




Puppet	Reporting	and	Monitoring



Table	of	Contents

Puppet	Reporting	and	Monitoring

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Setting	Up	Puppet	for	Reporting

Learning	the	basics	of	Puppet	reporting

Exploring	the	Puppet	configuration	file

Setting	up	the	server

Setting	up	the	Puppet	agent

Summary

2.	Viewing	Data	in	Dashboards

Why	use	a	dashboard?

The	Puppet	Dashboard	feature	list

Understanding	Puppet	Dashboard



Exploring	Puppet	Enterprise	Console

Event	Inspector

Puppet	Live	Management

Using	The	Foreman

Reporting	with	The	Foreman

Looking	at	trends	in	The	Foreman

Discovering	PuppetBoard

Summary

3.	Introducing	Report	Processors

Understanding	a	report	processor

Utilizing	the	built-in	report	processors

Storing	reports	with	the	store	report	processor

Adding	to	logfiles	with	the	log	report	processor

Graphing	with	the	rrdgraph	processor

The	tagmail	report	processor

Sending	reports	with	the	HTTP	report	processor

The	PuppetDB	report	processor

Exploring	the	power	of	third-party	plugins

Getting	social	with	Twitter

Staying	on	top	of	alerts	with	PagerDuty

Summary

4.	Creating	Your	Own	Report	Processor

The	anatomy	of	a	report	processor

Creating	a	basic	report	processor

Registering	your	report	processor

Describing	your	report	processor

Processing	your	report

Values	of	the	self.status	object

Alerting	with	e-mail	and	Puppet

Managing	your	report	processor	configuration	with	Puppet

Monitoring	changes	and	alerting	with	Puppet



Logging	with	MySQL

Adding	metrics	and	events	to	MySQL

Raising	issues	with	JIRA

A	final	note	on	third-party	applications

Summary

5.	Exploring	PuppetDB

A	brief	history	of	PuppetDB

Setting	up	the	PuppetDB	server

Installing	PuppetDB

Installing	PuppetDB	from	packages

Increasing	the	JVM	heap	space

Installing	PostgreSQL

Installing	the	packages

Creating	your	database	user

Creating	the	PostgreSQL	database

Summary

6.	Retrieving	Data	with	the	PuppetDB	API

Exploring	the	PuppetDB	query	API

Understanding	the	command	interface

Understanding	the	query	API	interface

A	primer	on	the	PuppetDB	query	language

Exploring	endpoints

Using	the	facts	endpoint

Using	the	resources	endpoint

Retrieving	details	about	nodes

Getting	the	run	details	with	the	catalogs	endpoint

Understanding	the	fact-names	endpoint

Knowing	the	status	of	PuppetDB	with	the	metrics	endpoint

Using	the	reports	endpoint

Working	with	the	events	endpoint

Using	the	event-counts	endpoint



Applying	the	aggregate-event-counts	endpoint

Using	the	server-time	endpoint

The	version	endpoint

Summary

7.	Writing	Custom	Reports	with	PuppetDB

Creating	a	basic	query	application

Setting	up	the	basic	application

Connecting	to	PuppetDB

Outputting	results

Creating	a	menu-driven	PuppetDB	application

Setting	up	the	UI

Querying	PuppetDB’s	facts	endpoint

Outputting	the	hardware	report

Querying	PuppetDB	for	report	information

Creating	the	PuppetDB	query	method

Fetching	the	event	counts

Presenting	the	events	data

Testing	our	application

Summary

8.	Creating	Your	Own	Custom	Dashboard

Exploring	Dashing

Setting	up	Dashing

Exploring	the	default	puppetdash	directory	layout

Running	Dashing

Creating	our	dashboard

Creating	our	dashboard	layout

Feeding	data	into	Dashing

Creating	new	jobs	in	Dashing

Adding	trends

Adding	meters

Summary



9.	Looking	Back	and	Looking	Forward

Looking	back	at	what	we’ve	learned

Rediscovering	dashboards

Producing	alerts

Using	Nagios

Discovering	Icinga	and	Shinken

Compliance	monitoring	with	Puppet

Analyzing	metrics	with	StatsD,	Graphite,	and	Etsy	Skyline

Tracking	changes	with	Puppet	and	Graphite

Using	Etsy	Skyline	to	find	your	normal

Using	Puppet	to	drive	orchestration

Summary

Index





Puppet	Reporting	and	Monitoring





Puppet	Reporting	and	Monitoring
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	June	2014

Production	Reference:	1100614

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-142-7

www.packtpub.com

Cover	Image	by	Gareth	Howard	Jones	(<garth123@hotmail.co.uk>)

http://www.packtpub.com
mailto:garth123@hotmail.co.uk




Credits
Author

Michael	Duffy

Reviewers

Ugo	Bellavance

Johan	De	Wit

James	Fryman

Jason	Slagle

Eric	Stonfer

Commissioning	Editor

Edward	Gordon

Acquisition	Editor

Llewellyn	Rozario

Content	Development	Editor

Sankalp	Pawar

Technical	Editors

Taabish	Khan

Aparna	Kumar

Copy	Editors

Insiya	Morbiwala

Aditya	Nair

Stuti	Srivastava

Project	Coordinator

Puja	Shukla

Proofreaders

Maria	Gould

Paul	Hindle

Indexer

Mariammal	Chettiyar

Production	Coordinator

Sushma	Redkar



Cover	Work

Sushma	Redkar





About	the	Author
Michael	Duffy	has	been	working	in	systems	administration	and	automation	for	more
years	than	he	cares	to	remember,	and	is	the	founder	of	Stunt	Hamster	Ltd.;	a	small	but
perfectly	formed	consultancy	that	helps	companies,	both	small	and	large,	deliver	fully
automated	and	scalable	infrastructure.	He	has	consulted	for	companies	such	as	O2	and
BSkyB,	delivering	design,	automation,	and	monitoring	of	infrastructure	for	products	that
serve	millions	of	users.

Michael	is	a	keen	advocate	of	DevOps	methodologies	and	is	especially	interested	in	using
automation	to	not	only	deliver	scalable	and	reliable	systems,	but	also	to	make	sure	that
people	can	see	what	is	actually	going	on	under	the	hood	when	using	reporting	tools.	If
given	the	chance,	he	will	happily	spend	hours	telling	you	how	fantastic	it	is	that	people
from	the	development	and	operations	fields	can	finally	talk	and	go	to	the	pub	together.

I	would	like	to	thank	my	absolutely	incredible	wife,	Beth,	and	my	fantastic	daughter,
Megan,	for	enduring	more	than	their	fair	share	of	enthused	lectures	about	Puppet	reporting
and	for	ensuring	that	I	was	fed,	watered,	and	occasionally	moved	out	into	sunlight	when	I
became	a	little	too	focused	on	writing.	Without	your	love	and	support,	this	book	wouldn’t
have	been	possible.

I	would	also	like	to	thank	the	editors	and	staff	at	Packt	Publishing;	without	them,	this	book
would	be	several	hundred	pages	of	extreme	gibberish	without	a	gerund	verb	in	sight.





About	the	Reviewers
Ugo	Bellavance	has	done	most	of	his	studies	in	e-commerce.	He	started	using	Linux	from
RedHat	5.2,	got	Linux	training	from	Savoir-faire	Linux	at	age	20,	and	got	his	RHCE	on
RHEL	6	in	2011.	He’s	been	a	consultant	in	the	past,	but	he’s	now	an	employee	for	a
provincial	government	agency	for	which	he	manages	the	IT	infrastructure	(servers,
workstations,	network,	security,	virtualization,	SAN/NAS,	and	PBX).	He’s	a	big	fan	of
open	source	software	and	its	underlying	philosophy.	He	has	worked	with	Debian,	Ubuntu,
and	SUSE,	but	what	he	knows	best	is	RHEL-based	distributions.	He’s	known	for	his
contributions	to	the	MailScanner	project	(he	has	been	a	technical	reviewer	for
MailScanner	User	Guide	and	Training	Manual,	Julian	Field	published	by	the	University
of	Southampton,	Department	of	Civil	&	Environmental	Engineering),	but	he	has	also
given	time	to	different	open	source	projects	such	as	Mondo	Rescue,	OTRS,
SpamAssassin,	pfSense,	and	a	few	others.	He’s	been	a	technical	reviewer	for	Centos	6
Linux	Server	Cookbook,	Jonathan	Hobson,	Packt	Publishing	and	Puppet	3	Beginner’s
Guide,	John	Arundel,	Packt	Publishing.

I	thank	my	lover,	Lysanne,	who	accepted	to	allow	me	some	free	time	slots	for	this	review
even	with	two	dynamic	children	to	take	care	of.	The	presence	of	these	three	human	beings
in	my	life	is	simply	invaluable.

I	must	also	thank	my	friend,	Sébastien,	whose	generosity	is	only	matched	by	his
knowledge	and	kindness.	I	would	never	have	reached	this	high	in	my	career	if	it	wasn’t	for
him.

Johan	De	Wit	was	an	early	Linux	user,	and	he	still	remembers	those	days	when	he	built	a
0.9x	Linux	kernel	on	his	brand	new	486	computer,	which	took	a	whole	night.	His	love	for
Unix	operating	systems	already	existed	before	Linux	was	announced.	It	is	not	surprising
that	he	started	his	career	as	a	Unix	system	administrator.

Johan	doesn’t	remember	precisely	when	he	started	working	with	open	source	software,	but
since	2009,	he	has	been	working	as	an	open	source	consultant	at	Open-Future,	where	he
got	the	opportunity	to	work	with	Puppet.	Puppet	has	now	become	his	biggest	interest,	and
he	loves	to	teach	Puppet	as	one	of	the	few	official	Puppet	trainers	in	Belgium.

Johan	started	the	Belgian	Puppet	user	group	a	year	ago,	where	he	tries	to	bring	some
Puppet	users	together	by	hosting	great	and	interesting	meet-ups.	When	he	takes	the	time	to
write	Puppet-related	blogs,	he	does	so	mostly	on	http://puppet-be.github.io/,	the	BPUG
website.	From	time	to	time,	he	tries	to	spread	some	hopefully	wise	Puppet	words	while
presenting	a	talk	at	a	Puppet	camp	somewhere	in	Europe.

Besides	having	fun	at	work,	he	spends	a	lot	of	his	free	time	with	his	two	lovely	kids	and
his	two	Belgian	draft	horses,	and	if	time	and	the	weather	permits,	he	likes	to	rebuild	and
drive	his	old-school	chopper.

James	Fryman	is	a	technologist	who	has	been	working	on	spreading	the	good	word	of
technology	via	the	greatest	mechanism	known	to	man:	the	beer-fueled	rant.	He	has	been
working	to	automate	software	and	infrastructure	for	the	last	10	years	and	has	learned	quite

http://puppet-be.github.io/


a	bit	about	security,	architecture,	scaling,	and	development	as	a	result.	He	currently	works
for	GitHub	as	an	Operations	Hacker.

Jason	Slagle	is	a	17-year	veteran	of	systems	and	network	administration.	Having	worked
on	everything	from	Linux	systems	to	Cisco	networks	and	SAN	Storage,	he	is	always
looking	for	ways	to	make	his	work	repeatable	and	automated.	When	he	is	not	hacking	a
computer	for	work	or	pleasure,	he	enjoys	running,	cycling,	and	occasionally,	geocaching.

Jason	is	currently	employed	by	CNWR	Inc.,	an	IT	and	infrastructure	consulting	company
in	his	home	town	of	Toledo,	Ohio.	There,	he	supports	several	large	customers	in	their
quest	to	automate	and	improve	their	infrastructure	and	development	operations.

Jason	has	also	served	as	a	technical	reviewer	for	Puppet	3	Beginner’s	Guide,	John
Arundel,	Packt	Publishing.

I’d	like	to	thank	my	wife,	Heather,	and	my	son,	Jacob,	for	putting	up	with	me	while	I
worked	on	this	and	other	projects.	They	make	even	days	with	critical	systems	outages
better!

Eric	Stonfer	has	spent	the	last	12	years	working	as	a	systems	administrator	with	an
emphasis	on	systems	automation	and	configuration	management.





www.PacktPub.com



Support	files,	eBooks,	discount	offers,	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com


Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser



Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com




Preface
Puppet	is	possibly	the	fastest	growing	configuration	management	tool	on	the	planet,	and
this	is	in	no	small	part	due	to	its	combination	of	power	and	accessibility.	From	small	five-
node	installations	through	to	hugely	complex	cloud	infrastructures	that	number	thousands
of	nodes,	Puppet	has	proven	its	ability	to	deliver	on	the	promise	of	infrastructure	as	code.
There	have	been	a	number	of	titles	that	cover	its	ability	to	create	idempotent	resources,
manage	services,	and	ensure	that	systems	are	configured	correctly	and	maintained	with
little	or	no	effort.	Yet,	none	of	these	titles	spend	more	than	a	chapter	discussing	its
reporting	features.

This	is	a	shame;	Puppet’s	reporting	capability	is	one	of	its	most	overlooked	yet	powerful
features.	If	used	correctly,	its	built-in	reporting	abilities	can	give	you	stunning	levels	of
detail	about	your	infrastructure,	from	the	amount	of	hardware	used	and	networking	details
to	details	about	how	and	when	resources	were	changed.	However,	this	is	just	the
beginning.	In	this	book,	we	are	going	to	cover	techniques	that	are	simple	to	learn	and	that
will	allow	you	to	use	Puppet	as	a	key	part	of	your	alerting	systems,	letting	it	bring	your
attention	to	important	changes	and	even	forming	a	simple-to-implement	tripwire	system.
We’re	going	to	explore	PuppetDB	and	learn	why	this	is	a	fantastic	source	of	information
that	you	can	use	to	not	only	explore	the	changes	being	applied	to	your	systems,	but	also
create	an	end-to-end	repository	of	knowledge	about	your	infrastructure.	We’re	going	to
build	custom	dashboards	to	make	this	data	accessible,	and	finally,	we	will	look	at	the	ways
by	which	you	can	make	Puppet	not	only	report	the	changes,	but	also	drive	them.



What	this	book	covers
Chapter	1,	Setting	Up	Puppet	for	Reporting,	will	guide	you	through	the	simple	steps	to
take	your	existing	Puppet	installation	and	make	it	report.

Chapter	2,	Viewing	Data	in	Dashboards,	takes	a	look	at	the	existing	dashboards	available
for	Puppet	and	how	you	can	use	them	to	report	on	your	data.

Chapter	3,	Introducing	Report	Processors,	acquaints	you	with	the	engine	that	drives	much
of	the	Puppet	reporting	process—the	report	processor.

Chapter	4,	Creating	Your	Own	Report	Processor,	deals	with	creating	your	own	report
processor	with	custom	e-mail	alerts,	MySQL	storage,	and	integration	with	third-party
products.

Chapter	5,	Exploring	PuppetDB,	introduces	PuppetDB,	a	fantastic	and	powerful	system
for	report	storage	and	analysis.	In	this	chapter,	we	look	at	what	PuppetDB	is,	how	it’s
configured,	and	finally,	how	you	can	set	it	up	in	your	own	infrastructure.

Chapter	6,	Retrieving	Data	with	the	PuppetDB	API,	explores	the	fantastically	powerful
API	of	PuppetDB;	the	API	allows	you	to	query	your	reports	in	a	number	of	different	ways.
We’re	going	to	explore	this	API	for	functions	that	range	from	basic	queries	to	advanced
data	integration.

Chapter	7,	Writing	Custom	Reports	with	PuppetDB,	deals	with	creating	easy-to-use
custom	report	applications.

Chapter	8,	Creating	Your	Own	Custom	Dashboard,	deals	with	creating	an	attractive	and
detailed	custom	dashboard	using	Dashing	and	PuppetDB.

Chapter	9,	Looking	Back	and	Looking	Forward,	takes	a	look	at	some	of	the	more
advanced	ways	in	which	you	can	use	Puppet	reporting	to	do	everything	from	alerting	to
the	orchestration	of	your	infrastructure.





What	you	need	for	this	book
The	code	and	examples	in	this	book	have	been	designed	for	use	with	the	following
software:

Puppet	3.0	and	higher	versions
Ruby	1.9	and	higher	versions





Who	this	book	is	for
This	book	is	designed	for	anyone	who	wants	to	learn	more	about	the	fundamental
components	of	Puppet	reporting.	To	get	the	most	out	of	this	book,	you	should	already	be
familiar	with	Puppet	and	be	comfortable	with	its	major	components	such	as	the	Puppet
master	and	Puppet	agent.	You	should	also	be	comfortable	with	reading	code,	and	in
particular,	you	should	be	at	least	passingly	familiar	with	Ruby.	Finally,	you	should	be
happy	working	on	the	command	line	in	the	Linux/Unix	flavor	of	your	choice.





Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

include	puppet

Puppet::Reports::register_report(:myfirstreport)	do

		desc	"My	very	first	report!"

		def	process

				if	self.status	==	'failed'

						msg	=	"failed	puppet	run	for	#{self.host}	#{self.status}

						File.open('./tmp/puppetpanic.txt',	'w')	{	|	f	|	f.write(msg)}

				end

		end

end

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

metric_vals	=	{}

						self.metrics.each	{	|metric,	data|

								data.values.each	{	|val|

										name	=	"#{val[1]}	#{metric}"

										value	=	val[2]

										metric_vals[name]	=	value

								}

						}

Any	command-line	input	or	output	is	written	as	follows:

puppet	module	generate	<username>-<modulename>

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“The	Facts	view	is
particularly	useful	as	it	not	only	lists	each	node	with	the	associated	fact	value,	but	also
presents	it	neatly	in	the	form	of	a	graph.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support


Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com




Chapter	1.	Setting	Up	Puppet	for
Reporting
Some	tools	can	be	enormously	tedious	to	set	up	for	reporting,	normally	making	you	wade
through	many	different	configuration	files,	wrestle	with	obscure	settings,	and	make	you
lose	the	will	to	live,	generally.	Fortunately,	Puppet	is	a	sensible	product	when	it	comes	to
its	initial	configuration;	out	of	the	box,	it	will	take	very	little	tweaking	to	get	it	to	report	to
the	Puppet	master.	This	is	not	to	say	that	there	aren’t	plenty	of	options	to	keep	power	users
happy,	it’s	just	that	you	generally	do	not	need	to	use	them.

In	this	chapter,	we’re	going	to	cover	the	following	topics:

An	introduction	to	how	Puppet	reporting	works
A	brief	tour	of	the	Puppet	config	files
Configuring	a	Puppet	client
Configuring	a	Puppet	master



Learning	the	basics	of	Puppet	reporting
Before	we	get	into	the	nitty-gritty	of	configuring	our	Puppet	installation,	it’s	worth	briefly
going	over	the	basics	of	how	Puppet	goes	about	its	reporting.	At	its	heart,	a	Puppet	master
is	a	web	server	and	the	reporting	mechanism	reflects	this;	a	Puppet	agent	performs	a
simple	HTTPS	PUT	operation	to	place	the	reporting	information	onto	a	Puppet	master.
When	configured	properly,	the	Puppet	master	will	receive	reports	from	Puppet	agents,
each	and	every	time	they	perform	a	Puppet	run,	either	in	the	noop	or	apply	mode.	Once
the	reports	have	been	received,	we	can	go	ahead	and	do	some	fairly	fantastic	things	with
the	data	using	a	variety	of	methods	to	transform,	transport,	and	integrate	it	with	other
systems.

The	data	that	the	Puppet	agent	reports	back	to	the	Puppet	master	is	made	up	of	two	crucial
elements:	logs	and	metrics.	The	Puppet	agent	creates	a	full	audit	log	of	the	events	during
each	run,	and	when	the	reporting	is	enabled,	this	will	be	forwarded	to	the	Puppet	master.
This	allows	you	to	see	whether	there	were	any	issues	during	the	run,	and	if	so,	what	they
were;	or,	it	simply	lets	you	examine	what	operations	the	Puppet	agent	performed	if	things
went	smoothly.

The	metrics	that	the	Puppet	agent	passes	to	the	Puppet	master	are	very	granular	and	offer	a
fantastic	insight	into	where	Puppet	is	spending	its	time,	be	it	fetching,	processing,	or
applying	changes.	This	can	be	very	important	if	you	are	managing	a	large	infrastructure
with	Puppet;	a	node	that	takes	four	minutes	to	complete	isn’t	too	bad	when	there	are	only
a	handful	of	them,	but	it	can	be	downright	painful	when	you	are	dealing	with	hundreds	of
them.	It	also	allows	you	to	start	tracking	the	performance	of	your	Puppet	infrastructure
over	time.	Puppet	modules	have	a	tendency	to	start	as	lean,	but	as	they	grow	in
complexity,	they	can	become	sluggish	and	bloated.	Identifying	speed	issues	early	can	help
you	refactor	your	modules	into	smaller	and	better	performing	pieces	of	code	before	they
start	to	impact	the	overall	stability	and	speed	of	your	Puppet	infrastructure.

The	data	derived	from	the	logs	and	metrics	build	up	a	complete	picture	of	your	hosts	and
is	enormously	useful	when	it	comes	to	diagnosing	issues.	For	example,	without	reporting,
you	may	have	a	hard	time	diagnosing	why	every	single	Puppet	agent	is	suddenly	throwing
errors	when	applying	the	catalog;	with	reporting,	it	becomes	a	relatively	easy	matter	to
spot	that	someone	has	checked	in	a	common	module	with	a	bug.	Many	sites	use	modules
to	manage	DNS,	NTP,	and	other	common	items,	and	a	typo	in	one	of	these	modules	can
very	quickly	ensure	that	every	single	host	will	report	errors.	Without	reporting,	you	can
make	shrewd	guesses	as	to	the	fault,	but	to	actually	prove	it,	you’re	going	to	have	to	log
onto	multiple	nodes	to	examine	the	logs.	You	are	going	to	end	up	spending	a	fair	chunk	of
time	going	from	node	to	node	running	the	agent	in	the	noop	mode	and	comparing	logs
manually	to	ensure	that	it	is	indeed	a	common	fault.	This	is	based	on	the	assumption	that
you	notice	the	fault,	of	course;	without	the	reporting	in	place,	you	may	find	that	the	nodes
can	be	in	poor	shape	for	a	substantial	time	before	you	realize	that	something	is	amiss	or
that	you	probably	have	not	been	running	Puppet	at	all.	Running	Puppet	on	a	host	that	has
not	been	managed	for	some	time	may	produce	a	list	of	changes	that	is	uncomfortably	long



and	could	potentially	introduce	a	breaking	change	somewhere	along	the	line.	There	are
many	reasons	why	a	Puppet	agent	may	have	stopped	running,	and	you	can	be	in	for	a
shock	if	it’s	been	a	month	or	two	since	Puppet	was	last	run	on	a	host.	A	lot	can	change	in
that	time,	and	it’s	entirely	possible	that	one	of	the	many	non-applied	changes	might	create
problems	in	a	running	service.

Where	the	Parser	is	the	brains	of	Puppet,	the	Facter	is	its	eyes	and	ears.	Before	Puppet
compiles	a	manifest,	it	first	consults	Facter	to	figure	out	a	few	key	things.	First	and
foremost,	it	needs	to	know	where	it	is	and	what	it	is.	These	are	facts	that	the	Puppet	agent
can	deduce	by	consulting	Facter	on	elements	such	as	the	node’s	hostname,	the	number	of
CPUs,	amount	of	RAM,	and	so	on.	Facter	knows	a	surprising	amount	of	information,	out
of	the	box,	and	its	knowledge	increases	with	each	release.	Before	Facter	1.7,	it	was
possible	to	use	Ruby	code,	shipped	as	a	Puppet	plugin,	to	extend	the	facts	you	could
gather.	However,	with	Facter	1.7,	you	can	also	teach	Facter	some	new	tricks	with	external
facts.	External	facts	allow	you	to	add	to	Facter’s	already	prodigious	knowledge	by
including	anything	from	Ruby	scripts	to	plain	old	YAML	files	to	insert	data.	These
additional	points	of	data	can	be	utilized	within	Puppet	reports	in	the	same	way	as	any
default	Facter	item,	and	they	can	also	be	used	to	add	additional	context	around	the	existing
data.

Now	that	we	know	the	basics	of	how	Puppet	reporting	works,	it’s	time	to	go	ahead	and
configure	our	Puppet	master	and	agents	to	report.	I’m	going	to	make	the	assumption	that
you	already	have	a	working	copy	of	either	Puppet	Open	Source	or	Puppet	Enterprise
installed;	if	you	haven’t,	there	are	some	excellent	guides	available	either	online	at
http://Puppetlabs.com/learn	or	available	for	purchase	elsewhere.	If	you’re	going	to	buy	a
book,	I	recommend	Puppet	3	Beginner’s	Guide,	John	Arundel,	Packt	Publishing.	It	is	an
excellent	and	complete	resource	on	how	to	install	and	use	Puppet.

The	example	configurations	I	have	used	are	from	the	latest	version	of	Puppet	Open	Source
(Version	3.2.2	and	higher),	packaged	for	Ubuntu.	Your	configuration	may	differ	slightly	if
you’re	following	this	on	another	distribution,	but	it	should	broadly	contain	the	same
settings.

http://Puppetlabs.com/learn




Exploring	the	Puppet	configuration	file
Let’s	take	a	look	at	the	default	configuration	that	ships	with	Puppet	Open	Source.	By
default,	you	can	find	the	config	file	in	the	/etc/puppet/puppet.conf	directory.	The
configuration	file	is	as	follows:

[main]

logdir=/var/log/puppet

vardir=/var/lib/puppet

ssldir=/var/lib/puppet/ssl

rundir=/var/run/puppet

factpath=$vardir/lib/facter

templatedir=$confdir/templates

[master]

#	These	are	needed	when	the	puppetmaster	is	run	by	passenger

#	and	can	safely	be	removed	if	webrick	is	used.

ssl_client_header	=	SSL_CLIENT_S_DN

ssl_client_verify_header	=	SSL_CLIENT_VERIFY

The	first	interesting	thing	to	note	about	this	configuration	file	is	that	it	can	be	used	for	the
Puppet	agent,	Puppet	master,	and	Puppet	apply	commands.	Many	items	of	the
configuration	file	tend	to	be	common	items	such	as	log	directories,	run	directories,	and	so
on,	so	there	is	no	real	need	to	keep	a	separate	version	of	these	files	for	each	role.	Again,
this	is	an	example	of	the	common	way	that	Puppet	has	been	designed,	when	it	comes	to
configuration.

The	puppet.conf	file	is	split	up	using	the	standard	ini	notation	of	using	configuration
blocks	to	separate	roles	and	the	common	configuration.	The	most	common	blocks	that	you
will	encounter	are	[main],	[agent],	and	[master],	although	sites	that	have	implemented
either	Puppet	faces	or	Puppet	environments	may	have	more.	Generally	speaking,	as	these
additional	configuration	blocks	are	not	used	to	set	up	reporting,	we	shall	ignore	them	for
the	purposes	of	this	book.

The	[main]	configuration	block	is	used	for	any	configuration	that	is	applied	regardless	of
the	mode	that	Puppet	is	run	in.	As	you	can	see	from	the	preceding	configuration	file,	this
includes	locations	of	SSL	certificates,	logs,	and	other	fundamental	configuration	items.
These	are	generally	things	that	you	should	keep	the	same	on	every	host,	regardless	of	it
being	a	Puppet	master	or	agent.	However,	it’s	worth	noting	that	you	can	override	the
settings	in	a	configuration	block	by	setting	them	in	a	more	specific	block	elsewhere	in	the
file.	Any	setting	in	the	[main]	configuration	block	is	available	to	be	overridden	by	any
subsequent	block	further	down	the	configuration	file.

The	[master]	block	is	used	for	all	configuration	items	that	are	specific	to	the	role	of	the
Puppet	master.	As	you	can	see	in	the	default	configuration	file,	this	includes	items	for
Phusion	Passenger	configurations,	but	more	importantly	for	us,	this	is	also	where	you
would	set	items	such	as	the	report	processor	and	its	options.	For	our	initial	setup,	we’re
going	to	use	the	master	configuration	to	set	where	our	reports	will	be	stored	and	ensure
that	we	are	using	the	store	report	processor.



The	[agent]	configuration	block	is	utilized	when	you	run	Puppet	as	an	agent.	It	is	here
that	we	can	set	the	fairly	simple	configuration	required	to	make	the	Puppet	agent
communicate	reports	with	the	Puppet	master.	We	won’t	be	spending	much	time	in	this
configuration	block;	the	majority	of	the	configuration	and	processing	of	the	Puppet	reports
takes	place	on	the	Puppet	master	rather	than	on	the	client	side.	There	are	some	exceptions
to	this	rule;	for	instance,	you	may	have	to	amend	a	client-side	setting	to	make	the	Puppet
agent	report	to	a	different	Puppet	master.

Alternatively,	if	you	are	using	the	HTTP	report	process,	you	may	wish	to	set	a	different
URL.	So,	it’s	worth	having	an	understanding	of	the	options	that	are	available.

Tip
Why	use	a	separate	Puppet	report	server?

As	with	all	good	enterprise	solutions,	Puppet	has	been	designed	to	allow	certain	roles	to
be	decomposed	into	separate	components	to	ease	scaling.	Reporting	fits	into	this,	and	you
may	find	that	if	you	are	using	report	processors	that	are	resource	intensive,	then	you	may
want	to	separate	the	reporting	function	onto	a	separate	server	and	leave	as	many	resources
as	possible	for	the	Puppet	master	to	deal	with	client	requests.

You	can	find	a	complete	list	of	all	configuration	options	for	Puppet	at
http://docs.puppetlabs.com/references/latest/configuration.html,	including	the	options	for
directing	reports	to	a	separate	Puppet	master.

http://docs.puppetlabs.com/references/latest/configuration.html




Setting	up	the	server
For	the	most	part,	the	Puppet	server	is	preconfigured	for	reporting	and	is	simply	waiting
for	clients	to	start	sending	information	to	it.	By	default,	the	Puppet	master	will	use	the
store	report	processor,	and	this	will	simply	store	the	data	that	is	sent	to	the	Puppet	master
in	the	YAML	format	on	the	filesystem.

Note
YAML	is	a	data	serialization	format	that	is	designed	to	be	both	machine	and	human
readable.	It’s	widely	used	and	seems	to	have	found	considerable	favor	among	open	source
projects.	YAML	has	a	simple	layout	but	still	has	the	ability	to	hold	complex	configurations
that	are	easily	accessible	with	relatively	simple	code.	A	nice	side	effect	of	its	popularity	is
that	it	has	gained	first-class	support	in	many	languages	and	for	those	languages	without
such	support,	there	are	many	libraries	that	allow	you	to	easily	work	with	them.

It’s	worth	taking	some	time	to	become	familiar	with	YAML;	you	can	find	the	YAML
specifications	at	http://yaml.org,	and	Wikipedia	has	an	excellent	entry	that	can	ease	you
into	understanding	how	this	simple	yet	exceedingly	powerful	format	is	used.

Although	the	store	processor	is	simple,	it	gives	us	an	excellent	starting	point	to	ensure	that
our	Puppet	master	and	agent	are	configured	correctly.	The	YAML	files	it	produces	hold	a
complete	record	of	the	Puppet	agent’s	interactions	with	the	client.	This	record	includes	a
complete	record	of	which	resources	were	applied,	how	long	it	took,	what	value	they	were
earlier,	and	much	more.	In	later	chapters,	we	will	fully	explore	the	wealth	of	data	that	both
the	Puppet	reports	and	Puppet	metrics	offer	us.

Tip
We’re	going	to	spend	some	time	looking	at	various	settings,	both	in	this	chapter	and
others.	While	you	can	look	in	the	raw	configuration	files	(and	I	highly	encourage	you	to),
you	can	also	use	the	puppet	master	–configprint	command	to	find	out	what	Puppet
believes	a	particular	setting	to	be	set	at.	This	is	extremely	useful	in	finding	out	how	a
default	setting	may	be	configured,	as	it	may	not	even	be	present	in	the	configuration	file
but	will	still	be	applied!

Out	of	the	box,	the	only	real	Puppet	master	setting	that	may	require	some	care	and
attention	is	the	reportdir	setting.	This	defines	where	the	Puppet	agent	reports	are	stored,
and	it	is	important	that	this	points	to	a	directory	that	has	plenty	of	space.	I’ve	routinely
seen	installations	of	Puppet	where	the	disk	is	consumed	within	a	matter	of	days	via	a
reportdir	setting	that	points	at	a	relatively	diminutive	partition.	By	default,	the
reportdir	setting	is	set	to	the	/var/lib/puppet/reports	directory.	So	at	the	very	least,
make	sure	that	your	/var	partition	is	fairly	roomy.	If	your	Puppet	agents	are	set	to	run
every	thirty	minutes	and	you	have	a	healthy	number	of	hosts,	then	whatever	partition	you
have	this	directory	in	is	going	to	become	full	very	quickly.	It’s	worth	bearing	in	mind	that
there	is	no	inbuilt	rotation	or	compression	of	these	log	files,	and	you	may	want	to	consider
adding	one	using	your	tool	of	choice.	Alternatively,	there	is	a	Puppet	module	to	manage
the	log	rotate	on	the	Puppet	Forge	at	https://forge.puppetlabs.com/rodjek/logrotate.

http://yaml.org
https://forge.puppetlabs.com/rodjek/logrotate


Tip
If	you	do	relocate	the	reports	directory,	then	ensure	that	the	permissions	are	set	correctly
so	that	the	user	who	runs	the	Puppet	master	process	has	access	to	both	read/write	to	the
reporting	directory.	If	the	permissions	aren’t	set	correctly,	then	it	can	lead	to	some	very
weird	and	wonderful	error	messages	on	both	the	Puppet	master	and	agent.

Now	that	we	understand	some	of	the	basics	of	Puppet	reporting,	it’s	time	to	take	a	look	at
the	configuration.	Let’s	take	another	look	at	the	basic	configuration	that	comes	out	of	the
box.	The	configuration	file	is	as	follows:

[main]

logdir=/var/log/puppet

vardir=/var/lib/puppet

ssldir=/var/lib/puppet/ssl

rundir=/var/run/puppet

factpath=$vardir/lib/facter

templatedir=$confdir/templates

[master]

#	These	are	needed	when	the	Puppetmaster	is	run	by	passenger

#	and	can	safely	be	removed	if	webrick	is	used.

ssl_client_header	=	SSL_CLIENT_S_DN

ssl_client_verify_header	=	SSL_CLIENT_VERIFY

At	this	point,	no	further	changes	are	required	on	the	Puppet	master,	and	it	will	store	client
reports	by	default.	However,	as	mentioned,	it	will	store	reports	in	the
/var/lib/Puppet/reports	directory	by	default	.	This	isn’t	ideal	in	some	cases;
sometimes,	it’s	impossible	to	create	a	/var	directory	that	would	be	big	enough	(for
instance,	on	hosts	that	use	small	primary	storage	such	as	SSD	drives),	or	you	may	wish	to
place	your	logs	onto	a	centralized	storage	space	such	as	an	NFS	share.	This	is	very	easy	to
change,	so	let’s	take	a	look	at	changing	our	default	configuration	to	point	to	a	new
location.	This	is	described	in	the	following	code:

[main]

logdir=/var/log/puppet

vardir=/var/lib/puppet

ssldir=/var/lib/puppet/ssl

rundir=/var/run/puppet

factpath=$vardir/lib/facter

templatedir=$confdir/templates

[master]

reportdir	=	/mnt/puppetreports

#	These	are	needed	when	the	puppetmaster	is	run	by	passenger

#	and	can	safely	be	removed	if	webrick	is	used.

ssl_client_header	=	SSL_CLIENT_S_DN

ssl_client_verify_header	=	SSL_CLIENT_VERIFY

Make	sure	that	once	you	have	created	your	Puppet’s	reports	directory,	you	change	the
permissions	to	match	your	Puppet	user	(normally,	puppet:puppet	for	Unix	and	Linux
systems)	and	restart	the	Puppet	master.	Go	ahead	and	run	the	client	again,	and	you	should
see	the	report	appear	in	your	new	reporting	directory.



If	you’re	using	Puppet	Enterprise,	then	none	of	this	applies;	the	installer	has	taken	care	of
this	for	you.	If	you	take	a	look	at	the	configuration	directory	(normally
/etc/Puppetlabs/master),	you	can	see	that	the	Puppet.conf	file	has	the	same	changes.
Puppet	Enterprise	is	configured	out	of	the	box	to	use	the	HTTP	and	PuppetDB	storage
method.	This	is	a	far	more	scalable	way	of	doing	things	than	the	standard	reportdir
directory	and	store	method,	and	it	is	a	good	example	of	where	Puppet	Enterprise	is
designed	with	scale	in	mind.	This	doesn’t	mean	that	you	can’t	do	this	in	the	open	source
version,	though;	in	the	following	chapters,	we	will	go	through	setting	up	Puppet	Open
Source	to	use	these	report	processors	and	more.





Setting	up	the	Puppet	agent
Much	like	the	Puppet	master,	the	Puppet	agent	is	configured	with	sensible	default	settings
out	of	the	box.	In	fact,	in	most	cases,	you	will	not	need	to	make	any	changes.	The	only
exception,	generally,	is	if	you	are	using	a	separate	reporting	server;	in	this	case,	you	will
need	to	specify	the	host	that	you	have	assigned	this	role	to.

You	can	adjust	the	Puppet	agent’s	reporting	behavior	using	the	report	setting	within	the
[agent]	configuration	block	of	the	Puppet	configuration	file.	This	is	a	simple	Boolean
switch	that	defines	the	behavior	of	the	Puppet	agent	during	a	run,	and	by	default,	it	is	set
to	true.	Sometimes,	you	may	find	that	you	wish	to	explicitly	set	this	to	true	to	aid	anyone
who	is	less	familiar	with	Puppet.	You	can	safely	set	this	explicitly	by	making	the
following	code	amendment	to	the	puppet.conf	file:

[main]

logdir=/var/log/puppet

vardir=/var/lib/puppet

ssldir=/var/lib/puppet/ssl

rundir=/var/run/puppet

factpath=$vardir/lib/facter

templatedir=$confdir/templates

[master]

#	These	are	needed	when	the	Puppetmaster	is	run	by	passenger

#	and	can	safely	be	removed	if	webrick	is	used.

ssl_client_header	=	SSL_CLIENT_S_DN

ssl_client_verify_header	=	SSL_CLIENT_VERIFY

And	now	let's	insert	the	option	for	the	client	to	report:

[main]

logdir=/var/log/puppet

vardir=/var/lib/puppet

ssldir=/var/lib/puppet/ssl

rundir=/var/run/puppet

factpath=$vardir/lib/facter

templatedir=$confdir/templates

[agent]report	=	true

[master]

#	These	are	needed	when	the	Puppetmaster	is	run	by	passenger

#	and	can	safely	be	removed	if	webrick	is	used.

ssl_client_header	=	SSL_CLIENT_S_DN

ssl_client_verify_header	=	SSL_CLIENT_VERIFY

These	are	the	essentials	to	configure	Puppet	in	order	to	report.	There	are	other	options
available	in	both	the	Puppet	agent	and	the	Puppet	master	configuration	that	are	related	to
reporting,	but	these	are	strictly	optional;	the	default	settings	are	generally	okay.	If	you’re
curious,	you	can	find	a	complete	list	of	the	available	options	on	the	Puppet	Labs	website	at
http://docs.puppetlabs.com/references/latest/configuration.html.	Be	cautious,	though;
some	of	these	settings	can	do	some	very	weird	things	to	your	setup	and	should	only	be

http://docs.puppetlabs.com/references/latest/configuration.html


used	if	you	really	need	them.

Well	done;	you	are	now	up	and	running	with	Puppet	reporting,	albeit	in	a	very	basic	form.
We	could	end	the	book	here,	but	the	fun	is	only	just	starting.	Now	that	we	understand	how
the	Puppet	agent	interacts	with	the	Puppet	master	to	create	reports,	we	can	start	to
examine	some	of	the	other	powerful	features	that	Puppet	reporting	offers	us.





Summary
After	reading	this	chapter,	you	should	now	appreciate	how	Puppet	goes	about	its
reporting.	We	explored	the	Puppet	configuration	file	and	observed	how	both	Puppet
Enterprise	and	Puppet	Open	Source	are	configured	for	simple	reporting	by	default.	We
explored	the	interaction	between	the	Puppet	master	and	the	Puppet	agent	and	looked	at
how	Puppet	and	Facter	work	together	to	create	detailed	reports	of	both	the	activity	and
state.	We	also	observed	that	custom	facts	can	be	added	to	any	report.	We	briefly	covered
scalability	by	noting	that	you	can	use	a	separate	Puppet	master	to	act	as	a	dedicated	report
server,	and	we	looked	at	some	of	the	reasons	as	to	why	you	might	want	to	do	this.

In	the	next	chapter,	we’re	going	to	take	a	look	at	some	of	the	dashboards	that	can	be	used
with	Puppet	and	take	a	whistle-stop	tour	of	some	of	the	major	features	that	each	of	them
has.	You’ll	see	how	these	dashboards	can	offer	some	quick	and	easy	reporting	options	but
also	have	see	of	the	limitations	of	using	them.





Chapter	2.	Viewing	Data	in	Dashboards
In	the	previous	chapter,	we	found	out	how	easy	it	is	to	make	Puppet	expose	a	rich	seam	of
information	from	the	hosts;	however,	at	this	point	in	time,	we	have	no	easy	way	of	mining
it.	In	the	next	few	chapters,	we	are	going	to	look	at	some	of	the	ways	in	which	we	can
both	extract	and	interact	with	the	data	that	Puppet	provides,	but	in	the	meantime,	we	will
spend	a	little	time	going	over	the	tools	that	are	already	available.	These	tools	provide	a
quick	and	easy	out-of-the-box	experience,	and	in	the	case	of	Puppet	Enterprise	and	The
Foreman,	also	form	a	central	part	of	the	management	tool	chain.

In	this	chapter,	we’re	going	to	cover	the	following:

A	brief	introduction	to	dashboards
A	quick	tour	of	Puppet	Dashboard	and	Puppet	Enterprise	Console
A	brief	look	at	The	Foreman
An	introduction	to	PuppetBoard



Why	use	a	dashboard?
One	of	the	advantages	of	using	Puppet	to	manage	your	infrastructure	is	that	it	allows	you
to	simplify	the	management	and	organization	of	your	nodes	and	impose	order	on	even	the
largest	pool	of	resources.	This	is	only	one	part	of	the	picture,	however,	and	an	important
element	to	any	kind	of	system,	such	as	Puppet,	is	being	able	to	visualize	what	you
manage.	A	dashboard	is	shown	in	the	following	screenshot:

Puppet	now	has	several	dashboards	available	for	use,	and	most	of	these	offer	capabilities
above	and	beyond	simply	reporting	data.	Most	dashboards	can	also	act	as	External	Node
Classifiers	(ENCs),	and	in	some	cases,	can	drive	actions	by	integrating	with	MCollective
and	even	form	a	key	part	of	the	server	build	process	if	you	use	The	Foreman.	Even
without	utilizing	these	features,	you	will	find	that	a	dashboard	can	offer	both	your	users
and	you	a	valuable	insight	into	what	is	happening	within	your	Puppet-managed
infrastructure,	and	will	allow	you	to	interrogate	the	facts	and	reports	returned	by	the
Puppet	agents.	It’s	worth	noting	that	in	many	cases,	if	you	do	not	use	these	dashboards	as
ENCs,	you	may	find	that	some	information	will	not	be	accessible.	For	instance,	Puppet
Dashboard	cannot	tell	which	classes	are	assigned	to	a	particular	node	unless	it’s	being
used	as	an	ENC.

We	are	not	going	to	go	into	a	huge	amount	of	detail	regarding	how	to	set	up	each	of	these
products	as	you	can	find	installation	instructions	along	with	the	respective	projects.	If	you
are	a	Puppet	Enterprise	user,	then	you	will	find	that	Puppet	Enterprise	Console	is	installed
as	part	of	the	overall	product.

Before	going	into	detail	about	the	dashboards,	it’s	worth	looking	at	the	features	that	each
of	them	can	offer.	I’ve	summarized	this	into	a	table,	which	is	shown	as	a	screenshot	in	the



next	section.





The	Puppet	Dashboard	feature	list
In	the	following	screenshot,	we	will	identify	the	feature	list	available	and	understand	the
availability	of	these	features	in	different	dashboards:

ENC:	This	denotes	that	this	dashboard	can	be	utilized	as	an	external	node	classifier
Reporting:	This	dashboard	can	produce	reports	on	a	Puppet	agent’s	activity
Class	Discovery:	This	dashboard	can	examine	installed	Puppet	modules	and	extract
class	names	for	allocation	in	the	ENC
PuppetDB	Integration:	This	dashboard	can	use	PuppetDB	as	a	data	source
MCollective	Integration:	This	denotes	that	this	dashboard	can	use	MCollective	to
orchestrate	actions	against	nodes





Understanding	Puppet	Dashboard
Puppet	Dashboard	is	the	original	dashboard	that	was	shipped	with	Puppet	and	was
designed	to	provide	a	graphical	ENC	and	reporting	console.	Since	the	advent	of	Puppet
Enterprise,	Puppet	Labs	no	longer	directly	supports	the	open	source	version	of	the
dashboard	and	it	is	now	maintained	by	the	open	source	community.

