Puppet Essentials

Get up and running quickly using the power of Puppet to
manage your IT infrastructure

Puppet Essentials

Get up and running quickly using the power of
Puppet to manage your IT infrastructure

Felix Frank

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Puppet Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014
Production reference: 1171114

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-748-1

www . packtpub.com

Credits

Author
Felix Frank

Reviewers
Ger Apeldoorn

Thomas Dao
Brian Moore
Josh Partlow

Commissioning Editor
Edward Gordon

Acquisition Editor
Sam Wood

Content Development Editor
Sweny M. Sukumaran

Technical Editor
Mrunal M. Chavan

Copy Editors
Deepa Nambiar

Stuti Srivastava

Project Coordinator
Rashi Khivansara

Proofreaders
Simran Bhogal

Maria Gould
Ameesha Green
Paul Hindle

Indexers
Mariammal Chettiyar

Tejal Soni

Graphics
Ronak Dhruv

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Felix Frank has used and programmed computers for most of his life. During and
after his Computer Science diploma, he gained on-the-job experience as a system
administrator, server operator, and open source software developer. Of his 10-year
career, he spent 5 years as a Puppet power user. For almost a year, he intensified his
learning by contributing source code and actively participating in several conferences.
This is his first foray into writing books and is a work of great effort and sacrifice.

Acknowledgments

I'd like to thank my editors, Sam Wood, Sweny M. Sukumaran, and Mrunal M.
Chavan, for their ongoing support and for making this title possible in the first
place. This book would not be what it is without the amazing feedback from my
reviewers, Ger Apeldoorn, Brian Moore, Josh Partlow, and Thomas Dao.

I'd also like to thank a number of Puppet Labs employees for their kind feedback
and ongoing support— Andrew Parker, Adrien Thebo, Dawn Foster, Joshua Partlow,
Josh Cooper, Henrik Lindberg, Charlie Sharpsteen, Kylo Ginsberg, Ethan Brown,
Rob Reynolds, Jeff McCune, and Eric Sorenson. Special thanks to Luke Kanies for
creating Puppet and dedicating so many resources to this amazing community.

Further thanks to Waltraut Niepraschk and the entire data center staff at DESY
Zeuthen for getting me on track with the central management of Unix servers.
Also, thanks to MPeXnetworks for giving me the opportunity to learn more
about Puppet and ultimately helping me write this very book.

About the Reviewers

Ger Apeldoorn is a freelance Puppet consultant and teaches official Puppet Labs
courses in the Netherlands. He has helped implement Puppet in many companies,
both open source and Enterprise, and has given a presentation on Manageable Puppet
Infrastructure at PuppetConf and other conferences. He recently found out that writing
about himself in third person can be a bit awkward.

Thomas Dao has spent over two decades playing around with various Unix flavors
as a Unix administrator, build and release engineer, and configuration manager.

He is passionate about open source software and tools, so Puppet was something

he naturally gravitated toward. Currently employed in the telecommunications
industry as a configuration analyst, he also divides some of his time as a technical
editor at devops .ninja.

I would like to thank my lovely wife, whose patience with me
while I'm glued to my monitor gives me the inspiration to pursue
my passions, and my dog, Bento, who is always by my side, giving
me company.

Brian Moore is a senior product engineer, a father of two, and a quintessential
hacker. He began coding at the age of 12. His early love for everything technological
led to a job with Apple shortly after high school. Since that time, he has worked with
a series of start-ups and tech companies, taking on interesting technical challenges.
He was also the technical reviewer for Rhomobile Beginner's Guide, Packt Publishing.
When not working on new development projects, he can often be found off-roading
in a remote Southern California desert in his Baja Bug.

Josh Partlow is a software developer working in Portland, OR. He started working
as a freelance consultant in the early 90s and has worked on a variety of database,
web, and networking projects in Java, Perl, and Ruby, developing primarily on Linux
platforms. He helped found OpenSourcery and currently works at Puppet Labs on
the core Puppet project itself. He lives in Portland with his wife, Julia, and their two
cats, Fred and Ethel, who are mostly nothing like their namesakes.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[a]PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Dedicated to Patrizia for all the years of love and support.

Table of Contents

Preface 1
Chapter 1: Writing Your First Manifests 7
Getting started 8
Introducing resources and properties 10
Interpreting the output of the puppet apply command 11
Dry-testing your manifest 12
Adding control structures in manifests 13
Using variables 14
Variable types 14
Controlling the order of evaluation 16
Declaring dependencies 17
Error propagation 20
Avoiding circular dependencies 21
Implementing resource interaction 22
Examining the most notable resource types 25
The user and group types 26
The exec resource type 27
The cron resource type 29
The mount resource type 29
Summary 30
Chapter 2: The Master and Its Agents 31
The Puppet master 31
Setting up the master machine 32
Creating the master manifest 33
Inspecting the configuration settings 35
Setting up the Puppet agent 35

The agent's life cycle 38

Table of Contents

Renewing an agent's certificate 40
Running the agent from cron 41
Performance considerations 42
Switching to Phusion Passenger 43
Using Passenger with Nginx 45
Basic tuning 46
Troubleshooting SSL issues 47
Summary 48
Chapter 3: A Peek Under the Hood - Facts, Types,
and Providers 49
Summarizing systems with Facter 50
Accessing and using fact values 52
Extending Facter with custom facts 53
Simplifying things using external facts 55
Goals of Facter 57
Understanding the type system 57
The resource type's life cycle on the agent side 58
Substantiating the model with providers 59
Providerless resource types 61
Summarizing types and providers 61
Putting it all together 62
Summary 64
Chapter 4: Modularizing Manifests with Classes
and Defined Types 65
Introducing classes and defined types 66
Defining and declaring classes 66
Creating and using defined types 67
Understanding and leveraging the differences 69
Structured design patterns 7
Writing comprehensive classes 71
Writing component classes 73
Using defined types as resource wrappers 74
Using defined types as resource multiplexers 76
Using defined types as macros 77
Exploiting array values using defined types 78
Including classes from defined types 81
Nesting definitions in classes 82
Establishing relationships among containers 83
Passing events between classes and defined types 83

Lii]

Table of Contents

Ordering containers 86
Limitations 86
Performance implications of container relationships 89
Mitigating the limitations 90
The anchor pattern 90
The contain function 91
Making classes more flexible through parameters 92
Caveats of parameterized classes 92
Preferring the include keyword 93
Summary 94
Chapter 5: Extending Your Puppet Infrastructure with Modules 95
An overview of Puppet's modules 96
Parts of a module 96
How the content of each module is structured 97
Documentation in modules 98
Maintaining environments 99
Configuring environment locations 100
Obtaining and installing modules 101
Modules' best practices 102
Putting everything in modules 102
Avoiding generalization 103
Testing your modules 104
Safe testing with environments 104
Building a specific module 105
Naming your module 106
Making your module available to Puppet 106
Implementing the basic module functionality 106
Creating utilities for derived manifests 110
Adding configuration items 111
Allowing customization 113
Removing unwanted configuration items 114
Dealing with complexity 115
Enhancing the agent through plugins 116
Replacing a defined type with a native type 118
Enhancing Puppet's system knowledge through facts 125
Refining the interface of your module through custom functions 126
Making your module portable across platforms 128
Finding helpful Forge modules 130
Identifying modules' characteristics 130
Summary 131

[iii]

Table of Contents

Chapter 6: Leveraging the Full Toolset of the Language 133
Templating dynamic configuration files 134
Learning the template syntax 134
Using templates in practice 135
Avoiding performance bottlenecks from templates 136
Creating virtual resources 137
Realizing resources more flexibly using collectors 140
Exporting resources to other agents 141
Exporting and importing resources 142
Configuring the master to store exported resources 142
Exporting SSH host keys 143
Managing hosts files locally 144
Automating custom configuration items 144
Simplifying the Nagios configuration 145
Maintaining your central firewall 146
Overriding resource parameters 147
Making classes more flexible through inheritance 148
Understanding class inheritance in Puppet 149
Naming an inheriting class 151
Making parameters safer through inheritance 151
Saving redundancy using resource defaults 152
Avoiding antipatterns 154
Summary 155
Chapter 7: Separating Data from Code Using Hiera 157
Understanding the need for separate data storage 158
Consequences of defining data in the manifest 159
Structuring configuration data in a hierarchy 161
Configuring Hiera 163
Storing Hiera data 164
Choosing your backends 165
Retrieving and using Hiera values in manifests 165
Working with simple values 166
Binding class parameter values automatically 167
Handling hashes and arrays 170
Converting resources to data 172
Choosing between manifest and Hiera designs 175
Using Hiera in different contexts 175
A practical example 177
Debugging Hiera lookups 179
Summary 180

[iv]

Table of Contents

Chapter 8: Configuring Your Cloud Application with Puppet 181
Typical scopes of Puppet 182
Common data center use — roles and profiles 183
Taking Puppet to the cloud 184
Initializing agents in the cloud 185
Using Puppet's cloud-provisioner module 186
Building manifests for the cloud 187
Mapping functionalities to nodes 187
Choosing certificate names 190
Creating a distributed catalog 191
Composing arbitrary configuration files 194
Handling instance deletions 197
Preparing for autoscaling 198
Managing certificates 198
Limiting round trip times 200
Ensuring successful provisioning 202
Adding necessary relationships 203
Testing the manifests 204
Summary 205

Index 207

[v]

Preface

The software industry is changing and so are its related fields. Old paradigms are
slowly giving way to new roles and shifting views on what the different professions
should bring to the table. The DevOps trend pervades evermore workflows.
Developers set up and maintain their own environments, and operations raise
automation to new levels and translate whole infrastructures to code.

A steady stream of new technologies allows for more efficient organizational
principles. One of these newcomers is Puppet. Its fresh take on server configuration
management caused rapid adoption and distribution throughout the industry.

In the few years of its existence, Puppet has managed to rally thousands of users
who employ it in numerous contexts to achieve manifold results. While it is not

the only configuration management system available, it is certainly the most
widespread by now.

From its specialized language to the system that makes it work, Puppet has innovated
and rapidly conquered the software industry. Its extendible structure, paired with a
large and helpful community, has made Puppet a powerhouse of easy configuration.
The more well known a software is, the greater the chance that Puppet will deploy
and configure it out of the box.

Puppet's own learning curve is not sharp, and the available documentation

is not only extensive, but also of high quality. Nevertheless, even experienced
programmers and administrators can face difficulties at some point. Advanced use
might require the navigation of some intricacies that stem from Puppet's unique
modeling approach.

This book aims at teaching you all that is required to tap not only the basics of Puppet,
but also the very ideas and principles of Puppet-based designs. Sophisticated tooling
is presented in order to enable efficient and productive use. You are introduced to and
familiarized with a range of Puppet-centric technologies.

Preface

What this book covers

Chapter 1, Writing Your First Manifests, gives you an introduction to the core concepts
of Puppet, including a syntax tutorial. You will learn how to write and use Puppet
manifests within a few pages.

Chapter 2, The Master and Its Agents, provides you with a quick how-to guide in order to
set up all the components required for a distributed Puppet infrastructure. It will teach
you how to create the master, an agent, and set up Passenger with Apache or Nginx.

Chapter 3, A Peek Under the Hood - Facts, Types, and Providers, gives you a summary
of the core components that give Puppet its flexibility as well as its ease of use and
extension. It will help you understand the principles of Puppet's function.

Chapter 4, Modularizing Manifests with Classes and Defined Types, teaches you the most
important structural elements of Puppet manifests. You will learn how to use them
for best results.

Chapter 5, Extending Your Puppet Infrastructure with Modules, gives you a tour of
downloadable extensions along with providing you with a guide to create your own.
You will learn how to extend Puppet for your specific needs.

Chapter 6, Leveraging the Full Toolset of the Language, teaches you how to interpret and
use language features beyond the basics.

Chapter 7, Separating Data from Code Using Hiera, provides you with an introduction to
the powerful configuration data storage that comes with Puppet. You will learn how
to naturally model your infrastructure in a hierarchy.

Chapter 8, Configuring Your Cloud Application with Puppet, gives you a superposition of
the skills you have acquired. It will help you gain some specialized insights into how
to take centralized control of your cloud through Puppet.

What you need for this book

To follow the examples, it is sufficient to use a computer with enough resources to
run two or more virtual machine instances. The virtualization guests should have
a connection to the Internet and with each other. The configuration examples are
tailored to the Debian GNU/Linux operating system in Version 7 with the code
name "Wheezy".

[2]

Preface

Who this book is for

This book assumes that you have no prior Puppet knowledge. You should have

a sound technical background. Experience with the GNU/Linux command line is
required. Existing programming skills are recommended. This book is also suitable
for beginners or intermediate Puppet users who wish to expand their knowledge
about the software.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"If you do this, Puppet will include the full path to the newly created . dot file in
its output."

A block of code is set as follows:

digraph Resource Cycles {

label = "Resource Cycles"
"File[/etc/haproxy/haproxy.cfgl" -> "Servicel[haproxyl" -> "File[/etc/
haproxy]" -> "File[/etc/haproxy/haproxy.cfgl"

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

package {
$apache package:
ensure => 'installed'

}
Any command-line input or output is written as follows:

root@puppet# puppet cert clean agent

Info: Caching certificate for agent

Notice: Revoked certificate with serial 18

Notice: Removing file Puppet::SSL::Certificate agent at '/var/lib/
puppet/ssl/ca/signed/agent.pem’

Notice: Removing file Puppet::SSL::Certificate agent at '/var/lib/
puppet/ssl/certs/agent.pem’

[31]

Preface

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "It's safer to click on
the Project URL link near the top of the module description."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/
support and register to have the files e-mailed directly to you.

[4]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http: //www.packtpub. com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[51]

Writing Your First Manifests

Over the last few years, configuration management has become increasingly
significant to the IT world. Server operations in particular are hardly even feasible
without a robust management infrastructure. Among the available tools, Puppet has
established itself as one of the most popular and widespread solutions. Originally
written by Luke Kanies, the tool is now distributed under the terms of Apache
License 2.0 and maintained by Luke's company, Puppet Labs. It boasts a large and
bustling community, rich APIs for plugins and supporting tools, outstanding online
documentation, and a great security model based on SSL authentication.

Like all configuration management systems, Puppet allows you to maintain a central
repository of infrastructure definitions, along with a toolchain to enforce the desired
state on the systems under management. The whole feature set is quite impressive.
This book will guide you through some steps to quickly grasp the most important
aspects and principles of Puppet.

In this chapter, we will cover the following topics:

* Getting started

* Introducing resources and properties

* Interpreting the output of the puppet apply command
* Adding control structures in manifests

* Using variables

* Controlling the order of evaluation

* Implementing resource interaction

* Examining the most notable resource types

Writing Your First Manifests

Getting started

Installing Puppet is easy. On large Linux distributions, you can just install the
Puppet package via apt-get Or yum.

Puppet moves a lot faster than most distributions. To be more up
to date, you can install current packages directly from the Puppet

Labs repositories. You can visit https: //docs . puppetlabs.
’ com/guides/install puppet/pre_install.html for

more details.

A platform-independent way to install Puppet is to get the puppet Ruby gem.
This is fine for testing and managing single systems, but is not recommended
for production use.

After installing Puppet, you can use it to do something for you right away. Puppet
is driven by manifests, the equivalent of scripts or programs, written in Puppet's
domain-specific language (DSL). Let's start with the obligatory Hello world manifest:

hello world.pp
notify {
'Hello, world!':

}

Downloading the example code

M You can download the example code files for all Packt books you have
Q purchased from your account at http: //www. packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

To put the manifest to work, use the following command. (I avoided the term
"execute" on purpose —manifests cannot be executed. More details will follow
around the middle of this chapter.)

le.net in environme

tify[Hello, world!ls : defined

un in 0.07 se

[8]

Chapter 1

Before we take a look at the structure of the manifest and the output from the puppet
apply command, let's do something useful, just as an example. Puppet comes with
its own background service. Assume you want to learn the basics before letting it
mess with your system. You can write a manifest to have Puppet make sure that

the service is not currently running and will not be started at system boot:

puppet service.pp
service {
'puppet’':
ensure => 'stopped',
enable => false,

}

To control system processes, boot options, and the like, Puppet needs to be run with
root privileges. This is the most common way to invoke the tool, because Puppet will
often manage OS-level facilities. Apply your new manifest with root access, either
through sudo or from a root shell, as shown in the following screenshot:

.net 1n environme

et]l/enable: enabhle cha d

conds

Now, Puppet has disabled the automatic startup of its background service for you.
Applying the same manifest again has no effect, because the necessary steps are
already complete:

mple.net in en

econds

You will often get this output from Puppet. It tells you that everything is as it should
be. As such, this is a desirable outcome, like the al1 clean output from git status.

M If you are following along, you might get a different output
Q depending on your version of Puppet. All examples in this
book use the 3.6.2 release from Puppet Labs' repository.

[o]

Writing Your First Manifests

Introducing resources and properties

Each of the manifests you wrote in the previous section declared one respective
resource. Resources are the elementary building blocks of manifests. Each has a type
(in this case, notify and service, respectively) and a name or title (Hello, world!
and puppet). Each resource is unique to a manifest and can be referenced by the
combination of its type and name, such as service ["puppet"]. Finally, a resource
also comprises a list of zero or more attributes. An attribute is a key-value pair such
as "enable => false".

Attribute names cannot be chosen arbitrarily. Each resource type supports a specific
set of attributes. Certain parameters are available for all resource types, and some
names are just very common, such as ensure. The service type supports the ensure
property, which represents the status of the managed process. Its enabled property,
on the other hand, relates to the system boot configuration (with respect to the
service in question).

Note that I have used the terms attribute, property, and parameter in a seemingly
interchangeable fashion. Don't be deceived — there are important distinctions.
Property and parameter are the two different kinds of attributes that Puppet
uses. You have already seen two properties in action. Let's look at a parameter:

service {

'puppet':
ensure => 'stopped',
enable => false,

provider => 'upstart',

}

The provider parameter tells Puppet that it needs to interact with the upstart
subsystem to control its background service, as opposed to systemd or init. If you
don't specify this parameter, Puppet makes a well-educated guess. There is quite

a multitude of supported facilities to manage services on a system. You will learn
more about providers and their automatic choosing later.

The difference between parameters and properties is that the parameter merely
indicates how Puppet should manage the resource, not what a desired state is.
Puppet will only take action on property values. In this example, these are ensure
=> 'stopped' and enable => false. For each such property, it will perform the
following tasks:

* Test whether the resource is already in sync with the target state

* If the resource is not in sync, trigger a sync action

[10]

Chapter 1

A property is considered to be in sync when the system entity that is managed by
the given resource (in this case, the upstart service configuration for Puppet) is
in the state that is described by the property value in the manifest. In this example,
the ensure property will be in sync only if the puppet service is not running.

The enable property is in sync if upstart is not configured to launch Puppet

at system start.

As a mnemonic concerning parameters versus properties, just remember that
properties can be out of sync, whereas parameters cannot.

Interpreting the output of the puppet
apply command

As you have already witnessed, the output presented by Puppet is rather verbose.
As you get more experienced with the tool, you will quickly learn to spot the crucial
pieces of information. Let's first look at the informational messages though. Apply
the service.pp manifest once more:

et 1n environme

Puppet took no particular action. You only get two timings — one from the compiling
phase of the manifest and the other from the catalog application phase. The catalog

is a comprehensive representation of a compiled manifest. Puppet bases all its efforts
concerning the evaluation and syncing of resources on the content of its current catalog.

Now, to quickly force Puppet to show you some more interesting output, pass it a
one-line manifest directly from the shell. Regular users of Ruby or Perl will recognize
the call syntax:

= { "puppet": enable =

xle.net in environme

]/enahle: enable ch: o

M I prefer double quotes in manifests that get passed as command-line
Q arguments, because on the shell, the manifest should be enclosed in
single quotes as a whole, if at least for convenience.

[11]

Writing Your First Manifests

You instructed Puppet to perform yet another change upon the Puppet service. The
output reflects the exact change that is performed. Let's analyze this log message:

The Notice: keyword at the beginning of the line represents the log level.
Other levels include Warning, Error, and Debug.

The property that changed is referenced with a whole path, starting with
Stage [main]. Stages are beyond the scope of this book, so you will always
just see the default of main here.

The next path element is Main, which is another default. It denotes the class
in which the resource was declared. You will learn about classes in Chapter 4,
Modularizing Manifests with Classes and Defined Types.

Next is the resource. You already learned that Service [puppet] is its
unique reference.

Finally, enable is the name of the property in question. When several
properties are out of sync, there will usually be one line of output for each
property that gets synchronized.

The rest of the log line indicates the type of change that Puppet saw fit to
apply. The wording depends on the nature of the property. It can be as
simple as created for a resource that is newly added to the managed
system, or a short phrase such as changed false to true.

Dry-testing your manifest

Another useful command-line switch for puppet apply is the - -noop option.
It instructs Puppet to refrain from taking any action on unsynced resources.
Instead, you only get log output that indicates what will change without the
switch. This is useful to determine whether a manifest would possibly break
anything on your system:

] ——nuup

Note that the output format is the same as before, with a (noop) marker trailing
the notice about the sync action. This log can be considered a preview of what
will happen when the manifest is applied.

[12]

Chapter 1

The additional notices about triggered refreshes are usually not important and can be
ignored. You will have a better understanding of their significance after finishing this
chapter and Chapter 4, Modularizing Manifests with Classes and Defined Types.

Adding control structures in manifests

You have written three simple manifests while following along with this chapter so
far. Each comprised only one resource, and one of them was given on the command
line using the -e option. Of course, you would not want to write distinct manifests
for each possible circumstance. Instead, just as how Ruby or Perl scripts branch out
into different code paths, there are structures that make your Puppet code flexible
and reusable for different circumstances.

The most common control element is the i£/else block. It is quite similar to its
equivalent in many programming languages:

if 'mail 1da' in S$needed services ({

service { 'dovecot': enable => true }
} else {
service { 'dovecot': enable => false }

}

The Puppet DSL also has a case statement, which is reminiscent of its counterpart in
other languages as well:

case $role ({

"imap_server': {
package { 'dovecot': ensure => 'installed' }
service { 'dovecot': ensure => 'running' }

}

/_webservers$/: {
service { ['apache', 'ssh']: ensure => 'running' }
}
default: {
service { 'ssh': ensure => running }
}
}

A variation of the case statement is the selector. It's an expression, not a statement,
and can be used in a fashion similar to the ternary if/else operator found in
C-like languages:

package {
'dovecot': ensure => $Srole ? {

[13]

Writing Your First Manifests

'imap server' => 'installed',
/desktops/ => 'purged',
default => 'removed',

}

In more complex manifests, this syntax will impede readability. Puppet Labs
recommend to use it only in variable assignments.

Using variables

Variable assignment works just like in most scripting languages. Any variable name
is always prefixed with the $ sign:

$download server = 'img2.example.net'
S$url = "https://${download server}/pkg/example source.tar.gz"

Also, just like most scripting languages, Puppet performs variable value substitution
in strings that are in double quotes, but no interpolation at all in single-quoted strings.

Variables are useful to make your manifest more concise and comprehensible. They
help you with the overall goal of keeping your source code free from redundancy.
An important distinction from variables in imperative programming and scripting
languages is the immutability of variables in Puppet manifests. Once a value has
been assigned, it cannot be overwritten.

Under specific circumstances, it is possible to amend values through concatenation.
You might encounter statements such as for $variable += 'value'. This should
be used with care, or avoided altogether.

Variable types

As of Puppet 3.x, there are only three variable types: strings, arrays, and hashes.
Puppet 4 introduces a rich type system, but this is out of the scope of this book. The
three variable types work much like their respective counterparts in other languages.
Depending on your background, you might be familiar with associative arrays or
dictionaries as semantic equivalents to Puppet's hash type:

$a_string = 'This is a string value'
$an _array = ['This', 'forms', 'an',6 'array']
$a_hash = {

'subject’ => 'Hashes',

[14]

Chapter 1

'predicate' => 'are written',
'object! => 'like this',
'note' => 'not actual grammar!',
'also note' => ['nmesting is',
{ rallowed' => 'of course' } 1,

}

Accessing the values is equally simple. Note that the hash syntax is similar to that of
Ruby, not Perl's:

$x = $a_string
Sy
Sz

San_array[1]
Sa_hash['object']

Strings can obviously be used as resource attribute values, but it's worth noting that
a resource title can also be a variable reference:

package {
$apache package:
ensure => 'installed'

}

It's intuitively clear what a string value means in this context. But you can also pass
arrays here to declare a whole set of resources in one statement. The following manifest
manages three packages, making sure that they are all installed:

Spackages = ['apache2',
'libapache2-mod-php5',
'libapache2-mod-passenger',]

package {

Spackages:
ensure => 'installed'

}

You will learn how to make efficient use of hash values in later chapters.

1
‘Q The array does not need to be stored in a variable to be used

this way, but it is a good practice in some cases.

[15]

Writing Your First Manifests

Controlling the order of evaluation

With what you've seen thus far, you might have gotten the impression that
Puppet's DSL is a specialized scripting language. That is actually quite far from
the truth—a manifest is not a script or program. The language is a tool to model
a system state through a set of software resources, including files, packages, and
cron jobs, among others.

The whole paradigm is different from that of scripting languages. Whereas Ruby
or Perl are imperative languages, which are based around statements that will be
evaluated in a strict order, the Puppet DSL is declarative: the manifest declares a
set of resources that are expected to have certain properties.

In other words, the manifests should always describe what you expect to be the
end result. The specifics of what actions need to be taken to get there are decided
by Puppet.

To make this distinction more clear, let's look at an example:

package {
'haproxy': ensure => 'installed',

}

file {
' /etc/haproxy/haproxy.cfg':
owner => 'root',
group => 'root',
mode => '644"',

source =>
'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',

}

service {
'haproxy': ensure => 'running',

}

The manifest has Puppet make sure that:

* The HAproxy package is installed

* The haproxy.cfg file has specific content, which has been prepared
in a file in /etc/puppet/modules/

* HAproxy is started

To make this work, it is important that the necessary steps are performed in order.

A configuration file cannot usually be installed before the package, because there

is not yet a directory to contain it. The service cannot start before installation either.
If it becomes active before the configuration is in place, it will use the default settings
from the package instead.

[16]

Chapter 1

This point is being stressed because the preceding manifest does not, in fact, contain

cues for Puppet to indicate such a strict ordering. Without explicit dependencies,
Puppet is free to put the resources in any order it sees fit.

The recent versions of Puppet allow a form of local manifest-based
ordering, so the presented example will actually work as is. It is still

important to be aware of the ordering principles, because the implicit
’ order is difficult to determine in more complex manifests, and as you

will learn soon, there are other factors that will influence the order.

Declaring dependencies

The easiest way to bring order to such a straightforward manifest is resource
chaining. The syntax for that is a simple ASCII arrow between two resources:

package {
'haproxy': ensure => 'installed',

}

->

file {
' /etc/haproxy/haproxy.cfg':
owner => 'root',
group => 'root',
mode => '644"',

source => 'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',

->
service {
'haproxy': ensure => 'running',

}

This is only viable if all the related resources can be written next to each other.
In other words, if the graphic representation of the dependencies does not form a
straight chain, but more of a tree, star, or other shape, this syntax is not sufficient.

1
‘Q Internally, Puppet will construct an ordered graph of resources

and synchronize them during a traversal of that graph.

[17]

Writing Your First Manifests

A more generic and flexible way to declare dependencies are specialized
metaparameters — parameters that are eligible for use with any resource type.
There are different metaparameters, most of which have nothing to do with
ordering (you have seen provider in an earlier example), but for now, let's
concentrate on require and before. Here is the Haproxy manifest, ordered
using the require metaparameter:

package {
'haproxy': ensure => 'installed',

}

file {

' /etc/haproxy/haproxy.cfg':
owner => 'root',
group => 'root',
mode => '644"',
source =>

'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',
require => Package['haproxy'l,
}
service {
'haproxy':
ensure => 'running',
require => File['/etc/haproxy/haproxy.cfg'l,

}

The following manifest is semantically identical, but relies on the before
metaparameter rather than require:

package {
'haproxy':
ensure => 'installed',
before => File['/etc/haproxy/haproxy.cfg'],

}

file {
' /etc/haproxy/haproxy.cfg' :
owner => 'root',
group => 'root',
mode => '644"',

source =>
'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',
before => Servicel['haproxy'l,
}
service {
'haproxy': ensure => 'running',

[18]

Chapter 1

1
‘\Q The manifest can also mix both styles of notation, of course.

This is left as a reader exercise with no dedicated depiction.

The require metaparameter usually leads to more understandable code, because it
expresses a dependency of the annotated resource on another resource. The before
parameter, on the other hand, implies a dependency that a referenced resource
forms upon the current resource. This can be counter-intuitive, especially for
frequent users of packaging systems (which usually implement a require style
dependency declaration).

The before metaparameter is still outright necessary in certain situations and can
make the manifest code more elegant and straightforward for others. Familiarity
with both variants is advisable.

Let's see an example of dependencies that do not form a straight chain. In the
following code, Puppet manages the configuration directory explicitly, so the config
file can be deployed independently of the package. The service's requirements are
passed in an array:

package {
'haproxy': ensure => 'installed',

}

file {

' /etc/haproxy "' :
ensure => 'directory',
owner => 'root',
group => 'root',
mode => '644"';

' /etc/haproxy/haproxy.cfg':
owner => 'root',
group => 'root',
mode => '644"',

source =>
'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',
}
service {
'haproxy':
ensure => 'running',
require => [
File['/etc/haproxy/haproxy.cfg']l,
Package ['haproxy'],
1,

[19]

Writing Your First Manifests

Puppet will automatically make the config file require the
containing directory if it is part of your manifest. There is no
3 need to add the metaparameter explicitly. This is a special
Q function of £ile resources.
The manifest saves lines by declaring both £ile resources in
one block, separated by a semicolon.

Error propagation

Defining requirements serves another important purpose. I have used the term
dependency in this context before. This wording was deliberate —aside from
defining a mandatory order of evaluation, the require and before parameters
bond the involved resources into a unidirectional failure pair. For example,

a file resource will fail if the URL of the source file is broken:

file {
' /etc/haproxy/haproxy.cfg':
source => 'puppet:///modules/haproxy/etc/haproxy.cfg'’

}

Puppet will report that the resource could not be synchronized:

nple.net 1n environment pro

: Dependency Filel.

Motice: Finished catalo

In this screenshot, the Error line describes the error caused by the broken URL.
The error propagation is represented by the Notice and warning keywords
below that.

Puppet failed to apply changes to the configuration file —it cannot compare the
current state to the nonexistent source. As the service depends on the configuration
file, Puppet will not even try to start it. This is for safety: if any dependencies cannot
be put into the defined state, Puppet must assume that the system is not fit for
application of the dependent resource.

[20]

Chapter 1

This is another important reason to make consequent use of resource dependencies.
Remember that the chaining arrow and the before metaparameter imply the
same semantics.

Avoiding circular dependencies

Before you learn about another way in which resources can interrelate, there is an
issue that you should be aware of: dependencies must not form circles. Let's visualize
this in an example:

file {

' /etc/haproxy "' :
ensure => 'directory',
owner => 'root',
group => 'root',
mode => '644"';

' /etc/haproxy/haproxy.cfg' :
owner => 'root',
group => 'root',
mode => '644"',

source =>
'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',
}
service {
'haproxy':

ensure => 'running',

require => File['/etc/haproxy/haproxy.cfg'l],

before => File['/etc/haproxy'l],

}

The dependency circle in this manifest is somewhat hidden (as will likely be the
case for many such circles that you will encounter during regular use of Puppet).
It is formed by the following relations:

* TheFile['/etc/haproxy/haproxy.cfg'] autorequires the parent directory,
File['/etc/haproxy']

* The parent directory, File[' /etc/haproxy'], requires
Service ['haproxy'], due to the latter's before metaparameter

* The service['haproxy'] requires the File['/etc/haproxy/haproxy.
cfg'] config

[21]

Writing Your First Manifests

Granted, the example is contrived —it will not make sense to manage the service
before the configuration directory. Nevertheless, even a manifest design that is
apparently sound can result in circular dependencies. This is how Puppet will
react to that:

»le.net 1n environme

on 1n

Motice: Finlshed catalog run in 0.0

The output helps you to locate the offending relation(s). For very wide dependency
circles with lots of involved resources, the textual rendering is difficult to analyze.
Therefore, Puppet also gives you the opportunity to get a graphical representation
of the dependency graph through the - -graph option.

If you do this, Puppet will include the full path to the newly created . dot file in its
output. Its content looks similar to Puppet's output:

digraph Resource Cycles ({

label = "Resource Cycles"
"File[/etc/haproxy/haproxy.cfg]" -> "Service[haproxyl" -> "Filel[/etc/
haproxy]l" -> "File[/etc/haproxy/haproxy.cfgl"

}

This is not helpful by itself, but it can be fed directly to tools such as dotty to
produce an actual diagram.

To summarize, resource dependencies are helpful in order to keep Puppet from
acting upon resources in unexpected or uncontrolled situations. They are also
useful to restrict the order of resource evaluation.

Implementing resource interaction

In addition to dependencies, resources can also enter a similar but different mutual
relation. Remember the pieces of output that we skipped earlier:

[22]

Chapter 1

het in enwvironme
ion 1im 0.
current_value t

1d ke fal
1 inl Ak T fr
] from 1

Puppet mentions that refreshes would have been triggered for the reason of an
event. Such events are emitted by resources whenever Puppet acts on the need
for a sync action. Without explicit code to receive and react to events, they just
get discarded.

The mechanism to set up such event receivers is named in analogy to a generic
publish/subscribe queue —resources get configured to react to events using the
subscribe metaparameter. There is no publish keyword or parameter, since
each and every resource is technically a publisher of events (messages). Instead,
the counterpart of the subscribe metaparameter is called notify, and it explicitly
directs generated events at referenced resources.

One of the most common practical uses of the event system is the ability to
reload service configurations. When a service resource consumes an event
(usually from a change in a config file), Puppet invokes the appropriate action
to make the service restart.

If you instruct Puppet to do this, it can result in brief service interruptions
%j%“ due to this restart operation. Note that if the new configuration causes an
’ error, the service might fail to start and stay offline.

file {

' /etc/haproxy/haproxy.cfg':
owner => 'root',
group => 'root',
mode => '644"',
source =>

'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',
require => Package['haproxy'l],
}
service {
'haproxy':
ensure => 'running',
subscribe => File['/etc/haproxy/haproxy.cfg'l,

[23]

Writing Your First Manifests

If the notify metaparameter is to be used instead, it must be specified for the
resource that emits the event:

file {

' /etc/haproxy/haproxy.cfg':
owner => 'root',
group => 'root',
mode => '644"',
source =>

'puppet:///modules/haproxy/etc/haproxy/haproxy.cfg',
require => Package['haproxy'l],
notify => Service['haproxy'l,
}
service {
'haproxy': ensure => 'running',

}

This will likely feel reminiscent of the before and subscribe metaparameters,
which offer symmetric ways of expressing an interrelation of a pair of resources
just as well. This is not a coincidence — these metaparameters are closely related
to each other:

* The resource that subscribes to another resource implicitly requires it

* The resource that notifies another is implicitly placed before the latter
one in the dependency graph

In other words, subscribe is the same as require, except for the dependent resource
receiving events from its peer. The same holds true for notify and before.

The chaining syntax is also available for signaling. To establish a signaling relation
between neighboring resources, use an ASCII arrow with a tilde, ~>, instead of the
dash in ->:

file { '/etc/haproxy/haproxy.cfg': .. }
~>

service { 'haproxy': .. }

The service resource type is one of the two notable types that support refreshing
when resources get notified (the other will be discussed in the next section).
There are others, but they are not as ubiquitous.

[24]

Chapter 1

Examining the most notable resource
types

To complete our tour of the basic elements of a manifest, let's take a closer look at the
resource types you have already used and some of the more important ones that you
have not yet encountered.

You probably already have a good feeling for the f£ile type, which will ensure the
existence of files and directories, along with their permissions. Pulling a file from a
repository (usually, a Puppet module) is also a frequent use case, using the source
parameter. For very short files, it is more economic to include the desired content
right in the manifest:

file {
'/etc/modules!' :

content => "# Managed by Puppet!\n\ndrbd\n",

Al

~ The double quotes allow expansion of escape
sequences such as \n.

Another useful capability is managing symbolic links:

file {
' /etc/apache2/sites-enabled/001-puppet-lore.org' :
ensure => 'link',
target => '../sites-available/puppet-lore.org';
' /etc/apache2/sites-enabled/002-wordpress':
ensure => '../sites-available/wordpress',

}

Using the link target as the ensure value is possible but not recommended.

The next type you already know is package, and its typical usage is quite intuitive.
Make sure that packages are either installed or removed. A notable use case you
have not yet seen is to use the basic package manager instead of apt or yum/ zypper.
This is useful if the package is not available from a repository:

package {
'haproxy':
provider => 'dpkg',
source => '/opt/packages/haproxy-1.5.1 amdé4.dpkg"',

[25]

Writing Your First Manifests

M Your mileage usually increases if you make the effort of setting
Q up a simple repository instead so that the main package manager
can be used after all.

Last but not least, there is the service type, the most important attributes of which
you already know as well. It's worth pointing out that it can serve as a simple
shortcut in cases where you don't wish to add a full-fledged init script or similar.
With enough information, the base provider for the service type will manage
simple background processes for you:

service {

'count-logins':

provider => 'base',

ensure => 'running',

binary => '/usr/local/bin/cnt-logins',

start => '/usr/local/bin/cnt-logins --daemonize',

subscribe => File['/usr/local/bin/cnt-logins'],

}

Puppet will not only restart the script if it is not running for some reason, but also
will restart it whenever the content changes. This only works if Puppet manages
the file content and all changes propagate through Puppet only.

If Puppet changes any other property of the script file (for example,
= the £ile mode), that too will lead to a restart of the process.

Let's look at some other types you will probably need.

The user and group types

Especially in the absence of central registries such as LDAP, it is useful to be able

to manage user accounts on each of your machines. There are providers for all
supported platforms; however, the available attributes vary. On Linux, the useradd
provider is the most common. It allows the management of all fields in /etc/passwd,
such as uid and shell, but also group memberships:

group {
'proxy-admins':
ensure => present,
gid => 4002,

[26]

Chapter 1

user
'john':
uid => 2014,
home => '/home/john'
managehome => true, # <- adds -m to useradd
gid => 1000,
shell => '/bin/zsh',
groups => ['proxy-admins' 1,

}

As with all resources, Puppet will not only make sure that the user and group exist,
but also fix any divergent properties such as the home directory.

Even though the user depends on the group, because it cannot
M be added before the group exists, this need not be expressed in the
Q manifest. The user automatically requires all necessary groups,
similar to £ile autorequiring its parent directory.

