Puppet Reporting
and Monitoring

Create insightful reports for your server infrastructure
using Puppet

Puppet Reporting and Monitoring

Table of Contents

Puppet Reporting and Monitoring
Credits

About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions
1. Setting Up Puppet for Reporting

Learning the basics of Puppet reporting

Exploring the Puppet configuration file

Setting up the server

Setting up the Puppet agent

Summary
2. Viewing Data in Dashboards

Why use a dashboard?

The Puppet Dashboard feature list

Understanding Puppet Dashboard

Exploring Puppet Enterprise Console
Event Inspector
Puppet Live Management
Using The Foreman
Reporting with The Foreman
Looking at trends in The Foreman
Discovering PuppetBoard
Summary
3. Introducing Report Processors
Understanding a report processor
Utilizing the built-in report processors
Storing reports with the store report processor
Adding to logfiles with the log report processor
Graphing with the rrdgraph processor
The tagmail report processor
Sending reports with the HTTP report processor
The PuppetDB report processor
Exploring the power of third-party plugins

Getting social with Twitter

Staying on top of alerts with PagerDuty

Summary
4. Creating Your Own Report Processor

The anatomy of a report processor

Creating a basic report processor

Registering your report processor

Describing your report processor

Processing your report

Values of the self.status object

Alerting with e-mail and Puppet

Managing your report processor configuration with Puppet

Monitoring changes and alerting with Puppet

Logging with MySQL
Adding metrics and events to MySQL
Raising issues with JIRA
A final note on third-party applications
Summary
5. Exploring PuppetDB
A brief history of PuppetDB
Setting up the PuppetDB server
Installing PuppetDB
Installing PuppetDB from packages
Increasing the JVM heap space
Installing PostgreSQL
Installing the packages
Creating your database user
Creating the PostgreSQL. database
Summary
6. Retrieving Data with the PuppetDB API
Exploring the PuppetDB query API

Understanding the command interface
Understanding the query API interface

A primer on the PuppetDB query language

Exploring endpoints
Using the facts endpoint

Using the resources endpoint

Retrieving details about nodes
Getting the run details with the catalogs endpoint

Understanding the fact-names endpoint

Knowing the status of PuppetDB with the metrics endpoint

Using the reports endpoint

Working with the events endpoint

Using the event-counts endpoint

Applying the aggregate-event-counts endpoint
Using the server-time endpoint

The version endpoint

Summary
7. Writing Custom Reports with PuppetDB

Creating a basic query application
Setting up the basic application
Connecting to PuppetDB
Outputting results

Creating a menu-driven PuppetDB application
Setting up the Ul
Querying PuppetDB'’s facts endpoint
Outputting the hardware report

Querying PuppetDB for report information
Creating the PuppetDB query method
Fetching the event counts
Presenting the events data
Testing our application

Summary

8. Creating Your Own Custom Dashboard

Exploring Dashing

Setting up Dashing
Exploring the default puppetdash directory layout

Running Dashing
Creating our dashboard

Creating our dashboard layout

Feeding data into Dashing

Creating new jobs in Dashing

Adding trends

Adding meters

Summary

9. Looking Back and Looking Forward
Looking back at what we’ve learned
Rediscovering dashboards
Producing alerts
Using Nagios
Discovering Icinga and Shinken
Compliance monitoring with Puppet
Analyzing metrics with StatsD, Graphite, and Etsy Skyline
Tracking changes with Puppet and Graphite
Using Etsy Skyline to find your normal
Using Puppet to drive orchestration
Summary

Index

Puppet Reporting and Monitoring

Puppet Reporting and Monitoring

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014
Production Reference: 1100614
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-142-7

www.packtpub.com

Cover Image by Gareth Howard Jones (<garth123@hotmail.co.uk>)

http://www.packtpub.com
mailto:garth123@hotmail.co.uk

Credits

Author

Michael Duffy
Reviewers

Ugo Bellavance

Johan De Wit

James Fryman

Jason Slagle

Eric Stonfer
Commissioning Editor
Edward Gordon
Acquisition Editor
Llewellyn Rozario
Content Development Editor
Sankalp Pawar
Technical Editors
Taabish Khan

Aparna Kumar

Copy Editors

Insiya Morbiwala
Aditya Nair

Stuti Srivastava
Project Coordinator
Puja Shukla
Proofreaders

Maria Gould

Paul Hindle

Indexer

Mariammal Chettiyar
Production Coordinator

Sushma Redkar

Cover Work
Sushma Redkar

About the Author

Michael Duffy has been working in systems administration and automation for more
years than he cares to remember, and is the founder of Stunt Hamster Ltd.; a small but
perfectly formed consultancy that helps companies, both small and large, deliver fully
automated and scalable infrastructure. He has consulted for companies such as O2 and
BSkyB, delivering design, automation, and monitoring of infrastructure for products that
serve millions of users.

Michael is a keen advocate of DevOps methodologies and is especially interested in using
automation to not only deliver scalable and reliable systems, but also to make sure that
people can see what is actually going on under the hood when using reporting tools. If
given the chance, he will happily spend hours telling you how fantastic it is that people
from the development and operations fields can finally talk and go to the pub together.

I would like to thank my absolutely incredible wife, Beth, and my fantastic daughter,
Megan, for enduring more than their fair share of enthused lectures about Puppet reporting
and for ensuring that I was fed, watered, and occasionally moved out into sunlight when I
became a little too focused on writing. Without your love and support, this book wouldn’t
have been possible.

I would also like to thank the editors and staff at Packt Publishing; without them, this book
would be several hundred pages of extreme gibberish without a gerund verb in sight.

About the Reviewers

Ugo Bellavance has done most of his studies in e-commerce. He started using Linux from
RedHat 5.2, got Linux training from Savoir-faire Linux at age 20, and got his RHCE on
RHEL 6 in 2011. He’s been a consultant in the past, but he’s now an employee for a
provincial government agency for which he manages the IT infrastructure (servers,
workstations, network, security, virtualization, SAN/NAS, and PBX). He’s a big fan of
open source software and its underlying philosophy. He has worked with Debian, Ubuntu,
and SUSE, but what he knows best is RHEL-based distributions. He’s known for his
contributions to the MailScanner project (he has been a technical reviewer for
MailScanner User Guide and Training Manual, Julian Field published by the University
of Southampton, Department of Civil & Environmental Engineering), but he has also
given time to different open source projects such as Mondo Rescue, OTRS,
SpamAssassin, pfSense, and a few others. He’s been a technical reviewer for Centos 6
Linux Server Cookbook, Jonathan Hobson, Packt Publishing and Puppet 3 Beginner’s
Guide, John Arundel, Packt Publishing.

I thank my lover, Lysanne, who accepted to allow me some free time slots for this review
even with two dynamic children to take care of. The presence of these three human beings
in my life is simply invaluable.

I must also thank my friend, Sébastien, whose generosity is only matched by his
knowledge and kindness. I would never have reached this high in my career if it wasn’t for
him.

Johan De Wit was an early Linux user, and he still remembers those days when he built a
0.9x Linux kernel on his brand new 486 computer, which took a whole night. His love for
Unix operating systems already existed before Linux was announced. It is not surprising
that he started his career as a Unix system administrator.

Johan doesn’t remember precisely when he started working with open source software, but
since 2009, he has been working as an open source consultant at Open-Future, where he
got the opportunity to work with Puppet. Puppet has now become his biggest interest, and
he loves to teach Puppet as one of the few official Puppet trainers in Belgium.

Johan started the Belgian Puppet user group a year ago, where he tries to bring some
Puppet users together by hosting great and interesting meet-ups. When he takes the time to
write Puppet-related blogs, he does so mostly on http://puppet-be.github.io/, the BPUG
website. From time to time, he tries to spread some hopefully wise Puppet words while
presenting a talk at a Puppet camp somewhere in Europe.

Besides having fun at work, he spends a lot of his free time with his two lovely kids and
his two Belgian draft horses, and if time and the weather permits, he likes to rebuild and
drive his old-school chopper.

James Fryman is a technologist who has been working on spreading the good word of
technology via the greatest mechanism known to man: the beer-fueled rant. He has been
working to automate software and infrastructure for the last 10 years and has learned quite

http://puppet-be.github.io/

a bit about security, architecture, scaling, and development as a result. He currently works
for GitHub as an Operations Hacker.

Jason Slagle is a 17-year veteran of systems and network administration. Having worked
on everything from Linux systems to Cisco networks and SAN Storage, he is always
looking for ways to make his work repeatable and automated. When he is not hacking a
computer for work or pleasure, he enjoys running, cycling, and occasionally, geocaching.

Jason is currently employed by CNWR Inc., an IT and infrastructure consulting company
in his home town of Toledo, Ohio. There, he supports several large customers in their
quest to automate and improve their infrastructure and development operations.

Jason has also served as a technical reviewer for Puppet 3 Beginner’s Guide, John
Arundel, Packt Publishing.

I’d like to thank my wife, Heather, and my son, Jacob, for putting up with me while I
worked on this and other projects. They make even days with critical systems outages
better!

Eric Stonfer has spent the last 12 years working as a systems administrator with an
emphasis on systems automation and configuration management.

www.PacktPub.com

Support files, eBooks, discount offers, and
more

You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[lﬁ PACKT! i 1°

http://Packtl.ib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can access, read and search across Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print and bookmark content
¢ On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com

Preface

Puppet is possibly the fastest growing configuration management tool on the planet, and
this is in no small part due to its combination of power and accessibility. From small five-
node installations through to hugely complex cloud infrastructures that number thousands
of nodes, Puppet has proven its ability to deliver on the promise of infrastructure as code.
There have been a number of titles that cover its ability to create idempotent resources,
manage services, and ensure that systems are configured correctly and maintained with
little or no effort. Yet, none of these titles spend more than a chapter discussing its
reporting features.

This is a shame; Puppet’s reporting capability is one of its most overlooked yet powerful
features. If used correctly, its built-in reporting abilities can give you stunning levels of
detail about your infrastructure, from the amount of hardware used and networking details
to details about how and when resources were changed. However, this is just the
beginning. In this book, we are going to cover techniques that are simple to learn and that
will allow you to use Puppet as a key part of your alerting systems, letting it bring your
attention to important changes and even forming a simple-to-implement tripwire system.
We’re going to explore PuppetDB and learn why this is a fantastic source of information
that you can use to not only explore the changes being applied to your systems, but also
create an end-to-end repository of knowledge about your infrastructure. We’re going to
build custom dashboards to make this data accessible, and finally, we will look at the ways
by which you can make Puppet not only report the changes, but also drive them.

What this book covers

Chapter 1, Setting Up Puppet for Reporting, will guide you through the simple steps to
take your existing Puppet installation and make it report.

Chapter 2, Viewing Data in Dashboards, takes a look at the existing dashboards available
for Puppet and how you can use them to report on your data.

Chapter 3, Introducing Report Processors, acquaints you with the engine that drives much
of the Puppet reporting process—the report processor.

Chapter 4, Creating Your Own Report Processor, deals with creating your own report
processor with custom e-mail alerts, MySQL storage, and integration with third-party
products.

Chapter 5, Exploring PuppetDB, introduces PuppetDB, a fantastic and powerful system
for report storage and analysis. In this chapter, we look at what PuppetDB is, how it’s
configured, and finally, how you can set it up in your own infrastructure.

Chapter 6, Retrieving Data with the PuppetDB API, explores the fantastically powerful
API of PuppetDB; the API allows you to query your reports in a number of different ways.
We’re going to explore this API for functions that range from basic queries to advanced
data integration.

Chapter 7, Writing Custom Reports with PuppetDB, deals with creating easy-to-use
custom report applications.

Chapter 8, Creating Your Own Custom Dashboard, deals with creating an attractive and
detailed custom dashboard using Dashing and PuppetDB.

Chapter 9, Looking Back and Looking Forward, takes a look at some of the more
advanced ways in which you can use Puppet reporting to do everything from alerting to
the orchestration of your infrastructure.

What you need for this book

The code and examples in this book have been designed for use with the following
software:

e Puppet 3.0 and higher versions
e Ruby 1.9 and higher versions

Who this book is for

This book is designed for anyone who wants to learn more about the fundamental
components of Puppet reporting. To get the most out of this book, you should already be
familiar with Puppet and be comfortable with its major components such as the Puppet
master and Puppet agent. You should also be comfortable with reading code, and in
particular, you should be at least passingly familiar with Ruby. Finally, you should be
happy working on the command line in the Linux/Unix flavor of your choice.

Conventions

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “We can
include other contexts through the use of the include directive.”

A block of code is set as follows:
include puppet

Puppet: :Reports::register_report(:myfirstreport) do
desc "My very first report!"

def process
if self.status == 'failed'
msg = "failed puppet run for #{self.host} #{self.status}
File.open('./tmp/puppetpanic.txt', 'w') { | f | f.write(msg)}
end
end
end

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

metric_vals = {}

self.metrics.each { |metric, data]|
data.values.each { |val]|
name = "#{val[1]} #{metric}"
value = val[2]
metric_vals[name] = value

}
}

Any command-line input or output is written as follows:

puppet module generate <username>-<modulename>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “The Facts view is
particularly useful as it not only lists each node with the associated fact value, but also
presents it neatly in the form of a graph.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/submit-
errata, selecting your book, clicking on the errata submission form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from

http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:questions@packtpub.com

Chapter 1. Setting Up Puppet for
Reporting

Some tools can be enormously tedious to set up for reporting, normally making you wade
through many different configuration files, wrestle with obscure settings, and make you
lose the will to live, generally. Fortunately, Puppet is a sensible product when it comes to
its initial configuration; out of the box, it will take very little tweaking to get it to report to
the Puppet master. This is not to say that there aren’t plenty of options to keep power users
happy, it’s just that you generally do not need to use them.

In this chapter, we’re going to cover the following topics:

An introduction to how Puppet reporting works
A brief tour of the Puppet config files
Configuring a Puppet client

Configuring a Puppet master

Learning the basics of Puppet reporting

Before we get into the nitty-gritty of configuring our Puppet installation, it’s worth briefly
going over the basics of how Puppet goes about its reporting. At its heart, a Puppet master
is a web server and the reporting mechanism reflects this; a Puppet agent performs a
simple HTTPS PUT operation to place the reporting information onto a Puppet master.
When configured properly, the Puppet master will receive reports from Puppet agents,
each and every time they perform a Puppet run, either in the noop or apply mode. Once
the reports have been received, we can go ahead and do some fairly fantastic things with
the data using a variety of methods to transform, transport, and integrate it with other
systems.

The data that the Puppet agent reports back to the Puppet master is made up of two crucial
elements: logs and metrics. The Puppet agent creates a full audit log of the events during
each run, and when the reporting is enabled, this will be forwarded to the Puppet master.
This allows you to see whether there were any issues during the run, and if so, what they
were; or, it simply lets you examine what operations the Puppet agent performed if things
went smoothly.

The metrics that the Puppet agent passes to the Puppet master are very granular and offer a
fantastic insight into where Puppet is spending its time, be it fetching, processing, or
applying changes. This can be very important if you are managing a large infrastructure
with Puppet; a node that takes four minutes to complete isn’t too bad when there are only
a handful of them, but it can be downright painful when you are dealing with hundreds of
them. It also allows you to start tracking the performance of your Puppet infrastructure
over time. Puppet modules have a tendency to start as lean, but as they grow in
complexity, they can become sluggish and bloated. Identifying speed issues early can help
you refactor your modules into smaller and better performing pieces of code before they
start to impact the overall stability and speed of your Puppet infrastructure.

The data derived from the logs and metrics build up a complete picture of your hosts and
is enormously useful when it comes to diagnosing issues. For example, without reporting,
you may have a hard time diagnosing why every single Puppet agent is suddenly throwing
errors when applying the catalog; with reporting, it becomes a relatively easy matter to
spot that someone has checked in a common module with a bug. Many sites use modules
to manage DNS, NTP, and other common items, and a typo in one of these modules can
very quickly ensure that every single host will report errors. Without reporting, you can
make shrewd guesses as to the fault, but to actually prove it, you’re going to have to log
onto multiple nodes to examine the logs. You are going to end up spending a fair chunk of
time going from node to node running the agent in the noop mode and comparing logs
manually to ensure that it is indeed a common fault. This is based on the assumption that
you notice the fault, of course; without the reporting in place, you may find that the nodes
can be in poor shape for a substantial time before you realize that something is amiss or
that you probably have not been running Puppet at all. Running Puppet on a host that has
not been managed for some time may produce a list of changes that is uncomfortably long

and could potentially introduce a breaking change somewhere along the line. There are
many reasons why a Puppet agent may have stopped running, and you can be in for a
shock if it’s been a month or two since Puppet was last run on a host. A lot can change in
that time, and it’s entirely possible that one of the many non-applied changes might create
problems in a running service.

Where the Parser is the brains of Puppet, the Facter is its eyes and ears. Before Puppet
compiles a manifest, it first consults Facter to figure out a few key things. First and
foremost, it needs to know where it is and what it is. These are facts that the Puppet agent
can deduce by consulting Facter on elements such as the node’s hostname, the number of
CPUs, amount of RAM, and so on. Facter knows a surprising amount of information, out
of the box, and its knowledge increases with each release. Before Facter 1.7, it was
possible to use Ruby code, shipped as a Puppet plugin, to extend the facts you could
gather. However, with Facter 1.7, you can also teach Facter some new tricks with external
facts. External facts allow you to add to Facter’s already prodigious knowledge by
including anything from Ruby scripts to plain old YAML files to insert data. These
additional points of data can be utilized within Puppet reports in the same way as any
default Facter item, and they can also be used to add additional context around the existing
data.

Now that we know the basics of how Puppet reporting works, it’s time to go ahead and
configure our Puppet master and agents to report. I’m going to make the assumption that
you already have a working copy of either Puppet Open Source or Puppet Enterprise
installed; if you haven’t, there are some excellent guides available either online at
http://Puppetlabs.com/learn or available for purchase elsewhere. If you’re going to buy a
book, I recommend Puppet 3 Beginner’s Guide, John Arundel, Packt Publishing. It is an
excellent and complete resource on how to install and use Puppet.

The example configurations I have used are from the latest version of Puppet Open Source
(Version 3.2.2 and higher), packaged for Ubuntu. Your configuration may differ slightly if
you’re following this on another distribution, but it should broadly contain the same
settings.

http://Puppetlabs.com/learn

Exploring the Puppet configuration file

Let’s take a look at the default configuration that ships with Puppet Open Source. By
default, you can find the config file in the /etc/puppet/puppet.conf directory. The
configuration file is as follows:

[main]

logdir=/var/log/puppet
vardir=/var/lib/puppet
ssldir=/var/1lib/puppet/ssl
rundir=/var/run/puppet
factpath=$vardir/lib/facter
templatedir=$confdir/templates

[master]

These are needed when the puppetmaster is run by passenger
and can safely be removed if webrick is used.
ssl_client_header = SSL_CLIENT_S_DN

ssl_client_verify_header = SSL_CLIENT_VERIFY

The first interesting thing to note about this configuration file is that it can be used for the
Puppet agent, Puppet master, and Puppet apply commands. Many items of the
configuration file tend to be common items such as log directories, run directories, and so
on, so there is no real need to keep a separate version of these files for each role. Again,
this is an example of the common way that Puppet has been designed, when it comes to
configuration.

The puppet . conf file is split up using the standard ini notation of using configuration
blocks to separate roles and the common configuration. The most common blocks that you
will encounter are [main], [agent], and [master], although sites that have implemented
either Puppet faces or Puppet environments may have more. Generally speaking, as these
additional configuration blocks are not used to set up reporting, we shall ignore them for
the purposes of this book.

The [main] configuration block is used for any configuration that is applied regardless of
the mode that Puppet is run in. As you can see from the preceding configuration file, this
includes locations of SSL certificates, logs, and other fundamental configuration items.
These are generally things that you should keep the same on every host, regardless of it
being a Puppet master or agent. However, it’s worth noting that you can override the
settings in a configuration block by setting them in a more specific block elsewhere in the
file. Any setting in the [main] configuration block is available to be overridden by any
subsequent block further down the configuration file.

The [master] block is used for all configuration items that are specific to the role of the
Puppet master. As you can see in the default configuration file, this includes items for
Phusion Passenger configurations, but more importantly for us, this is also where you
would set items such as the report processor and its options. For our initial setup, we’re
going to use the master configuration to set where our reports will be stored and ensure
that we are using the store report processor.

The [agent] configuration block is utilized when you run Puppet as an agent. It is here
that we can set the fairly simple configuration required to make the Puppet agent
communicate reports with the Puppet master. We won’t be spending much time in this
configuration block; the majority of the configuration and processing of the Puppet reports
takes place on the Puppet master rather than on the client side. There are some exceptions
to this rule; for instance, you may have to amend a client-side setting to make the Puppet
agent report to a different Puppet master.

Alternatively, if you are using the HTTP report process, you may wish to set a different
URL. So, it’s worth having an understanding of the options that are available.

Tip
Why use a separate Puppet report server?

As with all good enterprise solutions, Puppet has been designed to allow certain roles to
be decomposed into separate components to ease scaling. Reporting fits into this, and you
may find that if you are using report processors that are resource intensive, then you may
want to separate the reporting function onto a separate server and leave as many resources
as possible for the Puppet master to deal with client requests.

You can find a complete list of all configuration options for Puppet at

http://docs.puppetlabs.com/references/latest/configuration.html, including the options for
directing reports to a separate Puppet master.

http://docs.puppetlabs.com/references/latest/configuration.html

Setting up the server

For the most part, the Puppet server is preconfigured for reporting and is simply waiting
for clients to start sending information to it. By default, the Puppet master will use the
store report processor, and this will simply store the data that is sent to the Puppet master
in the YAML format on the filesystem.

Note

YAML is a data serialization format that is designed to be both machine and human
readable. It’s widely used and seems to have found considerable favor among open source
projects. YAML has a simple layout but still has the ability to hold complex configurations
that are easily accessible with relatively simple code. A nice side effect of its popularity is
that it has gained first-class support in many languages and for those languages without
such support, there are many libraries that allow you to easily work with them.

It’s worth taking some time to become familiar with YAML; you can find the YAML
specifications at http://vaml.org, and Wikipedia has an excellent entry that can ease you
into understanding how this simple yet exceedingly powerful format is used.

Although the store processor is simple, it gives us an excellent starting point to ensure that
our Puppet master and agent are configured correctly. The YAML files it produces hold a
complete record of the Puppet agent’s interactions with the client. This record includes a
complete record of which resources were applied, how long it took, what value they were
earlier, and much more. In later chapters, we will fully explore the wealth of data that both
the Puppet reports and Puppet metrics offer us.

Tip

We’re going to spend some time looking at various settings, both in this chapter and
others. While you can look in the raw configuration files (and I highly encourage you to),
you can also use the puppet master -configprint command to find out what Puppet
believes a particular setting to be set at. This is extremely useful in finding out how a

default setting may be configured, as it may not even be present in the configuration file
but will still be applied!

Out of the box, the only real Puppet master setting that may require some care and
attention is the reportdir setting. This defines where the Puppet agent reports are stored,
and it is important that this points to a directory that has plenty of space. I’ve routinely
seen installations of Puppet where the disk is consumed within a matter of days via a
reportdir setting that points at a relatively diminutive partition. By default, the
reportdir setting is set to the /var/1ib/puppet/reports directory. So at the very least,
make sure that your /var partition is fairly roomy. If your Puppet agents are set to run
every thirty minutes and you have a healthy number of hosts, then whatever partition you
have this directory in is going to become full very quickly. It’s worth bearing in mind that
there is no inbuilt rotation or compression of these log files, and you may want to consider
adding one using your tool of choice. Alternatively, there is a Puppet module to manage

the log rotate on the Puppet Forge at https://forge.puppetlabs.com/rodjek/logrotate.

http://yaml.org
https://forge.puppetlabs.com/rodjek/logrotate

Tip
If you do relocate the reports directory, then ensure that the permissions are set correctly
so that the user who runs the Puppet master process has access to both read/write to the

reporting directory. If the permissions aren’t set correctly, then it can lead to some very
weird and wonderful error messages on both the Puppet master and agent.

Now that we understand some of the basics of Puppet reporting, it’s time to take a look at
the configuration. Let’s take another look at the basic configuration that comes out of the
box. The configuration file is as follows:

[main]

logdir=/var/log/puppet
vardir=/var/lib/puppet
ssldir=/var/lib/puppet/ssl
rundir=/var/run/puppet
factpath=$vardir/lib/facter
templatedir=$confdir/templates

[master]

These are needed when the Puppetmaster is run by passenger
and can safely be removed if webrick is used.
ssl_client_header = SSL_CLIENT_S_DN

ssl_client_verify_header = SSL_CLIENT_VERIFY

At this point, no further changes are required on the Puppet master, and it will store client
reports by default. However, as mentioned, it will store reports in the
/var/1lib/Puppet/reports directory by default . This isn’t ideal in some cases;
sometimes, it’s impossible to create a /var directory that would be big enough (for
instance, on hosts that use small primary storage such as SSD drives), or you may wish to
place your logs onto a centralized storage space such as an NFS share. This is very easy to
change, so let’s take a look at changing our default configuration to point to a new
location. This is described in the following code:

[main]

logdir=/var/log/puppet
vardir=/var/lib/puppet
ssldir=/var/lib/puppet/ssl
rundir=/var/run/puppet
factpath=$vardir/lib/facter
templatedir=$confdir/templates

[master]

reportdir = /mnt/puppetreports

These are needed when the puppetmaster is run by passenger
and can safely be removed if webrick is used.

ssl client_header = SSL_CLIENT_S_DN

ssl _client_verify_header = SSL_CLIENT_VERIFY

Make sure that once you have created your Puppet’s reports directory, you change the
permissions to match your Puppet user (normally, puppet : puppet for Unix and Linux
systems) and restart the Puppet master. Go ahead and run the client again, and you should
see the report appear in your new reporting directory.

If you’re using Puppet Enterprise, then none of this applies; the installer has taken care of
this for you. If you take a look at the configuration directory (normally
/etc/Puppetlabs/master), you can see that the Puppet.conf file has the same changes.
Puppet Enterprise is configured out of the box to use the HTTP and PuppetDB storage
method. This is a far more scalable way of doing things than the standard reportdir
directory and store method, and it is a good example of where Puppet Enterprise is
designed with scale in mind. This doesn’t mean that you can’t do this in the open source
version, though; in the following chapters, we will go through setting up Puppet Open
Source to use these report processors and more.

Setting up the Puppet agent

Much like the Puppet master, the Puppet agent is configured with sensible default settings
out of the box. In fact, in most cases, you will not need to make any changes. The only
exception, generally, is if you are using a separate reporting server; in this case, you will
need to specify the host that you have assigned this role to.

You can adjust the Puppet agent’s reporting behavior using the report setting within the
[agent] configuration block of the Puppet configuration file. This is a simple Boolean
switch that defines the behavior of the Puppet agent during a run, and by default, it is set
to true. Sometimes, you may find that you wish to explicitly set this to true to aid anyone
who is less familiar with Puppet. You can safely set this explicitly by making the
following code amendment to the puppet.conf file:

[main]

logdir=/var/log/puppet
vardir=/var/lib/puppet
ssldir=/var/lib/puppet/ssl
rundir=/var/run/puppet
factpath=$vardir/lib/facter
templatedir=$confdir/templates

[master]

These are needed when the Puppetmaster is run by passenger
and can safely be removed if webrick is used.

ssl client_header = SSL_CLIENT_S_DN

ssl_client_verify_header = SSL_CLIENT_VERIFY

And now let's insert the option for the client to report:
[main]

logdir=/var/log/puppet

vardir=/var/lib/puppet

ssldir=/var/lib/puppet/ssl

rundir=/var/run/puppet

factpath=$vardir/lib/facter
templatedir=$confdir/templates

[agent]report = true

[master]

These are needed when the Puppetmaster is run by passenger
and can safely be removed if webrick is used.

ssl _client_header = SSL_CLIENT_S_DN

ssl _client_verify_header = SSL_CLIENT_VERIFY

These are the essentials to configure Puppet in order to report. There are other options
available in both the Puppet agent and the Puppet master configuration that are related to
reporting, but these are strictly optional; the default settings are generally okay. If you’re
curious, you can find a complete list of the available options on the Puppet Labs website at
http://docs.puppetlabs.com/references/latest/configuration.html. Be cautious, though;
some of these settings can do some very weird things to your setup and should only be

http://docs.puppetlabs.com/references/latest/configuration.html

used if you really need them.

Well done; you are now up and running with Puppet reporting, albeit in a very basic form.
We could end the book here, but the fun is only just starting. Now that we understand how
the Puppet agent interacts with the Puppet master to create reports, we can start to
examine some of the other powerful features that Puppet reporting offers us.

Summary

After reading this chapter, you should now appreciate how Puppet goes about its
reporting. We explored the Puppet configuration file and observed how both Puppet
Enterprise and Puppet Open Source are configured for simple reporting by default. We
explored the interaction between the Puppet master and the Puppet agent and looked at
how Puppet and Facter work together to create detailed reports of both the activity and
state. We also observed that custom facts can be added to any report. We briefly covered
scalability by noting that you can use a separate Puppet master to act as a dedicated report
server, and we looked at some of the reasons as to why you might want to do this.

In the next chapter, we’re going to take a look at some of the dashboards that can be used
with Puppet and take a whistle-stop tour of some of the major features that each of them
has. You’ll see how these dashboards can offer some quick and easy reporting options but
also have see of the limitations of using them.

Chapter 2. Viewing Data in Dashboards

In the previous chapter, we found out how easy it is to make Puppet expose a rich seam of
information from the hosts; however, at this point in time, we have no easy way of mining
it. In the next few chapters, we are going to look at some of the ways in which we can
both extract and interact with the data that Puppet provides, but in the meantime, we will
spend a little time going over the tools that are already available. These tools provide a
quick and easy out-of-the-box experience, and in the case of Puppet Enterprise and The
Foreman, also form a central part of the management tool chain.

In this chapter, we’re going to cover the following:

A brief introduction to dashboards

A quick tour of Puppet Dashboard and Puppet Enterprise Console
A brief look at The Foreman

An introduction to PuppetBoard

Why use a dashboard?

One of the advantages of using Puppet to manage your infrastructure is that it allows you
to simplify the management and organization of your nodes and impose order on even the
largest pool of resources. This is only one part of the picture, however, and an important
element to any kind of system, such as Puppet, is being able to visualize what you
manage. A dashboard is shown in the following screenshot:

Background Tasks Daily run status
1 pending task
Nodes 8 W Failed
Hoar
0 Unresponsive Unchanged
0 Fa!lEd Changed
All
0 Unreported
1 All Export nodes as CSV
m Radiator View Total 350 o [+] 0 350
¥ |eam.localdomain 2014-04-27 15:21 UTC 350 0 1] (1] 350
Groups
default
mecaollective
no meollective
puppet_consale
puppei_master

Puppet now has several dashboards available for use, and most of these offer capabilities
above and beyond simply reporting data. Most dashboards can also act as External Node
Classifiers (ENCs), and in some cases, can drive actions by integrating with MCollective
and even form a key part of the server build process if you use The Foreman. Even
without utilizing these features, you will find that a dashboard can offer both your users
and you a valuable insight into what is happening within your Puppet-managed
infrastructure, and will allow you to interrogate the facts and reports returned by the
Puppet agents. It’s worth noting that in many cases, if you do not use these dashboards as
ENCs, you may find that some information will not be accessible. For instance, Puppet
Dashboard cannot tell which classes are assigned to a particular node unless it’s being
used as an ENC.

We are not going to go into a huge amount of detail regarding how to set up each of these
products as you can find installation instructions along with the respective projects. If you
are a Puppet Enterprise user, then you will find that Puppet Enterprise Console is installed
as part of the overall product.

Before going into detail about the dashboards, it’s worth looking at the features that each
of them can offer. I’ve summarized this into a table, which is shown as a screenshot in the

next section.

The Puppet Dashboard feature list

In the following screenshot, we will identify the feature list available and understand the
availability of these features in different dashboards:

Puppet
Enterprise The Foreman PuppetBoard
Console

Puppet
Dashboard

ENC
Reporting

Class
Discovery

PuppetDB
Integration

MCollective
Integration

e ENC: This denotes that this dashboard can be utilized as an external node classifier

e Reporting: This dashboard can produce reports on a Puppet agent’s activity

e Class Discovery: This dashboard can examine installed Puppet modules and extract
class names for allocation in the ENC

e PuppetDB Integration: This dashboard can use PuppetDB as a data source

e MCollective Integration: This denotes that this dashboard can use MCollective to
orchestrate actions against nodes

Understanding Puppet Dashboard

Puppet Dashboard is the original dashboard that was shipped with Puppet and was
designed to provide a graphical ENC and reporting console. Since the advent of Puppet
Enterprise, Puppet Labs no longer directly supports the open source version of the
dashboard and it is now maintained by the open source community.

Puppet Dashboard fulfills the role of both an ENC and an end point for Puppet reporting.
As an ENC, Puppet Dashboard is capable and will allow you to both define classes and
assign them to nodes. Note, though, that classes are defined manually, so if you do use
Puppet Dashboard as an ENC, you will need to add some new classes to the dashboard if
you want to add a new module.

