

Puppet	Cookbook	Third	Edition

Table	of	Contents

Puppet	Cookbook	Third	Edition

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	Subscribe?

Free	Access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Puppet	Language	and	Style

Introduction

Adding	a	resource	to	a	node

How	to	do	it…

How	it	works…

Using	Facter	to	describe	a	node

How	to	do	it…

How	it	works…

There’s	more…

Variables

Scope

Installing	a	package	before	starting	a	service

How	to	do	it…

How	it	works…

Capitalization

Learning	metaparameters	and	ordering

Trifecta

Idempotency

Installing,	configuring,	and	starting	a	service

How	to	do	it…

How	it	works…

Using	community	Puppet	style

How	to	do	it…

Indentation

Quoting

False

Variables

Parameters

Symlinks

Creating	a	manifest

How	to	do	it…

There’s	more…

Checking	your	manifests	with	Puppet-lint

Getting	ready

How	to	do	it…

There’s	more…

See	also

Using	modules

How	to	do	it…

How	it	works…

There’s	more…

Templates

Facts,	functions,	types,	and	providers

Third-party	modules

Module	organization

See	also

Using	standard	naming	conventions

How	to	do	it…

There’s	more…

Using	inline	templates

How	to	do	it…

How	it	works…

There’s	more…

See	also

Iterating	over	multiple	items

How	to	do	it…

How	it	works…

There’s	more…

Using	hashes

Creating	arrays	with	the	split	function

Writing	powerful	conditional	statements

How	to	do	it…

How	it	works…

There’s	more…

Elseif	branches

Comparisons

Combining	expressions

See	also

Using	regular	expressions	in	if	statements

How	to	do	it…

How	it	works…

There’s	more…

Capturing	patterns

Regular	expression	syntax

See	also

Using	selectors	and	case	statements

How	to	do	it…

How	it	works…

Selector

Case	statement

There’s	more…

Regular	expressions

Defaults

Using	the	in	operator

How	to	do	it…

There’s	more…

Using	regular	expression	substitutions

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	the	future	parser

Getting	ready

How	to	do	it…

Appending	to	and	concatenating	arrays

Lambda	functions

Reduce

Filter

Map

Slice

Each

Other	features

2.	Puppet	Infrastructure

Introduction

Installing	Puppet

Getting	ready

How	to	do	it…

Managing	your	manifests	with	Git

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	decentralized	Puppet	architecture

Getting	ready

How	to	do	it…

How	it	works…

Writing	a	papply	script

How	to	do	it…

How	it	works…

Running	Puppet	from	cron

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Bootstrapping	Puppet	with	bash

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	centralized	Puppet	infrastructure

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	certificates	with	multiple	DNS	names

Getting	ready

How	to	do	it…

How	it	works…

Running	Puppet	from	passenger

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Setting	up	the	environment

Getting	ready

How	to	do	it…

There’s	more…

Configuring	PuppetDB

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Configuring	Hiera

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Setting	node-specific	data	with	Hiera

Getting	ready

How	to	do	it…

How	it	works…

Storing	secret	data	with	hiera-gpg

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	MessagePack	serialization

Getting	ready

How	to	do	it…

How	it	works…

Automatic	syntax	checking	with	Git	hooks

How	to	do	it…

How	it	works…

Pushing	code	around	with	Git

Getting	ready

How	to	do	it…

How	it	works…

Managing	Environments	with	Git

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

3.	Writing	Better	Manifests

Introduction

Using	arrays	of	resources

How	to	do	it…

How	it	works…

See	also

Using	resource	defaults

How	to	do	it…

How	it	works…

There’s	more…

Using	defined	types

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	tags

How	to	do	it…

There’s	more…

Using	run	stages

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	roles	and	profiles

How	to	do	it…

How	it	works…

There’s	more…

Passing	parameters	to	classes

How	to	do	it…

How	it	works…

There’s	more…

Specifying	default	values

Passing	parameters	from	Hiera

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Writing	reusable,	cross-platform	manifests

How	to	do	it…

How	it	works…

There’s	more…

See	also

Getting	information	about	the	environment

How	to	do	it…

How	it	works…

There’s	more…

See	also

Importing	dynamic	information

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Passing	arguments	to	shell	commands

How	to	do	it…

How	it	works…

4.	Working	with	Files	and	Packages

Introduction

Making	quick	edits	to	config	files

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Editing	INI	style	files	with	puppetlabs-inifile

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	Augeas	to	reliably	edit	config	files

How	to	do	it…

How	it	works…

There’s	more…

Building	config	files	using	snippets

Getting	ready

How	to	do	it…

How	it	works…

Using	ERB	templates

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	array	iteration	in	templates

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	EPP	templates

How	to	do	it…

How	it	works…

There’s	more…

Using	GnuPG	to	encrypt	secrets

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Installing	packages	from	a	third-party	repository

How	to	do	it…

How	it	works…

There’s	more…

Comparing	package	versions

How	to	do	it…

How	it	works…

5.	Users	and	Virtual	Resources

Introduction

Using	virtual	resources

How	to	do	it…

How	it	works…

There’s	more…

Managing	users	with	virtual	resources

How	to	do	it…

How	it	works…

There’s	more…

See	also

Managing	users’	SSH	access

How	to	do	it…

How	it	works…

There’s	more…

Managing	users’	customization	files

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	exported	resources

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

6.	Managing	Resources	and	Files

Introduction

Distributing	cron	jobs	efficiently

How	to	do	it…

How	it	works…

There’s	more…

See	also

Scheduling	when	resources	are	applied

How	to	do	it…

How	it	works…

There’s	more…

Using	host	resources

How	to	do	it…

How	it	works…

There’s	more…

Using	exported	host	resources

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	multiple	file	sources

How	to	do	it…

How	it	works…

There’s	more…

See	also

Distributing	and	merging	directory	trees

How	to	do	it…

How	it	works…

There’s	more…

Cleaning	up	old	files

How	to	do	it…

How	it	works…

There’s	more…

Auditing	resources

How	to	do	it…

How	it	works…

There’s	more…

See	also

Temporarily	disabling	resources

How	to	do	it…

How	it	works…

7.	Managing	Applications

Introduction

Using	public	modules

How	to	do	it…

How	it	works…

There’s	more…

Managing	Apache	servers

How	to	do	it…

How	it	works…

Creating	Apache	virtual	hosts

How	to	do	it…

How	it	works…

There’s	more…

Creating	nginx	virtual	hosts

How	to	do	it…

How	it	works…

There’s	more…

Managing	MySQL

How	to	do	it…

How	it	works…

There’s	more…

Creating	databases	and	users

How	to	do	it…

How	it	works…

There’s	more…

8.	Internode	Coordination

Introduction

Managing	firewalls	with	iptables

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Building	high-availability	services	using	Heartbeat

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Managing	NFS	servers	and	file	shares

How	to	do	it…

How	it	works…

Using	HAProxy	to	load-balance	multiple	web	servers

How	to	do	it…

How	it	works…

There’s	more…

Managing	Docker	with	Puppet

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

9.	External	Tools	and	the	Puppet	Ecosystem

Introduction

Creating	custom	facts

How	to	do	it…

How	it	works…

There’s	more…

See	also

Adding	external	facts

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Debugging	external	facts

Using	external	facts	in	Puppet

See	also

Setting	facts	as	environment	variables

How	to	do	it…

Generating	manifests	with	the	Puppet	resource	command

How	to	do	it…

There’s	more…

Generating	manifests	with	other	tools

Getting	ready

How	to	do	it…

There’s	more…

Using	an	external	node	classifier

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	your	own	resource	types

How	to	do	it…

How	it	works…

There’s	more…

Documentation

Validation

Creating	your	own	providers

How	to	do	it…

How	it	works…

There’s	more…

Creating	custom	functions

How	to	do	it…

How	it	works…

There’s	more…

Testing	your	puppet	manifests	with	rspec-puppet

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	librarian-puppet

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	r10k

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

10.	Monitoring,	Reporting,	and	Troubleshooting

Introduction

Noop	–	the	don’t	change	anything	option

How	to	do	it…

How	it	works…

There’s	more…

See	also

Logging	command	output

How	to	do	it…

How	it	works…

There’s	more…

Logging	debug	messages

How	to	do	it…

How	it	works…

There’s	more…

Printing	out	variable	values

Resource	ordering

Generating	reports

How	to	do	it…

How	it	works…

There’s	more…

Other	report	types

See	also

Producing	automatic	HTML	documentation

How	to	do	it…

How	it	works…

There’s	more…

Drawing	dependency	graphs

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Understanding	Puppet	errors

How	to	do	it…

See	also

Inspecting	configuration	settings

How	to	do	it…

How	it	works…

See	also

Index

Puppet	Cookbook	Third	Edition

Puppet	Cookbook	Third	Edition
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	October	2011

Second	edition:	August	2013

Third	edition:	February	2015

Production	reference:	1170215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-488-2

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Thomas	Uphill

John	Arundel

Reviewers

Dhruv	Ahuja

James	Fryman

Jeroen	Hooyberghs

Pedro	Morgado

Commissioning	Editor

Kartikey	Pandey

Acquisition	Editor

Usha	Iyer

Content	Development	Editor

Rahul	Nair

Technical	Editor

Mohita	Vyas

Copy	Editors

Merilyn	Pereira

Adithi	Shetty

Project	Coordinator

Judie	Jose

Proofreaders

Ameesha	Green

Joanna	McMahon

Indexer

Tejal	Soni

Graphics

Disha	Haria

Abhinash	Sahu

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Authors
Thomas	Uphill	is	an	RHCA	who	has	been	using	Puppet	since	0.24.	He	has	worked	as	a
system	administrator	for	almost	20	years,	most	recently	with	RHEL	systems.	He	recently
wrote	Mastering	Puppet,	Packt	Publishing	a	book	for	managing	Puppet	in	large
deployments.	He	has	given	tutorials	on	Puppet	at	LISA	and	LOPSA-East.	When	not	at	the
Puppet	User	Group	of	Seattle	(PUGS),	he	can	be	found	at	http://ramblings.narrabilis.com.

Thank	you	to	John	Arundel	for	the	previous	editions	of	this	book,	I	had	a	great	foundation
for	this	rewrite.	I	would	like	to	thank	my	wife	Priya	Fernandes	for	her	support	and
encouragement	while	I	was	updating	this	book.	Thanks	to	my	fellow	PUGS	Andy	and
Justin	for	their	suggestions.	Thanks	to	my	reviewers,	Jeroen	Hooyberghs,	James	Fryman,
and	Dhruv	Ahuja	for	taking	the	time	to	find	all	the	errors	they	did.

John	Arundel	has	worked	in	the	IT	industry	for	most	of	his	life,	and	during	that	time	has
done	wrong	(or	seen	others	do	wrong)	almost	everything	that	you	can	do	wrong	with
computers.	That	comprehensive	knowledge	of	what	not	to	do,	he	feels,	is	one	of	his
greatest	assets	as	a	consultant.	He	is	still	adding	to	it.

He	spent	much	of	his	career	working	in	very	large	corporations	and,	as	a	result,	now	likes
to	work	with	very	small	corporations.	They	like	working	with	him	too,	not	only	because
he	can	tell	them	about	things	that	should	not	be	done,	but	also	because	he	can	confidently
inform	them	that	big	companies	don’t	know	what	they’re	doing	either.

Off	the	clock,	he	enjoys	gardening,	competitive	rifle	shooting,	and	other	gentle	hobbies.
You	can	follow	him	on	Twitter	@bitfield.	If	your	company	is	small	enough,	you	can	hire
him	there	too.

http://ramblings.narrabilis.com

About	the	Reviewers
Dhruv	Ahuja	is	a	senior	DevOps	engineer	at	a	leading	financial	data	vendor.	He
specializes	in	software	delivery	optimization	and	infrastructure	automation.	He	also	holds
a	master’s	degree	in	advanced	software	engineering	from	King’s	College	London,	and
won	the	Red	Hat	UK	Channel	Consultant	of	the	Year	award	in	2012	for	delivering
progressive	solutions.	A	long	history	in	software	development	and	systems	administration
equip	him	with	aptness	in	both	areas.	In	this	era	of	infrastructure	as	code,	he	believes	that
declarative	abstraction	and	accurate	interfaces	are	key	to	a	scalable	business	software
lifecycle	process.

James	Fryman	is	an	information	technologist	who	builds,	designs,	curates,	and
evangelizes	automation	in	all	layers	of	the	IT	stack.	Over	the	last	decade,	James	has	held
roles	in	information	technology	that	includes	the	domains	of	information	security,	service
delivery,	IT	operations,	IT	development,	and	IT	management.	He	has	learned	through
these	experiences	the	importance	of	automation	in	all	facets	of	information	technology	to
accelerate	delivery,	and	reduce	human	errors	throughout	an	application	lifecycle.	He	is
also	a	frequent	speaker	on	the	topic	of	automation	at	conferences	throughout	the	world.

Now	a	senior	DevOps	engineer	at	StackStorm,	James	most	recently	worked	at	GitHub
assisting	in	the	development	and	curation	of	systems	scaling	within	the	Operations	group.

My	wife	Melanie	is	awesome	and	deserves	much	more	than	just	the	words	printed	here.

Jeroen	Hooyberghs	is	an	open	source	and	Linux	consultant,	working	for	Open-Future	in
Belgium.	In	this	position,	as	well	as	when	he	was	involved	in	Linux	system
administration,	he	has	built	up	technical	expertise	in	a	lot	of	open	source	solutions,	such	as
Puppet.	In	2014,	he	became	a	Puppet	Certified	Professional	and	official	Puppet	trainer.	As
a	reviewer,	he	also	contributed	to	Mastering	Puppet,	Thomas	Uphill,	Packt	Publishing.

Pedro	Morgado	holds	a	master’s	degree	in	informatics	and	computing	engineering	at
FEUP	(Faculdade	de	Engenharia	da	Universidade	do	Porto)	and	did	his	master’s	thesis	on
object-oriented	patterns	and	service-oriented	patterns.

Since	2009,	he	has	been	working	with	several	different	programming	languages,
frameworks,	and	technologies,	which	includes	the	main	object-oriented	programming
languages	such	as	PHP,	Python,	C/C++,	Java,	and	JavaScript,	as	well	as	web	languages
such	as	HTML,	JSON,	and	XML.	He	has	worked	with	different	database	technologies
such	as	MySQL,	PostgreSQL,	Oracle	SQL,	and	SQL	Server,	and	also	with	different
caching	systems	and	search	engines.

He	has	worked	as	an	IT	consultant	in	the	banking	field	for	a	year,	and	has	built	a
recommendation	system	(data	mining	and	text	mining)	as	a	research	assistant	at	INESC
(Technology	and	Science-Associated	Laboratory)	where	he	worked	for	a	period	of	1	year.
Finally,	he	focused	on	web	projects	as	a	technical	lead	at	Rocket	Internet	AG,	for	which
he	built	scalable	systems	for	FoodPanda,	CupoNation,	Camudi,	and	Lamudi.	Due	to	his
experience,	he	has	specialized	in	project	management	and	product	development	based	in
an	e-commerce	area.	For	more	information,	take	a	look	at	his	LinkedIn	account

(https://www.linkedin.com/in/pedrombmorgado).

https://www.linkedin.com/in/pedrombmorgado

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Configuration	management	has	become	a	requirement	for	system	administrators.	Knowing
how	to	use	configuration	management	tools,	such	as	Puppet,	enables	administrators	to
take	full	advantage	of	automated	provisioning	systems	and	cloud	resources.	There	is	a
natural	progression	from	performing	a	task,	scripting	a	task	to	creating	a	module	in
Puppet,	or	Puppetizing	a	task.

This	book	takes	you	beyond	the	basics	and	explores	the	full	power	of	Puppet,	showing
you	in	detail	how	to	tackle	a	variety	of	real-world	problems	and	applications.	At	every
step,	it	shows	you	exactly	what	commands	you	need	to	type	and	includes	complete	code
samples	for	every	recipe.	It	takes	you	from	a	rudimentary	knowledge	of	Puppet	to	a	more
complete	and	expert	understanding	of	Puppet’s	latest	and	most	advanced	features,
community	best	practices,	scaling,	and	performance.	This	edition	of	the	book	includes
recipes	for	configuring	and	using	Hiera,	puppetdb	and	operating	a	centralized
puppetmaster	configuration.

This	book	also	includes	real	examples	from	production	systems	and	techniques	that	are	in
use	in	some	of	the	world’s	largest	Puppet	installations.	It	will	show	you	different	ways	to
do	things	using	Puppet,	and	point	out	some	of	the	pros	and	cons	of	these	approaches.

The	book	is	structured	so	that	you	can	dip	in	at	any	point	and	try	out	a	recipe	without
having	to	work	your	way	through	from	cover	to	cover.	Whatever	your	level	of	Puppet
experience,	there’s	something	for	you—from	simple	workflow	tips	to	advanced,	high-
performance	Puppet	architectures.

Puppet	is	an	ever-changing	ecosystem	of	tools.	I’ve	tried	to	include	all	the	tools	that	I	feel
are	important	today,	such	as	r10k.	The	#puppet	IRC	channel,	puppetlabs	blog
(http://puppetlabs.com/blog),	and	the	Forge	(http://forge.puppetlabs.com)	are	great
resources	to	stay	up	to	date	with	the	changes	being	made	to	Puppet.

http://puppetlabs.com/blog
http://forge.puppetlabs.com

What	this	book	covers
Chapter	1,	Puppet	Language	and	Style,	introduces	the	Puppet	language	and	shows	how	to
write	manifests.	The	Puppet	linting	tool,	puppet-lint,	is	introduced	and	we	review	best
practices	to	write	Puppet	code.	Metaparameters	are	shown	with	examples.	We	also
preview	proposed	changes	to	the	Puppet	language	by	using	the	future	parser.

Chapter	2,	Puppet	Infrastructure,	is	all	about	how	to	deploy	Puppet	in	your	environment.
We	cover	the	two	main	methods	of	installation,	centralized	and	decentralized	(masterless).
We	show	you	how	to	use	Git	to	centrally	manage	your	code.	We	also	configure	puppetdb
and	Hiera.

Chapter	3,	Writing	Better	Manifests,	deals	with	organizing	your	Puppet	manifests.
Manifests	are	used	to	build	modules;	we	introduce	the	concept	of	roles	and	profiles	to
abstract	how	modules	are	applied	to	machines.	Parameterized	classes	are	introduced.	We
also	show	you	how	to	efficiently	define	resources	with	arrays	of	resources	and	resource
defaults.

Chapter	4,	Working	with	Files	and	Packages,	shows	you	how	to	manage	files	using
snippets	(fragments).	We	introduce	the	power	of	templating	with	both	Ruby	(ERB)	and
Puppet	(EPP)	templates.	We	also	explore	ways	to	secure	information	stored	in	your	Puppet
manifests.

Chapter	5,	Users	and	Virtual	Resources,	deals	with	the	advanced	topic	of	virtual	and
exported	resources.	Virtual	resources	are	a	way	of	defining	resources	but	not	applying
them	by	default.	Exported	resources	are	similar	but	are	used	to	have	resources	from	one
machine,	applied	to	one	or	more	other	machines.

Chapter	6,	Managing	Resources	and	Files,	is	about	dealing	with	directories	and	purging
resources	not	controlled	by	Puppet.	We	show	you	how	to	have	file	resources	applied
differently	on	different	machines.	Methods	for	managing	host	entries	in	/etc/hosts	are
shown	with	exported	resources	examples.

Chapter	7,	Managing	Applications,	shows	you	how	to	use	Puppet	to	manage	your
deployed	applications.	Using	public	Forge	modules,	we	configure	Apache,	nginx,	and
MySQL.

Chapter	8,	Internode	Coordination,	explores	exported	resources.	We	use	exported
resources	to	configure	NFS,	haproxy,	and	iptables.

Chapter	9,	External	Tools	and	the	Puppet	Ecosystem,	shows	you	how	to	extend	Puppet
with	your	own	types	and	providers,	how	to	make	your	own	facts,	as	well	as	some	of	the
more	advanced	tools	such	as	Puppet-librarian	and	r10k.

Chapter	10,	Monitoring,	Reporting,	and	Troubleshooting,	is	the	final	chapter	where	we
show	you	how	to	leverage	Puppet	to	see	where	the	problems	are	in	your	infrastructure.
Some	of	the	more	common	problems	are	shown	with	solutions.

What	you	need	for	this	book
You	will	need	a	computer	capable	of	running	Linux	Virtual	Machines.	The	examples	in
the	book	use	Debian	and	Enterprise	Linux-based	distributions.	You	will	also	need	an
Internet	connection	to	utilize	the	repositories	provided	by	puppetlabs.

Who	this	book	is	for
This	book	assumes	a	familiarity	with	Linux	administration.	The	examples	require	some
experience	with	command-line	usage	and	basic	text	file	editing.	Although	beneficial,
previous	coding	experience	is	not	required.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“You	can
concatenate	arrays	with	the	+	operator	or	append	them	with	the	<<	operator.”

A	block	of	code	is	set	as	follows:

slice	($firewall_rules,2)	|$ip,	$port|	{firewall	{"$port	from	$ip":	dport		

=>	$port,	source	=>	"$ip",	action	=>	'accept',	}

}

Any	command-line	input	or	output	is	written	as	follows:

Notice:	1

Notice:	2

Notice:	3

Notice:	4

Notice:	5

#	cp	/usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

					/etc/asterisk/cdr_mysql.conf

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“In	this	graph	it	is	easy	to
see	that	Package[‘ntp’]	is	the	first	resource	to	apply,	then	File[‘/etc/ntp.conf’]	and	finally
Service[‘ntp’].”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Puppet	Language	and	Style
	 “Computer	language	design	is	just	like	a	stroll	in	the	park.	Jurassic	Park,	that	is.” 	

	 —Larry	Wall

In	this	chapter,	we	will	cover	the	following	recipes:

Adding	a	resource	to	a	node
Using	Facter	to	describe	a	node
Installing	a	package	before	starting	a	service
Installing,	configuring,	and	starting	a	service
Using	community	Puppet	style
Creating	a	manifest
Checking	your	manifests	with	Puppet-lint
Using	modules
Using	standard	naming	conventions
Using	inline	templates
Iterating	over	multiple	items
Writing	powerful	conditional	statements
Using	regular	expressions	in	if	statements
Using	selectors	and	case	statements
Using	the	in	operator
Using	regular	expression	substitutions
Using	the	future	parser

Introduction
In	this	chapter,	we’ll	start	with	the	basics	of	Puppet	syntax	and	show	you	how	some	of	the
syntactic	sugar	in	Puppet	is	used.	We’ll	then	move	on	to	how	Puppet	deals	with
dependencies	and	how	to	make	Puppet	do	the	work	for	you.

We’ll	look	at	how	to	organize	and	structure	your	code	into	modules	following	community
conventions,	so	that	other	people	will	find	it	easy	to	read	and	maintain	your	code.	I’ll	also
show	you	some	powerful	features	of	Puppet	language,	which	will	let	you	write	concise,
yet	expressive	manifests.

Adding	a	resource	to	a	node
This	recipe	will	introduce	the	language	and	show	you	the	basics	of	writing	Puppet	code.	A
beginner	may	wish	to	reference	Puppet	3:	Beginner’s	Guide,	John	Arundel,	Packt
Publishing	in	addition	to	this	section.	Puppet	code	files	are	called	manifests;	manifests
declare	resources.	A	resource	in	Puppet	may	be	a	type,	class,	or	node.	A	type	is	something
like	a	file	or	package	or	anything	that	has	a	type	declared	in	the	language.	The	current	list
of	standard	types	is	available	on	puppetlabs	website	at
https://docs.puppetlabs.com/references/latest/type.html.	I	find	myself	referencing	this	site
very	often.	You	may	define	your	own	types,	either	using	a	mechanism,	similar	to	a
subroutine,	named	defined	types,	or	you	can	extend	the	language	using	a	custom	type.
Types	are	the	heart	of	the	language;	they	describe	the	things	that	make	up	a	node	(node	is
the	word	Puppet	uses	for	client	computers/devices).	Puppet	uses	resources	to	describe	the
state	of	a	node;	for	example,	we	will	declare	the	following	package	resource	for	a	node
using	a	site	manifest	(site.pp).

https://docs.puppetlabs.com/references/latest/type.html

How	to	do	it…
Create	a	site.pp	file	and	place	the	following	code	in	it:

		node	default	{

				package	{	'httpd':

						ensure	=>	'installed'

				}

		}

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

How	it	works…
This	manifest	will	ensure	that	any	node,	on	which	this	manifest	is	applied,	will	install	a
package	called	'httpd'.	The	default	keyword	is	a	wildcard	to	Puppet;	it	applies	anything
within	the	node	default	definition	to	any	node.	When	Puppet	applies	the	manifest	to	a
node,	it	uses	a	Resource	Abstraction	Layer	(RAL)	to	translate	the	package	type	into	the
package	management	system	of	the	target	node.	What	this	means	is	that	we	can	use	the
same	manifest	to	install	the	httpd	package	on	any	system	for	which	Puppet	has	a
Provider	for	the	package	type.	Providers	are	the	pieces	of	code	that	do	the	real	work	of
applying	a	manifest.	When	the	previous	code	is	applied	to	a	node	running	on	a	YUM-
based	distribution,	the	YUM	provider	will	be	used	to	install	the	httpd	RPM	packages.
When	the	same	code	is	applied	to	a	node	running	on	an	APT-based	distribution,	the	APT
provider	will	be	used	to	install	the	httpd	DEB	package	(which	may	not	exist,	most
debian-based	systems	call	this	package	apache2;	we’ll	deal	with	this	sort	of	naming
problem	later).

Using	Facter	to	describe	a	node
Facter	is	a	separate	utility	upon	which	Puppet	depends.	It	is	the	system	used	by	Puppet	to
gather	information	about	the	target	system	(node);	facter	calls	the	nuggets	of	information
facts.	You	may	run	facter	from	the	command	line	to	obtain	real-time	information	from
the	system.

How	to	do	it…
1.	 Use	facter	to	find	the	current	uptime	of	the	system,	the	uptime	fact:

t@cookbook	~$	facter	uptime

0:12	hours

2.	 Compare	this	with	the	output	of	the	Linux	uptime	command:

t@cookbook	~$	uptime

	01:18:52	up	12	min,		1	user,		load	average:	0.00,	0.00,	0.00

How	it	works…
When	facter	is	installed	(as	a	dependency	for	puppet),	several	fact	definitions	are
installed	by	default.	You	can	reference	each	of	these	facts	by	name	from	the	command
line.

There’s	more…
Running	facter	without	any	arguments	causes	facter	to	print	all	the	facts	known	about
the	system.	We	will	see	in	later	chapters	that	facter	can	be	extended	with	your	own
custom	facts.	All	facts	are	available	for	you	to	use	as	variables;	variables	are	discussed	in
the	next	section.

Variables
Variables	in	Puppet	are	marked	with	a	dollar	sign	($)	character.	When	using	variables
within	a	manifest,	it	is	preferred	to	enclose	the	variable	within	braces	"${myvariable}"
instead	of	"$myvariable".	All	of	the	facts	from	facter	can	be	referenced	as	top	scope
variables	(we	will	discuss	scope	in	the	next	section).	For	example,	the	fully	qualified
domain	name	(FQDN)	of	the	node	may	be	referenced	by	"${::fqdn}".	Variables	can
only	contain	alphabetic	characters,	numerals,	and	the	underscore	character	(_).	As	a	matter
of	style,	variables	should	start	with	an	alphabetic	character.	Never	use	dashes	in	variable
names.

Scope
In	the	variable	example	explained	in	the	There’s	more…	section,	the	fully	qualified	domain
name	was	referred	to	as	${::fqdn}	rather	than	${fqdn};	the	double	colons	are	how	Puppet
differentiates	scope.	The	highest	level	scope,	top	scope	or	global,	is	referred	to	by	two
colons	(::)	at	the	beginning	of	a	variable	identifier.	To	reduce	namespace	collisions,
always	use	fully	scoped	variable	identifiers	in	your	manifests.	For	a	Unix	user,	think	of
top	scope	variables	as	the	/	(root)	level.	You	can	refer	to	variables	using	the	double	colon
syntax	similar	to	how	you	would	refer	to	a	directory	by	its	full	path.	For	the	developer,
you	can	think	of	top	scope	variables	as	global	variables;	however,	unlike	global	variables,
you	must	always	refer	to	them	with	the	double	colon	notation	to	guarantee	that	a	local
variable	isn’t	obscuring	the	top	scope	variable.

Installing	a	package	before	starting	a
service
To	show	how	ordering	works,	we’ll	create	a	manifest	that	installs	httpd	and	then	ensures
the	httpd	package	service	is	running.

How	to	do	it…
1.	 We	start	by	creating	a	manifest	that	defines	the	service:

		service	{'httpd':

				ensure		=>	running,

				require	=>	Package['httpd'],

		}

2.	 The	service	definition	references	a	package	resource	named	httpd;	we	now	need	to
define	that	resource:

		package	{'httpd':

				ensure	=>	'installed',

		}

How	it	works…
In	this	example,	the	package	will	be	installed	before	the	service	is	started.	Using	require
within	the	definition	of	the	httpd	service	ensures	that	the	package	is	installed	first,
regardless	of	the	order	within	the	manifest	file.

Capitalization
Capitalization	is	important	in	Puppet.	In	our	previous	example,	we	created	a	package
named	httpd.	If	we	wanted	to	refer	to	this	package	later,	we	would	capitalize	its	type
(package)	as	follows:

Package['httpd']

To	refer	to	a	class,	for	example,	the	something::somewhere	class,	which	has	already	been
included/defined	in	your	manifest,	you	can	reference	it	with	the	full	path	as	follows:

Class['something::somewhere']

When	you	have	a	defined	type,	for	example	the	following	defined	type:

example::thing	{'one':}	

The	preceding	resource	may	be	referenced	later	as	follows:

Example::Thing['one']

Knowing	how	to	reference	previously	defined	resources	is	necessary	for	the	next	section
on	metaparameters	and	ordering.

Learning	metaparameters	and	ordering
All	the	manifests	that	will	be	used	to	define	a	node	are	compiled	into	a	catalog.	A	catalog
is	the	code	that	will	be	applied	to	configure	a	node.	It	is	important	to	remember	that
manifests	are	not	applied	to	nodes	sequentially.	There	is	no	inherent	order	to	the
application	of	manifests.	With	this	in	mind,	in	the	previous	httpd	example,	what	if	we
wanted	to	ensure	that	the	httpd	process	started	after	the	httpd	package	was	installed?

We	couldn’t	rely	on	the	httpd	service	coming	after	the	httpd	package	in	the	manifests.
What	we	have	to	do	is	use	metaparameters	to	tell	Puppet	the	order	in	which	we	want
resources	applied	to	the	node.	Metaparameters	are	parameters	that	can	be	applied	to	any
resource	and	are	not	specific	to	any	one	resource	type.	They	are	used	for	catalog
compilation	and	as	hints	to	Puppet	but	not	to	define	anything	about	the	resource	to	which
they	are	attached.	When	dealing	with	ordering,	there	are	four	metaparameters	used:

before

require

notify

subscribe

The	before	and	require	metaparameters	specify	a	direct	ordering;	notify	implies	before
and	subscribe	implies	require.	The	notify	metaparameter	is	only	applicable	to	services;

what	notify	does	is	tell	a	service	to	restart	after	the	notifying	resource	has	been	applied	to
the	node	(this	is	most	often	a	package	or	file	resource).	In	the	case	of	files,	once	the	file	is
created	on	the	node,	a	notify	parameter	will	restart	any	services	mentioned.	The
subscribe	metaparameter	has	the	same	effect	but	is	defined	on	the	service;	the	service
will	subscribe	to	the	file.

Trifecta
The	relationship	between	package	and	service	previously	mentioned	is	an	important	and
powerful	paradigm	of	Puppet.	Adding	one	more	resource-type	file	into	the	fold,	creates
what	puppeteers	refer	to	as	the	trifecta.	Almost	all	system	administration	tasks	revolve
around	these	three	resource	types.	As	a	system	administrator,	you	install	a	package,
configure	the	package	with	files,	and	then	start	the	service.

Diagram	of	Trifecta	(Files	require	package	for	directory,	service	requires	files	and
package)

Idempotency
A	key	concept	of	Puppet	is	that	the	state	of	the	system	when	a	catalog	is	applied	to	a	node
cannot	affect	the	outcome	of	Puppet	run.	In	other	words,	at	the	end	of	Puppet	run	(if	the
run	was	successful),	the	system	will	be	in	a	known	state	and	any	further	application	of	the
catalog	will	result	in	a	system	that	is	in	the	same	state.	This	property	of	Puppet	is	known
as	idempotency.	Idempotency	is	the	property	that	no	matter	how	many	times	you	do
something,	it	remains	in	the	same	state	as	the	first	time	you	did	it.	For	instance,	if	you	had
a	light	switch	and	you	gave	the	instruction	to	turn	it	on,	the	light	would	turn	on.	If	you
gave	the	instruction	again,	the	light	would	remain	on.

Installing,	configuring,	and	starting	a
service
There	are	many	examples	of	this	pattern	online.	In	our	simple	example,	we	will	create	an
Apache	configuration	file	under	/etc/httpd/conf.d/cookbook.conf.	The
/etc/httpd/conf.d	directory	will	not	exist	until	the	httpd	package	is	installed.	After	this
file	is	created,	we	would	want	httpd	to	restart	to	notice	the	change;	we	can	achieve	this
with	a	notify	parameter.