Note that Puppet will also happily manage your LDAP user accounts.

The exec resource type

There is one oddball resource type in the Puppet core. Remember my earlier
assertion that Puppet is not a specialized scripting engine, but instead a tool that
allows you to model part of your system state in a compelling DSL and is capable of
altering your system to meet the defined goal. This is why you declare a user and

a group, for example, instead of invoking groupadd and useradd in order. You can
do this because Puppet comes with support to manage such entities. This is vastly
beneficial, because Puppet also knows that on different platforms, other commands
are used for account management and that the arguments can be subtly different on
some systems.

Of course, Puppet does not have knowledge of all conceivable particulars of any
supported system. Say you wish to manage an OpenAFS file server —there are no
specific resource types to aid you with this. The ideal solution is to exploit Puppet's
plugin system and to write your own types and providers so that your manifests
can just reflect the AFS-specific configuration. This is not simple though and also not
worthwhile in cases where you only need Puppet to invoke some exotic commands
from very few places in your manifest.

[27]

Writing Your First Manifests

For such cases, Puppet ships with the exec resource type, which allows the execution
of custom commands in lieu of an abstract sync action. For example, it can be used to
unpack a tarball in the absence of a proper package:

exec {
'tar c¢jf /opt/packages/homebrewn-3.2.tar.bz2':
cwd => '/opt',
path => '/bin:/usr/bin"',

creates => '/opt/homebrewn-3.2"',

}

The creates parameter is important for Puppet to tell whether the command
needs running — once the specified path exists, the resource counts as synced.
For commands that do not create a telltale file or directory, there are alternative
parameters, onlyif and unless, to allow Puppet to query the sync state:

exec {
'perl -MCPAN -e "install YAML"':
path => '/bin:/usr/bin',
unless => 'cpan -1 | grep -gP “YAML\\b'

}

The query command's exit code determines the state. In the case of unless, the exec
command runs if the query fails.

Finally, the exec type resources are the second notable case of receivers for events
using notify and subscribe:

exec {
'apt-get update':
path => '/bin:/usr/bin"',
subscribe =>

File['/etc/apt/sources.list.d/jenkins.list'],
refreshonly => true,

}

You can even chain multiple exec resources in this fashion so that each invocation
triggers the next one. However, this is a bad practice and degrades Puppet to a
(rather flawed) scripting engine. The exec resources should be avoided in favor

of regular resources whenever possible. Some resource types that are not part of
the core are available as plugins from the Puppet Forge. You will learn more about
this topic in Chapter 5, Extending Your Puppet Infrastructure with Modules.

Since exec resources can be used to perform virtually any operation, they are

sometimes abused to stand in for more proper resource types. This is a typical
antipattern in Puppet manifests. It is safer to regard exec resources as the last
resort, which are only to be used if all other alternatives have been exhausted.

[28]

Chapter 1

Let's briefly discuss two more types that are supported out of the box. They allow the
management of cron jobs and mounted partitions and shares, respectively, which are
frequent requirements in server operation.

The cron resource type

A cron job mainly consists of a command and the recurring time and date at which to
run the command. Puppet models the command and each date particle as a property
of a resource with the cron type:

cron {
'clean-files':

ensure => present,

user => 'root',

command => '/usr/local/bin/clean-files’',
minute => '1"',

hour => '3",

weekday = ['2', '6' 1,

environment => 'MAILTO=felix@example.net',

}

The environment property allows you to specify one or more variable bindings for
cron to add to the job.

The mount resource type

Finally, Puppet will manage all aspects about mountable filesystems for you —
their basic attributes such as the source device and mount point, the mount
options, and the current state. A line from the £stab file translates quite literally
to a Puppet manifest:

mount
' /media/gluster-data’:

ensure => 'mounted',
device => 'glusterOl:/data',
fstype => 'glusterfs',
options => 'defaults, netdev',
dump => 0,
pass => 0,

[29]

Writing Your First Manifests

For this resource, Puppet will make sure that the filesystem is indeed mounted
after the run. Ensuring the unmounted state is also possible, of course, but Puppet
can also just make sure the entry is present in the £stab file, or absent from the
system altogether.

Summary

After installing Puppet on your system, you can use it by writing and applying
manifests. These are programs that are written in Puppet's DSL. Even though they
resemble scripts, they should not be considered as such. For one thing, they consist
of resources instead of commands. These resources are generally not evaluated in
the order in which they have been written. An explicit ordering should be defined
through the require and before metaparameters instead.

Each resource has a number of attributes: parameters and properties. Each property is
evaluated in its own right; Puppet detects whether a change to the system is necessary
to get any property into the state that is defined in the manifest. It will also perform
such changes. This is referred to as synchronizing a resource or property.

The ordering parameters, require and before, are of further importance because
they establish dependency of one resource upon one or more others. This allows
Puppet to skip parts of the manifest if an important resource cannot be synchronized.
Circular dependencies must be avoided.

Each resource in the manifest has a resource type that describes the nature of the
system entity that is being managed. Some of the types that are used most frequently
are file, package, and service. Puppet comes with many types for convenient
system management, and many plugins are available to add even more. Some tasks
require the use of exec resources, but this should be done sparingly.

In the next chapter, we will have a look at the master/agent setup.

[30]

The Master and Its Agents

So far, you have dealt with some concise Puppet manifests that were built to model
some very specific goals. By means of the puppet apply command, you can use
such snippets on any machine in your infrastructure. This is not the most common
way of using Puppet, though, and this chapter will introduce you to the popular
master/agent structure. It's worth noting, however, that applying standalone
manifests can always be useful, independent of your overall Puppet design.

Under the master/agent paradigm, you will typically install the Puppet agent
software on all nodes under your care and make them call in to the master, which is
yet another Puppet installation. The master will compile appropriate manifests and
effectively remotely control the agents. Both the agent and the master authenticate
themselves using trusted SSL certificates.

This chapter covers the following topics:

* The Puppet master

* Setting up the Puppet agent
* Performance considerations
* SSL troubleshooting

The Puppet master

Many Puppet-based workflows are centered around the master, which is a

central source of configuration data and authority. The master hands instructions
to all computer systems in the infrastructure (where agents are installed). It serves
multiple purposes in the distributed system of Puppet components.

The Master and Its Agents

The master will perform the following tasks:

* Storing and compiling manifests
* Serving as the SSL certification authority
* Processing reports from the agent machines

* Gathering and storing information about the agents

As such, the security of your master machine is paramount, which is not unlike
a Kerberos Key Distribution Center.

During its first initialization, the Puppet master generates the CA certificate.
This self-signed certificate will be distributed among and trusted by all pieces of
your infrastructure. This is why its private key must be protected very carefully.
New agent machines request individual certificates, which are signed with the
CA certificate.

M It's a good idea to include a copy of the CA certificate in your
Q OS-provisioning process so that the agent can establish the authenticity
of the master before requesting its individual certificate.

Setting up the master machine

The software that implements the basic master functionality is identical to the
Puppet package that you installed during the first chapter; remember how you
invoked it as puppet apply at the time? Like several source control software
(such as git), the puppet CLI tool implements various subcommands that can
perform very different tasks. You can basically start a Puppet master on any
machine by running puppet master.

This is obviously not an acceptable mode of running an essential service. For a
durable production setup, there is a specialized package of scripts and wrappers
called puppetmaster.

_ Puppet Labs' online documentation has detailed step-by-step
% information on how to prepare your system for the installation of
i their packages at https://docs.puppetlabs.com/guides/

install puppet/pre install.html.

[32]

Chapter 2

Once this package is installed, you should be able to control the master operation via
the puppetmaster system service. In fact, the master service starts up and initializes
itself with the default settings right after the package installation. This might not fit
your requirements yet, but let's keep these defaults for the moment.

Creating the master manifest

When you used Puppet locally during Chapter 1, Writing Your First Manifests, you
specified a manifest file that puppet apply should compile. The master compiles
manifests for many machines, but the agent does not get to choose which source
file is to be used — this is fully at the master's discretion. The starting point for
any compilation by the master is always the site manifest, which can be found

at /etc/puppet/manifests/site.pp.

Al

~Q The path is configurable, of course.

Each connecting agent will use the manifest found there. Of course, you don't want
to manage only one identical set of resources on all of your machines. To define a
piece of manifest exclusively for a specific agent, put it in a node block. This block's
contents will only be considered when the calling agent has a matching common
name in its SSL certificate. You can dedicate a piece of manifest to a machine with
the name of agent, for example:

node 'agent' ({

Spackages = ['apache2',
'libapache2-mod-php5',
'libapache2-mod-passenger',]

package {

Spackages:
ensure => 'installed',

}

->

service {

'apache2!':
ensure => 'running',

enable => true,

[33]

The Master and Its Agents

Before you set up and connect your first agent to the master, step back and think
about how the master should be addressed. By default, agents will try to resolve
the unqualified puppet hostname in order to get the master's address. If you have
a default domain that gets searched by your machines, you can use this default
and add a record for puppet as a subdomain. Otherwise, pick a domain name
that seems fitting to you, such as master.example.net or adm01.example.net.
What's important is that:

* All your agent machines can resolve the name to an address
* The master process is listening for connections on that address

e The master uses a certificate with the chosen name as CN or SAN

The mode of resolution depends on your circumstances — the hosts file on each
machine is one ubiquitous possibility. Puppet listens on all available addresses
by default.

This leaves the task of creating a suitable certificate, which is simple. Configure the
master to use the appropriate certificate name, and restart the service. If the certificate
does not exist yet, Puppet will take the necessary steps to create it. Put the following
setting into your /etc/puppet/puppet . conf file on the master machine:

[master]
certname=master.example.net

Upon its next start, the master will use the appropriate certificate for all SSL
connections. The automatic proliferation of SSL data is not dangerous even in an
existing setup, except for the certification authority. If the master were to generate a
new CA certificate at any point in time, it would break the trust of all existing agents.

This was not obvious, but during the installation and initialization of the
puppetmaster package, Puppet had already created a set of certificates —one for
its own service, based on what the master considered its default name in your
environment and the CA certificate to sign it.

_ Make very sure that the data in /var/1lib/puppet/ssl/
% ca/ is neither lost nor compromised. All previously signed
Z— certificates become obsolete whenever Puppet needs to create
a new certification authority.

[34]

Chapter 2

Inspecting the configuration settings

All customization of the master's parameters can be made in the puppet . conf file.
The operating system packages ship with some settings deemed sensible by the
respective maintainers. Apart from these explicit settings, Puppet relies on defaults
that are either built in or derived from the environment (details on how this works
follow in the next chapter).

Most users will want to rely on these defaults for as many settings as possible.
This is possible without any drawbacks, because Puppet makes all settings fully
transparent using the - -configprint parameter. For example, you can find out
where the master manifest file is located:

root@puppetmaster# puppet master --configprint manifest

/etc/puppet/manifests/site.pp

To get an overview of all available settings and their values, use the
following command:

root@puppetmaster# puppet master --configprint all | less

While this command is especially useful on the master side, the same introspection
is available for puppet apply and puppet agent.

Setting up the Puppet agent

As was explained earlier, the master mainly serves instructions to agents in the form
of catalogs that are compiled from the manifest. You have also prepared a node block
for your first agent in the master manifest.

Installing the agent software is easy — you did this at the start of Chapter 1, Writing
Your First Manifests. The plain Puppet package that allows you to apply a local
manifest contains all the required parts in order to operate a proper agent.

For the initial test, the following invocation is sufficient:

ing; falled to retrieve certifilicate and waltforcert is disabl

[35]

The Master and Its Agents

Puppet first created a new SSL certificate key for itself. For its own name, it picked
agent, which is the machine's hostname. That's fine for now. An error happened,
because the name puppet cannot be currently resolved to anything. Add it to
/etc/hosts so that Puppet can contact the master.

o no certificate found and waitforcert is disabled

Note how Puppet conveniently downloaded and cached the CA certificate. The agent
will establish trust based on this certificate from now on.

This is a delicate moment during which spoofing is
% possible —it can be avoided by implementing a secure
way to preshare the CA certificate.

Puppet created a certificate request and sent it to the master. It then immediately
tried to download the signed certificate. This is expected to fail — the master won't
just sign a certificate for any request it receives. This behavior is important for
proper security.

. There is a configuration setting that enables such automatic signing,
% but users are generally discouraged from using it because it allows for
%~ the creation of arbitrary numbers of signed (and therefore, trusted)
certificates to any user who has network access to the master.

To authorize the agent, look for the CSR on the master using the puppet cert
command:

root@puppetmaster# puppet cert --list
"agent" (SHA256) C9:66:45:40:67:42:ED:2D:A2:50:A4:6C:49:62:57:D1: A0:77
:BO0:E4:03:CF:63:A2:96:F6:55:7D:07:23:FE:2C

This looks alright, so now you can sign a new certificate for the agent:

root@puppetmaster# puppet cert --sign agent
Notice: Signed certificate request for agent

Notice: Removing file Puppet::SSL::CertificateRequest agent at '/var/
lib/puppet/ssl/ca/requests/agent.pem’

[36]

Chapter 2

M When choosing mode of operation for puppet cert, the
Q dashes in front of the option name can be omitted —you can
just use puppet cert list and puppet cert sign

Now the agent can receive its certificate for its catalog run:

failed to retri

That didn't work. Remember that you picked a full domain name for your master
earlier. The default of puppet will, therefore, not work for authenticated SSL
connections. To make Puppet use the correct name, add the - -server option.

This output indicates a successful agent run. The manifest inside the node block
from site.pp on the master was used —the node name, which is agent, matches
the certificate of the new Puppet agent.

To avoid the need to constantly pass the correct name of our master on the command
line, add it to the [main] section in puppet . conf on the agent:

[main]
server=master.example.net

[37]

The Master and Its Agents

The agent's life cycle

In a Puppet-centric workflow, you typically want all changes to the configuration
of servers (perhaps even workstations) to originate on the Puppet master and
propagate to the agents automatically. Each new machine gets integrated into the
Puppet infrastructure, with the master at its center, and gets removed during the
decommissioning, as shown in the following diagram:

Hardware Agent

Provision
Initialize

CSR
Sign

!l
y

L Signed Certificate

1
|
Regular Regular
operations Request and operations

receive catalogs
Decommission

1
1
1
1
! Remove agent
1
1
1

The very first step — generating a key and a certificate signing request —is always
performed implicitly and automatically at the start of an agent run if no local SSL
data exists yet. Puppet creates the required data if no appropriate files are found.
There will be a short description on how to trigger this behavior manually later in
this section.

The next step is usually the signing of the agent's certificate, which is performed
on the master. It is a good practice to monitor the pending requests by listing
them on the console:

root@puppetmaster# puppet cert list
root@puppetmaster# puppet cert sign '<agent fqgdn>'

[38]

Chapter 2

From this point on, the agent will periodically check with the master to load updated
catalogs. The default interval for this is 30 minutes. The agent will perform a run of
the catalog each time and check the sync state of all contained resources. The run

is performed for unchanged catalogs as well, because the sync states can change
between runs. Launching this background process can be done manually through a
simple command:

root@agent# puppet agent
However, it is preferable to do this through the Puppet system service.

When an agent machine is taken out of active service, its certificate should be
invalidated. As is customary with SSL, this is done through revocation. The master
adds the serial number of the certificate to its certificate revocation list. This list, too,
is shared with each agent machine. Revocation is initiated on the master through the
puppet cert command:

root@puppetmaster# puppet cert --revoke agent

The updated CRL is not honored until the master
% process is restarted. If security is a concern, this step
/N
must not be postponed.

The agent can then no longer use its old certificate:

[39]

The Master and Its Agents

Renewing an agent's certificate

Sometimes, it is necessary during an agent machine's life cycle to regenerate its
certificate and related data—the reasons can include data loss, Human Error, or
certificate expiration, among others. Performing the regeneration is quite simple:

all relevant files are kept at /var/1lib/puppet/ssl on the agent machine. Once
these files are removed (or rather, the whole ss1/ directory tree), Puppet will renew
everything on the next agent run. Of course, a new certificate must be signed. This
requires some preparation —just initiating the request from the agent will fail.

puppet

The master still has the old certificate cached. This is a simple protection against
the impersonation of your agents by unauthorized entities. Once you perform the
cleanup operation on the master, as advised in the preceding output, and remove
the indicated file from the agent machine, the agent will be able to successfully
place its new CSR:

root@puppet# puppet cert clean agent

Info: Caching certificate for agent

Notice: Revoked certificate with serial 18

Notice: Removing file Puppet::SSL::Certificate agent at '/var/lib/
puppet/ssl/ca/signed/agent.pem’

Notice: Removing file Puppet::SSL::Certificate agent at '/var/lib/
puppet/ssl/certs/agent.pem’

The rest of the process is identical to the original certificate creation. The agent
uploads its CSR to the master, where the certificate is created through the puppet
cert sign command.

[40]

Chapter 2

Running the agent from cron

There is an alternative way to operate the agent. Instead of starting one long-running
puppet agent process that does its work in set intervals and then goes back to sleep,
it is also possible to have cron launch a discrete agent process in the same interval.
This agent will contact the master once, run the received catalog, and then terminate.
This has several advantages:

* The agent operating system saves some resources

* The interval is precise and not subject to skew (when running
the background agent, deviations result from the time that elapses
during the catalog run), and distributed interval skew can lead to
thundering herd effects

* Any agent crashes or an inadvertent termination is not fatal

While crashes are becoming increasingly rare as the software matures, there is still
an opportunity to cause the agent to stop unexpectedly. For example, some operating
system packages have been known to restart the Puppet service during their update
operation. However, if the Puppet agent itself was initiating the update (through

a package resource), the restart of Puppet would cause the whole update to fail,
because the post-installation script process killed one of its own ancestors (the agent
process). Since the script failed right after stopping the agent, nothing would start it
up again—manual intervention was necessary. Such scenarios can be avoided, but if
the agent is run by cron, the risk is eliminated as a whole.

Setting Puppet to run the agent from cron is also very easy to do—with Puppet!
You can use a manifest such as the following;:

service {
'puppet': enable => false
}
cron {
'puppet-agent-run':
user => 'root',

command =>

'puppet agent --no-daemonize --onetime --logdest=syslog',
minute => fgdn rand(60),
hour => absent,

}

The £qdn_rand function computes a distinct minute for each of your agents.
Setting the hour property to absent means that the job should run every hour.

[41]

The Master and Its Agents

Performance considerations

Operating a Puppet master gives you numerous benefits over just using puppet
apply on all your machines. This comes at a cost, of course. The master and agents
form a server/client relation, and as with most such constructs, the server can
become the bottleneck.

The good news is that the Puppet agent is a fat client. The major share of the

work —inspecting file contents, interfacing with the package-management subsystem,
services subsystem, and much more —is done by the agent. The master "only" has to
compile manifests and build catalogs from them. This becomes increasingly complex
as you hand over more control to Puppet.

There is one more task your master is responsible for. Many of your manifests will
contain file resources that rely on prepared content:

file {
'/usr/local/etc/my app.ini':
ensure => present,
owner => 'root',
group => 'root',
source =>
'puppet:///modules/my app/usr/local/etc/my app.ini',

}

The source parameter with a URL value indicates that the file has been pregenerated
and placed in a module on the Puppet master (more on modules in Chapter 5, Extending
Your Puppet Infrastructure with Modules). The agent will compare the local file with

the master's copy (by checksum) and download the canonical version, if required.

The comparison is a frequent occurrence in most agent runs — you will make Puppet
manage lots of files. The master does not need lots of resources to make this happen,
but it will hinder fluent agent operation if the master gets congested.

This can happen for any combination of these reasons:

* The total number of agents is too large

* The agents check-in too frequently

* The manifests are too complex

* The master's hardware resources are insufficient

There are ways to scale your master operation via load balancing, but these are not
covered in this book.

[42]

Chapter 2

M Puppet Labs have some documentation on a few advanced

Q approaches at https://docs.puppetlabs.com/guides/
scaling multiple masters.html.

However, there is one essential optimization step in order to enable the master
to use the hardware efficiently in the first place. This step will be detailed in the
next section.

\ Some advanced users have found it even more beneficial to remove the
~ master from their Puppet infrastructure altogether. This approach can
Q lead to elegant setups if done right, but an agent and master structure
is easier to maintain, especially for new users.

Switching to Phusion Passenger

When launched via puppet master (or the system service), Puppet implements
its HTTP interactions through the WEBrick library. This built-in server provides
a reliable interface and little overhead for the application but really has no way
of scaling, as Puppet is not multithreaded. As such, the WEBrick-based master

is hardly fit for production and should usually be used for testing purposes only.
For scalable low-latency operations, Puppet can rely on the industry standard
for Ruby-based web applications — Passenger.

The Puppet Labs documentation contains portable instructions for

installing Passenger from the Ruby gem. Many users might prefer
— the stability of packages from the software-distribution maintainers.

The following instructions rely on Debian packages.

Make sure that the standalone master process is stopped before setting up Apache
with mod_passenger. This is not the only way to use Passenger, but it's one of the
most popular ways:

1. You need to install the following package and its dependencies:

root@puppetmaster# apt-get install libapache2-mod-passenger

2. Make sure the necessary Apache modules are active:

root@puppetmaster# a2enmod ssl
root@puppetmaster# a2enmod headers
root@puppetmaster# a2enmod passenger

[43]

The Master and Its Agents

3. The Debian packages from Puppet Labs ship with example configurations
you can use. Copy the virtual host definition to /etc/apache2 and enable it:
root@puppetmaster# cp /usr/share/puppet/ext/rack/example-passenger
-vhost.conf /etc/apache2/sites-available/puppetmaster
root@puppetmaster# a2ensite puppetmaster

4. Inside this configuration file, the SSL certificate name and location must be
customized to match your setup:

SSLCertificateFile \
/var/lib/puppet/ssl/certs/master.example.net.pem
SSLCertificateKeyFile \

/var/lib/puppet/ssl/private keys/master.example.net.pem
SSLCertificateChainFile /var/lib/puppet/ssl/ca/ca_crt.pem
SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem
SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem

The example virtual host defaults to locating the Puppet rack application at
/etc/puppet/rack:

DocumentRoot /etc/puppet/rack/public

RackBaseURI /

<Directory /etc/puppet/rack/>

5. You can customize the rack location, but let's just use this preset. Create the
necessary directories, place the config. ru file there (again, copied from the
Debian package), and make sure it has the correct ownership:

root@puppetmaster# mkdir -p /etc/puppet/rack/{tmp,public}
root@puppetmaster# install -o puppet -g puppet /usr/share/puppet/
rack/config.ru /etc/puppet/rack

6. Now everything is in place —restart the Apache service to make sure that the
new port settings are applied:

root@puppetmaster# /etc/init.d/apache2 restart

From now on, your master service is available via Apache.

[44]

Chapter 2

Using Passenger with Nginx

Nginx is a lean and fast web server that is ever increasing in popularity. It can run
your Puppet master through Passenger as well, so you don't need to install Apache.
Unfortunately, the stock version of Nginx cannot run Passenger through a module.
The Phusion project supplies packages for the more popular Linux distributions,
but only those that are for Debian and Ubuntu are current. On Red Hat derivatives,
you will need to build Nginx yourself. Supporting packages that make this easy are
available. The following instructions are applicable to Debian:

1. Follow the instructions at https://www.phusionpassenger.com/
documentation/Users%20guide%20Nginx.html#install on debian
ubuntu in order to install appropriate Nginx packages.

2. Inthe /etc/nginx/nginx.conf file, uncomment or insert the passenger
specific statements:
passenger_root /usr/lib/ruby/vendor ruby/phusion passenger/
locations.ini;
passenger ruby /usr/bin/ruby;

3. Prepare the Rails configuration just like you would for Apache:
root@puppetmaster# mkdir -p /etc/puppet/rack/{tmp,public}

root@puppetmaster# install -o puppet -g puppet /usr/share/puppet/
rack/config.ru /etc/puppet/rack

4. Create a vhost for Puppet at /etc/nginx/sites-available/puppetmaster:

server {
listen 8140;
server name master.example.net;
root /etc/puppet/rack/public;

ssl on;
ssl certificate
/var/lib/puppet/ssl/certs/master.example.net.pem;

ssl certificate key

/var/lib/puppet/ssl/private keys/master.example.net.pem;
ssl _crl /var/lib/puppet/ssl/ca/ca_crl.pem;
ssl client certificate /var/lib/puppet/ssl/certs/ca.pem;
ssl verify client optional;
ssl verify depth 1;

passenger_ enabled on;
passenger set cgi param HTTPS on;

[45]

The Master and Its Agents

passenger set cgi param SSL CLIENT S DN $ssl client s dn;
passenger_set_cgi_param
SSL CLIENT VERIFY $ssl client verify;

}
5. Enable the vhost and restart Nginx:

root@puppetmaster# ln -s ../sites-available/puppetmaster/ etc/
nginx/sites-enabled/puppetmaster

root@puppetmaster# /etc/init.d/nginx restart

Nginx is now running the Puppet master service for you through Passenger.
The mentioned configuration is bareboned, and you might wish to extend

it for tuning and features. The next section is written with Apache in mind,
but the concepts can be applied to Nginx just as well.

Basic tuning

There is really only one important value that you should scale to your circumstances —
the Passenger pool size. It determines how many Ruby processes Apache is allowed to
fork and run in parallel.

Again, Puppet is inherently single-threaded. Each incoming request is handed to

a puppet master process, which then single-mindedly goes about its business.
Compiling manifests is usually limited by the CPU power — until finished, the
master process will use one processor core fully. Assuming that there is no shortage
of memory and I/O operations, you can optimize the throughput of the master

by sizing the Passenger pool to a number equal to or just below your number of
available processor cores. Allowing too many parallel processes can lead to CPU
congestion and degraded total performance due to the context-switching overhead.
An undersized pool might waste CPU resources.

\ The Puppet toolchain can help you determine the exact
~ number of CPU cores available to your operating system.
Q Try running facter processorcount. The next chapter
contains more information on this topic.

If the frequency of catalog requests substantially exceeds the maximum throughput
of your pool, you will notice issues. Catalog requests might fail because no worker
accepts them in time. During catalog runs, file resources can fail because no master
can be reached to supply the checksum. If you cannot upgrade your master, you can
trade some performance for stability instead. Do this by enlarging the pool beyond
the number of processors, after all.

[46]

Chapter 2

For the small virtual machine used for all examples in this book, I limited Passenger
to two parallel master processes:

PassengerHighPerformance on
PassengerPoolSize 2

The tuning settings are predefined in the sample virtual host configuration as well.

Troubleshooting SSL issues

Among the most frustrating issues, especially for new users, are problems with

the agent's SSL handshake. Such errors are especially troublesome because Puppet
cannot always offer very helpful analysis in its logs — the problems occur in the SSL
library functions, and the application cannot examine the circumstances.

The online documentation at Puppet Labs has a Troubleshooting

section that has some advice concerning SSL-related issues
o aswell at https://docs.puppetlabs.com/guides/

troubleshooting.html.

SSL errors are reported by the agent just like other failures:

The agent opines that the CRL it receives from the master is not yet valid. Errors
like these can happen whenever the agent's clock gets reset to a very early date.
This can also result from but a slight clock skew, when the CRL has very recently
been updated through a revocation action on the master. If the system clock on
the agent machine returns a time far in the future, it will consider certificates to
be expired.

These clock-related issues are best avoided by running an ntp service on all
Puppet agents and masters.

[47]

The Master and Its Agents

Errors will generally result if the data in the agent's /var/1ib/puppet/ssl tree
becomes inconsistent. This can happen when the agent interacts with an alternate
master (a testing instance, for example). The first piece of advice you will most
likely receive when asking the community what to do about such problems is

to create a new agent certificate from scratch. This works as described in the

The agent's life cycle section:

1. Remove all the SSL data from the agent machine.
2. Revoke and remove the certificate from the master using puppet cert clean.

3. Request and sign a new certificate.

This approach will indeed remedy most issues. Be careful not to leave any old files in
the relevant location on the agent machine. If the problems persist, a more involved
solution is required. The openss1 command-line tool is helpful for analyzing the
certificates and related files. The details of such an analysis are beyond the scope

of this book, though.

Summary

You can now set up your own Puppet master, either in a simple testing setup using
WEBErick or a more scalable setup with Passenger. There was also a short discussion
on tuning Apache for your needs. You have successfully signed the certificate for a
Puppet agent and can revoke certificates, if required. Using the node blocks in the
master manifest, you can describe individual manifests for each distinct agent. Finally,
you learned about some things that can go wrong with the SSL-based authentication.

In the next chapter, we will take a look at the inner workings of Puppet in order to
give you an understanding of how the Puppet agent adapts itself to its environment.
You will also learn how the agent provides feedback to the master, allowing you to
create flexible manifests that fit different needs.

[48]

A Peek Under the Hood —
Facts, Types, and Providers

So far in this book, you have primarily done practical things —writing manifests,
setting up a master, agents, Passenger, and so forth. Before you are introduced

to the missing language concepts that you will need to use Puppet effectively for
bigger projects, there is some background that we should cover first. Don't worry,
it won't be all dry theory —most of the important parts of Puppet are relevant to
your daily business.

The topics for this chapter have been hinted at earlier; Chapter 1, Writing Your
First Manifests, contained a brief description of the type and provider subsystem,
and Chapter 2, The Master and Its Agents, mentioned Facter as a means to get
some information about your master hardware. These elementary topics will
be thoroughly explored in the following sections:

* Summarizing systems with Facter

* Understanding the type system

* Substantiating the model with providers

* Putting it all together

A Peek Under the Hood - Facts, Types, and Providers

Summarizing systems with Facter

Configuration management is quite a dynamic problem. In other words, the systems
that need configuration are mostly moving targets. In some situations, system
administrators or operators get lucky and work with large quantities of 100 percent
uniform hardware and software. In most cases, however, the landscape of servers
and other computing nodes is rather heterogeneous, at least in subtle ways. Even in
unified networks, there are likely multiple generations of machines, with small or
larger differences required for their respective configurations.

For example, a common task for Puppet is to handle the configuration of system
monitoring. Your business logic will likely dictate warning thresholds for gauges
such as the system load value. However, those thresholds can rarely be static. On a
two-processor virtual machine, a system load of 10 represents a crippling overload,
while the same value can be absolutely acceptable for a busy DBMS server that has
cutting-edge hardware of the largest dimensions.

Another important factor can be software platforms. Your infrastructure might
span multiple distributions of Linux, or alternate operating systems such as BSD,
Solaris, or Windows, each with different ways of handling certain scenarios.
Imagine, for example, that you want Puppet to manage some content of the fstab
file. On your rare Solaris system, you would have to make sure that Puppet targets
the /etc/vEstab file instead of /etc/fstab.

It is usually not a good idea to interact with the £stab file in your
@'@g‘\ manifest directly. This example will be rounded off in the section

concerning providers.

Puppet strives to present you with a unified way of managing all of your
infrastructure. It obviously needs a means to allow your manifests to adapt to different
kinds of circumstances on the agent machines. This includes their operating system,
hardware layout, and many other details. Keep in mind that generally, the manifests
have to be compiled on the master machine.

There are several conceivable ways to implement a solution for this particular problem.
A direct approach would be a language construct that allows the master to send a
piece of shell script (or other code) to the agent and receive its output in return.

[50]

Chapter 3

The following is pseudocode however; there are no backtick
expressions in the Puppet DSL:

if “grep -c “processor /proc/cpuinfo> > 2 {

% $load warning = 4
'S }

else {
$load warning = 2

}

This solution would be powerful but expensive. The master would need to call
back to the agent whenever the compilation process encounters such an expression.
Writing manifests that were able to cope if such a command had returned an error

code would be strenuous, and Puppet would likely end up resembling a quirky
scripting engine.

When using puppet apply instead of the master, such a feature
\ would pose less of a problem, and it is indeed available in the form
~ of the generate function, which works just like the backticks in
Q the pseudocode mentioned previously. The commands are always
run on the compiling node though, so this is less useful with an
agent/master than apply.

Puppet uses a different approach. It relies on a secondary system called Facter, which
has the sole purpose of examining the machine on which it is run. It serves a list of
well-known variable names and values, all according to the system on which it runs.
For example, an actual Puppet manifest that needs to form a condition upon the
number of processors on the agent will use this expression:

if $processorcount > 4 { .. }

Facter's variables are called facts, and processorcount is such a fact. The fact values
are gathered by the agent just before it requests its catalog from the master. All

fact names and values are transferred to the master as part of the request. They are
available in the manifest as variables.

_ Facts are available to manifests that are used with puppet apply
% too, of course. You can test this very simply:
I puppet apply -e 'motify { "I am $fqgdn and have
$processorcount CPUs": }'

[51]

A Peek Under the Hood - Facts, Types, and Providers

Accessing and using fact values

You have already seen an example use of the processorcount fact. In the manifest,
each fact value is available as a global variable value. That is why you can just use
the $processorcount expression where you need it.

You will often see conventional uses such as $: : processorcount
. or$::ipaddress. Prefixing the fact name with double colons was a
% good idea in older Puppet versions before 3.0. The official Style Guide
R athttps://docs.puppetlabs.com/guides/style guide.
html#namespacing-variables is outdated in this regard and
still recommends this. The prefix is no longer necessary.

Some helpful facts have already been mentioned. The processorcount fact might
play a role for your configuration. When configuring some services, you will want to
use the machine's ipaddress value in a configuration file or as an argument value:

file {
' /etc/mysqgl/conf.d/bind-address':
ensure => 'file',
mode => '644"',

content => "[mysqgld] \nbind-address=$ipaddress\n",

}

Besides the hostname, your manifest can also make use of the fully qualified
domain name (FQDN) of the agent machine.

The agent will use the value of its £gdn fact as the name of its certificate

(clientcert) by default. The master receives both these values. Note

that the agent can override the fgdn value to any name, whereas the

clientcert value is tied to the signed certificate that the agent uses.

Sometimes, you will want the master to pass sensitive information to

individual nodes. The manifest must identify the agent by its clientcert

) fact and never use £gdn or hostname instead, for the reason mentioned.

& An example is shown in the following code:

Lo

file {
'/etc/my-secret':
ensure => 'file’,
mode => '600"',
owner => 'root',
source =>
"puppet:///modules/secrets/$clientcert/key",

[52]

Chapter 3

There is a whole group of facts to describe the operating system. Each fact is
useful in different situations. The operatingsystem fact takes values such as
Debian or CentOS:

if $operatingsystem != 'Ubuntu'
package {
'avahi-daemon' :
ensure => absent

}

If your manifest will behave identical for RHEL, CentOS, and Fedora (but not on
Debian and Ubuntu), you will make use of the osfamily fact instead:

if $osfamily == 'RedHat' ({
Skernel package = 'kernel'

}

The operatingsystemrelease fact allows you to tailor your manifests to differences
between the versions of your OS:

if $operatingsystem == 'Debian'
if versioncmp ($operatingsystemrelease, '7.0') >= 0 {
$ssh _ecdsa support = true

}
}

Facts such as macaddress, the different SSH host keys, fingerprints, and others
make it easy to use Puppet for keeping inventory of your hardware. There is a
slew of other useful facts. Of course, the collection will not suit every possible
need of every user out there. That is why Facter comes readily extendible.

Extending Facter with custom facts

Technically, nothing is stopping you from adding your own fact code right next to
the core facts, either by maintaining your own Facter package, or even deploying
the Ruby code files to your agents directly through Puppet management. However,
Puppet offers a much more convenient alternative in the form of custom facts.

We have still not covered Puppet modules yet. They will be thoroughly introduced
in Chapter 5, Extending Your Puppet Infrastructure with Modules. For now, just create
a Ruby file at /etc/puppet /modules/hello_world/lib/facter/hello.rb on the
master machine. Puppet will recognize this as a custom fact of the name hello.

[53]

A Peek Under the Hood - Facts, Types, and Providers

The inner workings of Facter are very straightforward and goal oriented. There is
one block of Ruby code for each fact, and the return value of the block becomes the
fact value. Many facts are self-sufficient, but others will rely on the values of one or
more basic facts. For example, the method for determining the IP address(es) of the
local machine is highly dependent upon the operating system.

The hello fact is very simple though:

Facter.add(:hello) do
setcode { "Hello, world!" }
end

The return value of the setcode block is the string, Hello, world!, and you can use
this fact as $hello in a Puppet manifest.

Before Facter Version 2.0, each fact had a string value. If a code
. block returns another value, such as an array or hash, Facter 1.x
% will convert it to a string. The result is not useful in many cases.
S For this historic reason, there are facts such as ipaddress_etho0
and ipaddress_1lo, instead of (or in addition to) a proper hash
structure with interface names and addresses.

It is important for the pluginsync option to be enabled on the agent side. This has
been the default for a long time and should not require any customization. The
agent will synchronize all custom facts whenever checking in to the master. They
are permanently available on the agent machine after that. You can then retrieve
the hello fact from the command line using facter -p hello. By just invoking
facter without an argument, you request a list of all fact names and values.

M When testing your custom facts from the command line, you need
Q to invoke facter with the -p or - -puppet option. Puppet itself
will always include the custom facts.

This book will not cover all aspects of Facter's API, but there is one facility that is
quite essential. Many of your custom facts will only be useful on Unix-like systems,
and others will only be useful on your Windows boxen. You can retrieve such values
using a construct like the following;:

if Facter.value(:kernel) != "windows"
nil

else
actual fact code here

end

[54]

Chapter 3

This would be quite tedious and repetitive though. Instead, you can invoke the
confine method within the Facter.add (name) { .. } block:

Facter.add(:msvs version) do
confine :kernel => :windows
setcode do

..
end
end

You can confine a fact to several alternative values as well:

confine :kernel => [:linux, :sunos]

Finally, if a fact does make sense in different circumstances, but requires drastically
different code in each respective case, you can add the same fact several times, each
with a different set of confine values. Core facts such as ipaddress use this often:

Facter.add(:ipaddress) do
confine :kernel => :linux

end
Facter.add(:ipaddress) do
confine :kernel => $w{FreeBSD OpenBSD Darwin DragonFly}

end

You can confine facts based on any combination of other facts, not just kernel. It is
a very popular choice, though. The operatingsystem or osfamily fact can be more
appropriate in certain situations. Technically, you can even confine some of your
facts to certain processorcount values and so forth.

Simplifying things using external facts

If writing and maintaining Ruby code is not desirable in your team for any reason,
you might prefer to use an alternative that allows shell scripts, or really any kind of
programming language, or even static data with no programming involved at all.
Facter allows this in the form of external facts.