Puppet Dashboard was designed to be simple enough to be read at a glance, and the front
page will immediately allow you to see both the number of Puppet agents and which state
they reported last in a time series graph along the top of the dashboard. The panel to the
left of the graph allows you to see in detail how many nodes have failed to run, are
pending changes, have changed, or are unchanged. It also shows you unresponsive and
unreported nodes; these are important metrics and well worth keeping an eye on. An
unresponsive node is any node that has not reported back in an hour, and it is probably a
signifier of issues if you see a large number in this column. You can configure the cutoff
period if you tend to run your Puppet agents on a different schedule to the usual 30
minutes. Unreported nodes occur if you commission a node in Puppet Dashboard and it
never reports—these are something that should be somewhat of a rarity.

At the bottom of the front page is a table that allows you to see more details of the nodes,
with each tab representing a state from the status summary on the left-hand side of the
page. In the table, you can see the hostname of the node, the date and time of its last
report, and some statistics around how many resources the Puppet agent has either applied,
failed to apply, or left unchanged. By clicking on the links in the table, you can explore the
report and node further.

The open source Puppet Dashboard is relatively simple to set up and can offer you a
reasonable level of reporting. It includes ENC functionality and can be used to categorize
and apply classes to your nodes. At the time of writing, however, community participation
has been low, and I would not recommend using the open source Puppet Dashboard unless
you have a compelling need to. If you do want to install or, better yet, contribute towards
Puppet Dashboard, then you can find it at https://github.com/sodabrew/puppet-dashboard.

https://github.com/sodabrew/puppet-dashboard

Exploring Puppet Enterprise Console

Puppet Labs have focused their time on improving Puppet Dashboard in the enterprise
release of Puppet, and to start to differentiate it from the previous dashboard, they have
renamed it Puppet Enterprise Console. Although superficially similar to each other, the
two projects have very different offerings. Puppet Enterprise Console offers integration
with MCollective, and PuppetDB offers out-of-the-box, enhanced features such as Event
Inspector and Live Management. Puppet Enterprise Console forms the core of the
enterprise product and offers a central place of management and a solid reporting tool, and
increasingly, is the place to orchestrate your infrastructure. This dashboard is shown in the
following screenshot:

Background Tasks Daily run status

1 pending task

Nodes 2 M Failed
0 Unresponsive j
0 Failed Changed

All
0 Unreported

1 All Export nodes as CSV

m Radiator View Total 350 o (1] 0 350

¥ |eam.localdomain 2014-04-27 19:21 UTC 350 0 1] (1] 350
Groups
default
meallactive
no meollective
puppet_consale

puppet_master

In terms of layout and basic reporting capabilities, Puppet Enterprise Console is very
similar to the open source Puppet Dashboard, and if you are migrating from Puppet
Dashboard to Puppet Enterprise Console, you should find yourself at home. We’re going
to take a look at the two major features Puppet Enterprise Console has that sets it apart
from its open source progenitor.

Event Inspector

Event Inspector is a relatively new addition to Puppet Enterprise Console, and it gives you
a quick and easy way to correlate events between multiple nodes over a certain period of
time. This can be seen in the following screenshot:

Summary
Classes: with events Classes: 2 with changes
Number of nodes affected for each class:
With Failures 0
With Changes 2 Class Failures Skips Changes No-op
With Skips 0
Pe_mcollective::Activemq - - 1 - b

With No-op 0

All Classes » Pe_puppetdb::Pe::Database - % 1 _ 3

Nodes: with events

With Failures 0
With Changes 1
With Skips 0
With No-op 0
All Nodes »

Resources: with events

Failed 0
Changed 3
Skipped 0
No-op 0

All Resources »

The events console also has a feature called perspectives. This allows you to view the
data from one of three different ways, from the nodes, classes, or resources perspectives.
This ability to flip between views is very useful and quickly allows you to contextualize
an event.

For instance, take a failure on a group of nodes. Viewing them from the nodes perspective
allows you to see that a group of nodes failed during the previous run. However, flipping
over to the classes’ perspective shows you that the failure occurred within a particular
class; this allows you to quickly zero in on changes that have had an adverse affect on
your Puppet-managed infrastructure.

The events console is one of the major differences between the open source and enterprise
versions of Puppet, and it gives you an idea of the direction that Puppet Labs is moving in
with regards to reporting. You can expect that in future releases of Puppet Enterprise, the
reporting gap will only increase.

Puppet Live Management

Puppet Enterprise features integration with another Puppet-Labs-curated product,
MCollective (http://puppetlabs.com/mcollective). MCollective is an orchestration product
that allows you to execute commands in parallel on many nodes, and by integrating
MCollective into Puppet Enterprise Console, Puppet Labs has created a new feature called
Puppet Live Management. This can be seen in the following screenshot:

Live Management Browse Resources Control Puppet Advanced Tasks
Node filter Wildcards allowed
Summary Summary of all resource types
P Advanced search group grnup resources
Filter = Reset filter host Not inspected
package

host resources

1 of 1 node selected (100.0%) : :
. service Not inspected

« Select none

user
learn.jocaldomain _________ package resources

Mot inspected

service resources
Mot inspected

user resources
Mot inspected

Inspect All

Puppet Live Management allows you to control Puppet on your nodes from the comfort of
your Puppet Enterprise Console application. For instance, if you’ve pushed a change on a
Puppet module and can’t wait for the usual 30 minutes for it to take effect, you can use
Puppet Enterprise Console to do a one-off Puppet run on a node or even a group of nodes.
Likewise, you can enable and disable the Puppet agent, plus find its status on all the
managed nodes.

Puppet Live Management is not just limited to managing Puppet agents, though; it can
leverage MCollective plugins to further enhance its capabilities. A fresh installation of
Puppet Enterprise Console has preinstalled plugins that allow you to carry out tasks such
as package installation and restarting services, and these can be further supplemented with
any available MCollective plugin.

Puppet Enterprise Console is the evolution of the open source Puppet Dashboard and is
increasingly differentiating itself with new and exciting features. It is, however, only
available if you use Puppet Enterprise and cannot be split off as a separate product. You

http://puppetlabs.com/mcollective

can download Puppet Enterprise Console along with Puppet Enterprise from
http://puppetlabs.com/puppet/puppet-enterprise.

http://puppetlabs.com/puppet/puppet-enterprise

Using The Foreman

The Foreman is an open source project that is, in its own words, a life cycle management
tool. Rather than being limited to acting as an ENC for Puppet, The Foreman can also
provide unattended installation facilities for kickstart, jumpstart, and preseed-based
systems. This essentially means that The Foreman is able to create our system from its
initial boot, through first configuration, and then manage its state for the rest of its life
cycle. This dashboard is shown in the following screenshot:

Dashboard

Overview naminvser Ji

Fitter ... * QSearch -

Generated at 09 Jan 12:59

Description Data

Hosts that had performed modifications without error 4

Hosts in Error State 0

Good Host Reports in the last 35 minutes 11/ 20 hosts (55%)
Hasts that had pending changes [¥]

Out Of Sync Hosts 4

Hosts With Mo Reports 1

Hosts With Alerts Disabled 0

Puppet Clients Activity Overview

Puppet Clients Activity Cverview Fun Distribution in the last 30 Minutes

Motifcation disabled:0 4
Fo report: L

Outofsymne:d '
[
=
[T]
Error:0 5 g
.
1l
a
Pending changes:0 g
=
(]
40 P \o 3 P 1 40 a2 40 40
e e e B o L= »L BT e e
5 5 o 5 5 : 5 % 5 &
W t - - 0 & o o o
o B e = £ 2 o
OK: 1L ;
1o Ohad Lewy Help | Wiki | Support

From the point of view of reporting, The Foreman offers much the same as Puppet
Dashboard, including the ability to view individual host details and reports. However, it
also has some of its own interesting tricks. The Foreman has put an awful lot of thought
behind reporting and has two standout features: trends and audits. These offer a unique
view of our Puppet-managed infrastructure and are exceptionally powerful reporting tools.

Reporting with The Foreman

Reporting forms a very large part of The Foreman feature set, and The Foreman is
possibly the most capable out of each of the dashboards in this regard. Not only is The
Foreman able to report the usual details, such as facts and reports from nodes, but it is also
able to create full audit reports for them (who made what change to which servers) that are
well presented and make heavy use of charts to ensure that the data is clear and easy to
read. The Foreman also has an interesting feature to look at historical data called trends.

Looking at trends in The Foreman

The Foreman is able to report on facts, much like other dashboards; however, it also
records changes in state into its own data store. This allows it to build up a view of how
facts are trending over time. A good example is to look at the RAM allocated to a certain
group of nodes. Using The Foreman trends feature, it is possible to look at how this has
grown over time and can be a fantastic aid when trying to work out capacity management
problems. Alternatively, any fact that is reported to The Foreman can be viewed as a trend,
and this is a fantastic feature that other dashboards currently lack.

The Foreman is a very impressive dashboard for Puppet and well worth considering,
especially if you need a quick and powerful reporting solution. It works best when it is
acting as the Puppet ENC, however, so if you install and use it simply as a reporting tool,
you may find that some features do not work as expected.

Discovering PuppetBoard

PuppetBoard is a relatively young product, and as such, may have a few rough edges;
however, despite its youth, it already offers an excellent interface for reporting.
PuppetBoard uses PuppetDB as its data source, and aside from Puppet Enterprise Console,
it is the only product to do so. PuppetBoard eschews any ambition of forming part of the
management layer, and instead, it focuses on providing a clear and easy-to-use reporting
feature. This dashboard is shown in the following screenshot:

PupPETBOARD MNooEs Facts REPORTS METRICS Query

54 28

with status failed with status changed unreported in the last 2 hours

316 67617 214

Population Resources managed Avg. resources/node

Nodes status detail (175)

Status “ Hostname

49

Since PuppetBoard is based around PuppetDB, it allows access to all data within it, such
as facts and Puppet agent reports and metrics. It allows you to explore this data intuitively
using an easy-to-use interface. PuppetBoard allows you to explore the data held in
PuppetDB from the point of view of nodes, facts, and reports, and it also allows you to
drill through each element to explore further details. For instance, by drilling into a node,
you are able to see its connected facts and reports, and by drilling into facts, you are able
to see the nodes connected to that particular fact along with an appropriate graph. The
FACTS view is particularly useful as it not only lists each node with the associated fact
value, but also presents it neatly in the form of a graph. This can be invaluable for quickly
gauging the rollout of operating systems, for instance. This is described in the following
screenshot:

PuppeTBOARD

operatingsystemrelease (318)

Neode « Value

L1

The other useful feature is the query panel. This allows you to run freeform PuppetDB
queries utilizing the PuppetDB query API. So, if a particular view of data is not present in
the predefined PuppetBoard reports, you can quickly make up ad hoc ones. We will
explore PuppetDB and its query API in Chapter 6, Retrieving Data with the PuppetDB
API.

PuppetBoard is a young project, but it is extremely promising even at this early stage. If
you use Hiera or some other way to classify nodes, then PuppetBoard is an excellent
addition to your Puppet infrastructure as it does not require that Puppet agents use it as an
ENC for any of its features. Combine this with easy-to-use reporting and a relatively
lightweight installation and you have the makings of an excellent dashboard. You can find
the code and installation instructions for PuppetBoard at
https://github.com/nedap/puppetboard.

https://github.com/nedap/puppetboard

Summary

You should now be aware of which dashboards are available for Puppet and what features
they can offer you. As you can see, they can add a fantastic insight into the running of
your Puppet infrastructure without needing to expend much effort. Using these dashboards
gives you quick and easy access to both your Puppet reports and gathered data from your
hosts via Facter, and they can be used to easily track changes over time. There are
problems, though. First of all, you need to use these panels as an ENC to leverage their
full power. Without this, you can use the majority of the reporting features, but they will
still be missing certain elements. They are also inflexible, with almost no opportunity to
customize the reports to suit your purposes, and in some cases, their development is

lagging.
In the next chapter, you will learn how to create your own report processors. Report

processors form a key part of Puppet reporting and will start you on the way to producing
your own reports and alerts.

Chapter 3. Introducing Report Processors

In the previous chapters, we looked at some of the basic steps needed to enable Puppet
reporting and learned how to view some of the data that the Puppet agents produce. In this
chapter, we will learn how to enable the Puppet master to process these reports and
metrics using report processors. We will cover the following topics:

¢ Basics of report processors

e Default report processors that ship with Puppet

e How to send Puppet alerts with Twitter

e Using PagerDuty to log and escalate issues

Report processors form the heart of Puppet reporting; so, it’s important that you get a good
grounding in what they are, what they can do, and how you can go about adding new ones.
Once you’ve got a good grasp of how they are installed and configured, you will be
amazed at some of the additional functionality that a good report processor can add to
Puppet, not just for producing reports, but also for raising alerts and more.

Understanding a report processor

It’s one thing to be able to gather data, but it’s quite another thing to then be able to do
anything interesting with it. Having data without any means of access is simply wasting
disk space and bandwidth. It’s been the bane of many systems that they seem to gather lots
of data and then make it tooth-grindingly frustrating to get any kind of sensible access to
it. Puppet has been designed from the outset to make it easy for you to gather and access
any data that it collects, both by using open source data formats and by providing a plugin
system in the form of report processors that allow you to process that data.

Report processors are pieces of Ruby code that are placed within Puppet’s 1ib directory
and are treated as plugins. When a report processor is enabled, the Puppet master will pass
the YAML data it receives from the Puppet agents into the report processor every time a
Puppet agent completes a transaction. It is then up to that particular plugin to do
something interesting with the data, and as it’s a straightforward piece of Ruby code, you
can let your imagination run riot! If you can do it in Ruby, you can do it with a report
processor; and if you can’t do it in Ruby, you can easily write a report processor to
forward the data to a data processing weapon of your choice.

Puppet does not limit you to one report plugin; you can have as many as you like installed
at any given time. You need to keep in mind that these plugins are being executed on your
Puppet master, and you need to ensure that the report processor(s) does not leave the
Puppet master process starved of resources. There are various techniques that can be used
to move data into other systems, and in this chapter and others, we will explore some of
the ways of doing that. One of the simplest ways to scale Puppet reporting is to add
another Puppet master for reporting. As we explored in Chapter 1, Setting Up Puppet for
Reporting, it’s easy to add a Puppet master dedicated to reporting, and this is highly
recommended as a scaling technique. There is no reason that this server needs to be the
actual reporting Puppet master either; you could potentially use a load balancer to enable
several reporting Puppet master servers in the frontend.

It is exceptionally useful to have the ability to install multiple report processors. You could
potentially have one script that deals with errors and sends alerts to the correct person,
another plugin that creates some lovely graphs of your Puppet activity, and finally (and I
have seen this), a report processor that alerts an Arduino board to play the James Bond
theme if certain terms are seen. It can’t be overstated how powerful the reporting
subsystem can potentially be; Puppet is probably one of the few systems that has almost
complete knowledge of your infrastructure, from how many CPU cores a node has to how
a piece of software is configured. Add in some suitable custom facts and there’s almost
nothing you cannot find out with Puppet, and once Puppet knows about it, a report
processor can act on it.

Report processors are installed in the $vardir/Puppet/reports directory within Puppet’s
install directory and only need to be present on the Puppet master. The Puppet agent
neither knows nor cares what happens to the data; it simply sends it to the Puppet master
for processing. That being said, it doesn’t matter if the report processors are present on the

Puppet agents as they will never be called on the agent side.

Tip

It’s worth noting that prior to Puppet Version 3.3.0, the report format was a YAML
document. From Version 3.3.0 onwards, it now uses a PSON-formatted document (a
variant of JSON). Generally speaking, this shouldn’t matter too much for our purposes,
but it is worth knowing in case you use firewalls that have blocks based on the content

type. You can use the report_serialization_format option within the puppet.conf
configuration if you need to set it back to the legacy YAML format.

There are two ways in which you can install a report processor. The most traditional and,
in some ways, straightforward method is to copy the code and place it on your Puppet
master. This is completely supported by Puppet, simple to carry out, and has the advantage
of being quick; however, it lacks a certain elegance and is not really in keeping with the
Puppet spirit of automation.

A more refined way to install report processors is to package them inside a Puppet
module. The module itself simply needs a /1ib/puppet/reports directory for your shiny
new plugin code to be placed. You’ll also need a blank init.pp file in the manifests
directory to ensure that Puppet has something to run. Once the module is installed on the
Puppet master, you just need to perform a Puppet client run. Thanks to the magic of
Puppet’s plugin sync mechanism (which is enabled by default since Puppet Version 3),
you will find that the new report processor is installed in the correct location with the
correct ownership and permissions.

This installation method may seem counterintuitive at first, but it makes complete sense to
do it this way. By following this convention, it becomes much easier to distribute your
code. It simplifies building new Puppet masters with Puppet and ensures that if you
release a new version, it will be automatically propagated and updated. Another major
benefit is that by producing a report processor as a module, it makes it easier for you to
submit it to Puppet Forge for other people to make use of your work.

Tip

Puppet Forge is a fantastic repository of Puppet modules written by both Puppet Labs
themselves and the community at large. As long as you follow the pattern of using a
module to distribute your code, you can add it to Puppet Forge. By adding your code to
Puppet Forge, you are not only sharing your expertise and code with other Puppet users,
but you are also allowing them to improve upon these codes. After reading this book, you

may have some fantastic ideas for a report processor, and it would be fantastic for you to
share it on Puppet Forge. You can view the existing modules as well as sign up to publish

your own at https://forge.puppetlabs.com.
We’ll come back to the organizational and developmental aspects of report processors in

Chapter 4, Creating Your Own Report Processor. For now, let’s take a look at some of the
existing report processors available in Puppet.

https://forge.puppetlabs.com

Utilizing the built-in report processors

Puppet ships with several report processors that have already been included, and they offer
some fairly fantastic capabilities right away without needing to write a single line of code.
The included plugins cover a fairly wide spectrum of requirements, from storing the raw
reports to sending alerts via e-mail based on certain criteria. The included report
processors are the following;:

store
report
rrdgraph
tagmail
HTTP
PuppetDB

Over the next few pages, we’re going to take a look at these built-in report processors and
what they are capable of. You are going to find that the included report processors offer a
rather impressive range of abilities and can immediately offer you not only better insight
into your infrastructure, but also some new and interesting alerting abilities.

Storing reports with the store report processor

The store report processor is the simplest report processor packaged with Puppet, and it
does exactly what it says on the tin; it takes incoming reports and stores them to a location
on a disk. It is also the default report processor to be used if you enable reporting on the
Puppet master.

Although it sounds simple, this processor is incredibly versatile, as the file it creates is a
complete dump of the report data from the Puppet agent. This ensures that every part of
the puppet::transaction: :report object is stored, including the log, metrics, and
resources. This is something that other report processors may not necessarily do as there is
a very large difference between processing log data and processing metrics. Possibly the
biggest asset of the store report processor is that it allows for the option of ingesting the
files into a separate analytical tool such as Crystal Reports or any other data analysis tool.
The store report processor lends itself nicely to producing data for batch processing, and it
should be the first place to look if you are dealing with the batch capture and transform
tools for analysis.

Configuring the store report processor is straightforward. To enable it, you simply need to
edit the puppet.conf file and add the following lines of code:

[master]
reports = store
reportstore = /var/log/Puppet

Once you’ve added these lines of code, you’ll need to restart the Puppet master process.
Although Puppet will automatically reload its configuration when a change is made, the
report processor is not automatically started; so, to ensure that any new reporting
configuration changes are picked up, it’s best to remain in the habit of restarting the
Puppet master when you make any changes.

The first line of the preceding code snippet tells the Puppet master to load the store report
processor, and the second line then tells the processor where to store the processed files.
As long as you’ve left the clients for reporting in their default setting, you should find that
your reports directory starts to fill up with reports.

Remember to keep an eye on your disk space usage on the partition the reports are being
stored on; although each report is quite small on its own, the reports soon start adding up.
If you’re using an application of your own devise to crunch the data, you may want to
consider either removing the data post processing or, at the very least, archiving it into
some form of compressed file. The Puppet master has no further interaction with the data,
so either removing the stored reports or compressing them will have no effect on the
running of your Puppet master.

Adding to logfiles with the log report processor

The log report processor is, in some ways, similar to the store report processor. Rather
than storing the report on a disk with the Puppet master, the log report processor sends it
to the local syslog server for logging. This can be enormous fun when coupled with a
remote syslog server and can make collecting reports from multiple Puppet masters a
complete breeze. This is especially useful if you are running a large or complex Puppet
installation as it allows you to have a single place to look for issues rather than having to
look at individual servers.

To enable the log report processor, you can add the following code snippet to the
puppet.conf file:

[master]

reports = log

That’s it; no configuration is required as all this processor does is hand the data to the
underlying syslog system; it’s up to you to configure your syslog to deal with the data in
an appropriate manner by adding syslog filters and log rotation rules. This is out of the
scope of this book, but it should be covered by your syslog tools’ documentation. At the
least, you will probably want some kind of rule in place to split the Puppet master data
into a separate log file, as a busy infrastructure will easily drown out any other messages
that go to the default syslog; such a rule will also make it easier to manage the data from a
housekeeping point of view. Much like the store report processor, the log report processor
can log a surprisingly large amount of data in a short time, so you’ll almost certainly want
a daily rotation and compression housekeeping task.

Graphing with the rrdgraph processor

RRD stands for Round Robin Database, and it is an industry standard graphing format
used by everything from routers to monitoring services and everything in between. The
RRD format is widely used and recognized by many different applications that will allow
you to present the data in interesting and attractive ways. An example graph is shown in
the following screenshot:

Time
2'3 F

15

10

5

Thu 12:00 Fri 08:00
O Config retrieval Bl Total

The rrdgraph plugin is arguably one of the most useful report processors that ships with
Puppet, and even without additional components, it will allow you to produce some
wonderful graphs of the Puppet activity with minimal effort. This can be especially useful
if you are either unable or unwilling to run one of the Puppet dashboards. Many of the
graphs produced by the dashboards can be replicated using the rrdgraph report processor,
and although the output is not as attractive or easy to use, it’s still very usable and
informative.

Once installed, the rrdgraph report processor will produce a set of graphs that outline the
important metrics from the data passed to it by the Puppet agents. The way it produces and
stores the graphs is fantastically useful and very easy to work with. Every time the
rrdgraph report processor is run, it will produce a directory for each host that reports to the
Puppet master. Inside the directory, you will find an .html file that, when opened, will
present the graphs. Voila! A kind of instant dashboard is created.

Along with producing graphs, the rrdgraph report processor will also give you the raw
RRD data used to create the graphs. This is great, as it means that you can plug it into any
other application that understands RRD data, and that’s a lot of applications! By using a
networked filesystem or some other method of syncing the data, you can make the RRD
data available to these applications pretty much in real time. This can be incredibly useful
if you already have an application that makes use of the RRD data to build up a business
or infrastructure dashboard as it means that Puppet can be plugged straight into it.

Although the rrdgraph plugin is distributed with Puppet, it relies on other software and
libraries that may not necessarily be preinstalled on your system. This is common with
more complex report processors, as they tend to rely on other components to do some of
the heavy lifting or communicate with other systems, either in the form of additional
packages offered by the OS, or more commonly, via the RubyGems packaging system.

In the case of the rrdgraph report processor, the first additional package you’ll want to
install are the RRD tools themselves; the exact installation method will vary from distro to
distro. To install it on Debian-based distributions, you can use the following command at
the command prompt:

apt-get install rrdtool

For RedHat-based distributions, you can use the following command:

yum install rrdtool

You will also need the Ruby RRD libraries. These should ship with your distribution and
can be installed in the usual manner. If you are using a Debian-based distribution, you can
install it using the following command:

$ apt-get install librrd-ruby

If you are using a RedHat-based distribution, you can install it using the following
command:

$ yum install rrdtool-ruby

Once the prerequisite components are installed, make the following addition to the
puppet.conf file:

[master]

reports = rrdgraph

rrddir = $vardir/rrd

rrdgraph = true

The extra configuration items are important. The rrddir object tells Puppet which
directory it should output the graphs to. If you want to quickly and easily see the data, then
make sure that this is a directory that a web server is able to read, and this way, you can
access it straightaway in your browser and admire the pretty graphs.

The other object in the preceding code is rrdgraph. This is a simple Boolean setting that
controls the production of the actual graphs. If you’re going to feed the data into another
system, you may just want Puppet to produce the RRD data without requiring the graphs,
and this setting will allow you to turn this behavior on or off. By default, this is set to
true.

The tagmail report processor

The tagmail report processor is a quick and easy way to get Puppet to send e-mails, and it
is clever enough to do this based on certain criteria you give it. The tagmail report
processor works via the magic of Puppet tags, a particularly underappreciated Puppet
feature.

Puppet tagging is a way to mark out elements within Puppet, allowing you to identify
individual resources or classes. What’s nice is that Puppet will automatically do this for
you to some extent. By default, Puppet will automatically tag every resource that it
successfully parses and will make available the following tags:

e The resource type
e The full name of the class in which the resource is declared
e Every segment of the namespace of the resource class

This is brilliant as it gives you a very rich set of tags to work with without lifting a finger.
You can also manually tag resources within your Puppet code if you wish to add clarity or
order, and this is something that I would encourage. So how does this fit into the tagmail
report processor?

Let’s say you have a very important set of nodes that utilize a certain class, and you want
to be informed every time that the Puppet agent applies or interacts with resources in that
class. Using the tagmail report processor, this becomes very easy; simply identify the
resources that you’re interested in and the tagmail report processor will inform you via an
e-mail when something has happened to them.

To tell the report processor what tags you are interested in, you need to build a tag map. A
tag map is a very simple configuration file that contains all of the Puppet tags that you
want to match and the e-mail address that should receive the notification. You can also use
exclusionary rules to start building up some simple logic around your Puppet tags. Take a
look at the following code example:

all: ops@fictionalco.com
web, webops@fictionalco.com, ops@fictionalco.com
tomcat, !jboss: javadevs@fictionalco.com

It’s as simple as that. The preceding example will do the following things:

e Send an e-mail every time the processors see any tag. This will send you an e-mail
every time a Puppet agent runs and is generally a bit verbose for everyday use.

e Send the WebOps and Ops teams an e-mail when a Puppet agent applies a resource
that uses the web Puppet tag.

¢ Send the Javadevs team an e-mail if the Puppet agent applies a resource that contains
a tomcat tag but not if it also contains a jboss tag.

The following Puppet code snippet can demonstrate how these tags are set:

class role::public_web {
nginx::vhost{'blog':
hostname => 'myblog.com',

tag => 'web',

}
tomcat: :connector {'appa':
port => 8080,
tag => 'tomcat',
}
jboss::connector {'appb':
port => 8081,
tag => 'jboss',
}

user: {'appserver':

username =>'appserver',

tag =>["'jboss', 'tomcat'],
}
In this case, the ops@fictionalco.com address would have received an e-mail simply
because any resource has been applied. The webops@fictionalco.com address would
have received an e-mail about the nginx vhost being applied as it is tagged as a web item.
Finally, the javadevs@fictionalco.com address would have received an e-mail regarding
the jboss connector resource. Note our user would not have received any e-mail about the
user resource as it contains the tomcat tag.

Using resource tags is useful and will allow you to quickly and easily put together some
basic e-mail alerts for the resources that you are interested in. However, one of the
quickest and easiest things you can do with the tagmail report processor is configure it to
warn you of the potential problems with Puppet. The tagmail report processor parses log-
level data within the Puppet report as additional tags. This enables it to react to events that
are warnings, errors, or indeed any other log levels available. Take a look at the following
tag map code:

err: ops@fictonalco.com

Once this line is added, every time the processor encounters a tag of err, it will send you
an e-mail; or, to put it another way, every time one of your nodes has problems applying a
Puppet manifest, you will receive an e-mail that will warn you about the issue.

It is a straightforward task to configure the tagmail plugin, and aside from the tagmap file,
it has no other external dependencies. To enable it, simply add the following code to your
puppet .conf file:

[master]

reports = tagmail

tagmap = $confdir/tagmap.conf

The preceding code is fairly self explanatory; the first line enables the tagmail report
processor and the second line tells it where it can find its tag map. Note the use of the
$conf variable in front of the tagmap.conf file; this will point Puppet to its own config
directory to find the tagmap file. It’s generally sensible to keep the report processor
configuration alongside your main line Puppet configuration, but if you want to put it

elsewhere, you can. As with the other plugins, you’ll need to restart the Puppet master
process for the plugin to take effect.

You can find the documentation for tags at

http://docs.puppetlabs.com/puppet/latest/reference/lang_tags.html and the documentation

for tagmail report processor configuration at

http://docs.puppetlabs.com/puppet/latest/reference/config_file_tagmail.html. It’s worth
reading through both, and they should give you some ideas on how you can add Puppet

tags to best utilize this feature.

http://docs.puppetlabs.com/puppet/latest/reference/lang_tags.html
http://docs.puppetlabs.com/puppet/latest/reference/config_file_tagmail.html

Sending reports with the HI'TP report processor

The HTTP report processor is very much an enabler of other tools. It takes the output of a
Puppet transaction report and sends it via HTTP or HTTPS to a URL as a raw YAML file.
The application that receives this data is then free to process it in a manner it chooses.
This is astoundingly useful as it gives you a quick and easy way to make Puppet
communicate with other systems.

Puppet Dashboard, Puppet Enterprise Console, and The Foreman already rely on the
HTTP report processor to allow Puppet agents to communicate new data. The HTTP
report processor is generally the first place you should look if you need to integrate Puppet
with another system. Whatever system you use must be able to process the data that the
Puppet agent will pass to it. This data is a YAML file dump of the

puppet: :transaction::report object, so it contains all the data generated by the Puppet
agent during a transaction, from reports to metrics.

A good example where you may want to export the data could be change management.
Using the HTTP report processor and a tailored application, it would be possible to give
the change managers a real-time view of what has changed, when it changed, and where it
changed. If they already have such a system, it may be possible to use the HTTP report
processor to interact with it.

It is a straightforward task to configure the HTTP report processor. Again, you simply edit
your puppet.conf file and add the following lines of code:

report = http

reporturl = http://Puppetendpoint.fictionalco.com

That’s it. Now, every time a Puppet agent performs any transaction, the HTTP report
processor will forward a YAML document that contains the report to the end point you’ve
configured in the reporturl configuration item.

Generally, one of the quickest and easiest ways to integrate Puppet with other systems is
to use the HTTP report processor, and as mentioned, it is already in use by Puppet
Dashboard, Puppet Enterprise Console, and The Foreman. Any systems that boast of
Puppet integration will almost certainly make use of this either in part or as a whole to
deliver the integration.

The PuppetDB report processor

We’re not going to spend too much time on the PuppetDB report processor as we’ll be
covering this in much more detail in Chapter 5, Exploring PuppetDB. Suffice to say, this
report processor forwards the reporting information to PuppetDB for storage. Like the
other report processors, all it requires is the following simple addition to the puppet.conf
file to activate it:

[master]
report = puppetdb

Without a working PuppetDB installation, this won’t be of much use, however. Don’t
worry though; we’ll cover how to set up and use PuppetDB in subsequent chapters.

Exploring the power of third-party plugins

As you can see, the built-in report processors are fantastically useful, but they can only do
so much; the tagmail report processor might not format the data in the way you like, or
you might have a cool idea for your data but don’t want to have to create a web service for
the HTTP report processor to push it to. Fortunately, it is very easy indeed to add
additional report processors to Puppet. The Puppet reporting system has been designed so
that you can plug any number of report processors into it simply and easily, and there are
already a small number of additional report processors available that you can install and
utilize. A good place to find additional report processors is Puppet Forge; you should find
quite a few if you simply search for report.

We’re going to take a look at some examples of third-party report processors and show
you how easy it is to install them.

Getting social with Twitter

Twitter has, for some considerable time, been the destination of choice for any up and
coming writer who enjoys the challenge of a word count; a really tiny word count. At 140
characters, it’s unlikely that the next great novel will be written using Twitter, but it has
blossomed to be one of the number one sites for people to quickly update their followers
of their comings and goings. It has turned out to be a wonderfully easy way to stay in
touch with friends, family, and casual acquaintances in a way that the more verbose
Google+ or Facebook haven’t quite managed.

Twitter is also a fantastic way to alert you of issues. It’s small, terse, and these days,
clients are available for pretty much any device you care to mention. In many ways,
Twitter is an excellent replacement for the old-fashioned pager system and has the
advantage over SMSes of not needing a cellular connection to receive alerts. Many times,
I’ve been stuck in buildings with no mobile phone signal but an excellent wireless
connection to the Internet. The SMSes stopped, but the tweets kept on coming, and there
have been occasions where I would have been blissfully unaware of alerts without this
additional means of notification.

Because of the public nature of Twitter, there can be some concern that you may be
leaking potentially sensitive data. However, as long as you take the precaution of making
your Puppet Twitter account private, you can be fairly sure that only people you have
allowed to follow will see it. I’'m going to go ahead and assume that you have set up a
Twitter account for Puppet; however, if you haven’t, you can go ahead and create an
account at http://www.twitter.com.

Installing the Twitter plugin is simple as it has been made available on the Puppet Forge
site as a Puppet module, which means that the plugin sync mechanism will take care of the
tedious work of installing the report processor plugin for us. Because it’s published on
Puppet Forge, it means we can also use the built-in Puppet module tool to install the
module itself. Simply use the following command on your Puppet master:

$ puppetmodule install jamtur0l/twitter

Once the module is installed, you’ll need to go ahead and run the Puppet agent on the
Puppet master; this will trigger the plugin sync to install the new plugin in the correct
location.

