9BKTPyBKeAblNYKb8PHSPuQ60KEJA4ycK9j/EB4y|gecos=Geeko

1000= geeko

4 The term gecos is derived from a Unix system from the ’70s and is short for General
Electric Comprehensive Operating Supervisor. This ������ field contains information
for identifying the account. The information stored there depends on the Unix version.
Current Linux systems no longer require it, so the field is usually used to save the real
name.

126

9.4 The �	
�	����� Module

However, this information is currently not evaluated anywhere in the pro-
gram code, so you do not need to provide it.

You can also create accounts in the ����
� that contain an at sign (8) in the
username; this is not possible if you only use ���������
. If you simply
use the email address as the account name, you have to refer to the maildir
path of the actual account in the 	��� field.

The user can then also log in with his or her email address. The user will
be unaware of the shell account the access is readdressed to:

tux@example.com uid=1001|gid=100|home=/home/tux|shell=/bin/bash|syste

mpw=$2a$10$8ZWLc9MOH.vB913PJVR9tuluHdzXc9BBcQ2ZJcAqrDJrUsB9$DvZm|mail=/h

ome/tux/Maildir

1001= tux@example.com

9.4.2 Maintaining Account Data with ����
�

You can use any ASCII text editor to maintain the ����
� file. If, however,
there are a large number of accounts, or in shell scripts, it is advisable to
use the Perl script ����
�. It saves effort in searching the file and checks
that the syntax in the file is correct, which prevents possible errors.

The ��� command

userdb account_name set field1=value1 field2=value2 ...

sets the specified fields for ������
���� to the specified values. The �
���
command

userdb accountname unset feld1 feld2 ...

deletes the specified fields. The
�� command

userdb accountname del

deletes the entire account, though only from the ����
� and not from
���������
 and ��������
� . The .��� option takes an argument

userdb -show accountname

and displays the ����
� entry for ������
���� . If you omit the ������
�
���� argument, ����
� will return the data for all user accounts. The
script also recognizes option .� �
�
��
���	�� , which permits a file other
than �����������������
� to be read out and modified.

Thus, if you want to set the maildir directory for account ���8���	���#��	
to ���	��!	�������.���	��� and the user ID and group ID to ?995, the
����
� instruction to carry this out runs as follows:

127

9 User Data

linux: # userdb "tux@example.com" set home=/home/vmail/tux-example \

uid=5001 gid=5001

If no value is specified for a field, ����
� will request one. This means that
a password can be changed without including it in the call parameters of
the invocation of ����
� (which will appear in the process list, which in
turn can be examined by all system users). Passwords have to be encrypted
and may not be specified in cleartext. The ����
��� program provides
assistance here. It requests a cleartext password from the standard input
and puts out the hashed version on the standard output. It is also easy to
combine with ����
�:

linux: # userdbpw | userdb "tux@example.com" set systempw

If you make no further specifications, ����
�� uses the classic �
�����AB
function; if you add the call parameters .	
?, .�	��.	
?,5 .�	��.���5, or
.�	��.���,?H,6 it will use other procedures to generate checksums.

9.4.3 Creating a Binary Version of the User Database

Courier does not work on the ����
� file; instead, it operates with an in-
dexed binary version stored in ����
�#
�� and ����
����
� #
��, which
is noticeably faster to search: ����
����
� #
�� contains the passwords,
and ����
�#
�� contains the other data. The 	�"�����
� program cre-
ates both files from the ����
� (Postfix administrators are aware of this
technique):

linux:/etc/authlib/ # ls -la userdb*
-rw------- 1 root root 3044 Jan 28 17:49 userdb

linux:/etc/authlib/ # makeuserdb

linux:/etc/authlib/ # ls -la userdb*
-rw------- 1 root root 3044 Jan 28 17:49 userdb

-rw-r--r-- 1 root root 14897 Jan 28 18:14 userdb.dat

-rw------- 1 root root 12885 Jan 28 18:14 userdbshadow.dat

Changes to the ����
� do not affect the running system until 	�"�����
�
converts the account data; this can be done during operation.

Please pay attention to file permissions. ����
� and ����
����
� #
��
contain passwords, so only ���� may read these files.

5 See ���������	���������	���������(:)&.
6 See ���������	���������	���������"().

128

9.4 The �	
�	����� Module

9.4.4 Separating the ����
� into Multiple Files

If you have a large number of accounts, it makes sense to maintain the
user data for the ��������
� module in small files; that way you can sort
the users into independently managed groups—by domain, for example.
In addition to specifying an account name directly, all ����
� commands
discussed earlier can also handle a combination that specifies the path to
the file containing the data for the specified user. They interpret this path
relative to the directory �����������������
��.

If you specify ���	���#��	���� as the account name, the commands will
apply to user ��� in file �����������������
�����	���#��	:

linux: # mkdir /etc/authlib/userdb

linux: # chmod 700 /etc/authlib/userdb

linux: # userdb "example.com/tux@example.com" \

set home=/home/vmail/tux.example.com uid=1006 gid=100

linux: # cd /etc/authlib/userdb

linux:/etc/authlib/userdb # ls -la

-rw------- 1 root root 44 Jan 28 20:34 example.com

If you specify account
�	��
�����	���#��	����, this will refer to �����
������������
��
�	��
�����	���#��	and then to the entry ���within
this file. The other ����
� actions function as usual with this address in-
formation:

linux: # �����
�� � �����
 ���������	�����������������	��� ��� ������

A single call to 	�"�����
� combines all data in the files in directory �����
������������
�� into the database files ����
�#
��and ����
����
� #

��.

CRAM Authentication with ����
�

The �������	 module, which has now been integrated into ��������
�,
also used the ����
� database. Unlike ��������
�, �������	 also sup-
ported the challenge-response procedure (CRAM). However, READMEs and
Howtos referring to this module are outdated: The �������	 module was
dissolved, and CRAM support has been integrated into ��������
�.

Unlike the other CRAM-capable modules ����	��L�, �����3�L�, and ����
�
��, the password is not saved on the server in cleartext. Instead, ����
����
� requests a hash corresponding to the CRAM procedure in the ����

�: HMAC-MD5 for +'&<.<�?, HMAC-SHA1 for +'&<.$>&5, and HMAC-
SHA256 for +'&<.$>&,?H.

Unlike its three colleagues, ��������
� can only provide different CRAM
procedures in parallel if it has the password hash for all hash procedures.

129

9 User Data

The hashing method used in the ����
� also determines the CRAM proce-
dure.

9.4.5 The ���	�

There are detailed explanations of the CRAM procedure and cleartext pass-
words in section 9.13 on page 147.

If you use the ����
� and want to offer secure authentication methods,
you have to make sure that the user passwords are hashed according to
the correct procedure and then saved. As well as the �����	� field (stan-
dard ����� hash, which only enables 2�&�� and �����), ����
� also offers
fields �	��.	
?.� (HMAC-MD5, enables +'&<.<�?) and �	��.���5.�
(enables ><&+.$>&5), both of which are not very well documented.

When hashing the passwords using ����
�� , you must choose the correct
hash procedure:

linux: # userdbpw -hmac-md5 | userdb "tux@example.com" set hmac-md5-pw

linux: # userdbpw -hmac-sha1 | userdb "tux@example.com" set hmac-sha1-pw

linux: # userdbpw -hmac-sha256 | userdb "tux@example.com" set \

hmac-sha256-pw

9.5 Using QMail’s ������ Library for
Authentication

The ����!��"� module uses the !���	���/!��"� library of the QMail
MTA. If you have set these up so they are operational, authentication re-
quests will be forwarded to this library. For a detailed description, see the
QMail documentation.7

9.6 Implementing Custom Authentication Methods

The Courier source code contains the ���������	 module, which is oper-
ational except that it does not contain authentication code of its own. As
long as you have sufficient knowledge of programming, you can enhance
it and compile it with the Courier code; it can then be used for Courier
authentication under the name ���������	.

7 See ����������	�����@	��
�*����+3���
���.

130

9.7 Integrating External Authentication Programs

9.7 Integrating External Authentication Programs

�������� enables you to use any external program for authentication. The
����
��	�

 starts this external program and uses the standard input and
output to communicate with it.

By default, the ����
��	�

 refers to the required program as ���������
��������2��3. The name and path are already compiled in and can only
be changed by recompiling Courier using the ��
��3���option .. ���.��
�����3.

To communicate with the external program, ����
��	�

 uses the same
protocol that it uses for Courier modules. This protocol defines four differ-
ent requests to the authentication service: 2'�, &�%>, 2&$$E�, and ���<�'&
%�. ����
��	�

 uses the request

PRE . service username

followed by a newline character to inform the external program which mail
service is addressing it; this is indicated by ����	�� , which can be ���� or
�	��. If the requested username exists, the authentication service has to
return a list of the account attributes in Table 9.1.

Table 9.1:
Account attributes
that the
authentication
service has to return

Attribute Description

�$�'�&<�G�������� Repeats the name of the requested
account

���G�	� Unix user ID of the account

���G�	� Unix group ID of the account

>�<�G�	���
��� The user’s home directory containing
the maildir

&��'�$$G������ The email address (not evaluated by
POP3 and IMAP)

�&<�G���� The user’s real name (not evaluated)

<&����'G��	��	� Path to the maildir in relation to the
home directory

7��%&G�����
��$K����	���+ The quota specification: �����
��
stands for the upper limit in bytes,
and ����	��� stands for the maxi-
mum number of files (and therefore
emails)

2&$$E�G���

����� The encrypted password

2&$$E�,G
��	�
����� The cleartext password

�2%���$G�

	���G���
�K Possible user options for the account

131

9 User Data

continued:

Attribute Description

�

	���G���
�K### (see section 9.12 on page 144)

Here, �$�'�&<�, ���, ���, >�<�, and &��'�$$ are required, along with the
trailing dot, which completes the reply:

USERNAME=tux

UID=5001

GID=5001

HOME=/home/tux

ADDRESS=tux@example.com

.

All other attribute specifications are optional. If an account does not exist,
the authentication program has to return 4&�� and the newline charac-
ter. In case of temporary errors (e.g., in the database), the program has to
terminate without comment and may not return a reply.

To request the authentication service to verify a login attempt, the authen-
tication daemon uses the &�%> message, which requires the authentication
method as an argument. Subsequent individual fields are separated by line
breaks, but the initial request message must not end in a line break. This
is an example of a verification request for a login using the ����� cleartext
method:

AUTH login

username

password

For challenge-response procedures, the authentication daemon transmits
the challenge string and the response returned by the client to the authenti-
cation service, which then checks whether they are correct. In the following
example of +'&<.<�?, the username and password are coded in ���
���� :

AUTH cram-md5

challenge

response

You could also use +'&<.$>&5 or +'&<.$>&,?H instead of the +'&<.<�?
procedure.

When a user wishes to change the webmail password for the Courier web-
mailer from ����
������� to ����
������� , the ����
��	�

 transmits
the following request to the authentication service:

PASSWD service \t username \t old_password \t new_password

132

9.8 Authentication via MySQL

Each of the four arguments has to be separated from its neighbor(s) by a
tab, which is shown here as =�. The 2&$$E� command and the specifica-
tion of the service (�	�� or ����) making the request (to which the answer
is returned) are only separated by a space. The entire request ends in a
newline character.

This function is not relevant for POP3/IMAP, as passwords cannot be chang-
ed via these protocols. The Courier project only provides this option on the
Web interface if all Courier components are working together, and provides
an interface for third-party tools.

If the ����
��	�

 issues the ���<�'&%� command (which also ends in a
line break), the authentication program has to return a list of all accounts.
For each account, all of the information is returned in one line, in which
the individual fields are separated by tabs (once again shown here as =�). A
single dot marks the end of the account list:

username \t uid \t gid \t home \t maildir \t option1=val1,option2=val2,

option3=val3

...

.

Thus, the last data set is followed by a single line with a lone dot. Such user
lists are required to, for example, create shared folders (see section 10.1 on
page 153).

9.8 Authentication via MySQL

The data that Courier requires for POP3 and IMAP can also be maintained
in an SQL database such as MySQL. You need to set up an SQL table con-
taining a field for each of the following: the username (the account ID),
the Linux user ID and group ID, the password, and the path to the user’s
maildir. The entry in the 	���
�� field is interpreted (as usual) relative to
the home directory, which is saved in a separate table field. However, the
	���
�� field can also contain an absolute path, as shown in the example
here; in this case, the contents of the ��	� field are irrelevant.

Do not forget to create an index based on the account ID field, so that the
table can be searched efficiently.

The following MySQL listing creates database user �������, who is permit-
ted to access the 	������� database locally, and generates the authentica-
tion database (see also Figure 9.1):

linux: # mysql

mysql> use mysql;

mysql> insert into user (Host, User, Password)

133

9 User Data

values(’localhost’, ’courier’, password(’supersecret’));

mysql> insert into db (Host, Db, User, Select_priv)

values(’localhost’,’mailbase’,’courier’,’Y’);

mysql> create database mailbase;

mysql> use mailbase;

mysql> CREATE TABLE ‘mailusers‘ (

‘id‘ INT(11) NOT NULL AUTO_INCREMENT,

‘account‘ VARCHAR(240) NOT NULL ,

‘uid‘ VARCHAR(6) DEFAULT ’5001’ NOT NULL ,

‘gid‘ VARCHAR(6) DEFAULT ’5001’ NOT NULL ,

‘maildir‘ VARCHAR(100) DEFAULT ’/var/spool/maildirs’ NOT NULL,

‘home‘ VARCHAR(100) NOT NULL ,

‘password‘ VARCHAR(255) NOT NULL ,

‘created_by‘ VARCHAR(60) NOT NULL ,

‘created_on‘ DATE NOT NULL ,

‘memo_txt‘ VARCHAR(255) NOT NULL ,

‘memo_firstname‘ VARCHAR(60) NOT NULL ,

‘memo_lastname‘ VARCHAR(60) NOT NULL ,

PRIMARY KEY (‘id‘) ,

UNIQUE (‘account‘)

) TYPE = MYISAM ;

Query OK, 0 rows affected (0.01 sec)

mysql> quit

linux: # mysqladmin reload

Figure 9.1:
The
���
����

example table
contains the

mandatory fields and
some additional
information for

better
administration.

In order to use this table, you have to specify in the ����
��	�
�� that the
authentication daemon should use the ����	��L� module:

authmodulelist="authmysql"

For the sake of clarity, the configuration for MySQL access is not located in
the ����
��	�
��, but in the ����	��L���. If you do not have this in your
system, it is either in a package that has to be installed separately (and that
you have not yet installed), or Courier was compiled without support for
MySQL. OpenSuSE, for example, only contains the �������.�������.	�
�L� package starting from version 10.2. If you have an older version, you

134

9.8 Authentication via MySQL

may have to compile Courier yourself. As a rule of thumb, if your Courier
supports MySQL, the ����	��L��� will exist.

For each configuration parameter, the desired configuration setting is listed
following the parameter and separated from it by spaces or tabs. The fol-
lowing settings are mandatory:

<D$7��$�'*�'
This field specifies the MySQL server to be used, by giving either the
hostname or the IP address:

MYSQL_SERVER mysql.example.com

It is not possible to specify more than one server.

<D$7���$�'�&<�
This field contains the username that Courier is to use when logging
on to MySQL (������� in our current example).

<D$7��2&$$E�'�
This field specifies the corresponding password (����������� in our
example).

<D$7���&%&�&$�
This field contains the name of the MySQL database containing the
account data (������� in our example).

<D$7���$�'�%&���
This field tells which one of the tables in this database contains the
user data (�������� in our example).

<D$7��+'D2%�2E4����
Which field of this table contains the encrypted password? (It is ����.
 ��
 in this example.)

<D$7��+��&'�2E4����
This field specifies the field containing the cleartext password. If
you do not store cleartext passwords, you should remove this option.
However, it makes sense to store cleartext passwords, as discussed in
section 9.13 on page 147.

<D$7������4����
This is the field containing the user ID for the account (��
 in our
example).

<D$7������4����
This is the field containing the group ID for the account (3�
 in our
example).

135

9 User Data

<D$7��������4����
This is the field containing the user’s login name (�
 in our example)—
the most important field in the table. The MySQL module uses this
value to find the data set and read the user ID, group ID, and other
parameters.

<D$7��>�<��4����
This is the field containing the path to the user’s home directory
(��	� in our example). If the user’s maildir is not stored under the
name <���
�� directly in the home directory, you have to specify the
table field containing the path in <D$7��<&����'�4���� (see the op-
tional parameters below).

<D$7���&<��4����
This is the field containing the actual name of the user (corresponds
to the 3���� field in the ����
). This is irrelevant for POP3 and
IMAP and is only used for other Courier mail server modules or for
the web frontend.

There are also a number of optional parameters:

<D$7��2�'%
This field specifies the MySQL port if this differs from the default
value of ��9H.

<D$7��$�+1�%
This is the path to the MySQL socket if MySQL is operated locally
(e. g., �!���	��L��	��L�#���").

<D$7���2%
This field provides additional options for the connection to MySQL.
This is for development purposes and is not required for everyday
operation.

<D$7��<&����'�4����
By default, Courier searches for a user’s emails in the P>�<��<���
��
directory. If you wish the user’s maildir to be stored in a different
subdirectory, use the table field defined here to specify a different
directory (relative to P>�<�) for each user (���
�� in our current
example).

<D$7����4&��%����*�'D
This field defines the default transport method if the SMTP server
from the Courier project is used. If you are running the Courier IMAP
with a different MTA, this value is irrelevant.

136

9.8 Authentication via MySQL

<D$7��7��%&�4����
This field defines a table field with the quotas for a user (see section
10.2.1 on page 167). This is only available if the entire Courier mail
server suite is in use (and not if Courier IMAP is operated alone), so
it is irrelevant for us.

<D$7��&�/�2%���$�4����
This specifies the table field containing additional options for this
account (see section 9.12 on page 144). In this field, multiple options
have to be separated by commas, and spaces between the comma
and the following option are not permitted.

You can also save the options singly in different fields and then use
the SQL command +��+&% to combine them. Refer to section 9.12.3
on page 147 for instructions.

<D$7��E>�'��+�&�$�
This field contains a condition that is integrated into the request as a
MySQL E>�'� command:

MYSQL_WHERE_CLAUSE server=’mailhost.example.com’

You can set multiple conditions:

MYSQL_WHERE_CLAUSE server=’mailhost.example.com’ AND status=’active’

<D$7��$���+%�+�&�$�
If the username, uid, gid, and path to the maildir do not correspond
directly to the database schema—say, if these items are not stored in
individual columns of a single table—then this option allows an SQL
query to be specified that assembles, in some appropriate fashion,
this information from the data in the existing database tables.

For this purpose, the +��+&% SQL command can be used to create
strings containing elements that are retrieved directly from specified
tables and columns. Here we use it to, among other things, calculate
the user’s maildir path from pieces stored separately in two database
tables:

MYSQL_SELECT_CLAUSE SELECT \

CONCAT(popbox.local_part, ’@’, popbox.domain_name), \

CONCAT(’{MD5}’, popbox.password_hash), \

popbox.clearpw, \

domain.uid, \

domain.gid, \

CONCAT(domain.path, ’/’, popbox.mbox_name), \

’’, \

domain.quota, \

’’, \

CONCAT("disableimap=",disableimap,",disablepop3=", \

137

9 User Data

disablepop3,",disablewebmail=",disablewebmail, \

",sharedgroup=",sharedgroup) \

FROM popbox, domain \

WHERE popbox.local_part = ’$(local_part)’ \

AND popbox.domain_name = ’$(domain)’ \

AND popbox.domain_name = domain.domain_name

The MySQL command returns the results in the following order and
separated by commas:

username, encrypted_password, cleartextpassword, uid, gid,

home directory, maildir, quota, complete name, options

<D$7�����<�'&%��+�&�$�
This $���+% command is used when the fields for the �

�� file (see
section 10.1.1 on page 156) is combined using the �����
�	�����
command (section 10.1.1 on page 160) in order to prepare for shared
folders. You only need to prepare this SQL command if the data still
needs to be assembled by the +��+&% command. If the data is stored
cleanly in separate table fields, this command is not necessary.

MYSQL_ENUMERATE_CLAUSE SELECT \

CONCAT(popbox.local_part, ’@’, popbox.domain_name), \

domain.uid, \

domain.gid, \

CONCAT(domain.path, ’/’, popbox.mbox_name), \

’’, \

CONCAT(’sharedgroup=’, sharedgroup) \

FROM popbox, domain \

WHERE popbox.local_part = ’$(local_part)’ \

AND popbox.domain_name = ’$(domain)’ \

AND popbox.domain_name = domain.domain_name

The complete data set has to be returned as shown and in the follow-
ing order:

username, uid, gid, home directory, maildir, options

<D$7��+>2&$$�+�&�$�
This MySQL command is executed when a user changes the pass-
word. This option is designed for the SqWebMail Courier webmailer
and is not relevant if you are only operating Courier IMAP, as users
are not able to change their passwords in this case.

��4&��%���<&��
When a user attempts to log on with a username that is not a com-
plete email address, the domain in this parameter is automatically
attached to the request. If the ��4&��%���<&�� is ���	���#��	,

138

9.9 Authentication via PostgreSQL

for example, then the login ID ���� is automatically converted into
����8���	���#��	.

Be careful: This parameter is called ��4&��%���<&��and not <D$7��
��4&��%���<&��.

9.9 Authentication via PostgreSQL

If you have the �����3�L��� configuration file, this means that your Courier
������� was compiled with PostgreSQL support. You should then specify
�����3�L� in ����
��	�
�� as the module to be used.

authmodulelist="authpgsql"

There are only a few small differences between using MySQL and using
PostgreSQL. Most, though not all, PostgreSQL parameters only differ from
their MySQL equivalents in the prefix of the name: <D$7��2�'% becomes
2�$7��2�'%, and the exception to the naming rule, ��4&��%���<&��, re-
mains unchanged.

Unfortunately, Sam Varshavchik, the Courier author, has written one small
but essential parameter that defies logic and usability and causes annoy-
ance, confusion, and errors: The MySQL parameter <D$7��$�'*�' is called
2�$7��>�$% in PostgreSQL.

Why this name change? It creates space for an additional trick that pre-
vents administrators from getting bored: Unlike in MySQL, there is no
2�$7��$�+1�% parameter.

If you want to contact PostgreSQL via a socket instead of the TCP port
5400, you have to set 2�$7��>�$% to empty and enter the file ending of
the PostgreSQL socket in 2�$7��2�'%. If your PostgreSQL socket is called
��	��#�#2�$7�#?:99, you enter the following settings:

PGSQL_HOST

PGSQL_PORT 5400

If you use the TCP port, the setup is as follows:

PGSQL_HOST pgsql.example.com

PGSQL_PORT 5400

If you create the 	�������� table according to the schema shown on page
133 (in the PostgreSQL installation on the computer �3�L�#���	���#��),
then the �����3�L� configuration file should look like this:

139

9 User Data

PGSQL_HOST pgsql.example.com

PGSQL_PORT 5400

PGSQL_USERNAME courier

PGSQL_PASSWORD supersecret

PGSQL_DATABASE mailusers

PGSQL_USER_TABLE mailusers

PGSQL_CRYPT_PWFIELD password

PGSQL_UID_FIELD uid

PGSQL_GID_FIELD gid

PGSQL_LOGIN_FIELD account

PGSQL_HOME_FIELD home

PGSQL_NAME_FIELD memo_lastname

9.10 Authentication via LDAP

Courier can also query an LDAP directory in real time. If your Courier
������� was compiled with LDAP support, you will find an already pre-
pared configuration file �����
����, which sets the configuration options
discussed here. In the main file ����
��	�
��, you first specify that au-
thentication is performed by the �����
�� module:

authmodulelist="authldap"

The following settings can be configured:

��&2��'�
This is the URL for one or more LDAP servers:

LDAP_URI ldaps://ldap.example.com, ldaps://backup.example.com

��&2�2'�%�+���*�'$���
This is the version of the LDAP protocol used:

LDAP_PROTOCOL_VERSION 3

��&2��&$���
The accounts to be authenticated can be found under the Distin-
guished Name (DN) specified here:

LDAP_BASEDN o=example, c=com

��&2�������
This specifies the DN that Courier uses to log on to the LDAP server:

LDAP_BINDDN cn=administrator, o=example, c=com

140

9.10 Authentication via LDAP

��&2�����2E
This specifies the password that Courier uses to log on to the LDAP
server.

��&2�%�<���%
This specifies the number of seconds after which Courier should ter-
minate the connection to the LDAP server if the server is not respond-
ing. For example:

LDAP_TIMEOUT 5

��&2�&�%>����
If you set this variable to 5, Courier verifies the username and pass-
word by using them to log on to the LDAP server and checking whether
this login is possible (“rebind”). CRAM procedures are not possi-
ble, as Courier cannot log on to LDAP without the user’s cleartext
password. For this reason, this method is usually not used. In this
case Courier uses the data from ��&2������� and ��&2�����2E to
search the LDAP directory.

��&2�<&��
This is the LDAP attribute in which Courier searches for the login
name.

��&2���<&��
This automatically adds the specified domain (���	���#��	 in this
example) to the login name before executing search queries if the
client specifies only a username:

LDAP_DOMAIN example.com

��&2�4��%�'
This adds the LDAP filter rule mentioned to the search query; this
filter rule is placed in parentheses, as is usual for LDAP. You can use
this option to query, for example, only accounts of a certain class:

LDAP_FILTER (objectClass=AccountMail)

Logical conjunctions are also possible. The following filter requires
that the accounts belong to the &����
�<��� class and that their
LDAP attribute ������ is ����!�:

LDAP_FILTER (&(objectClass=AccountMail)(status=active))

��&2����<�'&%��4��%�'
If this option is set, �����
�	����� (see section 10.1.1 on page 160)

will use ��&2����<�'&%��4��%�' instead of ��&2�4��%�' for LDAP
queries:

141

9 User Data

LDAP_ENUMERATE_FILTER (&(objectClass=AccountMail)(!(disableshared=1

)))

This example shows how to negate a filter criterion. This query re-
turns all accounts of the &����
�<��� object class whose
������
�����
 attribute is not 5.

��&2�>�<���'
This attribute contains the path to the user’s home directory. It does
not have to be ���	���������� ; for a virtual user, it might be �!���
	���
����������� or something similar.

��&2�<&��'��%
This attribute can be used to specify the parent of the home directory,
if a relative path is entered in the attribute specified by ��&2�>�<���'.
Courier uses the value of the path expression P��&2�<&��'��%�P��&2
�>�<���' as the home directory. ��&2�<&��'��% is optional and is
not usually set.

��&2�<&����'
This attribute contains the path to the maildir directory in the user’s
home directory. Courier searches for a user’s emails in P��&2�<&��
'��%�P��&2�>�<���'�P��&2�<&����'.

This attribute is optional. If it is not set, Courier will automatically
assume that <���
��� is in the user’s home directory.

��&2���4&��%����*�'D
This corresponds to <D$7����4&��%����*�'D (see 136). This option
only affects the SMTP servers of the Courier project and is irrelevant
for Courier IMAP.

��&2�4����&<�
This contains the user’s first and last names. This attribute is irrele-
vant for Courier IMAP.

��&2�+'D2%2E
This contains the encrypted password.

��&2�+��&'2E
This is the attribute containing the cleartext password. See also the
discussion in section 9.13 on page 147.

��&2���������
This sets a globally identical user ID for every account:

LDAP_GLOB_UID 10000

142

9.11 Obsolete Authentication Modules

��&2����
If ��&2��������� is empty or has not been set, Courier will consult
this attribute for the account’s individual user ID.

��&2���������
This sets a group ID that applies to all users.

��&2����
If ��&2��������� is empty or has not been set, Courier will consult
this attribute for the account’s group ID.

��&2�&�/�2%���$
This is the attribute containing the user options for the account (see
section 9.12 on page 144 and section 9.12.2 on page 146).

��&2���'�4
This specifies whether and how any returned LDAP aliases should be
resolved. These are LDAP entries that function like a symlink and
refer to other entries. LDAP aliases are not usually used.

The possible values correspond to the standard LDAP procedures
mentioned in 	�
 ? �
��#��
�:
�!��, �������
3, ��

�
3, and
�� ���.

��&2�%�$
If value 5 is set, the connection to the LDAP server is SSL/TLS en-
crypted; if value 9 is set, the query data (which could include the
user password) is transmitted without encryption.

9.11 Obsolete Authentication Modules

Current versions of Courier no longer support the following modules auto-
matically, as their functions are now carried out by other modules.

9.11.1 The ������
 Module

This module reads account information and the password from ���������

. It is no longer relevant, as passwords are stored in ��������
� in the
Unix systems used today. If for some reason ���������
 has to function
as the password source, it is advisable to use ������	.

9.11.2 The �������
�� Module

This module corresponds to �����
, except that it reads the password
from ��������
� . There are no advanced configuration settings for this

143

9 User Data

module. However, it is more flexible and secure to use ������	, because
access permissions can be handled more restrictively; most distributions
therefore use PAM.

As �������
� and �����
 are in direct competition, it makes no sense
to use �������
� and ������	 at the same time.

9.11.3 The �������	 Module

This module no longer exists, as ��������
� has taken over its function
(see section 9.4.4 on page 129).

9.12 User Options

With Courier IMAP, it is possible to evaluate additional options for indi-
vidual accounts, in addition to the basic user data. This requires an au-
thentication source that can store the additional fields. If you use shell
accounts, for example, user options are not available for authentication
based on ���������
 and ��������
� , but only in conjunction with
��������
�, ����	��L�, �����3�L�, and �����
��. The following op-
tions can be set for a user account:

�������	��
If this flag is set to 5, the user cannot log in via IMAP:

disableimap=1

The value 9 enables this login. If this flag has not been set, the default
setting specified in the ����
��	�
�� file applies (see below).

����������
This option is identical to
�������	��, but applies to POP3.

������ ��	���
This option is designed for the SqWebMail Courier webmailer. Like

�������	�� and
����������, it can be used to selectively disable
access via SqWebmail. This access restriction does not function for
other webmailers, as they do not evaluate this field. It is therefore
irrelevant if you are operating only Courier IMAP.

3����
This option assigns the account to one or more groups. These can
be used for group-based assignment of access permissions (ACLs) to
shared email directories (see section 10.1.1 on page 154). An account
may belong to multiple groups, and 3���� is the only option that can
be mentioned multiple times:

144

9.12 User Options

disableimap=1,group=group1,group=group2,mailhost=mail.example.com

Please note: 3���� and �����
3���� are two different parameters
and cannot be interchanged with one another.

�����
3����
If you want to enable your users to share IMAP folders (see section
10.1 on page 153), you can use this option to assign them to a shared
group.

�����������

When this flag is set to 5, �����
�	����� .� (see section 10.1.1 on
page 160) will ignore the corresponding account when generating the
list of shared folders, regardless of whether it is assigned to a shared
group or not.

	�������
If you operate Courier IMAP as POP3/IMAP proxy, this option stores
the POP3/IMAP server that physically contains the mailbox and to
which the proxy should forward the connection. For more informa-
tion, see section 10.3 on page 175.

Specify the default values for these options in the ����
��	�
�� file for all
authentication modules using the ��4&��%�2%���$ parameter; separate
option-value pairs with a comma and without spaces (!):

DEFAULTOPTIONS="disableimap=0,disablepop3=0,disablewebmail=0"

Here, access is permitted by default via POP3, IMAP, or SqWebMail, and
users are not assigned to a shared group. These default settings are firmly
entrenched in the Courier source code, so they apply even if you do not
set the ��4&��%�2%���$ variable. Because the equal sign is used to specify
values for the individual user options as well as to assign the entire list
of option settings to the ��4&��%�2%���$ variable, you must not forget
to include the quotation marks around the list of system-specific default
values.

Individual settings in the user data overwrite these default values. There are
two ways of specifying who may use IMAP. First, you can set the
������
�	��G5 option for users that may not have access. Make no specification
in the ��4&��%�2%���$ in the ����
��	�
��, or set
�������	��G9 ex-
plicitely (hence “documenting” the default).

Alternatively, you can use the reverse strategy, and specify ��4&��%�2%���$
GQ
�������	��G5Q in the ����
��	�
��. This disables IMAP access for
all users. You then set option
�������	��G9 in the user data sets of priv-
ileged users, which explicitly permits them access.

145

9 User Data

All authentication modules apart from �����
�� expect these options in a
single field, separated by commas and without spaces; this is analogous to
the ��4&��%�2%���$ setting in the ����
��	�
�� file. In the configura-
tion files of the SQL modules, <D$7��&�/�2%���$�4���� (see page 137) or
2�$7��&�/�2%���$�4���� specify where the options are stored. For the
use of LDAP, each option is specified in a separate attribute.

9.12.1 Saving User Options in the ����
�

It is not possible to store user options in ���������
, as there is no free
field and the existing fields cannot be used for this purpose. For this reason,
it makes sense to use the ����
� if you do not wish to use SQL databases
or LDAP.

The �����
� field describes the list of specified options; multiple values
are separated by commas and without spaces:

tux@example.com uid=1001|gid=100|home=/home/tux|shell=/bin/bash|

systempw=$2a$10$8ZWLc9MOH.vB913PJVR9tuluHdzXc9BBcQ2ZJcAqrDJrUsB9$Dv

Zm|mail=/home/tux/Maildir|options=disableimap=1,sharedgroup=test,ma

ilhost=mail5.example.com

9.12.2 Individual User Options in an LDAP Directory

Unlike the other methods, LDAP stores each individual user option in a
separate attribute. If a user’s data is in an LDAP directory and that user
requires more than the default options, the configuration of the �����
��
module has to assign the relevant attributes to the extra options.

Courier expects the LDAP attribute name to the left of the equal sign; this
is unfortunately not evident from the examples in the README texts pro-
vided by the Courier team, as the names they chose for the attribute and
the option are identical. Thus, in the following example, the individual
�����
3���� value is stored in the �����
 attribute, the
�������	�� op-
tion in the �	�� attribute, and the
���������� specification in ����:

#

LDAP_AUXOPTIONS LDAP-Attribut=Courier-Option

#

LDAP_AUXOPTIONS shared=sharedgroup,imap=disableimap,pop3=disablepop3

As long as you are aware of which way to read the assignment, there is no
reason not to name the attribute after the Courier option. The settings in
the �����
���� will then be as follows:

LDAP_AUXOPTIONS sharedgroup=sharedgroup,disableimap=disableimap,

disablepop3=disablepop3

146

9.13 Saving Passwords: Cleartext or Hash?

9.12.3 Storing User Options in Dedicated Fields in an SQL
Table

With ����	��L� and �����3�L�, a separate field in the table can also be
specified for each option. In this case, an SQL command should be spec-
ified in the file ����	��L��� or �����3�L��� that assembles the option
settings from all of the relevant fields into a string in which the settings are
separated by commas and there are no spaces:

MYSQL_AUXOPTIONS_FIELD CONCAT("disableimap=",disableimap,",disablepop3=

",disablepop3,",disablewebmail=",disablewebmail,",sharedgroup=",sharedgr

oup)

The following listing is the PostgreSQL equivalent that collects the data
from columns
�������	��,
����������,
������ ��	���, and �����

3����:

PGSQL_AUXOPTIONS_FIELD ’disableimap=’ || disableimap || ’,disablepop3=’

|| disablepop3 || ’,disablewebmail=’ || disablewebmail || ’,sharedgroup=’

|| sharedgroup

9.13 Saving Passwords: Cleartext or Hash?

At first, it may seem sensible to store user passwords in the various data
stores only in hashed form according to �����, or the MD5 or SHA algo-
rithms, and not in cleartext. Strictly speaking, a hash is not an encryption
mechanism, as there is supposedly no way to determine the original value
from the result of applying the hash to it.8

This has the advantage that neither administrators nor unauthorized third
parties can gain access to the cleartext passwords. However, this advan-
tage can become a very serious problem when migrating to different IMAP
software (see section 6.4 on page 81).

The ����� and 2�&�� transfer methods transfer the password in cleartext,
so they should only be used when secured by SSL/TLS. However, only the

8 You could compare a hash value of a password to the sum of the digits of a number. 526
has a digit sum of 13, but the number 526 cannot be recovered from its digit sum of 13
alone. However, a certain sum of digits can arise from an unlimited number of original
input values, whereas there is only a probability of 264 that two distinct passwords will
give identical MD5 hashes. Of course, there are teams all across the world that are
attempting to prove that this might happen much more often. In fact, MD5 has already
been undermined in a way that, under certain circumstances, the possibility is less
than 264 ; hence MD5 must be considered, by and large, cracked. SHA is still viewed as
secure.

147

9 User Data

more secure CRAM procedures (Challenge-Response Authentication Meth-
od), such as +'&<.<�?, +'&<.$>&5, +'&<.$>&,?H, or &2�2 (see section
2.1.2 on page 27) make it practically impossible to sniff out the password
during transmission.

For these methods, the server generates an individual session key for every
login. The client and the server use this key to calculate the hash value of
the password; this hash value is only valid for that session. An attacker is
not able to use this value at a later stage to log in. However, the server has to
know the cleartext password so that it can carry out the same calculations
as the client.

In other words: If the password is saved in the supposedly safe hash form,
the client can only log in using the insecure methods ����� and 2�&��. Use
of safe methods such as +'&<.<�?, +'&<.$>&5, +'&<.$>&,?H, or &2�2 is
only possible if the server can access the cleartext password. This is a basic
problem that has nothing to do with Courier.

However, there is one exception that should not exist: Surprisingly, some
programs offer +'&<.<�? even though they only have the HMAC-MD5 hash-
es of the passwords.9

In this manner, the Courier authentication module ��������
� (previously
�������) offers +'&<.<�?, but only if the passwords are saved in the
����
� as HMAC-MD5 hash. This means that the module cannot offer
a procedure based on +'&<.$>& at the same time.

The explanation is both simple and sobering. The first step of the challenge-
response procedure is to hash the password with the standard hash proce-
dure. For +'&<.<�?, ������ becomes the HMAC-MD5 hash �5H�6�
?S���

H6�5���6?9I��HI��,
�5�H,?5��H9:��66?�:�II,��
H
:�5�, for exam-
ple. The client then calculates this with the server’s ��������� ; this results
in the ���
���� . If +'&<.$>&5 is used, the client calculates the password
hash in the same way using ><&+.$>&5.

It seems secure if passwords are saved as HMAC-MD5 hashes. However, this
is not true. If an attacker gains access to the hash, the attacker can then
calculate all other steps of the challenge-response procedure and then log
in correctly. This means that the attacker, like the other parties involved,
does not require the cleartext password to succeed.

This means that using the HMAC-MD5 hash is just as secure or insecure
as saving the password as cleartext. Or to put it another way: The actual
password used by the client and the server is the hash.

This is why we stick with our statement: Challenge-response procedures
are only possible if the server knows the cleartext password. Once a HMAC-

9 HMAC is short for Hash Message Authentication Code; HMAC-MD5 is calculated in a
slightly different manner than the standard MD5. These two procedures are not iden-
tical, even though they are both often referred to as “an MD5 hash” (see ���������	

���������	���������(:)&).

148

9.13 Saving Passwords: Cleartext or Hash?

MD5 hash has been published, third parties are able to use +'&<.<�? to log
in.

There is one tiny advantage if only the hash is stored: If an attacker gains
access to this data, he or she has to use the challenge-response procedure to
log in and is unable to log in using cleartext methods (such as logging on to
a web frontend). This may be an advantage for those users that always use
the same password, whether for mail servers, FTP accounts, online shops,
or social utilities. However, anyone who believes that such multifunction
passwords are not available to dozens of others as cleartext passwords is
badly mistaken.

In any case, storing the MD5 hash has more drawbacks than benefits, as
procedures based on other hashes are no longer possible: CRAM-SHA1 is
impossible if the password is not available in cleartext or as an HMAC-SHA
hash. This is why the authentication modules ����	��L�, �����3�L�, and
�����
�� always require cleartext passwords in the user data; it is the only
way that they can offer all secure CRAM methods in parallel.

According to Courier developer Sam Varshavchik, �������	 was the first
CRAM implementation in the project. He admits that it was a mistake that
this module did not store cleartext passwords in the ����
�. The current
��������
� took over this problem from �������	. Now, administrators
have to decide early on how to hash the passwords in the ����
�, as it is
not possible to switch CRAM authentication methods at a later stage.

Nevertheless, most people feel uncomfortable with saving cleartext pass-
words. Those who are not aware of the background of CRAM procedures
are liable to make the (wrongful) allegation that saving cleartext passwords
is irresponsible and endangers security. It is therefore advisable to consider
the following arguments:

The administrator can read all the user’s emails anyway, by simply look-
ing at the hard disk; a password is not required.

If a password is protected from the administrator, it is less protected from
about 6 billion other people. It means that the administrator who can
access everything anyway cannot read the cleartext password, while any
intern or attacker at a large ISP or backbone operator can listen in and
record the data when the login data is transmitted. Colleagues or neigh-
bors in an Internet cafe also find it easy to read the password. Last but
not least, the administrator can sniff out the password (with a simple
���
�	�), or the mail server software can log it in the debug mode.

Users should always be reminded to use different passwords for different
providers and services. They may be hard to convince, but they should
not get angry just because the administrator now knows the “secret” pass-
word used for a dozen other applications . . .

149

9 User Data

Sending a password publicly but hiding it from the administrator is not re-
ally logical. The only acceptable argument in its favor is that a successful
attacker would have access to the user database containing all the pass-
words. However, as we demonstrated earlier, it would be just as bad if an
attacker gained possession of the MD5 hashes.

What is the actual risk? Is the danger posed by normal password sniffers
not a lot more serious and likely? If an attacker gains access to all the user
data, won’t he or she probably have access to the authentication service or
even to the entire set of emails, which means that the passwords are no
longer required?

Of course it is a laudable aim to secure a system as well as possible, but
it is also important to determine where the principal danger comes from.
This results from the standard data transport in the Internet, from a sniffing
attack from a neighboring computer, or from low password quality.

For all these reasons, it makes sense to grit your teeth, save the passwords in
cleartext and then try to explain to the users how this increases (!) security.
Do everything in your power to protect the user data from unauthorized
access. You have to do this anyway, as even hashed passwords must not fall
into the wrong hands.

If you decide to save cleartext passwords, do not forget to configure the
�<&2�+&2&����%D parameter in ��������������	�� so that Courier can
offer the secure authentication procedures:

IMAP_CAPABILITY="IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUB

JECT THREAD=REFERENCES SORT QUOTA IDLE AUTH=CRAM-MD5 AUTH=CRAM-SHA1"

9.14 Username Selection When Maintaining
Multiple Domains

If you have experience with Postfix or other MTAs, you know of the dif-
ference between “real” and “virtual” domains. Postfix, for example, distin-
guishes whether a domain is mentioned in 	�
�� ��"� or in the lookup
tables !�������	��� or !�������������
�	��
�.

This procedure is based on the fact that classic shell accounts with user
data saved in ����
 and ���
� always consist of only a username and
lack a domain part. Naturally, this causes problems when you have to map
accounts such as �
��8 into different domains.

The classic method is to forward these domains to “real” accounts via vir-
tual maps. Confixx and Plesq, for example, create a vast number of ac-
counts according to the format ��5?��: 15th domain, 3rd postbox.10 The

10 This does not necessarily imply high-quality software.

150

9.14 Username Selection When Maintaining Multiple Domains

user then has to enter this login data in the email client as the username
for POP3/IMAP access.

You can name your accounts as you wish; you can even number them,
for example, 5,�:?HS, but this is not particularly easy to remember. It
is particularly troublesome when you are clearing up and have to delete
old domains and mailboxes, unless you maintain an additional database
containing the account assignments.

There is an easier way. Even though the at sign (8) was not permitted in
the username for POP3/IMAP login in the past, clients have for quite some
time now specified complete email addresses as login names. The owner of
�
��8���	���#��	 can therefore enter �
��8���	���#��	 in the email
client, and only needs to remember the password.

These usernames cannot be mapped using ����
 and ���
� , as the at
sign (8) is not permitted there. However, you can create corresponding
accounts in MySQL, PostgreSQL, LDAP, and the ����
�.

The authentication modules use the login name to find the data set in the
database or the directory that contains this name in the ID field, and then
access the password, the user and group ID, and the path to the email di-
rectories. In this case, Courier does not need an account in the traditional
sense; it possesses all the information required to check the password and
access the files. If you have to administer different domains, MySQL, Post-
greSQL, and LDAP are far superior to traditional shell accounts when it
comes to storing user information.

151

10 Ch
ap

te
r

The Work of a Courier
Administrator

Once authentication is functioning, setting up a POP3/IMAP server is fairly
straightforward. Using a few Courier tricks and features will endear you to
mail users and make life easier for the administrator.

10.1 Shared Folders

Courier knows two types of shared folders: virtual shared folders and filesys-
tem-based shared folders.

Virtual shared folders allow users to grant other users access to individual
IMAP folders through the IMAP protocol. Users do not require shell access
to the mail server, as IMAP directly supports shared folders. All well-known
clients have this function.

153

10 The Work of a Courier Administrator

In order to improve performance, Courier requires a configuration file ����
��������������
��

�� listing all accounts containing shared IMAP fold-
ers; this file requires some configuration. It is possible to automate this us-
ing shell scripts. If everything is set up properly, the Courier script �����
�
	����� (see section 10.1.1 on page 160) will do the work automatically.

Filesystem-based shared folders use symlinks and a number of “dirty” but
efficient tricks to integrate individual IMAP folders or entire maildir struc-
tures into multiple accounts. This requires manual adjustments at the
filesystem level in order to set the required file permissions.

This type of shared folder is therefore not particularly suitable for use with
virtualized accounts or Internet service providers, as these mail users do
not usually have shell access. It is better suited to mail servers with a user
base of technically experienced individuals who are not afraid of (simple)
shell commands, for example, on work servers within small companies. As
a quick fix, administrators can use them to implement exceptions, provided
they have ���� permissions.

10.1.1 Setting Up Virtual Shared Folders

All good email clients allow mail users to grant access to other mail users’
IMAP folders using access control lists (ACLs). Other users are identified by
their IMAP login name, which does not have to be identical to their email
address.

The ��������	����� File

If user ����8���	���#��	 has granted ���8���	���#
�� permission to
access the folder %�������� via his own email client, ����’s maildir will
contain the file ��������	�����:

linux:/mail/example.com/paul/Maildir # cd .Testshare

linux:/mail/example.com/paul/Maildir/.Testshare # ls -la

total 24

-rw-r--r-- 1 10000 10000 78 18.11.06 11:40:00 PM courierimapacl

drwx------ 2 10000 10000 4096 18.10.05 12:56:00 AM courierimapkeywords

-rw-r--r-- 1 10000 10000 15 12.01.06 10:39:00 PM courierimapuiddb

drwx------ 2 10000 10000 4096 12.01.06 10:39:00 PM cur

-rw------- 1 10000 10000 0 18.10.05 12:56:00 AM maildirfolder

drwx------ 2 10000 10000 4096 18.10.05 12:56:00 AM new

drwx------ 2 10000 10000 4096 19.11.06 7:48:00 PM tmp

linux:/mail/example.com/paul/Maildir/.Testshare # cat courierimapacl

owner aceilrstwx

administrators aceilrstwx

user=tux@example.net aceilprstwx

154

10.1 Shared Folders

Table 10.1 shows the identifiers that can appear in the first column of this
file. By default, two entries for �
�� and �
	�
���������have to exist in
every ��������	����� file.

Table 10.1:
Assigning
permissions through
identifiers in the
��
�����
�����

file

Identifier Meaning

�
�� The owner of this folder

�
��
� Every user

�
�
�	��� Every user (identical to �
��
�)

����G���	�	� The user ���	�	�

3����G���� All users in group ����

�
	�
��������� All users in group �
	�
��������� (identi-
cal to 3����G�
	�
���������)

The 3���� user option (see section 9.12 on page 144) makes it possible
to associate individual accounts with groups. In this way, members of a
group can be assigned shared rights to folders. This is completely different
from the �����
3���� user option (see section 9.12 on page 145), which is
handled differently.

The third line in the example above assigns ���8���	���#
�� all possible
permissions; Table 2.1 on page 36 shows the meanings of these permis-
sions.

It is possible to remove an individual permission from an identifier (that is,
to specify “negative permissions”) by prefixing a minus sign; this is useful
when generous group or �
��
� permissions allow more permissions to
a particular user than desired. Courier evaluates all positive permissions
and then subtracts the negative permissions, so the order of these entries
within the file is irrelevant.

In the following example, all users receive read and write permissions for
the affected directory, but write permission is revoked for ���8���	���#

��:

linux:/mail/example.com/paul/Maildir/.Testshare # cat courierimapacl

owner aceilrstwx

administrators aceilrstwx

-user=tux@example.net w

anyone=lrw

However, Courier now has the problem that the permissions are saved in
the IMAP folder, but not in ���8���	���#
��’s data. In order to determine
the folders that this user can access, Courier would have to search through
the maildirs of every user.

155

10 The Work of a Courier Administrator

The �

�� File

This is exactly what Courier does. In order to reduce the work involved, the
server processes the �

�� file. It checks only the accounts listed in this
file to see whether they assign to other users permissions for IMAP folders.
The number of directories that need to be searched is thereby drastically
reduced.

Courier expects this file as ������������������
��

��, or, as for indi-
vidually compiled Courier installations, ���������������������������
�
��

��. This file contains five fields that must be specified, while a sixth
field containing user options is optional:

share_name uid gid home_directory maildir options

The �

�� file is a partial dump of the user database, whether this database
is stored in ����
, in an SQL database, or in an LDAP directory. Courier
currently requires only the fields ���������� ,������	���
��� , and ��	��
�	� . The columns �	� and �	� have to exist but are not evaluated. They
set the stage for future extensions.