How	to	do	it…
We	will	need	the	same	definitions	as	our	last	example;	we	need	the	package	and	service
installed.	We	now	need	two	more	things.	We	need	the	configuration	file	and	index	page
(index.html)	created.	For	this,	we	follow	these	steps:

1.	 As	in	the	previous	example,	we	ensure	the	service	is	running	and	specify	that	the
service	requires	the	httpd	package:

		service	{'httpd':

				ensure	=>	running,

				require	=>	Package['httpd'],

		}

2.	 We	then	define	the	package	as	follows:

		package	{'httpd':

				ensure	=>	installed,

		}

3.	 Now,	we	create	the	/etc/httpd/conf.d/cookbook.conf	configuration	file;	the
/etc/httpd/conf.d	directory	will	not	exist	until	the	httpd	package	is	installed.	The
require	metaparameter	tells	Puppet	that	this	file	requires	the	httpd	package	to	be
installed	before	it	is	created:

		file	{'/etc/httpd/conf.d/cookbook.conf':

				content	=>	"<VirtualHost	

*:80>\nServernamecookbook\nDocumentRoot/var/www/cookbook\n</VirtualHost

>\n",

				require	=>	Package['httpd'],

				notify	=>	Service['httpd'],

		}

4.	 We	then	go	on	to	create	an	index.html	file	for	our	virtual	host	in
/var/www/cookbook.	This	directory	won’t	exist	yet,	so	we	need	to	create	this	as	well,
using	the	following	code:

		file	{'/var/www/cookbook':

				ensure	=>	directory,

		}

		file	{'/var/www/cookbook/index.html':

				content	=>	"<html><h1>Hello	World!</h1></html>\n",

				require	=>	File['/var/www/cookbook'],

		}

How	it	works…
The	require	attribute	to	the	file	resources	tell	Puppet	that	we	need	the
/var/www/cookbook	directory	created	before	we	can	create	the	index.html	file.	The
important	concept	to	remember	is	that	we	cannot	assume	anything	about	the	target	system
(node).	We	need	to	define	everything	on	which	the	target	depends.	Anytime	you	create	a
file	in	a	manifest,	you	have	to	ensure	that	the	directory	containing	that	file	exists.	Anytime
you	specify	that	a	service	should	be	running,	you	have	to	ensure	that	the	package
providing	that	service	is	installed.

In	this	example,	using	metaparameters,	we	can	be	confident	that	no	matter	what	state	the
node	is	in	before	running	Puppet,	after	Puppet	runs,	the	following	will	be	true:

httpd	will	be	running
The	VirtualHost	configuration	file	will	exist
httpd	will	restart	and	be	aware	of	the	VirtualHost	file
The	DocumentRoot	directory	will	exist
An	index.html	file	will	exist	in	the	DocumentRoot	directory

Using	community	Puppet	style
If	other	people	need	to	read	or	maintain	your	manifests,	or	if	you	want	to	share	code	with
the	community,	it’s	a	good	idea	to	follow	the	existing	style	conventions	as	closely	as
possible.	These	govern	such	aspects	of	your	code	as	layout,	spacing,	quoting,	alignment,
and	variable	references,	and	the	official	puppetlabs	recommendations	on	style	are
available	at	http://docs.puppetlabs.com/guides/style_guide.html.

http://docs.puppetlabs.com/guides/style_guide.html

How	to	do	it…
In	this	section,	I’ll	show	you	a	few	of	the	more	important	examples	and	how	to	make	sure
that	your	code	is	style	compliant.

Indentation
Indent	your	manifests	using	two	spaces	(not	tabs),	as	follows:

service	{'httpd':

		ensure		=>	running,

}

Quoting
Always	quote	your	resource	names,	as	follows:

package	{	'exim4':

We	cannot	do	this	as	follows	though:

package	{	exim4:

Use	single	quotes	for	all	strings,	except	when:

The	string	contains	variable	references	such	as	"${::fqdn}"
The	string	contains	character	escape	sequences	such	as	"\n"

Consider	the	following	code:

file	{	'/etc/motd':

		content	=>	"Welcome	to	${::fqdn}\n"

}

Puppet	doesn’t	process	variable	references	or	escape	sequences	unless	they’re	inside
double	quotes.

Always	quote	parameter	values	that	are	not	reserved	words	in	Puppet.	For	example,	the
following	values	are	not	reserved	words:

name	=>	'Nucky	Thompson',

mode	=>	'0700',

owner	=>	'deploy',

However,	these	values	are	reserved	words	and	therefore	not	quoted:

ensure	=>	installed,

enable	=>	true,

ensure	=>	running,

False
There	is	only	one	thing	in	Puppet	that	is	false,	that	is,	the	word	false	without	any	quotes.
The	string	"false"	evaluates	to	true	and	the	string	"true"	also	evaluates	to	true.
Actually,	everything	besides	the	literal	false	evaluates	to	true	(when	treated	as	a	Boolean):

if	"false"	{

		notify	{	'True':	}

}

if	'false'	{

		notify	{	'Also	true':	}

}

if	false	{

		notify	{	'Not	true':	}

}

When	this	code	is	run	through	puppet	apply,	the	first	two	notifies	are	triggered.	The	final
notify	is	not	triggered;	it	is	the	only	one	that	evaluates	to	false.

Variables
Always	include	curly	braces	({})	around	variable	names	when	referring	to	them	in	strings,
for	example,	as	follows:

source	=>	"puppet:///modules/webserver/${brand}.conf",

Otherwise,	Puppet’s	parser	has	to	guess	which	characters	should	be	a	part	of	the	variable
name	and	which	belong	to	the	surrounding	string.	Curly	braces	make	it	explicit.

Parameters
Always	end	lines	that	declare	parameters	with	a	comma,	even	if	it	is	the	last	parameter:

service	{	'memcached':

		ensure	=>	running,

		enable	=>	true,

}

This	is	allowed	by	Puppet,	and	makes	it	easier	if	you	want	to	add	parameters	later,	or
reorder	the	existing	parameters.

When	declaring	a	resource	with	a	single	parameter,	make	the	declaration	all	on	one	line
and	with	no	trailing	comma,	as	shown	in	the	following	snippet:

package	{	'puppet':	ensure	=>	installed	}

Where	there	is	more	than	one	parameter,	give	each	parameter	its	own	line:

package	{	'rake':

		ensure			=>	installed,

		provider	=>	gem,

		require		=>	Package['rubygems'],

}

To	make	the	code	easier	to	read,	line	up	the	parameter	arrows	in	line	with	the	longest
parameter,	as	follows:

file	{	"/var/www/${app}/shared/config/rvmrc":

		owner			=>	'deploy',

		group			=>	'deploy',

		content	=>	template('rails/rvmrc.erb'),

		require	=>	File["/var/www/${app}/shared/config"],

}

The	arrows	should	be	aligned	per	resource,	but	not	across	the	whole	file,	otherwise	it	can
make	it	difficult	for	you	to	cut	and	paste	code	from	one	file	to	another.

Symlinks
When	declaring	file	resources	which	are	symlinks,	use	ensure	=>	link	and	set	the	target
attribute,	as	follows:

file	{	'/etc/php5/cli/php.ini':

		ensure	=>	link,

		target	=>	'/etc/php.ini',

}

Creating	a	manifest
If	you	already	have	some	Puppet	code	(known	as	a	Puppet	manifest),	you	can	skip	this
section	and	go	on	to	the	next.	If	not,	we’ll	see	how	to	create	and	apply	a	simple	manifest.

How	to	do	it…
To	create	and	apply	a	simple	manifest,	follow	these	steps:

1.	 First,	install	Puppet	locally	on	your	machine	or	create	a	virtual	machine	and	install
Puppet	on	that	machine.	For	YUM-based	systems,	use	https://yum.puppetlabs.com/
and	for	APT-based	systems,	use	https://apt.puppetlabs.com/.	You	may	also	use	gem
to	install	Puppet.	For	our	examples,	we’ll	install	Puppet	using	gem	on	a	Debian
Wheezy	system	(hostname:	cookbook).	To	use	gem,	we	need	the	rubygems	package
as	follows:

t@cookbook:~$	sudo	apt-get	install	rubygems

Reading	package	lists…	Done

Building	dependency	tree								

Reading	state	information…	Done

The	following	NEW	packages	will	be	installed:

		rubygems

0	upgraded,	1	newly	installed,	0	to	remove	and	0	not	upgraded.

Need	to	get	0	B/597	kB	of	archives.

After	this	operation,	3,844	kB	of	additional	disk	space	will	be	used.

Selecting	previously	unselected	package	rubygems.

(Reading	database…	30390	files	and	directories	currently	installed.)

Unpacking	rubygems	(from…/rubygems_1.8.24-1_all.deb)	...

Processing	triggers	for	man-db…

Setting	up	rubygems	(1.8.24-1)	...

2.	 Now,	use	gem	to	install	Puppet:

t@cookbook	$	sudo	gem	install	puppet

Successfully	installed	hiera-1.3.4

Fetching:	facter-2.3.0.gem	(100%)

Successfully	installed	facter-2.3.0

Fetching:	puppet-3.7.3.gem	(100%)

Successfully	installed	puppet-3.7.3

Installing	ri	documentation	for	hiera-1.3.4

Installing	ri	documentation	for	facter-2.3.0

Installing	ri	documentation	for	puppet-3.7.3

Done	installing	documentation	for	hiera,	facter,	puppet	after	239	

seconds

3.	 Three	gems	are	installed.	Now,	with	Puppet	installed,	we	can	create	a	directory	to
contain	our	Puppet	code:

t@cookbook:~$	mkdir	-p	.puppet/manifests

t@cookbook:~$	cd	.puppet/manifests

t@cookbook:~/.puppet/manifests$

4.	 Within	your	manifests	directory,	create	the	site.pp	file	with	the	following	content:

		node	default	{

				file	{	'/tmp/hello':

						content	=>	"Hello,	world!\n",

				}

		}

https://yum.puppetlabs.com/
https://apt.puppetlabs.com/

5.	 Test	your	manifest	with	the	puppet	apply	command.	This	will	tell	Puppet	to	read	the
manifest,	compare	it	to	the	state	of	the	machine,	and	make	any	necessary	changes	to
that	state:

t@cookbook:~/.puppet/manifests$	puppet	apply	site.pp

Notice:	Compiled	catalog	for	cookbook	in	environment	production	in	0.14	

seconds

Notice:	/Stage[main]/Main/Node[default]/File[/tmp/hello]/ensure:	

defined	content	as	'{md5}746308829575e17c3331bbcb00c0898b'

Notice:	Finished	catalog	run	in	0.04	seconds

6.	 To	see	if	Puppet	did	what	we	expected	(create	the	/tmp/hello	file	with	the	Hello,
world!	content),	run	the	following	command:

t@cookbook:~/puppet/manifests$	cat	/tmp/hello

Hello,	world!

	t@cookbook:~/puppet/manifests$

Note
Note	that	creating	the	file	in	/tmp	did	not	require	special	permissions.	We	did	not	run
Puppet	via	sudo.	Puppet	need	not	be	run	through	sudo;	there	are	cases	where	running	via
an	unprivileged	user	can	be	useful.

There’s	more…
When	several	people	are	working	on	a	code	base,	it’s	easy	for	style	inconsistencies	to
creep	in.	Fortunately,	there’s	a	tool	available	which	can	automatically	check	your	code	for
compliance	with	the	style	guide:	puppet-lint.	We’ll	see	how	to	use	this	in	the	next
section.

Checking	your	manifests	with	Puppet-lint
The	puppetlabs	official	style	guide	outlines	a	number	of	style	conventions	for	Puppet
code,	some	of	which	we’ve	touched	on	in	the	preceding	section.	For	example,	according
to	the	style	guide,	manifests:

Must	use	two-space	soft	tabs
Must	not	use	literal	tab	characters
Must	not	contain	trailing	white	space
Should	not	exceed	an	80	character	line	width
Should	align	parameter	arrows	(=>)	within	blocks

Following	the	style	guide	will	make	sure	that	your	Puppet	code	is	easy	to	read	and
maintain,	and	if	you’re	planning	to	release	your	code	to	the	public,	style	compliance	is
essential.

The	puppet-lint	tool	will	automatically	check	your	code	against	the	style	guide.	The
next	section	explains	how	to	use	it.

Getting	ready
Here’s	what	you	need	to	do	to	install	Puppet-lint:

1.	 We’ll	install	Puppet-lint	using	the	gem	provider	because	the	gem	version	is	much
more	up	to	date	than	the	APT	or	RPM	packages	available.	Create	a	puppet-lint.pp
manifest	as	shown	in	the	following	code	snippet:

		package	{'puppet-lint':

				ensure	=>	'installed',

				provider	=>	'gem',

		}

2.	 Run	puppet	apply	on	the	puppet-lint.pp	manifest,	as	shown	in	the	following
command:

t@cookbook	~$	puppet	apply	puppet-lint.pp	Notice:	Compiled	catalog	for	

node1.example.com	in	environment	production	in	0.42	seconds

Notice:	/Stage[main]/Main/Package[puppet-lint]/ensure:	created

Notice:	Finished	catalog	run	in	2.96	seconds

t@cookbook	~$	gem	list	puppet-lint	***	LOCAL	GEMS	***	puppet-lint	

(1.0.1)

How	to	do	it…
Follow	these	steps	to	use	Puppet-lint:

1.	 Choose	a	Puppet	manifest	file	that	you	want	to	check	with	Puppet-lint,	and	run	the
following	command:

t@cookbook	~$	puppet-lint	puppet-lint.pp	

WARNING:	indentation	of	=>	is	not	properly	aligned	on	line	2

ERROR:	trailing	whitespace	found	on	line	4

2.	 As	you	can	see,	Puppet-lint	found	a	number	of	problems	with	the	manifest	file.
Correct	the	errors,	save	the	file,	and	rerun	Puppet-lint	to	check	that	all	is	well.	If
successful,	you’ll	see	no	output:

t@cookbook	~$	puppet-lint	puppet-lint.pp	

t@cookbook	~$

There’s	more…
You	can	find	out	more	about	Puppet-lint	at	https://github.com/rodjek/puppet-lint.

Should	you	follow	Puppet	style	guide	and,	by	extension,	keep	your	code	lint-clean?	It’s	up
to	you,	but	here	are	a	couple	of	things	to	think	about:

It	makes	sense	to	use	some	style	conventions,	especially	when	you’re	working
collaboratively	on	code.	Unless	you	and	your	colleagues	can	agree	on	standards	for
whitespace,	tabs,	quoting,	alignment,	and	so	on,	your	code	will	be	messy	and	difficult
to	read	or	maintain.
If	you’re	choosing	a	set	of	style	conventions	to	follow,	the	logical	choice	would	be
that	issued	by	puppetlabs	and	adopted	by	the	community	for	use	in	public	modules.

Having	said	that,	it’s	possible	to	tell	Puppet-lint	to	ignore	certain	checks	if	you’ve	chosen
not	to	adopt	them	in	your	codebase.	For	example,	if	you	don’t	want	Puppet-lint	to	warn
you	about	code	lines	exceeding	80	characters,	you	can	run	Puppet-lint	with	the	following
option:

t@cookbook	~$	puppet-lint	--no-80chars-check

Run	puppet-lint	--help	to	see	the	complete	list	of	check	configuration	commands.

https://github.com/rodjek/puppet-lint

See	also
The	Automatic	syntax	checking	with	Git	hooks	recipe	in	Chapter	2,	Puppet
Infrastructure
The	Testing	your	Puppet	manifests	with	rspec-puppet	recipe	in	Chapter	9,	External
Tools	and	the	Puppet	Ecosystem

Using	modules
One	of	the	most	important	things	you	can	do	to	make	your	Puppet	manifests	clearer	and
more	maintainable	is	to	organize	them	into	modules.

Modules	are	self-contained	bundles	of	Puppet	code	that	include	all	the	files	necessary	to
implement	a	thing.	Modules	may	contain	flat	files,	templates,	Puppet	manifests,	custom
fact	declarations,	augeas	lenses,	and	custom	Puppet	types	and	providers.

Separating	things	into	modules	makes	it	easier	to	reuse	and	share	code;	it’s	also	the	most
logical	way	to	organize	your	manifests.	In	this	example,	we’ll	create	a	module	to	manage
memcached,	a	memory	caching	system	commonly	used	with	web	applications.

How	to	do	it…
Following	are	the	steps	to	create	an	example	module:

1.	 We	will	use	Puppet’s	module	subcommand	to	create	the	directory	structure	for	our
new	module:

t@cookbook:~$	mkdir	-p	.puppet/modules

t@cookbook:~$	cd	.puppet/modules

t@cookbook:~/.puppet/modules$	puppet	module	generate	thomas-memcached

We	need	to	create	a	metadata.json	file	for	this	module.		Please	answer	

the	following	questions;	if	the	question	is	not	applicable	to	this	

module,	feel	free	to	leave	it	blank.	Puppet	uses	Semantic	Versioning	

(semver.org)	to	version	modules.What	version	is	this	module?		[0.1.0]

-->	Who	wrote	this	module?		[thomas]

-->	What	license	does	this	module	code	fall	under?		[Apache	2.0]

-->	How	would	you	describe	this	module	in	a	single	sentence?

-->	A	module	to	install	memcached	Where	is	this	module's	source	code	

repository?

-->	Where	can	others	go	to	learn	more	about	this	module?

-->	Where	can	others	go	to	file	issues	about	this	module?

-->	

--

{

		"name":	"thomas-memcached",

		"version":	"0.1.0",

		"author":	"thomas",

		"summary":	"A	module	to	install	memcached",

		"license":	"Apache	2.0",

		"source":	"",

		"issues_url":	null,

		"project_page":	null,

		"dependencies":	[

				{

						"version_range":	">=	1.0.0",

						"name":	"puppetlabs-stdlib"

				}

]

}

--

About	to	generate	this	metadata;	continue?	[n/Y]

-->	y

Notice:	Generating	module	at	/home/thomas/.puppet/modules/thomas-

memcached…

Notice:	Populating	ERB	templates…

Finished;	module	generated	in	thomas-memcached.

thomas-memcached/manifests

thomas-memcached/manifests/init.pp

thomas-memcached/spec

thomas-memcached/spec/classes

thomas-memcached/spec/classes/init_spec.rb

thomas-memcached/spec/spec_helper.rb

thomas-memcached/README.md

thomas-memcached/metadata.json

thomas-memcached/Rakefile

thomas-memcached/tests

thomas-memcached/tests/init.pp

This	command	creates	the	module	directory	and	creates	some	empty	files	as	starting
points.	To	use	the	module,	we’ll	create	a	symlink	to	the	module	name	(memcached).

t@cookbook:~/.puppet/modules$	ln	–s	thomas-memcached	memcached

2.	 Now,	edit	memcached/manifests/init.pp	and	change	the	class	definition	at	the	end
of	the	file	to	the	following.	Note	that	puppet	module	generate	created	many	lines	of
comments;	in	a	production	module	you	would	want	to	edit	those	default	comments:

class	memcached	{

		package	{	'memcached':

				ensure	=>	installed,

		}

		file	{	'/etc/memcached.conf':

				source		=>	'puppet:///modules/memcached/memcached.conf',

				owner			=>	'root',

				group			=>	'root',

				mode				=>	'0644',

				require	=>	Package['memcached'],

		}

		service	{	'memcached':

				ensure		=>	running,

				enable		=>	true,

				require	=>	[Package['memcached'],

																File['/etc/memcached.conf']],

		}

}

3.	 Create	the	modules/thomas-memcached/files	directory	and	then	create	a	file	named
memcached.conf	with	the	following	contents:

-m	64

-p	11211

-u	nobody

-l	127.0.0.1

4.	 Change	your	site.pp	file	to	the	following:

node	default	{

		include	memcached

}

5.	 We	would	like	this	module	to	install	memcached.	We’ll	need	to	run	Puppet	with	root
privileges,	and	we’ll	use	sudo	for	that.	We’ll	need	Puppet	to	be	able	to	find	the
module	in	our	home	directory;	we	can	specify	this	on	the	command	line	when	we	run
Puppet	as	shown	in	the	following	code	snippet:

t@cookbook:~$	sudo	puppet	apply	--

modulepath=/home/thomas/.puppet/modules	

/home/thomas/.puppet/manifests/site.pp

Notice:	Compiled	catalog	for	cookbook.example.com	in	environment	

production	in	0.33	seconds

Notice:	/Stage[main]/Memcached/File[/etc/memcached.conf]/content:	

content	changed	'{md5}a977521922a151c959ac953712840803'	to	

'{md5}9429eff3e3354c0be232a020bcf78f75'

Notice:	Finished	catalog	run	in	0.11	seconds

6.	 Check	whether	the	new	service	is	running:

t@cookbook:~$	sudo	service	memcached	status

[ok]	memcached	is	running.

How	it	works…
When	we	created	the	module	using	Puppet’s	module	generate	command,	we	used	the
name	thomas-memcached.	The	name	before	the	hyphen	is	your	username	or	your
username	on	Puppet	forge	(an	online	repository	of	modules).	Since	we	want	Puppet	to	be
able	to	find	the	module	by	the	name	memcached,	we	make	a	symbolic	link	between
thomas-memcached	and	memcached.

Modules	have	a	specific	directory	structure.	Not	all	of	these	directories	need	to	be	present,
but	if	they	are,	this	is	how	they	should	be	organized:

modules/

		└MODULE_NAME/		never	use	a	dash	(-)	in	a	module	name

					└examples/	example	usage	of	the	module

					└files/	flat	files	used	by	the	module

					└lib/

								└facter/	define	new	facts	for	facter

								└puppet/

											└parser/

														└functions/	define	a	new	puppet	function,	like	sort()	

											└provider/	define	a	provider	for	a	new	or	existing	type

											└util/	define	helper	functions	(in	ruby)

											└type/	define	a	new	type	in	puppet

					└manifests/

								└init.pp		class	MODULE_NAME	{	}

					└spec/	rSpec	tests

					└templates/	erb	template	files	used	by	the	module

All	manifest	files	(those	containing	Puppet	code)	live	in	the	manifests	directory.	In	our
example,	the	memcached	class	is	defined	in	the	manifests/init.pp	file,	which	will	be
imported	automatically.

Inside	the	memcached	class,	we	refer	to	the	memcached.conf	file:

file	{	'/etc/memcached.conf':

		source	=>	'puppet:///modules/memcached/memcached.conf',

}

The	preceding	source	parameter	tells	Puppet	to	look	for	the	file	in:
MODULEPATH/	(/home/thomas/.puppet/modules)

└memcached/

└files/

└memcached.conf

There’s	more…
Learn	to	love	modules	because	they’ll	make	your	Puppet	life	a	lot	easier.	They’re	not
complicated,	however,	practice	and	experience	will	help	you	judge	when	things	should	be
grouped	into	modules,	and	how	best	to	arrange	your	module	structure.	Modules	can	hold
more	than	manifests	and	files	as	we’ll	see	in	the	next	two	sections.

Templates
If	you	need	to	use	a	template	as	a	part	of	the	module,	place	it	in	the	module’s	templates
directory	and	refer	to	it	as	follows:

file	{	'/etc/memcached.conf':

		content	=>	template('memcached/memcached.conf.erb'),

}

Puppet	will	look	for	the	file	in:

MODULEPATH/memcached/templates/memcached.conf.erb

Facts,	functions,	types,	and	providers
Modules	can	also	contain	custom	facts,	custom	functions,	custom	types,	and	providers.

For	more	information	about	these,	refer	to	Chapter	9,	External	Tools	and	the	Puppet
Ecosystem.

Third-party	modules
You	can	download	modules	provided	by	other	people	and	use	them	in	your	own	manifests
just	like	the	modules	you	create.	For	more	on	this,	see	Using	Public	Modules	recipe	in
Chapter	7,	Managing	Applications.

Module	organization
For	more	details	on	how	to	organize	your	modules,	see	puppetlabs	website:

http://docs.puppetlabs.com/puppet/3/reference/modules_fundamentals.html

http://docs.puppetlabs.com/puppet/3/reference/modules_fundamentals.html

See	also
The	Creating	custom	facts	recipe	in	Chapter	9,	External	Tools	and	the	Puppet
Ecosystem
The	Using	public	modules	recipe	in	Chapter	7,	Managing	Applications
The	Creating	your	own	resource	types	recipe	in	Chapter	9,	External	Tools	and	the
Puppet	Ecosystem
The	Creating	your	own	providers	recipe	in	Chapter	9,	External	Tools	and	the	Puppet
Ecosystem

Using	standard	naming	conventions
Choosing	appropriate	and	informative	names	for	your	modules	and	classes	will	be	a	big
help	when	it	comes	to	maintaining	your	code.	This	is	even	truer	if	other	people	need	to
read	and	work	on	your	manifests.

How	to	do	it…
Here	are	some	tips	on	how	to	name	things	in	your	manifests:

1.	 Name	modules	after	the	software	or	service	they	manage,	for	example,	apache	or
haproxy.

2.	 Name	classes	within	modules	(subclasses)	after	the	function	or	service	they	provide
to	the	module,	for	example,	apache::vhosts	or	rails::dependencies.

3.	 If	a	class	within	a	module	disables	the	service	provided	by	that	module,	name	it
disabled.	For	example,	a	class	that	disables	Apache	should	be	named
apache::disabled.

4.	 Create	a	roles	and	profiles	hierarchy	of	modules.	Each	node	should	have	a	single	role
consisting	of	one	or	more	profiles.	Each	profile	module	should	configure	a	single
service.

5.	 The	module	that	manages	users	should	be	named	user.
6.	 Within	the	user	module,	declare	your	virtual	users	within	the	class	user::virtual

(for	more	on	virtual	users	and	other	resources,	see	the	Using	virtual	resources	recipe
in	Chapter	5,	Users	and	Virtual	Resources).

7.	 Within	the	user	module,	subclasses	for	particular	groups	of	users	should	be	named
after	the	group,	for	example,	user::sysadmins	or	user::contractors.

8.	 When	using	Puppet	to	deploy	the	config	files	for	different	services,	name	the	file
after	the	service,	but	with	a	suffix	indicating	what	kind	of	file	it	is,	for	example:

Apache	init	script:	apache.init
Logrotate	config	snippet	for	Rails:	rails.logrotate
Nginx	vhost	file	for	mywizzoapp:	mywizzoapp.vhost.nginx
MySQL	config	for	standalone	server:	standalone.mysql

9.	 If	you	need	to	deploy	a	different	version	of	a	file	depending	on	the	operating	system
release,	for	example,	you	can	use	a	naming	convention	like	the	following:

memcached.lucid.conf

memcached.precise.conf

10.	 You	can	have	Puppet	automatically	select	the	appropriate	version	as	follows:

source	=	>	"puppet:///modules/memcached

		/memcached.${::lsbdistrelease}.conf",

11.	 If	you	need	to	manage,	for	example,	different	Ruby	versions,	name	the	class	after	the
version	it	is	responsible	for,	for	example,	ruby192	or	ruby186.

There’s	more…
Puppet	community	maintains	a	set	of	best	practice	guidelines	for	your	Puppet
infrastructure,	which	includes	some	hints	on	naming	conventions:

http://docs.puppetlabs.com/guides/best_practices.html

Some	people	prefer	to	include	multiple	classes	on	a	node	by	using	a	comma-separated	list,
rather	than	separate	include	statements,	for	example:

		node	'server014'	inherits	'server'	{

				include	mail::server,	repo::gem,	repo::apt,	zabbix

		}

This	is	a	matter	of	style,	but	I	prefer	to	use	separate	include	statements,	one	on	a	line,
because	it	makes	it	easier	to	copy	and	move	around	class	inclusions	between	nodes
without	having	to	tidy	up	the	commas	and	indentation	every	time.

I	mentioned	inheritance	in	a	couple	of	the	preceding	examples;	if	you’re	not	sure	what	this
is,	don’t	worry,	I’ll	explain	this	in	detail	in	the	next	chapter.

http://docs.puppetlabs.com/guides/best_practices.html

Using	inline	templates
Templates	are	a	powerful	way	of	using	Embedded	Ruby	(ERB)	to	help	build	config	files
dynamically.	You	can	also	use	ERB	syntax	directly	without	having	to	use	a	separate	file
by	calling	the	inline_template	function.	ERB	allows	you	to	use	conditional	logic,	iterate
over	arrays,	and	include	variables.

How	to	do	it…
Here’s	an	example	of	how	to	use	inline_template:

Pass	your	Ruby	code	to	inline_template	within	Puppet	manifest,	as	follows:

cron	{	'chkrootkit':

		command	=>	'/usr/sbin/chkrootkit	>

				/var/log/chkrootkit.log	2>&1',

		hour				=>	inline_template('<%=	@hostname.sum	%	24	%>'),

		minute		=>	'00',

}

How	it	works…
Anything	inside	the	string	passed	to	inline_template	is	executed	as	if	it	were	an	ERB
template.	That	is,	anything	inside	the	<%=	and	%>	delimiters	will	be	executed	as	Ruby	code,
and	the	rest	will	be	treated	as	a	string.

In	this	example,	we	use	inline_template	to	compute	a	different	hour	for	this	cron
resource	(a	scheduled	job)	for	each	machine,	so	that	the	same	job	does	not	run	at	the	same
time	on	all	machines.	For	more	on	this	technique,	see	the	Distributing	cron	jobs	efficiently
recipe	in	Chapter	6,	Managing	Resources	and	Files.

There’s	more…
In	ERB	code,	whether	inside	a	template	file	or	an	inline_template	string,	you	can	access
your	Puppet	variables	directly	by	name	using	an	@	prefix,	if	they	are	in	the	current	scope
or	the	top	scope	(facts):

<%=	@fqdn	%>

To	reference	variables	in	another	scope,	use	scope.lookupvar,	as	follows:

<%=	"The	value	of	something	from	otherclass	is	"	+	

scope.lookupvar('otherclass::something')	%>

You	should	use	inline	templates	sparingly.	If	you	really	need	to	use	some	complicated
logic	in	your	manifest,	consider	using	a	custom	function	instead	(see	the	Creating	custom
functions	recipe	in	Chapter	9,	External	Tools	and	the	Puppet	Ecosystem).

See	also
The	Using	ERB	templates	recipe	in	Chapter	4,	Working	with	Files	and	Packages
The	Using	array	iteration	in	templates	recipe	in	Chapter	4,	Working	with	Files	and
Packages

Iterating	over	multiple	items
Arrays	are	a	powerful	feature	in	Puppet;	wherever	you	want	to	perform	the	same	operation
on	a	list	of	things,	an	array	may	be	able	to	help.	You	can	create	an	array	just	by	putting	its
content	in	square	brackets:

$lunch	=	['franks',	'beans',	'mustard']

How	to	do	it…
Here’s	a	common	example	of	how	arrays	are	used:

1.	 Add	the	following	code	to	your	manifest:

$packages	=	['ruby1.8-dev',

		'ruby1.8',

		'ri1.8',

		'rdoc1.8',

		'irb1.8',

		'libreadline-ruby1.8',

		'libruby1.8',

		'libopenssl-ruby']

package	{	$packages:	ensure	=>	installed	}

2.	 Run	Puppet	and	note	that	each	package	should	now	be	installed.

How	it	works…
Where	Puppet	encounters	an	array	as	the	name	of	a	resource,	it	creates	a	resource	for	each
element	in	the	array.	In	the	example,	a	new	package	resource	is	created	for	each	of	the
packages	in	the	$packages	array,	with	the	same	parameters	(ensure	=>	installed).	This
is	a	very	compact	way	to	instantiate	many	similar	resources.

There’s	more…
Although	arrays	will	take	you	a	long	way	with	Puppet,	it’s	also	useful	to	know	about	an
even	more	flexible	data	structure:	the	hash.

Using	hashes
A	hash	is	like	an	array,	but	each	of	the	elements	can	be	stored	and	looked	up	by	name
(referred	to	as	the	key),	for	example	(hash.pp):

$interface	=	{

		'name'	=>	'eth0',

		'ip'			=>	'192.168.0.1',

		'mac'		=>	'52:54:00:4a:60:07'	

}

notify	{	"(${interface['ip']})	at	${interface['mac']}	on	

${interface['name']}":	}

When	we	run	Puppet	on	this,	we	see	the	following	notify	in	the	output:

t@cookbook:~/.puppet/manifests$	puppet	apply	hash.pp

Notice:	(192.168.0.1)	at	52:54:00:4a:60:07	on	etho

Hash	values	can	be	anything	that	you	can	assign	to	variables,	strings,	function	calls,
expressions,	and	even	other	hashes	or	arrays.	Hashes	are	useful	to	store	a	bunch	of
information	about	a	particular	thing	because	by	accessing	each	element	of	the	hash	using	a
key,	we	can	quickly	find	the	information	for	which	we	are	looking.

Creating	arrays	with	the	split	function
You	can	declare	literal	arrays	using	square	brackets,	as	follows:

define	lunchprint()	{

		notify	{	"Lunch	included	${name}":}":	}

}

$lunch	=	['egg',	'beans',	'chips']

lunchprint	{	$lunch:	}

Now,	when	we	run	Puppet	on	the	preceding	code,	we	see	the	following	notice	messages	in
the	output:

t@mylaptop	~	$	puppet	apply	lunchprint.pp	

...

Notice:	Lunch	included	chips

Notice:	Lunch	included	beans

Notice:	Lunch	included	egg

However,	Puppet	can	also	create	arrays	for	you	from	strings,	using	the	split	function,	as
follows:

$menu	=	'egg	beans	chips'

$items	=	split($menu,	'	')

lunchprint	{	$items:	}

Running	puppet	apply	against	this	new	manifest,	we	see	the	same	messages	in	the

output:

t@mylaptop	~	$	puppet	apply	lunchprint2.pp	

...

Notice:	Lunch	included	chips

Notice:	Lunch	included	beans

Notice:	Lunch	included	egg.

Note	that	split	takes	two	arguments:	the	first	argument	is	the	string	to	be	split.	The
second	argument	is	the	character	to	split	on;	in	this	example,	a	single	space.	As	Puppet
works	its	way	through	the	string,	when	it	encounters	a	space,	it	will	interpret	it	as	the	end
of	one	item	and	the	beginning	of	the	next.	So,	given	the	string	‘egg	beans	chips',	this
will	be	split	into	three	items.

The	character	to	split	on	can	be	any	character	or	string:

$menu	=	'egg	and	beans	and	chips'

$items	=	split($menu,	'	and	')

The	character	can	also	be	a	regular	expression,	for	example,	a	set	of	alternatives	separated
by	a	|	(pipe)	character:

$lunch	=	'egg:beans,chips'

$items	=	split($lunch,	':|,')

Writing	powerful	conditional	statements
Puppet’s	if	statement	allows	you	to	change	the	manifest	behavior	based	on	the	value	of	a
variable	or	an	expression.	With	it,	you	can	apply	different	resources	or	parameter	values
depending	on	certain	facts	about	the	node,	for	example,	the	operating	system,	or	the
memory	size.

You	can	also	set	variables	within	the	manifest,	which	can	change	the	behavior	of	included
classes.	For	example,	nodes	in	data	center	A	might	need	to	use	different	DNS	servers	than
nodes	in	data	center	B,	or	you	might	need	to	include	one	set	of	classes	for	an	Ubuntu
system,	and	a	different	set	for	other	systems.

How	to	do	it…
Here’s	an	example	of	a	useful	conditional	statement.	Add	the	following	code	to	your
manifest:

		if	$::timezone	==	'UTC'	{

				notify	{	'Universal	Time	Coordinated':}

		}	else	{

				notify	{	"$::timezone	is	not	UTC":	}

		}

How	it	works…
Puppet	treats	whatever	follows	an	if	keyword	as	an	expression	and	evaluates	it.	If	the
expression	evaluates	to	true,	Puppet	will	execute	the	code	within	the	curly	braces.