This is not all we need to do, though. Much like the rrdgraph plugin, the Twitter report
processor has some additional dependencies and setup that are required for it to work.
These are the OAuth and Twitter RubyGems dependencies, and they are required for
authentication and communication with the Twitter API. You can install these via
RubyGems using the following command:

$ sudo gem install oauth twitter

Once the dependencies are installed, you will then need to allow the API access from your
report processor to your Twitter user. This is relatively straightforward; go to

http://www.twitter.com

http://dev.twitter.com/apps/new and sign in with the user created for your Puppet Twitter
account. Once signed in, you’ll be asked to fill in a small form that will ask for some
details about your application; these should be fairly self-explanatory, but make sure that
the access rights are set to read/write or the report processor will be unable to tweet. Once
you’ve completed the questions, you’ll be taken to the page for your new application and
you’ll be given your consumer key and secret. Make note of these; you’ll need them in the
next step.

The author of the Twitter report processor has provided a small script to generate the
settings file. Navigate to the installed Twitter module and you will find a Ruby file called
poauth.rb. This is shown in the following screenshot:

S/ app),
secret’':

twitter.com//cauth/authorize?oauth_token=nglKI4fJLi2ju in your browser to authorize the

er the PIN you a

You’ll be prompted to enter the consumer key and the secret that you made note of earlier.
If you need to remind yourself, you can log in to your Twitter developer account and
retrieve it from there. Once you’ve entered your consumer key and secret, you will be
given a unique URL to visit, and the script will wait for you to enter a pin number. Visit
the provided URL to receive the pin, and once you’ve entered it, the script will exit and
write out a twitter.yaml config file. The Twitter plugin follows convention and expects
the configuration file in the Puppet config directory, so make sure that you copy the
twitter.yaml file there once you’re finished with the poauth.rb script.

You should now have a shiny new API-enabled Twitter user, so the next step is to
configure Puppet to use the Twitter plugin. This is a simple configuration change in the
puppet . conf file to enable reporting in the usual manner, as shown in the following code
snippet:

[master]
reports = twitter

Once you’ve amended the configuration file and restarted the Puppet master, any failed
Puppet client will trigger an alert to Twitter. Now there’s no escaping the alerts!

http://dev.twitter.com/apps/new

Staying on top of alerts with PagerDuty

PagerDuty is a fantastic tool to record, alert, and escalate issues, and is insanely popular
with DevOps folks due to its ease of use and surprising amount of power. Like most
modern software, as a service, it’s clean and simple to use and has an extremely
approachable and powerful API.

PagerDuty is a great place to flag Puppet errors as it gives you the ability to track how
often you are having Puppet-related issues. More importantly, it ensures that an alert is
created when issues are found. These issues can automatically be escalated to the
appropriate person, and if they’re out of hours, they can be routed to whoever is on call.
PagerDuty supports alerts via phone, SMS, e-mail, and push alerts, so it’s unlikely that
they’ll be able to sleep through a problem. If they do manage to sleep through the sound of
every communication device they own going nuts, then PagerDuty is able to alert the issue
to the next person on rotation, and it will continue to escalate the issue until someone
acknowledges it.

I’m going to assume that you already have a PagerDuty account; if you haven’t got one,
you can sign up for a free trial at http://www.pagerduty.com.

As with the Twitter report processor, the PagerDuty report processor has been published
on the Puppet Forge as a module, so we’re going to go ahead and use the Puppet module
tool to install it. This can be done using the following command:

$ puppetmodule install jamtur0il/pagerduty

Once the module is installed, run the Puppet agent to move the plugin into place. You’ll
also need to install the rest-client, JSON, and redphone RubyGems dependencies for the
processor to be able to communicate with PagerDuty. This can be done using the
following command:

$sudo gem install rest-client json redphone

Once the plugin is installed, we need to let it know what your PagerDuty API key is. You
set this by editing the pagerduty.yaml file within the PagerDuty module. Open it up using
your editor of choice, find the line that starts with pagerduty_api, and add your API key
to it (you can find this within your PagerDuty account details). You will also need to
create a generic service within PagerDuty to receive any alerts.

The final step is to enable the PagerDuty report processor on your Puppet master. As
usual, this is a simple change to the puppet.conf file on the Puppet master. This is shown
in the following code snippet:

[master]

reports = pagerduty

Restart the Puppet master and you will find that every time Puppet reports an error, an
issue will be raised within PagerDuty. This will now e-mail, SMS, and generally bug the
person who is responsible for resolving the error. I’ve found that nothing makes someone
fix a bug quicker than having a robot harass them constantly on the phone at unwelcome

http://www.pagerduty.com

hours in the morning.

Adding additional report processors to Puppet can make a huge difference to its
capabilities. You can find additional report processors listed at Puppet Forge; simply
search for the report processors and you should find some. At the time of writing this,
there aren’t many, but the ones that are available can add some seriously interesting
abilities to your Puppet infrastructure. With the available third-party report processors, it
becomes relatively simple to make Puppet talk to products such as New Relic, Cube,
OpsGenie, and even MCollective, cover capabilities from straightforward reporting to
alerting, and even include remedial actions.

Summary

You should now have a good idea of what a report processor is, what it can be used for,
and how to install new ones from Puppet Forge. In this chapter, we have examined some
of the basic elements of a report processor and discovered that a report processor is a piece
of Ruby code that is called every time a Puppet agent reports a transaction. We have found
that report processors are easy to install, especially if they are distributed as a Puppet
module, but some of the more complex report processors may need to have additional
components installed to support them. We also found that you can have multiple report
processors configured at once to allow you greater flexibility when processing your data.
Finally, we looked at some interesting third-party report processors and used them to
interact with products such as PagerDuty and Twitter.

In the next chapter, we are going to look at how to create our own report processors and
how we can use our own code to create custom alerts and reports.

Chapter 4. Creating Your Own Report
Processor

In previous chapters, we’ve taken a look at some of the report processors that are shipped
with Puppet and also some of the fantastic third-party plugins that have been developed to
add new functionality. Now, it’s time to show you how to go about making your own
report plugins.

In this chapter, we’re going to take a look at the following topics:

¢ Creating our first report processor

e (Creating our own custom e-mail alerts

e [ogging events into MySQL

e Raising issues with Atlassian JIRA

As with any Puppet plugin, our language of choice will be Ruby. You should be familiar
with Ruby if you want to get the most out of this chapter; however, don’t worry if you’re
not a Ruby guru; the examples use extremely basic code. If you need to brush up on your
Ruby skills, then I highly recommend taking a look at Learn Ruby the Hard Way, Zed A.
Shaw. Don’t be put off by the title; it’s both highly approachable and very effective in
teaching you the basics of Ruby. It’s available for free online or for purchase in e-book

form at http://ruby.learncodethehardway.org.

http://ruby.learncodethehardway.org

The anatomy of a report processor

At its most basic, a Puppet report processor is a piece of Ruby code that is triggered every
time a Puppet agent passes a report to the Puppet master. This piece of code is passed as a
Ruby object that contains both the client report and metrics. Although the data is sent in a
wire format, such as YAML or PSON, by the time a report processor is triggered, this data
is turned into an object by Puppet. This code can simply provide reports, but we’re not
limited to that.

With a little imagination, we can use Puppet report processors for everything from alerts
through to the orchestration of events. For instance, using a report processor and a suitable
SMS provider would make it easy for Puppet to send you an SMS alert every time a run
fails, or alternatively, using a report processor, you could analyze the data to reveal trends
in your changes and update a change management console. The best way to think of a
report processor is that it is a means to trigger actions on the event of a change, rather than
strictly a reporting tool.

Puppet reports are written in plain old Ruby, and so you have access to the multitude of
libraries available via the RubyGems repositories. This can make developing your plugins
relatively simple, as half the time you will find that the heavy lifting has been done for
you by some enterprising fellow who has already solved your problem and published his
code in a gem. Good examples of this can be found if you need to interoperate with
another product such as MySQL, Oracle, Salesforce, and so on. A brief search on the
Internet will bring up three or four examples of libraries that will offer this functionality
within a few lines of code. Not having to produce the plumbing of a solution will both
save time and generally produce fewer bugs.

Creating a basic report processor

Let’s take a look at an incredibly simple report processor example. In the event that a
Puppet agent fails to run, the following code will take the incoming data and create a little
text file with a short message detailing which host had the problem:

include puppet

Puppet: :Reports::register_report(:myfirstreport) do
desc "My very first report!"

def process
if self.status == 'failed'
msg = "failed puppet run for #{self.host} #{self.status}
File.open('./tmp/puppetpanic.txt', 'w') { | f | f.write(msg)}
end
end
end

Although this code is basic, it contains all of the components required for a report
processor. The first line includes the only mandatory library required: the Puppet library.
This gives us access to several important methods that allow us to register and describe
our report processor, and finally, a method to allow us to process our data.

Tip
Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

Registering your report processor

The first method that every report processor must call is the

Puppet: :Reports::register_report method. This method can only take one argument,
which is the name of the report processor. This name should be passed as a symbol and an
alphanumeric title that starts with a letter (: report3 would be fine, but : 3reports would
not be). Try to avoid using any other characters—although you can potentially use
underscores, the documentation is rather discouragingly vague on how valid this is and
could well cause issues.

Describing your report processor

After we’ve called the Puppet::Reports::register_report method, we then need to call
the desc method. The desc method is used to provide some brief documentation for what
the report processor does and allows the use of Markdown formatting in the string.

Processing your report

The last method that every report processor must include is the process method. The

http://www.packtpub.com
http://www.packtpub.com/support

process method is where we actually take our Puppet data and process it, and to make
working with the report data easier, you have access to the .self object within the
process method. The .self object is a Puppet: : Transaction: :Report object and gives
you access to the Puppet report data. For example, to extract the hostname of the reporting
host, we can use the self.host object.

Note

You can find the full details of what is contained in the Puppet: :Transaction: :Report
object by visiting http://docs.puppetlabs.com/puppet/latest/reference/format_report.html.

Let’s go through our small example in detail and look at what it’s doing. First of all, we
include the Puppet library to ensure that we have access to the required methods. We then
register our report by calling the
Puppet::Reports::.register_report(:myfirstreport) method and pass it the name of
myfirstreport. Next, we add our desc method to tell users what this report is for. For the
moment, we’ll keep it simple and simply state its function. Finally, we have the process
method, which is where we are going to place our code to process the report. For this
example, we’re going to keep it simple and simply check if the Puppet agent reported a
successful run or not, and we do this by checking the Puppet status. This is described in
the following code snippet:

if self.status == 'failed'
msg = "failed puppet run for #{self.host}#{self.status}"

The transaction can produce one of three states: failed, changed, or unchanged. This is
straightforward; a failed client run is any run that contains a resource that has a status of
failed, a changed state is triggered when the client run contains a resource that has been
given a status of changed, and the unchanged state occurs when a resource contains a
value of out_of_sync; this generally happens if you run the Puppet client in noop
(simulation) mode.

Finally, we actually do something with the data. In the case of this very simple
application, we’re going to place the warning into a plain text file in the /tmp directory.
This is described in the following code snippet:

msg = "failed puppet run for #{self.host}"
File.open('/tmp/puppetpanic.txt', 'w') { | f | f.write(msg)}

As you can see, we’re using basic string interpolation to take some of our report data and
place it into the message. This is then written into a simple plain text file in the /tmp
directory.

http://docs.puppetlabs.com/puppet/latest/reference/format_report.html

Values of the self.status object

The self.status object is something that you are going to use again and again when
constructing your own report processors. The self.status object value allows you to
filter Puppet reports, based on the status that the Puppet agent reported after attempting to
apply the catalog. The following values are available:

skipped: A skipped resource essentially means that Puppet evaluated the resource
and decided for one reason or another that it was not going to apply the requested
change. The most common reason for skipped resources is that there is a failed
resource somewhere else in the transaction that this change depends on. Other
reasons could include that a resource belongs to one tag while you’re applying a
different tag, or it may be an entirely virtual resource.

failed: A resource is marked as failed when the Puppet client is unable to apply a
change to that resource. This can simply mean that it could not change a file,
instantiate a directory, or install a package.

failed_to_restart: This particular status only applies to service resource objects
and is flagged anytime that Puppet tries to restart a service and fails.

restarted: This is another service-oriented status and is the inverse to the
failed_to_restart status. Essentially, a resource is flagged as this when it is a
service that has been successfully restarted.

changed: This is one of the most common status types that you will see in Puppet,

and it tells you that this particular resource has been changed during the course of the

Puppet catalog’s application.
out_of_sync: This should only occur when the Puppet run is triggered in simulation
mode (noop). This is a resource that would be changed if the Puppet catalog was
applied.

That’s all that is required for a working Puppet report processor. This tiny chunk of code
will happily parse incoming reports, evaluate, and act on them. Of course, this is a fairly
useless report in its current form, but it gives us a good idea of what we can do. Let’s take
a look at something a little more solid, shall we?

Alerting with e-mail and Puppet

The tagmail report processor is a useful plugin, but it has its limitations. As pointed out in
its name, it can only deal with tags and nothing else. Sometimes, that’s not quite what you
want, so it’s useful to see how simple it is to produce an e-mail alert that you can tailor to
your requirements. In our case, we’re going to create a simple e-mail alert that will be sent
every time a Puppet agent makes a change.

This may seem a little odd; after all, what’s Puppet for if not to enact changes? There are
some environments, however, where changes are a highly sensitive matter. Change can,
and should, be easy in certain environments, and this is particularly true of many web
applications. The reverse can also be true in cases where you are either dealing with a
heavily audited environment, such as a financial trading system, or a system that deals
with highly sensitive and business-critical systems, such as an API that feeds phone
handsets or set top boxes. In these cases, changes need to be very strictly controlled, and
any change that is made by accident needs to be both alerted and dealt with swiftly.

The first task we need to take care of is the creation of our project. We’re going to follow
the best practice set out in the previous chapter and create this in the form of a Puppet
module. Rather than create the directory layouts by hand, I’m going to use the Puppet
module creation utility included with Puppet. This can be done using the following
command:

puppet module generate <username>-<modulename>

The username is your Puppet Forge username. If you haven’t signed up for one, don’t
worry; you can add any text you like here for the moment. Once we have created our
module, the next thing to do is to create the file that will contain our code. Since it is a
report plugin, it should be created in the following location:

{module}
L— 1ib
L— puppet
L—reports
L— {reportname}

You’ll need to create some of the directory structure by hand as the Puppet module’s
generate command doesn’t include the 1ib directory or subdirectories by default.

Once you’ve created your file structure, you’re ready to code. Go ahead and create a new
file called changealert.rb in the 1ib directory and add the following first part of the code
to it:

require 'puppet'

begin

require 'mail’

rescueLoadError

Puppet.info 'This report requires the mail gem to run'
end

Note the error handling around the mail gem. This is good practice if you’re planning on

distributing your report as it ensures that if there is a missing gem, it is handled gracefully
and gives the user some sort of clue as to why it may not have run correctly. Nothing is
more irritating than having to wade through someone else’s code to find the obscure
library they forgot to mention in the readme. txt file. Good coding habits like this one can
go a long way if you start releasing your code on GitHub or Puppet Forge, and it will help
people both use your module and contribute towards it.

As in the previous example, we need to go ahead and declare our new report. We’re also
going to declare our process function and load our configuration.

Tip
If your report processor requires any kind of configuration, then make sure that this is
loaded from an external configuration file; and, as an absolute best practice, store it in the

Puppet configuration directory. This means that your code is easily redistributable, and
more importantly, it is obviously configurable by anyone who installs it.

Consider the following code:

Puppet: :Reports.register_report(:changealert) do

configfile = File.join([File.dirname(Puppet.settings[:config]),
'changealert.yaml'])

raise(Puppet::ParseError, "auditlert configfile not readable") unless
File.exist?(configfile)

config = YAML.load_file(configfile)
As you can see, we’re loading the configuration for this report processor from a .yaml file,
but before we can load it, there are a few tasks we need to carry out first. To start with, we
need to find out where the configuration file is held. This is not as straightforward as you
may think; for starters, Puppet Open Source and Puppet Enterprise hold configuration files
in different locations (/etc/puppet and /etc/puppetmaster, respectively). To add to this,
you can relocate the configuration directory into an arbitrary location of your choice, and
you quickly realize that it would be a seriously bad idea to hardcode the path. Instead, we
can ask Puppet where the configuration directory is. To do this, we call the class method
settings from the Puppet class and feed it into the configfile variable. Using these kinds
of techniques guarantees that if you publish your work, it will be usable for the widest
array of users.

The next thing that we need to do is actually check if the configuration file is present, and
if not, raise an error. Using the Puppet: :ParseError object, we are able to raise an error
to the Parser. This means that if there is an issue, it will be immediately visible in the
Puppet log, and especially visible if we are running the Puppet agent in interactive mode.
Once we have checked that the file is present, we then use the YAML class to load the file
and place its contents into a new object called config. Once loaded into this object, the
file can then be accessed as a Ruby hash. For instance, to find out the SMTP address of the
mail server, we could use the config['smtp_address'] command to return a string that
contains the configuration item.

That’s the basic framework taken care of. We’re going to add some logic at this point to
ensure that we only receive reports for Puppet agent runs that result in the changed state

rather than in the unchanged and failed states. This is described in the following code
snippet:

If self.status == 'changed'
subject = "Host #{self.host} Change alert"
output = []

Once we’ve ascertained that this particular run is of interest to us, we set up a string
variable that will contain our e-mail header and create an empty array to hold subsequent
data.

This particular plugin is designed to simply let someone know if something has changed,
so we don’t really need to send the user the entire output of the Puppet report. If you have
a critical system that’s just received an update that you weren’t expecting, you are
probably not interested in how long it took to apply, but rather in what change has been
applied and when it was applied. This kind of alert is much better short and pithy. To
accomplish this, we’re going to list the following details in the e-mail:

The resources that have changed

The type of resource

The type of property that has changed
The value it was changed to

The time when it was changed

This gives our user plenty of information to go on, without overloading them with lots of
irrelevant nonsense. The following code describes our e-mail alert:

output << "The Following resources have changed:\n"
begin
self.resource_statuses.each do |theresource,resource_status]|
if resource_status.change_count > 0
output << "Resource: #{resource_status.title}"
output << "Type: #{resource_status.resource_type}"
begin resource_status.events.each do |event|
output << "Property: #{event.property}"
output << "Value: #{event.desired_value}"
output << "Status: #{event.status}"
output << "Time: #{event.time}"
end
end
end
end
end

The first thing that this piece of code does is output a little header letting us know what
this report is about—it’s always nice when it’s 2 A.M. and you’re wading through e-mails
because you’ve been woken up by the support phone. I’'m using the Ruby string
concatenation syntax to build up our report in a variable called output; notice the \n at the
end of that line? It’s to ensure that we have a clean line break between the header and the
rest of the report.

Next, we read the array that contains the reported resources, the resource_status

property, and use a Ruby block to iterate through each resource and check its
change_count property. If it’s greater than zero, then we know that some form of change
has taken place and we have to examine it further.

Tip

Over time, several items in the Puppet: :Resource: :Status object are marked as
deprecated. The Puppet report format is now in its 4th version as of the time of writing
and is evolving as new features are added and old ones removed. It’s worth keeping an eye

on the release notes when a new version is released to ensure that your report plugins
continue to work as expected.

Once we find a changed resource, we then take the values from the
resource_status.title and resource_status.resource_type properties and
concatenate them into our output variable. This data will allow the report recipient to
figure out what resource has changed and what type of resource it is.

Now that we’ve found a resource of interest, we start a new loop and iterate inside the
event array to find the details of the change itself. The Puppet: :Transaction: :Event
object holds a wealth of information, and from it, you can derive information such as
when a change took place, the previous value of the resource, the desired value, and so on.
When you find yourself asking, “What’s happened on this node?”, then it’s the

Puppet: :Transaction::Event object that holds the answer to this question.

Note

You can find a complete list of the fields available in the Puppet: :Transaction: :Event
object at

http://docs.puppetlabs.com/puppet/3/reference/format_report.html#puppettransactionevent:
1.

For the moment, we’re going to show the user the Property, Value, Status, and Time
properties; this should be plenty to tip off our sleepy on-call person as to what has
changed, when it has changed, and to what it has changed. This should be plenty of
information to start figuring out what caused this particular resource to change.

At this point, we have gathered our data, and it is time to send it on its way. To send the
data, this particular report processor is going to use an SMTP mail server. Pretty much
every company has access to an SMTP server, so it’s a fairly safe route to take when it
comes to sending data. We’ve already started to construct the e-mail that will be sent to
our user; the code that we’ve already explored has constructed the body of the message.
Now, we simply need to add in some further details and then use the mail library to send
it. The values that we are going to use have already been included in our configuration
file, and we have already decanted these values into a hash that is ready to be accessed.
This is described in the following code snippet:

body = output.join("\n")

Mail.defaults do
delivery_method :smtp, {

http://docs.puppetlabs.com/puppet/3/reference/format_report.html#puppettransactionevent-1

raddress => config['smtp_server'],
:port => config['port'],

:domain => config['smtp_domain'],
ruser_name => config['smtp_username'],
:password => config['smtp_password'],
rauthentication => 'login',
:enable_starttls_auto => false

}

end

Mail.deliver do
toto_address
fromfrom_address
subject subject
body body

end

end
end
end

In the preceding code, we instantiate a Mail object and use its defaults method to supply
it a list of settings to send to our mail. In this case, I've elected to use SMTP, so we need
to provide a username and password to authenticate our plugin. We also need to give it the
address of the SMTP server, which TCP port it needs to send the data to, and finally,
which login mechanism we’re using. Although I’'m using an SMTP server, you could just
as easily use Exim, Sendmail, or a local delivery: the Mail gem supports all of them. Once
configured, sending the e-mail is simple; we just need to call the Mail.deliver function
and let it know where to send it to, who it’s from, and then give it the header and body
we’ve created.

That’s all of the code we need to make this work; however, there is still one last piece left,
and that’s the configuration file. The configuration file is a simple YAML document
named changealert.yaml that needs to be placed inside the root of the Puppet master
configuration file. Inside it are all of the details required to configure our plugin, and it
should look something like the following:

from_address: 'alerts@fictionalco.com'
to_address: 'devops@fictionalco.com'
smtp_server: 'mailserver@fictionalco.com'
smtp_domain: 'fictionalco.com'
smtp_username: 'alertuser'

smtp_password: 'b3tyQuc@ntgu355m3’

Now that we have the configuration file, we’re ready to go; when we’re ready, we’ll install
the change alert module, add it to the reports configuration in the Puppet master, and
trigger a Puppet agent. If all has gone well, we should receive a message via e-mail that
looks a little like the following:

The Following resources have changed:

Resource: git
Type: Package

Property: ensure

Value: present

Status: success

Time: 2014-01-15 07:52:03 +0000

Voila! Our very own custom e-mail alert with very little code.

The techniques used here are the core part of any report processor, and as you can see, the
bulk of the code actually deals with sending the e-mail rather than extracting the data.
Puppet has made accessing the data very easy indeed, leaving you free to concentrate on
what you want to do with it. In almost every report processor, you will find that there is
more code that deals with processing the data than extracting it.

If you find that your report plugin is turning into an especially complex piece of code, then
you may want to consider moving it to an external report handler and either feed the data
via the HTTP plugin or read the reports produced by the store plugin. A report processor is
fired each and every time a report configured client runs Puppet, and if your plugin is
taking a fair chunk of time and resources to process the data, then you are soon going to
feel the pain in the performance of your Puppet infrastructure.

Managing your report processor configuration with
Puppet

The change alert report processor is pretty cool, and by packaging it inside a Puppet
module, we’ve made it easy to be distributed; however, we have left the user to create a
configuration file to make it work. This is not necessarily a bad thing, and as long as we
have a well-documented example of the configuration in the Readme. txt file, then most
users should be more or less OK. It is not really in keeping with Puppet though; we can
make end users’ lives a little easier by giving them the option to have Puppet manage the
report processor configuration for them. We already have a Puppet module with an
init.pp file, and we can easily leverage this and a Puppet template to create the
configuration file. From the perspective of the Puppet code, this is very simple and
essentially comprises three components: a parameterized Puppet class, file resource, and
file template. Let’s start with the Puppet class and file resource. They are described in the
following code snippet:

class changealert (
$from_address,
$to_address,
$smtp_server,
$smtp_domain,
$smtp_username,
$smtp_password

) {

file {"${settings::confdir}/changealert.yaml":
owner => 'puppet',
group => 'puppet’,
mode => '0644"',

content => template('changealert/changealert.erb'),

b
}

If you are reasonably familiar with Puppet, then this code should be straightforward. In the
first line, we declare a new Puppet class named changealert; we then add the six
parameters that are required for our template. Note that ’m not giving any default values
to the parameters, and this is quite deliberate; none of the parameters are optional, so we
want this manifest to fail early and fail fast.

After we have set up our class, we then declare a file resource for the changealert.yaml
file. I’'m using some built-in Puppet variables to find out where the configuration directory
is and ensuring that the file is created there. I’'m also ensuring that the Puppet user and
group own the file and setting sensible file permissions. Finally, I’'m declaring that the
content is derived from a template, which I'm sourcing from the module itself. The
template is a simple one and takes our parameters and places them into the file. This is
described in the following code snippet:

from_address: <%= @from_address %>
to_address: <%= @to_address %>
smtp_server: <%= @smtp_server %>

smtp_domain: <%= @smtp_domain %>
smtp_username: <%= @smtp_username %>
smtp_password: <%= @smtp_password %>

Our end user now has the choice to configure the change alert report by simply declaring
the class on any Puppet master they are managing using Puppet. An example of doing this
using a manifest would look something like the following:

node 'puppet.example.com' {
class {'changealert':
from_address => 'michael@stunthamster.com',

to_address => 'puppet@exampleco.com,
smtp_server => 'smtp.exampleco.com',
smtp_domain => 'exampleco.com',

smtp_username => 'smtpuser@exampleco.com,
smtp_password => 'weakpassword'
}
}

If we did it using Hiera, it would look something like the following:

classes: changealert

changealert::from_address: puppet@exampleco.com
changealert::to_address: puppet@exampleco.com
changealert::smtp_server: smtp.exampleco.com
changealert: :smtp_domain: exampleco.com
changealert::smtp_username: smtpuser@exampleco.com
changealert::smtp_password: weakpassword

Of course, we still leave the user with the option of configuring the report processor in the
way they choose; simply installing the module will ensure that the report processor is
installed, and if the user does not declare the Puppet class to manage the configuration file,
then Puppet will not attempt to manage it.

Monitoring changes and alerting with
Puppet

Our change alert report processor is pretty useful and will inform us when something
we’ve managed has been changed. That’s excellent, but there are times when we want to
monitor resources that are not necessarily something we also want to manage. A good
example is the passwd file in the /etc directory. We will never manage this file directly
with Puppet; we have the user and group resource types to do that, but we may still want
to know when something has changed it. Luckily, we can do this using the somewhat
overlooked audit option within a resource.

Auditing was introduced in Puppet 2.6.0 and allows you to specify a nonmanaged resource
within a Puppet manifest. The audit metaparameter tells Puppet that although you do not
want to manage the resource, you’d still like it to make note of its values and log when it
changes. Take a look at the following example Puppet code:

file { '/etc/passwd':
audit => [owner, group, mode],

}

From now on, whenever the /etc/passwd file’s owner, group, or permissions are changed,
Puppet will make note of the previous value, the time at which it was changed, and the
value it was changed to. You don’t need to be selective either; you can ask Puppet to audit
everything it possibly can about a resource. This is described in the following code
snippet:

file { '/etc/hosts':
audit => all,

}
Now, if anything changes on that file, from the owner to the content and anything in
between, the Puppet agent will note it down in its report.

This is a fantastically powerful tool when combined with Puppet reporting and alerting.
You can use it for anything from a basic Intrusion Detection System (IDS) to a software
auditing tool for licensing and anything in between. If you’re running your Puppet clients
on a regular basis, such as in daemonized mode, then you can be sure of receiving the alert
in good time (30 minutes if you’re using the default interval). Of course, for this we need a
report processor; luckily, it won’t take much to wrangle the change alert plugin into a
shiny new audit alert plugin.

An audited resource is a little different from a normal one from the reporting perspective.
When a Puppet run encounters a change in an audited resource, it is noted down as an
event in the Puppet: :Transaction: :Event object, the same as a normal event, but with
the value of the audited attribute set to true. This is great news as it means that we have
very little work to do to transform our change alert processor into an audit alert processor.

As you can see, the bulk of the code remains the same, mostly made up of the tedious

business of constructing and sending the e-mail object. Instead of processing the data as
we did in the previous example, this time we are going to do it as follows:

begin
self.resource_statuses.each do |theresource, resource_status|
begin
resource_status.events.each do |event|
if event.audited then
output << resource_status.title
output << "Audited #{event.audited}"
output << "Property: #{event.property}"
self.logs.each do |log]
if log.source.include? resource_status.title
output << log.message
end
end
output << "Status: #{event.status}"
output << "Time: #{event.time}"
send_report = true
end
end
end
end
end

This is a fairly simple piece of code and should be recognizable from our previous plugin.
It’s undertaking the same basic journey; enable the resources and then traverse the events
array. The difference this time is that we have a very simple piece of logic that looks out
for the audited flag within the resources, and if it’s set to true, iterates through the
matching events to find the details of the change. Once we have gathered the data, we then
set a flag to ensure that an e-mail is sent.

Again, this is a simple report but is a really neat way to use the audit flag. Using this, you
can keep an eye on files, packages, users, and other resources without needing to directly
manage them. You are not limited to just the standard resources; any custom resource
you’ve developed should also be able to make use of this, and the type of alert can be
anything. If you don’t like e-mail, then it would be relatively easy to have this processor
send you alerts via SMS, Twitter, or any other method you can trigger via Ruby.

Logging with MySQL

If there is one technology that you’re almost guaranteed to find in most companies, it is
SQL. One of the enormous advantages of Puppet is that it can make change activities
hugely transparent, and this is an enormously rich piece of data that can complement
existing reports exceptionally well. For instance, your organization may already have
reports noting how many transactions have taken place over a certain time period, and
when looking at any sudden gains or losses to the average, it’s fantastic to be able to add
in change activity. Suddenly, you will see that the drop in user transactions coincides with
the web server that is pushing out a new version of nginx, or the jump in sales happened
just after the new version of the sales application was pushed by Puppet.

This is valuable data, but to get the most out of it, it needs to be available to the people
who construct these reports. For many organizations, this means that the data will be held
in a SQL database; not only is it common in terms of skill base and technology, it’s almost
guaranteed that any reporting tool worth its salt will be able to work with it.

Fortunately, it’s simple to get Puppet to store its reports in SQL, and most of what we have
learned about creating our simple alerts is just as applicable to exporting data. As with
most report processors, we’re going to use a library to do the heavy lifting, which will
leave us free to concentrate on the interesting bits.

The first thing that we should do is go ahead and install the required library to allow Ruby
to work with MySQL. This gem makes use of native extensions and so will need to have
some development libraries installed. To install the packages, perform the following steps:

1. Install the MySQL Ruby library.
On Debian-based distributions, it’s installed using the following command:
sudo apt-get install libmysql-ruby libmysqglclient-dev
On RedHat-based distributions, it’s installed using the following command:
sudo yum install mysql-devel

2. Install the sequel library using the following command:

sudo gem install sequel

Note
Why not MySQL2?

The sequel gem is a little more powerful than the common MySQL2 gem and is a
lightweight Object-relational Mapping (ORM) tool; this offers the ability to abstract
ourselves away from using SQL and instead allows us to concentrate on code. When used
as an ORM, it also ensures that any strings are treated as SQL strings and, therefore,
makes us much less susceptible to SQL injection attacks.

Now that we’ve installed our prerequisites for the code, we need somewhere to put the

data, which means we need to get our hands dirty with MySQL. I’m going to go ahead and
assume that you have MySQL installed; if not, it’s relatively easy using the package
manager of your distribution. Once it’s installed, you can run the log into MySQL and run
the following SQL query:

CREATE DATABASE puppet_stats;

This straightforward query will create an empty database named puppet_stats, but before
we set up our tables, let’s also go ahead and create a user. From a security perspective, it’s
a bad idea to use the root user, so let’s go ahead and create a user specifically for this
report processor inside MySQL. This can be done using the following SQL query:

CREATE USER 'puppetreporting'@'localhost' IDENTIFIED BY 'changeme';
GRANT ALL ON puppet_stats.* TO 'puppetreporting'@'localhost';

We’ve now got somewhere to store the data and got a database as well, so the next thing
we need to do is create the first table. This can be done as follows:

USE puppet_stats;

CREATE TABLE reports (
transaction_uuid VARCHAR(50),
Host TEXT,

Date DATE,

Time TIME,

Kind TEXT,

Report_format INTEGER,
Puppet_version TEXT,
Environment TEXT,

Status TEXT,

PRIMARY KEY (transaction_uuid));

This will create a table to store our first piece of data: the contents of the
puppet: :transaction: :report object. We will add the following fields into our table:

UUID

The date of the Puppet run

The time of the Puppet run

The kind of run (inspect run, agent run, and so on)
The version of the report format

The Puppet agent version

The environment it was run in

The status of the Puppet run

Finally, we’re going to set the primary key of the table to the Universally Unique
Identifier (UUID). The UUID is a completely unique identifier that Puppet creates with
each and every run, so it’s perfect to key the table with. In fact, when we need to split the
Puppet data into relational datasets, we can use the UUID to query the data.