Every time a user logs in, Courier searches all ��������	����� files in the
maildir directories mentioned in the �

�� file in order to determine the
shared folders the user has been given access rights for. Courier uses the
���������� field only as a label that identifies the folders for the other
clients. Therefore, the maildir user’s actual login ID is not relevant to the
contents of this field, although the username of the corresponding account
is usually used. The �

�� file on the server containing the accounts of
����8���	���#��	 and ���8���	���#��	 looks a bit like this:

linux:/etc/courier/shared # cat index

tux 1001 500 /home/tux Maildir/

paul 1002 500 /home/paul Maildir/

It could also just as well have had the following contents, though ��� can
not log on as ������:

linux:/etc/courier/shared # cat index

cheffe 1001 500 /home/tux Maildir/

paul 1002 500 /home/paul Maildir/

There are no complications if some of the directories listed in the �

�� file
do not exist. Courier simply ignores the corresponding entries and does not
display those shares. This means that an �

�� file can be used simulta-
neously on more than one server, even though each server contains only
some of the maildir directories.

156

10.1 Shared Folders

Courier strictly separates the shared folders available to a user from the
user’s own IMAP folders. Virtual shared folders are not listed in ����/, but
instead in the U�����
#������������� tree.1 This prevents mix-ups and
name conflicts:

#shared.cheffe.Testshare

#shared.cheffe.Holiday

But be careful: If the user’s login name contains a dot or slash, this de-
stroys the hierarchy of the IMAP namespace when used as a label for folder
sharing. Thus, an entry such as

linux:/etc/courier/shared # cat index

Caution: This does *NOT* work

paul.meier 1003 500 /home/paul Maildir/

would lead to a shared folder like this:

#shared.paul.meier.Testshare

The 	���� directory would then be a subfolder of ���� (instead of ����#
	���� being under U�����
). Courier tries to solve this problem by replac-
ing each dot and slash with a space (which is permissible in folder names):

#shared.paul meier.Testshare

The names may no longer be unique in this case. It can also happen that
Courier is unable to calculate shared lists properly after such replacements.
Large parts of the list will no longer be displayed properly.

Thus, although Courier automatically replaces dots and slashes with spaces
in the display name, this replacement can be problematic. Even if the ac-
counts offering shared folders are actually called ����#	���� or �

�#3��
���, for example, it is advisable to avoid using these two characters in the
first column of �

��. Remember that when the �

�� file is processed,
the important thing is the share name, and not the account names, which
can still contain dots.

If you use dots and slashes in your usernames (perhaps because you use
complete email addresses for login names), it is a good idea to think of a
workaround here and make sure that you have clean labels in the �

��
file. ����#	���� could have the display name ����.	����, for example.
However, blindly using search-and-replace hacks can run the risk of creat-
ing labels that are ambiguous.

1 Filesystem-based shared folders are shown in ������ and not in A������.

157

10 The Work of a Courier Administrator

You can also set the �<&2�$>&'��<�����&<�$ parameter to 5 in the con-
figuration file of the �	��
. Courier will then replace an invalid # with a
=-, and an invalid � with a =W. This may not look nice, but it is a workable
solution and therefore worth testing.

Special characters are allowed in IMAP folder names (and in share names).
They have to be UTF-8-coded in this file.

Arranging Shared Files

If you are managing a large number of shared folders, the �

�� file con-
taining the shared folders quickly becomes unmanageable, both for the ad-
ministrator and for the users, to whom the shared folders are displayed in
a lengthy list.

In order to avoid this, you can group shared folders and export them into a
separate index file. Each of these groups is assigned a special share name
of its own that is displayed as an additional hierarchy level.

The main index file �

�� contains the definitions of the group names and
references to the index files corresponding to them:

groupname * indexfilename

The asterisk in the second column is a predefined special character and
indicates to Courier that this line is not a group definition itself, but gives
the name of the file which includes these group definitions. A split �

��
file can contain both:

linux:/etc/courier/shared # cat index

employees * index-employees

interns * index-interns

freelancers * index-freelancers

bueroorga 1000 1000 /home/bueroorga Maildir

The syntax for permissions in the subfiles is the same as for standard per-
missions:

linux:/etc/courier/shared # cat index-employees

tux 1000 1000 /home/bueroorga Maildir

paul 1000 1000 /home/paul Maildir

geeko 1000 1000 /home/geeko Maildir

The shared IMAP folders then have the following hierarchy:

#shared.bueroorga.folder

#shared.employees.tux.folder

#shared.employees.tux.folder

#shared.employees.geeko.folder

158

10.1 Shared Folders

These group definitions are not the same thing as shared groups, which we
will discuss later. Using the latter, you can ensure that users are unable to
see shared folders belonging to groups that they do not belong to. In the
groups mentioned above, users in the �	������� group are able to see the
shares of users in group �
���
� or ������
����. Arranging these groups
affects the way shared folders appear in the IMAP namespace and makes
it possible to assign ACL permissions to groups (see section 10.1.1 on page
154).

Self-Contained Share Groups

If a user can view all share names and IMAP folders in the �

�� file, re-
gardless of permissions assigned by other users in the ��������	�����
files, this can compromise security. The user would then be able to infer
the account names from the share permissions, which in turn means that a
complete list of users (customers?) is freely available. In addition, the user
may be able to tell which users belong to which groups.

This may be irrelevant in a company that has a company-wide address
book, but it can be a violation of security in a large organization or an
ISP.

Unfortunately, the Courier programmers are refusing to deal with this prob-
lem. They claim that it would negatively affect performance if Courier has
to parse all ��������	����� files. This is rather lame; after all the alterna-
tive is not using these shared folders at all. This problem will not be dealt
with unless someone else writes the patch. . . .

Luckily, there is a solution. It is not perfect, but it works. Introduce separate
shared groups with their own index files by entering a group assignment in
the user options (see section 9.12 on page 145). Users are then only able to
view the permissions for their own shared groups (their universe). However,
they will still be able to view all share names and all IMAP folders within
the shared group.

Shared groups have another advantage. If the �

�� file is large, Courier
has to search through a correspondingly large number of directories. This
solution is not suitable for several thousand accounts or for overworked
servers with many logins. If each shared group has an index file, Courier
has to search through far fewer directories.

If, for example, you are managing the email accounts for the three do-
mains ���	���#��	, ���	���#
��, and ���	���#��3, and these belong
to different companies and organizations, you could group all users of
one domain into a shared group. To do this, set a user option such as
�����
3����G���	���#��	 for every one of these users. Each user can
only belong to one shared group.

When a user logs in, Courier determines the �����
3���� for that user.

159

10 The Work of a Courier Administrator

After authentication, the server searches for shared folders in the specific
index file for that shared group, instead of searching the global �

�� file.
The index file for the shared group has a predefined filename, consisting of
�

�� and the value of �����
3����. If the �����
3����G���	���#��	
option is specified for a user, the file is named �

�����	���#��	; for
�����
3����G
�!���������	 , the file is named �

��
�!���������	.

The index file of the shared group contains the maildir directories and their
share names as described in section 10.1.1 on page 156:

linux:/etc/courier/shared # cat indexexample.com

info 1000 1000 /mail/example.com/info Maildir/

accounting 1000 1000 /mail/example.com/accounting Maildir/

paul 1000 1000 /mail/example.com/paul.meier Maildir/

geeko 1000 1000 /mail/example.com/geeko Maildir/

Every user can only view shared folders for his or her shared group, so it
is possible to assign the same share name in different shared groups. The
labels �
��, �����
��
3, and ���� are now also permitted for entries in
���	���#��3 accounts:

linux:/etc/courier/shared # cat indexexample.org

info 1000 1000 /mail/example.org/info Maildir/

accounting 1000 1000 /mail/example.org/accounting Maildir/

paul 1000 1000 /mail/example.org/paul Maildir/

If you do not define the �����
3���� option for an account, Courier IMAP
will search the global �

�� file.

Generating the �

�� File Automatically

If you only wish to permit sharing for selected accounts, it makes sense to
manage the corresponding �

�� files manually. If, however, you wish to
permit all or nearly all users to share folders, you can use the �����
�	���
�� program to generate the �

�� file automatically.

�����
�	����� uses the authlib library, which has access to the complete
user database, to generate a dump of all user data. You can then redirect
this dump to the index file:

linux: # ���
� ������� � ���	�	��������
������ ���

Unfortunately, almost no documentation exists for this program. It has two
call parameters: .� tells the program to output the user options for the
accounts in the sixth column. This also includes the �����
3����.

160

10.1 Shared Folders

�����
�	����� .� lists only those accounts that are permitted to share
folders. If the user option
�����������
 is set to 5 for an account, that
account is not listed.

Bear in mind that �����
�	�����uses the commands in parameters <D$7�
����<�'&%��+�&�$�, 2�$7�����<�'&%��+�&�$�, and ��&2����<�'&%��
4��%�' (see pages 138, 139, and 141) to read out the user data. This com-
mand can limit the accounts to be considered or manipulate the data (es-
pecially that in the first column).

Automatically Generating Index Files for Shared Groups

If you use shared groups, you require numerous group-specific index files.
The �����
�

������� tool can split a global �

�� file accordingly. If
the index file contains the user options in the sixth column (thanks to
�����
�	����� .�), this column will show which user belongs to which
shared group. �����
�

������� then automatically prepares a suitable
index file for every shared group. You can run the following shell script, for
example, as a regular ���
 job:

#!/bin/sh

sysconfdir="/etc/courier"

sbindir="/usr/sbin"

Remove residues from previous run-throughs

rm -rf $sysconfdir/shared.tmp

mkdir $sysconfdir/shared.tmp || exit 1

Generate temporary index file containing user options

$sbindir/authenumerate -s -o >$sysconfdir/shared.tmp/.tmplist || exit 1

Split by sharedgroup

$sbindir/sharedindexsplit $sysconfdir/shared.tmp <$sysconfdir/ \

shared.tmp/.tmplist || exit 1

Delete temporary file

rm -f $sysconfdir/shared.tmp/.tmplist

Move the completed files to $sysconf

$sbindir/sharedindexinstall

�����
�

������� can also split the shared folders into different index
files according to the first � characters if you specify this number as the
second call parameter. It then ignores the �����
3���� user option. This
is what the shell script would look like:

#!/bin/sh

sysconfdir="/etc/courier"

161

10 The Work of a Courier Administrator

sbindir="/usr/sbin"

Remove residues from previous run-throughs

rm -rf $sysconfdir/shared.tmp

mkdir $sysconfdir/shared.tmp || exit 1

Generate temporary index file containing user options

$sbindir/authenumerate -s >$sysconfdir/shared.tmp/.tmplist || exit 1

Split by the first character

$sbindir/sharedindexsplit $sysconfdir/shared.tmp 1 <$sysconfdir/ \

shared.tmp/.tmplist || exit 1

Delete temporary file

rm -f $sysconfdir/shared.tmp/.tmplist

Move the completed files to $sysconf

$sbindir/sharedindexinstall

The �����
�

���
����� shell script provided by Courier simply bundles
the temporary files and moves them to ����������
. Make sure that the
correct path is specified in �����
�
��:2

linux: # which sharedindexinstall

/usr/sbin/sharedindexinstall

linux: # cat /usr/sbin/sharedindexinstall

#! /bin/sh

$Id: sharedindexinstall.in,v 1.1 2004/01/11 02:47:33 mrsam Exp $

#

Copyright 2004 Double Precision, Inc.

See COPYING for distribution information.

#

Sample script to safely update shared folder index files.

prefix="/usr"

sysconfdir="/etc/courier"

[...]

Subscribing to Shared Folders

Usually IMAP users have to explicitly subscribe to shared folders for their
clients to display them (see section 2.2.4 on page 41).

Some email clients, such as KMail (see Figure 10.1), use the IMAP protocol
to ask the server for the correct namespace for personal folders (����/#;)
or virtual shared folders (U�����
#;) in order to display the directories

2 The �����- variable was previously used, but it is superfluous in the version used here
(1.1 from January 11, 2004), as it is not used in the script.

162

10.1 Shared Folders

properly. In that case, you will find the corresponding settings in the IMAP
account management.

Figure 10.1:
KMail automatically
queries the IMAP
namespace in order
to display the folders
properly.

10.1.2 Creating Filesystem-Based Shared Folders

If your users are technically experienced and have shell accounts on the
server, you can provide filesystem-based shared folders. In this case, the file
access permissions in the maildir directories determine each user’s access
permissions.

If user ��� wants to prevent user 3��"� from viewing his maildir, ��� has
to ensure that only he as the owner of the maildir has read and write per-
missions:

tux@linux:~$ ls -lad Maildir/

drwx------ 6 tux users 4096 10. Mar 22:30 Maildir/

If he changes the file permissions for his maildir directory or for individual
IMAP folders in that directory, other users can access them. You can modify
Courier so that it offers the shared maildir directories to other users for
subscription via IMAP.

163

10 The Work of a Courier Administrator

A shareable maildir is a special maildir with more relaxed access permis-
sions, allowing other users to view it. For this reason, this should not be a
user’s actual maildir (even though this is technically possible). Instead, a
user should create an additional directory in the personal home directory
as a shared maildir.

Folders in a shareable maildir are called shared folders. Other users can
subscribe to these folders.

If ��� wishes to share a folder with colleagues, he uses 	���
��	�"� to
create a separate shareable maildir with open access permissions, without
letting other users access his actual maildir. The .$ parameter tells the
program to generate a shareable maildir:

tux@linux:~$ maildirmake -S Maildir-Shared

tux@linux:~$ ls -lad Maildir*
drwx------ 7 tux users 4096 11. Mar 17:31 Maildir

drwxr-xr-x 9 tux users 4096 11. Mar 17:25 Maildir-Shared

tux@linux:~$

The only difference between the maildirs lies in the file permissions. ���
has now made the shared folder available, and the rest is up to his col-
leagues.

They can now create a �����
.	���
��� file in their own maildir. This
is where they enter the paths to the other available maildirs belonging to
other users:

geeko@linux:~$ cd Maildir

geeko@linux:~/Maildir$ cat shared-maildir

tux /home/tux/Maildir-Shared

paul /home/paul/Maildir2

group /home/gruppe/Maildir-groupaccess

Nothing else needs to be done at file/operating system level. Courier does
the rest of the work when somebody subscribes to a folder using the IMAP
protocol. When he next logs in, 3��"� can subscribe to a number of ad-
ditional folders available in the �����
 namespace.3 In order to tell them
apart, Courier completes the short names of the maildirs in the �����
.
	���
��� file:

shared.tux.*
shared.paul.*
shared.gruppe.*

Courier does all of this in the background using symlinks. To do this, it
creates an additional folder named �����
.���
��� in 3��"�’s maildir;

3 Virtual shared folders are available from A������.

164

10.1 Shared Folders

unlike 3��"�’s normal IMAP folders, this folder does not begin with a point.
This shared folder contains the three short names as directories:

geeko@linux:~/Maildir$ ls -l

drwx------ 2 geeko users 4096 10. Mar 22:35 courierimapkeywords

-rw-r--r-- 1 geeko users 187 10. Mar 22:19 courierimapuiddb

drwx------ 2 geeko users 4096 10. Mar 22:24 cur

drwx------ 2 geeko users 4096 10. Mar 22:19 new

drwx------ 3 geeko users 4096 11. Mar 17:27 shared-folders

-rw-r--r-- 1 geeko users 27 11. Mar 17:26 shared-maildirs

drwx------ 2 geeko users 4096 11. Mar 19:17 tmp

geeko@linux:~/Maildir$ cat shared-maildir

geeko@linux:~/Maildir/shared-folders$ cd shared-folders

geeko@linux:~/Maildir/shared-folders$ ls -l

drwx------ 6 geeko users 4096 11. Mar 17:27 paul

drwx------ 6 geeko users 4096 11. Mar 17:27 tux

drwx------ 6 geeko users 4096 11. Mar 17:27 group

If 3��"� subscribes to ���’s 2���� folder, Courier creates a maildir named
����2����. This maildir contains the usual maildir directories ���,
� ,
and �	�, and also a symlink to ���’s actual maildir:

geeko@linux:~/Maildir/shared-folders$ ls -l tux/Party

total 24

drwx------ 2 geeko users 4096 11. Mar 5:30:00 PM courierimapkeywords

-rw-r--r-- 1 geeko users 234 11. Mar 5:30:00 PM courierimapuiddb

drwx------ 2 geeko users 4096 11. Mar 5:30:00 PM cur

drwx------ 2 geeko users 4096 11. Mar 5:30:00 PM new

lrwxrwxrwx 1 geeko users 32 11. Mar 17:27 shared -> /home/tux/Maildir-

Shared/.Party

-rw------- 1 geeko users 1 11. Mar 17:30 shared-timestamp

drwx------ 2 geeko users 4096 11. Mar 5:30:00 PM tmp

Whenever 3��"� logs in, Courier compares the contents of �����
���� to
those of ���; for every file in ���’s original directory, it creates a symlink in
3��"�’s ��� directory:

geeko@linux:~/Maildir/shared-folders$ cd tux/Party

geeko@linux:~/Maildir/shared-folders/tux/Party$ ls -l shared/cur

-rw-r--r-- 1 tux users 3737 11. Mar 17:30 1173630626.M516761P6734V000

0000000000302I000102C8_6.couriertest,S=3737:2,S

-rw-r--r-- 1 tux users 3795 11. Mar 17:30 1173630626.M900691P6734V000

0000000000302I000102D0_7.couriertest,S=3795:2,S

-rw-r--r-- 1 tux users 5052 11. Mar 17:30 1173630627.M359308P6734V000

0000000000302I000102D1_8.couriertest,S=5052:2,S

geeko@linux:~/Maildir/shared-folders/tux/Party$ ls -l cur

total 12

lrwxrwxrwx 1 geeko users 111 11. Mar 17:30 1173630626.M516761P6734V00000

00000000302I000102C8_6.couriertest,S=3737:2, -> /home/tux/Maildir-Shared

165

10 The Work of a Courier Administrator

/.groupwrite/cur/1173630626.M516761P6734V0000000000000302I000102C8_6.cou

riertest,S=3737:2,S

lrwxrwxrwx 1 geeko users 111 11. Mar 17:30 1173630626.M900691P6734V00000

00000000302I000102D0_7.couriertest,S=3795:2, -> /home/tux/Maildir-Shared

/.groupwrite/cur/1173630626.M900691P6734V0000000000000302I000102D0_7.cou

riertest,S=3795:2,S

lrwxrwxrwx 1 geeko users 111 11. Mar 17:30 1173630627.M359308P6734V00000

00000000302I000102D1_8.couriertest,S=5052:2, -> /home/tux/Maildir-Shared

/.groupwrite/cur/1173630627.M359308P6734V0000000000000302I000102D1_8.cou

riertest,S=5052:2,S

Once this has been done, 3��"� can treat this IMAP folder like a personal
inbox, as long as he has the required file permissions. If ��� grants only
read permissions, 3��"� does not have write permissions and may there-
fore neither delete nor add emails.

Access permissions are defined by the user ID and group ID at system level.
The owner of the maildir can only grant read and write permissions for his
or her own user group or for all users on the server. It is not possible to
grant permissions to individual accounts.

Do not forget that clients may still have to subscribe to these newly avail-
able directories.

10.2 Quotas

When asked about the capabilities an IMAP server should have, most ad-
ministrators name quotas as one of the most important. This is under-
standable: There is the constant fear that an ever-increasing volume of data
will become unmanageable, and too many users treat the technology and
infrastructure carelessly. These users often forget that the “couple of GBs”
that are unimportant on their personal computer can quickly add up to
huge amounts of data on company networks or ISP servers with hundreds
or thousands of users; this data is almost unmanageable, and the storage
costs in secure environments can be considerable.

On the other hand, it is worth considering whether and how quotas are
worth using; sometimes, they do more harm than good. In most cases, the
servers have more than enough memory. Quotas are set up to restrict indi-
viduals. If everyone did use this much space, there would not be enough
space. This means that emails are preemptively blocked, even though the
server could still process them.

Low quota limits also introduce vulnerability to denial-of-service attacks.
An account with a restricted quota is flooded on Friday evening, and the
problem is only detected on Monday morning, and by then all subsequent
legitimate emails (including those from paying customers) have been de-
nied.

166

10.2 Quotas

As long as the email server has a lot of free memory, lack of quotas is not
a problem. Also, with or without quotas, MTAs such as Postfix monitor
the free memory and refuse emails before the hard disk is full. Even when
quotas have been set, it is still necessary to monitor the server and the
free memory: Quotas are usually so generous that the sum of quotas for
all users exceeds the size of the hard disk, and so offer no protection from
filling up server memory.

You can still retain control over disk usage even if you do not use quotas.
Simply write a small shell script that determines the inbox size for indi-
vidual users. All you need to do is enter
� .� ; in the maildir’s main
directory; V ���� will show the mailboxes with the largest memory con-
sumption. Now you can give a verbal warning and request the user in
person to tidy up the directory, or you can automatically send a warning
message to the user. This method is often more successful than locking the
account, which can create some bad feelings between you and the user.

Another interesting idea is to block SMTP sending if a user exceeds his
or her quota. You can use the monitoring scripts mentioned to set up this
block. While classic quota bounces affect innocent senders, the SMTP block
affects the owner of the account. If a user exceeds the quota, he or she is
unable to send out new emails.

Not only is this sanction very effective, it also makes sure that users will
notice much more quickly when they exceed quotas. If you use traditional
quota bounces, users will often only find out that they have exceeded the
quota once the senders of (unreceived) emails complain.

The most sensible course is to combine the two quota sanctions: prevent
emails from being sent, and only stop accepting new emails once the next
limit is reached. This prevents dead accounts from accumulating emails for
years.

In the free email sector, quotas can prevent misuse of mailboxes. It makes
sense to balance out the benefits and drawbacks: It can be embarrassing
for companies if emails are returned to external senders because the em-
ployees’ mailboxes are full.

10.2.1 Quotas for Courier

Courier permits quotas on two levels. At file level, the server uses the quota
capability of the Linux kernel and requires user accounts with an individual
user ID. The advantage here is that quotas have nothing to do with the email
system; instead, they are enforced because the email server can no longer
save new emails, which in turn causes the required bounce.

The maildir++ format permits quotas that Courier can evaluate. Quota files
saved in this format also have to be taken into account by the saving Mail

167

10 The Work of a Courier Administrator

Delivery Agent (MDA); 	���
���, ����	���, �����, and
���!��L����
do this. There are a few MDAs that require an extra patch for these quotas.
One of them is the MDA !������, designed by Postfix for MySQL and LDAP
users.4

Quotas at File Level

As long as you work with real shell accounts rather than with virtual ac-
counts, you can use standard filesystem quotas. As emails are stored under
the user ID of the user, they count towards that user’s quota. If the quota
is exceeded, the system prevents the mail server from saving additional
emails.

The mail server usually views such write errors as temporary errors. This
means that emails are not lost, but instead remain in the mail server’s mail
queue; the mail server continues to attempt to deliver them locally to the
hard disk. Emails are only returned to the sender as undeliverable if the
maximum queuing time has been exceeded. For Postfix, the default of
	���	�	�L�����������	� is five days.

The procedure for setting up quotas at file level differs slightly for different
kernel versions, both regarding the names of the commands and the files
to be modified. The following version should apply to 2.4.x and 2.6.x.

First, you have to use the options ���L���� and 3��L���� to tell the 	��
�
command that it should activate quotas for the corresponding partition at
the user or group level. To do this, complete the appropriate ����������
entry:

/dev/sda5 /var/maildir ext3 defaults,usrquota 1 1

Please note that the quotas have to be supported by the filesystem. This is
the case for Ext2, Ext3, and ReiserFS. After this, you have to remount the
partition:

linux: # mount -o remount /var/maildir

Next, you generate the quota database again so that existing files on all
partitions are included if they were mounted using the option ���L���� or
3��L����:

linux: # quotacheck -avug

The top level of the quota partition (in this case, �!���	���
��) should
contain the files �L����#���� and/or �L����#3����. For older kernel ver-
sions, these files are named L����#���� and L����#3����.

4 See �������3��	��
��������	���.

168

10.2 Quotas

Even the best mount options are useless if quotas are deactivated in the
kernel. The commands L�����
 and L������� switch this function on
and off:

linux: # quotaon

Use the �
L���� command followed by a username to specify the quotas
for that user:

linux: # edquota geeko

Disk quotas for user geeko (uid 1000):

Filesystem blocks soft hard inodes soft hard

/dev/sda5 74 0 0 23 0 0

The second column shows the blocks on this partition currently used by
3��"�. You can not modify this value, as it is determined by the files stored.
The next two columns show the soft and hard limits for the user in blocks.
The user may briefly exceed the soft limit, but the hard limit is an absolute
restriction.

Like free data blocks, the number of available inodes is limited, so you can
also specify quotas for inodes. Column five shows the current consump-
tion, and columns six and seven can be edited and show the soft and hard
quotas for inodes.

Simply modify the appropriate columns to change the quotas for a user. 9
means that no quotas have been set. The following example sets a soft limit
of 5,000KB and a hard limit of 7,500KB, as the default block size is currently
1,024 bytes.

Disk quotas for user geeko (uid 1001):

Filesystem blocks soft hard inodes soft hard

/dev/hda5 74 5000 7500 23 0 0

Enter ���L���� to read out all quotas:

linux: # repquota -a

*** Report for user quotas on device /dev/sda5

Block grace time: 7days; Inode grace time: 7days

Block limits File limits

User used soft hard grace used soft hard grace

--

root -- 2443081 0 0 99647 0 0

lp -- 55 0 0 18 0 0

mail -- 1 0 0 1 0 0

news -- 1 0 0 6 0 0

uucp -- 1 0 0 2 0 0

169

10 The Work of a Courier Administrator

games -- 6993 0 0 179 0 0

man -- 1302 0 0 999 0 0

at -- 1 0 0 3 0 0

wwwrun -- 1 0 0 1 0 0

postfix -- 2 0 0 39 0 0

ntp -- 17 0 0 5 0 0

mdnsd -- 1 0 0 6 0 0

messagebus -- 1 0 0 1 0 0

haldaemon -- 1 0 0 1 0 0

nobody -- 1 0 0 1 0 0

geeko -- 74 5000 7500 23 0 0

If your users have shell access to the mail server, they can use the L����
command to find out the current status:

user@linux:~$ quota

Disk quotas for user peer (uid 1001):

Filesystem blocks quota limit grace files quota limit

grace

/dev/hda5 74 5000 7500 23 0 0

Quotas through maildir++

Filesystem quotas are often unnecessary, as the maildir format enhanced
by Courier contains its own quotas. In addition to the three subdirectories
���,
� , and �	�, which are contained in a generic 	���
�� directory
created by 	���
��	�"�, there are some Courier-specific files (maildir++
extensions), some of which are used for quotas.

You can use the 	���
��	�"� call parameter .L to activate quotas in an
existing maildir directory. You can specify a maximum mailbox size in
bytes and/or a maximum number of emails: The command 	���
��	�"�
.L 59999999$K5999+ �
�
��
��<���
�� sets a quota of approximately
10MB or 10,000,000 bytes ($ is short for size) and permits up to 1,000 mes-
sages (+ is short for count). The quotas are triggered if one of the two limits
is exceeded. As usual, Courier manages the settings in small ASCII files.

linux:/home/tux # su tux -c "maildirmake Maildir"

linux:/home/tux # ls -la Maildir

total 20

drwx------ 5 tux users 4096 Jul 28 22:11 .

drwxr-xr-x 8 tux users 4096 Jul 28 22:11 ..

drwx------ 2 tux users 4096 Jul 28 22:11 cur

drwx------ 2 tux users 4096 Jul 28 22:11 new

drwx------ 2 tux users 4096 Jul 28 22:11 tmp

linux:/home/tux # maildirmake -q 10000000S,1000C Maildir

linux:/home/tux # ls -la Maildir

total 24

170

10.2 Quotas

drwx------ 5 tux users 4096 Jul 28 10:12:00 PM .

drwxr-xr-x 8 tux users 4096 Jul 28 22:11 ..

drwx------ 2 tux users 4096 Jul 28 22:11 cur

-rw-r--r-- 1 tux users 36 Jul 28 22:12 maildirsize

drwx------ 2 tux users 4096 Jul 28 22:11 new

drwx------ 2 tux users 4096 Jul 28 10:12:00 PM tmp

You can also create the 	���
����J� file manually for empty maildir di-
rectories and edit it at a later stage to change the quota size:

linux:/home/tux # cat Maildir/maildirsize

10000000S.1000C

0 0

The 	���
����J� file will look different if the maildir contained emails
when the quotas were activated. In this case, 	���
��	�"� measures the
occupied memory and logs this information in the 	���
����J� file.

When new messages are written to the maildir directory, the 	���
����J�
file keeps a quota log: The first column contains the changes in occupied
memory, and the second column contains the number of new and deleted
messages. Courier does not add up the existing values; instead, each soft-
ware component adds one log line showing how much space and how many
emails it has used. Negative values signify that a message has been deleted
and the corresponding amount of storage volume has been freed up.

If ��� has received a few messages in the meantime, the 	���
����J� file
would look like this:

linux:/home/tux # cat Maildir/maildirsize

10000000S.1000C

0 0

523 1

37909 1

2039 1

12976 1

-2039 -1

If a software component wants to check a user’s quotas, it reads the valid
quota settings from the first line and adds up the values from all other lines.
The result shows the occupied memory and the number of files used.

This list naturally increases over time, which means that using this method
to calculate quotas would take far too much time once several thousand
messages have been received. For this reason, Courier runs through all
maildirs from time to time (usually every 15 minutes) and recalculates the
	���
����J� file based on the stored emails. Here is the result after such
a file cleanup, when the maildir showed 51,408 bytes in 3 files for ���:

171

10 The Work of a Courier Administrator

linux:/home/tux # cat Maildir/maildirsize

10000000S.1000C

51408 3

This quota monitoring method assumes that software components with
write access to the maildir understand the 	���
����J� file, process it,
and log new emails in it. This means that mail software not only has to be
compatible with maildir (which is standard), but also with the maildir++
extensions.

Naturally, Courier is capable of this, but the IMAP server is not the only
server with write access to maildirs. The MTA also saves new emails, and
if you use shell accounts, even the local email program may access the
maildir directly instead of via IMAP—��
�, KMail, and other clients can
do this. If the 	���
����J� file is not processed during these interactions,
quotas can be exceeded without attracting notice.

In principle, this is not a problem, as Courier automatically cleans up the
	���
����J� file, recalculates the quotas using all emails, and collects all
the correct data.

One problem remains: The IMAP server is not the most important compo-
nent for quota monitoring. It can be used to upload emails that increase the
data volume, but IMAP sessions usually ensure that messages are deleted
and memory is freed up.

The MTA (Postfix, QMail, Exim) is far more important. After all, when quo-
tas are exceeded it is the MTA that has to refuse emails for the account. For
this reason, the MTA must recognize and evaluate 	���
����J�, or else the
quotas will not be effective. Courier does calculate everything, but who will
activate the emergency brake?

10.2.2 Quotas and the MDA

Nearly all MTAs contain their own separate programs that save emails in
the filesystem. These programs are Mail Delivery Agents (MDAs). Post-
fix preferentially uses ����� or !������; the best-known free MDAs are
����	��� (popular for its filters) and 	���
��� (the Courier project MDA).
These MDAs are interchangeable.

Not all MDAs support quotas, as this function is not part of the original
maildir definition, but is part of the extended maildir++. The free MDAs
�����, ����	���, and 	���
��� are able to use quotas, whereas !������
requires the VDA patch (discussed in the next section).

Check whether the MDA on your MTA can use maildir++ quotas before
you use them. You may have to replace the MDA. It is not really impor-
tant which program saves the file onto the hard disk in the maildir storage
format.

172

10.2 Quotas

Adding Maildir Quotas to !������

Conflicts arise if you need the special capabilities of your original MDA. The
Postfix MDA !������, for example, allows user data including maildir paths
to be stored in MySQL databases or LDAP directories. !������, however,
is not able to use quotas, and often it cannot be replaced with 	���
���.

Now there is a patch for !������, the VDA patch.5 You will, however, have
to compile Postfix and the !������ module yourself. If you do not want to
build your own Postfix, you can add a patched !������ program to your
production system. You can compile this program elsewhere and operate it
in parallel to the unpatched version in the distribution package, so as not
to interfere with the update mechanisms of your distribution. Name the
patched version !������.L����, for example, and copy it to the Postfix
modules (usually to ����������������). Now change the module call in
�������������	�����#�� by replacing the name of the MDA in the line

virtual unix - n n - - virtual

with this:

virtual unix - n n - - virtual-quotas

The
���!��L���� MDA

The
���!��L����MDA from the Courier project naturally supports mail-
dir quotas. It expects the email at the standard input; for the call parameter,
it requires the absolute or relative path to the directory where the email is
to be saved:

linux: # cat mail_file | deliverquota /home/tux/Maildir

If
���!��L���� serves as an auxiliary program for the MTA, it does not
make sense to specify an absolute path to the maildir where the email will
be saved, as emails could then only be delivered to one single inbox. Check
instead which variable(s) your MTA offers, or use a tilde as placeholder for
the home directory.

If you want to have quotas set when the maildir is accessed,
���!��L����
can carry out this task. Simply enter the required quota definition as the
last parameter after the maildir path:

linux: # deliverquota -c -w 90 ~/Maildir 10000000S,1000C

As shown here, the program knows the following call options:

5 See �������3��	��
��������	����.

173

10 The Work of a Courier Administrator

If you add � (create), it will automatically generate any missing maildir
directories, and it will even generate parent directories if necessary. This
makes a call to 	���
��	�"� for new users unnecessary, as the first email
received will trigger the creation of the maildir.

.
�����
 will tell
���!��L���� to deliver a quota warning to a user’s
mailbox as soon as that user has used up more than
�����
 of his or her
quota limit. You can store this warning as a complete RFC-822 email in
�������������L���� ��
	�3, including the mail header and the body.
Courier will only update the message ID and the date:

linux: # cat /etc/courier/quotawarnmsg

From: Postmaster <postmaster@tux.local>

Reply-To: support@tux.local

To: You;

Subject: Warning: Email quotas exceeded!

Mime-Version: 1.0

Content-Type: text/plain; charset=iso-8859-1

Content-Transfer-Encoding: 7bit

Dear user,

Your mailbox is more than 90% full. Please clean up your mailbox, or

you may be unable to receive new messages.

Bear in mind that only 7-bit characters are permitted in the mail header.
This means that special characters in the ���F��� line are invalid unless
they are coded.

���!��L���� has no interest in your user database; it does not search for
the path to the maildir of the recipient, but instead insists on correct call
parameters. This has the advantage that
���!��L���� is fairly easy to use
as an MDA on different systems, as almost every MTA contains a part in
its configuration specifying which program is to save the email. For Postfix,
this information is located in the 	���������		�

parameter in 	��
#��.
This parameter is usually empty:

linux: # postconf mailbox_command

mailbox_command =

At this point we could use
���!��L���� and the call parameters:

linux: # postconf -e "mailbox_command = deliverquota -c -w 90 ~/Maildir"

As Postfix accepts the user ID corresponding to the mailbox before sav-
ing the emails, we can use the tilde (X) to refer to the home directory and
thereby specify the maildir path.

Now use a few short test emails to check whether
���!��L���� and your
MTA work together properly. Check the following things:

174

10.3 Building an IMAP Proxy with Courier

New emails are recorded in 	���
����J�

The length of new emails is already coded in their filename by parameter
$G

10.3 Building an IMAP Proxy with Courier

Section 3.2 on page 50 discussed whether IMAP proxies are suitable and
when. Courier IMAP users have the advantage that they can easily recon-
figure their existing IMAP server into a proxy, as all essential questions such
as authentication or access to the email storage have already been resolved.

In order to decide where to transfer the client’s IMAP connection, Courier
evaluates the 	������� attribute (see section 9.12 on page 144) when a
user logs in. This attribute has to contain the name of the IMAP server that
physically contains the IMAP mailbox.

Three parameters are required in the ��������������	��
 file for the
proxy setup:

�<&2�2'�/DG5 or 2�2��2'�/DG5
These parameters activate the proxy function. Courier searches for
the 	������� attribute. �<&2�2'�/DG9, and 2�2��2'�/DG9 deacti-
vate the proxy function; the 	������� attribute may exist, but it is
ignored.

2'�/D�>�$%�&<�G���
����
If Courier IMAP finds its own hostname in the 	������� attribute,
it may not transfer the connection (to itself), as this would cause an
endless loop. In this case, Courier functions as a normal IMAP server
and accesses its local filesystem.

Courier uses the 3������
�	�AB function to determine its own host-
name; �
�	� .
 will also return this hostname.

If you prefer to specify the name of the IMAP server manually, you
can use 2'�/D�>�$%�&<� to do this. This is necessary if the Unix
hostname differs from the name stored in the LDAP and Courier is
unable to recognize itself.

�<&2�2'�/D�4�'����G9
If Courier transfers the IMAP connection to another Courier instance,
this setting specifies that Courier does not need to use the IMAP com-
mand +&2&����%D to determine the capabilities of the other IMAP
server, as it knows its own capabilities. If Courier is to transfer the
IMAP connection to some other IMAP software, you should set this
parameter to 5.

175

10 The Work of a Courier Administrator

10.4 Push Instead of Pull: The �
�� Command

It is a burden for the mail server if a connected email client searches all
IMAP folders for new messages every few minutes. As a large number of
clients are constantly connected to the server, this creates constant back-
ground activity, and the searches through email folders quickly turn into a
basic I/O burden on the hard disk.

The ���� command in the IMAP protocol deals with this problem: The
server actively informs the client of changes in the email directories. Un-
fortunately, not all email clients support it, even though it has a number of
benefits:

The client is informed immediately when a new message is received, in-
stead of finding it during the next routine check made every few minutes.

It is less work for the server to monitor file changes than for it to let the
email client carry out regular searches.

There is less data traffic (this is why IMAP clients for cell phones in par-
ticular support the ���� command).

As new emails are written to the maildir directories by the MTAs/MDAs,
Courier is not immediately aware of new emails. For this purpose it can
use a file alteration monitor such as FAM.6 A prerequisite is that Courier
was linked to the FAM during compilation. This is the case for SuSE, for
example; SuSE also installs and starts FAM automatically.

Gamin is a second project that claims to be better than the traditional
FAM.7

Red Hat has already replaced FAM with Gamin. In principle, Courier should
work with both tools, as they use identical APIs, according to the Gamin
programmers. FAM and Gamin run in the background as daemons; other
programs can register directories and files with them, and they will then
monitor them for changes and signal when changes occur.

If your distribution allows FAM/Gamin to be used for Courier, you can ac-
tivate the ���� command in the �<&2���>&�+������G5 configuration in
the �	��
 file. You should check the following three items:

Courier has to announce during IMAP login that it supports ����. This
capability should be entered in ��������������	��:

IMAP_CAPABILITY="IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSU

BJECT THREAD=REFERENCES SORT QUOTA IDLE AUTH=CRAM-MD5 AUTH=CRAM-SHA1"

6 See ����������	���	��
����9�������
�.
7 See ����������	���
�	����B3����������
��.

176

10.4 Push Instead of Pull: The �
�� Command

The ��	
 or 3�	����!�� needs to have been started and must be visible
in the process list:

linux: # ps ax | grep fam

2869 ? Ss 45:21 /usr/sbin/famd -t 240 -T 0 -l -L

You should also check for communication problems between Courier and
FAM/Gamin; they will be visible from the following type of entry in your
mail log file:

May 28 17:43:10 kjidder couriertcpd: Error: Input/output error

May 28 5:43:11 PM kjidder couriertcpd: Check for proper operation and

configuration

May 28 5:43:11 PM kjidder couriertcpd: of the File Access Monitor daem

on (famd).

If you do not have performance problems on your IMAP server, you will not
usually need to make any further settings. However, on high-load servers
it is advisable to configure FAM to use fewer resources. The following ��	

call parameters are helpful here:

The FAM daemon terminates by default after five seconds if no client is
connected to it. This is not suitable when using it with IMAP servers.
Specify .% 9; this means that FAM will terminate after 0 seconds (i. e.,
never).

If FAM has to monitor an NFS filesystem, it can not receive information
on file changes from the local Linux kernel. Instead, it uses RPC to con-
nect to the FAM daemon of the NFS server, which then monitors and
transfers any changes locally.

If FAM has not been activated there, the local FAM will check for changes
via NFS every few seconds. You can specify this interval using .� ���� .
The default value is H seconds, which can result in heavy background
activity on busy NFS servers. Usually this parameter is irrelevant, as an
FAM daemon typically operates on the NFS server. If you also specify
the option .�, FAM no longer runs queries via NFS and therefore silently
stops operating when the FAM daemon on the NFS server is not running.

.� ensures that FAM accepts only local client queries. This is suitable for
the IMAP server, but you should never set .� on the NFS server.

You will usually find these configurations in �������	
#��
�. The �
���
��	���� configuration parameter corresponds to .%,
��������
3��
���
!�� fulfils the same function as .�,
�������
3 corresponds to .�, and
�������
�� is identical to .�.

Be careful if you are using SuSE: This distribution contains a �������	
#
��
�, but any entries you make have no effect (at least for OpenSuSE 10.2).

177

10 The Work of a Courier Administrator

Instead, the call parameters are generated from ����������
��3���	, for
some strange reason.

10.5 Sending Emails via the IMAP Server

Did you know that IMAP servers can send emails? This function is deacti-
vated by default in Courier. To activate it, simply define a specific outbox
folder in ��������������	��
:

OUTBOX=.Outbox

This corresponds to ����/#������; that is, to a subfolder under the inbox,
as Courier does not permit directories parallel to the ����/ (see section
8.1 on page 110). You should probably use a name other than ������, as
even users unaware of the special meaning of this directory could set up an
������ folder, which would then behave in an unexpected manner.

Once you have defined the ��%��/ variable, Courier IMAP uses SMTP to
send all emails saved in this directory by the client. Courier can add a
special X header to specify from which account the email was sent:

HEADERFROM=X-IMAP-Sender

This results in the following header entry in the sent email:

X-IMAP-Sender: tux@linux.local

This prevents emails from being sent from an undetectable sender, as the
IMAP login name of the sender is added to each outgoing email. You have
to judge for yourself whether this is desirable.

For each email in the outbox folder, Courier calls �������
���

	��� and
transfers the entire email to it. This ��

	��� program contains all well-
known MTAs—not only Sendmail, but also Postfix, QMail, and Exim. For
this reason, the sending of emails is often controlled from PHP on web
servers.

The tool reads the sender and the recipient from the mail header; then
the local MTA (installed on the IMAP server) sends the email in the usual
fashion.

By default you can only ever send one single email; this is to prevent rico-
chets when a copying action goes wrong. Imagine if you accidentally moved
20,000 messages from your trash folder to the outbox. . . You can switch off
this safety feature if you add the following line to �	��
:

OUTBOX_MULTIPLE_SEND=1

178

10.5 Sending Emails via the IMAP Server

This method of sending emails from the IMAP server sounds unusual; in-
deed, we have only ever used it for test purposes. However, it is not unin-
teresting. More and more providers, WLAN hotspots, and universities are
locking the SMTP port for sending emails. The IMAP outbox solves this
problem, as IMAP connections are frequently possible.

In order to use the folder, you should configure the email client so that
it temporarily saves emails in the outbox instead of sending them imme-
diately via SMTP. At the same time, you set up a correctly named outbox
folder in your IMAP account.

If you can configure your email client to use this new outbox folder as the
outbox, the rest will happen automatically. If this does not work, you un-
fortunately have to drag and drop the messages you wish to send into the
outbox folder.

179

Part III

Cyrus IMAP

11 Ch
ap

te
r

Structure and Basic Configuration

Rumors of the death of the Cyrus IMAP mail server have been greatly exag-
gerated. For many years it was neglected and developed very little, which
led many to consider the project as dead. Four years ago, this changed.
The open source project developed by Carnegie Mellon University began to
gather momentum.

This mail system is named after Cyrus II (also known as Cyrus the Great), a
Persian king who is said to have invented the first postal system in the 6th
century.

Cyrus, as it is usually known, grew out of the Andrew mail and bulletin
board system, which was developed and used at the university in the early
’90s. In the following years the Internet expanded, increasing the require-
ments for mail systems. The existing bulletin board was no longer enough,
and so the Cyrus IMAP project was born.

Cyrus is a system that has grown over time. This is especially noticeable in
the configuration files, which often lack consistency, and where options can

183

11 Structure and Basic Configuration

be switched on and off using a number of values. For more information,
see section 12.2 on page 203.

A Cyrus mail server consists of a 	����� process and a number of sub-
processes. Subprocesses are auxiliary programs that control and assist the
master process. They are described on page 261. The most important of
them are �	��
 (the service for IMAP access), ���� for access via POP3,
and �	��
 and
���!��, which receive emails from an SMTP server and
distribute them to the inboxes.

Figure 11.1 shows the path of an email from delivery by the MTA to delivery
to the user’s inbox, where it can be accessed using POP3 or IMAP.

Figure 11.1:
Basic structure of a

Cyrus mail server Mail Transfer Agent
(Postfix, QMail, Exim, Sendmail, ...)

(Authentication library)

SASL

Cyrus−IMAP
(Manages mailboxes, saves emails)

LMTP
socket

IMAP
port 143 port 2000

timsieved
port 110
POP3

port 25
SMTP

If you want to use a graphical user interface to administer the Cyrus IMAP
daemon and the Sieve server, you have to use a web interface such as
Webmin1 with a plugin.2 Graphical interfaces are also available from Web-
cyradm3 and SmartSieve.4 You should acquaint yourself with the command-
line tools and the configuration files, as otherwise you will not get far, even
with the help of Webmin & Co.

11.1 Installing Cyrus

The easiest way to install an IMAP server is to use the Cyrus packages of
your distribution. In this case, you should be able to rely on the distri-
bution for timely updates in case of security problems. This is why self-
compilation, demonstrated in section C.2 on page 325, has considerable
advantages.

The packages described here as optional contain program modules that you
can install if you require them. The distributions do differ in the way they

1 See ����������	���
��	��
�.
2 See ����������	�������	�������
������
��.
3 See ����������	���,�����
	����.
4 See ��������
������3�	��
��������	����.

184

11.1 Installing Cyrus

split the packages. For example, only Debian allows you to choose not to
install the POP3 server service. SuSE and Red Hat automatically install this
service, and you cannot individually deselect it when selecting the packages
to install.

11.1.1 OpenSuSE/SuSE Linux Enterprise Server (SLES)

On SuSE distributions, Cyrus SASL is usually already installed from the
�����.���� package as the standard authentication service. You only have
to choose the mechanisms and methods it should support by installing the
required packages from the following selection:

�����.����.���		
? permits challenge-response authentication using
the HMAC-MD5-MAC algorithm from RFC 2195 (optional).

�����.����.
�3���	
? permits digest-MD5 authentication according
to RFC 2831; this method is less susceptible to chosen-plaintext attacks5

than CRAM-MD5, permits the use of external authentication servers, and
optimizes the authentication for clients that have recently logged on (op-
tional).

�����.����.����
 permits cleartext authentication (optional, but re-
quired for RFC-compatible servers).

SASL uses �����.����.3����� to support the Generic Security Services
Application Programming Interface (GSSAPI),6 a generic API for client-
server authentication used specifically in connection with Kerberos (op-
tional).

�����.����.��� enables one-time passwords (optional).

�����.����.��������
 provides the SASL authentication service for
Cyrus (optional; see section 13.2.1 on page 212).

�����.����.�L�������� contains the SQL plugin for the ������� SASL
authentication module (optional; see section 13.2.2 on page 213).

You require the following packages for the IMAP server itself:

�����.�	��
 provides the POP3 and IMAP server services.

����.+����.�<&2contains Perl modules required by the additional tools
described in section 15.2 on page 263.

5 See ���������	���������	���������&�����6�������-�6������.
6 See ����������	����	�����������������,�������������������,5=	��
�.

185

11 Structure and Basic Configuration

����.&����
.$&$�.+���� installs Perl modules that are required for
controlling SASL using custom Perl scripts (optional).

����.+����.$��*�.	�
�3����!�provides the ��	���!�
 Sieve imple-
mentation described in section 14.6 on page 240 (optional).

11.1.2 Fedora Core/Red Hat

Before installation, check whether the �	�� package is already installed.
This deals with the UW-IMAP server. This service cannot be operated at
the same time as the Cyrus IMAP server, so you have to uninstall it if it is
there. These are the other packages:

�����.�	��

�����.�	��.�����

�����.����

����.+����

�����.����.����
 (optional)

The last package in this list enables cleartext authentication, which you
should only use in conjunction with an SSL tunnel.

A source RPM of development version 2.3.8, which you can build in Red
Hat, Fedora, and CentOS, is available from ����-�� #�
!���#�������
���"�3��������.�	��
�. However, the distributor does not provide up-
dates and bug fixes for this RPM.

11.1.3 Debian

Debian-DEB package management permits the installation of Cyrus ver-
sions 1.5, 2.0, and 2.2 as alternatives. The most up-to-date version, 2.2, is
recommended for new installations. Please also note that the system will
usually already contain a mail server, the UW IMAP daemon. You must
uninstall this before installing Cyrus.

You require the following packages to operate a Cyrus IMAP server in De-
bian:

�����.�
	�
.,#,

�����.����
��.,#,

�����.��		�
.,#,

186

11.2 The Cyrus Hierarchy and Permissions System

�����.�	��
.,#,

�����.	��
��.,#, (optional; if you want to set up a Cyrus cluster, see
page 281)

�����.

��
.,#, (optional, if you want to integrate news group ser-
vices)

�����.����
.,#, (optional, if you want to offer POP3)

11.2 The Cyrus Hierarchy and Permissions System

The Cyrus IMAP server is organized hierarchically: The email directories,
access control via access control lists (ACLs), and storage space restriction
quotas are all organized in hierarchies. Any changes to the configuration of
a parent directory will automatically affect the descendant directories.

At the filesystem level, every inbox and any other folder is a directory, and
every email is a file in that directory. These files are numbered sequen-
tially. Bear this simple principle in mind, and you will soon know how to
administer your email accounts.