Optionally,	you	can	add	an	else	branch,	which	will	be	executed	if	the	expression	evaluates
to	false.

There’s	more…
Here	are	some	more	tips	on	using	if	statements.

Elseif	branches
You	can	add	further	tests	using	the	elseif	keyword,	as	follows:

if	$::timezone	==	'UTC'	{

		notify	{	'Universal	Time	Coordinated':	}

}	elseif	$::timezone	==	'GMT'	{

		notify	{	'Greenwich	Mean	Time':	}

}	else	{

		notify	{	"$::timezone	is	not	UTC":	}

}

Comparisons
You	can	check	whether	two	values	are	equal	using	the	==	syntax,	as	in	our	example:

if	$::timezone	==	'UTC'	{

		

}

Alternatively,	you	can	check	whether	they	are	not	equal	using	!=:

if	$::timezone	!=	'UTC'	{

		…

}

You	can	also	compare	numeric	values	using	<	and	>:

if	$::uptime_days	>	365	{

		notify	{	'Time	to	upgrade	your	kernel!':	}

}

To	test	whether	a	value	is	greater	(or	less)	than	or	equal	to	another	value,	use	<=	or	>=:

if	$::mtu_eth0	<=	1500	{

		notify	{"Not	Jumbo	Frames":	}

}

Combining	expressions
You	can	put	together	the	kind	of	simple	expressions	described	previously	into	more
complex	logical	expressions,	using	and,	or,	and	not:

if	($::uptime_days	>	365)	and	($::kernel	==	'Linux')	{

		…

}

if	($role	==	'webserver')	and	(($datacenter	==	'A')	or	($datacenter	==	

'B'))	{

		…

}

See	also
The	Using	the	in	operator	recipe	in	this	chapter
The	Using	selectors	and	case	statements	recipe	in	this	chapter

Using	regular	expressions	in	if	statements
Another	kind	of	expression	you	can	test	in	if	statements	and	other	conditionals	is	the
regular	expression.	A	regular	expression	is	a	powerful	way	to	compare	strings	using
pattern	matching.

How	to	do	it…
This	is	one	example	of	using	a	regular	expression	in	a	conditional	statement.	Add	the
following	to	your	manifest:

if	$::architecture	=~	/64/	{

		notify	{	'64Bit	OS	Installed':	}

}	else	{

		notify	{	'Upgrade	to	64Bit':	}

		fail('Not	64	Bit')

}

How	it	works…
Puppet	treats	the	text	supplied	between	the	forward	slashes	as	a	regular	expression,
specifying	the	text	to	be	matched.	If	the	match	succeeds,	the	if	expression	will	be	true	and
so	the	code	between	the	first	set	of	curly	braces	will	be	executed.	In	this	example,	we	used
a	regular	expression	because	different	distributions	have	different	ideas	on	what	to	call
64bit;	some	use	amd64,	while	others	use	x86_64.	The	only	thing	we	can	count	on	is	the
presence	of	the	number	64	within	the	fact.	Some	facts	that	have	version	numbers	in	them
are	treated	as	strings	to	Puppet.	For	instance,	$::facterversion.	On	my	test	system,	this
is	2.0.1,	but	when	I	try	to	compare	that	with	2,	Puppet	fails	to	make	the	comparison:

Error:	comparison	of	String	with	2	failed	at	

/home/thomas/.puppet/manifests/version.pp:1	on	node	cookbook.example.com

If	you	wanted	instead	to	do	something	if	the	text	does	not	match,	use	!~	rather	than	=~:

if	$::kernel	!~	/Linux/	{

		notify	{	'Not	Linux,	could	be	Windows,	MacOS	X,	AIX,	or	?':	}

}

There’s	more…
Regular	expressions	are	very	powerful,	but	can	be	difficult	to	understand	and	debug.	If
you	find	yourself	using	a	regular	expression	so	complex	that	you	can’t	see	at	a	glance
what	it	does,	think	about	simplifying	your	design	to	make	it	easier.	However,	one
particularly	useful	feature	of	regular	expressions	is	the	ability	to	capture	patterns.

Capturing	patterns
You	can	not	only	match	text	using	a	regular	expression,	but	also	capture	the	matched	text
and	store	it	in	a	variable:

$input	=	'Puppet	is	better	than	manual	configuration'

if	$input	=~	/(.*)	is	better	than	(.*)/	{

		notify	{	"You	said	'${0}'.	Looks	like	you're	comparing	${1}

				to	${2}!":	}

}

The	preceding	code	produces	this	output:

You	said	‘Puppet	is	better	than	manual	configuration’.	Looks	like	you’re	comparing
Puppet	to	manual	configuration!

The	variable	$0	stores	the	whole	matched	text	(assuming	the	overall	match	succeeded).	If
you	put	brackets	around	any	part	of	the	regular	expression,	it	creates	a	group,	and	any
matched	groups	will	also	be	stored	in	variables.	The	first	matched	group	will	be	$1,	the
second	$2,	and	so	on,	as	shown	in	the	preceding	example.

Regular	expression	syntax
Puppet’s	regular	expression	syntax	is	the	same	as	Ruby’s,	so	resources	that	explain	Ruby’s
regular	expression	syntax	will	also	help	you	with	Puppet.	You	can	find	a	good
introduction	to	Ruby’s	regular	expression	syntax	at	this	website:

http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm.

http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm

See	also
Refer	to	the	Using	regular	expression	substitutions	recipe	in	this	chapter

Using	selectors	and	case	statements
Although	you	could	write	any	conditional	statement	using	if,	Puppet	provides	a	couple	of
extra	forms	to	help	you	express	conditionals	more	easily:	the	selector	and	the	case
statement.

How	to	do	it…
Here	are	some	examples	of	selector	and	case	statements:

1.	 Add	the	following	code	to	your	manifest:

$systemtype	=	$::operatingsystem	?	{

		'Ubuntu'	=>	'debianlike',

		'Debian'	=>	'debianlike',

		'RedHat'	=>	'redhatlike',

		'Fedora'	=>	'redhatlike',

		'CentOS'	=>	'redhatlike',

		default		=>	'unknown',

}

notify	{	"You	have	a	${systemtype}	system":	}

2.	 Add	the	following	code	to	your	manifest:

class	debianlike	{

		notify	{	'Special	manifest	for	Debian-like	systems':	}

}

class	redhatlike	{

		notify	{	'Special	manifest	for	RedHat-like	systems':	}

}

case	$::operatingsystem	{

		'Ubuntu',

		'Debian':	{

				include	debianlike

		}

		'RedHat',

		'Fedora',

		'CentOS',

		'Springdale':	{

				include	redhatlike

		}

		default:	{

				notify	{	"I	don't	know	what	kind	of	system	you	have!":

				}

		}

}

How	it	works…
Our	example	demonstrates	both	the	selector	and	the	case	statement,	so	let’s	see	in	detail
how	each	of	them	works.

Selector
In	the	first	example,	we	used	a	selector	(the	?	operator)	to	choose	a	value	for	the
$systemtype	variable	depending	on	the	value	of	$::operatingsystem.	This	is	similar	to
the	ternary	operator	in	C	or	Ruby,	but	instead	of	choosing	between	two	possible	values,
you	can	have	as	many	values	as	you	like.

Puppet	will	compare	the	value	of	$::operatingsystem	to	each	of	the	possible	values	we
have	supplied	in	Ubuntu,	Debian,	and	so	on.	These	values	could	be	regular	expressions
(for	example,	for	a	partial	string	match,	or	to	use	wildcards),	but	in	our	case,	we	have	just
used	literal	strings.

As	soon	as	it	finds	a	match,	the	selector	expression	returns	whatever	value	is	associated
with	the	matching	string.	If	the	value	of	$::operatingsystem	is	Fedora,	for	example,	the
selector	expression	will	return	the	redhatlike	string	and	this	will	be	assigned	to	the
variable	$systemtype.

Case	statement
Unlike	selectors,	the	case	statement	does	not	return	a	value.	case	statements	come	in
handy	when	you	want	to	execute	different	code	depending	on	the	value	of	some
expression.	In	our	second	example,	we	used	the	case	statement	to	include	either	the
debianlike	or	redhatlike	class,	depending	on	the	value	of	$::operatingsystem.

Again,	Puppet	compares	the	value	of	$::operatingsystem	to	a	list	of	potential	matches.
These	could	be	regular	expressions	or	strings,	or	as	in	our	example,	comma-separated	lists
of	strings.	When	it	finds	a	match,	the	associated	code	between	curly	braces	is	executed.
So,	if	the	value	of	$::operatingsystem	is	Ubuntu,	then	the	code	including	debianlike
will	be	executed.

There’s	more…
Once	you’ve	got	a	grip	of	the	basic	use	of	selectors	and	case	statements,	you	may	find	the
following	tips	useful.

Regular	expressions
As	with	if	statements,	you	can	use	regular	expressions	with	selectors	and	case
statements,	and	you	can	also	capture	the	values	of	the	matched	groups	and	refer	to	them
using	$1,	$2,	and	so	on:

case	$::lsbdistdescription	{

		/Ubuntu	(.+)/:	{

				notify	{	"You	have	Ubuntu	version	${1}":	}

		}

		/CentOS	(.+)/:	{

				notify	{	"You	have	CentOS	version	${1}":	}

		}

		default:	{}

}

Defaults
Both	selectors	and	case	statements	let	you	specify	a	default	value,	which	is	chosen	if	none
of	the	other	options	match	(the	style	guide	suggests	you	always	have	a	default	clause
defined):

$lunch	=	'Filet	mignon.'

$lunchtype	=		$lunch	?	{

		/fries/	=>	'unhealthy',

		/salad/	=>	'healthy',

		default	=>	'unknown',

}

notify	{	"Your	lunch	was	${lunchtype}":	}

The	output	is	as	follows:

t@mylaptop	~	$	puppet	apply	lunchtype.pp

Notice:	Your	lunch	was	unknown

Notice:	/Stage[main]/Main/Notify[Your	lunch	was	unknown]/message:	defined	

'message'	as	'Your	lunch	was	unknown'

When	the	default	action	shouldn’t	normally	occur,	use	the	fail()	function	to	halt	the
Puppet	run.

Using	the	in	operator
The	in	operator	tests	whether	one	string	contains	another	string.	Here’s	an	example:

if	'spring'	in	'springfield'

The	preceding	expression	is	true	if	the	spring	string	is	a	substring	of	springfield,	which
it	is.	The	in	operator	can	also	test	for	membership	of	arrays	as	follows:

if	$crewmember	in	['Frank',	'Dave',	'HAL']

When	in	is	used	with	a	hash,	it	tests	whether	the	string	is	a	key	of	the	hash:

$ifaces	=	{	'lo'			=>	'127.0.0.1',	

												'eth0'	=>	'192.168.0.1'	}

if	'eth0'	in	$ifaces	{

		notify	{	"eth0	has	address	${ifaces['eth0']}":	}

}

How	to	do	it…
The	following	steps	will	show	you	how	to	use	the	in	operator:

1.	 Add	the	following	code	to	your	manifest:

if	$::operatingsystem	in	['Ubuntu',	'Debian']	{

		notify	{	'Debian-type	operating	system	detected':	}

}	elseif	$::operatingsystem	in	['RedHat',	'Fedora',	'SuSE',	'CentOS']	

{

		notify	{	'RedHat-type	operating	system	detected':	}

}	else	{

		notify	{	'Some	other	operating	system	detected':	}

}

2.	 Run	Puppet:

t@cookbook:~/.puppet/manifests$	puppet	apply	in.pp

Notice:	Compiled	catalog	for	cookbook.example.com	in	environment	

production	in	0.03	seconds

Notice:	Debian-type	operating	system	detected

Notice:	/Stage[main]/Main/Notify[Debian-type	operating	system	

detected]/message:	defined	'message'	as	'Debian-type	operating	system	

detected'

Notice:	Finished	catalog	run	in	0.02	seconds

There’s	more…
The	value	of	an	in	expression	is	Boolean	(true	or	false)	so	you	can	assign	it	to	a	variable:

$debianlike	=	$::operatingsystem	in	['Debian',	'Ubuntu']

if	$debianlike	{

		notify	{	'You	are	in	a	maze	of	twisty	little	packages,	all	alike':	}

}

Using	regular	expression	substitutions
Puppet’s	regsubst	function	provides	an	easy	way	to	manipulate	text,	search	and	replace
expressions	within	strings,	or	extract	patterns	from	strings.	We	often	need	to	do	this	with
data	obtained	from	a	fact,	for	example,	or	from	external	programs.

In	this	example,	we’ll	see	how	to	use	regsubst	to	extract	the	first	three	octets	of	an	IPv4
address	(the	network	part,	assuming	it’s	a	/24	class	C	address).

How	to	do	it…
Follow	these	steps	to	build	the	example:

1.	 Add	the	following	code	to	your	manifest:

$class_c	=	regsubst($::ipaddress,	'(.*)\..*',	'\1.0')

notify	{	"The	network	part	of	${::ipaddress}	is	${class_c}":	}

2.	 Run	Puppet:

t@cookbook:~/.puppet/manifests$	puppet	apply	ipaddress.pp	

Notice:	Compiled	catalog	for	cookbook.example.com	in	environment	

production	in	0.02	seconds

Notice:	The	network	part	of	192.168.122.148	is

		192.168.122.0

Notice:	/Stage[main]/Main/Notify[The	network	part	of	192.168.122.148	is

		192.168.122.0]/message:	defined	'message'	as	'The	network	part	of	

192.168.122.148	is

		192.168.122.0'

Notice:	Finished	catalog	run	in	0.03	seconds

How	it	works…
The	regsubst	function	takes	at	least	three	parameters:	source,	pattern,	and	replacement.	In
our	example,	we	specified	the	source	string	as	$::ipaddress,	which,	on	this	machine,	is
as	follows:

192.168.122.148

We	specify	the	pattern	function	as	follows:

(.*)\..*

We	specify	the	replacement	function	as	follows:

\1.0

The	pattern	captures	all	of	the	string	up	to	the	last	period	(\.)	in	the	\1	variable.	We	then
match	on	.*,	which	matches	everything	to	the	end	of	the	string,	so	when	we	replace	the
string	at	the	end	with	\1.0,	we	end	up	with	only	the	network	portion	of	the	IP	address,
which	evaluates	to	the	following:

192.168.122.0

We	could	have	got	the	same	result	in	other	ways,	of	course,	including	the	following:

$class_c	=	regsubst($::ipaddress,	'\.\d+$',	'.0')

Here,	we	only	match	the	last	octet	and	replace	it	with	.0,	which	achieves	the	same	result
without	capturing.

There’s	more…
The	pattern	function	can	be	any	regular	expression,	using	the	same	(Ruby)	syntax	as
regular	expressions	in	if	statements.

See	also
The	Importing	dynamic	information	recipe	in	Chapter	3,	Writing	Better	Manifests
The	Getting	information	about	the	environment	recipe	in	Chapter	3,	Writing	Better
Manifests
The	Using	regular	expressions	in	if	statements	recipe	in	this	chapter

Using	the	future	parser
Puppet	language	is	evolving	at	the	moment;	many	features	that	are	expected	to	be
included	in	the	next	major	release	(4)	are	available	if	you	enable	the	future	parser.

Getting	ready
Ensure	that	the	rgen	gem	is	installed.
Set	parser	=	future	in	the	[main]	section	of	your
puppet.conf(/etc/puppet/puppet.conf	for	open	source	Puppet	as
root,/etc/puppetlabs/puppet/puppet.conf	for	Puppet	Enterprise,
and~/.puppet/puppet.conf	for	a	non-root	user	running	puppet).
To	temporarily	test	with	the	future	parser,	use	--parser=future	on	the	command
line.

How	to	do	it…
Many	of	the	experimental	features	deal	with	how	code	is	evaluated,	for	example,	in	an
earlier	example	we	compared	the	value	of	the	$::facterversion	fact	with	a	number,	but
the	value	is	treated	as	a	string	so	the	code	fails	to	compile.	Using	the	future	parser,	the
value	is	converted	and	no	error	is	reported	as	shown	in	the	following	command	line
output:

t@cookbook:~/.puppet/manifests$	puppet	apply	--parser=future	version.pp	

Notice:	Compiled	catalog	for	cookbook.example.com	in	environment	production	

in	0.36	seconds

Notice:	Finished	catalog	run	in	0.03	seconds

Appending	to	and	concatenating	arrays
You	can	concatenate	arrays	with	the	+	operator	or	append	them	with	the	<<	operator.	In	the
following	example,	we	use	the	ternary	operator	to	assign	a	specific	package	name	to	the
$apache	variable.	We	then	append	that	value	to	an	array	using	the	<<	operator:

$apache	=	$::osfamily	?	{

		'Debian'	=>	'apache2',

		'RedHat'	=>	'httpd'

}	

$packages	=	['memcached']	<<	$apache

package	{$packages:	ensure	=>	installed}

If	we	have	two	arrays,	we	can	use	the	+	operator	to	concatenate	the	two	arrays.	In	this
example,	we	define	an	array	of	system	administrators	($sysadmins)	and	another	array	of
application	owners	($appowners).	We	can	then	concatenate	the	array	and	use	it	as	an
argument	to	our	allowed	users:

$sysadmins	=	['thomas','john','josko']

$appowners	=	['mike',	'patty',	'erin']

$users	=	$sysadmins	+	$appowners

notice	($users)

When	we	apply	this	manifest,	we	see	that	the	two	arrays	have	been	joined	as	shown	in	the
following	command	line	output:

t@cookbook:~/.puppet/manifests$	puppet	apply	--parser=future	concat.pp	

Notice:	[thomas,	john,	josko,	mike,	patty,	erin]

Notice:	Compiled	catalog	for	cookbook.example.com	in	environment	production	

in	0.36	seconds

Notice:	Finished	catalog	run	in	0.03	seconds

Merging	Hashes

If	we	have	two	hashes,	we	can	merge	them	using	the	same	+	operator	we	used	for	arrays.
Consider	our	$interfaces	hash	from	a	previous	example;	we	can	add	another	interface	to
the	hash:

$iface	=	{

		'name'	=>	'eth0',

		'ip'			=>	'192.168.0.1',

		'mac'		=>	'52:54:00:4a:60:07'	

}		+	{'route'	=>	'192.168.0.254'}

notice	($iface)

When	we	apply	this	manifest,	we	see	that	the	route	attribute	has	been	merged	into	the	hash
(your	results	may	differ,	the	order	in	which	the	hash	prints	is	unpredictable),	as	follows:

t@cookbook:~/.puppet/manifests$	puppet	apply	--parser=future	hash2.pp

Notice:	{route	=>	192.168.0.254,	name	=>	eth0,	ip	=>	192.168.0.1,	mac	=>	

52:54:00:4a:60:07}

Notice:	Compiled	catalog	for	cookbook.example.com	in	environment	production	

in	0.36	seconds

Notice:	Finished	catalog	run	in	0.03	seconds

Lambda	functions
Lambda	functions	are	iterators	applied	to	arrays	or	hashes.	You	iterate	through	the	array	or
hash	and	apply	an	iterator	function	such	as	each,	map,	filter,	reduce,	or	slice	to	each
element	of	the	array	or	key	of	the	hash.	Some	of	the	lambda	functions	return	a	calculated
array	or	value;	others	such	as	each	only	return	the	input	array	or	hash.

Lambda	functions	such	as	map	and	reduce	use	temporary	variables	that	are	thrown	away
after	the	lambda	has	finished.	Use	of	lambda	functions	is	something	best	shown	by
example.	In	the	next	few	sections,	we	will	show	an	example	usage	of	each	of	the	lambda
functions.

Reduce

Reduce	is	used	to	reduce	the	array	to	a	single	value.	This	can	be	used	to	calculate	the
maximum	or	minimum	of	the	array,	or	in	this	case,	the	sum	of	the	elements	of	the	array:

$count	=	[1,2,3,4,5]

$sum	=	reduce($count)	|	$total,	$i	|	{	$total	+	$i	}

notice("Sum	is	$sum")

This	preceding	code	will	compute	the	sum	of	the	$count	array	and	store	it	in	the	$sum
variable,	as	follows:

t@cookbook:~/.puppet/manifests$	puppet	apply	--parser	future	lambda.pp

Notice:	Sum	is	15

Notice:	Compiled	catalog	for	cookbook.example.com	in	environment	production	

in	0.36	seconds

Notice:	Finished	catalog	run	in	0.03	seconds

Filter

Filter	is	used	to	filter	the	array	or	hash	based	upon	a	test	within	the	lambda	function.	For
instance	to	filter	our	$count	array	as	follows:

$filter	=	filter	($count)	|	$i	|	{	$i	>	3	}	notice("Filtered	array	is	

$filter")

When	we	apply	this	manifest,	we	see	that	only	elements	4	and	5	are	in	the	result:

Notice:	Filtered	array	is	[4,	5]

Map

Map	is	used	to	apply	a	function	to	each	element	of	the	array.	For	instance,	if	we	wanted
(for	some	unknown	reason)	to	compute	the	square	of	all	the	elements	of	the	array,	we
would	use	map	as	follows:

$map	=	map	($count)	|	$i	|	{	$i	*	$i	}	notice("Square	of	array	is	$map")

The	result	of	applying	this	manifest	is	a	new	array	with	every	element	of	the	original	array
squared	(multiplied	by	itself),	as	shown	in	the	following	command	line	output:

Notice:	Square	of	array	is	[1,	4,	9,	16,	25]

Slice

Slice	is	useful	when	you	have	related	values	stored	in	the	same	array	in	a	sequential	order.
For	instance,	if	we	had	the	destination	and	port	information	for	a	firewall	in	an	array,	we
could	split	them	up	into	pairs	and	perform	operations	on	those	pairs:

$firewall_rules	=	['192.168.0.1','80','192.168.0.10','443']

slice	($firewall_rules,2)	|$ip,	$port|	{	notice("Allow	$ip	on	$port")	}

When	applied,	this	manifest	will	produce	the	following	notices:

Notice:	Allow	192.168.0.1	on	80

Notice:	Allow	192.168.0.10	on	443

To	make	this	a	useful	example,	create	a	new	firewall	resource	within	the	block	of	the	slice
instead	of	notice:

slice	($firewall_rules,2)	|$ip,	$port|	{	firewall	{"$port	from	$ip":	dport		

=>	$port,	source	=>	"$ip",	action	=>	'accept',	}

}

Each

Each	is	used	to	iterate	over	the	elements	of	the	array	but	lacks	the	ability	to	capture	the
results	like	the	other	functions.	Each	is	the	simplest	case	where	you	simply	wish	to	do
something	with	each	element	of	the	array,	as	shown	in	the	following	code	snippet:

each	($count)	|$c|	{	notice($c)	}

As	expected,	this	executes	the	notice	for	each	element	of	the	$count	array,	as	follows:

Notice:	1

Notice:	2

Notice:	3

Notice:	4

Notice:	5

Other	features

There	are	other	new	features	of	Puppet	language	available	when	using	the	future	parser.
Some	increase	readability	or	compactness	of	code.	For	more	information,	refer	to	the
documentation	on	puppetlabs	website	at
http://docs.puppetlabs.com/puppet/latest/reference/experiments_future.html.

http://docs.puppetlabs.com/puppet/latest/reference/experiments_future.html

Chapter	2.	Puppet	Infrastructure
	 “Computers	in	the	future	may	have	as	few	as	1,000	vacuum	tubes	and	weigh	only	1.5	tons.” 	

	 —Popular	Mechanics,	1949

In	this	chapter,	we	will	cover:

Installing	Puppet
Managing	your	manifests	with	Git
Creating	a	decentralized	Puppet	architecture
Writing	a	papply	script
Running	Puppet	from	cron
Bootstrapping	Puppet	with	bash
Creating	a	centralized	Puppet	infrastructure
Creating	certificates	with	multiple	DNS	names
Running	Puppet	from	passenger
Setting	up	the	environment
Configuring	PuppetDB
Configuring	Hiera
Setting-node	specific	data	with	Hiera
Storing	secret	data	with	hiera-gpg
Using	MessagePack	serialization
Automatic	syntax	checking	with	Git	hooks
Pushing	code	around	with	Git
Managing	environments	with	Git

Introduction
In	this	chapter,	we	will	cover	how	to	deploy	Puppet	in	a	centralized	and	decentralized
manner.	With	each	approach,	we’ll	see	a	combination	of	best	practices,	my	personal
experience,	and	community	solutions.

We’ll	configure	and	use	both	PuppetDB	and	Hiera.	PuppetDB	is	used	with	exported
resources,	which	we	will	cover	in	Chapter	5,	Users	and	Virtual	Resources.	Hiera	is	used	to
separate	variable	data	from	Puppet	code.

Finally,	I’ll	introduce	Git	and	see	how	to	use	Git	to	organize	our	code	and	our
infrastructure.

Because	Linux	distributions,	such	as	Ubuntu,	Red	Hat,	and	CentOS,	differ	in	the	specific
details	of	package	names,	configuration	file	paths,	and	many	other	things,	I	have	decided
that	for	reasons	of	space	and	clarity	the	best	approach	for	this	book	is	to	pick	one
distribution	(Debian	7	named	as	Wheezy)	and	stick	to	that.	However,	Puppet	runs	on	most
popular	operating	systems,	so	you	should	have	very	little	trouble	adapting	the	recipes	to
your	own	favorite	OS	and	distribution.

At	the	time	of	writing,	Puppet	3.7.2	is	the	latest	stable	version	available,	this	is	the	version
of	Puppet	used	in	the	book.	The	syntax	of	Puppet	commands	changes	often,	so	be	aware
that	while	older	versions	of	Puppet	are	still	perfectly	usable,	they	may	not	support	all	of
the	features	and	syntax	described	in	this	book.	As	we	saw	in	Chapter	1,	Puppet	Language
and	Style,	the	future	parser	showcases	features	of	the	language	scheduled	to	become
default	in	Version	4	of	Puppet.

Installing	Puppet
In	Chapter	1,	Puppet	Language	and	Style,	we	installed	Puppet	as	a	rubygem	using	the	gem
install.	When	deploying	to	several	nodes,	this	may	not	be	the	best	approach.	Using	the
package	manager	of	your	chosen	distribution	is	the	best	way	to	keep	your	Puppet	versions
similar	on	all	of	the	nodes	in	your	deployment.	Puppet	labs	maintain	repositories	for	APT-
based	and	YUM-based	distributions.

Getting	ready
If	your	Linux	distribution	uses	APT	for	package	management,	go	to
http://apt.puppetlabs.com/	and	download	the	appropriate	Puppet	labs	release	package	for
your	distribution.	For	our	wheezy	cookbook	node,	we	will	use
http://apt.puppetlabs.com/puppetlabs-release-wheezy.deb.

If	you	are	using	a	Linux	distribution	that	uses	YUM	for	package	management,	go	to
http://yum.puppetlabs.com/	and	download	the	appropriate	Puppet	labs	release	package	for
your	distribution.

http://apt.puppetlabs.com/
http://apt.puppetlabs.com/puppetlabs-release-wheezy.deb
http://yum.puppetlabs.com/

How	to	do	it…
1.	 Once	you	have	found	the	appropriate	Puppet	labs	release	package	for	your

distribution,	the	steps	to	install	Puppet	are	the	same	for	either	APT	or	YUM:

Install	Puppet	labs	release	package
Install	Puppet	package

2.	 Once	you	have	installed	Puppet,	verify	the	version	of	Puppet	as	shown	in	the
following	example:

t@ckbk:~	puppet	--version	3.7.2

Now	that	we	have	a	method	to	install	Puppet	on	our	nodes,	we	need	to	turn	our	attention
to	keeping	our	Puppet	manifests	organized.	In	the	next	section,	we	will	see	how	to	use	Git
to	keep	our	code	organized	and	consistent.

Managing	your	manifests	with	Git
It’s	a	great	idea	to	put	your	Puppet	manifests	in	a	version	control	system	such	as	Git	or
Subversion	(Git	is	the	de	facto	standard	for	Puppet).	This	gives	you	several	advantages:

You	can	undo	changes	and	revert	to	any	previous	version	of	your	manifest
You	can	experiment	with	new	features	using	a	branch
If	several	people	need	to	make	changes	to	the	manifests,	they	can	make	them
independently,	in	their	own	working	copies,	and	then	merge	their	changes	later
You	can	use	the	git	log	feature	to	see	what	was	changed,	and	when	(and	by	whom)

Getting	ready
In	this	section,	we’ll	import	your	existing	manifest	files	into	Git.	If	you	have	created	a
Puppet	directory	in	a	previous	section	use	that,	otherwise,	use	your	existing	manifest
directory.

In	this	example,	we’ll	create	a	new	Git	repository	on	a	server	accessible	from	all	our
nodes.	There	are	several	steps	we	need	to	take	to	have	our	code	held	in	a	Git	repository:

1.	 Install	Git	on	a	central	server.
2.	 Create	a	user	to	run	Git	and	own	the	repository.
3.	 Create	a	repository	to	hold	the	code.
4.	 Create	SSH	keys	to	allow	key-based	access	to	the	repository.
5.	 Install	Git	on	a	node	and	download	the	latest	version	from	our	Git	repository.

How	to	do	it…
Follow	these	steps:

1.	 First,	install	Git	on	your	Git	server	(git.example.com	in	our	example).	The	easiest
way	to	do	this	is	using	Puppet.	Create	the	following	manifest,	call	it	git.pp:

		package	{'git':

				ensure	=>	installed	}

2.	 Apply	this	manifest	using	puppet	apply	git.pp,	this	will	install	Git.
3.	 Next,	create	a	Git	user	that	the	nodes	will	use	to	log	in	and	retrieve	the	latest	code.

Again,	we’ll	do	this	with	puppet.	We’ll	also	create	a	directory	to	hold	our	repository
(/home/git/repos)	as	shown	in	the	following	code	snippet:

group	{	'git':	gid	=>	1111,	}

user	{'git':	uid	=>	1111,	gid	=>	1111,	comment	=>	'Git	User',	home	=>	

'/home/git',	require	=>	Group['git'],	}

file	{'/home/git':	ensure	=>	'directory',	owner	=>	1111,	group	=>	1111,	

require	=>	User['git'],	}

file	{'/home/git/repos':	ensure	=>	'directory',	owner	=>	1111,	group	=>	

1111,	require	=>	File['/home/git']	}

4.	 After	applying	that	manifest,	log	in	as	the	Git	user	and	create	an	empty	Git	repository
using	the	following	command:

#	sudo	-iu	git	git@git	$	cd	repos	git@git	$	git	init	--bare	puppet.git	

Initialized	empty	Git	repository	in	/home/git/repos/puppet.git/

5.	 Set	a	password	for	the	Git	user,	we’ll	need	to	log	in	remotely	after	the	next	step:

[root@git	~]#	passwd	git

Changing	password	for	user	git.

New	password:	

Retype	new	password:	

passwd:	all	authentication	tokens	updated	successfully.

6.	 Now	back	on	your	local	machine,	create	an	ssh	key	for	our	nodes	to	use	to	update	the
repository:

t@mylaptop	~	$	cd	.ssh

t@mylaptop	~/.ssh	$	ssh-keygen	-b	4096	-f	git_rsa

Generating	public/private	rsa	key	pair.

Enter	passphrase	(empty	for	no	passphrase):	

Enter	same	passphrase	again:	

Your	identification	has	been	saved	in	git_rsa.

Your	public	key	has	been	saved	in	git_rsa.pub.

The	key	fingerprint	is:

87:35:0e:4e:d2:96:5f:e4:ce:64:4a:d5:76:c8:2b:e4	thomas@mylaptop

7.	 Now	copy	the	newly	created	public	key	to	the	authorized_keys	file.	This	will	allow
us	to	connect	to	the	Git	server	using	this	new	key:

t@mylaptop	~/.ssh	$	ssh-copy-id	-i	git_rsa	git@git.example.com

git@git.example.com's	password:	

Number	of	key(s)	added:	1

8.	 Now	try	logging	into	the	machine,	with:	“ssh	‘git@git.example.com’”	and	check	to
make	sure	that	only	the	key(s)	you	wanted	were	added.

9.	 Next,	configure	ssh	to	use	your	key	when	accessing	the	Git	server	and	add	the
following	to	your	~/.ssh/config	file:

Host	git	git.example.com

		User	git

		IdentityFile	/home/thomas/.ssh/git_rsa

10.	 Clone	the	repo	onto	your	machine	into	a	directory	named	Puppet	(substitute	your
server	name	if	you	didn’t	use	git.example.com):

t@mylaptop	~$	git	clone	git@git.example.com:repos/puppet.git

Cloning	into	'puppet'...

warning:	You	appear	to	have	cloned	an	empty	repository.

Checking	connectivity…	done.

We’ve	created	a	Git	repository;	before	we	commit	any	changes	to	the	repository,	it’s
a	good	idea	to	set	your	name	and	e-mail	in	Git.	Your	name	and	e-mail	will	be
appended	to	each	commit	you	make.