Tip

If you’re a little rusty on your database knowledge, then you can brush up by visiting

http://dev.mysql.com/doc/. This will take you through the basics that you’ll need to follow
this code.

Now that we have our table set up, we can go ahead and create a report to fill it. The first
task is to include the libraries that we require for this report processor to function. This is
described in the following code snippet:

require 'puppet'
require 'logger'
require 'yaml'
require 'date'

begin

require 'sequel'
rescue LoadError

Puppet.info 'This report requires the sequel gem to run'
end

We are already familiar with the puppet library, but we have some new libraries this time
round. First of all, we have included the logger library, a library that is shipped with
Ruby. The logger library allows you to emit simple log messages from your application to
the file of your choosing. Like most log utilities, it will allow us to set different reporting
levels, from FATAL (which means, “Good Lord, my program has just crashed!”) through to
DEBUG (“Good grief! My program has just done something!”). Using these log levels, you
are able to make your report processor much more verbose if it encounters an error.

Notice how the Puppet date, yaml, and logger require statements are not wrapped in our
usual logic to check for their presence? That’s because these are default libraries shipped
with Ruby so you can be pretty certain that the end user is going to have them, whereas
the sequel library may have been missed out.

That takes care of the setup of the report processor. Next up, we have our process function.
Consider the following code snippet:

@log = Logger.new('/var/log/puppet/puppetreport.log')

configfile = File.join([File.dirname(Puppet.settings[:config]),
'mysglreport.yaml'])

raise(Puppet::ParseError, "mysqlreport configfile not readable")
unless File.exist?(configfile)

config = YAML.load_file(configfile)

db = Sequel.connect(:adapter => 'mysql',
:user => config['mysqlusername'],
:host => config['mysqglserver'],
:database => 'puppet_stats',
:password=>config['mysqlpassword'])
reports = db.from(:reports)

puppet_time_stamp = DateTime.parse("#{self.time}")

As you can see, we have the usual class declaration with the report name and process
function. The next line specifies the location of our logfile; if you’re on a Linux system,

http://dev.mysql.com/doc/

then the /var/log/puppet directory is always a good bet. Make sure that whatever
location you choose has both read and write access from your Puppet user, as that is the
user executing the code.

Next, we define our configuration file location and load it, again checking that it is present
and loading it into our config variable. Our configuration file contains the server name of
our MySQL server, the username we’re going to use, and finally, the password. It should
look like the following:

mysqglserver: mysql@fictionalco.com
mysqglusername: puppetreporting
mysqlpassword: Dontuseweakpasswords

Again, we can use the same technique that we used in the change alert and audit alert
examples to define this configuration for us using Puppet. In this case, the init.pp file
would look like the following:

class mysqglreport (
$mysqgl_server,
$mysql_username,
$mysqgl_password

) {
file {"${settings::confdir}/mysqglreport.yaml":
owner => 'puppet',
group => 'puppet’,
mode => '0644',

content => template('mysqlreport/mysqglreport.erb'),

}
}

Now that we have our configuration items, we can set up our connection to the MySQL
database using the sequel library. As you can see, we’re using string interpolation to
insert the contents of our configuration file into the connection string. The connection
string is made up of the server name, username, password, and the database that we wish
to connect to. We’ve been supplied the first three parts by the user, and we’ve hardcoded
the database name so that it matches our preceding SQL scripts. We pass this information
into a new variable called db, which we use in the next line to create a new object called
reports. We then instantiate this object by supplying our database connection and the
table we want to map to.

Now that we have set up our database connection, we can start to make use of the date
library. The Puppet report expresses its timestamp in a date-time format, that is, in a
combined field made up of both the time and the date; this is perfectly fine and is
supported by the MySQL DATETIME field format. However, I’ve found that almost every
time I’ve had to place data into SQL, the requirements have been to have a separate date
and time field to ease reporting. Fortunately, with Ruby, this is relatively easy with the
date library. As you can see, we take the contents of the self.time function and run it
through the DateTime. parse function. The output is then placed into a variable called
puppet_time_stamp; this then allows us to split the date and time into two subsequent

fields using the strftime function.

Note

To find out more about the strftime function, you can check the Ruby documentation at
http://www.ruby-doc.org/core-2.1.0/Time.html.

Now that we’ve set up our database connection and arranged the date format to our
satisfaction, we’re ready to start adding data. Consider the following code snippet:

reports.insert(
:transaction_uuid => self.transaction_uuid,
:Host => self.host,
:Date => puppet_time_stamp.strftime('%Y-%m-%d'),
:Time => puppet_time_stamp.strftime('%H:%M:%S"),
:Kind => self.kind,
:Report_format => self.report_format,
:Puppet_version => self.puppet_version,
:Environment => self.environment,
:Status => self.status

)

rescue => err
@log.fatal('Caught exception; exiting')
@log.fatal(err)

end

end

end

Using the sequel library as an ORM, we can easily insert data into our table without
needing to use SQL code. This has two advantages; firstly, it’s much more readable, and
secondly, the sequel library converts any strings you insert into a properly formatted SQL
string. This ensures that you are not at risk of a SQL injection attack.

Note

A SQL injection is essentially when someone uses an input into SQL to add in their own
code. This can happen anytime you process data that has not originated from your code,
such as a text input field. In our case, it’s derived from Puppet data, but a cunning attacker
could potentially use this if they sent a specially crafted Puppet report. A humorous
example of what a SQL injection is can be found in the XKCD webcomic at
http://xkecd.com/327/.

To insert the data, we call the insert function from our reports object. This function
takes a comma-separated list of key value pairs, with each pair made up of the column and
the value you want to insert. In our case, we simply insert the data straight from Puppet’s
puppet: :Transaction: :Report object, with the exception of the time and date values. In
this case, we use the strftime method to split a singular date stamp into a separate date
and time object before inserting it.

The final two lines of the preceding code, once again, use the logger library to help us

http://www.ruby-doc.org/core-2.1.0/Time.html
http://xkcd.com/327/

diagnose issues. You’ll find that if your SQL code fails for some reason—say, if your
MySQL server is down or you’ve ended up with some strange characters in your query—
then you’re going to have a hard time diagnosing the issue. By default, the Puppet master
will log a very small piece of data, simply noting in the default Puppet log that it
encountered a fault while running the Puppet processor. This could lead to quite a long
bout of head scratching as you try to figure out why. The rescue directive will tell Ruby to
catch any error that is generated and allow us to process the resulting data. In our case, we
log a fatal error, log the error message to our log, and exit the report processor. It’s worth
noting that this will not affect the Puppet master; it will carry on serving Puppet requests
even if a report processor has exited with an error.

Add your new report processor to the Puppet master in the usual way, then restart and
watch your data start to appear in MySQL. If everything went right, you should be able to
perform a simple select query to see your data as shown in the following screenshot:

ﬁ-'ﬂ transaction_uuid =mj Host =@ Date (yyyy-MM-dd) =DI| Time (HH:mm:s5}
18d7584a-06c6-4cbc-bl17c-6T3a3385T61e puppetagent 2014-05-04 11:45:51
45376c37-T583-4T6d-beld-5eBcBbTT543e puppetagent 2014-05-04 12:01:15
766924 T6—-0ea7-4T18-8Td3-5d0da9t797 b puppetagent 2014-05-04 12:01:87
76267 1c2-0ddd-46d3-aB@9—e6dbd13ccT84 puppetagent 2014-05-04 12:901:85
Tabbl377-3b5d-4c64-b5d1-1d6dBO571361 puppetagent 2014-05-04 11:44:28
a9ft25052-93ed-dded-Ba2a-1294ch654b569 puppetagent 2014-05-04 12:93:50
b785e6ef0-6461-4b47-88de-3d0T7dBe2T56 puppetagent 2014-05-04 12:03:40
bf2ebab3-7075-49b6-a325-bB152d7b 7256 puppetagent 2014-05-04 12:01:01
cTB9bb86-d3d9-4063-8dd1-2c@bd4d73%cd puppetagent 2014-05-04 11:54:06

1
2
3
4
5
6
7
8
2]

The trouble is that this isn’t really of much use to us; we know that a Puppet run has taken
place, and what its status was, but we have very little detail otherwise. Let’s go ahead and
add some detail in the form of Puppet metrics.

Adding metrics and events to MySQL

Metrics can give you a good feel of how your Puppet-managed infrastructure is
performing and how rapidly your configuration items are changing. Combined with the
Puppet report, the metrics and events can add a wealth of data to your reports. This is
where MySQL can shine, as it gives you several different ways to represent this
information and offers you the chance to use SQL to create your own reports. As the data
will be available in one place, there is no need to crawl through multiple files to build up
historical data or join data using the JOIN statement.

The Puppet metrics are carried inside the Puppet transaction report and are encapsulated
within the Puppet::Util: :Metric object. The metric data is split up between resources,
events, and changes, and each category has its own timings for its various elements. For
instance, within the resources category, we are able to see metrics for how many resources
are in the failed, out of sync, or changed state. Like almost all the Puppet report data, this
is expressed in the form of arrays, with each category containing an array of metrics.

Adding metrics to our existing MySQL report processor is fairly easy, and we can easily
link the data using the UUID that we are already inserting. We could potentially place this
data alongside our existing data, but this would lead to a fair chunk of data duplication,
huge rows of data, and, quite probably, an angry DBA at your doorstep. It’s far better to
start splitting the data out, or in the lingo of DBAs, “normalize the data”.

Normalizing the Puppet report is easy as it’s pretty much already been done for you. The
data in the Puppet::Util: :Metric object is easily mapped into a table and column
relationship. In this case, we’re going to take the entirety of the Puppet::Util::Metric
object and place it into a row inside a new table within our database. Let’s start by creating
the table within MySQL using the following SQL query:

CREATE TABLE metrics (
transaction_uuid VARCHAR(50),
res_changed INT,
res_failed INT,
res_failed_restart INT,
res_out_sync INT,
res_restarted INT,
res_scheduled INT,
res_skipped INT,
res_total INT,
time_conf_ret FLOAT,
time_file FLOAT,
time_filebucket FLOAT,
time_package FLOAT,
time_schedule FLOAT,
time_total INT,
changes_total INT,
events_failure INT,
events_success INT,
events_total INT,
PRIMARY KEY (transaction_uuid))

Now that we have our metrics table, let’s go ahead and insert the new code to iterate and
insert the metrics. This goes just underneath our first SQL statement and is made up of
two parts. Firstly, we need to iterate through the metrics data and place it into an array of
key pairs that we can then easily access. This is described in the following code snippet:

reports.insert(
:transaction_uuid => self.transaction_uuid,
:Host => self.host,
:Date => puppet_time_stamp.strftime('%Y-%m-%d'),
:Time => puppet_time_stamp.strftime('%H:%M:%S"),
:Kind => self.kind,
:Report_format => self.report_format,
:Puppet_version => self.puppet_version,
:Environment => self.environment,
:Status => self.status

)

metric_vals = {}

self.metrics.each { |metric, data]|
data.values.each { |val]|
name = "#{val[1]} #{metric}"
value = val[2]
metric_vals[name] = value
}
}

Firstly, we create an empty array in which to hold our metrics, and then we iterate through
the self.metrics array and pull out each of the categories. For each category, we then
gather its statistics. Once we have the metric and its value, we insert it into our
metric_vals array and then start the loop again.

Once we have all our values, we then need to insert it into our metrics tables. Once again,
we use the sequel library to assign our table, this time to a variable called metrics. Then,
we call the insert method and pass it the comma-separated list of key values that we
gathered from the Puppet metrics. One thing to note is that we once again insert the
UUID, and this allows us to use a JOIN query within SQL to tie our metrics and report
table together. This is described in the following code:

metrics = db.from(:metrics)
metrics.insert(
:transaction_uuid => self.transaction_uuid,
:res_changed => metric_vals['Changed resources'],
:res_failed => metric_vals['Failed resources'],
:res_failed_restart => metric_vals['Failed to restart
resources'],
:res_out_sync => metric_vals['Out of sync resources'],
:res_restarted => metric_vals['Restarted resources'],
:res_scheduled => metric_vals['Scheduled resources'],
:res_skipped => metric_vals['Skipped resources'],
:res_total => metric_vals['Total resources'],
:time_conf_ret => metric_vals['Config retrieval time'],
:time_file => metric_vals['File time'],

:time_filebucket => metric_vals['Filebucket time'],
:time_package => metric_vals['Package time'],
:time_schedule => metric_vals['Schedule time'],
:time_total => metric_vals['Total time'],
:changes_total => metric_vals['Total changes'],
:events_failure => metric_vals['Failure events'],
:events_success => metric_vals['Success events'],
:events_total => metric_vals['Total events']

)

rescue => err
@log.fatal('Caught exception; exiting')
@log.fatal(err)

end

Now, if you run your Puppet agents, you should find that additional data has been created
in your metrics table. If you query it, you should find that your data looks a little
something like the following screenshot:
ﬁj transaction_uuid =E res_changed =mj res_failed =Em res_failed_restart =Em res_out_sync
45376c37-7583-476d-bel4-5e0cObf f543e 1)

T660e4T6—0ea7-4718-87Td3-5d0dadT797Th @ @
T6e671c2-0d@4-46d3-a809—e6dbd13ccTB4 @ @

adT25052-93ef-4ded-8a2a-1294c654b509 @ @
b785e6ef-6461-4b47-88de-3d0T7d@e2 56 @ @
bf2ebab3-7075-49b6-a325-b8152d7b7256 1 @
cTB9bbB86—d3d9-4003-8dd1-2c@bd4d730%¢cd @ @

That about wraps it up for the MySQL report processor. You have seen how to take the
data that Puppet produces and feed it into a platform like MySQL. By exporting your data,
you’re making it more accessible to other users and tools, and you’ll be surprised at what
other people can come up with when they are handed this type of data. I’ve seen some
fantastic business dashboards that have mashed up Puppet data with server statistics and
throughput. The basic rule of thumb when it comes to Puppet data is that if someone asks,
“Can I get the data in the format I need?”, the answer, invariably, is yes.

Raising issues with JIRA

There’s one final example we’re going to look at before I leave you to experiment on your
own, and that’s how to automatically raise issues with Atlassian JIRA. This is worthwhile
on two fronts: firstly, JIRA is a fantastic tool for bug and issue tracking, and secondly, it
will give you a sense of how to integrate Puppet with third-party tools.

Atlassian JIRA has been around since 2002, and in this time, has become one of the most
popular forms of issue-tracking software on the market, in use by an estimated 25,000
organizations. Part of the appeal of JIRA is that it is a web-based product, and it is very
easy to install and maintain. Recently, Atlassian has offered JIRA to its users in the form
of a Software as a Service package, which has lowered the barrier to entry for running
JIRA even further. One of the things that set JIRA apart fairly early on was its excellent
API, as it allowed people to create products and services that would easily be able to
integrate with JIRA with minimal effort.

Issue tracking is a natural fit for a Puppet report plugin. There are times when you don’t
want to receive an e-mail when there is a problem with a Puppet run, but by the same
token, you also want to make a record of the issue so that you can go back and solve it
later. Using JIRA and a suitable report processor, you will be able to have Puppet quietly
raise an issue if it encounters a problem so that developers can track and fix the issue.

You might be surprised to find that this is the simplest example yet. Unlike SQL servers
and e-mails, we have no need to build up relatively complex data structures; it can all be
dealt by a single call to the JIRA API. A big part of the brevity of the code is that we are
using a Ruby library that bundles the JIRA API for us, saving us the effort of writing code
to do the basics of connecting, authenticating, and creating REST-based calls.

As always, the first thing that we need to do is include the libraries that we require.
Consider the following code snippet:

require 'puppet'
require 'yaml'
require 'logger'

begin

require 'jiralicious'
rescue LoadError

Puppet.info 'This report requires the jiralicious gem to run'
end

In this case, we include the usual suspects in the form of the puppet, yaml, and logger
libraries and also include the jiralicious library. The jiralicious library deals with
many of the common API calls used to interact with JIRA and saves us from having to
write our own interfaces. For our simple use, this gem is a perfect fit. Now that we have
our libraries, we need to register our report and load our configuration file. This is
described in the following code snippet:

Puppet: :Reports.register_report(:jiraalert) do

def process
@log = Logger.new('/var/log/puppet/puppetreport.log')

configfile = File.join([File.dirname(Puppet.settings[:config]),
'jiraalert.yaml'])

raise(Puppet::ParseError, "mysqlreport configfile not readable") unless
File.exist?(configfile)

config = YAML.load_file(configfile)

For this report processor, our configuration file will look like the following;:

username: puppetjira

password: weakpassword

uri: http://jira.fictonalco.com

apiversion: latest

authtype: basic

project: PUP

As you can see, the configuration of the jiralicious library is fairly lightweight and
needs only the username, password, URI, and API version. The URI is the address of your

JIRA server; this can just as easily be an on-demand instance as a locally hosted version.

Now that we have our settings, we need to connect to our JIRA instance. We call on the
jiralicious library to do this and feed it the values it needs via our configuration file in
the same way as the previous examples. Consider the following code:

Jiralicious.configure do |jiraconfig]
Leave out username and password
jiraconfig.username = config['username']
jiraconfig.password = config['password']
jiraconfig.uri = config['uri']
jiraconfig.api_version = config['apiversion']
jiraconfig.auth_type = config['authtype']
end
project = config['project']
Now, all we need to do is decide which events we want to send to JIRA; in this case, we’re
going to send any Puppet report that has a status of failed to JIRA as a bug. We simply
pull the details we require from the Puppet report using the .self notation, starting with
the self.status object. If its value is failed, then we construct a JSON string (Java
Script Object Notation, a common data type for configuration and API calls) that contains
the data we require from the transaction report. Once we’ve built our document, we then
call the Jiralicious::Issue.create method and pass the document as a method

argument. This is described in the following code snippet:

if self.status == 'failed'
puppet_data = {
"fields" => {

"project" => {
"key" => "#{project}"},
"summary" => "#{self.host} Failed puppet run",
"description" => "Host #{self.host} Failed puppet run at #
{self.time}",

"issuetype" => {"name" => "Bug"}}}
Jiralicious::Issue.create(puppet_data)
end

rescue => err
@log.fatal("Caught exception; exiting")
@log.fatal(err)
end
end

Our document harvests several important pieces of data to post into JIRA. Firstly, we hand
it the project that this new issue should be logged to and then add a brief summary that
includes the Puppet agent host that has flagged the error. Finally, we set the issue type to
be a bug.

Install this report processor in the usual way, restart your Puppet master, and keep an eye
on your JIRA queue; you will find that your failed hosts are now registering themselves
within JIRA, ready for the attention of a free developer. Bug tracking tools such as JIRA
can be used to vastly improve your Puppet code. Tracking common issues and having a
documented solution imposes a certain amount of discipline. After all, no one wants their
code to be the reason that there are several hundred bug tickets waiting to be dealt with!

A final note on third-party applications

As you’ve seen, with the correct Ruby libraries and some creative Ruby code, you can
allow Puppet to communicate with pretty much any third-party product. These days, it’s
almost a given that there is an API, and on the Puppet Forge, you can already see some
exciting examples of report processors ranging from alerts via instant message through to
logging deployment data into systems such as New Relic. When you come to look at your
own report processors, be creative and remember that Puppet is rapidly becoming the first
place where changes occur, which makes it the perfect early warning system for
impending issues. By thinking about report processors both as a reporting mechanism and,
perhaps more importantly, an alerting system, you can create some fantastic ways to keep
yourself apprised of change within your Puppet-managed infrastructure.

Summary

By now, you have a good idea of what you can do with the Puppet report processor. We’ve
taken a look at the very basics of a report processor and explored the simple steps required
to create a new one. We’ve also investigated ways to parse the data that Puppet sends in its
transaction reports and noted how the majority of the code in a report processor is
generally business logic that deals with data rather than low-level connectivity code. The
example code in this chapter demonstrated how there is generally a library available that
can ease the development of report processors by taking care of common tasks such as
connecting to databases and third-party applications.

In this chapter, we’ve covered how to send e-mails, export data to MySQL, and log to
JIRA using existing libraries to lighten the load. We’ve explored different ways in which
we can use the data and hopefully encouraged you to think about your own report
processors.

In the next chapter, we’re going to take a look at the world of PuppetDB, what it’s used
for, and how to go about setting it up on our Puppet servers.

Chapter 5. Exploring PuppetDB

We have spent quite a bit of time looking at the basics of the Puppet reporting system and
learned a fair bit about its underlying mechanisms and data formats. Now, it is time to turn
our attention to PuppetDB. PuppetDB is an extremely fast data storage service that Puppet
is able to utilize in preference to storing the reports elsewhere, and it offers a rich API for
data discovery.

In this chapter, we’re going to cover the following topics:

e A brief tour of PuppetDB and its uses
¢ Backend data storage options for PuppetDB
e Configuring your Puppet masters to use PuppetDB

By the end of this chapter, you should be comfortable both with what PuppetDB is used
for and how to install and configure it.

A brief history of PuppetDB

Over the past few years, an awful lot of effort has gone into making Puppet perform well
when scaled, and this has led to several interesting advances in the product. Not only has
the catalog compilation become faster (200 times faster from version 2 to version 3), but
some serious gains have been made in terms of scaling massive Puppet installations. As is
often the case, this isn’t just about making some things faster but also about taking a good
hard look at how some components function and replacing them with something more
suitable if they are found to be wanting.

Increased performance was obviously at the forefront of Puppet Labs developers’ minds
when they came to consider exported configurations. Exported configurations are an
excellent feature in Puppet that allow a node to pass its configuration onto other nodes.
This is especially handy when configuring backups, monitoring, or any other item that
might need to know how another node is configured. By their very nature, exported
configurations require a place to be stored; after all, a node doesn’t have any idea as to
which other nodes may require configuration from it, so it makes sense to store it with the
Puppet master. This storage needs to be accessible, but above all, it needs to be fast. A
slow exporting configuration store can seriously impact the performance of a catalog.

Originally, the Puppet master dealt with stored configuration. It would take the data from
the node, store it, and when asked, it would reply to a node with the details. This worked
and was simple, but was inherently slow as it introduced an expensive lookup operation to
the Puppet master. It also scaled poorly, with catalogs that have large numbers of managed
resources taking a lot of time to apply. Obviously, this needed improvement, and that’s
exactly what the Puppet Labs developers did with PuppetDB.

PuppetDB was built from the ground up to be a high-performance place to persist stored
configurations in. Rather than developing it in Ruby as with the rest of Puppet, they
decided to move it to an application written in Clojure. After several iterations, it was
found that Clojure performed well and, as a language, had the libraries and structure to
ease the development of PuppetDB.

The other technological feature worth noting with PuppetDB is its data store. By default,
PuppetDB ships with an in-memory database, but this is more for the proof of concept
than production use. It’s a HyperSQL Database (HSQLDB) and will very quickly fill up
unless you have either very few Puppet nodes or unlimited RAM (and extremely deep
pockets to fund the everlasting RAM). For production use, it’s highly recommended that
you back PuppetDB with a PostgreSQL database; the Puppet Labs’ recommendation is
that this is required any time you go above a hundred nodes. Personally, I recommend it
even if you have five nodes. PostgreSQL is inherently more stable, better performing, and
easier to back up and maintain than HSQLDB. You can find the scaling recommendations
for PuppetDB at

https://docs.puppetlabs.com/puppetdb/latest/scaling _recommendations.html.
Note

https://docs.puppetlabs.com/puppetdb/latest/scaling_recommendations.html

What if you want to use a different database?

For those of you who are fans of either MySQL or Oracle, I'm afraid you’re out of luck, as
PuppetDB will only run against PostgreSQL. There is the possibility of its future support
with Oracle, but due to MySQL lacking support for certain key features that PuppetDB
requires, the most notable being recursive queries, there is almost no chance of it being
supported.

Clojure runs on top of Java Virtual Machine (JVM) and is a dialect of the Lisp
language. Don’t worry, though; you are not going to need to learn Lisp or Clojure to work
with PuppetDB. This is due to a key design decision made early on in the life of
PuppetDB to make the data as easily accessible as possible via the REST API.

PuppetDB has many of the same tunable options as most common JVM apps, so you can
set the amount of the heap memory that it can consume; the official recommendation from
Puppet Labs is that you allocate 128 MB of RAM if you’re using PostgreSQL and at least
1 GB of heap memory if you’re using an embedded database. Once it is started, PuppetDB
will open a port on 8086 by default, but that’s a fairly common port if you’re running any
other JVM-based application, so make sure that you are not going to clash before
installing PuppetDB. We’ll take a look at how you change the port slightly later in this
chapter when we’re looking at the setup of PuppetDB.

So far, all of this is interesting, but as this is a slender tome about Puppet reporting and
alerting and so far PuppetDB has been all about exported configurations, this would
probably not be of great interest—a footnote or an information box at best. However, there
are two other things that PuppetDB stores that make it very relevant indeed to this book,
and they are reports and facts.

Node facts have always been available in PuppetDB, but as of the more recent version,
Version 1.4, you also have the option to use it as your reporting endpoint. This is excellent
news on many levels. Firstly, it means that you are able to leverage the speed of PuppetDB
when uploading reports, and secondly, it is very easy to enable it. However, what’s
especially interesting is that you are then able to use the PuppetDB query API to explore
your data.

The PuppetDB query API is in its third version and is evolving rapidly. In its current form,
it is a fantastic tool to explore any and all data about your Puppet infrastructure using an
easy-to-use and very accessible RESTful API. Each version of the API has a different set
of endpoints. An endpoint in PuppetDB speak is an information store; this could be, for
example, the events endpoint, which is a source you can mine for details about Puppet
events. Alternatively, you can look at the reports endpoint, metrics, nodes, and many
more. You can fully expect each new version to expose even more data.

We’re going to take a good look at the PuppetDB query API in Chapter 6, Retrieving Data
with the PuppetDB API. For the moment, let’s take a look at the steps we need to follow to
get PuppetDB up and running.

Setting up the PuppetDB server

Setting up PuppetDB consists of two processes. The first process is to actually install
PuppetDB and its terminus, and the second step is to get Puppet to forward data to it.

None of this is especially complicated.

Installing PuppetDB

The first thing we need to do is go ahead and install PuppetDB. As always, it’s best to get
this from the Puppet Labs’ official repos, as the Linux distribution of your choice may
well be lagging behind in versions, sometimes extremely so, or may not even have
PuppetDB available as a package. If you’ve followed the instructions from Chapter 1,
Setting Up Puppet for Reporting, you should already be in fine form. You will also want to
make sure that you have JVM installed. This can either be the OpenJDK shipped with
your distribution, or something like the Sun JDK. PuppetDB will run happily with any of
these.

Installing PuppetDB from packages

Once you’re ready to install PuppetDB, log on to your Puppet master and issue one of the
following commands:

e For Debian-based distributions, issue the following command:

sudo apt-get install puppetdb

e For RedHat-based distributions, issue the following command:

sudo yum install puppetdb

This will then kick off your package manager to fetch the PuppetDB application plus any
prerequisites. Once it’s installed, you should find that you have a new directory in the
/etc/ directory, called puppetdb; this is the configuration folder for PuppetDB and
contains all of the configuration files that you need to get PuppetDB up and running. You
will also find that you have a new service installed called PuppetDB.

Increasing the JVM heap space

At this point, you have everything you need to run PuppetDB on your server, and you
could go right ahead and start it now. The trouble is, PuppetDB is in a usable but less
scalable state out of the box. As mentioned earlier, PuppetDB ships with an in-memory
database by default, which is heavily constrained in terms of scale by its very nature.
There are two ways to approach this. Firstly, you can edit the JVM options to give the in-
memory database more headroom, or secondly, you can use PostgreSQL as the backing
store. Let’s take a look at both techniques.

Increasing the amount of memory available to PuppetDB is a straightforward task. All of
the PuppetDB JVM configurations can be found in the following directories:

e For Debian-based distributions, the configuration can be found in the following
location:

/etc/default/puppetdb

e For RedHat-based distributions, the configuration can be found in the following
location:

/etc/sysconfig/puppetdb

This file contains the fundamental settings that PuppetDB requires to work, such as the
user to run it under, the aforementioned JVM options, the installation directory, and so on.
You don’t need to fiddle with most of these unless you’ve installed PuppetDB into another
directory or need to run it under a different system account. The option we’re interested in
is JAVA_ARGS. The JAVA_ARGS option allows you to feed any JVM option to PuppetDB, but
unless you have a very specific need, it’s best to not tune the more esoteric settings.
Improperly tuned JVM settings probably account for 50 percent of the problems that I see
on Java applications.

The only setting we should work with here is the -xmx setting. The -Xmx setting controls
the maximum amount of heap memory that a Java application can use, and in the case of
PuppetDB, it has to account for both the application itself plus the data if you are using the
in-memory database. By default, this is set to 192m, and depending on the size of your
Puppet infrastructure, you may want to increase this using the JAVA_ARGS="-Xmx2g"
command. The official Puppet guidelines state that once you get to around the 100 node
mark, you should move to PostgreSQL. This makes sense, as HSQLDB is pretty terrible at
dealing with large transactions, and at the point at which you are supporting 100 nodes,
you are going to need a comparatively huge amount of RAM to support it.

Installing PostgreSQL

Setting up PostgreSQL as the PuppetDB store is a reasonably straightforward task; the
packaging takes care of installing the actual database engine, leaving us to set up a new
database and user. For the purposes of this example, I’'m going to install PostgreSQL on
my Puppet master. However, it’s quite possible, if not preferable, that you run the
PostgreSQL server on a separate hardware on your PuppetDB server for larger instances.

Tip
When working with large-scale Puppet infrastructure, it’s best to separate the roles, with a
separate PuppetDB server, PostgreSQL server, and Puppet master. This allows you to scale

each element in isolation and ensures that one component will find it hard to slow down
the other.

Installing the packages

Let’s go ahead and install PostgreSQL using the available packages for the following
distributions:

e For Debian-based distributions, issue the following command:

sudo apt-get install postgresql

e For RedHat-based distributions, issue the following command:
sudo yum install postgresql

Creating your database user

Once PostgreSQL is installed, we can turn our attention to the user. To create the user, we
can use the tools that have been installed along with PostgreSQL. To ensure that we do not
cause problems with clashing permissions, we are going to run this as a PostgreSQL user.
If we were to use another user, say the root user, we could potentially create files that the
PostgreSQL user cannot access; this would cause problems, as it is the PostgreSQL user
that runs the underlying service. Let’s go ahead and run this as a PostgreSQL user, using
the following command:

sudo -u postgres ssh

Next, let’s create our user using the createuser command installed along with
PostgreSQL, and set a secure password. This is described in the following screenshot:

Creating the PostgreSQL database

The final step for the initial setup is to create the database itself using the createdb
command. This is described in the following screenshot:

mvd mvd@puppet: ~ — ssh — 80x24

-E UTF8 -0 puppetdb puppetdb

This command creates a new database with UTF8 encoding and ensures that our Puppet
user is its owner. The UTF8 encoding is important as PuppetDB uses JSON as the format
for its data, and if you don’t ensure that the database is UTF8-encoded, you may find that
PuppetDB runs into trouble fairly quickly. By default, the PuppetDB terminus converts
strings into UTF8 encoding and expects its backend store to be able to store this data in a
UTF8-encoded form.

Now that we have our database, we need to ensure that it will allow our PuppetDB to
access it. PostgreSQL uses a file called pg_hba.conf to determine the access control to the
database and the authentication method. Generally speaking, this is set to be quite secure
from the installation, so we need to make some adjustments. You can find the
pg_hba.conf file in the following places:

e For Debian-based distributions:

/etc/postgresql/9.1/main/pg_hba.conf
e For RedHat-based distributions:

/var/1lib/pgsql/data/pg_hba.conf

Take a look inside the file with your favorite editor. The first thing that you’re going to be
greeted with is a wall of text; these are the comments that the PostgreSQL developers have
helpfully added. These are worth a read as they set exactly how this file works. However,
the block of configuration we are looking for is the following one:

local all all md5
host all all 127.0.0.1/32 md5
host all all ::1/128 md5

If these lines do not appear in that file, then go ahead and add them, and then restart
PostgreSQL. These lines essentially set access permissions that allow access to any user
on any database from 127.0.0.1 (the server’s local network), basically ensuring that any
process running on the same server as PostgreSQL will be able to access the database. If
you are running PostgreSQL on a remote server, then you will need to add a suitable
access line. If in doubt, consult the handy comments at the top of the pg_hba.conf file.

This basically ties up all of the activity required to configure PostgreSQL, and now we

just need to get PuppetDB to use it as its data store. This is done using the
/etc/puppetdb/conf.d/database.ini configuration file. Go ahead and open it up in
your editor. You will see the following configuration:

[database]

classname = org.hsqldb.jdbcDriver

subprotocol = hsqgldb

subname = file:/var/1lib/puppetdb/db/db;hsqldb.tx=mvcc;sqgl.syntax_pgs=true
username = foobar

password = foobar

gc-interval = 60

log-slow-statements = 10

As you can see from the preceding code file, PuppetDB is configured to use the embedded

database. This is easy to change, though. The following is what the same configuration file
looks like but configured for PostgreSQL.:

[database]

classname = org.postgresql.Driver
subprotocol = postgresql

subname = localhost:5432/puppetdb
username puppet

password puppet

Amend your database configuration file to look like the preceding code and restart
PuppetDB. It will now use the PostgreSQL database. Again, if you are using a remote
PostgreSQL database, then you will need to amend your configuration to suit.