Let’s take user ����’s mail directory as an example. When his mailbox is set
up, he is automatically assigned an inbox corresponding to a standard di-
rectory format, here �!����������	�������������. User ���� then cre-
ates the additional subdirectories ��
�,
����, �����, and a subdirectory
���
��� containing the folders �	�����
� and �
�	�����
�, in order to
organize his emails. At the filesystem level, his inbox now looks like this:

linux: # ls -li /var/spool/imap/user/paul/

115656 -rw------- 1 cyrus mail 3408 Jun 13 13:29 cyrus.cache

115476 -rw------- 1 cyrus mail 184 Jun 10 13:27 cyrus.header

115650 -rw------- 1 cyrus mail 376 Jun 13 13:29 cyrus.index

131128 drwx------ 2 cyrus mail 4096 Jun 13 08:37 folders

115164 drwx------ 2 cyrus mail 4096 Jun 13 08:37 sent

115164 drwx------ 2 cyrus mail 4096 Jun 13 08:37 trash

115164 drwx------ 2 cyrus mail 4096 Jun 13 08:37 drafts

linux: # ls -li /var/spool/imap/user/paul/folders/

115164 drwx------ 2 cyrus mail 4096 Jun 13 08:37 important

115164 drwx------ 2 cyrus mail 4096 Jun 13 08:37 unimportant

When you specify a quota for the directory �������������
���, this af-
fects the folders �������������
�����	�����
�and �������������
��
���
�	�����
�.

The configuration data of the IMAP server is distributed into two different
files. The ����������#��
�file contains the basic settings for the services

187

11 Structure and Basic Configuration

involved in email delivery. This is where the IMAP and POP3 services are
activated and where you specify paths for certain sockets, for example.

The ������	��
#��
�file affects the special functions of the Cyrus server.
It contains, among other things, the global values for email and Sieve di-
rectories; you also define how virtual domains and SSL certificates are han-
dled, and you specify the Cyrus administrator here.

The interaction with the MTA is specified by the MTA’s configuration file(s);
in Postfix, these are �������������	��
#�� and ����������#��
�. This
is discussed in more detail in the following section and in section 14.8 on
page 254.

The working directory for Cyrus is located in �!����������	���. This is
where it creates the users’ mailboxes by default. Cyrus stores the emails in
the user directories and numbers them sequentially; each email is stored
in its own file. The benefit of this method is that an error in the filesystem
will only destroy a single message instead of the entire mailbox.

The �!��������	���file contains the mailbox index databases and a num-
ber of administration files, including status information on the current sta-
tus of individual mail directories. This dual structure is designed to improve
performance when accessing mailboxes, especially when they contain large
files or a large number of small emails. These two directories are described
in more detail on page 275.

11.3 Features and Functions

Like Courier, Cyrus supports shared folders. Using ACLs, it is possible for a
mail user to share individual mailbox folders or entire mailboxes with other
users or the public; email clients can be used to subscribe to these folders.
You can also use these ACLs to assign explicit permissions for individual
directories or entire mailboxes.

You can specify memory restrictions through quotas; these can apply in
general to all newly generated mailboxes or to all mailboxes, and you can
even specify quotas individually for each subdirectory. However, you have
to take into account the directory hierarchy. Every subdirectory’s quota
depends on the quota of the parent directory. However, it is possible to
assign more memory to a subdirectory than to its parent directory.

By the way, Cyrus also allows you to display a quota message to users when
a certain utilization level is reached, which can be specified in percentages
or kilobytes. For more information, see section 14.1.1 on page 226.

When a new mailbox is created, the administrator can assign it in a stan-
dard partition or a dedicated directory, or even store it on an individual
storage device. The documentation always refers to these as mail parti-

188

11.3 Features and Functions

tions, whether they are physical partitions or directories. For more infor-
mation, see section 14.5 on page 239.

Cyrus uses the Cyrus SASL library to authenticate mailbox users.7 Most
distributions contain the required package �����.���� and also use it
for other services. Cyrus SASL is complicated but versatile, and it im-
plements a large number of authentication mechanisms. Use the option
������ ����"�	����
 in the configuration file ������	��
#��
� to spec-
ify which of these mechanisms should be used. You can choose from the
modules ��������
, �������, and ����
��	�

. These in turn provide
a number of authentication plugins and encryption mechanisms, such as
Digest-MD5. Cyrus can use these to call on a number of different data
sources.

By default, passwords are transferred in cleartext, but Cyrus naturally en-
ables encryption of login data. The following mechanisms are available,
depending on the authentication module used:

Login, plain (cleartext)

Digest-MD5 (encrypted)

CRAM-MD5 (encrypted)

Kerberos (encrypted)

Section 13.2 on page 211 deals with authentication in more detail.

Users can use the Sieve filter system to make very detailed configuration
settings for their mailbox. They can also have emails moved automatically
to other directories, set out-of-office notices, and specify other email filters.
Sieve email filters directly affect all incoming emails. When Cyrus receives
an email, it checks the Sieve definitions and then sorts, answers, or deletes
the email. For more information, see section 14.6 on page 240. Cyrus also
automatically detects duplicate emails from their ID number and prevents
them from being delivered a second time.

Cyrus is innately capable of administering mailboxes for virtual domains.
To do this, it simply incorporates the fully qualified domain name (FQDN)
when creating the users’ mailboxes.

In addition, it is possible to specify domain administrators who can access
only the mailboxes within their domain. This function is described in detail
in section 14.3.3 on page 237.

7 SASL is short for Simple Authentication and Security Layer.

189

11 Structure and Basic Configuration

11.4 Quick Start

In addition to the Cyrus IMAP daemon, you should also install the following
software, which will enable you to operate the Cyrus IMAP server properly:

Cyrus SASL
Without the SASL library, users cannot authenticate themselves with
the IMAP server or receive emails. Cyrus SASL consists of plugins that
provide the authentication methods and encryption mechanisms.

If necessary, you can install these at a later stage, for example, after
reading section 13.2 on page 211. In order to enable authentication,
�����.����.��������
 is usually installed by default.

SuSE installs Cyrus SASL, as it is required for authentication by other
services, such as Postfix.

����.+����.$��*�.	�
�3����!� (optional)
Perl modules required for the operation and control of Sieve email
filters.

Perl
A number of auxiliary programs for Cyrus, such as �������
����#��
(see section 15.3 on page 269) or ��
!���.���!�#�� (see section
15.3 on page 269) are written in Perl. A Perl interpreter is required if
you wish to use these modules.

OpenSSL (optional)
We highly recommend installing OpenSSL for encrypted transmission
of user data and emails via TLS/SSL.

MySQL/LDAP/BerkeleyDB (optional)
You will require a database suitable for administering your mail user
information. This database can run on an extra server and does not
need to be installed locally.

These data sources have to be integrated individually. For informa-
tion on specifying query parameters, see section 13.3 on page 215.

You can also use Unix system accounts or the ����
�, minidatabase
provided by Cyrus SASL for user administration.

Postfix or another MTA
Cyrus requires a separate mail transfer agent to receive the emails
that are to be sorted into the IMAP mailboxes. We discuss (and rec-
ommend) Postfix; on page 191, we will describe the interaction be-
tween Cyrus and Postfix. Postfix is installed on the same computer as
Cyrus. However, you can also run the MTA on separate hardware.

190

11.4 Quick Start

The following descriptions are based on the current stable Cyrus version
2.2.12. Experience has shown that they also apply to all other 2.x versions.8

Select the ports you require from the following list and release them in the
firewall protecting the server:

Select port 25 (SMTP) if the MTA runs on the same computer as Cyrus.
For external MTAs, the SMTP port of the IMAP server should only accept
packages from the MTA computer.

Select port 110 (unencrypted POP3 or encrypted POP3) if the TLS tunnel
is initiated using $%&'%%�$.

Select port 143 (unencrypted IMAP or encrypted IMAP) if the TLS tunnel
is initiated using $%&'%%�$.

Select port 993 to use IMAP via SSL/TLS.

Select port 995 to use POP3 via SSL/TLS.

Before Cyrus can provide emails to its users, you first have to set up the
interaction between Cyrus and the MTA. After all, the newly installed Postfix
and Cyrus servers are not yet aware of each other. Postfix receives emails
via SMTP and transfers them to Cyrus for one or more domains; Cyrus then
sorts the emails into the user mailboxes.

The most simple and reliable path is an LMTP socket, which both programs
can use to communicate using the Local Message Transport Protocol (see
page 18). A socket is a file that only exists while the programs are running,
which Postfix uses in this case to transfer the received emails to Cyrus. This
requires that both services run on the same system.

If you want to use the LMTP socket, you first have to modify the appropriate
configuration files for both mail services. First, you have to explain to Cyrus
where the socket for communication between the programs is located. En-
ter the full path (�!�������������������������	�� in this example) in
����������#��
�:

lmtpunix cmd=‘lmtpd‘ listen=‘/var/spool/postfix/public/lmtp‘ prefork=1

Use �	���
�� to specify that this is a Unix-specific LMTP socket. The op-
tion �	
 specifies how to call the service responsible for the socket, and
�����
 tells �	��
 the path to the socket. The value following ������"
specifies the number of Cyrus processes; you do not need to change the
default setting.9 If your email server is very busy and reacts slowly, you can

8 There is an overview of the most up-to-date versions at ����������
��
��	���	�

	
��
����������	��
�A�
��.

9 The ������� value 1 is the default in SuSE.

191

11 Structure and Basic Configuration

experiment by increasing this value. In that case, you should also increase
the working memory.

Cyrus uses the socket given in this example to “visit” Postfix in its work-
ing environment under �!�����������������. This is generally the best
choice of an interface; if Postfix runs from a ������ environment, it can-
not leave its working directory and is therefore unable to communicate with
Cyrus in a different manner.

Now we have to tell Postfix to be responsible for emails addressed to the
required domain(s) and to operate as a relay. To do this, go to the configu-
ration file �������������	��
#�� and define the lookup table ������
�
	��
� that contains these domains:

relay_domains = hash:/etc/postfix/relay_domains

If you want Postfix to accept emails for the domain ���	���#
��, enter the
following in this file (�������������������
�	��
� in this case):

example.net lmtp:unix:public/lmtp

This entry specifies that Postfix should accept emails for domain ���	���#

��. At the same time, specify the transport path in the second column:
Here, we first define the method �	��-�
�� (Unix LMTP socket) and use
��������	�� to specify the path and name of the socket that Postfix should
open. This lets Postfix know where to send the emails it receives. Ob-
serve here that the default working directory of the Postfix master process
is �!�����������������. This is why you only enter the subdirectory ���
�����	��, and not the entire path �!������������������������.

�������������������
�	��
� now contains not only the domain, but
also the information on how to transport emails to this domain. Now com-
plete the ���
������	���entry in the �������������	��
#��file so that
Postfix will actually use this information:

transport_maps = hash:/etc/postfix/transport,hash:/etc/postfix/relay_do

mains

Make sure that you add only the ������
�	��
� file as the transport map.
Conversely, do not enter the ���
����� file into the lookup table ������

�	��
�.

If you do this, every manual routing entry in ���
����� causes Postfix
to accept emails for this domain without checking, which means that it
is an open relay. For this reason, you should continue to maintain two
files: ���
����� should contain all routing rules for other domains, and
������
�	��
� should contain the domains for which Postfix should ac-
cept emails for Cyrus; both should contain the appropriate routing rules.

192

11.4 Quick Start

linux:~ # postmap /etc/postfix/relay_domains

ensures that Postfix can use the file. The command converts the text file
you just edited into a database format that Postfix can read.

Once you have rebooted Cyrus and reloaded Postfix, they can communicate
via the LMTP socket. �!������������������������ should now contain
the socket file:

linux: # ls -li /var/spool/postfix/public/

total 0

114777 srw-rw-rw- 1 postfix postfix 0 May 9 20:17 cleanup

114815 srw-rw-rw- 1 postfix postfix 0 May 9 20:17 flush

114763 srwxrwxrwx 1 root root 0 May 22 11:40 lmtp

114774 prw--w--w- 1 postfix postfix 0 May 22 13:08 pickup

114794 prw--w--w- 1 postfix postfix 0 May 22 13:05 qmgr

114848 srw-rw-rw- 1 postfix postfix 0 May 9 20:17 showq

If the file is not there, it can mean one of two things: One of the services
is not running, or you have entered the wrong path to the socket in one of
the configuration files.

Even if everything seems okay so far, some distributions can still cause
problems. SuSE, among others, has recently begun to install the AppArmor
protection program by default. This program also monitors the way that
Postfix behaves. It compares the current server behavior to a predefined
profile. AppArmor views the behavior of Postfix as abnormal if it attempts
to open the newly created file ������
�	��
�. The kernel blocks any at-
tempt by Postfix to open this newly created file with 2��	�����

�
��

and logs this in the syslog.

To solve this problem, you have to add rules to the AppArmor configura-
tion that permit Postfix to read this file; unfortunately, describing how to
accomplish this task would exceed the scope of this book. Naturally, you
can (temporarily) deactivate AppArmor or even remove it completely.

The settings you have made so far cause Postfix to accept all emails for the
specified domain and transfer them to Cyrus. Cyrus then checks whether
the mailbox of the addressee actually exists. If it does not, Cyrus returns a
bounce email to Postfix, and Postfix attempts to deliver it to the sender.

In order to prevent unnecessary load on the email system, the receiving
MTA should check the entire email address and refuse to process the email
if this is appropriate. This can be achieved with shared user management
for Cyrus and Postfix (e. g., with LDAP or MySQL) and with changes to the
configuration of the MTA. Go to the �������������
��	���parameter in
Postfix and list all the email addresses for which the MTA should accept
emails.

193

11 Structure and Basic Configuration

11.4.1 Authentication and Mailboxes

At this point, you should consider how users will be authenticated. The
simplest way to separate the email users from the system accounts is to
use the minidatabase ����
�,. New mail users and their passwords are
then listed in a Berkeley database, which Cyrus SASL can query. To use this
method, set the authentication method to ������� in the ������	��
#
��
� file:

sasl_pwcheck_method: auxprop

Cyrus SASL now uses the ������� module, which queries the ����
�,
database by default.

Use the ��������
, tool to enter user information in the database. This
tool requests the passphrase for access to the IMAP server; the phrase may
also contain spaces.

First, create the main user �����; this user is the Cyrus administrator be-
cause the value �
	�
�- ����� in the ������	��
#��
� file specifies
this. Do not confuse this user with the Unix system account �����. If you
prefer, you can also specify a different user. The following example will use
the default administrator �����.

linux: # saslpasswd2 cyrus

Password: password for cyrus

Again (for verification): password for cyrus

In order to enable Cyrus to read the database, you have to specify the Unix
system user as the owner of the database, as the server uses the permissions
of that user to operate:

linux: # chown cyrus:mail /etc/sasldb2

If you forget to do this, the Cyrus administration tool ����
	 (see section
15.4 on page 271) will return a very cryptic error message during login,
which does not mention the problem directly:

linux: # cyradm -auth login localhost -user username

IMAP Password: password for username

Login failed: user not found at /usr/lib/perl5/vendor_perl

/5.8.8/x86_64-linux-thread-multi/Cyrus/IMAP/Admin.pm line 118

cyradm: cannot authenticate to server with login as username

Now, create a small number of user accounts for the initial tests:

194

11.4 Quick Start

linux: # saslpasswd2 geeko

Password: secret

Again (for verification): secret

linux: # saslpasswd2 horst

Password: more secret

Again (for verification): more secret

linux: # saspasswd2 paul

Password: most secret

Again (for verification): most secret

Now you still need the mailboxes for the individual users. Use the ����
	
program to create and administer them. Use the following call to log on as
an administrator in the command interface and then create the inboxes for
the three test users:

linux: # cyradm -auth login localhost -user cyrus

IMAP Password: password for cyrus

localhost> cm user.geeko

localhost> cm user.horst

localhost> cm user.paul

localhost> exit

At the filesystem level, the new inboxes are located in �!����������	���
�����. This is defined by the entry ��������
.
������- �!���������
�	�� in the file ������	��
#��
�. You can modify this path to suit your
requirements, and even specify multiple mail partitions, as described in
section 14.5 on page 239.

11.4.2 Tests

The simplest way to test whether Cyrus and Postfix work together correctly
is to use ���
�� from the command line. If you use this method to deliver
an email, you will see any possible errors immediately. Ideally, you should
also run ���� .� �!�����3�	��� at the same time to track the receipt
and delivery of the email.

user@linux:$ telnet localhost 25

Trying 127.0.0.1...

Connected to localhost.

Escape character is ‘^]‘.

220 linux.example.net ESMTP Postfix

HELO mail.example.com

250 mail.example.net

MAIL FROM: <test@example.com>

250 Ok

RCPT TO: <geeko@example.net>

195

11 Structure and Basic Configuration

250 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

Subject: A little test email

test test test

.

250 Ok: queued as 46201188B612

quit

221 Bye

On the server side, the file �!�����3�	��� should contain something like
this:

Apr 26 19:29:45 linux postfix/smtpd[12491]: connect from localhost[127.0

.0.1]

Apr 26 7:30:06 PM linux postfix/smtpd[12491]: 46201188B612: client=local

host[127.0.0.1]

Apr 26 7:30:14 PM linux postfix/cleanup[12548]: 46201188B612: message-id

=<20060426172956.46201188B612@mail.example.de>

Apr 26 7:30:14 PM linux postfix/qmgr[12458]: 46201188B612: from=<test@ex

ample.com>, size=349, nrcpt=1 (queue active)

Apr 26 19:30:14 linux postfix/lmtp[12581]: 46201188B612: to=<geeko@examp

le.net>,relay=public/lmtp[public/lmtp], delay=18, status=sent (250 2.1.5

Ok)

Apr 26 7:30:14 PM linux postfix/qmgr[12458]: 46201188B612: removed

This contains an exact log of the progress of the telnet connection, showing
the receipt and delivery of the email: The ��������� computer delivers
a message created by user account ����8���	���#��	 and addressed to
recipient 3��"�8���	���#
��. The local Postfix next accepts this message
and transfers it to the email server via the LMTP socket; this is confirmed
by ������G��
� A,?9 ,#5#? �"B. If you entered the wrong recipient or
have not created the target mailbox, you will see a log message like this:

Sep 3 11:21:38 linux postfix/smtpd[10476]: connect from localhost[127.0

.0.1]

Sep 3 11:22:18 AM linux postfix/smtpd[10476]: 4D49B1C187: client=localh

ost[127.0.0.1]

Sep 3 11:22:23 linux postfix/cleanup[10487]: 4D49B1C187: message-id=<20

070903092218.4D49B1C187@mail.heinlein-support.de>

Sep 3 11:22:23 linux postfix/qmgr[6383]: 4D49B1C187: from=<test@example

.com>, size=368, nrcpt=1 (queue active)

Sep 3 11:22:23 linux postfix/lmtp[10488]: 4D49B1C187: to=<achim@example

.com>, relay=mail.heinlein-support.de.de[public/lmtp], delay=17, delays=

17/0.02/0.02/0.19, dsn=5.1.1, status=bounced (host mail.heinlein-support

.de.de[public/lmtp] said: 550-Mailbox unknown. Either there is no mailb

ox associated with this 550-name or you do not have authorization to see

it. 550 5.1.1 User unknown (in reply to RCPT TO command))

Sep 3 11:22:23 linux postfix/cleanup[10487]: 8C2001C1AC: message-id=<20

196

11.4 Quick Start

070903092223.8C2001C1AC@mail.heinlein-support.de.de>

Sep 3 11:22:23 linux postfix/qmgr[6383]: 8C2001C1AC: from=<>, size=2548

, nrcpt=1 (queue active)

Sep 3 11:22:23 linux postfix/bounce[10490]: 4D49B1C187: sender non-deli

very notification: 8C2001C1AC

Sep 3 11:22:23 linux postfix/qmgr[6383]: 4D49B1C187: removed

Sep 3 11:22:23 linux postfix/lmtp[10488]: 8C2001C1AC: to=<test@example.

com>, relay=mail.heinlein-support.de.de[public/lmtp], delay=0.03, delays

=0.01/0/0/0.02, dsn=5.1.1, status=bounced (host mail.heinlein-support.de

[public/lmtp] said: 550-Mailbox unknown. Either there is no mail

box associated with this 550-name or you do not have authorization to se

e it. 550 5.1.1 User unknown (in reply to RCPT TO command))

Sep 3 11:22:23 linux postfix/qmgr[6383]: 8C2001C1AC: removed

Sep 3 11:22:24 AM linux postfix/smtpd[10476]: disconnect from localhost

[127.0.0.1]

The delivery attempt ended in the ��	�!�
 status, which means that the
email was removed and not delivered. Instead, a bounce message was re-
turned to the sender.

If you did everything properly, the test email can be viewed in the mail-
box of user 3��"�8���	���#
��. Take a look at the mailbox directory to
confirm this:

linux: # ls -li /var/spool/imap/user/geeko/

total 44

115481 -rw------- 1 cyrus mail 1529 May 12 17:35 1.

115232 -rw------- 1 cyrus mail 5068 May 22 13:40 cyrus.cache

115144 -rw------- 1 cyrus mail 184 Nov 23 23:43 cyrus.header

115218 -rw------- 1 cyrus mail 376 May 22 13:40 cyrus.index

The file 5# contains the first email received in this mailbox. In order to
view it with an email client, the following data is required for IMAP user
3��"�:

The FQDN of the IMAP server (��������� is sufficient for local access)

The username 3��"�

The password �����

Even if email collection now works for the email client, the email server is
still rather rudimentary. You need to change this. After all, what good is
an email server that cannot provide additional functions, safeguards, and
comfort?

197

12 Ch
ap

te
r

A Closer Look at the
Configuration Files

The Cyrus server is controlled by two files: �����#��
� and �	��
#��
�.
The first file controls the behavior of the auxiliary programs delivered with
Cyrus, which assist the mail servers and are used by Cyrus for a number
of other tasks. The second configuration file controls the behavior of the
Cyrus master process, which in turn influences Cyrus subprocesses such as
Sieve and
�����
. This means that �	��
#��
� controls �	��
 as well as
	����� and the subprocesses.

12.1 ��
�����	�����

This configuration file consists of three sections enclosed in curly brackets:
$%&'%(), $�'*�+�$(), and �*��%$(). Many distributions, such as Open-

199

12 A Closer Look at the Configuration Files

SuSE and SLES, contain a configuration like that described below, whereas
you have to create it manually for other distributions (such as Debian and
Gentoo). Use a hash mark (U) as a comment character to deactivate entries
that you do not need.

12.1.1 The ������� Section

The $%&'%() section specifies services and auxiliary programs that are to
be run when Cyrus is started and before the (email) services are started.
The ����!�� entry ���������
� .�, for example, defines a command that
tidies the Cyrus database when the program is started and restores it in case
of a crash:

START {

Do not delete this entry

recover cmd=‘ctl_cyrusdb -r‘

Only required when using idled for IDLE

(default: activated)

idled cmd=‘idled‘

}

�
��
 informs the email client of changes to the user mailbox, for example,
when a new message is received. In order to do this, it uses the ���� IMAP
command. You can deactivate this service, but then the email client has
to query the mailbox at regular intervals, regardless of whether it contains
new messages. For more information on this subject, see section 10.4 on
page 176.

12.1.2 The ����� ���� Section

This section defines services that Cyrus uses to communicate with the out-
side world. You can specify, for example, which services should receive,
send, or filter emails. Use the �����
 option to specify a port or socket
that a service should use to exchange data.

SERVICES {

imap cmd=‘imapd‘ listen=‘imap‘ prefork=1

imaps cmd=‘imapd -s‘ listen=‘imaps‘ prefork=1

pop3 cmd=‘pop3d‘ listen=‘pop3‘ prefork=1

pop3s cmd=‘pop3d -s‘ listen=‘pop3s‘ prefork=1

sieve cmd=‘timsieved‘ listen=‘sieve‘ prefork=1

You require one of the two LMTP types to receive emails from the MTA

lmtp cmd=‘lmtpd‘ listen=‘lmtp‘ prefork=0

lmtpunix cmd=‘lmtpd‘ listen=‘/var/spool/postfix/lmtp‘ prefork=1

200

12.1 ��
�����	������

Only required if the notifyd notification service is used

(The contents of the following two commented-out lines should be

in one single line.)

notify cmd=‘notifyd‘ listen=‘/var/lib/imap/socket/notify‘ proto=‘udp‘

prefork=1

}

The �	�� entry starts the IMAP service used by the email client to manage
the mailboxes. The service is to wait for client queries on the �	�� port (i.e.,
port 143) and should only run on one single instance (������"G5). The
same applies to �	���, with the difference that �	��
 uses the .� switch to
create a secure SSL/TLS connection. For this purpose, you have to config-
ure Cyrus with TLS/SSL as described in section 13.1 on page 208. The en-
tries for unencrypted and encrypted POP3 access have the same structure,
but they use the ���� command instead of the �	��
 command. ���!�
starts the ��	���!�
 email filter service, which is discussed in detail in
section 14.6 on page 240.

�	�� defines the service that accepts emails from the MTA. It can do this on
the �	�� port or the �	�� socket. If the socket is used, the service is started
with �	���
��. If you run LMTP via a port, you first have to define it in the
��������!���� file, as there is no predefined port for LMTP. Port 24 is the
port designed for this purpose, so the additional entry in ��������!����
should look like this:

linux: # cat /etc/services

[...]

lmtp 24/tcp any private mail system

lmtp 24/udp any private mail system

[...]

Once activated, the
����� entry calls the Cyrus information service (see
section 14.7 on page 252), which notifies the user or administrator when
messages are received in a mailbox. The data protocol is set to �
� for this
service.

If you want to test Cyrus and another email server simultaneously on the
same computer, you can replace the standard ports ����, �����, �	��, and
�	���with other port numbers or names (as defined in the ��������!����
file) after the �����
 attribute.

12.1.3 The ���!���� Section

The last section of the configuration file lists services and tools that are
executed at regular intervals by default. These are mainly services that carry
out regular maintenance tasks. This area could also be described as the

201

12 A Closer Look at the Configuration Files

“crontab” for Cyrus. These are the standard Cyrus maintenance programs
that are entered here:

EVENTS {

Always required

checkpoint cmd=‘ctl_cyrusdb -c‘ period=30

Only required if you want to activate the suppression of duplicate

emails

delprune cmd=‘cyr_expire -E 3‘ at=0400

Only required if the TLS cache should be deleted regularly

tlsprune cmd=‘tls_prune‘ at=0400

Only comment out the following entry if Cyrus

should regularly delete old messages for EVERY (!) user. In

this example, the ipurge service is called every 60 minutes and then

deletes all messages older than 30 days.

’man 8 ipurge’ provides more details on this service

cleanup cmd=‘ipurge -d 30 -f‘ period=60

}

The ���������
�command after ����"���
� checks the Cyrus index data-
bases regularly (every 30 minutes in this example) and attempts to remove
any problems (thanks to option .�).

The
�����
� entry uses the ���������� command to prevent duplicate
emails from being delivered (in our example, this is done every day at 4
AM). An email could be duplicated, for example, because the sender has
sent it both to the list address and Cc:’d it to the user’s personal address.
The .� � switch in the example above ensures that only entries older than
3 days are affected.

Cyrus can “remember” TLS sessions so that it does not need to create a
new TLS encryption for every contact of that same client. The �������
�
command entered after ������
� cleans the TLS session cache, if it is in
use, at the time specified by �� (every morning at 4AM in our example).

The ����3� command in the ����
�� entry automatically deletes all emails
at specified intervals (every 60 minutes in our case). The .
 �9 option in
the example above ensures that only entries older than 30 days are affected.
You can also filter emails by size in bytes (.�), kilobytes (."), and megabytes
(.), with each switch followed by a space and the desired value. The .�
switch means that emails are deleted not only from the inbox, but also
from all email directories underneath the inbox. You can use the .� option
to invert the specified filter value: thus, the .� .
 �9 option only affects
emails newer than 30 days. You should only activate the ����
�� entry if
you and your users require this cleanup, as emails cannot be restored once
they have been deleted.

202

12.2 ��
������������

12.2 ��
�����������

The IMAP server’s main configuration file contains key-value pairs sepa-
rated by a colon, for example, ��
��3
��������- �!��������	��. Mul-
tiple values are separated from each other with spaces.

Use one of the following values to activate an option: 5, ���, �
, �, or ����.
Conversely, 9,
�, ���, �, and ����� deactivate an option. Unfortunately,
the preconfigured �	��
#��
� files are inconsistent in the use of these val-
ues. The examples in this book also stem from production servers that use
inconsistent values, which mirrors the chaotic manner in which the original
configuration files developed; this is something you learn to deal with.

�
	�
�
This option defines the admin accounts for mailbox administration.
The default administrator is the user ����� (see also section 14.3.3
on page 237):

admins: cyrus

���� �
�
�	�����3�

If this option is set to a positive value such as ���, it permits visitors
to log in. By default, this is not permitted. It can make sense to
activate this option if, for example, you provide shared folders on
your mail system and want them to be accessible to users who do not
have an email account on your server.

These users then create an account for user �
�
�	��� on their email
clients, and this user can access the IMAP server with any password.
This account does not have an inbox, but visitors can use it to sub-
scribe to all shared folders available to the Cyrus user �
��
�.

����������L����
If you enter a value other than 9, Cyrus will automatically create mail-
boxes for new users when they first log in, and then limit the memory
available to these mailboxes to the quota value you specify here (see
section 14.1.1 on page 226). This only works if an account name and
password have been defined for that user account. If these have not
been defined, no mailbox is created. A negative value (.5, for ex-
ample) for ����������L���� removes the quota. This option only
affects newly created mailboxes, not existing ones.

��
��3
��������
This option specifies the storage location for the Cyrus administra-
tion directory. In SuSE, the default value is �!��������	��.

������
�	��

This option defines the domain for email accounts without an ex-
plicit domain definition; these user mailboxes are unqualified user

203

12 A Closer Look at the Configuration Files

mailboxes. This option is required if your server handles virtual do-
mains (see page 232).

�����	�������
If you activate this switch, Cyrus generates a hash value for every
mailbox directory. This improves performance, but it only affects in-
boxes with widely branching subdirectory structures.

�	����!��L��������	��������
When this switch is activated and a user’s mailbox is full, Cyrus re-
fuses to accept emails via the LMTP socket and returns a permanent
error. This entry is only useful if you have set quotas.

�	���
�
���������
If this switch is activated, it ensures that Cyrus automatically converts
the recipient’s email address into lowercase characters. Even though
the local section of an email should be case sensitive according to the
RFC, it can reduce the number of support requests if you only allow
lowercase characters.

	��	����3���J�
If you specify a value for this option (in bytes), Cyrus refuses all emails
via the LMTP socket that exceed this value. However, this task should
really be carried out by the MTA operating as MX for the domain,
and not by Cyrus, so as to prevent the emails from getting into the
email system in the first place. This reduces the workload and thereby
improves performance.

��������
.
������
This option defines the storage location for mailboxes, usually �!���
�������	�� (see also section 14.5 on page 239).

�����	����
This option specifies the time period (in minutes) after which an in-
active POP3 connection to an email client is terminated. The mini-
mum permitted value is 10 minutes.

L���� ��

This value (in percent of allowed maximum quota) specifies when a
quota message is sent to the client during login. You can also use
L���� ��
"� to send a quota message when a certain mailbox size
in kilobytes is reached (see section 14.1.1 page 226).

��F���I���
If this switch is activated, Cyrus rejects emails if they have eight-bit
character sets in the email header instead of the standard seven-bit
character sets. If this option is deactivated, Cyrus replaces eight-bit
characters in the email header with an /.

204

12.2 ��
������������

���!�
��
This option specifies the working directory for the Sieve email filter
service (see section 14.6 on page 240); for SuSE, it is

sievedir: /var/lib/sieve

This directory contains the filter settings for the alphabetically sorted
user mailboxes that the Sieve daemon manages. It is usually not nec-
essary to access it manually.

������ ����"�	����

This option specifies the method that Cyrus SASL uses to authenticate
users. You can use �������, ��������
, and ����
��	�

. Section
13.2 on page 211 deals with authentication in more detail.

��	����
After how many minutes should the IMAP server terminate an inac-
tive connection to an email client? The minimum value is 30 minutes,
and there is no upper limit. Cyrus will ignore any values lower than
the minimum.

�
��������������
This is an important switch if you use virtual domains (see also sec-
tion 5 on page 235). Usually, Cyrus uses a dot as the separator when
mapping mailbox structures. However, if you use mailboxes contain-
ing the users’ first and last names, you should use the Unix separator,
a forward slash (�), instead. To do this, activate �
��������������.

����
�	������ ��
If this option is active, all usernames are automatically converted to
lowercase. This makes authentication less prone to errors, but it is
only possible if the authentication source (LDAP, for example) is not
case sensitive.

!���
�	��
�
If this switch is activated, Cyrus can handle virtual domains. For more
information on this subject, see section 14.3 on page 232.

If you wish to use SSL/TLS to encrypt the connection, you also have to
specify the paths to the SSL certificates and SSL keys:

�������������
This option specifies the path to the email server’s certificate:

tls_cert_file: /usr/ssl/certs/servercert.pem

����"�������
This option specifies the path to the email server’s key:

205

12 A Closer Look at the Configuration Files

tls_key_file: /usr/ssl/certs/serverkey.pem

�����������
This option specifies the path to the certificate of the certification
authority (CA):

tls_ca_file: /usr/ssl/CA/CAcert.pem

�����������
This option specifies the path to the directory containing the CA cer-
tificate and the file with its hash value:

tls_ca_path: /usr/ssl/CA

If you use option ����������� to explicitly specify the CA certificate,
you do not need to set �����������.

For more information on SSL certificates, see section 13.1 on page 208.

The following two options are only mentioned because SuSE writes them
to ������	��
#��
�, though they have no effect on their own even when
activated. They activate Dynamic Relay Authorization Control (DRAC),1 a
technology enabling POP/IMAP before SMTP (also known as SMTP after
POP):

����
���!��
If you enter a value other than 9, you activate POP/IMAP before
SMTP. This value specifies how many minutes the client has to send
emails via SMTP after POP3 or IMAP login.

�������
This is the hostname of the server providing the DRAC service. With
the exception of specific setups, this is always ���������.

Cyrus has to be patched manually for these options to have any effect,
as DRAC is not part of the official suite and is hardly ever used anymore.
SuSE distributions contain the patch; it is available under �����������
��
����"�3��������.�	��
���
�����
��������#�����, along with the do-
cumentation. For more information, go to ����-��	���#��#�	�
�����#
���
����.

There are other options that are required only for special scenarios; these
include the integration of authentication sources such as LDAP and MySQL
servers, as described in section 13.2 on page 211, and cluster setups, which
are described in more detail in section 17.1 on page 281.

1 See �������
���	��	

�������	��������.

206

13 Ch
ap

te
r

Authentication and Safeguards

You have cleared the first hurdle and the email server works. After a quick
breather, you should next consider the subject of safeguards. In principle,
you can transmit email data across the network in cleartext, but nowadays
every responsible postmaster should safeguard such an important means
of communication and protect users’ data as well as possible. This chap-
ter deals with two basic security measures: encrypting the data stream and
safeguarding the authentication process. You should always offer these op-
tions to your users, or even require them.

Administrators also need to know how to protect the communication of the
servers in their own network if not all system services, such as email servers
and authentication sources, operate on the same computer. In this case,
without additional measures, user and authentication data is sent across
a more or less unsafe network, and should therefore not be transmitted in
cleartext if at all possible.

207

13 Authentication and Safeguards

13.1 Encrypting with SSL/TLS

Authentication data from mail clients and the transmission of emails should
always be treated in a highly confidential manner. For the email server, this
means encrypting the data stream used by the clients to send authentica-
tion data and emails. This then permits the use of authentication mecha-
nisms that transmit passwords in cleartext.

Nearly all email servers and clients meet the requirements for building up
encrypted connections via SSL/TLS, as does the Cyrus daemon. The fol-
lowing practical example shows how to integrate OpenSSL into Cyrus.

13.1.1 SSL Transmission Types

The Cyrus IMAP server supports two implementations of Transport Layer
Security: with $%&'%%�$ and as an SSL wrapper. The difference between
these methods is the point in time when encryption begins.

In the first case, the client connects to the normal IMAP port 143 and exe-
cutes the $%&'%%�$ command. The client and server then encrypt the data
stream. This also applies for POP3 connections via port 110, but in that
case the command is $%�$.

The SSL wrapper is an additional mode in which Cyrus listens on a port
dedicated to IMAP via SSL (port 993) or POP3-SSL (port 995). When the
client connects to one of these ports, the data stream is encrypted before
the IMAP session begins. Cyrus supports this function automatically if it
was compiled with OpenSSL support. Both of these methods require a key
infrastructure.

13.1.2 Real and Fake Certificates

The technical functioning of data stream encryption is not affected by your
choice of certificate; you can use a certificate from a commercial certifi-
cate authority (CA) or create your own SSL certificate. This is a cosmetic
decision as long as you do not permit cleartext authentication. However,
if clients transmit user passwords to the server in unencrypted form, the
users should be able to check that they are sending their sensitive data to
the correct server. This only works properly if the server certificate has been
certified by a trustworthy certificate authority or issued by a trustworthy
member of a trust network.

Most email clients contain a prepared list of trustworthy certificate authori-
ties. When a client connects to an email server that sends its public SSL key,
it checks its local list of trustworthy certificate authorities. If you use a cer-
tificate from a “real” certificate authority, the client finds the corresponding
entry and is satisfied.

208

13.1 Encrypting with SSL/TLS

However, if you use a “fake” certificate or one you created yourself, the
client will not find it in this list. The user then receives a warning message
that the email server may not be trustworthy. Security-conscious users will
terminate the connection immediately and call up the support hotline. If
you do create your own certificates, you should inform your users in ad-
vance about the certificate your server uses, or provide a sample certificate
on your website that users can download.

In this case, even security-conscious users will usually accept the certificate
(once they have checked it), and the email client will trust your email server
from this point onward. There are clients that do not save this information
permanently and display the warning message to their users every time;
examples include older versions of Outlook and TheBat.

Unfortunately, free certificates such as those provided by OpenCA1 or Ca-
Cert2 can also cause problems: Although open source clients such as Mozilla
Thunderbird accept these certificates, Outlook and others insist on com-
mercial certificates, which are not cheap and pour money into the coffers
of the CA companies. If you use a free certificate, it is advisable to inform
your users that more and more people are joining together to form an al-
ternative trust network that provide real and free certificates for everyone.

13.1.3 Creating and Integrating SSL Certificates

You can create your own certificate with OpenSSL for test operation, even
if you plan to use a real certificate with a public key from a CA for actual
operation.

You can store the certificate in a directory (e. g., ��������); if it does not
exist, use 	"
�� ��������� to create it before calling ���
���. The fol-
lowing command creates an SSL certificate according to the X.509 standard.
This certificate is valid for 1,460 days (4 years); use the ���
���.��L op-
tion .
�
�� to store it in unencrypted form in directory ���������, along
with the corresponding private key:

linux:/usr/ssl # openssl req -new -x509 -nodes -out /usr/ssl/server.pem \

-keyout /usr/ssl/server.pem -days 1460

Generating a 1024 bit RSA private key

....................++++++

..++++++

writing new private key to ’/usr/ssl/server.pem’

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a

1 See ����������	������	����.
2 See ����������	������	����.

209

13 Authentication and Safeguards

DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:DE

State or Province Name (full name) [Some-State]:Berlin

Locality Name (eg, city) []:Berlin

Organization Name (eg, company) [Internet Widgits Pty Ltd]:My company

Organizational Unit Name (eg, section) []:Email sending department

Common Name (eg, YOUR name) []:mail.example.com

Email Address []:peer@example.com

You have to enter the name of the email server in the +�		�
 ��	� field.
The users enter that name in their email clients as the email server name.
If these entries do not match, the clients will display a warning that the
connection is probably not trustworthy.

The ������������!��#��	 file contains the private server key as well as
the public certificate, so only the ���� user may have read access to this
file. Use ��	�
 :99 ������������!��#��	 to change the permissions.

The current Cyrus IMAP version supports OpenSSL by default, whereas you
may have to add this support in older versions. For information on how
to do this, see section C.2.4 on page 329. Enter the following values in the
������	��
#��
� file to activate SSL support:

tls_cert_file: /usr/ssl/server.pem

tls_key_file: /usr/ssl/server.pem

Enter the path to the certificate file in ������������� and the path to the
private key file in ����"�������. If you use a certificate from a real CA, you
should activate the following options so that the email server can evaluate
the correct CA certificate:

tls_ca_file: /usr/ssl/CA/CAcert.pem

tls_ca_path: /usr/ssl/CA

This is where you enter the file containing the CA certificate and the path
to the directory containing the CA certificate as a hash value. This ensures
that the CA certificates have not been modified.

If authentication is done through a secure SSL tunnel, you can use authen-
tication methods that transmit the password in cleartext. In this case, you
should only permit encrypted connections via SSL. To make the necessary
settings in the ����������#��
� file, open the corresponding ports for
IMAP/IMAPs and POP3/POP3s in the $��!���� section, or close them by
prefixing them with a comment character:

210

13.2 Cyrus SASL

UNIX sockets start with a slash and are put into /var/lib/imap/socket

SERVICES {

add or remove based on preferences

imap cmd="imapd" listen="imap" prefork=0

imaps cmd="imapd -s" listen="imaps" prefork=0

pop3 cmd="pop3d" listen="pop3" prefork=0

pop3s cmd="pop3d -s" listen="pop3s" prefork=0

[...]

}

This setting permits login via SSL and without encryption.

You can also configure the server so that cleartext passwords are only per-
mitted if the client has built a TLS/SSL tunnel. For more information, see
section 13.2 on page 211.

You have to restart the IMAP daemon before your Cyrus IMAP server will
provide data stream encryption via TLS/SSL to the clients. Use ���� .� to
view the open IMAPs and POP3s ports:

[...]

master 10895 cyrus 5u IPv6 35505 TCP *:imap (LISTEN)

master 10895 cyrus 11u IPv4 35509 TCP *:imap (LISTEN)

master 10895 cyrus 14u IPv6 35513 TCP *:imaps (LISTEN)

master 10895 cyrus 17u IPv4 35515 TCP *:imaps (LISTEN)

master 10895 cyrus 20u IPv6 35519 TCP *:pop3 (LISTEN)

master 10895 cyrus 23u IPv4 35521 TCP *:pop3 (LISTEN)

master 10895 cyrus 26u IPv6 35525 TCP *:pop3s (LISTEN)

master 10895 cyrus 29u IPv4 35527 TCP *:pop3s (LISTEN)

master 10895 cyrus 32u IPv6 35531 TCP *:sieve (LISTEN)

master 10895 cyrus 35u IPv4 35533 TCP *:sieve (LISTEN)

[...]

It is advisable to read �!�����3�	����3�� and �!�����3�	���when you
modify or add configuration settings. This will enable you to detect errors
that are not mentioned when the program is started. You can also use a
packet sniffer such as ���
�	� to check that the login is really encrypted
and that no user information is visible in the TCP packages.

13.2 Cyrus SASL

The makers of the Cyrus IMAP server also provide a library that implements
the Simple Authentication Security Layer (SASL). The Cyrus IMAP daemon
is not the only program to use �������, or Cyrus SASL, as it is also known;
third-party programs use it to access the modules it controls, which in turn
provide access to a number of authentication sources.

211

13 Authentication and Safeguards

13.2.1 Cyrus SASL Modules

The ������ ����"�	����
 entry in the ������	��
#��
� file specifies
which module is used.

The ��������
 Authentication Service

��������
 is not actually a module, but rather an independent authentica-
tion service that Cyrus addresses like a module. It simply receives cleartext
passwords and compares them to a number of data sources using plugins:

3��� �
�
This module permits access to passwords in the ����
 configura-
tion file in Unix systems.

���
�
This module permits access to the user data in the complementary
Unix configuration files ����
 and ���
� .

"�������:
This module permits access to Kerberos-4 servers.

"�������?
This module permits access to Kerberos-5 servers.

��	
This module uses Pluggable Authentication Modules.

��	��
This module sends authentication requests to an IMAP server. This
plugin is only useful in conjunction with third-party programs such
as Postfix, which use the authentication sources set up for the IMAP
server.

�
��
This module queries the user data on an LDAP server.

��������
 is an independent service, so it is controlled from its own con-
figuration file. You only need to specify in ������	��
#��
� that ����
����
 is to be used. Specify which plugin should be used in ����������

��3���������
:3 $&$�&�%>��&�%><�+>G��	, for example, means that the
PAM plugin will be used. If you do not specify a plugin in the ��������

configuration file, ���
� is used automatically.

3 This is a SuSE-specific path; in Debian and other distributions, you can often specify
this directly in ����������
���.

212

13.2 Cyrus SASL

PAM is an exception among plugins. It is not a method that directly queries
one data source, but a system that transfers this task to a real authentication
service. This makes the setup more complex, but this detour means that all
PAM data sources are available to the Cyrus mail server, including finger-
prints and iris scans. You can find such a module at ����-�� #"��
��#
��3�������
����������	�	�
����#��	�, among other sites.

13.2.2 The ������� Module

The ������� module also uses a collection of plugins for authentication. It
can use the following plugins to access data sources:

����
�
This module permits access to the minidatabase ����
�,.4

�
��
�
This module queries an LDAP server.

�L�
This module obtains the authentication data from an SQL server.

Unlike the ��������
module, ������� attaches great importance to secu-
rity and permits authentication by methods such as CRAM or DIGEST-MD5.
Both procedures transmit hash values instead of user passwords, and they
check these hash values during authentication. DIGEST-MD5 is newer and
is viewed as more secure.

If you do not specify a plugin in the ������	��
#��
� configuration file,
����
� will be used automatically.

Using the ����
��	�

Cyrus SASL can also use the ����
��	�

module to call the Courier IMAP
authentication service (see section 9.2 on page 122) and thereby access
MySQL, LDAP, and PostgreSQL data. This is only suitable as an authen-
tication source for a Cyrus IMAP server in special circumstances, such
as migrating from Courier to Cyrus or adding a Cyrus IMAP server to an
existing Courier IMAP server. This module is only capable of handling
cleartext passwords. The following is an example of a suitable entry in
������	��
#��
�:

sasl_pwcheck_method: authdaemond

sasl_authdaemon_path: /var/run/authdaemon.courier-imap/socket

sasl_mech_list: PLAIN LOGIN

4 The predecessor, ������, is only used in very old versions of Cyrus-SASL 1.x and is no
longer relevant for current Cyrus IMAP versions.

213

13 Authentication and Safeguards

First specify the module. Then tell ����
��	�

 where the socket for the
Courier authdaemon is located. Then specify the password encryption
method; in this case, it has to be cleartext, as the module is not capable
of encryption.

The Outdated � ����" Module

This authentication service was used until Cyrus version 1.5; it can only
read the files ����
 and ���
� . It was replaced by ��������
 and is
only supported for reasons of backward compatibility. This service only
operates with cleartext passwords.

There are a number of patches by other providers for all authentication
modules, but these are not officially supported. One of these5 modifies
� ����" so that this service can query an LDAP database.

13.2.3 The Authentication Process

As soon as an IMAP client contacts the Cyrus server, the server offers the
client all the supported authentication mechanisms. Depending on the
module, these can be as follows:

2�&�� is the method used by Unix systems to transmit cleartext pass-
words, and ����� is the method adapted for Microsoft Outlook.

+'&<.<�? and ����$%.<�?both encrypt the user password and compare
the calculated value during authentication. ����$%.<�? is newer and
more secure than +'&<.<�?.

1�'��'�$�*: and �$$&2� (Kerberos 5) are two methods that can be
used.

�/%�'�&� enables the integration of additional mechanisms (not dis-
cussed here).

When choosing a module, you should only make cleartext mechanisms
available to your users if the cleartext passwords are transmitted on a con-
nection encrypted with TLS/SSL.

The mechanisms provided by the client must also be available and sup-
ported by the authentication module. Only enter those mechanisms in the
������	��
#��
�file that are actually available, for example, �����	����
����- 2�&�� ����� for transmission of passwords in cleartext. If you
want to provide more than one mechanism, simply write one after the other
and separate consecutive mechanisms with a space.

5 See ����������	�
��	���	
������������.

214

13.3 Calling Different Data Sources

The client can then choose its favorite mechanism (usually the safest) from
that list and send a corresponding request to the email server. If you of-
fer authentication mechanisms that are not provided by the authentication
service and the data source, the system may not be able to authenticate the
user.

The Cyrus IMAP daemon uses ������� to transfer the query from the
client to the authentication service configured with ������ ����"�	����

in the ������	��
#��
� file. This service consults the appropriate data
source and returns the result to the daemon.

13.3 Calling Different Data Sources

If you wish to use the Cyrus IMAP daemon in a larger environment, you will
probably already have a central data source containing user data for other
services. Cyrus can access many of these once it has been configured to do
so.

13.3.1 Standard Authentication Methods for Unix

In its default state, the Cyrus email server uses the ��������
 authentica-
tion method with the ���
� plugin, which means that it uses Unix system
accounts. In this case, you have to use the usual tools to create a new
system user for every new mailbox, for example:

linux: # useradd zoidberg

linux: # passwd zoidberg

Changing password for zoidberg.

New Password: zoidbergs_password

Reenter New Password: zoidbergs_password

Password changed.

This command creates a Unix account for user J��
���3, which means
that it generates the required entries in ���������
 and ��������
� .
Once you have done this, Cyrus can authenticate the new user.

However, creating a new Unix system account for every new Cyrus user is
not only superfluous but also a potential security risk.

In general, it is advisable to use a different authentication mechanism, as
this method becomes unwieldy if you have more than a few hundred users.
It is also quicker to search databases if they are text files, which in turn
improves the email server performance.

215

13 Authentication and Safeguards

13.3.2 ����
�"

����
�, is a quick, easy, and relatively secure method for authenticat-
ing users. This method uses the authentication module ������� with the
����
�, plugin. The required configuration for the Cyrus IMAP daemon is
described in section 11.4.1 on page 194.