Puppet	Dashboard	fulfills	the	role	of	both	an	ENC	and	an	end	point	for	Puppet	reporting.
As	an	ENC,	Puppet	Dashboard	is	capable	and	will	allow	you	to	both	define	classes	and
assign	them	to	nodes.	Note,	though,	that	classes	are	defined	manually,	so	if	you	do	use
Puppet	Dashboard	as	an	ENC,	you	will	need	to	add	some	new	classes	to	the	dashboard	if
you	want	to	add	a	new	module.

Puppet	Dashboard	was	designed	to	be	simple	enough	to	be	read	at	a	glance,	and	the	front
page	will	immediately	allow	you	to	see	both	the	number	of	Puppet	agents	and	which	state
they	reported	last	in	a	time	series	graph	along	the	top	of	the	dashboard.	The	panel	to	the
left	of	the	graph	allows	you	to	see	in	detail	how	many	nodes	have	failed	to	run,	are
pending	changes,	have	changed,	or	are	unchanged.	It	also	shows	you	unresponsive	and
unreported	nodes;	these	are	important	metrics	and	well	worth	keeping	an	eye	on.	An
unresponsive	node	is	any	node	that	has	not	reported	back	in	an	hour,	and	it	is	probably	a
signifier	of	issues	if	you	see	a	large	number	in	this	column.	You	can	configure	the	cutoff
period	if	you	tend	to	run	your	Puppet	agents	on	a	different	schedule	to	the	usual	30
minutes.	Unreported	nodes	occur	if	you	commission	a	node	in	Puppet	Dashboard	and	it
never	reports—these	are	something	that	should	be	somewhat	of	a	rarity.

At	the	bottom	of	the	front	page	is	a	table	that	allows	you	to	see	more	details	of	the	nodes,
with	each	tab	representing	a	state	from	the	status	summary	on	the	left-hand	side	of	the
page.	In	the	table,	you	can	see	the	hostname	of	the	node,	the	date	and	time	of	its	last
report,	and	some	statistics	around	how	many	resources	the	Puppet	agent	has	either	applied,
failed	to	apply,	or	left	unchanged.	By	clicking	on	the	links	in	the	table,	you	can	explore	the
report	and	node	further.

The	open	source	Puppet	Dashboard	is	relatively	simple	to	set	up	and	can	offer	you	a
reasonable	level	of	reporting.	It	includes	ENC	functionality	and	can	be	used	to	categorize
and	apply	classes	to	your	nodes.	At	the	time	of	writing,	however,	community	participation
has	been	low,	and	I	would	not	recommend	using	the	open	source	Puppet	Dashboard	unless
you	have	a	compelling	need	to.	If	you	do	want	to	install	or,	better	yet,	contribute	towards
Puppet	Dashboard,	then	you	can	find	it	at	https://github.com/sodabrew/puppet-dashboard.

https://github.com/sodabrew/puppet-dashboard




Exploring	Puppet	Enterprise	Console
Puppet	Labs	have	focused	their	time	on	improving	Puppet	Dashboard	in	the	enterprise
release	of	Puppet,	and	to	start	to	differentiate	it	from	the	previous	dashboard,	they	have
renamed	it	Puppet	Enterprise	Console.	Although	superficially	similar	to	each	other,	the
two	projects	have	very	different	offerings.	Puppet	Enterprise	Console	offers	integration
with	MCollective,	and	PuppetDB	offers	out-of-the-box,	enhanced	features	such	as	Event
Inspector	and	Live	Management.	Puppet	Enterprise	Console	forms	the	core	of	the
enterprise	product	and	offers	a	central	place	of	management	and	a	solid	reporting	tool,	and
increasingly,	is	the	place	to	orchestrate	your	infrastructure.	This	dashboard	is	shown	in	the
following	screenshot:

In	terms	of	layout	and	basic	reporting	capabilities,	Puppet	Enterprise	Console	is	very
similar	to	the	open	source	Puppet	Dashboard,	and	if	you	are	migrating	from	Puppet
Dashboard	to	Puppet	Enterprise	Console,	you	should	find	yourself	at	home.	We’re	going
to	take	a	look	at	the	two	major	features	Puppet	Enterprise	Console	has	that	sets	it	apart
from	its	open	source	progenitor.



Event	Inspector
Event	Inspector	is	a	relatively	new	addition	to	Puppet	Enterprise	Console,	and	it	gives	you
a	quick	and	easy	way	to	correlate	events	between	multiple	nodes	over	a	certain	period	of
time.	This	can	be	seen	in	the	following	screenshot:

The	events	console	also	has	a	feature	called	perspectives.	This	allows	you	to	view	the
data	from	one	of	three	different	ways,	from	the	nodes,	classes,	or	resources	perspectives.
This	ability	to	flip	between	views	is	very	useful	and	quickly	allows	you	to	contextualize
an	event.

For	instance,	take	a	failure	on	a	group	of	nodes.	Viewing	them	from	the	nodes	perspective
allows	you	to	see	that	a	group	of	nodes	failed	during	the	previous	run.	However,	flipping
over	to	the	classes’	perspective	shows	you	that	the	failure	occurred	within	a	particular
class;	this	allows	you	to	quickly	zero	in	on	changes	that	have	had	an	adverse	affect	on
your	Puppet-managed	infrastructure.

The	events	console	is	one	of	the	major	differences	between	the	open	source	and	enterprise
versions	of	Puppet,	and	it	gives	you	an	idea	of	the	direction	that	Puppet	Labs	is	moving	in
with	regards	to	reporting.	You	can	expect	that	in	future	releases	of	Puppet	Enterprise,	the
reporting	gap	will	only	increase.



Puppet	Live	Management
Puppet	Enterprise	features	integration	with	another	Puppet-Labs-curated	product,
MCollective	(http://puppetlabs.com/mcollective).	MCollective	is	an	orchestration	product
that	allows	you	to	execute	commands	in	parallel	on	many	nodes,	and	by	integrating
MCollective	into	Puppet	Enterprise	Console,	Puppet	Labs	has	created	a	new	feature	called
Puppet	Live	Management.	This	can	be	seen	in	the	following	screenshot:

Puppet	Live	Management	allows	you	to	control	Puppet	on	your	nodes	from	the	comfort	of
your	Puppet	Enterprise	Console	application.	For	instance,	if	you’ve	pushed	a	change	on	a
Puppet	module	and	can’t	wait	for	the	usual	30	minutes	for	it	to	take	effect,	you	can	use
Puppet	Enterprise	Console	to	do	a	one-off	Puppet	run	on	a	node	or	even	a	group	of	nodes.
Likewise,	you	can	enable	and	disable	the	Puppet	agent,	plus	find	its	status	on	all	the
managed	nodes.

Puppet	Live	Management	is	not	just	limited	to	managing	Puppet	agents,	though;	it	can
leverage	MCollective	plugins	to	further	enhance	its	capabilities.	A	fresh	installation	of
Puppet	Enterprise	Console	has	preinstalled	plugins	that	allow	you	to	carry	out	tasks	such
as	package	installation	and	restarting	services,	and	these	can	be	further	supplemented	with
any	available	MCollective	plugin.

Puppet	Enterprise	Console	is	the	evolution	of	the	open	source	Puppet	Dashboard	and	is
increasingly	differentiating	itself	with	new	and	exciting	features.	It	is,	however,	only
available	if	you	use	Puppet	Enterprise	and	cannot	be	split	off	as	a	separate	product.	You

http://puppetlabs.com/mcollective


can	download	Puppet	Enterprise	Console	along	with	Puppet	Enterprise	from
http://puppetlabs.com/puppet/puppet-enterprise.

http://puppetlabs.com/puppet/puppet-enterprise




Using	The	Foreman
The	Foreman	is	an	open	source	project	that	is,	in	its	own	words,	a	life	cycle	management
tool.	Rather	than	being	limited	to	acting	as	an	ENC	for	Puppet,	The	Foreman	can	also
provide	unattended	installation	facilities	for	kickstart,	jumpstart,	and	preseed-based
systems.	This	essentially	means	that	The	Foreman	is	able	to	create	our	system	from	its
initial	boot,	through	first	configuration,	and	then	manage	its	state	for	the	rest	of	its	life
cycle.	This	dashboard	is	shown	in	the	following	screenshot:

From	the	point	of	view	of	reporting,	The	Foreman	offers	much	the	same	as	Puppet
Dashboard,	including	the	ability	to	view	individual	host	details	and	reports.	However,	it
also	has	some	of	its	own	interesting	tricks.	The	Foreman	has	put	an	awful	lot	of	thought
behind	reporting	and	has	two	standout	features:	trends	and	audits.	These	offer	a	unique
view	of	our	Puppet-managed	infrastructure	and	are	exceptionally	powerful	reporting	tools.



Reporting	with	The	Foreman
Reporting	forms	a	very	large	part	of	The	Foreman	feature	set,	and	The	Foreman	is
possibly	the	most	capable	out	of	each	of	the	dashboards	in	this	regard.	Not	only	is	The
Foreman	able	to	report	the	usual	details,	such	as	facts	and	reports	from	nodes,	but	it	is	also
able	to	create	full	audit	reports	for	them	(who	made	what	change	to	which	servers)	that	are
well	presented	and	make	heavy	use	of	charts	to	ensure	that	the	data	is	clear	and	easy	to
read.	The	Foreman	also	has	an	interesting	feature	to	look	at	historical	data	called	trends.

Looking	at	trends	in	The	Foreman
The	Foreman	is	able	to	report	on	facts,	much	like	other	dashboards;	however,	it	also
records	changes	in	state	into	its	own	data	store.	This	allows	it	to	build	up	a	view	of	how
facts	are	trending	over	time.	A	good	example	is	to	look	at	the	RAM	allocated	to	a	certain
group	of	nodes.	Using	The	Foreman	trends	feature,	it	is	possible	to	look	at	how	this	has
grown	over	time	and	can	be	a	fantastic	aid	when	trying	to	work	out	capacity	management
problems.	Alternatively,	any	fact	that	is	reported	to	The	Foreman	can	be	viewed	as	a	trend,
and	this	is	a	fantastic	feature	that	other	dashboards	currently	lack.

The	Foreman	is	a	very	impressive	dashboard	for	Puppet	and	well	worth	considering,
especially	if	you	need	a	quick	and	powerful	reporting	solution.	It	works	best	when	it	is
acting	as	the	Puppet	ENC,	however,	so	if	you	install	and	use	it	simply	as	a	reporting	tool,
you	may	find	that	some	features	do	not	work	as	expected.





Discovering	PuppetBoard
PuppetBoard	is	a	relatively	young	product,	and	as	such,	may	have	a	few	rough	edges;
however,	despite	its	youth,	it	already	offers	an	excellent	interface	for	reporting.
PuppetBoard	uses	PuppetDB	as	its	data	source,	and	aside	from	Puppet	Enterprise	Console,
it	is	the	only	product	to	do	so.	PuppetBoard	eschews	any	ambition	of	forming	part	of	the
management	layer,	and	instead,	it	focuses	on	providing	a	clear	and	easy-to-use	reporting
feature.	This	dashboard	is	shown	in	the	following	screenshot:

Since	PuppetBoard	is	based	around	PuppetDB,	it	allows	access	to	all	data	within	it,	such
as	facts	and	Puppet	agent	reports	and	metrics.	It	allows	you	to	explore	this	data	intuitively
using	an	easy-to-use	interface.	PuppetBoard	allows	you	to	explore	the	data	held	in
PuppetDB	from	the	point	of	view	of	nodes,	facts,	and	reports,	and	it	also	allows	you	to
drill	through	each	element	to	explore	further	details.	For	instance,	by	drilling	into	a	node,
you	are	able	to	see	its	connected	facts	and	reports,	and	by	drilling	into	facts,	you	are	able
to	see	the	nodes	connected	to	that	particular	fact	along	with	an	appropriate	graph.	The
FACTS	view	is	particularly	useful	as	it	not	only	lists	each	node	with	the	associated	fact
value,	but	also	presents	it	neatly	in	the	form	of	a	graph.	This	can	be	invaluable	for	quickly
gauging	the	rollout	of	operating	systems,	for	instance.	This	is	described	in	the	following
screenshot:



The	other	useful	feature	is	the	query	panel.	This	allows	you	to	run	freeform	PuppetDB
queries	utilizing	the	PuppetDB	query	API.	So,	if	a	particular	view	of	data	is	not	present	in
the	predefined	PuppetBoard	reports,	you	can	quickly	make	up	ad	hoc	ones.	We	will
explore	PuppetDB	and	its	query	API	in	Chapter	6,	Retrieving	Data	with	the	PuppetDB
API.

PuppetBoard	is	a	young	project,	but	it	is	extremely	promising	even	at	this	early	stage.	If
you	use	Hiera	or	some	other	way	to	classify	nodes,	then	PuppetBoard	is	an	excellent
addition	to	your	Puppet	infrastructure	as	it	does	not	require	that	Puppet	agents	use	it	as	an
ENC	for	any	of	its	features.	Combine	this	with	easy-to-use	reporting	and	a	relatively
lightweight	installation	and	you	have	the	makings	of	an	excellent	dashboard.	You	can	find
the	code	and	installation	instructions	for	PuppetBoard	at
https://github.com/nedap/puppetboard.

https://github.com/nedap/puppetboard




Summary
You	should	now	be	aware	of	which	dashboards	are	available	for	Puppet	and	what	features
they	can	offer	you.	As	you	can	see,	they	can	add	a	fantastic	insight	into	the	running	of
your	Puppet	infrastructure	without	needing	to	expend	much	effort.	Using	these	dashboards
gives	you	quick	and	easy	access	to	both	your	Puppet	reports	and	gathered	data	from	your
hosts	via	Facter,	and	they	can	be	used	to	easily	track	changes	over	time.	There	are
problems,	though.	First	of	all,	you	need	to	use	these	panels	as	an	ENC	to	leverage	their
full	power.	Without	this,	you	can	use	the	majority	of	the	reporting	features,	but	they	will
still	be	missing	certain	elements.	They	are	also	inflexible,	with	almost	no	opportunity	to
customize	the	reports	to	suit	your	purposes,	and	in	some	cases,	their	development	is
lagging.

In	the	next	chapter,	you	will	learn	how	to	create	your	own	report	processors.	Report
processors	form	a	key	part	of	Puppet	reporting	and	will	start	you	on	the	way	to	producing
your	own	reports	and	alerts.





Chapter	3.	Introducing	Report	Processors
In	the	previous	chapters,	we	looked	at	some	of	the	basic	steps	needed	to	enable	Puppet
reporting	and	learned	how	to	view	some	of	the	data	that	the	Puppet	agents	produce.	In	this
chapter,	we	will	learn	how	to	enable	the	Puppet	master	to	process	these	reports	and
metrics	using	report	processors.	We	will	cover	the	following	topics:

Basics	of	report	processors
Default	report	processors	that	ship	with	Puppet
How	to	send	Puppet	alerts	with	Twitter
Using	PagerDuty	to	log	and	escalate	issues

Report	processors	form	the	heart	of	Puppet	reporting;	so,	it’s	important	that	you	get	a	good
grounding	in	what	they	are,	what	they	can	do,	and	how	you	can	go	about	adding	new	ones.
Once	you’ve	got	a	good	grasp	of	how	they	are	installed	and	configured,	you	will	be
amazed	at	some	of	the	additional	functionality	that	a	good	report	processor	can	add	to
Puppet,	not	just	for	producing	reports,	but	also	for	raising	alerts	and	more.



Understanding	a	report	processor
It’s	one	thing	to	be	able	to	gather	data,	but	it’s	quite	another	thing	to	then	be	able	to	do
anything	interesting	with	it.	Having	data	without	any	means	of	access	is	simply	wasting
disk	space	and	bandwidth.	It’s	been	the	bane	of	many	systems	that	they	seem	to	gather	lots
of	data	and	then	make	it	tooth-grindingly	frustrating	to	get	any	kind	of	sensible	access	to
it.	Puppet	has	been	designed	from	the	outset	to	make	it	easy	for	you	to	gather	and	access
any	data	that	it	collects,	both	by	using	open	source	data	formats	and	by	providing	a	plugin
system	in	the	form	of	report	processors	that	allow	you	to	process	that	data.

Report	processors	are	pieces	of	Ruby	code	that	are	placed	within	Puppet’s	lib	directory
and	are	treated	as	plugins.	When	a	report	processor	is	enabled,	the	Puppet	master	will	pass
the	YAML	data	it	receives	from	the	Puppet	agents	into	the	report	processor	every	time	a
Puppet	agent	completes	a	transaction.	It	is	then	up	to	that	particular	plugin	to	do
something	interesting	with	the	data,	and	as	it’s	a	straightforward	piece	of	Ruby	code,	you
can	let	your	imagination	run	riot!	If	you	can	do	it	in	Ruby,	you	can	do	it	with	a	report
processor;	and	if	you	can’t	do	it	in	Ruby,	you	can	easily	write	a	report	processor	to
forward	the	data	to	a	data	processing	weapon	of	your	choice.

Puppet	does	not	limit	you	to	one	report	plugin;	you	can	have	as	many	as	you	like	installed
at	any	given	time.	You	need	to	keep	in	mind	that	these	plugins	are	being	executed	on	your
Puppet	master,	and	you	need	to	ensure	that	the	report	processor(s)	does	not	leave	the
Puppet	master	process	starved	of	resources.	There	are	various	techniques	that	can	be	used
to	move	data	into	other	systems,	and	in	this	chapter	and	others,	we	will	explore	some	of
the	ways	of	doing	that.	One	of	the	simplest	ways	to	scale	Puppet	reporting	is	to	add
another	Puppet	master	for	reporting.	As	we	explored	in	Chapter	1,	Setting	Up	Puppet	for
Reporting,	it’s	easy	to	add	a	Puppet	master	dedicated	to	reporting,	and	this	is	highly
recommended	as	a	scaling	technique.	There	is	no	reason	that	this	server	needs	to	be	the
actual	reporting	Puppet	master	either;	you	could	potentially	use	a	load	balancer	to	enable
several	reporting	Puppet	master	servers	in	the	frontend.

It	is	exceptionally	useful	to	have	the	ability	to	install	multiple	report	processors.	You	could
potentially	have	one	script	that	deals	with	errors	and	sends	alerts	to	the	correct	person,
another	plugin	that	creates	some	lovely	graphs	of	your	Puppet	activity,	and	finally	(and	I
have	seen	this),	a	report	processor	that	alerts	an	Arduino	board	to	play	the	James	Bond
theme	if	certain	terms	are	seen.	It	can’t	be	overstated	how	powerful	the	reporting
subsystem	can	potentially	be;	Puppet	is	probably	one	of	the	few	systems	that	has	almost
complete	knowledge	of	your	infrastructure,	from	how	many	CPU	cores	a	node	has	to	how
a	piece	of	software	is	configured.	Add	in	some	suitable	custom	facts	and	there’s	almost
nothing	you	cannot	find	out	with	Puppet,	and	once	Puppet	knows	about	it,	a	report
processor	can	act	on	it.

Report	processors	are	installed	in	the	$vardir/Puppet/reports	directory	within	Puppet’s
install	directory	and	only	need	to	be	present	on	the	Puppet	master.	The	Puppet	agent
neither	knows	nor	cares	what	happens	to	the	data;	it	simply	sends	it	to	the	Puppet	master
for	processing.	That	being	said,	it	doesn’t	matter	if	the	report	processors	are	present	on	the



Puppet	agents	as	they	will	never	be	called	on	the	agent	side.

Tip
It’s	worth	noting	that	prior	to	Puppet	Version	3.3.0,	the	report	format	was	a	YAML
document.	From	Version	3.3.0	onwards,	it	now	uses	a	PSON-formatted	document	(a
variant	of	JSON).	Generally	speaking,	this	shouldn’t	matter	too	much	for	our	purposes,
but	it	is	worth	knowing	in	case	you	use	firewalls	that	have	blocks	based	on	the	content
type.	You	can	use	the	report_serialization_format	option	within	the	puppet.conf
configuration	if	you	need	to	set	it	back	to	the	legacy	YAML	format.

There	are	two	ways	in	which	you	can	install	a	report	processor.	The	most	traditional	and,
in	some	ways,	straightforward	method	is	to	copy	the	code	and	place	it	on	your	Puppet
master.	This	is	completely	supported	by	Puppet,	simple	to	carry	out,	and	has	the	advantage
of	being	quick;	however,	it	lacks	a	certain	elegance	and	is	not	really	in	keeping	with	the
Puppet	spirit	of	automation.

A	more	refined	way	to	install	report	processors	is	to	package	them	inside	a	Puppet
module.	The	module	itself	simply	needs	a	/lib/puppet/reports	directory	for	your	shiny
new	plugin	code	to	be	placed.	You’ll	also	need	a	blank	init.pp	file	in	the	manifests
directory	to	ensure	that	Puppet	has	something	to	run.	Once	the	module	is	installed	on	the
Puppet	master,	you	just	need	to	perform	a	Puppet	client	run.	Thanks	to	the	magic	of
Puppet’s	plugin	sync	mechanism	(which	is	enabled	by	default	since	Puppet	Version	3),
you	will	find	that	the	new	report	processor	is	installed	in	the	correct	location	with	the
correct	ownership	and	permissions.

This	installation	method	may	seem	counterintuitive	at	first,	but	it	makes	complete	sense	to
do	it	this	way.	By	following	this	convention,	it	becomes	much	easier	to	distribute	your
code.	It	simplifies	building	new	Puppet	masters	with	Puppet	and	ensures	that	if	you
release	a	new	version,	it	will	be	automatically	propagated	and	updated.	Another	major
benefit	is	that	by	producing	a	report	processor	as	a	module,	it	makes	it	easier	for	you	to
submit	it	to	Puppet	Forge	for	other	people	to	make	use	of	your	work.

Tip
Puppet	Forge	is	a	fantastic	repository	of	Puppet	modules	written	by	both	Puppet	Labs
themselves	and	the	community	at	large.	As	long	as	you	follow	the	pattern	of	using	a
module	to	distribute	your	code,	you	can	add	it	to	Puppet	Forge.	By	adding	your	code	to
Puppet	Forge,	you	are	not	only	sharing	your	expertise	and	code	with	other	Puppet	users,
but	you	are	also	allowing	them	to	improve	upon	these	codes.	After	reading	this	book,	you
may	have	some	fantastic	ideas	for	a	report	processor,	and	it	would	be	fantastic	for	you	to
share	it	on	Puppet	Forge.	You	can	view	the	existing	modules	as	well	as	sign	up	to	publish
your	own	at	https://forge.puppetlabs.com.

We’ll	come	back	to	the	organizational	and	developmental	aspects	of	report	processors	in
Chapter	4,	Creating	Your	Own	Report	Processor.	For	now,	let’s	take	a	look	at	some	of	the
existing	report	processors	available	in	Puppet.

https://forge.puppetlabs.com




Utilizing	the	built-in	report	processors
Puppet	ships	with	several	report	processors	that	have	already	been	included,	and	they	offer
some	fairly	fantastic	capabilities	right	away	without	needing	to	write	a	single	line	of	code.
The	included	plugins	cover	a	fairly	wide	spectrum	of	requirements,	from	storing	the	raw
reports	to	sending	alerts	via	e-mail	based	on	certain	criteria.	The	included	report
processors	are	the	following:

store
report
rrdgraph
tagmail
HTTP
PuppetDB

Over	the	next	few	pages,	we’re	going	to	take	a	look	at	these	built-in	report	processors	and
what	they	are	capable	of.	You	are	going	to	find	that	the	included	report	processors	offer	a
rather	impressive	range	of	abilities	and	can	immediately	offer	you	not	only	better	insight
into	your	infrastructure,	but	also	some	new	and	interesting	alerting	abilities.



Storing	reports	with	the	store	report	processor
The	store	report	processor	is	the	simplest	report	processor	packaged	with	Puppet,	and	it
does	exactly	what	it	says	on	the	tin;	it	takes	incoming	reports	and	stores	them	to	a	location
on	a	disk.	It	is	also	the	default	report	processor	to	be	used	if	you	enable	reporting	on	the
Puppet	master.

Although	it	sounds	simple,	this	processor	is	incredibly	versatile,	as	the	file	it	creates	is	a
complete	dump	of	the	report	data	from	the	Puppet	agent.	This	ensures	that	every	part	of
the	puppet::transaction::report	object	is	stored,	including	the	log,	metrics,	and
resources.	This	is	something	that	other	report	processors	may	not	necessarily	do	as	there	is
a	very	large	difference	between	processing	log	data	and	processing	metrics.	Possibly	the
biggest	asset	of	the	store	report	processor	is	that	it	allows	for	the	option	of	ingesting	the
files	into	a	separate	analytical	tool	such	as	Crystal	Reports	or	any	other	data	analysis	tool.
The	store	report	processor	lends	itself	nicely	to	producing	data	for	batch	processing,	and	it
should	be	the	first	place	to	look	if	you	are	dealing	with	the	batch	capture	and	transform
tools	for	analysis.

Configuring	the	store	report	processor	is	straightforward.	To	enable	it,	you	simply	need	to
edit	the	puppet.conf	file	and	add	the	following	lines	of	code:

[master]

reports	=	store

reportstore	=	/var/log/Puppet

Once	you’ve	added	these	lines	of	code,	you’ll	need	to	restart	the	Puppet	master	process.
Although	Puppet	will	automatically	reload	its	configuration	when	a	change	is	made,	the
report	processor	is	not	automatically	started;	so,	to	ensure	that	any	new	reporting
configuration	changes	are	picked	up,	it’s	best	to	remain	in	the	habit	of	restarting	the
Puppet	master	when	you	make	any	changes.

The	first	line	of	the	preceding	code	snippet	tells	the	Puppet	master	to	load	the	store	report
processor,	and	the	second	line	then	tells	the	processor	where	to	store	the	processed	files.
As	long	as	you’ve	left	the	clients	for	reporting	in	their	default	setting,	you	should	find	that
your	reports	directory	starts	to	fill	up	with	reports.

Remember	to	keep	an	eye	on	your	disk	space	usage	on	the	partition	the	reports	are	being
stored	on;	although	each	report	is	quite	small	on	its	own,	the	reports	soon	start	adding	up.
If	you’re	using	an	application	of	your	own	devise	to	crunch	the	data,	you	may	want	to
consider	either	removing	the	data	post	processing	or,	at	the	very	least,	archiving	it	into
some	form	of	compressed	file.	The	Puppet	master	has	no	further	interaction	with	the	data,
so	either	removing	the	stored	reports	or	compressing	them	will	have	no	effect	on	the
running	of	your	Puppet	master.



Adding	to	logfiles	with	the	log	report	processor
The	log	report	processor	is,	in	some	ways,	similar	to	the	store	report	processor.	Rather
than	storing	the	report	on	a	disk	with	the	Puppet	master,	the	log	report	processor	sends	it
to	the	local	syslog	server	for	logging.	This	can	be	enormous	fun	when	coupled	with	a
remote	syslog	server	and	can	make	collecting	reports	from	multiple	Puppet	masters	a
complete	breeze.	This	is	especially	useful	if	you	are	running	a	large	or	complex	Puppet
installation	as	it	allows	you	to	have	a	single	place	to	look	for	issues	rather	than	having	to
look	at	individual	servers.

To	enable	the	log	report	processor,	you	can	add	the	following	code	snippet	to	the
puppet.conf	file:

[master]

reports	=	log

That’s	it;	no	configuration	is	required	as	all	this	processor	does	is	hand	the	data	to	the
underlying	syslog	system;	it’s	up	to	you	to	configure	your	syslog	to	deal	with	the	data	in
an	appropriate	manner	by	adding	syslog	filters	and	log	rotation	rules.	This	is	out	of	the
scope	of	this	book,	but	it	should	be	covered	by	your	syslog	tools’	documentation.	At	the
least,	you	will	probably	want	some	kind	of	rule	in	place	to	split	the	Puppet	master	data
into	a	separate	log	file,	as	a	busy	infrastructure	will	easily	drown	out	any	other	messages
that	go	to	the	default	syslog;	such	a	rule	will	also	make	it	easier	to	manage	the	data	from	a
housekeeping	point	of	view.	Much	like	the	store	report	processor,	the	log	report	processor
can	log	a	surprisingly	large	amount	of	data	in	a	short	time,	so	you’ll	almost	certainly	want
a	daily	rotation	and	compression	housekeeping	task.



Graphing	with	the	rrdgraph	processor
RRD	stands	for	Round	Robin	Database,	and	it	is	an	industry	standard	graphing	format
used	by	everything	from	routers	to	monitoring	services	and	everything	in	between.	The
RRD	format	is	widely	used	and	recognized	by	many	different	applications	that	will	allow
you	to	present	the	data	in	interesting	and	attractive	ways.	An	example	graph	is	shown	in
the	following	screenshot:

The	rrdgraph	plugin	is	arguably	one	of	the	most	useful	report	processors	that	ships	with
Puppet,	and	even	without	additional	components,	it	will	allow	you	to	produce	some
wonderful	graphs	of	the	Puppet	activity	with	minimal	effort.	This	can	be	especially	useful
if	you	are	either	unable	or	unwilling	to	run	one	of	the	Puppet	dashboards.	Many	of	the
graphs	produced	by	the	dashboards	can	be	replicated	using	the	rrdgraph	report	processor,
and	although	the	output	is	not	as	attractive	or	easy	to	use,	it’s	still	very	usable	and
informative.

Once	installed,	the	rrdgraph	report	processor	will	produce	a	set	of	graphs	that	outline	the
important	metrics	from	the	data	passed	to	it	by	the	Puppet	agents.	The	way	it	produces	and
stores	the	graphs	is	fantastically	useful	and	very	easy	to	work	with.	Every	time	the
rrdgraph	report	processor	is	run,	it	will	produce	a	directory	for	each	host	that	reports	to	the
Puppet	master.	Inside	the	directory,	you	will	find	an	.html	file	that,	when	opened,	will
present	the	graphs.	Voila!	A	kind	of	instant	dashboard	is	created.

Along	with	producing	graphs,	the	rrdgraph	report	processor	will	also	give	you	the	raw
RRD	data	used	to	create	the	graphs.	This	is	great,	as	it	means	that	you	can	plug	it	into	any
other	application	that	understands	RRD	data,	and	that’s	a	lot	of	applications!	By	using	a
networked	filesystem	or	some	other	method	of	syncing	the	data,	you	can	make	the	RRD
data	available	to	these	applications	pretty	much	in	real	time.	This	can	be	incredibly	useful
if	you	already	have	an	application	that	makes	use	of	the	RRD	data	to	build	up	a	business
or	infrastructure	dashboard	as	it	means	that	Puppet	can	be	plugged	straight	into	it.

Although	the	rrdgraph	plugin	is	distributed	with	Puppet,	it	relies	on	other	software	and
libraries	that	may	not	necessarily	be	preinstalled	on	your	system.	This	is	common	with
more	complex	report	processors,	as	they	tend	to	rely	on	other	components	to	do	some	of
the	heavy	lifting	or	communicate	with	other	systems,	either	in	the	form	of	additional
packages	offered	by	the	OS,	or	more	commonly,	via	the	RubyGems	packaging	system.



In	the	case	of	the	rrdgraph	report	processor,	the	first	additional	package	you’ll	want	to
install	are	the	RRD	tools	themselves;	the	exact	installation	method	will	vary	from	distro	to
distro.	To	install	it	on	Debian-based	distributions,	you	can	use	the	following	command	at
the	command	prompt:

apt-get	install	rrdtool

For	RedHat-based	distributions,	you	can	use	the	following	command:

yum	install	rrdtool

You	will	also	need	the	Ruby	RRD	libraries.	These	should	ship	with	your	distribution	and
can	be	installed	in	the	usual	manner.	If	you	are	using	a	Debian-based	distribution,	you	can
install	it	using	the	following	command:

$	apt-get	install	librrd-ruby

If	you	are	using	a	RedHat-based	distribution,	you	can	install	it	using	the	following
command:

$	yum	install	rrdtool-ruby

Once	the	prerequisite	components	are	installed,	make	the	following	addition	to	the
puppet.conf	file:

[master]

reports	=	rrdgraph

rrddir	=	$vardir/rrd

rrdgraph	=	true

The	extra	configuration	items	are	important.	The	rrddir	object	tells	Puppet	which
directory	it	should	output	the	graphs	to.	If	you	want	to	quickly	and	easily	see	the	data,	then
make	sure	that	this	is	a	directory	that	a	web	server	is	able	to	read,	and	this	way,	you	can
access	it	straightaway	in	your	browser	and	admire	the	pretty	graphs.

The	other	object	in	the	preceding	code	is	rrdgraph.	This	is	a	simple	Boolean	setting	that
controls	the	production	of	the	actual	graphs.	If	you’re	going	to	feed	the	data	into	another
system,	you	may	just	want	Puppet	to	produce	the	RRD	data	without	requiring	the	graphs,
and	this	setting	will	allow	you	to	turn	this	behavior	on	or	off.	By	default,	this	is	set	to
true.



The	tagmail	report	processor
The	tagmail	report	processor	is	a	quick	and	easy	way	to	get	Puppet	to	send	e-mails,	and	it
is	clever	enough	to	do	this	based	on	certain	criteria	you	give	it.	The	tagmail	report
processor	works	via	the	magic	of	Puppet	tags,	a	particularly	underappreciated	Puppet
feature.

Puppet	tagging	is	a	way	to	mark	out	elements	within	Puppet,	allowing	you	to	identify
individual	resources	or	classes.	What’s	nice	is	that	Puppet	will	automatically	do	this	for
you	to	some	extent.	By	default,	Puppet	will	automatically	tag	every	resource	that	it
successfully	parses	and	will	make	available	the	following	tags:

The	resource	type
The	full	name	of	the	class	in	which	the	resource	is	declared
Every	segment	of	the	namespace	of	the	resource	class

This	is	brilliant	as	it	gives	you	a	very	rich	set	of	tags	to	work	with	without	lifting	a	finger.
You	can	also	manually	tag	resources	within	your	Puppet	code	if	you	wish	to	add	clarity	or
order,	and	this	is	something	that	I	would	encourage.	So	how	does	this	fit	into	the	tagmail
report	processor?

Let’s	say	you	have	a	very	important	set	of	nodes	that	utilize	a	certain	class,	and	you	want
to	be	informed	every	time	that	the	Puppet	agent	applies	or	interacts	with	resources	in	that
class.	Using	the	tagmail	report	processor,	this	becomes	very	easy;	simply	identify	the
resources	that	you’re	interested	in	and	the	tagmail	report	processor	will	inform	you	via	an
e-mail	when	something	has	happened	to	them.

To	tell	the	report	processor	what	tags	you	are	interested	in,	you	need	to	build	a	tag	map.	A
tag	map	is	a	very	simple	configuration	file	that	contains	all	of	the	Puppet	tags	that	you
want	to	match	and	the	e-mail	address	that	should	receive	the	notification.	You	can	also	use
exclusionary	rules	to	start	building	up	some	simple	logic	around	your	Puppet	tags.	Take	a
look	at	the	following	code	example:

all:	ops@fictionalco.com

web,webops@fictionalco.com,	ops@fictionalco.com

tomcat,	!jboss:	javadevs@fictionalco.com

It’s	as	simple	as	that.	The	preceding	example	will	do	the	following	things:

Send	an	e-mail	every	time	the	processors	see	any	tag.	This	will	send	you	an	e-mail
every	time	a	Puppet	agent	runs	and	is	generally	a	bit	verbose	for	everyday	use.
Send	the	WebOps	and	Ops	teams	an	e-mail	when	a	Puppet	agent	applies	a	resource
that	uses	the	web	Puppet	tag.
Send	the	Javadevs	team	an	e-mail	if	the	Puppet	agent	applies	a	resource	that	contains
a	tomcat	tag	but	not	if	it	also	contains	a	jboss	tag.

The	following	Puppet	code	snippet	can	demonstrate	how	these	tags	are	set:

class	role::public_web	{

			nginx::vhost{'blog':

						hostname	=>	'myblog.com',



						tag						=>	'web',

}

			tomcat::connector	{'appa':

						port	=>	8080,

						tag		=>	'tomcat',

			}

			jboss::connector	{'appb':

						port	=>	8081,

						tag		=>	'jboss',

}

user:	{'appserver':

						username	=>'appserver',

						tag						=>['jboss',	'tomcat'],

}

In	this	case,	the	ops@fictionalco.com	address	would	have	received	an	e-mail	simply
because	any	resource	has	been	applied.	The	webops@fictionalco.com	address	would
have	received	an	e-mail	about	the	nginx	vhost	being	applied	as	it	is	tagged	as	a	web	item.
Finally,	the	javadevs@fictionalco.com	address	would	have	received	an	e-mail	regarding
the	jboss	connector	resource.	Note	our	user	would	not	have	received	any	e-mail	about	the
user	resource	as	it	contains	the	tomcat	tag.

Using	resource	tags	is	useful	and	will	allow	you	to	quickly	and	easily	put	together	some
basic	e-mail	alerts	for	the	resources	that	you	are	interested	in.	However,	one	of	the
quickest	and	easiest	things	you	can	do	with	the	tagmail	report	processor	is	configure	it	to
warn	you	of	the	potential	problems	with	Puppet.	The	tagmail	report	processor	parses	log-
level	data	within	the	Puppet	report	as	additional	tags.	This	enables	it	to	react	to	events	that
are	warnings,	errors,	or	indeed	any	other	log	levels	available.	Take	a	look	at	the	following
tag	map	code:

err:	ops@fictonalco.com

Once	this	line	is	added,	every	time	the	processor	encounters	a	tag	of	err,	it	will	send	you
an	e-mail;	or,	to	put	it	another	way,	every	time	one	of	your	nodes	has	problems	applying	a
Puppet	manifest,	you	will	receive	an	e-mail	that	will	warn	you	about	the	issue.

It	is	a	straightforward	task	to	configure	the	tagmail	plugin,	and	aside	from	the	tagmap	file,
it	has	no	other	external	dependencies.	To	enable	it,	simply	add	the	following	code	to	your
puppet.conf	file:

[master]

reports	=	tagmail

tagmap	=	$confdir/tagmap.conf

The	preceding	code	is	fairly	self	explanatory;	the	first	line	enables	the	tagmail	report
processor	and	the	second	line	tells	it	where	it	can	find	its	tag	map.	Note	the	use	of	the
$conf	variable	in	front	of	the	tagmap.conf	file;	this	will	point	Puppet	to	its	own	config
directory	to	find	the	tagmap	file.	It’s	generally	sensible	to	keep	the	report	processor
configuration	alongside	your	main	line	Puppet	configuration,	but	if	you	want	to	put	it



elsewhere,	you	can.	As	with	the	other	plugins,	you’ll	need	to	restart	the	Puppet	master
process	for	the	plugin	to	take	effect.

You	can	find	the	documentation	for	tags	at
http://docs.puppetlabs.com/puppet/latest/reference/lang_tags.html	and	the	documentation
for	tagmail	report	processor	configuration	at
http://docs.puppetlabs.com/puppet/latest/reference/config_file_tagmail.html.	It’s	worth
reading	through	both,	and	they	should	give	you	some	ideas	on	how	you	can	add	Puppet
tags	to	best	utilize	this	feature.

http://docs.puppetlabs.com/puppet/latest/reference/lang_tags.html
http://docs.puppetlabs.com/puppet/latest/reference/config_file_tagmail.html


Sending	reports	with	the	HTTP	report	processor
The	HTTP	report	processor	is	very	much	an	enabler	of	other	tools.	It	takes	the	output	of	a
Puppet	transaction	report	and	sends	it	via	HTTP	or	HTTPS	to	a	URL	as	a	raw	YAML	file.
The	application	that	receives	this	data	is	then	free	to	process	it	in	a	manner	it	chooses.
This	is	astoundingly	useful	as	it	gives	you	a	quick	and	easy	way	to	make	Puppet
communicate	with	other	systems.

Puppet	Dashboard,	Puppet	Enterprise	Console,	and	The	Foreman	already	rely	on	the
HTTP	report	processor	to	allow	Puppet	agents	to	communicate	new	data.	The	HTTP
report	processor	is	generally	the	first	place	you	should	look	if	you	need	to	integrate	Puppet
with	another	system.	Whatever	system	you	use	must	be	able	to	process	the	data	that	the
Puppet	agent	will	pass	to	it.	This	data	is	a	YAML	file	dump	of	the
puppet::transaction::report	object,	so	it	contains	all	the	data	generated	by	the	Puppet
agent	during	a	transaction,	from	reports	to	metrics.

A	good	example	where	you	may	want	to	export	the	data	could	be	change	management.
Using	the	HTTP	report	processor	and	a	tailored	application,	it	would	be	possible	to	give
the	change	managers	a	real-time	view	of	what	has	changed,	when	it	changed,	and	where	it
changed.	If	they	already	have	such	a	system,	it	may	be	possible	to	use	the	HTTP	report
processor	to	interact	with	it.

It	is	a	straightforward	task	to	configure	the	HTTP	report	processor.	Again,	you	simply	edit
your	puppet.conf	file	and	add	the	following	lines	of	code:

report	=	http

reporturl	=	http://Puppetendpoint.fictionalco.com

That’s	it.	Now,	every	time	a	Puppet	agent	performs	any	transaction,	the	HTTP	report
processor	will	forward	a	YAML	document	that	contains	the	report	to	the	end	point	you’ve
configured	in	the	reporturl	configuration	item.

Generally,	one	of	the	quickest	and	easiest	ways	to	integrate	Puppet	with	other	systems	is
to	use	the	HTTP	report	processor,	and	as	mentioned,	it	is	already	in	use	by	Puppet
Dashboard,	Puppet	Enterprise	Console,	and	The	Foreman.	Any	systems	that	boast	of
Puppet	integration	will	almost	certainly	make	use	of	this	either	in	part	or	as	a	whole	to
deliver	the	integration.



The	PuppetDB	report	processor
We’re	not	going	to	spend	too	much	time	on	the	PuppetDB	report	processor	as	we’ll	be
covering	this	in	much	more	detail	in	Chapter	5,	Exploring	PuppetDB.	Suffice	to	say,	this
report	processor	forwards	the	reporting	information	to	PuppetDB	for	storage.	Like	the
other	report	processors,	all	it	requires	is	the	following	simple	addition	to	the	puppet.conf
file	to	activate	it:

[master]

report	=	puppetdb

Without	a	working	PuppetDB	installation,	this	won’t	be	of	much	use,	however.	Don’t
worry	though;	we’ll	cover	how	to	set	up	and	use	PuppetDB	in	subsequent	chapters.



Exploring	the	power	of	third-party	plugins
As	you	can	see,	the	built-in	report	processors	are	fantastically	useful,	but	they	can	only	do
so	much;	the	tagmail	report	processor	might	not	format	the	data	in	the	way	you	like,	or
you	might	have	a	cool	idea	for	your	data	but	don’t	want	to	have	to	create	a	web	service	for
the	HTTP	report	processor	to	push	it	to.	Fortunately,	it	is	very	easy	indeed	to	add
additional	report	processors	to	Puppet.	The	Puppet	reporting	system	has	been	designed	so
that	you	can	plug	any	number	of	report	processors	into	it	simply	and	easily,	and	there	are
already	a	small	number	of	additional	report	processors	available	that	you	can	install	and
utilize.	A	good	place	to	find	additional	report	processors	is	Puppet	Forge;	you	should	find
quite	a	few	if	you	simply	search	for	report.

We’re	going	to	take	a	look	at	some	examples	of	third-party	report	processors	and	show
you	how	easy	it	is	to	install	them.





Getting	social	with	Twitter
Twitter	has,	for	some	considerable	time,	been	the	destination	of	choice	for	any	up	and
coming	writer	who	enjoys	the	challenge	of	a	word	count;	a	really	tiny	word	count.	At	140
characters,	it’s	unlikely	that	the	next	great	novel	will	be	written	using	Twitter,	but	it	has
blossomed	to	be	one	of	the	number	one	sites	for	people	to	quickly	update	their	followers
of	their	comings	and	goings.	It	has	turned	out	to	be	a	wonderfully	easy	way	to	stay	in
touch	with	friends,	family,	and	casual	acquaintances	in	a	way	that	the	more	verbose
Google+	or	Facebook	haven’t	quite	managed.

Twitter	is	also	a	fantastic	way	to	alert	you	of	issues.	It’s	small,	terse,	and	these	days,
clients	are	available	for	pretty	much	any	device	you	care	to	mention.	In	many	ways,
Twitter	is	an	excellent	replacement	for	the	old-fashioned	pager	system	and	has	the
advantage	over	SMSes	of	not	needing	a	cellular	connection	to	receive	alerts.	Many	times,
I’ve	been	stuck	in	buildings	with	no	mobile	phone	signal	but	an	excellent	wireless
connection	to	the	Internet.	The	SMSes	stopped,	but	the	tweets	kept	on	coming,	and	there
have	been	occasions	where	I	would	have	been	blissfully	unaware	of	alerts	without	this
additional	means	of	notification.