Creating an external fact is similar to the process for regular custom facts, with the
following distinctions:

* Facts are produced by standalone executables or files with static data, which
the agent must find in /etc/facter/facts.d

* The data is not just a string value, but an arbitrary number of key=value
pairs instead

[55]

A Peek Under the Hood - Facts, Types, and Providers

The data need not use the ini file notation style — the key/value pairs can also be in
the YAML or JSON format. The following external facts hold the same data:

site-facts.txt
workgroup=CT4Site2
domain_psk=nm56DXLp%

The facts can be written in the YAML format in the following way:

site-facts.yaml
workgroup: CT4Site2
domain psk: nm56DxLp%

In the JSON format, facts can be written as follows:

site-facts.json
{ 'workgroup': 'CT4Site2', 'domain psk': 'nm56DxLp%' }

The deployment of the external facts works simply through file resources in your
Puppet manifest:

file {
' /etc/facter/facts.d/site-facts.yaml':
ensure => 'file',

source => 'puppet:///..',

With newer versions of Puppet and Facter, external facts will
be automatically synchronized just like custom facts if they are
found in facts.d/* in any module (for example, /etc/puppet/
* modules/hello world/facts.d/hello.sh). This is not only
%j%“ more convenient, but has a large benefit: when Puppet must fetch an
’ external fact through a £ile resource instead, its fact value(s) are not

yet available while the catalog is being compiled. The pluginsync
mechanism, on the other hand, makes sure that all synced facts are
available before manifest compilation starts.

When facts are not static and cannot be placed in a txt or YAML file, you can make
the file executable instead. It will usually be a shell script, but the implementation
is of no consequence; it is just important that properly formatted data is written to
the standard output. You can simplify the hello fact this way, in /etc/puppet/
modules/hello world/facts.d/hello:

#!/bin/sh

echo hello=Hello, world\!

[56]

Chapter 3

For executable facts, the ini styled key=value format is the only supported one.
YAML or JSON are not eligible in this context.

Goals of Facter

The whole structure and philosophy of Facter serves the goal of allowing for
platform-agnostic usage and development. The same collection of facts (roughly) is
available on all supported platforms. This allows Puppet users to keep a coherent
development style through manifests for all those different systems.

Facter forms a layer of abstraction over the characteristics of both hardware and
software. It is an important piece of Puppet's platform-independent architecture.
Another piece that was mentioned before is the type and provider subsystem.
Types and providers are explored in greater detail in the following sections.

Understanding the type system

Being one of the cornerstones of the Puppet model, resources were introduced
quite early in Chapter 1, Writing Your First Manifests. Remember how each resource
represents a piece of state on the agent system. It has a resource type, a name (or

a title), and a list of attributes. An attribute can either be property or parameter.
Between the two of them, properties represent distinct pieces of state, and
parameters merely influence Puppet's actions upon the property values.

Let's examine resource types in more detail and understand their inner workings.
This is not only important when extending Puppet with resource types of your own
(which will be demonstrated in Chapter 5, Extending Your Puppet Infrastructure with
Modules). It also helps you anticipate the action that Puppet will take, given your
manifest, and get a better understanding of both the master and the agent.

First, we take a closer look at the operational structure of Puppet, with its pieces
and phases. The agent performs all its work in discreet transactions. A transaction
is started under any of the following circumstances:

* The background agent process activates and checks in to the master

* An agent process is started with the - -onetime or --test option

* Alocal manifest is compiled using puppet apply
The transaction always passes several stages:

1. Gathering fact values to form the actual catalog request.

2. Receiving the compiled catalog from the master.

[57]

A Peek Under the Hood - Facts, Types, and Providers

3. Prefetching of current resource states.
4. Validation of the catalog's content.

5. Synchronization of the system with the property values from the catalog.

Facter was explained in the previous section. The resource types become important
during compilation and then throughout the rest of the agent transaction. The master
loads all resource types to perform some basic checking —it basically makes sure that
the types of resources it finds in the manifests do exist and that the attribute names
fit the respective type.

The resource type's life cycle on the agent side

Once the compilation has succeeded, the master hands out the catalog and the
agent enters the catalog validation phase. Each resource type can define some Ruby
methods that ensure that the passed values make sense. This happens on two levels
of granularity: each attribute can validate its input value, and then the resource as a
whole can be checked for consistency.

One example for attribute value validation can be found in the ssh_authorized key
resource type. A resource of this type fails if its key value contains a whitespace
character, because SSH keys cannot comprise multiple strings.

Validation of whole resources happens with the cron type for example. It makes
sure that the time fields make sense together. The following resource would not pass,
because special times such as @midgnight cannot be combined with numeric fields:

cron {
'invalid-resource':
command => 'rm -rf /',
special => 'midnight',
weekday => ['2', '5'],

}

Another task during this phase is the transformation of input values to more suitable
internal representations. The resource type code refers to this as a munge action. Typical
examples of munging are the removal of leading and trailing whitespace from string
values, or the conversion of array values to an appropriate string format — this can be

a comma-separated list, but for search paths, the separator should be a colon instead.
Other kinds of values will use different representations.

[58]

Chapter 3

Next up is the prefetching phase. Some resource types allow the agent to create

an internal list of resource instances that are present on the system. For example,
this is possible (and makes sense) for installed packages —Puppet can just invoke
the package manager to produce the list. For other types, such as file, this would
not be prudent. Creating a list of all reachable paths in the whole filesystem can be
arbitrarily expensive, depending on the system on which the agent is running.

Finally, the agent starts walking its internal graph of interdependent resources.
Each resource is brought in sync if necessary. This happens separately for each
individual property, for the most part.

The ensure property, for types that support it, is a notable
o exception. It is expected to manage all other properties on its
~ own—when a resource is changed from absent to present
Q through its ensure property (in other words, the resource
is getting newly created), this action should bring all other
properties in sync as well.

There are some notable aspects of the whole agent process. For one, attributes are
handled independently. Each can define its own methods for the different phases.
There are quite a number of hooks, which allow a resource type author to add a
lot of flexibility to the model.

For aspiring type authors, skimming through the core types can
M . O . o . .
~ be quite inspirational. You will be familiar with many attributes,
through using them in your manifests and studying their hooks
will offer quite some insight.

It is also worth noting that the whole validation process is performed by the agent,
not the master. This is beneficial in terms of performance. The master saves a lot
of work, which gets distributed to the network of agents (which scales with your
needs automatically).

Substantiating the model with providers

At the start of this chapter, you learned about Facter and how it works like a
layer of abstraction over the supported platforms. This unified information base
is one of Puppet's most important means to achieve its goal of operating system
independence. Another one is the DSL, of course. Finally, Puppet also needs a
method to transparently adapt its behavior to the respective platform on which
each agent runs.

[59]

A Peek Under the Hood - Facts, Types, and Providers

In other words, depending on the characteristics of the computing environment, the
agent needs to switch between different implementations for its resources. This is not
unlike object-oriented programming — the type system provides a unified interface,
like an abstract base class. The programmer need not worry what specific class is being
referenced, as long as it correctly implements all required methods. In this analogy,
Puppet's providers are the concrete classes that implement the abstract interface.

For a practical example, look at package management. Different flavors of UNIX-
like operating systems have their own implementation. The most prevalent Puppet
platforms use apt and yum, respectively, but can (and sometimes must) also manage
their packages through dpkg and rpm. Other platforms use tools such as emerge,
zypper, £ink, and a slew of other things. There are even packages that exist apart
from the operating system software base, handled through gem, pip, and other
language-specific package management tools. For each of these management tools,
there is a provider for the package type.

Many of these tools allow the same set of operations —install and uninstall a
package and update a package to a specific version. The latter is not universally
possible though. For example, dpkg can only ever install the local package that is
specified on the command line, with no other version to choose. There are also some
distinct features that are unique to specific tools, or supported by only a few. Some
management systems can hold packages at specific versions. Some use different
states for uninstalled versus purged packages. Some have a notion of virtual
packages. There are some more examples.

Because of this potential diversity (which is not limited to package management
systems), Puppet providers can opt for features. The set of features is resource type
specific. All providers for a type can support one or more of the same group of
features. For the package type, there are features such as versionable, purgeable,
holdable, and so forth. You can set ensure => purged on any package resource
like so:

package {
'haproxy':
ensure => 'purged'

}

However, if you are managing the Haproxy package through rpm, Puppet will
fail to make any sense of that, because rpm has no notion of a purged state, and
therefore the purgeable feature is missing from the rpm provider. Trying to use
an unsupported feature will usually produce an error message. Some attributes
(such as install_options) might just get ignored by Puppet instead.

[60]

Chapter 3

The official documentation on the Puppet Labs website holds a complete
list of the core resource types and all their built-in providers, along with
%j%“ the respective feature matrices. It is very easy to find suitable providers and
’ their capabilities; the documentation is at https://docs .puppetlabs.
com/references/latest/type.html.

Providerless resource types

There are some resource types that use no providers, but they are rare among the
core types. Most of the interesting management tasks that Puppet makes easy just
work differently among operating systems, and providers enable this in a most
elegant fashion.

Even for straightforward tasks that are the same on all platforms, there might be a
provider. For example, there is a host type to manage entries in the /etc/hosts file.
Its syntax is universal, so the code can technically just be implemented in the type.
However, there are actual abstract base classes for certain kinds of providers in the
Puppet code base. One of them makes it very easy to build providers that edit files

if those files consist of single-line records with ordered fields. Therefore, it makes
sense to implement a provider for the host type and base it on this provider class.

For the curious, this is what a host resource looks like:

’ host { 'puppet':
ip => '10.144.12.100",

host aliases => ['puppet.example.net', 'master']

Summarizing types and providers

Puppet's resource types and their providers work together to form a solid abstraction
layer over software configuration details. The type system is an extendable basis

for Puppet's powerful DSL. It forms an elaborate interface for the polymorphous
provider layer.

The providers flexibly implement the actual management actions that Puppet is
supposed to perform. They map the necessary synchronization steps to commands and
system interactions. Many providers cannot satisfy every nuance that the resource type
models. The feature system takes care of these disparities in a transparent fashion.

[61]

A Peek Under the Hood - Facts, Types, and Providers

Putting it all together

Reading this far, you might have gotten the impression that this chapter is a rather
odd mix of topics. While types and providers do belong closely together, the whole
introduction to Facter might seem out of place in their context. This is deceptive
however: facts do play a vital part in the type/provider structure. They are essential
for Puppet to make good choices among providers.

Let's look at an example from the Extending Facter with custom facts section once more.
It was about £stab entries and the difference of Solaris, where those are found in
/etc/vEstab instead of /etc/fstab. That section suggested a manifest that adapts
according to a fact value. As you can imagine now, Puppet has a resource type

to manage fstab content: the mount type. However, for the small deviation of a
different file path, there is no dedicated mount provider for Solaris. There is actually
just one provider for all platforms, but on Solaris, it behaves differently. It does this
by resolving Facter's osfamily value. The following code example was adapted from
the actual provider code:

case Facter.value(:osfamily)
when "Solaris"

fstab = "/etc/vfstab"
else

fstab = "/etc/fstab"
end

In other cases, Puppet should use thoroughly different providers on different
platforms, though. Package management is a classic example. On a Red Hat-like
platform, you will want Puppet to use the yum provider in virtually all cases. It can
be sensible to use rpm, and even apt might be available. However, if you tell Puppet
to make sure a package is installed, you expect it to install it using yum if necessary.

This is obviously a common theme. Certain management tasks need to be performed
in different environments, with very different toolchains. In such cases, it is quite
clear which provider would be best suited. To make this happen, a provider can
declare itself the default if a condition is met. In the case of yum, it is the following:

defaultfor :operatingsystem => [:fedora, :centos, :redhat]

The conditions are based around fact values. If the operatingsystem value for a
given agent is among the listed, yum will consider itself the default package provider.

1
‘\Q The operatingsystemand osfamily facts are the most popular

choices for such queries in providers, but any fact is eligible.

[62]

Chapter 3

In addition to marking themselves as being default, there is more filtering of
providers that relies on fact values. Providers can also confine themselves to
certain combinations of values. For example, the yum alternative, zypper,
confines itself to SUSE Linux distributions:

confine :operatingsystem => [:suse, :sles, :sled, :opensuse]

This provider method works just like the confine method in Facter, which was
discussed earlier in this chapter. The provider will not even be seen as valid if
the respective facts on the agent machine have none of the white-listed values.

If you find yourself looking through code for some core providers,

you will notice confinement (and even declaring default providers)

on feature values, although there is no Facter fact of that name.

These features are not related to provider features either. They are from

another layer of introspection similar to Facter, but hardcoded into the

L Puppet agent. These agent features are a number of flags that identify

some system properties that need not be made available to manifests in

the form of facts. For example, the posix provider for the exec type

becomes the default in the presence of the corresponding feature:

defaultfor :feature => :posix

You will find that some providers forgo the conf ine method altogether, as it is not
mandatory for correct agent operation. Puppet will also identify unsuitable providers
when looking for their necessary operating system commands. For example, the pw
provider for certain BSD flavors does not bother with a conf ine statement. It only
declares its one required command:

commands :pw => "pw"

Agents that find no pw binary in their search path will not try and use this provider
at all.

This concludes the little tour of the inner workings of types and providers with
the help of Facter. For a complete example of building a provider for a type
and using the internal tools that you have now learned about, you can refer to
Chapter 5, Extending Your Puppet Infrastructure with Modules.

[63]

A Peek Under the Hood - Facts, Types, and Providers

Summary

Puppet gathers information about all agent systems using Facter. The information base
consists of a large number of independent bits, called facts. Manifests can query the
values of those facts to adapt to the respective agents that trigger their compilation.
Puppet also uses facts to choose among providers, the work horses that make the
abstract resource types functional across the wide range of supported platforms.

The resource types not only completely define the interface that Puppet exposes in
the DSL, they also take care of all validation of input values, transformations that
must be performed before handing values to the providers and other related tasks.

The providers encapsulate all knowledge of actual operating systems and their
respective toolchains. They implement the functionality that the resource types
describe. The Puppet model's configurations apply to platforms, which vary from
one another, so not every facet of every resource type can make sense for all agents.
By exposing only the supported features, a provider can express such limitations.

After this in-depth look at the internal details, let's tackle more practical concerns
again. The following chapters will cover the tools needed to build complex and
advanced manifests of all scales.

[64]

Modularizing Manifests with
Classes and Defined Types

At this point, you have already performed some production-grade tasks with
Puppet. You learned how to write standalone manifests and then invoke puppet
apply to put them to use. While setting up your first Puppet master and agent, you
created a simple example for a node manifest on the master. In a node 'hostname'’
block, you created the equivalent of a manifest file. This way, the Puppet master
used just this manifest for the specified agent node.

While this is all useful and of essential importance, it will obviously not suffice
for daily business. By working with node blocks that contain sets of resources,
you will end up performing lots of copy and paste operations for similar nodes,
and the whole construct will become unwieldy very quickly.

This is an unnatural approach to developing Puppet manifests. Despite the great
differences to many other languages that you might be familiar with, the Puppet
DSL is a programming language. Building manifests merely from node blocks and
resources would be like writing C with no functions except main, or Ruby without
any classes of your own.

The manifests that you can write with the means that are already at your disposal
are not flat—you learned about common control structures such as if and case.
Your manifests can use these to adapt to various circumstances on the agent, by
querying the values of Facter facts and branching in accordance to the results.

Modularizing Manifests with Classes and Defined Types

However, these constructs should be complemented by the language tools to create
reusable units of manifest code, similar to functions or methods in procedural
languages. This chapter introduces these concepts through the following topics:

* Introducing classes and defined types

* Structured design patterns

* Including classes from defined types

* Nesting definitions in classes

* Establishing relationships among containers

* Making classes more flexible through parameters

Introducing classes and defined types

Puppet's equivalent to methods or functions are twofold — there are classes on one
hand and defined types (also just referred to as defines) on the other.

You will find that the function analogy is a bit weak for classes,
s but fits defined types quite well.

Both are similar at first glance, in the way that they hold a chunk of reusable manifest
code. There are big differences in the way each is used though. Let's take a look at
classes first.

Defining and declaring classes

A Puppet class can be considered to be a container for resources. It is defined
once and selected by all nodes that need to make use of the prepared functionality.
Each class represents a well-known subset of a system's configuration.

For example, a classic use case is a class that installs the Apache web server and
applies some basic settings. This class will look like the following:

class apache ({
package {
'apache2':
ensure => 'installed',
}
file {
' /etc/apache2/apache2.conf':
ensure => 'file',

[66]

Chapter 4

source =>
'puppet:///modules/apache/etc/apache2/apache2.conf’',
require => Package['apache2'],
}
service {
'apache2!':
enable => true,
require => Package['apache2'],

}

All web server nodes will make use of this class. To this end, their manifests need to
contain a simple statement:

include apache

This is referred to as including a class, or declaring it. If your apache class is
powerful enough to do all that is needed, this line might fully comprise a node
block's content:

node 'webserver0l' ({
include apache

. Inyour own setup, you will likely not write your own Apache
a class. You can use open source classes that are available through
s Puppet modules. Chapter 5, Extending Your Puppet Infrastructure

with Modules, will give you all the details.

This already concludes our tour of classes in a nutshell. There is yet some more to
discuss, of course, but let's look at defined types before that.

Creating and using defined types

A defined type can be imagined like a blueprint for a piece of manifest. Like a class,
it mainly consists of a body of the manifest code. However, a defined type takes
arguments and makes their values available in its body as local variables.

Here is another typical example for a defined type, the Apache virtual host
configuration:

define virtual host ($content,
$priority = '050')
file {

[67]

Modularizing Manifests with Classes and Defined Types

"/etc/apache2/sites-available/$name" :

ensure => 'file',
owner => 'root',
group => 'root',
mode => '644"',

content => $content;
"/etc/apache2/sites-enabled/$priority-$name":

ensure => 'link',

target => "../sites-available/Sname";

}

This code might still seem pretty cryptic. It should get clearer in the context of
how it is actually used from other places in your manifest; the following code
shows you how:

virtual host {
'example.net':

content => file('/etc/puppet/modules/apache2/files/vhosts/
example.net') ;

'fallback':
priority => '999',
content => file('/etc/puppet/modules/apache2/files/vhosts/
fallback') ;

}

This is why the construct is called a defined type —you can now place what
appears to be resources in your manifest, but you really call your own manifest
code construct.

The official Style Guide forbids declaring multiple resources in one
block, separated by a semicolon. It can be sensible to declare each
resource in its own block, if they are unrelated:
virtual host {
'example.net':
content => ..,

. }
virtual host {

'example.net':
priority => '999',
content => ..,

}

This is not always necessary and can even hurt readability.
Whether you abide by the guide is up to your own discretion.

[68]

Chapter 4

The virtual host type takes two arguments: the content argument is mandatory
and is used verbatim in the configuration file resource. Puppet will synchronize that
file's content to what is specified in the manifest. The priority argument is optional.
If omitted, the respective virtual host definition uses the default priority of 050 as
the prefix.

Also, each defined type can implicitly refer to the name (or title) by which it was
called. In other words, each instance of your define gets a name, and you can access
it through the $name or $title variable.

There are a few other magic variables that are available in the body
of a defined type. If a resource of the defined type is declared
. with a metaparameter such as require => .., its value can be
% accessed through the $require variable in the body. The variable
e value is empty if the metaparameter is not used. This works for all
metaparameters such as before, notify, and all others, but you
will likely never need to make use of this. The metaparameters
automatically do the right thing.

Understanding and leveraging the differences
The respective purposes of Puppet's class and defined type are very specific and they

usually don't overlap.

The class declares resources and properties that are in some way centric to the
system. A class is a finalized description of one or sometimes more aspects of your
system as a whole. Whatever the class represents, it can only ever exist in one form;
to Puppet, each class is implicitly a singleton, a fixed set of information that either
applies to your system (the class is included) or not.

Typical resources you will encapsulate in a class for convenient inclusion in a
manifest are as follows:

* One or more packages that should be installed (or removed)

* A specific configuration file in /etc

* A common directory, needed to store scripts or configs for many subsystems

* Cron jobs that should be mostly identical on all applicable systems

[69]

Modularizing Manifests with Classes and Defined Types

The define is used for all things that exist in multiple instances. All aspects that
appear in varying quantities in your system can possibly be modeled using this
language construct. In this regard, the define is very similar to the full-fledged
resource it mimics with its declaration syntax. Some of the typical contents of
defined types are:

* Filesin a conf.d style directory
* Entries in an easily parseable file such as /etc/hosts
e Rules in a firewall

The class' singleton nature is especially valuable in that clashes in the form of multiple
resource declarations are being prevented. Remember that each resource must be
unique to a catalog. For example, consider another declaration:

package { 'apache2': }

This declaration can be anywhere in the manifest of one of your web servers
(say, right in the node block next to include apache); this additional declaration
will prevent the successful compilation of a catalog.

The reason for the prevention of a successful compilation is that

Puppet currently cannot make sure that both declarations represent
M the same target state, or can be merged to form a composite state.

It is likely that multiple declarations of the same resource get in a

conflict about the desired value of some property (for example, one

declaration might want to ensure a package is absent, while the

other needs it to be present).

The virtue of the class is that there can be an arbitrary number of include statements
for the same class strewn throughout the manifest. Puppet will commit the class's
contents to the catalog exactly once.

Note that the uniqueness constraint for resources includes defined
types. No two instances of your own define can share the same
name. Using a name twice or more produces a compiler error:
apache vhost {
, 'wordpress' :
% content => file(...),
priority => '011';
'wordpress':
content => '# Dummy vhost',
priority => '600';

[70]

Chapter 4

Structured design patterns

Your knowledge of classes and defined types is still rather academic. You have
learned about their defining aspects and the syntax to use them, but we have yet to
give you a feeling of how these concepts come to bear in different real-life scenarios.

The following sections will present an overview of what you can do with these new
language tools.

Writing comprehensive classes

Many classes are written to make Puppet perform momentous tasks on the agent
platform. Of these, the Apache class is probably one of the more modest examples.
You can conceive a class that can be included from any machine's manifest and
make sure that:

* Firewalling software is installed and configured with a default ruleset
* Malware detection software is installed
* Cron jobs run the scanners in set intervals

* The mailing subsystem is configured to make sure the cron jobs can deliver
their output

There are two general ways you can go about the task of creating a class

of this magnitude. It can either become what one might call a monolithic
implementation —a class with a large body that comprises all resources that work
together to form the desired security baseline. On the other hand, you could aim
for a composite design, with few resources (or none at all) in the class body and
a number of include statements for simpler classes instead. The functionality is
compartmentalized, and the central class acts as a collector.

We have not yet touched on the ability of classes to include other classes. That's
because it's quite simple. The body of a class can comprise almost any manifest,
and the include statement is no exception. Among the few things that cannot
appear in a class are node blocks.

A class can even contain the definition of another class or a defined

type. This works only in classes, not in defines. There is a dedicated
T section about this nesting option later in this chapter.

[71]

Modularizing Manifests with Classes and Defined Types

Adding some life to the descriptions, this is how the respective classes will roughly
look like:

class monolithic_security
package {
['"iptables', 'rkhunter',K 'postfix']:
ensure => 'installed';
}
cron {
'run-rkhunter':

}
file {
'/etc/init.d/iptables-firewall':
source =>
mode => 755;
'/etc/postfix/main.cf':
ensure => 'file',
content =»>
}
service {
['postfix', 'iptables-firewall']:
ensure => 'running',

enable => true;

class divided security ({
include iptables firewall
include rkhunter
include postfix

}

When developing your own functional classes, you should not try to pick either

of these extremes. Most classes will end up anywhere on the spectrum in between.

The choice can be largely based on your personal preference. The technical implications
are subtle, but these are the respective drawbacks:

* Consequently aiming for monolithic classes opens you up to resource
clashes, because you take almost no advantage of the singleton nature
of classes

[72]

Chapter 4

* Splitting up classes too much can make it difficult to impose order and
distribute refresh events —you can refer to the Establishing relationships
among containers section later in this chapter

Neither of these aspects is of critical importance at many times. The case-by-case
design choices will be based on each author's experience and personal preference.
When in doubt, lean towards composite designs at first.

Writing component classes

There is another common use case for classes. Instead of filling a class with lots of
aspects that work together to achieve a complex goal, you can also limit the class to
a very specific purpose. Some classes will contain but one resource. The class wraps
the resource, so to speak.

This is useful for resources that are needed in different contexts. By wrapping
them away in a class, you can make sure that those contexts do not create multiple
declarations of the same resource.

For example, the netcat package can be useful to firewall servers, but also to web
application servers. There is probably a firewall class and an appserver class.
Both declare the netcat package:

package {
'netcat':
ensure => 'installed';

}

If any server ever has both roles (this might happen for budget reasons or in
other unforeseen circumstances), this is a problem: when both the firewall and
appserver classes are included, then the resulting manifest declares the netcat
package twice. This is forbidden. To resolve this situation, the package resource
can be wrapped in a netcat class, which is included by both the firewall and
appserver classes:

class netcat ({
package {
'netcat’':
ensure => 'installed';

[73]

Modularizing Manifests with Classes and Defined Types

Let's consider another typical example for component classes that ensures the
presence of some common file path. Assume your IT policy requires all custom
scripts and applications to be installed in /opt /company/bin. Many classes
(such as firewall and appserver from the previous example) will need some
relevant content there. Each class needs to make sure that the directories exist
before a script can be deployed inside it. This will be implemented by including
a component class that wraps the f£ile resources of the directory tree:

class scripts_directory ({

file {
['/opt/company/',

' /opt/company/bin']:
ensure => 'directory',
owner => 'root',
group => 'root',
mode => '644"',

}

The component class is a pretty precise concept. However, as you have seen in the
previous section about the more powerful classes, the whole range of possible class
designs forms a fine-grained scale between the presented examples. All manifests you
write will likely comprise more than a few classes. The best way to get a feeling for the
best practices is to just go ahead and use classes to build the manifests you need.

The terms comprehensive class and component class are not
. official Puppet language and the community does not use them
% to communicate design practices. I chose them arbitrarily to
/S describe the ideas I laid out in these sections. The same holds
true for the descriptions of the use cases for defined types,
which will be seen in the next sections.

Next, let's look at some uses for defined types.

Using defined types as resource wrappers

For all their apparent similarity to classes, defined types are used in different ways.
For example, the component class was described as wrapping a resource. This is accurate
in a very specific context — the wrapped resource is a singleton, and it can only appear
in one form throughout the manifest.

When wrapping a resource in a defined type instead, you end up with a variation
on the respective resource type. The manifest can contain an arbitrary number of
instances of the defined type, and each will wrap a distinct resource.

[74]

Chapter 4

u For this to work, the name of the resource that is declared in
~ the body of the defined type must be dynamically created. It is
Q almost always the $name variable of the respective defined type
instance, or a value derived from it.

Here is yet another typical example from the many manifests out there: most users
who make use of Puppet's file serving capabilities will want to wrap the £ile type
at some point so that the respective URL need not be typed for each file:

define module file ($module)
file {
Sname :
source => "puppet:///modules/Smodule/S$Sname"

}

This makes it easy to get Puppet to sync files from the master to the agent. The master
copy must be properly placed in the named modules on the master:

module file ({
'/etc/ntpd.conf':
module => 'ntp';

}

This resource will make Puppet retrieve the ntp. conf file from the ntp module.

The preceding declaration is more concise and less redundant than the fully written
file resource with the Puppet URL (especially for the large number of files you might
need to synchronize), which would resemble the following:

file {
'/etc/ntpd.conf':
source => 'puppet:///modules/ntp/etc/ntpd.conf’;

}

For a wrapper such as module_file, which will likely be used very widely, you will
want to make sure that it supports all attributes of the wrapped resource type. In this
case, the module file wrapper should accept all £ile attributes. For example, this is
how you add the mode attribute to the wrapper type:

define module file ($module,
$mode = undef)
if $mode != undef { File { mode => $mode } }
file {
Sname :

[75]

Modularizing Manifests with Classes and Defined Types

source => "puppet:///modules/$module/S$name"

}

The rile { .. } block declares some default values for all £ile resource attributes
in the same scope. The undef value is similar to Ruby's nil and is a convenient
parameter default value, because it is very unlikely that a user will need to pass it
as an actual value for the wrapped resource. Inlining the whole if block is usually
a bad practice, but it can ease maintenance in this case, if you end up supporting a
lot of parameters this way.

You can employ the override syntax instead of the default syntax
as well:

.}‘ File[$name] { mode => $mode }
Q This makes the intent of the code slightly more obvious, but is
not necessary in the presence of just one £ile resource. Chapter 6,

Leveraging the Full Toolset of the Language, holds more information
— about overrides and defaults. -

Using defined types as resource multiplexers

Wrapping single resources with a defined type is really useful, but sometimes you
will want to add functionality beyond the resource type you are wrapping. At other
times, you might wish for your defined type to unify a lot of functionality, just like
the comprehensive classes from the beginning of the section.

For both scenarios, what you want to have is multiple resources in the body of your
defined type. There is a classic example for this as well:

define user with key(skey,
suid = undef,

$group = 'users')
if $uid != undef { User { uid => $uid } }
user
Stitle:
gid => $Sgroup,

managehome => true,
}
->
ssh_authorized key ({
"key for Stitle":
ensure => present,
user => Stitle,

[76]

Chapter 4

type => 'rsa',
key => Skey,

}

This code allows you to create user accounts with authorized SSH keys in one
resource declaration. This code sample has some notable aspects:

* Since you are essentially wrapping multiple resource types, the titles
of all inner resources are derived from the instance title (or name) of
the current defined type instance; actually, this is a safe practice for
all defined types

* You can hardcode parts of your business logic; in this example,
we dispensed with the support for non-RSA SSH keys and define
users as the default group

* Resources inside defined types can and should manage ordering
among themselves (using the chaining arrow - in this case)

Using defined types as macros

Some source code requires many repetitive tasks. Assume that your site uses a
subsystem that relies on symbolic links at a certain location to enable configuration
files, just like init does with the symlinks in rc2.d/ and its siblings, which point
backto ../init.d/<services.

A manifest that enables a large number of configuration snippets might look like this:

file {
' /etc/example app/conf.d.enabled/england':
ensure => 'link',
target => '../conf.d.available/england';
' /etc/example app/conf.d.enabled/ireland':
ensure => 'link',
target => '../conf.d.available/ireland';
' /etc/example app/conf.d.enabled/germany’' :
ensure => 'link',
target => '../conf.d.available/germany';

[77]

Modularizing Manifests with Classes and Defined Types

This is tiring to read and somewhat painful to maintain. In a C program, one
would use a preprocessor macro that just takes the base name of both link and
target and expands to the three lines of each resource description. Puppet does
not use a preprocessor, but you can use defined types to achieve a similar result:

define example app config {
file {
"/etc/example app/conf.d.enabled/$name":
ensure => 'link',

target => "../conf.d.available/$name",

Al

~ The defined type actually acts more like a simple function call
than an actual macro.

The define requires no arguments — it can rely solely on its resource name, so the
preceding code can now be simplified to the following;:

example app config {
'england': ;
'ireland': ;

'germany': ;

}
Alternatively, the following code is even more terse:

example app config ({
['england', 'ireland', 'germany', ..]:

}

This array notation leads us to another important use of defined types.

Exploiting array values using defined types

One of the more common scenarios in programming is the requirement to
accept an array value from some source and perform some task on each value.
Puppet manifests are not exempt from this.

Let's assume that the symbolic links from the previous example actually led
to directories and that each such directory would hold a subdirectory to hold
optional links to regions. Puppet should manage those links as well.

[78]

Chapter 4

Of course, after learning about the macro aspect of defined types, you would not
want to add each of those regions as distinct resources to your manifest. However,
you will need to devise a way to map region names to countries. Seeing as there is
already a defined resource type for countries, there is a very direct approach to this:
make the list of regions an attribute (or rather, a parameter) of the defined type:

define example app config($regions = [1) ({
file {
"/etc/example app/conf.d.enabled/$name":
ensure => 'link',
target => "../conf.d.available/Sname",

}

to do: add functionality for $regions

}
Using the parameter is straightforward:

example app config {

'england': regions => ['South East', 'London'];
'ireland': regions => ['Connacht', 'Ulster'];
'germany': regions => ['Berlin', 'Bayern',6 'Hamburg'];

}

The actual challenge is putting these values to use. A naive approach is to add the
following to the definition of example app_ config:

file { $regions:
path =>
"/etc/example app/conf.d.enabled/$title/regions/$name",
ensure => 'link',
target => "../../regions.available/$name";

}

However, this will not work. The $name variable does not refer to the title of
the £ile resource that is being declared. It actually refers (just like $title) to
the name of the enclosing class or defined type (in this case, the country name).
Still, the construct will seem quite familiar to you. The only missing piece here
is yet another defined type:

define example app region ($country) {
file {
"/etc/example app/conf.d.enabled/$country/regions/$name",
ensure => 'link',
target => "../../regions.available/$name";

[79]

Modularizing Manifests with Classes and Defined Types

The complete definition of the example_app_config defined type should look like
this then:

define example app config($regions = []) ({
file {
"/etc/example app/conf.d.enabled/$name":
ensure => 'link',
target => "../conf.d.available/$name",

}
example app region {
Sregions:
country => $Sname

}

The outer defined type adapts the behavior of the example_app_region type to its
respective needs by passing its own resource name as a parameter value.

' When you are reading this, Puppet Labs would have probably

released Puppet 4 already. This release introduces language features
for actual array iteration (such as the map function). These features
are available as a technology preview in Puppet 3.4 or higher, when
the parser=future option is enabled in the master's configuration.
(This option should not be used in production environments.)

This allows you to omit the secondary define:

define example app config($regions = []) {
file {
"/etc/example app/conf.d.enabled/$name" :
ensure => 'link',

target => "../conf.d.available/S$name",

N)
<:;l map ($regions) |$region|

$path = '/etc/example app/conf.d.enabled/'
file {
"$Spath/sname/regions/$region",
ensure => 'link',

target => "../../regions.
available/$region";

}

}

(The $path variable has been introduced to avoid a very long line
= for the file name.) |

[80]

Chapter 4

Note that if you want the countries to be stored in an array as well, or need another
layer of data that is mapped to each region, this pattern will not suffice. I will not
go into this problem here, because it is beside the point of how defined types work.
Chapter 7, Separating Data from Code Using Hiera, discusses structured data and how
to use it efficiently.

Including classes from defined types

The example_app_ config type that was defined in the previous example is supposed
to serve a very specific purpose. Therefore, it assumes that the base directory, /etc/
example_app, and its subdirectories were managed independently, outside the defined
type. This was a sound design, but many defined types are meant to be used from lots
of independent classes or other defined types. Such defines need to be self-contained.

In our example, the defined type needs to make sure that the following resources are
part of the manifest:

file {
['/etc/example app',
'/etc/example app/config.d.enabled' 1:
ensure => 'directory';

}

Just putting this declaration into the body of the define will lead to duplicate resource
errors. Each instance of example app_ config will try to declare the directories by
itself. However, we already discussed a pattern to avoid just that issue —I called it the
component class.

To make sure that any instance of the example_app_config type is self-contained
and works on its own, wrap the preceding declaration in a class (for example, class
example app_config directories)and make sure to include this class right in the
body of the define:

define example app config($regions = []) ({
include example app config directories

1
‘Q You can refer to the examples that come with your copy

of this book for the definition of the class.

[81]

Modularizing Manifests with Classes and Defined Types

Nesting definitions in classes

A somewhat obscure feature of the language is the nesting of containers inside class
bodies. Both classes and defined types can be part of a class body. This allows the
nested container to access variables that are local to the enclosing class:

class example app
Sconfig dir = '/etc/example app'
define symlink {
"$config dir/conf.d.enabled/$name":
ensure => 'link',
target => "../conf.d.available/$name",

}

Even without a (contrived) shared variable, it is actually not a bad idea to define such
macro-style types right in the class that makes exclusive use of them.

It is important to realize that this does not protect the defined type
% from invocation anywhere else in your manifest. Puppet has no
T concept of private class elements.

Nesting things in a class creates an implicit namespace. The symlink define can be
used from outside the class by referencing it like this:

example app::symlink { 'title': ..}

This might appear to be a neat way to bring more structure into your manifest code.
However, you actually don't need to nest definitions into classes to achieve this;
you can just use the double colons in the names of classes and defined types that
you create as usual, on the top level of the manifest (which is to say, not inside

any class's body).

_ This code can have semantic significance, because the : : (double
Q colon) notation does have meaning with respect to namespaces.
%= The next chapter will cover this in more detail, when covering
modules and their structure.

[82]

Chapter 4

To define a simple rule of thumb, use the nesting of containers in a class only if
the nested object is closely related to the enclosing class in terms of functionality,
and if either of the following is the case:

* The nested class or defined type is very simple, comprising perhaps only
one or two lines of manifest code

* The nested object needs access to a local variable value from the
enclosing class

Otherwise, it's a sound practice to refrain from nesting, because it tends to impact
code readability.

The official Style Guide discourages users from
o using nesting at all.

Establishing relationships among
containers

Puppet's classes bear little to no similarity to classes you find in object-oriented
programming languages such as Java or Ruby. There are no methods or attributes.
You cannot create interfaces or abstract base classes. One of the few shared
characteristics is the encapsulation aspect. Just as classes from OOP, Puppet's classes
hide implementation details; to get Puppet to start managing a subsystem, you just
need to include the appropriate class.

Passing events between classes and
defined types

By sorting all resources into classes, you make it unnecessary (for your co-workers or
other collaborators) to know about each single resource. This is beneficial. You can
think of the collection of classes and defined types as your interface. You would not
want to read all manifests that anyone on your project ever wrote.

However, the encapsulation is inconvenient for passing resource events. Say you
have some daemon that creates live statistics from your Apache logfiles. It should
subscribe to Apache's configuration files so that it can restart if there are any changes
(which might be of consequence to this daemon's operation). In another scenario,
you might have Puppet manage some external data for a self-compiled Apache
module. If Puppet updates such data, you will want to trigger a restart of the
Apache service to reload everything.

[83]

Modularizing Manifests with Classes and Defined Types

Armed with the knowledge that there is a Service ['apache2'] defined somewhere
in the apache class, you can just go ahead and have your module data files notify
that resource. It would work —Puppet does not apply any sort of protection to
resources that are declared in foreign classes. However, it would pose a minor
maintainability issue.

The reference to the resource is located far from the resource itself. When maintaining
the manifest later, you or a coworker might wish to look at the resource when
encountering the reference. In the case of Apache, it's not difficult to figure out where
to look, but in other scenarios, the location of the reference target can be less obvious.

u Looking up a targeted resource is usually not necessary, but it can
~ be important to find out what that resource actually does. It gets
Q especially important during debugging, if after a change to the
manifest, the referenced resource is no longer found.

Besides, this approach will not work for the other scenario, in which your daemon
needs to subscribe to configuration changes. You could blindly subscribe the central
apache?2. conf file, of course. However, this would not yield the desired results if
the responsible class opted to do most of the configuration work inside snippets in
/etc/apache2/conf.d.