11.	 When	you	are	working	in	a	large	team,	knowing	who	made	a	change	is	very
important;	for	this,	use	the	following	code	snippet:

t@mylaptop	puppet$	git	config	--global	

user.email"thomas@narrabilis.com"

t@mylaptop	puppet$	git	config	--global	user.name	"ThomasUphill"

12.	 You	can	verify	your	Git	settings	using	the	following	snippet:

t@mylaptop	~$	git	config	--global	--list

user.name=Thomas	Uphill

user.email=thomas@narrabilis.com

core.editor=vim

merge.tool=vimdiff

color.ui=true

push.default=simple

13.	 Now	that	we	have	Git	configured	properly,	change	directory	to	your	repository
directory	and	create	a	new	site	manifest	as	shown	in	the	following	snippet:

t@mylaptop	~$	cd	puppet

t@mylaptop	puppet$	mkdir	manifests

t@mylaptop	puppet$	vim	manifests/site.pp

node	default	{

		include	base

}

14.	 This	site	manifest	will	install	our	base	class	on	every	node;	we	will	create	the	base
class	using	the	Puppet	module	as	we	did	in	Chapter	1,	Puppet	Language	and	Style:

t@mylaptop	puppet$	mkdir	modules

t@mylaptop	puppet$	cd	modules

t@mylaptop	modules$	puppet	module	generate	thomas-base

Notice:	Generating	module	at	/home/tuphill/puppet/modules/thomas-base

thomas-base

thomas-base/Modulefile

thomas-base/README

thomas-base/manifests

thomas-base/manifests/init.pp

thomas-base/spec

thomas-base/spec/spec_helper.rb

thomas-base/tests

thomas-base/tests/init.pp

t@mylaptop	modules$	ln	-s	thomas-base	base

15.	 As	a	last	step,	we	create	a	symbolic	link	between	the	thomas-base	directory	and
base.	Now	to	make	sure	our	module	does	something	useful,	add	the	following	to	the
body	of	the	base	class	defined	in	thomas-base/manifests/init.pp:

class	base	{

		file	{'/etc/motd':

				content	=>	"${::fqdn}\nManaged	by	puppet	${::puppetversion}\n"

		}

}

16.	 Now	add	the	new	base	module	and	site	manifest	to	Git	using	git	add	and	git
commit	as	follows:

t@mylaptop	modules$	cd	..

t@mylaptop	puppet$	git	add	modules	manifests

t@mylaptop	puppet$	git	status

On	branch	master

Initial	commit

Changes	to	be	committed:

		(use	"git	rm	--cached	<file>..."	to	unstage)

new	file:			manifests/site.pp

new	file:			modules/base

new	file:			modules/thomas-base/Modulefile

new	file:			modules/thomas-base/README

new	file:			modules/thomas-base/manifests/init.pp

new	file:			modules/thomas-base/spec/spec_helper.rb

new	file:			modules/thomas-base/tests/init.pp

t@mylaptop	puppet$	git	commit	-m	"Initial	commit	with	simple	base	

module"

[master	(root-commit)	3e1f837]	Initial	commit	with	simple	base	module

	7	files	changed,	102	insertions(+)

	create	mode	100644	manifests/site.pp

	create	mode	120000	modules/base

	create	mode	100644	modules/thomas-base/Modulefile

	create	mode	100644	modules/thomas-base/README

	create	mode	100644	modules/thomas-base/manifests/init.pp

	create	mode	100644	modules/thomas-base/spec/spec_helper.rb

	create	mode	100644	modules/thomas-base/tests/init.pp

17.	 At	this	point	your	changes	to	the	Git	repository	have	been	committed	locally;	you
now	need	to	push	those	changes	back	to	git.example.com	so	that	other	nodes	can
retrieve	the	updated	files:

t@mylaptop	puppet$	git	push	origin	master

Counting	objects:	15,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(9/9),	done.

Writing	objects:	100%	(15/15),	2.15	KiB	|	0	bytes/s,	done.

Total	15	(delta	0),	reused	0	(delta	0)

To	git@git.example.com:repos/puppet.git

	*	[new	branch]						master	->	master

How	it	works…
Git	tracks	changes	to	files,	and	stores	a	complete	history	of	all	changes.	The	history	of	the
repo	is	made	up	of	commits.	A	commit	represents	the	state	of	the	repo	at	a	particular	point
in	time,	which	you	create	with	the	git	commit	command	and	annotate	with	a	message.

You’ve	now	added	your	Puppet	manifest	files	to	the	repo	and	created	your	first	commit.
This	updates	the	history	of	the	repo,	but	only	in	your	local	working	copy.	To	synchronize
the	changes	with	the	git.example.com	copy,	the	git	push	command	pushes	all	changes
made	since	the	last	sync.

There’s	more…
Now	that	you	have	a	central	Git	repository	for	your	Puppet	manifests,	you	can	check	out
multiple	copies	of	it	in	different	places	and	work	on	them	before	committing	your
changes.	For	example,	if	you’re	working	in	a	team,	each	member	can	have	their	own	local
copy	of	the	repo	and	synchronize	changes	with	the	others	via	the	central	server.	You	may
also	choose	to	use	GitHub	as	your	central	Git	repository	server.	GitHub	offers	free	Git
repository	hosting	for	public	repositories,	and	you	can	pay	for	GitHub’s	premium	service
if	you	don’t	want	your	Puppet	code	to	be	publicly	available.

In	the	next	section,	we	will	use	our	Git	repository	for	both	centralized	and	decentralized
Puppet	configurations.

Creating	a	decentralized	Puppet
architecture
Puppet	is	a	configuration	management	tool.	You	can	use	Puppet	to	configure	and	prevent
configuration	drift	in	a	large	number	of	client	computers.	If	all	your	client	computers	are
easily	reached	via	a	central	location,	you	may	choose	to	have	a	central	Puppet	server
control	all	the	client	computers.	In	the	centralized	model,	the	Puppet	server	is	known	as
the	Puppet	master.	We	will	cover	how	to	configure	a	central	Puppet	master	in	a	few
sections.

If	your	client	computers	are	widely	distributed	or	you	cannot	guarantee	communication
between	the	client	computers	and	a	central	location,	then	a	decentralized	architecture	may
be	a	good	fit	for	your	deployment.	In	the	next	few	sections,	we	will	see	how	to	configure	a
decentralized	Puppet	architecture.

As	we	have	seen,	we	can	run	the	puppet	apply	command	directly	on	a	manifest	file	to
have	Puppet	apply	it.	The	problem	with	this	arrangement	is	that	we	need	to	have	the
manifests	transferred	to	the	client	computers.

We	can	use	the	Git	repository	we	created	in	the	previous	section	to	transfer	our	manifests
to	each	new	node	we	create.

Getting	ready
Create	a	new	test	node,	call	this	new	node	whatever	you	wish,	I’ll	use	testnode	for	mine.
Install	Puppet	on	the	machine	as	we	have	previously	done.

How	to	do	it…
Create	a	bootstrap.pp	manifest	that	will	perform	the	following	configuration	steps	on	our
new	node:

1.	 Install	Git:

package	{'git':

		ensure	=>	'installed'

}

2.	 Install	the	ssh	key	to	access	git.example.com	in	the	Puppet	user’s	home	directory
(/var/lib/puppet/.ssh/id_rsa):

File	{

		owner	=>	'puppet',

		group	=>	'puppet',

}

file	{'/var/lib/puppet/.ssh':

		ensure	=>	'directory',

}

file	{'/var/lib/puppet/.ssh/id_rsa':

		content	=>	"

-----BEGIN	RSA	PRIVATE	KEY-----

…

NIjTXmZUlOKefh4MBilqUU3KQG8GBHjzYl2TkFVGLNYGNA0U8VG8SUJq

-----END	RSA	PRIVATE	KEY-----

",

		mode				=>	0600,

		require	=>	File['/var/lib/puppet/.ssh']

}

3.	 Download	the	ssh	host	key	from	git.example.com
(/var/lib/puppet/.ssh/known_hosts):

exec	{'download	git.example.com	host	key':	

		command	=>	'sudo	-u	puppet	ssh-keyscan	git.example.com	>>	

/var/lib/puppet/.ssh/known_hosts',

		path				=>	'/usr/bin:/usr/sbin:/bin:/sbin',

		unless		=>	'grep	git.example.com	/var/lib/puppet/.ssh/known_hosts',

		require	=>	File['/var/lib/puppet/.ssh'],

}

4.	 Create	a	directory	to	contain	the	Git	repository	(/etc/puppet/cookbook):

file	{'/etc/puppet/cookbook':

		ensure	=>	'directory',

}

5.	 Clone	the	Puppet	repository	onto	the	new	machine:

exec	{'create	cookbook':

		command	=>	'sudo	-u	puppet	git	clone	

git@git.example.com:repos/puppet.git	/etc/puppet/cookbook',

		path				=>	'/usr/bin:/usr/sbin:/bin:/sbin',

		require	=>	

[Package['git'],File['/var/lib/puppet/.ssh/id_rsa'],Exec['download	

git.example.com	host	key']],

		unless		=>	'test	-f	/etc/puppet/cookbook/.git/config',

}

6.	 Now	when	we	run	Puppet	apply	on	the	new	machine,	the	ssh	key	will	be	installed	for
the	Puppet	user.	The	Puppet	user	will	then	clone	the	Git	repository	into
/etc/puppet/cookbook:

root@testnode	/tmp#	puppet	apply	bootstrap.pp	

Notice:	Compiled	catalog	for	testnode.example.com	in	environment	

production	in	0.40	seconds

Notice:	/Stage[main]/Main/File[/etc/puppet/cookbook]/ensure:	created

Notice:	/Stage[main]/Main/File[/var/lib/puppet/.ssh]/ensure:	created

Notice:	/Stage[main]/Main/Exec[download	git.example.com	host	

key]/returns:	executed	successfully

Notice:	/Stage[main]/Main/File[/var/lib/puppet/.ssh/id_rsa]/ensure:	

defined	content	as	'{md5}da61ce6ccc79bc6937bd98c798bc9fd3'

Notice:	/Stage[main]/Main/Exec[create	cookbook]/returns:	executed	

successfully

Notice:	Finished	catalog	run	in	0.82	seconds

Note
You	may	have	to	disable	the	tty	requirement	of	sudo.	Comment	out	the	line
Defaults	requiretty	at	/etc/sudoers	if	you	have	this	line.

Alternatively,	you	can	set	user	=>	Puppet	within	the	'create	cookbook'	exec
type.	Beware	that	using	the	user	attribute	will	cause	any	error	messages	from	the
command	to	be	lost.

7.	 Now	that	your	Puppet	code	is	available	on	the	new	node,	you	can	apply	it	using
puppet	apply,	specifying	that	/etc/puppet/cookbook/modules	will	contain	the
modules:

root@testnode	~#	puppet	apply	--modulepath=/etc/puppet/cookbook/modules	

/etc/puppet/cookbook/manifests/site.pp	

Notice:	Compiled	catalog	for	testnode.example.com	in	environment	

production	in	0.12	seconds

Notice:	/Stage[main]/Base/File[/etc/motd]/content:	content	changed	

'{md5}86d28ff83a8d49d349ba56b5c64b79ee'	to	

'{md5}4c4c3ab7591d940318279d78b9c51d4f'

Notice:	Finished	catalog	run	in	0.11	seconds

root@testnode	/tmp#	cat	/etc/motd

testnode.example.com

Managed	by	puppet	3.6.2

How	it	works…
First,	our	bootstrap.pp	manifest	ensures	that	Git	is	installed.	The	manifest	then	goes	on
to	ensure	that	the	ssh	key	for	the	Git	user	on	git.example.com	is	installed	into	the	Puppet
user’s	home	directory	(/var/lib/puppet	by	default).	The	manifest	then	ensures	that	the
host	key	for	git.example.com	is	trusted	by	the	Puppet	user.	With	ssh	configured,	the
bootstrap	ensures	that	/etc/puppet/cookbook	exists	and	is	a	directory.

We	then	use	an	exec	to	have	Git	clone	the	repository	into	/etc/puppet/cookbook.	With
all	the	code	in	place,	we	then	call	puppet	apply	a	final	time	to	deploy	the	code	from	the
repository.	In	a	production	setting,	you	would	distribute	the	bootstrap.pp	manifest	to	all
your	nodes,	possibly	via	an	internal	web	server,	using	a	method	similar	to	curl
http://puppet/bootstrap.pp	>bootstrap.pp	&&	puppet	apply	bootstrap.pp

http://puppet/bootstrap.pp%20>bootstrap.pp%20&&%20puppet%20apply%20bootstrap.pp

Writing	a	papply	script
We’d	like	to	make	it	as	quick	and	easy	as	possible	to	apply	Puppet	on	a	machine;	for	this
we’ll	write	a	little	script	that	wraps	the	puppet	apply	command	with	the	parameters	it
needs.	We’ll	deploy	the	script	where	it’s	needed	with	Puppet	itself.

How	to	do	it…
Follow	these	steps:

1.	 In	your	Puppet	repo,	create	the	directories	needed	for	a	Puppet	module:

t@mylaptop	~$	cd	puppet/modules

t@mylaptop	modules$	mkdir	-p	puppet/{manifests,files}

2.	 Create	the	modules/puppet/files/papply.sh	file	with	the	following	contents:

#!/bin/sh	sudo	puppet	apply	/etc/puppet/cookbook/manifests/site.pp	\--

modulepath=/etc/puppet/cookbook/modules	$*

3.	 Create	the	modules/puppet/manifests/init.pp	file	with	the	following	contents:

class	puppet	{

		file	{	'/usr/local/bin/papply':

				source	=>	'puppet:///modules/puppet/papply.sh',

				mode			=>	'0755',

		}

}

4.	 Modify	your	manifests/site.pp	file	as	follows:

node	default	{

		include	base

		include	puppet

}

5.	 Add	the	Puppet	module	to	the	Git	repository	and	commit	the	change	as	follows:

t@mylaptop	puppet$	git	add	manifests/site.pp	modules/puppet

t@mylaptop	puppet$	git	status

On	branch	master

Your	branch	is	up-to-date	with	'origin/master'.

Changes	to	be	committed:

		(use	"git	reset	HEAD	<file>..."	to	unstage)

modified:			manifests/site.pp

new	file:			modules/puppet/files/papply.sh

new	file:			modules/puppet/manifests/init.pp

t@mylaptop	puppet$	git	commit	-m	"adding	puppet	module	to	include	

papply"

[master	7c2e3d5]	adding	puppet	module	to	include	papply

	3	files	changed,	11	insertions(+)

	create	mode	100644	modules/puppet/files/papply.sh

	create	mode	100644	modules/puppet/manifests/init.pp

6.	 Now	remember	to	push	the	changes	to	the	Git	repository	on	git.example.com:

t@mylaptop	puppet$	git	push	origin	master	Counting	objects:	14,	done.	

Delta	compression	using	up	to	4	threads.	Compressing	objects:	100%	

(7/7),	done.	Writing	objects:	100%	(10/10),	894	bytes	|	0	bytes/s,	

done.	Total	10	(delta	0),	reused	0	(delta	0)	To	

git@git.example.com:repos/puppet.git	23e887c..7c2e3d5		master	->	master

7.	 Pull	the	latest	version	of	the	Git	repository	to	your	new	node	(testnode	for	me)	as

shown	in	the	following	command	line:

root@testnode	~#	sudo	-iu	puppet

puppet@testnode	~$	cd	/etc/puppet/cookbook/puppet@testnode	

/etc/puppet/cookbook$	git	pull	origin	master	remote:	Counting	objects:	

14,	done.	remote:	Compressing	objects:	100%	(7/7),	done.	remote:	Total	

10	(delta	0),	reused	0	(delta	0)	Unpacking	objects:	100%	(10/10),	done.	

From	git.example.com:repos/puppet	*	branch												master					->	

FETCH_HEAD	Updating	23e887c..7c2e3d5	Fast-forward	manifests/site.pp																

|				1	+	modules/puppet/files/papply.sh			|				4	++++	

modules/puppet/manifests/init.pp	|				6	++++++	3	files	changed,	11	

insertions(+),	0	deletions(-)	create	mode	100644	

modules/puppet/files/papply.sh	create	mode	100644	

modules/puppet/manifests/init.pp

8.	 Apply	the	manifest	manually	once	to	install	the	papply	script:

root@testnode	~#	puppet	apply	/etc/puppet/cookbook/manifests/site.pp	--

modulepath	/etc/puppet/cookbook/modules

Notice:	Compiled	catalog	for	testnode.example.com	in	environment	

production	in	0.13	seconds

Notice:	/Stage[main]/Puppet/File[/usr/local/bin/papply]/ensure:	defined	

content	as	'{md5}d5c2cdd359306dd6e6441e6fb96e5ef7'

Notice:	Finished	catalog	run	in	0.13	seconds

9.	 Finally,	test	the	script:

root@testnode	~#	papply

Notice:	Compiled	catalog	for	testnode.example.com	in	environment	

production	in	0.13	seconds

Notice:	Finished	catalog	run	in	0.09	seconds

Now,	whenever	you	need	to	run	Puppet,	you	can	simply	run	papply.	In	future,	when	we
apply	Puppet	changes,	I’ll	ask	you	to	run	papply	instead	of	the	full	puppet	apply
command.

How	it	works…
As	you’ve	seen,	to	run	Puppet	on	a	machine	and	apply	a	specified	manifest	file,	we	use	the
puppet	apply	command:

puppet	apply	manifests/site.pp

When	you’re	using	modules	(such	as	the	Puppet	module	we	just	created),	you	also	need	to
tell	Puppet	where	to	search	for	modules,	using	the	modulepath	argument:

puppet	apply	manifests/nodes.pp	\--modulepath=/home/ubuntu/puppet/modules

In	order	to	run	Puppet	with	the	root	privileges	it	needs,	we	have	to	put	sudo	before
everything:

sudo	puppet	apply	manifests/nodes.pp	\--

modulepath=/home/ubuntu/puppet/modules

Finally,	any	additional	arguments	passed	to	papply	will	be	passed	through	to	Puppet	itself,
by	adding	the	$*	parameter:

sudo	puppet	apply	manifests/nodes.pp	\--

modulepath=/home/ubuntu/puppet/modules	$*

That’s	a	lot	of	typing,	so	putting	this	in	a	script	makes	sense.	We’ve	added	a	Puppet	file
resource	that	will	deploy	the	script	to	/usr/local/bin	and	make	it	executable:

file	{	'/usr/local/bin/papply':	source	=>	

'puppet:///modules/puppet/papply.sh',	mode			=>	'0755',}

Finally,	we	include	the	Puppet	module	in	our	default	node	declaration:

node	default	{

		include	base

		include	puppet

}

You	can	do	the	same	for	any	other	nodes	managed	by	Puppet.

Running	Puppet	from	cron
You	can	do	a	lot	with	the	setup	you	already	have:	work	on	your	Puppet	manifests	as	a
team,	communicate	changes	via	a	central	Git	repository,	and	manually	apply	them	on	a
machine	using	the	papply	script.

However,	you	still	have	to	log	into	each	machine	to	update	the	Git	repo	and	rerun	Puppet.
It	would	be	helpful	to	have	each	machine	update	itself	and	apply	any	changes
automatically.	Then	all	you	need	to	do	is	to	push	a	change	to	the	repo,	and	it	will	go	out	to
all	your	machines	within	a	certain	time.

The	simplest	way	to	do	this	is	with	a	cron	job	that	pulls	updates	from	the	repo	at	regular
intervals	and	then	runs	Puppet	if	anything	has	changed.

Getting	ready
You’ll	need	the	Git	repo	we	set	up	in	the	Managing	your	manifests	with	Git	and	Creating
a	decentralized	Puppet	architecture	recipes,	and	the	papply	script	from	the	Writing	a
papply	script	recipe.	You’ll	need	to	apply	the	bootstrap.pp	manifest	we	created	to	install
ssh	keys	to	download	the	latest	repository.

How	to	do	it…
Follow	these	steps:

1.	 Copy	the	bootstrap.pp	script	to	any	node	you	wish	to	enroll.	The	bootstrap.pp
manifest	includes	the	private	key	used	to	access	the	Git	repository,	it	should	be
protected	in	a	production	environment.

2.	 Create	the	modules/puppet/files/pull-updates.sh	file	with	the	following
contents:

#!/bin/sh

cd	/etc/puppet/cookbook

sudo	–u	puppet	git	pull	&&	/usr/local/bin/papply

3.	 Modify	the	modules/puppet/manifests/init.pp	file	and	add	the	following	snippet
after	the	papply	file	definition:

file	{	'/usr/local/bin/pull-updates':

		source	=>	'puppet:///modules/puppet/pull-updates.sh',

		mode			=>	'0755',

}

cron	{	'run-puppet':

		ensure		=>	'present',

		user				=>	'puppet',

		command	=>	'/usr/local/bin/pull-updates',

		minute		=>	'*/10',

		hour				=>	'*',

}

4.	 Commit	the	changes	as	before	and	push	to	the	Git	server	as	shown	in	the	following
command	line:

t@mylaptop	puppet$	git	add	modules/puppet

t@mylaptop	puppet$	git	commit	-m	"adding	pull-updates"

[master	7e9bac3]	adding	pull-updates

	2	files	changed,	14	insertions(+)

	create	mode	100644	modules/puppet/files/pull-updates.sh

t@mylaptop	puppet$	git	push

Counting	objects:	14,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(7/7),	done.

Writing	objects:	100%	(8/8),	839	bytes	|	0	bytes/s,	done.

Total	8	(delta	0),	reused	0	(delta	0)

To	git@git.example.com:repos/puppet.git

			7c2e3d5..7e9bac3		master	->	master

5.	 Issue	a	Git	pull	on	the	test	node:

root@testnode	~#	cd	/etc/puppet/cookbook/

root@testnode	/etc/puppet/cookbook#	sudo	–u	puppet	git	pull

remote:	Counting	objects:	14,	done.

remote:	Compressing	objects:	100%	(7/7),	done.

remote:	Total	8	(delta	0),	reused	0	(delta	0)

Unpacking	objects:	100%	(8/8),	done.

From	git.example.com:repos/puppet

			23e887c..7e9bac3		master					->	origin/master

Updating	7c2e3d5..7e9bac3

Fast-forward

	modules/puppet/files/pull-updates.sh	|				3	+++

	modules/puppet/manifests/init.pp					|			11	+++++++++++

	2	files	changed,	14	insertions(+),	0	deletions(-)

	create	mode	100644	modules/puppet/files/pull-updates.sh

6.	 Run	Puppet	on	the	test	node:

root@testnode	/etc/puppet/cookbook#	papply

Notice:	Compiled	catalog	for	testnode.example.com	in	environment	

production	in	0.17	seconds

Notice:	/Stage[main]/Puppet/Cron[run-puppet]/ensure:	created

Notice:	/Stage[main]/Puppet/File[/usr/local/bin/pull-updates]/ensure:	

defined	content	as	'{md5}04c023feb5d566a417b519ea51586398'

Notice:	Finished	catalog	run	in	0.16	seconds

7.	 Check	that	the	pull-updates	script	works	properly:

root@testnode	/etc/puppet/cookbook#	pull-updates

Already	up-to-date.

Notice:	Compiled	catalog	for	testnode.example.com	in	environment	

production	in	0.15	seconds

Notice:	Finished	catalog	run	in	0.14	seconds

8.	 Verify	the	cron	job	was	created	successfully:

root@testnode	/etc/puppet/cookbook#	crontab	-l	-u	puppet

#	HEADER:	This	file	was	autogenerated	at	Tue	Sep	09	02:31:00	-0400	2014	

by	puppet.

#	HEADER:	While	it	can	still	be	managed	manually,	it	is	definitely	not	

recommended.

#	HEADER:	Note	particularly	that	the	comments	starting	with	'Puppet	

Name'	should

#	HEADER:	not	be	deleted,	as	doing	so	could	cause	duplicate	cron	jobs.

#	Puppet	Name:	run-puppet

*/10	*	*	*	*	/usr/local/bin/pull-updates

How	it	works…
When	we	created	the	bootstrap.pp	manifest,	we	made	sure	that	the	Puppet	user	can
checkout	the	Git	repository	using	an	ssh	key.	This	enables	the	Puppet	user	to	run	the	Git
pull	in	the	cookbook	directory	unattended.	We’ve	also	added	the	pull-updates	script,
which	does	this	and	runs	Puppet	if	any	changes	are	pulled:

#!/bin/sh

cd	/etc/puppet/cookbook

sudo	–u	puppet	git	pull	&&	papply

We	deploy	this	script	to	the	node	with	Puppet:

file	{	'/usr/local/bin/pull-updates':

		source	=>	'puppet:///modules/puppet/pull-updates.sh',

		mode			=>	'0755',

}

Finally,	we’ve	created	a	cron	job	that	runs	pull-updates	at	regular	intervals	(every	10
minutes,	but	feel	free	to	change	this	if	you	need	to):

cron	{	'run-puppet':

		ensure		=>	'present',

		command	=>	'/usr/local/bin/pull-updates',

		minute		=>	'*/10',

		hour				=>	'*',

}

There’s	more…
Congratulations,	you	now	have	a	fully-automated	Puppet	infrastructure!	Once	you	have
applied	the	bootstrap.pp	manifest,	run	Puppet	on	the	repository;	the	machine	will	be	set
up	to	pull	any	new	changes	and	apply	them	automatically.

So,	for	example,	if	you	wanted	to	add	a	new	user	account	to	all	your	machines,	all	you
have	to	do	is	add	the	account	in	your	working	copy	of	the	manifest,	and	commit	and	push
the	changes	to	the	central	Git	repository.	Within	10	minutes,	it	will	automatically	be
applied	to	every	machine	that’s	running	Puppet.

Bootstrapping	Puppet	with	bash
Previous	versions	of	this	book	used	Rakefiles	to	bootstrap	Puppet.	The	problem	with	using
Rake	to	configure	a	node	is	that	you	are	running	the	commands	from	your	laptop;	you
assume	you	already	have	ssh	access	to	the	machine.	Most	bootstrap	processes	work	by
issuing	an	easy	to	remember	command	from	a	node	once	it	has	been	provisioned.	In	this
section,	we’ll	show	how	to	use	bash	to	bootstrap	Puppet	with	a	web	server	and	a	bootstrap
script.

Getting	ready
Install	httpd	on	a	centrally	accessible	server	and	create	a	password	protected	area	to	store
the	bootstrap	script.	In	my	example,	I’ll	use	the	Git	server	I	set	up	previously,
git.example.com.	Start	by	creating	a	directory	in	the	root	of	your	web	server:

#	cd	/var/www/html

#	mkdir	bootstrap

Now	perform	the	following	steps:

1.	 Add	the	following	location	definition	to	your	apache	configuration:

<Location	/bootstrap>

AuthType	basic

AuthName	"Bootstrap"

AuthBasicProvider	file

AuthUserFile	/var/www/puppet.passwd

Require	valid-user

</Location>

2.	 Reload	your	web	server	to	ensure	the	location	configuration	is	operating.	Verify	with
curl	that	you	cannot	download	from	the	bootstrap	directory	without	authentication:

[root@bootstrap-test	tmp]#	curl	http://git.example.com/bootstrap/

<!DOCTYPE	HTML	PUBLIC	"-//IETF//DTD	HTML	2.0//EN">

<html><head>

<title>401	Authorization	Required</title>

</head><body>

<h1>Authorization	Required</h1>

3.	 Create	the	password	file	you	referenced	in	the	apache	configuration
(/var/www/puppet.passwd):

root@git#	cd	/var/www

root@git#	htpasswd	–cb	puppet.passwd	bootstrap	cookbook

Adding	password	for	user	bootstrap

4.	 Verify	that	the	username	and	password	permit	access	to	the	bootstrap	directory	as
follows:

[root@node1	tmp]#	curl	--user	bootstrap:cookbook	

http://git.example.com/bootstrap/

<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	3.2	Final//EN">

<html>

	<head>

		<title>Index	of	/bootstrap</title>

How	to	do	it…
Now	that	you	have	a	safe	location	to	store	the	bootstrap	script,	create	a	bootstrap	script	for
each	OS	you	support	in	the	bootstrap	directory.	In	this	example,	I’ll	show	you	how	to	do
this	for	a	Red	Hat	Enterprise	Linux	6-based	distribution.

Tip
Although	the	bootstrap	location	requires	a	password,	there	is	no	encryption	since	we
haven’t	configured	SSL	on	our	server.	Without	encryption,	the	location	is	not	very	safe.

Create	a	script	named	el6.sh	in	the	bootstrap	directory	with	the	following	contents:

#!/bin/bash

#	bootstrap	for	EL6	distributions

SERVER=git.example.com

LOCATION=/bootstrap

BOOTSTRAP=bootstrap.pp

USER=bootstrap

PASS=cookbook

#	install	puppet

curl	http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs	>/etc/pki/rpm-

gpg/RPM-GPG-KEY-puppetlabs

rpm	--import	/etc/pki/rpm-gpg/RPM-GPG-KEY-puppetlabs

yum	-y	install	http://yum.puppetlabs.com/puppetlabs-release-el-6.noarch.rpm

yum	-y	install	puppet

#	download	bootstrap

curl	--user	$USER:$PASS	http://$SERVER/$LOCATION/$BOOTSTRAP	

>/tmp/$BOOTSTRAP

#	apply	bootstrap

cd	/tmp

puppet	apply	/tmp/$BOOTSTRAP

#	apply	puppet

puppet	apply	--modulepath	/etc/puppet/cookbook/modules	

/etc/puppet/cookbook/manifests/site.pp

How	it	works…
The	apache	configuration	only	permits	access	to	the	bootstrap	directory	with	a	username
and	password	combination.	We	supply	these	with	the	--user	argument	to	curl,	thereby
getting	access	to	the	file.	We	use	a	pipe	(|)	to	redirect	the	output	of	curl	into	bash.	This
causes	bash	to	execute	the	script.	We	write	our	bash	script	like	we	would	any	other	bash
script.	The	bash	script	downloads	our	bootstrap.pp	manifest	and	applies	it.	Finally,	we
apply	the	Puppet	manifest	from	the	Git	repository	and	the	machine	is	configured	as	a
member	of	our	decentralized	infrastructure.

There’s	more…
To	support	another	operating	system,	we	only	need	to	create	a	new	bash	script.	All	Linux
distributions	will	support	bash	scripting,	Mac	OS	X	does	as	well.	Since	we	placed	much	of
our	logic	into	the	bootstrap.pp	manifest,	the	bootstrap	script	is	quite	minimal	and	easy	to
port	to	new	operating	systems.

Creating	a	centralized	Puppet
infrastructure
A	configuration	management	tool	such	as	Puppet	is	best	used	when	you	have	many
machines	to	manage.	If	all	the	machines	can	reach	a	central	location,	using	a	centralized
Puppet	infrastructure	might	be	a	good	solution.	Unfortunately,	Puppet	doesn’t	scale	well
with	a	large	number	of	nodes.	If	your	deployment	has	less	than	800	servers,	a	single
Puppet	master	should	be	able	to	handle	the	load,	assuming	your	catalogs	are	not	complex
(take	less	than	10	seconds	to	compile	each	catalog).	If	you	have	a	larger	number	of	nodes,
I	suggest	a	load	balancing	configuration	described	in	Mastering	Puppet,	Thomas	Uphill,
Packt	Publishing.

A	Puppet	master	is	a	Puppet	server	that	acts	as	an	X509	certificate	authority	for	Puppet
and	distributes	catalogs	(compiled	manifests)	to	client	nodes.	Puppet	ships	with	a	built-in
web	server	called	WEBrick,	which	can	handle	a	very	small	number	of	nodes.	In	this
section,	we	will	see	how	to	use	that	built-in	server	to	control	a	very	small	(less	than	10)
number	of	nodes.

Getting	ready
The	Puppet	master	process	is	started	by	running	puppet	master;	most	Linux	distributions
have	start	and	stop	scripts	for	the	Puppet	master	in	a	separate	package.	To	get	started,
we’ll	create	a	new	debian	server	named	puppet.example.com.

How	to	do	it…
1.	 Install	Puppet	on	the	new	server	and	then	use	Puppet	to	install	the	Puppet	master

package:

#	puppet	resource	package	puppetmaster	ensure='installed'	Notice:	

/Package[puppetmaster]/ensure:	created	package	{	'puppetmaster':	ensure	

=>	'3.7.0-1puppetlabs1',	}

2.	 Now	start	the	Puppet	master	service	and	ensure	it	will	start	at	boot:

#	puppet	resource	service	puppetmaster	ensure=true	enable=true	service	

{	'puppetmaster':	ensure	=>	'running',	enable	=>	'true',	}

How	it	works…
The	Puppet	master	package	includes	the	start	and	stop	scripts	for	the	Puppet	master
service.	We	use	Puppet	to	install	the	package	and	start	the	service.	Once	the	service	is
started,	we	can	point	another	node	at	the	Puppet	master	(you	might	need	to	disable	the
host-based	firewall	on	your	machine).

1.	 From	another	node,	run	puppet	agent	to	start	a	puppet	agent,	which	will	contact
the	server	and	request	a	new	certificate:

t@ckbk:~$	sudo	puppet	agent	-t

Info:	Creating	a	new	SSL	key	for	cookbook.example.com

Info:	Caching	certificate	for	ca

Info:	Creating	a	new	SSL	certificate	request	for	cookbook.example.com

Info:	Certificate	Request	fingerprint	(SHA256):	

06:C6:2B:C4:97:5D:16:F2:73:82:C4:A9:A7:B1:D0:95:AC:69:7B:27:13:A9:1A:4C

:98:20:21:C2:50:48:66:A2

Info:	Caching	certificate	for	ca

Exiting;	no	certificate	found	and	waitforcert	is	disabled

2.	 Now	on	the	Puppet	server,	sign	the	new	key:

root@puppet:~#	puppet	cert	list

pu		"cookbook.example.com"	(SHA256)	

06:C6:2B:C4:97:5D:16:F2:73:82:C4:A9:A7:B1:D0:95:AC:69:7B:27:13:A9:1A:4C

:98:20:21:C2:50:48:66:A2

root@puppet:~#	puppet	cert	sign	cookbook.example.com

Notice:	Signed	certificate	request	for	cookbook.example.com

Notice:	Removing	file	

Puppet::SSL::CertificateRequestcookbook.example.com	

at'/var/lib/puppet/ssl/ca/requests/cookbook.example.com.pem'

3.	 Return	to	the	cookbook	node	and	run	Puppet	again:

t@ckbk:~$	sudo	puppet	agent	–vt

Info:	Caching	certificate	for	cookbook.example.com

Info:	Caching	certificate_revocation_list	for	ca

Info:	Caching	certificate	for	cookbook.example.comInfo:	Retrieving	

pluginfacts	Info:	Retrieving	plugin	Info:	Caching	catalog	for	cookbook	

Info:	Applying	configuration	version	'1410401823'	Notice:	Finished	

catalog	run	in	0.04	seconds

There’s	more…
When	we	ran	puppet	agent,	Puppet	looked	for	a	host	named	puppet.example.com	(since
our	test	node	is	in	the	example.com	domain);	if	it	couldn’t	find	that	host,	it	would	then
look	for	a	host	named	Puppet.	We	can	specify	the	server	to	contact	with	the	--server
option	to	puppet	agent.	When	we	installed	the	Puppet	master	package	and	started	the
Puppet	master	service,	Puppet	created	default	SSL	certificates	based	on	our	hostname.	In
the	next	section,	we’ll	see	how	to	create	an	SSL	certificate	that	has	multiple	DNS	names
for	our	Puppet	server.

Creating	certificates	with	multiple	DNS
names
By	default,	Puppet	will	create	an	SSL	certificate	for	your	Puppet	master	that	contains	the
fully	qualified	domain	name	of	the	server	only.	Depending	on	how	your	network	is
configured,	it	can	be	useful	for	the	server	to	be	known	by	other	names.	In	this	recipe,	we’ll
make	a	new	certificate	for	our	Puppet	master	that	has	multiple	DNS	names.

Getting	ready
Install	the	Puppet	master	package	if	you	haven’t	already	done	so.	You	will	then	need	to
start	the	Puppet	master	service	at	least	once	to	create	a	certificate	authority	(CA).