However, this miniature user database quickly reaches its limits if, for ex-
ample, you want to map groups as well as usernames and passwords. ����

�, is not capable of this or of central user management for multiple ser-
vices. This is only possible with a real database management system (such
as MySQL) and with LDAP.

13.3.3 Cyrus and MySQL

When Cyrus was first conceived, it was not designed to be connected to a
MySQL database, but this connection works thanks to PAM. MySQL is now
easier to set up and connect than other external data sources such as LDAP.

The ������� plugin

You can now use the SASL plugin �L�, which connects to MySQL via the
������� authentication library. Make sure that Cyrus SASL is compiled
with support for MySQL. The prepared packages of current distributions
have already done this.

If you compile Cyrus SASL yourself, you have to set the ��
��3��� param-
eter .. ���.	��L�G�����������	��L� (see section C.2.3 on page 326).

In order to connect Cyrus to a MySQL database using the ������� plugin
�L�, you have to go to the ������	��
#��
�file and define the access data
for the database and the SQL command that compares the transmitted user
data to that in the database:

sasl_pwcheck_method: auxprop

sasl_auxprop_plugin: sql

sasl_sql_engine: mysql

sasl_sql_hostnames: localhost

sasl_sql_user: sqlusername

sasl_sql_passwd: sqlpassword

sasl_sql_database: cyrus

sasl_sql_verbose: no

sasl_sql_select: SELECT password FROM cyrus_email WHERE username = ’%u’

AND active=’1’

sasl_sql_usessl: 0

You can specify multiple SQL servers in ������L������
�	��. Separate
them with commas. You can also specify a port:

216

13.3 Calling Different Data Sources

sasl_sql_hostnames: localhost, 192.168.0.33:3306

Set ������L��!������ to ��� for debugging in order to make the log mes-
sages in the syslog more explicit.

������L��������- 9 specifies that the connection to the database server
will not be made via an SSL tunnel. Use the value 5, for example, to activate
this function.

In this example, the SQL command defined in ������L�������� searches
the �������	��� database table for the password matching the username
specified during login (Y�), but only if the value for ����!� is set to 5 in the
table. Defining such a table column is a simple way to activate or deactivate
a user account.

You can use the following SQL command, among others, to generate a
MySQL table suitable for the SQL query specified in ������L��������:

CREATE TABLE "cyrus_email"(

"id" int(11) NOT NULL auto_increment,

"username" varchar(50) NOT NULL default ,

"password" varchar(50) NOT NULL default ,

"real_name" varchar(150) NOT NULL default ,

"active" tinyint(4) NOT NULL default "1",

PRIMARY KEY ("id"),

UNIQUE KEY "id_2" ("id"),

KEY "id" ("id")

);

You can also use the more convenient web interface from phpMyAdmin to
create this database. When Cyrus is restarted, it compares the data trans-
mitted during user authentication to the contents of the MySQL database
table that was just generated. If a queried value is not found, perhaps be-
cause a user account has not yet been created, MySQL returns an error
message, and Cyrus SASL does not permit the user to log in. You can test
this using the �	���� tool, for example. This tool enables you to test entire
IMAP logins and the behavior of the IMAP server:

linux: # imtest -m login -a zoidberg localhost

* OK linux Cyrus IMAP4 v2.2.12 server ready

C01 CAPABILITY

* CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ MAILBOX-REFERRALS NAMESP

ACE UIDPLUS ID NO_ATOMIC_RENAME UNSELECT CHILDREN MULTIAPPEND BINARY SOR

T THREAD=ORDEREDSUBJECT THREAD=REFERENCES ANNOTATEMORE IDLE AUTH=DIGEST-

MD5 AUTH=CRAM-MD5 SASL-IR X-NETSCAPE

C01 OK Completed

Please enter your password: zoidbergs_password

217

13 Authentication and Safeguards

L01 LOGIN zoidberg {5}6

+ go ahead

<omitted>

L01 NO Login failed: user not found

Authentication failed. generic failure

Security strength factor: 0

Q01 LOGOUT

Connection closed.

If the command is called with the .	 ��3�
 switch, this forces the use of
the SASL password-transfer method �����. If you do not specify a switch,
�	���� will automatically choose the safest mechanism. The last argu-
ment after the username is the hostname. If you do not enter a hostname,
�	���� will automatically use ���������.

The key to the problem is the line �95 �� ��3�
 �����
- ����
��
���

. It means that the specified user, J��
���3, does not exist.

This is what a successful login process looks like:

linux: # imtest -a zoidberg localhost

WARNING: no hostname supplied, assuming localhost

* OK linux Cyrus IMAP4 v2.2.12 server ready

C01 CAPABILITY

* CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ MAILBOX-REFERRALS NAMESPA

CE UIDPLUS ID NO_ATOMIC_RENAME UNSELECT CHILDREN MULTIAPPEND BINARY SORT

THREAD=ORDEREDSUBJECT THREAD=REFERENCES ANNOTATEMORE IDLE STARTTLS AUTH=C

RAM-MD5 SASL-IR X-NETSCAPE

C01 OK Completed

A01 AUTHENTICATE CRAM-MD5

+ PDQwMjE1MDUzMjUuNDA0MzU4N0BndWNreT4=

Please enter your password: zoidbergs_password

cGF1bCBiMTM5Y2NjMmMxYTU4ZjYyMmI5Y2JkYjNkOTY4OTUwYg==

A01 OK Success (no protection)

Authenticated.

Security strength factor: 0

Q01 LOGOUT

Connection closed.

In this example, no password encryption mechanism was specified (using
.), so it is nice to see that �	���� uses the secure +'&<.<�? mechanism:
&95 &�%>��%�+&%� +'&<.<�?.7

6 When �
���� calls the 2�>1/ command in this case, the command does not list the
password directly in cleartext as the second argument; instead, it uses C�D to tell the
server to enter a five-character string in a separate line (8�������’s password, which is
entered in reply to the request ?����� ����� ��
� ���������). For more informa-
tion on this syntax, see section A.4 on page 305.

7 For information on the)#'(!/'1&)'! command, see section A.2 on page 297.

218

13.3 Calling Different Data Sources

The Detour via PAM

The SASL plugin may be much more convenient, but in some setups you
may still want to use the older method of connecting via PAM. To do this,
make the following entries in the �������	#
��	�� file:

auth sufficient pam_mysql.so user=mail passwd=secret host=localhost db=cy

rus table=cyrus_email usercolumn=username passwdcolumn=password crypt=

1 logtable=log logmsgcolumn=msg logusercolumn=user loghostcolumn=host log

pidcolumn=pid logtimecolumn=time

auth sufficient pam_unix_auth.so

account required pam_mysql.so user=mail passwd=secret host=localhost db=c

yrus table=cyrus_email usercolumn=username passwdcolumn=password crypt=1

logtable=log logmsgcolumn=msg logusercolumn=user loghostcolumn=host logpi

dcolumn=pid logtimecolumn=time

account sufficient pam_unix_acct.so

The entries in this file are organized in columns separated by spaces. The
first column contains the module type that is to be used, the second column
contains the control flag, and the third column contains the name of the
PAM module to be used, followed by optional arguments. To connect to
MySQL, you must require the module types ���� and �����
�. The first
module is responsible for authentication, whereas �����
� is responsible
for any restrictions.

The ��������
� control flag signifies that no additional modules of the
specified type will be called if the specified module has carried out its ser-
vice successfully.

The ��	�	��L�#��module requires access parameters to the MySQL data-
base as its arguments. In this example, you access the �������	��� table
in the ����� database and specify that the password can be found in the
���� ��
 column and the username in the ����
�	� column of that table.

If authentication via MySQL fails, a second attempt is made using module
��	��
�������#��, which queries the Unix files ����
 and ���
� .

If, in addition to the IMAP server, you want other Cyrus services to fetch
information from the MySQL database, copy the PAM configuration file and
rename it correspondingly:

linux: # cp /etc/pam.d/imap /etc/pam.d/pop

linux: # cp /etc/pam.d/imap /etc/pam.d/sieve

linux: # cp /etc/pam.d/imap /etc/pam.d/smtp

Now you only have to “explain” to Cyrus that it should use PAM as the au-
thentication module. To do this, set the ������ ����"�	����
parameter

219

13 Authentication and Safeguards

in ������	��
#��
� to ��������
 and use $&$�&�%>��&�%><�+>G��	 to
specify the access plugin in ����������
��3���������
.

When Cyrus calls ��������
, this module contacts PAM, which in turn
contacts the backend specified for PAM: In this case, the PAM module
��	�	��L�#�� authenticates the users via the MySQL database. You can
use PAM for other backends by applying this method as well.

13.3.4 Cyrus and LDAP

This is another way to authenticate users through their username and pass-
word. You can also map groups, but not ACL and quota settings for mail-
boxes. You have to use ����
	 for this purpose.

Communication with the LDAP server can be local (via an LDAP socket) or
remote by TCP via port 389 or 636 (LDAP via SSL). For access to a remote
LDAP server, you have to ensure that the required ports are activated in the
firewall.

You should install OpenLDAP on the LDAP server, OpenSSL on the LDAP
client (i.e., the Cyrus server), and the LDAP server, and phpLDAPAdmin8 on
the LDAP server. It is far easier to manage and oversee LDAP trees on this
web interface than on the console.

Configuring the LDAP Server

First, you have to set up a schema on the LDAP server that can map the
usernames and passwords. Once you have set up the LDAP schema, you
can administer it using the phpLDAPAdmin web interface, for example.

In most cases, the LDAP server already provides authentication data to
other services, so you only need to adapt the parameters on the client.

LDAP via �������

The ������� SASL module can be used for querying an LDAP server, as
it has a suitable plugin (�
��
�) and uses shared-secret mechanisms for
encrypted password transmission. This means that the authentication data
will never be transmitted in cleartext.

Specify the following values in the ������	��
#��
� file:

sasl_pwcheck_method: auxprop

sasl_auxprop_plugin: ldapdb

sasl_ldapdb_uri: ldap://ldap.example.com

8 See ����������������
��	��
��������	����.

220

13.3 Calling Different Data Sources

sasl_ldapdb_id: ldap-username

sasl_ldapdb_pw: ldap-password

sasl_ldapdb_mech: DIGEST-MD5

You can use ����$%.<�? as the password encryption method, as it is safer
than cleartext. In this case, the user passwords have to be stored as MD5
hashes instead of as cleartext in the LDAP directory. However, you should
try to encrypt the data stream to the LDAP server via SSL, as SASL is unaf-
fected by this method and continues to log on to the LDAP server in clear-
text.

Now you only need to specify the search path that will be used to read the
data from LDAP. To do this, make an entry in the ���������
#��
�file on
the LDAP server:

sasl-regexp uid=(.*),cn=.*,cn=auth ldap:///ou=training,o=example,c=com??

sub?(&(objectclass=inetOrgPerson) (mail=$1))

Now, when Cyrus SASL connects to the LDAP server, SASL attempts to log
in with the username and the password stored in the ���	���#��	domain
in the �
����32����
 LDAP object. If this works, the user is authenticated
and may log in.

LDAP via ��������

��������
 can also access LDAP. However, you should use TSL/SSL to se-
cure the data stream in this case, as ��������
 only sends cleartext pass-
words. Secure the connection between the email client and the email server
and the connection between the email server and the LDAP server if these
are on different computers.

To connect Cyrus to an LDAP server that is set up properly and has a
suitable schema, you should begin by configuring the ��������
 in the
����������
��3���������
 file:

Path: System/Security/SASL

Type: list(getpwent,kerberos5,pam,rimap,shadow,ldap)

Default: pam

ServiceRestart: saslauthd

#

Authentication mechanism to use by saslauthd.

See man 8 saslauthd for available mechanisms.

#

SASLAUTHD_AUTHMECH=ldap

You can also make this entry in the ������	��
#��
�file, from which it is
transmitted to the ��������
.

221

13 Authentication and Safeguards

��������
 requires an additional configuration file containing the param-
eters for the LDAP query. On most systems, you will have to create �����
��������
#��
�:

ldap_servers: ldap://ldap.example.com/

Path to the LDAP server

ldap_version: 3

ldap_search_base: ou=schulung, o=example, c=com

Entry into the LDAP search path

ldap_bind_dn: cn=root, o=example, c=com

Path to the login user

ldap_bind_pw: xxxxx

Password of the login user

ldap_filter: (uid=%u)

Value that is being searched for:

%u = evaluates the entire UID

%U = only evaluates up to the @ character

ldap_scope: sub

sub searches recursively to the end from the point of entry.

Alternatives: base (non-recursive), one (only one element down)

#####################

If you want the connection between SASL and the LDAP server to be

encrypted, you should enter the TLS certificate data here.

In this case, you have to configure the LDAP server with TLS support

as well.

ldap_tls_check_peer: yes

ldap_tls_cacert_file: /usr/ssl/cacert.pem

ldap_tls_cacert_dir: /usr/ssl/

ldap_tls_cert: /usr/ssl/servercert.pem

ldap_tls_key: /usr/ssl/serverkey.pem

The �
�����������"�����- ��� switch ensures that the certificates of
the client and the server are checked for authenticity. The other parameters
specify the paths to the SSL certificates of the server and the certificate
authority (as described in section 13.1 on page 208).

Now you have to restart both ��������
 and Cyrus so that the modi-
fied configuration files are loaded. Once you have done this, Cyrus will
query the LDAP server for authentication information. You can use the
������������
 tool to check whether all of this worked:

222

13.3 Calling Different Data Sources

linux: # testsaslauthd -u zoidberg -p zoidbergs_password

0: OK "Success."

.� specifies the username, and .� is followed by the password.

Once you have stored information on each user’s group in the LDAP tree in
some other attribute, you can use separate parameters to query this group
affiliation in the ��������
#��
� file. �
���3���������������� spec-
ifies the LDAP path where the search is done. If none is specified, the
path specified in �
�������������� is used. �
���3��������� specifies
which attributes should be queried. �
���3�����	�����	����
 defines
the LDAP method that will be used to search for the result. �
���3��������
��� specifies the search filter that will be used. The following is an example
of a definition of a group query:

ldap_group_search_base: cn=gruppen,dc=example,dc=com

ldap_group_attr: memberUid

ldap_group_match_method: filter

ldap_group_filter: (memberUid=%D)

You will find all other functions and switches in the �����������
������"
�3��������.�������&2�$&$�&�%>�file, but these are irrelevant for group
affiliation queries using Cyrus.

13.3.5 Cyrus and Kerberos

PAM or ��������
 is required for authentication on a Kerberos-5 server.
The latter is the only SASL module containing a plugin for querying a
Kerberos server. To use it, set the ������ ����"�	����
 parameter in
������	��
#��
� to ��������
, and set the variable $&$�&�%>��&�%>
<�+> in ����������
��3���������
 to "�������?:

Path: System/Security/SASL

Type: list(getpwent,kerberos5,pam,rimap,shadow,ldap)

Default: pam

ServiceRestart: saslauthd

#

Authentication mechanism to use by saslauthd.

See man 8 saslauthd for available mechanisms.

#

SASLAUTHD_AUTHMECH=kerberos5

Now, all you need to add is the Kerberos identity for accessing the Ker-
beros server. To do this, enter the host key of the IMAP server in the file
�����"��?#"�����. Use the command-line tool "�
	�
 to do this. Be-
fore calling it, you have to modify the parameters for access to the Kerberos
server in the �����"��?#��
� file:

223

13 Authentication and Safeguards

[libdefaults]

default_realm = EXAMPLE.COM

[realms]

EXAMPLE.ORG = {

kdc = kerberos.example.com

admin_server = kerberos.example.com

}

[logging]

kdc = FILE:/var/log/krb5/krb5kdc.log

admin_server = FILE:/var/log/krb5/kadmind.log

default = SYSLOG:NOTICE:DAEMON

The section ���
������� specifies the realm for which this Kerberos server
is responsible (unless otherwise specified). Specify the key distribution cen-
ter ("
�) and the Kerberos server in ����	� to define the realm in more
detail. Use ��33�
3 to specify the parameters for logging on the key and
the Kerberos servers.

Now change the file permissions so that user ����� can read the �����"��?
#"����� file.

A functioning Kerberos system (server and client) is a prerequisite for this
scenario. This also means that you have to have installed the Kerberos
utilities and the Kerberos client on the Cyrus computer.

224

14 Ch
ap

te
r

Advanced Cyrus Configuration

By now you have seen the basic functions of Cyrus and its overall struc-
ture, which is admittedly confusing at first. Once you’ve become familiar
with the material in the previous chapters, you should be able to set up
an operational email server, but it will still be missing the more interesting
aspects and functions that make the Cyrus IMAP daemon worth using in
the first place. The next section will describe these special features, which
ease (and, in some cases, enable) the administration of multiple mailboxes
and domains.

14.1 Mailbox Quotas

One convenience—at least for administrators—is the ability to restrict the
amount of memory available to mail users. You should carefully consider
how much storage to allocate to user accounts; after all, people send Power-

225

14 Advanced Cyrus Configuration

Point files and entire photo albums via email. Hard disks have become less
expensive, but as the amount of data that people send by email increases,
these trends almost cancel each other out.

Filesystem quotas, like those provided by Linux, are only helpful for manag-
ing storage use if you create a system user account for each mailbox. One of
Cyrus’s advantages is that it is independent of system-level user accounts.
In particular, it includes its own quota system, which is also independent
from operating system quotas.

Even if you have sufficient storage space, for example, on an SAN server, it
is advisable to use quotas with Cyrus, as the files containing administrative
information grow along with the mailboxes. If the partition containing the
mailboxes fills up, the mail system’s database files may become corrupted,
and in that case they cannot always be properly restored. The Cyrus email
server is unfortunately quite a delicate structure to troubleshoot.1

14.1.1 Automatic Quotas

The ����������L���� switch in the ������	��
#��
� file is used to acti-
vate and deactivate quotas. It is easy to make mistakes while doing this, as
the documentation provided by Cyrus does not describe the option clearly.
There are three different configurations:

����������L����- 9
Users may not create new mailboxes. Instead, the administrator has
to create mailboxes and set up quotas manually.

����������L����- ��������������
�����
A mailbox structure is created automatically for new users. The mail-
box is only created automatically when a user first logs in if the user-
name and password are already stored in the authentication data
source. The user may save email in this mailbox until the capacity
(in kilobytes) specified by the value is reached.

����������L����- ��������������
�����
Cyrus creates a mailbox structure when a new user logs in for the
first time, as long as the username and password already exist in the
authentication data source. However, specifying a negative value (.5,
for example) means that no quota is set, and the user has unlimited
storage space.

The L���� ��
 option allows a parameter to be specified that tells Cyrus
when to send a warning message to the user’s email client if the user is
about to use up his or her quota. For example, L���� ��
- H, causes

1 For arguments against using quotas, see section 10.2 on page 166.

226

14.1 Mailbox Quotas

the warning to appear when 62 percent of the user’s quota has been used
up. Figure 14.1 illustrates this using Mozilla Thunderbird.

The L���� ��
"� option works similarly, but specifies the amount of space
(in kilobytes) that is still available in the account when the email client
first shows the warning that the quota will be exceeded soon. For example,
L���� ��
"�- 59,: alerts users that space is running low when 1,024KB
or less remains in the account.

Figure 14.1:
Once the other 83
percent of memory
has been filled, the
IMAP server refuses
to accept emails for
this account.

Cyrus uses the ��%7��%&2 IMAP command to inform the client how much
of the available memory has been used (in percent or kilobytes). The client
can decide how (and, indeed, whether) to present this information to the
user (see Figure 14.2).

Figure 14.2:
The email client
(Mozilla Thunderbird
in this case) displays
activated quotas
with the mailbox
information.

2 This command is part of the E#�') extension described in RFC 2088 and implemented
by Cyrus.

227

14 Advanced Cyrus Configuration

14.1.2 Manual Quotas

The ����
	 configuration tool, described in section 15.4 on page 271, can
be used to create and modify quotas. When reducing a quota, make sure
that the new quota value specified is greater than the amount of memory
currently used by the mailbox. Otherwise, user data is lost, and the mailbox
index will be damaged.

The following example shows how to manually specify a quota of 10,000KB
for user ����’s mailbox and all of its subdirectories:

linux: # cyradm -auth login localhost -user cyrus

IMAP Password: password for cyrus

localhost> listmailbox

user.paul (\HasNoChildren)

user.geeko (\HasNoChildren)

localhost> lq user.paul

localhost> sq user.paul 10000

quota:10000

localhost> lq user.paul

STORAGE 0/10000 (0%)

localhost> exit

�L is an abbreviation of the ����L���� command and shows the existing
quotas and current utilization: ���� currently has only empty mailboxes,
which means that the entire quota is still available to him. Use ���L����,
or �L for short, to set the quota. This command expects the quotaroot as its
first argument, that is, the mailbox or mailbox subdirectory to whose chil-
dren the quota applies. The second argument is a number specifying the
amount of available memory in kilobytes or the value
�
�, which removes
a previously set quota. It is not possible to specify percentages here.

The following example shows how to set a quota for all mailboxes and sub-
directories underneath the Cyrus root directory ����, list all the quotas
using �L, and then delete them all again:

localhost> sq user 100000

quota:100000

localhost> lq user

STORAGE 0/100000 (0%)

localhost> sq user none

remove quota

If you specify a quota for the entire Cyrus root directory in this manner, all
mailboxes in that directory will be codependent. Once the quota limit has
been reached, none of the subordinate mailboxes can receive emails, and
the email clients of all the users receive a message like that shown in Figure

228

14.1 Mailbox Quotas

14.3. Anyone who tries to send a message to one of the users also receives a
bounce email, as can be seen by examining the mail log of the email server:

Jun 10 12:04:37 linux postfix/smtpd[3540]: connect from plasma.jpberlin.

de[213.203.238.10]

Jun 10 12:04:37 linux postfix/smtpd[3540]: 1AAB21C3B3: client=plasma.jpb

erlin.de.de[213.203.238.10]

Jun 10 12:04:37 linux postfix/cleanup[3543]: 1AAB21C3B3: message-id=<466

BCCAE.9040904@heinlein-support.de>

Jun 10 12:04:37 linux postfix/qmgr[2486]: 1AAB21C3B3: from=<p.hartleben@

heinlein-support.de.de>, size=4541, nrcpt=1 (queue active)

Jun 10 12:04:37 linux postfix/smtpd[3540]: disconnect from plasma.jpberl

in.de[213.203.238.10]

Jun 10 12:04:37 linux postfix/lmtp[3544]: 1AAB21C3B3: to=<paul@example.c

om>, relay=public/lmtp[public/lmtp], delay=0, status=deferred (host publ

ic/lmtp[public/lmtp] said: 452 4.2.2 Over quota (in reply to RCPT TO com

mand))

Figure 14.3:
Email clients such as
Mozilla Thunderbird
inform the user
when a quota limit is
reached.

You can see that the external email server ����	�#F������
#
� is at-
tempting to deliver an email to local user ����8������#��	, but this at-
tempt is refused with :?, :#,#, �!�� L����.

����L��������, or �L� for short, shows the amount of available memory
used in a mailbox or directory hierarchy. You can use it to detect quota
dependencies between a superdirectory and a subdirectory.

Let’s take a look at a mailbox with one quota. As no explicit quota is speci-
fied for the %���� subdirectory, �L does not return any results:

localhost> lq user.quotatest.Trash

localhost> lqr user.quotatest.Trash

user.quotatest STORAGE 6/10 (60%)

Nevertheless, the quota settings for the entire mailbox apply; the �L� com-
mand displays these quota settings. It is possible to allocate more memory
to a mailbox subdirectory than is specified for the entire mailbox.

229

14 Advanced Cyrus Configuration

The L���� tool in the �����������������
� directory provides a com-
plete overview of all quotas in the system. Invoke it as Unix user �����:

cyrus@linux:$ /usr/lib/cyrus/bin/quota

Quota % Used Used Root

10000 0 8 user/quotatest@example.com

0 user/quotatest/Trash@example.com

0 user

10 0 0 user/cyrus

10000 0 0 user/paul

It displays the quotas that are set for each mailbox, and the utilization in
percent and kilobytes. Section 14.9.2 on page 257 describes how to use
L���� to repair defective quotas.

14.2 Shared Folders and ACLs

Cyrus is capable of handling shared directories and mailboxes. Access to
such shared folders is handled by the access control lists, or ACLs. These
contain user permissions for files. By default, every user has access only to
his or her own mailbox.

For example, suppose you want �

� the secretary to have read access to
the �
!����� subdirectory in the ����’s mailbox. Both users have to be
set up correctly on the system, and the user ���� has to have created the
�
!����� subdirectory.

Now use the ����
	 tool to make the required settings. The ����
	 com-
mand ������	������ (��	 for short) sets the permissions, and �������
	������ or ��	 displays them:

linux: # cyradm -auth login localhost -user cyrus

IMAP Password: password for cyrus

localhost> setaclmailbox user.boss.Invoices anna lr

localhost> listaclmailbox user.boss.Invoices

boss lrswipcda

anna lr

Now �

� can subscribe to the ����’s �
!����� directory and read it. The
� permission makes a mailbox visible for a user. However, any subdirecto-
ries will not become visible.

The � permission is required to read the contents of a mailbox. � only refers
to the specified directory. If, for example, �
!����� contains a further
subdirectory, �

� will not be able to access it.

In some cases, it is necessary for several colleagues to have access to a
shared directory. In this case, Cyrus enables you to work with groups, which

230

14.2 Shared Folders and ACLs

avoids the trouble of having to share the subdirectory with each user indi-
vidually. If you assign multiple users to a group and then assign � permis-
sion for a certain directory to that group, all members of the group will be
able to subscribe to and read the directory.

You need to use an authentication source that can map groups and mem-
bers. The simplest choice is the Unix permissions system, with the ����
,
���
� , and 3����� files. LDAP and MySQL databases are slightly more
complicated to set up. ����
�, cannot map groups and is therefore not
suitable for this purpose. The following example shows how to share a
mailbox in such a case:

linux: # cyradm -auth login localhost -user cyrus

IMAP Password: password for cyrus

localhost> setaclmailbox user.information_board group:sharedreader lr

localhost> exit

Now, all the members of the �����
���
�� group can view and read the
�
���	����
�����
mailbox.

Shared folders and shared mailboxes are simply mailboxes and subdirecto-
ries with an extended user group, so quotas apply here just like they do for
personal mailboxes.

Table 2.1 on page 36 lists all the permissions you can assign. Unlike Courier,
Cyrus only knows the permissions ��� ���
�, and not �, �, and �.

Please also note that some permissions, such as � (list mailbox name) and �
(read mailbox), are codependent. If a user wishes to subscribe to a shared
folder and is only given the read permission, he or she will be unable to
find that shared folder, as this requires the list permission. If a user has �
but not �, Cyrus will not display the contents of the corresponding shared
folder.

The Cyrus admin user needs to have the
 permission in order to delete a
mailbox:

localhost> lam user.horst

horst lrswipcda

localhost> dm user.horst

deletemailbox: Permission denied

localhost> sam user.horst cyrus all

localhost> lam user.horst

horst lrswipcda

cyrus lrswipcda

localhost> dm user.horst

You can find aliases for the most common permission combinations in Ta-
ble 14.1. However, these combinations cannot be combined with additional

231

14 Advanced Cyrus Configuration

permissions, so you have to choose between aliases and permission com-
binations.

Table 14.1:
Abbreviations for

common permission
combinations

Alias Meaning

�
� Removes all permissions for a mailbox from a user

���
 Sets permissions ���

���� Sets permissions ����

����

 Sets permissions �����

 ���� Sets permissions ��� ���

��� Sets all permissions (��� ���
�)

14.3 Virtual Domains

Cyrus creates a subdirectory for every user in the �!����������	��������
directory in accordance with the default settings in ������	��#��
�. This
goes smoothly as long as every username is unique. However, simple name-
spaces cause problems as soon as there are two users with the same name,
for example, ����8���	���#
�� and ����8���	���#��	. Many adminis-
trators set up creatively named directories like these:

example_net_paul/

example_net_geeko/

example_com_paul/

In extreme cases, domain names can be turned into sequential numbers, or
some other naming scheme can be used that has no relation to the actual
email addresses. This can work well for a while (and may even secure the
position of the mail administrator), but handling subdirectories becomes
more difficult.

Why choose complicated methods when there is an easy way? With virtual
domains, Cyrus provides a concept for managing extended namespaces.

14.3.1 The Underlying Concept

The Cyrus IMAP server considers every user as part of a domain, even
though we have only worked with simple user accounts without a domain
part. It assigns users, such as ����, 3��"�, and �����, to a domain, such
as the Postfix relay domain ���	���#
�� in our example in section 11.4 on
page 192, for which the MTA accepts emails that it then forwards to Cyrus.

232

14.3 Virtual Domains

In this case, Cyrus jargon refers to unqualified users located in a default
domain. This domain is not mentioned explicitly in Cyrus, and all emails
addressed to the domain are sorted into the appropriate user account in
the �!����������	���������directory. Figure 14.4 shows what this looks
like at the directory level.

Figure 14.4:
The structure of the
mailbox directory
without virtual
domains

Cyrus only shows its full ability when more than one domain has to be
managed. It then works with qualified users and an extended namespace,
that is, with multiple virtual domains. Figure 14.5 shows the structure of
the email directories in this case.

Figure 14.5:
Far more complex:
an email directory
when virtual
domains are used

Every user now has a personal email directory in his or her own domain.
This means the same username ���� can be associated with accounts in
different domains. The username for authentication is then the complete
email address.

In order to implement this, Cyrus first needs to know that it is dealing
with multiple virtual domains. Use the !���
�	��
� parameter in the
������	��
#��
� file to tell it so:

233

14 Advanced Cyrus Configuration

virtdomains: yes

Cyrus will now process virtual domain entries and create new user mail-
boxes within the domain structure. If you want the server to manage both
unqualified and qualified user mailboxes, you have to specify a default do-
main:

defaultdomain: example.net

The server will now assign unqualified mailboxes in the ����� directory
to the ���	���#
�� domain. Unfortunately, Cyrus makes it impossible to
use symbolic links to match these unqualified names to their new qualified
names at the file level: Cyrus stores the entire directory structure in parallel
in administration databases, so it will crash at the latest during a recovery.
Hard links are also not possible, as they are not permitted for directories.

When switching from a single-domain configuration to a multiple-domain
configuration, you should always assign existing user mailboxes to the de-
fault domain. Otherwise, existing users will no longer be able to log on to
the email server using their unqualified usernames, and the email server
will be unable to deliver email correctly.

Restart Cyrus with ������� ������� so that it will use the modified con-
figuration.

Assuming that users are authenticated via ����
�,, create new users for
the ���	���#��	 domain as follows:

linux: # saslpasswd2 paul@example.com

Password: password for paul@example.com

Again (for verification): password for paul@example.com

linux: # chown cyrus:mail /etc/sasldb2

The mailboxes for Cyrus are created as follows:

linux: # cyradm -auth login localhost -user cyrus

IMAP Password: password_for_cyrus

localhost> cm user.paul@example.com

localhost> exit

After this command, the new directory should look like this:

linux: # ls -la /var/spool/imap/domain/example.com/user/paul/

total 20

drwx------ 2 cyrus mail 4096 2006-07-14 13:06 .

drwx------ 3 cyrus mail 4096 2006-07-14 13:06 ..

-rw------- 1 cyrus mail 4 2006-07-14 13:06 cyrus.cache

-rw------- 1 cyrus mail 146 2006-07-14 13:06 cyrus.header

-rw------- 1 cyrus mail 76 2006-07-14 13:06 cyrus.index

234

14.3 Virtual Domains

The uppermost directory level contains the ����� subdirectory with the
mailboxes of the unqualified users, and a
�	��
� subdirectory for all of
the virtual domains:

linux: # ls -l /var/spool/imap/

total 8

drwx------ 4 cyrus mail 4096 2006-07-14 13:06 domain

drwx------ 5 cyrus mail 4096 2006-07-13 15:23 user

There is one more small hurdle: Imagine that user ���� wants to use an
email address containing his first and last names, of the form ����#	����8
���	���#��	. In this case, there is a problem. If you use ����
	 to cre-
ate such a mailbox, this tool interprets the dot between the first and last
names as a netnews separator and therefore creates an additional sub-
directory, �!����������	���
�	��
����	���#��	�����������	�����.
In ����
	, it will look like this:

localhost> cm user.paul@example.com

localhost> cm user.paul.meier@example.com

localhost> lm

user.paul@example.com (/HasChildren)

user.paul.meier@example.com (HasNoChildren)

In the email client, 	���� will appear as a subdirectory of the ����/ of user
����.

To avoid this, go to the ������	��
#��
� file and enter �
�����������
���- 5 to prevent Cyrus from using dots as the default level separator.
The positive value (5 in this example) ensures that Cyrus ignores the dot
and instead, like Unix, uses the slash (�) as a separator. If you now create
users ����8���	���#��	 and ����#	����8���	���#��	 in ����
	, this
will lead to the following result:

localhost> cm user/paul@example.com

localhost> cm user/paul.meier@example.com

localhost> lm

user/paul@example.com (HasNoChildren)

user/paul.meier@example.com (HasNoChildren)

����#����8���	���#��	and ����#����#	����8���	���#��	are entire-
ly independent mailboxes. This change also has an effect at the filesystem
level:

linux: # ls -l /var/spool/imap/domain/example.com/user/

total 4

drwx------ 4 cyrus mail 4096 May 22 20:02 paul

drwx------ 3 cyrus mail 4096 May 22 20:02 paul^meier

235

14 Advanced Cyrus Configuration

The dot in the mailbox name is represented by a caret (Z). When cre-
ating mailboxes, you must now make sure to use the slash rather than
the dot as the separator between hierarchical levels. If, from habit, you
continue to use the previous syntax when creating new mailboxes, the
����#����#	����#%����8���	���#��	 subdirectory created by the com-
mand �	 ����#����#	����#%����8���	���#��	will appear on one level
on the hard disk:

linux: # ls -li /var/spool/imap/domain/example.com/

[...]

drwx------ 2 cyrus mail 4096 Nov 26 12:29 user^paul^meier^Trash

[...]

In order to avoid mistakes, you should only create qualified mailboxes once
you have activated the !���
�	��
� parameter. Otherwise, the result will
be top-level mailboxes with a domain part that cannot be edited, and can
only be deleted when you temporarily deactivate !���
�	��
�.

Make sure that you always use the ���� prefix when creating mailboxes,
because otherwise they cannot be addressed correctly. If such an error oc-
curs, you have to deactivate support for virtual domains, delete the faulty
mailbox, reactivate support for virtual domains, and then create the mail-
box again.

14.3.2 Effects on ACLs

If Cyrus is used solely for unqualified user accounts, you can assign per-
missions for all mailboxes with ����
	, using the administrator account
�����. Every user can also assign permissions for his or her own directo-
ries to other users.

Things are slightly different if Cyrus is using virtual domains. The unqual-
ified admin user ����� can still assign permissions globally, but all other
users can only assign permissions within their own domain (for unqualified
users, this is the default domain).

Cyrus does not allow permissions to be assigned between domains. Thus,
user ����8���	���#
�� is unable to assign read permission for his 	�	�
mailbox folder to user 3��"�8���	���#��	, either using the ����
	 com-
mand ��	 or in the email client, as ���� is in a different domain than
3��"�. In this case, ����
	 terminates the call with the following error
message:

localhost> sam user/paul/memo@example.net user/geeko@example.com lr

setaclmailbox: user/geeko@example.com: lr: Invalid identifier

Within a domain, this can be done:

236

14.4 Sorting Emails into Subdirectories

localhost> lam user/paul/memo@example.net

paul@example.net lrswipcda

localhost> sam user/paul/memo@example.net geeko@example.net lr

localhost> lam user/paul/memo@example.net

paul@example.net lrswipcda

geeko@example.net lr

14.3.3 Domain Administrators

Naturally, separate administrator accounts can be designated for each vir-
tual domain. These domain administrators have the same permissions
as the global administrator, but their scope is restricted to their own do-
main. To set up domain administrators, add the qualified usernames to the
�
	�
� entry in the �	��
#��
�:

admins: cyrus paul@example.net geeko@example.com

In this case, ����� receives global administrator permissions, whereas ����
8���	���#
�� and 3��"�8���	���#
�� can only carry out administrator
tasks for their respective domains: ���� for ���	���#
�� and 3��"� for
���	���#��3.

In general, if you enter a username without a domain part, this user will re-
ceive general Cyrus administrator permissions. Usernames with a domain
part are assigned these privileges only for their own domain. If you enter
a name with a domain section for which Cyrus is not responsible, the user
receives no permissions and can only see an empty ����
	 console. If the
global Cyrus administrator is deleted, it is no longer possible to carry out
administrative tasks, but the email server continues to run.

Be careful when assigning administrator permissions, as a user with a global
administrator account can affect the entire Cyrus system and therefore
cause considerable damage.

If you loaded Sieve scripts onto the server before implementing virtual do-
mains, you will have to adapt these scripts. For more information, see
section 14.6.6 on page 252.

14.4 Sorting Emails into Subdirectories

One of the benefits of IMAP is that users can sort their emails into different
subdirectories on the server, which means they do not have to download
them and manage them locally. Most clients create these subfolders under
the ����/.

237

14 Advanced Cyrus Configuration

If you want to automatically sort emails into subdirectories when they ar-
rive at the server, this usually requires the email client to have correspond-
ing functionality. The � permission (see Table 2.1 on page 36) is required
for all directories to which a filter script should move emails. In newly cre-
ated directories, the user automatically has this permission. You must be
given the � permission if you subscribe to another user’s mail directories.

There are no problems if a user only uses one client. If, however, a user
often changes computers or only has access via web clients from Internet
cafes, the user has to set up and synchronize the filter settings on every
email client that he or she will use. Luckily, the Cyrus email server provides
support here.

The sender must address the email in such a manner that the email server
can sort it into the correct subdirectory. The manner of address in turn
depends on the configuration of the directory separator, specified in the
�
�������������� parameter (see page 235).

If you use netnews separators, Cyrus separates the directory levels with a
dot. The sender can then directly address the target subdirectory in the
email address of the recipient by using a dot to separate it from the recipi-
ent name. For example, if you want to send an email to ����8���	���#��	,
and the email is to be sorted directly into the �
!����� subdirectory of the
����/, you would address the email to ����#�
!�����8���	���#��	.

If, on the other hand, Cyrus uses Unix separators, a slash separates levels in
the directory hierarchy. As discussed earlier, this is necessary, for example,
when email addresses consist of first and last names separated by dots. In
this case, an email for the �
!����� subdirectory of the ����/ for email ad-
dress ����#	����8���	���#��	 should be addressed to ����#	������
!
�����8���	���#��	. If you address the email to ����#	����#�
!�����8
���	���#��	 (with a dot instead of a slash), you will get the following error
message:

<paul.meier.Invoices@example.com>: host public/lmtp[public/lmtp]

said: 550-Mailbox unknown. Either there is no mailbox associated

with this 550-name or you do not have authorization to see it.

550 5.1.1 User unknown (in reply to RCPT TO command)

In this case, Cyrus searches for a mailbox named ����#	����#�
!�����
8���	���#��	, but this mailbox does not exist.

This is not really a practical solution, as most senders will not know whether
Cyrus is in use, what the correct subdirectory is called, or even which sep-
arator the server uses. Automatic mail filtering only makes sense in con-
junction with Sieve scripts (see section 14.6 on page 240).

238

14.5 Email Partitions

14.5 Email Partitions

Enter the ��������
.
������ parameter in ������	��
#��
� to specify
the location where Cyrus creates and expects the mailboxes by default. This
implies, however, that other locations could be specified for the storage of
user mailboxes. Cyrus calls these storage locations partitions, regardless of
whether these are physical partitions or directories.

In some cases additional mail partitions are advisable, for example, once
your system has reached a certain size and the default partition is run-
ning out of memory, or if the hard disk system is no longer able to process
queries effectively. I/O bottlenecks are one of the most common causes of
slow systems, ahead of CPU overloads. In this case, you should consider
placing new mailboxes on other hard disks or partitions. You can define
these as follows:

partition-default: /var/spool/imap

partition-mail1: /var/spool/mail1

partition-mail2: /var/spool/mail2

partition-mail3: /var/spool/mail3

defaultpartition: mail3

Every mail partition receives a separate name. The name of the parameter
defining the mail partition consists of the character string ��������
. fol-
lowed by the name of the partition as the suffix. The ��������
.	���5 en-
try in the example specifies that directory �!���������	���5 forms mail
partition 	���5. For reasons of clarity, it is advisable to give the physical
email directory or mount point the same name as the mail partition, but
this consistency is not mandatory. If you do not specify a partition when
creating new mailboxes, Cyrus will create the mailboxes in the mail parti-
tion specified by
��������������
, here 	����.

In order to create a new mailbox in a partition, enter the name of the mail-
box as an additional parameter for the ����
	 command ������	������:

localhost> createmailbox user.achim mail1

The command in this example creates a mailbox for user ����	 in mail
partition 	���5. If ����
	 returns the error message ������	������-
$����	 ��� ����� in response to this command, you should have a look
at the system log: You probably forgot to give write permissions to Cyrus for
the new mail partition. To do this, use ���
 �����-	��� �!���������
	���5, for example, to assign ownership of the directory to the Cyrus sys-
tem user and his or her group.

If you do not specify a mail partition when creating the mailbox, it will
automatically be created in the location specified in ��������
.
������-.

239

14 Advanced Cyrus Configuration

If even this partitioning of email storage no longer suffices to provide the
necessary performance, you should build a cluster to relieve your email
server. For instructions, see page 281.

14.6 The Sieve Email Filter

Its speed and operation may be matters of debate, but many administrators
choose Cyrus as their email server because of the server-side email filter-
ing it allows, using scripts written in a specially developed language, Sieve.
Many other email servers now have a Sieve interface, and email clients such
as KMail or Squirrelmail allow the creation and management of Sieve filter
scripts.

The Sieve script language has fewer functions than ����	���, for example,
but seems to be much more intuitive to many users for exactly that reason.
Unlike ����	���, users can place Sieve scripts on the server without having
to have a shell account. They only need to be able to log on as Cyrus users.

14.6.1 The Email Filter Daemon ��	���#�

The email filter daemon ��	���!�
 has been in development at Carnegie
Mellon University since 1994, along with the Cyrus IMAP daemon. It im-
ports filter scripts created by users for managing their mailboxes and uses
them to control the Cyrus master process. By default, it listens on port
2000. Tim Showalter, after whom the service is named, works at CMU and
is responsible for integrating the service into Cyrus. In addition to this
particular Sieve implementation for Cyrus, which is also known as Mana-
gesieve, there are Sieve implementations for other servers.

��	���!�
 allows emails to be forwarded, refused, and moved to specific
mailbox directories, and it also allows the sending of out-of-office notices.
The
�����
 service allows notification messages to be sent when specific
emails are received.

When Cyrus receives emails, ��	���!�
 applies the existing rules to these
emails. Emails can be deleted by sender or spam tag, moved to subdirecto-
ries, forwarded, or automatically replied to, for example, when the user is
away from the office.

14.6.2 Configuring and Testing

The required package has to be installed in order for the email filter service
to work. The package name usually contains ���!�; in SuSE, for example,
it is called ����.+����.$��*�.	�
�3����!�.

240

14.6 The Sieve Email Filter

Specify the working directory for ��	���!�
 in ������	��
#��
�:

sievedir: /var/lib/sieve

This is where the Sieve scripts uploaded by users are stored, sorted into
subdirectories & to T by the first letter of the username.

By including the Sieve daemon in �����#��
� in the $�'*�+�$ section,
you integrate it as a process in the Cyrus process chain:

sieve cmd="timsieved" listen="sieve" prefork=0

The first part is the name by which the service is known within Cyrus.
�	
 indicates that the service will be provided by the ��	���!�
 program.
�����
 defines the port where the service should listen for commands. The
������" switch specifies how often the service is started in order to wait in
idle mode. The default value is sufficient here.

��!���� is an aid that allows you to test the Sieve function after Cyrus has
been restarted.

This little program simulates a user login on the Sieve server. The output
shows whether the server has been configured correctly and whether the
authentication works:

linux: # sivtest -a paul localhost

"IMPLEMENTATION" "Cyrus timsieved v2.2.12"

"SASL" "DIGEST-MD5 PLAIN CRAM-MD5 LOGIN"

"SIEVE" "fileinto reject envelope vacation imapflags notify subaddress re

lational comparator-i;ascii-numeric regex"

OK

AUTHENTICATE "DIGEST-MD5"

{236}

bm9uY2U9ImV3Q2lQOHkzU3dwYU9lbFJOMmNxbjRZOHJmS2o5ODcrSnJHS3dhdEtvQUU9IixyZ

WFsbT0iZ3Vja3kiLHFvcD0iYXV0aCxhdXRoLWludCxhdXRoLWNvbmYiLGNpcGhlcj0icmM0LT

QwLHJjNC01NixyYzQsZGVzLDNkZXMiLG1heGJ1Zj00MDk2LGNoYXJzZXQ9dXRmLTgsYWxnb3J

pdGhtPW1kNS1zZXNz

Please enter your password: most secret

{344+}

dXNlcm5hbWU9InBhdWwiLHJlYWxtPSJndWNreSIsbm9uY2U9ImV3Q2lQOHkzU3dwYU9lbFJOM

mNxbjRZOHJmS2o5ODcrSnJHS3dhdEtvQUU9Iixjbm9uY2U9InI3ZHlrMlJ4Mzg2UFZjRm5KQU

1YRzUwVjhQYjlOa1ZkdmhEOCsvekdqLzA9IixuYz0wMDAwMDAwMSxxb3A9YXV0aC1jb25mLGN

pcGhlcj1yYzQsbWF4YnVmPTEwMjQsZGlnZXN0LXVyaT0ic2lldmUvbG9jYWxob3N0IixyZXNw

b25zZT1kZTViY2E3MTFmYzRmYTQ1YjBmZGQ4ZGQ2ZTNhNGJkNA==

OK (SASL "cnNwYXV0aD01ZmY5YjhkYzVlZTA4MmZjMTBiZWUxNmE3ODUxNzRkZQ==")

Authenticated.

Security strength factor: 128

logout

OK "Logout Complete"

Connection closed.

241

14 Advanced Cyrus Configuration

This test shows that ���� has logged in successfully. .� is used to trans-
fer the username for authentication. If you do not specify this option,
��!���� will automatically use the name of the system user who is logged
on. ��������� is used if you do not specify a hostname.

The server returns the name of the Sieve service and its version number,
the name of the password-transfer mechanisms available on the responsi-
ble authentication service, and the functions available in Sieve (see section
14.6.4 on page 246).

In this case, the user is authenticated using a challenge-response proce-
dure (����$%.<�?) based on the password. If the password digest calcu-
lated by the server matches the value calculated for the password entered
(
/���	?��E�6###), the server confirms the action with �����
������
.
If not, the login test terminates with �� Q&����
�������
 �����Q.

14.6.3 The ���#������ Administration Tool

Users can use ���!������ to upload, delete, activate, and deactivate filter
scripts on the server from a command line. They can write the scripts in
any text editor (see section 14.6.4 on page 246) and then store them in a
directory. They then call ���!������ in interactive mode in that directory.

As the argument, the command expects the name of the server that is to
be addressed. If the email user’s name does not correspond to that of the
Unix user who is currently logged on, the user uses the option .� ���� or
..����
�	�G���� to specify that name:

user@linux:$ sieveshell -a paul -u paul localhost

connecting to localhost

Please enter your password:

>

Usually, the authentication name (Who am I?) transferred by .� is automat-
ically used for authorization (What may I do?). However, this only works in
systems that use Kerberos for logging in. The ���!������ documentation
states succinctly that for every other login service, you should transfer the
name once again using .�. Otherwise, the user has to enter the password
three times in a row in order to log in.

If Kerberos is used for authentication, you can use the option .������ or
..����	G����� to specify the realm you are logging into.

You can place commands that you would usually enter at the ���!������
prompt into a script file. If you call the program with option .� ���	

or ..����G���	

 , it will process these commands non-interactively. This
process is suitable for automatically importing Sieve scripts.

242

14.6 The Sieve Email Filter

The following commands are permitted in ���!������ scripts and at the
���!������ prompt:

����
This is the help function for the program.

����
This command lists the Sieve scripts that are currently loaded.

��� �	�� ����
This command places the specified Sieve script on the server. ���!�
����� does not display the filename suffix. Thus, !������
#������
becomes !������
. You can also use a second argument to specify
a name that ���!������ should use. Make sure not to use special
characters or spaces in your script names. Such characters can cause
problems when the scripts are imported.

3�� ����
This command displays the specified script on the console. If you
enter a filename as a second argument, ���!������ will store the
script under this name in the filesystem.

����� ����
This command deletes the specified script from the server.

����!��� ����
This command activates the specified script on the server:

linux: # sieveshell -a paul -u paul localhost

connecting to localhost

Please enter your password: most secret

> put vacation.script

> put atwork.script

> activate vacation

> list

vacation <- active script

atwork

In this example, two Sieve scripts called !������
#������ and ��
 ��"#������were loaded onto the Sieve server, but only �� ��"was
activated. The ���� command shows the loaded scripts: !������

is active, �� ��" inactive.

�����!���
This command deactivates the script that is currently active.

L���
This command ends the program.

243

14 Advanced Cyrus Configuration

It is not possible to overwrite an existing script on the server with a script
having the same name. If you want to change a script, you have to delete
it from the server and then upload and activate the new version. Each user
may upload a maximum of five scripts, but only one of these may be active.
For this reason, it makes sense to put all rules into a single script.

Most users will probably be overwhelmed by a command-line tool such
as ���!������, especially since they have to enter the server address and
their email username explicitly. For this reason, it is advisable to offer web
interfaces such as �	������!�3 (see Figure 14.6) or �����!�,4 which can
be operated without a Linux command line.

Figure 14.6:
Filter rules are easy

to set up with the
web interface from

�
������3�.