Both scenarios can be addressed cleanly and elegantly by directing the notify or
subscribe parameter at the whole class that is managing the entity in question:

file {
' /var/lib/apache2/sample-module/datall.bin':
source => '..',
notify => Class['apache'];

}

service {
'apache-logwatch':
enable => true,
subscribe => Class['apache'],

}

Of course, the signals are now sent (or received) indiscriminately — the file not only
notifies Service ['apache2'], but also every other resource in the apache class.
This is usually acceptable, because most resources ignore events.

[84]

Chapter 4

As for the logwatch daemon, it might refresh itself needlessly if some resource in
the apache class needs a sync action. The odds for this occurrence depend on the
implementation of the class. For ideal results, it might be sensible to relocate the
configuration file resources into their own class so that the daemon can subscribe
to that instead.

With your defined types, you can apply the same rules: subscribe to and notify
them as required. Doing so feels quite natural, because they are declared like
native resources, anyway. This is how you subscribe several instances of a
defined type, symlink:

Sactive countries = ['England', 'Ireland',K 'Germany']
service {
"example-app":
enable => true,
subscribe => Symlink[$active countries];

}

Granted, this very example is a bit awkward, because it requires all symlink
resource titles to be available in an array variable. In this case, it would be more
natural to make the defined type instances notify the service instead:

symlink {
['"England',
'Ireland’',
'Germany' 1]:
notify => Service['example-app'l]l,

}

This notation passes a metaparameter to a defined type. The result is that this
parameter value is applied to all resources declared inside the define.

If a defined type wraps or contains a service or exec type resource, it can also
be desirable to notify an instance of that define to refresh the contained resource.
The following example assumes that the service type is wrapped by a define
type called protected_service:

file {
'/etc/example app/main.conf':
source => '...',

notify => Protected service['example-app'l],

[85]

Modularizing Manifests with Classes and Defined Types

Ordering containers

The notify and subscribe metaparameters are not the only ones that you can direct
at classes and instances of defined types — the same holds true for their siblings before
and require. These allow you to define an order for your resources relative to classes,
order instances of your defined types, and even order classes among themselves.

The latter works by virtue of the chaining operator:

include firewall
include loadbalancing
Class['firewall'] -> Class['loadbalancing']

The effect of this code is that all resources from the firewall class will be
synchronized before any resource from the 1oadbalancing class, and failure
of any resource in the former class will prevent any resource in the latter from
being synchronized.

Note that the chaining arrow cannot just be placed in
%j%‘\ between the include statements. It works only between
g resources or references.

Because of these ordering semantics, it is actually quite wholesome to require a
whole class. You effectively mark the resource in question as being dependent
on the class. As a result, it will only be synchronized if the entire subsystem that
the class models is successfully synchronized first.

Limitations

Sadly, there is a rather substantial issue with both the ordering of containers and
the distribution of refresh events: both will not transcend the include statements
of further classes. Consider the following example:

class apache ({
include apache: :service
include apache: :package
include apache::config
}
file {
' /etc/apache2/conf .d/passwords.conf':
source => '...',
require => Class|['apache'],

[86]

Chapter 4

I often mentioned how the comprehensive class apache models everything about
the Apache server subsystem, and in the previous section, I went on to explain

that directing a require parameter at such a class will make sure that Puppet only
touches the dependent resource if the subsystem has been successfully configured.

This is mostly true, but due to the limitation concerning class boundaries, it doesn't
achieve the desired effect in this scenario. The dependent configuration file should
actually require the Package ['apache'], declared in class apache: :package.
However, the relationship does not span multiple class inclusions, so this particular
dependency will not be part of the resulting catalog at all.

Similarly, any refresh events sent to the apache class will have no effect—they are
distributed to resources declared in the class's body (of which there are none), but
are not passed on to included classes. Subscribing to the class will make no sense
either, because any resource events generated inside included classes will not be
forwarded by the apache class.

The bottom line is that relationships to classes cannot be built in utter ignorance of
their implementation. If in doubt, you need to make sure that the resources that are
of interest are actually declared directly inside the class you are targeting.

The discussion revolved around the example of the include
statements in classes, but since it is common to use them in defined
g types as well, the same limitation applies in this case, too.

There is a bright side to this as well. A more correct implementation of the Apache
configuration file from the example explained would depend on the package, but
synchronize itself before the service, perhaps even notify it (so that Apache restarts
if necessary). When all resources are part of the apache class and you want to adhere
to the pattern of interacting with the container only, this would lead to the following
declaration:

file {
' /etc/apache2/conf .d/passwords.conf':
source => '...',
require => Class|['apache'],
notify => Class(['apache'],

[87]

Modularizing Manifests with Classes and Defined Types

This forms an instant dependency circle: the £ile resource requires all parts of
the apache class to be synchronized before it gets processed, but to notify them,
they must all be put after the £ile resource in the order graph. This cannot work.
With the knowledge of the inner structure of the apache class, the user can pick
metaparameter values that actually work:

file {
' /etc/apache2/conf .d/passwords.conf':
source => '..',
require => Class|['apache: :package'],
notify => Class(['apache::service'],

1
For the curious, this is what the inner classes look like:

class apache::service ({
service {
'apache2!':
ensure => 'running',

enable => true,

}

class apache: :package {
package {
'apache2!':
ensure => 'installed'

}

class apache::config {
file {
' /etc/apache2/apache2.conf':
source => '..',
mode => '644"',
notify => Class|['apache::service'],
require => Class|['apache: :package'],

}

The other good news is that invoking defined types does not pose the same kind
of issue that an include statement of a class does. Events are passed to resources
inside defined types just fine, transcending an arbitrary number of stacked
invocation. Ordering also works just as expected. Let's keep the example brief:

class apache ({
virtual host ({

[88]

Chapter 4

'example.net': ..

}

This apache class also creates a virtual host using a defined type. A resource that
requires this class will implicitly require all resources from within this virtual host
instance. A subscriber to the class will receive events from those resources, and events
directed at the class will reach the resources of this virtual host.

There is actually a good reason to make the include statements

behave differently in that regard. As classes can be included very

generously (thanks to their singleton aspect), it is common for

classes to build a vast network of includes. By adding a single
M include statement to a manifest, you might unknowingly pull
Q hundreds of classes into this manifest.

If relationships and events transcend this whole network,

all manners of unintended effects would be the consequence.
Dependency circles will be nearly inevitable. The whole construct
will become utterly unmanageable. The cost of such relationships
will also grow exponentially —refer to the next section.

Performance implications of container
relationships

There is another aspect that you should keep in mind whenever you are referencing
a container type to build a relationship to it. The Puppet agent will have to build

a dependency graph from this. This graph contains all resources as nodes and all
relationships as edges. Classes and defined types get expanded to all their declared
resources. All relationships to the container are expanded to relationships to each
resource.

This is mostly harmless if the other end of the relationship is a native resource. A file
that requires a class with five declared resources leads to five dependencies. That
does not hurt. It gets more interesting if the same class is required by an instance of
a defined type that comprises three resources. Each of these builds a relationship to
each of the class' resources, so you end up with 15 edges in the graph.

It gets even more expensive when a container invokes complex defined types,
perhaps even recursively.

[89]

Modularizing Manifests with Classes and Defined Types

A more complex graph means more work for the Puppet agent, and its runs

will take longer. This is especially annoying when running agents interactively
during debugging or development of your manifest. To avoid the unnecessary
effort, consider your relationship declarations carefully and use them only when
they are really appropriate.

Mitigating the limitations

The architects of the Puppet language have devised two alternative approaches to
solve the ordering issues. We will consider both, because you might encounter them
in existing manifest. In new setups, you should always choose the latter variant.

The anchor pattern

The anchor pattern is the classic workaround for the problem with ordering and
signaling in the context of recursive class include statements. It can be illustrated
by the following example class:

class example app
anchor {
'example app::begin':
notify => Class|['example app config'l];
}
include exampe app config
anchor {
'example app::end':
require => Class|['example app config']

}

Consider a resource that is placed before => Class['example app'].Itends up in
the chain before each anchor, and therefore, also before any resource in example
app_config, despite the include limitation. This is because the Anchor ['example
app: :begin'] pseudo-resource notifies the included class and is therefore ordered
before all of its resources. A similar effect works for objects that require the class,

by virtue of the example: : end anchor.

The anchor resource type was created for this express purpose. It is not part of
the Puppet core, but has been made available through the std1ib module instead.
Since it also forwards refresh events, it is even possible to notify and subscribe
this anchored class, and events will propagate into and out of the included class
example app config.

[90]

Chapter 4

The stdlib module is available from the Puppet Forge, but more about this in the

next chapter. There is a descriptive document for the anchor pattern to be found online
as well, in Puppet Labs' Redmine issue tracker (now obsolete) at (http://projects.
puppetlabs.com/projects/puppet/wiki/Anchor Pattern). It is somewhat dated,
seeing as the anchor pattern has been supplanted as well by Puppet's ability to contain
a class in a container.

The contain function

To make composite classes directly work around the limitations of the include
statement, you can take advantage of the contain function found in Puppet Version
3.4.x or newer.

If the earlier apache example had been written like the following, there would have
been no issues concerning ordering and refresh events:

class apache {
contain apache: :service
contain apache: :package
contain apache: :config

}

The official documentation describes the behavior as follows:

"A contained class will not be applied before the containing class is begun, and will
be finished before the containing class is finished."

This might read like we're now discussing the panacea for the presented class
ordering issues here. Should you just be using contain in place of include from
here on out and never worry about class ordering again? Of course not, this would
introduce lots of unnecessary ordering constraints and lead you into unfixable
dependency circles very quickly. Do contain classes, but make sure that it makes
sense. The contained class should really form a vital part of what the containing
class is modeling,.

The quoted documentation refers to classes as containers
A\
~ only, but classes can be contained in defined types just as
well. The effect of containment is not limited to ordering
aspects either. Refresh events are also correctly propagated.

[91]

Modularizing Manifests with Classes and Defined Types

Making classes more flexible through
parameters

Up until this point, classes and defines were presented as direct opposites
with respect to flexibility; defined types are inherently adaptable through
different parameter values, whereas classes model just one static piece of
state. As the section title suggests, this is not entirely true. Classes too can
have parameters. Their definition and declaration become rather similar
to those of defined types in this case:

class apache::config($max_clients=100) ({
file {
' /etc/apache2/conf.d/max _clients.conf':
content => "MaxClients $max clients\n"

}
}

class {
'apache: :config"':
max_clients => 120;

}

This enables some very elegant designs, but introduces some drawbacks as well.

Caveats of parameterized classes

The consequence of allowing class parameters is almost obvious: you lose the singleton
characteristic. Well, that's not entirely true either, but your freedom in declaring the
class gets limited drastically.

Classes that define default values for all parameters can still be declared with
the include statement. This can still be done an arbitrary number of times in
the same manifest.

However, the resource-like declaration of class { 'name': } cannot appear
more than once for any given class in the same manifest. This is in keeping with
the rules for resources and should not be very surprising —after all, it would be
very awkward to try and bind different values to a class' parameters in different
locations throughout the manifest.

[92]

Chapter 4

Things become very confusing when mixing include with the alternative syntax
though. It is valid to include a class an arbitrary number of times after it has been
declared using the resource-like notation. However, you cannot use the resource
style declaration after a class has been declared using include. That's because the
parameters are then determined to assume their default values and a class {
'name': } declaration clashes with that.

In a nutshell, the following code works:

class { 'apache::config': }
include apache::config

However, the following code does not work:

include apache::config
class { 'apache::config': }

As a consequence, you effectively cannot add parameters to component classes,
because the include statement is no longer safe to use in large quantities. Therefore,
parameters are essentially only useful for comprehensive classes, which usually
don't get included from different parts of the manifest.

Chapter 5, Extending Your Puppet Infrastructure with Modules, will discuss
M some alternate patterns, some of which exploit class parameters. Also
Q note that Chapter 7, Separating Data from Code Using Hiera, presents you
with a solution that gives you more flexibility with parameterized classes.
Using this, you can be more liberal with your class interfaces.

Preferring the include keyword

Ever since class parameters have been available, some Puppet users have felt
compelled to write (example) code that would make it a point to forgo the
include keyword in favor of resource-like class declarations, such as this:

class apache {

class { 'apache::service': }
class { 'apache::package': }
class { 'apache::config': }

}

Doing this is a very bad idea. I cannot stress this enough: one of the most powerful
concepts about Puppet's classes is their singleton aspect— the ability to include a
class in a manifest arbitrarily and without worrying about clashes with other code.
The mentioned declaration syntax deprives you of this power, even when the classes
in question don't even support parameters.

[93]

Modularizing Manifests with Classes and Defined Types

The safest route is to use include whenever possible and to avoid the alternate
syntax whenever you can. In fact, Chapter 7, Separating Data from Code Using Hiera,
introduces the ability to use class parameters without the resource-like class
declaration. This way, you can rely solely on include, even when parameters

are in play. These are the safest recommended practices to keep you out of
trouble from incompatible class declarations.

Summary

Classes and defined types are the essential tools to create reusable Puppet code.
While classes hold resources that must not be repeated in a manifest, the define
is capable of managing a distinct set of adapted resources upon every invocation.
It does that by leveraging the parameter values it receives. While classes do
support parameters as well, there are some caveats to bear in mind.

To use defined types in your manifest, you declare instances just like resources
of native types. Classes are mainly used through the include statement, although
there are alternatives such as the class { } syntax or the contain function.

There are also some ordering issues with classes that the contain function can
help mitigate.

In theory, classes and defines suffice to build almost all manifests that you will
ever need. In practice, you will want to organize your code into larger structures.
The next chapter will show you how to do exactly that and a whole range of useful
functionality beyond it.

[94]

Extending Your Puppet
Infrastructure with Modules

In the previous chapter, you learned about the tools that create modularized and
reusable Puppet code in the form of classes and defined types. We discussed that
almost all Puppet resources should be separated into appropriate classes, except
if they logically need to be part of a defined type. This is almost enough syntax to
build manifests for an entire fleet of agent nodes — each selecting the appropriate
composite classes, which in turn include further required classes, with all classes
recursively instantiating defined types.

What has not been discussed up until now is the organization of manifests in the
filesystem. It is obviously undesirable to stuff all of your code into a large site.pp
file. The answer to this problem is provided by modules and will be explained in
this chapter.

Besides organizing classes and defines, modules are also a way to share common
code. They are software libraries for Puppet manifests and plugins. They also offer
a convenient place to locate the interface descriptions that were hinted at in the
previous chapter.

The existence and general location of modules were mentioned briefly in Chapter 3,
A Peek Under the Hood - Facts, Types, and Providers. It is now time to explore these
and other aspects in greater detail. We'll cover the following topics in this chapter:

* An overview of Puppet's modules

* Maintaining environments

* Following modules' best practices

* Building a specific module

* Finding helpful Forge modules

Extending Your Puppet Infrastructure with Modules

An overview of Puppet's modules

A module can be seen as a higher-order organizational unit. It bundles up classes
and defined types that contribute to a common management goal (specific system
aspects or a piece of software, for example). These manifests are not all that is
organized through modules —most modules also bundle files and file templates.
There can also be several kinds of Puppet plugins in a module. This section will
explain these different parts of a module and show you where they are located.
You will also learn about the means of module documentation and how to obtain
existing modules for your own use.

Parts of a module

For most modules, manifests form the most important part— the core functionality.
The manifests consist of classes and defined types, which all share a namespace,
rooted at the module name. For example, an ntp module will contain only classes
and defines whose names start with the ntp: : prefix.

Many modules will contain files that can be synced to the agent's filesystem.
This is often used for configuration files or snippets. You have seen examples
of this, but let's repeat them. A frequent occurrence in many manifests are file
resources such as the following:

file {
'/etc/ntp.conf!:
source => 'puppet:///modules/ntp/ntp.conf',

}

There is often a need to tweak some parameters inside such a file so that node
manifests can declare customized config settings for the respective agent. The tool
of choice for this are templates, which will be discussed in the next chapter.

Another possible component of a module that you have already read about are
custom facts —code that gets synchronized to the agent and runs before a catalog
is requested so that the output becomes available as facts about the agent system.

These facts are not the only Puppet plugins that can be shipped with modules. There
are also parser functions (also called custom functions), for one. These are actual
functions that you can use in your manifests. In many situations, they are the most
convenient way, if not the only way, to build some specific implementations.

The final plugin type has also been hinted at in an earlier chapter —custom native
types and providers are conveniently placed in modules as well.

[96]

Chapter 5

How the content of each module is structured

All the mentioned components need to be located in specific filesystem locations for
the master to pick them up. Each module forms a directory tree. Its root is named after
the module itself. For example, the ntp module is stored in a directory called ntp/.

All manifests are stored in a subdirectory called manifests/. Each class and defined
type has its own respective file. The ntp: : package class will be found in manifests/
package . pp, and the defined type called ntp: :monitoring: :nagios, will be found
in manifests/monitoring/nagios.pp. The first particle of the container name (ntp)
is always the module name, and the rest describes the location under manifests/.
You can refer to the module tree in the following paragraphs for more examples.

The manifests/init.pp file is special. It can be thought of as a default manifest
location, because it is looked up for any definition from the module in question.

Both of the examples that were just mentioned can be put into init.pp and will
still work. Doing this makes it harder to locate the definitions, though.

In practice, init.pp should only hold one class, which is named after the module
(such as the ntp class), if your module implements such a class. This is a common
practice, as it allows manifests to use a simple statement to tap the core functionality
of the module:

include ntp
You can refer to the Modules' best practices section for some more notes on this subject.

The files and templates that a module serves to agents are not as strictly sorted
into specific locations. It is only important that they be placed in the files/ and
templates/ subdirectories, respectively. The contents of these subtrees can be
structured to the module author's liking, and the manifest must reference them
correctly. Static files should always be addressed through URLs such as these:

puppet:///modules/ntp/ntp.conft
puppet:///modules/my app/opt/scripts/find my app.sh

These files are found in corresponding subdirectories of files/:

../modules/ntp/files/ntp.conf
../modules/my app/files/opt/scripts/find my app.sh

The modules prefix in the URI is mandatory and is always followed by the module
name. The rest of the path translates directly to contents of the files/ directory.
There are similar rules for templates. You can refer to Chapter 6, Leveraging the Full
Toolset of the Language, for the details.

[97]

Extending Your Puppet Infrastructure with Modules

Finally, all plugins are located in the 1ib/ subtree. Custom facts are Ruby files in
lib/facter/. Parser functions are stored in 1ib/puppet/parser/functions/,
and for custom types and providers, there is 1ib/puppet/type/ and 1ib/puppet/
provider/, respectively. This is not a coincidence — these Ruby libraries are looked
up by the master and the agent in the according namespaces. There are examples
for all these components later in this chapter.

In short, these are the contents of a possible module in a tree view:

/etc/puppet/environments/production/my app

templates # templates are covered in the next chapter
files
subdirl # puppet:///modules/my app/subdirl/<filenames
subdir2 # puppet:///modules/my app/subdir2/<filenamex>

subsubdir # puppet:///modules/my app/subdir2/subsubdir/...

manifests
init.pp # class my app is defined here
params.pp # class my app::params is defined here
config
detail.pp # my app::config::detail is defined here
basics.pp # my app::config::basics is defined here
lib
facter # contains .rb files with custom facts
puppet
parser
functions # contains .rb files with parser functions
type # contains .rb files with custom types
provider # contains .rb files with custom providers

Documentation in modules

A module can and should include documentation. The Puppet master does not
process any module documentation by itself. As such, it is largely up to the authors
to decide how to structure the documentation of modules that are created for their
specific site only. That being said, there are some common practices, and it's a good
idea to adhere to them. Besides, if a module should end up being published on the
Forge, appropriate documentation should be considered mandatory.

. The process of publishing modules is beyond the scope
% of this book. You can find a guide at https://docs.
=" puppetlabs.com/puppet/latest/reference/

modules publishing.html.

[98]

Chapter 5

For many modules, the main focus of the documentation is centered on the README
file, which is located right in the module's root directory. It is customarily formatted
in Markdown as README . md or README . markdown. The README file should contain
explanations, and often, there is a reference documentation as well.

Puppet DSL interfaces can also be documented right in the manifest, in the rdoc and
vARD format. This applies to classes and defined types:

Class: my app::firewall
This class adds firewall rules to allow access to my app.
#
Parameters: none
class my app::firewall ({
class code here
}

You can generate HTML documentation (including navigation) for all your modules
using the puppet doc subcommand. This practice is somewhat more obscure, so it
won't be discussed here in great detail. If this option is attractive to you, I encourage
you to peruse the documentation —puppet help doc is a good starting point. Another
useful resource is the puppetlabs-strings module (https://forge.puppetlabs.
com/puppetlabs/strings).

Plugins are documented right in their Ruby code. There are examples for this in the
following sections.

Maintaining environments

Puppet doesn't organize only manifests, files, and plugins in modules. There is
a higher-level unit called environment that groups and contains modules. An
environment mainly consists of:

¢ One or more site manifest files

* A modules directory

When the master compiles the manifest for a node, it uses exactly one environment
for this task. As described in Chapter 2, The Master and Its Agents, it always starts in
site.pp, which is the environment's site manifest. This can be the location for your
node blocks. It is a common practice to keep the node blocks out of site.pp, though,
and keep them in a nodes . pp file instead. Before we take a look at how this works,
let's see an example environment directory:

/etc/puppet/environments
production

[99]

Extending Your Puppet Infrastructure with Modules

environment.conf
manifests
init.pp
nodes.pp
modules
my_app
ntp

The environment . conf file can customize the environment. This is required if you
want to use nodes. pp or other files in the manifests directory. To make Puppet
read all pp files in this directory, set the manifest option in environment . conf:

/etc/puppet/environments/production/environment.conf
manifest = manifests

The nodes . pp file will include classes and instantiate defines from the modules.
Puppet looks for modules in the modules subdirectory of the active environment.
You can define additional subdirectories in order to hold modules by setting the
modulepath option in environment . conf:

/etc/puppet/environments/production/environment.conf
manifest = manifests
modulepath = modules:site-modules

The directory structure can be more distinctive, then:

/etc/puppet/environments/
production
manifests
modules
ntp
site-modules
my_app

Configuring environment locations

Puppet uses the production environment by default. This and other environments
should be stored in a dedicated directory, such as /etc/puppet /environments,
which contains nothing but environment directories. Allow Puppet to detect the
named environments there by setting the environmentpath option in puppet . conf:

[main]
environmentpath = /etc/puppet/environments

[100]

Chapter 5

This is a new option introduced in Puppet Version 3.5. Earlier versions would
configure environments right in puppet . conf with their respective manifest and
modulepath settings. These work just like the settings from environment . conf:

in puppet.conf (Deprecated!)

[testing]

manifest = /etc/puppet/environments/testing/manifests
modulepath = /etc/puppet/environments/testing/modules

For the special production environment, these Puppet setups will use the manifest
and modulepath settings from the [main] or [master] section. An old default
configuration had the production environment look for manifests and modules right
in /etc/puppet:

Deprecated! Works only with Puppet 3.x!
[main]

manifest = /etc/puppet/site.pp
modulepath = /etc/puppet/modules

Sites that operate like this today should be migrated to the aforementioned directory
environments in /etc/puppet/environments or similar locations.

Obtaining and installing modules

Downloading existing modules is very common. Puppet Labs is hosting a
dedicated site for sharing and obtaining modules — the Puppet Forge. It works

just like RubyGems or CPAN and makes it simple for the user to retrieve a given
module through a command-line interface. In the Forge, modules are fully named
by prefixing the actual module name with the author, such as puppetlabs-stdlib
or ffrank-constraints.

The puppet module install command will install a module in the active
environment:

puppet module install puppetlabs-stdlib

1
‘Q The Testing your modules section has information on using

different environments.

The current release of the stdlib module (authored by the user, puppetlabs)
is downloaded from the Forge and installed in the standard modules location.
This is the first location in the current environment's modulepath, which is
usually the modules subdirectory.

[101]

Extending Your Puppet Infrastructure with Modules

The stdlib module should be considered mandatory —it adds a large
number of useful functions to the Puppet language. Examples include
\l the keys, values, and has_key functions, which are essential for
= implementing the proper handling of hash structures, to name only
Q a few. The functions are available to your manifests as soon as the
module is installed — there is no need to include any class or other
explicit loading. If you write your own modules that add functions,
these are loaded automatically just the same.

Modules' best practices

With all current versions of Puppet, you should make it a habit to put all the
manifest code into modules, with only a few exceptions:
* The node blocks
* The include statements for very select classes that should be omnipresent
* Declarations of helpful variables that should have the same availability as

Facter facts in your manifests

This section provides details on how to organize your manifests accordingly. It also
advises some design practices and strategies in order to test changes to modules.

Putting everything in modules
You might find some manifests in older installations that gather lots of manifest files
in one or more directories and use the import statements in the site.pp file, such as:

import '/etc/puppet/manifests/custom/*.pp"

All classes and defined types in these files are then available globally.

This whole approach had scalability issues and has long been
% deprecated. The import keyword is missing from Puppet 4
and newer versions.

It is far more efficient to give meaningful names to classes and defined types so
that Puppet can look them up in the collection of modules. The scheme has been
discussed in an earlier section already, so let's just look at another example where
the Puppet compiler encounters a class name such as:

include ntp::server::component: :watchdog

[102]

Chapter 5

It will go ahead and locate the ntp module in all the configured module locations of
the active environment (path names in the modulepath setting). It will then try and

read the ntp/manifests/server/component /watchdog.pp file in order to find the
class definition. Failing this, it will also try ntp/manifests/init.pp.

This makes compilation very efficient: Puppet dynamically identifies the required
manifest files and includes only those for parsing. It also aids code inspection
and development, because it is abundantly clear where you should look for
specific definitions.

M Technically, it is possible to stuff all of a module's manifests
Q into its init . pp file, but you lose the advantages that a
structured tree of module manifests offers.

Avoiding generalization

Each module should ideally serve a specific purpose. On a site that relies on
Puppet to manage a diverse server infrastructure, there are likely modules for

each respective service, such as apache, ssh, nagios, nginx, and so forth. There
can also be site-specific modules such as users or shell_settings if operations
require this kind of fine-grained control. It might even be sensible to have a module
for each individual administrator's user account if each has certain preferences that
require rather elaborate manifests.

The ideal granularity depends on the individual requirements of your setup. What
you generally want to avoid are modules with names such as utilities or helpers
that serve as a melting pot for ideas that don't fit in any existing modules. Such a lack
of organization can be detrimental to discipline and can lead to chaotic modules that
include definitions that should have become their own respective modules instead.

Adding more modules is cheap. A module generally incurs no cost for the Puppet
master operation, and your user experience will usually become more efficient
with more modules, not less so. Of course, this balance can tip if your site imposes
a special documentation or other handling prerequisites on each module. Such
rulings must then be weighed into the decisions about module organization.

[103]

Extending Your Puppet Infrastructure with Modules

Testing your modules

Depending on the size of your agent network, some or many of your modules
can be used by a large variety of nodes. Despite these commonalities, these nodes
can be quite different from one another. A change to a central module such as
ssh or ntp, which are likely used by a large number of agents, can have quite
extensive consequences.

The first and most important tool for testing your work is the - -noop option for
Puppet. It works for puppet agent as well as puppet apply. If it is given on the
command line, Puppet will not perform any necessary sync actions but merely
present the respective line of output to you instead. There is an example of this
in Chapter 1, Writing Your First Manifests.

When using a master instead of working locally with puppet apply, a new
problem arises, though. The master is queried by all your agents. Unless all
agents are disabled while you are testing a new manifest, it is very likely that
one will check in and accidentally run the untested code.

1
‘\Q In fact, even your test agent can trigger its regular run while

you are logged in, transparently in the background.

It is very important to guard against such uncontrolled manifest applications.
A small mistake can damage a number of agent machines in a short time period.
The best way to go about this is to define multiple environments on the master.

Safe testing with environments

Besides the production environment, you should create at least one testing
environment. You can call it testing or whatever you like. When using directory
environments, just create its directory in the environmentpath. On older versions
of Puppet prior to 3.5, add it to puppet . conf:

[testing]
manifest=/etc/puppet/environments/testing/manifests
modulepath=/etc/puppet/environments/testing/modules

Such an additional environment is very useful for testing changes. The test
environment or environments should be copies of the production data. Prepare all
manifest changes in testing first. You can make your agents test this change before
you copy it to production:

puppet agent --test --noop --env testing

[104]

Chapter 5

You can even omit the noop flag on some or all of your agents so that the change is
actually deployed. Some subtle mistakes in manifests cannot be detected from an
inspection of the noop output, so it is usually a good idea to run the code at least
once before releasing it.

Environments are even more effective when used in conjunction
\ with source control, especially distributed systems such as git
~ or mercurial. Versioning your Puppet code is a good idea
Q independently of environments and testing — this is one of the
greatest advantages that Puppet has to offer you through its
Infrastructure as Code paradigm.

Using environments and the noop mode form a pragmatic approach to testing that
can serve in most scenarios. The safety against erroneous Puppet behavior is limited,
of course. There are more formal ways of testing modules:

* The rspec-puppet module allows module authors to implement unit tests
based on rspec. You can find more details at http://rspec-puppet .com/.

* Acceptance testing can be performed through beaker. You can refer
to https://github.com/puppetlabs/beaker/wiki/How-To-Beaker
for details.

Explaining these tools in detail is beyond the scope of this book.

Building a specific module

This chapter has discussed many theoretical and operational aspects of modules, but
you are yet to gain an insight into the process of writing modules. For this purpose,
the rest of this chapter will have you create an example module step by step.

It should be stressed again that for the most part, you will want to find general
purpose modules from the Forge. The number of available modules is ever growing,
so the odds are good that there is something already there to help you with what you
need to do.

Assume that you want to add Cacti to your network —an RRDtool-based trend
monitor and graphing server, including a web interface. You would first check the
Forge and indeed find some modules. However, let's further assume that neither
speaks to you —either the feature set or the implementation is not to your liking.
If even the respective interfaces don't meet your requirements, it doesn't make
much sense to base your own module on an existing one (in the form of a fork

on GitHub) either. You will need to write your module from scratch.

[105]

Extending Your Puppet Infrastructure with Modules

Naming your module

Module names should be concise and to the point. If you manage a specific piece

of software, name your module after it—apache, java, mysql, and so forth. Avoid
verbs such as install cacti or manage_cacti. If your module name does need to
consist of several words (because the target subsystem has a long name), they should
be divided by underscore characters. Spaces, dashes, and other non-alphanumeric
characters are not allowed.

In our example, the module should just be named cacti.

Making your module available to Puppet

To use your own module, you don't need to make it available for installation

through puppet module. For this, you will need to upload the module to the

Forge first, which will require quite some additional effort. Luckily, a module
will work just fine without all this preparation if you just put the source code
in the proper location on your master.

To create your own cacti module, create the basic directories:
mkdir -p /etc/puppet/environments/testing/cacti/{manifests,files}

Don't forget to synchronize all changes to production once the agents use them.

Implementing the basic module functionality

Most modules will perform all of their work through their manifests.

1
‘\Q There are notable exceptions, such as the stdlib module. It mainly

adds parser functions and a few general-purpose resource types.

When planning the classes for your module, it is most straightforward to think about
how you would like to use the finished module. There is a wide range of possible
interface designs. The de facto standard stipulates that the managed subsystem is
initialized on the agent system by including the module's main class — the class that
bears the same name as the module and is implemented in the module's init .pp file.

For our Cacti module, the user should use this:

include cacti

[106]

Chapter 5

As a result, Puppet should take all the required steps in order to install the software
and if necessary, perform any additional initialization.

Start by creating the cacti class and implementing the setup in the way you would
from the command line, replacing commands with appropriate Puppet resources.

On a Debian system, installing the cacti package is enough. Other required software
is brought in through dependencies (completing the LAMP stack), and after the
package installation, the interface becomes available through the web URI /cacti/
on the server machine:

../modules/cacti/manifests/init.pp
class cacti {
package { 'cacti':
ensure => 'installed'
!

}

Your module is now ready for testing. Invoke it from your agent's manifest in
site.pp or nodes.pp of the testing environment:

node 'agent' {
include cacti

}
Apply it on your agent directly:
root@agent# puppet agent --test --env testing

This will work on Debian, and Cacti is reachable via http://<address>/cacti/.
It's unfortunate that the Cacti web interface will not come up when the home page is
requested through the / URL To enable this, give the module the ability to configure
an appropriate redirection. Prepare an Apache configuration snippet in the module
in /etc/puppet/environments/testing/cacti/files/etc/apache2/conf.d/
cacti-redirect.conf:

Do not edit this file - it is managed by Puppet!
RedirectMatch permanent */$ /cacti/

A\l

~ The warning notice is helpful, especially when multiple
administrators have access to the Cacti server.

[107]

Extending Your Puppet Infrastructure with Modules

It makes sense to add a dedicated class that will sync this file to the agent machine:

../modules/cacti/manifests/redirect.pp
class cacti::redirect ({
file {
' /etc/apache2/conf.d/cacti-redirect.conf':

ensure => 'file',

source => 'puppet:///modules/cacti/etc/apache2/conf.d/
cacti-redirect.conf',

require => Package['cacti'];

A short file like this can also be managed through the file type's
content property instead of source:

Spuppet warning = '# Do not edit - managed by Puppet!'
$line = 'RedirectMatch permanent */$ /cacti/'
_}l file { '/etc/apache2/conf.d/cacti-redirect.conf':
<::l ensure => 'file',
content => "${puppet warning}\n${line}\n",

}

This is more efficient, because the content is part of the catalog, so the
agent does not need to retrieve the checksum through another request
to the master.

The module now allows the user to include cacti::redirect in order to get
this functionality. This is not a bad interface as such, but this kind of modification
is actually well-suited to become a parameter of the cacti class:

class cacti($redirect = true)
if $redirect (
contain cacti::redirect
package { 'cacti':
ensure => 'installed'

}

The redirect is now installed by default when a manifest uses include cacti.If the
web server has other virtual hosts that serve things that are not Cacti, this might be
undesirable. In such cases, the manifest will declare the class with this parameter:

class { 'cacti': redirect => false }

[108]

Chapter 5

Speaking of the best practices, most modules will also separate the installation routine
into a class of its own. In this case, this is hardly helpful, because the installation status
is ensured through a single resource, but let's do it anyway:

class cacti(Sredirect = true) {
contain cacti::install
if $redirect
contain cacti::redirect
}
}

It's sensible to use contain here in order to make the Cacti management a solid unit.
The cacti::install class is put into a separate install.pp manifest file:

../modules/cacti/manifests/install.pp
class cacti::install ({
package { 'cacti':
ensure => 'installed'
}
}

On Debian, the installation process of the cacti package copies another Apache
configuration file to /etc/apache2/conf . d. Since Puppet performs a normal apt
installation, this result will be achieved. However, Puppet does not make sure that
the configuration stays in this desired state.

There is an actual risk that the configuration might get broken.
_ If the puppetlabs-apache module is in use for a given node,
% it will usually purge any unmanaged configuration files from the
L /etc/apache2/ tree. Be very careful when you enable this module
for an existing server. Test it in the noop mode. If required, amend
the manifest to include the existing configuration.

It is prudent to add a £ile resource to the manifest that keeps the configuration
snippet in its post-installation state. Usually with Puppet, this will require you to
copy the config file contents to the module, just like the redirect configuration is in
a file on the master. However, since the Debian package for Cacti includes a copy
of the snippet in /usr/share/doc/cacti/cacti.apache.conf, we can instruct
the agent to sync the actual configuration with that. Perform this in yet another

de facto standard for modules —the config class:

../modules/cacti/manifests/config.pp
class cacti::config {
file {

[109]

Extending Your Puppet Infrastructure with Modules

' /etc/apache2/conf.d/cacti.conf':
mode => 644,
source => '/usr/share/doc/cacti/cacti.apache.conf’

}

This class should be contained by the cacti class as well. Running the agent again
will now have no effect, because the configuration is already in place.

Creating utilities for derived manifests

You have now created several classes that compartmentalize the basic installation
and configuration work for your module. Classes lend themselves very well to
implement global settings that are relevant for the managed software as a whole.

However, just installing Cacti and making its web interface available is not an
especially powerful capability —after all, the module does little beyond what a user
can achieve by installing Cacti through the package manager. The much greater
pain point with Cacti is that it usually requires configuration via said web interface:
adding servers as well as choosing and configuring graphs for each server can be an
arduous task and require dozens of clicks per server, depending on the complexity
of your graphing needs.

This is where Puppet can be the most helpful. A textual representation of the desired
states allows for quick copy-and-paste repetition and name substitution through
regular expressions. Better yet, once there is a Puppet interface, users can devise their
own defined types in order to save themselves even from the copy and paste work.

Speaking of defined types, they are what is required for your module to allow this
type of configuration. Each machine in Cacti's configuration should be an instance
of a defined type. The graphs can have their own type as well. On the other hand,
depending on how much complexity the graph configuration requires, it might

be more useful (and easier to implement) to manage them as arguments for the
machine type.

As with the implementation of the classes, the first thing you always need to ask
yourself is how this task would be done from the command line.

\ Actually, the better question can be what API should you use
~ for this, preferably from Ruby. However, this is only important
Q if you intend to write Puppet plugins — types and providers.
We will look into this later in this very chapter.

[110]

Chapter 5

Cacti comes with a set of CLI scripts. The Debian package makes these available
in /usr/share/cacti/cli. Let's discover these while we step through the
implementation of the Puppet interface. The goals are defined types that will
effectively wrap the command-line tools so that Puppet can always maintain the
defined configuration state through appropriate queries and update commands.

Adding configuration items

While designing more capabilities for the Cacti module, first comes the capability to

register a machine for monitoring — or rather, a device, as Cacti itself calls it (network
infrastructure such as switches and routers are frequently monitored as well, not only
computers). The name for the first defined type should, therefore, be cacti: :device.

The same warnings from the Naming your module subsection
apply —don't give in to the temptation of giving names such as
% create device or define domain to your type, unless you
e — - i .
have very good reasons, such as the removal being impossible.
Even then, it's probably better to skip the verb.

The CLI script used to register a device is named add_device. php. Its help output
readily indicates that it requires two parameters, which are description and ip.
A custom description of an entity is often a good use for the respective Puppet
resource's title. The type almost writes itself now:

../modules/cacti/manifests/device.pp
define cacti::device($ip) {

$cli = '/usr/share/cacti/cli’
Soptions = "--description='$name' --ip='$ip'"
exec {

"add-cacti-device-Sname":
command => "$cli/add device.php Soptions",
require => Class[cacti],

~ In practice, it is often unnecessary to use so many variables, but it
serves readability with the limited horizontal space of the page.