We have one final step and that is to install the PuppetDB terminus. The PuppetDB
terminus is simply an endpoint for Puppet to connect to and must be installed on the
Puppet master; this is especially important if you are running PuppetDB on a separate
host. Installing the PuppetDB terminus is simple and can be done using the following
commands:

¢ For Debian-based distributions, issue the following command:

apt-get install puppetdb-terminus

e For RedHat-based distributions, issue the following command:

yum install puppetdb-terminus

These commands will then fetch the puppetdb-terminus package and install it onto your
system. Once it’s installed, we need to configure our Puppet master to connect to it.

Firstly, let’s create our puppetdb.conf file for Puppet. This is located in the same
directory as your main Puppet configuration, normally, /etc/puppet/. If it is not already
present, then go ahead and create a new file called puppetdb.conf in that directory. The
puppetdb.conf file is very simple and only needs to contain a pointer to your PuppetDB
instance. In my case, this will be the same server as Puppet so the file could look like the
following configuration:

[main]
server = puppet.stunthamster.com
port = 80681

Next, we need to configure the Puppet master itself. This is done in the usual file, that is,
the /etc/puppet/puppet.conf file. The configuration will sit in the [master] block and
should look like the following configuration:

[master]
storeconfigs = true
storeconfigs_backend = puppetdb

This is enough for basic PuppetDB usage, but we also want the reports feature. This is
added like any other report processor in the reports option and should be added as shown
in the following code:

reports = puppetdb

Remember, you can have multiple report processors so PuppetDB doesn’t have to be the
only one, and it’s indeed beneficial to have several report processors. As you will see in
the next chapter, PuppetDB makes an excellent choice for reporting but lacks the ability to
issue alerts. By combining the PuppetDB report processor with a suitable alerting report
processor, you can have the best of both worlds.

Finally, we need to create the routes file. The routes file is required for the proper
behavior of PuppetDB and allows Puppet to override certain indirection values. You
probably don’t have a routes file as yet, so go ahead and create one at
/etc/puppet/routes.yaml and add in the following content:

master:

facts:
terminus: puppetdb
cache: yaml

That’s it! You’re all set. Simply restart your Puppet master, and it should be set to use
PuppetDB.

Summary

In this chapter, we’ve taken a very quick look at the history and usages of PuppetDB.
We’ve taken a look at the underlying technology that powers it and learned that although it
ships with an in-memory database, the best practice when using it is to install and utilize a
PostgreSQL database for its data store. We went into detail about how you can configure
and install PuppetDB, from the initial package installation of PuppetDB and PostgreSQL
to the details on how to configure both the products so that they can communicate.

In the next chapter, we’re going to explore ways to use PuppetDB to view your data.
We’re going to learn how the PuppetDB API works and go through some examples of
how simple and powerful it is to query this well-performing data store.

Chapter 6. Retrieving Data with the
PuppetDB API

In the previous chapter, we learned how to set up PuppetDB. Now, it’s time to put it to
work. PuppetDB is more than just a storage engine; it also contains a powerful query API
that allows you to interactively query data about your Puppet infrastructure. By using a
combination of REST calls with the provided query language, you will be able to find
enormous amounts of data related to your Puppet-managed infrastructure.

In this chapter, we’re going to take a look at the following topics:

e The hows, whats, and whys; a brief introduction to the query API
e Exploring and using endpoints
e Getting acquainted with some basic queries

By the end of this chapter, you should be fully comfortable working with the PuppetDB
API and should be able to select the appropriate data sources and construct queries to
explore your own data.

Exploring the PuppetDB query API

Data is only useful if you have some means to access it, and yet this is a truism that many
systems seem to have forgotten, relying on developers to come along and fill whatever
egregious gaps in data exploration the original product left out, instead. Fortunately,
Puppet offers a rich data discovery tool in the form of the PuppetDB API and its
associated query language.

As we discovered in the previous chapter, PuppetDB is more than just a place to dump
data about Puppet; it’s a fully functioning and high-performance endpoint that Puppet can
utilize to speed up exported configuration data, catalog compilation, and more. By adding
PuppetDB to your Puppet infrastructure, you will find that you will get some fantastic
performance gains across almost all parts of the product as well as gaining a powerful
reporting endpoint.

One of the key decisions made by the PuppetDB developers was to make the data that
PuppetDB holds accessible by a well-documented and powerful API. This makes it
possible to create your own applications to leverage the data that your Puppet-managed
infrastructure has sent Puppet without needing to design your own storage and query
mechanism. Although it’s powerful, the PuppetDB API has a complex query language that
can take some time to get accustomed to.

Tip
The PuppetDB query API and especially the query language can be a complex topic, but
the developers have provided some excellent documentation. You can find the

documentation at https://docs.puppetlabs.com/puppetdb/latest/.
The PuppetDB API is, in fact, split into two distinct functions: the query interface and the

command interface. The majority of this chapter will deal with the query interface, but it’s
worth exploring what the command interface is and what it is used for.

https://docs.puppetlabs.com/puppetdb/latest/

Understanding the command interface

The command interface is normally not used directly, so we’re not going to go into any
great detail on how it is used. There is almost no circumstance under which you would
directly use the command interface as the only vaguely useful command would be the
deactivate node command, and even then, this is best left for PuppetDB and Puppet to
deal with.

The command interface offers the following functions:

e replace catalog: This command is used when a fresh set of data is received from
the Puppet client, and it replaces the previously held data for this node

e replace facts: This function takes incoming facts from a node and replaces the
stored facts with the latest version

e store report: This is a new feature with v3 of the API and allows PuppetDB to act
as a report processor for storing reports and events

e deactivate node: This will mark a node as inactive within PuppetDB and make it
eligible for housekeeping next time the database is compacted

Note

Node deactivation is an important part of PuppetDB’s housekeeping. While nodes are
active, their configuration will be exported along with all other exported resources. When
you are dealing with catalogs of thousands of nodes, it’s important that the old ones be
marked as deactivated so that their data isn’t considered. This is especially important if
you are using a dynamic environment that treats nodes as ephemeral and creates and
destroys them at will. Periodically, PuppetDB will run a garbage-collection sweep; this is
essentially a housekeeping task that will remove unwanted data to keep the database small
and agile.

The command interface is an HTTP call to Puppet DB and contains data in the correct
PuppetDB wire format. This will change depending on what you are interacting with
(resource, node, and so on) but will essentially comprise of the command plus the data
wrapped in a JSON-formatted package.

Tip
There really is no reason to use the command interface directly; however, it’s important to
know that it is there and how it works. It’s possible in later versions of PuppetDB that new

features may be introduced that add more reasons to work with the command interface, so
it’s good to understand the basics.

Understanding the query API interface

Now that we understand how the PuppetDB API is used to insert data, it’s time to move
on to a more useful topic, that is, how to retrieve data.

The PuppetDB query API is now into its third revision and has introduced some powerful
new features around the reporting elements of PuppetDB. A major new feature is the
ability to use PuppetDB as a report processor within the Puppet master; this is an
important addition to PuppetDB as previously it could only be used to store
configurations. Now, it is able to form the central hub of a powerful reporting tool, and
unlike other reporting methods, PuppetDB has the advantage of both having a data store
that is tuned for the task in hand and a query language that is designed for the specific role
of retrieving the Puppet data.

The query API organizes its data around the concept of an endpoint. Each endpoint is
essentially a data source that offers a set of RESTful routes that allow you to interact with
the data. As of v3, the following endpoints are available:

facts
resources
nodes
fact-names
metrics
reports
events
event-counts
aggregate-event-counts
version
catalogs
server-time

Each endpoint is tuned to a specific task, and it’s important that you select the correct one
when issuing your queries. There is some potential overlap in some of the data that the
endpoints offer. For example, some of the data inside the facts endpoint can also be
found in the nodes endpoint. The difference lies in how the data is presented and
described; for instance, if you are interested in a specific fact, including which nodes have
that fact present, then you would use the facts endpoint. Alternatively, if you want to find
out the value of a specific fact on a certain node, then you would use the nodes endpoint.

Once you have selected an endpoint, you can make a call to one of its available routes. A
route is an HTTP path that will return a certain type of information depending on the
endpoint you are interrogating. These calls should take the following form:

http://<server>:<puppetdbport>/<api_version>/<route>

When we come to look at the endpoints in detail, you will find that I’ve listed the
available routes and the URL for the documentation. It’s worth reading through the
documentation for a complete list of available data from each endpoint.

Tip
Be careful with the API version. Each revision has brought a new functionality; for

instance, v2 lacked most of the reporting functionality that v3 integrates. If you target the
wrong version, you may either fetch unexpected data or no data at all.

When you make an API call, PuppetDB will fetch the requested data and return it in the
form of a JSON response. The actual structure of the JSON document will vary depending
on the endpoint used, and it’s wise to consult the endpoint documentation to find out the
exact format to be expected.

We are going to take a more detailed look at the available endpoints further along in this
chapter, but first, we are going to spend some time looking at the PuppetDB query
language.

A primer on the PuppetDB query language

With most of the endpoints, you can use the supplied routes to retrieve information. For
example, the following query will return all nodes that run Linux:

curl http://puppetdbhost:8080/v3/facts/kernel/Linux

A great deal of data can be fetched using this technique, but it lacks the flexibility to
reflect more complex requirements. To allow users to specify more complex queries,
PuppetDB allows for some endpoints to make use of a query language within the
PuppetDB API. A PuppetDB query that uses the query language is similar to a call to a
route in that it is made up of an HTTP request but differs in that you supply an additional
query string that contains the PuppetDB query.

PuppetDB queries can be quite complex at first glance, as they are written in reverse
polish notation and are contained within a JSON array. This is somewhat different to most
languages you may be used to and can take some practice to become accustomed to.
Essentially, this means that each query you construct starts with the operator with any
subsequent element being made up of arguments. These are then evaluated in the order
they are written in. Let’s see how this works in practice; take a look at the following

query:

curl -X GET http://puppetdbhost:8080/v3/facts/processorcount --data-
urlencode 'query=["<", "value", 2]'

In this example, we start with a query to the facts endpoint and use the route to bring
back all the processorcount facts. We then apply a query to narrow down the result set to
only nodes that have less than two processors by applying the < operator to the value field
of the results from the returned data.

Let’s take a look at another, more complex query. In this example, we are going to issue a
query to the resources endpoint and use a set of queries to narrow down our data:

curl -X GET http://puppetdbhost:8080/v3/resources --data-urlencode 'query=
[IlandH, [I|:|l, Iltype", lluserll], [llnot"’ [Ilandll, [II:II, Iltypell, Iluserll], [II:II’
IltitleH, Ilmvdll]]]]l

In this example, we are using the resources endpoint to query all managed resources;
we’re then limiting the result set by applying a series of queries. We’re using an and
operator to join two JSON arrays, with each array containing a sub query. This query can
also be represented by this: select all resources where type equals user and exclude those
where type equals user and title equals mvd. Or, to put it another way, it can be
represented by this: find me all users, but not if they have a title of mvd.

As you can see, the notation of the PuppetDB queries can become quite complex, but it
offers a great deal of power. The best approach when constructing new queries is to build
them one section at a time, check the output, and then add another. You can find more
details about the available operators for queries at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/operators.html. It’s well worth
both studying the documentation and practicing queries until you are comfortable using
the PuppetDB query language.

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/operators.html

Exploring endpoints

The endpoints are the core of the PuppetDB query API, and in the next section, we are
going to look at the endpoints that are available in a little more detail, which are the routes
that they have made available, and how you might use them. Again, taking time to
acquaint yourself with each endpoint by running some test queries is a valuable exercise,
especially when examining the format of the returned data.

Using the facts endpoint

The facts endpoint allows you to find the fact data reported by Puppet-managed nodes to
PuppetDB, including any custom facts that you have defined. The facts endpoint
supports the following routes:

e GET /v3/facts
® GET /v3/facts/<NAME>
® GET /v3/facts/<NAME>/<VALUE>

As you can see, these routes offer you a simple mechanism to query your facts. For
example, the following query would retrieve all IP addresses that have been assigned to
any Puppet-managed node:

curl http://puppetdbhost:8080/v3/facts/ipaddress

You can insert any fact name into the path and use it to retrieve data that may be of
interest. You can also add a further value after the desired fact to narrow it down to
specific data, and this can allow you to zero in on interesting aspects of your
infrastructure. For example, we can retrieve all hosts that run Linux by using the following

query:
curl http://puppetdbhost:8080/v3/facts/kernel/Linux

Tip

Try the preceding query again, but instead of Linux, use 1inux. You’ll notice that this time
round, you’ve not had any data returned; this is because facts are case sensitive within

PuppetDB queries, so it’s very important that you ensure you use the correct case when
issuing queries.

Using the routes available in the facts endpoint can give you access to a wide range of
data, and the available routes can be further supplemented with the addition of a
PuppetDB query. For example, if we want to find all facts for a certain node, we can do so
using the following query:

curl -X GET http://puppetdbhost:8080/v3/facts --data-urlencode 'query=["=",
"certname", "puppetagent.localdomain"]'

This query will produce the output shown in the following screenshot:

{

certname” : "puppetagent.localdomain"
"name" " timestamp”,
"value" : "20814-683-02 17:38:39 +e0ee"

I
v i
“certname” : "puppetagent.localdomain”,
"“name” : "architecture”,
"value"” : "amd64"
{
L

certname" : "puppetagent.localdomain"

"name" : "augeasversion",
"value” : "1.1.8"

I
!

"certname" : "puppetagent.localdomain",
"name" : "bios release date",

"value" : "07/31/2013"

{

"certname" : "puppetagent.localdomain”,
"name" : "bios_vendor",

"value" : "Phoenix Technologies LTD"

{

You can find the documentation for the facts endpoint at
https://docs.puppetlabs.com/puppetdb/latest/api/query/v3/facts.html.

Using the resources endpoint

The resources endpoint allows you to query all resources that Puppet is currently
managing on active nodes. PuppetDB will not respond with data for deactivated nodes.
The resources endpoint offers the following routes:

® GET /V3/resources/v3/resources
® GET /v3/resources/<TYPE>
® GET /v3/resources/<TYPE>/<TITLE>

The resources endpoint is similar to the facts endpoint in its usage. The first route will
return every single resource that Puppet has ever encountered, but this is of limited use
and by adding a type, we can start drilling in specific details. For instance, by using the
following query, you can retrieve a list of all files that Puppet is currently managing on
active nodes:

curl http://puppetdbhost:8080/v3/resources/File

This example gives you the output shown in the following screenshot:

https://docs.puppetlabs.com/puppetdb/latest/api/query/v3/facts.html

BOYEty Waaatadopt delete'y Migntiplaseholdert]j

o/manifests/init. pp",

ladbeldd

Tip
As with the facts endpoint, case matters here as well. All resources should be capitalized,
so you will find that File will work, but file will return no results.

As you can see from the output shown in the preceding screenshot, the resources
endpoint will return the name of the Puppet manifest where the resources are declared and
the line on which the declaration is made. This makes it an absolute cinch to find out
where resources are being defined without having to search through the code itself.

The resources endpoint also supports the PuppetDB query language, and you can use this
to drill down to interesting data. For instance, if you want to find all files except
/etc/hosts, you can use the following query:

curl -X GET http://puppetdbhost:8080/v3/resources/File --data-urlencode
Iquery:[lland"’ [IInOtII’ [II:H’ Iltitle"’ "/etC/hOStS"]] , [H:II’ Iltypell, "File"]] 1

You can find the documentation for the resources endpoint at
https://docs.puppetlabs.com/puppetdb/latest/api/query/v3/resources.html.

Retrieving details about nodes

The nodes endpoint completes the trinity of resources, facts, and nodes, and gives you the
ability to find specific information regarding nodes from PuppetDB quickly and easily.
There are many aspects that you can query nodes for, and to reflect this, the nodes
endpoint has a comparatively large set of routes compared to other endpoints. The
following routes are offered by the nodes endpoint:

® GET /v3/nodes
® GET /v3/nodes/<NODE>

https://docs.puppetlabs.com/puppetdb/latest/api/query/v3/resources.html

GET /v3/nodes/<NODE>/facts/<NAME>

GET /v3/nodes/<NODE>/facts/<NAME>/<VALUE>

GET /v3/nodes/<NODE>/resources

GET /v3/nodes/<NODE>/resources/<TYPE>

GET /v3/nodes/<NODE>/resources/<TYPE>/<TITLE>

As you can see from the routes, you are able to retrieve both facts and resources from the
nodes endpoint, and the response format will vary depending on which of the two you are
retrieving. The ability to respond with both facts and resources makes the nodes endpoint
incredibly versatile, and as a result, you will probably find that you use this endpoint more
than the others.

Using the provided routes makes retrieving node information a straightforward task. For
example, to see the basic information that PuppetDB holds about a particular node, we can
call the nodes’ route and supply the fully qualified domain name of the node that we are
interested in. This is described in the following query:

curl http://puppetdbhost:8080/v3/nodes/puppetagent

This query gives you the output shown in the following screenshot:

puppetagent. localdomain",

"name"

Likewise, using the nodes endpoint and querying for facts, we can also view the versions
of Facter available on a given node. This is described in the following query:

curl
http://puppetdbhost:8080/v3/nodes/puppetagent.localdomain/facts/facterversi
on

This query gives you the output shown in the following screenshot:

"certname" : "puppetagent.localdomain®,

"name" : "facterversion",

“value" : "1.F.3"

As you can see, the nodes endpoint allows you to drill down into the details about a
specific node, but this is not limited to facts; we can retrieve details of resources as well.
This can be done using the following query:

curl
http://puppetdbhost:8080/v3/nodes/puppetagent.localdomain/resources/File

This code gives us the output shown in the following screenshot:

"certname" ; "puppetage Jdocaldomain,

"resource™ : "T 173% eada7559976950dal face9f1396"
"title" :
"parameters”

A
1
*faudit" : “group"”, “mode",

"type"
“expor ted"

"lTine" .

"File" : "Jetc/puppet/modules/git/manifests/init.pp"
"tags" "default", "node", "git", "class®", "file"

Using the provided routes within the nodes endpoint gives you a fantastically powerful
way to interrogate your infrastructure, but it can occasionally be limiting. Using the
routes, you’re not able to find a range of data. For instance, you may want to find all nodes
that have more than 2 GB of RAM. Although you cannot do it using one of the standard
routes, the nodes endpoint also supports the PuppetDB query language. Consider the
following query:

curl -X GET http://puppetdbhost:8080/v3/nodes --data-urlencode 'query=[">",
["fact", "memorysize_mb"], "2048"]']

This query gives you the output shown in the following screenshot:

Getting the run details with the catalogs endpoint

The catalogs endpoint will retrieve the details of the last catalog to be applied to a node

and currently has the following available route:
e GET /v3/catalogs/<NODE>
An example of a catalogs endpoint query would look like the following:

curl http://puppetdb:8080/v3/catalogs/puppetagent.localdomain

The output of this query is shown in the following screenshot:

ol ecaldoma i

"Node

“defaﬁlt“

relatiensiiig™ & "contging

=g

Fil

"eontains®

Felationsiig" & "cohEigins™

The catalogs endpoint allows you to retrieve the details of the Puppet catalog for a given
node from its last Puppet agent run. The catalogs endpoint returns the data in the catalog
wire format and contains both the Puppet-managed resources and their relation to each
other.

Note

The catalog wire format can be a little complex at first glance; however, it is well
documented. You can find the documentation for the catalog wire format at

http://docs.puppetlabs.com/puppetdb/latest/api/wire_format/catalog_format v4.html.

Querying the catalogs endpoint gives you an immediate sense of what has been
configured on a node and allows you to easily see whether certain resources have been
applied or are available. Currently, the catalogs endpoint does not support the query
syntax; however, you can easily combine the query with the Unix grep command to find
the data that you’re interested in.

The catalogs endpoint returns its data in the form of a JSON map and offers two keys:
the metadata key and the data key. At the moment, the metadata key contains a single
piece of information, which is the version of the API. The data key contains the interesting
data, and it is also made up of a JSON map that contains the catalog data in the wire
format.

The catalogs endpoint is an excellent way to explore the state of a given node at any
point of time, and it could potentially form part of a powerful auditing tool if the
information is persisted to another data store and then used to compare configuration
changes over time. For instance, using this technique, you could easily view when a
particular application was added to a node or when a configuration file was changed.

Understanding the fact-names endpoint

You can query the fact-names endpoint to find the name of any facts that Puppet clients
have reported in the course of their run; this includes deactivated nodes. Note that this
doesn’t include the actual value of the facts but just the name of the facts themselves. This
can be very helpful if you want to find out whether certain custom facts have been saved
into PuppetDB, or simply to explore the facts that are available to be queried. The fact-
names endpoint currently only supports one route, which is the following one:

® GET /fact-names

The fact-names endpoint does not support any additional routes or support queries, and it
will return all fact names in alphabetical order, both for active and inactive nodes.
Consider the following query:

curl -X GET http://puppetdbhost:8080/v3/fact-names

This query gives you the output shown in the following screenshot:

a_wend
nufactur

http://docs.puppetlabs.com/puppetdb/latest/api/wire_format/catalog_format_v4.html

Knowing the status of PuppetDB with the metrics endpoint

The metrics endpoint is your window to the performance and status of PuppetDB itself
and should not be confused with the Puppet metrics, which are found in the events
endpoint. The metrics endpoint is interesting as it exposes its data in the form of Java-
managed beans (MBeans). These are part of the Java management extensions and are
commonly used by various applications to gather statistical information. These are
especially prevalent in the monitoring world. You’re not limited to using MBeans, though,
as a standard API call will also return the information—be warned, though; this may be a
huge amount of information and you may end up running into issues that require you to
make use of the paging option.

Note

The paging option allows you to sort the returned information and, more importantly, limit
the amount of results. Most PuppetDB queries support paging and when faced with a huge
amount of results, it can be very useful. You can find the details for paging at

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/paging.html.

The metrics endpoint can be useful to gauge how well your PuppetDB is performing,
how many resources it’s currently managing, and how quickly it is servicing requests. For
example, you can query the metrics endpoint to find out the number of nodes that are
currently reporting to PuppetDB. This is described in the following query:

curl -G
'"http://localhost:8080/v3/metrics/mbean/com.puppetlabs.puppetdb.query.popul
ation:type=default, name=num-nodes'

We can also examine how quickly PuppetDB is replying to our queries, and this can serve
as an early warning that you need to increase the resources available to the server if it has
started to run a little sluggishly.

There is a wealth of information available in the metrics endpoint, and it is an excellent
point to add monitoring. By monitoring the metrics, you are able to respond proactively to
any slowdowns in your Puppet infrastructure and scale accordingly.

You can find the documentation for the metrics endpoint at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/metrics.html.

Using the reports endpoint

The reports endpoint offers a summary version of the Puppet report for each of the active
nodes within your Puppet-managed infrastructure. Note that this is a summary of the
report rather than the full report itself, and currently, it only has the following single route:

e /v3/reports

The reports endpoint is very useful for seeing when a node last performed a Puppet
transaction, and, of course, it gives you the all important hash that allows you to tie this
report to the underlying events.

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/paging.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/metrics.html

Tip
The report hash is something you will find yourself using often, as it is your link from the
Puppet report to the individual events that make up the transaction. Using the hash

provided by the reports endpoint, you can query the events endpoint to gather the events
that occurred during a Puppet run.

Although it only has a single route, it requires the use of the PuppetDB query language,
albeit limited to an equality (=) operator; if you do not supply a query, then it will return
no data. A basic query looks like the following one:

curl -G 'http://localhost:8080/v3/reports' --data-urlencode 'query=["=",
"certname", "puppet.localdomain"]'

This code gives you the output shown in the following screenshot:

{
"end-time"
"hash"

“_fr:_'lll'_]r t-format™"

"start-time”
"puppet-version”
"configuration-version”

"transaction-uuid" : "delbdd! 1083-97d7 4
"recejve-time" - e i ok g

{
"end-time"
"certname"™
"hash" : Lcteg
"report-format"
"start-time"
"puppet-version"
"configuration-versi

ion-uuid" :; "d? -add@-fo52
P . TR TA r o "33 . mF
o I014-0 73 ;

The reports endpoint should be your starting point when you come to examine events
that affect your nodes. From here, you can then delve into the events endpoint to gather
any details you need. You can find the documentation for the reports endpoint at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/reports.html.

Working with the events endpoint

Much like the traditional reporting mechanism, the events endpoint gives us access to
events from a Puppet client run. Currently, the events endpoint only supports a single
route, which is the following one:

® GET /v3/events

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/reports.html

The events endpoint is similar to the reports endpoint in that it requires the use of a
query to return any data. However, unlike the reports endpoint, it supports the full range
of operators within the query. This means that you can use the events endpoint to find out
details such as events during a certain time period or events that failed to be applied. It
also allows you to take the hash from the reports endpoint and see all the events that took
place, as shown in the following example query:

curl -G 'http://puppetdbhost:8080/v3/events' --data-urlencode 'query=["=",
"report", "7eb94f7b8e89e1597672f190d864243543b3ac48"]"'

This query gives you the output shown in the following screenshot:

i
"status” : "fail
"timestamp" _
'certname” : uppe t. al
'containing-class" @ "mus pp",
‘containment-p T i main]"
"y -'_"'[II:;II 1 (T ' “r LO0-R f '::-r s B
"run-start-time" ' 08 |
'resource-title™
‘configuration-vers
'run-end-time" "2014-04- 2
'p ty" : "returns”,

o "Unable to start

. ' R]
"old-value®™ : "notrun®
"line'
Fle™ o fetc/puppet/modules/musicapp/manifests/initl.pp
'report-receive-time" "2014-04-29T08:19:12.51@Z",
'resource
'status” :
'"timestamp" : "2014-04-29T08:19:03,7142"
‘'certname” : "puppetagent.localdomain”
'containing-class™ 0

'containment-path" o

The events endpoint is a versatile way of finding out which declared resources are having
difficulties. For example, we can find resources that have failed to get themselves applied
by using the following query:

curl -G 'http://puppetdbhost:8080/v3/events' --data-urlencode 'query=["=",
"status", "failure"]'

You will find yourself using the events endpoint quite often, and once you are
comfortable with some of the more common queries such as the preceding query, you will
find that it is a quick way to find extremely valuable information about your Puppet-
managed infrastructure. The documentation has many more examples and can be found at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/events.html.

Using the event-counts endpoint

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/events.html

When you issue a query to the event-counts endpoint, you provide it with the resource,
class, or node that you’re interested in. PuppetDB will then return you a list of how many
times that resource has been in the success, failure, noop, or skip status.

Currently, the event-counts endpoint supports a single route, which is the following one:
e /v3/event-counts

The event -counts endpoint is built on top of the events endpoint, and therefore, all the
query operators you can use with the events endpoint are applicable here. The following
example queries the host puppetagent.localdomain for any resource that has any
failures, and then summarizes how many failures occurred by that resource:

curl -G 'http://puppetdbhost:8080/v3/event-counts'--data-urlencode'query=
["=", "certname", "puppetagent.localdomain"]' --data-urlencode 'counts-
filter=[">", "failures", 0]' --data-urlencode 'summarize-by=resource'

This query gives you the output shown in the following screenshot:

II-E;ut::u]'n:':'.n:::t“

héubject-type“

You can find the documentation and more examples for the event -counts endpoint at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/event-counts.html.

Applying the aggregate-event-counts endpoint

This is an aggregated version of the event -counts endpoint; it supports the same fields as
the event-counts endpoint as it is essentially an extension of that endpoint. This can be
very handy if you are developing some custom reporting, as it saves you having to
aggregate the data yourself; nine times out of ten, it’s faster and easier to leave this to
PuppetDB. Currently, the aggregate-event-counts endpoint supports a single route,

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/event-counts.html

which is the following one:
e GET /v3/aggregate-event-counts

You can find the documentation for the aggregate-event-counts endpoint at
http://docs.puppetlabs.com/puppetdb/2.0/api/query/v3/aggregate-event-counts.html.

Using the server-time endpoint

This endpoint may well make you wonder what it’s for; however, it’s a very useful
endpoint when you’re trying to figure out what happened during a very specific time
period. At present, it supports a single route, which is the following one:

® GET /v3/server-time

The trouble with times on servers is that they can drift, and even with Network Time
Protocol (NTP), they can produce markedly different responses. The server-time
endpoint allows you to find the current time from the point of view of the Puppet master;
this can be quite important if you are querying for time-based information, as it gives you
an accurate starting point rather than a possibly skewed value based on the current time on
your desktop. You can retrieve the server time with the following simple query:

curl http://puppetdbhost:8080/v3/server-time

You can also find the documentation for this endpoint at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/server-time.html.

The version endpoint

This is a straightforward endpoint and is useful if you want to know the version of
PuppetDB that you are running. This can be extremely useful if you want to ensure that
your application is using the correct version of the API. You can essentially check whether
the PuppetDB server is running the version you expect, and if not, you can either bail out
or handle the difference another way. Currently, the version endpoint supports a single
route, which is the following one:

® GET /v3/version
To find the version of your Puppet master, you can use the following query:
curl http://localhost:8080/v3/version

You can find the documentation for the version endpoint at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/version.html.

http://docs.puppetlabs.com/puppetdb/2.0/api/query/v3/aggregate-event-counts.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/server-time.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/version.html

Summary

In this chapter, we have fully explored the PuppetDB API. We’ve taken a look at the role
that the API endpoints play and how you can use simple command-line tools to query it.
We’ve examined the makeup of a typical query and how we can use operators to be
selective about our data. Finally, we’ve taken a look at some of the more practical ways in
which we can put the PuppetDB query API to use, and we have examined how it can be
used to increase the visibility of your infrastructure.

In the next chapter, we’re going to use some simple Ruby code to create a simple
reporting system, utilizing the features of the PuppetDB API to power it.

Chapter 7. Writing Custom Reports with
PuppetDB

In the previous chapter, we learned about the PuppetDB query API, what it can be used
for, and how to leverage the power of its built-in query language. In this chapter, we’re
going to take that knowledge and use it to create a simple but effective reporting
application written in Ruby. We’re going to explore the following topics:

Creating a skeleton Ruby application

Connecting to PuppetDB using JSON

Retrieving facts

Retrieving events and reports using multiple endpoints

At the end of this chapter, you should be comfortable making use of the PuppetDB query
API in your own applications and understand how to process the JSON output of the API.

Creating a basic query application

We’re going to start with a simple application to explore the PuppetDB API. This will get
us acquainted with the basic tools that we need to access the API and extract data from it.
Open your favorite editor and create a new file called basic_report.rb.

The basic report application is going to be very straightforward and will simply pull back
some basic details about a host using the facts endpoint. This will demonstrate the basic
techniques we’re going to use to write a more fully featured application later on in this
chapter.

Note

The code in this chapter has been designed to run against Ruby v1.9 and above, and it will
throw errors if it’s run on earlier versions. If you’re using a RedHat-based distribution
prior to RedHat Enterprise Linux 7, then you will almost certainly be running a version of
Ruby 1.8. If you are running one of these operating systems, then I recommend that you
use Ruby Version Manager (https://rvm.io) to install a more recent version of Ruby to run
this code against.

https://rvm.io

Setting up the basic application

The first thing that we will need to do is include some additional libraries to allow us to
easily parse the data that the PuppetDB API returns. As you will recall from the previous
chapter, the PuppetDB API is a simple JSON feed presented over HTTP; luckily, Ruby
already includes both a library to parse JSON (json) and a library to connect to an HTTP
server (net: :HTTP). Finally, we’re going to need a library that will allow us to insert a
custom parameter into our HTTP call; this is to allow us to append a PuppetDB query and
is supplied by the URI library (uri).

Let’s go ahead and start off our code by adding these libraries:

require 'rubygems'

require 'json'

require 'net/http'

require 'uri'

That’s great! We’ve got all the tools we need to work with PuppetDB right there. The next
thing we need to do is connect to the API and retrieve the response. First of all, though, we
need the user of the application to let us know the node that they’re interested in. We’ll
grab their response using the gets method and then use the chomp string function to
remove any character returns from the response, as shown in the following code snippet:

puts 'Please input the FQDN of the node to examine:'
fgdn = gets.chomp

Connecting to PuppetDB

We now have the tools to access our PuppetDB data and the details of what our user wants
to see. Let’s connect to PuppetDB and fetch the data. The first thing we need to do is
construct our Universal Resource Identifier (URI). We’re going to keep things simple
and hardcode the address of our Puppet master for the moment, as shown in the following
code snippet:

uri = URI.parse('http://puppetdbhost:8080/v3/facts/"')

This creates a variable to hold our URI; note that the URI contains not only the address of
the Puppet master, but also the protocol, port, and path to the particular endpoint we’re
interested in.

Now, we need to construct a query to ensure that the data we return is only for the host
that the user is interested in, rather than the default value of all hosts. We do this by
appending a query string to the HTTP request, and this is achieved using the URI’s query
function. This essentially allows you to build a simple hash that contains the name of the
query string and the query itself. Let’s go ahead and use this to construct a query that
returns just the node that our user has specified. Consider the following code:

params — {:query => 1 [":","Certname", I+|I|l|l#{fqdn}ll + i l]l}

uri.query = URI.encode_www_form(params)

The preceding query is fairly straightforward. The first line creates a variable called
params, which contains our basic query syntax (in this case, an equality operator on the
certname data) and the value of the fqdn variable that the user created by answering our
prompt.