Because	of	the	public	nature	of	Twitter,	there	can	be	some	concern	that	you	may	be
leaking	potentially	sensitive	data.	However,	as	long	as	you	take	the	precaution	of	making
your	Puppet	Twitter	account	private,	you	can	be	fairly	sure	that	only	people	you	have
allowed	to	follow	will	see	it.	I’m	going	to	go	ahead	and	assume	that	you	have	set	up	a
Twitter	account	for	Puppet;	however,	if	you	haven’t,	you	can	go	ahead	and	create	an
account	at	http://www.twitter.com.

Installing	the	Twitter	plugin	is	simple	as	it	has	been	made	available	on	the	Puppet	Forge
site	as	a	Puppet	module,	which	means	that	the	plugin	sync	mechanism	will	take	care	of	the
tedious	work	of	installing	the	report	processor	plugin	for	us.	Because	it’s	published	on
Puppet	Forge,	it	means	we	can	also	use	the	built-in	Puppet	module	tool	to	install	the
module	itself.	Simply	use	the	following	command	on	your	Puppet	master:

$	puppetmodule	install	jamtur01/twitter

Once	the	module	is	installed,	you’ll	need	to	go	ahead	and	run	the	Puppet	agent	on	the
Puppet	master;	this	will	trigger	the	plugin	sync	to	install	the	new	plugin	in	the	correct
location.

This	is	not	all	we	need	to	do,	though.	Much	like	the	rrdgraph	plugin,	the	Twitter	report
processor	has	some	additional	dependencies	and	setup	that	are	required	for	it	to	work.
These	are	the	OAuth	and	Twitter	RubyGems	dependencies,	and	they	are	required	for
authentication	and	communication	with	the	Twitter	API.	You	can	install	these	via
RubyGems	using	the	following	command:

$	sudo	gem	install	oauth	twitter

Once	the	dependencies	are	installed,	you	will	then	need	to	allow	the	API	access	from	your
report	processor	to	your	Twitter	user.	This	is	relatively	straightforward;	go	to

http://www.twitter.com


http://dev.twitter.com/apps/new	and	sign	in	with	the	user	created	for	your	Puppet	Twitter
account.	Once	signed	in,	you’ll	be	asked	to	fill	in	a	small	form	that	will	ask	for	some
details	about	your	application;	these	should	be	fairly	self-explanatory,	but	make	sure	that
the	access	rights	are	set	to	read/write	or	the	report	processor	will	be	unable	to	tweet.	Once
you’ve	completed	the	questions,	you’ll	be	taken	to	the	page	for	your	new	application	and
you’ll	be	given	your	consumer	key	and	secret.	Make	note	of	these;	you’ll	need	them	in	the
next	step.

The	author	of	the	Twitter	report	processor	has	provided	a	small	script	to	generate	the
settings	file.	Navigate	to	the	installed	Twitter	module	and	you	will	find	a	Ruby	file	called
poauth.rb.	This	is	shown	in	the	following	screenshot:

You’ll	be	prompted	to	enter	the	consumer	key	and	the	secret	that	you	made	note	of	earlier.
If	you	need	to	remind	yourself,	you	can	log	in	to	your	Twitter	developer	account	and
retrieve	it	from	there.	Once	you’ve	entered	your	consumer	key	and	secret,	you	will	be
given	a	unique	URL	to	visit,	and	the	script	will	wait	for	you	to	enter	a	pin	number.	Visit
the	provided	URL	to	receive	the	pin,	and	once	you’ve	entered	it,	the	script	will	exit	and
write	out	a	twitter.yaml	config	file.	The	Twitter	plugin	follows	convention	and	expects
the	configuration	file	in	the	Puppet	config	directory,	so	make	sure	that	you	copy	the
twitter.yaml	file	there	once	you’re	finished	with	the	poauth.rb	script.

You	should	now	have	a	shiny	new	API-enabled	Twitter	user,	so	the	next	step	is	to
configure	Puppet	to	use	the	Twitter	plugin.	This	is	a	simple	configuration	change	in	the
puppet.conf	file	to	enable	reporting	in	the	usual	manner,	as	shown	in	the	following	code
snippet:

[master]

reports	=	twitter

Once	you’ve	amended	the	configuration	file	and	restarted	the	Puppet	master,	any	failed
Puppet	client	will	trigger	an	alert	to	Twitter.	Now	there’s	no	escaping	the	alerts!

http://dev.twitter.com/apps/new




Staying	on	top	of	alerts	with	PagerDuty
PagerDuty	is	a	fantastic	tool	to	record,	alert,	and	escalate	issues,	and	is	insanely	popular
with	DevOps	folks	due	to	its	ease	of	use	and	surprising	amount	of	power.	Like	most
modern	software,	as	a	service,	it’s	clean	and	simple	to	use	and	has	an	extremely
approachable	and	powerful	API.

PagerDuty	is	a	great	place	to	flag	Puppet	errors	as	it	gives	you	the	ability	to	track	how
often	you	are	having	Puppet-related	issues.	More	importantly,	it	ensures	that	an	alert	is
created	when	issues	are	found.	These	issues	can	automatically	be	escalated	to	the
appropriate	person,	and	if	they’re	out	of	hours,	they	can	be	routed	to	whoever	is	on	call.
PagerDuty	supports	alerts	via	phone,	SMS,	e-mail,	and	push	alerts,	so	it’s	unlikely	that
they’ll	be	able	to	sleep	through	a	problem.	If	they	do	manage	to	sleep	through	the	sound	of
every	communication	device	they	own	going	nuts,	then	PagerDuty	is	able	to	alert	the	issue
to	the	next	person	on	rotation,	and	it	will	continue	to	escalate	the	issue	until	someone
acknowledges	it.

I’m	going	to	assume	that	you	already	have	a	PagerDuty	account;	if	you	haven’t	got	one,
you	can	sign	up	for	a	free	trial	at	http://www.pagerduty.com.

As	with	the	Twitter	report	processor,	the	PagerDuty	report	processor	has	been	published
on	the	Puppet	Forge	as	a	module,	so	we’re	going	to	go	ahead	and	use	the	Puppet	module
tool	to	install	it.	This	can	be	done	using	the	following	command:

$	puppetmodule	install	jamtur01/pagerduty

Once	the	module	is	installed,	run	the	Puppet	agent	to	move	the	plugin	into	place.	You’ll
also	need	to	install	the	rest-client,	JSON,	and	redphone	RubyGems	dependencies	for	the
processor	to	be	able	to	communicate	with	PagerDuty.	This	can	be	done	using	the
following	command:

$sudo	gem	install	rest-client	json	redphone

Once	the	plugin	is	installed,	we	need	to	let	it	know	what	your	PagerDuty	API	key	is.	You
set	this	by	editing	the	pagerduty.yaml	file	within	the	PagerDuty	module.	Open	it	up	using
your	editor	of	choice,	find	the	line	that	starts	with	pagerduty_api,	and	add	your	API	key
to	it	(you	can	find	this	within	your	PagerDuty	account	details).	You	will	also	need	to
create	a	generic	service	within	PagerDuty	to	receive	any	alerts.

The	final	step	is	to	enable	the	PagerDuty	report	processor	on	your	Puppet	master.	As
usual,	this	is	a	simple	change	to	the	puppet.conf	file	on	the	Puppet	master.	This	is	shown
in	the	following	code	snippet:

[master]

reports	=	pagerduty

Restart	the	Puppet	master	and	you	will	find	that	every	time	Puppet	reports	an	error,	an
issue	will	be	raised	within	PagerDuty.	This	will	now	e-mail,	SMS,	and	generally	bug	the
person	who	is	responsible	for	resolving	the	error.	I’ve	found	that	nothing	makes	someone
fix	a	bug	quicker	than	having	a	robot	harass	them	constantly	on	the	phone	at	unwelcome

http://www.pagerduty.com


hours	in	the	morning.

Adding	additional	report	processors	to	Puppet	can	make	a	huge	difference	to	its
capabilities.	You	can	find	additional	report	processors	listed	at	Puppet	Forge;	simply
search	for	the	report	processors	and	you	should	find	some.	At	the	time	of	writing	this,
there	aren’t	many,	but	the	ones	that	are	available	can	add	some	seriously	interesting
abilities	to	your	Puppet	infrastructure.	With	the	available	third-party	report	processors,	it
becomes	relatively	simple	to	make	Puppet	talk	to	products	such	as	New	Relic,	Cube,
OpsGenie,	and	even	MCollective,	cover	capabilities	from	straightforward	reporting	to
alerting,	and	even	include	remedial	actions.





Summary
You	should	now	have	a	good	idea	of	what	a	report	processor	is,	what	it	can	be	used	for,
and	how	to	install	new	ones	from	Puppet	Forge.	In	this	chapter,	we	have	examined	some
of	the	basic	elements	of	a	report	processor	and	discovered	that	a	report	processor	is	a	piece
of	Ruby	code	that	is	called	every	time	a	Puppet	agent	reports	a	transaction.	We	have	found
that	report	processors	are	easy	to	install,	especially	if	they	are	distributed	as	a	Puppet
module,	but	some	of	the	more	complex	report	processors	may	need	to	have	additional
components	installed	to	support	them.	We	also	found	that	you	can	have	multiple	report
processors	configured	at	once	to	allow	you	greater	flexibility	when	processing	your	data.
Finally,	we	looked	at	some	interesting	third-party	report	processors	and	used	them	to
interact	with	products	such	as	PagerDuty	and	Twitter.

In	the	next	chapter,	we	are	going	to	look	at	how	to	create	our	own	report	processors	and
how	we	can	use	our	own	code	to	create	custom	alerts	and	reports.





Chapter	4.	Creating	Your	Own	Report
Processor
In	previous	chapters,	we’ve	taken	a	look	at	some	of	the	report	processors	that	are	shipped
with	Puppet	and	also	some	of	the	fantastic	third-party	plugins	that	have	been	developed	to
add	new	functionality.	Now,	it’s	time	to	show	you	how	to	go	about	making	your	own
report	plugins.

In	this	chapter,	we’re	going	to	take	a	look	at	the	following	topics:

Creating	our	first	report	processor
Creating	our	own	custom	e-mail	alerts
Logging	events	into	MySQL
Raising	issues	with	Atlassian	JIRA

As	with	any	Puppet	plugin,	our	language	of	choice	will	be	Ruby.	You	should	be	familiar
with	Ruby	if	you	want	to	get	the	most	out	of	this	chapter;	however,	don’t	worry	if	you’re
not	a	Ruby	guru;	the	examples	use	extremely	basic	code.	If	you	need	to	brush	up	on	your
Ruby	skills,	then	I	highly	recommend	taking	a	look	at	Learn	Ruby	the	Hard	Way,	Zed	A.
Shaw.	Don’t	be	put	off	by	the	title;	it’s	both	highly	approachable	and	very	effective	in
teaching	you	the	basics	of	Ruby.	It’s	available	for	free	online	or	for	purchase	in	e-book
form	at	http://ruby.learncodethehardway.org.

http://ruby.learncodethehardway.org


The	anatomy	of	a	report	processor
At	its	most	basic,	a	Puppet	report	processor	is	a	piece	of	Ruby	code	that	is	triggered	every
time	a	Puppet	agent	passes	a	report	to	the	Puppet	master.	This	piece	of	code	is	passed	as	a
Ruby	object	that	contains	both	the	client	report	and	metrics.	Although	the	data	is	sent	in	a
wire	format,	such	as	YAML	or	PSON,	by	the	time	a	report	processor	is	triggered,	this	data
is	turned	into	an	object	by	Puppet.	This	code	can	simply	provide	reports,	but	we’re	not
limited	to	that.

With	a	little	imagination,	we	can	use	Puppet	report	processors	for	everything	from	alerts
through	to	the	orchestration	of	events.	For	instance,	using	a	report	processor	and	a	suitable
SMS	provider	would	make	it	easy	for	Puppet	to	send	you	an	SMS	alert	every	time	a	run
fails,	or	alternatively,	using	a	report	processor,	you	could	analyze	the	data	to	reveal	trends
in	your	changes	and	update	a	change	management	console.	The	best	way	to	think	of	a
report	processor	is	that	it	is	a	means	to	trigger	actions	on	the	event	of	a	change,	rather	than
strictly	a	reporting	tool.

Puppet	reports	are	written	in	plain	old	Ruby,	and	so	you	have	access	to	the	multitude	of
libraries	available	via	the	RubyGems	repositories.	This	can	make	developing	your	plugins
relatively	simple,	as	half	the	time	you	will	find	that	the	heavy	lifting	has	been	done	for
you	by	some	enterprising	fellow	who	has	already	solved	your	problem	and	published	his
code	in	a	gem.	Good	examples	of	this	can	be	found	if	you	need	to	interoperate	with
another	product	such	as	MySQL,	Oracle,	Salesforce,	and	so	on.	A	brief	search	on	the
Internet	will	bring	up	three	or	four	examples	of	libraries	that	will	offer	this	functionality
within	a	few	lines	of	code.	Not	having	to	produce	the	plumbing	of	a	solution	will	both
save	time	and	generally	produce	fewer	bugs.



Creating	a	basic	report	processor
Let’s	take	a	look	at	an	incredibly	simple	report	processor	example.	In	the	event	that	a
Puppet	agent	fails	to	run,	the	following	code	will	take	the	incoming	data	and	create	a	little
text	file	with	a	short	message	detailing	which	host	had	the	problem:

include	puppet

Puppet::Reports::register_report(:myfirstreport)	do

		desc	"My	very	first	report!"

		def	process

				if	self.status	==	'failed'

						msg	=	"failed	puppet	run	for	#{self.host}	#{self.status}

						File.open('./tmp/puppetpanic.txt',	'w')	{	|	f	|	f.write(msg)}

				end

		end

end

Although	this	code	is	basic,	it	contains	all	of	the	components	required	for	a	report
processor.	The	first	line	includes	the	only	mandatory	library	required:	the	Puppet	library.
This	gives	us	access	to	several	important	methods	that	allow	us	to	register	and	describe
our	report	processor,	and	finally,	a	method	to	allow	us	to	process	our	data.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

Registering	your	report	processor
The	first	method	that	every	report	processor	must	call	is	the
Puppet::Reports::register_report	method.	This	method	can	only	take	one	argument,
which	is	the	name	of	the	report	processor.	This	name	should	be	passed	as	a	symbol	and	an
alphanumeric	title	that	starts	with	a	letter	(:report3	would	be	fine,	but	:3reports	would
not	be).	Try	to	avoid	using	any	other	characters—although	you	can	potentially	use
underscores,	the	documentation	is	rather	discouragingly	vague	on	how	valid	this	is	and
could	well	cause	issues.

Describing	your	report	processor
After	we’ve	called	the	Puppet::Reports::register_report	method,	we	then	need	to	call
the	desc	method.	The	desc	method	is	used	to	provide	some	brief	documentation	for	what
the	report	processor	does	and	allows	the	use	of	Markdown	formatting	in	the	string.

Processing	your	report
The	last	method	that	every	report	processor	must	include	is	the	process	method.	The

http://www.packtpub.com
http://www.packtpub.com/support


process	method	is	where	we	actually	take	our	Puppet	data	and	process	it,	and	to	make
working	with	the	report	data	easier,	you	have	access	to	the	.self	object	within	the
process	method.	The	.self	object	is	a	Puppet::Transaction::Report	object	and	gives
you	access	to	the	Puppet	report	data.	For	example,	to	extract	the	hostname	of	the	reporting
host,	we	can	use	the	self.host	object.

Note
You	can	find	the	full	details	of	what	is	contained	in	the	Puppet::Transaction::Report
object	by	visiting	http://docs.puppetlabs.com/puppet/latest/reference/format_report.html.

Let’s	go	through	our	small	example	in	detail	and	look	at	what	it’s	doing.	First	of	all,	we
include	the	Puppet	library	to	ensure	that	we	have	access	to	the	required	methods.	We	then
register	our	report	by	calling	the
Puppet::Reports::.register_report(:myfirstreport)	method	and	pass	it	the	name	of
myfirstreport.	Next,	we	add	our	desc	method	to	tell	users	what	this	report	is	for.	For	the
moment,	we’ll	keep	it	simple	and	simply	state	its	function.	Finally,	we	have	the	process
method,	which	is	where	we	are	going	to	place	our	code	to	process	the	report.	For	this
example,	we’re	going	to	keep	it	simple	and	simply	check	if	the	Puppet	agent	reported	a
successful	run	or	not,	and	we	do	this	by	checking	the	Puppet	status.	This	is	described	in
the	following	code	snippet:

if	self.status	==	'failed'

						msg	=	"failed	puppet	run	for	#{self.host}#{self.status}"

The	transaction	can	produce	one	of	three	states:	failed,	changed,	or	unchanged.	This	is
straightforward;	a	failed	client	run	is	any	run	that	contains	a	resource	that	has	a	status	of
failed,	a	changed	state	is	triggered	when	the	client	run	contains	a	resource	that	has	been
given	a	status	of	changed,	and	the	unchanged	state	occurs	when	a	resource	contains	a
value	of	out_of_sync;	this	generally	happens	if	you	run	the	Puppet	client	in	noop
(simulation)	mode.

Finally,	we	actually	do	something	with	the	data.	In	the	case	of	this	very	simple
application,	we’re	going	to	place	the	warning	into	a	plain	text	file	in	the	/tmp	directory.
This	is	described	in	the	following	code	snippet:

msg	=	"failed	puppet	run	for	#{self.host}"

File.open('/tmp/puppetpanic.txt',	'w')	{	|	f	|	f.write(msg)}

As	you	can	see,	we’re	using	basic	string	interpolation	to	take	some	of	our	report	data	and
place	it	into	the	message.	This	is	then	written	into	a	simple	plain	text	file	in	the	/tmp
directory.

http://docs.puppetlabs.com/puppet/latest/reference/format_report.html


Values	of	the	self.status	object
The	self.status	object	is	something	that	you	are	going	to	use	again	and	again	when
constructing	your	own	report	processors.	The	self.status	object	value	allows	you	to
filter	Puppet	reports,	based	on	the	status	that	the	Puppet	agent	reported	after	attempting	to
apply	the	catalog.	The	following	values	are	available:

skipped:	A	skipped	resource	essentially	means	that	Puppet	evaluated	the	resource
and	decided	for	one	reason	or	another	that	it	was	not	going	to	apply	the	requested
change.	The	most	common	reason	for	skipped	resources	is	that	there	is	a	failed
resource	somewhere	else	in	the	transaction	that	this	change	depends	on.	Other
reasons	could	include	that	a	resource	belongs	to	one	tag	while	you’re	applying	a
different	tag,	or	it	may	be	an	entirely	virtual	resource.
failed:	A	resource	is	marked	as	failed	when	the	Puppet	client	is	unable	to	apply	a
change	to	that	resource.	This	can	simply	mean	that	it	could	not	change	a	file,
instantiate	a	directory,	or	install	a	package.
failed_to_restart:	This	particular	status	only	applies	to	service	resource	objects
and	is	flagged	anytime	that	Puppet	tries	to	restart	a	service	and	fails.
restarted:	This	is	another	service-oriented	status	and	is	the	inverse	to	the
failed_to_restart	status.	Essentially,	a	resource	is	flagged	as	this	when	it	is	a
service	that	has	been	successfully	restarted.
changed:	This	is	one	of	the	most	common	status	types	that	you	will	see	in	Puppet,
and	it	tells	you	that	this	particular	resource	has	been	changed	during	the	course	of	the
Puppet	catalog’s	application.
out_of_sync:	This	should	only	occur	when	the	Puppet	run	is	triggered	in	simulation
mode	(noop).	This	is	a	resource	that	would	be	changed	if	the	Puppet	catalog	was
applied.

That’s	all	that	is	required	for	a	working	Puppet	report	processor.	This	tiny	chunk	of	code
will	happily	parse	incoming	reports,	evaluate,	and	act	on	them.	Of	course,	this	is	a	fairly
useless	report	in	its	current	form,	but	it	gives	us	a	good	idea	of	what	we	can	do.	Let’s	take
a	look	at	something	a	little	more	solid,	shall	we?



Alerting	with	e-mail	and	Puppet
The	tagmail	report	processor	is	a	useful	plugin,	but	it	has	its	limitations.	As	pointed	out	in
its	name,	it	can	only	deal	with	tags	and	nothing	else.	Sometimes,	that’s	not	quite	what	you
want,	so	it’s	useful	to	see	how	simple	it	is	to	produce	an	e-mail	alert	that	you	can	tailor	to
your	requirements.	In	our	case,	we’re	going	to	create	a	simple	e-mail	alert	that	will	be	sent
every	time	a	Puppet	agent	makes	a	change.

This	may	seem	a	little	odd;	after	all,	what’s	Puppet	for	if	not	to	enact	changes?	There	are
some	environments,	however,	where	changes	are	a	highly	sensitive	matter.	Change	can,
and	should,	be	easy	in	certain	environments,	and	this	is	particularly	true	of	many	web
applications.	The	reverse	can	also	be	true	in	cases	where	you	are	either	dealing	with	a
heavily	audited	environment,	such	as	a	financial	trading	system,	or	a	system	that	deals
with	highly	sensitive	and	business-critical	systems,	such	as	an	API	that	feeds	phone
handsets	or	set	top	boxes.	In	these	cases,	changes	need	to	be	very	strictly	controlled,	and
any	change	that	is	made	by	accident	needs	to	be	both	alerted	and	dealt	with	swiftly.

The	first	task	we	need	to	take	care	of	is	the	creation	of	our	project.	We’re	going	to	follow
the	best	practice	set	out	in	the	previous	chapter	and	create	this	in	the	form	of	a	Puppet
module.	Rather	than	create	the	directory	layouts	by	hand,	I’m	going	to	use	the	Puppet
module	creation	utility	included	with	Puppet.	This	can	be	done	using	the	following
command:

puppet	module	generate	<username>-<modulename>

The	username	is	your	Puppet	Forge	username.	If	you	haven’t	signed	up	for	one,	don’t
worry;	you	can	add	any	text	you	like	here	for	the	moment.	Once	we	have	created	our
module,	the	next	thing	to	do	is	to	create	the	file	that	will	contain	our	code.	Since	it	is	a
report	plugin,	it	should	be	created	in	the	following	location:

{module}

				└──	lib

										└──	puppet

																			└──reports

																												└──	{reportname}

You’ll	need	to	create	some	of	the	directory	structure	by	hand	as	the	Puppet	module’s
generate	command	doesn’t	include	the	lib	directory	or	subdirectories	by	default.

Once	you’ve	created	your	file	structure,	you’re	ready	to	code.	Go	ahead	and	create	a	new
file	called	changealert.rb	in	the	lib	directory	and	add	the	following	first	part	of	the	code
to	it:

require	'puppet'

begin

require	'mail'

rescueLoadError

Puppet.info	'This	report	requires	the	mail	gem	to	run'

end

Note	the	error	handling	around	the	mail	gem.	This	is	good	practice	if	you’re	planning	on



distributing	your	report	as	it	ensures	that	if	there	is	a	missing	gem,	it	is	handled	gracefully
and	gives	the	user	some	sort	of	clue	as	to	why	it	may	not	have	run	correctly.	Nothing	is
more	irritating	than	having	to	wade	through	someone	else’s	code	to	find	the	obscure
library	they	forgot	to	mention	in	the	readme.txt	file.	Good	coding	habits	like	this	one	can
go	a	long	way	if	you	start	releasing	your	code	on	GitHub	or	Puppet	Forge,	and	it	will	help
people	both	use	your	module	and	contribute	towards	it.

As	in	the	previous	example,	we	need	to	go	ahead	and	declare	our	new	report.	We’re	also
going	to	declare	our	process	function	and	load	our	configuration.

Tip
If	your	report	processor	requires	any	kind	of	configuration,	then	make	sure	that	this	is
loaded	from	an	external	configuration	file;	and,	as	an	absolute	best	practice,	store	it	in	the
Puppet	configuration	directory.	This	means	that	your	code	is	easily	redistributable,	and
more	importantly,	it	is	obviously	configurable	by	anyone	who	installs	it.

Consider	the	following	code:

Puppet::Reports.register_report(:changealert)	do

				configfile	=	File.join([File.dirname(Puppet.settings[:config]),	

'changealert.yaml'])

				raise(Puppet::ParseError,	"auditlert	configfile	not	readable")	unless	

File.exist?(configfile)

				config	=	YAML.load_file(configfile)

As	you	can	see,	we’re	loading	the	configuration	for	this	report	processor	from	a	.yaml	file,
but	before	we	can	load	it,	there	are	a	few	tasks	we	need	to	carry	out	first.	To	start	with,	we
need	to	find	out	where	the	configuration	file	is	held.	This	is	not	as	straightforward	as	you
may	think;	for	starters,	Puppet	Open	Source	and	Puppet	Enterprise	hold	configuration	files
in	different	locations	(/etc/puppet	and	/etc/puppetmaster,	respectively).	To	add	to	this,
you	can	relocate	the	configuration	directory	into	an	arbitrary	location	of	your	choice,	and
you	quickly	realize	that	it	would	be	a	seriously	bad	idea	to	hardcode	the	path.	Instead,	we
can	ask	Puppet	where	the	configuration	directory	is.	To	do	this,	we	call	the	class	method
settings	from	the	Puppet	class	and	feed	it	into	the	configfile	variable.	Using	these	kinds
of	techniques	guarantees	that	if	you	publish	your	work,	it	will	be	usable	for	the	widest
array	of	users.

The	next	thing	that	we	need	to	do	is	actually	check	if	the	configuration	file	is	present,	and
if	not,	raise	an	error.	Using	the	Puppet::ParseError	object,	we	are	able	to	raise	an	error
to	the	Parser.	This	means	that	if	there	is	an	issue,	it	will	be	immediately	visible	in	the
Puppet	log,	and	especially	visible	if	we	are	running	the	Puppet	agent	in	interactive	mode.
Once	we	have	checked	that	the	file	is	present,	we	then	use	the	YAML	class	to	load	the	file
and	place	its	contents	into	a	new	object	called	config.	Once	loaded	into	this	object,	the
file	can	then	be	accessed	as	a	Ruby	hash.	For	instance,	to	find	out	the	SMTP	address	of	the
mail	server,	we	could	use	the	config['smtp_address']	command	to	return	a	string	that
contains	the	configuration	item.

That’s	the	basic	framework	taken	care	of.	We’re	going	to	add	some	logic	at	this	point	to
ensure	that	we	only	receive	reports	for	Puppet	agent	runs	that	result	in	the	changed	state



rather	than	in	the	unchanged	and	failed	states.	This	is	described	in	the	following	code
snippet:

If	self.status	==	'changed'

						subject	=	"Host	#{self.host}	Change	alert"

						output	=	[]

Once	we’ve	ascertained	that	this	particular	run	is	of	interest	to	us,	we	set	up	a	string
variable	that	will	contain	our	e-mail	header	and	create	an	empty	array	to	hold	subsequent
data.

This	particular	plugin	is	designed	to	simply	let	someone	know	if	something	has	changed,
so	we	don’t	really	need	to	send	the	user	the	entire	output	of	the	Puppet	report.	If	you	have
a	critical	system	that’s	just	received	an	update	that	you	weren’t	expecting,	you	are
probably	not	interested	in	how	long	it	took	to	apply,	but	rather	in	what	change	has	been
applied	and	when	it	was	applied.	This	kind	of	alert	is	much	better	short	and	pithy.	To
accomplish	this,	we’re	going	to	list	the	following	details	in	the	e-mail:

The	resources	that	have	changed
The	type	of	resource
The	type	of	property	that	has	changed
The	value	it	was	changed	to
The	time	when	it	was	changed

This	gives	our	user	plenty	of	information	to	go	on,	without	overloading	them	with	lots	of
irrelevant	nonsense.	The	following	code	describes	our	e-mail	alert:

output	<<	"The	Following	resources	have	changed:\n"

				begin

						self.resource_statuses.each	do	|theresource,resource_status|

								if	resource_status.change_count	>	0

										output	<<	"Resource:	#{resource_status.title}"

										output	<<	"Type:	#{resource_status.resource_type}"

												begin	resource_status.events.each	do	|event|

														output	<<	"Property:	#{event.property}"

														output	<<	"Value:	#{event.desired_value}"

														output	<<	"Status:	#{event.status}"

														output	<<	"Time:	#{event.time}"

														end

												end

								end

						end

				end

The	first	thing	that	this	piece	of	code	does	is	output	a	little	header	letting	us	know	what
this	report	is	about—it’s	always	nice	when	it’s	2	A.M.	and	you’re	wading	through	e-mails
because	you’ve	been	woken	up	by	the	support	phone.	I’m	using	the	Ruby	string
concatenation	syntax	to	build	up	our	report	in	a	variable	called	output;	notice	the	\n	at	the
end	of	that	line?	It’s	to	ensure	that	we	have	a	clean	line	break	between	the	header	and	the
rest	of	the	report.

Next,	we	read	the	array	that	contains	the	reported	resources,	the	resource_status



property,	and	use	a	Ruby	block	to	iterate	through	each	resource	and	check	its
change_count	property.	If	it’s	greater	than	zero,	then	we	know	that	some	form	of	change
has	taken	place	and	we	have	to	examine	it	further.

Tip
Over	time,	several	items	in	the	Puppet::Resource::Status	object	are	marked	as
deprecated.	The	Puppet	report	format	is	now	in	its	4th	version	as	of	the	time	of	writing
and	is	evolving	as	new	features	are	added	and	old	ones	removed.	It’s	worth	keeping	an	eye
on	the	release	notes	when	a	new	version	is	released	to	ensure	that	your	report	plugins
continue	to	work	as	expected.

Once	we	find	a	changed	resource,	we	then	take	the	values	from	the
resource_status.title	and	resource_status.resource_type	properties	and
concatenate	them	into	our	output	variable.	This	data	will	allow	the	report	recipient	to
figure	out	what	resource	has	changed	and	what	type	of	resource	it	is.

Now	that	we’ve	found	a	resource	of	interest,	we	start	a	new	loop	and	iterate	inside	the
event	array	to	find	the	details	of	the	change	itself.	The	Puppet::Transaction::Event
object	holds	a	wealth	of	information,	and	from	it,	you	can	derive	information	such	as
when	a	change	took	place,	the	previous	value	of	the	resource,	the	desired	value,	and	so	on.
When	you	find	yourself	asking,	“What’s	happened	on	this	node?”,	then	it’s	the
Puppet::Transaction::Event	object	that	holds	the	answer	to	this	question.

Note
You	can	find	a	complete	list	of	the	fields	available	in	the	Puppet::Transaction::Event
object	at
http://docs.puppetlabs.com/puppet/3/reference/format_report.html#puppettransactionevent-
1.

For	the	moment,	we’re	going	to	show	the	user	the	Property,	Value,	Status,	and	Time
properties;	this	should	be	plenty	to	tip	off	our	sleepy	on-call	person	as	to	what	has
changed,	when	it	has	changed,	and	to	what	it	has	changed.	This	should	be	plenty	of
information	to	start	figuring	out	what	caused	this	particular	resource	to	change.

At	this	point,	we	have	gathered	our	data,	and	it	is	time	to	send	it	on	its	way.	To	send	the
data,	this	particular	report	processor	is	going	to	use	an	SMTP	mail	server.	Pretty	much
every	company	has	access	to	an	SMTP	server,	so	it’s	a	fairly	safe	route	to	take	when	it
comes	to	sending	data.	We’ve	already	started	to	construct	the	e-mail	that	will	be	sent	to
our	user;	the	code	that	we’ve	already	explored	has	constructed	the	body	of	the	message.
Now,	we	simply	need	to	add	in	some	further	details	and	then	use	the	mail	library	to	send
it.	The	values	that	we	are	going	to	use	have	already	been	included	in	our	configuration
file,	and	we	have	already	decanted	these	values	into	a	hash	that	is	ready	to	be	accessed.
This	is	described	in	the	following	code	snippet:

body	=	output.join("\n")

						Mail.defaults	do

								delivery_method	:smtp,	{

http://docs.puppetlabs.com/puppet/3/reference/format_report.html#puppettransactionevent-1


												:address	=>	config['smtp_server'],

												:port	=>	config['port'],

												:domain	=>	config['smtp_domain'],

												:user_name	=>	config['smtp_username'],

												:password	=>	config['smtp_password'],

												:authentication	=>	'login',

												:enable_starttls_auto	=>	false

								}

						end

						Mail.deliver	do

								toto_address

								fromfrom_address

								subject	subject

								body	body

						end

				end

		end

end

In	the	preceding	code,	we	instantiate	a	Mail	object	and	use	its	defaults	method	to	supply
it	a	list	of	settings	to	send	to	our	mail.	In	this	case,	I’ve	elected	to	use	SMTP,	so	we	need
to	provide	a	username	and	password	to	authenticate	our	plugin.	We	also	need	to	give	it	the
address	of	the	SMTP	server,	which	TCP	port	it	needs	to	send	the	data	to,	and	finally,
which	login	mechanism	we’re	using.	Although	I’m	using	an	SMTP	server,	you	could	just
as	easily	use	Exim,	Sendmail,	or	a	local	delivery:	the	Mail	gem	supports	all	of	them.	Once
configured,	sending	the	e-mail	is	simple;	we	just	need	to	call	the	Mail.deliver	function
and	let	it	know	where	to	send	it	to,	who	it’s	from,	and	then	give	it	the	header	and	body
we’ve	created.

That’s	all	of	the	code	we	need	to	make	this	work;	however,	there	is	still	one	last	piece	left,
and	that’s	the	configuration	file.	The	configuration	file	is	a	simple	YAML	document
named	changealert.yaml	that	needs	to	be	placed	inside	the	root	of	the	Puppet	master
configuration	file.	Inside	it	are	all	of	the	details	required	to	configure	our	plugin,	and	it
should	look	something	like	the	following:

from_address:	'alerts@fictionalco.com'

to_address:	'devops@fictionalco.com'

smtp_server:	'mailserver@fictionalco.com'

smtp_domain:	'fictionalco.com'

smtp_username:	'alertuser'

smtp_password:	'b3ty0uc@ntgu355m3'

Now	that	we	have	the	configuration	file,	we’re	ready	to	go;	when	we’re	ready,	we’ll	install
the	change	alert	module,	add	it	to	the	reports	configuration	in	the	Puppet	master,	and
trigger	a	Puppet	agent.	If	all	has	gone	well,	we	should	receive	a	message	via	e-mail	that
looks	a	little	like	the	following:

The	Following	resources	have	changed:

Resource:	git

Type:	Package



Property:	ensure

Value:	present

Status:	success

Time:	2014-01-15	07:52:03	+0000

Voila!	Our	very	own	custom	e-mail	alert	with	very	little	code.

The	techniques	used	here	are	the	core	part	of	any	report	processor,	and	as	you	can	see,	the
bulk	of	the	code	actually	deals	with	sending	the	e-mail	rather	than	extracting	the	data.
Puppet	has	made	accessing	the	data	very	easy	indeed,	leaving	you	free	to	concentrate	on
what	you	want	to	do	with	it.	In	almost	every	report	processor,	you	will	find	that	there	is
more	code	that	deals	with	processing	the	data	than	extracting	it.

If	you	find	that	your	report	plugin	is	turning	into	an	especially	complex	piece	of	code,	then
you	may	want	to	consider	moving	it	to	an	external	report	handler	and	either	feed	the	data
via	the	HTTP	plugin	or	read	the	reports	produced	by	the	store	plugin.	A	report	processor	is
fired	each	and	every	time	a	report	configured	client	runs	Puppet,	and	if	your	plugin	is
taking	a	fair	chunk	of	time	and	resources	to	process	the	data,	then	you	are	soon	going	to
feel	the	pain	in	the	performance	of	your	Puppet	infrastructure.



Managing	your	report	processor	configuration	with
Puppet
The	change	alert	report	processor	is	pretty	cool,	and	by	packaging	it	inside	a	Puppet
module,	we’ve	made	it	easy	to	be	distributed;	however,	we	have	left	the	user	to	create	a
configuration	file	to	make	it	work.	This	is	not	necessarily	a	bad	thing,	and	as	long	as	we
have	a	well-documented	example	of	the	configuration	in	the	Readme.txt	file,	then	most
users	should	be	more	or	less	OK.	It	is	not	really	in	keeping	with	Puppet	though;	we	can
make	end	users’	lives	a	little	easier	by	giving	them	the	option	to	have	Puppet	manage	the
report	processor	configuration	for	them.	We	already	have	a	Puppet	module	with	an
init.pp	file,	and	we	can	easily	leverage	this	and	a	Puppet	template	to	create	the
configuration	file.	From	the	perspective	of	the	Puppet	code,	this	is	very	simple	and
essentially	comprises	three	components:	a	parameterized	Puppet	class,	file	resource,	and
file	template.	Let’s	start	with	the	Puppet	class	and	file	resource.	They	are	described	in	the
following	code	snippet:

class	changealert	(

		$from_address,

		$to_address,

		$smtp_server,

		$smtp_domain,

		$smtp_username,

		$smtp_password

		)	{

		file	{"${settings::confdir}/changealert.yaml":

				owner			=>	'puppet',

				group			=>	'puppet',

				mode				=>	'0644',

				content	=>	template('changealert/changealert.erb'),

		}

}

If	you	are	reasonably	familiar	with	Puppet,	then	this	code	should	be	straightforward.	In	the
first	line,	we	declare	a	new	Puppet	class	named	changealert;	we	then	add	the	six
parameters	that	are	required	for	our	template.	Note	that	I’m	not	giving	any	default	values
to	the	parameters,	and	this	is	quite	deliberate;	none	of	the	parameters	are	optional,	so	we
want	this	manifest	to	fail	early	and	fail	fast.

After	we	have	set	up	our	class,	we	then	declare	a	file	resource	for	the	changealert.yaml
file.	I’m	using	some	built-in	Puppet	variables	to	find	out	where	the	configuration	directory
is	and	ensuring	that	the	file	is	created	there.	I’m	also	ensuring	that	the	Puppet	user	and
group	own	the	file	and	setting	sensible	file	permissions.	Finally,	I’m	declaring	that	the
content	is	derived	from	a	template,	which	I’m	sourcing	from	the	module	itself.	The
template	is	a	simple	one	and	takes	our	parameters	and	places	them	into	the	file.	This	is
described	in	the	following	code	snippet:

from_address:	<%=	@from_address	%>

to_address:	<%=	@to_address	%>

smtp_server:	<%=	@smtp_server	%>



smtp_domain:	<%=	@smtp_domain	%>

smtp_username:	<%=	@smtp_username	%>

smtp_password:	<%=	@smtp_password	%>

Our	end	user	now	has	the	choice	to	configure	the	change	alert	report	by	simply	declaring
the	class	on	any	Puppet	master	they	are	managing	using	Puppet.	An	example	of	doing	this
using	a	manifest	would	look	something	like	the	following:

node	'puppet.example.com'	{

		class	{'changealert':

				from_address		=>	'michael@stunthamster.com',

				to_address				=>	'puppet@exampleco.com,

				smtp_server			=>	'smtp.exampleco.com',

				smtp_domain			=>	'exampleco.com',

				smtp_username	=>	'smtpuser@exampleco.com,

				smtp_password	=>	'weakpassword'

		}

}

If	we	did	it	using	Hiera,	it	would	look	something	like	the	following:

classes:	changealert

changealert::from_address:	puppet@exampleco.com

changealert::to_address:	puppet@exampleco.com

changealert::smtp_server:	smtp.exampleco.com

changealert::smtp_domain:	exampleco.com

changealert::smtp_username:	smtpuser@exampleco.com

changealert::smtp_password:	weakpassword

Of	course,	we	still	leave	the	user	with	the	option	of	configuring	the	report	processor	in	the
way	they	choose;	simply	installing	the	module	will	ensure	that	the	report	processor	is
installed,	and	if	the	user	does	not	declare	the	Puppet	class	to	manage	the	configuration	file,
then	Puppet	will	not	attempt	to	manage	it.





Monitoring	changes	and	alerting	with
Puppet
Our	change	alert	report	processor	is	pretty	useful	and	will	inform	us	when	something
we’ve	managed	has	been	changed.	That’s	excellent,	but	there	are	times	when	we	want	to
monitor	resources	that	are	not	necessarily	something	we	also	want	to	manage.	A	good
example	is	the	passwd	file	in	the	/etc	directory.	We	will	never	manage	this	file	directly
with	Puppet;	we	have	the	user	and	group	resource	types	to	do	that,	but	we	may	still	want
to	know	when	something	has	changed	it.	Luckily,	we	can	do	this	using	the	somewhat
overlooked	audit	option	within	a	resource.

Auditing	was	introduced	in	Puppet	2.6.0	and	allows	you	to	specify	a	nonmanaged	resource
within	a	Puppet	manifest.	The	audit	metaparameter	tells	Puppet	that	although	you	do	not
want	to	manage	the	resource,	you’d	still	like	it	to	make	note	of	its	values	and	log	when	it
changes.	Take	a	look	at	the	following	example	Puppet	code:

file	{	'/etc/passwd':

audit	=>	[	owner,	group,	mode	],

}

From	now	on,	whenever	the	/etc/passwd	file’s	owner,	group,	or	permissions	are	changed,
Puppet	will	make	note	of	the	previous	value,	the	time	at	which	it	was	changed,	and	the
value	it	was	changed	to.	You	don’t	need	to	be	selective	either;	you	can	ask	Puppet	to	audit
everything	it	possibly	can	about	a	resource.	This	is	described	in	the	following	code
snippet:

file	{	'/etc/hosts':

audit	=>	all,

}

Now,	if	anything	changes	on	that	file,	from	the	owner	to	the	content	and	anything	in
between,	the	Puppet	agent	will	note	it	down	in	its	report.

This	is	a	fantastically	powerful	tool	when	combined	with	Puppet	reporting	and	alerting.
You	can	use	it	for	anything	from	a	basic	Intrusion	Detection	System	(IDS)	to	a	software
auditing	tool	for	licensing	and	anything	in	between.	If	you’re	running	your	Puppet	clients
on	a	regular	basis,	such	as	in	daemonized	mode,	then	you	can	be	sure	of	receiving	the	alert
in	good	time	(30	minutes	if	you’re	using	the	default	interval).	Of	course,	for	this	we	need	a
report	processor;	luckily,	it	won’t	take	much	to	wrangle	the	change	alert	plugin	into	a
shiny	new	audit	alert	plugin.

An	audited	resource	is	a	little	different	from	a	normal	one	from	the	reporting	perspective.
When	a	Puppet	run	encounters	a	change	in	an	audited	resource,	it	is	noted	down	as	an
event	in	the	Puppet::Transaction::Event	object,	the	same	as	a	normal	event,	but	with
the	value	of	the	audited	attribute	set	to	true.	This	is	great	news	as	it	means	that	we	have
very	little	work	to	do	to	transform	our	change	alert	processor	into	an	audit	alert	processor.

As	you	can	see,	the	bulk	of	the	code	remains	the	same,	mostly	made	up	of	the	tedious



business	of	constructing	and	sending	the	e-mail	object.	Instead	of	processing	the	data	as
we	did	in	the	previous	example,	this	time	we	are	going	to	do	it	as	follows:

begin

						self.resource_statuses.each	do	|theresource,	resource_status|

								begin

										resource_status.events.each	do	|event|

												if	event.audited	then

														output	<<	resource_status.title

														output	<<	"Audited	#{event.audited}"

														output	<<	"Property:	#{event.property}"

														self.logs.each	do	|log|

																if	log.source.include?	resource_status.title

																		output	<<	log.message

																end

														end

														output	<<	"Status:	#{event.status}"

														output	<<	"Time:	#{event.time}"

														send_report	=	true

												end

										end

								end

						end

end

This	is	a	fairly	simple	piece	of	code	and	should	be	recognizable	from	our	previous	plugin.
It’s	undertaking	the	same	basic	journey;	enable	the	resources	and	then	traverse	the	events
array.	The	difference	this	time	is	that	we	have	a	very	simple	piece	of	logic	that	looks	out
for	the	audited	flag	within	the	resources,	and	if	it’s	set	to	true,	iterates	through	the
matching	events	to	find	the	details	of	the	change.	Once	we	have	gathered	the	data,	we	then
set	a	flag	to	ensure	that	an	e-mail	is	sent.

Again,	this	is	a	simple	report	but	is	a	really	neat	way	to	use	the	audit	flag.	Using	this,	you
can	keep	an	eye	on	files,	packages,	users,	and	other	resources	without	needing	to	directly
manage	them.	You	are	not	limited	to	just	the	standard	resources;	any	custom	resource
you’ve	developed	should	also	be	able	to	make	use	of	this,	and	the	type	of	alert	can	be
anything.	If	you	don’t	like	e-mail,	then	it	would	be	relatively	easy	to	have	this	processor
send	you	alerts	via	SMS,	Twitter,	or	any	other	method	you	can	trigger	via	Ruby.