[111]

Extending Your Puppet Infrastructure with Modules

This exec resource gives Puppet the ability to use the CLI to create a new device in
the Cacti configuration. Since PHP is among Cacti's requirements, it's sufficient to
make the exec resource require the cacti class. Note the use of $name not only
for the - -description parameter, but in the resource name for the exec resource
as well. This ensures that each cacti: :device instance declares a unique exec
resource in order to create itself.

This still lacks an important aspect, however. Written as in the given example,
this exec resource will make the Puppet agent run the CLI script always, under
any circumstances. This is incorrect, though —it should only run if the device has
not yet been added.

Every exec resource should have one of the creates, onlyif, or unless parameters.
It defines a query for Puppet to determine the current sync state. The add_device
call must be made unless the device exists already. The query for existing devices
must be made through the add_graphs. php script (counterintuitively). When called
with the - -1ist-hosts option, it prints one header line and a table of devices, with
the description in the fourth column. The following unless query will find the
resource in question:

$search = "sed 1d | cut -f4- | grep -g '“$name\$'"
exec {
"add-cacti-device-Sname":
command => "Scli/add_device.php $options",
path => '/bin:/usr/bin"',
unless => "$cli/add graphs.php --list-hosts | $search",
require => Class[cacti],

}

The path parameter is useful, because it allows for calling the core utilities without
the respective full path.

M It is a good idea to generally set a standard list of search
Q paths, because some tools will not work with an empty
PATH environment variable.

The unless command will return o if the exact resource title is found among the
list of devices. The final $ sign is escaped so that Puppet includes it in the $search
command string literally.

You can now test your new define by adding the following resource to the agent
machine's manifest:

in manifests/nodes.pp
node 'agent' {

[112]

Chapter 5

include cacti
cacti::device {
'Puppet test agent (Debian 7)':
ip => $ipaddress;

}

On the next puppet agent --test run, you will be notified that the command for
adding the device is run. Repeat the run, and Puppet will determine that everything
is now already synchronized with the catalog.

Allowing customization

The add_device.php script has a range of optional parameters that allow the user
to customize the device. The Puppet module should expose these dials as well.
Let's pick one and implement it in the cacti: :device type. Each Cacti device has
a ping method that defaults to tcp. With the module, we can even superimpose
our own defaults over those of the software:

define cacti::device($ip, $ping method='icmp"') {
$cli = '/usr/share/cacti/cli’
$base opt = "--description='$name' --ip='s$ip'"
$ping opt = "--ping method=$ping method"
Soptions = "$base opt $ping opt"
$search = "sed 1d | cut -f4- | grep -g '“Sname\$'"
exec {

"add-cacti-device-$Sname":
command => "$cli/add_device.php Soptions",

path => '/bin:/usr/bin',
unless =>
"$cli/add_graphs.php --list-hosts | $search",

require => Class[cacti],

}
}

The module uses a default of icmp instead of tcp. The value is always passed
to the CLI script, whether it was passed to the cacti: : device instance or not.
The parameter default is passed in the latter case.

Al

~ If you plan to publish your module, it is more sensible to try and
use the same defaults as the managed software whenever possible.

[113]

Extending Your Puppet Infrastructure with Modules

Once you incorporate all the available CLI switches, you have successfully created a
Puppet API in order to add devices to your Cacti configuration, giving the user the
benefits of easy reproduction, sharing, implicit documentation, simple versioning,
and more.

Removing unwanted configuration items

There is still one remaining wrinkle. It is atypical for Puppet types to be unable to
remove the entities that they create. As it stands, this is a technical limitation of the
CLI that powers your module, because it does not implement a remove_device
function yet. Such scripts have been made available on the Internet but are not
properly a part of Cacti at the time of writing this.

To give the module more functionality, it would make sense to incorporate
additional CLI scripts among the module's files. You will put the appropriate
file into the right directory under modules/cacti/files/ and add another
file resource to the cacti::install class:

file {
'/usr/share/cacti/cli/remove_device.php':
module => 'cacti',
mode => 755,
source => 'puppet:///modules/cacti/usr/share/cacti/cli/

remove device.php',
require => Package['cacti'],

}

You can then add an ensure attribute to the cacti: :device type:

define cacti::device ($ensure='present', $ip, $ping method='icmp') {
$cli = '/usr/share/cacti/cli’
$search = "sed 1d | cut -f4- | grep -g '“Sname\$'"

case $ensure {
'present':
existing cacti::device code goes here

}

'absent':
Sremove = "$cli/remove device.php"
$get_id = "$remove --list-devices
| awk -F'\\t' '\$4==\"3name\" { print \$1 }'"
exec {

"remove-cacti-device-$Sname" :
command => "$remove --device-id=\$($get_id)",
path => '/bin:/usr/bin',

[114]

Chapter 5

onlyif => "$cli/add _graphs.php --list-hosts
| $search",
require => Class[cacti],

}

Note that I took some liberties with the indentation here so as to not break too many
lines. This new exec resource is quite a mouthful, because the remove_device.php
script requires the numeric ID of the device to be removed. This is retrieved with a
--list-devices call that is piped to awk. To impair readability even more, some
things must be escaped so that Puppet includes a valid awk script in the catalog—
double quotes, $ signs, and backslashes. Also note that the query for the sync state
of this exec resource is identical to the one for the add resource, except that now it
is used with the onlyif parameter: only take action if the device in question is still
found in the configuration.

Dealing with complexity

The commands we implemented for the cacti: :device define are quite convoluted.
At this level of complexity, shell one-liners become unwieldy for powering Puppet's
resources. It gets even worse when handling graphs —the add_graphs.php CLI script
requires numeric IDs not only of the devices, but of the graphs as well. At this point,

it makes sense to move the complexity out of the manifest and write wrapper scripts
for the actual CLI. I will just sketch the implementation. The wrapper script will follow
this general pattern:

#!/bin/bash

DEVICE DESCR=51

GRAPH_DESCR=$2

DEVICE_ID=" #scriptlet to retrieve numeric device ID"

GRAPH_ID=" #scriptlet to retrieve numeric graph ID~

GRAPH_TYPE="#scriptlet to determine the graph type~

/usr/share/cacti/cli/add_graphs.php \
--graph-type=$SGRAPH TYPE \
--graph-template-id=$GRAPH_ID \
--host-1id=$DEVICE_ID

With this, you can add a straightforward graph type:

define cacti::graph($device, $graph=%$name) {
$add = '/usr/local/bin/cacti-add-graph'
$find = '/usr/local/bin/cacti-find-graph'

[115]

Extending Your Puppet Infrastructure with Modules

exec {
"add-graph-S$name-to-Sdevice":
command => "$Sadd '$device' 'S$graph'",
path => '/bin:/usr/bin',
unless => "$find 'S$device' 'Sgraph'",

}

This also requires an additional cacti-£find-graph script. Adding this poses
an additional challenge, because the current CLI has no capabilities for listing
configured graphs. There are many more functionalities that can be added to

a cacti module, such as the management of Cacti's data sources and the ability
to change options of devices and, possibly, other objects that already exist in
the configuration.

Such commodities are beyond the essentials and won't be detailed here. Let's look
at some other parts for your exemplary cacti module instead.

Enhancing the agent through plugins

The reusable classes and defines give manifests that use your module much more
expressive power. Installing and configuring Cacti now works concisely, and the
manifest to do this becomes very readable and maintainable.

It's time to tap into the even more powerful aspect of modules —Puppet plugins. The
different types of plugins are custom facts (which were discussed in Chapter 3, A Peek
Under the Hood - Facts, Types, and Providers), parser functions, types, and providers.
All these plugins are stored in the modules on the master and get synchronized to

all the agents. The agent will not use the parser functions (they are available to users
of puppet apply on the agent machine once they are synchronized, however), but
facts and types do most of their work on the agent. Let's concentrate on types and
providers for now — the other plugins will be discussed in dedicated sections later.

This section can be considered optional. Many users will never
_ touch the code for any type or provider —manifests give you all the
% flexibility you will ever need. On the other hand, if you are confident
S about your Ruby skills and would like to take advantage of them in
your Puppet installations, read on to find the ways in which custom
types and providers can help you.

[116]

Chapter 5

While custom types are functional on both the master and the agent, the provider
will do all its work on the agent side. While types also perform mainly through the
agent, they have one effect on the master: they enable manifests to declare resources
of the type. The code not only describes what properties and parameters exist, it
can also include validation and transformation code for the respective values. This
part is invoked by the agent. Some types even do the synchronization and queries
themselves, although there is usually at least one provider that takes care of this.

In the previous section, you implemented a defined type that did all its
synchronization by wrapping some exec resources. By installing binaries and
scripts through Puppet, you can implement almost any kind of functionality this
way and extend Puppet without ever writing one plugin. This does have some
disadvantages, however:

* The output is cryptic in the ideal case and overwhelming in the case of errors

* Puppet shells out to at least one external process per resource; and in many
cases, multiple forks are required

In short, you pay a price, both with the usability and the performance. Consider

the cacti: :device type. For each declared resource, Puppet will have to run an
exec resource's unless query on each run (or onlyif when ensure=>absent is
specified). This consists of one call to a PHP script (which can be expensive) as well
as several core utilities that have to parse the output. On a Cacti server with dozens
or hundreds of managed devices, these calls add up and make the agent spend a lot
of time forking off and waiting for these child processes.

Consider a provider, on the other hand. It can implement an instances hook, which
will create an internal list of configured Cacti devices once during initialization. This
requires only one PHP call in total, and all the processing of the output can be done
in the Ruby code directly inside the agent process. These savings alone will make
each run much less expensive: resources that are already synchronized will incur no
penalty, because no additional external commands need to be run.

Let's take a quick look at the agent output before we go ahead and implement a
simple type/ provider pair. This is the output of the cacti: :device type when it
creates a device:

Notice: /Stage[main]/Main/Node[agent]/Cacti::Device[Agent VM Debian 71/
Exec[add-cacti-device-Agent VM Debian 7]/returns: executed successfully

The native types express such actions in a much cleaner manner, such as the output
from a file resource:

Notice: /Stagelmain]/Main/Filel[/usr/local/bin/cacti-search-graphl]/ensure:
created

[117]

Extending Your Puppet Infrastructure with Modules

Replacing a defined type with a native type

The process of creating a custom type with a matching provider (or several providers)
is not easy. Let's go through the following steps:

=

Naming your type.

Creating the resource type's interface.
Designing sensible parameter hooks.
Using resource names.

Adding a provider.

Declaring management commands.
Implementing the basic functionality.

Allowing the provider to prefetch existing resources.

O X NS TN

Making the type robust during the provisioning.

Naming your type

The first important difference between native and defined types is the naming.
There is no module namespacing for custom types like you get with the defined
types, which are manifest-based. Native types from all installed modules mingle
freely, if you will. They use plain names. It would, therefore, be unwise to call the
native implementation of cacti: :device just device — this will easily clash with
whatever notion of devices another module might have. The obvious choice for
naming your first type is cacti_device.

The type must be completely implemented in cacti/lib/puppet/type/cacti_
device.rb. All hooks and calls will be enclosed in a Type . newtype block:

Puppet: : Type.newtype (:cacti device) do
@doc = <<-EOD
Manages Cacti devices.
EOD
end

The documentation string in @doc should be considered mandatory, and it should

be a bit more substantial than this example. Consider including one or more example
resource declarations. Put all further code pieces between the EOD terminator and the
final end.

[118]

Chapter 5

Creating the resource type interface

First of all, the type should have the ensure property. Puppet types have a
handy helper method that generates all the necessary type code for it through
a simple invocation:

ensurable

With this method call in the body of the type, you add the typical ensure property,
including all the hooks. Most properties and parameters require more code. Next up
is the ip parameter:

require 'ipaddr'
newparam(:ip) do
desc "The IP address of the device.™"
isrequired
validate do |value]|
begin
IPAddr.new (value)
rescue ArgumentError
fail "'#{value}' is not a valid IP address"
end
end
munge do |value]
value.downcase
end
end

This should usually be an ip property instead, but the provider
» will rely on the Cacti CLI, which has no capability for changing
a the already configured devices. If the IP address was a property,
e o
such changes would be required in order to perform property-
value synchronization.

As you can see, the IP address parameter code consists mostly of validation.
Add the require 'ipaddr' line near the top of the file rather than in the
Type .newtype block.

The parameter is now available for cacti_device resources, and the agent will
even refuse to add devices whose I’ addresses are not valid. This is helpful for
users, because obvious typos in addresses will be detected early. Let's implement
the next parameter before we look at the munge hook more closely.

[119]

Extending Your Puppet Infrastructure with Modules

Designing sensible parameter hooks

Moving right along to the ping_method parameter, it accepts only values from a
limited set, so validation is easy:

newparam(:ping method) do
desc "How the device's reachability is determined.
One of “tcp” (default), “udp™ or “icmp~."
validate do |value]|
[:tcp, :udp, :icmp].include?(value.downcase.to sym)
end
munge do |value]
value.downcase.to_sym
end
defaultto :tcp
end

Looking at the munge blocks carefully, you will notice that they aim at unifying input
values. This is much less critical for parameters rather than properties, but if either
of these parameters will be changed to a property in a future release of your Cacti
module, it will not try and sync a ping_method of tcp to TCP, because the users
prefer uppercase in their manifest. Both values just become : tcp through munging.
For the IP address, invoking downcase has an effect only for IPv6.

Beyond the scope of Puppet itself, the munging of a
parameter's value is important as well. It allows Puppet to
% accept more convenient values than the subsystem being
T managed. For example, Cacti might not accept TCP as a
value, but Puppet will, and it will do the right thing with it.

Using resource names

You need to take care of one final requirement: each Puppet resource type must
declare a name variable or namevar, for short. This parameter will use the resource
title from the manifest as its value if the parameter itself is not specified for the
resource. For example, the exec type has the command parameter for its namevar.
You can either put the executable command into the resource title or explicitly
declare the parameter:

exec { '/bin/true': }
same effect:
exec { 'some custom name': command => '/bin/true' }

[120]

Chapter 5

To mark one of the existing parameters as the name variable, call the isnamevar
method in that parameter's body. If a type has a parameter called :name, it
automatically becomes the name variable. This is a safe default:

newparam (:name) do

desc "The name of the device."

#isnamevar # - commented because automatically assumed
end

Adding a provider

The type itself is ready for action, but it lacks a provider to do the actual work of
inspecting the system and performing the synchronization. Let's build it step by
step, just like the type. The name of the provider need not reflect the type it's for.
Instead, it should contain a reference to the management approach it implements.
Since your provider will rely on the Cacti CLI, name it c1i. It's fine for multiple
providers to share a name if they provide functionality to different types.

Create the skeleton structure in cacti/1lib/puppet/provider/cacti device/cli.rb:

Puppet: :Type.type (:cacti device) .provide (
:cli,
:parent => Puppet::Provider
) do
end

Specifying :parent => Puppet::Provider is not necessary, actually.

Puppet : : Provider is the default base class for providers. If you write a couple of
similar providers for a subsystem (each catering to a different resource type), all of
which rely on the same toolchain, you might want to implement a base provider
that becomes the parent for all sibling providers.

For now, let's concentrate on putting together a self-sufficient c1i provider for the
cacti_device type. First of all, declare the commands that you are going to need.

Declaring management commands

Providers use the commands method to conveniently bind executables to
Ruby identifiers:

commands :php => 'php'

commands :add_device => '/usr/share/cacti/cli/add_device.php'
commands :add_graphs => '/usr/share/cacti/cli/add_graphs.php'
commands :rm_device => '/usr/share/cacti/cli/remove device.php'

[121]

Extending Your Puppet Infrastructure with Modules

You won't be invoking php directly. It's included here because declaring commands
serves two purposes:

* You can conveniently call the commands through a generated method
* The provider will mark itself as valid only if all commands are found
So, if the php CLI command is not found in Puppet's search path, it will consider

the provider to be dysfunctional. The user can determine this error condition quite
quickly through Puppet's debug output.

Implementing the basic functionality

The basic functions of the provider can now be implemented in three instance
methods. The names of these methods are not magic as such, but these are the
methods that the default ensure property expects to be available (remember that
you used the ensurable shortcut in the type code).

The first is the method that creates a resource if it does not exist yet. It must
gather all the resource parameter's values and build an appropriate call to
add_device.php:

def create

args = []
args << "--description=#{resourcel[:name] }"
args << "--ip=#{resourcel[:ip]l}"
args << "--ping method=#{resource[:ping method] }"
add device (*args)
end

Don't quote the parameter values as you would quote them on the
command line. Puppet takes care of this for you. It also escapes any
quotes that are in the arguments, so in this case, Cacti will receive
s any quotes to be included in the configuration. For example, this
will lead to a wrong title:

args << "--description='#{resource[:name] }'"

The provider must also be able to remove or destroy an entity:

def destroy
rm_device ("--device-id=#{@property hash[:id]}")
end

The property_hash variable is an instance member of the provider. Each resource
gets its specific provider instance. Read on to learn how it gets initialized to include
the device's ID number.

[122]

Chapter 5

Before we get to that, let's add the final provider method in order to implement the
ensure property. This is a query method that the agent uses to determine whether
a resource is already present:

def exists?
self.class.instances.find do |provider|
provider.name == resource [:name]
end
end

The ensure property relies on the provider class method instances in order to
get a list of providers for all entities on the system. It compares each of them with
the resource attribute, which is the resource type instance for which this current
provider instance is performing the work.

Allowing the provider to prefetch existing resources

The instances method is truly special —it implements the prefetching of system
resources during the provider initialization. You have to add it to the provider
yourself. Some subsystems are not suitable for the mass-fetching of all existing
resources (such as the file type). These providers don't have an instances method:

def self.instances
return @instances ||= add graphs("--list-hosts").
split ("\n").
drop (1) .
collect do |line|
fields = line.split (/\t/, 4)
Puppet.debug "prefetching cacti device #{fields[3]} " +
"with ID #{fields[0]}"
new (:ensure => :present,
:name => fields|[3],
:id => fields[0])
end
end

The ensure value of the provider instance reflects the current state. The method creates
instances for resources that are found on the system, so for these, the value is always
present. Also note that the result of the method is cached in the @instances class'
member variable. This is important, because the exists? method calls instances,
which can happen a lot.

[123]

Extending Your Puppet Infrastructure with Modules

Puppet requires another method to perform proper prefetching. The mass-fetching
you implemented through instances supplies the agent with a list of provider
instances that represent the entities found on the system. From the master, the
agent received a list of type instances. However, Puppet has not yet built a relation
between the resources (type instances) and providers. You need to add a prefetch
method to the provider class in order to make this happen:

def self.prefetch(resources)
instances.each do |provider|

if res = resources [provider.name]
res.provider = provider
end
end
end

The agent passes the cacti_device resources as a hash, with the resource title as
the respective key. This makes lookups very simple (and quick).

This completes the c1i provider for the cacti_device type. You can now replace
your cacti: :device resources with cacti_device instances and enjoy improved
performance and cleaner agent output:

node 'agent' {
include cacti
cacti_device {
'Puppet test agent (Debian 7)':
ensure => present,
ip => $ipaddress;

}

Please note that unlike your defined type cacti: :device, a native type will not
assume a default value of present for its ensure property. Therefore, you have
to specify it for any cacti_device resource. Otherwise, Puppet will only manage
properties of resources that already exist and not care about whether the entity
exists or not. In the particular case of cacti_device, this will never do anything,
because there are no other properties (only parameters).

You can refer to Chapter 6, Leveraging the Full Toolset of the
%j%‘\ Language, on how to use resource defaults to save you from
’ the repetition of the ensure => present specification.

[124]

Chapter 5

Making the type robust during provisioning

There is yet another small issue with the cacti module. It is self-sufficient and
handles both the installation and configuration of Cacti. However, this means that
during Puppet's first run, the cacti package and its CLI will not be available, and
the agent will correctly determine that the c1i provider is not yet suitable. Since
it is the only provider for the cacti_device type, any resource of this type that

is synchronized before the cacti package will fail.

In the case of the defined type cacti: :device, you just added require
metaparameters to the inner resources. To achieve the same end for native type
instances, you can work with the autorequire feature. Just like files automatically
depend on their containing directory, the Cacti resources should depend on the
successful synchronization of the cacti package. Add the following block to the
cacti_device type:

autorequire :package do
catalog.resource (:package, 'cacti')
end

Enhancing Puppet's system knowledge
through facts

When facts were introduced in Chapter 3, A Peek Under the Hood - Facts, Types,

and Providers, you got a small tour of the process of creating your own custom facts.
I hinted at modules at this point, and now, we can take a closer look at how fact
code is deployed, using the example of the cacti module. Let's focus on native
Ruby facts —they are more portable than external facts. As the latter are easier to
create, there is no need to discuss them in depth here.

_ For details on external facts, you can refer to the online

% documentation on custom facts on the Puppet Labs site

o athttps://docs.puppetlabs.com/facter/2.1/
custom_ facts.htmlfexternal-facts.

Facts are part of the Puppet plugins that a module can contain, just like the types
and providers from the previous sections. They belong in the 1ib/facter/ subtree.

For users of the cacti module, it might be helpful to learn which graph templates
are available on a given Cacti server (once the graph management is implemented,
that is). The complete list can be passed through a fact.

[125]

Extending Your Puppet Infrastructure with Modules

. With Facter 2.x, you can handle the list as an array. If your module
should retain compatibility with Facter 1.x, the fact value should
" Dbe a string representation of the list—usually the comma-separated
concatenation of all list values.

The following code in cacti/lib/facter/cacti_graph_templates.rb will do just
this job:

Facter.add(:cacti_graph templates) do
setcode do

cmd = '/usr/share/cacti/cli/add_graphs.php'
Facter::Core::Execution.exec ("#{cmd} --list-graph-templates").
split ("\n").
drop (1) .

collect do |line|
line.split (/\t/) [1]
end
end
end

The code will call the CLI script, skip its first line of output, and join the values
from the second column of each remaining line in a list. Manifests can access this
list through the global $cacti_graph_templates variable, just like any other fact.

Refining the interface of your module through
custom functions

Functions can be of great help in order to keep your manifest clean and maintainable,
and many tasks cannot even be implemented without resorting to a Ruby function.
This is because the Puppet language is rather minimalistic. This is a virtue, actually,
because the language is easy to learn and the code is usually quite readable.

Among the problems that cannot be solved without functions are data
transformations such as the joining of arrays, extracting the defined keys from
a hash, and similar operations. The most useful of these types of data structure
methods are implemented in the std1ib module.

Another frequent use for custom functions is input validation. You can do this in
the manifest itself, but it can be a frustrating exercise because of the limitations of
the language. The resulting Puppet DSL code can be hard to read and maintain.
The stdlib module comes with validate_X functions for many basic data types,
such as validate bool.

[126]

Chapter 5

As with all plugins, the functions need not be specific to the module's domain, and
they instantly become available for all manifests. Point in case is the cacti module
that can use validation functions for the cacti: : device parameters. Checking
whether a string contains a valid IP address is not at all specific to Cacti. On the other
hand, checking whether the ping method is one of those that Cacti recognizes is not
that generic.

To see how it works, let's just implement a function that does the job of the validate
and munge hooks from the custom cacti_device type for the IP address parameter of
cacti: :device. This should fail the compilation if the address is invalid; otherwise,
it should return the unified address value:

module Puppet::Parser::Functions
require 'ipaddr'
newfunction(:cacti canonical ip, :type => :rvalue) do |args|
ip = args[0]
begin
IPAddr.new(ip)
rescue ArgumentError
raise "#{@resource.ref}: invalid IP address '#{ip]}'"
end
ip.downcase
end
end

In the exception message, @resource.ref is expanded to the textual reference of
the offending type instance, such as Cacti: :Device [Edge Switch 03].

The following example illustrates the use of the function in the simple version of
cacti: :device without the ensure parameter:

define cacti::device($ip)
$cli = '/usr/share/cacti/cli’
$c_ip = cacti canonical ip($ip)
$options = "--description='s$name' --ip='$c ip'"
exec {
"add-cacti-device-Sname":
command => "$cli/add _device.php Soptions",
require => Class[cacti],

[127]

Extending Your Puppet Infrastructure with Modules

The manifest will then fail to compile if an IP address has (conveniently)
transposed digits:

ip => '912.168.12.13"

IPv6 addresses will be converted to all lowercase letters.

Making your module portable across platforms

Sadly, our cacti module is very specific to the Debian package. It expects to find
the CLI at a certain place and the Apache configuration snippet at another. These
locations are most likely specific to the Debian package. It will be useful for the
module to work on Red Hat derivatives as well.

The first step is to get an overview of the differences by performing a manual
installation. I chose to test this with a virtual machine running Fedora 18. The basic
installation is identical to Debian, except using yum instead of apt -get, of course.
Puppet will automatically do the right thing here. The puppet : : install class also
contains a CLI file, though. The Red Hat package installs the CLI in /var/1lib/
cacti/cli rather than /usr/share/cacti/cli.

If the module is supposed to support both platforms, the target location for the
remove_device.php script is no longer fixed. Therefore, it's best to deploy the script
from a central location in the module, while the target location on the agent system
becomes a module parameter, if you will. Such values are customarily gathered in

a params class:

../cacti/manifests/params.pp
class cacti::params {
case $osfamily ({
'Debian': {

$cli path = '/usr/share/cacti/cli’
!
'RedHat':
$cli path = '/var/lib/cacti/cli’
!
default: {

fail "the cacti module does not yet support the S$osfamily
platform"

}
}

[128]

Chapter 5

It is best to fail the compilation for unsupported agent platforms. The users will
have to remove the declaration of the cacti class from their module rather than
have Puppet try untested installation steps that most likely cannot work (this might
concern Gentoo or a BSD variant).

Classes that need to access the variable value must include the params class:

class cacti::install ({
include cacti::params
file {
'remove device.php':
ensure => 'file',
path =>
"${cacti::params::cli path}/remove device.php",
source =>
'puppet:///modules/cacti/cli/remove_device.php',
mode => 755;

}

Similar transformations will be required for the cacti: :redirect class and the
cacti::config class. Just add more variables to the params class. This is not limited
to the manifests, either —facts and providers must behave in accordance with the
agent platform as well.

You will often see that the params class is inherited rather than included:

class cacti($redirect = $cacti::params::redirect)
inherits cacti::params

{
}

This is done because an include statement in the class body won't allow the use of
variable values from the params class as class parameter's default values, such as the
$redirect parameter in this example.

The portability practices are often not required for your own custom modules.

In the ideal case, you won't use them on more than one platform. The practice
should be considered mandatory if you intend to share them on the Forge, though.
For most of your Puppet needs, you will not want to write modules anyway but
want to download existing solutions from the Forge instead.

[129]

Extending Your Puppet Infrastructure with Modules

Finding helpful Forge modules

Using the web interface at http: //forge.puppetlabs.conm is very straightforward.
By filling in the search form with the name of the software, system, or service you
need to manage, you will usually get a list of very fitting modules — often with just
your search term as their name. In fact, for common terms, the number of available
modules can be overwhelming.

You get immediate feedback about the maturity and popularity of each module.
A module is being actively used and maintained if:

* Ithas a version number that indicates releases past 1.0.0 (or even 0.1.0)
* Its most recent release was not too long ago, perhaps less than half a year

* It has a significant number of downloads

All these numbers can vary a lot, though, depending on the number of features that
the module implements and how widespread its subject is. Even more importantly,
just because a particular module gets much attention and regular contributions,
this does not have to mean that it is the best choice for your situation.

You are encouraged to evaluate less trafficked modules as well —you can unearth
some hidden gems this way. The next section details some deeper indicators of quality
for you to take into consideration.

If you cannot or don't want to spend too much time digging for the best module, you
can also just refer to the sidebar with the Puppet Supported and Puppet Approved
modules. All modules that are featured in these categories got a seal of quality from
Puppet Labs.

Identifying modules’ characteristics

When navigating to a module's details in the Forge, you are presented with its README
file. An empty or very sparse documentation speaks of little care taken by the module
author. A sample manifest in the README file is often a good starting point in order to
put a module to work quickly.

If you are looking for a module that will enhance your agents through additional
types and providers, look for the Types tab on the module details page. For some
modules, the type documentation won't be imported on the Forge, though. It's safer
to click on the Project URL link near the top of the module description. This usually
leads to GitHub. Here, you can conveniently browse not only the plugins in the 1ib/
subtree, but also get a feel of how the module's manifests are structured.

[130]

Chapter 5

Another sign of a carefully maintained module are unit tests. These are found in the
spec/ subtree. This tree does exist for most Forge modules. It tends to be devoid of
actual tests, though. There can be test code files for all classes and defined types that
are part of the module's manifest— these are typically in the spec/classes/ and
spec/defines/ subdirectories, respectively. For plugins, there will ideally be unit
tests in spec/unit/ and spec/functions/.

Some README files of modules contain a small greenish tag saying build passing.
This can turn red on occasion, stating build failing. These modules use the Travis
CI through GitHub, so they are likely to have at least a few unit tests.

Summary

All the development in Puppet should be done in modules, and each such module
should serve as specific a purpose as possible. Most modules comprise only manifests.
This suffices to provide for very effective and readable node manifests that clearly
and concisely express their intent by including aptly named classes and instantiating
defined types.

Modules can also contain Puppet plugins in the form of types and providers, parser
functions, or facts. All of these are usually Ruby code. External facts can be written in
any language, though. Writing your own types and providers is not required, but it
can boost your performance and management flexibility.

It is not necessary to write all your modules yourself —on the contrary, it's advisable
to rely on open source modules from the Puppet Forge as much as possible. The
Puppet Forge is an ever-growing collection of helpful code for virtually all systems
and software that Puppet can manage. In particular, the modules that are curated by
Puppet Labs are usually of very high quality. As with any open source software, you
are more than welcome to add any missing requirements to the modules yourself.

After this broad view on Puppet's larger building blocks, the next chapter narrows
the scope a little. Now that you have the tools to structure and compose a manifest
code base, you will learn some refined techniques in order to elegantly solve some
distinct problems with Puppet.

[131]

Leveraging the Full Toolset
of the Language

After our in-depth discussions on both the manifest structure elements (class and
define) and encompassing structure (modules), you are in a great position to write
manifests for all of your agents. Make sure that you get Forge modules that will
do your work for you. Then, go ahead and add site-specific modules that supply
composite classes for the node blocks to be used (rather, included).

These concepts are quite a bit to take in. It's now time to decelerate a bit, lean back,
and tackle simpler code structures and ideas. You are about to learn some techniques
that you are not going to need every day. They can make difficult scenarios much
easier, though. So, it might be a good idea to come back to this chapter again after you
have spent some time in the field. You might find that some of your designs can be
simplified with these tools.

Specifically, these are the techniques that will be presented:

* Templating dynamic configuration files

* Creating virtual resources

* Exporting resources to other agents

* Overriding resource parameters

* Making classes more flexible through inheritance
* Saving redundancy using resource defaults

* Avoiding antipatterns

Leveraging the Full Toolset of the Language

Templating dynamic configuration files

In the introduction, I stated that the techniques that you are now learning are not
frequently required. That was true except for this one topic. Templates are actually
a cornerstone of configuration management with Puppet.

Templates are an alternative way to manage configuration files or any files, really.
You have synchronized files from the master to an agent that handled some Apache
configuration settings. These are not templates, technically. They are merely static
files that have been prepared and are ready for carbon copying.

These static files suffice in many situations, but sometimes, you will want the master
to manage very specific configuration values for each agent. These values can be quite
individual. For example, an Apache server usually requires a MaxClients setting.
Appropriate values depend on many aspects, including hardware specifications and
characteristics of the web application that is being run. It would be impractical to
prepare all possible choices as distinct files in the module.

Learning the template syntax

Templates make short work of such scenarios. If you are familiar with ERB templates
already, you can safely skip to the next section. If you know your way around PHP or
JSP, you will quickly get the hang of ERB—it's basically the same but with Ruby inside
the code tags. The following template will produce Hello, world! three times:

<% (1 .. 3).each do %>
Hello, world!
<% end %>

This template will also produce lots of empty lines, because the text between
the <% and %> tags gets removed from the output but the final line breaks do not.
To make the ERB engine do just that, change the closing tag to -%>:

<% (1 .. 3).each do -%>
Hello, world!
<% end -%>

This example is not very helpful for configuration files, of course. To include
dynamic values in the output, enclose Ruby expressions in a <%= tag pair:

<% (1 .. 3).each do |index| -%>
Hello, world #<%= index %> !
<% end -%>

Now, the iterator value is part of each line of the output. You can also use member
variables that are prefixed with e.

[134]

Chapter 6

These variables are populated with the values from the Puppet manifest variables:

<IfModule mpm worker module>

ServerLimit <%= @apache_server limit %>
StartServers <%= @apache start servers %>
MaxClients <%= @apache max clients %>
</IfModule>
<% @apache ports.each do |port| -%>

Listen <%= port %>
NameVirtualHost *:<%= port %>
<% end -%>

Variables that are used in a template must be defined in the same scope or scopes
from which the template is used. The next section explains how this works.

In Puppet 3.x, variable values are mostly strings, arrays, or hashes. To write
efficient templates, it is helpful to occasionally glance at the methods available
for the respective Ruby classes. In Puppet 4, variables have more diverse values.

Using templates in practice

Templates have their own place in modules. You can place them freely in the
templates/ subtree of the module. The template function locates them using
a simple rule:

template ('cacti/apache/cacti.conf.erb')

This expression evaluates the content of the template found in modules/cacti/
templates/apache/cacti.conf.erb. The first path element (without a leading
slash) is the module name. The rest of the path gets translated to the templates/
tree in the module. The function is commonly used to generate the value of a file
resource's content property:

file { '/etc/apache2/conf.d/cacti.conf':
content => template('cacti/apache/cacti.conf.erb'),

}

Many templates expect some variables to be defined in their scope. The easiest
way to make sure that this happens is to wrap the respective file resource in a
parameterized container. Files that are singletons with a well-known name such
as /etc/ssh/sshd_config should be managed through a parameterized class.
Configuration items that can inhabit multiple files such as /etc/logrotate.d/*
or /etc/apache2/conf.d/* are well suited to be wrapped in defined types:

define logrotate::conf (Spattern, $max_days=7, $options=[]) ({
file { "/etc/logrotate.d/$name":

[135]

Leveraging the Full Toolset of the Language

mode => '644"',
content => template('logrotate/config-snippet.erb')

}

In the preceding example, the template will use the parameters as epattern,
emax_days, and @options, respectively.

For a quick and dirty string transformation of your data, you can also use the
inline_template function in your manifest. This is often found on the right-hand
side of a variable assignment:

°

$comma_seperated list = inline template('<%= @my array * "," %>')

This example assumes that the $my_array Puppet variable does hold an array value.

Avoiding performance bottlenecks from
templates

When using templates, both through the template and the inline_template
functions, be aware that each invocation implies a performance penalty for your
Puppet master. During the compilation of the catalog, Puppet must initialize the
ERB engine for any template it encounters. The ERB evaluation happens in an
individual environment that is derived from the respective scope of the template
function invocation.

It is, therefore, not even important how complex your templates are. If your manifest
requires frequent expansion of a very short template, it generates an enormous
overhead for each initialization. Especially in the case of an easy inline template
function such as the one mentioned previously, it can be worthwhile to invest some
more effort in creating a parser function instead, as seen in Chapter 5, Extending
Your Puppet Infrastructure with Modules. A function can perform variable value
transformation without incurring the cumulative penalty.

On the bright side, using templates is quite economic for the agent, who receives
the whole textual file content right inside the catalog. There is no need to make an
additional call to the master and retrieve file metadata. On a high-latency network,
this can be a noticeable saving.

There is no silver bullet here. Don't let the performance implications deter you from
turning specific configuration files into templates. Template-based solutions will
often make your module more maintainable, which will usually offset performance
implications —hardware is constantly getting cheaper, after all. Just don't be wasteful
with frequent (and simple) expansions.

[136]

Chapter 6

Creating virtual resources

The next technique that we are going to discuss helps you solve conflicts in your
manifests and build some elegant solutions in special situations.

Remember the uniqueness constraint that was introduced in Chapter 1, Writing Your
First Manifests. Any resource must be declared at most once in a manifest. There cannot
be two classes or defined type instances that declare the same file, package, or any
other type of resource. Each resource must have a unique type/name combination.
This applies to instances of defined types as well as native resources.

This can pose issues when multiple modules need a common resource, such as an
installed package, or perhaps even independent settings in the same configuration
file. A component class for such resources, as introduced in Chapter 4, Modularizing
Manifests with Classes and Defined Types, will resolve basic conflicts of this kind.

It can be included an arbitrary number of times in the same manifest.

This can be impractical when the number of shared resources is fairly large. Imagine
that you find yourself in a situation where a large number of different Puppet nodes
require software from a significant set of yum repositories. Puppet will happily manage
the repository configuration on the agents through its yumrepo type. However, you
don't actually want all these repositories configured on every last machine —they do
incur maintenance overhead after all. It would, instead, be desirable for each node to
automatically receive the configuration for all repositories it requires for its packages
but not more.

When solving this using component classes, you would wrap each repository in
a distinct class. The class names should closely resemble (and most likely contain)
the name of the respective repositories:

class yumrepos::team ninja_stable
yumrepo {
'team ninja stable':
ensure => present,

}

Package resources that rely on one or more such repositories will need to be
accompanied by appropriate include statements:

include yumrepos::team ninja_stable
include yumrepos::team wizard experimental
package {

'doombunnies' :

[137]

Leveraging the Full Toolset of the Language

ensure => installed,
require => Class]|[
'yumrepos: :team ninja stable',
'yumrepos: :team wizard experimental'
1,
}

This is possible, but it is obviously less than ideal. Puppet does offer an alternative
way to avoid duplicate resource declarations in the form of virtual resources. It allows
you to add a resource declaration to your manifest without adding the resource to the
actual catalog. The virtual resource must be realized or collected for this purpose. Just
like class inclusion, this realization of virtual resources can happen arbitrarily in the
same manifest.

Our previous example can, therefore, use a simpler structure with just one class to
declare all the yum repositories as virtual resources:

class yumrepos::all ({
@yumrepo {
'team ninja stable':
ensure => present,

ey

'team wizard experimental':

}

The @ prefix marks the yumrepo resources as virtual. This class can be safely included
by all nodes. It will not affect the catalog until the resources are realized:

realize (Yumrepo['team ninja stable'])
realize (Yumrepo['team wizard experimental'])
package {
'doombunnies' :
ensure => installed,
reqguire => Yumrepo [
'team ninja stable', 'team wizard experimental’

1,

}

The realize function converts the referenced virtual resources to real ones, which
get added to the catalog. Granted, this is not much better than the previous code that
relied on the component classes. The virtual resources do make the intent clearer, at
least. Realizing them is less ambiguous than some include statements—a class can
contain many resources and even more include statements.