The �	������!� project seems as though it will be successful, as it is both
more convenient to use and under active development. When we went to
press, there was a first release candidate of the stable version, whereas the
most recent beta version of �����!� was published in July 2004.

The popular webmail client Squirrelmail5 also has more capabilities than
simply interacting with IMAP servers. The plugin �!�����!�6 makes it
possible to edit filter criteria conveniently in a browser. It can also be used
to control the
�����
 information service (see section 14.7 on page 252),
which provides information when certain emails are received.

The Webmin Cyrus plugin (see page 184) also allows Sieve scripts to be
managed on the server. However, only administrators should use this plu-
gin, as a lot of fine tuning is required to secure this web interface for use by
normal users.

Some email programs, such as KMail (see Figures 14.7 and 14.8), can also
be used to control a Sieve server. Where possible, you should recommend

3 See ��������
������3�	��
��������	����.
4 See ���������
��������	�������9�����������3��.
5 See section 5.1 on page 68.
6 See ��������
���	
��	������9�������
�����
�����3�����3�	���.

244

14.6 The Sieve Email Filter

such an email client to your users. It is much more convenient than using
a web interface. If you do this, you should remember to activate the Sieve
port 2000 (TCP) in your firewall.

Figure 14.7:
You can activate
Sieve script
administration in the
account settings of
the KMail client.

Figure 14.8:
KMail displays
existing Sieve scripts
in a clear manner.
Right-click an email
account to create a
new script.

245

14 Advanced Cyrus Configuration

14.6.4 The Sieve Script Language

The Sieve script language is similar to C or PHP. When a Sieve script is
uploaded with ���!������, it is checked and then written to the working
memory.

The script contains the filter criteria and the actions to be taken when each
criterion applies; these actions are placed in curly brackets. Instructions
have to end with a semicolon:

require "fileinto";

if address :is "from" "test@example.com" {

fileinto "INBOX.Testmails";

stop;

}

In this example, the emails from ����8���	���#��	 (as determined by
the 4��	- header) are automatically placed in the ����/#%���	���� of
the recipient, thanks to the �����
�� operation. If, as in this case, an
instruction ends with ����, no other rules within the curly brackets are
processed for this email. In this way, any succeeding actions in the same
block can be temporarily deactivated. The ���� command is also used
preemptively to stop an action safely. Here, if the �����
�� command in
the example fails, the email is automatically forwarded to the ����/.

For some actions, you may have to load additional modules using the ��L��
�� operation. This applies to the functions �����
��, ��F���, !������
,
and �
!�����. Multiple modules are separated by commas and enclosed
in square brackets:

require ["fileinto", "vacation"];

Most rules in Sieve scripts are conditional queries that begin with ��. After
the keyword come test commands.

The �

���� test command is always used when you want to explicitly
check address fields in the email header (such as 4��	-, %�-, +�-, and
���-):

if address :is ["to", "cc"] "paul@example.com"

searches the %�- and +�- address fields for the specified address. Multiple
entries are combined in square brackets. If you do not specify anything
between the -�� operator and the address, all address entries in the header
are checked.

If you want to evaluate the email envelope, load the �
!����� module,
which provides this function. The following, for example, deletes all emails
addressed to ���!����
�8���	���#��	 in the SMTP dialog:

246

14.6 The Sieve Email Filter

require "envelope";

if envelope :all :is "to" "toeveryone@example.com" {

discard;

}

Header contents (often ����- or $��F���-) can be evaluated using ���
��.
This command can filter more exactly than �

����. You also use this
function if you want to use only a part of an address field (such as the %�-
header) as a filter criterion:

require "fileinto";

if header :contains "To" "paul@example" {

fileinto "INBOX/memo";

}

This rule moves all emails that contain “����8���	���” in a recipient
address into the 	�	� directory; this includes emails addressed to ����8
���	���#��	 and to ����8���	���#
��. The �

���� function does not
have this ability.

The relational operators for ���
�� and for �

���� are -��, -��
���
�,
and -	������. A rule is satisfied when one of the following holds:

The header matches the specified pattern exactly (-��).

The header contains the specified pattern (-��
���
�).

The placeholder specified for -	������ matches the header. The follow-
ing rule, for example, filters emails where the %�- or +�- header contains
an email address with user part ��
�
��� and any domain part with the
top-level domain #��	.

if header :matches ["To", "Cc"] "finances@*.com" {

discard;

}

If you want to use POSIX2-style regular expressions for comparison, you
would use -��3�� instead of -	������. For example,

require "regex";

if header :regex "Subject" "^***EROTIC" {

discard;

}

prevents emails whose subject line begins with “;;;�'�%�+” from being
delivered.

If you want to check whether a header exists, use the ������ command. To
find out whether a header does not exist, use
�� ������.

247

14 Advanced Cyrus Configuration

Use ��J� if you want to use the size of an email with attachments as a
filter criterion. The condition �� ��J� -�!�� 59< in a rule, for example,
stipulates that it applies to all emails larger than 10MB. For kilobytes and
gigabytes, specify 1 or � instead of <; if you want to filter by number of
bytes, you would specify only the number. Use -�

�� 5< to search for
emails smaller than 1MB. It is not possible to directly determine whether
an email’s size corresponds exactly to a certain value.

If a rule applies, you can do the following with the filtered emails:

�����

This command deletes the email.

�����
�� �	���
���
This command moves the message to the specified directory. If the
directory does not yet exist, the email is placed in the ����/.

"���
This command places the email in the ����/, unless the recipient
address specifies a suitable subdirectory (see section 14.4 on page
237).

��
����� ���	���������
This command returns the email to the MTA, which then redirects it
to the specified address. The recipient in the email envelope is then
only the address the email is redirected to. You can use this function
to formulate the most simple Sieve script possible:

redirect "paul@example.com";

This script forwards all emails addressed to the mailbox to ����8���
	���#��	.

��F���
��

This command returns the email to the sender, together with a mes-
sage.

require "reject";

reject "Spam not wanted";

This command returns all messages addressed to this mailbox to the
sender with the following comment in the email body:

Your message was automatically rejected by Sieve, a mail

filtering language.

The following reason was given:

Spam not wanted

248

14.6 The Sieve Email Filter

!������

��

The sender receives an out-of-office notification. The -
��� ������
parameter prevents the sender from receiving an out-of-office reply
to every email addressed to this recipient. If you do specify the num-
ber of -
��� between notifications, the sender will receive the notifi-
cation no more often than every seven days:

require "vacation"; vacation "Am away on business until 6.20.";

You can also add the -�

������ option followed by recipient ad-
dresses:

require "vacation"; vacation :days 2 :addresses ["geeko@example.co

m", "horst@example.com"] "Am away on business until 6.20.";

In this case, Sieve only sends an out-of-office reply to the sender if
the recipient is one of the addresses in the square brackets. -
���
, ensures that this reply is not sent out for every email to 3��"�8
���	���#��	 and �����8���	���#��	, but is only sent every two
days. The recipient’s address can be specified not only in the %�-
header, but also the +�- or ���- headers; the email can even be a
forwarded email. It is not possible to create out-of-office replies for
third parties, as the rule only refers to the user’s own email account.

Conditional queries offer additional options:

�� �
��� A����	
	���� ����	
	��� ���B(��
���
	���W)
The instructions in the curly brackets are executed if at least one of
the specified conditions applies.

require "fileinto";

if anyof (header :is "From" "listadmin@example.com",

header :is "To" "user@list.example.com",) {

fileinto "INBOX/mailinglist";

}

For Sieve to sort an email into the 	����
3���� directory, the email
header must contain either the 4��	- address �����
	�
8���	���#
��	 or the %�- address ����8����#���	���#��	 (or both).

�� ����� A����	
	���� ����	
	��� ���B(��
���
	���W)
This condition is like �� �
���, but here all conditions have to ap-
ply:

if allof (address :is "listadmin@example.com", size :over 10M){

[...]

}

249

14 Advanced Cyrus Configuration

In the example, the email address �����
	�
8���	���#��	must be
in one of the header address fields, and the message has to be larger
than 10MB.

������ ����� A����	
	���B(��
���
	���W)
Alternative rules apply when the �� condition is not met. You can use
�
��� instead of �����.

���� (��
���
	���W)
Instructions are carried out when the �� conditions and ������ con-
ditions are not met.

An example that uses these features is the following script, which requires
the modules �����
�� and !������
 containing the functions �����
��
and !������
.

require ["fileinto", "vacation"];

if address :is "paul.meier@example.com" {

fileinto "INBOX.Important";

}

elseif address :is "paul@example.com" {

keep;

}

else {

vacation :addresses ["admin-team@example.com", "support@example.com"]

"I’m on vacation ...";

}

Emails containing ����#	����8���	���#��	 in one of the header address
fields are sorted into the �	�����
� email directory, which is a subdirectory
of the ����/. If the address is ����8���	���#��	, the email is delivered
directly into the ����/.

In all other cases, the !������
 function evaluates the recipient. If the re-
cipient is �
	�
.���	8���	���#��	 or �������8���	���#��	, the sen-
der receives an out-of-office reply. This makes sense, for example, if your
email address is listed on email distribution lists or as a forwarding address.

When creating your filter script, remember that the first applicable rule is
executed and any rules that follow may no longer be applied.

There are other sample scripts that you can adapt to your own require-
ments, not only in the Sieve RFC 3028, but also on ����-�� �"�#����	���
#�	��

��#����$��!����	����,����-���
�"���
��#��3� �"��$��
!��A	�����������
3���
3��3�B, and ����-�� #����#��#�"������
�	�������!�#���	�.

250

14.6 The Sieve Email Filter

14.6.5 Setting Up Sieve Scripts Automatically for New
Accounts

There is very little documentation for a highly useful function that allows
Sieve scripts to be set up automatically for every newly created mailbox.
This function is very useful for fighting spam, for example. Activate it in file
������	��
#��
�using the switch ��������������!��������, followed
by the path to the script to install:

autocreate_sieve_script: /var/lib/sieve/global/script-name

Make sure that the directory permissions in this directory allow the user
����� to access it.

Remember that the ����������L���� switch must have a value other than
9 for Cyrus to create a mailbox automatically when a new user first logs on
(see section 12.2 on page 203). The authentication data of the new user
must already be available.

Once Cyrus is restarted, it translates the specified script into byte code for
each new mailbox that is created automatically. You can follow this process
in the syslog:

Aug 27 07:52:14 linux imap[32729]:

login: [10.0.41.2] auto1@example.com

plaintext User logged in

Aug 27 07:52:14 linux imap[32729]: autocreateinbox: User auto1@example.

com, INBOX was successfully created in partition default

Aug 27 07:52:14 linux imap[32729]: autocreate_sieve: autocreate_sieve_c

ompiledscript option is not defined. Compiling it

Aug 27 07:52:14 linux imap[32729]: entered bc_action_emit with filelen:

16

Aug 27 07:52:14 linux imap[32729]: entered bc_action_emit with filelen:

200

Aug 27 07:52:14 linux imap[32729]: autocreate_sieve: User auto1@example

.com, default sieve script creation succeeded

When user ����58���	���#��	first logs on to the email server, the server
automatically creates a mailbox structure with an ����/ for that user. Then,
the global Sieve script (named ��
����� in this example) is compiled into
byte code suitable for Sieve and saved in the Sieve directory of the mailbox
in both byte code (��
�����#��) and cleartext:

linux: # ls -l /var/lib/sieve/domain/e/example.com/a/auto1/

total 8

lrwxrwxrwx 1 cyrus mail 12 Aug 27 07:52 defaultbc -> redirect.bc

-rw------- 1 cyrus mail 220 Aug 27 07:52 redirect.bc

-rw------- 1 cyrus mail 162 Aug 27 07:52 redirect.script

251

14 Advanced Cyrus Configuration

The Sieve directories for the individual mailboxes are stored in �!�������
���!��, sorted alphabetically by the first letter of the domain and mailbox
name.

The user never sees this script and cannot edit it. It is still executed auto-
matically when emails are received for that user.

If you subsequently change the global script, this does not affect existing
mailboxes, only newly generated ones. If you want to update the Sieve
script for all mailboxes, you have to replace it manually in the Sieve direc-
tory for every user.

14.6.6 Adapting Sieve Scripts

When you migrate older Cyrus servers or introduce virtual domains, you
have to adapt the Sieve scripts that are on the server. To do this, call the tool
���
��������!�, which you will find in �����������
������"�3�����
���.�	��
������� in the tool collection:7

linux:/usr/share/doc/packages/cyrus-imapd/tools # ./translatesieve

you are using /var/lib/sieve as your sieve directory.

translating sievedir /var/lib/sieve... a b c d e f g h i j k l m n o p q

r s t u v w x y z done

14.7 The ��
� �� Daemon

“I don’t think I’ve ever seen that in use,” “Does it even work?”, “I think that
daemon might be out of date, is it even included anymore?”. . . You usually
get answers like these when you try to tell people about the mysterious
Cyrus notification service. However, it is not true that this $�'*�+�$ entry
in the �����#��
� file (see section 12.1.2 on page 201) is left over from the
early days and nobody remembered to delete it; the notify daemon really
works.

It operates in the background and receives its commands from the Cyrus
master process, if either the master process informs the information service
when new emails are received or a Sieve script provides notification that a
certain email has been received. The second option is also available to
normal users.

7 For some distributions, such as Debian or Fedora, you have to install the separate pack-
age ���
�,�����.

252

14.7 The ��
���� Daemon

14.7.1 Drums or Smoke Signals?

To activate the notify service, simply enable the corresponding line in the
����������#��
� file:

this is only necessary if using notifications

notify cmd="notifyd" listen="/var/lib/imap/socket/notify" proto="udp" pr

efork=1

Now you can decide whether you want to receive notifications and by what
mechanisms. The variables ���!�
�������and 	���
������� in the ����
��	��
#��
� file determine whether you receive notifications, and you as-
sign the required delivery method as a value to one of these variables.

The 	���
������� parameter, if enabled, ensures that the notify daemon
sends out a notification every time an email is received. ���!�
�������
specifies the type of notification for emails that correspond to a Sieve rule.

You can specify the values of these two options to make a global default
setting for the entire Cyrus system. You can override the default setting for
Sieve scripts with a -	����
 specification, as shown in an example below.
If you do not set either option, the information service is disabled.

You can choose among the following delivery methods:

���
This method disables notifications. You can also leave out the entire
entry in the global configuration file. This value is useful in Sieve
scripts if you want to disable individual notification requests tem-
porarily without having to rewrite the entire script.

��3
This method writes the message into the syslog. This setting is mainly
useful as a value for 	���
������� in the ������	��
#��
�file and
can assist you when you track down errors. The logfile then contains
entries like this:

May 12 18:15:33 linux notifyd[13779]: do_notify using method ’log’

May 12 18:15:33 linux notifyd[13779]: MAIL, , paul@example.com, IN

BOX, "From: Peer Hartleben <mail@peer2peer.it> Subject: Tuesday T

o: paul@example.com "

Do not forget to set 	���
������� back to
��� (or to comment it
out) as soon as you have found the error, as logfiles can fill up quickly.

	�����
This delivery method is only available in Sieve scripts. It ensures that
the notify daemon sends an information email when an event occurs:

253

14 Advanced Cyrus Configuration

require "notify";

if header :contains "from" "boss@example.com" {

notify :method "mailto" :options ["paul@example.com"]

:message "The boss has sent a new email";

}

When an email is received from ����8���	���#��	, this Sieve filter
rule sends a message to ����8���	���#��	; the body of the email
contains the text %�� ���� ��� ��
� �
� �	���. The subject
line is always @$��*�C �� 	���
����������
.

You can also enter the address of an SMS gateway8 after -�����
� if
you want the notify daemon to send you a text message.

J�����, �	�, �	��
There is no Cyrus documentation for these methods, and even fo-
rums and Internet drafts cannot provide an exact description. They
only mention that an appropriate “environment” is required for the
delivery of Zephyr, text message, or XMPP-(Jabber) notifications.

Zephyr is an ancient instant messaging system that was developed by
MIT between 1983 and 1993, but it is hardly ever used any more. If
you are interested, ����-�� #!��"��. �3���#
��
�
��:??pro-
vides instructions on how to install it on current Linux systems.

14.8 Cyrus and Other MTAs

Section 11.4 on page 191 explained how to dock Cyrus onto the Postfix
Mail Transfer Agent. However, you can use any MTA with this IMAP server.
The major difference from the Courier IMAP server is that Cyrus stores and
manages emails in own databases. For this reason, it is not enough for the
delivering MTAs to place the emails somewhere on the hard disk for Cyrus
to collect them.

Far too much work would be required to modify MTAs so that they store
emails in a format that Cyrus understands. Instead, the best solution is to
set up direct communication between Cyrus and the MTA. If both services
are running on the same computer, it makes sense to use a Unix socket for
the connection. If the MTA and the IMAP server run on different comput-
ers, a TCP socket is more suitable. You can also use a TCP socket locally,
but this will only incur unnecessary overhead, as the emails will have to be
assembled into TCP/IP packages.

Define the selected interface in the ����������#��
�file, in the $�'*�+�$
section:

8 Your SMS gateway operator will provide this address.

254

14.9 Backing Up and Restoring Data

at least one LMTP is required for delivery

lmtp cmd="lmtpd" listen="lmtp" prefork=0

lmtpunix cmd="lmtpd" listen="/var/spool/postfix/public/lmtp" prefork=1

The LMTP socket, which is used when the MTA runs on a different com-
puter, has been commented out here. From Cyrus’s point of view, the
�����
 entry in the active definition of the Unix socket specifies the end of
the socket from which Cyrus receives the emails. Now you have to tell the
MTAs that they should use this socket to deliver emails.

If the MTA is unable to handle LMTP, it is also possible to deliver the emails
via the Cyrus
���!�� service. This is only possible if the MTA permits ex-
ternal commands for email delivery. Usually, only the Cyrus master process
uses the
���!�� service to sort the emails into mailboxes, but the service
can also be externally controlled.

In Exim, for example, you can do this with �����������������
�
���!��
.	 P����������. The .	 switch ensures that the mailbox name is speci-
fied; in Exim 4 it is read out of the ���������� variable. You should only
use this method if you really have to, as delivery via
���!�� does not al-
ways work properly.

When any other error occurs, simply read the logfiles and observe which
service logs an error, so that you can determine where your troubleshoot-
ing should begin. Experience has shown that most errors are caused by
faulty paths, especially when Cyrus and the MTA are connected via the
LMTP socket, or by missing permissions—even if the error messages are
not always specific.

14.9 Backing Up and Restoring Data

Even though Cyrus email servers are rather stable, problems can still occur,
for example, when an error happens in the filesystem or when data is not
written correctly after a computer crashes. Cyrus then requires a lot of
work, as its data cannot simply be restored from a backup; this is due to the
fact that, in addition to storing emails on the hard disk, Cyrus also manages
index databases and status information. The mail store and administrative
databases must always agree, and only Cyrus can ensure this. If you do
have to make repairs, you can use the ����
������ program.

14.9.1 Using ����
������ to Repair Mailboxes

����
������ searches for intact header files in the �!����������	���di-
rectory and then attempts to restore the status information and databases
in the �!��������	��� directory. This tool only works properly for com-

255

14 Advanced Cyrus Configuration

plete mailboxes with complete index and header files. The program is in
the �����������������
� directory, and you start it as user �����.

If the database index is faulty, or if directories or mailbox contents have
been deleted from the command line, ����
������will compare the index
of each mailbox with the existing data in the mailbox directory (if you call
����
������ without options):

cyrus@linux:/usr/lib/cyrus/bin/$./reconstruct

user/paul@example.com

user/paul/Drafts@example.com

user/paul/Sent@example.com

user/paul/Test@example.com

user/paul/Trash@example.com

user/paul/mailclient@example.com

user/paul/memo@example.com

user/paul.hartleben@example.com

user/paul.hartleben/schrott@example.com

user/quotatest@example.com

user/quotatest/Sent@example.com

user/quotatest/Trash@example.com

user/geeko@example.com

user/cyrus

user/paul

user/pwtest

user.achim.Invoices

The command’s output simply shows that all mailboxes are being scanned.
You will only know that the repair has been successful if the mailbox is once
again available.

If you know where the error occurred, you can repair only the affected mail-
box in order to save time. Please note that you have to enter the mailbox
names using the appropriate separators. If �
��������������-��� is set
in virtual domain environments, the call should look like this:

cyrus@linux:/usr/lib/cyrus/bin/$./reconstruct -r user/paul

When the .� switch is activated, ����
������ will recursively scan all the
mailboxes on the system, including the subdirectories, and will make any
required corrections. This takes quite a lot of time.

If a large number of index databases in �!������������� are destroyed,
the .� option restores the mailboxes. You should only use this switch in
an emergency, as ����
������ will then search for �����#���
�� files in
the �!����������	��� directory and create a new mailbox for every file it
finds. All other information, such as quotas, is lost, and you have to enter
it again.

When loading backups onto a Cyrus system, you should proceed as follows:

256

14.10 Performance Tuning

Stop Cyrus.

Load the backup.

Run ����
������ over the backup you just loaded.

Restart Cyrus.

14.9.2 Restoring Quotas

If quotas are defective or are missing after loading the backup, you can use
the L���� tool to repair them. Call it as Unix user �����:

cyrus@linux:/usr/lib/cyrus/bin/$./quota -f mailboxname

If the .� switch is active, the tool repairs defective or inconsistent mail-
boxes.

Sometimes the quota information for a mailbox will be missing after you
have loaded a backup. If you cannot restore them using the ����
	 tool,
the only option is to delete the quotaroot file. It is stored in �!��������	��
�L����� in the subdirectory of the mailbox. If a different ��
��3
��������
is specified in ������	��
#��
�, you should look for it there. Don’t forget
to use L���� .� ��	�������� at the end to make the index database and
mail directory consistent with one another. Once you have done this, you
can use ����
	 to set the quota again for that mailbox.

14.10 Performance Tuning

Thanks to indexes and minidatabases, Cyrus is known as a fast IMAP server.
However, this is usually a subjective assessment, as there are very few com-
parisons against other email servers.9

If you have enough time, you could have a detailed look at the system to see
if you can improve performance a little, as the state in which it is delivered
is usually far from the ideal state. Before fiddling with the workings, you
should bear the following in mind:

Always work with a safety net—the key word is backup.

9 Carnegie Mellon University publishes many live statistics concerning Cyrus at
�������������	������	�

	��
�, but as there are no comparisons to other mail
servers, these do not really serve as the basis for valid arguments.

257

14 Advanced Cyrus Configuration

Design your test scenario so it fits everyday situations. Ready-made test
programs such as 	���
�10 can provide comparable results.

Never change more than one value at a time, and test your system after
each change.

And don’t forget the backup.

The (positive) effects of tuning always depend directly on the performance
resources of your computer. These are disk I/O, CPU performance, and,
the most important of all, RAM. Cyrus shows off to advantage if there is a
lot of RAM. Mail servers are slowed down most by their searching of email
directories. For this reason, Cyrus saves all data required for the search in
small index databases. As the number of databases in the RAM increases,
the reaction time decreases.

14.10.1 Parameters in ������	��
$��
� that Influence
Performance

The following options in the ������	��
#��
� file affect the performance
of Cyrus:

���"������������J�
This value specifies how much RAM each Cyrus index database may

use. You can specify a value between 20KB and 4GB, but you must
always specify the value in kilobytes. The default value is 512KB. You
should only increase this value cautiously, as it depends directly on
the following switch.

���"�������
��	��
This is where you can specify how many simultaneous transactions
are permitted per database. You should be careful when making
changes here, and keep the system under careful observation; if you
set the value too high, busy computers can quickly be overloaded.
The default value is 100.

	��	����3���J�
Use this to determine the maximum size of emails that can be trans-
ferred to Cyrus via the LMTP socket. The default value is 9, which
permits all emails to be transferred. Restrictions do not increase per-
formance directly, but they can help if your system is overloaded. But
be careful: You have to specify the value in bytes. (Can’t programmers
ever agree on a single unit to use, at least for the same product?)

10 See �������
�����	��
��������	����.

258

14.10 Performance Tuning

�����	����
By default, inactive POP3 connections are kept open for 10 minutes.
You can enter a shorter time (in minutes) to relieve the demand on
server resources.

��������
.
�	�
You can distribute new mailboxes to additional mailbox partitions in
order to relieve the load on your RAID system, or if you are running
out of memory. For more information, see section 14.5 on page 239.

You can improve performance slightly by changing the format of the index
databases.

���"����
Databases in this format react to queries fairly quickly and support
binary contents. They are often slightly unstable, which is usually
due to locking errors when accessed a lot.

���"����.
���
�
This option is identical to ���"����, but data is held in the cache
before being written. This increases the speed of write accesses. Un-
fortunately, it also reduces data security: If the cache is deleted for
some reason (a power outage, for example), the data is lost.

�"������
This format was developed by the Cyrus programmers. If offers good
write and read access, supports binary contents, and is known to be
relatively stable. If locking problems occur with Berkeley databases,
�"������ is the next best option.

����
Databases in this format are relatively easy to handle, as their con-
tents are text based. They are also fairly stable, but the speed for
write accesses is comparatively poor.

If you change the format of a database backend, it is not enough simply to
enter it in the ������	��
#��
�file. You also have to convert the database
into the required format with the �!�������
� tool described on page 267.
Please also note that not every format is suitable for every Cyrus database:

���
������
�
This is where you can specify the format of the index database for the
“read” status. The developers of Cyrus recommend �"������, but
you can also use ���"���� and ����.

�

������
�
�
This option specifies the format of the annotation database. This

259

14 Advanced Cyrus Configuration

contains server metadata, such as system information or the email
address of the server administrator. You can use ���"���� and �"��
����.

���������
�
In this database, Cyrus stores information that it requires to suppress
duplicate emails. This function is activated by default, but you can
deactivate it in the ����������#��
� file in the �*��%$() section
(see section 12.1.3 on page 202).

You can use ���"����, ���"����.
���
�, and �"������. If you
use ���"����.
���
�, Cyrus keeps changes in the cache and only
writes them into the database when the server is less busy. This value
is recommended here.

���������
�
This option specifies the format of a database that is used to opti-
mize the working memory management. You can use ���"���� and
�"������.

L�����
�
The quota database contains the currently valid mailbox quotas. You
can use ����, ���"����, �"������, and L������3���. The latter
option was developed specifically for managing quotas in Cyrus and
is therefore recommended.

�����������
�
�
The subscription database contains information on the mailboxes
that are currently in use. You can use ����, ���"����, and �"������.

���������
�
The TLS cache memorizes TLS connection information. You can use
the database formats ���"����, ���"����.
���
�, and �"������.
We recommend ���"����.
���
�, as caching information does not
have to be written immediately, and the I/O load on the disk is re-
duced.

You can also improve performance by using faster hard disks and choosing
an appropriate filesystem (see page 53). It is advisable to use a filesystem
that performs well when handling multiple small files. ReiserFS gets the
best results in most benchmark tests. However, we have found that ReiserFS
is not always stable and requires a lot of work and patience when problems
occur. Reiser4 makes an even better impression where speed is concerned,
but due to its beta status, it should be used carefully. When making your
decision, you should also check the repair tools available for your choice of
filesystem and take your skills with these tools into account.

260

15 Ch
ap

te
r

Internal Structure and Modules

You do not necessarily need to know which modules a Cyrus IMAP server is
composed of and which internal auxiliary programs it uses, but this back-
ground information is important for troubleshooting. Cyrus is built ac-
cording to the classic Unix concept of “one service—one function,” which
means that it has a modular structure (as shown in Figure 15.1) and is con-
trolled by a master process, just like Postfix. The individual components of
Cyrus are listed in the �����������������
� directory.

Nearly all the programs listed there are started exclusively by the Cyrus
master process and not manually. If you have to call any of them manually,
for example, when repairing a faulty mail server, you have to make each
call as the user �����.

The names can vary in different distributions; some Cyrus packages pro-
vided by distributions do not contain some of these tools, while others
contain additional special tools.

261

15 Internal Structure and Modules

Figure 15.1:
The most important
Cyrus processes and

their functions

pop3d timsieved

masterlmtpd

mailboxes

MTA

imapd

(File, SQL, LDAP, PAM)

User data

(libsasl)

Cyrus−SASL

authdaemond

saslauthd
auxprop

Port 25

relay_domains
transport_maps

(Postfix)

Port 110 Port 2000Port 143

15.1 The Cyrus Daemons

The following programs are daemons that provide specific services in the
background. They are all started by the 	����� process. This master pro-
cess is at the heart of Cyrus. It and all its dependent services run under
the ����� Unix account, which provides additional security for the system.
Should an attacker hack into the IMAP server, he or she will only have the
permissions of �����.

�
��

This service can be used to inform the mail client when new messages
have been received. Usually, mail clients check mailboxes regularly,
without knowing whether new emails have been received. The idle
daemon evaluates the signals from the LMTP daemon and forwards
this information to the mail client.

�	��

This daemon provides the IMAP function and opens the IMAP ports.

�	��

This service provides the LMTP socket and manages it according to
the configuration in ����������#��
�. It is the interface between
Cyrus and the delivering MTA.

�	�������

The LMTP proxy service is used in cluster setups and transfers the
emails received from the MTA to the backend server.

	��
���
This is the Cyrus Murder server service. It is required by Cyrus clus-
ters, where it synchronizes the information with that from the Cyrus
backend servers (see page 281).

262

15.2 Tools for Analysis, Maintenance, and Repairs

��

This daemon downloads messages via the Net News Transfer Proto-
col.

�����

The Cyrus notification service (see section 14.7 on page 252) pro-
cesses the notification requests from the master process when an
email is delivered via LMTP. Depending on the configuration, it ei-
ther creates a log entry or sends a message (e. g., via email) when a
new email is received.

����

This service provides the Cyrus POP3 function.

���������

The POP3 proxy server is only used in cluster setups and transfers the
POP3 requests from mail clients from the frontend to the backend
server.

�		��

Cyrus uses the Sendmail Socket Map Daemon to check whether a
mailbox exists and whether it is within its quota. If the mailbox does
not exist, or if it has reached its quota, �		��
 provides this informa-
tion to the master process.

��	���!�

This is the Sieve email filter service (see section 14.6.1 on page 240).

15.2 Tools for Analysis, Maintenance, and Repairs

Cyrus uses some of the following auxiliary programs internally; in many
distributions, they are already integrated in ����������#��
�. They can
also be called manually for analyses or repairs.

15.2.1 Statistics and Analysis

�������

This tool provides statistical information on all mailboxes, or on in-
dividual mailboxes if specified:

cyrus@linux:~/bin$./arbitron

Loading Mailboxes...Done

Loading Users..........................

example/net!user/quotatest 0 0

user.achim 0 0

example/com!user/paul/Trash 0 0

263

15 Internal Structure and Modules

example/com!user/paul.meier 0 0

example/com!user/paul/memo 0 0

example/com!user/paul 0 0

example/com!user/paul.meier/schrott 0 0

For each mailbox, this tool creates one line with the following infor-
mation: the mailbox name and the number of accounts that have
read this mailbox within the past 30 days, followed by the number of
subscribers to this mailbox directory.

The .
 switch restricts the time period for which the statistical infor-
mation is supplied (.
 ,9, for example, will limit the statistical time
period to the past 20 days). The .� switch allows statistical evaluation
for more than one month (.� 59 provides statistical information for
the last ten months, for example).

��"������
This tool checks the consistency of the Cyrus databases by synchro-
nizing them with the email directories:

cyrus@linux:~/bin$./chk_cyrus

Examining partition: ALL PARTITIONS

checking: example.com!user.paul (/var/spool/imap/domain/example.com

/user/paul)

-> 5 records

checking: example.com!user.paul.Trash (/var/spool/imap/domain/examp

le.com/user/paul/Trash)

-> 0 records

checking: example.com!user.paul.memo (/var/spool/imap/domain/exampl

e.com/user/paul/memo)

-> 3 records

checking: example.com!user.paul^meier (/var/spool/imap/domain/examp

le.com/user/paul^meier)

-> 2 records

checking: example.com!user.paul^meier.schrott (/var/spool/imap/doma

in/example.com/user/paul^meier/schrott)

-> 2 records

checking: example.com!user.quotatest (/var/spool/imap/domain/exampl

e.com/user/quotatest)

-> 1 records

checking: sommer.top!user.geeko (/var/spool/imap/domain/sommer.top/

user/geeko)

-> 0 records

checking: user.paul (/var/spool/imap/user/paul)

-> 0 records

checking: user^horst (/var/spool/mail1/user^horst)

-> 0 records

The list shows all existing mailbox directories, together with their
path in the filesystem and the number of emails found. If this in-
formation does not match the information in the Cyrus databases,

264

15.2 Tools for Analysis, Maintenance, and Repairs

the tool returns an inconsistency warning message. You should then
use ����
������ to repair the inconsistent mailbox.

	����	�
�
This tool examines the mailbox, index, and header files and transfers
this information to another process, to the screen, or to a file. It is
useful if you need a detailed overview of the mailboxes.

If you call this command without a switch, it will provide information
on all mailboxes. You can also specify an individual mailbox:

cyrus@linux:~/bin$./mbexamine user/paul/memo@example.com

Examining user/paul/memo@example.com...

Mailbox Header Info:

Path to mailbox: /var/spool/imap/domain/example.com/user/paul/me

mo

Mailbox ACL: paul@example.com lrswipcda quotatest@example.

org lrs

Unique ID: 1a9e415d4564f279

User Flags: $NotJunk $Junk JunkRecorded

Index Header Info:

Generation Number: 58

Format: NORMAL

Minor Version: 6

Header Size: 76 bytes Record Size: 60 bytes

Number of Messages: 1 Mailbox Size: 1499 bytes

Last Append Date: (1186641337) Thu Aug 9 08:35:37 2007

UIDValidity: 1164243577 Last UID: 12

Deleted: 0 Answered: 0 Flagged: 0

POP3 New UIDL: 1

Last POP3 Login: (0) Thu Jan 1 01:00:00 1970

Message Info:

000001> UID:00000012 INT_DATE:1184694344 SENTDATE:1184666400 SIZE

:1499

> HDRSIZE:1497 LASTUPD :1186641337 SYSFLAGS:00000000 LINE

S:1 CACHEVER:2

> USERFLAGS: 00000000 00000000 00000000 00000001

Envel>{278}("Tue, 17 Jul 2007 19:46:30 +0200" "Testtt" (("Peer Har

tleben" NIL "mail" "peer2peer.it")) (("Peer Hartleben" NIL "mail" "

peer2peer.it")) (("Peer Hartleben" NIL "mail" "peer2peer.it")) ((NI

L NIL "paul" "example.com")) NIL NIL NIL "<200707171946.30885.mail@

peer2peer.it>")

BdyStr>{81}("TEXT" "PLAIN" ("CHARSET" "us-ascii") NIL NIL "7BIT" 2

1 NIL ("INLINE" NIL) NIL)

Body>{58}("TEXT" "PLAIN" ("CHARSET" "us-ascii") NIL NIL "7BIT" 2

1)

CacHdr>{188}User-Agent: KMail/1.9.6

Content-Type: text/plain;

charset="us-ascii"

Content-Transfer-Encoding: 7bit

265

15 Internal Structure and Modules

Content-Disposition: inline

Message-Id: <200707171946.30885.mail@peer2peer.it>

From>{33}peerhartleben <mail@peer2peer.it>

To>{25}<paul@example.com>

Cc>{0}

Bcc>{0}

Subjct>{8}"testtt"

This result shows the header information from the 	�	� subdirectory
of ����8���	���#��	’s mailbox; among other things, the header in-
formation shows the paths, the permissions, and the number, size,
and headers of the messages the mailbox contains. In the example,
the subdirectory contains a message with ������ in the subject line.

	�����
This tool returns the path to the storage location in the system of the
specified mailbox’s contents (����8���	���#��	’s mailbox, in this
example):

cyrus@linux:~/bin$./mbpath user/paul@example.com

/var/spool/imap/domain/example.com/user/paul

15.2.2 Maintenance and Repair

The tools described here are useful aids for maintenance work on Cyrus.
Some applications can be run automatically, for example, as a cron job.

���������
�
This tool maintains and repairs all Cyrus databases. If you call the
program with the .� switch, it tidies up the database and attempts to
repair defects. This tool is executed automatically every 30 minutes
and whenever Cyrus is started. You can find it in the ����������#
��
� file in the sections $%&'% and �*��%$.

����
���!��
This tool carries out checks and maintenance on the deliver database

���!��#
�. It is usually operated by Cyrus, but you can also use
it manually to read out the deliver database. This is done by call-
ing ����
���!�� .
, which lists the emails that were most recently
delivered.

����	�������
This tool carries out internal checks and maintenance on the 	�����
���#
� database. This tool can also return the contents of that mail-
box if the .
 switch is activated. The database contains a list of all
mailboxes and the permissions that have been assigned:

266

15.2 Tools for Analysis, Maintenance, and Repairs

cyrus@linux:~/bin$./ctl_mboxlist -d

example.com!user.paul default paul@example.com lrswipcda

example.com!user.paul.Drafts default paul@example.com lrswipcda

example.com!user.paul.Sent default paul@example.com lrswipcda

example.com!user.paul.Test default paul@example.com lrswipcda

example.com!user.paul.Trash default paul@example.com lrswipcda

�!�������
�
This tool converts Cyrus databases into different database formats.
When called without a switch, it shows the database formats that can
currently be converted. The conversion is done by issuing a com-
mand of the following form:

cvt_cyrusdb name_of_old_db old_db_format name_of_new_db \

new_db_format

The following example converts �

������
�#
� from the �"������
format to the ���� format (see section 14.10.1 on page 259):

cyrus@linux:~/bin$./cvt_cyrusdb /var/lib/imap/annotations.db \

skiplist /tmp/TEST-db flat

Converting from /var/lib/imap/annotations.db (skiplist) to /tmp/TE

ST-db (flat)

Warning: apparently empty database converted.

Make sure that you always enter the absolute paths to the databases,
as the tool will otherwise terminate with an error message.

���
�	�
This tool returns the contents of a mailbox on the standard output,
where the emails are shown one after another. You have to specify
the mailbox or subdirectory as the argument:

cyrus@linux:~/bin$./cyrdump user/paul@example.com > paul_dump

creates a dump for ����8���	���#��	’s mailbox and saves it in a file
named �����
�	�.

L����
This tool manages and repairs the mailbox quota (see section 14.9.2
on page 257).

����
������
This tool initializes and repairs the Cyrus database directory (see sec-
tion 14.9.1 on page 255).

�L������
This program creates a squat fulltext index for every mailbox. It lists
all existing emails in this index so that they are easier to find for the

267

15 Internal Structure and Modules

mail client. Please note that the index can only account for existing
emails. When new emails are received, you have to run �L������
again. For this reason, it makes sense to activate this program as a
regular event in the ����������#��
� file, for example, by adding
the following line in the �*��%$ section:

squatter cmd="/usr/bin/nice -n 19 /usr/lib/cyrus/bin/squatter" pe

riod=120

�L������ now runs every two hours with a
��� value of 19. After
activating �L������, you should observe your system load. If there
are a large number of large mailboxes, creating the index can take
some time and slow down the system. For this reason, you should
only start this service with a high
��� value, so as not to put too
much unnecessary strain on your server.

15.2.3 Internal Tools

There are also service programs that only Cyrus can use and that are useless
for administrators.

��	��������!�
This tool translates Sieve scripts into byte code so they can run in
the Sieve daemon. It is almost identical to ���!�� and is used when
Sieve scripts are created automatically. There is more information on
this subject in section 14.6.5 on page 251.

����������
This tool marks messages as obsolete, thereby flagging them for dele-
tion. It has been entered as a regular command in the ����������#
��
� file in the �*��%$ section (see section 12.1.3 on page 202).

���!��
This tool sorts delivered emails into the correct inboxes. It is usually
used only by the master process, but other MTAs can use it to deliver
emails (see section 14.8 on page 254).

�����
� �
This tool receives news from news servers approved as peering part-
ners and transfers these news messages to the Cyrus master process.

��

This tool delivers master process information on the status of mail-
boxes and the emails they contain.

����3�
This tool deletes emails from inboxes according to their age and ex-
piration date (see section 12.1.3 on page 202).

268

15.3 Other In-House Tools

���!��
Like ��	��������!�, this tool translates Sieve scripts into binary
code so they can be executed by the Sieve daemon. It is executed
by default when Sieve scripts are uploaded.

�������
�
This tool deletes expired TLS sessions from the ����������
�#
�
database (see section 12.1.3 on page 202).

15.3 Other In-House Tools

Some distributions contain additional Cyrus tools in the documentation
directory in �����������
������"�3��������.�	���������. This is a
collection of mostly undocumented scripts that can be used for additional
tasks.

�������
����#��
This tool sorts the output of the �������
 statistics tool (see sec-
tion 15.2.1 on page 263) according to the number of users that have
selected and subscribed to a mailbox.

��
��3,���
��
This tool is used to compile and patch the Cyrus source code; it is
called automatically during compilation.

��
��3,	�

This tool is also used to compile the source code and called automat-
ically during compilation.

��
!���.���!�#��
This tool is required when upgrading Cyrus versions up to and in-
cluding 2.1.12. It adapts Sieve scripts to the namespace Cyrus uses
for virtual domains.

�����
This tool is required for upgrading Cyrus versions up to and including
1.6.1. This tool creates a hash value for faster mailbox indexing.

	������!��
This upgrade tool for Cyrus versions up to and including 2.2.0 adapts
existing Sieve scripts to the modified byte code format.

	"�	��
This tool creates the directory structure that Cyrus requires, which
consists of mailboxes and an index/administration section; it is usu-
ally only required when Cyrus is installed manually from the source

269

15 Internal Structure and Modules

code. During startup, the tool imports the working paths from the pa-
rameters ��
��3
�������� and ��������
.
������ in the �����
�	��#��
� file and creates the mailbox structure in these locations
in the filesystem:

linux:/usr/share/doc/packages/cyrus-imapd/tools # ./mkimap

reading configure file...

i will configure directory /var/lib/imap.

i saw partition /var/spool/imap.

i saw partition /var/spool/mail1.

done

configuring /var/lib/imap...

creating /var/spool/imap...

creating /var/spool/mail1...

done

	"
� �3�����
This tool creates a Usenet newsgroup directory structure used to map
newsgroups in Cyrus. If the command is called with the .� switch, it
returns a list of all kinds of parameters.

	��
���.���
3�
#��
This Perl script creates load on the mupdate server in a Cyrus Murder
cluster (see page 281) by sending multiple requests:

linux:doc/packages/cyrus-imapd/tools # ./mupdate-loadgen.pl

0 RESERVE "test.mupdate-load.3830.0" "borked.andrew.cmu.edu"

1 FIND "test.mupdate-load.3830.112"

2 FIND "test.mupdate-load.3830.101"

3 FIND "test.mupdate-load.3830.82"

4 FIND "test.mupdate-load.3830.20"

5 RESERVE "test.mupdate-load.3830.1" "borked.andrew.cmu.edu"

6 FIND "test.mupdate-load.3830.25"

7 FIND "test.mupdate-load.3830.40"

8 FIND "test.mupdate-load.3830.101"

9 FIND "test.mupdate-load.3830.87"

10 FIND "test.mupdate-load.3830.141"

11 RESERVE "test.mupdate-load.3830.2" "borked.andrew.cmu.edu"

12 FIND "test.mupdate-load.3830.9"

13 FIND "test.mupdate-load.3830.25"

[...]

It is an important tool when testing Murder clusters.

������
If you activate the ����
������- 5 function in ������	��
#��
�,
all mailbox directories are given a hash value of the entire username
for faster indexing. Use ������ to generate a new hash value.

270

15.4 The ������ Administration Tool

���
��������!�
When Cyrus is reconfigured to handle virtual domains, the names-
pace settings change. If you want to continue using the Sieve scripts
already on the server, you call ���
��������!� to adapt these scripts
to the modified namespace.

�

�����
This tool removes hash values that have been set for mailboxes.

��3��
����!�
In more recent versions of Cyrus, the Sieve directories have to be
adapted to a new structure. The following Perl script carries out this
task:

linux:/usr/share/doc/packages/cyrus-imapd/tools # ./upgradesieve

you are using /var/lib/sieve as your sieve directory.

upgrading sievedir /var/lib/sieve...a b c d e f g h i j k l m n o p

q r s t u v w x y z

done

If you need to upgrade, you can find more detailed information in the
change log of the new version.

15.4 The ������ Administration Tool

The ����
	 tool is the central point for administrators. It uses some of
the internal tools mentioned above and is controlled with the following
commands:

����
This lists all available commands.

����	������ (�	 for short)
This command lists the names of all mailboxes with reference to sub-
directories (children):

localhost> lm

user/paul (\HasNoChildren)

user/paul.meier/schrott@example.com (\HasNoChildren)

user/paul.meier@example.com (\HasChildren)

user/paul/Drafts@example.com (\HasNoChildren)

user/paul/Sent@example.com (\HasNoChildren)

user/paul/Test@example.com (\HasNoChildren)

user/paul/Trash@example.com (\HasNoChildren)

user/paul/mailclient@example.com (\HasNoChildren)

user/paul/memo@example.com (\HasNoChildren)

user/paul@example.com (\HasChildren)

271

15 Internal Structure and Modules

user/pwtest (\HasNoChildren)

user/quotatest/Sent@example.com (\HasNoChildren)

user/quotatest/Trash@example.com (\HasNoChildren)

user/quotatest@example.com (\HasChildren)

������	������ (�	 for short)
This command creates a top-level mailbox or a mailbox subdirectory:

localhost> cm user.exampleuser

localhost> cm user.exampleuser.Trash

localhost> lm

user.exampleuser (\HasNoChildren)

user.exampleuser.Trash (\HasNoChildren)

�����	������ (
	 for short)
This command recursively deletes a mailbox (see section 14.2 on page
231).

��
�	�	������ (��
	 for short)
This command renames a mailbox:

localhost> lm

user.exampleuser (\HasNoChildren)

localhost> renm user.exampleuser user.testuser

localhost> lm

user.testuser (\HasNoChildren)

������	������ (��	 for short)
This command sets ACLs for a mailbox (see section 14.2 on page 230).

��������	������ (
�	 for short)
This command removes all entries from the mailbox ACL. As param-
eters you have to specify the mailbox name and the user whose ACL
is to be removed:

localhost> lam user.testuser

anyone lrs

localhost> dam user.testuser anyone

localhost> lam user.testuser

localhost>

In this example, the ��� ACL of user �
��
� was removed.

�������	������ (��	 for short)
This command lists all active ACLs for a mailbox:

localhost> lam user.testuser

anyone lrs

The output shows that user �
��
� has permissions ��� for mailbox
����#�������� (see Table 2.1 on page 36).

272

15.4 The ������ Administration Tool

���L���� (�L for short)
This command sets a quota for a mailbox or a subsidiary element (see
section 14.1.2 on page 228).

����L���� (�L for short)
This command shows the active quota for a mailbox or a subsidiary
element (see section 14.1.2 on page 228).

����L�������� (�L� for short)
This command shows how much of the quota of a mailbox hierarchy
has been used (see page 229).

����
��
This command creates information messages that the mail client dis-
plays to the user when the user logs on, sets metadata that can be
read out with special commands, and activates a variety of functions.
It is called according to the syntax ����
��
�
� ����� . The com-
mand knows the following functions:

	��
 creates an information text that the mail client can display
during login:

localhost> setinfo motd "Have fun with Cyrus"

��		�
� allows the administrator to store a short description of the
server.

�
	�
 sets the email address of the server administrator. This in-
formation can be read out with the ��%<�%&�&%& IMAP command,
but so far this has only been specified as an Internet draft.1 Mail
clients that support it can show information on the server. How-
ever, the authors are not aware of any commonly used programs
that carry out this task for ��		�
� and �
	�
. It is highly likely
that this will change, especially for clients that support the Lemon-
ade profile,2 which has been much discussed lately. It will espe-
cially apply to mobile clients such as cell phones.

����
�
 makes it possible to specify a text that the user’s mail
client can show during login. The server then terminates the con-
nection immediately. This is very useful during maintenance, for
example.

������ followed by a number specifies the number of days after
which an email is considered obsolete. You can use ����������
to delete such emails. However, you should only call this function
if you really want to use it, as emails cannot be restored once you
have deleted them.

1 See ������������	����	������
�������,�����,�
��,��������
���.
2 See ������������	����	������
�������,����,��
�����,�������,���,��.

273

15 Internal Structure and Modules

�L��� makes sure that all mailboxes receive a squat index (see sec-
tion 15.2.2 on page 267).

!�����

This function outputs the versions of the Cyrus server and the pro-
grams involved:

localhost> version

name : Cyrus IMAPD

version : v2.2.12 2005/02/14 16:43:51

vendor : Project Cyrus

support-url: http://asg.web.cmu.edu/cyrus

os : Linux

os-version : 2.6.16.21-0.15-xen

environment: Built w/Cyrus SASL 2.1.21

Running w/Cyrus SASL 2.1.21

Built w/Sleepycat Software: Berkeley DB 4.3.29: (Novem

ber 10, 2006)

Running w/Sleepycat Software: Berkeley DB 4.3.29: (Jun

e 16, 2006)

Built w/OpenSSL 0.9.8a 11 Oct 2005

Running w/OpenSSL 0.9.8a 11 Oct 2005

CMU Sieve 2.2

DRAC

TCP Wrappers

mmap = shared

lock = fcntl

nonblock = fcntl

auth = unix

idle = idled

����	������ (���� for short)
This function moves a mailbox from one backend server to another in
a Murder cluster. It is called according to the syntax ���� ��	�����
����
����
���	�������� .

localhost> xfer user.testuser mail.example.net

moves the ����#�������� mailbox from the local computer to the
mail server 	���#���	���#
��.

L���
This function ends ����
	.

Have a look at the manual page for ����
	 on your system, as the cen-
tral administration tool is given new functions in nearly every new Cyrus
version.