We now have all the data we need to create a connection to PuppetDB and query the
database. All we have to do now is construct the HTTP call itself. Let’s go ahead and do
that now. This is shown in the following code snippet:

response = Net::HTTP.get_response(uri)
json = JSON.parse(response.body)

This code calls PuppetDB using the Net: :HTTP library and then parses the resulting JSON
response into a Ruby hash ready for us to work with.

Outputting results

Finally, we just need to output the results. We could simply output the results as a list, but
as we’re designing this application for nontechnical users, let’s go ahead and make it a bit
prettier. There are several Ruby gems that can be used to take the output and make it a
little easier on the eye. In this case, I’'m going to use a gem called
command_line_reporter. You can install this gem in the usual manner using the following
command:

gem install command_line_reporter

The next thing we need to do is include it in our application. Edit your list of included
libraries as shown in the following code:

require 'rubygems'

require 'json'

require 'net/http'

require 'uri'

require 'command_line_reporter'
include CommandLineReporter

Once you’ve done this, you’re all ready to create a good-looking report. Let’s go ahead
and retrieve our details and then output them using the following code:

table(:border => true) do
json.each do |fact|
row do
column(fact['name'], :width => 20)
column(fact['value'], :width => 60,
ralign => 'right',
:padding => 5)
end
end
end

In this code, the first thing that we do is use the table method in the
command_line_reporter library to create a table with a border; next, we create a Ruby
block using the contents of the JSON response as the array. As we iterate through the
array, we create a new table row for each piece of data in the array and populate it with the
name and value of the facts returned by PuppetDB.

That’s all we need for this program. You should have something that looks a little like the
following code:

require "rubygems"

require "json"

require 'net/http’'

require 'uri'

require 'command_line_reporter'
include CommandLineReporter

puts 'Please input the FQDN of the node your interested in:'
fqdn = gets.chomp

uri =
URI.parse('http://localhost:8080/v3/facts/')URI.parse('http://localhost:808
0/v3/facts/"')

params — {:query => 1 [H:II, "Certname", 1 + rm II#{fqdn}ll + T l] I}
uri.query = URI.encode_www_form(params)

response = Net::HTTP.get_response(uri)
json = JSON.parse(response.body)

table(:border => true) do
json.each do |fact]|
row do
column(fact['name'], :width => 20)
column(fact['value'], :width => 60, :align => 'right', :padding
=> 5)
end
end
end

Go ahead and run the program. After entering a fully qualified domain name (FQDN)
that matches one of your Puppet client certificates, you should have an output that looks a
little like what’s shown in the following screenshot:

| path fusrilocalsshinifusrdlocaldbin: fusrssbin:fusribing

| /sbin:/bin

-— |
| physicalprocessorcou g

| nt

e e

| processarn Intel(R) Xeon(R) CFU W3565 @ 3.20GHz

-

| processaorcount e

-t

| productname YMware YWirtual Flatform

| puppet_wardir
T—— =

| puppetversiaon
| root_home froot
—

| rubysitedir fusrilocalslibdsite - rubys 1. 9.0

| rubyversion

| selinux

| serialnumber

This is an excellent, albeit somewhat limited example of what we can do with the
PuppetDB API, and it should give you an idea of how to work with the data it provides.
Now that we are comfortable with the fundamentals of how to communicate with
PuppetDB, we can take a look at something a little more sophisticated. Let’s look at how
we can create a relatively simple application that can give users the ability to query both
for hardware details and a summary of the last Puppet client run.

Creating a menu-driven PuppetDB
application

As we’re designing this query application for nontechnical users, we want a way for them
to interact with our application without needing to deal with esoteric command-line
options. This is a command-line application; therefore, fancy GUIs and shiny web
applications are right out. Instead, we have to go back to the tried and tested system of
using a menu-driven application. However, first of all, let’s figure out what we want this
application to do.

One of the more common scenarios where you might want to offer this type of application
is for anyone who is interested in, works with, or is auditing your Puppet-managed
infrastructure. You might not want them to have full and free access to your Puppet
installation, but at the same time, you want them to be able to find the information they
need to carry out the task at hand. So, the first decision that we need to make is regarding
the information that we give them access to. For this application, we’re going to offer the
following information:

e Summary of the last Puppet run
e Hardware specifications of a particular node
e Details of what, if anything, Puppet changed in the last run

This should give our users enough access to the PuppetDB information to allow them to
answer any basic questions they may have.

Setting up the Ul

We’re going to create the code in discrete chunks, with separate functions for presenting
the menu, collecting the hardware details, and outputting the Puppet report. This not only
helps us keep our code nice and tidy and encourages reuse, but it also makes it easy to
extend our application by simply dropping in new modules. This is a technique worth
using for anything more than a simple twenty-line application. Many a sensible developer
or DevOps engineer has been reduced to bitter tears of frustration when they are asked to
support a five thousand-line piece of spaghetti coding with no discernible entry points for
a given function.

The first task that we’re going to tackle is creating the menu for our user to interact with.
To make this easy, we’re going to use a gem called HighLine. HighLine makes it very
simple to construct interactive command-line applications and includes powerful features
such as validation, masked input, and type conversion without the tedious messing around
with the gets() and puts() functions. Using HighLine, we can quickly and easily create
the basic UI our users are going to interact with. Go ahead and create a new folder called
puppetreport; this is where we’re going to place our code. Also, create a file called
puppetreport.rb using your favorite editor. Once you are done, insert the following code
in that file:

require 'highline/import'
require 'json'

require 'net/http'

require 'uri'

require 'command_line_reporter'

require_relative 'hwdetails.rb'
require_relative 'rundetails.rb'

@puppetdb = 'http://localhost:8080'

loop do
choose do |menu|

menu.choice('Enter Host') do |command]|
@fqdn = ask('Please enter FQDN')
end

menu.choice('Hardware Details') do |command|
if @fqgdn then
get_hw_details
else
@fqdn = ask('Please enter FQDN')
end
end

menu.choice('Result of last Puppet Run') do |command |
if @fqgdn then
get_run_details

else
@fqdn = ask('Please enter FQDN')
end
end

menu.choice('Exit program.') { exit }
end
end

This small chunk of code creates the user menu. We’re giving the user four actions to
choose from here: to enter the fully qualified domain name of a host to query, a hardware
listing for that host, details of the Puppet run, and finally, a way to exit the program.

You will recognize the first five lines as code to include the libraries that we require to
interact with PuppetDB, parse its response, and create a nice-looking output using the
command_line_reporter library. We also have a newcomer in the shape of the
highline/import library requirement; this is used to include the HighLine library into our
application. You’ll notice almost straightaway that the puppetreport.rb file doesn’t make
use of any of the libraries, except for the highline/import library. As you can see after
the library require statements, we’re also requesting two more Ruby files, which are
hwdetails.rb and rundetails.rb. These two files will be created next and will contain
the code that will make use of the other libraries. We’re going to cover these files in later
sections, but for the moment, let’s explore the code that creates our user interface.

After the library require statements, we set our one and only option. This is described in
the following line of code:

@puppetdb = 'http://localhost:8080'

To keep the application simple, I’ve left this as a hardcoded variable, but it would be easy
enough to read this from a file. Note the @ symbol; in Ruby, this denotes an instance
variable. An instance variable is scope confined to the owning object; in this case, this is
our application. If this were defined as a local variable (a variable that begins with a
lowercase letter or the _ character), then it would be inaccessible from our new functions.

Now to the menu! Firstly, we want to make sure that when users launch the application,
they don’t just choose one option and have the application closed after finishing the
output. Even with the various command recall functions in the bash shell, this is going to
get old very quickly. Instead, we use a loop to ensure that the user is returned to the menu
after each interaction. We then create a Ruby block to iterate through our menu choices.
This is described in the following code snippet:

loop do
choose do |menu|

menu.choice('Enter Host') do |command]
@fqdn = ask('Please enter FQDN')
end

As you can see, the choice function allows you to enter the text to be presented to the user
and then the command that you want to run. In the case of the first option, this is a simple

prompt for the user to enter the fully qualified domain name of the host they are interested
in, and the next three menu choices are much the same. This is described in the following
code snippet:

menu.choice('Enter Host') do |command |
@fgdn = ask('Please enter FQDN')
end

menu.choice('Hardware Details') do |command|
if @fgdn then
get_hw_details
else
@fqdn = ask('Please enter FQDN')
end
end

menu.choice('Result of last Puppet Run') do |command |
if @fgdn then
get_run_details
else
@fqdn = ask('Please enter FQDN')
end
end

menu.choice('Exit program.') { exit }
end

Each of the choices resemble the first choice in terms of their overall structure; however,
in the case of the hardware details and details of the Puppet run, we’re also applying a
little bit of logic to ensure that if users have skipped over entering a host, we prompt them
so that an FQDN is entered. Note the two function calls: get_hw_details and
get_run_details. These are the two methods that we’re about to create to allow us to pull
data from PuppetDB. Let’s start with the simpler of the two, the facts lookup.

Querying PuppetDB’s facts endpoint

The first function that we’re going to create is going to go to PuppetDB, which is
configured in the puppetreport.rb file, and interrogate the facts endpoint for
information about the user-specified host. We’re then going to make use of the
command_line_reporter library to ensure that the output is easily readable to our users.
Go ahead and create a new file in the puppetreport directory called hwdetails.rb, and
open it with your favorite editor.

The first few lines of our application deal with creating our new method, setting out what
URLSs to query, and then connecting to PuppetDB and fetching a response. Take a look at
the following code snippet:

def get_hw_details
include CommandLineReporter

uri = URI.parse("#{@puppetdb}/v3/facts/")
params - {:query => 1 [II:II’ IIcertnameII’ 1 + rmnia II#{@fqdn}ll + rmni I] I}
uri.query = URI.encode_www_form(params)

begin
response = Net::HTTP.get_response(uri)
rescue StandardError
puts 'PuppetDB is currently unavailable'
exit
end

json = JSON.parse(response.body)

The first line creates our method in the usual manner using the def keyword. Next, we
include our commandLineReporter library so that it’s ready for use, and then we go into
the connectivity activities. Firstly, we create a variable called uri to hold our PuppetDB
connection details; this is constructed using the instance variable we defined in the
puppetreport.rb file and points at v3 of the facts endpoint. Next, we construct our
query and assign it to the params variable; note again the string interpolation that inserts
the FQDN of the client based on the input that the user provided when entering the
application. Finally, we call the uri.query method to take the params variable and encode
it as an HTTP query string.

That’s all the ground work for the PuppetDB connection out of the way; all that’s required
now is to attempt the connection using the Net: :HTTP library. As you can see, I've
wrapped this in a begin and rescue construct. This application is aimed at nontechnical or
semi-technical users, so we want to try and make the application fail gracefully. In this
case, we are rescuing anything that arrives via StandardError; this should cover pretty
much any issues that the Net: :HTTP library will encounter and will give the users an error
message to inform them that PuppetDB is not currently available. We then exit the
application, as it’s of extremely limited use if there is no PuppetDB to supply it with data.

Outputting the hardware report

Assuming that all went well and we were able to connect to PuppetDB, our response
variable should now have the response from PuppetDB’s facts endpoint in the JSON
format. As parsing JSON by hand is incredibly dull, we’re going to make use of the JsoN
library to do the heavy lifting for us. We’re assigning the output of the JSON.parse
method to a variable called json, and this should give us a nicely formatted array of JSON
data to process in the next step.

Now that we have the data, we need to process it. By default, the facts endpoint returns
the data in a JSON object, and this contains a list of key values made up of fact names.
The outputted JSON file in v3 of the Puppet API looks like the following code snippet:

{"name": "<node>",
"facts": {
"<fact name>": "<fact value>",
"<fact name>": "<fact value>",
3
3

There are several different techniques you could use to work with this data, but in this
case, we’re going to create a new instance variable called @facts and then use a simple
Ruby block to iterate over our data and insert it into our newly created hash. This is
described in the following code snippet:

json = JSON.parse(response.body)
@facts = Hash.new

json.each do |fact]
@facts[fact['name']] = fact['value']
end

As you can see from the preceding example, you only need a little code to extract data
from the PuppetDB API. Let’s go ahead and output the data for our user; remember, we’re
going to use the CommandLineReporter library to make the output easy to read. For this
application, we’re going to give the user three different sections of data about the
hardware, a section of summary facts (memory, CPU details, and so on), a section on the
BIOS details, and finally, some details about the main board. We’ll present these details as
three separate tables to make them easier to read. Add the following code to the
hwdetails.rb file:

system '"clear" or system '"cls"

header :title => "Hardware report for #{@fqdn}", :width => 80, :align =>
'center', :rule => true, :color => 'green', :bold => true, :timestamp =>
true

table(:border => true) do
row do
column('manufacturer', :width => 30)
column("#{@facts["manufacturer"]}", :width => 40)
end

row do
column('productname', :width => 30)
column("#{@facts["productname"]}", :width => 40)
end
row do
column('Number of processors', :width => 30)
column("#{@facts["physicalprocessorcount"]}", :width => 40)
end
row do
column('Memory', :width => 30)
column("#{@facts["memorysize"]}", :width => 40)
end
row do
column('architecture', :width => 30)
column("#{@facts["architecture"]}", :width => 40)
end
row do
column('Virtualized?', :width => 30)
column("#{@facts["is_virtual"]}", :width => 40)
end

end

The first line of the code is used to call out the clear command on the system; this is
essentially the same as typing clear or cls on the command line and ensures that our
users will not have any clutter on their screen to distract them. Next, we output a header to
remind the users what the report is about. As you can see in this code, the header method
of the command_1line_reporter library accepts a broad range of options to allow you to
style it, and in our case, we’ve asked for it to be 80 characters wide, aligned to the center
of the screen with green underlined text, with a timestamp of when the command was
issued. It’ll look something like what is shown in the following screenshot:

Once we’ve shown the user the header, we go right ahead and create our first table. This
table is going to be used to contain the general hardware details, but rather than simply
spewing out all of the data that the facts endpoint produces, we’re going to be selective
and give our users details that are relevant to the query. In this case, we’re going to show
them the following details:

The manufacturer

The product name

The number of processors
The memory size

The processor architecture
The virtual machine flag

As you can see in the preceding code, we define the data by row, and within each row, we
specify a number of columns. Our first column is a simple text label with a width of 30

characters. The next column contains the data to match that label and is taken from the
hash we created and populated with the data from the facts endpoint. This is described in
the following code snippet:

row do
column('manufacturer', :width => 30)
column("#{@facts["manufacturer"]}", :width => 40)
end

Let’s go ahead and add the rest of our details. This is described in the following code:

row do
column('productname', :width => 30)
column("#{@facts["productname"]}", :width => 40)
end

row do
column('Number of processors', :width => 30)
column("#{@facts["physicalprocessorcount"]}", :width => 40)
end
row do
column('Memory', :width => 30)
column("#{@facts["memorysize"]}", :width => 40)
end
row do
column('architecture', :width => 30)
column("#{@facts["architecture"]}", :width => 40)
end
row do
column('Virtualized?', :width => 30)
column("#{@facts["is_virtual"]}", :width => 40)
end

This is a good start for our hardware report, and if you were to run this code now, you’d be
able to retrieve some relevant data. We have got a few more pieces of information that will
be of interest to the user, though, such as the BIOS details and motherboard details; this, in
particular, is a good piece of data to output as it has the serial number on it. We want to
keep the output easy to read, though, so the first thing we do is put a thin line underneath
the previous output to denote that we’re moving onto a different set of data. This is
described in the following code:

horizontal_rule :width => 70, :color => 'red'
vertical_spacing 1
header :title => 'Bios Details'

Again, we have several formatting options, but we’re going to keep it simple and
understated, and simply put a red line across the screen and add a header underneath.
Now, we simply have to add the rest of our data. This is described in the following code:

table(:border => true) do
row do
column('Bios release date', :width => 30)
column("#{@facts["bios_release_date"]}", :width => 40)
end

row do
column('Bios Vendor', :width => 30)
column("#{@facts["bios_vendor"]}", :width => 40)
end
row do
column('Bios Version', :width => 30)
column("#{@facts["bios_version"]}", :width => 40)
end
end

horizontal_rule :width => 70, :color => 'red'
vertical_spacing 1
header :title => 'Motherboard Details'

table(:border => true) do
row do
column('Motherboard Manufacturer', :width => 30)
column("#{@facts["boardmanufacturer"]}", :width => 40)
end
row do
column('Motherboard Name', :width => 30)
column("#{@facts["boardproductname"]}", :width => 40)
end
row do
column('Motherboard Serial number', :width => 30)
column("#{@facts["boardserialnumber"]}", :width => 40)
end
end

end

Fantastic! We now have a simple but very effective tool to query hardware data held in
PuppetDB. We could leave it there, but one of the questions that I find is asked quite often
by clients with Puppet-managed nodes is, “What has Puppet done to my server?” This is a
fair question, so let’s give our users a way to query it.

Querying PuppetDB for report
information

Essentially, we’re going to use the same techniques that we learned in the previous
examples, but the way we process the data is going to change. One thing you’ll almost
immediately notice is that each endpoint has its own particular format; although they all
return JSON output, sometimes, it’s a JSON array, other times, a flat JSON document, and
so on. When working with PuppetDB, it’s worth reviewing the documentation for the
endpoints, as it contains an excellent rundown of what to expect. Again, you can find the

documentation at https://docs.puppetlabs.com/puppetdb/latest/.

Tip

One tool that can be enormously helpful when exploring data such as the PuppetDB API is
the pp library that ships with Ruby. The pp library is the pretty printer for Ruby and will
take data such as JSON and output it in a reasonably clear way. This can be a real help if
you are not sure how or what data is going to be returned. If you get stuck, remember that

you can use the puts <variable> class to discover if you’ve been passed an array, hash,
or some other data type.

The get_run_details method is going to be slightly more complex than the previous
method we created. This is because we are going to blend the information from three
different endpoints to generate this report. These are the reports endpoint, event-counts
endpoint, and finally, the events endpoint. This allows us to do several things. First and
most importantly, it allows us to find the hash of the last Puppet report; this is vital as it’s
the connection between the report and the events. It also allows us to quickly count how
many event types we had without resorting to manually counting them ourselves, and
finally, it gives us the details of what happened to the node when Puppet was run on it last
time. When we’re finished, it’s going to look like the following screenshot:

https://docs.puppetlabs.com/puppetdb/latest/

Event Details

N B il s B S e LB e —————
urce Title | rvm_wersion

R M

| Resource Type | Motify

T
| Property | message
e+
| 01d ¥alue | absent

e —— .
| Hew ¥alue | R¥M wersion 1.23.14

e -

| status | succ

| Event Date and Time 2E14-03 ;
e S e]

| Hessagze | defined

Creating the PuppetDB query method

Let’s start by creating a file for our new method. Remember, it’s generally tidier to split
large pieces of code into their own file, as this keeps the application tidy and makes it
more obvious where you can find the functionality. Create a new file in the puppetreport
directory, called rundetails.rb, and open it up in your editor. We’re going to start in the
usual way and define the name of our method using the def keyword and then connect to
each of our endpoints and retrieve our details. First up, we have the reports endpoint.
Consider the following code:

def get_run_details
include CommandLineReporter

reporturi = URI.parse("#{@puppetdb}/v3/reports/")
reportparams = {:query => '["=", "certname",' + '"' "#{@fqdn}" + '"' ']'}
reporturi.query = URI.encode_www_form(reportparams)

reportresponse = Net::HTTP.get_response(reporturi)
reportjson = JSON.parse(reportresponse.body)
report = reportjson.last

As you can see, this looks very similar to the way we connected to the facts endpoint,
and again, we are taking the instance variable that contains the PuppetDB location and are
using it to construct our URL. We’re then constructing a PuppetDB query based around
the FQDN that the users have given as input when they launched the application; the main
thing to note in this code is the use of the .last method when we assign the value of the
retrieved JSON file. This report is specifically for the last report that Puppet ran; we don’t
need any others. As the reports endpoint is returning an array of reports, we can use the
.last method to simply retrieve the last one without needing to mess around iterating
through the array ourselves.

Fetching the event counts

Now that we have the report summary, we need to go and get our event counts; this is
exactly what the event-counts endpoint was designed for, to save calculating the count
ourselves. We connect to this endpoint and retrieve the data in much the same way as the
other endpoints. This is described in the following code:

ecounturi = URI.parse("#{@puppetdb}/v3/event-counts")

ecountparams = {'query' => '["=", "report","' + '"' "#{report["hash"]}" +
"t '1', 'summarize-by' => "certname"}

ecounturi.query = URI.encode_www_form(ecountparams)

ecountresponse = Net::HTTP.get_response(ecounturi)
ecountjson = JSON.parse(ecountresponse.body).first

There are two things to note in this chunk of code. Firstly, take a look at the query we’re
constructing. This time, rather than using the FQDN that the user has given as input, we’re
taking the value of the hash field from the Puppet report we assigned to the report
variable. The hash is our key to get to any event data generated by Puppet and ensures that
you’re only looking at data for that particular Puppet run. The second thing to note is the
use of the . first method when accessing the data. The event-counts endpoint returns an
array of hashes; however, in our case, because we are asking for a specific hash, we
should only ever return an array with a single member. Using the . first method is a nice
and simple shorthand to return that single piece of data without needing to work with the
array ourselves.

The final piece of information we need to retrieve is the events themselves. Again, we’re
going to construct our connection details, connect to PuppetDB, and use a query that
contains the report hash to retrieve the data we’re interested in. This is described in the
following query:

eventsuri = URI.parse("#{@puppetdb}/v3/events")
eventsparams = {'query' => '["=", "report",' + '"' "#{report["hash"]}" +
rmni I]I}

eventsuri.query = URI.encode_www_form(eventsparams)

eventsresponse = Net::HTTP.get_response(eventsuri)
eventsjson = JSON.parse(eventsresponse.body)

Presenting the events data

The events endpoint returns its data in the form of an array of events. We need the whole
of the array, so we’ll process them at the output time rather than doing anything here. Now
that we have our data, we can go ahead and output it. Again, we’re going to use tables to
output the data to make it easily readable. Let’s start by giving our user a summary of the
report data. Consider the following code:

system 'clear'

header :title => "Puppet run report for #{@fqdn}", :width => 80, :align =>
'center', :rule => true, :color => 'green', :bold => true, :timestamp =>
true

table(:border => true) do

row do
column('Failures', :width => 10)
column('Successes', :width => 10)

column('Noops', :width => 10)
column('Skips', :width => 10)
end

row do
column("#{ecountjson["failures"]}", :width => 10)
column("#{ecountjson["successes"]}", :width => 10)

column("#{ecountjson["noops"]}", :width => 10)
column("#{ecountjson["skips"]}", :width => 10)
end

end

We start by clearing the screen. When producing applications that report on the command
line, it’s pretty essential that we do this; otherwise, the screen soon becomes cluttered and
unreadable. Next, we’re outputting a header to let the user know which host this report
was generated from, and we’re also applying some formatting to make it stand out. We
then take the data that we’ve created and output it into a table.

The table format is slightly different this time around, and that’s because rather than
having the data alongside the heading, I’ve used the more traditional columnar data
format. It’s a little more readable for this kind of data. We’re using keys to access the hash
data that was retrieved from the event-counts endpoint. When you are looking at a host,
one of the first things that we should check is how many resources were applied and
likewise, how many failed.

Tip

If you’re an experienced coder, then you might have noticed a way to improve this
application. As we already have the event data, we could potentially gather our event
counts while gathering the events rather than going to the event-counts endpoint. This

would work for this application, but it’s worth knowing how to use it for applications
where it would be more efficient to use the event-counts endpoint. Certainly, if you are

not gathering event data, you would have to go back to the event -counts endpoint for this
data.

Now that we’ve got the counts of the events, let’s move on and let our user see what
actions those events performed. Again, we’re going to add a subheader to mark out the
new section, and we’re then going to use the data we gathered from the events endpoint
to add the data. This is described in the following code:

horizontal_rule :width => 70, :color => 'red'
vertical_spacing 1
header :title => 'Event Details'

table(:border => true) do
eventsjson.each do |event|

row do
column('Resource Title', :width => 20)
column(event['resource-title'], :width => 60)
end

row do
column('Resource Type', :width => 20)
column(event|['resource-type'], :width => 60)
end

row do
column('Property', :width => 20)
column(event|['property'], :width => 60)
end

row do
column('0ld Vvalue', :width => 20)
column(event['old-value'], :width => 60)
end

row do
column('New Value', :width => 20)
column(event['new-value'], :width => 60)
end

row do
column('Status', :width => 20)
column(event['status'], :width => 60)
end

row do
column('Event Date and Time', :width => 20)
column(event['timestamp'], :width => 60)
end

row do
column('Message', :width => 20)
column(event['message'], :width => 60)
end

row do
column('', :width => 80)
end

end
end
end

This should be fairly familiar to you by now. Again, we’ve used the horizontal rule
method to output a nicely formatted section break, and we’re also creating a new table. We
are then using a Ruby block to iterate through the array of data contained in the JSON
response from the events endpoint. Each iteration takes the next piece of data and feeds it
into a hash called event, and this then allows us to output the data using its hash key.
Again, we’re being selective; although there is more data available, we’re focusing on the
data that is relevant to this report rather than outputting it all.

Testing our application

We now have a small yet very functional reporting application that uses PuppetDB as its
data source. Let’s go ahead and run it by opening a shell in our puppetreport directory
and running the following command:

rubypuppetreport.rb

You should be presented with a menu, as shown in the following screenshot:

1. Enter Host
2. Hardware

Let’s go ahead and add our host, either by selecting the first option or by selecting another
option and being prompted to enter a host. Next, let’s take a look at its hardware details;
you should have a report that looks something like what is shown in the following
screenshot:

LIS

| manufacturer | ¥Mware, Inc.

—_—
| productname | ¥Mware Wirtual Platform

—_—
| Mumber of processaors [
S ——
| Memary | 987.16 MB

————
| architecture | amds4
_—
| Wirtualized? | true

Bios Details

R e e e TS
| Bios release date | a7 2013
T
| Bios ¥endor | Phoenix Technologies LTD
e —
| Bias Versiaon | 6,00

-—

Motherboard Details

I
| Motherboard Manufacturer | Intel Carporation
——— —————————————
| Motherboard Name | 448B% Desktop Reference Platform
T — e
| Motherboard Serial number | Mone |
e e

That looks rather splendid! Finally, let’s take a look at the changes that Puppet did to this
server during the last Puppet run by selecting the third option. This can be seen in the
following screenshot:

| Failures | Successes | Noops

Event Details

T O . T T
| Resource Title | rvm_wersion
e — R —
| Resource Type | Motify
e S ——

| Property | mes

| 01d value

| Mew Walue | R¥M wersion 1.23.14

e I T
| Status | success
e
| Event Date and Time | 2014-03-03T23:20:22,2237

e e ——————]
| Message | defined 'message' as 'RYM wersion 1.23.14°

e e
I I

We can now hand this on to our users and let them merrily query PuppetDB without
needing to mess around with the curl statements or constructing complex queries.

As you can see, working with the PuppetDB data is relatively straightforward, and
although the application we created in this chapter is extremely simple, it exposes a
surprising amount of data, and this is just scratching the surface. By exploring the data
available within PuppetDB, you can easily use Ruby, Python, Java, or any other
programming language to create rich portals into this information. As long as you can
parse the JSON output, you have access to a wealth of detail about your infrastructure. It’s
well worth playing around and extending this code, both to increase the utility of the
application and also as a way to explore the data. For example, adding in another function
that creates a summary of all your managed files would be reasonably simple using the
catalogs endpoint.

Summary

We’ve covered a lot of ground in this chapter and worked on some exciting and very
useful techniques to work with PuppetDB. In this chapter, we’ve taken a look at how we
can create a simple Ruby application to extract details of the hardware, reports, and events
from PuppetDB and used some freely available libraries to ensure that our output looks
elegant and readable. By creating this application, we’ve learned that although PuppetDB
returns JSON as its format, the actual layout of the JSON feed may vary, and we’ve
looked at various ways in which we can work with some of that data.

In the next chapter, we will look at ways to create our own custom dashboard to present
PuppetDB data in an easy-to-use and attractive form using freely available open source
software.

Chapter 8. Creating Your Own Custom
Dashboard

Over the past few chapters, we’ve looked at the many ways in which you can both gather
and present data from Puppet. We have also created custom alerts and applications for our
users to gather their own information with. But we’re still reliant on the dashboards that
we looked at in Chapter 2, Viewing Data in Dashboards. That’s not to say that they aren’t
any good, but the trouble with a pre-made solution is that it might not do exactly what
you’d like.

In this chapter, we’re going to create our own dashboard using PuppetDB as the data
source and combine it with an open source framework for creating dashboards called
Dashing. We’re going to learn the following topics:

What Dashing is and what it can be used for
How to create Dashing jobs

How to integrate PuppetDB data into Dashing
How to make Dashing react to data

At the end of this chapter, you should have a functional and good-looking dashboard that
quickly imparts some key facts to anyone who happens to be glancing at it.

Exploring Dashing

Dashing is a framework for creating reporting dashboards quickly, easily, and with
minimal understanding of frontend development. Under the hood, it uses the Sinatra
framework to deal with the servicing of incoming web requests and uses Ruby for
backend data processing, with a language called CoffeeScript dealing with the frontend.

Note

Sinatra is a framework for creating web applications in Ruby and is similar to the well-
known Ruby on Rails project. Unlike the more fully-featured Ruby on Rails, Sinatra
focuses on providing a very lightweight framework that allows you to use mostly plain old
Ruby to develop your application; this is in contrast to Ruby on Rails, which also provides
a more rigid framework but a far more extensive set of features.

You can download Dashing from http://shopify.github.io/dashing/. At present, it hasn’t got
an extensive set of documentation, but you can find some good additional details on the
project’s wiki page at https://github.com/Shopify/dashing/wiki. As you’ll see later in this
chapter, it ships with some example dashboards that you can examine for more clues as to
how it works.

Dashing has been released as an open source product by the developers behind Shopify
(http://www.shopify.com), and it is part of a growing trend of companies allowing
developers to create and release software that are not core products as open source. Other
companies such as Etsy and Netflix have also opened up some of their internally-used
software as open source products, and from the perspective of the DevOps community at
large, this is a fantastic addition to the community.

Dashing uses the idea of widgets to display data, with each widget potentially showing a
different dataset in a different way. Dashing ships with a number of pre-made widgets that
can deal with anything from text presentation to building graphs, and a fair bit besides.
Dashing has adopted a visual style similar to Microsoft’s Windows 8 tiles, and the simple
and flat look allows data to be easily digested and understood. Take a look at the following
example dashboard:

http://shopify.github.io/dashing/
https://github.com/Shopify/dashing/wiki
http://www.shopify.com

Hello

This is your shiny new dashboard. Buzzwords

Streamlininess
Synergy
Pivoting
Paradigm shift
Exit strategy
Turn-key
Leverage

Convergence Enterprise

$76 1 7 Web 2.0

*19%

Protip: You can drag the widgets around!

Current Valuation

In billions # of times said around the office

You can check out this dashboard at http://dashingdemo.herokuapp.com/sample. The first
thing that you will notice if you open it in a browser is that it immediately draws the eye
with motion, as several of the widgets update and reflect changes by either moving the
swing meter around or pushing the graph along. This is more than just a static display of
data, and Dashing makes understated effects such as the dial sweep and graph animation
very simple to implement.

So how does Dashing fit with Puppet? As it turns out, very well. There is a huge amount
of data generated by Puppet, and although the dashboards that are freely available are
excellent, they are also focused on in-depth data exploration rather than reading the status
at a glance. Puppet Dashboard, Puppet Enterprise Console, and The Foreman are all
geared to be used as External Node Classifiers (ENC), and so the GUI is set for not only
interacting with data, but also for acting on it. PuppetBoard is used for reporting, but is
focused on exploration of data; you can spend many happy hours drilling into nodes to
find out the many details that Puppet Dashboard contains, but you can’t really glance at it
and see the state of your infrastructure.

Using Dashing, we are able to produce a dashboard that provides non-Puppet-focused
users, such as developers or support personnel, a window into what Puppet is doing at any
given time, and it gives them the ability to very quickly see the data that’s important to
them. When we’re done, our dashboard is going to look as shown in the following
screenshot:

http://dashingdemo.herokuapp.com/sample

Changed

Pending

3 0

Managed
Resources

53.3K

Managed hosts

348

Failed Hosts

puptest01.stunthamster.com
puptest04.stunthamster.com
mysql01.stunthamster.com
php02.stunthamster.com
ser.stunthamster.com
twin.stunthamster.com

Average Resources !
glt.stunthamster.com

Per node

153

As you can see, we’re presenting some basic but important facts about what Puppet has
changed, and we’re also adding in some fun statistics, such as the number of managed
resources and the last host that applied changes. That’s a lot of information in a single
screen, and it’s all formatted so you can take it all in at a glance.

Setting up Dashing

Dashing is very simple to install and keep updated using the RubyGems package
management system. To install Dashing, simply follow these steps:

1. Enter the following command in your command prompt:

gem install dashing

2. Once it’s installed, we can go straight ahead and create our dashboard. Dashing has a
built-in function to create a skeleton application for us to work with and will also
give you some example code to look at. Navigate to your projects folder and issue
the following command:

dashing new puppetdash

3. After running the command, you should have a new directory called puppetdash,
which contains your new skeleton application. We now only have to complete one
more step, which is to instruct the Bundler package manager to download and install
the required libraries for Bundler. Ensure that you’re in the root of your new project
and then issue the following command:

bundle install

This command looks inside the gem file that was created along with the rest of the project
and will then use the Bundler package manager to install any missing libraries that
Dashing requires. Be warned: Dashing has quite an extensive set of requirements, so
expect to see quite a few additional gems installed.