[138]

Chapter 6

To really improve the situation, you can introduce a defined type that can realize the
repositories directly:

define curated::package (Sensure, Srepositories=[]) {
if $repositories != [] and $ensure != 'absent' ({
realize (Yumrepo [$repositories])

}

package { $name: ensure => $ensure }

}
You can then just pass the names of yumrepo resources for realization:

curated: :package {
'doombunnies' :
ensure => 'installed',
repositories => [
'team ninja stable',
'team wizard experimental',
1,
}

Better yet, you can most likely prepare a hash, globally or in the scope of
curated: :package, to create the most common resolutions:

$default repos = {
'doombunnies' => [
'team ninja stable',
'team wizard experimental',

] ’

}

The curated: : package can then look packages up if no explicit repository names
are passed. Use the has_key function from the puppetlabs-stdlib module to
make the lookup safer:

if $repositories != [] {
realize (Yumrepo [$repositories])

}

elsif has key(Sdefault repos, $Sname) {
$repolist = $default repos [$name]
realize (Yumrepo [$Srepolist])

[139]

Leveraging the Full Toolset of the Language

This define structure is actually possible with component classes

as well. The class names can be passed as a parameter or from a
=" central data structure. The include function will accept variable

values for class names.

Realizing resources more flexibly using
collectors

Instead of invoking the realize function, you can also rely on a different syntactic
construct, which is the collector:

Yumrepo<| title == 'team ninja stable' |>

This is more flexible than the function call at the cost of a slight performance
penalty. It can be used as a reference to the realized resource(s) in certain contexts.
For example, you can add ordering constraints with the chaining operator:

Yumrepos<| title == 'team ninja_stable' |> -> Class['...']

It is even possible to change values of resource attributes during collection. There is
a whole section dedicated to such overrides later in this chapter.

As the collector is based on an expression, you can conveniently realize a whole
range of resources. This can be quite dynamic —sometimes, you will create virtual
resources that are already being realized by a rather indiscriminate collector. Let's
look at a common example:

User< | | >

With no expression, the collection encompasses all virtual resources of the given
type. This allows you to collect them all, without worrying about their concrete
titles or attributes. This might seem redundant, because then it makes no sense to
declare the resources as virtual in the first place. However, keep in mind that the
collector might appear in some select manifests only, while the virtual resources
can be safely added to all your nodes.

To be a little more selective, it can be useful to group virtual resources based on
their tags. We haven't discussed tags yet. Each resource is tagged with several
identifiers. Each tag is just a simple string. You can tag a resource manually by
defining the tag metaparameter:

file { '/etc/sysctl.conf': tag => 'security' }

[140]

Chapter 6

The named tag is added to the resource. Puppet implicitly tags all resources with the
name of the declaring class, the containing module, and a range of other useful meta
information. For example, if your user module divides the user resources in classes
such as administrators, developers, ga, and other roles, you can make certain nodes
or classes select all users of a given role with a collection based on the class name tag;:

User<| tag == 'developers' |»>

Note that the tags actually form an array. The == comparison will look for the presence
of the developers element in the tag array in this context. Have a look at another
example to make this more clear:

@user
'felix':
ensure => present,
groups => ['power', 'sys' 1,
}

User<| groups == 'sys' |>
This way, you can collect all users who are members of the sys group.

If you prefer function calls over the more cryptic collector syntax, you can keep using
the realize function alongside collectors. This works without issues. Remember that
each resource can be realized multiple times, even in both ways, simultaneously.

If you are wondering, the manifest for a given agent can only realize virtual resources
that are declared inside this same agent's manifest. Virtual resources do not leak into
other manifests. Consequently, there can be no deliberate transfer of resources from
one manifest to another, either. However, there is yet another concept that allows such
an exchange; this is described in the next section.

Exporting resources to other agents

Puppet is commonly used to configure whole clusters of servers or HPC workers.
Any configuration management system makes this task very efficient in comparison
to manual care. Manifests can be shared between similar nodes. Configuration items
that require individual customization per node are modeled individually. The whole
process is very natural and direct.

On the other hand, there are certain configuration tasks that do not lend themselves
well to the paradigm of the central definition of all states. For example, a cluster
setup might include the sharing of a generated key or registering IP addresses

of peer nodes as they become available. An automatic setup should include an
exchange of such shared information. Puppet can help out with this as well.

[141]

Leveraging the Full Toolset of the Language

This is a very good fit. It saves a metalayer, because you don't need to implement
the setup of an information exchange system in Puppet. The sharing is secure,
relying on Puppet's authentication and encryption infrastructure. There is logging
and central control over the deployment of the shared configuration. Puppet retains
its role as the central source for all system details. It serves as a hub for a secure
exchange of information.

Exporting and importing resources

Puppet approaches the problem of sharing configuration information among
multiple agent nodes by way of exported resources. The concept is simple. The
manifest of node A can contain one or more resources that are purely virtual and
not for realization in the manifest of this node A. Other nodes, such as B and ¢,
can import some or all of these resources. Then, the resources become part of the
catalogs of these remote nodes.

The syntax to import and export resources is very similar to that of virtual resources.
An exported resource is declared by prepending the resource type name with two
@ characters:

eefile {
'my-app-psk':
path => '/etc/my-app/psk',
content => 'nwNFgzsn9n3sDfnFANfoinaAEF',
tag => 'cluster02',

}

The importing manifests collect these resources using an expression, which
is again similar to the collection of virtual resources but with double-angled
brackets, < and >:

File<<| tag == 'cluster02' |>>

Tags are a very common way to take fine-grained control over the distribution
of such exported resources.

Configuring the master to store exported
resources

The best way to enable support for exported resources is PuppetDB. It is a
domain-specific database implementation that stores different kinds of data
that the Puppet master deals with during regular operation. This includes
catalog requests from agents (including their valuable facts), reports from
catalog applications, and exported resources.

[142]

Chapter 6

Chapter 2, The Master and Its Agents, detailed a manual installation of the master.
Let's add the PuppetDB with more style—through Puppet! On the Forge, you will
find a convenient module that will make this easy:

puppet module install puppetlabs-puppetdb

On the master node, the setup now becomes a one-line invocation:
puppet apply -e 'include puppetdb, puppetdb::master::config'

As our test master uses a nonstandard SSL certificate that is named master.example.
net (instead of its FQDN), it must be configured for puppetdb as well:

include puppetdb
class {
'puppetdb: :master: :config':
puppetdb server => 'master.example.net'

}

The ensuing catalog run is quite impressive. Puppet installs the PostgreSQL backend,
the Jetty server, and the actual PuppetDB package; configures everything and starts
the services up —all in one go. After applying this short manifest, you have added

a complex piece of infrastructure to your Puppet setup. You can now use exported
resources for a variety of helpful tasks.

Exporting SSH host keys

For home-grown interactions between clustered machines, SSH can be an invaluable
tool. File transfer and remote execution of arbitrary commands is easily possible,
thanks to the ubiquitous sshd service. For security reasons, each host generates

a unique key in order to identify itself. Of course, such public key authentication
systems can only really work with a trust network or the presharing of the public
keys. Puppet can do the latter quite nicely:

@@sshkey {
Sfgdn:
host _aliases => $hostname,
key => Ssshecdsakey,
tag => 'san-nyc'

}
Interested nodes collect keys with the known pattern:
Sshkey<<| tag == 'san-nyc' |>>

Now, SSH servers can be authenticated through the respective keys that Puppet
safely stores in its database. As always, the Puppet master is the fulcrum of security.

[143]

Leveraging the Full Toolset of the Language

Managing hosts files locally

Many sites can rely a local DNS infrastructure. Resolving names to local IP
addresses is easy with such setups. However, small networks or sites that
consist of many independent clusters with little shared infrastructure will
have to rely on names in /etc/hosts instead.

You can maintain a central hosts file per network cell, or you can make
Puppet maintain each entry in each hosts file separately. The latter approach
has some advantages:

* Changes are automatically distributed through the Puppet agent network

* Puppet copes with unmanaged lines in the hosts files

A manually maintained registry is prone to be outdated every once in a while.
It will also obliterate local additions in any hosts files on the agent machines.

The manifest implementation is very similar to the PKI from the previous section:

@@host
Sfgdn:
ip => Sipaddress,
host aliases => [Shostname],
tag => 'nyc-site',

}

This is the same principle, only now each node exports its $ipaddress fact value
alongside its name and not a public key. The import also works the same way:

Host<<| tag == 'nyc-site' |>>

Automating custom configuration items

Do you remember the Cacti module that you created during the previous chapter?
It makes it very simple to configure all monitored devices in the manifest of the
Cacti server. However, as this is possible, wouldn't it be even better if each node
in your network was registered automatically with Cacti? It's simple — make the
devices export their respective cacti_device resources for the server to collect:

@ecacti device ({
Sfgdn:
ensure => present,
ip => Sipaddress,
tag => 'nyc-site',

[144]

Chapter 6

The Cacti server, apart from including the cacti class, just needs to collect the
devices now:

Cacti_device<<| tag == 'nyc-site' |>>
If one Cacti server handles all your machines, you can just omit the tag comparison:

Cacti device<<| |>>

Once the module supports other Cacti resources, you can handle them in the
same way. Let's look at an example from another popular monitoring solution.

Simplifying the Nagios configuration
Puppet comes with support to manage the complete configuration of Nagios (and

compatible versions of Icinga). Each configuration section can be represented by a
distinct Puppet resource with types such as nagios_host or nagios_service.

M There is an endeavor to remove this support from core Puppet.
Q This does not mean that support will be discontinued, however.
It will just move to yet another excellent Puppet module.

Each of your machines can export their individual nagios_host resources alongside
their host and cacti_device resources. However, thanks to the diverse Nagios
support, you can do even better.

Assuming that you have a module or class to wrap SSH handling (you are using

a Forge module for the actual management, of course), you can handle monitoring
from inside your own SSH server class. By adding the export to this class, you make
sure that nodes that include the class (and only these nodes) will also get monitoring;:

class site::ssh {
...actual SSH management. ..
@enagios service {
"${fgdn}-ssh":
use => 'ssh template',
host name => $fqgdn,

}
You probably know the drill by now, but let's repeat the mantra once more:

Nagios_service<<| [>>

[145]

Leveraging the Full Toolset of the Language

With this collection, the Nagios host configures itself with all services that the agent
manifests create.

For large Nagios configurations, you might want to consider
reimplementing the Nagios types yourself using simple defines

Y that build the configuration from templates. The native types
can be slower than the £ile resources in this case, because they
have to parse the whole Nagios configuration on each run. The
file resources can be much cheaper, as they rely on content-
agnostic checksums.

Maintaining your central firewall

Speaking of useful features that are not part of core Puppet, you can manage the rules
of your iptables firewall, of course. You need the puppetlabs-£firewall module to
make the appropriate types available. Then, each machine can (among other useful
things) export its own required port forwarding to the firewall machines:

e@eefirewall ({
"150 forward port 443 to Shostname":
proto => 'tcp',
dport => '443"',
destination => $public ip address,
jump => 'DNAT',
todest => $ipaddress,
tag => 'segment03',

+ The $public ip address value is not a Facter fact, of course.
Your node will have to be configured with the appropriate information.
’ You can refer to the next chapter for a good way to do this.

The title of a firewall rule resource conventionally begins with a three-digit index for
ordering purposes. The firewall machines collect all these rules naturally:

Firewall<<| tag == 'segment03' |>>

As you can see, the possibilities for modeling distributed systems through exported
Puppet resources are manifold. The simple pattern that we've iterated for several
resource types suffices for a wide range of use cases. Combined with defined
resource types, it allows you to flexibly enable your manifests to work together in
order to form complex cluster setups with relatively little effort. The larger your
clusters, the more work Puppet lifts from you through exports and collections.

[146]

Chapter 6

Overriding resource parameters

Both exported and virtual resources are declared once and are then collected in
different contexts. The syntax is very similar, as are the concepts.

Sometimes, a central definition of a resource cannot be safely realized on all of your
nodes, though; for example, consider the set of all your user resources. You will most
likely wish to manage the user ID that is assigned to each account in order to make
them consistent across your networks.

Al

~ This is often solved through LDAP or similar directories,
but that is not possible for some sites.

Even if all accounts on almost all machines will be able to use their designated
ID, there are likely to be some exceptions. On a few older machines, some IDs are
probably being used for other purposes already, which cannot be changed easily.
On such machines, creating users with these IDs will fail.

M The accounts can be created if duplicate IDs are allowed,
Q but that is not a solution to this problem — duplicates are
usually not desirable.

Fortunately, Puppet has a convenient way to express such exceptions. To give
the felix user the nonstandard UID 2066, realize the resource with an attribute
value specification:

User<| title == 'felix' |> {
uid => '2066"

}

You can pass any property, parameter, or metaparameter that applies to the
resource type in question. A value that you specify this way is final and cannot
be overridden again.

This language feature is more powerful than the preceding example lets on.
This is because the override is not limited to virtual and exported resources.
You can override any resource from anywhere in your manifest. This allows
for some remarkable constructs and shortcuts.

[147]

Leveraging the Full Toolset of the Language

Consider, for example, the Cacti module that you created during the previous chapter.
It declares a package resource in order to make sure that the software is installed. To
that end, it specifies ensure => installed. If any user of your module needs Puppet to
keep their packages up to date, this is not adequate though. The clean solution for this
case is to add some parameters to the module's classes, which allow the user to choose
the ensure property value for the package and other resources. However, this is not
really practical. Complex modules can manage hundreds of properties, and exposing
them all through parameters would form a horribly confusing interface.

The override syntax can provide a simple and elegant workaround here. The manifest
that achieves the desired result is very straightforward:

include cacti
Package<| title == 'cacti' |> { ensure => 'latest' }

For all its simplicity, this manifest will be hard to decipher for collaborators who

are not familiar with the collector/override syntax. This is not the only problem with
overrides. You cannot override the same attribute multiple times. This is actually a
good thing, because any rules that resolve such conflicting overrides make it extremely
difficult to predict the actual semantics of a manifest that contains multiple overrides
of this kind.

Relying on this override syntax too much will make your manifests prone to conflicts.
Combining the wrong classes will make the compiler stop creating the catalog. Even
if you manage to avoid all conflicts, the manifests will become rather chaotic. It can be
difficult to locate all active overrides for a given node. The resulting behavior of any
class or define becomes hard to predict.

All things considered, it's safest to use overrides very sparingly. The next section
introduces a safer way to override parameters of some resources.

Making classes more flexible through
inheritance

When you walked through the basic implementation of the Cacti module in
the previous chapter, you probably noticed that the class is the backbone of
any manifest. You add classes to your manifests for almost any new feature
that you want to support. The class concept is pervasive and central to the
majority of manifest designs. There is no alternative to relying on classes in
the manifest development.

[148]

Chapter 6

For all this, the class might lack some flexibility. A class will either just behave in a
fixed way, or it will accept parameters for (practically unlimited) customization. The
limitations of class parameterization have been discussed in Chapter 4, Modularizing
Manifests with Classes and Defined Types. For component type classes that need to

be available for inclusion from several (perhaps lots of) modules, parameters are
usually out of the question.

Understanding class inheritance in Puppet

The Puppet DSL provides a compromise in the form of subclasses. When dealing
with this topic, it is important to understand that inheritance in Puppet is a very
different concept than its counterpart in object-oriented programming. There are
some parallels: a Puppet subclass has access to its parent's variables, it implements
the same basic semantics, and does some very specific additions or alterations. This
is where the commonalities end for all practical intents and purposes. There is no
common interface that all siblings present. There is no such thing as abstract base
classes or methods. You never need to choose among alternative subclasses.

Making a class inherit another class mainly allows you to use one powerful
construct—a localized resource override. The inheriting class can override any
resource that was declared in any ancestor class:

class cacti::install ({
package { 'cacti': ensure => 'present' }

class cacti::install::update inherits cacti::install ({
Package['cacti'] { ensure => 'latest' }

}

Any node can opt to include the cacti::install: :update class in addition to
the cacti::install class. The override will take effect then. As usual, it does not
matter how many include statements for either class appear in the manifest.

The override in the subclass uses the plain resource reference instead of the collector
syntax that you discovered in the previous section. Overriding this way has some
advantages. It is centralized in a class, so you avoid some possible conflicts.

Let's consider a different example in order to explain the significance. To manage
your SSH infrastructure, you can create an SSH module, the ssh: : config class will
deploy your standard configuration from a template. It is implicitly included by
most of your nodes. You also create some modules that manage solutions that rely
on ssh and scp to pass information among machines. These modules should include
the SSH classes as well, which, consequently, cannot be parameterized safely.

[149]

Leveraging the Full Toolset of the Language

Some nodes need some customization, though. Assume that there are specific
machines that should allow logging in with the root account directly:

class ssh::config (
ssh::sshd _config file {
'/etc/ssh/sshd_config':
listen => '0.0.0.0"',
keytypes => ['rsa', 'ecdsa'],

}

class ssh::config::allow root inherits ssh::config {
Ssh::Sshd config file['/etc/ssh/sshd config'] ({
allow_root_login => true

}

Not only can the whole ssh class (and by inclusion, the ssh: : config class) be
included as often as required, but you can also allow root login wherever appropriate
by adding an include statement for the subclass:

include ssh::config::allow_root

This is an advantage over directly overriding the ssh: : sshd_config file
resource through the collector syntax. If such an override appears in multiple
modules, it renders them incompatible, because the overrides conflict with one
another. Collector overrides form a conflict even if they try to assign the same
attribute values.

There are limits to what you can do with subclasses as well. While it is not
a problem for several sibling classes to override the same resource attribute,
such classes cannot be included in the same manifest:

class ssh::config::allow passwords inherits ssh::config {
Ssh::Sshd config file['/etc/ssh/sshd config'] ({
allow _root login => false, # vs. dictionary attacks!
allow passwords => true,

}

The allow_passwords subclass obviously does not mix with the allow_root class.
Trying to include both will result in a compiler error.

[150]

Chapter 6

Naming an inheriting class

It bears mentioning that overrides through class inheritance are not really part of the
community's best practices. It is not generally frowned upon, but it's a somewhat
obscure feature. Many users have been known to avoid it in order to save their
manifests from the additional complexity of yet another structural concept.

As such, there are no guidelines for naming subclasses. Gathering sibling classes
in a pseudo-namespace under the parent class (such as the previous SSH example)
is not a bad idea. It allows you to express the intent of the subclass clearly, and the
name structure provides a clear hint at the inheritance relationship.

Making parameters safer through inheritance

This section's title might be misleading. Parameters and inheritance don't mix very
well. A class that accepts parameters cannot be inherited. However, there is no rule
that exempts subclasses from being parameterized. This allows for designs where
the base class is included ubiquitously and arbitrarily, but customization through
parameters is still a possibility:

class ssh::config::custom($listen = '0.0.0.0"',
$allow_root_ login = false,
$allow _passwords = false,
..) inherits ssh::config

Ssh::Sshd config file['/etc/ssh/sshd config'] ({
listen => $listen,
allow_root_login => $allow_root_login,
allow_passwords => $allow_passwords,

}

With this subclass, a node manifest can customize the SSH configuration in
one declaration:

class {
'ssh::config::custom':
listen => Sipaddress,
allow_passwords => true,
allow_root_login => true,

}

This must be avoided in modules because the usual limitations of parameterized
classes apply. Again, the virtue of this approach is that the base ssh: : config class
can be safely included from any module in your code base.

[151]

Leveraging the Full Toolset of the Language

Saving redundancy using resource
defaults

The final language construct that this chapter introduces can save you quite some
typing, or rather, it saves you from copying and pasting. Writing a long, repetitive
manifest is not what costs you lots of time, of course. However, a briefer manifest
is often more readable, and hence, more maintainable. You achieve this by defining
resource defaults —attribute values that are used for resources that don't choose
their own:

Mysql grant {

ensure => 'present',
options => ['GRANT'],
privileges => ['ALL'],
tables => '* %1

}

mysql grant {

'root':

user => 'root@localhost';
'apache':

user => 'apache@l0.0.1.%"',

tables => 'application.*';
'wordpress':

user => 'wordpress@l0.0.5.1"',

tables => 'wordpress.*!';
'backup"':

user => 'backup@localhost',

privileges => ['SELECT', 'LOCK TABLE'];

}

By default, each grant should be present, apply to all databases, and comprise
all privileges. This allows you to define each actual mysgl_grant resource quite
sparsely. Otherwise, you will have to specify the privileges property for all
resources. The ensure and options attributes will be especially repetitive,
because they are identical for all grants in this example.

The mysqgl_grant resource type is not available in core Puppet.
L It's part of the puppetlabs-mysgl module on the Forge.

[152]

Chapter 6

Despite the convenience that this approach offers, it should not be used at each
apparent opportunity. It has some downsides that you should keep in mind:

* The defaults can be surprising if they apply to resources that are declared
at a lexical distance from the defaults' definition (such as several screens
further down the manifest file)

¢ The defaults transcend the inclusion of classes and instantiation of defines

These two aspects form a dangerous combination. Defaults from a composite class
can affect very distant parts of a manifest:

class webserver {
include apache, nginx, firewall, logging client
File { owner => 'www-data' }
file {

}
}

Files declared in the webserver class should obviously belong to a default user.
However, this default is in effect recursively in the included classes as well. The
owner attribute is a property. A resource that defines no value for it just ignores
its current state. A value that is specified in the manifest will be enforced by the
agent. Often, you do not care about the owner of a managed file:

file { '/etc/motd': content => '..' }

However, because of the default owner attribute, Puppet will now mandate that
this file belongs to www-data. To avoid this, you will have to unset the default by
overwriting it with undef, which is Puppet's analog to the nil value:

File { owner => undef }
This can also be done in individual resources:
file { '/etc/motd': content => '..', owner => undef }

However, doing this constantly is hardly feasible. The latter option is especially

unattractive, because it leads to more complexity in the manifest code instead of
simplifying it. After all, not defining a default owner attribute will be the cleaner
way here.

[153]

Leveraging the Full Toolset of the Language

The semantics that make defaults take effect in so many manifest
_ areas is known as dynamic scoping. It used to apply to variable
a values as well and is generally considered harmful. One of the
L= most decisive changes in Puppet 3.0 was the removal of dynamic
variable scoping, in fact. Resource defaults still use it, but it is
expected that this will change in a future release as well.

Resource defaults should be used with consideration and care. For some properties
such as file mode, owner, and group, they should usually be avoided.

Avoiding antipatterns

Speaking of things to avoid, there is a language feature that I will only address in order
to advise great caution. Puppet comes with a function called defined that allows you
to query the compiler about resources that have been declared in the manifest:

if defined(File['/etc/motd'])
notify { 'This machine has a MotD': }

}

The problem with the concept is that it cannot ever be reliable. Even if the resource
appears in the manifest, the compiler might encounter it later than the if condition.
This is potentially very problematic, because some modules will try to make
themselves portable through this construct:

if | defined(Package['apache2']) {
package {
'apache2!':

ensure => 'installed'

}

The module author supposes that this resource definition will be skipped if the
manifest declares Package ['apache2'] somewhere else. As explained, this method
will only be effective if the block is evaluated late enough during the compiler run.
The conflict can still occur if the compiler encounters the other declaration after

this one.

The manifest's behavior becomes outright unpredictable if a manifest contains
multiple occurrences of the same query:

class cacti {
if ! defined(Package['apache2']) {

[154]

Chapter 6

package { 'apache2': ensure => 'present' }
}
}

class postfixadmin {
if !defined(Packagel['apache2'] {
package { 'apache2': ensure => 'latest' }

}

The first block that is seen wins. This can even shift if unrelated parts of the manifest
are restructured. You cannot predict whether a given manifest will use ensure =>
latest for the apache2 package or just use installed. The results become even
more bizarre if such a block wants a resource removed through ensure => absent,
while the other does not.

The defined function has long been considered harmful, but there is no adequate
alternative yet. The ensure_resource function from the stdlib module tries to
make the scenario less problematic:

ensure_resource ('package', 'apache2', { ensure => 'installed' })

By relying on this function instead of the preceding antipattern based around
the defined function, you will avoid the unpredictable behavior of conflicting
declarations. Instead, this will cause the compiler to fail when the declarations
are passed to ensure_resource. This is still not a clean practice, though. Failed
compilation is not a desirable alternative either.

Both functions should be avoided in favor of clean class structures with
nonambiguous resource declarations.

Summary

A template is a frequent occurrence and is one of the best ways for Puppet to manage
dynamic file content. Evaluating each template requires extra effort from the compiler,
but the gain in flexibility is usually worth it.

The concept of virtual resources is much less ubiquitous. Virtual resources allow you
to flexibly add certain entities to a node's catalog. The collector syntax that is used for
this can also be used to override attribute values, which works even for nonvirtual
resources as well.

Once PuppetDB is installed and configured, you can also export resources so that
other node manifests can receive their configuration information. This allows you
to model distributed systems quite elegantly.

[155]

Leveraging the Full Toolset of the Language

The resource defaults are just a syntactic shortcut that help keep your manifest concise.
They have to be used with care, though. Some language features such as the defined
function (and its module-based successor, which is the ensure resource function)
should not be used at all.

The next chapter introduces an efficient way to handle differences among your
managed nodes, both individually and in groups. It also finally resolves the
problems that class parameterization can pose for your manifest designs.

[156]

Separating Data from Code
Using Hiera

After working through the first six chapters, you now have quite a solid grasp on
the principles of Puppet manifests. You have used the basic structural elements in
numerous examples and contexts. There has even been a quick demonstration of
the more advanced language features.

For all their expressive power, manifests do have some limitations. A manifest that
is designed by the principles taught up to this point mixes logic with data. Logic is
not only evident in control structures such as if and else, but it also just emerges

from the network of classes and defines that include and instantiate one another.

However, you cannot configure a machine by just including some generic classes.
Many properties of a given system are individual and must be passed as parameters.
This can have maintenance implications for a manifest that must accommodate a
large number of nodes. This chapter will teach you how to bring order back to such
complex code bases by stepping through the following sections:

* Understanding the need for separate data storage

* Structuring configuration data in a hierarchy

* Retrieving and using Hiera values in manifests

* Converting resources to data

* Using Hiera from other contexts

* A practical example

* Debugging Hiera lookups

Separating Data from Code Using Hiera

Understanding the need for separate
data storage

Looking back at what you implemented during this book so far, you managed to
create some very versatile code that did very useful things in an automatic fashion.
Your nodes can distribute entries for /etc/hosts among themselves. They register
each other's public SSH key for authentication. A node can automatically register
itself to a central Cacti server.

Thanks to Facter, Puppet allows the effortless handling of these use cases. Many
configuration items are unique to each node only because they refer to a detail (such
as an IP address or a generated key) that is already defined. Sometimes, the required
configuration data can be found on a remote machine only, which Puppet handles
through exported resources. Such manifest designs that can rely on facts are very
economic. The information has already been gathered, and a single class can most
likely behave correctly for many or all of your nodes and manage a common task

in a graceful manner.

However, some configuration tasks have to be performed individually for each node,
and these can incorporate settings that are rather arbitrary and not directly derived
from the node's existing properties:

* Inacomplex MySQL replication setup that spans multiple servers, each
participant requires a unique server ID. Duplicates must be prevented under
any circumstances, so randomly generating the ID numbers is not safe.

* Some of your networks might require regular maintenance jobs to be run
from cron. If there must be no overlapping of the runs on any two machines,
Puppet should define a starting time for each machine to ensure this.

* Inserver operations, you have to perform monitoring of the disk space
usage on all systems. Most disks should generate early warnings so that
there is time to react. However, other disks will be expected to be almost
full at most times and should have a much higher warning threshold.

When custom-built systems and software are managed through Puppet,

they are also likely to require this type of micromanagement for each instance.
The examples here represent only a tiny slice of the things that Puppet must
manage explicitly and independently.

[158]

Chapter 7

Consequences of defining data in the
manifest

There are a number of ways in which a Puppet manifest can approach this problem
of micromanagement. The most direct way is to define whole sets of classes —one for
each individual node:

class site::mysql_server0l {

class { 'mysqgl': server id => 'l', .. }
class site::mysql_server02 {

class { 'mysqgl': server id => '2', .. }

}

class site::mysql_aux0l {
class { 'mysqgl': server id => '101', .. }

and so forth ..
This is a very high-maintenance solution for the following reasons:

* The individual classes can become quite elaborate, because all required
mysql class parameters have to be used in each one

* There is much redundancy among the parameters that are, in fact, identical
among all nodes

* The individually different values can be hard to spot and must be carefully
kept unique throughout the whole collection of classes

* This is only really feasible by keeping these classes close together, which
might conflict with other organizational principles of your code base

In short, this is the brute-force approach that introduces its own share of cost. A more
economic approach is to pass the values that are different among nodes from variables.
The variable values are assigned right in each respective node block:

node 'xndpl2-sqlo9' {
Smysqgl_ server id = '103'
include site::mysql_server

[159]

Separating Data from Code Using Hiera

As the classes can now rely on individual variable values, you can make them
general again:

class site::mysql_server ({
class {
'mysqgl':
server_id => $mysqgl server id,

}

This is much better, because it eliminates the redundancy and its impact on
maintainability. The wrinkle is that the node blocks can become quite messy
with variable declarations for many different subsystems. Explanatory comments
contribute to the wall of text that each node block can become.

You can take this a step further by defining lookup tables in hash variables,
outside of any node or class, on the global scope:

$mysqgl config table = {
'xndpl2-sql0ol' =>
server_id => '1',
buffer pool => '12G',

b
}

This lifts the need to declare any variables in node blocks. The classes look up the
values from the hash directly:

class site::mysql_server ({
$config = $mysqgl config table[$hostname]
class {
'mysqgl':
server_id => $config['server id'],

}

This is pretty sophisticated and is actually close to the even better way that you will
learn about in this chapter. Note that this approach still retains a leftover possibility
for redundancy. Some configuration values are likely to be identical among all nodes
that belong to one group, but are unique to each group (for example, preshared keys
of any variety).

[160]

Chapter 7

This requires that all servers in the mentioned xndp12 cluster contain some key/
value pairs that are identical for all members:

Scrypt _key xndpl2 = 'xneFG1l%23ndfAWLN34a0t9w30.zges4'

$config = {
'xndpl2-stor0l' => { $crypt key => $crypt key xndpl2, .. },
'xndpl2-stor02' => { S$crypt key => S$crypt key xndpl2, .. },
'xndpl2-sqlol' => { Scrypt key => $crypt key xndpl2, .. },

}

This is not ideal, but let's stop here. There is no point worrying about even more
elaborate ways to sort configuration data into recursive hash structures. Such solutions
will quickly grow very difficult to understand and maintain anyway. The silver bullet
is an external database that holds all individual and shared values. Before I go into the
details of using Hiera for just this purpose, let's discuss the general ideas of hierarchical
data storage.

Structuring configuration data in a
hierarchy

In the previous section, we reduced the data problem to a simple need for
key/value pairs that are specific to each node under Puppet management.
Puppet and its manifests then serve as the engine that generates actual
configuration from these minimalistic bits of information.

A simplistic approach to this problem is an ini style configuration file that has
a section for each node that sets values for all configurable keys. Shared values
will be declared in one or more general sections:

[mysqgl]
buffer pool=15G
log file size=500M

[xndpl2-sgql0l]
psk=xneFGl%23ndfAWLN34a0t9w30.zges4
server id=1

Rails applications customarily do something similar and store their configuration

in a YAML format. The user can define different environments, such as production,
staging, and testing. The values that are defined per environment override the
global setting values.

[161]

Separating Data from Code Using Hiera

This is quite close to the type of hierarchical configuration that Puppet allows
through its Hiera binding. The hierarchies that the mentioned Rails applications and
ini files achieve through configuration environments are quite flat— there is a global
layer and an overlay for specialized configuration. With Hiera and Puppet, a single
configuration database is required to handle whole clusters of machines and entire
networks of such clusters. This implies a need for a more elaborate hierarchy.

Hiera allows you to define your own hierarchical layers. There are some typical,
proven examples, which are found in many configurations out there:

1. The common layer holds default values for all agents

2. A location layer can override some values in accordance with the
data center that houses each respective node

3. Each agent machine typically fills a distinct role in your infrastructure,
such as wordpress_appserver Or puppetdb server

4. Some configuration is specific to each single machine.

For example, consider the configuration of a hypothetical reporting client. Your
common layer will hold lots of presets such as default verbosity settings, the transport
compression option, and other choices that should work for most machines. On the
location layer, you ensure that each machine checks in to the respective local
server —reporting should not use WAN resources.

Settings per role are perhaps the most interesting part. They allow fine-grained settings
that are specific to a class of servers. Perhaps your application servers should monitor
their memory consumption in very close intervals. For the database servers, you will
want a closer view at hard drive operations and performance. For your Puppet servers,
there might be special plugins that gather specific data.

The machine layer is very useful in order to declare any exceptions from the rule.
There are always some machines that require special treatment for one reason or
another. With a top hierarchy layer that holds data for each single agent, you get
full control over all the data that an agent uses.

These ideas are still quite abstract, so let's finally look at the actual application
of Hiera.

[162]

Chapter 7

Configuring Hiera
The support for retrieving data values from Hiera has been built into Puppet

since Version 3. All you need in order to get started is a hiera.yaml file in the
configuration directory.

M Of course, the location and name of the configuration is customizable,
Q as is almost everything that is related to configuration. Look for the
hiera config setting.

As the filename extension suggests, the configuration is in the YAML format and
contains a hash with keys for the backends, the hierarchy, and backend-specific
settings. The keys are noted as Ruby symbols with a leading colon:

:backends:
- yaml
:hierarchy:
- %{::clientcert}
- role-%{::role}
- at-%{::datacenter}
- common
:yaml:
:datadir: /etc/puppet/env/%{::environment}/hiera

Note that the value of :backends is actually a single element array. You can pick
multiple backends. The significance will be explained later. The :hierarchy value
key contains a list of the actual layers that were described earlier. Each entry is the
name of a data source. When Hiera retrieves a value, it searches each data source
in turn. The %{} expression allows you to access the values of Puppet variables.
Use only facts or global scope variables here —anything else will make Hiera's
behavior quite confusing.

. It was explained earlier that fact names need not be prepended with the
% : : double colon anymore. In the Hiera configuration, however, this is
s still a good idea. Otherwise, a local variable that hides one of the used
facts in the wrong place in the manifest can cause you many headaches.

Finally, you will need to include configurations for each of your backends. The
mentioned configuration uses the YAML backend only, so there is only a hash for
:yaml with the one supported :datadir key, which is where Hiera will expect to
find YAML files with data. For each data source, the datadir key can contain one
.yaml file. As the names of the sources are dynamic, you will typically create more
than four or five data source files. Let's create some examples before we have a short
discussion on the combination of multiple backends.

[163]

Separating Data from Code Using Hiera

Storing Hiera data

The backend of your Hiera setup determines how you have to store your
configuration values. For the YAML backend, you fill datadir with files that
each hold a hash of values. Let's put some elements of the reporting engine
configuration into the example hierarchy:

/etc/puppet/env/production/hiera/common.yaml
reporting: :server: stats0l.example.net
reporting: :server port: 9033

The values in common . yaml are defaults that are used for all agents. They are at the
broad base of the hierarchy. Values that are specific to a location or role apply to
smaller groups of your agents. For example, the database servers of the postgre role
should run some special reporting plugins:

/etc/puppet/env/production/hiera/role-postgre.yaml
reporting: :plugins:

- iops

- cpuload

On such a higher layer, you can also override the values from the lower layers.
For example, a role-specific data source such as role-postgre.yaml can set a
value for reporting: :server port as well. The layers are searched from the
most to the least specific, and the first value is used. This is why it is a good idea
to have a node-specific data source at the top of the hierarchy. On this layer, you
can override any value for each agent. In this example, the reporting node can
use the loopback interface to reach itself:

/etc/puppet/env/production/hiera/stats0l.example.net.yaml
reporting::server: localhost

Each agent receives a patchwork of configuration values according to the concrete
YAML files that make up its specific hierarchy.

Don't worry if all this feels a bit overwhelming. There are more examples in this
chapter. Hiera also has the charming characteristic that it can seem rather complicated
on paper but feels very natural and intuitive once you try using it yourself.

[164]

Chapter 7

Choosing your backends

There are three built-in backends: YAML, JSON, and Puppet. This chapter will focus
on YAML, because it's a very convenient and efficient form of data notation. The JSON
backend is very similar to YAML. It looks for data in . json files instead of .yaml for
each data source; these files obviously use a different data notation format. With the
puppet backend, you get to write Puppet manifests that declare variables that hold
Hiera data. It's a good choice for users who don't see virtue in JSON nor YAML.

The use of multiple backends should never be truly necessary. In most cases,

a well-thought-out hierarchy will suffice for your needs. With a second backend,
data lookup will traverse your hierarchy once per backend. This means that

the lowest level of your primary backend will rank higher than any layer from
additional backends.

In some cases, it might be worthwhile to add another backend just to get the ability
to define even more basic defaults in an alternative location — perhaps a distributed
filesystem or a source control repository with different commit privileges.

Also, note that you can add custom backends to Hiera, so these might also be
sensible choices for secondary or even tertiary backends. A Hiera backend is written
in Ruby, like the Puppet plugins. The details of creating such a backend are beyond
the scope of this book.

Consult the online documentation at https://docs.puppetlabs.
com/hiera/1/custom_backends.html if this topic is of interest

to you.

You have studied the theory of storing data in Hiera at length, so it's finally time to
see how to make use of this in Puppet.

Retrieving and using Hiera values in
manifests

Looking up a key value in Hiera is easy. Puppet comes with a very straightforward
function for this:

$plugins = hiera('reporting::plugins')

Whenever the compiler encounters such a call in the manifest of the current agent
node, it triggers a search in the hierarchy. The specific data sources are determined
by the fact values provided by the agent (if you rely on facts to define your hierarchy,
of course, which is the most common and sensible way).

[165]

Separating Data from Code Using Hiera

If the named key cannot be found in the agent's hierarchy, the master aborts the
catalog compilation with an error. To prevent this, it is often sensible to supply a
default value with the lookup:

Splugins = hiera('reporting::plugins', [])

In this case, Puppet uses an empty array if the hierarchy mentions no plugins.

Working with simple values

You have seen how to invoke the hiera function for value retrieval. There is really
not more to it than what you have seen in the previous section, except for an optional
parameter. It allows you to include an additional layer at the top of your hierarchy.

If the key is found in the named data source, it will override the result from the
regular hierarchy:

Splugins = hiera('reporting::plugins', [], 'global-overrides')

If the reporting: :plugins key is found in the global-overrides data source,
the value is taken from there. Otherwise, the normal hierarchy is searched.