How	to	do	it…
The	steps	are	as	follows:

1.	 Stop	the	running	Puppet	master	process	with	the	following	command:

#	service	puppetmaster	stop

[ok]	Stopping	puppet	master.

2.	 Delete	(clean)	the	current	server	certificate:

#	puppet	cert	clean	puppet

Notice:	Revoked	certificate	with	serial	6

Notice:	Removing	file	Puppet::SSL::Certificate	puppet	at	

'/var/lib/puppet/ssl/ca/signed/puppet.pem'

Notice:	Removing	file	Puppet::SSL::Certificate	puppet	at	

'/var/lib/puppet/ssl/certs/puppet.pem'

Notice:	Removing	file	Puppet::SSL::Key	puppet	at	

'/var/lib/puppet/ssl/private_keys/puppet.pem'

3.	 Create	a	new	Puppet	certificate	using	Puppet	certificate	generate	with	the	--dns-
alt-names	option:

root@puppet:~#	puppet	certificate	generate	puppet	--dns-alt-names	

puppet.example.com,puppet.example.org,puppet.example.net	--ca-location	

local

Notice:	puppet	has	a	waiting	certificate	request

true

4.	 Sign	the	new	certificate:

root@puppet:~#	puppet	cert	--allow-dns-alt-names	sign	puppet

Notice:	Signed	certificate	request	for	puppet

Notice:	Removing	file	Puppet::SSL::CertificateRequest	puppet	at	

'/var/lib/puppet/ssl/ca/requests/puppet.pem'

5.	 Restart	the	Puppet	master	process:

root@puppet:~#	service	puppetmaster	restart

[ok]	Restarting	puppet	master.

How	it	works…
When	your	puppet	agents	connect	to	the	Puppet	server,	they	look	for	a	host	called	Puppet,
they	then	look	for	a	host	called	Puppet.[your	domain].	If	your	clients	are	in	different
domains,	then	you	need	your	Puppet	master	to	reply	to	all	the	names	correctly.	By
removing	the	existing	certificate	and	generating	a	new	one,	you	can	have	your	Puppet
master	reply	to	multiple	DNS	names.

Running	Puppet	from	passenger
The	WEBrick	server	we	configured	in	the	previous	section	is	not	capable	of	handling	a
large	number	of	nodes.	To	deal	with	a	large	number	of	nodes,	a	scalable	web	server	is
required.	Puppet	is	a	ruby	process,	so	we	need	a	way	to	run	a	ruby	process	within	a	web
server.	Passenger	is	the	solution	to	this	problem.	It	allows	us	to	run	the	Puppet	master
process	within	a	web	server	(apache	by	default).	Many	distributions	ship	with	a
puppetmaster-passenger	package	that	configures	this	for	you.	In	this	section,	we’ll	use	the
package	to	configure	Puppet	to	run	within	passenger.

Getting	ready
Install	the	puppetmaster-passenger	package:

#	puppet	resource	package	puppetmaster-passenger	ensure=installed

Notice:	/Package[puppetmaster-passenger]/ensure:	ensure	changed	'purged'

	to	'present'

package	{	'puppetmaster-passenger':

		ensure	=>	'3.7.0-1puppetlabs1',

}

Note
Using	puppet	resource	to	install	packages	ensures	the	same	command	will	work	on
multiple	distributions	(provided	the	package	names	are	the	same).

How	to	do	it…
The	steps	are	as	follows:

1.	 Ensure	the	Puppet	master	site	is	enabled	in	your	apache	configuration.	Depending	on
your	distribution	this	may	be	at	/etc/httpd/conf.d	or	/etc/apache2/sites-
enabled.	The	configuration	file	should	be	created	for	you	and	contain	the	following
information:

PassengerHighPerformance	on

PassengerMaxPoolSize	12

PassengerPoolIdleTime	1500

#	PassengerMaxRequests	1000

PassengerStatThrottleRate	120

RackAutoDetect	Off

RailsAutoDetect	Off

Listen	8140

2.	 These	lines	are	tuning	settings	for	passenger.	The	file	then	instructs	apache	to	listen
on	port	8140,	the	Puppet	master	port.	Next	a	VirtualHost	definition	is	created	that
loads	the	Puppet	CA	certificates	and	the	Puppet	master’s	certificate:

<VirtualHost	*:8140>

								SSLEngine	on

								SSLProtocol													ALL	-SSLv2	-SSLv3

								SSLCertificateFile						/var/lib/puppet/ssl/certs/puppet.pem

								SSLCertificateKeyFile			

/var/lib/puppet/ssl/private_keys/puppet.pem

								SSLCertificateChainFile	/var/lib/puppet/ssl/certs/ca.pem

								SSLCACertificateFile				/var/lib/puppet/ssl/certs/ca.pem

								SSLCARevocationFile					/var/lib/puppet/ssl/ca/ca_crl.pem

								SSLVerifyClient	optional

								SSLVerifyDepth		1

								SSLOptions	+StdEnvVars	+ExportCertData

Tip
You	may	have	more	or	less	lines	of	SSL	configuration	here	depending	on	your
version	of	the	puppetmaster-passenger	package.

3.	 Next,	a	few	important	headers	are	set	so	that	the	passenger	process	has	access	to	the
SSL	information	sent	by	the	client	node:

RequestHeader	unset	X-Forwarded-For

RequestHeader	set	X-SSL-Subject	%{SSL_CLIENT_S_DN}e

RequestHeader	set	X-Client-DN	%{SSL_CLIENT_S_DN}e

RequestHeader	set	X-Client-Verify	%{SSL_CLIENT_VERIFY}e

4.	 Finally,	the	location	of	the	passenger	configuration	file	config.ru	is	given	with	the
DocumentRoot	location	as	follows:

							DocumentRoot	/usr/share/puppet/rack/puppetmasterd/public/

								RackBaseURI	/

5.	 The	config.ru	file	should	exist	at	/usr/share/puppet/rack/puppetmasterd/	and

should	have	the	following	content:

$0	=	"master"

ARGV	<<	"--rack"

ARGV	<<	"--confdir"	<<	"/etc/puppet"

ARGV	<<	"--vardir"		<<	"/var/lib/puppet"

require	'puppet/util/command_line'

run	Puppet::Util::CommandLine.new.execute

6.	 With	the	passenger	apache	configuration	file	in	place	and	the	config.ru	file
correctly	configured,	start	the	apache	server	and	verify	that	apache	is	listening	on	the
Puppet	master	port	(if	you	configured	the	standalone	Puppet	master	previously,	you
must	stop	that	process	now	using	service	puppetmaster	stop):

root@puppet:~	#	service	apache2	start

[ok]	Starting	web	server:	apache2

root@puppet:~	#	lsof	-i	:8140

COMMAND		PID					USER			FD			TYPE	DEVICE	SIZE/OFF	NODE	NAME

apache2	9048					root				8u		IPv6		16842						0t0		TCP	*:8140	(LISTEN)

apache2	9069	www-data				8u		IPv6		16842						0t0		TCP	*:8140	(LISTEN)

apache2	9070	www-data				8u		IPv6		16842						0t0		TCP	*:8140	(LISTEN)

How	it	works…
The	passenger	configuration	file	uses	the	existing	Puppet	master	certificates	to	listen	on
port	8140	and	handles	all	the	SSL	communication	between	the	server	and	the	client.	Once
the	certificate	information	has	been	dealt	with,	the	connection	is	handed	off	to	a	ruby
process	started	from	passenger	using	the	command	line	arguments	from	the	config.ru
file.

In	this	case,	the	$0	variable	is	set	to	master	and	the	arguments	variable	is	set	to	--rack	--
confdir	/etc/puppet	--vardir	/var/lib/puppet;	this	is	equivalent	to	running	the
following	from	the	command	line:

puppet	master	--rack	--confdir	/etc/puppet	--vardir	/var/lib/puppet

There’s	more…
You	can	add	additional	configuration	parameters	to	the	config.ru	file	to	further	alter	how
Puppet	runs	when	it’s	running	through	passenger.	For	instance,	to	enable	debugging	on	the
passenger	Puppet	master,	add	the	following	line	to	config.ru	before	the	run
Puppet::Util::CommandLine.new.execute	line:

ARGV	<<	"--debug"

Setting	up	the	environment
Environments	in	Puppet	are	directories	holding	different	versions	of	your	Puppet
manifests.	Environments	prior	to	Version	3.6	of	Puppet	were	not	a	default	configuration
for	Puppet.	In	newer	versions	of	Puppet,	environments	are	configured	by	default.

Whenever	a	node	connects	to	a	Puppet	master,	it	informs	the	Puppet	master	of	its
environment.	By	default,	all	nodes	report	to	the	production	environment.	This	causes	the
Puppet	master	to	look	in	the	production	environment	for	manifests.	You	may	specify	an
alternate	environment	with	the	--environment	setting	when	running	puppet	agent	or	by
setting	environment	=	newenvironment	in	/etc/puppet/puppet.conf	in	the	[agent]
section.

Getting	ready
Set	the	environmentpath	function	of	your	installation	by	adding	a	line	to	the	[main]
section	of	/etc/puppet/puppet.conf	as	follows:

[main]

...

environmentpath=/etc/puppet/environments

How	to	do	it…
The	steps	are	as	follows:

1.	 Create	a	production	directory	at	/etc/puppet/environments	that	contains	both	a
modules	and	manifests	directory.	Then	create	a	site.pp	which	creates	a	file	in	/tmp
as	follows:

root@puppet:~#	cd	/etc/puppet/environments/

root@puppet:/etc/puppet/environments#	mkdir	-p	

production/{manifests,modules}

root@puppet:/etc/puppet/environments#	vim	production/manifests/site.pp

node	default	{

		file	{'/tmp/production':

				content	=>	"Hello	World!\nThis	is	production\n",

		}

}

2.	 Run	puppet	agent	on	the	master	to	connect	to	it	and	verify	that	the	production	code
was	delivered:

root@puppet:~#	puppet	agent	-vt

Info:	Retrieving	pluginfacts

Info:	Retrieving	plugin

Info:	Caching	catalog	for	puppet

Info:	Applying	configuration	version	'1410415538'

Notice:	/Stage[main]/Main/Node[default]/File[/tmp/production]/ensure:	

defined	content	as	'{md5}f7ad9261670b9da33a67a5126933044c'

Notice:	Finished	catalog	run	in	0.04	seconds

#	cat	/tmp/production

Hello	World!

This	is	production

3.	 Configure	another	environment	devel.	Create	a	new	manifest	in	the	devel
environment:

root@puppet:/etc/puppet/environments#	mkdir	-p	

devel/{manifests,modules}

root@puppet:/etc/puppet/environments#	vim	devel/manifests/site.pp

node	default	{

		file	{'/tmp/devel':

				content	=>	"Good-bye!	Development\n",

		}

}

4.	 Apply	the	new	environment	by	running	the	--environment	devel	puppet	agent
using	the	following	command:

root@puppet:/etc/puppet/environments#	puppet	agent	-vt	--environment	

devel

Info:	Retrieving	pluginfacts

Info:	Retrieving	plugin

Info:	Caching	catalog	for	puppet

Info:	Applying	configuration	version	'1410415890'

Notice:	/Stage[main]/Main/Node[default]/File[/tmp/devel]/ensure:	

defined	content	as	'{md5}b6313bb89bc1b7d97eae5aa94588eb68'

Notice:	Finished	catalog	run	in	0.04	seconds

root@puppet:/etc/puppet/environments#	cat	/tmp/devel

Good-bye!	Development

Tip
You	may	need	to	restart	apache2	to	enable	your	new	environment,	this	depends	on	your
version	of	Puppet	and	the	environment_timeout	parameter	of	puppet.conf.

There’s	more…
Each	environment	can	have	its	own	modulepath	if	you	create	an	environment.conf	file
within	the	environment	directory.	More	information	on	environments	can	be	found	on	the
Puppet	labs	website	at
https://docs.puppetlabs.com/puppet/latest/reference/environments.html.

https://docs.puppetlabs.com/puppet/latest/reference/environments.html

Configuring	PuppetDB
PuppetDB	is	a	database	for	Puppet	that	is	used	to	store	information	about	nodes	connected
to	a	Puppet	master.	PuppetDB	is	also	a	storage	area	for	exported	resources.	Exported
resources	are	resources	that	are	defined	on	nodes	but	applied	to	other	nodes.	The	simplest
way	to	install	PuppetDB	is	to	use	the	PuppetDB	module	from	Puppet	labs.	From	this	point
on,	we’ll	assume	you	are	using	the	puppet.example.com	machine	and	have	a	passenger-
based	configuration	of	Puppet.

Getting	ready
Install	the	PuppetDB	module	in	the	production	environment	you	created	in	the	previous
recipe.	If	you	didn’t	create	directory	environments,	don’t	worry,	using	puppet	module
install	will	install	the	module	to	the	correct	location	for	your	installation	with	the
following	command:

root@puppet:~#	puppet	module	install	puppetlabs-puppetdb

Notice:	Preparing	to	install	into	

/etc/puppet/environments/production/modules…

Notice:	Downloading	from	https://forgeapi.puppetlabs.com…

Notice:	Installing—do	not	interrupt…

/etc/puppet/environments/production/modules

└─┬	puppetlabs-puppetdb	(v3.0.1)

		├──	puppetlabs-firewall	(v1.1.3)

		├──	puppetlabs-inifile	(v1.1.3)

		└─┬	puppetlabs-postgresql	(v3.4.2)

				├─┬	puppetlabs-apt	(v1.6.0)

				│	└──	puppetlabs-stdlib	(v4.3.2)

				└──	puppetlabs-concat	(v1.1.0)

How	to	do	it…
Now	that	our	Puppet	master	has	the	PuppetDB	module	installed,	we	need	to	apply	the
PuppetDB	module	to	our	Puppet	master,	we	can	do	this	in	the	site	manifest.	Add	the
following	to	your	(production)	site.pp:

node	puppet	{

		class	{	'puppetdb':	}

		class	{	'puppetdb::master::config':	

				puppet_service_name	=>	'apache2',

		}

}

Run	puppet	agent	to	apply	the	puppetdb	class	and	the	puppetdb::master::config	class:

root@puppet:~#	puppet	agent	-t

Info:	Caching	catalog	for	puppet

Info:	Applying	configuration	version	'1410416952'

...

Info:	Class[Puppetdb::Server::Jetty_ini]:	Scheduling	refresh	of	

Service[puppetdb]

Notice:	Finished	catalog	run	in	160.78	seconds

How	it	works…
The	PuppetDB	module	is	a	great	example	of	how	a	complex	configuration	task	can	be
puppetized.	Simply	by	adding	the	puppetdb	class	to	our	Puppet	master	node,	Puppet
installed	and	configured	postgresql	and	puppetdb.

When	we	called	the	puppetdb::master::config	class,	we	set	the	puppet_service_name
variable	to	apache2,	this	is	because	we	are	running	Puppet	through	passenger.	Without	this
line	our	agent	would	try	to	start	the	puppetmaster	process	instead	of	apache2.

The	agent	then	set	up	the	configuration	files	for	PuppetDB	and	configured	Puppet	to	use
PuppetDB.	If	you	look	at	/etc/puppet/puppet.conf,	you’ll	see	the	following	two	new
lines:

storeconfigs	=	true

storeconfigs_backend	=	puppetdb

There’s	more…
Now	that	PuppetDB	is	configured	and	we’ve	had	a	successful	agent	run,	PuppetDB	will
have	data	we	can	query:

root@puppet:~#	puppet	node	status	puppet

puppet

Currently	active

Last	catalog:	2014-09-11T06:45:25.267Z

Last	facts:	2014-09-11T06:45:22.351Z

Configuring	Hiera
Hiera	is	an	information	repository	for	Puppet.	Using	Hiera	you	can	have	a	hierarchical
categorization	of	data	about	your	nodes	that	is	maintained	outside	of	your	manifests.	This
is	very	useful	for	sharing	code	and	dealing	with	exceptions	that	will	creep	into	any	Puppet
deployment.

Getting	ready
Hiera	should	have	already	been	installed	as	a	dependency	on	your	Puppet	master.	If	it	has
not	already,	install	it	using	Puppet:

root@puppet:~#	puppet	resource	package	hiera	ensure=installed

package	{	'hiera':

		ensure	=>	'1.3.4-1puppetlabs1',

}

How	to	do	it…
1.	 Hiera	is	configured	from	a	yaml	file,	/etc/puppet/hiera.yaml.	Create	the	file	and

add	the	following	as	a	minimal	configuration:

:hierarchy:

		-	common

:backends:

		-	yaml

:yaml:

		:datadir:	'/etc/puppet/hieradata'

2.	 Create	the	common.yaml	file	referenced	in	the	hierarchy:

root@puppet:/etc/puppet#	mkdir	hieradata

root@puppet:/etc/puppet#	vim	hieradata/common.yaml

message:	'Default	Message'

3.	 Edit	the	site.pp	file	and	add	a	notify	resource	based	on	the	Hiera	value:

node	default	{

		$message	=	hiera('message','unknown')

		notify	{"Message	is	$message":}

}

4.	 Apply	the	manifest	to	a	test	node:

t@ckbk:~$	sudo	puppet	agent	-t

Info:	Retrieving	pluginfacts

Info:	Retrieving	plugin

...

Info:	Caching	catalog	for	cookbook-test

Info:	Applying	configuration	version	'1410504848'

Notice:	Message	is	Default	Message

Notice:	/Stage[main]/Main/Node[default]/Notify[Message	is	Default	

Message]/message:	defined	'message'	as	'Message	is	Default	Message'

Notice:	Finished	catalog	run	in	0.06	seconds

How	it	works…
Hiera	uses	a	hierarchy	to	search	through	a	set	of	yaml	files	to	find	the	appropriate	values.
We	defined	this	hierarchy	in	hiera.yaml	with	the	single	entry	for	common.yaml.	We	used
the	hiera	function	in	site.pp	to	lookup	the	value	for	message	and	store	that	value	in	the
variable	$message.	The	values	used	for	the	definition	of	the	hierarchy	can	be	any	facter
facts	defined	about	the	system.	A	common	hierarchy	is	shown	as:

:hierarchy:

		-	hosts/%{hostname}

		-	os/%{operatingsystem}

		-	network/%{network_eth0}

		-	common

There’s	more…
Hiera	can	be	used	for	automatic	parameter	lookup	with	parameterized	classes.	For
example,	if	you	have	a	class	named	cookbook::example	with	a	parameter	named
publisher,	you	can	include	the	following	in	a	Hiera	yaml	file	to	automatically	set	this
parameter:

cookbook::example::publisher:	'PacktPub'

Another	often	used	fact	is	environment	you	may	reference	the	environment	of	the	client
node	using	%{environment}	as	shown	in	the	following	hierarchy:

:hierarchy:

hosts/%{hostname}

os/%{operatingsystem}

environment/%{environment}

common

Tip
A	good	rule	of	thumb	is	to	limit	the	hierarchy	to	8	levels	or	less.	Keep	in	mind	that	each
time	a	parameter	is	searched	with	Hiera,	all	the	levels	are	searched	until	a	match	is	found.

The	default	Hiera	function	returns	the	first	match	to	the	search	key,	you	can	also	use
hiera_array	and	hiera_hash	to	search	and	return	all	values	stored	in	Hiera.

Hiera	can	also	be	searched	from	the	command	line	as	shown	in	the	following	command
line	(note	that	currently	the	command	line	Hiera	utility	uses	/etc/hiera.yaml	as	its
configuration	file	whereas	the	Puppet	master	uses	/etc/puppet/hiera.yaml):

root@puppet:/etc/puppet#	rm	/etc/hiera.yaml	

root@puppet:/etc/puppet#	ln	-s	/etc/puppet/hiera.yaml	/etc/

root@puppet:/etc/puppet#	hiera	message

Default	Message

Note
For	more	information,	consult	the	Puppet	labs	website	at
https://docs.puppetlabs.com/hiera/1/.

https://docs.puppetlabs.com/hiera/1/

Setting	node-specific	data	with	Hiera
In	our	hierarchy	defined	in	hiera.yaml,	we	created	an	entry	based	on	the	hostname	fact;
in	this	section,	we’ll	create	yaml	files	in	the	hosts	subdirectory	of	Hiera	data	with
information	specific	to	a	particular	host.

Getting	ready
Install	and	configure	Hiera	as	in	the	last	section	and	use	the	hierarchy	defined	in	the
previous	recipe	that	includes	a	hosts/%{hostname}	entry.

How	to	do	it…
The	following	are	the	steps:

1.	 Create	a	file	at	/etc/puppet/hieradata/hosts	that	is	the	hostname	of	your	test
node.	For	example	if	your	host	is	named	cookbook-test,	then	the	file	would	be
named	cookbook-test.yaml.

2.	 Insert	a	specific	message	in	this	file:

message:	'This	is	the	test	node	for	the	cookbook'

3.	 Run	Puppet	on	two	different	test	nodes	to	note	the	difference:

t@ckbk:~$	sudo	puppet	agent	-t

Info:	Caching	catalog	for	cookbook-test

Notice:	Message	is	This	is	the	test	node	for	the	cookbook

[root@hiera-test	~]#	puppet	agent	-t

Info:	Caching	catalog	for	hiera-test.example.com

Notice:	Message	is	Default	Message

How	it	works…
Hiera	searches	the	hierarchy	for	files	that	match	the	values	returned	by	facter.	In	this	case,
the	cookbook-test.yaml	file	is	found	by	substituting	the	hostname	of	the	node	into	the
search	path	/etc/puppet/hieradata/hosts/%{hostname}.yaml.

Using	Hiera,	it	is	possible	to	greatly	reduce	the	complexity	of	your	Puppet	code.	We	will
use	yaml	files	for	separate	values,	where	previously	you	had	large	case	statements	or
nested	if	statements.

Storing	secret	data	with	hiera-gpg
If	you’re	using	Hiera	to	store	your	configuration	data,	there’s	a	gem	available	called
hiera-gpg	that	adds	an	encryption	backend	to	Hiera	to	allow	you	to	protect	values	stored
in	Hiera.

Getting	ready
To	set	up	hiera-gpg,	follow	these	steps:

1.	 Install	the	ruby-dev	package;	it	will	be	required	to	build	the	hiera-gpg	gem	as
follows:

root@puppet:~#	puppet	resource	package	ruby-dev	ensure=installed

Notice:	/Package[ruby-dev]/ensure:	ensure	changed	'purged'	to	'present'

package	{	'ruby-dev':

		ensure	=>	'1:1.9.3',

}

2.	 Install	the	hiera-gpg	gem	using	the	gem	provider:

root@puppet:~#	puppet	resource	package	hiera-gpg	ensure=installed	

provider=gem

Notice:	/Package[hiera-gpg]/ensure:	created

package	{	'hiera-gpg':

		ensure	=>	['1.1.0'],

}

3.	 Modify	your	hiera.yaml	file	as	follows:

				:hierarchy:

								-	secret

								-	common

				:backends:

								-	yaml

								-	gpg

				:yaml:

								:datadir:	'/etc/puppet/hieradata'

				:gpg:

								:datadir:	'/etc/puppet/secret'

How	to	do	it…
In	this	example,	we’ll	create	a	piece	of	encrypted	data	and	retrieve	it	using	hiera-gpg	as
follows:

1.	 Create	the	secret.yaml	file	at	/etc/puppet/secret	with	the	following	contents:

top_secret:	'Val	Kilmer'

2.	 If	you	don’t	already	have	a	GnuPG	encryption	key,	follow	the	steps	in	the	Using
GnuPG	to	encrypt	secrets	recipe	in	Chapter	4,	Working	with	Files	and	Packages.

3.	 Encrypt	the	secret.yaml	file	to	this	key	using	the	following	command	(replace	the
puppet@puppet.example.com	with	the	e-mail	address	you	specified	when	creating
the	key).	This	will	create	the	secret.gpg	file:

root@puppet:/etc/puppet/secret#	gpg	-e	-o	secret.gpg	-r	

puppet@puppet.example.com	secret.yaml	

root@puppet:/etc/puppet/secret#	file	secret.gpg

secret.gpg:	GPG	encrypted	data

4.	 Remove	the	plaintext	secret.yaml	file:

root@puppet:/etc/puppet/secret#	rm	secret.yaml

5.	 Modify	your	default	node	in	the	site.pp	file	as	follows:

node	default	{

		$message	=	hiera('top_secret','Deja	Vu')

		notify	{	"Message	is	$message":	}

}

6.	 Now	run	Puppet	on	a	node:

[root@hiera-test	~]#	puppet	agent	-t

Info:	Caching	catalog	for	hiera-test.example.com

Info:	Applying	configuration	version	'1410508276'

Notice:	Message	is	Deja	Vu

Notice:	/Stage[main]/Main/Node[default]/Notify[Message	is	Deja	

Vu]/message:	defined	'message'	as	'Message	is	Deja	Vu'

Notice:	Finished	catalog	run	in	0.08	seconds

How	it	works…
When	you	install	hiera-gpg,	it	adds	to	Hiera,	the	ability	to	decrypt	.gpg	files.	So	you	can
put	any	secret	data	into	a	.yaml	file	that	you	then	encrypt	to	the	appropriate	key	with
GnuPG.	Only	machines	that	have	the	right	secret	key	will	be	able	to	access	this	data.

For	example,	you	might	encrypt	the	MySQL	root	password	using	hiera-gpg	and	install
the	corresponding	key	only	on	your	database	servers.	Although	other	machines	may	also
have	a	copy	of	the	secret.gpg	file,	it’s	not	readable	to	them	unless	they	have	the
decryption	key.

There’s	more…
You	might	also	like	to	know	about	hiera-eyaml,	another	secret-data	backend	for	Hiera
that	supports	encryption	of	individual	values	within	a	Hiera	data	file.	This	could	be	handy
if	you	need	to	mix	encrypted	and	unencrypted	facts	within	a	single	file.	Find	out	more
about	hiera-eyaml	at	https://github.com/TomPoulton/hiera-eyaml.

https://github.com/TomPoulton/hiera-eyaml

See	also
The	Using	GnuPG	to	encrypt	secrets	recipe	in	Chapter	4,	Working	with	Files	and
Packages.

Using	MessagePack	serialization
Running	Puppet	in	a	centralized	architecture	creates	a	lot	of	traffic	between	nodes.	The
bulk	of	this	traffic	is	JSON	and	yaml	data.	An	experimental	feature	of	the	latest	releases	of
Puppet	allow	for	the	serialization	of	this	data	using	MessagePack	(msgpack).

Getting	ready
Install	the	msgpack	gem	onto	your	Puppet	master	and	your	nodes.	Use	Puppet	to	do	the
work	for	you	with	Puppet	resource.	You	may	need	to	install	the	ruby-dev	or	ruby-devel
package	on	your	nodes/server	at	this	point:

t@ckbk:~$	sudo	puppet	resource	package	msgpack	ensure=installedprovider=gem

Notice:	/Package[msgpack]/ensure:	created

package	{	'msgpack':

		ensure	=>	['0.5.8'],

}

How	to	do	it…
Set	the	preferred_serialization_format	to	msgpack	in	the	[agent]	section	of	your
nodes	puppet.conf	file:

[agent]

preferred_serialization_format=msgpack

How	it	works…
The	master	will	be	sent	this	option	when	the	node	begins	communicating	with	the	master.
Any	classes	that	support	serialization	with	msgpack	will	be	transmitted	with
msgpack.Serialization	of	the	data	between	nodes	and	the	master	will	in	theory	increase
the	speed	at	which	nodes	communicate	by	optimizing	the	data	that	is	travelling	between
them.	This	feature	is	still	experimental.

Automatic	syntax	checking	with	Git	hooks
It	would	be	nice	if	we	knew	there	was	a	syntax	error	in	the	manifest	before	we	even
committed	it.	You	can	have	Puppet	check	the	manifest	using	the	puppet	parser
validate	command:

t@ckbk:~$	puppet	parser	validate	bootstrap.pp

Error:	Could	not	parse	for	environment	production:	Syntax	error	at

	'File';	expected	'}'	at	/home/thomas/bootstrap.pp:3

This	is	especially	useful	because	a	mistake	anywhere	in	the	manifest	will	stop	Puppet
from	running	on	any	node,	even	on	nodes	that	don’t	use	that	particular	part	of	the
manifest.	So	checking	in	a	bad	manifest	can	cause	Puppet	to	stop	applying	updates	to
production	for	some	time,	until	the	problem	is	discovered,	and	this	could	potentially	have
serious	consequences.	The	best	way	to	avoid	this	is	to	automate	the	syntax	check,	by	using
a	precommit	hook	in	your	version	control	repo.

How	to	do	it…
Follow	these	steps:

1.	 In	your	Puppet	repo,	create	a	new	hooks	directory:

t@mylaptop:~/puppet$	mkdir	hooks

2.	 Create	the	file	hooks/check_syntax.sh	with	the	following	contents	(based	on	a
script	by	Puppet	Labs):

#!/bin/sh

syntax_errors=0

error_msg=$(mktemp	/tmp/error_msg.XXXXXX)

if	git	rev-parse	--quiet	--verify	HEAD	>	/dev/null

then

				against=HEAD

else

				#	Initial	commit:	diff	against	an	empty	tree	object

				against=4b825dc642cb6eb9a060e54bf8d69288fbee4904

fi

#	Get	list	of	new/modified	manifest	and	template	files

		to	check	(in	git	index)

for	indexfile	in	'git	diff-index	--diff-filter=AM—		name-only	--cached	

$against	|	egrep	'\.(pp|erb)''

do

				#	Don't	check	empty	files

				if	['git	cat-file	-s	:0:$indexfile'	-gt	0]

				then

								case	$indexfile	in

												*.pp)

																#	Check	puppet	manifest	syntax

																git	cat-file	blob	:0:$indexfile	|	

																		puppet	parser	validate	>	$error_msg	;;

												*.erb)

																#	Check	ERB	template	syntax

																git	cat-file	blob	:0:$indexfile	|	

																		erb	-x	-T	-	|	ruby	-c	2>	$error_msg	>

																				/dev/null	;;

								esac

								if	["$?"	-ne	0]

								then

												echo	-n	"$indexfile:	"

												cat	$error_msg

												syntax_errors='expr	$syntax_errors	+	1'

								fi

				fi

done

rm	-f	$error_msg

if	["$syntax_errors"	-ne	0]

then

				echo	"Error:	$syntax_errors	syntax	errors	found,

						aborting	commit."

				exit	1

fi

3.	 Set	execute	permission	for	the	hook	script	with	the	following	command:

t@mylaptop:~/puppet$	chmod	a+x	hooks/check_syntax.sh

4.	 Now	either	symlink	or	copy	the	script	to	the	precommit	hook	in	your	hooks	directory.
If	your	Git	repo	is	checked	out	in	~/puppet,	then	create	the	symlink	at
~/puppet/hooks/pre-commit	as	follows:

t@mylaptop:~/puppet$	ln	-s	

~/puppet/hooks/check_syntax.sh.git/hooks/pre-commit

How	it	works…
The	check_syntax.sh	script	will	prevent	you	from	committing	any	files	with	syntax
errors	when	it	is	used	as	the	pre-commit	hook	for	Git:

t@mylaptop:~/puppet$	git	commit	-m	"test	commit"

Error:	Could	not	parse	for	environment	production:	Syntax	error	at

		'}'	at	line	3

Error:	Try	'puppet	help	parser	validate'	for	usage

manifests/nodes.pp:	Error:	1	syntax	errors	found,	aborting	commit.

If	you	add	the	hooks	directory	to	your	Git	repo,	anyone	who	has	a	checkout	can	copy	the
script	into	their	local	hooks	directory	to	get	this	syntax	checking	behavior.

Pushing	code	around	with	Git
As	we	have	already	seen	in	the	decentralized	model,	Git	can	be	used	to	transfer	files
between	machines	using	a	combination	of	ssh	and	ssh	keys.	It	can	also	be	useful	to	have	a
Git	hook	do	the	same	on	each	successful	commit	to	the	repository.

There	exists	a	hook	called	post-commit	that	can	be	run	after	a	successful	commit	to	the
repository.	In	this	recipe,	we’ll	create	a	hook	that	updates	the	code	on	our	Puppet	master
with	code	from	our	Git	repository	on	the	Git	server.

Getting	ready
Follow	these	steps	to	get	started:

1.	 Create	an	ssh	key	that	can	access	your	Puppet	user	on	your	Puppet	master	and	install
this	key	into	the	Git	user’s	account	on	git.example.com:

[git@git	~]$	ssh-keygen	-f	~/.ssh/puppet_rsa

Generating	public/private	rsa	key	pair.

Your	identification	has	been	saved	in	/home/git/.ssh/puppet_rsa.

Your	public	key	has	been	saved	in	/home/git/.ssh/puppet_rsa.pub.

Copy	the	public	key	into	the	authorized_keys	file	of	the	puppet	user	on	

your	puppetmaster

puppet@puppet:~/.ssh$	cat	puppet_rsa.pub	>>authorized_keys

2.	 Modify	the	Puppet	account	to	allow	the	Git	user	to	log	in	as	follows:

root@puppet:~#	chsh	puppet	-s	/bin/bash

How	to	do	it…
Perform	the	following	steps:

1.	 Now	that	the	Git	user	can	log	in	to	the	Puppet	master	as	the	Puppet	user,	modify	the
Git	user’s	ssh	configuration	to	use	the	newly	created	ssh	key	by	default:

[git@git	~]$	vim	.ssh/config

Host	puppet.example.com

		IdentityFile	~/.ssh/puppet_rsa

2.	 Add	the	Puppet	master	as	a	remote	location	for	the	Puppet	repository	on	the	Git
server	with	the	following	command:

[git@git	puppet.git]$	git	remote	add	puppetmaster	

puppet@puppet.example.com:/etc/puppet/environments/puppet.git

3.	 On	the	Puppet	master,	move	the	production	directory	out	of	the	way	and	check	out
your	Puppet	repository:

root@puppet:~#	chown	-R	puppet:puppet	/etc/puppet/environments

root@puppet:~#	sudo	-iu	puppet

puppet@puppet:~$	cd	/etc/puppet/environments/

puppet@puppet:/etc/puppet/environments$	mv	production	production.orig

puppet@puppet:/etc/puppet/environments$	git	clone	

git@git.example.com:repos/puppet.git

Cloning	into	'puppet.git'...

remote:	Counting	objects:	63,	done.

remote:	Compressing	objects:	100%	(52/52),	done.

remote:	Total	63	(delta	10),	reused	0	(delta	0)

Receiving	objects:	100%	(63/63),	9.51	KiB,	done.