Exploring the default puppetdash directory layout

Let’s change directories and go to the puppetdash directory and look at what files have
been created for us. You should find a directory listing as shown in the following
screenshot:

dashboards
onfig.ru
ssets
README . md
Gemfile

Each of the directories inside the Dashing application serve a particular purpose, so let’s
quickly run through them and see what they are:

e widgets: This directory holds the Dashing widget code. Widgets are made up of
directories containing CoffeeScript, HTML, and Syntactically Awesome Style
Sheets (SASS) style sheets. This is where you would create any new widgets or place
any of the third-party widgets that are available.

e public: This folder is a standard Sinatra folder and is used to host any static files.
Within Dashing, this is used for the “404 page not found” HTML and browser
favicon.

e 1lib: This is another standard Sinatra folder. At the time of writing, Dashing isn’t
using this, but this is generally where external libraries required for the application
will be stored. If you heavily customize Dashing, you might find that you will need to
use this in the future.

¢ jobs: This folder is where we are going to be spending most of our time in this
chapter. Jobs are the mechanism that Dashing uses to import data into its various
dashboards, and these are simple pieces of Ruby code that fetch information and use
the send_event function to send the data to a receiving widget (or set of widgets).

e assets: This folder is used to contain the various images, JavaScript codes, and fonts
that Dashing uses. It’s here that you will find the core JavaScript libraries that
Dashing uses to construct its grid layout, animation, and basic styling.

e dashboards: The dashboards folder is where the files that make up the actual
dashboards are stored. Dashboards are created using the embedded Ruby templating
language (ERB) to define the layout. We’ll look at this in a bit more detail when we
create our own dashboard.

Running Dashing

Now that we know where everything is kept, let’s go ahead and start Dashing and see how
it looks in its default shipping state. Open a new terminal session at the root of the
puppetdash folder and issue the following command:

dashing start

This will start the Dashing application and have it listen on the local host, port 3030. Open
your browser and go to http://localhost:3030. You should be greeted with a page that
looks like the following screenshot:

Synergy

Hello

This is your shiny new dashboard. 44 Buzzwords

Enterprise
Web 2.0
Protip: You can drag the widgets around! Pivoting
Streamlininess
Turn-key
Exit strategy
Paradigm shift
Convergence il

Leverage

Current Valuation

$22

In Blllions # of times said around the office

That’s looking pretty good, and it proves that your installation is working fine. We’re now
ready to start creating our own dashboards and populating them with data.

Creating our dashboard

The first step to creating our own dashboard is to create our own layout of widgets to
represent our data. We want to ensure that our prospective users have enough data to tell
them how Puppet is doing in general, but we also don’t want to overload them with data.
We’re going to introduce the following items onto our dashboard:

Number of hosts that have changed in the past 30 minutes
Number of hosts with pending changes in the past 30 minutes
Number of hosts that failed a resource in the past 30 minutes
List of nodes that have failed their Puppet run

Number of hosts Puppet is managing at this point in time
The total number of managed resources

The average number of managed resources per node

These details give our users a good amount of information without overloading them with
extraneous detail; they should be able to very quickly see if everything is running fine.
And if there are issues, such as a large amount of changed or failed hosts, they should be
immediately apparent at a glance.

Creating our dashboard layout

Let’s go ahead and create our dashboard layout. Navigate to the dashboards directory
within the puppetdash project and create a new file called puppet.erb. By default,
Dashing will load the example dashboard as its default dashboard, and unless you change
the default dashboard, you are going to have to type the path to your dashboard each time.
Typing is tedious, and defaults are much more fun; let’s go ahead and change the setting to
make our new layout the default dashboard. Open the puppetdash/config.ru file in your
favorite editor and locate the following lines of code within it:

configure do
set :auth_token, 'YOUR_AUTH_TOKEN'

Now, edit this code so that it looks as follows:

configure do
set :auth_token, 'YOUR_AUTH_TOKEN'
set :default_dashboard, 'puppet’

Go ahead and start your dashboard using the dashing start command. Now, you should
find that it loads a blank dashboard on startup, as there is nothing in the
dashboards/puppet.erb file for it to display. Let’s go ahead and amend that; open the
puppet .erb file in your editor and insert the following code:

<% content_for :title do %>Puppet Stats<% end %>
<div class="gridster">

<li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
<div data-id="pupchanged" data-view="Number" data-title="Changed"
style="background-color:#96bf48"></div>
</1i>

<li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
<div data-id="puppending" data-view='"Number" data-title="Pending" >
</div>
</1li>

<li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
<div data-id="pupfailed" data-view="Number" data-title="Failed"
class="status-danger'"></div>
</1li>

<li data-row="1" data-col="1" data-sizex="1" data-sizey="2">
<div data-id="failedhosts" data-view="Text" data-title="Failed
Hosts'"></div>
</1i>

<li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
<div data-id="manhosts" data-view="Number" data-title="Managed hosts"
style="background-color:#737373"></div>
</1li>

<li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
<div data-id="manresources" data-view="Number" data-title="Managed

Resources" style="background-color:#737373"></div>
</1i>

<li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
<div data-id="avgresources" data-view="Number" data-title="Average
Resources Per node" style="background-color:#737373"></div>
</1i>

</div>
This is essentially a simple HTML code that lays out a series of list items within an
unordered list. Each of these items represents an individual widget. Let’s look in a little
more detail at how one of our widgets is defined. Consider the following code snippet:

<li data-row="1" data-col="1" data-sizex="1" data-sizey="1">

<div data-id="pupchanged" data-view="Number" data-title="Changed"
style="background-color:#96bf48'"></div>
</1i>

Widget definitions are made up of several options. The universally supported options are
the following:

e data-row and data-col: These two tags are used to define the widget’s starting
position on the grid, and are simply expressed as Cartesian coordinates. Note that this
is the starting position; Dashing supports drag and drop rearrangement, so don’t be
surprised if you wander past the TV you are displaying your dashboard on to find it
looks different!

e data-id: This tag is used to subscribe a widget to a particular Dashing job; in our
case, we’re subscribed to the pupchanged job. So, every time that job sends updated
information, it will be updated in any widget that is subscribed to it via the data-id
tag. You can have multiple widgets subscribed to the same job, which is excellent for
jobs (akin to the PuppetDB scan that we have). You want to keep down the number
of times you perform heavy queries to data sources wherever possible.

e data-view: This tag defines the type of widget. It may be a number, text, list, and so
on. By default, Dashing ships with several different widgets, and you can find these
in the widgets directory of your Dashing application. The tag needs to match the
directory name of your chosen widget in that directory.

e data-title: This tag defines the heading that will be shown on the widget and can
be a free-form piece of text of your choice.

e Additional tags: As you can see, I’ve added several additional tags to some of the
widgets; this is to style the color of the tiles. Generally speaking, you can use most of
the common CSS tags to apply styling to the tiles, but be careful with any tags that
affect the positioning or layout, as these can have severely weird effects on the grid.

Go ahead and save this file and then refresh your browser. You should have a dashboard
that looks like the following screenshot:

Changed Pending

Falled Hosts

. , Managed Average Resources
Managed hosts = =
B Resources Per node

As you can see, the dashboard is using color to great effect to delineate the different data
types. Note that in the dashboard, the Failed tile is gently pulsating. This is due to the
class="status-danger" class that we set for this widget within the layout; this causes the
tile to gently pulsate and will focus user attention on it. There is also an additional class
called class="status-warning" that causes the tile to turn a rather alarming shade of red
as well as pulsate. This can be used to great effect if you have something you really
urgently need a user to notice.

At present, the dashboard looks nice, but it isn’t especially useful. Let’s go ahead and start
creating the jobs that are going to feed data into our dashboard.

Feeding data into Dashing

As we’ve already covered, Dashing uses a series of scheduled jobs written in Ruby that
will collect any data that we are interested in. A library called rufus-scheduler controls
the scheduling; the rufus-scheduler library allows for great flexibility as to when and
how jobs are run, meaning that you could have a lightweight job that scrapes data from a
public API and runs every five seconds, and another job that will run every 30 minutes
and perform a heavy query on a database.

We’re going to create a single job called puppet.rb, and this Ruby code is going to
perform the following actions:

e Gather metrics using PuppetDB’s metrics endpoint

e Gather a list of nodes using PuppetDB’s nodes endpoint

e Use the nodes gathered to gather counts for events that have occurred in the past 30
minutes using PuppetDB’s event -counts endpoint

e Parse the events data to display the state of our hosts

As you can see, we’re taking the knowledge that we’ve gained with PuppetDB over the
past two chapters and putting it to good use.

Firstly, let’s clear out the jobs that ship with Dashing. These are used to populate the demo
dashboards and aren’t going to be used by us. However, they will still run. Any Ruby file
within the jobs directory will be executed, and although it won’t affect our dashboard
directly, it will output warnings about the Twitter job into the console when you run the
dashboard. Let’s avoid confusion and save a tiny amount of resources by getting rid of
those now by simply deleting every .rb file within the jobs directory. You can do this by
executing the following command in the root of your Dashing project:

rm jobs/*.rb

Creating new jobs in Dashing

Now that we have a nice and clean jobs directory, let’s create a new job. We can use a
utility built into Dashing to build a skeleton job for us. At the command prompt, change
your current directory to the puppetdash project root and issue the following command:

dashing generate job puppet

This will create a new file called puppet.rb and place it in the jobs directory of our
dashboard. Open up the file and take a look. It has the following code:

:first_in sets how long it takes before the job is first run. In this
case, it is run immediately

SCHEDULER.every 'im', :first_in => 0 do |job|

send_event('widget_id', { })

end

As you can see, we have the beginnings of our job. The layout is very simple; the first line
after the comment sets how often this job will run using the every method of the rufus-
scheduler library. We also ensure that this job will run as soon as we start the dashboard
using the : first_in option; this is essentially a numerical value in seconds that the
scheduler will wait before running the first job. Setting it to zero will ensure that the job
runs straight away. This is a useful option if you need to ensure that some of your jobs are
staggered to avoid excess load on external systems.

Next, we create a Ruby block called job that will contain the actual code that will gather
and send data. Essentially, this is a loop with code being executed every n units, where n
could be seconds, minutes, hours, or days, depending on the call to the SCHEDULER. every
method. As you can see, the default value is every one minute, but by setting the option to
1s, it would run every second, and setting it to 1h would ensure it runs every hour. You
can find out more about which time formats the rufus-scheduler library understands by
visiting the project page at http://rufus.rubyforge.org/rufus-scheduler/.

Let’s go ahead and edit this code to suit our purposes. The first thing we’re going to do is
include the libraries that we will need to work with our data; these are old friends we’ve
already worked with when using PuppetDB and should be familiar at this point. We’re
also going to set our job to run every 30 seconds; we’re going to be hitting PuppetDB
reasonably hard, so we don’t want to be too heavy handed, and this type of data doesn’t
need to be in real time. Have a look at the following code:

require 'json'

require 'net/http’'

require 'uri'

:first_in sets how long it takes before the job is first run. In this
case, it is run immediately
SCHEDULER.every '30s', :first_in => 0, allow_overlapping: false do

It’s worth noting the additional option I’ve added to the scheduler; that is, the
allow_overlapping: false option. This ensures that this job won’t run until all previous
iterations of this job have completed. This ensures that if PuppetDB takes longer than 30

http://rufus.rubyforge.org/rufus-scheduler/

seconds to respond, we don’t add to its woes by sending yet another set of queries for it to
deal with.

Now that we have our job schedule defined, it’s time to move on and start gathering data.
Firstly, let’s define some variables to hold our data. This is described in the following code
snippet:

SCHEDULER.every '30s', :first_in => 0, allow_overlapping: false do
| puppet |
time_past (Time.now - 1800)

ftime_now = Time.now.strftime("%FT%T")
ftime_past = time_past.strftime("%FT%T")

@failedhosts = []
@failed = 0
@changed =
@unchanged
@pending =
@eventtext

0
=0
0

(|

What we’re doing here is setting up three variables for holding time data. The first
variable (time_past) holds the current time minus 30 minutes; this gives us the time
period we want to report on. The other two time variables (ftime_now and ftime_past)
are formatted ready for submission to PuppetDB. The next six variables are going to be
used to hold the data we plan to return, an array of hosts, the number of hosts that Puppet
has affected in the past 30 minutes, and finally a place holder to decant our array of hosts
into when we come to display it.

Our next task is to fetch the data from PuppetDB using the same methods that we’ve
covered in the previous chapters. This time a round, we’re going to be gathering data from
a variety of PuppetDB sources, and in particular, we will be using the metrics endpoint
for the first time. Have a look at the following code:

@eventtext = "'

nodes = JSON.parse(Net::HTTP.get_response(URI.parse
('http://localhost:8080/v3/nodes/"')) .body)

numberofhosts = JSON.parse(Net::HTTP.get_response(URI.parse
('http://localhost:8080/v3/metrics/mbean/com.puppetlabs.puppetdb.
query.population:type=default, name=num-nodes')).body)["Value"]

numberofresources = JSON.parse(Net::HTTP.get_response(URI.parse
('http://localhost:8080/v3/metrics/mbean/com.puppetlabs.puppetdb.
query.population:type=default, name=num-resources')).body)["Value"]

avgresources = JSON.parse(Net::HTTP.get_response(URI.parse
('http://localhost:8080/v3/metrics/mbean/com.puppetlabs.puppetdb.
query.population:type=default, name=avg-resources-per-node')).body)
["value"].round

You may be thinking that the call to the nodes endpoint looks a little different than before;

this is because this time a round, we’re performing the JSON parse, the NET: : HTTP library
call, and the URI parse all in one line. This is a more efficient method, but is slightly less
readable on first reading; by now, you should be familiar with using this technique—this is
just making it tidier.

The metrics endpoint is another PuppetDB endpoint that is simple to work with as it is a
single non-parameterized call that responds with a single JSON element. As you can see,
we’re taking the value returned by that call (contained within the ["value"] field) and
assigning it straight to its respective variable; there’s no more processing required for the
metrics.

So, we now have our list of nodes and our metrics, and we now need to calculate the data
we need to fill our required columns. Take another look at our dashboard:

Changed Pending

Falled Hosts

Managed Average Resources

Managed hosts
6 Resources Per node

We now need a way to calculate how many hosts are in a particular state. Normally, we
would turn to the aggregate-event-counts endpoint for this information. As we’ve noted
in earlier chapters, it’s a highly efficient endpoint to gather this kind of metric. However,
in this case, it doesn’t quite fit the bill. The problem with the aggregate-event-counts
endpoint is that hosts can be counted more than once as it’s counting events rather than
hosts. Consider this example: a host tries to apply both a user and file resource from its
catalog, with the user resource applying OK, but the file resource failing due to a missing
prerequisite. In this scenario, the host has created two events, one success and one failure,
and this will be reflected in the final events count.

As our dashboard is taking the point of view of a node, it makes more sense to ensure that
a host can only be in one of three states: changed, pending, or failed. This maps nicely to
the success, noop, and failure event types. We just need to ensure that if a host correctly
applies three resources and fails on the fourth, then that is reflected in the Failed tile of the
dashboard and doesn’t appear in the Changed tile. Although technically it is both, for our

dashboard, we want to ensure that it’s only reported as failed. Let’s go ahead and add the
following code to enable this for the puppet.rb file:

nodes.each do |node|

uri = URI.parse('http://localhost:8080/v3/event-counts/")

uri.query = URI.encode_www_form(:query => %Q'["and", ["=", "certname", "#
{node['name']}"], ["<", "timestamp", "#{ftime_now}"],[">", "timestamp", "#
{ftime_past}"], ["=", "latest-report?", "true"]]', :'summarize-by' =>
'certname', :'count-by' => 'resource')

events = JSON.parse(Net::HTTP.get_response(uri).body)
events.each do |event]
if event['failures'] > 0
@failedhosts << event['subject']['title']
@failed += 1
elsif event['noops'] > O
@pending += 1
elsif event['successes'] > 0
@changed += 1
end

end
end

The first thing that we are doing is constructing a Ruby block and passing it the name of
the node we gathered from the nodes list. We then connect to the event-counts endpoint
and query it for any events created by this node in the past 30 minutes. This is derived by
asking for any events that fall between the ftime_past (30 minutes ago) and ftime_now
(current time) values.

Once we have our list of events, we need to decide if they constitute a success, failure, or
noop operation; we do this by examining the data contained within the event hash, looking
for failures, noops, and successes. These are numeric fields that will simply list the
number of resources that are in a given state, and we can use this to build our node
metrics. It’s important that we parse this data in the correct order, as a node may have
several different states. To accomplish this, we first check to see if the node has any failed
resources, and if it does, we add its hostname to the array we are going to use to build our
list of failed nodes. Then, we increment the failed nodes counter before exiting the loop. If
it hasn’t failed any resources, we then see if it has any non-applied resources, and if it
does, we increment the noop counter and exit. Finally, we check if it has successfully
applied resources, and if it has, we increment the success counter. By ensuring that we exit
the loop after each state is discovered, we avoid a double or even triple counting of a host.

We’ve gathered all of the data that we need to send to our dashboard view. Now, all we
need to do is go ahead and make our widgets aware that there is new data to display. We
do this using the send_event method provided by Dashing. The send_event method uses
two arguments: the first is the ID of the widget to which you want to send the data, and the
second is the data that you wish the widget to process in JSON format.

In our case, we have the following data IDs:

® pupfailed

puppending
pupchanged
manhosts
manresources
avgresources
failedhosts

Each of these IDs in turn map to a particular widget. This is shown in the following
screenshot:

Changed Pending

Falled Hosts

Managed ho Managed Average Resources
Vanaged hosts - =
- Resources Per node

When we trigger a send_event method with any of these widget IDs, the displayed data
will change to whatever we have sent, assuming that it’s in the right format. In our case,
we’re almost exclusively dealing with data views using the number format; the odd one
out is the Failed widget, which is using a simple text format.

So, now that we know where the data is going, let’s send it. This is done using the
following code:

send_event('pupfailed', {current: @failed})

send_event('puppending', {current: @pending})
send_event('pupchanged', {current: @changed})
send_event('manhosts', {current: numberofhosts})
send_event('manresources', {current: numberofresources})
send_event('avgresources', {current: avgresources})

@failedhosts.each do |host|
@eventtext<< "#{host} \n"
end

send_event('failedhosts', { text: @eventtext })

end

This code is fairly straightforward. The first six lines simply take the numeric values
we’ve gathered for our various host metrics and send them on to their respective widgets.
As you can see, we are only including one JSON field with each of these, which is the
current: field. This sets the value of the data that is displayed to the user.

The next set of lines deals with the failed hosts’ data. We’re sending that to a text widget,
so we need to take the data that is currently in an array and iterate through it, adding each
line into a variable that we’re going to use to hold it as a string object. Note that within
each iteration, we’re adding the control character \n at the end. This is so that each host is
followed by a carriage return to ensure our list is nice and tidy.

That’s it! You should now be able to go into the root of your Dashing project and run it
using the command dashing start. You should then see your own version of the
dashboard that looks like the following screenshot:

Changed Pending

3 0

Failed Hosts

puptest01.stunthamster.com
puptest04.stunthamster.com
mysql01.stunthamster.com
php02.stunthamster.com
ser.stunthamster.com
twin.stunthamster.com

Managed Average Resources .
git.stunthamster.com

Resources Per node

348 533K 153

Managed hosts

Last updated at 6:43

That’s a pretty good-looking dashboard, and it makes your most important Puppet metrics
both highly accessible and also very clear and easy to read. Dashing has been designed to
be displayed on big displays, so if you have a spare TV or a large monitor sitting around
the office, it’s worth putting this dashboard somewhere nice and visible. As I've
mentioned elsewhere, Puppet reporting is a great place to spot when things have radically
changed on your network, so having this data at hand can ensure that you see issues before
they become big problems.

Adding trends

Our dashboard is already looking pretty good, but Dashing offers a few features that are
both easy to implement and quickly and easily add additional data and means of discovery.
One of the quickest and easiest additions is adding trends to our Puppet metrics to allow
people to see at a glance how data is changing over time. This is achieved using the
numbers widget that we’ve already used. The numbers widget is not just limited to
displaying the current dataset; it can also display a second field, which is the percentage
change from the last run, complete with an appropriate arrow to denote how the data has
changed.

As we’ve already mentioned, the numbers widget accepts fields in JSON format; we’ve
already given it one field, : current, and now we’re going to give it a second field, : last.
This will give the numbers widget the data it needs to draw the trend data, and this :last
field represents the last reading that this widget displayed. Let’s go ahead and alter our
code to add this new feature.

In essence, all we need to do is create three new variables, and these will be used to
contain the previous values of the metrics widgets. This is very easy. One of the
advantages of using the rufus-scheduler library is that the job is effectively running in
its own thread. This means that any variables that are initialized can be treated as being
persistent for the lifetime of the dashboard process.

Take a look at the following example code for a dashboard job:
foo = 0
SCHEDULER.every '5s,' do |example|

lastfoo = foo
foo += 1

send_event('foo', {current: foo, last: lastfoo })
end

In this case, in its first run, the widget will receive two values: the current: field value,
which will be 1, and the last: field value, which will be 0. In the next run, the values will
be 2 and 1, then 3 and 2, and so on. Essentially, the code between the SCHEDULER. every
method and the end statement is being continuously run, and thus the values are being
persisted. This is helpful as it saves you using something along the lines of a text file,
database, or key value store to store this data, and avoids the overhead of having to
retrieve it every time you want to refresh your dataset. Dashing also keeps a history of the
widget values, which means that when you restart the dashboard, it should load the
previous values and avoid you having to start from scratch. You can find this in the root of
your dashing folder in a file named history.yaml.

Let’s go ahead and edit our code to support the trends view. First of all, we need to create
some blank variables to hold our data. This is described in the following code:

require 'json'
require 'net/http’'
require 'uri'

last_manhosts = 0
last_manresources
last_avgresources

0
0

Now, we need to assign them a value within the actual job loop itself. This is described in
the following code snippet:

time_past (Time.now - 1800)
ftime_now Time.now.strftime("%FT%T")
ftime_past = time_past.strftime("%FT%T")

last_manhosts = numberofhosts
last_manresources = numberofresources
last_avgresources = avgresources

This code is applied before any other calculation, and so should either contain 0 if this is
the very first time the dashboard has run, or the previous value of the manhosts,
manresources, and avgresources IDs if it has been run before. Finally, we need to send
our data to the widget. This is done using the following code:

send_event('pupfailed', {current: @failed})

send_event('puppending', {current: @pending})

send_event('pupchanged', {current: @changed})

send_event ('manhosts', {current: numberofhosts, last:last_manhosts})
send_event ('manresources’', {current: numberofresources,
last:last_manresources})

send_event('avgresources', {current: avgresources, last:last_avgresources})

That’s all we need to do. None of the layout information has changed, and the number
widget is already designed to deal with our new data. Go ahead and restart your
dashboard. It should now look like the following screenshot:

Changed Pending Failed

3 0 11

Failed Hosts

puptest01.stunthamster.com
puptest04.stunthamster.com
mysql01.stunthamster.com
php02.stunthamster.com
ser.stunthamster.com
Managed Average Resources twin.stunthamster.com

Resources Per node git.stunthamster.com

356 546K 153

WA M1077% M4%

Managed hosts

Last updated at 22:07

As you can see, we can now easily see the trends by simply glancing at the panel. In this
example, my managed resources have gone through the roof and my average resources per
node are way up. But my managed hosts have dropped alarmingly. If this were a
production system, I’d be reaching for the panic button around this point. Without the
dashboard, I might have been blissfully unaware of any problems until it moved from
being a curious problem to becoming a huge, stability threatening monstrosity of an
incident. Much like riding a bike on the road, when it comes to infrastructure
management, visibility is your friend.

Adding meters

We’ve made our trends easier to see, but the dashboard still lacks a certain flair. Sure it’s
clear and very colorful, but it’s still pretty static. Let’s make it a bit swishier and add some
swing to our dashboard using the meter widget. The meter widget is a fun way of not only
adding some animation to a dashboard, but also giving users a visual clue as to how
dramatically things have changed.

Firstly, let’s amend our puppet.erb file. As we covered earlier, the .erb file deals with the
layout for the dashboard, and in particular, it is where you define the types of widgets that
will be presented. In our case, we want to take the existing number widgets and turn them
into meter widgets. You can do this by amending the puppet.erb file to contain the
following code snippet:

<% content_for :title do %>Puppet Stats<% end %>
<div class="gridster'">

<li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
<div data-id="pupchanged" data-view="Meter" data-min=

"0 data-max="100" style="background-color:#96bf48"></div>

</1li>

<li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
<div data-id="puppending" data-view="Meter" data-min=

"0" data-max="100" ></div>

</1i>

<li data-row="1" data-col="1" data-sizex="1" data-sizey="1">
<div data-id="pupfailed" data-view="Meter" data-min=

"0" data-max="100" class="status-danger'"></div>

</1i>

As you can see, we’ve slightly amended the HTML code to include a new data-view
attribute, and we’ve added some additional attributes to control the minimum and
maximum numbers. Go ahead and change these attributes to reflect your environment.
Generally speaking, I’d make the data-max value match the number of hosts. This
controls the distance that the meter can swing, so you want the top end to be roughly
analogous to the number of hosts you have.

The next thing we need to do is edit our job code. Although the widget ID remains the
same, the widget type is different, and will therefore accept a slightly different format of
data. Go ahead and amend your code to look like the following:

send_event ('pupfailed', {value: @failed})

send_event ('puppending', {value: @pending})

send_event ('pupchanged', {value: @changed})

send_event('manhosts', {current: numberofhosts, last:last_manhosts})
send_event('manresources', {current: numberofresources,
last:last_manresources})

send_event('avgresources', {current: avgresources, last:last_avgresources})

As you can see, all we’ve done is changed the format of the data from the current: type
to the value: type. The rest remains the same as the meter widget deals in numeric data in
the same way as the number widget. OK, now that we’ve made our changes, go ahead and
restart our Dashing dashboard. You should end up with a dashboard that looks like the
following screenshot:

Changed Pending

(=4 11 @ |
‘ Failed Hosts

puptest01.stunthamster.com
puptest04.stunthamster.com
mysql01.stunthamster.com
php02.stunthamster.com
ser.stunthamster.com
ManagEd Average Resources twin.stunthamster.com

Resources Per node git.stunthamster.com

356 546K 153

Managed hosts

Last updated at 22:41

Now we have a dashboard that is gaudily colorful, nicely informative, and rather
impressively animated. This is now ready to be put up on the largest monitor or TV you
have to hand so that you can keep an eye on it.

As you can see, Dashing is a versatile accompaniment to PuppetDB. Hopefully, this
simple dashboard has set your imagination to work wondering what else you could
display. Remember, PuppetDB has access not only to the Puppet catalog and reports, but
also the Facter information for each host. This can make for a fairly impressive range of
data. Want to easily graph how many CPUs you currently have allocated? Ever wondered
how much RAM your hosts in a certain domain have? All these facts and more are
relatively easy to retrieve using PuppetDB and very easy to display using Dashing. I
encourage you to play around and see what combinations you can come up with. Also,
remember that you’re not just limited to one dashboard using Dashing — you can create as
many as you like within the dashboards folder.

As long as there is a job that can feed your widgets with data, it doesn’t matter how many
you have. If you are going to employ a large amount of dashboards, then it might be
sensible to use a generic Puppet job to retrieve the data. That way, you have a singular job
that runs every so often and gathers all of the stats from PuppetDB and feeds many

dashboards, rather than having many dashboards, each with their own individual jobs to
gather data. This is the kind of shenanigans that can leave your PuppetDB a smoking ruin
by subjecting it to a very large load every few seconds as your many widgets go looking
for their data.

Summary

In this chapter, we’ve taken a look at how we can utilize the data we store in PuppetDB to
create attractive dashboards in Dashing. We’ve explored the use of ERB templates to lay
out our widgets and the concept of using jobs to gather data in the background. We’ve
created our own dashboards to allow our users to see the current state of the Puppet
infrastructure, including which resources have changed, succeeded, and failed. We’ve
taken that basic dashboard and improved it by adding in a quick and easy trends reference,
and we also added some more graphical cues by adding in meters to accentuate some of
the data display. Finally, we took a look at some general tips on how to get the best out of
your dashboard data.

In the next chapter, we’re going to take a look back at everything we’ve covered so far and
recap some of the highlights. We’re also going to explore some of the other ways you can
use your Puppet data, and briefly touch on what other tools you can use to drive reporting
and alerting using Puppet.

Chapter 9. Looking Back and Looking
Forward

We are nearing the end of our exploration of Puppet reporting and alerting, and so it seems
fitting that we spend this chapter going over what we’ve learned and exploring some of
the other ways in which you can utilize the reporting functions of Puppet.

In this chapter, we will cover:

A recap of Puppet dashboards and integration with third-party dashboards
Looking back at the alerting feature and integration with external alerting systems
Analyzing metrics and changes with Graphite

Anomaly detection with Etsy Skyline

Driving change and orchestration with the Puppet reporting feature

Looking back at what we’ve learned

By now, you should be familiar with Puppet reporting features and how they fit in with the
wider Puppet product. However, it’s worth recapping what we’ve learned, and while we
recap, we will look at other ways of using these features. We’ve covered the basics of
configuration and data retrieval in this book, but this is just the tip of the iceberg. With a
little imagination and creative use of both the report processors and PuppetDB features,
you can start to use Puppet in ways you may not have considered, not only to uncover
details about your infrastructure you may not have been aware of, but also to drive change
within it.

Rediscovering dashboards

We took a look at dashboards way back in Chapter 2, Viewing Data in Dashboards, and
you will remember from that chapter that there are several dashboards available for
Puppet, ranging from the venerable Puppet Dashboard through to the all singing and all
dancing Puppet Enterprise Console. With the addition of PuppetBoard, we also have a
stylish and easy to use way to observe the details that PuppetDB holds.

Dashboards are a fantastic addition to your Puppet infrastructure, allowing you to see, at a
glance, any element of your infrastructure that is either not configured correctly or,
perhaps more importantly, has recently been updated. The visibility of changes is perhaps
one of the most bewilderingly overlooked and yet impressive features that Puppet offers,
and the dashboard is your window into that process.

In Chapter 8, Creating Your Own Custom Dashboard, we looked at how we can use
Puppet to design our own custom reporting dashboard. This utilized the power of
PuppetDB and the simplicity of Dashing to create our very own view of Puppet data. We
can use the same techniques to add data to other dashboards and aggregation systems. The
recent explosion of tools for DevOps system administrators has gifted us with several
different cloud-based dashboard systems such as Boundary (http://boundary.com) and
New Relic (http://newrelic.com). These systems are increasingly attempting to become the
hub of a busy DevOps department and offer some excellent integration, both for data
visualization and alerting. Using custom report processors, Puppet can easily be integrated
into these systems and will bring valuable insight into the rate of change alongside the
other metrics that these applications monitor. We have long become accustomed to the
idea that we need to track changes to our application code; however, for some time, we
have lacked the tools to do this with our infrastructure. Using Puppet reporting, we can
start to bridge that gap, and by integrating with existing dashboards used to visualize this
data, we can get a holistic view of our rate of change.

http://boundary.com
http://newrelic.com

Producing alerts

In Chapter 4, Creating Your Own Report Processor, we looked at how you can create your
own alerts using custom report processors. We used a relatively small amount of Ruby
code to monitor change among specific elements, and triggered e-mails when this
occurred. This was the basis of our simple and effective alerting system, and for small
installations, it would be absolutely perfect. For larger infrastructures, you will need
something a little more industrial, with a solution that can both scale and offer a more
complete set of features about how you are alerted. Infrastructure monitoring has been
around for some considerable time, and there are a great deal of tools to choose from, both
open source and commercial.

The recent trend towards having a more ephemeral infrastructure has started to create a
shift in this space, with an increasing number of monitoring system developers trying to
make their respective systems suitable for use in an environment where server lifetimes
may only be measured in hours rather than the more traditional years. Puppet is already
being widely utilized to configure these tools as the exported configuration feature makes
it incredibly simple to roll out new checks when systems change; in particular, this has
made managing the complexities of products based around Nagios much simpler.

Using Nagios

Nagios (http://www.nagios.org) is the old faithful of the monitoring world, and it’s hard to
find a systems administrator who hasn’t had to work with it at some point in his or her
career. This open source project has had the benefit of a huge community of software
engineers working on it for quite a number of years, and at this point, could be considered
the quintessential open source monitoring tool.

Nagios has been the basis for a great number of new projects, both commercial and open
source, with several of them being direct forks from the original Nagios code base.

Discovering Icinga and Shinken

Products such as Icinga (https://www.icinga.org) and Shinken (http://www.shinken-
monitoring.org) are forked from the Nagios code base, and have taken certain features of
the original product and improved upon them for certain use cases. The omnipresence of
Nagios has also ensured that most monitoring systems can make use of the incredible
number of checks that have been written for it, and will, at the very least, be able to react
to output from them.