Logging	with	MySQL
If	there	is	one	technology	that	you’re	almost	guaranteed	to	find	in	most	companies,	it	is
SQL.	One	of	the	enormous	advantages	of	Puppet	is	that	it	can	make	change	activities
hugely	transparent,	and	this	is	an	enormously	rich	piece	of	data	that	can	complement
existing	reports	exceptionally	well.	For	instance,	your	organization	may	already	have
reports	noting	how	many	transactions	have	taken	place	over	a	certain	time	period,	and
when	looking	at	any	sudden	gains	or	losses	to	the	average,	it’s	fantastic	to	be	able	to	add
in	change	activity.	Suddenly,	you	will	see	that	the	drop	in	user	transactions	coincides	with
the	web	server	that	is	pushing	out	a	new	version	of	nginx,	or	the	jump	in	sales	happened
just	after	the	new	version	of	the	sales	application	was	pushed	by	Puppet.

This	is	valuable	data,	but	to	get	the	most	out	of	it,	it	needs	to	be	available	to	the	people
who	construct	these	reports.	For	many	organizations,	this	means	that	the	data	will	be	held
in	a	SQL	database;	not	only	is	it	common	in	terms	of	skill	base	and	technology,	it’s	almost
guaranteed	that	any	reporting	tool	worth	its	salt	will	be	able	to	work	with	it.

Fortunately,	it’s	simple	to	get	Puppet	to	store	its	reports	in	SQL,	and	most	of	what	we	have
learned	about	creating	our	simple	alerts	is	just	as	applicable	to	exporting	data.	As	with
most	report	processors,	we’re	going	to	use	a	library	to	do	the	heavy	lifting,	which	will
leave	us	free	to	concentrate	on	the	interesting	bits.

The	first	thing	that	we	should	do	is	go	ahead	and	install	the	required	library	to	allow	Ruby
to	work	with	MySQL.	This	gem	makes	use	of	native	extensions	and	so	will	need	to	have
some	development	libraries	installed.	To	install	the	packages,	perform	the	following	steps:

1.	 Install	the	MySQL	Ruby	library.

On	Debian-based	distributions,	it’s	installed	using	the	following	command:

sudo	apt-get	install	libmysql-ruby	libmysqlclient-dev

On	RedHat-based	distributions,	it’s	installed	using	the	following	command:

sudo	yum	install	mysql-devel

2.	 Install	the	sequel	library	using	the	following	command:

sudo	gem	install	sequel

Note
Why	not	MySQL2?

The	sequel	gem	is	a	little	more	powerful	than	the	common	MySQL2	gem	and	is	a
lightweight	Object-relational	Mapping	(ORM)	tool;	this	offers	the	ability	to	abstract
ourselves	away	from	using	SQL	and	instead	allows	us	to	concentrate	on	code.	When	used
as	an	ORM,	it	also	ensures	that	any	strings	are	treated	as	SQL	strings	and,	therefore,
makes	us	much	less	susceptible	to	SQL	injection	attacks.

Now	that	we’ve	installed	our	prerequisites	for	the	code,	we	need	somewhere	to	put	the



data,	which	means	we	need	to	get	our	hands	dirty	with	MySQL.	I’m	going	to	go	ahead	and
assume	that	you	have	MySQL	installed;	if	not,	it’s	relatively	easy	using	the	package
manager	of	your	distribution.	Once	it’s	installed,	you	can	run	the	log	into	MySQL	and	run
the	following	SQL	query:

CREATE	DATABASE	puppet_stats;

This	straightforward	query	will	create	an	empty	database	named	puppet_stats,	but	before
we	set	up	our	tables,	let’s	also	go	ahead	and	create	a	user.	From	a	security	perspective,	it’s
a	bad	idea	to	use	the	root	user,	so	let’s	go	ahead	and	create	a	user	specifically	for	this
report	processor	inside	MySQL.	This	can	be	done	using	the	following	SQL	query:

CREATE	USER	'puppetreporting'@'localhost'	IDENTIFIED	BY	'changeme';

GRANT	ALL	ON	puppet_stats.*	TO	'puppetreporting'@'localhost';

We’ve	now	got	somewhere	to	store	the	data	and	got	a	database	as	well,	so	the	next	thing
we	need	to	do	is	create	the	first	table.	This	can	be	done	as	follows:

USE	puppet_stats;

CREATE	TABLE	reports	(

transaction_uuid	VARCHAR(50),

Host	TEXT,

Date	DATE,

Time	TIME,

Kind	TEXT,

Report_format	INTEGER,

Puppet_version	TEXT,

Environment	TEXT,

Status	TEXT,

PRIMARY	KEY	(transaction_uuid));

This	will	create	a	table	to	store	our	first	piece	of	data:	the	contents	of	the
puppet::transaction::report	object.	We	will	add	the	following	fields	into	our	table:

UUID
The	date	of	the	Puppet	run
The	time	of	the	Puppet	run
The	kind	of	run	(inspect	run,	agent	run,	and	so	on)
The	version	of	the	report	format
The	Puppet	agent	version
The	environment	it	was	run	in
The	status	of	the	Puppet	run

Finally,	we’re	going	to	set	the	primary	key	of	the	table	to	the	Universally	Unique
Identifier	(UUID).	The	UUID	is	a	completely	unique	identifier	that	Puppet	creates	with
each	and	every	run,	so	it’s	perfect	to	key	the	table	with.	In	fact,	when	we	need	to	split	the
Puppet	data	into	relational	datasets,	we	can	use	the	UUID	to	query	the	data.

Tip
If	you’re	a	little	rusty	on	your	database	knowledge,	then	you	can	brush	up	by	visiting



http://dev.mysql.com/doc/.	This	will	take	you	through	the	basics	that	you’ll	need	to	follow
this	code.

Now	that	we	have	our	table	set	up,	we	can	go	ahead	and	create	a	report	to	fill	it.	The	first
task	is	to	include	the	libraries	that	we	require	for	this	report	processor	to	function.	This	is
described	in	the	following	code	snippet:

require	'puppet'

require	'logger'

require	'yaml'

require	'date'

begin

		require	'sequel'

rescue	LoadError

		Puppet.info	'This	report	requires	the	sequel	gem	to	run'

end

We	are	already	familiar	with	the	puppet	library,	but	we	have	some	new	libraries	this	time
round.	First	of	all,	we	have	included	the	logger	library,	a	library	that	is	shipped	with
Ruby.	The	logger	library	allows	you	to	emit	simple	log	messages	from	your	application	to
the	file	of	your	choosing.	Like	most	log	utilities,	it	will	allow	us	to	set	different	reporting
levels,	from	FATAL	(which	means,	“Good	Lord,	my	program	has	just	crashed!”)	through	to
DEBUG	(“Good	grief!	My	program	has	just	done	something!”).	Using	these	log	levels,	you
are	able	to	make	your	report	processor	much	more	verbose	if	it	encounters	an	error.

Notice	how	the	Puppet	date,	yaml,	and	logger	require	statements	are	not	wrapped	in	our
usual	logic	to	check	for	their	presence?	That’s	because	these	are	default	libraries	shipped
with	Ruby	so	you	can	be	pretty	certain	that	the	end	user	is	going	to	have	them,	whereas
the	sequel	library	may	have	been	missed	out.

That	takes	care	of	the	setup	of	the	report	processor.	Next	up,	we	have	our	process	function.
Consider	the	following	code	snippet:

			@log	=	Logger.new('/var/log/puppet/puppetreport.log')

						configfile	=	File.join([File.dirname(Puppet.settings[:config]),	

'mysqlreport.yaml'])

						raise(Puppet::ParseError,	"mysqlreport	configfile	not	readable")	

unless	File.exist?(configfile)

						config	=	YAML.load_file(configfile)

						db	=	Sequel.connect(:adapter	=>	'mysql',

																										:user	=>	config['mysqlusername'],

																										:host	=>	config['mysqlserver'],

																										:database	=>	'puppet_stats',

																										:password=>config['mysqlpassword'])

						reports	=	db.from(:reports)

						puppet_time_stamp	=	DateTime.parse("#{self.time}")

As	you	can	see,	we	have	the	usual	class	declaration	with	the	report	name	and	process
function.	The	next	line	specifies	the	location	of	our	logfile;	if	you’re	on	a	Linux	system,

http://dev.mysql.com/doc/


then	the	/var/log/puppet	directory	is	always	a	good	bet.	Make	sure	that	whatever
location	you	choose	has	both	read	and	write	access	from	your	Puppet	user,	as	that	is	the
user	executing	the	code.

Next,	we	define	our	configuration	file	location	and	load	it,	again	checking	that	it	is	present
and	loading	it	into	our	config	variable.	Our	configuration	file	contains	the	server	name	of
our	MySQL	server,	the	username	we’re	going	to	use,	and	finally,	the	password.	It	should
look	like	the	following:

mysqlserver:	mysql@fictionalco.com

mysqlusername:	puppetreporting

mysqlpassword:	Dontuseweakpasswords

Again,	we	can	use	the	same	technique	that	we	used	in	the	change	alert	and	audit	alert
examples	to	define	this	configuration	for	us	using	Puppet.	In	this	case,	the	init.pp	file
would	look	like	the	following:

class	mysqlreport	(

		$mysql_server,

		$mysql_username,

		$mysql_password

)	{

		file	{"${settings::confdir}/mysqlreport.yaml":

				owner			=>	'puppet',

				group			=>	'puppet',

				mode				=>	'0644',

				content	=>	template('mysqlreport/mysqlreport.erb'),

		}

}

Now	that	we	have	our	configuration	items,	we	can	set	up	our	connection	to	the	MySQL
database	using	the	sequel	library.	As	you	can	see,	we’re	using	string	interpolation	to
insert	the	contents	of	our	configuration	file	into	the	connection	string.	The	connection
string	is	made	up	of	the	server	name,	username,	password,	and	the	database	that	we	wish
to	connect	to.	We’ve	been	supplied	the	first	three	parts	by	the	user,	and	we’ve	hardcoded
the	database	name	so	that	it	matches	our	preceding	SQL	scripts.	We	pass	this	information
into	a	new	variable	called	db,	which	we	use	in	the	next	line	to	create	a	new	object	called
reports.	We	then	instantiate	this	object	by	supplying	our	database	connection	and	the
table	we	want	to	map	to.

Now	that	we	have	set	up	our	database	connection,	we	can	start	to	make	use	of	the	date
library.	The	Puppet	report	expresses	its	timestamp	in	a	date-time	format,	that	is,	in	a
combined	field	made	up	of	both	the	time	and	the	date;	this	is	perfectly	fine	and	is
supported	by	the	MySQL	DATETIME	field	format.	However,	I’ve	found	that	almost	every
time	I’ve	had	to	place	data	into	SQL,	the	requirements	have	been	to	have	a	separate	date
and	time	field	to	ease	reporting.	Fortunately,	with	Ruby,	this	is	relatively	easy	with	the
date	library.	As	you	can	see,	we	take	the	contents	of	the	self.time	function	and	run	it
through	the	DateTime.parse	function.	The	output	is	then	placed	into	a	variable	called
puppet_time_stamp;	this	then	allows	us	to	split	the	date	and	time	into	two	subsequent



fields	using	the	strftime	function.

Note
To	find	out	more	about	the	strftime	function,	you	can	check	the	Ruby	documentation	at
http://www.ruby-doc.org/core-2.1.0/Time.html.

Now	that	we’ve	set	up	our	database	connection	and	arranged	the	date	format	to	our
satisfaction,	we’re	ready	to	start	adding	data.	Consider	the	following	code	snippet:

		reports.insert(

										:transaction_uuid	=>	self.transaction_uuid,

										:Host	=>	self.host,

										:Date	=>	puppet_time_stamp.strftime('%Y-%m-%d'),

										:Time	=>	puppet_time_stamp.strftime('%H:%M:%S'),

										:Kind	=>	self.kind,

										:Report_format	=>	self.report_format,

										:Puppet_version	=>	self.puppet_version,

										:Environment	=>	self.environment,

										:Status	=>	self.status

						)

				rescue	=>	err

						@log.fatal('Caught	exception;	exiting')

						@log.fatal(err)

				end

		end

end

Using	the	sequel	library	as	an	ORM,	we	can	easily	insert	data	into	our	table	without
needing	to	use	SQL	code.	This	has	two	advantages;	firstly,	it’s	much	more	readable,	and
secondly,	the	sequel	library	converts	any	strings	you	insert	into	a	properly	formatted	SQL
string.	This	ensures	that	you	are	not	at	risk	of	a	SQL	injection	attack.

Note
A	SQL	injection	is	essentially	when	someone	uses	an	input	into	SQL	to	add	in	their	own
code.	This	can	happen	anytime	you	process	data	that	has	not	originated	from	your	code,
such	as	a	text	input	field.	In	our	case,	it’s	derived	from	Puppet	data,	but	a	cunning	attacker
could	potentially	use	this	if	they	sent	a	specially	crafted	Puppet	report.	A	humorous
example	of	what	a	SQL	injection	is	can	be	found	in	the	XKCD	webcomic	at
http://xkcd.com/327/.

To	insert	the	data,	we	call	the	insert	function	from	our	reports	object.	This	function
takes	a	comma-separated	list	of	key	value	pairs,	with	each	pair	made	up	of	the	column	and
the	value	you	want	to	insert.	In	our	case,	we	simply	insert	the	data	straight	from	Puppet’s
puppet::Transaction::Report	object,	with	the	exception	of	the	time	and	date	values.	In
this	case,	we	use	the	strftime	method	to	split	a	singular	date	stamp	into	a	separate	date
and	time	object	before	inserting	it.

The	final	two	lines	of	the	preceding	code,	once	again,	use	the	logger	library	to	help	us

http://www.ruby-doc.org/core-2.1.0/Time.html
http://xkcd.com/327/


diagnose	issues.	You’ll	find	that	if	your	SQL	code	fails	for	some	reason—say,	if	your
MySQL	server	is	down	or	you’ve	ended	up	with	some	strange	characters	in	your	query—
then	you’re	going	to	have	a	hard	time	diagnosing	the	issue.	By	default,	the	Puppet	master
will	log	a	very	small	piece	of	data,	simply	noting	in	the	default	Puppet	log	that	it
encountered	a	fault	while	running	the	Puppet	processor.	This	could	lead	to	quite	a	long
bout	of	head	scratching	as	you	try	to	figure	out	why.	The	rescue	directive	will	tell	Ruby	to
catch	any	error	that	is	generated	and	allow	us	to	process	the	resulting	data.	In	our	case,	we
log	a	fatal	error,	log	the	error	message	to	our	log,	and	exit	the	report	processor.	It’s	worth
noting	that	this	will	not	affect	the	Puppet	master;	it	will	carry	on	serving	Puppet	requests
even	if	a	report	processor	has	exited	with	an	error.

Add	your	new	report	processor	to	the	Puppet	master	in	the	usual	way,	then	restart	and
watch	your	data	start	to	appear	in	MySQL.	If	everything	went	right,	you	should	be	able	to
perform	a	simple	select	query	to	see	your	data	as	shown	in	the	following	screenshot:

The	trouble	is	that	this	isn’t	really	of	much	use	to	us;	we	know	that	a	Puppet	run	has	taken
place,	and	what	its	status	was,	but	we	have	very	little	detail	otherwise.	Let’s	go	ahead	and
add	some	detail	in	the	form	of	Puppet	metrics.





Adding	metrics	and	events	to	MySQL
Metrics	can	give	you	a	good	feel	of	how	your	Puppet-managed	infrastructure	is
performing	and	how	rapidly	your	configuration	items	are	changing.	Combined	with	the
Puppet	report,	the	metrics	and	events	can	add	a	wealth	of	data	to	your	reports.	This	is
where	MySQL	can	shine,	as	it	gives	you	several	different	ways	to	represent	this
information	and	offers	you	the	chance	to	use	SQL	to	create	your	own	reports.	As	the	data
will	be	available	in	one	place,	there	is	no	need	to	crawl	through	multiple	files	to	build	up
historical	data	or	join	data	using	the	JOIN	statement.

The	Puppet	metrics	are	carried	inside	the	Puppet	transaction	report	and	are	encapsulated
within	the	Puppet::Util::Metric	object.	The	metric	data	is	split	up	between	resources,
events,	and	changes,	and	each	category	has	its	own	timings	for	its	various	elements.	For
instance,	within	the	resources	category,	we	are	able	to	see	metrics	for	how	many	resources
are	in	the	failed,	out	of	sync,	or	changed	state.	Like	almost	all	the	Puppet	report	data,	this
is	expressed	in	the	form	of	arrays,	with	each	category	containing	an	array	of	metrics.

Adding	metrics	to	our	existing	MySQL	report	processor	is	fairly	easy,	and	we	can	easily
link	the	data	using	the	UUID	that	we	are	already	inserting.	We	could	potentially	place	this
data	alongside	our	existing	data,	but	this	would	lead	to	a	fair	chunk	of	data	duplication,
huge	rows	of	data,	and,	quite	probably,	an	angry	DBA	at	your	doorstep.	It’s	far	better	to
start	splitting	the	data	out,	or	in	the	lingo	of	DBAs,	“normalize	the	data”.

Normalizing	the	Puppet	report	is	easy	as	it’s	pretty	much	already	been	done	for	you.	The
data	in	the	Puppet::Util::Metric	object	is	easily	mapped	into	a	table	and	column
relationship.	In	this	case,	we’re	going	to	take	the	entirety	of	the	Puppet::Util::Metric
object	and	place	it	into	a	row	inside	a	new	table	within	our	database.	Let’s	start	by	creating
the	table	within	MySQL	using	the	following	SQL	query:

CREATE	TABLE	metrics	(

transaction_uuid	VARCHAR(50),

res_changed	INT,

res_failed	INT,

res_failed_restart	INT,

res_out_sync	INT,

res_restarted	INT,

res_scheduled	INT,

res_skipped	INT,

res_total	INT,

time_conf_ret	FLOAT,

time_file	FLOAT,

time_filebucket	FLOAT,

time_package	FLOAT,

time_schedule	FLOAT,

time_total	INT,

changes_total	INT,

events_failure	INT,

events_success	INT,

events_total	INT,

PRIMARY	KEY	(transaction_uuid))



Now	that	we	have	our	metrics	table,	let’s	go	ahead	and	insert	the	new	code	to	iterate	and
insert	the	metrics.	This	goes	just	underneath	our	first	SQL	statement	and	is	made	up	of
two	parts.	Firstly,	we	need	to	iterate	through	the	metrics	data	and	place	it	into	an	array	of
key	pairs	that	we	can	then	easily	access.	This	is	described	in	the	following	code	snippet:

						reports.insert(

										:transaction_uuid	=>	self.transaction_uuid,

										:Host	=>	self.host,

										:Date	=>	puppet_time_stamp.strftime('%Y-%m-%d'),

										:Time	=>	puppet_time_stamp.strftime('%H:%M:%S'),

										:Kind	=>	self.kind,

										:Report_format	=>	self.report_format,

										:Puppet_version	=>	self.puppet_version,

										:Environment	=>	self.environment,

										:Status	=>	self.status

						)

metric_vals	=	{}

						self.metrics.each	{	|metric,	data|

								data.values.each	{	|val|

										name	=	"#{val[1]}	#{metric}"

										value	=	val[2]

										metric_vals[name]	=	value

								}

						}

Firstly,	we	create	an	empty	array	in	which	to	hold	our	metrics,	and	then	we	iterate	through
the	self.metrics	array	and	pull	out	each	of	the	categories.	For	each	category,	we	then
gather	its	statistics.	Once	we	have	the	metric	and	its	value,	we	insert	it	into	our
metric_vals	array	and	then	start	the	loop	again.

Once	we	have	all	our	values,	we	then	need	to	insert	it	into	our	metrics	tables.	Once	again,
we	use	the	sequel	library	to	assign	our	table,	this	time	to	a	variable	called	metrics.	Then,
we	call	the	insert	method	and	pass	it	the	comma-separated	list	of	key	values	that	we
gathered	from	the	Puppet	metrics.	One	thing	to	note	is	that	we	once	again	insert	the
UUID,	and	this	allows	us	to	use	a	JOIN	query	within	SQL	to	tie	our	metrics	and	report
table	together.	This	is	described	in	the	following	code:

metrics	=	db.from(:metrics)

						metrics.insert(

										:transaction_uuid	=>	self.transaction_uuid,

										:res_changed	=>	metric_vals['Changed	resources'],

										:res_failed	=>	metric_vals['Failed	resources'],

										:res_failed_restart	=>	metric_vals['Failed	to	restart	

resources'],

										:res_out_sync	=>	metric_vals['Out	of	sync	resources'],

										:res_restarted	=>	metric_vals['Restarted	resources'],

										:res_scheduled	=>	metric_vals['Scheduled	resources'],

										:res_skipped	=>	metric_vals['Skipped	resources'],

										:res_total	=>	metric_vals['Total	resources'],

										:time_conf_ret	=>	metric_vals['Config	retrieval	time'],

										:time_file	=>	metric_vals['File	time'],



										:time_filebucket	=>	metric_vals['Filebucket	time'],

										:time_package	=>	metric_vals['Package	time'],

										:time_schedule	=>	metric_vals['Schedule	time'],

										:time_total	=>	metric_vals['Total	time'],

										:changes_total	=>	metric_vals['Total	changes'],

										:events_failure	=>	metric_vals['Failure	events'],

										:events_success	=>	metric_vals['Success	events'],

										:events_total	=>	metric_vals['Total	events']

						)

				rescue	=>	err

						@log.fatal('Caught	exception;	exiting')

						@log.fatal(err)

				end

Now,	if	you	run	your	Puppet	agents,	you	should	find	that	additional	data	has	been	created
in	your	metrics	table.	If	you	query	it,	you	should	find	that	your	data	looks	a	little
something	like	the	following	screenshot:

That	about	wraps	it	up	for	the	MySQL	report	processor.	You	have	seen	how	to	take	the
data	that	Puppet	produces	and	feed	it	into	a	platform	like	MySQL.	By	exporting	your	data,
you’re	making	it	more	accessible	to	other	users	and	tools,	and	you’ll	be	surprised	at	what
other	people	can	come	up	with	when	they	are	handed	this	type	of	data.	I’ve	seen	some
fantastic	business	dashboards	that	have	mashed	up	Puppet	data	with	server	statistics	and
throughput.	The	basic	rule	of	thumb	when	it	comes	to	Puppet	data	is	that	if	someone	asks,
“Can	I	get	the	data	in	the	format	I	need?”,	the	answer,	invariably,	is	yes.





Raising	issues	with	JIRA
There’s	one	final	example	we’re	going	to	look	at	before	I	leave	you	to	experiment	on	your
own,	and	that’s	how	to	automatically	raise	issues	with	Atlassian	JIRA.	This	is	worthwhile
on	two	fronts:	firstly,	JIRA	is	a	fantastic	tool	for	bug	and	issue	tracking,	and	secondly,	it
will	give	you	a	sense	of	how	to	integrate	Puppet	with	third-party	tools.

Atlassian	JIRA	has	been	around	since	2002,	and	in	this	time,	has	become	one	of	the	most
popular	forms	of	issue-tracking	software	on	the	market,	in	use	by	an	estimated	25,000
organizations.	Part	of	the	appeal	of	JIRA	is	that	it	is	a	web-based	product,	and	it	is	very
easy	to	install	and	maintain.	Recently,	Atlassian	has	offered	JIRA	to	its	users	in	the	form
of	a	Software	as	a	Service	package,	which	has	lowered	the	barrier	to	entry	for	running
JIRA	even	further.	One	of	the	things	that	set	JIRA	apart	fairly	early	on	was	its	excellent
API,	as	it	allowed	people	to	create	products	and	services	that	would	easily	be	able	to
integrate	with	JIRA	with	minimal	effort.

Issue	tracking	is	a	natural	fit	for	a	Puppet	report	plugin.	There	are	times	when	you	don’t
want	to	receive	an	e-mail	when	there	is	a	problem	with	a	Puppet	run,	but	by	the	same
token,	you	also	want	to	make	a	record	of	the	issue	so	that	you	can	go	back	and	solve	it
later.	Using	JIRA	and	a	suitable	report	processor,	you	will	be	able	to	have	Puppet	quietly
raise	an	issue	if	it	encounters	a	problem	so	that	developers	can	track	and	fix	the	issue.

You	might	be	surprised	to	find	that	this	is	the	simplest	example	yet.	Unlike	SQL	servers
and	e-mails,	we	have	no	need	to	build	up	relatively	complex	data	structures;	it	can	all	be
dealt	by	a	single	call	to	the	JIRA	API.	A	big	part	of	the	brevity	of	the	code	is	that	we	are
using	a	Ruby	library	that	bundles	the	JIRA	API	for	us,	saving	us	the	effort	of	writing	code
to	do	the	basics	of	connecting,	authenticating,	and	creating	REST-based	calls.

As	always,	the	first	thing	that	we	need	to	do	is	include	the	libraries	that	we	require.
Consider	the	following	code	snippet:

require	'puppet'

require	'yaml'

require	'logger'

begin

		require	'jiralicious'

rescue	LoadError

		Puppet.info	'This	report	requires	the	jiralicious	gem	to	run'

end

In	this	case,	we	include	the	usual	suspects	in	the	form	of	the	puppet,	yaml,	and	logger
libraries	and	also	include	the	jiralicious	library.	The	jiralicious	library	deals	with
many	of	the	common	API	calls	used	to	interact	with	JIRA	and	saves	us	from	having	to
write	our	own	interfaces.	For	our	simple	use,	this	gem	is	a	perfect	fit.	Now	that	we	have
our	libraries,	we	need	to	register	our	report	and	load	our	configuration	file.	This	is
described	in	the	following	code	snippet:

Puppet::Reports.register_report(:jiraalert)	do



		def	process

				@log	=	Logger.new('/var/log/puppet/puppetreport.log')

				configfile	=	File.join([File.dirname(Puppet.settings[:config]),	

'jiraalert.yaml'])

				raise(Puppet::ParseError,	"mysqlreport	configfile	not	readable")	unless	

File.exist?(configfile)

				config	=	YAML.load_file(configfile)

For	this	report	processor,	our	configuration	file	will	look	like	the	following:

username:	puppetjira

password:	weakpassword

uri:	http://jira.fictonalco.com

apiversion:	latest

authtype:	basic

project:	PUP

As	you	can	see,	the	configuration	of	the	jiralicious	library	is	fairly	lightweight	and
needs	only	the	username,	password,	URI,	and	API	version.	The	URI	is	the	address	of	your
JIRA	server;	this	can	just	as	easily	be	an	on-demand	instance	as	a	locally	hosted	version.

Now	that	we	have	our	settings,	we	need	to	connect	to	our	JIRA	instance.	We	call	on	the
jiralicious	library	to	do	this	and	feed	it	the	values	it	needs	via	our	configuration	file	in
the	same	way	as	the	previous	examples.	Consider	the	following	code:

				Jiralicious.configure	do	|jiraconfig|

						#	Leave	out	username	and	password

		jiraconfig.username	=	config['username']

		jiraconfig.password	=	config['password']

						jiraconfig.uri	=	config['uri']

						jiraconfig.api_version	=	config['apiversion']

	jiraconfig.auth_type	=	config['authtype']

				end

				project	=	config['project']

Now,	all	we	need	to	do	is	decide	which	events	we	want	to	send	to	JIRA;	in	this	case,	we’re
going	to	send	any	Puppet	report	that	has	a	status	of	failed	to	JIRA	as	a	bug.	We	simply
pull	the	details	we	require	from	the	Puppet	report	using	the	.self	notation,	starting	with
the	self.status	object.	If	its	value	is	failed,	then	we	construct	a	JSON	string	(Java
Script	Object	Notation,	a	common	data	type	for	configuration	and	API	calls)	that	contains
the	data	we	require	from	the	transaction	report.	Once	we’ve	built	our	document,	we	then
call	the	Jiralicious::Issue.create	method	and	pass	the	document	as	a	method
argument.	This	is	described	in	the	following	code	snippet:

				if	self.status	==	'failed'

						puppet_data	=	{

										"fields"	=>	{

														"project"	=>	{

																		"key"	=>	"#{project}"},

														"summary"	=>	"#{self.host}	Failed	puppet	run",

														"description"	=>	"Host	#{self.host}	Failed	puppet	run	at	#

{self.time}",



														"issuetype"	=>	{"name"	=>	"Bug"}}}

						Jiralicious::Issue.create(puppet_data)

				end

		rescue	=>	err

				@log.fatal("Caught	exception;	exiting")

				@log.fatal(err)

		end

end

Our	document	harvests	several	important	pieces	of	data	to	post	into	JIRA.	Firstly,	we	hand
it	the	project	that	this	new	issue	should	be	logged	to	and	then	add	a	brief	summary	that
includes	the	Puppet	agent	host	that	has	flagged	the	error.	Finally,	we	set	the	issue	type	to
be	a	bug.

Install	this	report	processor	in	the	usual	way,	restart	your	Puppet	master,	and	keep	an	eye
on	your	JIRA	queue;	you	will	find	that	your	failed	hosts	are	now	registering	themselves
within	JIRA,	ready	for	the	attention	of	a	free	developer.	Bug	tracking	tools	such	as	JIRA
can	be	used	to	vastly	improve	your	Puppet	code.	Tracking	common	issues	and	having	a
documented	solution	imposes	a	certain	amount	of	discipline.	After	all,	no	one	wants	their
code	to	be	the	reason	that	there	are	several	hundred	bug	tickets	waiting	to	be	dealt	with!





A	final	note	on	third-party	applications
As	you’ve	seen,	with	the	correct	Ruby	libraries	and	some	creative	Ruby	code,	you	can
allow	Puppet	to	communicate	with	pretty	much	any	third-party	product.	These	days,	it’s
almost	a	given	that	there	is	an	API,	and	on	the	Puppet	Forge,	you	can	already	see	some
exciting	examples	of	report	processors	ranging	from	alerts	via	instant	message	through	to
logging	deployment	data	into	systems	such	as	New	Relic.	When	you	come	to	look	at	your
own	report	processors,	be	creative	and	remember	that	Puppet	is	rapidly	becoming	the	first
place	where	changes	occur,	which	makes	it	the	perfect	early	warning	system	for
impending	issues.	By	thinking	about	report	processors	both	as	a	reporting	mechanism	and,
perhaps	more	importantly,	an	alerting	system,	you	can	create	some	fantastic	ways	to	keep
yourself	apprised	of	change	within	your	Puppet-managed	infrastructure.





Summary
By	now,	you	have	a	good	idea	of	what	you	can	do	with	the	Puppet	report	processor.	We’ve
taken	a	look	at	the	very	basics	of	a	report	processor	and	explored	the	simple	steps	required
to	create	a	new	one.	We’ve	also	investigated	ways	to	parse	the	data	that	Puppet	sends	in	its
transaction	reports	and	noted	how	the	majority	of	the	code	in	a	report	processor	is
generally	business	logic	that	deals	with	data	rather	than	low-level	connectivity	code.	The
example	code	in	this	chapter	demonstrated	how	there	is	generally	a	library	available	that
can	ease	the	development	of	report	processors	by	taking	care	of	common	tasks	such	as
connecting	to	databases	and	third-party	applications.

In	this	chapter,	we’ve	covered	how	to	send	e-mails,	export	data	to	MySQL,	and	log	to
JIRA	using	existing	libraries	to	lighten	the	load.	We’ve	explored	different	ways	in	which
we	can	use	the	data	and	hopefully	encouraged	you	to	think	about	your	own	report
processors.

In	the	next	chapter,	we’re	going	to	take	a	look	at	the	world	of	PuppetDB,	what	it’s	used
for,	and	how	to	go	about	setting	it	up	on	our	Puppet	servers.





Chapter	5.	Exploring	PuppetDB
We	have	spent	quite	a	bit	of	time	looking	at	the	basics	of	the	Puppet	reporting	system	and
learned	a	fair	bit	about	its	underlying	mechanisms	and	data	formats.	Now,	it	is	time	to	turn
our	attention	to	PuppetDB.	PuppetDB	is	an	extremely	fast	data	storage	service	that	Puppet
is	able	to	utilize	in	preference	to	storing	the	reports	elsewhere,	and	it	offers	a	rich	API	for
data	discovery.

In	this	chapter,	we’re	going	to	cover	the	following	topics:

A	brief	tour	of	PuppetDB	and	its	uses
Backend	data	storage	options	for	PuppetDB
Configuring	your	Puppet	masters	to	use	PuppetDB

By	the	end	of	this	chapter,	you	should	be	comfortable	both	with	what	PuppetDB	is	used
for	and	how	to	install	and	configure	it.



A	brief	history	of	PuppetDB
Over	the	past	few	years,	an	awful	lot	of	effort	has	gone	into	making	Puppet	perform	well
when	scaled,	and	this	has	led	to	several	interesting	advances	in	the	product.	Not	only	has
the	catalog	compilation	become	faster	(200	times	faster	from	version	2	to	version	3),	but
some	serious	gains	have	been	made	in	terms	of	scaling	massive	Puppet	installations.	As	is
often	the	case,	this	isn’t	just	about	making	some	things	faster	but	also	about	taking	a	good
hard	look	at	how	some	components	function	and	replacing	them	with	something	more
suitable	if	they	are	found	to	be	wanting.

Increased	performance	was	obviously	at	the	forefront	of	Puppet	Labs	developers’	minds
when	they	came	to	consider	exported	configurations.	Exported	configurations	are	an
excellent	feature	in	Puppet	that	allow	a	node	to	pass	its	configuration	onto	other	nodes.
This	is	especially	handy	when	configuring	backups,	monitoring,	or	any	other	item	that
might	need	to	know	how	another	node	is	configured.	By	their	very	nature,	exported
configurations	require	a	place	to	be	stored;	after	all,	a	node	doesn’t	have	any	idea	as	to
which	other	nodes	may	require	configuration	from	it,	so	it	makes	sense	to	store	it	with	the
Puppet	master.	This	storage	needs	to	be	accessible,	but	above	all,	it	needs	to	be	fast.	A
slow	exporting	configuration	store	can	seriously	impact	the	performance	of	a	catalog.

Originally,	the	Puppet	master	dealt	with	stored	configuration.	It	would	take	the	data	from
the	node,	store	it,	and	when	asked,	it	would	reply	to	a	node	with	the	details.	This	worked
and	was	simple,	but	was	inherently	slow	as	it	introduced	an	expensive	lookup	operation	to
the	Puppet	master.	It	also	scaled	poorly,	with	catalogs	that	have	large	numbers	of	managed
resources	taking	a	lot	of	time	to	apply.	Obviously,	this	needed	improvement,	and	that’s
exactly	what	the	Puppet	Labs	developers	did	with	PuppetDB.

PuppetDB	was	built	from	the	ground	up	to	be	a	high-performance	place	to	persist	stored
configurations	in.	Rather	than	developing	it	in	Ruby	as	with	the	rest	of	Puppet,	they
decided	to	move	it	to	an	application	written	in	Clojure.	After	several	iterations,	it	was
found	that	Clojure	performed	well	and,	as	a	language,	had	the	libraries	and	structure	to
ease	the	development	of	PuppetDB.

The	other	technological	feature	worth	noting	with	PuppetDB	is	its	data	store.	By	default,
PuppetDB	ships	with	an	in-memory	database,	but	this	is	more	for	the	proof	of	concept
than	production	use.	It’s	a	HyperSQL	Database	(HSQLDB)	and	will	very	quickly	fill	up
unless	you	have	either	very	few	Puppet	nodes	or	unlimited	RAM	(and	extremely	deep
pockets	to	fund	the	everlasting	RAM).	For	production	use,	it’s	highly	recommended	that
you	back	PuppetDB	with	a	PostgreSQL	database;	the	Puppet	Labs’	recommendation	is
that	this	is	required	any	time	you	go	above	a	hundred	nodes.	Personally,	I	recommend	it
even	if	you	have	five	nodes.	PostgreSQL	is	inherently	more	stable,	better	performing,	and
easier	to	back	up	and	maintain	than	HSQLDB.	You	can	find	the	scaling	recommendations
for	PuppetDB	at
https://docs.puppetlabs.com/puppetdb/latest/scaling_recommendations.html.

Note

https://docs.puppetlabs.com/puppetdb/latest/scaling_recommendations.html


What	if	you	want	to	use	a	different	database?

For	those	of	you	who	are	fans	of	either	MySQL	or	Oracle,	I’m	afraid	you’re	out	of	luck,	as
PuppetDB	will	only	run	against	PostgreSQL.	There	is	the	possibility	of	its	future	support
with	Oracle,	but	due	to	MySQL	lacking	support	for	certain	key	features	that	PuppetDB
requires,	the	most	notable	being	recursive	queries,	there	is	almost	no	chance	of	it	being
supported.

Clojure	runs	on	top	of	Java	Virtual	Machine	(JVM)	and	is	a	dialect	of	the	Lisp
language.	Don’t	worry,	though;	you	are	not	going	to	need	to	learn	Lisp	or	Clojure	to	work
with	PuppetDB.	This	is	due	to	a	key	design	decision	made	early	on	in	the	life	of
PuppetDB	to	make	the	data	as	easily	accessible	as	possible	via	the	REST	API.

PuppetDB	has	many	of	the	same	tunable	options	as	most	common	JVM	apps,	so	you	can
set	the	amount	of	the	heap	memory	that	it	can	consume;	the	official	recommendation	from
Puppet	Labs	is	that	you	allocate	128	MB	of	RAM	if	you’re	using	PostgreSQL	and	at	least
1	GB	of	heap	memory	if	you’re	using	an	embedded	database.	Once	it	is	started,	PuppetDB
will	open	a	port	on	8080	by	default,	but	that’s	a	fairly	common	port	if	you’re	running	any
other	JVM-based	application,	so	make	sure	that	you	are	not	going	to	clash	before
installing	PuppetDB.	We’ll	take	a	look	at	how	you	change	the	port	slightly	later	in	this
chapter	when	we’re	looking	at	the	setup	of	PuppetDB.

So	far,	all	of	this	is	interesting,	but	as	this	is	a	slender	tome	about	Puppet	reporting	and
alerting	and	so	far	PuppetDB	has	been	all	about	exported	configurations,	this	would
probably	not	be	of	great	interest—a	footnote	or	an	information	box	at	best.	However,	there
are	two	other	things	that	PuppetDB	stores	that	make	it	very	relevant	indeed	to	this	book,
and	they	are	reports	and	facts.

Node	facts	have	always	been	available	in	PuppetDB,	but	as	of	the	more	recent	version,
Version	1.4,	you	also	have	the	option	to	use	it	as	your	reporting	endpoint.	This	is	excellent
news	on	many	levels.	Firstly,	it	means	that	you	are	able	to	leverage	the	speed	of	PuppetDB
when	uploading	reports,	and	secondly,	it	is	very	easy	to	enable	it.	However,	what’s
especially	interesting	is	that	you	are	then	able	to	use	the	PuppetDB	query	API	to	explore
your	data.

The	PuppetDB	query	API	is	in	its	third	version	and	is	evolving	rapidly.	In	its	current	form,
it	is	a	fantastic	tool	to	explore	any	and	all	data	about	your	Puppet	infrastructure	using	an
easy-to-use	and	very	accessible	RESTful	API.	Each	version	of	the	API	has	a	different	set
of	endpoints.	An	endpoint	in	PuppetDB	speak	is	an	information	store;	this	could	be,	for
example,	the	events	endpoint,	which	is	a	source	you	can	mine	for	details	about	Puppet
events.	Alternatively,	you	can	look	at	the	reports	endpoint,	metrics,	nodes,	and	many
more.	You	can	fully	expect	each	new	version	to	expose	even	more	data.

We’re	going	to	take	a	good	look	at	the	PuppetDB	query	API	in	Chapter	6,	Retrieving	Data
with	the	PuppetDB	API.	For	the	moment,	let’s	take	a	look	at	the	steps	we	need	to	follow	to
get	PuppetDB	up	and	running.





Setting	up	the	PuppetDB	server
Setting	up	PuppetDB	consists	of	two	processes.	The	first	process	is	to	actually	install
PuppetDB	and	its	terminus,	and	the	second	step	is	to	get	Puppet	to	forward	data	to	it.
None	of	this	is	especially	complicated.



Installing	PuppetDB
The	first	thing	we	need	to	do	is	go	ahead	and	install	PuppetDB.	As	always,	it’s	best	to	get
this	from	the	Puppet	Labs’	official	repos,	as	the	Linux	distribution	of	your	choice	may
well	be	lagging	behind	in	versions,	sometimes	extremely	so,	or	may	not	even	have
PuppetDB	available	as	a	package.	If	you’ve	followed	the	instructions	from	Chapter	1,
Setting	Up	Puppet	for	Reporting,	you	should	already	be	in	fine	form.	You	will	also	want	to
make	sure	that	you	have	JVM	installed.	This	can	either	be	the	OpenJDK	shipped	with
your	distribution,	or	something	like	the	Sun	JDK.	PuppetDB	will	run	happily	with	any	of
these.

Installing	PuppetDB	from	packages
Once	you’re	ready	to	install	PuppetDB,	log	on	to	your	Puppet	master	and	issue	one	of	the
following	commands:

For	Debian-based	distributions,	issue	the	following	command:

sudo	apt-get	install	puppetdb

For	RedHat-based	distributions,	issue	the	following	command:

sudo	yum	install	puppetdb

This	will	then	kick	off	your	package	manager	to	fetch	the	PuppetDB	application	plus	any
prerequisites.	Once	it’s	installed,	you	should	find	that	you	have	a	new	directory	in	the
/etc/	directory,	called	puppetdb;	this	is	the	configuration	folder	for	PuppetDB	and
contains	all	of	the	configuration	files	that	you	need	to	get	PuppetDB	up	and	running.	You
will	also	find	that	you	have	a	new	service	installed	called	PuppetDB.

Increasing	the	JVM	heap	space
At	this	point,	you	have	everything	you	need	to	run	PuppetDB	on	your	server,	and	you
could	go	right	ahead	and	start	it	now.	The	trouble	is,	PuppetDB	is	in	a	usable	but	less
scalable	state	out	of	the	box.	As	mentioned	earlier,	PuppetDB	ships	with	an	in-memory
database	by	default,	which	is	heavily	constrained	in	terms	of	scale	by	its	very	nature.
There	are	two	ways	to	approach	this.	Firstly,	you	can	edit	the	JVM	options	to	give	the	in-
memory	database	more	headroom,	or	secondly,	you	can	use	PostgreSQL	as	the	backing
store.	Let’s	take	a	look	at	both	techniques.

Increasing	the	amount	of	memory	available	to	PuppetDB	is	a	straightforward	task.	All	of
the	PuppetDB	JVM	configurations	can	be	found	in	the	following	directories:

For	Debian-based	distributions,	the	configuration	can	be	found	in	the	following
location:

/etc/default/puppetdb

For	RedHat-based	distributions,	the	configuration	can	be	found	in	the	following
location:

/etc/sysconfig/puppetdb



This	file	contains	the	fundamental	settings	that	PuppetDB	requires	to	work,	such	as	the
user	to	run	it	under,	the	aforementioned	JVM	options,	the	installation	directory,	and	so	on.
You	don’t	need	to	fiddle	with	most	of	these	unless	you’ve	installed	PuppetDB	into	another
directory	or	need	to	run	it	under	a	different	system	account.	The	option	we’re	interested	in
is	JAVA_ARGS.	The	JAVA_ARGS	option	allows	you	to	feed	any	JVM	option	to	PuppetDB,	but
unless	you	have	a	very	specific	need,	it’s	best	to	not	tune	the	more	esoteric	settings.
Improperly	tuned	JVM	settings	probably	account	for	50	percent	of	the	problems	that	I	see
on	Java	applications.

The	only	setting	we	should	work	with	here	is	the	–Xmx	setting.	The	-Xmx	setting	controls
the	maximum	amount	of	heap	memory	that	a	Java	application	can	use,	and	in	the	case	of
PuppetDB,	it	has	to	account	for	both	the	application	itself	plus	the	data	if	you	are	using	the
in-memory	database.	By	default,	this	is	set	to	192m,	and	depending	on	the	size	of	your
Puppet	infrastructure,	you	may	want	to	increase	this	using	the	JAVA_ARGS="-Xmx2g"
command.	The	official	Puppet	guidelines	state	that	once	you	get	to	around	the	100	node
mark,	you	should	move	to	PostgreSQL.	This	makes	sense,	as	HSQLDB	is	pretty	terrible	at
dealing	with	large	transactions,	and	at	the	point	at	which	you	are	supporting	100	nodes,
you	are	going	to	need	a	comparatively	huge	amount	of	RAM	to	support	it.



Installing	PostgreSQL
Setting	up	PostgreSQL	as	the	PuppetDB	store	is	a	reasonably	straightforward	task;	the
packaging	takes	care	of	installing	the	actual	database	engine,	leaving	us	to	set	up	a	new
database	and	user.	For	the	purposes	of	this	example,	I’m	going	to	install	PostgreSQL	on
my	Puppet	master.	However,	it’s	quite	possible,	if	not	preferable,	that	you	run	the
PostgreSQL	server	on	a	separate	hardware	on	your	PuppetDB	server	for	larger	instances.

Tip
When	working	with	large-scale	Puppet	infrastructure,	it’s	best	to	separate	the	roles,	with	a
separate	PuppetDB	server,	PostgreSQL	server,	and	Puppet	master.	This	allows	you	to	scale
each	element	in	isolation	and	ensures	that	one	component	will	find	it	hard	to	slow	down
the	other.