Generally, assigning the retrieved value to a manifest variable is quite common.
However, you can also invoke the hiera function in other useful contexts, such
as the following;:

@ecacti_device ({
$fqgdn:
ip => hiera('snmp address', $ipaddress),

}

The lookup result can be handed to a resource directly as a parameter value. This is
an example of how to allow Hiera to define a specific IP address per machine that
should be used for a specific service. It acts as a simple way to manually override
Facter's assumptions.

Another frequent occurrence is a parameter default that is made dynamic through a
Hiera lookup:

define logrotate::config(
Srotations = hiera('logrotate::rotations', 7)

)

regular define code here

[166]

Chapter 7

The Hiera value is ignored for all instances of logrotate: : config that supply a
value during their declaration. This can be a little confusing;:

logrotate::config { '/var/log/cacti.log': rotations => 12 }

Still, the pattern adds some convenience. It also allows for the customization of
resources that are declared inside modules:

vendor_module: :config {
file {
'/etc/vendor config':
source => 'puppet:///modules/vendor module/etc/vendor
config',
owner => hiera('vendor module::user', 'vendor user'),
}
}

Customizing the file owner will otherwise require an according parameter for the
declaring class or an explicit override of the resource. Speaking of class parameters,
Hiera has some special semantics that makes using them very convenient.

Binding class parameter values automatically

The concept of parameterized classes might have gotten a somewhat tarnished
reputation, judging from my coverage of it so far. It allegedly makes it difficult
to include classes from multiple places in the manifest or silently allows it under
shifting circumstances. While that is true, you can avoid these issues by relying
on Hiera for your class parameterization needs.

Since Puppet Version 3.2, it has been possible to choose the values for any class'
parameters right in the Hiera data. Whenever you include a class that has any
parameters, Puppet will query Hiera to find a value for each of them. The keys
must be named after the class and parameter names, joined by a double colon.
Remember the cacti class from Chapter 5, Extending Your Puppet Infrastructure
with Modules? It had a $redirect parameter. To define its value in Hiera, add
the cacti: :redirect key:

cactiOl.example.net.yaml
cacti::redirect: false

Some classes have very elaborate interfaces — the apache class from the Puppet Labs
module accepts 49 parameters at the time of writing this. If you need many of those,
you can put them into your machine's dedicated YAML file as one coherent block of
keys with values. It will be quite readable, because the apache: : prefixes line up.

[167]

Separating Data from Code Using Hiera

You don't save any lines compared to specifying them right in the manifest, but at
least the wall of options will not get in your way while you're programming in your
manifests — you separated data from code.

The point that is perhaps the most redeeming for class parameterization is that each
key is independent in your hierarchy. Many parameters can most likely be defined
for many or all of your machines. Clusters of application servers can share some
settings (if your hierarchy includes a layer on which they are grouped together),
and you can override parameters for single machines as you see fit:

common.yaml

apache::default_ssl cert: /var/lib/puppet/ssl/certs/%{fgdn}.pem
apache::default_ssl key: /var/lib/puppet/ssl/private keys/%{fqdn}.pem
apache: :purge configs: false

Your site is prepared to use the Puppet certificates for HTTPS. This is a good choice
for internal services, because trust to Puppet CA can be easily established, and the
certificates are available on all agent machines. Also, the module should generally
not obliterate any existing or manually added Apache configuration controlled by
the purge_configs flag:

role-httpsec.yaml

apache: :purge configs: true
apache: :server tokens: Minimal
apache: :server signature: off
apache: :trace enable: off

Machines that have the httpsec role override this setting— the Apache configuration
should be purged so that it matches the managed configuration completely. The
hierarchy of such machines also defines some additional values that are not defined
in the common layer.

A specific machine's YAML can override keys from either layer if need be:

sec02-sxfl2.yaml

apache::default ssl cert: /opt/ssl/custom.pem
apache: :default ssl key: /opt/ssl/custom.key
apache: :trace_enable: extended

All these settings require no additional work. They take effect automatically,
provided that the apache class from the puppetlabs-apache module is included.

[168]

Chapter 7

For some users, this might be the only way in which Hiera is employed on their
master, which is perfectly valid. You can even design your manifests specifically
to expose all configurable items as class parameters. However, keep in mind that
another advantage of Hiera is that any value can be retrieved from many different
places in your manifest.

For example, if your firewalled servers are reachable through dedicated NAT ports,
you will want to add this port to each machine's Hiera data. The manifest can export
this value not only to the firewall server itself, but also to external servers that use it
in scripts and configurations to reach the exporting machine:

$nat port = hiera('site::net::nat port')
@efirewall {
"650 forward port $nmat port to $fgdn":
proto => 'tcp',
dport => $nat port,
destination => hiera('site::net::nat ip'),
jump => 'DNAT',
todest => $ipaddress,
tag => hiera('site::net::firewall segment'),

}

The values will most likely be defined on different hierarchical layers. The nat_port
is agent-specific and can only be defined in the %{: : £qdn} (or ${: :clientcert} for
better security) data source. The nat_ip is probably identical for all servers in the
same cluster. They might share a server role. The firewall segment could well be
identical for all servers that share the same location:

stor03.example.net.yaml
site::net::nat_port: 12020

role-storage.yaml
site::net::nat ip: 198.58.119.126

location-portland.yaml
site::net::firewall segment: segment04

As previously mentioned, some of this data will be helpful in other contexts as well.
Assume that you deploy a script through a defined type. The script sends messages
to remote machines. The destination address and port are passed to the defined type
as parameters. Each node that should be targeted can export this script resource:

@@site: :maintenance script {
"/usr/local/bin/maint-$fgdn":

[169]

Separating Data from Code Using Hiera

address => hiera('site::net::nat ip'),
port => hiera('site::net::nat port'),

}

It would be impractical to do all this in one class that takes the port and address as
parameters. You would want to retrieve the same value from within different classes
or even modules, each taking care of the respective exports.

Handling hashes and arrays

Some examples in this chapter defined array values in Hiera. The good news is that
retrieving arrays and hashes from Hiera is not at all different from simple strings,
numbers, or Boolean values. The hiera function will return all these values, which
are ready for use in the manifest.

There are two more functions that offer special handling for such values: the
hiera arrayand hiera hash functions.

The presence of these functions can be somewhat confusing. New
M users might assume that these are required whenever retrieving
Q hashes or arrays from the hierarchy. When inheriting Puppet code,
it can be a good idea to double-check that these derived functions
are actually used correctly in a given context.

When the hiera_array function is invoked, it gathers all named values from the
whole hierarchy and merges them into one long array that comprises all elements
that were found. Take the distributed firewall configuration once more, for example.
Each node should be able to export a list of rules that open ports for public access.
The manifest for this would be completely driven by Hiera:

if hiera('site::net::nat_ip', false) {
e@eefirewall ({
"200 NAT ports for $fgdn':

port => hiera array('site::net::nat ports'),
proto => 'tcp',

destination => hiera('site::net::nat _ip'),

jump => 'DNAT',

todest => S$ipaddress,

}

Note the seemingly nonsensical default value of false for the site::net::nat_ip
key in the if clause. This forms a useful pattern, though — the resource should only
be exported if public_ip is defined for the respective node.

[170]

Chapter 7

Care must be taken if false or the empty string is a conceivable value

for the key in question. In this case, the i f clause will ignore that value.
In such cases, you should use a well-defined comparison instead:

if hiera('feature flag A', undef) != undef { ..}

The hierarchy can then hold ports on several layers:

common.yaml
nat_ports: 22

The SSH port should be available for all nodes that get a public address. Note that
this value is not an array itself. This is fine; Hiera will include scalar values in the
resulting list without any complaint.

role-webserver.yaml
nat _ports: [80, 443]

Standalone web application servers present their HTTP and HTTPS ports to the public.

tbt-backend-test.example.net.yaml
nat ports:

- 5973

- 5974

- 5975

- 6630

The testing instance for your new cloud service should expose a range of ports for
custom services. If it has the webserver role (somehow), it will lead to an export of
ports 22, 80, and 443 as well as its individually chosen list.

When designing such a construct, keep in mind that the array merge
is only ever-cumulative. There is no way to exclude values that were

added in lower layers from the final result. In this example, you
g will have no opportunity to disable the SSH port 22 for any given

machine. You should take good care when adding common values.

A similar alternative lookup function exists for hashes. The hiera_hash function

also traverses the whole hierarchy and constructs a hash by merging all hashes it
finds under the given Hiera key from all hierarchy layers. Hash keys in higher layers
overwrite those from lower layers. All values must be hashes. Strings, arrays, or other
data types are not allowed in this case:

common.yaml

haproxy settings:

[171]

Separating Data from Code Using Hiera

log socket: /dev/log
log level: info
user: haproxy

group: haproxy
daemon: true

These are the default settings for haproxy at the lowest hierarchy level. On web
servers, the daemon should run as the general web service user:

role-webserver.yaml

haproxy settings:
user: www-data
group: www-data

When retrieved using hiera ('haproxy settings'), this will just evaluate to the
hash, { 'user' => 'www-data', 'group' => 'www-data' }.The hash at the
role-specific layer completely overrides the default settings.

To get all values, create a merger using hiera_hash ('haproxy settings') instead.
The result is likely to be more useful:

{ '"log socket' => '/dev/log', 'log level' => 'info',
'user' => 'www-data', 'group' => 'www-data', 'daemon' => true }

The limitations are similar to those of hiera_array. Keys from any hierarchy level
cannot be removed, they can only be overwritten with different values. The end
result is quite similar to what you would get from replacing the hash with a group
of keys:

role-webserver.yaml
haproxy::user: www-data
haproxy: :group: www-data

If you opt to do this, the data can also be easily fit to a class that can bind these
values to parameters automatically. Preferring flat structures can, therefore, be
beneficial. Defining hashes in Hiera is still generally worthwhile, as the next
section explains.

Converting resources to data

You can now move configuration settings to Hiera and dedicate your manifest
to logic. This works very seamlessly as far as classes and their parameters are
concerned, because class parameters automatically retrieve their values from
Hiera. For configuration that requires you to instantiate resources, you still
need to write the full manifests and add manual lookup function calls.

[172]

Chapter 7

For example, an Apache web server requires some global settings, but the interesting
parts of its configuration are typically performed in virtual host configuration

files. Puppet models them with defined resource types. If you want to configure

an iptables firewall, you have to declare lots of resources of the firewall type
(available through the puppetlabs-firewall module).

Such elaborate resources can clutter up your manifest, yet they mostly represent
data. There is no inherent logic to many firewall rules, although a set of rules is
derived from one or several key values sometimes. Virtual hosts often stand for
themselves as well, with little or no relation to configuration details that are
relevant to other parts of the setup.

Puppet comes with yet another function that allows you to move whole sets of
such resources to Hiera data. The pattern is straightforward: a group of resources
of the same type are represented by a hash. The keys are resource titles, and the
values are yet another layer of hashes with key/value pairs for attributes:

services:
apache2:
enable: true
ensure: running
syslog-ng:
enable: false

This YAML data represents two service resources. To make Puppet add them as
actual resources to the catalog, pass the hash to the create_resources function:

create resources('service', hiera('services', {}))

The first argument is the name of the resource type, and the second must be the hash
of actual resources. The created resources honor resource defaults for the given type:

Service { require => Mount['/var/run'] }

In addition, you can also pass an additional hash with default parameter names and
values as the third parameter to create_resources. This can help keep your resource
hashes compact:

create resources('file', hiera('synced directories'),
{ ensure => 'directory', recurse => true, mode => 640 })

The defaults save you two to three lines per YAML resource:

synced directories:
/etc/apache2/conf.d:
source: puppet:///modules/sneeze app/etc/apache2/conf.d

[173]

Separating Data from Code Using Hiera

mode: 644

/var/lib/sneeze/config:
source: puppet:///modules/sneeze app/config
group: www-data

The data is more maintainable this way, although it is a bit more difficult to discern
what attribute values each created resource will use. It is, of course, sensible to
include the default hash in the Hiera data as well:

synced_directories_defaults:
ensure: directory
recurse: true
mode: 640

In theory, this allows you to move almost all your code to Hiera data. (The next
section discusses how desirable that really is.) There is one more feature that goes
step further in this direction:

hiera include('classes')

This call gathers values from all over the hierarchy, just like hiera_ array.
The resulting array is interpreted as a list of class names. All these named classes
are included. This allows for some additional consolidation in your manifest:

common.yaml
classes:

- ssh

- syslog

role-webserver.yaml
classes:

- apache

- logrotate

- syslog

You can possibly even use hiera_include to declare these classes outside of any
node block. The data will then affect all nodes. Additionally, from some distinct
classes, you might also declare other classes via hiera_include, whose names are
stored under a different Hiera key.

The ability to enumerate classes for each node to include is what
Puppet's External Node Classifiers (ENCs) had originally been
conceived for. Hiera can serve as a basic ENC thanks to the hiera

% include function. This is most likely preferred over writing a custom
ENC. However, it should be noted that some open source ENCs such
as Foreman are quite powerful and can add much convenience; Hiera
has not supplanted the concept as a whole.

[174]

Chapter 7

The combination of these tools opens some ways for you to shrink your manifests to
their essential parts and configure your machines gracefully through Hiera.

Choosing between manifest and Hiera
designs

You can now move most of the concrete configuration to the data storage. Classes
can be included from the manifest or through Hiera. Puppet looks up parameter
values in the hierarchy, and you can flexibly distribute the configuration values
there in order to achieve just the desired result for each node with minimal effort
and redundancy.

This does not mean that you don't write actual manifest code anymore. The
manifest is still the central pillar of your design. You will often need logic that
uses the configuration data as input. For example, there might be classes that
should only be included if a certain value is retrieved from Hiera:

if hiera('use caching proxy',6 false) ({
include nginx

}

If you try and rely on Hiera exclusively, you will have to add nginx to the classes
array at all places in the hierarchy that set the use_caching proxy flag to true.
This is prone to mistakes. What's worse is that the flag can be overridden from true
to false at a more specific layer, but the nginx element cannot be removed from an
array that is retrieved by hiera_include.

It is important to keep in mind that the manifest and data should compliment each
other. Build manifests primarily and add lookup function calls at opportune places.
Defining flags and values in Hiera should allow you (or the user of your modules)

to alter the behavior of the manifest. The data should not be the driver of the catalog
composition, except for places in which you replace large numbers of static resources
with large data structures.

Using Hiera in different contexts

You will most likely find yourself in need of some data from Hiera when designing
templates for configuration or other files. For example, when building your personal
module in order to manage the SSH server, you might want to allow nodes to specify
a list of environment variables for the AcceptEnv option.

[175]

Separating Data from Code Using Hiera

Granted, this will most likely be passed as a parameter to a class
M within such a module. The Hiera data will just be bound to the
Q parameter and be available to the template as a regular Puppet
variable. Let's ignore this just to have a contrived example for
data retrieval from a template.

The naive implementation would not work inside the template:

<% # pseudo code!
vars = hiera('ssh::server::env vars', ['LANG', 'LC_*']) -%>
AcceptEnv = <%= vars * ' ' %>

The issue is that this call will be directed at a hiera method in Ruby and not the
Puppet function. Templates have a way of accessing Puppet's parser functions,
but it takes just a little more writing. The Ruby code has to access the local scope
attribute, which has a method for each parser function. These methods add a
function_prefix to the parser function name:

<% vars = scope.function hiera('ssh::server::env_vars',6 ..) -%>

AcceptEnv = <%= vars * ' ' %>

This holds true for all functions, such as split, mds, and all other functions that you
can use from the manifest. However, like the two functions mentioned, most of these
have Ruby equivalents. They are often more powerful or convenient. Hiera does
have a Ruby binding, of course. However, in this case, the Puppet function is more
convenient, because it implicitly adds all parameters that Hiera requires in order to
build the calling agent's individual hierarchy.

o It's not quite accurate to state that Hiera also has a Ruby
~ binding. Hiera consists mainly of a Ruby library. The more
Q fitting description is that Hiera also has a Puppet binding
through the hiera functions.

The other Ruby context that you might encounter is parser functions. The limitations
of template code apply here as well. You cannot just call the Puppet function as
hiera (). The solution is slightly different from the one in templates, because the
function code can access methods of the scope attribute directly. In the function
body, you only need to add the function_ prefix:

data = function hiera('key', 'default')

This is somewhat more rare than the template case —your own functions will most
likely receive data from Hiera (or any source) through their own parameters and
have no need to look it up themselves.

[176]

Chapter 7

You might have noticed that I did not mention types and providers — they consist of
Ruby code as well, as do facts. The big difference is that all these pieces of code are
not run during the compilation. This is why they do not have access to the hierarchy
of data that is stored on the master.

A practical example

To round things off, let's build a complete example of a module that is enhanced
with Hiera. Create a demo module in the environment of your choice. I will go
with production:

/etc/puppet/env/production/modules/demo/manifests/init.pp
class demo (Sauto = false,
Ssyslog = true,
$user = 'nobody') {
file { '/usr/local/bin/demo': .. }
if $auto {
cron { 'auto-demo':
user => Suser,
command => '/usr/local/bin/demo’

}

create resources ('demo::atom', hiera('demo::atoms', {})

}
This class implicitly looks up three Hiera keys for its parameters:

® demo::auto
® demo::syslog
®* demo::user
There is also an explicit lookup of an optional demo: : atoms hash that creates

configuration items for the module. Each hash must fit the defined type, which is
demo: : atom, so that sensible resources can be created:

/etc/puppet/env/production/modules/demo/manifests/atom.pp
define demo::atom($address, S$port=14193) {
file { "/etc/demo.d/$name":

ensure => 'file',
content => "---\nhost: $address\nport: $port\n",
mode => '644"',
owner => 'root',

[177]

Separating Data from Code Using Hiera

group => 'root',

}

The module uses a default of nobody for user. Your site does not run scripts with
this account, so you set your preference in common.yaml. You also don't commonly
use syslog:

demo: :user: automation
demo: :syslog: false

As this user account is restricted on your guest workstations, Hiera should set an
alternative value in role-public desktop.yaml:

demo: :user: maintenance

Cron jobs are usually managed in site modules but not for web servers. Let the
demo module itself take care of this on web servers through the $auto parameter.
The exception is int01-web01.example.net, where no cron jobs whatsoever

should be scheduled:

role-webserver.yaml
demo: :auto: true

This is how to define the exception:

int0l-web0l.example.net.yaml
demo: :auto: false

Concerning configuration resources, each machine should add itself as a peer:

common.yaml
demo: :atoms:
self:
address: localhost

The Kerberos servers should not try this:

role-kerberos.yaml
demo: :atoms: {}

The database servers should also contact the custom server running on the Puppet
master machine on a nonstandard port:

role-dbms.yaml
demo: :atoms:
self:

[178]

Chapter 7

address: localhost

master:
address: master.example.net
port: 60119

You can now include the demo class from your site.pp (or an equivalent) file
indiscriminately. It is often a good idea to be able to allow certain agent machines
to opt out of this behavior in the future. Just add an optional Hiera flag for this:

site.pp
if hiera('enable demo', true) ({
include demo

}

Agents that must not include the module can be given a false value for the
enable_demo key in their data now.

Debugging Hiera lookups

As you can see from the preceding example, the data that contributes to the complete
configuration of any module can be rather dispersed throughout the set of your data
sources. It can be challenging to determine where the respective values are retrieved
from for any given agent node. It can be frustrating to trace data sources to find out
why a change at some level will not take effect for some of your agents.

To help make the process more transparent, Hiera comes with a command-line tool
called hiera. Invoking it is simple:

$ hiera -c /etc/puppet/hiera.yaml demo::atoms

It retrieves a given key using the specified configuration from hiera.yaml. Make sure
that you use the same Hiera configuration as Puppet.

Of course, this can only work sensibly if Hiera selects the same data sources as the
compiler, which uses fact values to form a concrete hierarchy. These required facts
can be given right on the command line as the final parameters:

$ hiera -c /etc/puppet/hiera.yaml demo::atoms \
clientcert=int0l-web0l.example.net role=webserver location=ny

This prints the demo: : atoms value of the specified server to the console. Make sure
that you add the -d flag in order to get helpful information about the traversal of
the hierarchy:

$ hiera -d -c ...

[179]

Separating Data from Code Using Hiera

Summary

While Puppet manifests are a powerful tool to model relations of subsystems and
dependencies among both single resources and whole groups, it is sensible to strip
the concrete configuration data from them, at least in part. This helps consolidate
your classes and allows you to avoid a cluttered code base.

Hiera is a tool that stores and retrieves data in a hierarchical fashion. Each retrieval
uses a distinct data source from each hierarchy layer and traverses it from the most
to the least specific. The first value that is found is returned. From Puppet, you will
mainly perform lookups through the hiera function. The data sources are selected
from a predefined hierarchy, which will rely on fact values in most cases. Data is
commonly represented in YAML or JSON.

Another common way to employ Hiera through Puppet is to name the Hiera keys

in the <class-names>: : <parameter-name> format. When including a parameterized
class, Puppet will look for such keys in Hiera and automatically bind the values to
the parameters.

Manifests that boast large numbers of static resources can be cleaned up by
converting the declarations to hashes and using the create_resources function to
declare resources from the data. The hash conversion is easy, especially to YAML,
because in this notation, the hash closely resembles the Puppet manifest syntax.

The next chapter combines much of what you have learned so far and enhances
it with some ideas in order to get you started with your own manifest designs.
Read on to acquire some more tools and patterns in order to use Puppet as an
efficient cloud manager.

[180]

Configuring Your Cloud
Application with Puppet

Up till this point, you have built quite a respectable basis of theoretic knowledge
about the Puppet system. You now understand the nature of resources with their
properties and parameters. You learned how the agent relates to the master and how
Facter cooperates with them. The toolchain of types and providers has been explained,
and you can even extend Puppet through your own custom plugins. Designing and
structuring manifests through classes, defined types, and modules is becoming natural
to you, and you have some more advanced language tools at your disposal as well.

It is now time to look from a more practical angle. Let's take a look at designs that are
useful in common real-world scenarios. With the general trend of cloud computing,
we will focus on some techniques that cater especially to the use of Puppet in cloud
environments. This will not be limited to the manifest and module design; you will
also learn some generally useful configuration and deployment techniques.

These are the topics that we'll cover in this final chapter:

* Typical scopes of Puppet

* Taking Puppet to the cloud

* Building manifests for the cloud
* Preparing for autoscaling

* Ensuring successful provisioning

Configuring Your Cloud Application with Puppet

Typical scopes of Puppet

Puppet was originally conceived for the automation and centralized maintenance of
server configurations. As the community grew, Puppet developed some additional

facets during its progression, and this trend will most likely continue. At the time of
writing this, Puppet is viable for quite different purposes and different user groups.

The ability to write and share simple, one-shot manifests makes Puppet a good
choice for all computer technicians. Development, quality assurance, operations, or
any other field —they all can rely on Puppet. It allows them to not only document
system requirements for specific tasks, but also implement a high-level "script" to
enforce these requirements, perhaps even on different platforms.

I used the term script here even though Puppet manifests should not
be regarded as such. However, at the level of sharing small pieces of
_ code to manage some very specific system details, they serve the same
% purpose as shared scripts. Note that in some cases, scripts serve better
L than manifests. This is most evident when the manifest comprises lots
of chained exec type resources. Puppet is the more powerful choice
when other native resources can be used —a manifest can then be
simpler and more flexible than a shell script.

Another use case for Puppet that is ever growing in popularity is the provisioning

of Vagrant instances. Vagrant is a tool that allows development teams to streamline
the creation of development boxen in the form of managed virtual machines. It is a
must-have for software teams that struggle with complicated setup routines for their
testing environments. Vagrant comes with support that integrates Puppet manifests
and modules right in the provisioning process of these VM instances.

That said, the majority of Puppet installations are most likely still performed with
the intent of managing networks of machines, with a focus on servers and compute
nodes in data centers. Some sites will also manage desktops through Puppet. This
can be sensible in a large network with complex requirements for workstations.

Concerning OS platforms, Puppet is still primarily used on Linux-based systems,
systems of the Debian or Red Hat family in particular. Other Linux flavors and
BSDs are not as common but are readily supported. Windows support is also
steadily progressing, as is the adoption of Puppet on this platform.

Outside of general-purpose servers, Puppet will also manage dedicated network
components such as switches, routers, and other smart hardware. You can refer
to http://puppetlabs.com/blog/puppet -network-device-management for
more information.

[182]

Chapter 8

Common data center use — roles and profiles

When managing whole networks with Puppet, efficiency is always among the
primary goals. You will always be busy trying to avoid code redundancy where
it is not required. By consolidating repetitive cases into common classes, you can
minimize the maintenance overhead in the future. Of course, this works best if
there is a system or pattern that directs the fashion in which such unification is
to be performed and expected.

A very successful and widespread design pattern to this end was conceived by
Craig Dunn and is called the Roles and Profiles pattern. It defines two layers of
abstraction. The outer layer is roles, which are defined in a way that allows each
server (or workstation) to choose exactly one role. There is no mixing —if a node
has aspects of two different roles, then this merger forms a new role itself.
Examples for roles can be internal webserver, key distribution center,
Or accounting desktop.

Technically, a role is just a class. It is sensible to organize your roles in a role or
roles module:

node falstaff ({
include role::key distribution_center

}

The design goal is to limit each node block to include just one role class. There
should be no further include statements and no resource declarations. Variable
declarations will be acceptable, but Hiera is almost universally preferred.

As for roles, they should comprise nothing but the inclusion of one or more profile
classes. Profiles quite distinctly represent aspects of a system. In the server realm,
typical profiles would be apache_server, nginx proxy, postgres_server, Or
ldap_master. Just like roles, profiles should be organized in a dedicated module:

class role::key distribution center ({
include profile::heimdal server
include profile::firewall internal

}

Profiles themselves will ideally just include a selection of modules with data
from Hiera. In a profile class, it might also be acceptable to pass some module
parameters directly in the manifest. A profile can consistently configure some of
its required modules this way, without the need for possible redundancy in the
Hiera data of all the nodes that use this profile.

[183]

Configuring Your Cloud Application with Puppet

This is risky, though, because profiles can become incompatible or even impose
subtle evaluation-order dependencies. Having a Hiera layer is cleaner, as it selects
data sources through each node's role. At this layer, you can cleanly express a new
configuration that should be effective for all nodes that fill this role:

class profile::heimdal_ server {
include heimdal
class { 'ssh': restricted => true }

}

This is just a very rough sketch of the principles behind the Roles and Profiles pattern.
Craig has put up a comprehensive description on his blog, and the design has since
been adopted by many users.

Taking Puppet to the cloud

It's time to finally talk about the cloud, which I managed to avoid when describing
the different use cases. We will focus on the Infrastructure as a Service (IaaS)
paradigm. These IaaS clouds consist of a network of virtual machines connected
to the Internet. Each machine runs a basic operating system, which is chosen by
the administrator.

If you need a Platform as a Service (PaaS) implementation,

read on to learn how you can practically implement your

own PaaS system on top of an IaaS cloud using Puppet.

From Puppet's point of view, an IaaS cloud is not much different from a data center.
After all, this kind of cloud was conceived to serve as a stand-in for physical data
centers. It just replaces rack-mounted servers with virtual machines, along with
virtualized network connections.

Of course, managing laaS instances poses some unique challenges when compared
to a local data center. Normally, the IT staff can freely choose all properties for
each system that gets deployed. Cloud instances are usually not as thoroughly
customized. The following sections will give you some pointers that can help you
tackle the consequences.

[184]

Chapter 8

Initializing agents in the cloud

Many things that concern system configuration and maintenance can be solved

in more than one way. Initializing cloud instances with working Puppet agents

is no exception. The most straightforward way is to do everything manually and
treat the new laa$S virtual machine like any new Linux host that has received a base
installation. You create the cloud instance from a Linux base image, connect via SSH,
and walk through the steps in order to install Puppet, connect to the master, and
order the certificate.

Of course, it is always a goal to manage your cloud with little manual intervention.
Puppet itself should help you take control of your instances without issuing actual
commands on their shells. Toward that end, it will be helpful to create an image
that comes with preinstalled Puppet packages. However, this is only half the work
at best —the agent still requires a trusted certificate in order to work effectively.

Performing all of the necessary operations in a fully automated fashion is not strictly
required. If you need your cloud to support autoscaling, you will need to devise a
way for Puppet to initialize new agents without any manual intervention. There is

a whole section devoted to the topic of autoscaling (Preparing for autoscaling) later

in this chapter. For now, let's keep things more simple.

Including the Puppet software in your base image eases the initialization. To take this
a big step further, you can add a start-up script that makes the Puppet agent receive

its certificate as soon as possible. This is best done using the agent's - -waitforcert
option. Normally, the agent will terminate after submitting its CSR to the master.

Each subsequent run will immediately abort as well, until the master offers a signed
certificate. Through defining a waitforcert interval, you instruct the agent to keep
running instead. It will poll the master in the specified interval and cache the certificate
once it becomes available.

With this, you can make your new instances request certificates and stand by until
you sign them on the master with a simple shell script:

#!/bin/bash

export PATH=/bin:/usr/bin

CERT="puppet agent --configprint certname"

DIR="puppet agent --configprint certdir"

[-f "${DIR}/${CERT}.pem"] && exit 0

puppet agent --onetime --no-daemonize --waitforcert 300

[185]

Configuring Your Cloud Application with Puppet

If the certificate has already been received, the script terminates immediately,
without running the Puppet agent. To make it run once the instance boots up,
you can add itas ajobinafilein /etc/cron.d/:

@reboot /usr/local/bin/receive-puppet-cert

It is still up to you to sign the certificates in the usual fashion using puppet cert on
the master machine. This is good security, after all. Requests might be issued by rogue
agents. Even if your master is firewalled, attackers might still be able to connect from
areused IP address or other vectors, depending on your firewall settings.

If your cloud workflow is based around your provider's web interface, you will
most likely want to sign certificates through a web form as well. If you want this
capability, you can install Puppet Dashboard on the master.

The dashboard has been discontinued and receives community
+ support only at this point. A more official version is available
% through Puppet Enterprise. The new web consoles, which are
"~ PuppetBoard and Puppet Explorer, are primarily frontends for
PuppetDB and offer no support for signing certificates.

Using Puppet's cloud-provisioner module
Puppet Enterprise comes with a CLI that allows you to manage cloud instances
driven by AWS, GCE, or VMware. You can add much the same capabilities to the
community version by installing the puppetlabs-cloud provisioner module.
It only lacks VMware support.

What the module adds to Puppet is not a type or provider or even special manifest
support. It makes new subcommands available.

% Puppet refers to subcommands such as agent, master,
i or cert as Faces.

These new Puppet Faces are specific to the respective cloud providers —you get
similar families of commands under puppet node aws and puppet node gce.
Once configured, you can get a listing of your EC2 instances:

puppet node aws list

[186]

Chapter 8

There are more actions besides 1ist that allow you to create and terminate instances
and perform other useful administrative tasks. As such, the cloud provisioner can
stand in as a unified cross-platform alternative to the providers' own CLI offerings.

Building manifests for the cloud

One of the most significant operational differences between cloud-based systems
and hardware on premises is the fact that you don't get to name your nodes. Server
names are often chosen in a mnemonic fashion and communicate the machine's
function. In the cloud, your network consists of a collection of anonymous work
horses instead.

Enforcing a naming scheme will actually defeat parts of the purpose of a cloud
system. The absence of order liberates you from quite some planning overhead
that you have to take in your data center, where any node that you deploy must
be fit into the greater scheme. Instead, you can add and remove nodes at any time,
and the disordered cloud structure just adjusts.

The following sections deal with strategies that allow Puppet to operate under
these conditions and with which Puppet actually helps you set up and maintain
such an environment efficiently.

Mapping functionalities to nodes

With the generic naming of cloud instances, the usual methods of assigning
manifests to nodes are not a good fit at all. Defining individual node blocks
somewhere in your code base is hardly feasible:

node 'ec2-107-22-79-148.compute-1.amazonaws.com' {
include role::cache proxy

node 'ec2-107-22-110-102.compute-1.amazonaws.com'
include role::appserver

}

Defining role mappings in individual Hiera data sources would be equally
troublesome. It is not a technical problem, of course, but it also hardly eases
management or helps abstraction from the cloud layout beneath your services.
This is especially obvious when facing the deletion and recommissioning of
cloud instances — you will always be chasing old and new node names and
keeping your manifests up to date.

[187]

Configuring Your Cloud Application with Puppet

Under the special circumstances of the cloud infrastructure, it is actually preferable to
allow the Puppet agent to declare its target state itself. As always, the communication
of such information to the master is implemented in the form of Facter facts. For
example, you can add a custom fact called my_cloud_app_role that will choose the
role for the respective agent.

. This is usually a bad design practice. Under most circumstances,
you would want the master to be in full control of the manifests.
%~ The agent should not have free choice as to what its catalog
should contain. This cloud design is an exception to this rule.

A very simple and direct way to add such a fact is to define an appropriate
environment variable for the agent to read:

FACTER my cloud app role=appserver puppet agent --test
or

export FACTER my cloud app role=appserver

puppet agent --test

Doing this consistently is most likely at least as much work as just adding an external
fact to the respective instance:

/etc/facter/facts.d/my cloud app role.txt
my cloud app_ role=appserver

The master expects a value that corresponds to an existing role and selects it from the
role's module:

node default {
include "role::${my cloud app role}"

}

This design will do its job just fine. You don't need to create a dedicated image
for each role (doing so partly defeats the purpose of managing your services with
Puppet). The external fact is simple enough to make an initialization script handle
its creation:

gcloud compute instances create instancel502 \
--image debian-7 \
--metadata startup-script='#!/bin/bash
echo my cloud app role=appserver \
>/etc/facter/facts.d/role.txt’

[188]

Chapter 8

This makes it easy to rapidly deploy instances to fill a specified role. However, there
is one wrinkle in this scheme. I mentioned previously how it is generally undesirable
to allow agents to choose their own manifest. One reason for this is that it leaves you
open to failure scenarios in which a given machine (perhaps inadvertently) suddenly
chooses a foreign role at an unexpected point in time. The results can be hard to
predict, because your manifests are most likely not tailored to enable the switch from
one role to another. As a result, the affected machine might start running services for
different roles, some of which use an incomplete or inconsistent configuration.

There is an alternative to regular facts that avoids this kind of trouble. An agent can
register some values with the master during certificate generation already. These fact
values are included in extension fields of the certificate itself and are hence approved
by the master. From this point on, the master can trust these values to be truthful,
because the agent cannot alter them once the certificate is signed. This is why this
facility is known as Trusted Facts. Enable them on the master by setting the trusted_
node_data=true option in the puppet . conf file.

This is quite a new feature. Be sure to use a recent version
s of Puppet that is higher than 3.5.

Each trusted fact value is indexed with an OID from either the
1.3.6.1.4.1.34380.1.1 or .2 subtrees. The first four OIDs in the former range are
registered for typical use cases with Puppet:

® Puppet Node UUID 1.3.6.1.4.1.34380.1.1.1

® DPuppet Node Instance ID 1.3.6.1.4.1.34380.1.1.2

® DPuppet Node Image Name 1.3.6.1.4.1.34380.1.1.3

® DPuppet Node Preshared Key 1.3.6.1.4.1.34380.1.1.4

These do not really fit the use case of defining the node's role, so it makes sense to
pick a custom OID, suchas 1.3.6.1.4.1.34380.1.2.42. To define a value that
should permanently become part of the agent's certificate, add the OID to /etc/
puppet/csr_attributes.yaml:

extension requests:
1.3.6.1.4.1.34380.1.2.42: appserver

This data must be supplied before the Puppet agent generates its CSR for the master.
The key/value pair is then applied to the request. On the master side, no additional
steps are required in order to include the data into the signed certificate. The usual
puppet cert sign command suffices.

[189]

Configuring Your Cloud Application with Puppet

With the certificate containing this persistent value, the master can safely derive the
agent node's role from this Trusted Fact:

Srole = S$trusted['extensions']['1.3.6.1.4.1.34380.1.2.42"']
node default {
include "role::Srole"

}

Again, this pattern is not adequate for general Puppet use. The value is
* immutable, so if a change of roles is necessary, it requires the signing of
a new certificate. This can happen if you need to subdivide an existing
= role into more specific derivatives. Under the cloud paradigm, this is less
problematic — you will just recommission the affected instances anyway.

Choosing certificate names

We have now established that (unlike more traditional Puppet setups) the certificate
name is of no consequence to the role that each cloud instance will fill. It follows that
the certificate's common name can be chosen arbitrarily, because there should be no
other configuration that depends on a sensible name. Under the cloud paradigm, it
makes no sense to use the £gdn or clientcert facts in your Hiera hierarchy. If your
cloud instances need individually different configuration data, even among nodes
with the same role, you are probably facing a basic design problem.

As a cloud instance's DNS name is also quite arbitrary, you can just make Puppet use it
as the certificate name. This poses a problem, though: as instances get decommissioned
and recommissioned, their IP addresses and DNS names can repeat themselves. In
other words, a new instance can end up with the same connectivity details as a former
instance that you have used in the past.

This is problematic because the master keeps an inventory of signed certificates.
When a new agent issues a CSR for a certificate that has been signed for a different
agent in the past, the master has to assume that someone is impersonating the
original agent. It will refuse to accept the CSR.

This is especially dangerous when autoscaling is in use.
Agent provisioning has to run unattended, and both deletion

A~
and creation of instances is a relatively frequent occurrence.

[190]

Chapter 8

It is, therefore, safer to go the extra mile and create a UUID for each new cloud
instance for use as the Puppet certificate's common name. Prepare your base image
with a simple puppet . conf file that has only the [main] section and no certname
option. Your bootstrapping script then just needs a minor extension:

#!/bin/bash
export PATH=/bin:/usr/bin
if ! grep -q “certname /etc/puppet/puppet.conf ; then
CERT="cat /proc/sys/kernel/random/uuid”
echo "certname = $CERT" >>/etc/puppet/puppet.conf
else
CERT="puppet agent --configprint certname"
fi
DIR="puppet agent --configprint certdir"
[-£ "${DIR}/${CERT}.pem"] && exit 0
puppet agent --onetime --no-daemonize --waitforcert 300

Such nondescript certificate names make it difficult to recognize
* possible rogue CSRs. To regain at least some security, you can
%@‘\ add the DNS name to the CSR as a custom attribute. More on this
g topic (and actual security) is covered in the Preparing for autoscaling
section later in this chapter.

With the common names being of no consequence, you might be tempted to take the
pragmatic approach of just signing one all-powerful certificate per role and share it
among all your cloud agents. This would also appear to avoid all the signing hassle.
However, it is not a safe thing to do. Security concerns aside, the assumption that
certificate names are unique to each agent runs pretty deep within Puppet. PuppetDB
uses $certname for one, and we will discuss the importance of this tool for an effective
cloud manifest in the next section.