One very interesting relative newcomer in the monitoring space is the Sensu project
(http://sensuapp.org). Its dashboard is shown in the following screenshot:

http://www.nagios.org
https://www.icinga.org
http://www.shinken-monitoring.org
http://sensuapp.org

Sensu Dashboard Current Events Stashes Clients

Current BEvents (1)

™ Filter Unknown Checks

Enter keywords to filter by

Client Check Output

sensu-client.domaintld cron_check CheckProcs CRITICAL: Found 0 matching processes; cmd J/crond/

B Copyright Sonian, Inc. 2011. License (MIT)

Sensu has been designed from the ground up to be used in large and volatile environments
(such as a cloud) and brings design patterns such as a publish and subscribe model, both to
enable it to scale to thousands of clients relatively easily and to make the discovery and
configuration of new hosts simple. Sensu has been designed with a robust API and the
Ruby library to allow the addition of new checks, and although a great many of them are
written in Ruby, you can also implement them in pretty much any other language. I’ve
seen checks that have been written in Ruby, Python, and Java. If for some reason, you
can’t write a new check, Sensu is able to understand and process checks that have been
designed for Nagios, so you can easily reuse existing checks.

As we’ve already discovered, Puppet isn’t just limited to setting up these systems. It can
also be used to trigger alerts based on its unique view of your infrastructure. This is where
it integrates well with a dedicated monitoring system such as Nagios and Sensu. Raising
alerts using report processors is relatively easy; however, generating the correct
notification type is complex and better left to systems more suited for that activity. Using
the techniques we have already learned, it would be easy to add checks like the following:

Monitor and alert if a resource failed to apply or a catalog failed to compile

Alert if Puppet has not been run on a host for a certain amount of time

Alert if certain non-managed resources are changed using the audit metaparameter
Monitor and alert if certain facts have changed on a node using the PuppetDB records

Compliance monitoring with Puppet

In combination with Facter, Puppet knows a huge amount about your infrastructure, and
informs your dedicated monitoring system when these facts have changed. By using these
facts alongside defined roles within your ENC or Hiera, it’s possible to raise alerts when
nodes fall out of compliance. With judicious use of custom facts, you can use Puppet to
gather details of what software and configuration exists on a given set of servers, store
them in PuppetDB, and then use your alerting system to compare those details and set off
appropriate warnings if they don’t match. By using Puppet to alert you when a host is out
of compliance, you gain the confidence that your infrastructure is configured how it needs
to be for your uses. Remember, Puppet has the under-utilized audit metaparameter, and
this is an excellent way to identify and monitor resources that you might not want to
manage using Puppet. We looked at how to use the audit metaparameter in Chapter 4,
Creating Your Own Report Processor; it’s worth learning this technique as it can add
simple, powerful, and real-time auditing to your Puppet-managed infrastructure.

Auditing isn’t limited to the elements that Puppet manages, as you can easily create
custom facts whose only role is to gather data for consumption by your reporting and
alerting systems. Creative use of custom facts can be hugely beneficial when tying your
alerting systems with Puppet; it’s relatively easy to write a custom fact to export all the
installed software on a given server or to return details about custom systems designed by
your internal developers. Once these facts have been created, they are available for use in
report processors and are also stored in PuppetDB for reporting uses. Be creative — the
more monitoring you have, the more you can be confident that your systems are correctly
configured, ready for use, and suited for the applications that are going to be hosted on
them. There is nothing more irritating than being woken up at some unnatural time of the
morning by a customer who has spotted a problem because your alerting system missed it.

Analyzing metrics with StatsD, Graphite, and Etsy
Skyline

As we have seen throughout this book, Puppet creates an awful lot of interesting metrics,
with items such as total number of managed resources, time taken to apply catalog, and so
on readily available to report against. On its own, this can be of limited use — you can
certainly raise alerts based around long-running clients, and the stats for the number of
managed hosts and resources can be a handy gauge of activity, but in general, these stats
are more suited to analysis rather than alerting. Luckily, we now have some very powerful
tools at our disposal to not only store this type of data, but also to analyze and visualize it.

Graphite (https://github.com/graphite-project) is one such system, and is a popular and
highly powerful system for storing and graphing time series data.

Note

A time series is essentially points of data plotted over a set time period. For instance, the
response time of an application measured at intervals of a minute would be an excellent
example.

This is a perfect fit for Puppet metrics, and getting Puppet metrics into Graphite is very
easy indeed. You can find a ready-made report processor at

https://github.com/krux/puppet-module-graphite-report, which once installed will send
your Puppet metrics to Graphite.

Graphite allows you to start graphing your Puppet metrics in real time and easily combine
disparate data points into a single graph. For instance, in Puppet metrics terms, this means
that you could take the metrics for the catalog compilation time and overlay them with the
number of resources managed. This is pretty interesting stuff, but it’s when you combine
this with other data sources that things can become really interesting. By installing
collectd (http://collectd.org) onto your Puppet master, you can start to gather CPU and
memory usage statistics as well as disk I/0O and other important system performance data
points. collectd can send this data into Graphite, and once in there, you can easily create
real-time graphs that overlay your detailed Puppet metrics against the amount of resources
that are being consumed. This allows you to very easily create scalability reports for your
Puppet infrastructure and determine when you might need to consider scaling up your
systems.

https://github.com/graphite-project
https://github.com/krux/puppet-module-graphite-report
http://collectd.org

Tracking changes with Puppet and Graphite

You can also start to use your Puppet data in a more holistic way. One of the metrics that
people overlook when they are looking at their infrastructure is the rate of change. For
instance, you may have huge amounts of reporting around requests per second, response
time, and resource usage. This is certainly interesting and valuable, but a surprising
amount of people miss the simple metrics that tie it all together: deployments and changes.
Using Graphite, it would be perfectly simple to create a new index to track Puppet change
events, and you could then use a simple Puppet report processor to output a change event
every time a host reports that a resource has changed during the course of a Puppet run.
This is incredibly useful as it means that you can tie this information into other statistics
that you track. For instance, if you notice that your response time on an important
application has started to drop, you can easily see if there were Puppet changes applied
around that time, and if there were, you can then easily query your PuppetDB catalog to
find out which resources were changed in that time frame. Likewise, you can start to
monitor the overall health of your infrastructure, such as CPU and RAM usage, against the
amount of change going through. If you also use Puppet to deploy new versions of
applications, this too can be tracked as a specific changed event.

Using Etsy Skyline to find your normal

Humans are fantastic at spotting patterns in data, and using a tool such as Graphite in
combination with Puppet allows you to easily output huge amounts of data for analyses.
However, you have to be looking at the appropriate sets of data to see the pattern, and the
double-edged sword of using Puppet to increase your level of information is that there is
now more information to try and spot patterns within. Fortunately, there are an increasing
number of tools that will sift through this data for you and let you know when something
is outside of what it has learned to be normal. One excellent and open source example of
these tools is Etsy Skyline. This tool can be seen in the following screenshot:

stats.browse_pages.filters.miss.ship_to red line shows detected anomalous datapoint holy anomaly!
1 hour: \
name of anomalous metric |

40 past hour

) \ #l‘

20 ,l |

) A A A A P I A s " |

= A Aai -.,’-,-'-'\,rr'\fw" Ll T VT e Ti vt IV A .--’I"""’\x .’-;-«-". .J"*-...-' M AN ‘4“\\""--_,.\‘"-\‘-'N\""'-,-"'w‘-p- A ,\...f.".‘.-. -M‘“"ﬂ_.'/""-"1"",‘\".."-"\.'.'¥-"\.“"a‘\-__-‘»-{-‘f"—\,--*-f"-w.ﬁ.,""vn"-*«,*"-'-/\'\v“‘-. _" l_‘_ s
28 Fioirs: past 24 hours

o \ §

20

10 P O o
metric name anomalous datapoint
stats.browse_categories.feed ¥ < - P " 30

timeseries datapoint that triggered detection
stats.browse_pages.cache.miss 36
stats.browse_pages filters.miss.ship_to ‘ 30
stats.reglon.suggested.code.KG r* 0
stats.shipping_labels.apl. multi_labels.subsequent_package_purchase_duration.3 »* o
stats.shipping_labels.apl multi_labels.subsequent_package_purchase_duration.5 0
stats.shopstats.domain.ShopStatsRollup.etsy. l M 42
ist of anomalous metrics

stats.shopstats.domaln.ShopStatsRollup.etsy.activity < 170
stats.timers.api.findAllRecelptTransactions.200.lower 166
stats.timers.apl.findAllRecelptTransactions.200.mean r* 166
stats.timers.apl findAllReceiptTransactions.200.mean_80 166
stats.timers.apl findAllRecelptTransactions.200.median 166

Skyline is able to use Graphite as its data source, and so will start to analyze any and all of
the metrics within. Skyline starts to build up a picture of what is considered normal for
each of these metrics, and unlike an alerting system such as Nagios, it does not rely on a
fixed threshold to decide to alert. For instance, you may find that the CPU of your
database host runs at 100 percent every day from 04:00 to 05:00 hours, but is otherwise
under 50 percent utilization; this is probably because you are doing housekeeping around
that time. Etsy Skyline will soon learn that this is considered normal for your database
node and will not do anything when it sees this data; however, if it sees that CPU
utilization is at 100 percent in the middle of the day when it hasn’t been previously, it will
raise an alert and send a snapshot of the data to its web console.

This is incredibly powerful as it allows your tools to crawl through your vast amounts of

data and figure out what should be alerted on. It’s not a replacement for Nagios or Sensu,
but is an incredibly powerful addition to them, and the data that Puppet can provide is a
natural fit for this kind of learning system. Over time, you will find that your Puppet
changes will start to fall into a natural pattern, especially if you release at predictable
times. By adding your Puppet metrics into Graphite and then enabling Etsy Skyline, you
will be automatically alerted if some of those metrics start to look a little odd. For
instance, you may not be immediately aware if something has caused a huge amount of
your Puppet nodes to apply a change, or if your Puppet catalogs are suddenly taking an
age to apply. Skyline can be configured to immediately alert you if it sees that something
is amiss.

Using Puppet to drive orchestration

Puppet is in the unique position of knowing both when and how something has changed.
This is a unique view that allows you to be very creative with orchestrating activity in
your network, using Puppet not only to change resources on a given node, but also to then
trigger an action that will affect other resources.

A good example would be if you had an application that provided data that other nodes
relied on. Now, let’s assume that you were forced to push a change to this application that
would require the dependent applications to be restarted before they can use the new
version. This is something that a Puppet report processor could trigger in conjunction with
a suitable orchestration system. In this case, you could use a report processor to monitor a
tagged resource (our data providing application), and in the event of that resource being
changed, the report processor could send a message to the orchestration system, asking it
to perform restarts on the dependent applications. What’s neat about this is that you are
using Puppet to allow individual resources to communicate with their dependencies and
vice versa without needing to bake it into the orchestration layer itself. Another advantage
of having Puppet notify the orchestration system is that Puppet knows when a change has
been successfully applied; an orchestration system would need to be told what constitutes
success. This technique also ensures that it is much harder to miss dependent systems
when creating your orchestration steps, as you have started to build an awareness of
dependencies within Puppet. Puppet implements the change to an individual resource and
then notifies the orchestration system that it needs to carry out an action on the
dependencies.

This would be relatively straightforward to implement and would tie in nicely with the
Puppet-curated MCollective project (http://puppetlabs.com/mcollective). By using Puppet
report processors to trigger subsequent actions, you are starting to overcome Puppet’s
nodal view of the world, and allowing changes to deal with dependencies without manual
interaction.

http://puppetlabs.com/mcollective

Summary

In this final chapter, we’ve taken a look at some of the ways you can utilize Puppet
reporting and alerting to enhance your understanding of both what is going on within your
Puppet infrastructure and also how to leverage the data to create simple yet effective
additions to your existing monitoring systems. We’ve seen how Puppet data can be
visualized using either existing dashboards or by creating new ones, and how report
processors can be used to drive detailed alerts using existing alerting tools such as Nagios
or Sensu. We’ve also learned about the integration of Puppet with tools such as Graphite,
which allow you to utilize Puppet data to both analyze performance and track changes to
the infrastructure. We have explored how systems such as Etsy Skyline can be used to
learn what is normal within your Puppet infrastructure and set to alert when anomalies
occur. We realized how Puppet can be an integral part of orchestration and can trigger
actions based on changes to resources.

Now it’s over to you; this book has shown you the basics of the Puppet reporting systems
and how easy it is to take the data that Puppet creates to drive other activities, be it
reporting, alerting, or even orchestration. Hopefully, by now you are looking at the Puppet
reporting tools as a gateway that allows Puppet to communicate with the wealth of
systems that you are already using to both monitor and report with, and thinking of new
ways to use these tools with the additional data that Puppet provides. Puppet reporting
brings a huge new set of capabilities, as, traditionally, knowing how and when changes
have occurred within your infrastructure has been difficult. Puppet is now making it
simple.

I hope that this book has inspired you to create new and interesting applications based
around Puppet reporting, and I look forward to seeing the fantastic and novel ways that
you put these techniques to use. I truly hope that you share your contributions on GitHub
and PuppetForge so that the whole Puppet community can make use of your code. The
Puppet reporting features are incredibly powerful, and you’re going to have a lot of fun
playing with them.

Index
A

e aggregate-event-counts endpoint

o using / Applying the aggregate-event-counts endpoint
o URL, for documentation / Applyving the aggregate-event-counts endpoint

o about / Creating new jobs in Dashing
e alerts

o creating, report processor used / Producing alerts
creating, Nagios used / Using Nagios

Icinga, discovering / Discovering Icinga and Shinken
Shinken, discovering / Discovering Icinga and Shinken
e assets directory

o about / Exploring the default puppetdash directory layout
e Atlassian JIRA

o about / Raising issues with JIRA
¢ audit metaparameter

o about / Compliance monitoring with Puppet

(e]

(e]

(e]

B

e basic query application
o creating / Creating a basic query application
setting up / Setting up the basic application

O
o connecting, to PuppetDB / Connecting to PuppetDB
o results, extracting / Outputting results

e Boundary
o URL / Rediscovering dashboards
e built-in report processors
o utilizing / Utilizing the built-in report processors
o reports, storing with store report processor / Storing reports with the store report
processor
o log files, adding with log report processor / Adding to logfiles with the log
report processor
o graphing, with rrdgraph report processor / Graphing with the rrdgraph processor
o tagmail report processor / The tagmail report processor
o reports, sending with HTTP report processor / Sending reports with the HTTP
report processor
o PuppetDB report processor / The PuppetDB report processor
o third-party report processors, exploring / Exploring the power of third-party
plugins

catalogs endpoint
o using / Getting the run details with the catalogs endpoint

catalog wire format

o URL, for documentation / Getting the run details with the catalogs endpoint
choice function

o about / Setting up the UI
collectd

o URL / Analyzing metrics with StatsD, Graphite, and Etsy Skyline

o about / Analyzing metrics with StatsD, Graphite, and Etsy Skyline
command interface

o about / Understanding the command interface

o replace catalog function / Understanding the command interface

o replace facts function / Understanding the command interface

o store report function / Understanding the command interface
o deactivate node function / Understanding the command interface

command_line_reporter gem

o about / Outputting results
compliance monitoring

o with Puppet / Compliance monitoring with Puppet
createdb command / Creating the PostgreSQIL. database
createuser command / Creating your database user

D

e dashboard
o advantages / Why use a dashboard?

creating / Creating our dashboard

layout, creating / Creating our dashboard layout
trends, adding / Adding trends

meters, adding / Adding meters

o rediscovering / Rediscovering dashboards
e dashboards directory

o about / Exploring the default puppetdash directory layout
e Dashing
o about / Exploring Dashing
overview / Exploring Dashing
URL, for downloading / Exploring Dashing
reference link / Exploring Dashing
installing / Setting up Dashing
puppetdash directory / Exploring the default puppetdash directory layout
executing / Running Dashing
data, feeding / Feeding data into Dashing

o jobs, creating / Creating new jobs in Dashing
e dashing start command / Creating our dashboard layout

data

o feeding, into Dashing / Feeding data into Dashing
data-col tag / Creating our dashboard layout

data-id tag / Creating our dashboard layout
data-row tag / Creating our dashboard layout

data-title tag / Creating our dashboard layout
data-view tag / Creating our dashboard layout
deactivate node function

o about / Understanding the command interface

O O O o

O O O O O o o

E

e _erb file

o about / Adding meters
e e-mail alert

o creating / Alerting with e-mail and Puppet
¢ endpoints

o about / Exploring endpoints
facts endpoint, using / Using the facts endpoint
resources endpoint, using / Using the resources endpoint
nodes endpoint / Retrieving details about nodes
catalogs endpoint, using / Getting the run details with the catalogs endpoint
fact-names endpoint, using / Understanding the fact-names endpoint
metrics endpoint, using / Knowing the status of PuppetDB with the metrics
endpoint
reports endpoint, using / Using the reports endpoint
events endpoint, using / Working with the events endpoint
event-counts endpoint, using / Using the event-counts endpoint
aggregate-event-counts endpoint, using / Applying the aggregate-event-counts
endpoint

o server-time endpoint, using / Using the server-time endpoint
o version endpoint, using / The version endpoint

e FEtsy Skyline
o used, for analysing metrics / Analyzing metrics with StatsD, Graphite, and Etsy
Skyline

o using / Using Etsy Skyline to find your normal
e event-counts endpoint

o using / Using the event-counts endpoint
o URL, for documentation / Using the event-counts endpoint
o about / Fetching the event counts
e event counts
o fetching / Fetching the event counts
e Event Inspector
o about / Event Inspector
e events
o adding, to MySQL / Adding metrics and events to MySQL
e events data
o presenting / Presenting the events data
e events endpoint
o using / Working with the events endpoint
o URL, for documentation / Working with the events endpoint
o about / Presenting the events data
e External Node Classifiers (ENC)

o about / Exploring Dashing

O O O O O O

O O O o

e External Node Classifiers (ENCs)
o about / Why use a dashboard?

F

e first method

o about / Fetching the event counts
fact-names endpoint

o using / Understanding the fact-names endpoint

e Facter
o about / Learning the basics of Puppet reporting
e Facter 1.7

o about / Learning the basics of Puppet reporting
facts endpoint
o about / Using the facts endpoint

o using / Using the facts endpoint
o URL, for documentation / Using the facts endpoint
(o]

querying, in menu-driven PuppetDB application / Querying PuppetDB’s facts

endpoint
fully qualified domain name (FQDN)

o about / Outputting results

G

e Graphite
o used, for analysing metrics / Analyzing metrics with StatsD, Graphite, and Etsy
Skyline

o URL / Analyzing metrics with StatsD, Graphite, and Etsy Skyline
o and Puppet used, for tracking changes / Tracking changes with Puppet and

Graphite

hardware report
o extracting, from menu-driven PuppetDB application / Outputting the hardware

report
header method

o about / Outputting the hardware report
HighLine

o about / Setting up the Ul
HTTP report processor

o reports, sending with / Sending reports with the HTTP report processor
HyperSQL Database (HSQLDB)

o about / A brief history of PuppetDB

Icinga
o discovering / Discovering Icinga and Shinken
o URL / Discovering Icinga and Shinken

insert function

o about / Logging with MySQL
installation, Dashing
o about / Setting up Dashing

installation, PostgreSQL / Installing PostgreSQL
installation, PuppetDB / Installing PuppetDB

installation, report processor

o about / Understanding a report processor
installation, Twitter / Getting social with Twitter
Intrusion Detection System (IDS)

o about / Monitoring changes and alerting with Puppet
issues

o raising, with JIRA / Raising issues with JIRA

Java Virtual Machine (JVM)

o about / A brief history of PuppetDB
JAVA_ARGS=/ Increasing the JVM heap space
JIRA

o issues, raising with / Raising issues with JIRA
jobs

o creating, in Dashing / Creating new jobs in Dashing
jobs directory

o about / Exploring the default puppetdash directory layout

L

e _last method

o about / Creating the PuppetDB query method
layout, dashboard

o creating / Creating our dashboard layout
lib directory

o about / Exploring the default puppetdash directory layout
load balancer
o about / Understanding a report processor
logging
o with MySQL / Logging with MySQL
log report processor
o log files, adding with / Adding to logfiles with the log report processor

MCollective

o about / Puppet Live Management
MCollective project

o URL / Using Puppet to drive orchestration
menu-driven PuppetDB application
creating / Creating a menu-driven PuppetDB application
UlI, setting up / Setting up the Ul
facts endpoint, querying / Querying PuppetDB’s facts endpoint
o hardware report, extracting / Outputting the hardware report
testing / Testing our application

(e]

(e]

(e]

(e]

meters
o adding, to dashboard / Adding meters
metrics

o adding, to MySQL / Adding metrics and events to MySQL
o analysing, with StatsD / Analyzing metrics with StatsD, Graphite, and Etsy

Skyline
o analysing, with Graphite / Analyzing metrics with StatsD, Graphite, and Etsy
Skyline

o analysing, with Etsy Skyline / Analyzing metrics with StatsD, Graphite, and
Etsy Skyline
metrics endpoint
o using / Knowing the status of PuppetDB with the metrics endpoint
o URL, for documentation / Knowing the status of PuppetDB with the metrics
endpoint
o about / Creating new jobs in Dashing
MySQL
o using / Logging with MySQL
o events, adding to / Adding metrics and events to MySQL
o metrics, adding to / Adding metrics and events to MySQL

Nagios
o used, for creating alerts / Using Nagios
New Relic

o URL / Rediscovering dashboards
NFS

o about / Setting up the server

nodes endpoint
o using / Retrieving details about nodes
o about / Creating new jobs in Dashing

O

e Object-relational Mapping (ORM)

o about / Logging with MySQL
e OpenJDK

o about / Installing PuppetDB

PagerDuty

o about / Staying on top of alerts with PagerDuty
o using / Staying on top of alerts with PagerDuty
o URL / Staying on top of alerts with PagerDuty

Parser
o about / Learning the basics of Puppet reporting
perspectives

o about / Event Inspector
Phusion Passenger

o about / Exploring the Puppet configuration file
PostgreSQL
installing / Installing PostgreSQL
installing, from packages / Installing the packages
o database user, creating / Creating your database user
o database, creating / Creating the PostgreSQL database
public directory
o about / Exploring the default puppetdash directory layout
Puppet
o report processor configuration, managing with / Managing your report processor

configuration with Puppet
report processor, alerting with / Monitoring changes and alerting with Puppet
report processor, monitoring with / Monitoring changes and alerting with Puppet
compliance, monitoring with / Compliance monitoring with Puppet
and Graphite used, for tracking changes / Tracking changes with Puppet and
Graphite
o using, to drive orchestration / Using Puppet to drive orchestration
Puppet agent
o about / Learning the basics of Puppet reporting
o setting up / Setting up the Puppet agent
PuppetBoard
o about / Discovering PuppetBoard
o URL, for installing / Discovering PuppetBoard
Puppet configuration file
about / Exploring the Puppet configuration file
o [main] configuration block / Exploring the Puppet configuration file
o [master] configuration block / Exploring the Puppet configuration file
o [agent] configuration block / Exploring the Puppet configuration file
Puppet Dashboard
o feature list / The Puppet Dashboard feature list
o overview / Understanding Puppet Dashboard
o URL / Understanding Puppet Dashboard
Puppet Dashboard, feature list

(¢]

(¢]

O O O O

(¢]

ENC / The Puppet Dashboard feature list

Reporting / The Puppet Dashboard feature list

Class Discovery / The Puppet Dashboard feature list
PuppetDB Integration / The Puppet Dashboard feature list
MCollective Integration / The Puppet Dashboard feature list
e puppetdash directory

o about / Exploring the default puppetdash directory layout
widgets / Exploring the default puppetdash directory layout
public / Exploring the default puppetdash directory layout
lib / Exploring the default puppetdash directory layout
jobs / Exploring the default puppetdash directory layout
assets / Exploring the default puppetdash directory layout

o dashboards / Exploring the default puppetdash directory layout
e PuppetDB

o history / A brief history of PuppetDB

URL, for scaling recommendations / A brief history of PuppetDB
installing / Installing PuppetDB

installing, from packages / Installing PuppetDB from packages

JVM heap space, increasing / Increasing the JVM heap space
basic query application, connecting to / Connecting to PuppetDB

querying, for report information / Querying PuppetDB for report information

query method, creating / Creating the PuppetDB query method
event counts, fetching / Fetching the event counts

events data, presenting / Presenting the events data
o menu-driven PuppetDB application, testing / Testing our application
e PuppetDB API
o about / Exploring the PuppetDB query API
o command interface / Exploring the PuppetDB query API, Understanding the
command interface
o query interface / Exploring the PuppetDB query API, Understanding the query
API interface
e PuppetDB query API
o about / Exploring the PuppetDB query API, Understanding the query API
interface
o PuppetDB query language / A primer on the PuppetDB query language
o endpoints / Exploring endpoints
e PuppetDB query language
o about / A primer on the PuppetDB query language
o using / A primer on the PuppetDB query language
e PuppetDB query method
o creating / Creating the PuppetDB query method
e PuppetDB report processor
o about / The PuppetDB report processor
e PuppetDB server

O O O O

(¢]

O O O O O

O 0O 0O o o o o o o

o setting up / Setting up the PuppetDB server
o PuppetDB, installing / Installing PuppetDB
o PostgreSQL, installing / Installing PostgreSQL

Puppet Enterprise Console

about / Exploring Puppet Enterprise Console
o Event Inspector / Event Inspector

Puppet Live Management / Puppet Live Management
URL, for downloading / Puppet Live Management
Puppet Forge

o about / Understanding a report processor
o URL / Understanding a report processor
Puppet Labs

o URL / Learning the basics of Puppet reporting, Setting up the Puppet agent
Puppet Live Management

o about / Puppet Live Management
Puppet master

o about / Learning the basics of Puppet reporting

(¢]

(¢]

(¢]

Puppet Open Source
o using / Learning the basics of Puppet reporting
Puppet reporting

o about / Learning the basics of Puppet reporting

o features / Looking back at what we’ve learned
Puppet server

o using / Exploring the Puppet configuration file

o setting up / Setting up the server

replace catalog function

o about / Understanding the command interface
replace facts function

o about / Understanding the command interface
reporting

o with The Foreman / Reporting with The Foreman
report processor

o about / Understanding a report processor, The anatomy of a report processor
overview / Understanding a report processor

installing / Understanding a report processor

creating / Creating a basic report processor

registering / Registering your report processor

describing / Describing your report processor

processing / Processing your report

self.status object / Values of the self.status object

e-mail alert, creating / Alerting with e-mail and Puppet

monitoring, with Puppet / Monitoring changes and alerting with Puppet

alerting, with Puppet / Monitoring changes and alerting with Puppet
o used, for creating alerts / Producing alerts

report processor configuration

o managing, with Puppet / Managing vour report processor configuration with
Puppet
report processors
o built-in report processors, utilizing / Utilizing the built-in report processors
reports endpoint
o using / Using the reports endpoint
o URL, for documentation / Using the reports endpoint
resources endpoint
o about / Using the resources endpoint
o using / Using the resources endpoint
o URL, for documentation / Using the resources endpoint
REST API
o about / A brief history of PuppetDB
RRD

o about / Graphing with the rrdgraph processor
rrdgraph report processor

o used, for graphing / Graphing with the rrdgraph processor
Ruby

o URL, for documentation / Logging with MySQL,
Ruby Version Manager (RVM)

o URL, for installation / Creating a basic query application
rufus-scheduler

O 0O 0O O O O o o o o

o about / Feeding data into Dashing
o URL / Creating new jobs in Dashing

self.status object

o about / Values of the self.status object
skipped value / Values of the self.status object
failed value / Values of the self.status object
failed_to_restart value / Values of the self.status object
restarted value / Values of the self.status object
changed value / Values of the self.status object

o out_of_sync value / Values of the self.status object
send_event method

o about / Creating new jobs in Dashing
Sensu

o URL / Discovering Icinga and Shinken

o about / Discovering Icinga and Shinken
sequel library

o about / Logging with MySQL

server-time endpoint

o using / Using the server-time endpoint

o URL, for documentation / Using the server-time endpoint
Shinken

o discovering / Discovering Icinga and Shinken
o URL / Discovering Icinga and Shinken
Shopify
o URL / Exploring Dashing
Sinatra
o about / Exploring Dashing
StatsD
o used, for analysing metrics / Analyzing metrics with StatsD, Graphite, and Etsy
Skyline
store report function
o about / Understanding the command interface
store report processor
o reports, storing with / Storing reports with the store report processor
strftime function
o about / Logging with MySQL
strftime method
o about / Logging with MySQL
Sun JDK
o about / Installing PuppetDB
Syntactically Awesome Style Sheets (SASS)
o about / Exploring the default puppetdash directory layout

O O O O O

table method

o about / Outputting results
tagmail report processor

o about / The tagmail report processor, Alerting with e-mail and Puppet
o URL, for documentation / The tagmail report processor
The Foreman

about / Using The Foreman

o using / Using The Foreman

o reporting, with / Reporting with The Foreman

o trends, viewing in / Looking at trends in The Foreman
third-party applications

o about/ A final note on third-party applications
third-party report processors

o exploring / Exploring the power of third-party plugins
trends
o about / Reporting with The Foreman

o viewing, in The Foreman / Looking at trends in The Foreman
o adding, to dashboard / Adding trends

Twitter

o about / Getting social with Twitter
o URL / Getting social with Twitter
o installing / Getting social with Twitter

(¢]

U

o Ul
o setting up, for menu-driven PuppetDB application / Setting up the Ul
e Universally Unique Identifier (UUID)

o about / Logging with MySQL

e Universal Resource Identifier (URI)
o about / Connecting to PuppetDB

\Y

e version endpoint
o using / The version endpoint
o URL, for documentation / The version endpoint

W

e widget, options

data-row tag / Creating our dashboard layout
data-col tag / Creating our dashboard layout
data-id tag / Creating our dashboard layout
data-view tag / Creating our dashboard layout
data-title tag / Creating our dashboard layout
additional tags / Creating our dashboard layout
e widgets directory

o about / Exploring the default puppetdash directory layout

O O O O O

(¢]

X

e XKCD
o URL / Logging with MySQL

Y

e YAML
o URL / Setting up the server

	Puppet Reporting and Monitoring
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Setting Up Puppet for Reporting
	Learning the basics of Puppet reporting
	Exploring the Puppet configuration file
	Setting up the server
	Setting up the Puppet agent
	Summary
	2. Viewing Data in Dashboards
	Why use a dashboard?
	The Puppet Dashboard feature list
	Understanding Puppet Dashboard
	Exploring Puppet Enterprise Console
	Event Inspector
	Puppet Live Management
	Using The Foreman
	Reporting with The Foreman
	Looking at trends in The Foreman
	Discovering PuppetBoard
	Summary
	3. Introducing Report Processors
	Understanding a report processor
	Utilizing the built-in report processors
	Storing reports with the store report processor
	Adding to logfiles with the log report processor
	Graphing with the rrdgraph processor
	The tagmail report processor
	Sending reports with the HTTP report processor
	The PuppetDB report processor
	Exploring the power of third-party plugins
	Getting social with Twitter
	Staying on top of alerts with PagerDuty
	Summary
	4. Creating Your Own Report Processor
	The anatomy of a report processor
	Creating a basic report processor
	Registering your report processor
	Describing your report processor
	Processing your report
	Values of the self.status object
	Alerting with e-mail and Puppet
	Managing your report processor configuration with Puppet
	Monitoring changes and alerting with Puppet
	Logging with MySQL
	Adding metrics and events to MySQL
	Raising issues with JIRA
	A final note on third-party applications
	Summary
	5. Exploring PuppetDB
	A brief history of PuppetDB
	Setting up the PuppetDB server
	Installing PuppetDB
	Installing PuppetDB from packages
	Increasing the JVM heap space
	Installing PostgreSQL
	Installing the packages
	Creating your database user
	Creating the PostgreSQL database
	Summary
	6. Retrieving Data with the PuppetDB API
	Exploring the PuppetDB query API
	Understanding the command interface
	Understanding the query API interface
	A primer on the PuppetDB query language
	Exploring endpoints
	Using the facts endpoint
	Using the resources endpoint
	Retrieving details about nodes
	Getting the run details with the catalogs endpoint
	Understanding the fact-names endpoint
	Knowing the status of PuppetDB with the metrics endpoint
	Using the reports endpoint
	Working with the events endpoint
	Using the event-counts endpoint
	Applying the aggregate-event-counts endpoint
	Using the server-time endpoint
	The version endpoint
	Summary
	7. Writing Custom Reports with PuppetDB
	Creating a basic query application
	Setting up the basic application
	Connecting to PuppetDB
	Outputting results
	Creating a menu-driven PuppetDB application
	Setting up the UI
	Querying PuppetDB's facts endpoint
	Outputting the hardware report
	Querying PuppetDB for report information
	Creating the PuppetDB query method
	Fetching the event counts
	Presenting the events data
	Testing our application
	Summary
	8. Creating Your Own Custom Dashboard
	Exploring Dashing
	Setting up Dashing
	Exploring the default puppetdash directory layout
	Running Dashing
	Creating our dashboard
	Creating our dashboard layout
	Feeding data into Dashing
	Creating new jobs in Dashing
	Adding trends
	Adding meters
	Summary
	9. Looking Back and Looking Forward
	Looking back at what we've learned
	Rediscovering dashboards
	Producing alerts
	Using Nagios
	Discovering Icinga and Shinken
	Compliance monitoring with Puppet
	Analyzing metrics with StatsD, Graphite, and Etsy Skyline
	Tracking changes with Puppet and Graphite
	Using Etsy Skyline to find your normal
	Using Puppet to drive orchestration
	Summary
	Index