Installing	the	packages
Let’s	go	ahead	and	install	PostgreSQL	using	the	available	packages	for	the	following
distributions:

For	Debian-based	distributions,	issue	the	following	command:

sudo	apt-get	install	postgresql

For	RedHat-based	distributions,	issue	the	following	command:

sudo	yum	install	postgresql

Creating	your	database	user
Once	PostgreSQL	is	installed,	we	can	turn	our	attention	to	the	user.	To	create	the	user,	we
can	use	the	tools	that	have	been	installed	along	with	PostgreSQL.	To	ensure	that	we	do	not
cause	problems	with	clashing	permissions,	we	are	going	to	run	this	as	a	PostgreSQL	user.
If	we	were	to	use	another	user,	say	the	root	user,	we	could	potentially	create	files	that	the
PostgreSQL	user	cannot	access;	this	would	cause	problems,	as	it	is	the	PostgreSQL	user
that	runs	the	underlying	service.	Let’s	go	ahead	and	run	this	as	a	PostgreSQL	user,	using
the	following	command:

sudo	-u	postgres	ssh

Next,	let’s	create	our	user	using	the	createuser	command	installed	along	with
PostgreSQL,	and	set	a	secure	password.	This	is	described	in	the	following	screenshot:



Creating	the	PostgreSQL	database
The	final	step	for	the	initial	setup	is	to	create	the	database	itself	using	the	createdb
command.	This	is	described	in	the	following	screenshot:

This	command	creates	a	new	database	with	UTF8	encoding	and	ensures	that	our	Puppet
user	is	its	owner.	The	UTF8	encoding	is	important	as	PuppetDB	uses	JSON	as	the	format
for	its	data,	and	if	you	don’t	ensure	that	the	database	is	UTF8-encoded,	you	may	find	that
PuppetDB	runs	into	trouble	fairly	quickly.	By	default,	the	PuppetDB	terminus	converts
strings	into	UTF8	encoding	and	expects	its	backend	store	to	be	able	to	store	this	data	in	a
UTF8-encoded	form.

Now	that	we	have	our	database,	we	need	to	ensure	that	it	will	allow	our	PuppetDB	to
access	it.	PostgreSQL	uses	a	file	called	pg_hba.conf	to	determine	the	access	control	to	the
database	and	the	authentication	method.	Generally	speaking,	this	is	set	to	be	quite	secure
from	the	installation,	so	we	need	to	make	some	adjustments.	You	can	find	the
pg_hba.conf	file	in	the	following	places:

For	Debian-based	distributions:

/etc/postgresql/9.1/main/pg_hba.conf

For	RedHat-based	distributions:

/var/lib/pgsql/data/pg_hba.conf

Take	a	look	inside	the	file	with	your	favorite	editor.	The	first	thing	that	you’re	going	to	be
greeted	with	is	a	wall	of	text;	these	are	the	comments	that	the	PostgreSQL	developers	have
helpfully	added.	These	are	worth	a	read	as	they	set	exactly	how	this	file	works.	However,
the	block	of	configuration	we	are	looking	for	is	the	following	one:

local			all								all																		md5

host				all								all				127.0.0.1/32		md5

host				all								all				::1/128							md5

If	these	lines	do	not	appear	in	that	file,	then	go	ahead	and	add	them,	and	then	restart
PostgreSQL.	These	lines	essentially	set	access	permissions	that	allow	access	to	any	user
on	any	database	from	127.0.0.1	(the	server’s	local	network),	basically	ensuring	that	any
process	running	on	the	same	server	as	PostgreSQL	will	be	able	to	access	the	database.	If
you	are	running	PostgreSQL	on	a	remote	server,	then	you	will	need	to	add	a	suitable
access	line.	If	in	doubt,	consult	the	handy	comments	at	the	top	of	the	pg_hba.conf	file.

This	basically	ties	up	all	of	the	activity	required	to	configure	PostgreSQL,	and	now	we



just	need	to	get	PuppetDB	to	use	it	as	its	data	store.	This	is	done	using	the
/etc/puppetdb/conf.d/database.ini	configuration	file.	Go	ahead	and	open	it	up	in
your	editor.	You	will	see	the	following	configuration:

[database]

classname	=	org.hsqldb.jdbcDriver

subprotocol	=	hsqldb

subname	=	file:/var/lib/puppetdb/db/db;hsqldb.tx=mvcc;sql.syntax_pgs=true

username	=	foobar

password	=	foobar

gc-interval	=	60

log-slow-statements	=	10

As	you	can	see	from	the	preceding	code	file,	PuppetDB	is	configured	to	use	the	embedded
database.	This	is	easy	to	change,	though.	The	following	is	what	the	same	configuration	file
looks	like	but	configured	for	PostgreSQL:

[database]

classname	=	org.postgresql.Driver

subprotocol	=	postgresql

subname	=	localhost:5432/puppetdb

username	=	puppet

password	=	puppet

Amend	your	database	configuration	file	to	look	like	the	preceding	code	and	restart
PuppetDB.	It	will	now	use	the	PostgreSQL	database.	Again,	if	you	are	using	a	remote
PostgreSQL	database,	then	you	will	need	to	amend	your	configuration	to	suit.

We	have	one	final	step	and	that	is	to	install	the	PuppetDB	terminus.	The	PuppetDB
terminus	is	simply	an	endpoint	for	Puppet	to	connect	to	and	must	be	installed	on	the
Puppet	master;	this	is	especially	important	if	you	are	running	PuppetDB	on	a	separate
host.	Installing	the	PuppetDB	terminus	is	simple	and	can	be	done	using	the	following
commands:

For	Debian-based	distributions,	issue	the	following	command:

apt-get	install	puppetdb-terminus

For	RedHat-based	distributions,	issue	the	following	command:

yum	install	puppetdb-terminus

These	commands	will	then	fetch	the	puppetdb-terminus	package	and	install	it	onto	your
system.	Once	it’s	installed,	we	need	to	configure	our	Puppet	master	to	connect	to	it.

Firstly,	let’s	create	our	puppetdb.conf	file	for	Puppet.	This	is	located	in	the	same
directory	as	your	main	Puppet	configuration,	normally,	/etc/puppet/.	If	it	is	not	already
present,	then	go	ahead	and	create	a	new	file	called	puppetdb.conf	in	that	directory.	The
puppetdb.conf	file	is	very	simple	and	only	needs	to	contain	a	pointer	to	your	PuppetDB
instance.	In	my	case,	this	will	be	the	same	server	as	Puppet	so	the	file	could	look	like	the
following	configuration:



[main]

server	=	puppet.stunthamster.com

port	=	8081

Next,	we	need	to	configure	the	Puppet	master	itself.	This	is	done	in	the	usual	file,	that	is,
the	/etc/puppet/puppet.conf	file.	The	configuration	will	sit	in	the	[master]	block	and
should	look	like	the	following	configuration:

[master]

storeconfigs	=	true

storeconfigs_backend	=	puppetdb

This	is	enough	for	basic	PuppetDB	usage,	but	we	also	want	the	reports	feature.	This	is
added	like	any	other	report	processor	in	the	reports	option	and	should	be	added	as	shown
in	the	following	code:

reports	=	puppetdb

Remember,	you	can	have	multiple	report	processors	so	PuppetDB	doesn’t	have	to	be	the
only	one,	and	it’s	indeed	beneficial	to	have	several	report	processors.	As	you	will	see	in
the	next	chapter,	PuppetDB	makes	an	excellent	choice	for	reporting	but	lacks	the	ability	to
issue	alerts.	By	combining	the	PuppetDB	report	processor	with	a	suitable	alerting	report
processor,	you	can	have	the	best	of	both	worlds.

Finally,	we	need	to	create	the	routes	file.	The	routes	file	is	required	for	the	proper
behavior	of	PuppetDB	and	allows	Puppet	to	override	certain	indirection	values.	You
probably	don’t	have	a	routes	file	as	yet,	so	go	ahead	and	create	one	at
/etc/puppet/routes.yaml	and	add	in	the	following	content:

master:

facts:

		terminus:	puppetdb

		cache:	yaml

That’s	it!	You’re	all	set.	Simply	restart	your	Puppet	master,	and	it	should	be	set	to	use
PuppetDB.





Summary
In	this	chapter,	we’ve	taken	a	very	quick	look	at	the	history	and	usages	of	PuppetDB.
We’ve	taken	a	look	at	the	underlying	technology	that	powers	it	and	learned	that	although	it
ships	with	an	in-memory	database,	the	best	practice	when	using	it	is	to	install	and	utilize	a
PostgreSQL	database	for	its	data	store.	We	went	into	detail	about	how	you	can	configure
and	install	PuppetDB,	from	the	initial	package	installation	of	PuppetDB	and	PostgreSQL
to	the	details	on	how	to	configure	both	the	products	so	that	they	can	communicate.

In	the	next	chapter,	we’re	going	to	explore	ways	to	use	PuppetDB	to	view	your	data.
We’re	going	to	learn	how	the	PuppetDB	API	works	and	go	through	some	examples	of
how	simple	and	powerful	it	is	to	query	this	well-performing	data	store.





Chapter	6.	Retrieving	Data	with	the
PuppetDB	API
In	the	previous	chapter,	we	learned	how	to	set	up	PuppetDB.	Now,	it’s	time	to	put	it	to
work.	PuppetDB	is	more	than	just	a	storage	engine;	it	also	contains	a	powerful	query	API
that	allows	you	to	interactively	query	data	about	your	Puppet	infrastructure.	By	using	a
combination	of	REST	calls	with	the	provided	query	language,	you	will	be	able	to	find
enormous	amounts	of	data	related	to	your	Puppet-managed	infrastructure.

In	this	chapter,	we’re	going	to	take	a	look	at	the	following	topics:

The	hows,	whats,	and	whys;	a	brief	introduction	to	the	query	API
Exploring	and	using	endpoints
Getting	acquainted	with	some	basic	queries

By	the	end	of	this	chapter,	you	should	be	fully	comfortable	working	with	the	PuppetDB
API	and	should	be	able	to	select	the	appropriate	data	sources	and	construct	queries	to
explore	your	own	data.



Exploring	the	PuppetDB	query	API
Data	is	only	useful	if	you	have	some	means	to	access	it,	and	yet	this	is	a	truism	that	many
systems	seem	to	have	forgotten,	relying	on	developers	to	come	along	and	fill	whatever
egregious	gaps	in	data	exploration	the	original	product	left	out,	instead.	Fortunately,
Puppet	offers	a	rich	data	discovery	tool	in	the	form	of	the	PuppetDB	API	and	its
associated	query	language.

As	we	discovered	in	the	previous	chapter,	PuppetDB	is	more	than	just	a	place	to	dump
data	about	Puppet;	it’s	a	fully	functioning	and	high-performance	endpoint	that	Puppet	can
utilize	to	speed	up	exported	configuration	data,	catalog	compilation,	and	more.	By	adding
PuppetDB	to	your	Puppet	infrastructure,	you	will	find	that	you	will	get	some	fantastic
performance	gains	across	almost	all	parts	of	the	product	as	well	as	gaining	a	powerful
reporting	endpoint.

One	of	the	key	decisions	made	by	the	PuppetDB	developers	was	to	make	the	data	that
PuppetDB	holds	accessible	by	a	well-documented	and	powerful	API.	This	makes	it
possible	to	create	your	own	applications	to	leverage	the	data	that	your	Puppet-managed
infrastructure	has	sent	Puppet	without	needing	to	design	your	own	storage	and	query
mechanism.	Although	it’s	powerful,	the	PuppetDB	API	has	a	complex	query	language	that
can	take	some	time	to	get	accustomed	to.

Tip
The	PuppetDB	query	API	and	especially	the	query	language	can	be	a	complex	topic,	but
the	developers	have	provided	some	excellent	documentation.	You	can	find	the
documentation	at	https://docs.puppetlabs.com/puppetdb/latest/.

The	PuppetDB	API	is,	in	fact,	split	into	two	distinct	functions:	the	query	interface	and	the
command	interface.	The	majority	of	this	chapter	will	deal	with	the	query	interface,	but	it’s
worth	exploring	what	the	command	interface	is	and	what	it	is	used	for.

https://docs.puppetlabs.com/puppetdb/latest/


Understanding	the	command	interface
The	command	interface	is	normally	not	used	directly,	so	we’re	not	going	to	go	into	any
great	detail	on	how	it	is	used.	There	is	almost	no	circumstance	under	which	you	would
directly	use	the	command	interface	as	the	only	vaguely	useful	command	would	be	the
deactivate	node	command,	and	even	then,	this	is	best	left	for	PuppetDB	and	Puppet	to
deal	with.

The	command	interface	offers	the	following	functions:

replace	catalog:	This	command	is	used	when	a	fresh	set	of	data	is	received	from
the	Puppet	client,	and	it	replaces	the	previously	held	data	for	this	node
replace	facts:	This	function	takes	incoming	facts	from	a	node	and	replaces	the
stored	facts	with	the	latest	version
store	report:	This	is	a	new	feature	with	v3	of	the	API	and	allows	PuppetDB	to	act
as	a	report	processor	for	storing	reports	and	events
deactivate	node:	This	will	mark	a	node	as	inactive	within	PuppetDB	and	make	it
eligible	for	housekeeping	next	time	the	database	is	compacted

Note
Node	deactivation	is	an	important	part	of	PuppetDB’s	housekeeping.	While	nodes	are
active,	their	configuration	will	be	exported	along	with	all	other	exported	resources.	When
you	are	dealing	with	catalogs	of	thousands	of	nodes,	it’s	important	that	the	old	ones	be
marked	as	deactivated	so	that	their	data	isn’t	considered.	This	is	especially	important	if
you	are	using	a	dynamic	environment	that	treats	nodes	as	ephemeral	and	creates	and
destroys	them	at	will.	Periodically,	PuppetDB	will	run	a	garbage-collection	sweep;	this	is
essentially	a	housekeeping	task	that	will	remove	unwanted	data	to	keep	the	database	small
and	agile.

The	command	interface	is	an	HTTP	call	to	Puppet	DB	and	contains	data	in	the	correct
PuppetDB	wire	format.	This	will	change	depending	on	what	you	are	interacting	with
(resource,	node,	and	so	on)	but	will	essentially	comprise	of	the	command	plus	the	data
wrapped	in	a	JSON-formatted	package.

Tip
There	really	is	no	reason	to	use	the	command	interface	directly;	however,	it’s	important	to
know	that	it	is	there	and	how	it	works.	It’s	possible	in	later	versions	of	PuppetDB	that	new
features	may	be	introduced	that	add	more	reasons	to	work	with	the	command	interface,	so
it’s	good	to	understand	the	basics.



Understanding	the	query	API	interface
Now	that	we	understand	how	the	PuppetDB	API	is	used	to	insert	data,	it’s	time	to	move
on	to	a	more	useful	topic,	that	is,	how	to	retrieve	data.

The	PuppetDB	query	API	is	now	into	its	third	revision	and	has	introduced	some	powerful
new	features	around	the	reporting	elements	of	PuppetDB.	A	major	new	feature	is	the
ability	to	use	PuppetDB	as	a	report	processor	within	the	Puppet	master;	this	is	an
important	addition	to	PuppetDB	as	previously	it	could	only	be	used	to	store
configurations.	Now,	it	is	able	to	form	the	central	hub	of	a	powerful	reporting	tool,	and
unlike	other	reporting	methods,	PuppetDB	has	the	advantage	of	both	having	a	data	store
that	is	tuned	for	the	task	in	hand	and	a	query	language	that	is	designed	for	the	specific	role
of	retrieving	the	Puppet	data.

The	query	API	organizes	its	data	around	the	concept	of	an	endpoint.	Each	endpoint	is
essentially	a	data	source	that	offers	a	set	of	RESTful	routes	that	allow	you	to	interact	with
the	data.	As	of	v3,	the	following	endpoints	are	available:

facts

resources

nodes

fact-names

metrics

reports

events

event-counts

aggregate-event-counts

version

catalogs

server-time

Each	endpoint	is	tuned	to	a	specific	task,	and	it’s	important	that	you	select	the	correct	one
when	issuing	your	queries.	There	is	some	potential	overlap	in	some	of	the	data	that	the
endpoints	offer.	For	example,	some	of	the	data	inside	the	facts	endpoint	can	also	be
found	in	the	nodes	endpoint.	The	difference	lies	in	how	the	data	is	presented	and
described;	for	instance,	if	you	are	interested	in	a	specific	fact,	including	which	nodes	have
that	fact	present,	then	you	would	use	the	facts	endpoint.	Alternatively,	if	you	want	to	find
out	the	value	of	a	specific	fact	on	a	certain	node,	then	you	would	use	the	nodes	endpoint.

Once	you	have	selected	an	endpoint,	you	can	make	a	call	to	one	of	its	available	routes.	A
route	is	an	HTTP	path	that	will	return	a	certain	type	of	information	depending	on	the
endpoint	you	are	interrogating.	These	calls	should	take	the	following	form:

http://<server>:<puppetdbport>/<api_version>/<route>

When	we	come	to	look	at	the	endpoints	in	detail,	you	will	find	that	I’ve	listed	the
available	routes	and	the	URL	for	the	documentation.	It’s	worth	reading	through	the
documentation	for	a	complete	list	of	available	data	from	each	endpoint.



Tip
Be	careful	with	the	API	version.	Each	revision	has	brought	a	new	functionality;	for
instance,	v2	lacked	most	of	the	reporting	functionality	that	v3	integrates.	If	you	target	the
wrong	version,	you	may	either	fetch	unexpected	data	or	no	data	at	all.

When	you	make	an	API	call,	PuppetDB	will	fetch	the	requested	data	and	return	it	in	the
form	of	a	JSON	response.	The	actual	structure	of	the	JSON	document	will	vary	depending
on	the	endpoint	used,	and	it’s	wise	to	consult	the	endpoint	documentation	to	find	out	the
exact	format	to	be	expected.

We	are	going	to	take	a	more	detailed	look	at	the	available	endpoints	further	along	in	this
chapter,	but	first,	we	are	going	to	spend	some	time	looking	at	the	PuppetDB	query
language.

A	primer	on	the	PuppetDB	query	language
With	most	of	the	endpoints,	you	can	use	the	supplied	routes	to	retrieve	information.	For
example,	the	following	query	will	return	all	nodes	that	run	Linux:

curl	http://puppetdbhost:8080/v3/facts/kernel/Linux

A	great	deal	of	data	can	be	fetched	using	this	technique,	but	it	lacks	the	flexibility	to
reflect	more	complex	requirements.	To	allow	users	to	specify	more	complex	queries,
PuppetDB	allows	for	some	endpoints	to	make	use	of	a	query	language	within	the
PuppetDB	API.	A	PuppetDB	query	that	uses	the	query	language	is	similar	to	a	call	to	a
route	in	that	it	is	made	up	of	an	HTTP	request	but	differs	in	that	you	supply	an	additional
query	string	that	contains	the	PuppetDB	query.

PuppetDB	queries	can	be	quite	complex	at	first	glance,	as	they	are	written	in	reverse
polish	notation	and	are	contained	within	a	JSON	array.	This	is	somewhat	different	to	most
languages	you	may	be	used	to	and	can	take	some	practice	to	become	accustomed	to.
Essentially,	this	means	that	each	query	you	construct	starts	with	the	operator	with	any
subsequent	element	being	made	up	of	arguments.	These	are	then	evaluated	in	the	order
they	are	written	in.	Let’s	see	how	this	works	in	practice;	take	a	look	at	the	following
query:

curl	-X	GET	http://puppetdbhost:8080/v3/facts/processorcount	--data-

urlencode	'query=["<",	"value",	2]'

In	this	example,	we	start	with	a	query	to	the	facts	endpoint	and	use	the	route	to	bring
back	all	the	processorcount	facts.	We	then	apply	a	query	to	narrow	down	the	result	set	to
only	nodes	that	have	less	than	two	processors	by	applying	the	<	operator	to	the	value	field
of	the	results	from	the	returned	data.

Let’s	take	a	look	at	another,	more	complex	query.	In	this	example,	we	are	going	to	issue	a
query	to	the	resources	endpoint	and	use	a	set	of	queries	to	narrow	down	our	data:

curl	-X	GET	http://puppetdbhost:8080/v3/resources	--data-urlencode	'query=

["and",["=",	"type",	"User"],["not",["and",["=",	"type",	"User"],	["=",	

"title",	"mvd"]]]]'



In	this	example,	we	are	using	the	resources	endpoint	to	query	all	managed	resources;
we’re	then	limiting	the	result	set	by	applying	a	series	of	queries.	We’re	using	an	and
operator	to	join	two	JSON	arrays,	with	each	array	containing	a	sub	query.	This	query	can
also	be	represented	by	this:	select	all	resources	where	type	equals	user	and	exclude	those
where	type	equals	user	and	title	equals	mvd.	Or,	to	put	it	another	way,	it	can	be
represented	by	this:	find	me	all	users,	but	not	if	they	have	a	title	of	mvd.

As	you	can	see,	the	notation	of	the	PuppetDB	queries	can	become	quite	complex,	but	it
offers	a	great	deal	of	power.	The	best	approach	when	constructing	new	queries	is	to	build
them	one	section	at	a	time,	check	the	output,	and	then	add	another.	You	can	find	more
details	about	the	available	operators	for	queries	at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/operators.html.	It’s	well	worth
both	studying	the	documentation	and	practicing	queries	until	you	are	comfortable	using
the	PuppetDB	query	language.

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/operators.html


Exploring	endpoints
The	endpoints	are	the	core	of	the	PuppetDB	query	API,	and	in	the	next	section,	we	are
going	to	look	at	the	endpoints	that	are	available	in	a	little	more	detail,	which	are	the	routes
that	they	have	made	available,	and	how	you	might	use	them.	Again,	taking	time	to
acquaint	yourself	with	each	endpoint	by	running	some	test	queries	is	a	valuable	exercise,
especially	when	examining	the	format	of	the	returned	data.

Using	the	facts	endpoint
The	facts	endpoint	allows	you	to	find	the	fact	data	reported	by	Puppet-managed	nodes	to
PuppetDB,	including	any	custom	facts	that	you	have	defined.	The	facts	endpoint
supports	the	following	routes:

GET	/v3/facts

GET	/v3/facts/<NAME>

GET	/v3/facts/<NAME>/<VALUE>

As	you	can	see,	these	routes	offer	you	a	simple	mechanism	to	query	your	facts.	For
example,	the	following	query	would	retrieve	all	IP	addresses	that	have	been	assigned	to
any	Puppet-managed	node:

curl	http://puppetdbhost:8080/v3/facts/ipaddress

You	can	insert	any	fact	name	into	the	path	and	use	it	to	retrieve	data	that	may	be	of
interest.	You	can	also	add	a	further	value	after	the	desired	fact	to	narrow	it	down	to
specific	data,	and	this	can	allow	you	to	zero	in	on	interesting	aspects	of	your
infrastructure.	For	example,	we	can	retrieve	all	hosts	that	run	Linux	by	using	the	following
query:

curl	http://puppetdbhost:8080/v3/facts/kernel/Linux

Tip
Try	the	preceding	query	again,	but	instead	of	Linux,	use	linux.	You’ll	notice	that	this	time
round,	you’ve	not	had	any	data	returned;	this	is	because	facts	are	case	sensitive	within
PuppetDB	queries,	so	it’s	very	important	that	you	ensure	you	use	the	correct	case	when
issuing	queries.

Using	the	routes	available	in	the	facts	endpoint	can	give	you	access	to	a	wide	range	of
data,	and	the	available	routes	can	be	further	supplemented	with	the	addition	of	a
PuppetDB	query.	For	example,	if	we	want	to	find	all	facts	for	a	certain	node,	we	can	do	so
using	the	following	query:

curl	-X	GET	http://puppetdbhost:8080/v3/facts	--data-urlencode	'query=["=",	

"certname",	"puppetagent.localdomain"]'

This	query	will	produce	the	output	shown	in	the	following	screenshot:



You	can	find	the	documentation	for	the	facts	endpoint	at
https://docs.puppetlabs.com/puppetdb/latest/api/query/v3/facts.html.

Using	the	resources	endpoint
The	resources	endpoint	allows	you	to	query	all	resources	that	Puppet	is	currently
managing	on	active	nodes.	PuppetDB	will	not	respond	with	data	for	deactivated	nodes.
The	resources	endpoint	offers	the	following	routes:

GET	/V3/resources/v3/resources

GET	/v3/resources/<TYPE>

GET	/v3/resources/<TYPE>/<TITLE>

The	resources	endpoint	is	similar	to	the	facts	endpoint	in	its	usage.	The	first	route	will
return	every	single	resource	that	Puppet	has	ever	encountered,	but	this	is	of	limited	use
and	by	adding	a	type,	we	can	start	drilling	in	specific	details.	For	instance,	by	using	the
following	query,	you	can	retrieve	a	list	of	all	files	that	Puppet	is	currently	managing	on
active	nodes:

curl	http://puppetdbhost:8080/v3/resources/File

This	example	gives	you	the	output	shown	in	the	following	screenshot:

https://docs.puppetlabs.com/puppetdb/latest/api/query/v3/facts.html


Tip
As	with	the	facts	endpoint,	case	matters	here	as	well.	All	resources	should	be	capitalized,
so	you	will	find	that	File	will	work,	but	file	will	return	no	results.

As	you	can	see	from	the	output	shown	in	the	preceding	screenshot,	the	resources
endpoint	will	return	the	name	of	the	Puppet	manifest	where	the	resources	are	declared	and
the	line	on	which	the	declaration	is	made.	This	makes	it	an	absolute	cinch	to	find	out
where	resources	are	being	defined	without	having	to	search	through	the	code	itself.

The	resources	endpoint	also	supports	the	PuppetDB	query	language,	and	you	can	use	this
to	drill	down	to	interesting	data.	For	instance,	if	you	want	to	find	all	files	except
/etc/hosts,	you	can	use	the	following	query:

curl	-X	GET	http://puppetdbhost:8080/v3/resources/File	--data-urlencode	

'query=["and",	["not",["=",	"title",	"/etc/hosts"]],["=",	"type",	"File"]]'

You	can	find	the	documentation	for	the	resources	endpoint	at
https://docs.puppetlabs.com/puppetdb/latest/api/query/v3/resources.html.

Retrieving	details	about	nodes
The	nodes	endpoint	completes	the	trinity	of	resources,	facts,	and	nodes,	and	gives	you	the
ability	to	find	specific	information	regarding	nodes	from	PuppetDB	quickly	and	easily.
There	are	many	aspects	that	you	can	query	nodes	for,	and	to	reflect	this,	the	nodes
endpoint	has	a	comparatively	large	set	of	routes	compared	to	other	endpoints.	The
following	routes	are	offered	by	the	nodes	endpoint:

GET	/v3/nodes

GET	/v3/nodes/<NODE>

https://docs.puppetlabs.com/puppetdb/latest/api/query/v3/resources.html


GET	/v3/nodes/<NODE>/facts/<NAME>

GET	/v3/nodes/<NODE>/facts/<NAME>/<VALUE>

GET	/v3/nodes/<NODE>/resources

GET	/v3/nodes/<NODE>/resources/<TYPE>

GET	/v3/nodes/<NODE>/resources/<TYPE>/<TITLE>

As	you	can	see	from	the	routes,	you	are	able	to	retrieve	both	facts	and	resources	from	the
nodes	endpoint,	and	the	response	format	will	vary	depending	on	which	of	the	two	you	are
retrieving.	The	ability	to	respond	with	both	facts	and	resources	makes	the	nodes	endpoint
incredibly	versatile,	and	as	a	result,	you	will	probably	find	that	you	use	this	endpoint	more
than	the	others.

Using	the	provided	routes	makes	retrieving	node	information	a	straightforward	task.	For
example,	to	see	the	basic	information	that	PuppetDB	holds	about	a	particular	node,	we	can
call	the	nodes’	route	and	supply	the	fully	qualified	domain	name	of	the	node	that	we	are
interested	in.	This	is	described	in	the	following	query:

curl	http://puppetdbhost:8080/v3/nodes/puppetagent

This	query	gives	you	the	output	shown	in	the	following	screenshot:

Likewise,	using	the	nodes	endpoint	and	querying	for	facts,	we	can	also	view	the	versions
of	Facter	available	on	a	given	node.	This	is	described	in	the	following	query:

curl	

http://puppetdbhost:8080/v3/nodes/puppetagent.localdomain/facts/facterversi

on

This	query	gives	you	the	output	shown	in	the	following	screenshot:

As	you	can	see,	the	nodes	endpoint	allows	you	to	drill	down	into	the	details	about	a
specific	node,	but	this	is	not	limited	to	facts;	we	can	retrieve	details	of	resources	as	well.
This	can	be	done	using	the	following	query:



curl	

http://puppetdbhost:8080/v3/nodes/puppetagent.localdomain/resources/File

This	code	gives	us	the	output	shown	in	the	following	screenshot:

Using	the	provided	routes	within	the	nodes	endpoint	gives	you	a	fantastically	powerful
way	to	interrogate	your	infrastructure,	but	it	can	occasionally	be	limiting.	Using	the
routes,	you’re	not	able	to	find	a	range	of	data.	For	instance,	you	may	want	to	find	all	nodes
that	have	more	than	2	GB	of	RAM.	Although	you	cannot	do	it	using	one	of	the	standard
routes,	the	nodes	endpoint	also	supports	the	PuppetDB	query	language.	Consider	the
following	query:

curl	-X	GET	http://puppetdbhost:8080/v3/nodes	--data-urlencode	'query=[">",

["fact",	"memorysize_mb"],	"2048"]']

This	query	gives	you	the	output	shown	in	the	following	screenshot:

Getting	the	run	details	with	the	catalogs	endpoint
The	catalogs	endpoint	will	retrieve	the	details	of	the	last	catalog	to	be	applied	to	a	node



and	currently	has	the	following	available	route:

GET	/v3/catalogs/<NODE>

An	example	of	a	catalogs	endpoint	query	would	look	like	the	following:

curl	http://puppetdb:8080/v3/catalogs/puppetagent.localdomain

The	output	of	this	query	is	shown	in	the	following	screenshot:

The	catalogs	endpoint	allows	you	to	retrieve	the	details	of	the	Puppet	catalog	for	a	given
node	from	its	last	Puppet	agent	run.	The	catalogs	endpoint	returns	the	data	in	the	catalog
wire	format	and	contains	both	the	Puppet-managed	resources	and	their	relation	to	each
other.



Note
The	catalog	wire	format	can	be	a	little	complex	at	first	glance;	however,	it	is	well
documented.	You	can	find	the	documentation	for	the	catalog	wire	format	at
http://docs.puppetlabs.com/puppetdb/latest/api/wire_format/catalog_format_v4.html.

Querying	the	catalogs	endpoint	gives	you	an	immediate	sense	of	what	has	been
configured	on	a	node	and	allows	you	to	easily	see	whether	certain	resources	have	been
applied	or	are	available.	Currently,	the	catalogs	endpoint	does	not	support	the	query
syntax;	however,	you	can	easily	combine	the	query	with	the	Unix	grep	command	to	find
the	data	that	you’re	interested	in.

The	catalogs	endpoint	returns	its	data	in	the	form	of	a	JSON	map	and	offers	two	keys:
the	metadata	key	and	the	data	key.	At	the	moment,	the	metadata	key	contains	a	single
piece	of	information,	which	is	the	version	of	the	API.	The	data	key	contains	the	interesting
data,	and	it	is	also	made	up	of	a	JSON	map	that	contains	the	catalog	data	in	the	wire
format.

The	catalogs	endpoint	is	an	excellent	way	to	explore	the	state	of	a	given	node	at	any
point	of	time,	and	it	could	potentially	form	part	of	a	powerful	auditing	tool	if	the
information	is	persisted	to	another	data	store	and	then	used	to	compare	configuration
changes	over	time.	For	instance,	using	this	technique,	you	could	easily	view	when	a
particular	application	was	added	to	a	node	or	when	a	configuration	file	was	changed.

Understanding	the	fact-names	endpoint
You	can	query	the	fact-names	endpoint	to	find	the	name	of	any	facts	that	Puppet	clients
have	reported	in	the	course	of	their	run;	this	includes	deactivated	nodes.	Note	that	this
doesn’t	include	the	actual	value	of	the	facts	but	just	the	name	of	the	facts	themselves.	This
can	be	very	helpful	if	you	want	to	find	out	whether	certain	custom	facts	have	been	saved
into	PuppetDB,	or	simply	to	explore	the	facts	that	are	available	to	be	queried.	The	fact-
names	endpoint	currently	only	supports	one	route,	which	is	the	following	one:

GET	/fact-names

The	fact-names	endpoint	does	not	support	any	additional	routes	or	support	queries,	and	it
will	return	all	fact	names	in	alphabetical	order,	both	for	active	and	inactive	nodes.
Consider	the	following	query:

curl	-X	GET	http://puppetdbhost:8080/v3/fact-names

This	query	gives	you	the	output	shown	in	the	following	screenshot:

http://docs.puppetlabs.com/puppetdb/latest/api/wire_format/catalog_format_v4.html


Knowing	the	status	of	PuppetDB	with	the	metrics	endpoint
The	metrics	endpoint	is	your	window	to	the	performance	and	status	of	PuppetDB	itself
and	should	not	be	confused	with	the	Puppet	metrics,	which	are	found	in	the	events
endpoint.	The	metrics	endpoint	is	interesting	as	it	exposes	its	data	in	the	form	of	Java-
managed	beans	(MBeans).	These	are	part	of	the	Java	management	extensions	and	are
commonly	used	by	various	applications	to	gather	statistical	information.	These	are
especially	prevalent	in	the	monitoring	world.	You’re	not	limited	to	using	MBeans,	though,
as	a	standard	API	call	will	also	return	the	information—be	warned,	though;	this	may	be	a
huge	amount	of	information	and	you	may	end	up	running	into	issues	that	require	you	to
make	use	of	the	paging	option.

Note
The	paging	option	allows	you	to	sort	the	returned	information	and,	more	importantly,	limit
the	amount	of	results.	Most	PuppetDB	queries	support	paging	and	when	faced	with	a	huge
amount	of	results,	it	can	be	very	useful.	You	can	find	the	details	for	paging	at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/paging.html.

The	metrics	endpoint	can	be	useful	to	gauge	how	well	your	PuppetDB	is	performing,
how	many	resources	it’s	currently	managing,	and	how	quickly	it	is	servicing	requests.	For
example,	you	can	query	the	metrics	endpoint	to	find	out	the	number	of	nodes	that	are
currently	reporting	to	PuppetDB.	This	is	described	in	the	following	query:

curl	-G	

'http://localhost:8080/v3/metrics/mbean/com.puppetlabs.puppetdb.query.popul

ation:type=default,name=num-nodes'

We	can	also	examine	how	quickly	PuppetDB	is	replying	to	our	queries,	and	this	can	serve
as	an	early	warning	that	you	need	to	increase	the	resources	available	to	the	server	if	it	has
started	to	run	a	little	sluggishly.

There	is	a	wealth	of	information	available	in	the	metrics	endpoint,	and	it	is	an	excellent
point	to	add	monitoring.	By	monitoring	the	metrics,	you	are	able	to	respond	proactively	to
any	slowdowns	in	your	Puppet	infrastructure	and	scale	accordingly.

You	can	find	the	documentation	for	the	metrics	endpoint	at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/metrics.html.

Using	the	reports	endpoint
The	reports	endpoint	offers	a	summary	version	of	the	Puppet	report	for	each	of	the	active
nodes	within	your	Puppet-managed	infrastructure.	Note	that	this	is	a	summary	of	the
report	rather	than	the	full	report	itself,	and	currently,	it	only	has	the	following	single	route:

/v3/reports

The	reports	endpoint	is	very	useful	for	seeing	when	a	node	last	performed	a	Puppet
transaction,	and,	of	course,	it	gives	you	the	all	important	hash	that	allows	you	to	tie	this
report	to	the	underlying	events.

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/paging.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/metrics.html


Tip
The	report	hash	is	something	you	will	find	yourself	using	often,	as	it	is	your	link	from	the
Puppet	report	to	the	individual	events	that	make	up	the	transaction.	Using	the	hash
provided	by	the	reports	endpoint,	you	can	query	the	events	endpoint	to	gather	the	events
that	occurred	during	a	Puppet	run.

Although	it	only	has	a	single	route,	it	requires	the	use	of	the	PuppetDB	query	language,
albeit	limited	to	an	equality	(=)	operator;	if	you	do	not	supply	a	query,	then	it	will	return
no	data.	A	basic	query	looks	like	the	following	one:

curl	-G	'http://localhost:8080/v3/reports'	--data-urlencode	'query=["=",	

"certname",	"puppet.localdomain"]'

This	code	gives	you	the	output	shown	in	the	following	screenshot:

The	reports	endpoint	should	be	your	starting	point	when	you	come	to	examine	events
that	affect	your	nodes.	From	here,	you	can	then	delve	into	the	events	endpoint	to	gather
any	details	you	need.	You	can	find	the	documentation	for	the	reports	endpoint	at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/reports.html.

Working	with	the	events	endpoint
Much	like	the	traditional	reporting	mechanism,	the	events	endpoint	gives	us	access	to
events	from	a	Puppet	client	run.	Currently,	the	events	endpoint	only	supports	a	single
route,	which	is	the	following	one:

GET	/v3/events

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/reports.html


The	events	endpoint	is	similar	to	the	reports	endpoint	in	that	it	requires	the	use	of	a
query	to	return	any	data.	However,	unlike	the	reports	endpoint,	it	supports	the	full	range
of	operators	within	the	query.	This	means	that	you	can	use	the	events	endpoint	to	find	out
details	such	as	events	during	a	certain	time	period	or	events	that	failed	to	be	applied.	It
also	allows	you	to	take	the	hash	from	the	reports	endpoint	and	see	all	the	events	that	took
place,	as	shown	in	the	following	example	query:

curl	-G	'http://puppetdbhost:8080/v3/events'	--data-urlencode	'query=["=",	

"report",	"7eb94f7b8e89e1597672f190d864243543b3ac48"]'

This	query	gives	you	the	output	shown	in	the	following	screenshot:

The	events	endpoint	is	a	versatile	way	of	finding	out	which	declared	resources	are	having
difficulties.	For	example,	we	can	find	resources	that	have	failed	to	get	themselves	applied
by	using	the	following	query:

curl	-G	'http://puppetdbhost:8080/v3/events'	--data-urlencode	'query=["=",	

"status",	"failure"]'

You	will	find	yourself	using	the	events	endpoint	quite	often,	and	once	you	are
comfortable	with	some	of	the	more	common	queries	such	as	the	preceding	query,	you	will
find	that	it	is	a	quick	way	to	find	extremely	valuable	information	about	your	Puppet-
managed	infrastructure.	The	documentation	has	many	more	examples	and	can	be	found	at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/events.html.

Using	the	event-counts	endpoint

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/events.html


When	you	issue	a	query	to	the	event-counts	endpoint,	you	provide	it	with	the	resource,
class,	or	node	that	you’re	interested	in.	PuppetDB	will	then	return	you	a	list	of	how	many
times	that	resource	has	been	in	the	success,	failure,	noop,	or	skip	status.

Currently,	the	event-counts	endpoint	supports	a	single	route,	which	is	the	following	one:

/v3/event-counts

The	event-counts	endpoint	is	built	on	top	of	the	events	endpoint,	and	therefore,	all	the
query	operators	you	can	use	with	the	events	endpoint	are	applicable	here.	The	following
example	queries	the	host	puppetagent.localdomain	for	any	resource	that	has	any
failures,	and	then	summarizes	how	many	failures	occurred	by	that	resource:

curl	-G	'http://puppetdbhost:8080/v3/event-counts'--data-urlencode'query=

["=",	"certname",	"puppetagent.localdomain"]'	--data-urlencode	'counts-

filter=[">",	"failures",	0]'	--data-urlencode	'summarize-by=resource'

This	query	gives	you	the	output	shown	in	the	following	screenshot:

You	can	find	the	documentation	and	more	examples	for	the	event-counts	endpoint	at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/event-counts.html.

Applying	the	aggregate-event-counts	endpoint
This	is	an	aggregated	version	of	the	event-counts	endpoint;	it	supports	the	same	fields	as
the	event-counts	endpoint	as	it	is	essentially	an	extension	of	that	endpoint.	This	can	be
very	handy	if	you	are	developing	some	custom	reporting,	as	it	saves	you	having	to
aggregate	the	data	yourself;	nine	times	out	of	ten,	it’s	faster	and	easier	to	leave	this	to
PuppetDB.	Currently,	the	aggregate-event-counts	endpoint	supports	a	single	route,

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/event-counts.html


which	is	the	following	one:

GET	/v3/aggregate-event-counts

You	can	find	the	documentation	for	the	aggregate-event-counts	endpoint	at
http://docs.puppetlabs.com/puppetdb/2.0/api/query/v3/aggregate-event-counts.html.

Using	the	server-time	endpoint
This	endpoint	may	well	make	you	wonder	what	it’s	for;	however,	it’s	a	very	useful
endpoint	when	you’re	trying	to	figure	out	what	happened	during	a	very	specific	time
period.	At	present,	it	supports	a	single	route,	which	is	the	following	one:

GET	/v3/server-time

The	trouble	with	times	on	servers	is	that	they	can	drift,	and	even	with	Network	Time
Protocol	(NTP),	they	can	produce	markedly	different	responses.	The	server-time
endpoint	allows	you	to	find	the	current	time	from	the	point	of	view	of	the	Puppet	master;
this	can	be	quite	important	if	you	are	querying	for	time-based	information,	as	it	gives	you
an	accurate	starting	point	rather	than	a	possibly	skewed	value	based	on	the	current	time	on
your	desktop.	You	can	retrieve	the	server	time	with	the	following	simple	query:

curl	http://puppetdbhost:8080/v3/server-time

You	can	also	find	the	documentation	for	this	endpoint	at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/server-time.html.

The	version	endpoint
This	is	a	straightforward	endpoint	and	is	useful	if	you	want	to	know	the	version	of
PuppetDB	that	you	are	running.	This	can	be	extremely	useful	if	you	want	to	ensure	that
your	application	is	using	the	correct	version	of	the	API.	You	can	essentially	check	whether
the	PuppetDB	server	is	running	the	version	you	expect,	and	if	not,	you	can	either	bail	out
or	handle	the	difference	another	way.	Currently,	the	version	endpoint	supports	a	single
route,	which	is	the	following	one:

GET	/v3/version

To	find	the	version	of	your	Puppet	master,	you	can	use	the	following	query:

curl	http://localhost:8080/v3/version

You	can	find	the	documentation	for	the	version	endpoint	at
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/version.html.

http://docs.puppetlabs.com/puppetdb/2.0/api/query/v3/aggregate-event-counts.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/server-time.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/version.html




Summary
In	this	chapter,	we	have	fully	explored	the	PuppetDB	API.	We’ve	taken	a	look	at	the	role
that	the	API	endpoints	play	and	how	you	can	use	simple	command-line	tools	to	query	it.
We’ve	examined	the	makeup	of	a	typical	query	and	how	we	can	use	operators	to	be
selective	about	our	data.	Finally,	we’ve	taken	a	look	at	some	of	the	more	practical	ways	in
which	we	can	put	the	PuppetDB	query	API	to	use,	and	we	have	examined	how	it	can	be
used	to	increase	the	visibility	of	your	infrastructure.

In	the	next	chapter,	we’re	going	to	use	some	simple	Ruby	code	to	create	a	simple
reporting	system,	utilizing	the	features	of	the	PuppetDB	API	to	power	it.





Chapter	7.	Writing	Custom	Reports	with
PuppetDB
In	the	previous	chapter,	we	learned	about	the	PuppetDB	query	API,	what	it	can	be	used
for,	and	how	to	leverage	the	power	of	its	built-in	query	language.	In	this	chapter,	we’re
going	to	take	that	knowledge	and	use	it	to	create	a	simple	but	effective	reporting
application	written	in	Ruby.	We’re	going	to	explore	the	following	topics:

Creating	a	skeleton	Ruby	application
Connecting	to	PuppetDB	using	JSON
Retrieving	facts
Retrieving	events	and	reports	using	multiple	endpoints

At	the	end	of	this	chapter,	you	should	be	comfortable	making	use	of	the	PuppetDB	query
API	in	your	own	applications	and	understand	how	to	process	the	JSON	output	of	the	API.



Creating	a	basic	query	application
We’re	going	to	start	with	a	simple	application	to	explore	the	PuppetDB	API.	This	will	get
us	acquainted	with	the	basic	tools	that	we	need	to	access	the	API	and	extract	data	from	it.
Open	your	favorite	editor	and	create	a	new	file	called	basic_report.rb.

The	basic	report	application	is	going	to	be	very	straightforward	and	will	simply	pull	back
some	basic	details	about	a	host	using	the	facts	endpoint.	This	will	demonstrate	the	basic
techniques	we’re	going	to	use	to	write	a	more	fully	featured	application	later	on	in	this
chapter.