Resolving	deltas:	100%	(10/10),	done.

4.	 Now	we	have	a	local	bare	repository	on	the	Puppet	server	that	we	can	push	to,	to
remotely	clone	this	into	the	production	directory:

puppet@puppet:/etc/puppet/environments$	git	clone	puppet.git	production

Cloning	into	'production'...

done.

5.	 Now	perform	a	Git	push	from	the	Git	server	to	the	Puppet	master:

[git@git	~]$	cd	repos/puppet.git/

[git@git	puppet.git]$	git	push	puppetmaster

Everything	up-to-date

6.	 Create	a	post-commit	file	in	the	hooks	directory	of	the	repository	on	the	Git	server
with	the	following	contents:

[git@git	puppet.git]$	vim	hooks/post-commit

#!/bin/sh

git	push	puppetmaster

ssh	puppet@puppet.example.com	"cd	/etc/puppet/environments/production	

&&	git	pull"

[git@git	puppet.git]$	chmod	755	hooks/post-commit

7.	 Commit	a	change	to	the	repository	from	your	laptop	and	verify	that	the	change	is
propagated	to	the	Puppet	master	as	follows:

t@mylaptop	puppet$	vim	README

t@mylaptop	puppet$	git	add	README

t@mylaptop	puppet$	git	commit	-m	"Adding	README"

[master	8148902]	Adding	README

	1	file	changed,	4	deletions(-)

t@mylaptop	puppet$	git	push

X11	forwarding	request	failed	on	channel	0

Counting	objects:	5,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(3/3),	done.

Writing	objects:	100%	(3/3),	371	bytes	|	0	bytes/s,	done.

Total	3	(delta	1),	reused	0	(delta	0)

remote:	To	

puppet@puppet.example.com:/etc/puppet/environments/puppet.git

remote:				377ed44..8148902		master	->	master

remote:	From	/etc/puppet/environments/puppet

remote:				377ed44..8148902		master					->	origin/master

remote:	Updating	377ed44..8148902

remote:	Fast-forward

remote:		README	|				4	----

remote:		1	file	changed,	4	deletions(-)

To	git@git.example.com:repos/puppet.git

			377ed44..8148902		master	->	master

How	it	works…
We	created	a	bare	repository	on	the	Puppet	master	that	we	then	use	as	a	remote	for	the
repository	on	git.example.com	(remote	repositories	must	be	bare).	We	then	clone	that
bare	repository	into	the	production	directory.	We	add	the	bare	repository	on
puppet.example.com	as	a	remote	to	the	bare	repository	on	git.example.com.	We	then
create	a	post-receive	hook	in	the	repository	on	git.example.com.

The	hook	issues	a	Git	push	to	the	Puppet	master	bare	repository.	We	then	update	the
production	directory	from	the	updated	bare	repository	on	the	Puppet	master.	In	the	next
section,	we’ll	modify	the	hook	to	use	branches.

Managing	Environments	with	Git
Branches	are	a	way	of	keeping	several	different	tracks	of	development	within	a	single
source	repository.	Puppet	environments	are	a	lot	like	Git	branches.	You	can	have	the	same
code	with	slight	variations	between	branches,	just	as	you	can	have	different	modules	for
different	environments.	In	this	section,	we’ll	show	how	to	use	Git	branches	to	define
environments	on	the	Puppet	master.

Getting	ready
In	the	previous	section,	we	created	a	production	directory	that	was	based	on	the	master
branch;	we’ll	remove	that	directory	now:

puppet@puppet:/etc/puppet/environments$	mv	production	production.master

How	to	do	it…
Modify	the	post-receive	hook	to	accept	a	branch	variable.	The	hook	will	use	this
variable	to	create	a	directory	on	the	Puppet	master	as	follows:

#!/bin/sh

read	oldrev	newrev	refname

branch=${refname#*\/*\/}

git	push	puppetmaster	$branch

ssh	puppet@puppet.example.com	"if	[!	-d	

/etc/puppet/environments/$branch];	then	git	clone

	/etc/puppet/environments/puppet.git

	/etc/puppet/environments/$branch;	fi;	cd

	/etc/puppet/environments/$branch;	git	checkout	$branch;	git	pull"

Modify	your	README	file	again	and	push	to	the	repository	on	git.example.com:

t@mylaptop	puppet$	git	add	README

t@mylaptop	puppet$	git	commit	-m	"Adding	README"

[master	539d9f8]	Adding	README

	1	file	changed,	1	insertion(+)

t@mylaptop	puppet$	git	push

Counting	objects:	5,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(3/3),	done.

Writing	objects:	100%	(3/3),	374	bytes	|	0	bytes/s,	done.

Total	3	(delta	1),	reused	0	(delta	0)

remote:	To	puppet@puppet.example.com:/etc/puppet/environments/puppet.git

remote:				0d6b49f..539d9f8		master	->	master

remote:	Cloning	into	'/etc/puppet/environments/master'...

remote:	done.

remote:	Already	on	'master'

remote:	Already	up-to-date.

To	git@git.example.com:repos/puppet.git

			0d6b49f..539d9f8		master	->	master

How	it	works…
The	hook	now	reads	in	the	refname	and	parses	out	the	branch	that	is	being	updated.	We
use	that	branch	variable	to	clone	the	repository	into	a	new	directory	and	check	out	the
branch.

There’s	more…
Now	when	we	want	to	create	a	new	environment,	we	can	create	a	new	branch	in	the	Git
repository.	The	branch	will	create	a	directory	on	the	Puppet	master.	Each	branch	of	the	Git
repository	represents	an	environment	on	the	Puppet	master:

1.	 Create	the	production	branch	as	shown	in	the	following	command	line:

t@mylaptop	puppet$	git	branch	production

t@mylaptop	puppet$	git	checkout	production

Switched	to	branch	'production'

2.	 Update	the	production	branch	and	push	to	the	Git	server	as	follows:

t@mylaptop	puppet$	vim	README

t@mylaptop	puppet$	git	add	README

t@mylaptop	puppet$	git	commit	-m	"Production	Branch"

t@mylaptop	puppet$	git	push	origin	production

Counting	objects:	7,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(3/3),	done.

Writing	objects:	100%	(3/3),	372	bytes	|	0	bytes/s,	done.

Total	3	(delta	1),	reused	0	(delta	0)

remote:	To	

puppet@puppet.example.com:/etc/puppet/environments/puppet.git

remote:				11db6e5..832f6a9		production	->	production

remote:	Cloning	into	'/etc/puppet/environments/production'...

remote:	done.

remote:	Switched	to	a	new	branch	'production'

remote:	Branch	production	set	up	to	track	remote	branch	production	from	

origin.

remote:	Already	up-to-date.

To	git@git.example.com:repos/puppet.git

			11db6e5..832f6a9		production	->	production

Now	whenever	we	create	a	new	branch,	a	corresponding	directory	is	created	in	our
environment’s	directory.	A	one-to-one	mapping	is	established	between	environments	and
branches.

Chapter	3.	Writing	Better	Manifests
	 “Measuring	programming	progress	by	lines	of	code	is	like	measuring	aircraft	building	progress	by	weight.” 	

	 —Bill	Gates

In	this	chapter,	we	will	cover:

Using	arrays	of	resources
Using	resource	defaults
Using	defined	types
Using	tags
Using	run	stages
Using	roles	and	profiles
Passing	parameters	to	classes
Passing	parameters	from	Hiera
Writing	reusable,	cross-platform	manifests
Getting	information	about	the	environment
Importing	dynamic	information
Passing	arguments	to	shell	commands

Introduction
Your	Puppet	manifests	are	the	living	documentation	for	your	entire	infrastructure.	Keeping
them	tidy	and	well	organized	is	a	great	way	to	make	it	easier	to	maintain	and	understand.
Puppet	gives	you	a	number	of	tools	to	do	this,	as	follows:

Arrays
Defaults
Defined	types
Dependencies
Class	parameters

We’ll	see	how	to	use	all	of	these	and	more.	As	you	read	through	the	chapter,	try	out	the
examples	and	look	through	your	own	manifests	to	see	where	these	features	might	help	you
simplify	and	improve	your	Puppet	code.

Using	arrays	of	resources
Anything	that	you	can	do	to	a	resource,	you	can	do	to	an	array	of	resources.	Use	this	idea
to	refactor	your	manifests	to	make	them	shorter	and	clearer.

How	to	do	it…
Here	are	the	steps	to	refactor	using	arrays	of	resources:

1.	 Identify	a	class	in	your	manifest	where	you	have	several	instances	of	the	same	kind
of	resource,	for	example,	packages:

		package	{	'sudo'	:	ensure	=>	installed	}

		package	{	'unzip'	:	ensure	=>	installed	}

		package	{	'locate'	:	ensure	=>	installed	}

		package	{	'lsof'	:	ensure	=>	installed	}

		package	{	'cron'	:	ensure	=>	installed	}

		package	{	'rubygems'	:	ensure	=>	installed	}

2.	 Group	them	together	and	replace	them	with	a	single	package	resource	using	an	array:

		package

		{

				['cron',

				'locate',

				'lsof',

				'rubygems',

				'sudo',

				'unzip']:

				ensure	=>	installed,

		}

How	it	works…
Most	of	Puppet’s	resource	types	can	accept	an	array	instead	of	a	single	name,	and	will
create	one	instance	for	each	of	the	elements	in	the	array.	All	the	parameters	you	provide
for	the	resource	(for	example,	ensure	=>	installed)	will	be	assigned	to	each	of	the	new
resource	instances.	This	shorthand	will	only	work	when	all	the	resources	have	the	same
attributes.

See	also
The	Iterating	over	multiple	items	recipe	in	Chapter	1,	Puppet	Language	and	Style

Using	resource	defaults
A	Puppet	module	is	a	group	of	related	resources,	usually	grouped	to	configure	a	specific
service.	Within	a	module,	you	may	define	multiple	resources;	resource	defaults	allow	you
to	specify	the	default	attribute	values	for	a	resource.	In	this	example,	we’ll	show	you	how
to	specify	a	resource	default	for	the	File	type.

How	to	do	it…
To	show	you	how	to	use	resource	defaults,	we’ll	create	an	apache	module.	Within	this
module	we	will	specify	that	the	default	owner	and	group	are	the	apache	user	as	follows:

1.	 Create	an	apache	module	and	create	a	resource	default	for	the	File	type:

		class	apache	{

				File	{

						owner	=>	'apache',

						group	=>	'apache',

						mode	=>	0644,

				}

		}

2.	 Create	html	files	within	the	/var/www/html	directory:

		file	{'/var/www/html/index.html':

				content	=>	"<html><body><h1>Cookbook!

						</h1></body></html>\n",

		}

		file	{'/var/www/html/cookbook.html':

				content	=>

						"<html><body><h2>PacktPub</h2></body></html>\n",

		}

3.	 Add	this	class	to	your	default	node	definition,	or	use	puppet	apply	to	apply	the
module	to	your	node.	I	will	use	the	method	we	configured	in	the	previous	chapter,
pushing	our	code	to	the	Git	repository	and	using	a	Git	hook	to	have	the	code
deployed	to	the	Puppet	master	as	follows:

t@mylaptop	~/puppet	$	git	pull	origin	production

From	git.example.com:repos/puppet

	*	branch												production	->	FETCH_HEAD

Already	up-to-date.

t@mylaptop	~/puppet	$	cd	modules

t@mylaptop	~/puppet/modules	$	mkdir	-p	apache/manifests

t@mylaptop	~/puppet/modules	$	vim	apache/manifests/init.pp

t@mylaptop	~/puppet/modules	$	cd	..

t@mylaptop	~/puppet	$	vim	manifests/site.pp	

t@mylaptop	~/puppet	$	git	status

On	branch	production

Changes	not	staged	for	commit:

modified:			manifests/site.pp

Untracked	files:

modules/apache/

t@mylaptop	~/puppet	$	git	add	manifests/site.pp	modules/apache

t@mylaptop	~/puppet	$	git	commit	-m	'adding	apache	module'

[production	d639a86]	adding	apache	module

	2	files	changed,	14	insertions(+)

	create	mode	100644	modules/apache/manifests/init.pp

t@mylaptop	~/puppet	$	git	push	origin	production

Counting	objects:	13,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(6/6),	done.

Writing	objects:	100%	(8/8),	885	bytes	|	0	bytes/s,	done.

Total	8	(delta	0),	reused	0	(delta	0)

remote:	To	

puppet@puppet.example.com:/etc/puppet/environments/puppet.git

remote:				832f6a9..d639a86		production	->	production

remote:	Already	on	'production'

remote:	From	/etc/puppet/environments/puppet

remote:				832f6a9..d639a86		production	->	origin/production

remote:	Updating	832f6a9..d639a86

remote:	Fast-forward

remote:		manifests/site.pp																|				1	+

remote:		modules/apache/manifests/init.pp	|			13	+++++++++++++

remote:		2	files	changed,	14	insertions(+)

remote:		create	mode	100644	modules/apache/manifests/init.pp

To	git@git.example.com:repos/puppet.git

			832f6a9..d639a86		production	->	production

4.	 Apply	the	module	to	a	node	or	run	Puppet:

Notice:	/Stage[main]/Apache/File[/var/www/html/cookbook.html]/ensure:	

defined	content	as	'{md5}493473fb5bde778ca93d034900348c5d'

Notice:	/Stage[main]/Apache/File[/var/www/html/index.html]/ensure:	

defined	content	as	'{md5}184f22c181c5632b86ebf9a0370685b3'

Notice:	Finished	catalog	run	in	2.00	seconds

[root@hiera-test	~]#	ls	-l	/var/www/html

total	8

-rw-r--r--.	1	apache	apache	44	Sep	15	12:00	cookbook.html

-rw-r--r--.	1	apache	apache	73	Sep	15	12:00	index.html

How	it	works…
The	resource	default	we	defined	specifies	the	owner,	group,	and	mode	for	all	file	resources
within	this	class	(also	known	as	within	this	scope).	Unless	you	specifically	override	a
resource	default,	the	value	for	an	attribute	will	be	taken	from	the	default.

There’s	more…
You	can	specify	resource	defaults	for	any	resource	type.	You	can	also	specify	resource
defaults	in	site.pp.	I	find	it	useful	to	specify	the	default	action	for	Package	and	Service
resources	as	follows:

		Package	{	ensure	=>	'installed'	}

		Service	{

				hasrestart	=>	true,

				enable					=>	true,

				ensure					=>	true,

		}

With	these	defaults,	whenever	you	specify	a	package,	the	package	will	be	installed.
Whenever	you	specify	a	service,	the	service	will	be	started	and	enabled	to	run	at	boot.
These	are	the	usual	reasons	you	specify	packages	and	services,	most	of	the	time	these
defaults	will	do	what	you	prefer	and	your	code	will	be	cleaner.	When	you	need	to	disable
a	service,	simply	override	the	defaults.

Using	defined	types
In	the	previous	example,	we	saw	how	to	reduce	redundant	code	by	grouping	identical
resources	into	arrays.	However,	this	technique	is	limited	to	resources	where	all	the
parameters	are	the	same.	When	you	have	a	set	of	resources	that	have	some	parameters	in
common,	you	need	to	use	a	defined	type	to	group	them	together.

How	to	do	it…
The	following	steps	will	show	you	how	to	create	a	definition:

1.	 Add	the	following	code	to	your	manifest:

		define	tmpfile()	{

				file	{	"/tmp/${name}":	content	=>	"Hello,	world\n",

				}

		}

		tmpfile	{	['a',	'b',	'c']:	}

2.	 Run	Puppet:

[root@hiera-test	~]#	vim	tmp.pp

[root@hiera-test	~]#	puppet	apply	tmp.pp	

Notice:	Compiled	catalog	for	hiera-test.example.com	in	environment	

production	in	0.11	seconds

Notice:	/Stage[main]/Main/Tmpfile[a]/File[/tmp/a]/ensure:	defined	

content	as	'{md5}a7966bf58e23583c9a5a4059383ff850'

Notice:	/Stage[main]/Main/Tmpfile[b]/File[/tmp/b]/ensure:	defined	

content	as	'{md5}a7966bf58e23583c9a5a4059383ff850'

Notice:	/Stage[main]/Main/Tmpfile[c]/File[/tmp/c]/ensure:	defined	

content	as	'{md5}a7966bf58e23583c9a5a4059383ff850'

Notice:	Finished	catalog	run	in	0.09	seconds

[root@hiera-test	~]#	cat	/tmp/{a,b,c}

Hello,	world

Hello,	world

Hello,	world

How	it	works…
You	can	think	of	a	defined	type	(introduced	with	the	define	keyword)	as	a	cookie-cutter.
It	describes	a	pattern	that	Puppet	can	use	to	create	lots	of	similar	resources.	Any	time	you
declare	a	tmpfile	instance	in	your	manifest,	Puppet	will	insert	all	the	resources	contained
in	the	tmpfile	definition.

In	our	example,	the	definition	of	tmpfile	contains	a	single	file	resource	whose	content	is
Hello,	world\n	and	whose	path	is	/tmp/${name}.	If	you	declared	an	instance	of	tmpfile
with	the	name	foo:

tmpfile	{	'foo':	}

Puppet	will	create	a	file	with	the	path	/tmp/foo.	In	other	words,	${name}	in	the	definition
will	be	replaced	by	the	name	of	any	actual	instance	that	Puppet	is	asked	to	create.	It’s
almost	as	though	we	created	a	new	kind	of	resource:	tmpfile,	which	has	one	parameter—
its	name.

Just	like	with	regular	resources,	we	don’t	have	to	pass	just	one	title;	as	in	the	preceding
example,	we	can	provide	an	array	of	titles	and	Puppet	will	create	as	many	resources	as
required.

Tip
A	word	on	name,	the	namevar:	Every	resource	you	create	must	have	a	unique	name,	the
namevar.	This	is	different	than	the	title,	which	is	how	puppet	refers	to	the	resource
internally	(although	they	are	often	the	same).

There’s	more…
In	the	example,	we	created	a	definition	where	the	only	parameter	that	varies	between
instances	is	the	name	parameter.	But	we	can	add	whatever	parameters	we	want,	so	long	as
we	declare	them	in	the	definition	in	parentheses	after	the	name	parameter,	as	follows:

		define	tmpfile($greeting)	{

				file	{	"/tmp/${name}":	content	=>	$greeting,

				}

		}

Next,	pass	values	to	them	when	we	declare	an	instance	of	the	resource:

		tmpfile{	'foo':

				greeting	=>	"Good	Morning\n",

		}

You	can	declare	multiple	parameters	as	a	comma-separated	list:

		define	webapp($domain,$path,$platform)	{

				...

		}

		webapp	{	'mywizzoapp':

				domain			=>	'mywizzoapp.com',

				path					=>	'/var/www/apps/mywizzoapp',

				platform	=>	'Rails',

		}

You	can	also	declare	default	values	for	any	parameters	that	aren’t	supplied,	thus	making
them	optional:

		define	tmpfile($greeting,$mode='0644')	{

				...

		}

This	is	a	powerful	technique	for	abstracting	out	everything	that’s	common	to	certain
resources,	and	keeping	it	in	one	place	so	that	you	don’t	repeat	yourself.	In	the	preceding
example,	there	might	be	many	individual	resources	contained	within	webapp:	packages,
config	files,	source	code	checkouts,	virtual	hosts,	and	so	on.	But	all	of	them	are	the	same
for	every	instance	of	webapp	except	the	parameters	we	provide.	These	might	be	referenced
in	a	template,	for	example,	to	set	the	domain	for	a	virtual	host.

See	also
The	Passing	parameters	to	classes	recipe,	in	this	chapter

Using	tags
Sometimes	one	Puppet	class	needs	to	know	about	another	or	at	least	to	know	whether	or
not	it’s	present.	For	example,	a	class	that	manages	the	firewall	may	need	to	know	whether
or	not	the	node	is	a	web	server.

Puppet’s	tagged	function	will	tell	you	whether	a	named	class	or	resource	is	present	in	the
catalog	for	this	node.	You	can	also	apply	arbitrary	tags	to	a	node	or	class	and	check	for	the
presence	of	these	tags.	Tags	are	another	metaparameter,	similar	to	require	and	notify	we
introduced	in	Chapter	1,	Puppet	Language	and	Style.	Metaparameters	are	used	in	the
compilation	of	the	Puppet	catalog	but	are	not	an	attribute	of	the	resource	to	which	they	are
attached.

How	to	do	it…
To	help	you	find	out	if	you’re	running	on	a	particular	node	or	class	of	nodes	all	nodes	are
automatically	tagged	with	the	node	name	and	the	names	of	any	classes	they	include.
Here’s	an	example	that	shows	you	how	to	use	tagged	to	get	this	information:

1.	 Add	the	following	code	to	your	site.pp	file	(replacing	cookbook	with	your
machine’s	hostname):

		node	'cookbook'	{

				if	tagged('cookbook')	{

						notify	{	'tagged	cookbook':	}

				}

		}

2.	 Run	Puppet:

root@cookbook:~#	puppet	agent	-vt

Info:	Caching	catalog	for	cookbook

Info:	Applying	configuration	version	'1410848350'

Notice:	tagged	cookbook

Notice:	Finished	catalog	run	in	1.00	seconds

Nodes	are	also	automatically	tagged	with	the	names	of	all	the	classes	they	include	in
addition	to	several	other	automatic	tags.	You	can	use	tagged	to	find	out	what	classes
are	included	on	the	node.

You’re	not	just	limited	to	checking	the	tags	automatically	applied	by	Puppet.	You	can
also	add	your	own.	To	set	an	arbitrary	tag	on	a	node,	use	the	tag	function,	as	in	the
following	example:

3.	 Modify	your	site.pp	file	as	follows:

		node	'cookbook'	{

				tag('tagging')

				class	{'tag_test':	}

		}

4.	 Add	a	tag_test	module	with	the	following	init.pp	(or	be	lazy	and	add	the
following	definition	to	your	site.pp):

		class	tag_test	{

				if	tagged('tagging')	{

						notify	{	'containing	node/class	was	tagged.':	}

				}

		}

5.	 Run	Puppet:

root@cookbook:~#	puppet	agent	-vt

Info:	Caching	catalog	for	cookbook

Info:	Applying	configuration	version	'1410851300'

Notice:	containing	node/class	was	tagged.

Notice:	Finished	catalog	run	in	0.22	seconds

6.	 You	can	also	use	tags	to	determine	which	parts	of	the	manifest	to	apply.	If	you	use
the	--tags	option	on	the	Puppet	command	line,	Puppet	will	apply	only	those	classes
or	resources	tagged	with	the	specific	tags	you	include.	For	example,	we	can	define
our	cookbook	class	with	two	classes:

		node	cookbook	{

				class	{'first_class':	}

				class	{'second_class':	}

		}

		class	first_class	{

				notify	{	'First	Class':	}

		}

		class	second_class	{

				notify	{'Second	Class':	}

		}

7.	 Now	when	we	run	puppet	agent	on	the	cookbook	node,	we	see	both	notifies:

root@cookbook:~#	puppet	agent	-t

Notice:	Second	Class

Notice:	First	Class

Notice:	Finished	catalog	run	in	0.22	seconds

8.	 Now	apply	the	first_class	and	add	--tags	function	to	the	command	line:

root@cookbook:~#	puppet	agent	-t	--tags	first_class

Notice:	First	Class

Notice:	Finished	catalog	run	in	0.07	seconds

There’s	more…
You	can	use	tags	to	create	a	collection	of	resources,	and	then	make	the	collection	a
dependency	for	some	other	resource.	For	example,	say	some	service	depends	on	a	config
file	that	is	built	from	a	number	of	file	snippets,	as	in	the	following	example:

		class	firewall::service	{

				service	{	'firewall':	...	

				}

				File	<|	tag	==	'firewall-snippet'	|>	~>	Service['firewall']	

		}

		class	myapp	{	

				file	{	'/etc/firewall.d/myapp.conf':	tag	=>	'firewall-snippet',	...	

				}	

		}

Here,	we’ve	specified	that	the	firewall	service	should	be	notified	if	any	file	resource
tagged	firewall-snippet	is	updated.	All	we	need	to	do	to	add	a	firewall	config	snippet
for	any	particular	application	or	service	is	to	tag	it	firewall-snippet,	and	Puppet	will	do
the	rest.

Although	we	could	add	a	notify	=>	Service["firewall"]	function	to	each	snippet
resource	if	our	definition	of	the	firewall	service	were	ever	to	change,	we	would	have	to
hunt	down	and	update	all	the	snippets	accordingly.	The	tag	lets	us	encapsulate	the	logic	in
one	place,	making	future	maintenance	and	refactoring	much	easier.

Note
What’s	<|	tag	==	'firewall-snippet'	|>	syntax?	This	is	called	a	resource	collector,
and	it’s	a	way	of	specifying	a	group	of	resources	by	searching	for	some	piece	of	data	about
them;	in	this	case,	the	value	of	a	tag.	You	can	find	out	more	about	resource	collectors	and
the	<|	|>	operator	(sometimes	known	as	the	spaceship	operator)	on	the	Puppet	Labs
website:	http://docs.puppetlabs.com/puppet/3/reference/lang_collectors.html.

http://docs.puppetlabs.com/puppet/3/reference/lang_collectors.html

Using	run	stages
A	common	requirement	is	to	apply	a	certain	group	of	resources	before	other	groups	(for
example,	installing	a	package	repository	or	a	custom	Ruby	version),	or	after	others	(for
example,	deploying	an	application	once	its	dependencies	are	installed).	Puppet’s	run
stages	feature	allows	you	to	do	this.

By	default,	all	resources	in	your	manifest	are	applied	in	a	single	stage	named	main.	If	you
need	a	resource	to	be	applied	before	all	others,	you	can	assign	it	to	a	new	run	stage	that	is
specified	to	come	before	main.	Similarly,	you	could	define	a	run	stage	that	comes	after
main.	In	fact,	you	can	define	as	many	run	stages	as	you	need	and	tell	Puppet	which	order
they	should	be	applied	in.

In	this	example,	we’ll	use	stages	to	ensure	one	class	is	applied	first	and	another	last.

How	to	do	it…
Here	are	the	steps	to	create	an	example	of	using	run	stages:

1.	 Create	the	file	modules/admin/manifests/stages.pp	with	the	following	contents:

		class	admin::stages	{

				stage	{	'first':	before	=>	Stage['main']	}

				stage	{	'last':	require	=>	Stage['main']	}

				class	me_first	{

						notify	{	'This	will	be	done	first':	}

				}

				class	me_last	{

						notify	{	'This	will	be	done	last':	}

				}

				class	{	'me_first':

						stage	=>	'first',

				}

				class	{	'me_last':

						stage	=>	'last',

				}

		}

2.	 Modify	your	site.pp	file	as	follows:

		node	'cookbook'	{

				class	{'first_class':	}

				class	{'second_class':	}

				include	admin::stages

		}

3.	 Run	Puppet:

root@cookbook:~#	puppet	agent	-t

Info:	Applying	configuration	version	'1411019225'

Notice:	This	will	be	done	first

Notice:	Second	Class

Notice:	First	Class

Notice:	This	will	be	done	last

Notice:	Finished	catalog	run	in	0.43	seconds

How	it	works…
Let’s	examine	this	code	in	detail	to	see	what’s	happening.	First,	we	declare	the	run	stages
first	and	last,	as	follows:

		stage	{	'first':	before	=>	Stage['main']	}

		stage	{	'last':	require	=>	Stage['main']	}

For	the	first	stage,	we’ve	specified	that	it	should	come	before	main.	That	is,	every
resource	marked	as	being	in	the	first	stage	will	be	applied	before	any	resource	in	the
main	stage	(the	default	stage).

The	last	stage	requires	the	main	stage,	so	no	resource	in	the	last	stage	can	be	applied
until	after	every	resource	in	the	main	stage.

We	then	declare	some	classes	that	we’ll	later	assign	to	these	run	stages:

		class	me_first	{

				notify	{	'This	will	be	done	first':	}

		}

		class	me_last	{

				notify	{	'This	will	be	done	last':	}

		}

We	can	now	put	it	all	together	and	include	these	classes	on	the	node,	specifying	the	run
stages	for	each	as	we	do	so:

		class	{	'me_first':	stage	=>	'first',

		}

		class	{	'me_last':	stage	=>	'last',

		}

Note	that	in	the	class	declarations	for	me_first	and	me_last,	we	didn’t	have	to	specify
that	they	take	a	stage	parameter.	The	stage	parameter	is	another	metaparameter,	which
means	it	can	be	applied	to	any	class	or	resource	without	having	to	be	explicitly	declared.
When	we	ran	puppet	agent	on	our	Puppet	node,	the	notify	from	the	me_first	class	was
applied	before	the	notifies	from	first_class	and	second_class.	The	notify	from
me_last	was	applied	after	the	main	stage,	so	it	comes	after	the	two	notifies	from
first_class	and	second_class.	If	you	run	puppet	agent	multiple	times,	you	will	see
that	the	notifies	from	first_class	and	second_class	may	not	always	appear	in	the	same
order	but	the	me_first	class	will	always	come	first	and	the	me_last	class	will	always
come	last.

There’s	more…
You	can	define	as	many	run	stages	as	you	like,	and	set	up	any	ordering	for	them.	This	can
greatly	simplify	a	complicated	manifest	that	would	otherwise	require	lots	of	explicit
dependencies	between	resources.	Beware	of	accidentally	introducing	dependency	cycles,
though;	when	you	assign	something	to	a	run	stage	you’re	automatically	making	it
dependent	on	everything	in	prior	stages.

You	may	like	to	define	your	stages	in	the	site.pp	file	instead,	so	that	at	the	top	level	of
the	manifest,	it’s	easy	to	see	what	stages	are	available.

Gary	Larizza	has	written	a	helpful	introduction	to	using	run	stages,	with	some	real-world
examples,	on	his	website:

http://garylarizza.com/blog/2011/03/11/using-run-stages-with-puppet/

A	caveat:	many	people	don’t	like	to	use	run	stages,	feeling	that	Puppet	already	provides
sufficient	resource	ordering	control,	and	that	using	run	stages	indiscriminately	can	make
your	code	very	hard	to	follow.	The	use	of	run	stages	should	be	kept	to	a	minimum
wherever	possible.	There	are	a	few	key	examples	where	the	use	of	stages	creates	less
complexity.	The	most	notable	is	when	a	resource	modifies	the	system	used	to	install
packages	on	the	system.	It	helps	to	have	a	package	management	stage	that	comes	before
the	main	stage.	When	packages	are	defined	in	the	main	(default)	stage,	your	manifests	can
count	on	the	updated	package	management	configuration	information	being	present.	For
instance,	for	a	Yum-based	system,	you	would	create	a	yumrepos	stage	that	comes	before
main.	You	can	specify	this	dependency	using	chaining	arrows	as	shown	in	the	following
code	snippet:

		stage	{'yumrepos':	}

		Stage['yumrepos']	->	Stage['main']

We	can	then	create	a	class	that	creates	a	Yum	repository	(yumrepo)	resource	and	assign	it
to	the	yumrepos	stage	as	follows:

		class	{'yums':	stage	=>	'yumrepos',

		}

		class	yums	{

				notify	{'always	before	the	rest':	}

				yumrepo	{'testrepo':	baseurl	=>	'file:///var/yum',	ensure		=>	

'present',

				}

		}

For	Apt-based	systems,	the	same	example	would	be	a	stage	where	Apt	sources	are
defined.	The	key	with	stages	is	to	keep	their	definitions	in	your	site.pp	file	where	they
are	highly	visible	and	to	only	use	them	sparingly	where	you	can	guarantee	that	you	will
not	introduce	dependency	cycles.

http://garylarizza.com/blog/2011/03/11/using-run-stages-with-puppet/

See	also
The	Using	tags	recipe,	in	this	chapter
The	Drawing	dependency	graphs	recipe	in	Chapter	10,	Monitoring,	Reporting,	and
Troubleshooting

Using	roles	and	profiles
Well	organized	Puppet	manifests	are	easy	to	read;	the	purpose	of	a	module	should	be
evident	in	its	name.	The	purpose	of	a	node	should	be	defined	in	a	single	class.	This	single
class	should	include	all	classes	that	are	required	to	perform	that	purpose.	Craig	Dunn
wrote	a	post	about	such	a	classification	system,	which	he	dubbed	“roles	and	profiles”
(http://www.craigdunn.org/2012/05/239/).	In	this	model,	roles	are	the	single	purpose	of	a
node,	a	node	may	only	have	one	role,	a	role	may	contain	more	than	one	profile,	and	a
profile	contains	all	the	resources	related	to	a	single	service.	In	this	example,	we	will	create
a	web	server	role	that	uses	several	profiles.

http://www.craigdunn.org/2012/05/239/

How	to	do	it…
We’ll	create	two	modules	to	store	our	roles	and	profiles.	Roles	will	contain	one	or	more
profiles.	Each	role	or	profile	will	be	defined	as	a	subclass,	such	as	profile::base

1.	 Decide	on	a	naming	strategy	for	your	roles	and	profiles.	In	our	example,	we	will
create	two	modules,	roles	and	profiles	that	will	contain	our	roles	and	profiles
respectively:

$	puppet	module	generate	thomas-profiles

$	ln	-s	thomas-profiles	profiles

$	puppet	module	generate	thomas-roles

$	ln	-s	thomas-roles	roles

2.	 Begin	defining	the	constituent	parts	of	our	webserver	role	as	profiles.	To	keep	this
example	simple,	we	will	create	two	profiles.	First,	a	base	profile	to	include	our	basic
server	configuration	classes.	Second,	an	apache	class	to	install	and	configure	the
apache	web	server	(httpd)	as	follows:

$	vim	profiles/manifests/base.pp

class	profiles::base	{

		include	base

}

$	vim	profiles/manifests/apache.pp

class	profiles::apache	{

		$apache	=	$::osfamily	?	{

				'RedHat'	=>	'httpd',

				'Debian'	=>	'apache2',

				}

		service	{	"$apache":

				enable	=>	true,

				ensure	=>	true,

		}

		package	{	"$apache":

				ensure	=>	'installed',

		}

}

3.	 Define	a	roles::webserver	class	for	our	webserver	role	as	follows:

$	vim	roles/manifests/webserver.pp

class	roles::webserver	{

		include	profiles::apache

		include	profiles::base

}

4.	 Apply	the	roles::webserver	class	to	a	node.	In	a	centralized	installation,	you	would
use	either	an	External	Node	Classifier	(ENC)	to	apply	the	class	to	the	node,	or	you
would	use	Hiera	to	define	the	role:

		node	'webtest'	{

				include	roles::webserver

		}

How	it	works…
Breaking	down	the	parts	of	the	web	server	configuration	into	different	profiles	allows	us
to	apply	those	parts	independently.	We	created	a	base	profile	that	we	can	expand	to
include	all	the	resources	we	would	like	applied	to	all	nodes.	Our	roles::webserver	class
simply	includes	the	base	and	apache	classes.