Creating a distributed catalog

If you can manage to design your cloud service in a fashion that allows each instance
to fend for itself, consolidated by load balancing, then you can possibly skip this
section. On the other hand, the nodes that participate in your cloud service might
need to interact in some capacity. You might want to configure a message queue

for some or all of your instances. It might be useful if your instances could issue
commands to their peers via SSH. You might even want to implement custom load
balancing using HAproxy or Nginx if the cloud provider's load balancing is not
adequate for any reason.

[191]

Configuring Your Cloud Application with Puppet

In all latter scenarios, you need all of your instances to form a mesh of scalable
subservices. The whole system must be able to cope with instances leaving and
joining at arbitrary times. Ideally, there will not be very tight time constraints for
the system to adapt to such changes; you just have to make sure that everything
works in an acceptable time frame.

These requirements technically boil down to one necessity: Puppet needs to maintain
some parts of each instance's configuration with details about the other nodes. You
implemented such structures while working through a previous chapter; Puppet
supports this kind of distributed knowledge in the form of exported resources.

You shared some useful commodities such as SSH host keys and entries in host

files through exported resources, and you also shared more critical configuration
items such as firewall rules or the Nagios configuration snippets. By combining
both approaches (the distribution of information over the whole range of agents and
the incorporation of specific addresses and metainformation in running software
configurations), Puppet's exported resources allow you to implement just the
required mesh of interdependent service instances.

The exported firewall rule is a good example for the archetype of an exported resource.
It distributes several pieces of information to nodes that concern themselves with them:

* The most important information is almost always the local node's IP address

* The exported resource also carries information on the exporter's capabilities.

In the case of firewall rules, the resource will include one or more ports that the
exporter is willing to share. Let's construct a possible resource for your cloud nodes
to share among one another. Assume that your cloud employs an SSH-based RPC
system that implements simple distributed actions. You configure this system
through files in the /etc/rcmd/<commands>.d/ directories, with each file containing
one or more IP addresses of SSH servers —one address per line. If required, the
remote user can also be specified in the SSH notation as usereaddress. A node that
wishes to run a command on all eligible peer nodes can just loop over all addresses
from the <command> . d directory in question.

Distributing the configuration itself is simple. You can export the files directly, but it
is better to wrap them in a defined type that models the semantics:

define rcmd::command ($runner, Suser, $id) {
file {
"/etc/rcmd/${name}.d/s{id}":
ensure => 'file',
content => "${user}@${runner}\n";

[192]

Chapter 8

Now, each node can export its commands in a unified fashion:

@@rcmd: : command {

['clear-cache', 'reload-config']:
runner => $ipaddress,
user => hiera('rcmd: :user', 'rcmd'),
id => Sclientcert,

_ Note that the facts and Hiera lookups cannot be made into parameter
% defaults for the defined type. If you did that and the exporting node
" did not specify these values, then the facts and Hiera data would be
looked up by the importing node, which is never the desired outcome.

Each node must manage the available directories for itself. It is useful to use the file
type's purge parameter here so that nodes that no longer appear in the database of
exported resources are cleared from the configuration:

define rcmd::command dir ()
include rcmd::base dir
file {

"/etc/rcmd/${name}.d":
ensure => 'directory',
owner => 'root',
mode => 644,
recurse => true,
purge => true,

}
This defined type is used and complemented by the following declarations:

rcmd: :command_dir { ['clear-cache', 'reload-config', .. 1: }
import peer nodes' configs
Rcmd: : Command<< | | >>
also use own exports
Rcmd : : Command< | | >
the class to make sure that /etc/rcmd exists
class rcmd::base dir {
file { '/etc/rcmd': ensure => directory, ... }

[193]

Configuring Your Cloud Application with Puppet

This would suffice to build the network of SSH servers, but there is one detail still
missing. Each node must be authorized to build an appropriate SSH connection in
the first place. The easiest way to make this happen is a preshared key. It is easy to
supply the private key to all cloud nodes through Puppet's file type:

file {
'/root/.ssh/id rsa.rcmd':
owner => 'root',
mode => '600"',

source => 'puppet:///modules/rcmd/root/.ssh/id rsa.rcmd',

}

The public key can be easily authorized for the scripting user through the
ssh_authorized key resource:

ssh_authorized key {

'recmd-key!':
ensure => 'present',
type => 'rsa',
user => hiera('rcmd: :user'),
key => hiera('rcmd::public key'),

}

By updating the master with new public keys in Hiera, you can also easily perform
staggered key rotations. The agent will add new authorized keys alongside the

old ones, provided that you give them a new resource name. Obsolete keys can be
explicitly removed through ensure => absent or overwritten with new keys.

Composing arbitrary configuration files

Many services allow configuration through directories that represent some variation
on the conf . d pattern. All files found in such a directory get concatenated to form

the whole configuration. We implemented such a scheme for the SSH-based remote
command execution facility in just the previous section. If you get the chance to design
a configuration scheme yourself, try and go for this pattern. It makes your life much
easier and lends itself to Puppet management especially well.

On the other hand, it is not rare for services to require complex configuration

in single files. Virtual host definitions for Nginx or Apache form configuration
directories, but each one can contain large chunks of configuration that cannot
be subdivided. The http section in Nginx's configuration must be contained in
a single file. The OpenSSH server uses a monolithic configuration file. HAproxy
requires one config file per server process. The list goes on.

[194]

Chapter 8

With its native tools, this means that Puppet will have to manage such files through
a single class or defined type; this makes it very difficult to collect exported resources
to form a composite configuration. The typical solution to this problem is the
puppetlabs-concat module. It allows you to declare any file to be a patchwork

of file sections. Puppet will make sure that it rebuilds the file whenever the set of
snippets changes or the content of either snippet is updated.

For example, the puppetlabs-apache module models virtual host definitions

by concatenating the expansions of several ERB templates populated with values
from module parameters. Let's do something that is a little simpler — construct an
HAproxy configuration file through the concat module. It will suffice to limit our
sample module to support four configuration sections:

global
server global settings here
defaults
settings for both frontend and backend
frontend <%= @title %>
mode <%= if @use http mode then 'http' else 'tcp' end %>
default backend <%= @title %>
backend <%= @title %>
server ID1 addressl:portl maxconn X
server ID2 address2:port2 maxconn X
.. one line per backend server here

As you can see, the sketch contains ERB tags already, which will go verbatim to the
templates that will comprise the backbone of the defined type:

define haproxy::config($ensure = 'present',
Sglobals = ['daemon'],
Sdefaults = ['timeout connect 10s' 1],

$use _http mode = true) ({
concat {
"/etc/haproxy/${name}.cfg":
ensure => Sensure;
}
Concat::Fragment { target => "/etc/haproxy/${name}.cfg" }
concat: : fragment {
"haproxy-${name}-globals":
order => '10",
content => template ('haproxy/cfg-global.erb') ;
"haproxy-${name}-defaults":
order => '20"',
content => template ('haproxy/cfg-defaults.erb') ;

[195]

Configuring Your Cloud Application with Puppet

"haproxy-${name}-frontend" :

order => '30"',

content => template ('haproxy/cfg-frontend.erb') ;
"haproxy-${name}-backend-header":

order => '40"',

content => "backend ${name}\n"

}

The respective order parameter makes sure that Puppet concatenates the snippets
in the right order. All individual backend servers should appear underneath the
backend header line and will use order 50:

define haproxy::backend server($instance, $address,
$port, $maxconn) {
Sline = "server $name ${address}:$port maxconn Smaxconn"
concat: : fragment {
"haproxy-${instance}-backend-${name}":

target => "/etc/haproxy/${instance}.cfg",

order => '50',

content => " $line\n",

}

Each cloud instance that takes part in a specified load balancing group exports its
line to all HAproxy servers:

@@haproxy: :backend server {
Sclientcert:
instance => 'my-balanced-service',
address => S$ipaddress,
port => '3782",
maxconn => '24"',

}
Collecting applicable fragments is easy too:

Haproxy: :Backend server<<| instance == 'my-balanced-service' |>>

This code allows a cloud to build flexible HAproxy configurations. The design
pattern is applicable to many configuration formats and can be ported to most
distributed software solutions.

[196]

Chapter 8

Handling instance deletions

Exported resources are kept in the PuppetDB persistently. If an agent gets
decommissioned, its records will usually stay in the database. Manifests that import
these resources will continue to regard them as regular exports. For dynamic cloud
configuration, this is undesirable (it is not wanted in most contexts, actually).

PuppetDB can deactivate records to account for this. The information will still
remain available, but the resources will no longer get imported. You can manually
deactivate a node when you delete its cloud instance. Use the puppet node
deactivate command on the PuppetDB server (as the root user):

puppet node deactivate 849b97f5-872e-4d31-a668-badf678c5b00

If you do not want to or cannot perform this step manually, you can also define a
time to live for all node records:

in /etc/puppet/puppetdb.conf
node-ttl = 60m

If the export information is not regularly renewed within the specified interval,
PuppetDB will automatically deactivate the data. Be careful not to set this too low;

if an instance checks in late or misses a Puppet run for any reason, its resources would
intermittently be missing from the from the catalogs of the nodes that import them.

To clean up the cloud's configuration, you will also have to make sure that resources
that leave management are actually removed from the systems. You have already
seen how you can keep conf . d style directories clean using the purge parameter of
the file resource that manages the directory. The concat type automatically tidies
up after vanishing fragments in the same fashion, and there is no special parameter
that you need to use.

For other native resources, you can try cleaning out the now unmanaged entities
using the resources type:

resources { "sshkey": purge => true }

It only works for resources that the agent can easily locate on the managed system.
For example, the purging of authorized SSH keys must be configured through the
owning user type instead, because the resources type cannot enumerate them:

user {
'remd!':
ensure => present,
uid => '2082",

purge_ssh _keys => true,

[197]

Configuring Your Cloud Application with Puppet

Also, keep in mind that purging will only work for native resources and not instances
of defined types. To clean these up, you will have to target their wrapped resources for
purging. You did this already in the rcmd example —the £ile resources with the purge
=> true parameter took care of purging unmanaged rcmd: : command resources by
removing the files that the defined type had created.

Preparing for autoscaling

One advantage of cloud computing over classic data center operations is its ability
to minimize the cost for infrastructure. You usually don't need to overprovision
your cloud server resources, because you can add instances on short notice. If your
workload is fluctuating, predictably or not, you can potentially further minimize the
infrastructure through autoscaling features. Let the cloud provider add and remove
instances as the load increases and decreases again.

With the techniques you have learned already, you can make Puppet perform

any required dynamic reconfiguration of the existing nodes and ensure adequate
provisioning of the newly created instances. The latter can only work if Puppet can
include new agents without manual intervention, though. The following sections
describe the possible strategies that make Puppet work in an autoscaling cloud.

Managing certificates

The crux of the problem is that you need a way for your agents to retrieve signed
certificates without an operator who supervises the signing process. This can be easily
achieved by setting the autosign option to true on the master. It instructs Puppet to
just sign a certificate for any CSR it receives. This is obviously bad security —any agent
that can make a connection to your master will receive a trusted certificate and can
keep requesting catalogs.

On the other hand, manual signing is not the only alternative. As a more secure
compromise, you can implement an autosigning script instead. Configure it in
Puppet by setting the autosign setting to a file path instead of true:

autosign = /etc/puppet/autosign
The script's function is aptly described by Puppet's online reference documentation:

"If a custom policy executable is configured, the CA puppet master will run it
every time it receives a CSR. The executable will be passed the subject CN of the
request as a command line argument, and the contents of the CSR in PEM format
on stdin. It should exit with a status of 0 if the cert should be autosigned and
non-zero if the cert should not be autosigned."

[198]

Chapter 8

This allows you to implement arbitrary criteria that the master can apply to each
incoming certificate request. If you use UUIDs as certificate common names, it
will be difficult to make a decision based on the data from the CSR. You should,
therefore, add more information to the requests so that the master can verify that
they originate from authorized agents.

Puppet is prepared to do this through the same feature that allows you to register
trusted facts. You can embed arbitrary information in the certificate-signing request,
which is indexed with OIDs. There is even a registered OID for just the authorization
string weneed, 1.3.6.1.4.1.34380.1.1.4, with the short name pp_preshared_key.

M You can learn more about Puppet's support for SSL CSR attributes at

(:l https://docs.puppetlabs.com/puppet/latest/reference/
ssl attributes extensions.html.

Just like the cloud instance role, you can issue the PSK to each instance
upon deployment. It needs to be added to the custom_attributes hashin
the csr_attributes.yaml file so that it becomes part of the CSR but not of
the signed certificate:

custom_attributes:

pp_preshared key: aiNDN#naCSaiun39nfASnfqgwnfsacn!as93ASnfaX
extension requests:

1.3.6.1.4.1.34380.1.2.42: appserver

The autosign script can just examine the CSR and verify that the PSK is currently
valid. You can even do better and defend against spoofing by hashing the key after
salting it with the agent's UUID:

custom_attributes:
pp_preshared_key: _ HASHED_ PSK

The certificate-requesting script can take care of the math involved:

#!/bin/bash
export PATH=/bin:/usr/bin
if ! grep -q “certname /etc/puppet/puppet.conf ; then
CERT="cat /proc/sys/kernel/random/uuid”
echo "certname = SCERT" >>/etc/puppet/puppet.conf
else
CERT="puppet agent --configprint certname"
fi
DIR="puppet agent --configprint certdir"
[-f "${DIR}/${CERT}.pem"] && exit 0

[199]

Configuring Your Cloud Application with Puppet

PSK="cat /path/to/psk”

HASH="echo "$CERT$PSK" | sha512sum - | cut -d\ -£1°

sed -i s/ HASHED PSK_/$HASH/ /etc/puppet/csr attributes.yaml
puppet agent --onetime --no-daemonize --waitforcert 10

rm /path/to/psk

The autosign script extracts the CSR attribute and verifies that the current PSK has
been used to compute the hash value:

#!/bin/bash

CN=$1
PSK="cat /path/to/psk”
EXPECT="echo "SCNPSK" | sha5l2sum - | cut -d\ -f1°

HASH="openssl reqg -noout -text \
| grep "1\.3\.6\.1\.4\.1\.34380\.1\.1\.4"' \
| cut -d: -f2 | tr -4 ' '

[["SHASH" = "SEXPECT"]]

The result of the final equality test decides whether the certificate will be signed.

You can find more information on autosigning at

https://docs.puppetlabs.com/puppet/latest/

reference/ssl_autosign.html.

Limiting round trip times

Depending on your configuration, it can take quite a while for newly exported
resources to reach all interested agent nodes. The default run interval is half an hour,
so this is usually the maximum. In a large cloud, you might even want to increase this
interval so that the master is not swamped by frequent catalog requests. This will lead
to an increased mean time for distributing configuration details. In a cloud application
that uses autoscaling, this might be a painful bargain, because the scaling operations
can take a long time to take effect.

You can create a construct that allows Puppet to run in long intervals but react quickly
when a change to the network is detected. All you need is a dedicated node with a very
simple manifest, which you can afford to compile in a relatively high frequency. This
node should import exactly one resource that each of your cloud instances exports,
such as their SSH host keys. A change in these resources should trigger a Puppet run
across the whole network. The manifest can be constructed as follows:

exec { '/usr/local/sbin/trigger-puppet': refreshonly => true }
resources { 'sshkey': purge => true }

[200]

Chapter 8

Sshkey<<| |>> ~> Exec['/usr/local/sbin/trigger-puppet']
Resources|['sshkey'] ~> Exec['/usr/local/sbin/trigger-puppet']

This is how it works:

1. The exec resource runs the trigger-puppet script only when it receives
a signal.

2. SSH host keys are imported from all peers in the cloud, and obsolete keys
are purged using the resources type.

3. When a new key gets imported, it sends an event to the exec resource.

When one or more keys are purged, a signal is sent to the exec resource.

Now, all you need is the trigger-puppet script that triggers an agent run on all
peer nodes. This can be implemented through a custom facility such as the rcmd
module that was proposed earlier in this chapter. Another approach is to use a
message queue that has been designed for such purposes, such as MCollective,
which is yet another tool from the Puppet ecosystem.

Let's create a simple example using rcmd. Every node in your cloud should register
itself to receive calls from the Puppet master machine. Make sure that you include
this puppet remote control::agent class in all manifests:

class puppet remote control::agent {
@e@rcmd: : command {
'trigger-puppet':
runner => S$ipaddress,
user => hiera('rcmd::user', 'rcmd'),
id => $clientcert,

}
The master node also includes a dedicated class that collects all these call targets:

class puppet remote control::master {
Remd: : Command<<| title == 'trigger-puppet' |>>
file {
' /usr/local/sbin/trigger-puppet’ :
ensure => 'file',
mode => '755",
source => 'puppet:///modules/puppet remote control/
trigger-all-puppet-agents',

}

[201]

Configuring Your Cloud Application with Puppet

The trigger-puppet script is a simple wrapper:

#!/bin/sh
/usr/local/sbin/invoke-rcmd trigger-puppet 'sudo puppet agent --test'

The invoke-remd script must be part of the collecting end of the remd module:

class rcmd: :invoke {
file { '/usr/local/sbin/invoke-rcmd': .. }

}

This class should be included by define rcmd::command so that any node that
imports a remote command also receives the script. Its content is another simple script:

#!/bin/sh

TITLE="S1"

COMMAND="$2"

KEY=/root/.ssh/id rsa.rcmd

for REMOTE in “cat /etc/remd/${TITLE}.d/*> ; do
ssh -i $KEY $REMOTE "$COMMAND"

done

As the command that is called on all remote command runners makes the Puppet
agent receive its catalog, you have now created an effective means of updating all
your Puppet agents.

Make sure that the Puppet master can cope with the CPU load surge that
results from all agents requesting their catalogs. If this is not feasible, you need
to complement the agent side of your script with a mechanism that staggers the
catalog requests slightly. This allows you to trade the total distribution time for
the computing power on the master.

Ensuring successful provisioning

Puppet manifests can fail for a variety of reasons. The compiler can fail to produce

a catalog if a syntax error appears. It can also fail if the manifest is inconsistent, with
duplicate declarations of the same resource somewhere or other errors. Even if the
compilation succeeds, the catalog itself might not apply to all systems cleanly. In this
case, you often end up with a partial configuration, because one or more resources
fail to sync and all their dependencies are skipped as a result.

[202]

Chapter 8

This problem is relevant to Puppet agents outside of the cloud

as well. However, in your data center, it is usually not a problem
/<= to intervene manually in the case of problems. In the cloud, this

should be strictly avoided.

Writing Puppet manifests is a form of programming, after all. Producing errors is
commonplace. Changes need to be tested properly, and issues require debugging. In
the cloud, latent manifest issues are especially annoying, because you might frequently
need Puppet to create a complete configuration from scratch. Let's review some rules
of thumb that make Puppet as reliable as possible.

For all the efforts that are described in these final sections, you
M should still always monitor the agent's operation. Puppet can
Q fail on occasion, but there is no excuse for you not even taking
note. If you use PuppetDB, you can just use Puppet Explorer or
PuppetBoard to supervise Puppet's work through a web interface.

Adding necessary relationships

Most problems with the application of complete catalogs arise from the wrong
ordering of resources. After all, each resource is quite self-contained and can rarely
go wrong by itself. However, one resource can often only be synchronized after
another. For example, Puppet will enable a service in an idempotent manner by
interacting with its start-up script and concerned subsystems. This cannot work if
the start-up script cannot be found on the system at the time of resource application.
The script is part of the package for the service in question, so the package should be
among the service's dependencies.

Keeping resource ordering in mind is key. Always add all dependencies that are
necessary. Think carefully about the prerequisites for each resource to be met before
it can be queried and possibly brought into sync. This is often easy on a local scale.
If your modules can be nicely compartmentalized into relatively small classes, it is
often possible to chain all resources in each class into a total order that will always
work. The module's main class can take care of ordering the classes, if required.

In a large manifest base, however, there might be more intricate relations. It can
happen that a newly developed module works on all machines you use for testing,
but only because they have been configured through some other modules already.
If the new module is evaluated early during the commissioning of a new instance,
it might break because its latent dependencies (upon the older modules) have not
been met yet.

[203]

Configuring Your Cloud Application with Puppet

The manifest must then be extended to make this dependency explicit (usually by
adding the require metaparameter to one or more resources) so that Puppet will
apply the correct ordering.

Testing the manifests

Such subtle issues are hard to spot in manifests, especially while adding a
functionality. You will most likely use a bottom-up strategy to write your manifests
and extend new modules step by step until they take the final desired shape. This
means that the latter development steps are tested on a machine that is largely
configured already so that it is easy to miss possible requirements from inside

your own manifest.

To avoid this kind of failure, it is a good idea to stress-test most or all manifest
changes. This can be easily done by creating a new temporary virtual machine that
uses the manifest in question. If a change affects several roles, you might wish to
deploy a test instance for each of these roles.

In recent versions of Puppet, the ordering of unrelated resources
is arbitrary but not random. From a given manifest, the agents

Al will always use the same order of evaluation for the contained

~ resources. So, if your manifest cleanly applies in a test scenario,

Q and you make no further changes, you can be confident that it
will keep working flawlessly. You should still be careful about
dependency relationships so that manifest changes are not prone
to breaking the required orderings.

You will usually not want your test instances to interact with the production
instances from your cloud. This can easily happen if you rely on exported resources.
It is expected for the test instances to collect resources from production, but exports
from the test nodes should generally be ignored by all servers.

You can achieve this through tags. Remember that each resource is tagged with some
meta information about the manifest that declares it but can receive additional tags
through the tag metaparameter. These tags can be arbitrary strings. For example, you
can use production as a default, unless you have a module or class by that name.

This tag should normally be added to each exported resource, but you need a way
to remove it from test instances. A simple way that requires little overhead revolves
around the specialized testing of node roles. It also requires you to load the tag from
Hiera, where it is defined in the common layer:

export tag: production
import tag: production

[204]

Chapter 8

For each node role, you can add a corresponding test role. The Hiera data source for
the respective test role is a carbon copy of production, except that it overrides the
export_tag value:

role-appserver test.yaml
export tag: testing

A node using such a role will still export resources, but they will be ignored by all
other instances. Make sure that you select the actual tag for all imports:

Sshkey<<| tag == hiera('import tag') |>>

The sshkey collection is just an example here. The same expression should be used
to import all types of resources.

You can even spin up a whole test cloud conceivably if you also override the
import_tag in the appropriate role data. This would allow you to also test the
node interactions, but it should not be necessary under most circumstances.

Summary

The operation of Puppet in the cloud is mostly similar to that in a physical data center.
You can cope with the lack of semantic node names by forgoing the classic manifest
structure that relies on node blocks. The role of each instance can be configured using
a Trusted Fact instead. Hiera should ignore hostnames so that roles become the most
specific data hierarchy layer.

Certificate signing can be automated and secured through a preshared key. This is
convenient for any cloud and an outright requirement if autoscaling is to be supported.
Certificates' common names can and should be arbitrary in the cloud. Creating UUIDs
for this purpose is a safe choice.

Puppet can keep adapting its catalogs to the cloudscape if you use PuppetDB and
enrich your manifests with exported resources. You can collect them into configuration
files using the concat module. The decommissioning of cloud nodes must then be
handled by deactivating their PuppetDB records and purging unmanaged resources
from the remaining instances.

To make sure that Puppet successfully configures newly deployed instances, be sure
to test your manifests at regular intervals or after important changes. Make sure that
all resource dependencies are cleanly specified.

[205]

Configuring Your Cloud Application with Puppet

This concludes our tour of Puppet Essentials. We have covered quite some ground,
but as you can imagine, we only scratched the surface of some of the topics, such as
provider development or exploiting PuppetDB. What you have learned will most
likely satisfy your immediate requirements. For information beyond these lessons,
don't hesitate to look up the excellent online documentation at https://docs.
puppetlabs.com/ or join the community and ask your questions on chat or in the
mailing list.

Thanks for reading, and have lots of fun with Puppet and its family of DevOps tools.

[206]

Index

A component classes, writing 73, 74
comprehensive classes, writing 71, 72
agents creating, with parameters 92
initializing, in cloud 185 declaring 66, 67
resources, exporting to 141 defining 66, 67
anchor pattern definitions, nesting 82
about 90 differentiating, with defined types 69, 70
URL 91 include keyword, preferring 93
antipatterns parameterized classes,
avoiding 154, 155 consequences 92, 93
apt-get command 8 class inheritance 149
arrays 15 cloud
autorequire feature 125 agents, initializing in 185
autoscaling feature manifests, building for 187
about 198 cloud-provisioner module
certificates, managing 198-200 using 186
round trip times, limiting 200-202 collectors
autosigning used, for realizing resources 140, 141
URL 200 component classes
autosigning script 198 writing 73, 74
composite design 71
B comprehensive classes
writing 71, 72
backends configuration data
selecting 165 _ structuring, in hierarchy 161, 162
URL, for online documentation 165 containers
beaker events, passing between classes and
about 105 defined types 83-85
URL 105

limitations 86-89
limitations, mitigating 90
ordering 86
c relationships, establishing among 83
classes containers, limitations
about 66 anchor pattern 90
contain function 91

before metaparameter 19, 21, 24

control structures
adding, in manifest 13, 14
creates parameter 28
cron resource type 29
custom attribute 191
custom facts
about 53
Facter, extending with 53-55
custom functions
about 96
used, for refining custom module
interface 126-128
custom module
building 105
enhancing, through facts 125
implementing 106-109
interface, refining through custom
functions 126-128
making, portable across platforms 128, 129
naming 106
using 106
utilities, creating for derived manifests 110
custom types 117

D

data
resources, converting to 172-174
data, defining in manifest
consequences 159, 160
defined types
about 66
creating 67-69
differentiating, with classes 69, 70
used, for exploiting array values 78-81
using 67-69
using, as macros 77,78
using, as resource multiplexers 76
using, as resource wrappers 74, 75
dependency 20
documentation, modules 98, 99
domain-specific language (DSL) 8
dynamic configuration files
templating 134
dynamic scoping 154

E

enabled property 10
ensure property 10
environment.conf file 100
environment locations
configuring 100, 101
environments
maintaining 99, 100
modules, installing 101, 102
modules, obtaining 101, 102
used, for testing modules 104, 105
evaluation order
circular dependencies, avoiding 21, 22
controlling 16
dependencies, declaring 17-20
error propagation 20
events
about 23
passing, between classes and
defined types 83-85
exec resource type 27
external facts
using 55, 56
External Node Classifiers (ENCs) 174

F

Faces 186
Facter
example 62
extending, with custom facts 53-55
goals 57
systems, summarizing with 50, 51
facts
URL, for documentation 125
used, for enhancing custom module 125
fact values
accessing 52, 53
using 52, 53
flexibility, providing to classes
about 148
class inheritance 149
inheriting class, naming 151
parameters, making safer through
inheritance 151

[208]

Forge
modules' characteristics,
identifying 130
URL 130
used, for searching modules 130
fqdn_rand function 41
fully qualified domain name (FQDN) 52

G

group resource type 26

H

hashes 14
Hiera
arrays, handling 170-172
class parameter values,
binding 167-169
configuring 163
data, storing 164
hashes, handling 170-172
lookups, defining 179
practical example 177,178
using, in different contexts 175, 176
values, retrieving 165
values, using in manifest 165
working with simple values 166, 167
hiera_array function 170
hiera_hash function 171
hierarchy
configuration data,
structuring in 161, 162

immutability, variables 14
include keyword

preferring 93
Infrastructure as a Service (IaaS) 184
Infrastructure as Code paradigm 105
inheriting class

naming 151
installation, modules 101, 102
instances method 123

manifest
about 182
control structures, adding in 13, 14
dry-testing 12
structure 9
manifest, and Hiera designs
selecting between 175
manifest, building for cloud
about 187
arbitrary configuration files,
composing 194-196
certificate names, selecting 190, 191
distributed catalog, creating 191-194
functionality, mapping to nodes 187-189
instance deletions, handling 197, 198
metaparameters 18
model
substantiating, with providers 59, 60
modules
about 96
agent, enhancing through plugins 116, 117
best practices 102
content structure 97, 98
documentation 98, 99
generalization, avoiding 103
identifying, in Forge 130
important parts 96
installing 101, 102
manifest files, gathering 102, 103
obtaining 101, 102
searching, in Forge 130
testing 104
testing, with environments 104, 105
URL, for publishing 98
monolithic implementation 71
mount resource type 29, 30

N

Nginx

about 45

Phusion Passenger, using with 45, 46
nodes file 100
Notice keyword 20

[209]

(0) processorcount fact 52

properties
operatingsystemrelease fact 53 about 10
output versus parameters 10
interpreting, of puppet apply providerless resource types 61
command 11, 12 provider parameter 10
roviders
P Proudly sourced and uploaded by [StormRG] medel substantiating with 59, 60
Kickass Torrents | TPB | ExtraTorrent | h33t summ;iri ino 61 & !
z
parameterized classes Puppet 8
consequences 92, 93 about 182

parameters installing 8
versus properties 10 modules 96

parser functions 96 typical scopes 182
performance bottlenecks URL 182

avoiding, from templates 136

- - Puppet agent
performance considerations certificate, renewing 40
about 42 life cycle 38,39

basic tuning 46

. . . running, from cron 41
Passenger, using with Nginx 45

setting up 35-37

swi’fching, to Phusion Passenger 43, 44 puppet apply command
Phusion Passenger about 9, 31

switching to 43,44 . output, interpreting of 11,12

URL, for installation instructions 45 PuppetBoard 186

using, with Nginx 45, 46 Puppet Dashboard 186
Platform as a Service (PaaS) 184 Puppet Explorer 186
plugins Puppet Labs

about 116 URL 8

custom types, Creat.ing 118 URL, for advanced approaches 43

custom types, naming 118 . URL, for core resource types 61
management commands, declaring 121 URL, for style guide 52

prov%der, addm.g 121 . URL, for system installation information 32
provider, allowing to prefetch existing URL, for Troubleshooting section 47

.I‘SSOlf,lrcei . 123&24 puppetlabs-strings module
provider functionality, URL 99

implementing 122,123 Puppet master
resource names, using 120 about 31
resource type interface, creating 119
sensible parameter hooks, designing 120 master machine, setting up 32

types, making rojbust 125 master manifest, creating 33, 34
used, for enhancing modules agent 116,117 . 1¢ 32

configuration settings, inspecting 35

plugins, types puppetmaster system service 33
custom facts. 116 puppet module install command 101
parser functions 116 Puppet support, for SSL CSR attributes
providers 116 URL 199

types 116

[210]

Puppet, taking to cloud
about 184
agents, initializing 185
cloud-provisioner module, using 186
Puppet toolchain 46

R

realize function 138, 139
redundancy
saving, resource defaults used 152, 153
relationships, containers
performance implications 89
require metaparameter 19
resource chaining 17
resource defaults
used, for saving redundancy 152,153
resource interaction
implementing 22-24
resource parameters
overriding 147, 148
resources
about 10
converting, to data 172-174
exporting 142
exporting, to agents 141
importing 142
realizing, collectors used 140, 141
resources, exporting
about 141
central firewall, maintaining 146
custom configuration, automating 144
hosts files, managing 144
master configuration, for storing
exported resources 142
Nagios configuration, simplifying 145, 146
SSH host keys, exporting 143
resource type life cycle, agent side 58, 59
resource types
cron 29
examining 25, 26
exec 27,28
group 26
mount 29, 30
user 26
revocation 39
Roles and Profiles pattern 183

rspec-puppet module
about 105
URL 105

S

separate data storage
need for 158
singletons 135
site manifest 33
SSL troubleshooting 47, 48
stdlib module 101
strings 15
subscribe metaparameter 23
successful provisioning, ensuring
about 202
manifests, testing 204, 205
necessary relationships, adding 203
systems
summarizing, with Facter 50, 51

T

templates

performance bottlenecks, avoiding

from 136

using 135, 136
template syntax

learning 134, 135
transaction 57
Trusted Facts 189
types

about 117

summarizing 61
type system 57
typical scopes, Puppet

about 182

profiles 183,184

roles 183, 184

U

user resource type 26

utilities, custom module
complexity, dealing 115,116
configuration items, adding 111, 112
creating, for derived manifests 110

[211]

customization, allowing 113
unwanted configuration items,
removing 114, 115

\'

Vagrant 182
variables
using 14
variable types
about 14
arrays 15
hashes 14
strings 15
virtual resources
creating 137, 138

w

Warning keyword 20

Y

yum command 8

[212]

open source

community experience distilled

PUBLISHING

Thank you for buying
Puppet Essentials

About Packt Publishing

Packt, pronounced 'packed’, published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Puppet Reporting and Monitoring
ISBN: 978-1-78398-142-7 Paperback: 186 pages
Create insightful reports for your server infrastructure
using Puppet

1. Learn how to prepare and set up Puppet to
report on a wealth of data.

2. Develop your own custom plugins and work

Puppet Reporting with report processor systems.

and Monitoring 3. Explore compelling ways to utilize and present
Puppet data with easy-to-follow examples.

Extending Puppet
ISBN: 978-1-78398-144-1 Paperback: 328 pages

Design, manage, and deploy your Puppet architecture
with the help of real-world scenarios

1. Plan, test, and execute your
Puppet deployments.

e NI TR ORI T —
2. Write reusable and maintainable

Puppet code.

Extending Puppet

3. Handle challenges that might arise
in upcoming versions of Puppet.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Puppet 3 Cookbook
ISBN: 978-1-78216-976-5 Paperback: 274 pages

Build reliable, scalable, secure, and high-performance
systems to fully utilize the power of cloud computing

1. Use Puppet 3 to take control of your
servers and desktops, with detailed
step-by-step instructions.

2. Covers all the popular tools and frameworks
used with Puppet: Dashboard, Foreman,
and more.

3. Teaches you how to extend Puppet with
custom functions, types, and providers.

Mastering Puppet
ISBN: 978-1-78398-218-9 Paperback: 280 pages

Pull the strings of Puppet to configure enterprise-grade
environments for performance optimization

1. Implement Puppet in a medium to
large installation.

2. Deal with issues found in larger deployments,
such as scaling and improving performance.

3. Step-by-step tutorials to utilize Puppet efficiently
to have a fully functioning Puppet infrastructure
in an enterprise-level environment.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Writing Your First Manifests
	Getting started
	Introducing resources and properties
	Interpreting the output of the puppet apply command
	Dry-testing your manifest

	Adding control structures in manifests
	Using variables
	Variable types

	Controlling the order of evaluation
	Declaring dependencies
	Error propagation
	Avoiding circular dependencies

	Implementing resource interaction
	Examining the most notable resource types
	The user and group types
	The exec resource type
	The cron resource type
	The mount resource type

	Summary

	Chapter 2: The Master and Its Agents
	The Puppet master
	Setting up the master machine
	Creating the master manifest
	Inspecting the configuration settings

	Setting up the Puppet agent
	The agent life cycle
	Renewing an agent's certificate
	Running the agent from cron

	Performance considerations
	Switching to Phusion Passenger
	Using Passenger with Nginx
	Basic tuning

	Troubleshooting SSL issues
	Summary

	Chapter 3: A Peek Under the Hood – Facts, Types, and Providers
	Summarizing systems with Facter
	Accessing and using fact values
	Extending Facter with custom facts
	Simplifying things using external facts

	Goals of Facter

	Understanding the type system
	Resource type life cycle on the agent side

	Substantiating the model with providers
	Providerless resource types
	Summarizing types and providers

	Putting it all together
	Summary

	Chapter 4: Modularizing Manifests with Classes and Defined Types
	Introducing classes and defined types
	Defining and declaring classes
	Creating and using defined types
	Understanding and leveraging the differences

	Structured design patterns
	Writing comprehensive classes
	Writing component classes
	Using defined types as resource wrappers
	Using defined types as resource multiplexers
	Using defined types as macros
	Exploiting array values using defined types

	Including classes from defined types
	Nesting definitions in classes
	Establishing relationships among containers
	Passing events between classes and
defined types
	Ordering containers
	Limitations
	Performance implications of container relationships
	Mitigating the limitations
	The anchor pattern
	The contain function

	Making classes more flexible through parameters
	Caveats with parameterized classes
	Preferring the include keyword

	Summary

	Chapter 5: Extending Your Puppet Infrastructure with Modules
	An overview of Puppet's modules
	Parts of a module
	How the content of each module is structured
	Documentation in modules

	Maintaining environments
	Configuring environment locations
	Obtaining and installing modules
	Module's best practices
	Putting everything in modules
	Avoiding generalization
	Testing your modules
	Safe testing with environments

	Building a specific module
	Naming your module
	Making your module available to Puppet
	Implementing the basic module functionality
	Creating utilities for derived manifests
	Adding configuration items
	Allowing customization
	Removing unwanted configuration items
	Dealing with complexity

	Enhancing the agent through plugins
	Replacing a defined type with a native type

	Enhancing Puppet's system knowledge through facts
	Refining the interface of your module through custom functions
	Making your module portable across platforms

	Finding helpful Forge modules
	Identifying modules' characteristics

	Summary

	Chapter 6: Leveraging the Full Toolset
of the Language
	Templating dynamic configuration files
	Learning the template syntax
	Using templates in practice
	Avoiding performance bottlenecks from templates

	Creating virtual resources
	Realizing resources more flexibly using collectors

	Exporting resources to other agents
	Exporting and importing resources
	Configuring the master to store exported resources
	Exporting SSH host keys
	Managing hosts files locally
	Automating custom configuration items
	Simplifying the Nagios configuration
	Maintaining your central firewall

	Overriding resource parameters
	Making classes more flexible through inheritance
	Understanding class inheritance in Puppet
	Naming an inheriting class
	Making parameters safer through inheritance

	Saving redundancy using resource defaults
	Avoiding antipatterns
	Summary

	Chapter 7: Separating Data From Code Using Hiera
	Understanding the need for separate
data storage
	Consequences of defining data in the manifest

	Structuring configuration data in a hierarchy
	Configuring Hiera
	Storing Hiera data
	Choosing your backends

	Retrieving and using Hiera values in manifests
	Working with simple values
	Binding class parameter values automatically
	Handling hashes and arrays

	Converting resources to data
	Choosing between manifest and Hiera designs

	Using Hiera in different contexts
	A practical example
	Debugging Hiera lookups
	Summary

	Chapter 8: Configuring Your Cloud Application with Puppet
	Typical scopes of Puppet
	Common data center use – roles and profiles

	Taking Puppet to the cloud
	Initializing agents in the cloud
	Using Puppet's cloud-provisioner module

	Building manifests for the cloud
	Mapping functionalities to nodes
	Choosing certificate names
	Creating a distributed catalog
	Composing arbitrary configuration files
	Handling instance deletions

	Preparing for autoscaling
	Managing certificates
	Limiting round trip times

	Ensuring successful provisioning
	Adding necessary relationships
	Testing the manifests

	Summary

	Index