Note
The	code	in	this	chapter	has	been	designed	to	run	against	Ruby	v1.9	and	above,	and	it	will
throw	errors	if	it’s	run	on	earlier	versions.	If	you’re	using	a	RedHat-based	distribution
prior	to	RedHat	Enterprise	Linux	7,	then	you	will	almost	certainly	be	running	a	version	of
Ruby	1.8.	If	you	are	running	one	of	these	operating	systems,	then	I	recommend	that	you
use	Ruby	Version	Manager	(https://rvm.io)	to	install	a	more	recent	version	of	Ruby	to	run
this	code	against.

https://rvm.io


Setting	up	the	basic	application
The	first	thing	that	we	will	need	to	do	is	include	some	additional	libraries	to	allow	us	to
easily	parse	the	data	that	the	PuppetDB	API	returns.	As	you	will	recall	from	the	previous
chapter,	the	PuppetDB	API	is	a	simple	JSON	feed	presented	over	HTTP;	luckily,	Ruby
already	includes	both	a	library	to	parse	JSON	(json)	and	a	library	to	connect	to	an	HTTP
server	(net::HTTP).	Finally,	we’re	going	to	need	a	library	that	will	allow	us	to	insert	a
custom	parameter	into	our	HTTP	call;	this	is	to	allow	us	to	append	a	PuppetDB	query	and
is	supplied	by	the	URI	library	(uri).

Let’s	go	ahead	and	start	off	our	code	by	adding	these	libraries:

require	'rubygems'

require	'json'

require	'net/http'

require	'uri'

That’s	great!	We’ve	got	all	the	tools	we	need	to	work	with	PuppetDB	right	there.	The	next
thing	we	need	to	do	is	connect	to	the	API	and	retrieve	the	response.	First	of	all,	though,	we
need	the	user	of	the	application	to	let	us	know	the	node	that	they’re	interested	in.	We’ll
grab	their	response	using	the	gets	method	and	then	use	the	chomp	string	function	to
remove	any	character	returns	from	the	response,	as	shown	in	the	following	code	snippet:

puts	'Please	input	the	FQDN	of	the	node	to	examine:'

fqdn	=	gets.chomp



Connecting	to	PuppetDB
We	now	have	the	tools	to	access	our	PuppetDB	data	and	the	details	of	what	our	user	wants
to	see.	Let’s	connect	to	PuppetDB	and	fetch	the	data.	The	first	thing	we	need	to	do	is
construct	our	Universal	Resource	Identifier	(URI).	We’re	going	to	keep	things	simple
and	hardcode	the	address	of	our	Puppet	master	for	the	moment,	as	shown	in	the	following
code	snippet:

uri	=	URI.parse('http://puppetdbhost:8080/v3/facts/')

This	creates	a	variable	to	hold	our	URI;	note	that	the	URI	contains	not	only	the	address	of
the	Puppet	master,	but	also	the	protocol,	port,	and	path	to	the	particular	endpoint	we’re
interested	in.

Now,	we	need	to	construct	a	query	to	ensure	that	the	data	we	return	is	only	for	the	host
that	the	user	is	interested	in,	rather	than	the	default	value	of	all	hosts.	We	do	this	by
appending	a	query	string	to	the	HTTP	request,	and	this	is	achieved	using	the	URI’s	query
function.	This	essentially	allows	you	to	build	a	simple	hash	that	contains	the	name	of	the
query	string	and	the	query	itself.	Let’s	go	ahead	and	use	this	to	construct	a	query	that
returns	just	the	node	that	our	user	has	specified.	Consider	the	following	code:

params	=	{:query	=>	'["=","certname",'+'"'"#{fqdn}"	+	'"'	']'}

uri.query	=	URI.encode_www_form(params)

The	preceding	query	is	fairly	straightforward.	The	first	line	creates	a	variable	called
params,	which	contains	our	basic	query	syntax	(in	this	case,	an	equality	operator	on	the
certname	data)	and	the	value	of	the	fqdn	variable	that	the	user	created	by	answering	our
prompt.

We	now	have	all	the	data	we	need	to	create	a	connection	to	PuppetDB	and	query	the
database.	All	we	have	to	do	now	is	construct	the	HTTP	call	itself.	Let’s	go	ahead	and	do
that	now.	This	is	shown	in	the	following	code	snippet:

response	=	Net::HTTP.get_response(uri)

json	=	JSON.parse(response.body)

This	code	calls	PuppetDB	using	the	Net::HTTP	library	and	then	parses	the	resulting	JSON
response	into	a	Ruby	hash	ready	for	us	to	work	with.



Outputting	results
Finally,	we	just	need	to	output	the	results.	We	could	simply	output	the	results	as	a	list,	but
as	we’re	designing	this	application	for	nontechnical	users,	let’s	go	ahead	and	make	it	a	bit
prettier.	There	are	several	Ruby	gems	that	can	be	used	to	take	the	output	and	make	it	a
little	easier	on	the	eye.	In	this	case,	I’m	going	to	use	a	gem	called
command_line_reporter.	You	can	install	this	gem	in	the	usual	manner	using	the	following
command:

gem	install	command_line_reporter

The	next	thing	we	need	to	do	is	include	it	in	our	application.	Edit	your	list	of	included
libraries	as	shown	in	the	following	code:

require	'rubygems'

require	'json'

require	'net/http'

require	'uri'

require	'command_line_reporter'

include	CommandLineReporter

Once	you’ve	done	this,	you’re	all	ready	to	create	a	good-looking	report.	Let’s	go	ahead
and	retrieve	our	details	and	then	output	them	using	the	following	code:

table(:border	=>	true)	do

		json.each	do	|fact|

				row	do

						column(fact['name'],	:width	=>	20)

						column(fact['value'],	:width	=>	60,

													:align	=>	'right',

													:padding	=>	5)

				end

		end

end

In	this	code,	the	first	thing	that	we	do	is	use	the	table	method	in	the
command_line_reporter	library	to	create	a	table	with	a	border;	next,	we	create	a	Ruby
block	using	the	contents	of	the	JSON	response	as	the	array.	As	we	iterate	through	the
array,	we	create	a	new	table	row	for	each	piece	of	data	in	the	array	and	populate	it	with	the
name	and	value	of	the	facts	returned	by	PuppetDB.

That’s	all	we	need	for	this	program.	You	should	have	something	that	looks	a	little	like	the
following	code:

require	"rubygems"

require	"json"

require	'net/http'

require	'uri'

require	'command_line_reporter'

include	CommandLineReporter

puts	'Please	input	the	FQDN	of	the	node	your	interested	in:'

fqdn	=	gets.chomp



uri	=	

URI.parse('http://localhost:8080/v3/facts/')URI.parse('http://localhost:808

0/v3/facts/')

params	=	{:query	=>	'["=",	"certname",'	+	'"'	"#{fqdn}"	+	'"'	']'}

uri.query	=	URI.encode_www_form(params)

										response	=	Net::HTTP.get_response(uri)

										json	=	JSON.parse(response.body)

table(:border	=>	true)	do

										json.each	do	|fact|

										row	do

										column(fact['name'],	:width	=>	20)

										column(fact['value'],	:width	=>	60,	:align	=>	'right',	:padding	

=>	5)

										end

			end

end

Go	ahead	and	run	the	program.	After	entering	a	fully	qualified	domain	name	(FQDN)
that	matches	one	of	your	Puppet	client	certificates,	you	should	have	an	output	that	looks	a
little	like	what’s	shown	in	the	following	screenshot:



This	is	an	excellent,	albeit	somewhat	limited	example	of	what	we	can	do	with	the
PuppetDB	API,	and	it	should	give	you	an	idea	of	how	to	work	with	the	data	it	provides.
Now	that	we	are	comfortable	with	the	fundamentals	of	how	to	communicate	with
PuppetDB,	we	can	take	a	look	at	something	a	little	more	sophisticated.	Let’s	look	at	how
we	can	create	a	relatively	simple	application	that	can	give	users	the	ability	to	query	both
for	hardware	details	and	a	summary	of	the	last	Puppet	client	run.





Creating	a	menu-driven	PuppetDB
application
As	we’re	designing	this	query	application	for	nontechnical	users,	we	want	a	way	for	them
to	interact	with	our	application	without	needing	to	deal	with	esoteric	command-line
options.	This	is	a	command-line	application;	therefore,	fancy	GUIs	and	shiny	web
applications	are	right	out.	Instead,	we	have	to	go	back	to	the	tried	and	tested	system	of
using	a	menu-driven	application.	However,	first	of	all,	let’s	figure	out	what	we	want	this
application	to	do.

One	of	the	more	common	scenarios	where	you	might	want	to	offer	this	type	of	application
is	for	anyone	who	is	interested	in,	works	with,	or	is	auditing	your	Puppet-managed
infrastructure.	You	might	not	want	them	to	have	full	and	free	access	to	your	Puppet
installation,	but	at	the	same	time,	you	want	them	to	be	able	to	find	the	information	they
need	to	carry	out	the	task	at	hand.	So,	the	first	decision	that	we	need	to	make	is	regarding
the	information	that	we	give	them	access	to.	For	this	application,	we’re	going	to	offer	the
following	information:

Summary	of	the	last	Puppet	run
Hardware	specifications	of	a	particular	node
Details	of	what,	if	anything,	Puppet	changed	in	the	last	run

This	should	give	our	users	enough	access	to	the	PuppetDB	information	to	allow	them	to
answer	any	basic	questions	they	may	have.



Setting	up	the	UI
We’re	going	to	create	the	code	in	discrete	chunks,	with	separate	functions	for	presenting
the	menu,	collecting	the	hardware	details,	and	outputting	the	Puppet	report.	This	not	only
helps	us	keep	our	code	nice	and	tidy	and	encourages	reuse,	but	it	also	makes	it	easy	to
extend	our	application	by	simply	dropping	in	new	modules.	This	is	a	technique	worth
using	for	anything	more	than	a	simple	twenty-line	application.	Many	a	sensible	developer
or	DevOps	engineer	has	been	reduced	to	bitter	tears	of	frustration	when	they	are	asked	to
support	a	five	thousand-line	piece	of	spaghetti	coding	with	no	discernible	entry	points	for
a	given	function.

The	first	task	that	we’re	going	to	tackle	is	creating	the	menu	for	our	user	to	interact	with.
To	make	this	easy,	we’re	going	to	use	a	gem	called	HighLine.	HighLine	makes	it	very
simple	to	construct	interactive	command-line	applications	and	includes	powerful	features
such	as	validation,	masked	input,	and	type	conversion	without	the	tedious	messing	around
with	the	gets()	and	puts()	functions.	Using	HighLine,	we	can	quickly	and	easily	create
the	basic	UI	our	users	are	going	to	interact	with.	Go	ahead	and	create	a	new	folder	called
puppetreport;	this	is	where	we’re	going	to	place	our	code.	Also,	create	a	file	called
puppetreport.rb	using	your	favorite	editor.	Once	you	are	done,	insert	the	following	code
in	that	file:

require	'highline/import'

require	'json'

require	'net/http'

require	'uri'

require	'command_line_reporter'

require_relative	'hwdetails.rb'

require_relative	'rundetails.rb'

@puppetdb	=	'http://localhost:8080'

loop	do

		choose	do	|menu|

		menu.choice('Enter	Host')	do	|command|

				@fqdn	=	ask('Please	enter	FQDN')

		end

		menu.choice('Hardware	Details')	do	|command|

				if	@fqdn	then

						get_hw_details

				else

						@fqdn	=	ask('Please	enter	FQDN')

				end

		end

		menu.choice('Result	of	last	Puppet	Run')	do	|command|

				if	@fqdn	then

						get_run_details



				else

						@fqdn	=	ask('Please	enter	FQDN')

				end

		end

		menu.choice('Exit	program.')	{	exit	}

		end

end

This	small	chunk	of	code	creates	the	user	menu.	We’re	giving	the	user	four	actions	to
choose	from	here:	to	enter	the	fully	qualified	domain	name	of	a	host	to	query,	a	hardware
listing	for	that	host,	details	of	the	Puppet	run,	and	finally,	a	way	to	exit	the	program.

You	will	recognize	the	first	five	lines	as	code	to	include	the	libraries	that	we	require	to
interact	with	PuppetDB,	parse	its	response,	and	create	a	nice-looking	output	using	the
command_line_reporter	library.	We	also	have	a	newcomer	in	the	shape	of	the
highline/import	library	requirement;	this	is	used	to	include	the	HighLine	library	into	our
application.	You’ll	notice	almost	straightaway	that	the	puppetreport.rb	file	doesn’t	make
use	of	any	of	the	libraries,	except	for	the	highline/import	library.	As	you	can	see	after
the	library	require	statements,	we’re	also	requesting	two	more	Ruby	files,	which	are
hwdetails.rb	and	rundetails.rb.	These	two	files	will	be	created	next	and	will	contain
the	code	that	will	make	use	of	the	other	libraries.	We’re	going	to	cover	these	files	in	later
sections,	but	for	the	moment,	let’s	explore	the	code	that	creates	our	user	interface.

After	the	library	require	statements,	we	set	our	one	and	only	option.	This	is	described	in
the	following	line	of	code:

@puppetdb	=	'http://localhost:8080'

To	keep	the	application	simple,	I’ve	left	this	as	a	hardcoded	variable,	but	it	would	be	easy
enough	to	read	this	from	a	file.	Note	the	@	symbol;	in	Ruby,	this	denotes	an	instance
variable.	An	instance	variable	is	scope	confined	to	the	owning	object;	in	this	case,	this	is
our	application.	If	this	were	defined	as	a	local	variable	(a	variable	that	begins	with	a
lowercase	letter	or	the	_	character),	then	it	would	be	inaccessible	from	our	new	functions.

Now	to	the	menu!	Firstly,	we	want	to	make	sure	that	when	users	launch	the	application,
they	don’t	just	choose	one	option	and	have	the	application	closed	after	finishing	the
output.	Even	with	the	various	command	recall	functions	in	the	bash	shell,	this	is	going	to
get	old	very	quickly.	Instead,	we	use	a	loop	to	ensure	that	the	user	is	returned	to	the	menu
after	each	interaction.	We	then	create	a	Ruby	block	to	iterate	through	our	menu	choices.
This	is	described	in	the	following	code	snippet:

loop	do

		choose	do	|menu|

		menu.choice('Enter	Host')	do	|command|

				@fqdn	=	ask('Please	enter	FQDN')

		end

As	you	can	see,	the	choice	function	allows	you	to	enter	the	text	to	be	presented	to	the	user
and	then	the	command	that	you	want	to	run.	In	the	case	of	the	first	option,	this	is	a	simple



prompt	for	the	user	to	enter	the	fully	qualified	domain	name	of	the	host	they	are	interested
in,	and	the	next	three	menu	choices	are	much	the	same.	This	is	described	in	the	following
code	snippet:

		menu.choice('Enter	Host')	do	|command|

				@fqdn	=	ask('Please	enter	FQDN')

		end

		menu.choice('Hardware	Details')	do	|command|

				if	@fqdn	then

						get_hw_details

				else

						@fqdn	=	ask('Please	enter	FQDN')

				end

		end

		menu.choice('Result	of	last	Puppet	Run')	do	|command|

				if	@fqdn	then

						get_run_details

				else

						@fqdn	=	ask('Please	enter	FQDN')

				end

		end

		menu.choice('Exit	program.')	{	exit	}

		end

Each	of	the	choices	resemble	the	first	choice	in	terms	of	their	overall	structure;	however,
in	the	case	of	the	hardware	details	and	details	of	the	Puppet	run,	we’re	also	applying	a
little	bit	of	logic	to	ensure	that	if	users	have	skipped	over	entering	a	host,	we	prompt	them
so	that	an	FQDN	is	entered.	Note	the	two	function	calls:	get_hw_details	and
get_run_details.	These	are	the	two	methods	that	we’re	about	to	create	to	allow	us	to	pull
data	from	PuppetDB.	Let’s	start	with	the	simpler	of	the	two,	the	facts	lookup.



Querying	PuppetDB’s	facts	endpoint
The	first	function	that	we’re	going	to	create	is	going	to	go	to	PuppetDB,	which	is
configured	in	the	puppetreport.rb	file,	and	interrogate	the	facts	endpoint	for
information	about	the	user-specified	host.	We’re	then	going	to	make	use	of	the
command_line_reporter	library	to	ensure	that	the	output	is	easily	readable	to	our	users.
Go	ahead	and	create	a	new	file	in	the	puppetreport	directory	called	hwdetails.rb,	and
open	it	with	your	favorite	editor.

The	first	few	lines	of	our	application	deal	with	creating	our	new	method,	setting	out	what
URLs	to	query,	and	then	connecting	to	PuppetDB	and	fetching	a	response.	Take	a	look	at
the	following	code	snippet:

def	get_hw_details

		include	CommandLineReporter

		uri	=	URI.parse("#{@puppetdb}/v3/facts/")

		params	=	{:query	=>	'["=",	"certname",'	+	'"'	"#{@fqdn}"	+	'"'	']'}

		uri.query	=	URI.encode_www_form(params)

		begin

		response	=	Net::HTTP.get_response(uri)

		rescue	StandardError

				puts	'PuppetDB	is	currently	unavailable'

				exit

		end

		json	=	JSON.parse(response.body)

The	first	line	creates	our	method	in	the	usual	manner	using	the	def	keyword.	Next,	we
include	our	CommandLineReporter	library	so	that	it’s	ready	for	use,	and	then	we	go	into
the	connectivity	activities.	Firstly,	we	create	a	variable	called	uri	to	hold	our	PuppetDB
connection	details;	this	is	constructed	using	the	instance	variable	we	defined	in	the
puppetreport.rb	file	and	points	at	v3	of	the	facts	endpoint.	Next,	we	construct	our
query	and	assign	it	to	the	params	variable;	note	again	the	string	interpolation	that	inserts
the	FQDN	of	the	client	based	on	the	input	that	the	user	provided	when	entering	the
application.	Finally,	we	call	the	uri.query	method	to	take	the	params	variable	and	encode
it	as	an	HTTP	query	string.

That’s	all	the	ground	work	for	the	PuppetDB	connection	out	of	the	way;	all	that’s	required
now	is	to	attempt	the	connection	using	the	Net::HTTP	library.	As	you	can	see,	I’ve
wrapped	this	in	a	begin	and	rescue	construct.	This	application	is	aimed	at	nontechnical	or
semi-technical	users,	so	we	want	to	try	and	make	the	application	fail	gracefully.	In	this
case,	we	are	rescuing	anything	that	arrives	via	StandardError;	this	should	cover	pretty
much	any	issues	that	the	Net::HTTP	library	will	encounter	and	will	give	the	users	an	error
message	to	inform	them	that	PuppetDB	is	not	currently	available.	We	then	exit	the
application,	as	it’s	of	extremely	limited	use	if	there	is	no	PuppetDB	to	supply	it	with	data.



Outputting	the	hardware	report
Assuming	that	all	went	well	and	we	were	able	to	connect	to	PuppetDB,	our	response
variable	should	now	have	the	response	from	PuppetDB’s	facts	endpoint	in	the	JSON
format.	As	parsing	JSON	by	hand	is	incredibly	dull,	we’re	going	to	make	use	of	the	JSON
library	to	do	the	heavy	lifting	for	us.	We’re	assigning	the	output	of	the	JSON.parse
method	to	a	variable	called	json,	and	this	should	give	us	a	nicely	formatted	array	of	JSON
data	to	process	in	the	next	step.

Now	that	we	have	the	data,	we	need	to	process	it.	By	default,	the	facts	endpoint	returns
the	data	in	a	JSON	object,	and	this	contains	a	list	of	key	values	made	up	of	fact	names.
The	outputted	JSON	file	in	v3	of	the	Puppet	API	looks	like	the	following	code	snippet:

{"name":	"<node>",

	"facts":	{

					"<fact	name>":	"<fact	value>",

					"<fact	name>":	"<fact	value>",

					...

				}

}

There	are	several	different	techniques	you	could	use	to	work	with	this	data,	but	in	this
case,	we’re	going	to	create	a	new	instance	variable	called	@facts	and	then	use	a	simple
Ruby	block	to	iterate	over	our	data	and	insert	it	into	our	newly	created	hash.	This	is
described	in	the	following	code	snippet:

json	=	JSON.parse(response.body)

@facts	=	Hash.new

json.each	do	|fact|

				@facts[fact['name']]	=	fact['value']

end

As	you	can	see	from	the	preceding	example,	you	only	need	a	little	code	to	extract	data
from	the	PuppetDB	API.	Let’s	go	ahead	and	output	the	data	for	our	user;	remember,	we’re
going	to	use	the	CommandLineReporter	library	to	make	the	output	easy	to	read.	For	this
application,	we’re	going	to	give	the	user	three	different	sections	of	data	about	the
hardware,	a	section	of	summary	facts	(memory,	CPU	details,	and	so	on),	a	section	on	the
BIOS	details,	and	finally,	some	details	about	the	main	board.	We’ll	present	these	details	as
three	separate	tables	to	make	them	easier	to	read.	Add	the	following	code	to	the
hwdetails.rb	file:

system	"clear"	or	system	"cls"

		header	:title	=>	"Hardware	report	for	#{@fqdn}",	:width	=>	80,	:align	=>	

'center',	:rule	=>	true,	:color	=>	'green',	:bold	=>	true,	:timestamp	=>	

true

		table(:border	=>	true)	do

				row	do

						column('manufacturer',	:width	=>	30)

						column("#{@facts["manufacturer"]}",	:width	=>	40)

				end



				row	do

						column('productname',	:width	=>	30)

						column("#{@facts["productname"]}",	:width	=>	40)

				end

				row	do

						column('Number	of	processors',	:width	=>	30)

						column("#{@facts["physicalprocessorcount"]}",	:width	=>	40)

				end

				row	do

						column('Memory',	:width	=>	30)

						column("#{@facts["memorysize"]}",	:width	=>	40)

				end

				row	do

						column('architecture',	:width	=>	30)

						column("#{@facts["architecture"]}",	:width	=>	40)

				end

				row	do

						column('Virtualized?',	:width	=>	30)

						column("#{@facts["is_virtual"]}",	:width	=>	40)

				end

		end

The	first	line	of	the	code	is	used	to	call	out	the	clear	command	on	the	system;	this	is
essentially	the	same	as	typing	clear	or	cls	on	the	command	line	and	ensures	that	our
users	will	not	have	any	clutter	on	their	screen	to	distract	them.	Next,	we	output	a	header	to
remind	the	users	what	the	report	is	about.	As	you	can	see	in	this	code,	the	header	method
of	the	command_line_reporter	library	accepts	a	broad	range	of	options	to	allow	you	to
style	it,	and	in	our	case,	we’ve	asked	for	it	to	be	80	characters	wide,	aligned	to	the	center
of	the	screen	with	green	underlined	text,	with	a	timestamp	of	when	the	command	was
issued.	It’ll	look	something	like	what	is	shown	in	the	following	screenshot:

Once	we’ve	shown	the	user	the	header,	we	go	right	ahead	and	create	our	first	table.	This
table	is	going	to	be	used	to	contain	the	general	hardware	details,	but	rather	than	simply
spewing	out	all	of	the	data	that	the	facts	endpoint	produces,	we’re	going	to	be	selective
and	give	our	users	details	that	are	relevant	to	the	query.	In	this	case,	we’re	going	to	show
them	the	following	details:

The	manufacturer
The	product	name
The	number	of	processors
The	memory	size
The	processor	architecture
The	virtual	machine	flag

As	you	can	see	in	the	preceding	code,	we	define	the	data	by	row,	and	within	each	row,	we
specify	a	number	of	columns.	Our	first	column	is	a	simple	text	label	with	a	width	of	30



characters.	The	next	column	contains	the	data	to	match	that	label	and	is	taken	from	the
hash	we	created	and	populated	with	the	data	from	the	facts	endpoint.	This	is	described	in
the	following	code	snippet:

				row	do

						column('manufacturer',	:width	=>	30)

						column("#{@facts["manufacturer"]}",	:width	=>	40)

				end

Let’s	go	ahead	and	add	the	rest	of	our	details.	This	is	described	in	the	following	code:

				row	do

						column('productname',	:width	=>	30)

						column("#{@facts["productname"]}",	:width	=>	40)

				end

				row	do

						column('Number	of	processors',	:width	=>	30)

						column("#{@facts["physicalprocessorcount"]}",	:width	=>	40)

				end

				row	do

						column('Memory',	:width	=>	30)

						column("#{@facts["memorysize"]}",	:width	=>	40)

				end

				row	do

						column('architecture',	:width	=>	30)

						column("#{@facts["architecture"]}",	:width	=>	40)

				end

				row	do

						column('Virtualized?',	:width	=>	30)

						column("#{@facts["is_virtual"]}",	:width	=>	40)

				end

This	is	a	good	start	for	our	hardware	report,	and	if	you	were	to	run	this	code	now,	you’d	be
able	to	retrieve	some	relevant	data.	We	have	got	a	few	more	pieces	of	information	that	will
be	of	interest	to	the	user,	though,	such	as	the	BIOS	details	and	motherboard	details;	this,	in
particular,	is	a	good	piece	of	data	to	output	as	it	has	the	serial	number	on	it.	We	want	to
keep	the	output	easy	to	read,	though,	so	the	first	thing	we	do	is	put	a	thin	line	underneath
the	previous	output	to	denote	that	we’re	moving	onto	a	different	set	of	data.	This	is
described	in	the	following	code:

horizontal_rule	:width	=>	70,	:color	=>	'red'

vertical_spacing	1

header	:title	=>	'Bios	Details'

Again,	we	have	several	formatting	options,	but	we’re	going	to	keep	it	simple	and
understated,	and	simply	put	a	red	line	across	the	screen	and	add	a	header	underneath.
Now,	we	simply	have	to	add	the	rest	of	our	data.	This	is	described	in	the	following	code:

		table(:border	=>	true)	do

				row	do

						column('Bios	release	date',	:width	=>	30)

						column("#{@facts["bios_release_date"]}",	:width	=>	40)

				end



				row	do

						column('Bios	Vendor',	:width	=>	30)

						column("#{@facts["bios_vendor"]}",	:width	=>	40)

				end

				row	do

						column('Bios	Version',	:width	=>	30)

						column("#{@facts["bios_version"]}",	:width	=>	40)

				end

		end

horizontal_rule	:width	=>	70,	:color	=>	'red'

vertical_spacing	1

header	:title	=>	'Motherboard	Details'

		table(:border	=>	true)	do

				row	do

						column('Motherboard	Manufacturer',	:width	=>	30)

						column("#{@facts["boardmanufacturer"]}",	:width	=>	40)

				end

				row	do

						column('Motherboard	Name',	:width	=>	30)

						column("#{@facts["boardproductname"]}",	:width	=>	40)

				end

				row	do

						column('Motherboard	Serial	number',	:width	=>	30)

						column("#{@facts["boardserialnumber"]}",	:width	=>	40)

				end

		end

end

Fantastic!	We	now	have	a	simple	but	very	effective	tool	to	query	hardware	data	held	in
PuppetDB.	We	could	leave	it	there,	but	one	of	the	questions	that	I	find	is	asked	quite	often
by	clients	with	Puppet-managed	nodes	is,	“What	has	Puppet	done	to	my	server?”	This	is	a
fair	question,	so	let’s	give	our	users	a	way	to	query	it.





Querying	PuppetDB	for	report
information
Essentially,	we’re	going	to	use	the	same	techniques	that	we	learned	in	the	previous
examples,	but	the	way	we	process	the	data	is	going	to	change.	One	thing	you’ll	almost
immediately	notice	is	that	each	endpoint	has	its	own	particular	format;	although	they	all
return	JSON	output,	sometimes,	it’s	a	JSON	array,	other	times,	a	flat	JSON	document,	and
so	on.	When	working	with	PuppetDB,	it’s	worth	reviewing	the	documentation	for	the
endpoints,	as	it	contains	an	excellent	rundown	of	what	to	expect.	Again,	you	can	find	the
documentation	at	https://docs.puppetlabs.com/puppetdb/latest/.

Tip
One	tool	that	can	be	enormously	helpful	when	exploring	data	such	as	the	PuppetDB	API	is
the	pp	library	that	ships	with	Ruby.	The	pp	library	is	the	pretty	printer	for	Ruby	and	will
take	data	such	as	JSON	and	output	it	in	a	reasonably	clear	way.	This	can	be	a	real	help	if
you	are	not	sure	how	or	what	data	is	going	to	be	returned.	If	you	get	stuck,	remember	that
you	can	use	the	puts	<variable>	class	to	discover	if	you’ve	been	passed	an	array,	hash,
or	some	other	data	type.

The	get_run_details	method	is	going	to	be	slightly	more	complex	than	the	previous
method	we	created.	This	is	because	we	are	going	to	blend	the	information	from	three
different	endpoints	to	generate	this	report.	These	are	the	reports	endpoint,	event-counts
endpoint,	and	finally,	the	events	endpoint.	This	allows	us	to	do	several	things.	First	and
most	importantly,	it	allows	us	to	find	the	hash	of	the	last	Puppet	report;	this	is	vital	as	it’s
the	connection	between	the	report	and	the	events.	It	also	allows	us	to	quickly	count	how
many	event	types	we	had	without	resorting	to	manually	counting	them	ourselves,	and
finally,	it	gives	us	the	details	of	what	happened	to	the	node	when	Puppet	was	run	on	it	last
time.	When	we’re	finished,	it’s	going	to	look	like	the	following	screenshot:

https://docs.puppetlabs.com/puppetdb/latest/




Creating	the	PuppetDB	query	method
Let’s	start	by	creating	a	file	for	our	new	method.	Remember,	it’s	generally	tidier	to	split
large	pieces	of	code	into	their	own	file,	as	this	keeps	the	application	tidy	and	makes	it
more	obvious	where	you	can	find	the	functionality.	Create	a	new	file	in	the	puppetreport
directory,	called	rundetails.rb,	and	open	it	up	in	your	editor.	We’re	going	to	start	in	the
usual	way	and	define	the	name	of	our	method	using	the	def	keyword	and	then	connect	to
each	of	our	endpoints	and	retrieve	our	details.	First	up,	we	have	the	reports	endpoint.
Consider	the	following	code:

def	get_run_details

		include	CommandLineReporter

		reporturi	=	URI.parse("#{@puppetdb}/v3/reports/")

		reportparams	=	{:query	=>	'["=",	"certname",'	+	'"'	"#{@fqdn}"	+	'"'	']'}

		reporturi.query	=	URI.encode_www_form(reportparams)

		reportresponse	=	Net::HTTP.get_response(reporturi)

		reportjson	=	JSON.parse(reportresponse.body)

		report	=	reportjson.last

As	you	can	see,	this	looks	very	similar	to	the	way	we	connected	to	the	facts	endpoint,
and	again,	we	are	taking	the	instance	variable	that	contains	the	PuppetDB	location	and	are
using	it	to	construct	our	URL.	We’re	then	constructing	a	PuppetDB	query	based	around
the	FQDN	that	the	users	have	given	as	input	when	they	launched	the	application;	the	main
thing	to	note	in	this	code	is	the	use	of	the	.last	method	when	we	assign	the	value	of	the
retrieved	JSON	file.	This	report	is	specifically	for	the	last	report	that	Puppet	ran;	we	don’t
need	any	others.	As	the	reports	endpoint	is	returning	an	array	of	reports,	we	can	use	the
.last	method	to	simply	retrieve	the	last	one	without	needing	to	mess	around	iterating
through	the	array	ourselves.



Fetching	the	event	counts
Now	that	we	have	the	report	summary,	we	need	to	go	and	get	our	event	counts;	this	is
exactly	what	the	event-counts	endpoint	was	designed	for,	to	save	calculating	the	count
ourselves.	We	connect	to	this	endpoint	and	retrieve	the	data	in	much	the	same	way	as	the
other	endpoints.	This	is	described	in	the	following	code:

ecounturi	=	URI.parse("#{@puppetdb}/v3/event-counts")

ecountparams	=	{'query'	=>	'["=",	"report",'	+	'"'	"#{report["hash"]}"	+	

'"'	']',	'summarize-by'	=>	"certname"}

ecounturi.query	=	URI.encode_www_form(ecountparams)

ecountresponse	=	Net::HTTP.get_response(ecounturi)

ecountjson	=	JSON.parse(ecountresponse.body).first

There	are	two	things	to	note	in	this	chunk	of	code.	Firstly,	take	a	look	at	the	query	we’re
constructing.	This	time,	rather	than	using	the	FQDN	that	the	user	has	given	as	input,	we’re
taking	the	value	of	the	hash	field	from	the	Puppet	report	we	assigned	to	the	report
variable.	The	hash	is	our	key	to	get	to	any	event	data	generated	by	Puppet	and	ensures	that
you’re	only	looking	at	data	for	that	particular	Puppet	run.	The	second	thing	to	note	is	the
use	of	the	.first	method	when	accessing	the	data.	The	event-counts	endpoint	returns	an
array	of	hashes;	however,	in	our	case,	because	we	are	asking	for	a	specific	hash,	we
should	only	ever	return	an	array	with	a	single	member.	Using	the	.first	method	is	a	nice
and	simple	shorthand	to	return	that	single	piece	of	data	without	needing	to	work	with	the
array	ourselves.

The	final	piece	of	information	we	need	to	retrieve	is	the	events	themselves.	Again,	we’re
going	to	construct	our	connection	details,	connect	to	PuppetDB,	and	use	a	query	that
contains	the	report	hash	to	retrieve	the	data	we’re	interested	in.	This	is	described	in	the
following	query:

eventsuri	=	URI.parse("#{@puppetdb}/v3/events")

eventsparams	=	{'query'	=>	'["=",	"report",'	+	'"'	"#{report["hash"]}"	+	

'"'	']'}

eventsuri.query	=	URI.encode_www_form(eventsparams)

eventsresponse	=	Net::HTTP.get_response(eventsuri)

eventsjson	=	JSON.parse(eventsresponse.body)



Presenting	the	events	data
The	events	endpoint	returns	its	data	in	the	form	of	an	array	of	events.	We	need	the	whole
of	the	array,	so	we’ll	process	them	at	the	output	time	rather	than	doing	anything	here.	Now
that	we	have	our	data,	we	can	go	ahead	and	output	it.	Again,	we’re	going	to	use	tables	to
output	the	data	to	make	it	easily	readable.	Let’s	start	by	giving	our	user	a	summary	of	the
report	data.	Consider	the	following	code:

system	'clear'

header	:title	=>	"Puppet	run	report	for	#{@fqdn}",	:width	=>	80,	:align	=>	

'center',	:rule	=>	true,	:color	=>	'green',	:bold	=>	true,	:timestamp	=>	

true

		table(:border	=>	true)	do

				row	do

						column('Failures',	:width	=>	10)

						column('Successes',	:width	=>	10)

						column('Noops',	:width	=>	10)

						column('Skips',	:width	=>	10)

				end

				row	do

						column("#{ecountjson["failures"]}",	:width	=>	10)

						column("#{ecountjson["successes"]}",	:width	=>	10)

						column("#{ecountjson["noops"]}",	:width	=>	10)

						column("#{ecountjson["skips"]}",	:width	=>	10)

				end

		end

We	start	by	clearing	the	screen.	When	producing	applications	that	report	on	the	command
line,	it’s	pretty	essential	that	we	do	this;	otherwise,	the	screen	soon	becomes	cluttered	and
unreadable.	Next,	we’re	outputting	a	header	to	let	the	user	know	which	host	this	report
was	generated	from,	and	we’re	also	applying	some	formatting	to	make	it	stand	out.	We
then	take	the	data	that	we’ve	created	and	output	it	into	a	table.

The	table	format	is	slightly	different	this	time	around,	and	that’s	because	rather	than
having	the	data	alongside	the	heading,	I’ve	used	the	more	traditional	columnar	data
format.	It’s	a	little	more	readable	for	this	kind	of	data.	We’re	using	keys	to	access	the	hash
data	that	was	retrieved	from	the	event-counts	endpoint.	When	you	are	looking	at	a	host,
one	of	the	first	things	that	we	should	check	is	how	many	resources	were	applied	and
likewise,	how	many	failed.

Tip
If	you’re	an	experienced	coder,	then	you	might	have	noticed	a	way	to	improve	this
application.	As	we	already	have	the	event	data,	we	could	potentially	gather	our	event
counts	while	gathering	the	events	rather	than	going	to	the	event-counts	endpoint.	This
would	work	for	this	application,	but	it’s	worth	knowing	how	to	use	it	for	applications
where	it	would	be	more	efficient	to	use	the	event-counts	endpoint.	Certainly,	if	you	are



not	gathering	event	data,	you	would	have	to	go	back	to	the	event-counts	endpoint	for	this
data.

Now	that	we’ve	got	the	counts	of	the	events,	let’s	move	on	and	let	our	user	see	what
actions	those	events	performed.	Again,	we’re	going	to	add	a	subheader	to	mark	out	the
new	section,	and	we’re	then	going	to	use	the	data	we	gathered	from	the	events	endpoint
to	add	the	data.	This	is	described	in	the	following	code:

horizontal_rule	:width	=>	70,	:color	=>	'red'

vertical_spacing	1

header	:title	=>	'Event	Details'

		table(:border	=>	true)	do

				eventsjson.each	do	|event|

						row	do

								column('Resource	Title',	:width	=>	20)

								column(event['resource-title'],	:width	=>	60)

						end

						row	do

								column('Resource	Type',	:width	=>	20)

								column(event['resource-type'],	:width	=>	60)

						end

						row	do

								column('Property',	:width	=>	20)

								column(event['property'],	:width	=>	60)

						end

						row	do

								column('Old	Value',	:width	=>	20)

								column(event['old-value'],	:width	=>	60)

						end

						row	do

								column('New	Value',	:width	=>	20)

								column(event['new-value'],	:width	=>	60)

						end

						row	do

								column('Status',	:width	=>	20)

								column(event['status'],	:width	=>	60)

						end

						row	do

								column('Event	Date	and	Time',	:width	=>	20)

								column(event['timestamp'],	:width	=>	60)

						end

						row	do

								column('Message',	:width	=>	20)

								column(event['message'],	:width	=>	60)

						end



						row	do

								column('',	:width	=>	80)

						end

				end

		end

end

This	should	be	fairly	familiar	to	you	by	now.	Again,	we’ve	used	the	horizontal_rule
method	to	output	a	nicely	formatted	section	break,	and	we’re	also	creating	a	new	table.	We
are	then	using	a	Ruby	block	to	iterate	through	the	array	of	data	contained	in	the	JSON
response	from	the	events	endpoint.	Each	iteration	takes	the	next	piece	of	data	and	feeds	it
into	a	hash	called	event,	and	this	then	allows	us	to	output	the	data	using	its	hash	key.
Again,	we’re	being	selective;	although	there	is	more	data	available,	we’re	focusing	on	the
data	that	is	relevant	to	this	report	rather	than	outputting	it	all.



Testing	our	application
We	now	have	a	small	yet	very	functional	reporting	application	that	uses	PuppetDB	as	its
data	source.	Let’s	go	ahead	and	run	it	by	opening	a	shell	in	our	puppetreport	directory
and	running	the	following	command:

rubypuppetreport.rb

You	should	be	presented	with	a	menu,	as	shown	in	the	following	screenshot:

Let’s	go	ahead	and	add	our	host,	either	by	selecting	the	first	option	or	by	selecting	another
option	and	being	prompted	to	enter	a	host.	Next,	let’s	take	a	look	at	its	hardware	details;
you	should	have	a	report	that	looks	something	like	what	is	shown	in	the	following
screenshot:



That	looks	rather	splendid!	Finally,	let’s	take	a	look	at	the	changes	that	Puppet	did	to	this
server	during	the	last	Puppet	run	by	selecting	the	third	option.	This	can	be	seen	in	the
following	screenshot:

We	can	now	hand	this	on	to	our	users	and	let	them	merrily	query	PuppetDB	without
needing	to	mess	around	with	the	curl	statements	or	constructing	complex	queries.

As	you	can	see,	working	with	the	PuppetDB	data	is	relatively	straightforward,	and
although	the	application	we	created	in	this	chapter	is	extremely	simple,	it	exposes	a
surprising	amount	of	data,	and	this	is	just	scratching	the	surface.	By	exploring	the	data
available	within	PuppetDB,	you	can	easily	use	Ruby,	Python,	Java,	or	any	other
programming	language	to	create	rich	portals	into	this	information.	As	long	as	you	can
parse	the	JSON	output,	you	have	access	to	a	wealth	of	detail	about	your	infrastructure.	It’s
well	worth	playing	around	and	extending	this	code,	both	to	increase	the	utility	of	the
application	and	also	as	a	way	to	explore	the	data.	For	example,	adding	in	another	function
that	creates	a	summary	of	all	your	managed	files	would	be	reasonably	simple	using	the
catalogs	endpoint.





Summary
We’ve	covered	a	lot	of	ground	in	this	chapter	and	worked	on	some	exciting	and	very
useful	techniques	to	work	with	PuppetDB.	In	this	chapter,	we’ve	taken	a	look	at	how	we
can	create	a	simple	Ruby	application	to	extract	details	of	the	hardware,	reports,	and	events
from	PuppetDB	and	used	some	freely	available	libraries	to	ensure	that	our	output	looks
elegant	and	readable.	By	creating	this	application,	we’ve	learned	that	although	PuppetDB
returns	JSON	as	its	format,	the	actual	layout	of	the	JSON	feed	may	vary,	and	we’ve
looked	at	various	ways	in	which	we	can	work	with	some	of	that	data.

In	the	next	chapter,	we	will	look	at	ways	to	create	our	own	custom	dashboard	to	present
PuppetDB	data	in	an	easy-to-use	and	attractive	form	using	freely	available	open	source
software.





Chapter	8.	Creating	Your	Own	Custom
Dashboard
Over	the	past	few	chapters,	we’ve	looked	at	the	many	ways	in	which	you	can	both	gather
and	present	data	from	Puppet.	We	have	also	created	custom	alerts	and	applications	for	our
users	to	gather	their	own	information	with.	But	we’re	still	reliant	on	the	dashboards	that
we	looked	at	in	Chapter	2,	Viewing	Data	in	Dashboards.	That’s	not	to	say	that	they	aren’t
any	good,	but	the	trouble	with	a	pre-made	solution	is	that	it	might	not	do	exactly	what
you’d	like.

In	this	chapter,	we’re	going	to	create	our	own	dashboard	using	PuppetDB	as	the	data
source	and	combine	it	with	an	open	source	framework	for	creating	dashboards	called
Dashing.	We’re	going	to	learn	the	following	topics:

What	Dashing	is	and	what	it	can	be	used	for
How	to	create	Dashing	jobs
How	to	integrate	PuppetDB	data	into	Dashing
How	to	make	Dashing	react	to	data

At	the	end	of	this	chapter,	you	should	have	a	functional	and	good-looking	dashboard	that
quickly	imparts	some	key	facts	to	anyone	who	happens	to	be	glancing	at	it.



Exploring	Dashing
Dashing	is	a	framework	for	creating	reporting	dashboards	quickly,	easily,	and	with
minimal	understanding	of	frontend	development.	Under	the	hood,	it	uses	the	Sinatra
framework	to	deal	with	the	servicing	of	incoming	web	requests	and	uses	Ruby	for
backend	data	processing,	with	a	language	called	CoffeeScript	dealing	with	the	frontend.

Note
Sinatra	is	a	framework	for	creating	web	applications	in	Ruby	and	is	similar	to	the	well-
known	Ruby	on	Rails	project.	Unlike	the	more	fully-featured	Ruby	on	Rails,	Sinatra
focuses	on	providing	a	very	lightweight	framework	that	allows	you	to	use	mostly	plain	old
Ruby	to	develop	your	application;	this	is	in	contrast	to	Ruby	on	Rails,	which	also	provides
a	more	rigid	framework	but	a	far	more	extensive	set	of	features.

You	can	download	Dashing	from	http://shopify.github.io/dashing/.	At	present,	it	hasn’t	got
an	extensive	set	of	documentation,	but	you	can	find	some	good	additional	details	on	the
project’s	wiki	page	at	https://github.com/Shopify/dashing/wiki.	As	you’ll	see	later	in	this
chapter,	it	ships	with	some	example	dashboards	that	you	can	examine	for	more	clues	as	to
how	it	works.

Dashing	has	been	released	as	an	open	source	product	by	the	developers	behind	Shopify
(http://www.shopify.com),	and	it	is	part	of	a	growing	trend	of	companies	allowing
developers	to	create	and	release	software	that	are	not	core	products	as	open	source.	Other
companies	such	as	Etsy	and	Netflix	have	also	opened	up	some	of	their	internally-used
software	as	open	source	products,	and	from	the	perspective	of	the	DevOps	community	at
large,	this	is	a	fantastic	addition	to	the	community.

Dashing	uses	the	idea	of	widgets	to	display	data,	with	each	widget	potentially	showing	a
different	dataset	in	a	different	way.	Dashing	ships	with	a	number	of	pre-made	widgets	that
can	deal	with	anything	from	text	presentation	to	building	graphs,	and	a	fair	bit	besides.
Dashing	has	adopted	a	visual	style	similar	to	Microsoft’s	Windows	8	tiles,	and	the	simple
and	flat	look	allows	data	to	be	easily	digested	and	understood.	Take	a	look	at	the	following
example	dashboard:

http://shopify.github.io/dashing/
https://github.com/Shopify/dashing/wiki
http://www.shopify.com


You	can	check	out	this	dashboard	at	http://dashingdemo.herokuapp.com/sample.	The	first
thing	that	you	will	notice	if	you	open	it	in	a	browser	is	that	it	immediately	draws	the	eye
with	motion,	as	several	of	the	widgets	update	and	reflect	changes	by	either	moving	the
swing	meter	around	or	pushing	the	graph	along.	This	is	more	than	just	a	static	display	of
data,	and	Dashing	makes	understated	effects	such	as	the	dial	sweep	and	graph	animation
very	simple	to	implement.