There’s	more…
As	we’ll	see	in	the	next	section,	we	can	pass	parameters	to	classes	to	alter	how	they	work.
In	our	roles::webserver	class,	we	can	use	the	class	instantiation	syntax	instead	of
include,	and	override	it	with	parameters	in	the	classes.	For	instance,	to	pass	a	parameter
to	the	base	class,	we	would	use:

		class	{'profiles::base':

				parameter	=>	'newvalue'

		}

where	we	previously	used:

include	profiles::base

Tip
In	previous	versions	of	this	book,	node	and	class	inheritance	were	used	to	achieve	a
similar	goal,	code	reuse.	Node	inheritance	is	deprecated	in	Puppet	Version	3.7	and	higher.
Node	and	class	inheritance	should	be	avoided.	Using	roles	and	profiles	achieves	the	same
level	of	readability	and	is	much	easier	to	follow.

Passing	parameters	to	classes
Sometimes	it’s	very	useful	to	parameterize	some	aspect	of	a	class.	For	example,	you	might
need	to	manage	different	versions	of	a	gem	package,	and	rather	than	making	separate
classes	for	each	that	differ	only	in	the	version	number,	you	can	pass	in	the	version	number
as	a	parameter.

How	to	do	it…
In	this	example,	we’ll	create	a	definition	that	accepts	parameters:

1.	 Declare	the	parameter	as	a	part	of	the	class	definition:

		class	eventmachine($version)	{

				package	{	'eventmachine':	provider	=>	gem,	ensure			=>	$version,

				}

		}

2.	 Use	the	following	syntax	to	include	the	class	on	a	node:

		class	{	'eventmachine':

				version	=>	'1.0.3',

		}

How	it	works…
The	class	definition	class	eventmachine($version)	{	is	just	like	a	normal	class
definition	except	it	specifies	that	the	class	takes	one	parameter:	$version.	Inside	the	class,
we’ve	defined	a	package	resource:

		package	{	'eventmachine':

				provider	=>	gem,

				ensure			=>	$version,

		}

This	is	a	gem	package,	and	we’re	requesting	to	install	version	$version.

Include	the	class	on	a	node,	instead	of	the	usual	include	syntax:

include	eventmachine

On	doing	so,	there	will	be	a	class	statement:

		class	{	'eventmachine':

				version	=>	'1.0.3',

		}

This	has	the	same	effect	but	also	sets	a	value	for	the	parameter	as	version.

There’s	more…
You	can	specify	multiple	parameters	for	a	class	as:

		class	mysql($package,	$socket,	$port)	{

Then	supply	them	in	the	same	way:

		class	{	'mysql':

				package	=>	'percona-server-server-5.5',

				socket		=>	'/var/run/mysqld/mysqld.sock',

				port				=>	'3306',

		}

Specifying	default	values
You	can	also	give	default	values	for	some	of	your	parameters.	When	you	include	the	class
without	setting	a	parameter,	the	default	value	will	be	used.	For	instance,	if	we	created	a
mysql	class	with	three	parameters,	we	could	provide	default	values	for	any	or	all	of	the
parameters	as	shown	in	the	code	snippet:

class	mysql($package,	$socket,	$port='3306')	{

or	all:

		class	mysql(

				package	=	percona-server-server-5.5",

				socket		=	'/var/run/mysqld/mysqld.sock',

				port				=	'3306')	{

Defaults	allow	you	to	use	a	default	value	and	override	that	default	where	you	need	it.

Unlike	a	definition,	only	one	instance	of	a	parameterized	class	can	exist	on	a	node.	So
where	you	need	to	have	several	different	instances	of	the	resource,	use	define	instead.

Passing	parameters	from	Hiera
Like	the	parameter	defaults	we	introduced	in	the	previous	chapter,	Hiera	may	be	used	to
provide	default	values	to	classes.	This	feature	requires	Puppet	Version	3	and	higher.

Getting	ready
Install	and	configure	hiera	as	we	did	in	Chapter	2,	Puppet	Infrastructure.	Create	a	global
or	common	yaml	file;	this	will	serve	as	the	default	for	all	values.

How	to	do	it…
1.	 Create	a	class	with	parameters	and	no	default	values:

t@mylaptop	~/puppet	$	mkdir	-p	modules/mysql/manifests	t@mylaptop	

~/puppet	$	vim	modules/mysql/manifests/init.pp

class	mysql	($port,	$socket,	$package)	{

		notify	{"Port:	$port	Socket:	$socket	Package:	$package":	}

}

2.	 Update	your	common	.yaml	file	in	Hiera	with	the	default	values	for	the	mysql	class:

mysql::port:	3306

mysql::package:	'mysql-server'

mysql::socket:	'/var/lib/mysql/mysql.sock'

Apply	the	class	to	a	node,	you	can	add	the	mysql	class	to	your	default	node	for	now.

node	default	{

		class	{'mysql':	}

}

3.	 Run	puppet	agent	and	verify	the	output:

[root@hiera-test	~]#	puppet	agent	-t

Info:	Caching	catalog	for	hiera-test.example.com

Info:	Applying	configuration	version	'1411182251'

Notice:	Port:	3306	Socket:	/var/lib/mysql/mysql.sock	Package:	mysql-

server

Notice:	/Stage[main]/Mysql/Notify[Port:	3306	Socket:	

/var/lib/mysql/mysql.sock	Package:	mysql-server]/message:	defined	

'message'	as	'Port:	3306	Socket:	/var/lib/mysql/mysql.sock	Package:	

mysql-server'

Notice:	Finished	catalog	run	in	1.75	seconds

How	it	works…
When	we	instantiate	the	mysql	class	in	our	manifest,	we	provided	no	values	for	any	of	the
attributes.	Puppet	knows	to	look	for	a	value	in	Hiera	that	matches
class_name::parameter_name:	or	::class_name::parameter_name:.

When	Puppet	finds	a	value,	it	uses	it	as	the	parameter	for	the	class.	If	Puppet	fails	to	find	a
value	in	Hiera	and	no	default	is	defined,	a	catalog	failure	will	result	in	the	following
command	line:

Error:	Could	not	retrieve	catalog	from	remote	server:	Error	400	on	SERVER:	

Must	pass	package	to	Class[Mysql]	at	

/etc/puppet/environments/production/manifests/site.pp:6	on	node	hiera-

test.example.com

This	error	indicates	that	Puppet	would	like	a	value	for	the	parameter	package.

There’s	more…
You	can	define	a	Hiera	hierarchy	and	supply	different	values	for	parameters	based	on
facts.	You	could,	for	instance,	have	%{::osfamily}	in	your	hierarchy	and	have	different
yaml	files	based	on	the	osfamily	parameter	(RedHat,	Suse,	and	Debian).

Writing	reusable,	cross-platform
manifests
Every	system	administrator	dreams	of	a	unified,	homogeneous	infrastructure	of	identical
machines	all	running	the	same	version	of	the	same	OS.	As	in	other	areas	of	life,	however,
the	reality	is	often	messy	and	doesn’t	conform	to	the	plan.

You	are	probably	responsible	for	a	bunch	of	assorted	servers	of	varying	age	and
architecture	running	different	kernels	from	different	OS	distributions,	often	scattered
across	different	data	centers	and	ISPs.

This	situation	should	strike	terror	into	the	hearts	of	the	sysadmins	of	the	SSH	in	a	for	loop
persuasion,	because	executing	the	same	commands	on	every	server	can	have	different,
unpredictable,	and	even	dangerous	results.

We	should	certainly	strive	to	bring	older	servers	up	to	date	and	get	working	as	far	as
possible	on	a	single	reference	platform	to	make	administration	simpler,	cheaper,	and	more
reliable.	But	until	we	get	there,	Puppet	makes	coping	with	heterogeneous	environments
slightly	easier.

How	to	do	it…
Here	are	some	examples	of	how	to	make	your	manifests	more	portable:

1.	 Where	you	need	to	apply	the	same	manifest	to	servers	with	different	OS	distributions,
the	main	differences	will	probably	be	the	names	of	packages	and	services,	and	the
location	of	config	files.	Try	to	capture	all	these	differences	into	a	single	class	by
using	selectors	to	set	global	variables:

		$ssh_service	=	$::operatingsystem?	{	/Ubuntu|Debian/	=>	'ssh',	

default									=>	'sshd',

		}

You	needn’t	worry	about	the	differences	in	any	other	part	of	the	manifest;	when	you
refer	to	something,	use	the	variable	with	confidence	that	it	will	point	to	the	right
thing	in	each	environment:

		service	{	$ssh_service:	ensure	=>	running,

		}

2.	 Often	we	need	to	cope	with	mixed	architectures;	this	can	affect	the	paths	to	shared
libraries,	and	also	may	require	different	versions	of	packages.	Again,	try	to
encapsulate	all	the	required	settings	in	a	single	architecture	class	that	sets	global
variables:

		$libdir	=	$::architecture	?	{

				/amd64|x86_64/			=>	'/usr/lib64',	default	=>	'/usr/lib',

		}

Then	you	can	use	these	wherever	an	architecture-dependent	value	is	required	in	your
manifests	or	even	in	templates:

;	php.ini

[PHP]

;	Directory	in	which	the	loadable	extensions	(modules)	reside.

extension_dir	=	<%=	@libdir	%>/php/modules

How	it	works…
The	advantage	of	this	approach	(which	could	be	called	top-down)	is	that	you	only	need	to
make	your	choices	once.	The	alternative,	bottom-up	approach	would	be	to	have	a	selector
or	case	statement	everywhere	a	setting	is	used:

		service	{	$::operatingsystem?	{

				/Ubuntu|Debian/	=>	'ssh',	default									=>	'sshd'	}:	ensure	=>	

running,

		}

This	not	only	results	in	lots	of	duplication,	but	makes	the	code	harder	to	read.	And	when	a
new	operating	system	is	added	to	the	mix,	you’ll	need	to	make	changes	throughout	the
whole	manifest,	instead	of	just	in	one	place.

There’s	more…
If	you	are	writing	a	module	for	public	distribution	(for	example,	on	Puppet	Forge),	making
your	module	as	cross-platform	as	possible	will	make	it	more	valuable	to	the	community.
As	far	as	you	can,	test	it	on	many	different	distributions,	platforms,	and	architectures,	and
add	the	appropriate	variables	so	that	it	works	everywhere.

If	you	use	a	public	module	and	adapt	it	to	your	own	environment,	consider	updating	the
public	version	with	your	changes	if	you	think	they	might	be	helpful	to	other	people.

Even	if	you	are	not	thinking	of	publishing	a	module,	bear	in	mind	that	it	may	be	in
production	use	for	a	long	time	and	may	have	to	adapt	to	many	changes	in	the	environment.
If	it’s	designed	to	cope	with	this	from	the	start,	it’ll	make	life	easier	for	you	or	whoever
ends	up	maintaining	your	code.

	 “Always	code	as	if	the	guy	who	ends	up	maintaining	your	code	will	be	a	violent	psychopath	who	knows	where	you
live.”

	

	 —Dave	Carhart

See	also
The	Using	public	modules	recipe	in	Chapter	7,	Managing	Applications
The	Configuring	Hiera	recipe	in	Chapter	2,	Puppet	Infrastructure

Getting	information	about	the
environment
Often	in	a	Puppet	manifest,	you	need	to	know	some	local	information	about	the	machine
you’re	on.	Facter	is	the	tool	that	accompanies	Puppet	to	provide	a	standard	way	of	getting
information	(facts)	from	the	environment	about	things	such	as	these:

Operating	system
Memory	size
Architecture
Processor	count

To	see	a	complete	list	of	the	facts	available	on	your	system,	run:

$	sudo	facter

architecture	=>	amd64

augeasversion	=>	0.10.0

domain	=>	compute-1.internal

ec2_ami_id	=>	ami-137bcf7a

ec2_ami_launch_index	=>	0

Note
While	it	can	be	handy	to	get	this	information	from	the	command	line,	the	real	power	of
Facter	lies	in	being	able	to	access	these	facts	in	your	Puppet	manifests.

Some	modules	define	their	own	facts;	to	see	any	facts	that	have	been	defined	locally,	add
the	-p	(pluginsync)	option	to	facter	as	follows:

$	sudo	facter	-p

How	to	do	it…
Here’s	an	example	of	using	Facter	facts	in	a	manifest:

1.	 Reference	a	Facter	fact	in	your	manifest	like	any	other	variable.	Facts	are	global
variables	in	Puppet,	so	they	should	be	prefixed	with	a	double	colon	(::),	as	in	the
following	code	snippet:

notify	{	"This	is	$::operatingsystem	version	$::operatingsystemrelease,	

on	$::architecture	architecture,	kernel	version	$::kernelversion":	}

2.	 When	Puppet	runs,	it	will	fill	in	the	appropriate	values	for	the	current	node:

[root@hiera-test	~]#	puppet	agent	-t

...

Info:	Applying	configuration	version	'1411275985'Notice:	This	is	RedHat	

version	6.5,	on	x86_64	architecture,	kernel	version	2.6.32

...

Notice:	Finished	catalog	run	in	0.40	seconds

How	it	works…
Facter	provides	a	standard	way	for	manifests	to	get	information	about	the	nodes	to	which
they	are	applied.	When	you	refer	to	a	fact	in	a	manifest,	Puppet	will	query	Facter	to	get
the	current	value	and	insert	it	into	the	manifest.	Facter	facts	are	top	scope	variables.

Tip
Always	refer	to	facts	with	leading	double	colons	to	ensure	that	you	are	using	the	fact	and
not	a	local	variable:

$::hostname	NOT	$hostname

There’s	more…
You	can	also	use	facts	in	ERB	templates.	For	example,	you	might	want	to	insert	the	node’s
hostname	into	a	file,	or	change	a	configuration	setting	for	an	application	based	on	the
memory	size	of	the	node.	When	you	use	fact	names	in	templates,	remember	that	they
don’t	need	a	dollar	sign	because	this	is	Ruby,	not	Puppet:

$KLogPath	<%=	case	@kernelversion	when	'2.6.31'	then

'/var/run/rsyslog/kmsg'	else	'/proc/kmsg'	end	%>

When	referring	to	facts,	use	the	@	syntax.	Variables	that	are	defined	at	the	same	scope	as
the	function	call	to	template	can	also	be	referenced	with	the	@	syntax.	Out	of	scope
variables	should	use	the	scope	function.	For	example,	to	reference	the	mysql::port
variable	we	defined	earlier	in	the	mysql	modules,	use	the	following:

MySQL	Port	=	<%=	scope['::mysql::port']	%>

Applying	this	template	results	in	the	following	file:

[root@hiera-test	~]#	puppet	agent	-t

...

Info:	Caching	catalog	for	hiera-test.example.com

Notice:	/Stage[main]/Erb/File[/tmp/template-test]/ensure:	defined	content	

as	'{md5}96edacaf9747093f73084252c7ca7e67'

Notice:	Finished	catalog	run	in	0.41	seconds	[root@hiera-test	~]#	cat	

/tmp/template-test

MySQL	Port	=	3306

See	also
The	Creating	custom	facts	recipe	in	Chapter	9,	External	Tools	and	the	Puppet
Ecosystem

Importing	dynamic	information
Even	though	some	system	administrators	like	to	wall	themselves	off	from	the	rest	of	the
office	using	piles	of	old	printers,	we	all	need	to	exchange	information	with	other
departments	from	time	to	time.	For	example,	you	may	want	to	insert	data	into	your	Puppet
manifests	that	is	derived	from	some	outside	source.	The	generate	function	is	ideal	for	this.
Functions	are	executed	on	the	machine	compiling	the	catalog	(the	master	for	centralized
deployments);	an	example	like	that	shown	here	will	only	work	in	a	masterless
configuration.

Getting	ready
Follow	these	steps	to	prepare	to	run	the	example:

1.	 Create	the	script	/usr/local/bin/message.rb	with	the	following	contents:

#!/usr/bin/env	ruby

puts	"This	runs	on	the	master	if	you	are	centralized"

2.	 Make	the	script	executable:

$	sudo	chmod	a+x	/usr/local/bin/message.rb

How	to	do	it…
This	example	calls	the	external	script	we	created	previously	and	gets	its	output:

1.	 Create	a	message.pp	manifest	containing	the	following:

$message	=	generate('/usr/local/bin/message.rb')

notify	{	$message:	}

2.	 Run	Puppet:

$	puppet	apply	message.pp	

...

Notice:	/Stage[main]/Main/Notify[This	runs	on	the	master	if	you	are	

centralized

]/message:	defined	'message'	as	'This	runs	on	the	master	if	you	are	

centralized

How	it	works…
The	generate	function	runs	the	specified	script	or	program	and	returns	the	result,	in	this
case,	a	cheerful	message	from	Ruby.

This	isn’t	terribly	useful	as	it	stands	but	you	get	the	idea.	Anything	a	script	can	do,	print,
fetch,	or	calculate,	for	example,	the	results	of	a	database	query,	can	be	brought	into	your
manifest	using	generate.	You	can	also,	of	course,	run	standard	UNIX	utilities	such	as	cat
and	grep.

There’s	more…
If	you	need	to	pass	arguments	to	the	executable	called	by	generate,	add	them	as	extra
arguments	to	the	function	call:

$message	=	generate('/bin/cat',	'/etc/motd')

Puppet	will	try	to	protect	you	from	malicious	shell	calls	by	restricting	the	characters	you
can	use	in	a	call	to	generate,	so	shell	pipes	and	redirection	aren’t	allowed,	for	example.
The	simplest	and	safest	thing	to	do	is	to	put	all	your	logic	into	a	script	and	then	call	that
script.

See	also
The	Creating	custom	facts	recipe	in	Chapter	9,	External	Tools	and	the	Puppet
Ecosystem
The	Configuring	Hiera	recipe	in	Chapter	2,	Puppet	Infrastructure

Passing	arguments	to	shell	commands
If	you	want	to	insert	values	into	a	command	line	(to	be	run	by	an	exec	resource,	for
example),	they	often	need	to	be	quoted,	especially	if	they	contain	spaces.	The	shellquote
function	will	take	any	number	of	arguments,	including	arrays,	and	quote	each	of	the
arguments	and	return	them	all	as	a	space-separated	string	that	you	can	pass	to	commands.

In	this	example,	we	would	like	to	set	up	an	exec	resource	that	will	rename	a	file;	but	both
the	source	and	the	target	name	contain	spaces,	so	they	need	to	be	correctly	quoted	in	the
command	line.

How	to	do	it…
Here’s	an	example	of	using	the	shellquote	function:

1.	 Create	a	shellquote.pp	manifest	with	the	following	command:

$source	=	'Hello	Jerry'

$target	=	'Hello…	Newman'

$argstring	=	shellquote($source,	$target)

$command	=	"/bin/mv	${argstring}"

notify	{	$command:	}

2.	 Run	Puppet:

$	puppet	apply	shellquote.pp	

...

Notice:	/bin/mv	"Hello	Jerry"	"Hello…	Newman"

Notice:	/Stage[main]/Main/Notify[/bin/mv	"Hello	Jerry"	"Hello…	

Newman"]/message:	defined	'message'	as	'/bin/mv	"Hello	Jerry"	"Hello…	

Newman"'

How	it	works…
First	we	define	the	$source	and	$target	variables,	which	are	the	two	filenames	we	want
to	use	in	the	command	line:

$source	=	'Hello	Jerry'

$target	=	'Hello…	Newman'

Then	we	call	shellquote	to	concatenate	these	variables	into	a	quoted,	space-separated
string	as	follows:

$argstring	=	shellquote($source,	$target)

Then	we	put	together	the	final	command	line:

$command	=	"/bin/mv	${argstring}"

The	result	will	be:

/bin/mv	"Hello	Jerry"	"Hello…	Newman"

This	command	line	can	now	be	run	with	an	exec	resource.	What	would	happen	if	we
didn’t	use	shellquote?

$source	=	'Hello	Jerry'

$target	=	'Hello…	Newman'

$command	=	"/bin/mv	${source}	${target}"

notify	{	$command:	}

Notice:	/bin/mv	Hello	Jerry	Hello…	Newman

This	won’t	work	because	mv	expects	space-separated	arguments,	so	it	will	interpret	this	as
a	request	to	move	three	files	Hello,	Jerry,	and	Hello…	into	a	directory	named	Newman,
which	probably	isn’t	what	we	want.

Chapter	4.	Working	with	Files	and
Packages
	 “A	writer	has	the	duty	to	be	good,	not	lousy;	true,	not	false;	lively,	not	dull;	accurate,	not	full	of	error.” 	

	 —E.B.	White

In	this	chapter,	we	will	cover	the	following	recipes:

Making	quick	edits	to	config	files
Editing	INI	style	files	with	puppetlabs-inifile
Using	Augeas	to	reliably	edit	config	files
Building	config	files	using	snippets
Using	ERB	templates
Using	array	iteration	in	templates
Using	EPP	templates
Using	GnuPG	to	encrypt	secrets
Installing	packages	from	a	third-party	repository
Comparing	package	versions

Introduction
In	this	chapter,	we’ll	see	how	to	make	small	edits	to	files,	how	to	make	larger	changes	in	a
structured	way	using	the	Augeas	tool,	how	to	construct	files	from	concatenated	snippets,
and	how	to	generate	files	from	templates.	We’ll	also	learn	how	to	install	packages	from
additional	repositories,	and	how	to	manage	those	repositories.	In	addition,	we’ll	see	how
to	store	and	decrypt	secret	data	with	Puppet.

Making	quick	edits	to	config	files
When	you	need	to	have	Puppet	change	a	particular	setting	in	a	config	file,	it’s	common	to
simply	deploy	the	whole	file	with	Puppet.	This	isn’t	always	possible,	though;	especially	if
it’s	a	file	that	several	different	parts	of	your	Puppet	manifest	may	need	to	modify.

What	would	be	useful	is	a	simple	recipe	to	add	a	line	to	a	config	file	if	it’s	not	already
present,	for	example,	adding	a	module	name	to	/etc/modules	to	tell	the	kernel	to	load	that
module	at	boot.	There	are	several	ways	to	do	this,	the	simplest	is	to	use	the	file_line
type	provided	by	the	puppetlabs-stdlib	module.	In	this	example,	we	install	the	stdlib
module	and	use	this	type	to	append	a	line	to	a	text	file.

Getting	ready
Install	the	puppetlabs-stdlib	module	using	puppet:

t@mylaptop	~	$	puppet	module	install	puppetlabs-stdlib

Notice:	Preparing	to	install	into	/home/thomas/.puppet/modules…

Notice:	Downloading	from	https://forgeapi.puppetlabs.com…

Notice:	Installing—do	not	interrupt…

/home/thomas/.puppet/modules

└──	puppetlabs-stdlib	(v4.5.1)

This	installs	the	module	from	the	forge	into	my	user’s	puppet	directory;	to	install	into	the
system	directory,	run	the	command	as	root	or	use	sudo.	For	the	purpose	of	this	example,
we’ll	continue	working	as	our	own	user.

How	to	do	it…
Using	the	file_line	resource	type,	we	can	ensure	that	a	line	exists	or	is	absent	in	a	config
file.	Using	file_line	we	can	quickly	make	edits	to	files	without	controlling	the	entire
file.

1.	 Create	a	manifest	named	oneline.pp	that	will	use	file_line	on	a	file	in	/tmp:

		file	{'/tmp/cookbook':

				ensure	=>	'file',

		}

		file_line	{'cookbook-hello':

				path				=>	'/tmp/cookbook',

				line				=>	'Hello	World!',

				require	=>	File['/tmp/cookbook'],

		}

2.	 Run	puppet	apply	on	the	oneline.pp	manifest:

t@mylaptop	~/.puppet/manifests	$	puppet	apply	oneline.pp	

Notice:	Compiled	catalog	for	mylaptop	in	environment	production	in	0.39	

seconds

Notice:	/Stage[main]/Main/File[/tmp/cookbook]/ensure:	created

Notice:	/Stage[main]/Main/File_line[cookbook-hello]/ensure:	created

Notice:	Finished	catalog	run	in	0.02	seconds

3.	 Now	verify	that	/tmp/cookbook	contains	the	line	we	defined:

t@mylaptop	~/.puppet/manifests	$	cat	/tmp/cookbook

Hello	World!

How	it	works…
We	installed	the	puppetlabs-stdlib	module	into	the	default	module	path	for	Puppet,	so
when	we	ran	puppet	apply,	Puppet	knew	where	to	find	the	file_line	type	definition.
Puppet	then	created	the	/tmp/cookbook	file	if	it	didn’t	exist.	The	line	Hello	World!	was
not	found	in	the	file,	so	Puppet	added	the	line	to	the	file.

There’s	more…
We	can	define	more	instances	of	file_line	and	add	more	lines	to	the	file;	we	can	have
multiple	resources	modifying	a	single	file.

Modify	the	oneline.pp	file	and	add	another	file_line	resource:

		file	{'/tmp/cookbook':

				ensure	=>	'file',

		}

		file_line	{'cookbook-hello':

				path				=>	'/tmp/cookbook',

				line				=>	'Hello	World!',

				require	=>	File['/tmp/cookbook'],

		}

		file_line	{'cookbook-goodbye':

				path				=>	'/tmp/cookbook',

				line				=>	'So	long,	and	thanks	for	all	the	fish.',

				require	=>	File['/tmp/cookbook'],

		}

Now	apply	the	manifest	again	and	verify	whether	the	new	line	is	appended	to	the	file:

t@mylaptop	~/.puppet/manifests	$	puppet	apply	oneline.pp	

Notice:	Compiled	catalog	for	mylaptop	in	environment	production	in	0.36	

seconds

Notice:	/Stage[main]/Main/File_line[cookbook-goodbye]/ensure:	created

Notice:	Finished	catalog	run	in	0.02	seconds

t@mylaptop	~/.puppet/manifests	$	cat	/tmp/cookbook	

Hello	World!

So	long,	and	thanks	for	all	the	fish.

The	file_line	type	also	supports	pattern	matching	and	line	removal	as	we’ll	show	you	in
the	following	example:

		file	{'/tmp/cookbook':

				ensure	=>	'file',

		}

		file_line	{'cookbook-remove':

				ensure		=>	'absent',

				path				=>	'/tmp/cookbook',

				line				=>	'Hello	World!',

				require	=>	File['/tmp/cookbook'],

		}

		file_line	{'cookbook-match':

				path				=>	'/tmp/cookbook',

				line				=>	'Oh	freddled	gruntbuggly,	thanks	for	all	the	fish.',

				match			=>	'fish.$',

				require	=>	File['/tmp/cookbook'],

		}

Verify	the	contents	of	/tmp/cookbook	before	your	Puppet	run:

t@mylaptop	~/.puppet/manifests	$	cat	/tmp/cookbook	

Hello	World!

So	long,	and	thanks	for	all	the	fish.

Apply	the	updated	manifest:

t@mylaptop	~/.puppet/manifests	$	puppet	apply	oneline.pp	

Notice:	Compiled	catalog	for	mylaptop	in	environment	production	in	0.30	

seconds

Notice:	/Stage[main]/Main/File_line[cookbook-match]/ensure:	created

Notice:	/Stage[main]/Main/File_line[cookbook-remove]/ensure:	removed

Notice:	Finished	catalog	run	in	0.02	seconds

Verify	that	the	line	has	been	removed	and	the	goodbye	line	has	been	replaced:

t@mylaptop	~/.puppet/manifests	$	cat	/tmp/cookbook	

Oh	freddled	gruntbuggly,	thanks	for	all	the	fish.

Editing	files	with	file_line	works	well	if	the	file	is	unstructured.	Structured	files	may
have	similar	lines	in	different	sections	that	have	different	meanings.	In	the	next	section,
we’ll	show	you	how	to	deal	with	one	particular	type	of	structured	file,	a	file	using	INI
syntax.

Editing	INI	style	files	with	puppetlabs-
inifile
INI	files	are	used	throughout	many	systems,	Puppet	uses	INI	syntax	for	the	puppet.conf
file.	The	puppetlabs-inifile	module	creates	two	types,	ini_setting	and
ini_subsetting,	which	can	be	used	to	edit	INI	style	files.

Getting	ready
Install	the	module	from	the	forge	as	follows:

t@mylaptop	~	$	puppet	module	install	puppetlabs-inifile

Notice:	Preparing	to	install	into	/home/tuphill/.puppet/modules…

Notice:	Downloading	from	https://forgeapi.puppetlabs.com…

Notice:	Installing—do	not	interrupt…

/home/tuphill/.puppet/modules

└──	puppetlabs-inifile	(v1.1.3)

How	to	do	it…
In	this	example,	we	will	create	a	/tmp/server.conf	file	and	ensure	that	the	server_true
setting	is	set	in	that	file:

1.	 Create	an	initest.pp	manifest	with	the	following	contents:

		ini_setting	{'server_true':

				path				=>	'/tmp/server.conf',

				section	=>	'main',

				setting	=>	'server',

				value			=>	'true',

		}

2.	 Apply	the	manifest:

t@mylaptop	~/.puppet/manifests	$	puppet	apply	initest.pp	

Notice:	Compiled	catalog	for	burnaby	in	environment	production	in	0.14	

seconds

Notice:	/Stage[main]/Main/Ini_setting[server_true]/ensure:	created

Notice:	Finished	catalog	run	in	0.02	seconds

3.	 Verify	the	contents	of	the	/tmp/server.conf	file:

t@mylaptop	~/.puppet/manifests	$	cat	/tmp/server.conf	

[main]

server	=	true

How	it	works…
The	inifile	module	defines	two	types,	ini_setting	and	ini_subsetting.	Our	manifest
defines	an	ini_setting	resource	that	creates	a	server	=	true	setting	within	the	main
section	of	the	ini	file.	In	our	case,	the	file	didn’t	exist,	so	Puppet	created	the	file,	then
created	the	main	section,	and	finally	added	the	setting	to	the	main	section.

There’s	more…
Using	ini_subsetting,	you	can	have	several	resources	added	to	a	setting.	For	instance,
our	server.conf	file	has	a	server’s	line,	we	could	have	each	node	append	its	own
hostname	to	a	server’s	line.	Add	the	following	to	the	end	of	the	initest.pp	file:

		ini_subsetting	{'server_name':

				path				=>	'/tmp/server.conf',

				section	=>	'main',

				setting	=>	'server_host',

				subsetting	=>	"$hostname",

		}

Apply	the	manifest:

t@mylaptop	~/.puppet/manifests	$	puppet	apply	initest.pp	

Notice:	Compiled	catalog	for	mylaptop	in	environment	production	in	0.34	

seconds

Notice:	/Stage[main]/Main/Ini_subsetting[server_name]/ensure:	created

Notice:	Finished	catalog	run	in	0.02	seconds

t@mylaptop	~/.puppet/manifests	$	cat	/tmp/server.conf	

[main]

server	=	true

server_host	=	mylaptop

Now	temporarily	change	your	hostname	and	rerun	Puppet:

t@mylaptop	~/.puppet/manifests	$	sudo	hostname	inihost

t@mylaptop	~/.puppet/manifests	$	puppet	apply	initest.pp	

Notice:	Compiled	catalog	for	inihost	in	environment	production	in	0.43	

seconds

Notice:	/Stage[main]/Main/Ini_subsetting[server_name]/ensure:	created

Notice:	Finished	catalog	run	in	0.02	seconds

t@mylaptop	~/.puppet/manifests	$	cat	/tmp/server.conf	

[main]

server	=	true

server_host	=	mylaptop	inihost

Tip
When	working	with	INI	syntax	files,	using	the	inifile	module	is	an	excellent	choice.

If	your	configuration	files	are	not	in	INI	syntax,	another	tool,	Augeas,	can	be	used.	In	the
following	section,	we	will	use	augeas	to	modify	files.

Using	Augeas	to	reliably	edit	config	files
Sometimes	it	seems	like	every	application	has	its	own	subtly	different	config	file	format,
and	writing	regular	expressions	to	parse	and	modify	all	of	them	can	be	a	tiresome
business.

Thankfully,	Augeas	is	here	to	help.	Augeas	is	a	system	that	aims	to	simplify	working	with
different	config	file	formats	by	presenting	them	all	as	a	simple	tree	of	values.	Puppet’s
Augeas	support	allows	you	to	create	augeas	resources	that	can	make	the	required	config
changes	intelligently	and	automatically.

How	to	do	it…
Follow	these	steps	to	create	an	example	augeas	resource:

1.	 Modify	your	base	module	as	follows:

		class	base	{

				augeas	{	'enable-ip-forwarding':

						incl				=>	'/etc/sysctl.conf',

						lens				=>	'Sysctl.lns',

						changes	=>	['set	net.ipv4.ip_forward	1'],

				}

		}

2.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Info:	Applying	configuration	version	'1412130479'

Notice:	Augeas[enable-ip-forwarding](provider=augeas):	

---	/etc/sysctl.conf	 2014-09-04	03:41:09.000000000	-0400

+++	/etc/sysctl.conf.augnew	 2014-09-30	22:28:03.503000039	-0400

@@	-4,7	+4,7	@@

	#	sysctl.conf(5)	for	more	details.

	

	#	Controls	IP	packet	forwarding

-net.ipv4.ip_forward	=	0

+net.ipv4.ip_forward	=	1

	

	#	Controls	source	route	verification

	net.ipv4.conf.default.rp_filter	=	1

Notice:	/Stage[main]/Base/Augeas[enable-ip-forwarding]/returns:	

executed	successfully

Notice:	Finished	catalog	run	in	2.27	seconds

3.	 Check	whether	the	setting	has	been	correctly	applied:

[root@cookbook	~]#	sysctl	-p	|grep	ip_forward

net.ipv4.ip_forward	=	1

How	it	works…
We	declare	an	augeas	resource	named	enable-ip-forwarding:

augeas	{	'enable-ip-forwarding':

We	specify	that	we	want	to	make	changes	in	the	file	/etc/sysctl.conf:

incl	=>	'/etc/sysctl.conf',

Next	we	specify	the	lens	to	use	on	this	file.	Augeas	uses	files	called	lenses	to	translate	a
configuration	file	into	an	object	representation.	Augeas	ships	with	several	lenses,	they	are
located	in	/usr/share/augeas/lenses	by	default.	When	specifying	the	lens	in	an	augeas
resource,	the	name	of	the	lens	is	capitalized	and	has	the	.lns	suffix.	In	this	case,	we	will
specify	the	Sysctl	lens	as	follows:

lens	=>	'Sysctl.lns',

The	changes	parameter	specifies	the	changes	we	want	to	make.	Its	value	is	an	array,
because	we	can	supply	several	changes	at	once.	In	this	example,	there	is	only	change,	so
the	value	is	an	array	of	one	element:

changes	=>	['set	net.ipv4.ip_forward	1'],

In	general,	Augeas	changes	take	the	following	form:

set	<parameter>	<value>

In	this	case,	the	setting	will	be	translated	into	a	line	like	this	in	/etc/sysctl.conf:

net.ipv4.ip_forward=1

There’s	more…
I’ve	chosen	/etc/sysctl.conf	as	the	example	because	it	can	contain	a	wide	variety	of
kernel	settings	and	you	may	want	to	change	these	settings	for	all	sorts	of	different
purposes	and	in	different	Puppet	classes.	You	might	want	to	enable	IP	forwarding,	as	in
the	example,	for	a	router	class	but	you	might	also	want	to	tune	the	value	of
net.core.somaxconn	for	a	load-balancer	class.