274

16 Ch
ap

te
r

Cyrus at the Filesystem Level

If you want to see how Cyrus manages the emails it receives, it is worth
having a look at the pertinent directories in the filesystem. This knowledge
will be useful when creating backups, for example (see section 14.9 on page
255). Try not to change anything here. Cyrus manages its directories au-
tonomously, so manual changes can quickly lead to inconsistent mailboxes
and operational problems.

The Cyrus mail server stores and manages emails in two separate working
directories.

16.1 The Email Directory

Cyrus creates user mailboxes in the �!����������	��directory, and it also
stores the emails here. The directory contains the two main directories

275

16 Cyrus at the Filesystem Level

����� and
�	��
�. All unqualified mailboxes for users whose account
names do not have a domain part are stored in the first directory. The sec-
ond directory contains all qualified mailboxes belonging to user accounts
with a domain part (if virtual domains are in use). Upon receipt of the
first email, Cyrus creates an additional directory called ���3�#�, where it
buffers all newly received emails before sorting them into the appropriate
user directories.

Mailboxes created by ����
	 or created automatically always contain the
files �����#���
��, �����#�����, and �����#�

��, which are used to
manage the directory they are in. They have a binary format specific to
Cyrus.

linux: # ls -al /var/spool/imap/user/paul/

total 32

drwx------ 2 cyrus mail 4096 Nov 21 17:35 ./

drwx------ 3 cyrus mail 4096 Nov 21 16:29 ../

-rw------- 1 cyrus mail 1989 Nov 21 17:10 1.

-rw------- 1 cyrus mail 1988 Nov 21 5:35:00 PM 2.

-rw------- 1 cyrus mail 1988 Nov 21 5:35:00 PM 3.

-rw------- 1 cyrus mail 2864 Nov 21 17:35 cyrus.cache

-rw------- 1 cyrus mail 169 Nov 21 16:29 cyrus.header

-rw------- 1 cyrus mail 256 Nov 21 17:35 cyrus.index

drw------- 2 cyrus mail 4096 Nov 21 16:35 memo/

�����#����� contains caching information that speeds up the display of
emails in this directory by the client, while �����#�

�� saves index and
status information on the individual emails.

Figure 16.1:
View of a mailbox in

Thunderbird with
�����
������

activated

Cyrus stores the readable ACLs for the directory in �����#���
��:

linux:/var/spool/imap/user/paul/ # strings cyrus.header

Cyrus mailbox header

"The best thing about this system was that it had lots of goals."

--Jim Morris on Andrew

276

16.2 The Administration Directory

user.paul 7ab084d44544a02f

paul lrswipcda cyrus lrswipcda

In this case, users ���� and ����� have all permissions for this directory,
which is the ����#���� mailbox. The character string following the mail-
box name uniquely identifies this mailbox.

Apart from administration files, the mailbox shown above contains a 	�	�
subdirectory for user ����. If you enter the ���
�	������ option in the
�	��
#��
� file and activate it with value 5, for example, 	�	� will appear
on the same level as the ����/ (thus, in the ���� directory itself) in the
user’s email program (see Figure 16.1). Otherwise, all subdirectories are
arranged under the ����/, and 	�	� is then displayed in the client as a
subdirectory of the ����/ (see Figure 16.2). The ���
�	������ setting
only has a cosmetic effect for the user interface, and does not affect the
structure or processing of emails on the server.

Figure 16.2:
View of mailbox
without
�����
������

The three numbered files show that ����’s mailbox has already received
three messages. Cyrus stores all emails as sequentially numbered files, and
the server adds a dot to the end of the name.

16.2 The Administration Directory

Cyrus creates all status information, databases, and index files for mail-
box administration under the �!��������	��� path. This is an extremely
sensitive area and should only be modified by Cyrus.

The contents of this directory are directly connected to the contents of
the mailbox directory. When a change is made to a mailbox, this change
has to be synchronized with the administration directory. This task is re-
served for the mail server, and may only be done manually with ����
	
or ����
������. Making manual changes at the filesystem level nearly

277

16 Cyrus at the Filesystem Level

always causes administration information to become inconsistent; in the
worst case, this can cause loss of emails.

�!��������	��� contains the following individual files and directories:

�

������
�#
�
This database contains internal information for Cyrus affecting the
mailboxes and the entire server, such as the email address of the post-
master entered with the ����
��1 ����
	 command, or text used to
store additional information concerning the server.

���"���
This directory contains automatically created backups of the 	������
��#
� database.

��
This directory contains the current index database while the system is
running. These directories are newly generated every time the server
starts.

�#���"��5�
This directory contains a copy of the �

������
�#
� and 	������
��#
� databases currently in use.

���!��#
�
This file is required for filtering and rejecting duplicate emails. It
contains a sender-recipient list of all delivered emails along with their
email ID. This information can be used to suppress duplicate emails.
This function is activated and deactivated in the ����������#��
�
file (see section 12.1.3 on page 202).

��3�
This is where the IMAP server stores supplementary logging informa-
tion for entries in the syslog. The name of the logfile always corre-
sponds to the process ID of the IMAP server process.

	��������#
�
This file is Cyrus’ main database, and contains information for all
mailboxes and their subdirectories, such as the mailbox name, user,
permissions, and so on.

Figure 16.3:
This is how Mozilla

Thunderbird displays
the contents of the

���
��� file.

1 See section 15.4 on page 273.

278

16.2 The Administration Directory

	�3�
If the administrator saves a file called 	��
 in this directory, the user
will see the text in this file when he or she logs in (see Figure 16.3).
The file could contain warning messages or information on using the
email system. Please note that only the text from the first line is
displayed, and that you may not use special characters.

�����
This is a directory of the login processes of the email clients. This is
where Cyrus takes care of all active connections from IMAP clients.
Each of them gets an individual process ID which is used as a file-
name in this directory. Among other things, these files contain the IP
address of the mail client, the username, and the name of the mailbox
accessed by the client:

[10.0.41.2] paul@example.com example.com!user.paul

L�����
This directory contains files specifying the user quotas, which are
stored separately for each mailbox directory. The �� subdirectory,
for example, contains the ����#���� file, which in turn contains the
currently active mailbox quota.

���"���
This file contains the socket files that the Cyrus master process uses
to communicate with the subprocesses.

����
�

If this file exists, Cyrus terminates all login attempts by clients and
requests the clients to display the first line of this text file as an alarm
message in the email client. This can be useful, for example, if you
want to prevent users from logging on during maintenance work on
the server, but still want to inform the users how long the server will
be down.

This function is supported by, among others, Thunderbird, Apple’s
Mail program, and even Microsoft Outlook email clients. Other pro-
grams, for example, KMail, do not display this information, but sim-
ply refuse to give the user access without providing an explanation.

����������
#
�
This database contains the session data of the SSL/TLS connections.
Once Cyrus has built a TLS connection to a client, it memorizes it in
this file and can therefore connect more quickly the next time that
same client logs in.

�����
This directory contains information on messages flagged as ���
 as

279

16 Cyrus at the Filesystem Level

well as a list of subscribed mailboxes. Cyrus stores them per mailbox
in subdirectories. Each subdirectory contains two files: ����	�#���

contains the seen emails, while ����	�#��� contains the subscrip-
tion information.

280

17 Ch
ap

te
r

Cyrus in a Cluster

As user mailboxes grow, but before the mail server reaches the limits of its
capacity, you should consider extending the system. For ways of doing this,
have a look at page 43.

For a long time, there was no stable solution that allowed Cyrus to be oper-
ated in a cluster. In the past three years, more work has been done on this
subject, as a good mail server has to be extendable.

The official answer to the problem is a Cyrus Aggregator or Cyrus Murder.
The term murder is another word for swarm, and refers to a murder of
crows, rather than to homicide.

17.1 The Cyrus Aggregator

This extension makes it possible to deal with load peaks by operating Cyrus
with frontend and backend mail servers. The Cyrus Aggregator is a type

281

17 Cyrus in a Cluster

of load balancer that forwards requests to other Cyrus backend servers.
The required auxiliary programs have been part of the Cyrus distribution
from version 2.1. In some distributions, such as Debian, for example, it is
necessary to install the �����,�.	��
��package on all cluster computers.

According to the Cyrus programmers, this extension is still “relatively young
in the grand scheme of things,” and users deploy it at their own risk. The
authors know a few setups where the Murder clusters run smoothly and
stably; one of these setups is at Carnegie Mellon University.

Figure 17.1:
A Cyrus cluster setup

with two backend
servers

Asks mupdate: "Which server is responsible?"
Cyrus frontend server

Forwards the POP3/IMAP session

Synchronize their account lists regularly using mupdate

Local email storage
Accounts 6001 − 8000

POP3/IMAP server 4

Local email storage
Accounts 4001 − 6000

POP3/IMAP server 3

Local email storage
Accounts 2001 − 4000

POP3/IMAP server 2

Knows the storage
locations for all accounts

Cyrus mupdate server

Local email storage
Accounts 0 − 2000

POP3/IMAP server 1

Port 110 Port 143 Port 2000Port 24
POP3 IMAP timsievedLMTP

Authentication server

SASL/

(SQL, LDAP, etc.)

17.1.1 The Aggregator Concept

A Cyrus cluster distributes administrative tasks onto three different server
types. During the first extension phase this increases performance as the
load of a large mail server is distributed to several small ones. Users will
not even notice this, as they still contact one mail server, just as before.

You require at least one frontend computer, one backend computer, and
one mupdate server (short for murder update) as the interface where mail-
box information is exchanged (see Figure 17.1).

The frontend server provides the interface with the clients and the MTA.
It is the first point of contact in the chain, and is responsible for receiving
user requests and balancing the load. It is also the direct point of contact
for the MTA. Users are authenticated on the frontend server, which also
reduces the computing load on the backend server. If the frontend server
fails, the entire system is brought to a standstill, as the mail clients then
cannot contact the mail server. In order to prevent this, you should operate
multiple frontend servers in parallel and regulate access to them with a load
balancer that distributes the user requests to different computers. Cyrus
itself does not do any load balancing here.

Backend servers are independent POP3/IMAP servers, as in our previously
described setups. Each of them manages a number of mailboxes and pro-
vides a list of these mailboxes to the mupdate server. A backend server

282

17.1 The Cyrus Aggregator

usually knows only one external “user”: the frontend server that collects
and delivers emails and has to be authenticated for this purpose. If one of
the backend servers fails, the mailboxes on this computer are unavailable,
but the other backend servers are unaffected.

The mupdate server, on the other hand, is essential. It functions as the
memory of the cluster, as it manages the lists showing which mailboxes are
stored on which backend server. The frontend servers require this infor-
mation so that they know which backend server to address. The mupdate
server synchronizes the lists regularly with the backend servers. If this com-
puter fails, the frontend servers are left in the dark and none of the users
are able to access their mailboxes. For this reason, you should always have
a reserve mupdate computer that is ready for operation.

When a user wishes to look at his or her mailbox, the mail client contacts
the frontend server. The frontend server checks the access data. If this
is correct, it attempts to determine the backend server where it will find
this user’s mailbox. It asks the mupdate server for this information. If the
requested mailbox exists, the frontend server contacts the corresponding
backend server and calls up the mailbox for the user.

17.1.2 The Cluster Setup

Before setting up a cluster, you should consider the mail partitions and the
required memory reserves (see also section 14.5 on page 239). Every back-
end server can have its own hard disk space or be connected to a central
storage system, which should be redundantly secured. The following setup
assumes that the backend servers use their own hard disk space.

Create additional Cyrus user accounts on the mupdate and backend servers
to enable the frontend, backend, and mupdate servers to authenticate one
another. You could use the same data source as that used for normal users,
but then you would have to (for example) connect the mupdate server to
an LDAP server, and this would make the setup even more complicated and
more difficult to troubleshoot. For this reason, it is advisable to store the
Cyrus update users in the ����
�, database on the backend computers and
the mupdate server, and to use that database as an additional authentica-
tion source (see section 11.4.1 on page 194).

The Frontend Server

To enable the frontend server to authenticate mail clients making requests,
simply enter the data source you currently use in the ������	��
#��
�
file. The following �	��
#��
� entries inform the frontend server of the
name of the mupdate server and how to log on to it.

283

17 Cyrus in a Cluster

servername: cyrus-frontend.example.com

specifies the fully qualified domain name (FQDN) of the frontend server,
which is to be used for communication between the individual cluster
servers. To specify the FQDN of the mupdate server, use the following:

mupdate_server: mupdate.example.com

The 	��
�������� parameter specifies the port on which the mupdate
server listens:

mupdate_port: 3905

You have to enter the username twice, as Cyrus SASL authenticates the user
and then checks whether the user is authorized to communicate with the
mupdate server:

mupdate_username: cyrus-backend

mupdate_authname: cyrus-backend

You can use the same username as for the backend server—no additional
user entry for the frontend server is required. Unfortunately, you have to
enter the password in cleartext:

mupdate_password: secret

After the frontend server has logged on to the mupdate server, the mupdate
server tells the frontend server which backend server contains the mailbox
of the requesting client. The frontend server now logs on to the appropriate
backend server. The following �	��
#��
� entries specify how it does this:

proxy_authname: cyrus-frontend

This entry specifies the name the frontend server uses to log on to the
backend servers. You can specify a separate password for each backend
server:

cyrus-backend_password: secret

cyrus-backend2_password: secret

The part of the parameter name before the ����� ��
 suffix has to corre-
spond to the host part of the FQDN of the corresponding backend server

284

17.1 The Cyrus Aggregator

(�����.���"�

 and �����.���"�

, in this case). This means that the
different backend servers must have different hostnames.

Now you have to instruct the frontend server to forward all IMAP com-
mands to the appropriate backend server, as they cannot be processed lo-
cally anymore. To do this, set the following value in the ������	��
#��
�
file:

proxyd_disable_mailbox_referrals: 1

The frontend server now has access to all cluster components involved and
is able to answer client requests.

If you use Sieve email filtering, Sieve now only runs on the backend servers;
the frontend server has to transfer Sieve commands from the user to the
proper backend server. As a single machine in a non-cluster (single-server)
setup, it would be responsible itself for redirecting Sieve requests to the
local Sieve server. For cluster operation, you have to switch this function
off in the ������	��
#��
� file:

sieve_allowreferrals: 0

Deactivates referrals to the local Sieve service.

sieveuserhomedir: no

Deactivates the use of Sieve user directories

on the local computer.

sievedir: /var/lib/sieve

The directory containing the Sieve scripts on the

corresponding backend server.

To configure the additional services that communicate with the mupdate
server, go to the ����������#��
�file and add the following to the section
$�'*�+�$:

mupdate cmd="mupdate" listen="mupdate" prefork=1

This line activates the mupdate service that listens on port 3905 and makes
sure there is always a a running instance.

fud cmd="fud" proto="udp" listen ="4201" prefork=0 maxchild=10

This line collects and evaluates the information on the user mailboxes pro-
vided by the mupdate server. Fast UDP is used as the protocol here. The
service runs on port 4201 and may start a maximum of 10 subprocesses.
This is a suitable default value. If your clients have to wait for a long time,
you can increase this value step by step. If you do this, make sure to use
��� to monitor the load on your system.

When you restart Cyrus, it will import and apply this configuration.

285

17 Cyrus in a Cluster

The Backend Server

A backend server is an independent Cyrus mail server without an authen-
tication source for the users. The configuration differs from the standard
configuration in that the computer informs the mupdate server regularly
about its mailboxes and has to allow the frontend server to log in.

Make the following entry in the ������	��
#��
� file so that the frontend
can be authenticated in the ����
�, database:

sasl_pwcheck_method: auxprop

Now that backend server will use the ������� module for authentication.
This module reads the ����
�, database by default in distributions such
as SuSE; on other systems you may have to enter this information:

sasl_auxprop_plugin: sasldb

You can also use �
��
� or �L� instead of the ����
� plugin (for more
information, see section 13.2.1 on page 212).

To initialize this database, create the Cyrus user that the frontend server
will use for authentication on the backend server. In this example, we have
used �����.���
��

:

linux: # saslpasswd2 cyrus-frontend

Password: secret

Again (for verification): secret

Now check whether the ����� system user owns the database you have just
created and whether it is part of the 	��� group. If this is not the case, issue
���
 �����-	��� ���������
�, at the command line to correct this.

You have to carry out this process once on every backend server and on
the mupdate server. The frontend server does not require this data source
because no other server from the cluster needs to be authenticated on the
frontend server. Only the frontend server needs to be able to log on to the
mupdate server and the backend servers.

To inform the backend server which mupdate server it should provide in-
formation on its mailboxes to, and to instruct it how to communicate with
that mupdate server, enter the following in the ������	��
#��
� file:

mupdate-server: cyrus-mupdate.example.com

The FQDN where the server can reach the mupdate server

mupdate_port: 3905

The port where the server can communicate with the mupdate server

286

17.1 The Cyrus Aggregator

mupdate_username: cyrus-backend

mupdate_authname: cyrus-backend

mupdate_password: secret

The access data for authentication on the mupdate server.

You have to enter the password in cleartext.

Now you have to specify which frontend servers may access the backend
server:

proxyservers: cyrus-frontend

Hostname of the frontend server. You can specify more than one,

and separate them with spaces.

Use the �
	�
� parameter to specify the Cyrus users that have administra-
tor permissions for the backend server:

admins: cyrus cyrus-frontend

Give these permissions to the ����� Cyrus administrator and to �����.
���
��

, so that the frontend server can process the mailboxes.

If you want to move user mailboxes from one backend server to another,
you have to use ���� ����	�!�� explicitly to permit the frontend server
to begin the moving process:

allowusermoves: yes

The ����	����������
	 command will only function properly if you have
set this value on the backend server (see section 15.4 on page 274).

Users can only subscribe to IMAP directories on a backend server other
than their own if you permit this explicitly:

allowsubscribes: yes

Activate the cluster services in the ����������#��
� file. Go to the $%&'%
section and enter the following line:

mupdatepush cmd="ctl_mboxlist -m"

This will ensure that the ����	������� program starts when the server
starts, and the .	 switch ensures that the program synchronizes the local
mailboxes with the list on the mupdate server. If the mailboxes change, the
program will contact the mupdate server during regular operation. The

fud cmd="fud" proto="udp" listen="4201" profork=0 maxchilds=10

entry in the $�'*�+�$ section activates the service that manages the mail-
box information; the same applies for the frontend server.

287

17 Cyrus in a Cluster

The mupdate Server

The mupdate server is the link between the frontend and backend servers,
so it has to be able to communicate with both of them and always have an
up-to-date list of the mailboxes on the individual backend servers.

Set up the authentication in the ������	��
#��
� file as you did for the
backend server:

sasl_pwcheck_method: auxprop

sasl_auxprop_plugin: sasldb

You also have to create the user that the backend server will use for au-
thentication on the mupdate server (using ��������
, �����.���"�

in this example). Do not forget to assign read permissions for the database
containing the login information to user ����� with ���
 �����-	���
���������
�,.

The following configuration entries in ������	��
#��
� will put Cyrus in
the mupdate mode:

admins: cyrus-backend

Cyrus account used by the backend server for authentication.

The backend server receives administrative permissions for this account.

servername: cyrus-mupdate.example.com

The hostname used by the mupdate server when communicating

with the other servers.

To activate the mupdate service, go to the $�'*�+�$ section in the �����
�����#��
� file and add the following line:

mupdate cmd="mupdate -m" listen="mupdate" prefork=1

The .	 switch starts the mupdate service as the master that listens on port
3905.1 This service always keeps an instance on idle so that it can react
immediately to a request. You have to restart Cyrus to activate the mupdate
setup.

Testing

Once you have set up all of the three types of cluster machines, you should
observe the email and system logs (using ���� .� �!�����3�	����3��
and ���� .� �!�����3�	���, for example) so that you can detect any er-
rors immediately. If everything looks good, deliver an email to the frontend
server:

1 Without this option, mupdate will start as the slave, which is the case on the backend
servers.

288

17.1 The Cyrus Aggregator

cyrus-frontend # telnet localhost 25

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^]’.

220 cyrus-frontend.example.com ESMTP Postfix

HELO mail.heinlein-support.de

250 cyrus-frontend.example.com

MAIL FROM: <p.hartleben@heinlein-support.de>

250 Ok

RCPT TO: <paul@example.com>

250 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

Subject: This is a test email

Test

.

250 Ok: queued as 835281C3C2

quit

221 Bye

Connection closed by foreign host.

If this email reaches the mailbox on the backend server, you will know that
this part of operation works. Now check a user mailbox. The easiest way is
to check the mailbox on the frontend server with ���
��:

linux: # telnet localhost 143

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^]’.

* OK linux Cyrus IMAP4 v2.2.12 server ready

a001 LOGIN paul@example.com secret

a001 OK User logged in

a002 SELECT inbox

* FLAGS (\Answered \Flagged \Draft \Deleted \Seen $NotJunk $Junk JunkRec

orded)

* OK [PERMANENTFLAGS (\Answered \Flagged \Draft \Deleted \Seen $NotJunk

$Junk JunkRecorded *)]

* 6 EXISTS

* 0 RECENT

* OK [UNSEEN 2]

* OK [UIDVALIDITY 1164122999]

* OK [UIDNEXT 66]

a002 OK [READ-WRITE] Completed

a003 fetch 2 body[header]

* 2 FETCH (FLAGS (\Seen $NotJunk JunkRecorded) BODY[HEADER] {1520}2

Return-Path: <paul@example.com>

2 This listing is also interesting because it shows the use of custom IMAP flags: Here, a
spam filter on the client flags all incoming emails as %
���������� and as F/��%
��
or F%
��.

289

17 Cyrus in a Cluster

Received: from gucky.heinlein-support.de ([unix socket])

by linux (Cyrus v2.2.12) with LMTPA;

Tue, 17 Jul 2007 19:47:58 +0200

X-Sieve: CMU Sieve 2.2

[...]

From: Peer Hartleben <p.hartleben@heinlein-support.de>

To: paul@example.com

Subject: testttt

Date: Tue, 17 Jul 2007 7:48:49 PM +0200

User-Agent: KMail/1.9.6

MIME-Version: 1.0

Content-Type: text/plain;

charset="us-ascii"

Content-Transfer-Encoding: 7bit

Content-Disposition: inline

Message-Id: <200707171948.49989.paul@example.com>

)

a003 OK Completed (0.000 sec)

Should you encounter any trouble, one of the following hints will usually
help you solve your problems:

All operations have to run on the frontend server. This applies to send-
ing and receiving emails and to creating and managing mailboxes. Do
not access the backend servers directly, as you will otherwise risk incon-
sistencies in your system.

All Cyrus features in use must be active on the frontend and backend
servers. If, for example, you use ���
�	������ or !���
�	��
�, you
have to enter these parameters identically in ������	��
#��
� on all
computers apart from the mupdate server. Otherwise the users will be
unable to access their mailboxes or will only see a part of them.

Make sure the hostnames are consistent. Unless you specify otherwise,
SASL will use the hostname of the machine for authentication on the
mupdate server, for example. If you change the hostname, the computer
can no longer log on. To be on the safe side, you should define the com-
puter name using the ���!��
�	� option in the ������	��
#��
� file.
Cyrus will then use the name specified here instead of the actual host-
name.

Mailboxes are no longer created automatically in a cluster. On single-
server systems, Cyrus automatically creates mailboxes for new users if
the users’ authentication data is available; in Murder clusters, you have
to create the mailboxes manually. Developers are currently working on
making this feature automatic in the Murder setup.

290

17.2 Cyrus Replication

17.2 Cyrus Replication

As we indicated previously, frontend servers can be cloned and addressed
through a load balancer, but we have not mentioned redundancy in con-
nection with backend servers. Every backend server contains different mail-
boxes. This means there is no backup for any of them: If one of these back-
end computers is unavailable, the affected users will not be able to access
their mailboxes by any other means.

A replication mechanism exists in Cyrus version 2.2 and higher, but it is
still in the beta stage. This is why Carnegie Mellon University has provided
a warning: Deploy at your own risk. Fearless administrators who wish to be
beta testers and use it should read the official how-to guide.3 This replica-
tion mechanism can be used for backend servers in a Murder setup or for
independent Cyrus mail servers.

The only other alternative is to regularly copy the data on a Cyrus backend
to an identical system that can be activated if necessary and take over the
Cyrus tasks of that machine. This process is similar to the backup described
in section 14.9 on page 255.

17.2.1 Replicating the Authentication Data

Because authentication data is managed separately by the Cyrus system, it
also has to be replicated separately. You have to do this yourself, and you
can use the mechanisms of the data sources involved to help you where
possible. In the simplest case, where authentication is done via Unix sys-
tem accounts, you only need a cron job that uses ���
� to regularly save
���������
, ��������
� , and �����3�����, if required, or you can
use central user management with the Network Information Service (NIS).
For LDAP and MySQL databases, it is advisable to use the synchronization
mechanisms of these systems, but a description would exceed the scope
of this book. Starting from version 5, MySQL has an integrated replication
mechanism that is described in more detail on ����-��
�!#	��L�#��	�

������	�
�?#9��
�����������
#��	�.

For LDAP databases you can use the �����
 service, which enables a master-
slave replication of LDAP servers and can therefore provide redundancy for
an authentication backend. For more information on operation and imple-
mentation, go to ����-�� #��

6#
���	�
�������
�
���,#,������
�����
#��	�.

3 See ����������
��
��	���	�

	��
��
�����������,�����������	��
�.

291

Appendixes

A Ap
pe

nd
ix

IMAP Command Reference

IMAP is a complex protocol with a complex and versatile definition. In
addition to RFC 3501,1 which defines IMAP in version 4rev1, the version
valid since March 2003, there are huge numbers of other RFCs and Internet
drafts containing numerous IMAP extensions.

This variety is not surprising, as the +&2&����%D command in the IMAP
protocol was intentionally designed as a foundation that servers can build
upon to provide flexible optional extensions and specialized functions that
the inventors of IMAP could never have imagined.

Unfortunately, a list of these innumerable extensions would exceed the
scope of this book, and many of the more recent extensions are not yet in-
cluded in current software versions. There are many wonderful extensions:

1 See ����������	����	����������������.

295

A IMAP Command Reference

�'�&�%> (RFC 44672) allows the specification of an IMAP server, login data,
IMAP folder, and messages in this style: �	��-�����8���	���#��	�����/
�W��
G:,?. This makes it possible to reference individual messages, and
to pass this reference to third parties. Other RFCs extend existing stan-
dards: RFC 47313 was published in November 2006 and provides additional
functions for the $�&'+> commands.

The following reference introduces IMAP4rev1 and the main IMAP exten-
sions currently supported by Courier and Cyrus.

Some IMAP commands are only available during specific periods of an
IMAP session. For this reason, the commands are sorted according to the
statuses described in section 2.2.2 on page 31. IMAP commands and sub-
commands are not case sensitive.

In the IMAP protocol, lengths are measured in octets, or units containing
eight bits. Nearly all current systems use eight bits per byte, so octet and
byte can be used synonymously: 120 octets correspond to 120 bytes.

A.1 Commands Always Available to Clients

+&2&����%D
This command queries the capabilities of the server (see also section
2.2.3 on page 33). The server returns an untagged reply line that
starts with +&2&����%D �<&2:��!5. Every server has to support the
capabilities $%&'%%�$, &�%>G2�&��, and �������$&����:

a001 CAPABILITY

* CAPABILITY IMAP4rev1 STARTTLS AUTH=GSSAPI LOGINDISABLED

a001 OK CAPABILITY completed

The server uses �������$&���� to announce that it cannot receive
an authentication request from this client at this time. In the exam-
ple, the server will most probably not permit authentication until the
client uses $%&'%%�$ to switch into encrypted mode.

���2
As in many other protocols, this command is short for no operation.
The client can use this command to keep the connection open and
reset any autologout timers:

a002 NOOP

a002 OK NOOP completed

When replying to ���2, many servers provide the current message
status, which informs the client if new emails have been received:

2 See ����������	����	�����������==<@	�-�.
3 See ����������	����	�����������=@��	�-�.

296

A.2 Commands Available in the Not-Authenticated Status

a003 NOOP

* 22 EXPUNGE

* 23 EXISTS

* 3 RECENT

* 14 FETCH (FLAGS (\Seen \Deleted))

a003 OK NOOP completed

�����%
If a client logs out using �����%, the server sends an untagged �D�
and then closes the connection:

a004 LOGOUT

* BYE IMAP4rev1 Server logging out

a004 OK LOGOUT completed

A.2 Commands Available in the Not-Authenticated
Status

&�%>��%�+&%�
This command starts the authentication of the client. The client and
the server then exchange additional information, depending on the
authentication method used. In challenge-response procedures, the
server sends the session key (the challenge to the client) in a line
marked with a plus sign (0), and the client uses the challenge, the
username, and the password to calculate the corresponding login
string (the response).

a001 AUTHENTICATE CRAM-MD5

+ PDUwNjZGNEVFNDNGM0NCQzIzODI1MEVERTc3ODg4Qjg4QGtqaWRkZXI+

cC5oZWlubdVpbiBlZjlkZdQ5YjIxYzk3ZekzNzQ4MzUhMmQ2NDYzZjlhOA==

a001 OK LOGIN Ok.

�����
This command requests a simple login in cleartext; according to the
RFC, every server must support this type of login. For security rea-
sons, it should only be available in SSL/TLS mode, as the username
and password are transmitted without protection, which means they
are easy to detect during transmission unless further steps are taken
to secure the communication channel:

a001 LOGIN tux secret

a001 OK LOGIN completed

$%&'%%�$
The client uses this command to initiate the switch to SSL/TLS-en-
crypted communication. It continues to use the existing connection:

297

A IMAP Command Reference

a001 CAPABILITY

* CAPABILITY IMAP4rev1 STARTTLS LOGINDISABLED

a001 OK CAPABILITY completed

a002 STARTTLS

a002 OK Begin TLS negotiation now

The server is now able to return other +&2&����%D replies in SSL/TLS-
encrypted connections. It can offer a larger variety of login mecha-
nisms:4

a003 CAPABILITY

* CAPABILITY IMAP4rev1 AUTH=PLAIN

a003 OK CAPABILITY completed

a004 LOGIN tux secret

a004 OK LOGIN completed

A.3 Commands Available in the Authenticated
Status

$���+%
This command selects a folder to function as the context for later
commands that operate on messages, and deletes the emails flagged
as =������
 from the previous working folder. The server replies to
this command with a number of untagged lines that may be returned
in an arbitrary sequence; these lines provide information to the client
on the status of the folder:

a005 SELECT INBOX

* FLAGS (\Answered \Flagged \Deleted \Seen \Draft)

* 172 EXISTS

* 1 RECENT

* OK [UNSEEN 12] Message 12 is first unseen

* OK [UIDVALIDITY 3857529045] UIDs valid

* OK [UIDNEXT 4392] Predicted next UID

* OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited

a005 OK [READ-WRITE] SELECT completed

The server uses 4�&�$ to provide information on the flags it is cur-
rently storing in the RAM (see section 2.2.3 on page 35), while �1
@2�'<&���%4�&�$ A����� ����� ���BC specifies all flags that the
client can change permanently. If the server does not provide this in-
formation, the client can assume that it may change all flags during
the session, but that the server will not store any of these changes.

4 Because the communication between client and server is encrypted, it cannot be car-
ried out as shown here in a session initiated via ������; instead, you have to use a tool
such as �������.

298

A.3 Commands Available in the Authenticated Status

The number preceding the word �/�$%$ indicates how many mes-
sages the folder contains, while '�+��% follows the number of mes-
sages flagged as ='���
� or the new emails received since the last
login; the client is the first to view these emails. The server uses �1
@��$��� ������C to return the sequence number of the first unread
message (not the number of unread messages).

�1 @�����/% ��	����	�C informs the client of the next Unique ID;
�1 @���*&����%D ��	����	�������C returns the Unique ID Value
that is currently valid (see section 2.2.1 on page 29).

The server uses tagged reply
�� �1 @'�&�.E'�%�C $���+% ��	�
���� to indicate that it has finished executing the $���+% command.
If the client has write permissions for the folder, the server should
add the information @'�&�.E'�%�C to the �1 reply. If the client only
has read permissions, the server must return @'�&�.���DC.

�/&<���
This command corresponds to the $���+% command, but the client
selects the folder only for reading. The server returns the same reply
as that it returns to the $���+% command, but specifies @'�&�.���DC
in the concluding �1 line:

a006 EXAMINE Test

* 17 EXISTS

* 2 RECENT

* OK [UNSEEN 8] Message 8 is first unseen

* OK [UIDVALIDITY 3857529045] UIDs valid

* OK [UIDNEXT 4392] Predicted next UID

* FLAGS (\Answered \Flagged \Deleted \Seen \Draft)

* OK [PERMANENTFLAGS ()] No permanent flags permitted

a006 OK [READ-ONLY] EXAMINE completed

Access via �/&<��� may not alter the ='���
� flag of new messages,
as that would be a change to the directory by the server.

��$%
The ��$% command returns a list of all directories available to the
client. The server also specifies the folder attributes and the applica-
ble hierarchy delimiter in its untagged replies:

a016 LIST "" "*"

* LIST (\HasNoChildren) "." "INBOX.Private.Holiday"

* LIST (\HasNoChildren) "." "INBOX.Private.Orchestra"

* LIST (\HasChildren) "." "INBOX.Private"

* LIST (\HasNoChildren) "." "INBOX.ToDo"

* LIST (\HasNoChildren) "." "INBOX.Test"

* LIST (\HasChildren) "." "INBOX.Book stuff"

* LIST (\HasNoChildren) "." "INBOX.Book stuff.LPIC-1"

* LIST (\HasNoChildren) "." "INBOX.Book stuff.Postfix 3"

299

A IMAP Command Reference

* LIST (\HasNoChildren) "." "INBOX.Book stuff.Snort"

* LIST (\HasNoChildren) "." "INBOX.Book stuff.IMAP"

* LIST (\Unmarked \HasChildren) "." "INBOX"

a016 OK LIST Completed

The ��$% command has two parameters: the second consists of the
mailbox name or a wildcard pattern. The first is called a reference,
and it specifies the context in which the mailbox name is interpreted
in relation to the reference:

a017 LIST "INBOX.Private" "*"

* LIST (\HasNoChildren) "." "INBOX.Private.Holiday"

* LIST (\HasNoChildren) "." "INBOX.Private.Orchestra"

a017 OK LIST completed

The reference is important if the IMAP server allows access to a filesys-
tem or a news server in accordance with RFC 3501. As neither Courier
nor Cyrus permit this, the subject would exceed the scope of this
book.

During normal email operation, the reference argument remains emp-
ty, as shown in the command tagged as �95H. The mailbox name is
then exactly the same as the folder name used in the $���+% com-
mand (see section A.3 on page 298).

The asterisk (;) wildcard can traditionally represent any character.
On the other hand, the percent sign (Y) represents any character apart
from the hierarchy separator:

a018 LIST "" "INBOX.Private*"

* LIST (\HasNoChildren) "." "INBOX.Private.Holiday"

* LIST (\HasNoChildren) "." "INBOX.Private.Orchestra"

* LIST (\HasChildren) "." "INBOX.Private"

a018 OK LIST completed

a019 LIST "" "INBOX.Private%"

* LIST (\HasChildren) "." "INBOX.Private"

a019 OK LIST completed

If you specify an empty mailbox name as the second argument, the
��$% command simply returns the hierarchy separator:

a020 LIST "" ""

* LIST (\Noselect) "." ""

a020 OK LIST completed

+'�&%�
This command creates a new folder on the server. For subdirectories,
the client has to specify the complete path, including the hierarchy
delimiter specified by the server (this is a dot in the following ex-
ample). Should intermediate directories not exist, the server has to
create them automatically:

300

A.3 Commands Available in the Authenticated Status

a021 CREATE PRIVATE

a021 OK CREATE completed

a022 CREATE PRIVATE.FRIENDS.HOLIDAY

a022 OK CREATE completed

The server decides whether folders 2'�*&%� and 2��!��� can exist
at the same time, and it makes this decision for each directory. Only
the ����/ may not be case sensitive.

Unfortunately, the client cannot simply query the rules on case sen-
sitivity applied by the server to a folder, and instead has to rely on
trial and error.

����%�
This command deletes the specified directory from the server. If it
contains subdirectories (as the new directory 2'�*&%� in the pre-
vious example contains the subfolder 2'�*&%�#4'����$#>����&D),
the server may not delete these subdirectories automatically.

If you delete the 2'�*&%� directory along with all its messages, it
will continue to appear in the listings, but will be marked with the
=�������� flag. The server uses this flag to show that the directory
can only map the name structure, but cannot contain actual mes-
sages.

This means that directories flagged as =�������� cannot be deleted
using ����%�, as they have already been deleted.

'��&<�
This command renames a folder on the server. If the folder contains
subfolders, their path will also be modified. If the parent directory of
the new folder does not yet exist, the server will create it automati-
cally:

a023 LIST "" *

* LIST () "/" Test

* LIST (\Noselect) "/" foo

* LIST () "/" foo/bar

a023 OK LIST completed

a024 RENAME Test bla

a024 OK RENAME completed

a025 RENAME foo zowie

a025 OK RENAME Completed

a026 LIST "" *

* LIST () "/" bla

* LIST (\Noselect) "/" zowie

* LIST () "/" zowie/bar

a026 OK LIST completed

If the ����/ folder is renamed, the ����/ directory must continue to
exist as an empty folder; the emails are moved into the new directory.
If the ����/ contains subdirectories, these also continue to exist:

301

A IMAP Command Reference

a027 LIST "" *

* LIST () "." INBOX

* LIST () "." INBOX.bar

a027 OK LIST completed

a028 RENAME INBOX old-mail

a028 OK RENAME completed

a029 LIST "" *

* LIST () "." INBOX

* LIST () "." INBOX.bar

* LIST () "." old-mail

a029 OK LIST completed

$��$+'���
This command places the specified directory onto the list of directo-
ries subscribed to by the client (or the user); the client can access it in
a targeted manner using the �$�� command (see below). See section
2.2.4 on page 41 for the advantages of this procedure.

The server may check whether the directory exists at the time the
$��$+'��� command is executed. It may not delete directories from
the subscription list of a client, even if these directories cease to exist.
It is therefore possible to keep a subscription to directories that no
longer exist, in case they are later recreated.

��$��$+'���
This command removes a directory from the list of subscribed direc-
tories.

�$��
The parameters and server replies correspond to those of the ��$%
command (see page 299), but �$�� (short for list subscribed) only
returns the directories subscribed to by the client.

$%&%�$
This command allows targeted querying of status information with-
out the server selecting the appropriate directory (for example, by
using �/&<���, see page 299). This command is useful for determin-
ing the status of directories that are currently not selected.

$%&%�$ queries often take some computing time, and Courier and
other servers find it hard to evaluate a directory in addition to the
selected mailbox, so RFC 3501 prohibits the use of the $%&%�$ com-
mand for directories that have already been selected.

The client specifies the parameters it requires in parentheses:

a030 STATUS Test (UIDNEXT MESSAGES)

* STATUS Test (MESSAGES 231 UIDNEXT 44292)

&22���
This command inserts a new email into the current folder. This email

302

A.4 Commands Available in the Selected Status

has to correspond to RFC 2822 (that is to say, it has to consist of
an email header and an email body separated by a blank line). The
server has to obey the following rules:

If the email contains a ����- header line, the server will use the
date in that row to denote the time the email was received.

If the target folder does not exist, the server may not create this di-
rectory. Instead, it can add @%'D&�&��C to the reply, which signifies
to the client that it has to use +'�&%� to create this folder.

If the client adds flags such as =$��
 or =&
� ���
 in parentheses,
the server should save these flags:

a031 APPEND saved-messages (�!��) {310}

+ Ready for literal data

Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)

From: Tux <tux@example.com>

Hi Paul, can we meet tomorrow at 3.30?

a031 OK APPEND completed

If this information is missing, the server should not save any flags,
and simply show the ='���
� flag to the client. The client must
also include the length of the new email in curly brackets (�59 in
this case) so the IMAP server can detect the end of the transmis-
sion.

If the server is unable to insert the email for some reason, it has to
restore the directory to its previous state so that it seems as if no
action had taken place.

A.4 Commands Available in the Selected Status

+>�+1
The +>�+1 command allows programmers to debug their own IMAP
implementation. It does not provide any default return values. This
allows the software to reply with any debug output, or to return an
�1 without carrying out any other action. Clients should always use
���2 to keep the connection open.

+��$�
This command physically deletes all emails flagged as =������
 from
a folder. The affected folder is then deselected. The IMAP connection
then switches to the authenticated status.

If the client uses $���+% or �/&<��� to select a different folder, or if
it logs out with �����%, the server implicitly executes a +��$� so that
all emails flagged as =������
 are deleted.

303

A IMAP Command Reference

�/2����
�/2���� also deletes all messages flagged as =������
, but it keeps
the folder in the selected status and returns an untagged message for
each deleted email.

Be careful: When emails are deleted, this naturally affects the se-
quence numbers of the messages. As servers delete each email in-
dividually, they renumber the emails after each deletion to close the
gap. In the following example, messages 3, 4, 7, and 11 are deleted,
but the server returns the IDs of messages 3, 3, 5, and 8:

a032a STORE 3,4,7,11 +FLAGS (��������)

* 3 FETCH (FLAGS (\Deleted \Seen))

* 4 FETCH (FLAGS (\Deleted))

* 7 FETCH (FLAGS (\Deleted \Flagged \Seen))

* 11 FETCH (FLAGS (\Deleted \Seen))

a032a OK STORE completed

a032b EXPUNGE

* 3 EXPUNGE

* 3 EXPUNGE

* 5 EXPUNGE

* 8 EXPUNGE

a032b OK EXPUNGE completed

If the client does not require a list of deleted messages, it should use
+��$� instead of �/2����.

$�&'+>
This command orders the server to search through all messages in the
selected folder. The server returns an untagged list of the sequence
numbers of all emails corresponding to the search criteria. A number
of rules apply here:

The text search is case insensitive.

A text search is considered to be successful as soon as the search
pattern is found as a substring in an email.

The search criteria are always linked by a logical &�� unless the
client explicitly demands an �'.

The search pattern can be a list of several search terms enclosed in
brackets if required by the logical combination with �' or ��%.

The order of search criteria is irrelevant.

The following search criteria are available:

���������������K�������������������
If you specify the sequence number(s) of one or more emails,
the server will only search the specified email(s). You can use
enumerations such as (,:K69K�9) or segments such as (I9-599),
or you can combine these two options:

304

A.4 Commands Available in the Selected Status

a033 search TEXT "yesterday" 24,90,30,80:100

* SEARCH 24 90

a033 OK done

Here, the word ������
�� appears in emails 24 and 90.

&��
This option selects all emails in the mailbox.

&�$E�'��
This option selects all messages flagged as =&
� ���
.

�++ �
�	��
This option selects emails containing the specified �
�	�� in
the ���- field of the email header.5

��4�'� ��
�
This option selects emails with an internal date previous to ���

� . This does not take the time into account. ��
� has to be
specified in this format: ,6.$��.,99S.

���D �
�	��
This option selects messages containing the specified �
�	��
somewhere in the email body:

a034 SEARCH BODY "yesterday evening"

* SEARCH 218 587 1232 1421 2258 3696 4123

a034 OK SEARCH done.

You can also use the following alternative syntax for this com-
mand:

a034 SEARCH BODY {13}

+ OK

yesterday evening

* SEARCH 218 587 1232 1421 2258 3696 4123

a034 OK SEARCH done.

If you enter the length of the character string in bytes (5� in
this case) and end the command with a line break (CR/LF), the
server will then request the search string (Courier uses 0 �1 in
this case). You can now enter the search string without enclos-
ing it in quotation marks, as shown.

You can use this method to search for special characters, such
as characters with a byte value above 127; these characters are
not permitted in the command itself. You have to specify the
character set with +>&'$�%:

a035 SEARCH CHARSET iso-8859-1 BODY {7}

+ OK

München

5 Most email clients delete the $��� field from the email header because it is designed
for recipients who are to remain unknown by the other recipients. It is very likely that
a mailbox will not contain any emails with this information.

305

A IMAP Command Reference

4412 4416 4420 4427 4429 4430 4434 4435 4438 4440

a035 OK SEARCH done.

This command will search all email parts coded according to
ISO-8859-1, and will search for the <[
���
 character string,
which is S bytes long (in this coding).

++ �
�	��
This command searches for messages containing the specified
�
�	�� in the +�- field of the email header.

����%��
This command selects all messages flagged as =������
.

�'&4%
This command selects all messages flagged as =�����.

4�&����
This command selects all messages flagged as =4��33�
.

4'�< �
�	��
This command searches for messages that contain the �
�	��
in the 4��	- field of the email header.

>�&��' �	������� �
�	��
This command searches messages with the specified header field
(in accordance with RFC 2822) for messages containing the given
�
�	�� :

036 SEARCH HEADER X-Virus-Scanned amavisd

* SEARCH 90 194

036 OK done

If ����
3 is empty, the query will apply to all messages that
contain the header field, no matter what the contents are:

037 SEARCH HEADER X-Virus-Scanned ""

* SEARCH 24 29 90 98 194

037 OK done

1�DE�'� ����
This command searches for messages containing the specified
flag.

�&'��' �
This command selects emails larger than � bytes. A line break
corresponds to exactly two bytes, as emails conclude with CR/LF
instead of only CR or LF, in accordance with RFC 2822.

��E
This command searches for all messages flagged as ='���
� but
not as =$��
.

��% ��������

	��
This command selects emails that do not correspond to the
search option:

306

A.4 Commands Available in the Selected Status

a038 SEARCH FLAGGED BEFORE 1-Jan-2007 NOT FROM "geeko"

* SEARCH 3 6 7 9 10 11 12 15 16 20 21 22 24 25 29 31 32 33

a038 OK SEARCH completed.

���
This command selects all messages not flagged as ='���
�.

�� ��
�
This command slects emails whose internal date is the same as
��
� . This does not take the time into account.

�' �������

	��� �������

	���
This command selects messages that match �������

	��� or
�������

	��� :

039 SEARCH OR FROM tux@ FROM paul@

* SEARCH 25 29 31 32 33 55 64

039 OK done

040 SEARCH (OR FROM tux@ FROM paul@) BEFORE 1-Jan-2007

* SEARCH 25 29 31 32 33

040 OK done

'�+��%
This command selects all messages flagged as ='���
�.

$���
This command selects all messages flagged as =$��
.

$��%��4�'� ��
�
This command selects messages with a date in the ����- header
that lies before the ��
� . This does not take the time into ac-
count.

$��%�� ��
�
This command selects messages with a date in the ����- header
that matches the specified ��
� . This does not take the time
into account.

$��%$��+� ��
�
This command selects messages with a date in the ����- header
that lies after the specified ��
� . This does not take the time
into account.

$��+� ��
�
This command selects emails with an internal date stamp that
is the same or later than the ��
� . This does not take the time
into account.

$<&���' �
This command selects emails smaller than � octets.

$��R�+% �
�	��
This command returns messages with �
�	�� in the $��F���-
field of the email header.

307

A IMAP Command Reference

%�/% �
�	��
This command selects emails containing the �
�	�� in both,
the header or body:

a041 SEARCH TEXT "Holiday"

* SEARCH 4 23

a041 OK SEARCH completed.

%�/% usually searches the raw data on standard servers. In raw
data, special characters are usually coded as G4+ or G+�G�+.6

For this reason, it makes more sense to use the $�&'+> sub-
command ���D (see section A.4 on page 305).

%� �
�	��
This command selects messages containing the �
�	�� in the
%�- field of the email header.

��� �	��K�	������
This command selects messages with a unique identifier that
contains one of the numbers specified as search criteria.

��&�$E�'��
This command selects all messages not flagged as =&
� ���
.

������%��
This command selects all messages not flagged as =������
.

���'&4%
This command selects all messages not flagged as =�����.

��4�&����
This command selects all messages not flagged as =4��33�
.

��1�DE�'� ����
This command selects all the emails that do not contain the
specified flag.

��$���
This command selects all messages not flagged as =$��
.

4�%+>
This command requests the specified message(s). The client can use
concluding keywords to retrieve specific parts of an email. If, for
example, it wants to create a table of contents, it can retrieve only
the email headers required for the index, as the email body is not
required at that stage. The following keywords are available in 4�%+>:

���D or ���D$%'�+%�'�
This command fetches the MIME structure of the email:

6 Both strings are equivalent to the German umlaut ü.

308

A.4 Commands Available in the Selected Status

a042 FETCH 8 BODYSTRUCTURE

* 8 FETCH (BODYSTRUCTURE (("text" "plain" ("charset" "iso-8859

-1") NIL NIL "quoted-printable" 721 22 NIL ("inline" NIL) NIL)

("image" "jpeg" ("name" "Bild1_anse_gaulettes1.jpg") NIL NIL))

a042 OK FETCH completed.

This example email contains 22 lines and is 721 octets (or bytes)
in length. Depending on interpretation, ��� is either short for
not in list or for nothing (Latin: nihil), and serves as a place-
holder for empty fields in the MIME structure.

���D@C or '4+I,,
This command retrieves the entire specified email(s). When
these two commands are used, the server automatically sets
the =$��
 flag. To prevent this, you should use ���D#2��1@C
instead of ���D@C, which is also capable of all the extensions
discussed here.

���D@>�&��'C
This command retrieves the entire header of a message in ac-
cordance with RFC 2822:

a043 FETCH 30 BODY[HEADER]

* 30 FETCH (BODY[HEADER] {1458}

Return-Path: <p.heinlein@heinlein-support.de>

X-Original-To: tux@example.com

Delivered-To: tux@example.com

[...]

Message-Id: <200706062304.5047.p.heinlein@heinlein-support.de>

)

a043 OK FETCH completed.

The untagged reply line contains the length of the server reply
in curly brackets (5:?I octets, or bytes, in this case).

'4+I,,#>�&��' is a synonym for ���D#2��1@>�&��'C.