So	how	does	Dashing	fit	with	Puppet?	As	it	turns	out,	very	well.	There	is	a	huge	amount
of	data	generated	by	Puppet,	and	although	the	dashboards	that	are	freely	available	are
excellent,	they	are	also	focused	on	in-depth	data	exploration	rather	than	reading	the	status
at	a	glance.	Puppet	Dashboard,	Puppet	Enterprise	Console,	and	The	Foreman	are	all
geared	to	be	used	as	External	Node	Classifiers	(ENC),	and	so	the	GUI	is	set	for	not	only
interacting	with	data,	but	also	for	acting	on	it.	PuppetBoard	is	used	for	reporting,	but	is
focused	on	exploration	of	data;	you	can	spend	many	happy	hours	drilling	into	nodes	to
find	out	the	many	details	that	Puppet	Dashboard	contains,	but	you	can’t	really	glance	at	it
and	see	the	state	of	your	infrastructure.

Using	Dashing,	we	are	able	to	produce	a	dashboard	that	provides	non-Puppet-focused
users,	such	as	developers	or	support	personnel,	a	window	into	what	Puppet	is	doing	at	any
given	time,	and	it	gives	them	the	ability	to	very	quickly	see	the	data	that’s	important	to
them.	When	we’re	done,	our	dashboard	is	going	to	look	as	shown	in	the	following
screenshot:

http://dashingdemo.herokuapp.com/sample


As	you	can	see,	we’re	presenting	some	basic	but	important	facts	about	what	Puppet	has
changed,	and	we’re	also	adding	in	some	fun	statistics,	such	as	the	number	of	managed
resources	and	the	last	host	that	applied	changes.	That’s	a	lot	of	information	in	a	single
screen,	and	it’s	all	formatted	so	you	can	take	it	all	in	at	a	glance.





Setting	up	Dashing
Dashing	is	very	simple	to	install	and	keep	updated	using	the	RubyGems	package
management	system.	To	install	Dashing,	simply	follow	these	steps:

1.	 Enter	the	following	command	in	your	command	prompt:

gem	install	dashing

2.	 Once	it’s	installed,	we	can	go	straight	ahead	and	create	our	dashboard.	Dashing	has	a
built-in	function	to	create	a	skeleton	application	for	us	to	work	with	and	will	also
give	you	some	example	code	to	look	at.	Navigate	to	your	projects	folder	and	issue
the	following	command:

dashing	new	puppetdash

3.	 After	running	the	command,	you	should	have	a	new	directory	called	puppetdash,
which	contains	your	new	skeleton	application.	We	now	only	have	to	complete	one
more	step,	which	is	to	instruct	the	Bundler	package	manager	to	download	and	install
the	required	libraries	for	Bundler.	Ensure	that	you’re	in	the	root	of	your	new	project
and	then	issue	the	following	command:

bundle	install

This	command	looks	inside	the	gem	file	that	was	created	along	with	the	rest	of	the	project
and	will	then	use	the	Bundler	package	manager	to	install	any	missing	libraries	that
Dashing	requires.	Be	warned:	Dashing	has	quite	an	extensive	set	of	requirements,	so
expect	to	see	quite	a	few	additional	gems	installed.



Exploring	the	default	puppetdash	directory	layout
Let’s	change	directories	and	go	to	the	puppetdash	directory	and	look	at	what	files	have
been	created	for	us.	You	should	find	a	directory	listing	as	shown	in	the	following
screenshot:

Each	of	the	directories	inside	the	Dashing	application	serve	a	particular	purpose,	so	let’s
quickly	run	through	them	and	see	what	they	are:

widgets:	This	directory	holds	the	Dashing	widget	code.	Widgets	are	made	up	of
directories	containing	CoffeeScript,	HTML,	and	Syntactically	Awesome	Style
Sheets	(SASS)	style	sheets.	This	is	where	you	would	create	any	new	widgets	or	place
any	of	the	third-party	widgets	that	are	available.
public:	This	folder	is	a	standard	Sinatra	folder	and	is	used	to	host	any	static	files.
Within	Dashing,	this	is	used	for	the	“404	page	not	found”	HTML	and	browser
favicon.
lib:	This	is	another	standard	Sinatra	folder.	At	the	time	of	writing,	Dashing	isn’t
using	this,	but	this	is	generally	where	external	libraries	required	for	the	application
will	be	stored.	If	you	heavily	customize	Dashing,	you	might	find	that	you	will	need	to
use	this	in	the	future.
jobs:	This	folder	is	where	we	are	going	to	be	spending	most	of	our	time	in	this
chapter.	Jobs	are	the	mechanism	that	Dashing	uses	to	import	data	into	its	various
dashboards,	and	these	are	simple	pieces	of	Ruby	code	that	fetch	information	and	use
the	send_event	function	to	send	the	data	to	a	receiving	widget	(or	set	of	widgets).
assets:	This	folder	is	used	to	contain	the	various	images,	JavaScript	codes,	and	fonts
that	Dashing	uses.	It’s	here	that	you	will	find	the	core	JavaScript	libraries	that
Dashing	uses	to	construct	its	grid	layout,	animation,	and	basic	styling.
dashboards:	The	dashboards	folder	is	where	the	files	that	make	up	the	actual
dashboards	are	stored.	Dashboards	are	created	using	the	embedded	Ruby	templating
language	(ERB)	to	define	the	layout.	We’ll	look	at	this	in	a	bit	more	detail	when	we
create	our	own	dashboard.



Running	Dashing
Now	that	we	know	where	everything	is	kept,	let’s	go	ahead	and	start	Dashing	and	see	how
it	looks	in	its	default	shipping	state.	Open	a	new	terminal	session	at	the	root	of	the
puppetdash	folder	and	issue	the	following	command:

dashing	start

This	will	start	the	Dashing	application	and	have	it	listen	on	the	local	host,	port	3030.	Open
your	browser	and	go	to	http://localhost:3030.	You	should	be	greeted	with	a	page	that
looks	like	the	following	screenshot:

That’s	looking	pretty	good,	and	it	proves	that	your	installation	is	working	fine.	We’re	now
ready	to	start	creating	our	own	dashboards	and	populating	them	with	data.





Creating	our	dashboard
The	first	step	to	creating	our	own	dashboard	is	to	create	our	own	layout	of	widgets	to
represent	our	data.	We	want	to	ensure	that	our	prospective	users	have	enough	data	to	tell
them	how	Puppet	is	doing	in	general,	but	we	also	don’t	want	to	overload	them	with	data.
We’re	going	to	introduce	the	following	items	onto	our	dashboard:

Number	of	hosts	that	have	changed	in	the	past	30	minutes
Number	of	hosts	with	pending	changes	in	the	past	30	minutes
Number	of	hosts	that	failed	a	resource	in	the	past	30	minutes
List	of	nodes	that	have	failed	their	Puppet	run
Number	of	hosts	Puppet	is	managing	at	this	point	in	time
The	total	number	of	managed	resources
The	average	number	of	managed	resources	per	node

These	details	give	our	users	a	good	amount	of	information	without	overloading	them	with
extraneous	detail;	they	should	be	able	to	very	quickly	see	if	everything	is	running	fine.
And	if	there	are	issues,	such	as	a	large	amount	of	changed	or	failed	hosts,	they	should	be
immediately	apparent	at	a	glance.



Creating	our	dashboard	layout
Let’s	go	ahead	and	create	our	dashboard	layout.	Navigate	to	the	dashboards	directory
within	the	puppetdash	project	and	create	a	new	file	called	puppet.erb.	By	default,
Dashing	will	load	the	example	dashboard	as	its	default	dashboard,	and	unless	you	change
the	default	dashboard,	you	are	going	to	have	to	type	the	path	to	your	dashboard	each	time.
Typing	is	tedious,	and	defaults	are	much	more	fun;	let’s	go	ahead	and	change	the	setting	to
make	our	new	layout	the	default	dashboard.	Open	the	puppetdash/config.ru	file	in	your
favorite	editor	and	locate	the	following	lines	of	code	within	it:

configure	do

set	:auth_token,	'YOUR_AUTH_TOKEN'

Now,	edit	this	code	so	that	it	looks	as	follows:

configure	do

set	:auth_token,	'YOUR_AUTH_TOKEN'

set	:default_dashboard,	'puppet'

Go	ahead	and	start	your	dashboard	using	the	dashing	start	command.	Now,	you	should
find	that	it	loads	a	blank	dashboard	on	startup,	as	there	is	nothing	in	the
dashboards/puppet.erb	file	for	it	to	display.	Let’s	go	ahead	and	amend	that;	open	the
puppet.erb	file	in	your	editor	and	insert	the	following	code:

<%	content_for	:title	do	%>Puppet	Stats<%	end	%>

<div	class="gridster">

		<ul>

				<li	data-row="1"	data-col="1"	data-sizex="1"	data-sizey="1">

						<div	data-id="pupchanged"	data-view="Number"	data-title="Changed"	

style="background-color:#96bf48"></div>

				</li>

				<li	data-row="1"	data-col="1"	data-sizex="1"	data-sizey="1">

						<div	data-id="puppending"	data-view="Number"	data-title="Pending"	>

</div>

				</li>

				<li	data-row="1"	data-col="1"	data-sizex="1"	data-sizey="1">

						<div	data-id="pupfailed"	data-view="Number"	data-title="Failed"	

class="status-danger"></div>

				</li>

				<li	data-row="1"	data-col="1"	data-sizex="1"	data-sizey="2">

						<div	data-id="failedhosts"	data-view="Text"	data-title="Failed	

Hosts"></div>

				</li>

				<li	data-row="1"	data-col="1"	data-sizex="1"	data-sizey="1">

						<div	data-id="manhosts"	data-view="Number"	data-title="Managed	hosts"	

style="background-color:#737373"></div>

				</li>

				<li	data-row="1"	data-col="1"	data-sizex="1"	data-sizey="1">

						<div	data-id="manresources"	data-view="Number"	data-title="Managed	



Resources"	style="background-color:#737373"></div>

				</li>

				<li	data-row="1"	data-col="1"	data-sizex="1"	data-sizey="1">

						<div	data-id="avgresources"	data-view="Number"	data-title="Average	

Resources	Per	node"	style="background-color:#737373"></div>

				</li>

		</ul>

</div>

This	is	essentially	a	simple	HTML	code	that	lays	out	a	series	of	list	items	within	an
unordered	list.	Each	of	these	items	represents	an	individual	widget.	Let’s	look	in	a	little
more	detail	at	how	one	of	our	widgets	is	defined.	Consider	the	following	code	snippet:

<li	data-row="1"	data-col="1"	data-sizex="1"	data-sizey="1">

		<div	data-id="pupchanged"	data-view="Number"	data-title="Changed"	

style="background-color:#96bf48"></div>

</li>

Widget	definitions	are	made	up	of	several	options.	The	universally	supported	options	are
the	following:

data-row	and	data-col:	These	two	tags	are	used	to	define	the	widget’s	starting
position	on	the	grid,	and	are	simply	expressed	as	Cartesian	coordinates.	Note	that	this
is	the	starting	position;	Dashing	supports	drag	and	drop	rearrangement,	so	don’t	be
surprised	if	you	wander	past	the	TV	you	are	displaying	your	dashboard	on	to	find	it
looks	different!
data-id:	This	tag	is	used	to	subscribe	a	widget	to	a	particular	Dashing	job;	in	our
case,	we’re	subscribed	to	the	pupchanged	job.	So,	every	time	that	job	sends	updated
information,	it	will	be	updated	in	any	widget	that	is	subscribed	to	it	via	the	data-id
tag.	You	can	have	multiple	widgets	subscribed	to	the	same	job,	which	is	excellent	for
jobs	(akin	to	the	PuppetDB	scan	that	we	have).	You	want	to	keep	down	the	number
of	times	you	perform	heavy	queries	to	data	sources	wherever	possible.
data-view:	This	tag	defines	the	type	of	widget.	It	may	be	a	number,	text,	list,	and	so
on.	By	default,	Dashing	ships	with	several	different	widgets,	and	you	can	find	these
in	the	widgets	directory	of	your	Dashing	application.	The	tag	needs	to	match	the
directory	name	of	your	chosen	widget	in	that	directory.
data-title:	This	tag	defines	the	heading	that	will	be	shown	on	the	widget	and	can
be	a	free-form	piece	of	text	of	your	choice.
Additional	tags:	As	you	can	see,	I’ve	added	several	additional	tags	to	some	of	the
widgets;	this	is	to	style	the	color	of	the	tiles.	Generally	speaking,	you	can	use	most	of
the	common	CSS	tags	to	apply	styling	to	the	tiles,	but	be	careful	with	any	tags	that
affect	the	positioning	or	layout,	as	these	can	have	severely	weird	effects	on	the	grid.

Go	ahead	and	save	this	file	and	then	refresh	your	browser.	You	should	have	a	dashboard
that	looks	like	the	following	screenshot:



As	you	can	see,	the	dashboard	is	using	color	to	great	effect	to	delineate	the	different	data
types.	Note	that	in	the	dashboard,	the	Failed	tile	is	gently	pulsating.	This	is	due	to	the
class="status-danger"	class	that	we	set	for	this	widget	within	the	layout;	this	causes	the
tile	to	gently	pulsate	and	will	focus	user	attention	on	it.	There	is	also	an	additional	class
called	class="status-warning"	that	causes	the	tile	to	turn	a	rather	alarming	shade	of	red
as	well	as	pulsate.	This	can	be	used	to	great	effect	if	you	have	something	you	really
urgently	need	a	user	to	notice.

At	present,	the	dashboard	looks	nice,	but	it	isn’t	especially	useful.	Let’s	go	ahead	and	start
creating	the	jobs	that	are	going	to	feed	data	into	our	dashboard.





Feeding	data	into	Dashing
As	we’ve	already	covered,	Dashing	uses	a	series	of	scheduled	jobs	written	in	Ruby	that
will	collect	any	data	that	we	are	interested	in.	A	library	called	rufus-scheduler	controls
the	scheduling;	the	rufus-scheduler	library	allows	for	great	flexibility	as	to	when	and
how	jobs	are	run,	meaning	that	you	could	have	a	lightweight	job	that	scrapes	data	from	a
public	API	and	runs	every	five	seconds,	and	another	job	that	will	run	every	30	minutes
and	perform	a	heavy	query	on	a	database.

We’re	going	to	create	a	single	job	called	puppet.rb,	and	this	Ruby	code	is	going	to
perform	the	following	actions:

Gather	metrics	using	PuppetDB’s	metrics	endpoint
Gather	a	list	of	nodes	using	PuppetDB’s	nodes	endpoint
Use	the	nodes	gathered	to	gather	counts	for	events	that	have	occurred	in	the	past	30
minutes	using	PuppetDB’s	event-counts	endpoint
Parse	the	events	data	to	display	the	state	of	our	hosts

As	you	can	see,	we’re	taking	the	knowledge	that	we’ve	gained	with	PuppetDB	over	the
past	two	chapters	and	putting	it	to	good	use.

Firstly,	let’s	clear	out	the	jobs	that	ship	with	Dashing.	These	are	used	to	populate	the	demo
dashboards	and	aren’t	going	to	be	used	by	us.	However,	they	will	still	run.	Any	Ruby	file
within	the	jobs	directory	will	be	executed,	and	although	it	won’t	affect	our	dashboard
directly,	it	will	output	warnings	about	the	Twitter	job	into	the	console	when	you	run	the
dashboard.	Let’s	avoid	confusion	and	save	a	tiny	amount	of	resources	by	getting	rid	of
those	now	by	simply	deleting	every	.rb	file	within	the	jobs	directory.	You	can	do	this	by
executing	the	following	command	in	the	root	of	your	Dashing	project:

rm	jobs/*.rb



Creating	new	jobs	in	Dashing
Now	that	we	have	a	nice	and	clean	jobs	directory,	let’s	create	a	new	job.	We	can	use	a
utility	built	into	Dashing	to	build	a	skeleton	job	for	us.	At	the	command	prompt,	change
your	current	directory	to	the	puppetdash	project	root	and	issue	the	following	command:

dashing	generate	job	puppet

This	will	create	a	new	file	called	puppet.rb	and	place	it	in	the	jobs	directory	of	our
dashboard.	Open	up	the	file	and	take	a	look.	It	has	the	following	code:

#	:first_in	sets	how	long	it	takes	before	the	job	is	first	run.	In	this	

case,	it	is	run	immediately

SCHEDULER.every	'1m',	:first_in	=>	0	do	|job|

send_event('widget_id',	{	})

end

As	you	can	see,	we	have	the	beginnings	of	our	job.	The	layout	is	very	simple;	the	first	line
after	the	comment	sets	how	often	this	job	will	run	using	the	every	method	of	the	rufus-
scheduler	library.	We	also	ensure	that	this	job	will	run	as	soon	as	we	start	the	dashboard
using	the	:first_in	option;	this	is	essentially	a	numerical	value	in	seconds	that	the
scheduler	will	wait	before	running	the	first	job.	Setting	it	to	zero	will	ensure	that	the	job
runs	straight	away.	This	is	a	useful	option	if	you	need	to	ensure	that	some	of	your	jobs	are
staggered	to	avoid	excess	load	on	external	systems.

Next,	we	create	a	Ruby	block	called	job	that	will	contain	the	actual	code	that	will	gather
and	send	data.	Essentially,	this	is	a	loop	with	code	being	executed	every	n	units,	where	n
could	be	seconds,	minutes,	hours,	or	days,	depending	on	the	call	to	the	SCHEDULER.every
method.	As	you	can	see,	the	default	value	is	every	one	minute,	but	by	setting	the	option	to
1s,	it	would	run	every	second,	and	setting	it	to	1h	would	ensure	it	runs	every	hour.	You
can	find	out	more	about	which	time	formats	the	rufus-scheduler	library	understands	by
visiting	the	project	page	at	http://rufus.rubyforge.org/rufus-scheduler/.

Let’s	go	ahead	and	edit	this	code	to	suit	our	purposes.	The	first	thing	we’re	going	to	do	is
include	the	libraries	that	we	will	need	to	work	with	our	data;	these	are	old	friends	we’ve
already	worked	with	when	using	PuppetDB	and	should	be	familiar	at	this	point.	We’re
also	going	to	set	our	job	to	run	every	30	seconds;	we’re	going	to	be	hitting	PuppetDB
reasonably	hard,	so	we	don’t	want	to	be	too	heavy	handed,	and	this	type	of	data	doesn’t
need	to	be	in	real	time.	Have	a	look	at	the	following	code:

require	'json'

require	'net/http'

require	'uri'

#	:first_in	sets	how	long	it	takes	before	the	job	is	first	run.	In	this	

case,	it	is	run	immediately

SCHEDULER.every	'30s',	:first_in	=>	0,	allow_overlapping:	false	do

It’s	worth	noting	the	additional	option	I’ve	added	to	the	scheduler;	that	is,	the
allow_overlapping:	false	option.	This	ensures	that	this	job	won’t	run	until	all	previous
iterations	of	this	job	have	completed.	This	ensures	that	if	PuppetDB	takes	longer	than	30

http://rufus.rubyforge.org/rufus-scheduler/


seconds	to	respond,	we	don’t	add	to	its	woes	by	sending	yet	another	set	of	queries	for	it	to
deal	with.

Now	that	we	have	our	job	schedule	defined,	it’s	time	to	move	on	and	start	gathering	data.
Firstly,	let’s	define	some	variables	to	hold	our	data.	This	is	described	in	the	following	code
snippet:

SCHEDULER.every	'30s',		:first_in	=>	0,	allow_overlapping:	false	do	

|puppet|

time_past	=	(Time.now	-	1800)

ftime_now	=	Time.now.strftime("%FT%T")

ftime_past	=	time_past.strftime("%FT%T")

		@failedhosts	=	[]

		@failed	=	0

		@changed	=	0

		@unchanged	=	0

		@pending	=	0

		@eventtext	=	''

What	we’re	doing	here	is	setting	up	three	variables	for	holding	time	data.	The	first
variable	(time_past)	holds	the	current	time	minus	30	minutes;	this	gives	us	the	time
period	we	want	to	report	on.	The	other	two	time	variables	(ftime_now	and	ftime_past)
are	formatted	ready	for	submission	to	PuppetDB.	The	next	six	variables	are	going	to	be
used	to	hold	the	data	we	plan	to	return,	an	array	of	hosts,	the	number	of	hosts	that	Puppet
has	affected	in	the	past	30	minutes,	and	finally	a	place	holder	to	decant	our	array	of	hosts
into	when	we	come	to	display	it.

Our	next	task	is	to	fetch	the	data	from	PuppetDB	using	the	same	methods	that	we’ve
covered	in	the	previous	chapters.	This	time	a	round,	we’re	going	to	be	gathering	data	from
a	variety	of	PuppetDB	sources,	and	in	particular,	we	will	be	using	the	metrics	endpoint
for	the	first	time.	Have	a	look	at	the	following	code:

@eventtext	=	''

nodes	=	JSON.parse(Net::HTTP.get_response(URI.parse

('http://localhost:8080/v3/nodes/')).body)

numberofhosts	=	JSON.parse(Net::HTTP.get_response(URI.parse

('http://localhost:8080/v3/metrics/mbean/com.puppetlabs.puppetdb.

query.population:type=default,name=num-nodes'	)).body)["Value"]

numberofresources	=	JSON.parse(Net::HTTP.get_response(URI.parse

('http://localhost:8080/v3/metrics/mbean/com.puppetlabs.puppetdb.

query.population:type=default,name=num-resources'	)).body)["Value"]

avgresources		=	JSON.parse(Net::HTTP.get_response(URI.parse

('http://localhost:8080/v3/metrics/mbean/com.puppetlabs.puppetdb.

query.population:type=default,name=avg-resources-per-node'	)).body)

["Value"].round

You	may	be	thinking	that	the	call	to	the	nodes	endpoint	looks	a	little	different	than	before;



this	is	because	this	time	a	round,	we’re	performing	the	JSON	parse,	the	NET::HTTP	library
call,	and	the	URI	parse	all	in	one	line.	This	is	a	more	efficient	method,	but	is	slightly	less
readable	on	first	reading;	by	now,	you	should	be	familiar	with	using	this	technique—this	is
just	making	it	tidier.

The	metrics	endpoint	is	another	PuppetDB	endpoint	that	is	simple	to	work	with	as	it	is	a
single	non-parameterized	call	that	responds	with	a	single	JSON	element.	As	you	can	see,
we’re	taking	the	value	returned	by	that	call	(contained	within	the	["Value"]	field)	and
assigning	it	straight	to	its	respective	variable;	there’s	no	more	processing	required	for	the
metrics.

So,	we	now	have	our	list	of	nodes	and	our	metrics,	and	we	now	need	to	calculate	the	data
we	need	to	fill	our	required	columns.	Take	another	look	at	our	dashboard:

We	now	need	a	way	to	calculate	how	many	hosts	are	in	a	particular	state.	Normally,	we
would	turn	to	the	aggregate-event-counts	endpoint	for	this	information.	As	we’ve	noted
in	earlier	chapters,	it’s	a	highly	efficient	endpoint	to	gather	this	kind	of	metric.	However,
in	this	case,	it	doesn’t	quite	fit	the	bill.	The	problem	with	the	aggregate-event-counts
endpoint	is	that	hosts	can	be	counted	more	than	once	as	it’s	counting	events	rather	than
hosts.	Consider	this	example:	a	host	tries	to	apply	both	a	user	and	file	resource	from	its
catalog,	with	the	user	resource	applying	OK,	but	the	file	resource	failing	due	to	a	missing
prerequisite.	In	this	scenario,	the	host	has	created	two	events,	one	success	and	one	failure,
and	this	will	be	reflected	in	the	final	events	count.

As	our	dashboard	is	taking	the	point	of	view	of	a	node,	it	makes	more	sense	to	ensure	that
a	host	can	only	be	in	one	of	three	states:	changed,	pending,	or	failed.	This	maps	nicely	to
the	success,	noop,	and	failure	event	types.	We	just	need	to	ensure	that	if	a	host	correctly
applies	three	resources	and	fails	on	the	fourth,	then	that	is	reflected	in	the	Failed	tile	of	the
dashboard	and	doesn’t	appear	in	the	Changed	tile.	Although	technically	it	is	both,	for	our



dashboard,	we	want	to	ensure	that	it’s	only	reported	as	failed.	Let’s	go	ahead	and	add	the
following	code	to	enable	this	for	the	puppet.rb	file:

nodes.each	do	|node|

		uri	=	URI.parse('http://localhost:8080/v3/event-counts/')

		uri.query	=	URI.encode_www_form(:query	=>	%Q'["and",	["=",	"certname",	"#

{node['name']}"],["<",	"timestamp",	"#{ftime_now}"],[">",	"timestamp",	"#

{ftime_past}"],["=",	"latest-report?",	"true"]]',	:'summarize-by'	=>	

'certname',	:'count-by'	=>	'resource')

		events	=	JSON.parse(Net::HTTP.get_response(uri).body)

		events.each	do	|event|

				if	event['failures']	>	0

						@failedhosts	<<	event['subject']['title']

						@failed	+=	1

				elsif	event['noops']	>	0

						@pending	+=	1

				elsif	event['successes']	>	0

						@changed	+=	1

				end

		end

end

The	first	thing	that	we	are	doing	is	constructing	a	Ruby	block	and	passing	it	the	name	of
the	node	we	gathered	from	the	nodes	list.	We	then	connect	to	the	event-counts	endpoint
and	query	it	for	any	events	created	by	this	node	in	the	past	30	minutes.	This	is	derived	by
asking	for	any	events	that	fall	between	the	ftime_past	(30	minutes	ago)	and	ftime_now
(current	time)	values.

Once	we	have	our	list	of	events,	we	need	to	decide	if	they	constitute	a	success,	failure,	or
noop	operation;	we	do	this	by	examining	the	data	contained	within	the	event	hash,	looking
for	failures,	noops,	and	successes.	These	are	numeric	fields	that	will	simply	list	the
number	of	resources	that	are	in	a	given	state,	and	we	can	use	this	to	build	our	node
metrics.	It’s	important	that	we	parse	this	data	in	the	correct	order,	as	a	node	may	have
several	different	states.	To	accomplish	this,	we	first	check	to	see	if	the	node	has	any	failed
resources,	and	if	it	does,	we	add	its	hostname	to	the	array	we	are	going	to	use	to	build	our
list	of	failed	nodes.	Then,	we	increment	the	failed	nodes	counter	before	exiting	the	loop.	If
it	hasn’t	failed	any	resources,	we	then	see	if	it	has	any	non-applied	resources,	and	if	it
does,	we	increment	the	noop	counter	and	exit.	Finally,	we	check	if	it	has	successfully
applied	resources,	and	if	it	has,	we	increment	the	success	counter.	By	ensuring	that	we	exit
the	loop	after	each	state	is	discovered,	we	avoid	a	double	or	even	triple	counting	of	a	host.

We’ve	gathered	all	of	the	data	that	we	need	to	send	to	our	dashboard	view.	Now,	all	we
need	to	do	is	go	ahead	and	make	our	widgets	aware	that	there	is	new	data	to	display.	We
do	this	using	the	send_event	method	provided	by	Dashing.	The	send_event	method	uses
two	arguments:	the	first	is	the	ID	of	the	widget	to	which	you	want	to	send	the	data,	and	the
second	is	the	data	that	you	wish	the	widget	to	process	in	JSON	format.

In	our	case,	we	have	the	following	data	IDs:

pupfailed



puppending

pupchanged

manhosts

manresources

avgresources

failedhosts

Each	of	these	IDs	in	turn	map	to	a	particular	widget.	This	is	shown	in	the	following
screenshot:

When	we	trigger	a	send_event	method	with	any	of	these	widget	IDs,	the	displayed	data
will	change	to	whatever	we	have	sent,	assuming	that	it’s	in	the	right	format.	In	our	case,
we’re	almost	exclusively	dealing	with	data	views	using	the	number	format;	the	odd	one
out	is	the	Failed	widget,	which	is	using	a	simple	text	format.

So,	now	that	we	know	where	the	data	is	going,	let’s	send	it.	This	is	done	using	the
following	code:

send_event('pupfailed',	{current:	@failed})

send_event('puppending',	{current:	@pending})

send_event('pupchanged',	{current:	@changed})

send_event('manhosts',	{current:	numberofhosts})

send_event('manresources',	{current:	numberofresources})

send_event('avgresources',	{current:	avgresources})

		@failedhosts.each	do	|host|

						@eventtext<<	"#{host}	\n"

end

send_event('failedhosts',	{	text:	@eventtext	})

end



This	code	is	fairly	straightforward.	The	first	six	lines	simply	take	the	numeric	values
we’ve	gathered	for	our	various	host	metrics	and	send	them	on	to	their	respective	widgets.
As	you	can	see,	we	are	only	including	one	JSON	field	with	each	of	these,	which	is	the
current:	field.	This	sets	the	value	of	the	data	that	is	displayed	to	the	user.

The	next	set	of	lines	deals	with	the	failed	hosts’	data.	We’re	sending	that	to	a	text	widget,
so	we	need	to	take	the	data	that	is	currently	in	an	array	and	iterate	through	it,	adding	each
line	into	a	variable	that	we’re	going	to	use	to	hold	it	as	a	string	object.	Note	that	within
each	iteration,	we’re	adding	the	control	character	\n	at	the	end.	This	is	so	that	each	host	is
followed	by	a	carriage	return	to	ensure	our	list	is	nice	and	tidy.

That’s	it!	You	should	now	be	able	to	go	into	the	root	of	your	Dashing	project	and	run	it
using	the	command	dashing	start.	You	should	then	see	your	own	version	of	the
dashboard	that	looks	like	the	following	screenshot:

That’s	a	pretty	good-looking	dashboard,	and	it	makes	your	most	important	Puppet	metrics
both	highly	accessible	and	also	very	clear	and	easy	to	read.	Dashing	has	been	designed	to
be	displayed	on	big	displays,	so	if	you	have	a	spare	TV	or	a	large	monitor	sitting	around
the	office,	it’s	worth	putting	this	dashboard	somewhere	nice	and	visible.	As	I’ve
mentioned	elsewhere,	Puppet	reporting	is	a	great	place	to	spot	when	things	have	radically
changed	on	your	network,	so	having	this	data	at	hand	can	ensure	that	you	see	issues	before
they	become	big	problems.





Adding	trends
Our	dashboard	is	already	looking	pretty	good,	but	Dashing	offers	a	few	features	that	are
both	easy	to	implement	and	quickly	and	easily	add	additional	data	and	means	of	discovery.
One	of	the	quickest	and	easiest	additions	is	adding	trends	to	our	Puppet	metrics	to	allow
people	to	see	at	a	glance	how	data	is	changing	over	time.	This	is	achieved	using	the
numbers	widget	that	we’ve	already	used.	The	numbers	widget	is	not	just	limited	to
displaying	the	current	dataset;	it	can	also	display	a	second	field,	which	is	the	percentage
change	from	the	last	run,	complete	with	an	appropriate	arrow	to	denote	how	the	data	has
changed.

As	we’ve	already	mentioned,	the	numbers	widget	accepts	fields	in	JSON	format;	we’ve
already	given	it	one	field,	:current,	and	now	we’re	going	to	give	it	a	second	field,	:last.
This	will	give	the	numbers	widget	the	data	it	needs	to	draw	the	trend	data,	and	this	:last
field	represents	the	last	reading	that	this	widget	displayed.	Let’s	go	ahead	and	alter	our
code	to	add	this	new	feature.

In	essence,	all	we	need	to	do	is	create	three	new	variables,	and	these	will	be	used	to
contain	the	previous	values	of	the	metrics	widgets.	This	is	very	easy.	One	of	the
advantages	of	using	the	rufus-scheduler	library	is	that	the	job	is	effectively	running	in
its	own	thread.	This	means	that	any	variables	that	are	initialized	can	be	treated	as	being
persistent	for	the	lifetime	of	the	dashboard	process.

Take	a	look	at	the	following	example	code	for	a	dashboard	job:

foo	=	0

SCHEDULER.every	'5s,'	do		|example|

lastfoo	=	foo

foo	+=	1

send_event('foo',	{current:	foo,	last:	lastfoo	})

end

In	this	case,	in	its	first	run,	the	widget	will	receive	two	values:	the	current:	field	value,
which	will	be	1,	and	the	last:	field	value,	which	will	be	0.	In	the	next	run,	the	values	will
be	2	and	1,	then	3	and	2,	and	so	on.	Essentially,	the	code	between	the	SCHEDULER.every
method	and	the	end	statement	is	being	continuously	run,	and	thus	the	values	are	being
persisted.	This	is	helpful	as	it	saves	you	using	something	along	the	lines	of	a	text	file,
database,	or	key	value	store	to	store	this	data,	and	avoids	the	overhead	of	having	to
retrieve	it	every	time	you	want	to	refresh	your	dataset.	Dashing	also	keeps	a	history	of	the
widget	values,	which	means	that	when	you	restart	the	dashboard,	it	should	load	the
previous	values	and	avoid	you	having	to	start	from	scratch.	You	can	find	this	in	the	root	of
your	dashing	folder	in	a	file	named	history.yaml.

Let’s	go	ahead	and	edit	our	code	to	support	the	trends	view.	First	of	all,	we	need	to	create
some	blank	variables	to	hold	our	data.	This	is	described	in	the	following	code:



require	'json'

require	'net/http'

require	'uri'

last_manhosts	=	0

last_manresources	=	0

last_avgresources	=	0

Now,	we	need	to	assign	them	a	value	within	the	actual	job	loop	itself.	This	is	described	in
the	following	code	snippet:

time_past	=	(Time.now	-	1800)

ftime_now	=	Time.now.strftime("%FT%T")

ftime_past	=	time_past.strftime("%FT%T")

last_manhosts	=	numberofhosts

last_manresources	=	numberofresources

last_avgresources	=	avgresources

This	code	is	applied	before	any	other	calculation,	and	so	should	either	contain	0	if	this	is
the	very	first	time	the	dashboard	has	run,	or	the	previous	value	of	the	manhosts,
manresources,	and	avgresources	IDs	if	it	has	been	run	before.	Finally,	we	need	to	send
our	data	to	the	widget.	This	is	done	using	the	following	code:

send_event('pupfailed',	{current:	@failed})

send_event('puppending',	{current:	@pending})

send_event('pupchanged',	{current:	@changed})

send_event('manhosts',	{current:	numberofhosts,	last:last_manhosts})

send_event('manresources',	{current:	numberofresources,	

last:last_manresources})

send_event('avgresources',	{current:	avgresources,	last:last_avgresources})

That’s	all	we	need	to	do.	None	of	the	layout	information	has	changed,	and	the	number
widget	is	already	designed	to	deal	with	our	new	data.	Go	ahead	and	restart	your
dashboard.	It	should	now	look	like	the	following	screenshot:



As	you	can	see,	we	can	now	easily	see	the	trends	by	simply	glancing	at	the	panel.	In	this
example,	my	managed	resources	have	gone	through	the	roof	and	my	average	resources	per
node	are	way	up.	But	my	managed	hosts	have	dropped	alarmingly.	If	this	were	a
production	system,	I’d	be	reaching	for	the	panic	button	around	this	point.	Without	the
dashboard,	I	might	have	been	blissfully	unaware	of	any	problems	until	it	moved	from
being	a	curious	problem	to	becoming	a	huge,	stability	threatening	monstrosity	of	an
incident.	Much	like	riding	a	bike	on	the	road,	when	it	comes	to	infrastructure
management,	visibility	is	your	friend.





Adding	meters
We’ve	made	our	trends	easier	to	see,	but	the	dashboard	still	lacks	a	certain	flair.	Sure	it’s
clear	and	very	colorful,	but	it’s	still	pretty	static.	Let’s	make	it	a	bit	swishier	and	add	some
swing	to	our	dashboard	using	the	meter	widget.	The	meter	widget	is	a	fun	way	of	not	only
adding	some	animation	to	a	dashboard,	but	also	giving	users	a	visual	clue	as	to	how
dramatically	things	have	changed.

Firstly,	let’s	amend	our	puppet.erb	file.	As	we	covered	earlier,	the	.erb	file	deals	with	the
layout	for	the	dashboard,	and	in	particular,	it	is	where	you	define	the	types	of	widgets	that
will	be	presented.	In	our	case,	we	want	to	take	the	existing	number	widgets	and	turn	them
into	meter	widgets.	You	can	do	this	by	amending	the	puppet.erb	file	to	contain	the
following	code	snippet:

<%	content_for	:title	do	%>Puppet	Stats<%	end	%>

<div	class="gridster">

<ul>

<li	data-row="1"	data-col="1"	data-sizex="1"	data-sizey="1">

		<div	data-id="pupchanged"	data-view="Meter"	data-min=

"0	data-max="100"	style="background-color:#96bf48"></div>

</li>

<li	data-row="1"	data-col="1"	data-sizex="1"	data-sizey="1">

		<div	data-id="puppending"	data-view="Meter"	data-min=

"0"	data-max="100"	></div>

</li>

<li	data-row="1"	data-col="1"	data-sizex="1"	data-sizey="1">

		<div	data-id="pupfailed"	data-view="Meter"	data-min=

"0"	data-max="100"	class="status-danger"></div>

</li>

As	you	can	see,	we’ve	slightly	amended	the	HTML	code	to	include	a	new	data-view
attribute,	and	we’ve	added	some	additional	attributes	to	control	the	minimum	and
maximum	numbers.	Go	ahead	and	change	these	attributes	to	reflect	your	environment.
Generally	speaking,	I’d	make	the	data-max	value	match	the	number	of	hosts.	This
controls	the	distance	that	the	meter	can	swing,	so	you	want	the	top	end	to	be	roughly
analogous	to	the	number	of	hosts	you	have.

The	next	thing	we	need	to	do	is	edit	our	job	code.	Although	the	widget	ID	remains	the
same,	the	widget	type	is	different,	and	will	therefore	accept	a	slightly	different	format	of
data.	Go	ahead	and	amend	your	code	to	look	like	the	following:

send_event('pupfailed',	{value:	@failed})

send_event('puppending',	{value:	@pending})

send_event('pupchanged',	{value:	@changed})

send_event('manhosts',	{current:	numberofhosts,	last:last_manhosts})

send_event('manresources',	{current:	numberofresources,	

last:last_manresources})



send_event('avgresources',	{current:	avgresources,	last:last_avgresources})

As	you	can	see,	all	we’ve	done	is	changed	the	format	of	the	data	from	the	current:	type
to	the	value:	type.	The	rest	remains	the	same	as	the	meter	widget	deals	in	numeric	data	in
the	same	way	as	the	number	widget.	OK,	now	that	we’ve	made	our	changes,	go	ahead	and
restart	our	Dashing	dashboard.	You	should	end	up	with	a	dashboard	that	looks	like	the
following	screenshot:

Now	we	have	a	dashboard	that	is	gaudily	colorful,	nicely	informative,	and	rather
impressively	animated.	This	is	now	ready	to	be	put	up	on	the	largest	monitor	or	TV	you
have	to	hand	so	that	you	can	keep	an	eye	on	it.

As	you	can	see,	Dashing	is	a	versatile	accompaniment	to	PuppetDB.	Hopefully,	this
simple	dashboard	has	set	your	imagination	to	work	wondering	what	else	you	could
display.	Remember,	PuppetDB	has	access	not	only	to	the	Puppet	catalog	and	reports,	but
also	the	Facter	information	for	each	host.	This	can	make	for	a	fairly	impressive	range	of
data.	Want	to	easily	graph	how	many	CPUs	you	currently	have	allocated?	Ever	wondered
how	much	RAM	your	hosts	in	a	certain	domain	have?	All	these	facts	and	more	are
relatively	easy	to	retrieve	using	PuppetDB	and	very	easy	to	display	using	Dashing.	I
encourage	you	to	play	around	and	see	what	combinations	you	can	come	up	with.	Also,
remember	that	you’re	not	just	limited	to	one	dashboard	using	Dashing	–	you	can	create	as
many	as	you	like	within	the	dashboards	folder.

As	long	as	there	is	a	job	that	can	feed	your	widgets	with	data,	it	doesn’t	matter	how	many
you	have.	If	you	are	going	to	employ	a	large	amount	of	dashboards,	then	it	might	be
sensible	to	use	a	generic	Puppet	job	to	retrieve	the	data.	That	way,	you	have	a	singular	job
that	runs	every	so	often	and	gathers	all	of	the	stats	from	PuppetDB	and	feeds	many



dashboards,	rather	than	having	many	dashboards,	each	with	their	own	individual	jobs	to
gather	data.	This	is	the	kind	of	shenanigans	that	can	leave	your	PuppetDB	a	smoking	ruin
by	subjecting	it	to	a	very	large	load	every	few	seconds	as	your	many	widgets	go	looking
for	their	data.





Summary
In	this	chapter,	we’ve	taken	a	look	at	how	we	can	utilize	the	data	we	store	in	PuppetDB	to
create	attractive	dashboards	in	Dashing.	We’ve	explored	the	use	of	ERB	templates	to	lay
out	our	widgets	and	the	concept	of	using	jobs	to	gather	data	in	the	background.	We’ve
created	our	own	dashboards	to	allow	our	users	to	see	the	current	state	of	the	Puppet
infrastructure,	including	which	resources	have	changed,	succeeded,	and	failed.	We’ve
taken	that	basic	dashboard	and	improved	it	by	adding	in	a	quick	and	easy	trends	reference,
and	we	also	added	some	more	graphical	cues	by	adding	in	meters	to	accentuate	some	of
the	data	display.	Finally,	we	took	a	look	at	some	general	tips	on	how	to	get	the	best	out	of
your	dashboard	data.

In	the	next	chapter,	we’re	going	to	take	a	look	back	at	everything	we’ve	covered	so	far	and
recap	some	of	the	highlights.	We’re	also	going	to	explore	some	of	the	other	ways	you	can
use	your	Puppet	data,	and	briefly	touch	on	what	other	tools	you	can	use	to	drive	reporting
and	alerting	using	Puppet.





Chapter	9.	Looking	Back	and	Looking
Forward
We	are	nearing	the	end	of	our	exploration	of	Puppet	reporting	and	alerting,	and	so	it	seems
fitting	that	we	spend	this	chapter	going	over	what	we’ve	learned	and	exploring	some	of
the	other	ways	in	which	you	can	utilize	the	reporting	functions	of	Puppet.

In	this	chapter,	we	will	cover:

A	recap	of	Puppet	dashboards	and	integration	with	third-party	dashboards
Looking	back	at	the	alerting	feature	and	integration	with	external	alerting	systems
Analyzing	metrics	and	changes	with	Graphite
Anomaly	detection	with	Etsy	Skyline
Driving	change	and	orchestration	with	the	Puppet	reporting	feature



Looking	back	at	what	we’ve	learned
By	now,	you	should	be	familiar	with	Puppet	reporting	features	and	how	they	fit	in	with	the
wider	Puppet	product.	However,	it’s	worth	recapping	what	we’ve	learned,	and	while	we
recap,	we	will	look	at	other	ways	of	using	these	features.	We’ve	covered	the	basics	of
configuration	and	data	retrieval	in	this	book,	but	this	is	just	the	tip	of	the	iceberg.	With	a
little	imagination	and	creative	use	of	both	the	report	processors	and	PuppetDB	features,
you	can	start	to	use	Puppet	in	ways	you	may	not	have	considered,	not	only	to	uncover
details	about	your	infrastructure	you	may	not	have	been	aware	of,	but	also	to	drive	change
within	it.



Rediscovering	dashboards
We	took	a	look	at	dashboards	way	back	in	Chapter	2,	Viewing	Data	in	Dashboards,	and
you	will	remember	from	that	chapter	that	there	are	several	dashboards	available	for
Puppet,	ranging	from	the	venerable	Puppet	Dashboard	through	to	the	all	singing	and	all
dancing	Puppet	Enterprise	Console.	With	the	addition	of	PuppetBoard,	we	also	have	a
stylish	and	easy	to	use	way	to	observe	the	details	that	PuppetDB	holds.

Dashboards	are	a	fantastic	addition	to	your	Puppet	infrastructure,	allowing	you	to	see,	at	a
glance,	any	element	of	your	infrastructure	that	is	either	not	configured	correctly	or,
perhaps	more	importantly,	has	recently	been	updated.	The	visibility	of	changes	is	perhaps
one	of	the	most	bewilderingly	overlooked	and	yet	impressive	features	that	Puppet	offers,
and	the	dashboard	is	your	window	into	that	process.

In	Chapter	8,	Creating	Your	Own	Custom	Dashboard,	we	looked	at	how	we	can	use
Puppet	to	design	our	own	custom	reporting	dashboard.	This	utilized	the	power	of
PuppetDB	and	the	simplicity	of	Dashing	to	create	our	very	own	view	of	Puppet	data.	We
can	use	the	same	techniques	to	add	data	to	other	dashboards	and	aggregation	systems.	The
recent	explosion	of	tools	for	DevOps	system	administrators	has	gifted	us	with	several
different	cloud-based	dashboard	systems	such	as	Boundary	(http://boundary.com)	and
New	Relic	(http://newrelic.com).	These	systems	are	increasingly	attempting	to	become	the
hub	of	a	busy	DevOps	department	and	offer	some	excellent	integration,	both	for	data
visualization	and	alerting.	Using	custom	report	processors,	Puppet	can	easily	be	integrated
into	these	systems	and	will	bring	valuable	insight	into	the	rate	of	change	alongside	the
other	metrics	that	these	applications	monitor.	We	have	long	become	accustomed	to	the
idea	that	we	need	to	track	changes	to	our	application	code;	however,	for	some	time,	we
have	lacked	the	tools	to	do	this	with	our	infrastructure.	Using	Puppet	reporting,	we	can
start	to	bridge	that	gap,	and	by	integrating	with	existing	dashboards	used	to	visualize	this
data,	we	can	get	a	holistic	view	of	our	rate	of	change.

http://boundary.com
http://newrelic.com


Producing	alerts
In	Chapter	4,	Creating	Your	Own	Report	Processor,	we	looked	at	how	you	can	create	your
own	alerts	using	custom	report	processors.	We	used	a	relatively	small	amount	of	Ruby
code	to	monitor	change	among	specific	elements,	and	triggered	e-mails	when	this
occurred.	This	was	the	basis	of	our	simple	and	effective	alerting	system,	and	for	small
installations,	it	would	be	absolutely	perfect.	For	larger	infrastructures,	you	will	need
something	a	little	more	industrial,	with	a	solution	that	can	both	scale	and	offer	a	more
complete	set	of	features	about	how	you	are	alerted.	Infrastructure	monitoring	has	been
around	for	some	considerable	time,	and	there	are	a	great	deal	of	tools	to	choose	from,	both
open	source	and	commercial.

The	recent	trend	towards	having	a	more	ephemeral	infrastructure	has	started	to	create	a
shift	in	this	space,	with	an	increasing	number	of	monitoring	system	developers	trying	to
make	their	respective	systems	suitable	for	use	in	an	environment	where	server	lifetimes
may	only	be	measured	in	hours	rather	than	the	more	traditional	years.	Puppet	is	already
being	widely	utilized	to	configure	these	tools	as	the	exported	configuration	feature	makes
it	incredibly	simple	to	roll	out	new	checks	when	systems	change;	in	particular,	this	has
made	managing	the	complexities	of	products	based	around	Nagios	much	simpler.

Using	Nagios
Nagios	(http://www.nagios.org)	is	the	old	faithful	of	the	monitoring	world,	and	it’s	hard	to
find	a	systems	administrator	who	hasn’t	had	to	work	with	it	at	some	point	in	his	or	her
career.	This	open	source	project	has	had	the	benefit	of	a	huge	community	of	software
engineers	working	on	it	for	quite	a	number	of	years,	and	at	this	point,	could	be	considered
the	quintessential	open	source	monitoring	tool.

Nagios	has	been	the	basis	for	a	great	number	of	new	projects,	both	commercial	and	open
source,	with	several	of	them	being	direct	forks	from	the	original	Nagios	code	base.

Discovering	Icinga	and	Shinken
Products	such	as	Icinga	(https://www.icinga.org)	and	Shinken	(http://www.shinken-
monitoring.org)	are	forked	from	the	Nagios	code	base,	and	have	taken	certain	features	of
the	original	product	and	improved	upon	them	for	certain	use	cases.	The	omnipresence	of
Nagios	has	also	ensured	that	most	monitoring	systems	can	make	use	of	the	incredible
number	of	checks	that	have	been	written	for	it,	and	will,	at	the	very	least,	be	able	to	react
to	output	from	them.

One	very	interesting	relative	newcomer	in	the	monitoring	space	is	the	Sensu	project
(http://sensuapp.org).	Its	dashboard	is	shown	in	the	following	screenshot:

http://www.nagios.org
https://www.icinga.org
http://www.shinken-monitoring.org
http://sensuapp.org


Sensu	has	been	designed	from	the	ground	up	to	be	used	in	large	and	volatile	environments
(such	as	a	cloud)	and	brings	design	patterns	such	as	a	publish	and	subscribe	model,	both	to
enable	it	to	scale	to	thousands	of	clients	relatively	easily	and	to	make	the	discovery	and
configuration	of	new	hosts	simple.	Sensu	has	been	designed	with	a	robust	API	and	the
Ruby	library	to	allow	the	addition	of	new	checks,	and	although	a	great	many	of	them	are
written	in	Ruby,	you	can	also	implement	them	in	pretty	much	any	other	language.	I’ve
seen	checks	that	have	been	written	in	Ruby,	Python,	and	Java.	If	for	some	reason,	you
can’t	write	a	new	check,	Sensu	is	able	to	understand	and	process	checks	that	have	been
designed	for	Nagios,	so	you	can	easily	reuse	existing	checks.

As	we’ve	already	discovered,	Puppet	isn’t	just	limited	to	setting	up	these	systems.	It	can
also	be	used	to	trigger	alerts	based	on	its	unique	view	of	your	infrastructure.	This	is	where
it	integrates	well	with	a	dedicated	monitoring	system	such	as	Nagios	and	Sensu.	Raising
alerts	using	report	processors	is	relatively	easy;	however,	generating	the	correct
notification	type	is	complex	and	better	left	to	systems	more	suited	for	that	activity.	Using
the	techniques	we	have	already	learned,	it	would	be	easy	to	add	checks	like	the	following:

Monitor	and	alert	if	a	resource	failed	to	apply	or	a	catalog	failed	to	compile
Alert	if	Puppet	has	not	been	run	on	a	host	for	a	certain	amount	of	time
Alert	if	certain	non-managed	resources	are	changed	using	the	audit	metaparameter
Monitor	and	alert	if	certain	facts	have	changed	on	a	node	using	the	PuppetDB	records



Compliance	monitoring	with	Puppet
In	combination	with	Facter,	Puppet	knows	a	huge	amount	about	your	infrastructure,	and
informs	your	dedicated	monitoring	system	when	these	facts	have	changed.	By	using	these
facts	alongside	defined	roles	within	your	ENC	or	Hiera,	it’s	possible	to	raise	alerts	when
nodes	fall	out	of	compliance.	With	judicious	use	of	custom	facts,	you	can	use	Puppet	to
gather	details	of	what	software	and	configuration	exists	on	a	given	set	of	servers,	store
them	in	PuppetDB,	and	then	use	your	alerting	system	to	compare	those	details	and	set	off
appropriate	warnings	if	they	don’t	match.	By	using	Puppet	to	alert	you	when	a	host	is	out
of	compliance,	you	gain	the	confidence	that	your	infrastructure	is	configured	how	it	needs
to	be	for	your	uses.	Remember,	Puppet	has	the	under-utilized	audit	metaparameter,	and
this	is	an	excellent	way	to	identify	and	monitor	resources	that	you	might	not	want	to
manage	using	Puppet.	We	looked	at	how	to	use	the	audit	metaparameter	in	Chapter	4,
Creating	Your	Own	Report	Processor;	it’s	worth	learning	this	technique	as	it	can	add
simple,	powerful,	and	real-time	auditing	to	your	Puppet-managed	infrastructure.

Auditing	isn’t	limited	to	the	elements	that	Puppet	manages,	as	you	can	easily	create
custom	facts	whose	only	role	is	to	gather	data	for	consumption	by	your	reporting	and
alerting	systems.	Creative	use	of	custom	facts	can	be	hugely	beneficial	when	tying	your
alerting	systems	with	Puppet;	it’s	relatively	easy	to	write	a	custom	fact	to	export	all	the
installed	software	on	a	given	server	or	to	return	details	about	custom	systems	designed	by
your	internal	developers.	Once	these	facts	have	been	created,	they	are	available	for	use	in
report	processors	and	are	also	stored	in	PuppetDB	for	reporting	uses.	Be	creative	–	the
more	monitoring	you	have,	the	more	you	can	be	confident	that	your	systems	are	correctly
configured,	ready	for	use,	and	suited	for	the	applications	that	are	going	to	be	hosted	on
them.	There	is	nothing	more	irritating	than	being	woken	up	at	some	unnatural	time	of	the
morning	by	a	customer	who	has	spotted	a	problem	because	your	alerting	system	missed	it.



Analyzing	metrics	with	StatsD,	Graphite,	and	Etsy
Skyline
As	we	have	seen	throughout	this	book,	Puppet	creates	an	awful	lot	of	interesting	metrics,
with	items	such	as	total	number	of	managed	resources,	time	taken	to	apply	catalog,	and	so
on	readily	available	to	report	against.	On	its	own,	this	can	be	of	limited	use	–	you	can
certainly	raise	alerts	based	around	long-running	clients,	and	the	stats	for	the	number	of
managed	hosts	and	resources	can	be	a	handy	gauge	of	activity,	but	in	general,	these	stats
are	more	suited	to	analysis	rather	than	alerting.	Luckily,	we	now	have	some	very	powerful
tools	at	our	disposal	to	not	only	store	this	type	of	data,	but	also	to	analyze	and	visualize	it.

Graphite	(https://github.com/graphite-project)	is	one	such	system,	and	is	a	popular	and
highly	powerful	system	for	storing	and	graphing	time	series	data.

Note
A	time	series	is	essentially	points	of	data	plotted	over	a	set	time	period.	For	instance,	the
response	time	of	an	application	measured	at	intervals	of	a	minute	would	be	an	excellent
example.

This	is	a	perfect	fit	for	Puppet	metrics,	and	getting	Puppet	metrics	into	Graphite	is	very
easy	indeed.	You	can	find	a	ready-made	report	processor	at
https://github.com/krux/puppet-module-graphite-report,	which	once	installed	will	send
your	Puppet	metrics	to	Graphite.

Graphite	allows	you	to	start	graphing	your	Puppet	metrics	in	real	time	and	easily	combine
disparate	data	points	into	a	single	graph.	For	instance,	in	Puppet	metrics	terms,	this	means
that	you	could	take	the	metrics	for	the	catalog	compilation	time	and	overlay	them	with	the
number	of	resources	managed.	This	is	pretty	interesting	stuff,	but	it’s	when	you	combine
this	with	other	data	sources	that	things	can	become	really	interesting.	By	installing
collectd	(http://collectd.org)	onto	your	Puppet	master,	you	can	start	to	gather	CPU	and
memory	usage	statistics	as	well	as	disk	I/O	and	other	important	system	performance	data
points.	collectd	can	send	this	data	into	Graphite,	and	once	in	there,	you	can	easily	create
real-time	graphs	that	overlay	your	detailed	Puppet	metrics	against	the	amount	of	resources
that	are	being	consumed.	This	allows	you	to	very	easily	create	scalability	reports	for	your
Puppet	infrastructure	and	determine	when	you	might	need	to	consider	scaling	up	your
systems.

https://github.com/graphite-project
https://github.com/krux/puppet-module-graphite-report
http://collectd.org


Tracking	changes	with	Puppet	and	Graphite
You	can	also	start	to	use	your	Puppet	data	in	a	more	holistic	way.	One	of	the	metrics	that
people	overlook	when	they	are	looking	at	their	infrastructure	is	the	rate	of	change.	For
instance,	you	may	have	huge	amounts	of	reporting	around	requests	per	second,	response
time,	and	resource	usage.	This	is	certainly	interesting	and	valuable,	but	a	surprising
amount	of	people	miss	the	simple	metrics	that	tie	it	all	together:	deployments	and	changes.
Using	Graphite,	it	would	be	perfectly	simple	to	create	a	new	index	to	track	Puppet	change
events,	and	you	could	then	use	a	simple	Puppet	report	processor	to	output	a	change	event
every	time	a	host	reports	that	a	resource	has	changed	during	the	course	of	a	Puppet	run.
This	is	incredibly	useful	as	it	means	that	you	can	tie	this	information	into	other	statistics
that	you	track.	For	instance,	if	you	notice	that	your	response	time	on	an	important
application	has	started	to	drop,	you	can	easily	see	if	there	were	Puppet	changes	applied
around	that	time,	and	if	there	were,	you	can	then	easily	query	your	PuppetDB	catalog	to
find	out	which	resources	were	changed	in	that	time	frame.	Likewise,	you	can	start	to
monitor	the	overall	health	of	your	infrastructure,	such	as	CPU	and	RAM	usage,	against	the
amount	of	change	going	through.	If	you	also	use	Puppet	to	deploy	new	versions	of
applications,	this	too	can	be	tracked	as	a	specific	changed	event.



Using	Etsy	Skyline	to	find	your	normal
Humans	are	fantastic	at	spotting	patterns	in	data,	and	using	a	tool	such	as	Graphite	in
combination	with	Puppet	allows	you	to	easily	output	huge	amounts	of	data	for	analyses.
However,	you	have	to	be	looking	at	the	appropriate	sets	of	data	to	see	the	pattern,	and	the
double-edged	sword	of	using	Puppet	to	increase	your	level	of	information	is	that	there	is
now	more	information	to	try	and	spot	patterns	within.	Fortunately,	there	are	an	increasing
number	of	tools	that	will	sift	through	this	data	for	you	and	let	you	know	when	something
is	outside	of	what	it	has	learned	to	be	normal.	One	excellent	and	open	source	example	of
these	tools	is	Etsy	Skyline.	This	tool	can	be	seen	in	the	following	screenshot:

Skyline	is	able	to	use	Graphite	as	its	data	source,	and	so	will	start	to	analyze	any	and	all	of
the	metrics	within.	Skyline	starts	to	build	up	a	picture	of	what	is	considered	normal	for
each	of	these	metrics,	and	unlike	an	alerting	system	such	as	Nagios,	it	does	not	rely	on	a
fixed	threshold	to	decide	to	alert.	For	instance,	you	may	find	that	the	CPU	of	your
database	host	runs	at	100	percent	every	day	from	04:00	to	05:00	hours,	but	is	otherwise
under	50	percent	utilization;	this	is	probably	because	you	are	doing	housekeeping	around
that	time.	Etsy	Skyline	will	soon	learn	that	this	is	considered	normal	for	your	database
node	and	will	not	do	anything	when	it	sees	this	data;	however,	if	it	sees	that	CPU
utilization	is	at	100	percent	in	the	middle	of	the	day	when	it	hasn’t	been	previously,	it	will
raise	an	alert	and	send	a	snapshot	of	the	data	to	its	web	console.

This	is	incredibly	powerful	as	it	allows	your	tools	to	crawl	through	your	vast	amounts	of



data	and	figure	out	what	should	be	alerted	on.	It’s	not	a	replacement	for	Nagios	or	Sensu,
but	is	an	incredibly	powerful	addition	to	them,	and	the	data	that	Puppet	can	provide	is	a
natural	fit	for	this	kind	of	learning	system.	Over	time,	you	will	find	that	your	Puppet
changes	will	start	to	fall	into	a	natural	pattern,	especially	if	you	release	at	predictable
times.	By	adding	your	Puppet	metrics	into	Graphite	and	then	enabling	Etsy	Skyline,	you
will	be	automatically	alerted	if	some	of	those	metrics	start	to	look	a	little	odd.	For
instance,	you	may	not	be	immediately	aware	if	something	has	caused	a	huge	amount	of
your	Puppet	nodes	to	apply	a	change,	or	if	your	Puppet	catalogs	are	suddenly	taking	an
age	to	apply.	Skyline	can	be	configured	to	immediately	alert	you	if	it	sees	that	something
is	amiss.



Using	Puppet	to	drive	orchestration
Puppet	is	in	the	unique	position	of	knowing	both	when	and	how	something	has	changed.
This	is	a	unique	view	that	allows	you	to	be	very	creative	with	orchestrating	activity	in
your	network,	using	Puppet	not	only	to	change	resources	on	a	given	node,	but	also	to	then
trigger	an	action	that	will	affect	other	resources.

A	good	example	would	be	if	you	had	an	application	that	provided	data	that	other	nodes
relied	on.	Now,	let’s	assume	that	you	were	forced	to	push	a	change	to	this	application	that
would	require	the	dependent	applications	to	be	restarted	before	they	can	use	the	new
version.	This	is	something	that	a	Puppet	report	processor	could	trigger	in	conjunction	with
a	suitable	orchestration	system.	In	this	case,	you	could	use	a	report	processor	to	monitor	a
tagged	resource	(our	data	providing	application),	and	in	the	event	of	that	resource	being
changed,	the	report	processor	could	send	a	message	to	the	orchestration	system,	asking	it
to	perform	restarts	on	the	dependent	applications.	What’s	neat	about	this	is	that	you	are
using	Puppet	to	allow	individual	resources	to	communicate	with	their	dependencies	and
vice	versa	without	needing	to	bake	it	into	the	orchestration	layer	itself.	Another	advantage
of	having	Puppet	notify	the	orchestration	system	is	that	Puppet	knows	when	a	change	has
been	successfully	applied;	an	orchestration	system	would	need	to	be	told	what	constitutes
success.	This	technique	also	ensures	that	it	is	much	harder	to	miss	dependent	systems
when	creating	your	orchestration	steps,	as	you	have	started	to	build	an	awareness	of
dependencies	within	Puppet.	Puppet	implements	the	change	to	an	individual	resource	and
then	notifies	the	orchestration	system	that	it	needs	to	carry	out	an	action	on	the
dependencies.

This	would	be	relatively	straightforward	to	implement	and	would	tie	in	nicely	with	the
Puppet-curated	MCollective	project	(http://puppetlabs.com/mcollective).	By	using	Puppet
report	processors	to	trigger	subsequent	actions,	you	are	starting	to	overcome	Puppet’s
nodal	view	of	the	world,	and	allowing	changes	to	deal	with	dependencies	without	manual
interaction.

http://puppetlabs.com/mcollective




Summary
In	this	final	chapter,	we’ve	taken	a	look	at	some	of	the	ways	you	can	utilize	Puppet
reporting	and	alerting	to	enhance	your	understanding	of	both	what	is	going	on	within	your
Puppet	infrastructure	and	also	how	to	leverage	the	data	to	create	simple	yet	effective
additions	to	your	existing	monitoring	systems.	We’ve	seen	how	Puppet	data	can	be
visualized	using	either	existing	dashboards	or	by	creating	new	ones,	and	how	report
processors	can	be	used	to	drive	detailed	alerts	using	existing	alerting	tools	such	as	Nagios
or	Sensu.	We’ve	also	learned	about	the	integration	of	Puppet	with	tools	such	as	Graphite,
which	allow	you	to	utilize	Puppet	data	to	both	analyze	performance	and	track	changes	to
the	infrastructure.	We	have	explored	how	systems	such	as	Etsy	Skyline	can	be	used	to
learn	what	is	normal	within	your	Puppet	infrastructure	and	set	to	alert	when	anomalies
occur.	We	realized	how	Puppet	can	be	an	integral	part	of	orchestration	and	can	trigger
actions	based	on	changes	to	resources.

Now	it’s	over	to	you;	this	book	has	shown	you	the	basics	of	the	Puppet	reporting	systems
and	how	easy	it	is	to	take	the	data	that	Puppet	creates	to	drive	other	activities,	be	it
reporting,	alerting,	or	even	orchestration.	Hopefully,	by	now	you	are	looking	at	the	Puppet
reporting	tools	as	a	gateway	that	allows	Puppet	to	communicate	with	the	wealth	of
systems	that	you	are	already	using	to	both	monitor	and	report	with,	and	thinking	of	new
ways	to	use	these	tools	with	the	additional	data	that	Puppet	provides.	Puppet	reporting
brings	a	huge	new	set	of	capabilities,	as,	traditionally,	knowing	how	and	when	changes
have	occurred	within	your	infrastructure	has	been	difficult.	Puppet	is	now	making	it
simple.

I	hope	that	this	book	has	inspired	you	to	create	new	and	interesting	applications	based
around	Puppet	reporting,	and	I	look	forward	to	seeing	the	fantastic	and	novel	ways	that
you	put	these	techniques	to	use.	I	truly	hope	that	you	share	your	contributions	on	GitHub
and	PuppetForge	so	that	the	whole	Puppet	community	can	make	use	of	your	code.	The
Puppet	reporting	features	are	incredibly	powerful,	and	you’re	going	to	have	a	lot	of	fun
playing	with	them.



Index
A

aggregate-event-counts	endpoint
using	/	Applying	the	aggregate-event-counts	endpoint
URL,	for	documentation	/	Applying	the	aggregate-event-counts	endpoint
about	/	Creating	new	jobs	in	Dashing

alerts
creating,	report	processor	used	/	Producing	alerts
creating,	Nagios	used	/	Using	Nagios
Icinga,	discovering	/	Discovering	Icinga	and	Shinken
Shinken,	discovering	/	Discovering	Icinga	and	Shinken

assets	directory
about	/	Exploring	the	default	puppetdash	directory	layout

Atlassian	JIRA
about	/	Raising	issues	with	JIRA

audit	metaparameter
about	/	Compliance	monitoring	with	Puppet



B
basic	query	application

creating	/	Creating	a	basic	query	application
setting	up	/	Setting	up	the	basic	application
connecting,	to	PuppetDB	/	Connecting	to	PuppetDB
results,	extracting	/	Outputting	results

Boundary
URL	/	Rediscovering	dashboards

built-in	report	processors
utilizing	/	Utilizing	the	built-in	report	processors
reports,	storing	with	store	report	processor	/	Storing	reports	with	the	store	report
processor
log	files,	adding	with	log	report	processor	/	Adding	to	logfiles	with	the	log
report	processor
graphing,	with	rrdgraph	report	processor	/	Graphing	with	the	rrdgraph	processor
tagmail	report	processor	/	The	tagmail	report	processor
reports,	sending	with	HTTP	report	processor	/	Sending	reports	with	the	HTTP
report	processor
PuppetDB	report	processor	/	The	PuppetDB	report	processor
third-party	report	processors,	exploring	/	Exploring	the	power	of	third-party
plugins



C
catalogs	endpoint

using	/	Getting	the	run	details	with	the	catalogs	endpoint
catalog	wire	format

URL,	for	documentation	/	Getting	the	run	details	with	the	catalogs	endpoint
choice	function

about	/	Setting	up	the	UI
collectd

URL	/	Analyzing	metrics	with	StatsD,	Graphite,	and	Etsy	Skyline
about	/	Analyzing	metrics	with	StatsD,	Graphite,	and	Etsy	Skyline

command	interface
about	/	Understanding	the	command	interface
replace	catalog	function	/	Understanding	the	command	interface
replace	facts	function	/	Understanding	the	command	interface
store	report	function	/	Understanding	the	command	interface
deactivate	node	function	/	Understanding	the	command	interface

command_line_reporter	gem
about	/	Outputting	results

compliance	monitoring
with	Puppet	/	Compliance	monitoring	with	Puppet

createdb	command	/	Creating	the	PostgreSQL	database
createuser	command	/	Creating	your	database	user



D
dashboard

advantages	/	Why	use	a	dashboard?
creating	/	Creating	our	dashboard
layout,	creating	/	Creating	our	dashboard	layout
trends,	adding	/	Adding	trends
meters,	adding	/	Adding	meters
rediscovering	/	Rediscovering	dashboards

dashboards	directory
about	/	Exploring	the	default	puppetdash	directory	layout

Dashing
about	/	Exploring	Dashing
overview	/	Exploring	Dashing
URL,	for	downloading	/	Exploring	Dashing
reference	link	/	Exploring	Dashing
installing	/	Setting	up	Dashing
puppetdash	directory	/	Exploring	the	default	puppetdash	directory	layout
executing	/	Running	Dashing
data,	feeding	/	Feeding	data	into	Dashing
jobs,	creating	/	Creating	new	jobs	in	Dashing

dashing	start	command	/	Creating	our	dashboard	layout
data

feeding,	into	Dashing	/	Feeding	data	into	Dashing
data-col	tag	/	Creating	our	dashboard	layout
data-id	tag	/	Creating	our	dashboard	layout
data-row	tag	/	Creating	our	dashboard	layout
data-title	tag	/	Creating	our	dashboard	layout
data-view	tag	/	Creating	our	dashboard	layout
deactivate	node	function

about	/	Understanding	the	command	interface



E
.erb	file

about	/	Adding	meters
e-mail	alert

creating	/	Alerting	with	e-mail	and	Puppet
endpoints

about	/	Exploring	endpoints
facts	endpoint,	using	/	Using	the	facts	endpoint
resources	endpoint,	using	/	Using	the	resources	endpoint
nodes	endpoint	/	Retrieving	details	about	nodes
catalogs	endpoint,	using	/	Getting	the	run	details	with	the	catalogs	endpoint
fact-names	endpoint,	using	/	Understanding	the	fact-names	endpoint
metrics	endpoint,	using	/	Knowing	the	status	of	PuppetDB	with	the	metrics
endpoint
reports	endpoint,	using	/	Using	the	reports	endpoint
events	endpoint,	using	/	Working	with	the	events	endpoint
event-counts	endpoint,	using	/	Using	the	event-counts	endpoint
aggregate-event-counts	endpoint,	using	/	Applying	the	aggregate-event-counts
endpoint
server-time	endpoint,	using	/	Using	the	server-time	endpoint
version	endpoint,	using	/	The	version	endpoint

Etsy	Skyline
used,	for	analysing	metrics	/	Analyzing	metrics	with	StatsD,	Graphite,	and	Etsy
Skyline
using	/	Using	Etsy	Skyline	to	find	your	normal

event-counts	endpoint
using	/	Using	the	event-counts	endpoint
URL,	for	documentation	/	Using	the	event-counts	endpoint
about	/	Fetching	the	event	counts

event	counts
fetching	/	Fetching	the	event	counts

Event	Inspector
about	/	Event	Inspector

events
adding,	to	MySQL	/	Adding	metrics	and	events	to	MySQL

events	data
presenting	/	Presenting	the	events	data

events	endpoint
using	/	Working	with	the	events	endpoint
URL,	for	documentation	/	Working	with	the	events	endpoint
about	/	Presenting	the	events	data

External	Node	Classifiers	(ENC)
about	/	Exploring	Dashing



External	Node	Classifiers	(ENCs)
about	/	Why	use	a	dashboard?



F
.first	method

about	/	Fetching	the	event	counts
fact-names	endpoint

using	/	Understanding	the	fact-names	endpoint
Facter

about	/	Learning	the	basics	of	Puppet	reporting
Facter	1.7

about	/	Learning	the	basics	of	Puppet	reporting
facts	endpoint

about	/	Using	the	facts	endpoint
using	/	Using	the	facts	endpoint
URL,	for	documentation	/	Using	the	facts	endpoint
querying,	in	menu-driven	PuppetDB	application	/	Querying	PuppetDB’s	facts
endpoint

fully	qualified	domain	name	(FQDN)
about	/	Outputting	results



G
Graphite

used,	for	analysing	metrics	/	Analyzing	metrics	with	StatsD,	Graphite,	and	Etsy
Skyline
URL	/	Analyzing	metrics	with	StatsD,	Graphite,	and	Etsy	Skyline
and	Puppet	used,	for	tracking	changes	/	Tracking	changes	with	Puppet	and
Graphite



H
hardware	report

extracting,	from	menu-driven	PuppetDB	application	/	Outputting	the	hardware
report

header	method
about	/	Outputting	the	hardware	report

HighLine
about	/	Setting	up	the	UI

HTTP	report	processor
reports,	sending	with	/	Sending	reports	with	the	HTTP	report	processor

HyperSQL	Database	(HSQLDB)
about	/	A	brief	history	of	PuppetDB



I
Icinga

discovering	/	Discovering	Icinga	and	Shinken
URL	/	Discovering	Icinga	and	Shinken

insert	function
about	/	Logging	with	MySQL

installation,	Dashing
about	/	Setting	up	Dashing

installation,	PostgreSQL	/	Installing	PostgreSQL
installation,	PuppetDB	/	Installing	PuppetDB
installation,	report	processor

about	/	Understanding	a	report	processor
installation,	Twitter	/	Getting	social	with	Twitter
Intrusion	Detection	System	(IDS)

about	/	Monitoring	changes	and	alerting	with	Puppet
issues

raising,	with	JIRA	/	Raising	issues	with	JIRA



J
Java	Virtual	Machine	(JVM)

about	/	A	brief	history	of	PuppetDB
JAVA_ARGS=	/	Increasing	the	JVM	heap	space
JIRA

issues,	raising	with	/	Raising	issues	with	JIRA
jobs

creating,	in	Dashing	/	Creating	new	jobs	in	Dashing
jobs	directory

about	/	Exploring	the	default	puppetdash	directory	layout



L
.last	method

about	/	Creating	the	PuppetDB	query	method
layout,	dashboard

creating	/	Creating	our	dashboard	layout
lib	directory

about	/	Exploring	the	default	puppetdash	directory	layout
load	balancer

about	/	Understanding	a	report	processor
logging

with	MySQL	/	Logging	with	MySQL
log	report	processor

log	files,	adding	with	/	Adding	to	logfiles	with	the	log	report	processor



M
MCollective

about	/	Puppet	Live	Management
MCollective	project

URL	/	Using	Puppet	to	drive	orchestration
menu-driven	PuppetDB	application

creating	/	Creating	a	menu-driven	PuppetDB	application
UI,	setting	up	/	Setting	up	the	UI
facts	endpoint,	querying	/	Querying	PuppetDB’s	facts	endpoint
hardware	report,	extracting	/	Outputting	the	hardware	report
testing	/	Testing	our	application

meters
adding,	to	dashboard	/	Adding	meters

metrics
adding,	to	MySQL	/	Adding	metrics	and	events	to	MySQL
analysing,	with	StatsD	/	Analyzing	metrics	with	StatsD,	Graphite,	and	Etsy
Skyline
analysing,	with	Graphite	/	Analyzing	metrics	with	StatsD,	Graphite,	and	Etsy
Skyline
analysing,	with	Etsy	Skyline	/	Analyzing	metrics	with	StatsD,	Graphite,	and
Etsy	Skyline

metrics	endpoint
using	/	Knowing	the	status	of	PuppetDB	with	the	metrics	endpoint
URL,	for	documentation	/	Knowing	the	status	of	PuppetDB	with	the	metrics
endpoint
about	/	Creating	new	jobs	in	Dashing

MySQL
using	/	Logging	with	MySQL
events,	adding	to	/	Adding	metrics	and	events	to	MySQL
metrics,	adding	to	/	Adding	metrics	and	events	to	MySQL



N
Nagios

used,	for	creating	alerts	/	Using	Nagios
New	Relic

URL	/	Rediscovering	dashboards
NFS

about	/	Setting	up	the	server
nodes	endpoint

using	/	Retrieving	details	about	nodes
about	/	Creating	new	jobs	in	Dashing



O
Object-relational	Mapping	(ORM)

about	/	Logging	with	MySQL
OpenJDK

about	/	Installing	PuppetDB



P
PagerDuty

about	/	Staying	on	top	of	alerts	with	PagerDuty
using	/	Staying	on	top	of	alerts	with	PagerDuty
URL	/	Staying	on	top	of	alerts	with	PagerDuty

Parser
about	/	Learning	the	basics	of	Puppet	reporting

perspectives
about	/	Event	Inspector

Phusion	Passenger
about	/	Exploring	the	Puppet	configuration	file

PostgreSQL
installing	/	Installing	PostgreSQL
installing,	from	packages	/	Installing	the	packages
database	user,	creating	/	Creating	your	database	user
database,	creating	/	Creating	the	PostgreSQL	database

public	directory
about	/	Exploring	the	default	puppetdash	directory	layout

Puppet
report	processor	configuration,	managing	with	/	Managing	your	report	processor
configuration	with	Puppet
report	processor,	alerting	with	/	Monitoring	changes	and	alerting	with	Puppet
report	processor,	monitoring	with	/	Monitoring	changes	and	alerting	with	Puppet
compliance,	monitoring	with	/	Compliance	monitoring	with	Puppet
and	Graphite	used,	for	tracking	changes	/	Tracking	changes	with	Puppet	and
Graphite
using,	to	drive	orchestration	/	Using	Puppet	to	drive	orchestration

Puppet	agent
about	/	Learning	the	basics	of	Puppet	reporting
setting	up	/	Setting	up	the	Puppet	agent

PuppetBoard
about	/	Discovering	PuppetBoard
URL,	for	installing	/	Discovering	PuppetBoard

Puppet	configuration	file
about	/	Exploring	the	Puppet	configuration	file
[main]	configuration	block	/	Exploring	the	Puppet	configuration	file
[master]	configuration	block	/	Exploring	the	Puppet	configuration	file
[agent]	configuration	block	/	Exploring	the	Puppet	configuration	file

Puppet	Dashboard
feature	list	/	The	Puppet	Dashboard	feature	list
overview	/	Understanding	Puppet	Dashboard
URL	/	Understanding	Puppet	Dashboard

Puppet	Dashboard,	feature	list



ENC	/	The	Puppet	Dashboard	feature	list
Reporting	/	The	Puppet	Dashboard	feature	list
Class	Discovery	/	The	Puppet	Dashboard	feature	list
PuppetDB	Integration	/	The	Puppet	Dashboard	feature	list
MCollective	Integration	/	The	Puppet	Dashboard	feature	list

puppetdash	directory
about	/	Exploring	the	default	puppetdash	directory	layout
widgets	/	Exploring	the	default	puppetdash	directory	layout
public	/	Exploring	the	default	puppetdash	directory	layout
lib	/	Exploring	the	default	puppetdash	directory	layout
jobs	/	Exploring	the	default	puppetdash	directory	layout
assets	/	Exploring	the	default	puppetdash	directory	layout
dashboards	/	Exploring	the	default	puppetdash	directory	layout

PuppetDB
history	/	A	brief	history	of	PuppetDB
URL,	for	scaling	recommendations	/	A	brief	history	of	PuppetDB
installing	/	Installing	PuppetDB
installing,	from	packages	/	Installing	PuppetDB	from	packages
JVM	heap	space,	increasing	/	Increasing	the	JVM	heap	space
basic	query	application,	connecting	to	/	Connecting	to	PuppetDB
querying,	for	report	information	/	Querying	PuppetDB	for	report	information
query	method,	creating	/	Creating	the	PuppetDB	query	method
event	counts,	fetching	/	Fetching	the	event	counts
events	data,	presenting	/	Presenting	the	events	data
menu-driven	PuppetDB	application,	testing	/	Testing	our	application

PuppetDB	API
about	/	Exploring	the	PuppetDB	query	API
command	interface	/	Exploring	the	PuppetDB	query	API,	Understanding	the
command	interface
query	interface	/	Exploring	the	PuppetDB	query	API,	Understanding	the	query
API	interface

PuppetDB	query	API
about	/	Exploring	the	PuppetDB	query	API,	Understanding	the	query	API
interface
PuppetDB	query	language	/	A	primer	on	the	PuppetDB	query	language
endpoints	/	Exploring	endpoints

PuppetDB	query	language
about	/	A	primer	on	the	PuppetDB	query	language
using	/	A	primer	on	the	PuppetDB	query	language

PuppetDB	query	method
creating	/	Creating	the	PuppetDB	query	method

PuppetDB	report	processor
about	/	The	PuppetDB	report	processor

PuppetDB	server



setting	up	/	Setting	up	the	PuppetDB	server
PuppetDB,	installing	/	Installing	PuppetDB
PostgreSQL,	installing	/	Installing	PostgreSQL

Puppet	Enterprise	Console
about	/	Exploring	Puppet	Enterprise	Console
Event	Inspector	/	Event	Inspector
Puppet	Live	Management	/	Puppet	Live	Management
URL,	for	downloading	/	Puppet	Live	Management

Puppet	Forge
about	/	Understanding	a	report	processor
URL	/	Understanding	a	report	processor

Puppet	Labs
URL	/	Learning	the	basics	of	Puppet	reporting,	Setting	up	the	Puppet	agent

Puppet	Live	Management
about	/	Puppet	Live	Management

Puppet	master
about	/	Learning	the	basics	of	Puppet	reporting

Puppet	Open	Source
using	/	Learning	the	basics	of	Puppet	reporting

Puppet	reporting
about	/	Learning	the	basics	of	Puppet	reporting
features	/	Looking	back	at	what	we’ve	learned

Puppet	server
using	/	Exploring	the	Puppet	configuration	file
setting	up	/	Setting	up	the	server



R
replace	catalog	function

about	/	Understanding	the	command	interface
replace	facts	function

about	/	Understanding	the	command	interface
reporting

with	The	Foreman	/	Reporting	with	The	Foreman
report	processor

about	/	Understanding	a	report	processor,	The	anatomy	of	a	report	processor
overview	/	Understanding	a	report	processor
installing	/	Understanding	a	report	processor
creating	/	Creating	a	basic	report	processor
registering	/	Registering	your	report	processor
describing	/	Describing	your	report	processor
processing	/	Processing	your	report
self.status	object	/	Values	of	the	self.status	object
e-mail	alert,	creating	/	Alerting	with	e-mail	and	Puppet
monitoring,	with	Puppet	/	Monitoring	changes	and	alerting	with	Puppet
alerting,	with	Puppet	/	Monitoring	changes	and	alerting	with	Puppet
used,	for	creating	alerts	/	Producing	alerts

report	processor	configuration
managing,	with	Puppet	/	Managing	your	report	processor	configuration	with
Puppet

report	processors
built-in	report	processors,	utilizing	/	Utilizing	the	built-in	report	processors

reports	endpoint
using	/	Using	the	reports	endpoint
URL,	for	documentation	/	Using	the	reports	endpoint

resources	endpoint
about	/	Using	the	resources	endpoint
using	/	Using	the	resources	endpoint
URL,	for	documentation	/	Using	the	resources	endpoint

REST	API
about	/	A	brief	history	of	PuppetDB

RRD
about	/	Graphing	with	the	rrdgraph	processor

rrdgraph	report	processor
used,	for	graphing	/	Graphing	with	the	rrdgraph	processor

Ruby
URL,	for	documentation	/	Logging	with	MySQL

Ruby	Version	Manager	(RVM)
URL,	for	installation	/	Creating	a	basic	query	application

rufus-scheduler



about	/	Feeding	data	into	Dashing
URL	/	Creating	new	jobs	in	Dashing



S
self.status	object

about	/	Values	of	the	self.status	object
skipped	value	/	Values	of	the	self.status	object
failed	value	/	Values	of	the	self.status	object
failed_to_restart	value	/	Values	of	the	self.status	object
restarted	value	/	Values	of	the	self.status	object
changed	value	/	Values	of	the	self.status	object
out_of_sync	value	/	Values	of	the	self.status	object

send_event	method
about	/	Creating	new	jobs	in	Dashing

Sensu
URL	/	Discovering	Icinga	and	Shinken
about	/	Discovering	Icinga	and	Shinken

sequel	library
about	/	Logging	with	MySQL

server-time	endpoint
using	/	Using	the	server-time	endpoint
URL,	for	documentation	/	Using	the	server-time	endpoint

Shinken
discovering	/	Discovering	Icinga	and	Shinken
URL	/	Discovering	Icinga	and	Shinken

Shopify
URL	/	Exploring	Dashing

Sinatra
about	/	Exploring	Dashing

StatsD
used,	for	analysing	metrics	/	Analyzing	metrics	with	StatsD,	Graphite,	and	Etsy
Skyline

store	report	function
about	/	Understanding	the	command	interface

store	report	processor
reports,	storing	with	/	Storing	reports	with	the	store	report	processor

strftime	function
about	/	Logging	with	MySQL

strftime	method
about	/	Logging	with	MySQL

Sun	JDK
about	/	Installing	PuppetDB

Syntactically	Awesome	Style	Sheets	(SASS)
about	/	Exploring	the	default	puppetdash	directory	layout



T
table	method

about	/	Outputting	results
tagmail	report	processor

about	/	The	tagmail	report	processor,	Alerting	with	e-mail	and	Puppet
URL,	for	documentation	/	The	tagmail	report	processor

The	Foreman
about	/	Using	The	Foreman
using	/	Using	The	Foreman
reporting,	with	/	Reporting	with	The	Foreman
trends,	viewing	in	/	Looking	at	trends	in	The	Foreman

third-party	applications
about	/	A	final	note	on	third-party	applications

third-party	report	processors
exploring	/	Exploring	the	power	of	third-party	plugins

trends
about	/	Reporting	with	The	Foreman
viewing,	in	The	Foreman	/	Looking	at	trends	in	The	Foreman
adding,	to	dashboard	/	Adding	trends

Twitter
about	/	Getting	social	with	Twitter
URL	/	Getting	social	with	Twitter
installing	/	Getting	social	with	Twitter



U
UI

setting	up,	for	menu-driven	PuppetDB	application	/	Setting	up	the	UI
Universally	Unique	Identifier	(UUID)

about	/	Logging	with	MySQL
Universal	Resource	Identifier	(URI)

about	/	Connecting	to	PuppetDB



V
version	endpoint

using	/	The	version	endpoint
URL,	for	documentation	/	The	version	endpoint



W
widget,	options

data-row	tag	/	Creating	our	dashboard	layout
data-col	tag	/	Creating	our	dashboard	layout
data-id	tag	/	Creating	our	dashboard	layout
data-view	tag	/	Creating	our	dashboard	layout
data-title	tag	/	Creating	our	dashboard	layout
additional	tags	/	Creating	our	dashboard	layout

widgets	directory
about	/	Exploring	the	default	puppetdash	directory	layout



X
XKCD

URL	/	Logging	with	MySQL



Y
YAML

URL	/	Setting	up	the	server


	Puppet Reporting and Monitoring
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Setting Up Puppet for Reporting
	Learning the basics of Puppet reporting
	Exploring the Puppet configuration file
	Setting up the server
	Setting up the Puppet agent
	Summary
	2. Viewing Data in Dashboards
	Why use a dashboard?
	The Puppet Dashboard feature list
	Understanding Puppet Dashboard
	Exploring Puppet Enterprise Console
	Event Inspector
	Puppet Live Management
	Using The Foreman
	Reporting with The Foreman
	Looking at trends in The Foreman
	Discovering PuppetBoard
	Summary
	3. Introducing Report Processors
	Understanding a report processor
	Utilizing the built-in report processors
	Storing reports with the store report processor
	Adding to logfiles with the log report processor
	Graphing with the rrdgraph processor
	The tagmail report processor
	Sending reports with the HTTP report processor
	The PuppetDB report processor
	Exploring the power of third-party plugins
	Getting social with Twitter
	Staying on top of alerts with PagerDuty
	Summary
	4. Creating Your Own Report Processor
	The anatomy of a report processor
	Creating a basic report processor
	Registering your report processor
	Describing your report processor
	Processing your report
	Values of the self.status object
	Alerting with e-mail and Puppet
	Managing your report processor configuration with Puppet
	Monitoring changes and alerting with Puppet
	Logging with MySQL
	Adding metrics and events to MySQL
	Raising issues with JIRA
	A final note on third-party applications
	Summary
	5. Exploring PuppetDB
	A brief history of PuppetDB
	Setting up the PuppetDB server
	Installing PuppetDB
	Installing PuppetDB from packages
	Increasing the JVM heap space
	Installing PostgreSQL
	Installing the packages
	Creating your database user
	Creating the PostgreSQL database
	Summary
	6. Retrieving Data with the PuppetDB API
	Exploring the PuppetDB query API
	Understanding the command interface
	Understanding the query API interface
	A primer on the PuppetDB query language
	Exploring endpoints
	Using the facts endpoint
	Using the resources endpoint
	Retrieving details about nodes
	Getting the run details with the catalogs endpoint
	Understanding the fact-names endpoint
	Knowing the status of PuppetDB with the metrics endpoint
	Using the reports endpoint
	Working with the events endpoint
	Using the event-counts endpoint
	Applying the aggregate-event-counts endpoint
	Using the server-time endpoint
	The version endpoint
	Summary
	7. Writing Custom Reports with PuppetDB
	Creating a basic query application
	Setting up the basic application
	Connecting to PuppetDB
	Outputting results
	Creating a menu-driven PuppetDB application
	Setting up the UI
	Querying PuppetDB's facts endpoint
	Outputting the hardware report
	Querying PuppetDB for report information
	Creating the PuppetDB query method
	Fetching the event counts
	Presenting the events data
	Testing our application
	Summary
	8. Creating Your Own Custom Dashboard
	Exploring Dashing
	Setting up Dashing
	Exploring the default puppetdash directory layout
	Running Dashing
	Creating our dashboard
	Creating our dashboard layout
	Feeding data into Dashing
	Creating new jobs in Dashing
	Adding trends
	Adding meters
	Summary
	9. Looking Back and Looking Forward
	Looking back at what we've learned
	Rediscovering dashboards
	Producing alerts
	Using Nagios
	Discovering Icinga and Shinken
	Compliance monitoring with Puppet
	Analyzing metrics with StatsD, Graphite, and Etsy Skyline
	Tracking changes with Puppet and Graphite
	Using Etsy Skyline to find your normal
	Using Puppet to drive orchestration
	Summary
	Index