���D@>�&��'#4����$ A�	���� �	���� ���BC
This command only retrieves the specified fields from the mes-
sage header:

a044 FETCH 30 BODY[HEADER.FIELDS (Message-ID)]

* 30 FETCH (BODY[HEADER.FIELDS ("Message-ID")] {67}

Message-Id: <200706062304.5047.p.heinlein@heinlein-support.de>

)

a044 OK FETCH completed.

a045 FETCH 30 BODY[HEADER.FIELDS (Message-ID Date)]

* 30 FETCH (BODY[HEADER.FIELDS ("Message-ID" "Date")] {105}

Date: Wed, 6 Jun 2007 23:04:04 +0200

Message-Id: <200706062304.5047.p.heinlein@heinlein-support.de>

)

a045 OK FETCH completed.

309

A IMAP Command Reference

���D@>�&��'#4����$#��% A�	���� �	���� ���BC
This command retrieves the header without the specified fields.

���D@�����#<�<�C
Complex messages consist of several parts: the actual email text,
some binary attachments, and sometimes even an additional
message as an attachment. All this is held together by the MIME
structure.

You can use <�<� to retrieve the technical details of the different
encapsulated levels of the message. The actual email text is on
level 5:

a046 FETCH 8 BODY[1.MIME]

* 8 FETCH (BODY[1.MIME] {127}

Content-Type: text/plain;

charset="iso-8859-1"

Content-Transfer-Encoding: quoted-printable

Content-Disposition: inline

)

a046 OK FETCH completed.

The first attachment is on level 2:

a047 FETCH 8 BODY[2.MIME]

* 8 FETCH (BODY[2.MIME] {159}

Content-Type: image/jpeg;

name="Image1.jpg"

Content-Transfer-Encoding: base64

Content-Disposition: attachment;

filename="Image1.jpg"

)

a047 OK FETCH completed.

���D@%�/%C or '4+I,,#%�/%
This command retrieves the entire contents of the email without
the header:

a048 FETCH 7040 BODY[TEXT]

* 7040 FETCH (BODY[TEXT] {843}

Dear all,

I would like to setup Debian Women for Indonesian

But I dunno What should I do=20

The first thing that in my mind is translating Debian Women =

site to Indonesian language

The other things are waiting Debian Women Bug Squashing and =

Debian package tutorial.

any suggestion ?=20

310

A.4 Commands Available in the Selected Status

Thanks in advance=20

[...]

)

a048 OK FETCH completed.

It is possible to restrict the output. In the following example, we
restrict it to the first 200 characters:
a049 FETCH 7040 BODY[TEXT]<0.200>

* 7040 FETCH (BODY[TEXT]<0> {200}

Dear all,

I would like to setup Debian Women for Indonesian

But I dunno What should I do=20

The first thing that in my mind is translating Debian Women =

site to Indonesian language

The other t)

a048 OK FETCH completed.

Do not insert a space between the last square bracket and the
first angle bracket. If you want to see the mail body between
characters 100 and 200, change the contents of the angle brack-
ets to \599#,99M. However, '4+I,,#%�/% is not capable of this
extension to the syntax.

��*���2�
When it receives this command, the server generates a listing of
the most important data in the RFC 2822 header of the email;
this data can be used to display a message overview (subject,
date, sender, message ID). This has nothing to do with the SMTP
envelope used to deliver the email, as this ceases to exist when
the email is saved.
a050 FETCH 7040 ENVELOPE

* 7040 FETCH (ENVELOPE ("Thu, 28 Feb 2008 21:56:28 -0800 (PST)

" "Debian Women Indonesia" (("Nur Aini Rakhmawati" NIL "khaula

h_tc" "yahoo.com")) NIL NIL (("Debian Women" NIL "debian-women

" "lists.debian.org")) NIL NIL NIL "<178623.17300.qm@web38005.

mail.mud.yahoo.com>"))

a050 OK FETCH completed.

4�&�$
This command lists all the flags set for the specified message(s).

��%�'�&��&%�
This command returns the internal date of the message:
a051 FETCH 45,46 INTERNALDATE

* 45 FETCH (INTERNALDATE "30-Apr-2006 15:57:48 +0000")

* 46 FETCH (INTERNALDATE "30-Apr-2006 15:57:48 +0000")

a051 OK done

'4+I,,#$�T�
This command returns the size of the message according to RFC
2822 (with CR/LF at the end of the lines) in bytes:

311

A IMAP Command Reference

a052 FETCH 42 RFC822.SIZE

* 42 FETCH (RFC822.SIZE 3649)

a052 OK done

���
This command returns the unique ID of the message:

a053 FETCH 42 UID

* 42 FETCH (UID 43)

a053 OK done

This shows that the sequence number and the UID are not usu-
ally the same.

It is possible to combine multiple keywords in parentheses:

a054 FETCH 56 (FLAGS INTERNALDATE RFC822.SIZE)

* 56 FETCH (RFC822.SIZE 3731 FLAGS (\Seen) INTERNALDATE "30-Apr-200

6 15:57:49 +0000")

a054 OK done

There are abbreviations for typical combinations:

&��
This abbreviation is the same as A4�&�$ ��%�'�&��&%� '4+I,
,#$�T� ��*���2�B.

4&$%
This abbreviation is the same as A4�&�$ ��%�'�&��&%� '4+I,
,#$�T�B.

4���
This abbreviation is like the combination A4�&�$ ��%�'�&��&
%� '4+I,,#$�T� ��*���2� ���DB.

$%�'�
This command adds flags to one or more messages. The server replies
with one or more untagged 4�%+> replies in which it sums up the
flags that apply to the affected messages. The client can prevent this
4�%+> reply (to save transmission volume and transmission time, for
example), by using the 4�&�$#$����% $%�'� option, which also has
three versions.

4�&�$ A����� ����� ���B
This command sets all flags specified here. Any existing flags
not mentioned here are deleted. The exception is the ='���
�
flag, which is not deleted.

04�&�$ A����� ����� ���B
This command adds all the flags specified here:

312

A.4 Commands Available in the Selected Status

a055 STORE 2:4 +FLAGS (��������)

* 2 FETCH (FLAGS (\Deleted \Seen))

* 3 FETCH (FLAGS (\Deleted))

* 4 FETCH (FLAGS (\Deleted \Flagged \Seen))

a055 OK STORE completed

Custom flags (or keywords) are set like system flags, but there is
one difference: there is no preceding = in custom flags:

a056 STORE 100 +FLAGS (project)

100 FETCH (UID 102 FLAGS (\Seen project))

a056 OK done

.4�&�$ A����� ����� ���B
This command removes all flags specified here.

+�2D
This command copies the specified message(s) to another folder. The
server should preserve flags, and it should set the ='���
� flag, as the
emails are recent for the new location:

a057 COPY 2:4 MEETING

a057 OK COPY completed

As for the &22��� command (see page 302), the server should not
simply create missing folders, but instead return a �� reply to the
client along with @%'D+'�&%�C, which in turn encourages the client
to create the directory.

If the +�2D command fails for some reason, the server has to restore
the directory to its previous status.

���
You can prefix this special command to +�2D, 4�%+>, and $%�'�. It
signifies to these commands that the figure specified as the argument
refers to unchanging unique IDs rather than sequence numbers.

Thus, the following command copies the messages with sequence
numbers 2 to 4 into the ����/#2��!��� folder:

a058 COPY 2:4 INBOX.Private

a058 OK COPY completed

whereas the following command copies the messages with unique
IDs 400 to 403 (this does not imply that the folder necessarily con-
tains more than 400 messages):

a059 UID COPY 400:403 INBOX.Private

a059 OK COPY completed

313

A IMAP Command Reference

If you want to limit the range of emails to be processed to the high-
est unique ID in this folder, you can use the wildcard asterisk (;) as
follows: :9�-;. Even if the highest unique ID is lower than the start-
ing value of 403, the server will still return one message (the message
with the highest unique ID), unless the folder is entirely empty.

The following example shows that unique IDs are not necessarily se-
quential:

a060 UID FETCH 4827313:4828442 FLAGS

* 23 FETCH (FLAGS (\Seen) UID 4827313)

* 24 FETCH (FLAGS (\Seen) UID 4827943)

* 25 FETCH (FLAGS (\Seen) UID 4828442)

a060 OK UID FETCH completed

The server ignores nonexistent unique IDs. If none of the speci-
fied UIDs exist, the server will reply �1 even though it did noth-
ing. Sequence numbers are always sequential and without gaps, so
this problem cannot occur for normal +�2D, 4�%+>, and $%�'� com-
mands.

If the client prefixes the ��� command to a $�&'+> command, this
informs the server that it should show the results as unique IDs (and
not as sequence numbers). The server still regards the message IDs
delivered by the client as sequence numbers:

a061 UID SEARCH 1:100 FROM "Smith"

* UID SEARCH 80 242 882

a061 OK SEARCH done.

Naturally you can continue to use the unique ID as a search criterion.
In the following example, the client is searching messages 1 to 100
for emails with a UID that is equal to or higher than 403. The server
returns the unique IDs in an untagged reply:

a062 UID SEARCH 1:100 UID 403:*

* SEARCH 6924 8697 16600 16908 19373 19374

a062 OK SEARCH done.

A.5 IMAP Extensions

A large number of additional IMAP extensions have been defined over the
course of time, but they are unfortunately spread across a variety of RFCs.
This development is still ongoing, and additional extensions are under dis-
cussion; such extensions could offer additional translation or multilingual
options.

314

A.5 IMAP Extensions

The client can use the +&2&����%D command to determine which IMAP
extensions are supported by the server:

a CAPABILITY

* CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJECT

THREAD=REFERENCES SORT IDLE AUTH=CRAM-MD5 AUTH=CRAM-SHA1 ACL

a OK CAPABILITY completed

Many extensions provide exactly one new eponymous command, while
others provide no commands or a variety of differently named IMAP com-
mands. The following overview shows the most important IMAP exten-
sions.

���2��$
The server sends extended replies according to RFC 4315 (previously
RFC 2359) that contain the unique IDs of the emails.7 The client has
to send fewer queries, and the extension provides the foundation for
offline IMAP (also known as cached or disconnected IMAP).

+>���'��
When servers return directory listings, they include the attributes
=>��+���
��
 and =>����+���
��
.8 The client once again re-
quires fewer queries, as it no longer needs to check whether an IMAP
folder contains additional subdirectories.

�&<�$2&+�
The IMAP namespace is not precisely defined, so the client can use
this command to query the supported name schema of the server.9

$�'%
The server supports search commands using $�'%.10

%>'�&�G�����	
��
The server supports the specified %>'�&� search method.11

����
The server supports push email via the ���� command (see pages
176 and 200).12

&�%>G��
���
This extension lists the login methods available in addition to �����
and 2�&��.13

7 See ����������	����	�����������=���	�-�.
8 See ����������	����	�������������=5	�-�.
9 See ����������	����	�����������7�=7	�-�.

10 See ����������	����	������������,������������,����,�
���-�,����,�5	�-�.
11 See ����������	����	������������,������������,����,�
���-�,����,�5	�-�.
12 See ����������	����	�����������7�@@	�-�.
13 See ����������	����	�����������7�<�	�-�.

315

A IMAP Command Reference

&+�
This extension supports ACLs (access control lists) via IMAP, so that
one user can share individual IMAP folders with other users; see
section 10.1 on page 153 (Courier) and section 14.2 on page 230
(Cyrus).14

7��%&
If quotas have been set for an account, the client can use this exten-
sion to query the permitted maximum limit and the current utiliza-
tion.15

A.6 Experimental Commands

Commands beginning with / are not defined in standards; they are consid-
ered to be experimental or proprietary. The server may not send X-replies
unless a client has explicitly attempted to use such a command.

If a server supports proprietary X-commands, it provides this information
in reply to the +&2&����%D command. One example is the /+��'��'��%
��/Courier feature, which can be used to send emails via IMAP (see section
10.5 on page 178):

a CAPABILITY

* CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUB

JECT THREAD=REFERENCES SORT IDLE AUTH=CRAM-MD5 AUTH=CRAM-SHA1 ACL

XCOURIEROUTBOX=INBOX.Outbox-Test

a OK CAPABILITY completed

14 See ����������	����	�����������=��=	�-�.
15 See ����������	����	�����������7�5@	�-�.

316

B Ap
pe

nd
ix

POP3 Command Reference

POP3 also has different connection statuses, but these statuses are simple
and logical:

Authorization State
The connection has been created, but the user has not yet logged in.
This means the user can ask the server to list its extensions, request
an SSL encryption, and execute the authentication commands �$�',
2&$$, &�%>, and &2�2.

Transaction State
The user is logged in and can view emails; authentication commands
are no longer available.

317

B POP3 Command Reference

Update State
The client has logged out with 7��%. The server now deletes the mes-
sages that were marked as deleted and then closes the connection.

If the connection between the client and the server was closed with-
out 7��%, the server does not go into the update state. Emails marked
for deletion therefore remain on the server.

B.1 An Overview of All Commands

�$�' ��������
This command transfers the username during login.

2&$$
�������
This command transfers the cleartext password during login.

$%&%
This command lists the number of emails in the ����/ and the overall
size in bytes.

��$%
This command returns a numbered list of all emails and the size of
each email in bytes. If you enter one of these email numbers as an
argument, the server replies with the size of the email.

'�%' �
This command fetches email number � from the email server.

���� �
This command marks (!) email number � for deletion on the email
server.

���2
This command (the name stands for no operation) assists the client
in staying connected to the server even when the client is inactive.
You can also use it to see whether a connection exists.

'$�%
This command removes the deletion mark from any email deleted
during the current POP3 session, so it could be described as an un-
delete command.

7��%
This command ends the POP3 session. All emails marked for deletion
are deleted at this time.

There are also a number of commands that are not mandatory for servers:

318

B.1 An Overview of All Commands

&�%> ��
���
The client can suggest an authentication method to the server. If the
server supports this method, it will begin the appropriate protocol. If
not, the server will return an error code:

AUTH KERBEROS_V4

-ERR Authentication failed.

&2�2
This command initiates login with an encrypted password.

+&2&
This command asks the server which POP3 extensions are available:1

CAPA

+OK Here’s what I can do:

SASL CRAM-MD5 CRAM-SHA1 LOGIN

STLS

TOP

USER

LOGIN-DELAY 10

PIPELINING

UIDL

IMPLEMENTATION Courier Mail Server

In this case, the server provides the following extensions:

$%�$
$%�$ is actually the POP3 $%&'%%�$ extension. This command
allows clients to request TLS encryption while in the authoriza-
tion state (see $%&'%%�$-RFC 2595).

%�2
This command uses syntax %�2 � � to query the header and
the first � lines of email number � .

�$�'
This command indicates that cleartext login with the �$�' com-
mand is available.

�����.���&D �
This command tells the client how long it must wait between
logins.

2�2�������
This command allows clients to give several POP3 commands in
direct succession without waiting for the reply from the server
after each one. The server has to return the replies in the se-
quence in which the commands were sent, as they cannot be
correlated properly otherwise.

1 See RFC 2449, ����������	����	�����������7==G	�-�.

319

B POP3 Command Reference

����
This command calls up the unique ID of the email specified by
the client by number. The unique ID must remain the same for
all POP3 sessions, as it is used by the client to synchronize the
mailbox.

�<2��<��%&%���
This capability allows the server to identify itself with a person-
alized ID text specified in the argument, but it does not provide
any new POP3 commands.

320

C Ap
pe

nd
ix

Installing from the Source Code

If the version of the mail server supplied in your distribution is out of date,
if you urgently require a new feature, or if you want to modify the server to
suit your environment, you will have to compile your own executable from
the source code. However, when you build your own server, you are respon-
sible for finding and preventing security holes, since your installation is no
longer covered by the updates provided by the official distribution.

C.1 Courier

When compiling the Courier IMAP server from the source code, it is help-
ful to know about potential problems in advance. The following example

321

C Installing from the Source Code

shows how to set up a minimal installation for OpenSuSE 10.2. The pro-
cess is usually the same for other distributions, though the names of the
packages can vary.

If you have not done so already, you should first install the following pack-
ages:

Tools required for compiling the source code: 	�"�, 3��, 3��.�00, and
all packages that these depend on

The GDBM databases from packages 3
�	 and 3
�	.
�!��

���
��� for SSL/TLS-encrypted connections.

Depending on the authentication backend(s) you require, you will also re-
quire the
�!A��B packages for MySQL (��L�.
�!��), PostgreSQL (����
3���L�.
�!��), and/or OpenLDAP (���
�
��,.
�!��). It is possible to
compile Courier without the appropriate C/C++ header files, but then you
will lack the configuration files and support for authentication methods.

Go to the official download page of the Courier project,1 download the most
recent versions of the packages �������.�	��and �������.�������, and
then unzip them. But be careful: For security reasons, you cannot compile
Courier with ���� permissions. For this reason, you must carry out the
following tasks with a normal user account:

user@linux:$ cd src

user@linux:src$ wget http://prdownloads.sourceforge.net/courier/ \

courier-imap-4.1.3.tar.bz2

[...]

user@linux:src$ wget http://prdownloads.sourceforge.net/courier/ \

courier-authlib-0.59.3.tar.bz2

[...]

user@linux:src$ tar -xvjf courier-authlib-0.59.3.tar.bz2

courier-authlib-0.59.3/

courier-authlib-0.59.3/README

courier-authlib-0.59.3/configure.in

courier-authlib-0.59.3/aclocal.m4

[...]

user@linux:src$ tar -xvjf courier-imap-4.1.3.tar.bz2

courier-imap-4.1.3/

courier-imap-4.1.3/packaging/

courier-imap-4.1.3/packaging/suse/

courier-imap-4.1.3/packaging/suse/courier-imap.init.in

[...]

Compile the package �������.�������first. Make sure that you have nor-
mal user permissions when compiling the source code, but install it after
completion with ���� permissions.

1 See ����������	��
����,
��	������������	���.

322

C.1 Courier

user@linux:src$ cd courier-authlib-0.59.3

user@linux:src/courier-authlib-0.59.3$./configure

[...]

checking for strchr... yes

configure: creating ./config.status

config.status: creating Makefile

config.status: creating config.h

config.status: executing depfiles commands

user@linux:~/src/courier-authlib-0.59.3$ make

[...]

Compiling authpasswd.c

Linking authpasswd

CONFIG_FILES=authlib.3 CONFIG_HEADERS= /bin/sh ./config.status

config.status: creating authlib.3

config.status: executing depfiles commands

make[2]: Leaving directory ‘/home/user/src/courier-authlib-0.59.3’

make[1]: Leaving directory ‘/home/user/src/courier-authlib-0.59.3’

user@linux:src/courier-authlib-0.59.3$ su -c "make install"

Passwort: root-password

[...]

/usr/bin/install -c -m 644 -m 660 authdaemonrc.tmp /usr/local/etc/authl

ib/authdaemonrc.dist

rm -f authdaemonrc.tmp

chown daemon /usr/local/etc/authlib/authdaemonrc.dist

chgrp daemon /usr/local/etc/authlib/authdaemonrc.dist

:

make[4]: Leaving directory ‘/home/user/src/courier-authlib-0.59.3’

Now proceed to package �������.�	��:

user@linux:src$ cd courier-imap-4.1.3

user@linux:src/courier-imap-4.1.3$./configure

[...]

config.status: creating imapd.cnf

config.status: creating pop3d.cnf

config.status: creating config.h

config.status: executing depfiles commands

user@linux:~/src/courier-imap-4.1.3$ make

[...]

cp imap/pop3d-ssl.dist .

cp imap/imapd.cnf .

cp imap/pop3d.cnf .

cp -f ./maildir/quotawarnmsg quotawarnmsg.example

make[2]: Leaving directory ‘/home/user/src/courier-imap-4.1.3’

make[1]: Leaving directory ‘/home/user/src/courier-imap-4.1.3’

user@linux:src/courier-imap-4.1.3$ make check

[...]

INFO: LOGIN, user=confmdtest, ip=[127.0.0.1], protocol=SMAP1

INFO: LOGOUT, user=confmdtest, ip=[127.0.0.1], headers=0, body=0, rcvd=

2491, sent=6164, time=0

INFO: LOGIN, user=confmdtest, ip=[127.0.0.1], protocol=SMAP1

INFO: LOGOUT, user=confmdtest, ip=[127.0.0.1], headers=0, body=0, rcvd=

323

C Installing from the Source Code

26, sent=610, time=0

make[2]: Leaving directory ‘/home/user/src/courier-imap-4.1.3/imap’

make[1]: Leaving directory ‘/home/user/src/courier-imap-4.1.3/imap’

make[1]: Entering directory ‘/home/user/src/courier-imap-4.1.3’

[...]

make[1]: Leaving directory ‘/home/user/src/courier-imap-4.1.3’

user@linux:src/courier-imap-4.1.3$ su -c "make install"

[...]

test -z "/usr/lib/courier-imap/share" || mkdir -p -- "/usr/lib/courier-

imap/share"

/usr/bin/install -c ’mkimapdcert’ ’/usr/lib/courier-imap/share/mkimapd

cert’

/usr/bin/install -c ’mkpop3dcert’ ’/usr/lib/courier-imap/share/mkpop3d

cert’

make[2]: Leaving directory ‘/home/user/src/courier-imap-4.1.3’

make[1]: Leaving directory ‘/home/user/src/courier-imap-4.1.3’

user@linux:src/courier-imap-4.1.3$ su -c "make install-configure"

[...]

TLS_CERTFILE: new

TLS_TRUSTCERTS: new

TLS_VERIFYPEER: new

TLS_CACHE: new

MAILDIRPATH: new

make[1]: Leaving directory ‘/home/user/src/courier-imap-4.1.3’

The procedure shown will ensure that program directories and configura-
tion files are all installed under ����������. Where ��������������	��

is mentioned in the book, you will now find the file under ��������������
����������	��
. This is advisable so that your own builds are separated
from the standard packages provided by the distributions. If you nonethe-
less want to install your self-compiled Courier directly in the root hierarchy,
you should add the ..������GQQ parameter to the ��
��3��� commands:

user@linux:src/courier-authlib-0.59.3$./configure --prefix=""

[...]

user@linux:src/courier-imap-4.1.3$./configure --prefix=""

[...]

Do not forget to install the start and stop scripts. You can either move them
to the correct location or integrate them with a symlink. You require ����
permissions for this step:

linux: # cd /etc/init.d

linux:init.d # ln -s ../../usr/lib/courier-imap/libexec/imapd.rc .

linux:init.d # ln -s ../../usr/lib/courier-imap/libexec/imapd-ssl.rc .

linux:init.d # ln -s ../../usr/lib/courier-imap/libexec/pop3d.rc .

linux:init.d # ln -s ../../usr/lib/courier-imap/libexec/pop3d-ssl.rc .

324

C.2 Cyrus

C.2 Cyrus

It is only possible to compile the Cyrus IMAP server from the source code
(as demonstrated below) if Cyrus SASL has already been installed. This is
the case on many Linux systems, as this library is used almost as a default
authentication mechanism for a variety of applications (such as Postfix). If
you cannot install it from the package management of your distribution,
you will have to compile it manually (as shown below). In some distri-
butions (such as SuSE Linux 9.3), you may encounter problems with the
distribution’s default settings when linking a custom-built Cyrus to a SASL
library installed by package management.

To perform the compilation, you will need the C/C++ compiler (contained
in packages 3�� and 3��.�00 for SLES), 	�"� (from the 	�"������ pack-
age), and the header files from packages 3����.
�!��and �����
�00.
�!
��.

C.2.1 Cyrus Sources

The best place to download the program sources for the IMAP server and
the SASL library is the Cyrus website of Carnegie Mellon University:2

user@linux:$ wget ftp://ftp.andrew.cmu.edu/pub/cyrus-mail/ \

cyrus-sasl-2.1.22.tar.gz

[...]

user@linux:$ wget ftp://ftp.andrew.cmu.edu/pub/cyrus/ \

cyrus-imapd-2.2.12.tar.gz

[...]

Other sources are available on the Internet, but they usually differ from
the original and contain very specific modifications. You should always use
stable versions for production systems. If you want to experiment, you can
use the beta versions marked as unstable, but you do so at your own risk.

��� .�!J� unzips the source text archives into two separate subdirecto-
ries, �����.�	��
.,#,#5, and �����.����.,#5#,,.

C.2.2 Creating a System User

Make sure that the user ����� and the group 	��� exist on your system,
because your compiled programs will not function properly otherwise. Like
nearly every other important service, Cyrus IMAP and Cyrus SASL operate
with the permissions of a special-purpose user and a separate group.

2 See ����������
��
��	���	�

	��
����������	��
�.

325

C Installing from the Source Code

linux: # grep mail /etc/group

maildrop:!:59:

linux: # grep cyrus /etc/passwd

Here, the user ����� and group 	��� do not yet exist, so you have to create
them as follows:

linux: # groupadd mail

linux: # useradd -d /usr/lib/cyrus -g mail cyrus

linux: # passwd cyrus

Changing password for cyrus.

New Password: password-for-cyrus

Reenter New Password: password-for-cyrus

Password changed.

The �����

 command shown above assigns the working directory �����
��������� to user �����, and then assigns the user to the 	��� group.

C.2.3 Installing Cyrus SASL

Use the ��
��3��� option to determine which Cyrus SASL functions are
activated and which ones should remain inactive:

linux: # cd cyrus-sasl-2.1.22/

linux:cyrus-sasl-2.1.22 # ./configure \

--with-saslauthd=/var/run/saslauthd \

--with-plugindir=/usr/local/lib/sasl2 \

--with-mysql=/usr/local/mysql \

--with-openssl=/usr/local/ssl \

--with-bdb-incdir=/usr/local/bdb/include \

--with-bdb-libdir=/usr/local/bdb/lib \

--with-dblib=berkeley \

--enable-anon \

--enable-login \

--enable-plain \

--enable-sql \

--enable-cram \

--enable-digest \

--disable-krb4 \

--disable-otp

configure: creating cache ./config.cache

checking build system type... x86_64-unknown-linux-gnu

checking host system type... x86_64-unknown-linux-gnu

checking target system type... x86_64-unknown-linux-gnu

checking for a BSD-compatible install... /usr/bin/install -c

checking whether build environment is sane... yes

checking for gawk... gawk

checking whether make sets $(MAKE)... yes

checking for gcc... gcc

326

C.2 Cyrus

checking for C compiler default output... a.out

checking whether the C compiler works... yes

[...]

Configuration Complete. Type ’make’ to build.

.. ���.��������
G�!�����
���������
 specifies the path to the pro-
cess directory of the SASL authentication service.

.. ���.���3�

��G�������������������, specifies the directory that
will contain the SASL plugins.

.. ���.	��L�G�����������	��L�activates support for MySQL (via PAM).
You have to enter the path to the required PAM modules as the value for
the switch. The ..�
����.�L� switch ensures that the compilation process
creates the SQL plugin which Cyrus SASL will later use to query a MySQL
database.

.. ���.���
���G�������������� requests support for OpenSSL and de-
termines the path to the OpenSSL installation directory.

You can only use ����
�, after you have specified the path to the Berkeley
database header files (using .. ���.�
�.�
�
��G������������
���
�
��
�) and used .. ���.�
�.���
��G������������
����� to specify the
path to the Berkeley database libraries. You also have to use .. ���.
����
G���"���� to request support for the Berkeley database.

SASL uses ..�
����.�
�
 to allow anonymous login and ..�
����.��3�

to allow passwords to be transferred in cleartext compatible with Win-
dows. ..�
����.����
 activates authentication using the 2�&�� mecha-
nism (also in cleartext). ..�
����.���	 ensures that SASL accepts CRAM-
MD5 passwords; ..
������.
�3��� ensures that Digest-MD5 passwords
are refused. ..
������."��: deactivates support for Kerberos-4, while
..
������.��� deactivates one-time passwords.

For additional ways of influencing library functions, see the documentation
in the
��� directory of the unzipped source code or call #���
��3���
..����.

If you activate functions that use other services, these services have to ex-
ist on the system when you call ��
��3���. If, for example, you specify
..�
����.�L� and MySQL is not installed on your system, ��
��3��� will
terminate with an error message.

In that case, you should take a close look at the last error message. In most
cases, a program required for compilation is missing; in the example shown
here, it is the compiler:

linux:cyrus-sasl-2.1.22 # ./configure

configure: loading cache ./config.cache

checking build system type... (cached) x86_64-unknown-linux-gnu

checking host system type... (cached) x86_64-unknown-linux-gnu

327

C Installing from the Source Code

checking target system type... (cached) x86_64-unknown-linux-gnu

checking for a BSD-compatible install... (cached) /usr/bin/install -c

checking whether build environment is sane... yes

checking for gawk... (cached) gawk

checking whether make sets $(MAKE)... (cached) yes

checking for gcc... (cached) gcc

checking for C compiler default output... configure: error: C compiler

cannot create executables

See ‘config.log’ for more details.

Simply install 3�� and 300, and ��
��3��� will run properly. If this works,
you can now begin the compilation and installation process:

linux:cyrus-sasl-2.1.22 # make && make install

You should set a symbolic link to the directory containing the library files
you have just created, because some programs expect the SASL library in
the ��������� directory:

linux:cyrus-sasl-2.1.22 # ln -s /usr/local/lib/sasl2 /usr/lib/sasl2

Depending on your distribution and the architecture of your system, the
library location for SASL may have a different name. Common names are
�������������, in 32-bit systems and ��������H:�����, in 64-bit sys-
tems.

To be on the safe side, you should compile the ������������
 test pro-
gram delivered along with the source code, and then copy it to the �����
��������
 directory. This does not take long, as you do not have to create
a makefile:

linux:cyrus-sasl-2.1.22 # cd saslauthd/

linux:saslauthd # make testsaslauthd

linux:saslauthd # cp testsaslauthd /usr/local/bin/

Call �������������
�������������
 to test the ��������
 SASL plugin.
By default, it queries PAM on SuSE systems, and PAM then queries the Unix
system accounts. For this purpose, it is advisable to use an existing Unix
system user:

linux: # testsaslauthd -u username -p password -f /var/run/sasl2/mux0

OK "Success."

.� specifies the username, .� the password, and .� specifies the path to
the socket used to communicate with SASL.

328

C.2 Cyrus

C.2.4 Installing the Cyrus IMAP Server

The installation of the Cyrus IMAP server follows the same principle as that
of Cyrus SASL:

linux: # cd /usr/local/src/cyrus-imapd-2.2.12

linux:cyrus-imapd-2.2.12 # export CPPFLAGS="-I/usr/include/et"

linux:cyrus-imapd-2.2.12 # ./configure \

--with-sasl=/usr/local/lib \

--with-perl \

--with-auth=unix \

--with-dbdir=/usr/local/bdb \

--with-bdb-libdir=/usr/local/bdb/lib \

--with-bdb-incdir=/usr/local/bdb/include \

--with-openssl=/usr/local/ssl \

--without-ucdsnmp

checking build system type...

[...]

Cyrus requires the ��	����#� header file that belongs to the Common Er-
ror library and is missing from many systems. You therefore are likely to
have to install it; in Debian and Ubuntu you will find it in the ��	���.
�!
package. The header file is usually located in the ������
���
�����direc-
tory, and you can use the +224�&�$ environment variable to specify this.

.. ���.����G�������������� ensures that Cyrus uses the Cyrus SASL li-
brary installed in ��������������. .. ���.���� allows the server to sup-
port Perl scripts, which are used for the majority of Cyrus scripts and mod-
ules. .. ���.����G�
�� sets �
�� as the default authentication method.
This means that Cyrus evaluates the files ���������
 and ��������
�
when email users log on.

Use .. ���.
�
��G������������
� to specify the path to the subtree for
the Berkely database files; the files are now activated and you can use them
to store user data in an ����
�, database. However, you have to use
.. ���.�
�.���
��G������������
����� and .. ���.�
�.�
�
��G�
�����������
���
���
� to explicitly specify the path to the Berkeley da-
tabase libraries and header files. .. ���.���
���G�������������� ac-
tivates support for OpenSSL and specifies the path to the SSL installation
folder.

.. ������.��
�
	� disables SNMP support. Even though this has not
been officially documented, you can monitor Cyrus using SNMP. If you
want to find out more, you should have a look at ����-����
��#��	�	��
	���#�	��#������,99�.95�	�399?5S#��	�.

#���
��3��� ..���� lists all the options you can use to adapt Cyrus to
your own needs during compilation.

Once #���
��3��� has run successfully, you should use 	�"�]] 	�"�
�
����� to initiate the compilation and installation process. Once instal-

329

C Installing from the Source Code

lation is complete, you have to use the 	"�	�� program to create the work-
ing directories for Cyrus. The paths are stored in the ������	��
#��
�
configuration file, which is processed by 	"�	��:

linux: # /usr/local/cyrus/bin/mkimap

reading configure file...

i will configure directory /var/lib/imap.

i saw partition /var/spool/imap.

done

configuring /var/lib/imap...

creating /var/spool/imap...

done

Now check that user ����� has read and write permissions for these direc-
tories and files, and that the 	��� group has read permissions.

C.2.5 Convenient Starting and Stopping

A start-and-stop script for simple activation and termination will provide
the finishing touch to the Cyrus IMAP daemon:

#!/bin/bash

#

Cyrus-Startup-Skript

case "$1" in

start)

Cyrus-SASL starten

/usr/local/sbin/saslauthd -c -a shadow &

Cyrus-IMAP-Daemon starten

/usr/cyrus/bin/master &

;;

stop)

Cyrus-SASL beenden

killall saslauthd

Cyrus-IMAP-Server beenden

killall /usr/cyrus/bin/master

;;

*)

Ausgabe der möglichen Optionen

echo "Usage: $0 start|stop"

exit 1

;;

esac

Naturally, you can modify the more complex start and stop scripts provided
by the distributions so that they will run with the Cyrus you have compiled.

330

Index

Symbols
*, in server reply 31
*, wildcard for LIST 300
., as mailbox separator (Cyrus) 205, 235, 238
/, as mailbox separator (Cyrus) 205, 235, 238
% (wildcard), for LIST 300
8-bit characters see eight-bit characters

A
a (permission) 37
access permissions see ACLs
access time, of a file see atime
account options see user options (Courier)
ACLs 34, 36, 37, 154

Cyrus 231, 232
group-based (Courier) 144
identifier 154
IMAP extension 34, 316

activating (Courier) 102
listing (Cyrus) 272
manipulating (Courier) see maildiracl (tool)
negative permissions 155
removing (Cyrus) 272
saving in Courier see courierimapacl (file)
setting (Cyrus) 272
switching off at filesystem level 58
for virtual domains (Cyrus) 236, 237

active directory with user data 81
ADDRESS (Courier parameter) 98
address (Sieve command) 246
administration directory (Cyrus) 203
administrator, creating (Cyrus) 194
admins (Cyrus option) 203, 287, 288
aggregator 51, 281–290

backend server 282, 286–287

frontend server 282–285
allowanonymouslogin (Cyrus option) 203
allowsubscribes (Cyrus option) 287
allowusermoves (Cyrus option) 287
altnamespace (Cyrus option) 277
annotation database (Cyrus) 259
annotation_db (Cyrus parameter) 259
annotations.db (file) 267, 278
\Answered (flag) 35

in the filename (maildir) 113
searching for 305

APOP 27, 28, 148
POP3 command 317, 319

AppArmor 193
APPEND (IMAP command) 302
Apple Mail 279
aquota.user (file) 168
arbitron 263
arbitronsort.pl (tool) 190, 269
atime, switching off 57–58, 64
attachments, retrieving individually (IMAP) 310
AUTH (IMAP extension) 315
AUTH (POP3 command) 317, 319
AUTH=PLAIN (capability) 296
authcram (Courier) 120, 129, 144, 148
authcustom (Courier) 121, 130
authdaemond (Courier)

activating 99
configuration file see authdaemonrc
starting 88
daemon 20, 121–123

configuration file see authdaemonrc
custom authentication modules see

authcustom
using with Cyrus SASL 189, 213

331

Index

authdaemonrc (Courier configuration file) 95,
123, 134, 145

AUTHENTICATE (IMAP command) 218, 297
Authenticated (IMAP status) 32

available commands 298–303
switching to 303

Authenticated Post Office Protocol see APOP
authentication see logging in

by fingerprint 213
by hash values instead of passwords 213
by iris scan 213
Cyrus 207–224

via Kerberos 212, 214, 223–224
via LDAP 212–214, 220–223
via MySQL 213, 216–220
via PAM 219–220
via SQL database 213

daemon (Courier) see authdaemond
choosing method (POP3) 319
choosing method (Courier) 99, 122
IMAP commands 297
library (Courier) see Courier Authlib
password in cleartext 210
POP3 commands 317
programs, custom (Courier) 121
proxy (Courier) see authdaemond

authenumerate 160
tool 138, 145

authldap (authentication module for Courier)
121, 140–146
caching requests 122

authldaprc (file) 95, 140
authlib 120–144
AUTHMODULES (Courier parameter) 99, 122,

123
authmysql (authentication module for Courier)

120, 133–139, 144, 147
caching requests 122

authmysqlrc (file) 134–139
authorization state (POP3) 317
authpam (Courier) 120, 123–124
authpgsql

authentication module for Courier 120, 139,
140, 144, 147

caching requests 122
file 139

authpipe (Courier) 121, 131–133

authProg (authentication tool) 131
authpwd (authentication module for Courier)

120, 143
authshadow (authentication module for Courier)

120, 143
authtest (tool) 121–122
authuserdb (authentication module for Courier)

120, 124–129, 144
authvchkpw (authentication module for Courier)

120
autocreate_sieve_script (Cyrus option) 251
autocreatequota (Cyrus option) 203, 226, 251
autologout timer, resetting 296
auxprop (Cyrus SASL module) 189, 194, 213

LDAP connection via 220, 221
MySQL connection via 216

availability 19, 43–51
avelsieve (Squirrelmail plugin) 244

B
backup (IMAP folders) 29
backup (main Cyrus database) 278
backup/ (directory) 278
BALANCE (iptables) 47
Bcc header, searching in 305
benchmark tools 55
berkeley (Cyrus database format) 259
berkeley-nosync (Cyrus database format) 259
berkeley_cachesize (Cyrus parameter) 258
berkeley_txns_max (Cyrus parameter) 258
block size, for NFS 64
body

retrieving (IMAP) 310
retrieving partially (IMAP) 311
retrieving partially (POP3) see TOP (POP3
command)
searching in 305

bonnie 55
byte-octet conversion 296

C
c (permission) 37
CA see certificate authority (CA)
cache proxy 51, 73–74
cached IMAP see offline IMAP
CAPA (POP3 command) 319
capabilities 33

332

Index

for encrypted communication (IMAP) 297
polling (IMAP) 296
polling (POP3) 319
specifying for Courier 100

CAPABILITY (IMAP command) 175, 295, 296, 314
for encrypted communication 297

case sensitive
folder names 301
search 40

Cc header, searching in 306
cell phone (and IMAP) 176, 273
certificate authority (CA) 208

list in email clients 208
trustworthy 208

certificates see SSL certificates
challenge-response procedure 129, 148, 242, 297
change time, of a file see ctime
character encoding, considering during a search

305
character set, considering during a search 305
CHECK (IMAP command) 303
CHILDREN (IMAP extension) 34, 315
chk_cyrus 264
chmod, influence on c and mtime 57
cleartext

login see LOGIN (IMAP command)
passwords 81

client, workaround for faulty 101
CLOSE (IMAP command) 32, 303
cluster 20

Cyrus 281, 291
Cluster filesystem, as email repository 45
CLUSTERIP (iptables) 47
cm see createmailbox
com_err.h (Common Error library) 329
compile_sieve (tool) 268
compiling

Courier 321, 324
Cyrus 325, 330

CONCAT (SQL command) 137
conditional query (Sieve) see if (Sieve)
Cone 85
config2header (tool) 269
config2man (tool) 269
configdirectory

Cyrus option 203
Cyrus parameter 270

configuration parameters
Courier 96–105
reading out (Courier) 100

connection
information, caching (SSL) 260
keeping open see NOOP
terminating

automatically for POP3 (Cyrus) 259
with IMAP see LOGOUT (IMAP com-

mand)
with POP3 see QUIT (POP3 com-

mand) 318
unintended (IMAP) 32

testing see NOOP
contents, of an email see body
convert-sieve.pl (tool) 190, 269
COPY (IMAP command) 313

using the Unique ID 313
Courier 18, 85–179

configuration 95–105
configuring SSL encryption 102–105
crashing 93
vs. Cyrus 20–21
downloading 322
IMAP proxy 50, 145
installation 86–87
installing from the source code 321, 324
migration problems 110
misleading reply to LIST (POP3) 25
MTA 85
paths 87
project 85

Courier Authlib 85
Courier team

reaction to bug reports 93
reaction to change requests 110

courierimapacl (file) 109, 154–155
courierimapkeywords (directory) 116
courierimapsubscribed (file) 109
courierlogger (tool) 98, 103
couriertcpd 88

specifying command-line parameters 98
COURIERTLS (Courier parameter) 104
couriertls (tool) 87, 104
CPU see processor
CRAM 129
CRAM-MD5 100, 119, 148, 214

333

Index

using with Cyrus 213
when testing the login with imtest 218

CRAM-SHA1 100, 119, 148
CRAM-SHA256 148
crash, Courier 93
CREATE (IMAP command) 300
createmailbox

cyradm command 239
cyradmin command 272

creating users
Cyrus 194
with saslpasswd2 194

Crispin, Mark 33
crypt

hash, instead of cleartext password 119
as password hash algorithm 147

ctime 57
ctl_cyrusdb (tool) 266
ctl_deliver 266
ctl_mboxlist 266
cur

for creating directories 88
for listing contents of a directory 108, 112
for listing purpose of a directory 108

cvt_cyrusdb 267
cyr_expire (tool) 202, 268
cyradm (tool) 21, 194, 271–274, 277

setting quotas 228
setting up shared folders 230

cyrdump (tool) 267
Cyrus 18, 183–291

activating SSL support 210
administration information 277–280
as administration tool see cyradm, (tool)
allowing anonymous users 203
connecting to MySQL 213, 216–220
connecting to PostgreSQL 213
vs. Courier 20–21
creating an administrator 194
creating users 194

with saslpasswd2 194
directory hierarchy 187
downloading 325
encrypting access data 189
and firewalls 191, 220
function test 195–197
IMAP proxy 51

installation 184–187
under Debian 186
under Red Hat 186
from source code 325, 330
under SuSE 185

LMTP see LMTP
location in the filesystem 204
lowercase addresses 204
maximum email size 204
Murder cluster 51, 281–290
ports 191
and Postfix 191–197
project origins 183
Red Hat source RPM for 186
refusing to accept email (quota) 204
SASL authentication methods 205
Sieve directory 205
SSL certificates 205
user vs. Unix system account 215
working directory 188

Cyrus (IMAP server)
data security 255, 257
domain administrators 237
notify daemon 252
operating with other MTAs 254, 255
sorting email 237
specifying a timeout 205
virtual domains 232

Cyrus Aggregator see aggregator
Cyrus SASL see libsasl

library 190
cyrus-admin-2.2 (Debian package) 186
cyrus-clients-2.2 (Debian package) 186
cyrus-common-2.2 (Debian package) 186
cyrus-imap-utils (Red Hat package) 186
cyrus-imapd

Red Hat package 186
SuSE package 185

cyrus-imapd-2.2 (Debian package) 187
cyrus-murder-2.2 (Debian package) 187
cyrus-nntpd-2.2 (Debian package) 187
cyrus-pop3d-2.2 (Debian package) 187
cyrus-sasl

package 189
Red Hat package 186

cyrus-sasl-crammd5 (SuSE package) 185
cyrus-sasl-digestmd5 (SuSE package) 185

334

Index

cyrus-sasl-otp (SuSE package) 185
cyrus-sasl-plain

Red Hat package 186
SuSE package 185

cyrus-sasl-saslauthd (SuSE package) 185
cyrus-sasl-sqlauxprop (SuSE package) 185
cyrus.cache (file) 276
cyrus.conf 188, 199–202, 266

checkpoint 202
cleanup 202
configuring

the mupdate server 288
the murder backend 287
the murder frontend 285

defining the LMTP socket 191
delprune 202
EVENTS{} section 201–202, 260, 268
idled 200
imap 201
listen 200, 201
lmtp 201, 254
lmtpunix 254
notify 201, 253
pop3d 201
recovering 200
SERVICES{} section 200–201, 210, 241, 254,
285, 288
sieve 201, 241
specifying nice values for events 268
START{} section 200
structure 199
tlsprune 202

cyrus.header (file) 256, 276
cyrus.index (file) 276

D
d (permission) 37
dam see deleteaclmailbox
data (Squirrelmail directory) 70
data loss, through ReiserFS 54
data protection 159
data segment, limiting size of (Courier) 102
database format

annotation database (Cyrus) 259
berkeley-nosync (Cyrus) 260
converting (Cyrus) 267
duplicate database (Cyrus) 260

possible (Cyrus) 259
quota database (Cyrus) 260
quotalegacy (Cyrus) 260
subscription database (Cyrus) 260

date
as search criterion 305, 307
determining the internal (IMAP) 311
format in IMAP commands 305

db.backup1/ (directory) 278
db/ (directory) 278
DEBUG_LOGIN (Courier parameters) 81, 99, 122
debugging, an IMAP implementation 303
default domain (Cyrus) 234
DEFAULT_DOMAIN (Courier parameter) 138, 139
defaultdelivery (QMail configuration file) 94
defaultdomain (Cyrus option) 203, 234
DEFAULTOPTIONS (Courier parameter) 145
defaultpartition (Cyrus option) 239
DEFDOMAIN (Courier parameter) 98
DELE (POP3 command) 26, 318
DELETE (IMAP command) 301
delete permission see ACLs
deleteaclmailbox (cyradmin command) 272
\Deleted (flag) 31, 32, 35, 303, 304

searching for email with 40, 306
number of 31

deletemailbox (cyradmin command) 272
deleting

email (IMAP) 39, 298, 303, 304
email (POP3) 26, 318
folders (IMAP) see DELETE (IMAP command)
undoing the deletion of email (POP3) 26, 318

deliver
Cyrus service 255
tool 268

deliver databases (Cyrus) 266
deliver.db (file) 266, 278
deliverquota

MDA 173
tool 87

denial-of-service attack 166
preventing (Courier) 97, 102

dialup, and IMAP 29
DIGEST-MD5 (password-transfer method) 214

using with Cyrus 213, 242
when using an LDAP server 221

dir_index (mount option) 58–60

335

Index

Direct Routing (LVS) 47
directory see folders

permissions 163
disableimap (user option) 126, 144
disablepop (user option) 144
disablepop3 (user option) 126
disableshared (user option, Courier) 145, 161
disableweb (user option) 144
discard (Sieve command) 248
disconnected IMAP see offline IMAP
.dist file (Courier) 96
dm see deletemailbox (cyradmin command)
DNAT (iptables) 46–47
DNS 46
dohash (tool) 269
domain administrators (Cyrus) 237
domains, in the login name 150
DoS see denial-of-service attack
dot (.), as mailbox separator (Courier) 109
downloading

Courier 322
Cyrus 325
Cyrus SASL 325

DRAC, using with Cyrus 206
drachost (Cyrus option) 206
dracinterval (Cyrus option) 206
\Draft (flag) 35

in the filename (maildir) 113
searching for 306

dump, of a mailbox (Cyrus) 267
duplicate database (Cyrus) 260, 278
duplicate emails, avoiding (Cyrus) 260, 278
duplicate_db (Cyrus parameter) 260

E
e (permission) 37
edquota 169
eGroupWare 18
eight-bit characters, in headers, rejecting email

with 204
email

addressing to subfolders 36, 237, 238
copying 39, see COPY (IMAP command)
deleted (number of) 31
deleting

IMAP 39
obsolete automatically 268

POP3 26, 318
Sieve see discard (Seive command)

determining the MIME structure of 308
determining the size of (IMAP) 311
determining the Unique ID for 312
drafts see \Draft (flag)
envelope see envelope
fetching from server

IMAP see FETCH (IMAP command)
POP3 25, 318

file size in the filename (maildir) 114
filenames (Courier) 111–117
format, RFC 306
ID, Unique see Unique ID
informing the client of new 100, 101
inode of file 114
meta-information 111
moving

instead of deleting (Courier) 101
in Sieve see fileinto (Seive command)

new (number of) 31, 112, 299
placing in folder see APPEND (IMAP com-
mand)
reading

number of 31
offline 24

redirecting (Sieve) see redirect
rejecting (Sieve) see reject
remaining on the server 24
repository, central 45
saving see backup
searching see searching, in email
sending a test see test email, sending
sending via IMAP 99
sequence number 29

of the first unread 299
size as search criterion 306, 307
sorting into inboxes (Cyrus) 268
storage location

Courier 99
Exim 94
Postfix see home_mailbox
QMail 94

suppressing duplicates in Cyrus 260, 278
Unique ID 299
unread 40, 299
viewing see FETCH (IMAP command)

336

Index

email addresses
as login IDs 157
as login names 150
storing server administrator’s 273
as usernames for shell accounts 127

email clients see client
and certificates 208

encryption
activating with SSL/TLS (Courier) 103
and certificates 208
configuring with SSL/TLS (Courier) 102–105
forcing (Courier) 103
of the database connection (Cyrus) 217
with SSL/TLS 102, 208, 211

envelope
evaluating (Sieve) 246
querying data in (IMAP) 311
Sieve command 246

/etc/authlib/ 95
/etc/cyrus.conf see cyrus.conf
/etc/fstab see fstab
/etc/groups see groups (file)
/etc/imapd.conf see imapd.conf
/etc/passwd see passwd
/etc/shadow see shadow (file)
/etc/userdb see userdb
Evolution 17
EXAMINE (IMAP command) 32, 299

and CLOSE 303
exchange, migrating 81
Exim 18

connecting to Cyrus 255
integration into Courier 94–95

exim.conf 94
exists (Sieve command) 247
EXPUNGE (IMAP command) 32, 304
Ext2/Ext3

as email data storage 54–62
journal mode 60–62
speeding up see dir_index (mount option)

Ext4, as email storage medium 56
extensions see IMAP, extensions

F
FAM (File Alteration Monitor) 176
famd (daemon) 177
FETCH (IMAP command) 37, 112, 308, 312

using the Unique ID 313
fetchnews (tool) 268
File Alteration Monitor (FAM) 176
file locking, activating (Courier) 102
fileinto (Sieve command) 246, 248
filenames, for email (Courier) 111, 117
filesystem

performance 55–57
selecting 53, 57
tuning the performance of 57, 62

filter settings
for mailboxes 205
migrating 80
removing from Squirrelmail 80

fingerprint, authentication by 213
firewall, Sieve ports 245
fishing, for passwords 82
\Flagged (flag) 35

in the filename (maildir) 113
searching for 306

flags 29
\Answered see \Answered (flag)
\Deleted see \Deleted (flag)
\Draft see \Draft (flag)
\Flagged see \Flagged (flag)
\Recent see \Recent (flag)
\Seen see \Seen (flag)
abbreviation in the maildir 113
activating custom (Courier) 101
adding 312
custom 35, 75, 87, 115–117, 289, 313
excluding in a search 308
modifiable by client 36
permanent 29, 36, 101, 115, 298
permitted in the email folder 35, 298
querying in a message 311
removing 313
save type 36
searching for 306
session-based 29, 115
setting see STORE (IMAP command)
temporary see flags, session-based

flat (Cyrus database format) 259
folders

adapting names during migration 78
case-sensitive names of 301
creating see CREATE (IMAP command)

337

Index

deleting see DELETE (IMAP command)
after a specified period (Courier) 101

leaving see UNSELECT (IMAP command)
listing subscribed see LSUB (IMAP command)
moving during migration 78
naming 110
parallel to the INBOX 78, 79, 110
permissions for see ACLs
permitted flags 35
renaming 79–80

IMAP see RENAME (IMAP command)
selecting see SELECT (IMAP command)
selecting to read see EXAMINE (IMAP com-
mand)
spaces in names of 110
special characters in names of 110, 158
sub- see subfolders (Courier)
subscribed (Cyrus) 280
subscribing see SUBSCRIBE (IMAP com-
mand)

to folders on different backends 287
synchronizing continuously 76
unsubscribing see SUBSCRIBE (IMAP com-
mand)

format
for an annotation database see annotation_db
for a duplicate database see duplicate_db
for a quota database see quota_db
for a subscription database see subscription
_db

From header, searching in 306
fsck.reiserfs 54
fstab

command, activating quotas 168
optimizations 62

fud (tool) 268
fulldirhash (Cyrus option) 270
fulltext index 267

G
gam-server (tool) 177
Gamin 176
gecos 126, 136
GETMETADATA (IMAP command) 273
getpwent (saslauthd plugin) 212
GETQUOTA (IMAP command) 227
GID see group ID

group (user option) 155
group management with Courier via 144

group affiliation (of a user) 155
group ID

field in a MySQL table (Courier) 135
field in a PostgreSQL table (Courier) 139

groups (file), Cyrus group management via 231
groupware 18

Horde see Horde
grpquota (mount option) 168
GSSAPI 185

using with Cyrus 214

H
HA see availability
Haberland, Juri 79
hard disk I/O see I/O
\HasChildren (folder flag) 34
hash procedure, for password transmission 148
hashimapspool (Cyrus option) 204
\HasNoChildren (folder flag) 34

error in the client 101
header lines

calling individual (IMAP) 39, 309
searching in 306

header rows, evaluating (Sieve) 247
HEADERFROM (Courier parameter) 99, 178
headers

refusing eight-bit characters in 204
retrieving (IMAP) 309
retrieving (POP3) see TOP (POP3 command)
Sieve command 247

hierarchy separators
Courier 109
Cyrus 235, 238
determining 35, 300

HMAC-MD5 (hash procedure) 148
home_mailbox (Postfix variable) 92
Horde 70–73
hostname, logging the client’s (Courier) 98

I
i (permission) 36
I/O, as limiting factor 44, 65
ident lookup (Courier) 98
IDLE (IMAP command) 34, 100, 101, 176–178,

200, 315

338

Index

idled 200, 262
if (Sieve) 246
IMAP 18, 28, 41, 295, 316

daemon
configuration (Courier) 99–102
configuration (Cyrus) see imapd.conf
Courier 87
Cyrus 262
exporting data set to mbox files 76
mode of operation 19
starting (Courier) 88

disabling login (Courier) see disableimap
email sending via 99, 316
experimental commands 316
extensions 33, 295, 314
functions 19
offline see offline IMAP
proxy see proxy
Proxy (project) 51, 73–74
RFC 33
separate password for (Courier) 126
session, process 31–33

imap (Red Hat package) 186
imap.conf (file) 258, 260
IMAP4rev1 (RFC) 295
IMAP_ACL (Courier parameter) 102
IMAP_CAPABILITY (Courier parameter) 100, 150
IMAP_CAPABILITY_TLS (Courier parameter) 100
IMAP_CHECK_ALL_FOLDERS (Courier parame-

ter) 100
IMAP_DISABLETHREADSORT (Courier parame-

ter) 100
IMAP_EMPTYTRASH (Courier parameter) 101
IMAP_ENHANCEDIDLE (Courier parameter) 100
IMAP_IDLE_TIMEOUT (Courier parameter) 101
IMAP_KEYWORDS (Courier parameter) 101, 115
imap_migrate 76
IMAP_MOVE_EXPUNGE_TO_TRASH (Courier pa-

rameter) 101
IMAP_OBSOLETE_CLIENT (Courier parameter)

101
IMAP_PROXY (Courier parameter) 175
IMAP_PROXY_FOREIGN (Courier parameter) 175
IMAP_SHAREDINDEXFILE (Courier parameter)

101
IMAP_SHAREDMUNGENAMES (Courier parame-

ter) 157

imap_tools 76
IMAP_TRASHFOLDERNAME (Courier parameter)

101
IMAP_ULIMITD (Courier parameter) 102
IMAP_USELOCKS (Courier parameter) 102
imapcopy 76
imapd see IMAP, daemon

Courier configuration file 95, 99–102, 115,
122, 123
Cyrus daemon see IMAP, daemon

imapd-ssl (Courier configuration file) 95, 103
imapd.cnf (Courier configuration file) 88, 96, 104
imapd.conf 188, 189, 203–206

admins 203, 237, 287, 288
allowanonymouslogin 203
allowsubscribes 287
allowusermoves 287
altnamespace 277
annotation_db 259
authentication via sasldb2 (Cyrus) 194
autocreate_sieve_script 251
autocreatequota 203, 226, 251
berkeley_cachesize 258
berkeley_txns_max 258
configdirectory 203, 270
configuring the mupdate server 288
configuring the murder backend 286–287
configuring the murder frontend 283–285
connecting to MySQL 216
defaultdomain 203, 234
defining the directory for mailboxes 195
drachost 206
dracinterval 206
duplicate_db 260
fulldirhash 270
hashimapspool 204
lmtp_downcase_rcpt 204
lmtp_overquota_perm_failure 204
mailnotifier 253
maxmessagesize 204, 258
mupdate-port 286
mupdate-server 286
mupdate_authname 284, 286
mupdate_password 284, 286
mupdate_port 284
mupdate_server 284
mupdate_username 284, 286

339

Index

partition-default 204, 239, 270
partition-name 259
poptimeout 204, 259
proxy_authname 284
proxyd_disable_mailbox_referrals 285
proxyservers 287
ptscache_db 260
quota_db 260
quotawarn 204, 226
quotawarnkb 204, 227
reject8bit 204
sasl_mech_list 214
sasl_pwcheck_method 205, 215, 219
sasl_sql_hostnames 216
sasl_sql_select 217
sasl_sql_usessl 217
sasl_sql_verbose 217
seenstate_db 259
servername 283, 288, 290
sieve_allowreferrals 285
sievedir 205, 241, 285
sievenotifier 253
sieveuserhomedir 285
structure 203
subscription_db 260
timeout 205
tls_ca_file 206, 210
tls_ca_path 206, 210
tls_cert_file 205, 210
tls_key_file 205, 210
tlscache_db 260
unixhierarchysep 205, 235
username_tolower 205
virtdomains 205, 233

IMAPD_TLS_REQUIRED (Courier parameter) 103
IMAPDSSLSTART (Courier parameter) 103
IMAPDSTART (Courier parameter) 99
IMAPDSTARTTLS (Courier parameter) 103
imaplogin (Courier) 87
imapsync 76–78

tool 76, 81
IMP 70–73
IMPLEMENTATION (POP3 capability) 320
important emails see \Flagged (flag)
imtest (tool) 217–218
in.imapproxyd see IMAP, Proxy (project)
INBOX

folders parallel to 78, 79, 110
renaming 301

index (file) 153, 156–158
generating automatically 160
on multiple servers 156
for a shared group 159
for shared folders (Courier) 88, 101, 138
splitting 161

index databases (Cyrus) 259, 260, 278
changing format of 267
maximum RAM consumption 258

initscript, Courier 88–89
inode, of an email file 114
installing

Courier 86–87
from the source code

Courier 321, 324
Cyrus 325, 330

Internet interface
for Cyrus administration 184

Internet Message Access Protocol see IMAP
iozone 55
IP address

limiting the number of connections per 97
logging the client’s (Courier) 98, 99
of the POP3/IMAP server (Courier) 98

iptables, load distribution via 46, 47
ipurge (tool) 202, 268
iris scan, authentication by 213

J
Jabber notification (Sieve) 254
journal mode 60–62

K
keep (Sieve command) 248
Kerberos 185

support for Cyrus 212
using with Cyrus 214, 223–224
using with Sieve 242

Kerberos Post Office Protocol see KPOP
kerberos4 (saslauthd plugin) 212
kerberos5 (saslauthd plugin) 212
key, for challenge-response 148
keywords see flags, custom
KMail 17, 279

and Sieve 244

340

Index

Kolab 18
KPOP 28

L
l (permission) 36
lam see listaclmailbox
Lamiral, Gilles 76
laptops, subscribing to folders and 41
LDAP

configuration file (Courier) see authldaprc
replication 291
using with Courier see authldap, 140–146
using with Cyrus 212–214, 220–223, 231

ldap (saslauthd-Plugin) 212
LDAP_AUTHBIND (Courier option) 141
LDAP_AUXOPTIONS (Courier option) 143, 146
LDAP_BASEDN (Courier option) 140
LDAP_BINDDN (Courier option) 140, 141
LDAP_BINDPW (Courier option) 141
LDAP_CLEARPW (Courier option) 142
LDAP_CRYPTPW (Courier option) 142
LDAP_DEFAULTDELIVERY (Courier option) 142
LDAP_DEREF (Courier option) 143
LDAP_DOMAIN (Courier option) 141
LDAP_ENUMERATE_CLAUSE (Courier parame-

ter) 161
LDAP_ENUMERATE_FILTER (Courier option) 141
LDAP_FILTER (Courier option) 141
LDAP_FULLNAME (Courier option) 142
LDAP_GID (Courier option) 143
LDAP_GLOB_GID (Courier option) 143
LDAP_GLOB_UID (Courier option) 142
ldap_group_attr (Cyrus option) 223
ldap_group_filter (Cyrus option) 223
ldap_group_match_method (Cyrus option) 223
ldap_group_search_base (Cyrus option) 223
LDAP_HOMEDIR (Courier option) 142
LDAP_MAIL (Courier option) 141
LDAP_MAILDIR (Courier option) 142
LDAP_MAILROOT (Courier option) 142
LDAP_PROTOCOL_VERSION (Courier option)

140
ldap_search_base (Cyrus option) 223
LDAP_TIMEOUT (Courier option) 141
LDAP_TLS (Courier option) 143
ldap_tls_check_peer (Cyrus option) 222
LDAP_UID (Courier option) 143

LDAP_URI (Courier option) 140
ldapdb (auxprop plugin) 213
Least Connection (LVS) 49
legal situation 20
Lemonade 273
libsasl 211–215

compiling MySQL support 216
Linux Virtual Server see LVS
LIST (IMAP command) 34, 41, 299
LIST (POP3 command) 24, 25, 318

misleading Courier reply 25
listaclmailbox

cyradm command 230
cyradmin command 272

listmailbox (cyradmin command) 271
listquota

cyradm command 228
cyradmin command 273

listquotaroot
cyradm command 229
cyradmin command 273

lm see listmailbox
LMTP 18

between Cyrus and Postfix 191–192
Cyrus 254
daemon (Cyrus) see lmtpd (daemon)
maximum email size (Cyrus) 258
proxy (Cyrus) see lmtpproxyd (daemon)
socket, defining (Cyrus) 191
specifying port for 201

lmtp_downcase_rcpt (Cyrus option) 204
lmtp_overquota_perm_failure (Cyrus option) 204
lmtpd (daemon) 262
lmtpproxyd (daemon) 262
lmtpunix (definition) 191
load balancer 44–49

combining with proxy 50
Cyrus 282, 291

load distribution 43–51
load test, on the mupdate server 270
local (MDA) 172
Local Message Transfer Protocol see LMTP
log files (Cyrus) 278
log information (Courier) see DEBUG_LOGIN
LOGGEROPTS (Courier parameter) 98
logging in

Courier 119, 151

341

Index

disabling (SqWebMail) see disableweb
via external authentication programs (Courier)
131–133
IMAP 31, 34, 297

disabling (Courier) see disableimap
encrypting 210

methods see authentication method
via MySQL database (Courier) see authmysql
via MySQL database (Cyrus) 213, 216–220
via PostgreSQL database (Courier) see auth-
pgsql
POP3 24, 318

disabling (Courier) see disablepop
encrypting 27

via PostgreSQL database (Cyrus) 213
via shell account see shell account
via SQL database (Cyrus) 213
testing (Cyrus) see imtest (tool)
testing on the Sieve server 241

logging out
IMAP status 32
POP3 see QUIT (POP3 command)

logging tool (Courier) see courierlogger
LOGIN (IMAP command) 31, 34, 297
LOGIN (password transfer method) 81
LOGIN (password-transfer method) 34, 97, 119,

147, 214
forcing with imtest 218

login data, determining via SQL query
Courier 137
Cyrus 217

login ID (email address) 157
LOGIN-DELAY (POP3 command) 319
LOGINDISABLED (capability) 296
LOGOUT (IMAP command) 32, 297

and CLOSE 303
lq see listquota
lqr see listquotaroot
lsof, testing the POP/IMAP function 89
LSUB (IMAP command) 41, 302
LVS 47–49

M
mail see email
mail contents see body
Mail Delivery Agent see MDA
mail partitions 189, 239

default partitions 239
defining 239

mail repository
overloaded 50

mail server 17
Mail Transfer Agent see MTA
mail_spool_directory (Postfix variable) 92
mailbox contents

listing (Cyrus) see listmailbox
listing (IMAP) 34, 299
listing (POP3) 24, 318

mailbox_command (Postfix) 174
mailboxes

creating (Cyrus) see createmailbox
creating directories 17
Cyrus, listing 266
deleting (Cyrus) see deletemailbox
location in the filesystem (Cyrus) 195, 204
moving in a cluster see xfermailbox
moving to another murder backend 287
partitions (Cyrus) 259
putting out on the standard output 267
querying 17
renaming (Cyrus) see renamemailbox
repairing (Cyrus) 255, 257
saving see backup
searching see searching, in email

mailboxes.db 278
file 266, 278

maildir 107–117
creating directories 88
creating from mbox 78–79
location (Courier) 99
vs. mbox 91
and NFS 63, 108
operating Exim with 94, 95
operating Postfix with 92
specifying in a MySQL table (Courier) 136
specifying in userdb 126

maildir+ 172
maildiracl (tool) 87
maildirfolder (file) 109
maildirkw (tool) 87
maildirmake 164, 174

tool 88
MAILDIRPATH (Courier parameter) 99
maildirsize (file) 114, 115, 170

342

Index

Maildrop 85
maildrop (MDA) 172
mailheader see header
mailhost

user option 145
Courier 175

mailnotifier (Cyrus option) 253
main.cf (Postfix configuration file) 92
maintenance, announcing 279
makeuserdb (tool) 125, 128, 129
Managesieve 240
masssievec (tool) 269
MAXDAEMONS (Courier parameter) 97
maxmessagesize

Cyrus option 204
Cyrus parameter 258

MAXPERIP (Courier parameter) 97
mb2md.pl 79
mbexamine 265
mbox files 91–92

converting to the maildir format 78–79
importing to an IMAP server 76

mbpath (tool) 266
MD5, as password hash algorithm 147
MDA 18

of the Courier project see Maildrop
with quota capability see deliverquota

message text see body
meta-information, for email 111
migration 75–82

the exchange 81
filter settings 80
problems with Courier 110

MIME
attachment see attachments
structure, determining for an email 308

mirroring see RAID
mkfs.ext3 59
mkimap (tool) 269
mkimapdcert (tool) 88, 96, 104
mknewsgroups (tool) 270
mkpop3dcert (tool) 88, 96, 104
modification time

of a file see mtime
of file permissions see mtime
of ownership see mtime

motd (file) 279

mount (command), activating quotas 168
Mozilla Thunderbird see Thunderbird
msg/ 279
MTA 17, 18

connection to Courier 90–95
of the Courier project 85

mtime 57
mupdate

daemon 262
server 282, 286, 288

load test 270
port 284, 286

mupdate-loadgen.pl (tool) 270
mupdate-port (Cyrus option) 286
mupdate-server (Cyrus option) 286
mupdate_authname (Cyrus option) 284, 286
mupdate_password (Cyrus option) 284, 286
mupdate_port (Cyrus option) 284
mupdate_server (Cyrus option) 284
mupdate_username (Cyrus option) 284, 286
Murder cluster see aggregator
MySQL

creating table for user management 133
replication 291
specifying authentication server (Courier) 135
support for Courier (OpenSuSE) 86, 134
table, for user data (Courier) 135
using with Courier 147, see authmysql
using with Cyrus 231

MYSQL_AUXOPTIONS_FIELD (Courier parame-
ter) 137, 146

MYSQL_CHPASS_CLAUSE (Courier parameter)
138

MYSQL_CLEAR_PWFIELD (Courier parameter)
135

MYSQL_CRYPT_PWFIELD (Courier parameter)
135

MYSQL_DATABASE (Courier parameter) 135
MYSQL_DEFAULTDELIVERY (Courier parameter)

136
MYSQL_ENUMERATE_CLAUSE (Courier parame-

ter) 138, 161
MYSQL_GID_FIELD (Courier parameter) 135
MYSQL_HOME_FIELD (Courier parameter) 136
MYSQL_LOGIN_FIELD (Courier parameter) 136
MYSQL_MAILDIR_FIELD (Courier parameter)

136

343

Index

MYSQL_NAME_FIELD (Courier parameter) 136
MYSQL_OPT (Courier parameter) 136
MYSQL_PASSWORD (Courier parameter) 135
MYSQL_PORT (Courier parameter) 136
MYSQL_QUOTA_FIELD (Courier parameter) 137
MYSQL_SELECT_CLAUSE (Courier parameter)

137
MYSQL_SERVER (Courier parameter) 135
MYSQL_SOCKET (Courier parameter) 136
MYSQL_UID_FIELD (Courier parameter) 135
MYSQL_USER_TABLE (Courier parameter) 135
MYSQL_USERNAME (Courier parameter) 135,

139
MYSQL_WHERE_CLAUSE (Courier parameter)

137

N
NAMESPACE

IMAP command 315
IMAP extension 34

naming
IMAP folders 110
emails (Courier) 111–117

NAS, as email repository 20
negation see NOT (search link)
NetApp filer 55
netnews separators 238
new

contents of directory 111
creating directories 88
directories 94, 108
messages see \Recent (flag)

number of 31, 299
NFS

and Cyrus 63
as email repository 45, 63–65
for email storage 21
FAM tuning 177
and IDLE 177
and maildir 63, 108
and mbox 91

nfsvers (mount option) 64
nice value, specifying for events (cyrus.conf) 268
NIL (definition) 309
nntpd (daemon) 263
noacl (mount option) 58
noatime (mount option) 57, 64

\NoInferiors (folder flag) 101
NOOP

IMAP command 31, 296
POP3 command 27, 318

\Noselect (flag) 301
NOT (search link) 306
Not Authenticated (IMAP status) 31

available commands 297–298
notify (daemon) 252, 254
notifyd 240

daemon 263
numbering, emails 29

O
obsolete email, deleting automatically 268
octet, definition 296, 309
octet-byte conversion 309
offline IMAP 29, 30, 315
old email, deleting automatically 268
one-time passwords (Cyrus) 185
OpenGroupware 18
OpenLDAP see LDAP
OpenSSL

integrating in Cyrus 208
support in older Cyrus versions 210

openssl 298
ordered (journal mode) 60, 61
_ORIG variables (Courier) 96
out-of-office notices see vacation (Sieve com-

mand)
outbox 178
OUTBOX (Courier parameter) 178
OUTBOX_MULTIPLE_SEND (Courier parameter)

178
Outlook 17, 209, 279

P
p (permission) 36, 238
PAM

support in Courier see authpam
support in Cyrus 212, 219–220

pam (saslauthd plugin) 212
partition-default (Cyrus)

option 204, 239
parameter 239, 270

partition-name (Cyrus parameter) 259
partitions (Cyrus) see mail partitions

344

Index

PASS (POP3 command) 24, 317, 318
passwd

converting into userdb see pw2userdb
file

authentication via (Courier) 119, 120,
143

authentication via (Cyrus) 212, 214,
219

restrictions on usernames 151
passwords

additional SSL transfer methods for Courier
POP 97
changing 138
checking as hash 148
cleartext 81
cleartext transmission vs. hashing 147–150
determining in cleartext 81
encrypting (POP3) 27
entering in userdb 128
entry (IMAP) see LOGIN (IMAP command)
entry (POP3) see PASS (POP3 command)
field in a MySQL table (Courier) 135
field in a PostgreSQL table (Courier) 139
fishing, as a migration method 82
logging (Courier) 99
separate for different services 126
sniffing 149
transfer methods

cleartext 97
as crypt hash 119
Courier POP server 97
in plaintext 34, 119, 210

Perdition 51
performance 19

of filesystems 55–57
influencing the Cyrus performance 215, 257,
260
of RAID 63
shared folders 159
tuning, of the filesystem 57–62

perl-Authen-SASL (SuSE package) 186
perl-Cyrus (Red Hat package) 186
perl-Cyrus-IMAP (SuSE package) 185
perl-Cyrus-SIEVE-managesieve 190

SuSE package 186
permanent flags 29, 36, 298

activating (Courier) 101

permissions see ACLs
persistence 45
PGSQL_AUXOPTIONS_FIELD (Courier parameter)

146
PGSQL_CRYPT_PWFIELD (Courier parameter)

139
PGSQL_DATABASE (Courier parameter) 139
PGSQL_ENUMERATE_CLAUSE (Courier parame-

ter) 161
PGSQL_GID_PWFIELD (Courier parameter) 139
PGSQL_HOME_PWFIELD (Courier parameter)

139
PGSQL_HOST (Courier parameter) 139
PGSQL_LOGIN_PWFIELD (Courier parameter)

139
PGSQL_NAME_PWFIELD (Courier parameter)

139
PGSQL_PASSWORD (Courier parameter) 139
PGSQL_PORT (Courier parameter) 139
PGSQL_UID_PWFIELD (Courier parameter) 139
PGSQL_USER_TABLE (Courier parameter) 139
phpLDAPAdmin (tool) 220
PID

file (Courier) 97
of the saving process 114

PIDFILE (Courier parameter) 97
PIPELINING (POP3 command) 319
PLAIN (password-transfer method) 34, 81, 97,

100, 119, 147, 214
Pluggable Authentication Modules see PAM
POP/IMAP before SMTP, using with Cyrus 206
pop2imap 76
POP3 18, 23, 28

connection status 317
disabling login (Courier) see disablepop
email remains on the server 24
extensions 319
migrating to IMAP 76
problems during migration 78
providing for Debian (Cyrus) 187
separate password for (Courier) 126
server see POP3 daemon
specifying a timeout (Cyrus) 259

POP3 daemon 18
configuration (Courier) 96–99
Courier 87
Cyrus 263

345

Index

mode of operation 19
number simultaneously started (Courier) 97
PID file (Courier) 97
preventing from starting (Courier) 98
starting (Courier) 88, 98

POP3_PROXY (Courier parameter) 97, 175
POP3_TLS_REQUIRED (Courier parameter) 103
POP3AUTH (Courier parameter) 96, 97
POP3AUTH_ORIG (Courier) 96
POP3AUTH_TLS (Courier parameter) 97
pop3d see POP3 daemon 87
pop3d (Courier configuration file) 95–99, 122, 123
pop3d-ssl (Courier configuration file) 95, 103
pop3d.cnf (Courier configuration file) 88, 96, 104
POP3DSSLSTART (Courier parameter) 103
POP3DSTART (Courier parameter) 98
POP3DSTARTTLS (Courier parameter) 103
pop3login (Courier) 87
pop3proxyd (daemon) 263
poptimeout

Cyrus option 204
Cyrus parameter 259

PORT (Courier parameter) 98
ports

IMAP 33, 89
via SSL 103, 208

IMAP via SSL 87
LDAP 220

via SSL 220
monitoring 89
mupdate server 284, 286
in the murder cluster 285
POP3 18, 23, 89

via SSL 87, 103
PostgreSQL 139
Sieve 245
specifying for MySQL

Courier 136
Cyrus 216

specifying for POP3/IMAP server (Courier) 98
specifying SSL for Courier 103
to be released for Cyrus 191

PosgreSQL table
for user data (Courier) 139

Post Office Protocol see POP3
Postfix 18

configuring as a relay 192

integration into Courier 92–94
naming for email in maildirs 114

PostgreSQL
contacting via the socket (Courier) 139
using with Courier see authpgsql, 139–140,
147
using with Cyrus 213

postmark 55
process ID see PID

Cyrus 279
processor, requirements (IMAP) 44
procmail (MDA) 172
profile files (Squirrelmail) 80
proxy

caching for IMAP 51, 73–74
Courier as 175
IMAP server as 44, 50, 51
mode of the Courier POP3 server 97

proxy_authname (Cyrus option) 284
PROXY_HOSTNAME (Courier parameter) 97, 175
proxyd_disable_mailbox_referrals (Cyrus option)

285
proxyservers (Cyrus option) 287
ptscache_db (Cyrus parameter) 260
pull procedure (IMAP) 32
push procedure (IMAP) 32
pw2userdb (tool) 125
pwcheck (Cyrus SASL module) 214

Q
QMail 18

integration into Courier 94
using the vchkpw library with Courier 120,
130

qualified users (Cyrus) 233, 276
quit (cyradm command) 274
QUIT (POP3 command) 27, 318
quota

Cyrus tool 257
tool 230

QUOTA (IMAP extension) 316
QUOTA extension 227
quota.user (file) 168
quota/ (directory, Cyrus) 279
quota_db (Cyrus parameter) 260
quotacheck (tool) 168
quotaoff (command) 168

346

Index

quotaon (command) 168
quotaroot 228, 257
quotas 20, 166, 167, 267

and MDAs 172
calculating (Courier) 115
Courier 167, 175

calculating 114
specifying in MySQL 137
specifying in userdb 126
warning message when exceeded 96
when manually storing email 115

Cyrus 225, 230, 279
automatic 226
checking 263
listing 273
manual 228
restoring 257
setting 273
showing utilization 273
warning message when exceeded 204

database, Cyrus 260
filesystem 168
maildirsize 170
monitoring 167
via maildir+ 170
warning 174

quotawarn (Cyrus option) 204, 226, 227
quotawarnkb (Cyrus option) 204
quotawarnmsg

Courier configuration file 96
file 174

R
r (permission) 36
RAID 62–63
RAM consumption

Cyrus index database 258
IMAP 43

rccourier-authdaemon (script) 88
rccourier-imap (script) 88
rccourier-imap-ssl (script) 88
rccourier-pop (script) 88
rccourier-pop-ssl (script) 88
read messages see \Seen (flag)

number of 31
read permission see ACLs
read throughput 56, 57, 60, 61

for RAID 62
receiving email see retrieving email
\Recent (flag) 35

searching for 306, 307
recipient see To header
reconstruct

Cyrus tool 255, 257
tool 267, 277

redirect (Sieve command) 248
redundancy 19
regular expressions, in Sieve 247
rehash (tool) 270
ReiserFS

as email storage medium 54–62
data loss 54
journal mode 60–62
version 4 56

reject (Sieve command) 246, 248
reject8bit (Cyrus option) 204
relay server 17
reliability see availability
RENAME (IMAP command) 301
renamemailbox (cyradmin command) 272
renaming

folders (IMAP) see RENAME (IMAP com-
mand)

renm see renamemailbox
replication (Cyrus) 291
repquota 169
resource consumption 32
retrieving email 18

via IMAP 111
reverse lookup, on client IP (Courier) 98
RFC

ACL extension 34
CHILDREN extension 34
email format 115, 306
IDLE extension 34
IMAP 33
IMAP4rev1 295
NAMESPACE extension 34
POP3 25

extensions 319
QUOTA extension 227
SASL 20, 85
Sieve 250
STARTTLS 319

347

Index

UIDPLUS extension 34
UNSELECT 39
URLAUTH extension 296

rimap (saslauthd plugin) 212
round robin

via DNS 46
via iptables 46–47

RSET (POP3 command) 26, 318

S
s (permission) 36
safeguards (Cyrus) 207–224
sam see setaclmailbox
SAN, as email repository 20, 45, 55
SASL

authentication methods (Cyrus) 205
and Courier 20
downloading 325
RFC 20, 85

sasl_mech_list (Cyrus option) 214
sasl_pwcheck_method 212

Cyrus option 205, 215, 219
option 189

sasl_sql_hostnames (Cyrus option) 216
sasl_sql_select (Cyrus option) 217
sasl_sql_usessl (Cyrus option) 217
sasl_sql_verbose (Cyrus option) 217
saslauthd (Cyrus SASL module) 189, 212, 215

using LDAP with 221, 223
saslauthd.conf (file) 222
sasldb (saslauthd plugin) 213, 216
sasldb2

as authentication for Cyrus 194, 216
lack of group management 216, 231

saslpasswd2 (command) 194
scaling see performance
SEARCH (IMAP command) 40, 296, 304, 308

returning the Unique ID 314
searching

conjunction 304
for deleted email 40
in email 29, 40, 304, 308
negation see NOT (search link)
OR link 307
specifying a character set 305
for text containing special characters 305

\Seen (flag) 31, 35

Cyrus database 259, 279
in the filename (maildir) 113
permit change 36
preventing when retrieving emails via FETCH
309
searching for 307
searching for email without 40

seenstate_db (Cyrus parameter) 259
SELECT (IMAP command) 32, 35, 75, 298

and CLOSE 303
Selected (IMAP status) 32

available commands 303, 314
sending email 17

via IMAP 178
sendmail 18, 178

path to the program (Courier) 102
SENDMAIL (Courier parameter) 102
sequence number

changing when emails are deleted 304
of an email 29
of the first unread email 299

server reply (IMAP) 31
servername (Cyrus option) 283, 288, 290
session-based flags 29
setaclmailbox (cyradm command) 230
setaclmailbox (cyradmin command) 272
setinfo (cyradm command) 273, 278
setquota

cyradm command 228
cyradmin command 273

SHA, as password hash algorithm 147
shadow (file)

authentication via (Courier) 119, 120, 143
authentication via (Cyrus) 212, 214, 215, 219
restrictions on usernames 151

shadow (saslauthd plugin) 212
share groups 158
share name 156
shareable maildir 163
#shared (directory) 110, 156
shared directory 157, 164

Courier 96
shared folder 34, 164

Courier 153, 166
activating 101
filesystem-based 163
group mapping 145

348

Index

grouping 158
index file see index (file)
name space 156
share name 156
storage location 110
virtual 154–163

Cyrus 188, 230
authentication sources 231
setting permissions 230

shared groups
Courier 159, 162
index file 161

sharedgroup (user option) 145, 155
Courier 159–161

sharedindexinstall (tool) 88, 162
sharedindexsplit (tool) 88, 161
shell account

authentication via (Courier) 94, 119
authentication via (Cyrus) 215
creating 215
email address as username 127

shutdown (file, Cyrus) 279
Sieve 21, 240, 252

administration see sieveshell
changing a script 244
configuring 241
evaluating the envelope 246
evaluating the header 247
and KMail 244
loading additional modules 246
in the murder cluster 285
notification (SMS, IM) 254
packages 240
regular expressions 247
reject spam 248
required Perl modules 190
RFC 250
script language 246, 250
setting up scripts automatically for new ac-
counts 251, 252
and Squirrelmail 244
testing the configuration 241
translating into byte code 268, 269
with virtual domains 252
and Webmin 244
working directory 240

Cyrus 205

sieve (option) 241
sieve_allowreferrals (Cyrus option) 285
sievec (tool) 269
sievedir (Cyrus option) 205, 241, 285
sievenotifier (Cyrus option) 253
sieveshell (tool) 242, 245

authentication 242
commands 242, 244

sieveuserhomedir (Cyrus option) 285
Simple Authentication and Security Layer see

SASL
Simple Mail Transport Protocol see SMTP
sivtesti (tool) 241
size

determining for an email 311
of an email as search criterion 306, 307
of an email file 114
limiting a data segment’s (Courier) 102
limiting the virtual memory’s (Courier) 102
maximum for email (Cyrus) 204
restricting for an email for LMTP (Cyrus) 258

skiplist (Cyrus database format) 259
SmartSieve 184, 244
smmapd (daemon) 263
SMTP 17

after POP, using with Cyrus 206
separate password for (Courier) 126
server see MTA

sniffing 149
passwords 81

SNMP support (Cyrus) 329
sockets

Cyrus 279
defining for LMTP (Cyrus) 191
specifying for MySQL (Courier) 136
specifying for PostgreSQL (Courier) 139

SORT (IMAP command) 34, 100, 315
sorting, on the server 34, 100
spaces, in folder names 110
spam

fighting via Sieve script 248, 251
fighting with custom IMAP flags 289

special characters
in folder names 110, 158
searching for 305

specifying the default domain (Cyrus) 203
sq see setquota

349

Index

sql (auxprop plugin) 213
squat index 267, 274
squatter (tool) 267
Squirrelmail 68–70

and Sieve 244
migration problems 80
problems with filter settings 80
user profiles 80

SqWebMail 85, 138
disabling login (Courier) see disableweb

SSL
activating (Courier) 103
caching connection information 260
configuring (Courier) 102–105
encryption

of the database connection (Cyrus)
217

starting see STARTTLS (IMAP com-
mand)
forcing (Courier) 103
generating keys (Courier) 88
password-transfer methods

Courier IMAP server 100
Courier POP server 97

start scripts for Courier (OpenSuSE) 87
version, selecting (Courier) 104
wrapper 208

SSL certificates
checking the client’s (Courier) 104
commercial vs. free 208
creating 209

with Courier 96, 104
paths to (Cyrus) 205
specifying the path

Courier 104
Cyrus 205, 210
LDAP server 222

warning for custom 208
SSL/TLS (Courier) 102
SSLADDRESS (Courier parameter) 103
SSLLOGGEROPTS (Courier parameter) 103
SSLPIDFILE (Courier parameter) 103
SSLPORT (Courier parameter) 103
start/stop script see initscript
STARTTLS

capability 296
IMAP command 103, 208, 296, 297

activating (Courier) 103
for POP3 see STLS (POP3 command)
POP3 command

selecting SSL version (Courier) 104
RFC 319

STAT (POP3 command) 318
STATUS (IMAP command) 32, 302
status information

for a mailbox 31, 296
for an email see flags
for an IMAP folder 35, 39, 296, 298, 302

STLS (POP3 command) 103, 208, 319
activating (Courier) 103
selecting SSL version (Courier) 104

storage see email, repository, central
restrictions see quotas

STORE (IMAP command) 35, 113, 116, 312
using the Unique ID 313

subfolders (Courier)
format 109
names 108

subject header
as search criterion 307

SUBSCRIBE (IMAP command) 41, 302
subscribed folders

list (Courier) 109
list (Cyrus) 280
listing see LSUB (IMAP command)
migrating 78
on different backend servers 287

subscribing to (folders) see SUBSCRIBE (IMAP
command)
shared folders 166
and visibility in the mail client 162

subscription_db (Cyrus parameter) 260
symlinks 164

shared folder 154
system flags 35, 113

T
t (permission) 37
tagged server replies 31
tags 31
tcpd 73
TCPDOPTS (Courier parameter) 98
tcpdump 149
telnet

350

Index

setting IMAP flags 116
testing the POP/IMAP function 89, 289

test email, sending 93–94, 288
testsaslauthd (tool) 222
text message, when email is received 254
TheBat 209
THREAD

IMAP command 315
IMAP extension 34, 100

threading, on the server 34
Thunderbird 17, 279
timeout

Cyrus option 205
specifying for POP3 (Cyrus) 259

timsieved 240
daemon 263
SuSE package 186

TLS see SSL
cache (Cyrus) 260
Courier 102

tls_ca_file (Cyrus option) 206, 210
tls_ca_path (Cyrus option) 206, 210
TLS_CACHEFILE (Courier parameter) 104
TLS_CACHESIZE (Courier parameter) 104
tls_cert_file (Cyrus option) 205, 210
TLS_CERTFILE (Courier parameter) 104
tls_key_file (Cyrus option) 205, 210
TLS_PROTOCOL (Courier parameter) 104
tls_prune (tool) 202, 269
tls_session.db (file) 269, 279
TLS_STARTTLS_PROTOCOL (Courier parameter)

104
TLS_VERIFYPEER (Courier parameter) 104
tlscache_db (Cyrus parameter) 260
tmp

creating directories (maildir) 88
directories (maildir) 108, 115

To header, as search criterion 308
TOP (POP3 command) 26, 319
transaction state (POP3) 317
transactions

simultaneous per Cyrus database 258
translatesieve (tool) 252, 271
trash folder (Courier) 101

emptying after a specified period 101
\Trashed (flag) 113
trust network 208

TRYCREATE (server reply) 313
Tso, Theodore “Ted” 58, 61
tune2fs 59

U
UID see Unique ID

IMAP command 313, 314
UIDL (POP3 command) 320
UIDPLUS (IMAP extension) 34, 315
ulimit 102
umask, of the Courier server process 102
UMASK (Courier parameter) 102
uname -n 175
unanswered email, searching for 308
undelete (POP3) 26, 318
undo, when deleting email (Courier) 101
undohash (tool) 271
unique email ID (POP3) 320
Unique ID 29, 299

determining 312, 315
as search criterion 308
using in IMAP commands 313–314
Value 29, 36, 299

universe 159
Unix account see shell account
Unix separators see /, as mailbox separator
unixhierarchysep (Cyrus option) 205, 235
\Unmarked (folder flag) 34
unqualified users (Cyrus) 233, 276
unread email

finding 308
number of the first 299
querying for 40

UNSELECT (IMAP command) 39
UNSUBSCRIBE (IMAP command) 41, 302
unsubscribing (folders) see SUBSCRIBE (IMAP

command)
untagged server replies 31
Update state (POP3) 318
upgradesieve (tool) 271
URLAUTH (IMAP command) 296
URLs, for IMAP messages see URLAUTH
USER (POP3 command) 24, 317–319
user ID

field in a MySQL table (Courier) 135
field in a PostgreSQL table (Courier) 139

user options (Courier) 144–147

351

Index

maintaining in LDAP) 143, 146
saving in the userdb 146
specifying in MySQL) 137, 147
specifying in PostgreSQL) 147

user profiles see profile files (Squirrelmail)
user/ (directory, Cyrus) 280
userdb

creating file from passwd see pw2userdb
directory 125, 129
file 125

converting into a database 128
displaying an entry 127
maintaining separately by domain 129
manipulating an entry 127
saving user options in 146
separating 129

file structure 125–127
tool 127–129

userdb.dat (file) 128
userdbbpw (tool) 128
userdbpw (tool) 129, 130
userdbshadow.dat (file) 128
userid.seen (file) 280
userid.sub (file) 280
username

converting to lowercase 205
entry (IMAP) see LOGIN (IMAP command)
entry (POP3) see USER (POP3 command)
field in a MySQL table (Courier) 136
field in a PostgreSQL table (Courier) 139
logging (Courier) 99
selecting 150–151

username_tolower (Cyrus option) 205
users, virtual see virtual accounts
usrquota (mount option) 168
UW-IMAP 186

V
vacation (Sieve command) 246, 249, 250
variables see configuration parameters
/var/lib/imap 188, 203, 277
/var/lib/sieve 205
Varshavchik, Sam 59, 139, 149
/var/spool/imap 188, 204, 275
/var/spool/imap/user 195
vchkpw library see QMail
VDA patch 173

Venema, Wietse 73
version (cyradm command) 274
virtdomains (Cyrus option) 205, 233
virtual (MDA) 172

quota patch 173
virtual accounts 120

per authuserdb see authuserdb
virtual domains (Cyrus) 232

activating 205
adapting Sieve scripts 252, 271
and assigning permissions 236

virtual memory, limiting size of (Courier) 102
virtual users see virtual accounts, 94, 120,

with Postfix 94
vpopmail library see vchkpw library

W
w (permission) 36
WAFL, as email storage medium 55
Web-cyradm 184
webmailer 67–73

accelerating the see IMAP, Proxy (project)
for cell phones 70
for the Courier project 85, 132, 138
migration problems 80
problems with filter settings 80

Webmin
Cyrus plugin 184
and Sieve 244

websieve (web interface) 244
WHERE (SQL command) 137
write permission see ACLs
write throughput 56, 57, 60, 61

for RAID 62
writeback (journal mode) 60–62

X
x (permission) 37
X-commands (IMAP) 316
X-IMAP-Sender (header) 99, 178
xfermailbox (cyradm command) 274, 287
XFS, as email storage medium 54–56
XMPP notification (Sieve) 254

Z
Zephyr 254
ZFS, as email storage medium 54

352

T H E B O O K
O F I M A P

T H E B O O K
O F I M A P

B U I L D I N G A M A I L S E R V E R W I T H C O U R I E R
A N D C Y R U S

P E E R H E I N L E I N A N D P E E R H A R T L E B E N

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

SHELVE IN:
EM

AIL

$49.95 ($54.95 CDN)

B U I L D A R E L I A B L E
S E R V E R W I T H I M A P

B U I L D A R E L I A B L E
S E R V E R W I T H I M A P

 “ I LAY F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

 Printed on recycled paper

IMAP (the Internet Message Access Protocol) allows
clients to access their email on a remote server,
whether from the office, a remote location, or a cell
phone or other device. IMAP is powerful and flexible,
but it’s also complicated to set up; it’s more difficult to
implement than POP3 and more error-prone for both
client and server.

The Book of IMAP offers a detailed introduction to IMAP
and POP3, the two protocols that govern all modern
mail servers and clients. You’ll learn how the protocols
work as well as how to install, configure, and maintain
the two most popular open source mail systems, Courier
and Cyrus.

Authors Peer Heinlein and Peer Hartleben have set up
hundreds of mail servers and offer practical hints about
troubleshooting errors, migration, filesystem tuning,
cluster setups, and password security that will help you
extricate yourself from all sorts of tricky situations. You’ll
also learn how to:

• Create and use shared folders, virtual domains, and
user quotas

• Authenticate user data with PAM, MySQL, PostgreSQL,
and LDAP

• Handle heavy traffic with load balancers and proxies

• Use built-in tools for server analysis, maintenance,
and repairs

• Implement complementary webmail clients like
Squirrelmail and Horde/IMP

• Set up and use the Sieve email filter

Thoroughly commented references to the POP and IMAP
protocols round out the book, making The Book of IMAP
an essential resource for even the most experienced
system administrators.

A B O U T T H E A U T H O R S

Peer Heinlein has been operating an independent ISP
in Berlin since 1992. He specializes in mail servers of
various sizes and enjoys ambitious Linux projects. Peer
Hartleben is a CTO and Linux Security Consultant with
a focus on Cyrus-based mail servers.

H
E

IN
L

E
IN

 A
N

D

H
A

R
T

L
E

B
E

N
T

H
E

 B
O

O
K

 O
F

 IM
A

P
T

H
E

 B
O

O
K

 O
F

 IM
A

P

®

	Introduction
	PART I: How to Set Up and Maintain IMAP Servers
	1: Protocols and Terms
	Why is IMAP so Complex?
	Comparing Courier and Cyrus

	2: POP3 and IMAP at the Protocol Level
	POP3
	Test Session
	Authentication via APOP and KPOP

	IMAP
	The Design of the IMAP Protocol
	Transcript of an IMAP Session
	A Practical View of IMAP
	Subscribing to IMAP Folders

	3: Load Distribution and Reliability
	Load Balancer
	DNS Round Robin
	Round Robin via iptables
	Linux Virtual Server

	IMAP Proxies

	4: Selecting a Filesystem
	Tuning the Performance of the Filesystem
	The atime
	Access Control Lists
	The Ext2/Ext3 Option dir_index
	Journal Mode
	Optimized fstab Entries

	RAID
	NFS
	Disabling atime and Optimizing Block Size
	NFS Version 3
	Fast I/O

	A Performance Test

	5: Complementary Webmail Clients
	Squirrelmail
	Horde/IMP
	Fast Access via the IMAP Cache Proxy

	6: Migrating IMAP Servers
	Migrating using imapsync
	Converting mbox to maildir
	Modifying Folder Names
	Determining Cleartext Passwords

	PART II: Courier IMAP
	7: Structure and Basic Configuration
	Installing the Software
	What is Where?
	Initial Start-Up
	Courier and MTAs
	Courier and Postfix
	Courier and QMail
	Courier and Exim

	Optimizing the Configuration
	Real and "False" Configuration Parameters
	POP3 Configuration in /etc/courier/pop3d
	Configuring the IMAP Daemon in /etc/courier/imapd

	The Configuration Files for SSL

	8: Maildir as Email Storage Format
	The IMAP Namespace
	Filenames of Emails
	Keywords: Custom IMAP Flags

	9: User Data
	authtest and DEBUG_LOGIN for Debugging Assistance
	The authdaemond
	Authentication via PAM
	The authuserdb Module
	Converting passwd into a userdb
	Maintaining Account Data with userdb
	Creating a Binary Version of the User Database
	Separating the userdb into Multiple Files
	The atime

	Using QMail's vchkpw Library for Authentication
	Implementing Custom Authentication Methods
	Integrating External Authentication Programs
	Authentication via MySQL
	Authentication via PostgreSQL
	Authentication via LDAP
	Obsolete Authentication Modules
	The authpwd Module
	The authshadow Module
	The authcram Module

	User Options
	Saving User Options in the userdb
	Individual User Options in an LDAP Directory
	Storing User Options in Dedicated Fields in an SQL Table

	Saving Passwords: Cleartext or Hash?
	Username Selection When Maintaining Multiple Domains

	10: The Work of a Courier Administrator
	Shared Folders
	Setting Up Virtual Shared Folders
	Creating Filesystem-Based Shared Folders

	Quotas
	Quotas for Courier
	Quotas and the MDA

	Building an IMAP Proxy with Courier
	Push Instead of Pull: The IDLE Command
	Sending Emails via the IMAP Server

	PART III: Cyrus IMAP
	11: Structure and Basic Configuration
	Installing Cyrus
	OpenSuSE/SuSE Linux Enterprise Server (SLES)
	Fedora Core/Red Hat
	Debian

	The Cyrus Hierarchy and Permissions System
	Features and Functions
	Quick Start
	Authentication and Mailboxes
	Tests

	12: A Closer Look at the Configuration Files
	/etc/cyrus.conf
	The START{} Section
	The SERVICES{} Section
	The EVENTS{} Section

	/etc/imapd.conf

	13: Authentication and Safeguards
	Encrypting with SSL/TLS
	SSL Transmission Types
	Real and Fake Certificates
	Creating and Integrating SSL Certificates

	Cyrus SASL
	Cyrus SASL Modules
	The auxprop Module
	The Authentication Process

	Calling Different Data Sources
	Standard Authentication Methods for Unix
	sasldb2
	Cyrus and MySQL
	Cyrus and LDAP
	Cyrus and Kerberos

	14: Advanced Cyrus Configuration
	Mailbox Quotes
	Automatic Quotas
	Manual Quotas

	Shared Folders and ACLs
	Virtual Domains
	The Underlying Concept
	Effects on ACLs
	Domain Administrators

	Sorting Emails into Subdirectories
	Email Partitions
	The Sieve Email Filter
	The Email Filter Daemon timsieved
	Configuring and Testing
	The sieveshell Administration Tool
	The Sieve Script Language
	Setting Up Sieve Scripts Automatically for New Accounts
	Adapting Sieve Scripts

	The notifyd Daemon
	Drums or Smoke Signals?

	Cyrus and Other MTAs
	Backing Up and Restoring Data
	Using reconstruct to Repair Mailboxes
	Restoring Quotas

	Performance Tuning
	Parameters in /etc/imapd.conf that Influence Performance

	15: Internal Structure and Modules
	The Cyrus Daemons
	Tools for Analysis, Maintenance, and Repairs
	Statistics and Analysis
	Maintenance and Repair
	Internal Tools

	Other In-House Tools
	The cyradm Administration Tool

	16: Cyrus at the Filesystem Level
	The Email Directory
	The Administration Directory

	17: Cyrus in a Cluster
	The Cyrus Aggregator
	The Aggregator Concept
	The Cluster Setup

	Cyrus Replication
	Replicating the Authentication Data

	A: IMAP Command Reference
	Commands Always Available to Clients
	Commands Available in the Not-Authenticated Status
	Commands Available in the Authenticated Status
	Commands Available in the Selected Status
	IMAP Extensions
	Experimental Commands

	B: POP3 Command Reference
	An Overview of All Commands

	C: Installing from the Source Code
	Courier
	Cyrus
	Cyrus Sources
	Creating a System User
	Installing Cyrus SASL
	Installing the Cyrus IMAP Server
	Convenient Starting and Stopping

	Index