This	means	that	simply	puppetizing	the	/etc/sysctl.conf	file	and	distributing	it	as	a	text
file	won’t	work	because	you	might	have	several	different	and	conflicting	versions
depending	on	the	setting	you	want	to	modify.	Augeas	is	the	right	solution	here	because
you	can	define	augeas	resources	in	different	places,	which	modify	the	same	file	and	they
won’t	conflict.

For	more	information	about	using	Puppet	and	Augeas,	see	the	page	on	the	Puppet	Labs
website	http://projects.puppetlabs.com/projects/1/wiki/Puppet_Augeas.

Another	project	that	uses	Augeas	is	Augeasproviders.	Augeasproviders	uses	Augeas	to
define	several	types.	One	of	these	types	is	sysctl,	using	this	type	you	can	make	sysctl
changes	without	knowing	how	to	write	the	changes	in	Augeas.	More	information	is
available	on	the	forge	at	https://forge.puppetlabs.com/domcleal/augeasproviders.

Learning	how	to	use	Augeas	can	be	a	little	confusing	at	first.	Augeas	provides	a	command
line	tool,	augtool,	which	can	be	used	to	get	acquainted	with	making	changes	in	Augeas.

http://projects.puppetlabs.com/projects/1/wiki/Puppet_Augeas
https://forge.puppetlabs.com/domcleal/augeasproviders

Building	config	files	using	snippets
Sometimes	you	can’t	deploy	a	whole	config	file	in	one	piece,	yet	making	line	by	line	edits
isn’t	enough.	Often,	you	need	to	build	a	config	file	from	various	bits	of	configuration
managed	by	different	classes.	You	may	run	into	a	situation	where	local	information	needs
to	be	imported	into	the	file	as	well.	In	this	example,	we’ll	build	a	config	file	using	a	local
file	as	well	as	snippets	defined	in	our	manifests.

Getting	ready
Although	it’s	possible	to	create	our	own	system	to	build	files	from	pieces,	we’ll	use	the
puppetlabs	supported	concat	module.	We	will	start	by	installing	the	concat	module,	in	a
previous	example	we	installed	the	module	to	our	local	machine.	In	this	example,	we’ll
modify	the	Puppet	server	configuration	and	download	the	module	to	the	Puppet	server.

In	your	Git	repository	create	an	environment.conf	file	with	the	following	contents:

modulepath	=	public:modules

manifest	=	manifests/site.pp

Create	the	public	directory	and	download	the	module	into	that	directory	as	follows:

t@mylaptop	~/puppet	$	mkdir	public	&&	cd	public

t@mylaptop	~/puppet/public	$	puppet	module	install	puppetlabs-concat	--

modulepath=.

Notice:	Preparing	to	install	into	/home/thomas/puppet/public…

Notice:	Downloading	from	https://forgeapi.puppetlabs.com…

Notice:	Installing—do	not	interrupt…

/home/thomas/puppet/public

└─┬	puppetlabs-concat	(v1.1.1)

		└──	puppetlabs-stdlib	(v4.3.2)

Now	add	the	new	modules	to	our	Git	repository:

t@mylaptop	~/puppet/public	$	git	add	.

t@mylaptop	~/puppet/public	$	git	commit	-m	"adding	concat"

[production	50c6fca]	adding	concat

	407	files	changed,	20089	insertions(+)

Then	push	to	our	Git	server:

t@mylaptop	~/puppet/public	$	git	push	origin	production

How	to	do	it…
Now	that	we	have	the	concat	module	available	on	our	server,	we	can	create	a	concat
container	resource	in	our	base	module:

		concat	{'hosts.allow':

				path	=>	'/etc/hosts.allow',

				mode	=>	0644

		}

Create	a	concat::fragment	module	for	the	header	of	the	new	file:

		concat::fragment	{'hosts.allow	header':

				target		=>	'hosts.allow',

				content	=>	"#	File	managed	by	puppet\n",

				order			=>	'01'

		}

Create	a	concat::fragment	that	includes	a	local	file:

		concat::fragment	{'hosts.allow	local':

				target	=>	'hosts.allow',

				source	=>	'/etc/hosts.allow.local',

				order		=>	'10',

		}

Create	a	concat::fragment	module	that	will	go	at	the	end	of	the	file:

		concat::fragment	{'hosts.allow	tftp':

				target		=>	'hosts.allow',

				content	=>	"in.ftpd:	.example.com\n",

				order			=>	'50',

		}

On	the	node,	create	/etc/hosts.allow.local	with	the	following	contents:

		in.tftpd:	.example.com

Run	Puppet	to	have	the	file	created:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1412138600'

Notice:	/Stage[main]/Base/Concat[hosts.allow]/File[hosts.allow]/ensure:	

defined	content	as	'{md5}b151c8bbc32c505f1c4a98b487f7d249'

Notice:	Finished	catalog	run	in	0.29	seconds

Verify	the	contents	of	the	new	file	as:

[root@cookbook	~]#	cat	/etc/hosts.allow

#	File	managed	by	puppet

in.tftpd:	.example.com

in.ftpd:	.example.com

How	it	works…
The	concat	resource	defines	a	container	that	will	hold	all	the	subsequent
concat::fragment	resources.	Each	concat::fragment	resource	references	the	concat
resource	as	the	target.	Each	concat::fragment	also	includes	an	order	attribute.	The
order	attribute	is	used	to	specify	the	order	in	which	the	fragments	are	added	to	the	final
file.	Our	/etc/hosts.allow	file	is	built	with	the	header	line,	the	contents	of	the	local	file,
and	finally	the	in.tftpd	line	we	defined.

Using	ERB	templates
While	you	can	deploy	config	files	easily	with	Puppet	as	simple	text	files,	templates	are
much	more	powerful.	A	template	file	can	do	calculations,	execute	Ruby	code,	or	reference
the	values	of	variables	from	your	Puppet	manifests.	Anywhere	you	might	deploy	a	text	file
using	Puppet,	you	can	use	a	template	instead.

In	the	simplest	case,	a	template	can	just	be	a	static	text	file.	More	usefully,	you	can	insert
variables	into	it	using	the	ERB	(embedded	Ruby)	syntax.	For	example:

		<%=	@name	%>,	this	is	a	very	large	drink.

If	the	template	is	used	in	a	context	where	the	variable	$name	contains	Zaphod	Beeblebrox,
the	template	will	evaluate	to:

		Zaphod	Beeblebrox,	this	is	a	very	large	drink.

This	simple	technique	is	very	useful	to	generate	lots	of	files	that	only	differ	in	the	values
of	one	or	two	variables,	for	example,	virtual	hosts,	and	for	inserting	values	into	a	script
such	as	database	names	and	passwords.

How	to	do	it…
In	this	example,	we’ll	use	an	ERB	template	to	insert	a	password	into	a	backup	script:

1.	 Create	the	file	modules/admin/templates/backup-mysql.sh.erb	with	the	following
contents:

#!/bin/sh

/usr/bin/mysqldump	-uroot	\	-p<%=	@mysql_password	%>	\	--all-databases	

|	\	/bin/gzip	>	/backup/mysql/all-databases.sql.gz

2.	 Modify	your	site.pp	file	as	follows:

node	'cookbook'	{

		$mysql_password	=	'secret'

		file	{	'/usr/local/bin/backup-mysql':

				content	=>	template('admin/backup-mysql.sh.erb'),

				mode				=>	'0755',

		}

}

3.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1412140971'

Notice:	/Stage[main]/Main/Node[cookbook]/File[/usr/local/bin/backup-

mysql]/ensure:	defined	content	as	

'{md5}c12af56559ef36529975d568ff52dca5'

Notice:	Finished	catalog	run	in	0.31	seconds

4.	 Check	whether	Puppet	has	correctly	inserted	the	password	into	the	template:

[root@cookbook	~]#	cat	/usr/local/bin/backup-mysql	

#!/bin/sh

/usr/bin/mysqldump	-uroot	\

		-psecret	\

		--all-databases	|	\

		/bin/gzip	>	/backup/mysql/all-databases.sql.gz

How	it	works…
Wherever	a	variable	is	referenced	in	the	template,	for	example	<%=	@mysql_password	%>,
Puppet	will	replace	it	with	the	corresponding	value,	secret.

There’s	more…
In	the	example,	we	only	used	one	variable	in	the	template,	but	you	can	have	as	many	as
you	like.	These	can	also	be	facts:

ServerName	<%=	@fqdn	%>

Or	Ruby	expressions:

MAILTO=<%=	@emails.join(',')	%>

Or	any	Ruby	code	you	want:

ServerAdmin	<%=	@sitedomain	==	'coldcomfort.com'	?	'seth@coldcomfort.com'	:	

'flora@poste.com'	%>

See	also
The	Using	GnuPG	to	encrypt	secrets	recipe	in	this	chapter
https://docs.puppetlabs.com/guides/templating.html

https://docs.puppetlabs.com/guides/templating.html

Using	array	iteration	in	templates
In	the	previous	example,	we	saw	that	you	can	use	Ruby	to	interpolate	different	values	in
templates	depending	on	the	result	of	an	expression.	But	you’re	not	limited	to	getting	one
value	at	a	time.	You	can	put	lots	of	them	in	a	Puppet	array	and	then	have	the	template
generate	some	content	for	each	element	of	the	array	using	a	loop.

How	to	do	it…
Follow	these	steps	to	build	an	example	of	iterating	over	arrays:

1.	 Modify	your	site.pp	file	as	follows:

		node	'cookbook'	{

				$ipaddresses	=	['192.168.0.1',	'158.43.128.1',	'10.0.75.207']

				file	{	'/tmp/addresslist.txt':

						content	=>	template('base/addresslist.erb')

				}

		}

2.	 Create	the	file	modules/base/templates/addresslist.erb	with	the	following
contents:

<%	@ipaddresses.each	do	|ip|	-%>

IP	address	<%=	ip	%>	is	present

<%	end	-%>

3.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1412141917'

Notice:	

/Stage[main]/Main/Node[cookbook]/File[/tmp/addresslist.txt]/ensure:	

defined	content	as	'{md5}073851229d7b2843830024afb2b3902d'

Notice:	Finished	catalog	run	in	0.30	seconds

4.	 Check	the	contents	of	the	generated	file:

[root@cookbook	~]#	cat	/tmp/addresslist.txt	

		IP	address	192.168.0.1	is	present.

		IP	address	158.43.128.1	is	present.

		IP	address	10.0.75.207	is	present.

How	it	works…
In	the	first	line	of	the	template,	we	reference	the	array	ipaddresses,	and	call	its	each
method:

<%	@ipaddresses.each	do	|ip|	-%>

In	Ruby,	this	creates	a	loop	that	will	execute	once	for	each	element	of	the	array.	Each	time
round	the	loop,	the	variable	ip	will	be	set	to	the	value	of	the	current	element.

In	our	example,	the	ipaddresses	array	contains	three	elements,	so	the	following	line	will
be	executed	three	times,	once	for	each	element:

IP	address	<%=	ip	%>	is	present.

This	will	result	in	three	output	lines:

IP	address	192.168.0.1	is	present.

IP	address	158.43.128.1	is	present.

IP	address	10.0.75.207	is	present.

The	final	line	ends	the	loop:

<%	end	-%>

Note
Note	that	the	first	and	last	lines	end	with	-%>	instead	of	just	%>	as	we	saw	before.	The
effect	of	the	-	is	to	suppress	the	new	line	that	would	otherwise	be	generated	on	each	pass
through	the	loop,	giving	us	unwanted	blank	lines	in	the	file.

There’s	more…
Templates	can	also	iterate	over	hashes,	or	arrays	of	hashes:

$interfaces	=	[{name	=>	'eth0',	ip	=>	'192.168.0.1'},

		{name	=>	'eth1',	ip	=>	'158.43.128.1'},

		{name	=>	'eth2',	ip	=>	'10.0.75.207'}]

<%	@interfaces.each	do	|interface|	-%>

Interface	<%=	interface['name']	%>	has	the	address	<%=	interface['ip']	%>.

<%	end	-%>

Interface	eth0	has	the	address	192.168.0.1.

Interface	eth1	has	the	address	158.43.128.1.

Interface	eth2	has	the	address	10.0.75.207.

See	also
The	Using	ERB	templates	recipe	in	this	chapter

Using	EPP	templates
EPP	templates	are	a	new	feature	in	Puppet	3.5	and	newer	versions.	EPP	templates	use	a
syntax	similar	to	ERB	templates	but	are	not	compiled	through	Ruby.	Two	new	functions
are	defined	to	call	EPP	templates,	epp,	and	inline_epp.	These	functions	are	the	EPP
equivalents	of	the	ERB	functions	template	and	inline_template,	respectively.	The	main
difference	with	EPP	templates	is	that	variables	are	referenced	using	the	Puppet	notation,
$variable	instead	of	@variable.

How	to	do	it…
1.	 Create	an	EPP	template	in	~/puppet/epp-test.epp	with	the	following	content:

This	is	<%=	$message	%>.

2.	 Create	an	epp.pp	manifest,	which	uses	the	epp	and	inline_epp	functions:

$message	=	"the	message"

file	{'/tmp/epp-test':

		content	=>	epp('/home/thomas/puppet/epp-test.epp')

}

notify	{inline_epp('Also	prints	<%=	$message	%>'):}

3.	 Apply	the	manifest	making	sure	to	use	the	future	parser	(the	future	parser	is	required
for	the	epp	and	inline_epp	functions	to	be	defined):

t@mylaptop	~/puppet	$	puppet	apply	epp.pp	--parser=future

Notice:	Compiled	catalog	for	mylaptop	in	environment	production	in	1.03	

seconds

Notice:	/Stage[main]/Main/File[/tmp/epp-test]/ensure:	defined	content	

as	'{md5}999ccc2507d79d50fae0775d69b63b8c'

Notice:	Also	prints	the	message

4.	 Verify	that	the	template	worked	as	intended:

t@mylaptop	~/puppet	$	cat	/tmp/epp-test	

This	is	the	message.

How	it	works…
Using	the	future	parser,	the	epp	and	inline_epp	functions	are	defined.	The	main
difference	between	EPP	templates	and	ERB	templates	is	that	variables	are	referenced	in
the	same	way	they	are	within	Puppet	manifests.

There’s	more…
Both	epp	and	inline_epp	allow	for	variables	to	be	overridden	within	the	function	call.	A
second	parameter	to	the	function	call	can	be	used	to	specify	values	for	variables	used
within	the	scope	of	the	function	call.	For	example,	we	can	override	the	value	of	$message
with	the	following	code:

file	{'/tmp/epp-test':

		content	=>	epp('/home/tuphill/puppet/epp-test.epp',

				{	'message'	=>	"override	$message"})

}

notify	{inline_epp('Also	prints	<%=	$message	%>',

		{	'message'	=>	"inline	override	$message"}):}

Now	when	we	run	Puppet	and	verify	the	output	we	see	that	the	value	of	$message	has
been	overridden:

t@mylaptop	~/puppet	$	puppet	apply	epp.pp	--parser=future

Notice:	Compiled	catalog	for	mylaptop.pan.costco.com	in	environment	

production	in	0.85	seconds

Notice:	Also	prints	inline	override	the	message

Notice:	Finished	catalog	run	in	0.05	seconds

t@mylaptop	~/puppet	$	cat	/tmp/epp-test	

This	is	override	the	message.

Using	GnuPG	to	encrypt	secrets
We	often	need	Puppet	to	have	access	to	secret	information,	such	as	passwords	or	crypto
keys,	for	it	to	configure	systems	properly.	But	how	do	you	avoid	putting	such	secrets
directly	into	your	Puppet	code,	where	they’re	visible	to	anyone	who	has	read	access	to
your	repository?

It’s	a	common	requirement	for	third-party	developers	and	contractors	to	be	able	to	make
changes	via	Puppet,	but	they	definitely	shouldn’t	see	any	confidential	information.
Similarly,	if	you’re	using	a	distributed	Puppet	setup	like	that	described	in	Chapter	2,
Puppet	Infrastructure,	every	machine	has	a	copy	of	the	whole	repo,	including	secrets	for
other	machines	that	it	doesn’t	need	and	shouldn’t	have.	How	can	we	prevent	this?

One	answer	is	to	encrypt	the	secrets	using	the	GnuPG	tool,	so	that	any	secret	information
in	the	Puppet	repo	is	undecipherable	(for	all	practical	purposes)	without	the	appropriate
key.	Then	we	distribute	the	key	securely	to	the	people	or	machines	that	need	it.

Getting	ready
First	you’ll	need	an	encryption	key,	so	follow	these	steps	to	generate	one.	If	you	already
have	a	GnuPG	key	that	you’d	like	to	use,	go	on	to	the	next	section.	To	complete	this
section,	you	will	need	to	install	the	gpg	command:

1.	 Use	puppet	resource	to	install	gpg:

#	puppet	resource	package	gnupg	ensure=installed

Tip
You	may	need	to	use	gnupg2	as	the	package	name,	depending	on	your	target	OS.

2.	 Run	the	following	command.	Answer	the	prompts	as	shown,	except	to	substitute	your
name	and	e-mail	address	for	mine.	When	prompted	for	a	passphrase,	just	hit	Enter:

t@mylaptop	~/puppet	$	gpg	--gen-key

gpg	(GnuPG)	1.4.18;	Copyright	(C)	2014	Free	Software	Foundation,	Inc.

This	is	free	software:	you	are	free	to	change	and	redistribute	it.

There	is	NO	WARRANTY,	to	the	extent	permitted	by	law.

Please	select	what	kind	of	key	you	want:

			(1)	RSA	and	RSA	(default)

			(2)	DSA	and	Elgamal

			(3)	DSA	(sign	only)

			(4)	RSA	(sign	only)

Your	selection?	1

RSA	keys	may	be	between	1024	and	4096	bits	long.

What	keysize	do	you	want?	(2048)	2048

Requested	keysize	is	2048	bits

Please	specify	how	long	the	key	should	be	valid.

									0	=	key	does	not	expire

						<n>		=	key	expires	in	n	days

						<n>w	=	key	expires	in	n	weeks

						<n>m	=	key	expires	in	n	months

						<n>y	=	key	expires	in	n	years

Key	is	valid	for?	(0)	0

Key	does	not	expire	at	all

Is	this	correct?	(y/N)	y

You	need	a	user	ID	to	identify	your	key;	the	software	constructs	the	

user	ID

from	the	Real	Name,	Comment	and	Email	Address	in	this	form:

				"Heinrich	Heine	(Der	Dichter)	<heinrichh@duesseldorf.de>"

Real	name:	Thomas	Uphill

Email	address:	thomas@narrabilis.com

Comment:	<enter>

You	selected	this	USER-ID:

				"Thomas	Uphill	<thomas@narrabilis.com>"

Change	(N)ame,	(C)omment,	(E)mail	or	(O)kay/(Q)uit?	o

You	need	a	Passphrase	to	protect	your	secret	key.

Hit	enter	twice	here	to	have	an	empty	passphrase

You	don't	want	a	passphrase	-	this	is	probably	a	*bad*	idea!

I	will	do	it	anyway.		You	can	change	your	passphrase	at	any	time,

using	this	program	with	the	option	"--edit-key".

gpg:	key	F1C1EE49	marked	as	ultimately	trusted

public	and	secret	key	created	and	signed.

gpg:	checking	the	trustdb

gpg:	3	marginal(s)	needed,	1	complete(s)	needed,	PGP	trust	model

gpg:	depth:	0		valid:			1		signed:			0		trust:	0-,	0q,	0n,	0m,	0f,	1u

pub			2048R/F1C1EE49	2014-10-01

						Key	fingerprint	=	461A	CB4C	397F	06A7	FB82		3BAD	63CF	50D8	F1C1	

EE49

uid																		Thomas	Uphill	<thomas@narrabilis.com>

sub			2048R/E2440023	2014-10-01

3.	 You	may	see	a	message	like	this	if	your	system	is	not	configured	with	a	source	of
randomness:

We	need	to	generate	a	lot	of	random	bytes.	It	is	a	good	idea	to	perform

some	other	action	(type	on	the	keyboard,	move	the	mouse,	utilize	the

disks)	during	the	prime	generation;	this	gives	the	random	number

generator	a	better	chance	to	gain	enough	entropy.

4.	 In	this	case,	install	and	start	a	random	number	generator	daemon	such	as	haveged	or
rng-tools.	Copy	the	gpg	key	you	just	created	into	the	puppet	user’s	account	on	your
Puppet	master:

t@mylaptop	~	$	scp	-r	.gnupg	puppet@puppet.example.com:

gpg.conf																																						100%	7680					7.5KB/s			

00:00				

random_seed																																			100%		600					0.6KB/s			

00:00				

pubring.gpg																																			100%	1196					1.2KB/s			

00:00				

secring.gpg																																			100%	2498					2.4KB/s			

00:00				

trustdb.gpg																																			100%	1280					1.3KB/s			

00:00

How	to	do	it…
With	your	encryption	key	installed	on	the	puppet	user’s	keyring	(the	key	generation
process	described	in	the	previous	section	will	do	this	for	you),	you’re	ready	to	set	up
Puppet	to	decrypt	secrets.

1.	 Create	the	following	directory:

t@cookbook:~/puppet$	mkdir	-p	modules/admin/lib/puppet/parser/functions

2.	 Create	the	file	modules/admin/lib/puppet/parser/functions/secret.rb	with	the
following	contents:

module	Puppet::Parser::Functions

		newfunction(:secret,	:type	=>	:rvalue)	do	|args|

				'gpg	--no-tty	-d	#{args[0]}'

		end

end

3.	 Create	the	file	secret_message	with	the	following	contents:

For	a	moment,	nothing	happened.

Then,	after	a	second	or	so,	nothing	continued	to	happen.

4.	 Encrypt	this	file	with	the	following	command	(use	the	e-mail	address	you	supplied
when	creating	the	GnuPG	key):

t@mylaptop	~/puppet	$	gpg	-e	-r	thomas@narrabilis.com	secret_message

5.	 Move	the	resulting	encrypted	file	into	your	Puppet	repo:

t@mylaptop:~/puppet$	mv	secret_message.gpg	modules/admin/files/

6.	 Remove	the	original	(plaintext)	file:

t@mylaptop:~/puppet$	rm	secret_message

7.	 Modify	your	site.pp	file	as	follows:

node	'cookbook'	{

		$message	=	secret('/etc/puppet/environments/production/	

modules/admin/files/secret_message.gpg')

		notify	{	"The	secret	message	is:	${message}":	}

}

8.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1412145910'

Notice:	The	secret	message	is:	For	a	moment,	nothing	happened.	

Then,	after	a	second	or	so,	nothing	continued	to	happen.

Notice:	Finished	catalog	run	in	0.27	seconds

How	it	works…
First,	we’ve	created	a	custom	function	to	allow	Puppet	to	decrypt	the	secret	files	using
GnuPG:

module	Puppet::Parser::Functions

		newfunction(:secret,	:type	=>	:rvalue)	do	|args|

				'gpg	--no-tty	-d	#{args[0]}'

		end

end

The	preceding	code	creates	a	function	named	secret	that	takes	a	file	path	as	an	argument
and	returns	the	decrypted	text.	It	doesn’t	manage	encryption	keys	so	you	need	to	ensure
that	the	puppet	user	has	the	necessary	key	installed.	You	can	check	this	with	the	following
command:

puppet@puppet:~	$	gpg	--list-secret-keys

/var/lib/puppet/.gnupg/secring.gpg

sec			2048R/F1C1EE49	2014-10-01

uid																		Thomas	Uphill	<thomas@narrabilis.com>

ssb			2048R/E2440023	2014-10-01

Having	set	up	the	secret	function	and	the	required	key,	we	now	encrypt	a	message	to	this
key:

tuphill@mylaptop	~/puppet	$	gpg	-e	-r	thomas@narrabilis.com	secret_message

This	creates	an	encrypted	file	that	can	only	be	read	by	someone	with	access	to	the	secret
key	(or	Puppet	running	on	a	machine	that	has	the	secret	key).

We	then	call	the	secret	function	to	decrypt	this	file	and	get	the	contents:

$message	=	secret('	

/etc/puppet/environments/production/modules/admin/files/secret_message.gpg'

)

There’s	more…
You	should	use	the	secret	function,	or	something	like	it,	to	protect	any	confidential	data
in	your	Puppet	repo:	passwords,	AWS	credentials,	license	keys,	even	other	secret	keys
such	as	SSL	host	keys.

You	may	decide	to	use	a	single	key,	which	you	push	to	machines	as	they’re	built,	perhaps
as	part	of	a	bootstrap	process	like	that	described	in	the	Bootstrapping	Puppet	with	Bash
recipe	in	Chapter	2,	Puppet	Infrastructure.	For	even	greater	security,	you	might	like	to
create	a	new	key	for	each	machine,	or	group	of	machines,	and	encrypt	a	given	secret	only
for	the	machines	that	need	it.

For	example,	your	web	servers	might	need	a	certain	secret	that	you	don’t	want	to	be
accessible	on	any	other	machine.	You	could	create	a	key	for	web	servers,	and	encrypt	the
data	only	for	this	key.

If	you	want	to	use	encrypted	data	with	Hiera,	there	is	a	GnuPG	backend	for	Hiera
available	at	http://www.craigdunn.org/2011/10/secret-variables-in-puppet-with-hiera-and-
gpg/.

http://www.craigdunn.org/2011/10/secret-variables-in-puppet-with-hiera-and-gpg/

See	also
The	Configuring	Hiera	recipe	in	Chapter	2,	Puppet	Infrastructure
The	Storing	secret	data	with	hiera-gpg	recipe	in	Chapter	2,	Puppet	Infrastructure

Installing	packages	from	a	third-party
repository
Most	often	you	will	want	to	install	packages	from	the	main	distribution	repo,	so	a	simple
package	resource	will	do:

package	{	'exim4':	ensure	=>	installed	}

Sometimes,	you	need	a	package	that	is	only	found	in	a	third-party	repository	(an	Ubuntu
PPA,	for	example),	or	it	might	be	that	you	need	a	more	recent	version	of	a	package	than
that	provided	by	the	distribution,	which	is	available	from	a	third	party.

On	a	manually-administered	machine,	you	would	normally	do	this	by	adding	the	repo
source	configuration	to	/etc/apt/sources.list.d	(and,	if	necessary,	a	gpg	key	for	the
repo)	before	installing	the	package.	We	can	automate	this	process	easily	with	Puppet.

How	to	do	it…
In	this	example,	we’ll	use	the	popular	Percona	APT	repo	(Percona	is	a	MySQL	consulting
firm	who	maintain	and	release	their	own	specialized	version	of	MySQL,	more	information
is	available	at	http://www.percona.com/software/repositories):

1.	 Create	the	file	modules/admin/manifests/percona_repo.pp	with	the	following
contents:

#	Install	Percona	APT	repo

class	admin::percona_repo	{

		exec	{	'add-percona-apt-key':

				unless		=>	'/usr/bin/apt-key	list	|grep	percona',

				command	=>	'/usr/bin/gpg	--keyserver	hkp://keys.gnupg.net	--recv-

keys	1C4CBDCDCD2EFD2A	&&	/usr/bin/gpg	-a	--export	CD2EFD2A	|	apt-key	

add	-',

				notify		=>	Exec['percona-apt-update'],

		}

		exec	{	'percona-apt-update':

				command					=>	'/usr/bin/apt-get	update',

				require					=>	[File['/etc/apt/sources.list.d/percona.list'],

File['/etc/apt/preferences.d/00percona.pref']],

				refreshonly	=>	true,

		}

		file	{	'/etc/apt/sources.list.d/percona.list':

				content	=>	'deb	http://repo.percona.com/apt	wheezy	main',

				notify		=>	Exec['percona-apt-update'],

		}

		file	{	'/etc/apt/preferences.d/00percona.pref':

				content	=>	"Package:	*\nPin:	release	o=Percona

				Development	Team\nPin-Priority:	1001",

				notify		=>	Exec['percona-apt-update'],

		}

}

2.	 Modify	your	site.pp	file	as	follows:

node	'cookbook'	{

		include	admin::percona_repo

		package	{	'percona-server-server-5.5':

				ensure		=>	installed,

				require	=>	Class['admin::percona_repo'],

		}

}

3.	 Run	Puppet:

root@cookbook-deb:~#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook-deb

Notice:	/Stage[main]/Admin::Percona_repo/Exec[add-percona-apt-

key]/returns:	executed	successfully

http://www.percona.com/software/repositories

Info:	/Stage[main]/Admin::Percona_repo/Exec[add-percona-apt-key]:	

Scheduling	refresh	of	Exec[percona-apt-update]

Notice:	

/Stage[main]/Admin::Percona_repo/File[/etc/apt/sources.list.d/percona.l

ist]/ensure:	defined	content	as	'{md5}b8d479374497255804ffbf0a7bcdf6c2'

Info:	

/Stage[main]/Admin::Percona_repo/File[/etc/apt/sources.list.d/percona.l

ist]:	Scheduling	refresh	of	Exec[percona-apt-update]

Notice:	

/Stage[main]/Admin::Percona_repo/File[/etc/apt/preferences.d/00percona.

pref]/ensure:	defined	content	as	

'{md5}1d8ca6c1e752308a9bd3018713e2d1ad'

Info:	

/Stage[main]/Admin::Percona_repo/File[/etc/apt/preferences.d/00percona.

pref]:	Scheduling	refresh	of	Exec[percona-apt-update]

Notice:	/Stage[main]/Admin::Percona_repo/Exec[percona-apt-update]:	

Triggered	'refresh'	from	3	events

How	it	works…
In	order	to	install	any	Percona	package,	we	first	need	to	have	the	repository	configuration
installed	on	the	machine.	This	is	why	the	percona-server-server-5.5	package
(Percona’s	version	of	the	standard	MySQL	server)	requires	the	admin::percona_repo
class:

package	{	'percona-server-server-5.5':

		ensure		=>	installed,

		require	=>	Class['admin::percona_repo'],

}

So,	what	does	the	admin::percona_repo	class	do?	It:

Installs	the	Percona	APT	key	with	which	the	packages	are	signed
Configures	the	Percona	repo	URL	as	a	file	in	/etc/apt/sources.list.d
Runs	apt-get	update	to	retrieve	the	repo	metadata
Adds	an	APT	pin	configuration	in	/etc/apt/preferences.d

First	of	all,	we	install	the	APT	key:

exec	{	'add-percona-apt-key':

		unless		=>	'/usr/bin/apt-key	list	|grep	percona',

		command	=>	'/usr/bin/gpg	--keyserver		hkp://keys.gnupg.net	--recv-keys	

1C4CBDCDCD2EFD2A	&&	/usr/bin/gpg	-a	--export	CD2EFD2A	|	apt-key	add	-',

		notify		=>	Exec['percona-apt-update'],

}

The	unless	parameter	checks	the	output	of	apt-key	list	to	make	sure	that	the	Percona
key	is	not	already	installed,	in	which	case	we	need	not	do	anything.	Assuming	it	isn’t,	the
command	runs:

/usr/bin/gpg	--keyserver		hkp://keys.gnupg.net	--recv-keys	1C4CBDCDCD2EFD2A	

&&	/usr/bin/gpg	-a	--export	CD2EFD2A	|	apt-key	add	-

This	command	retrieves	the	key	from	the	GnuPG	keyserver,	exports	it	in	the	ASCII
format,	and	pipes	this	into	the	apt-key	add	command,	which	adds	it	to	the	system
keyring.	You	can	use	a	similar	pattern	for	most	third-party	repos	that	require	an	APT
signing	key.

Having	installed	the	key,	we	add	the	repo	configuration:

file	{	'/etc/apt/sources.list.d/percona.list':

		content	=>	'deb	http://repo.percona.com/apt	wheezy	main',

		notify		=>	Exec['percona-apt-update'],

}

Then	run	apt-get	update	to	update	the	system’s	APT	cache	with	the	metadata	from	the
new	repo:

exec	{	'percona-apt-update':

		command					=>	'/usr/bin/apt-get	update',

		require					=>	[File['/etc/apt/sources.list.d/percona.list'],	

File['/etc/apt/preferences.d/00percona.pref']],

		refreshonly	=>	true,

}

Finally,	we	configure	the	APT	pin	priority	for	the	repo:

file	{	'/etc/apt/preferences.d/00percona.pref':

		content	=>	"Package:	*\nPin:	release	o=Percona	Development	Team\nPin-

Priority:	1001",

		notify		=>	Exec['percona-apt-update'],

}

This	ensures	that	packages	installed	from	the	Percona	repo	will	never	be	superseded	by
packages	from	somewhere	else	(the	main	Ubuntu	distro,	for	example).	Otherwise,	you
could	end	up	with	broken	dependencies	and	be	unable	to	install	the	Percona	packages
automatically.

There’s	more…
The	APT	package	framework	is	specific	to	the	Debian	and	Ubuntu	systems.	There	is	a
forge	module	for	managing	apt	repos,	https://forge.puppetlabs.com/puppetlabs/apt.	If
you’re	on	a	Red	Hat	or	CentOS-based	system,	you	can	use	the	yumrepo	resources	to
manage	RPM	repositories	directly:

http://docs.puppetlabs.com/references/latest/type.html#yumrepo

https://forge.puppetlabs.com/puppetlabs/apt
http://docs.puppetlabs.com/references/latest/type.html#yumrepo

Comparing	package	versions
Package	version	numbers	are	odd	things.	They	look	like	decimal	numbers,	but	they’re	not:
a	version	number	is	often	in	the	form	of	2.6.4,	for	example.	If	you	need	to	compare	one
version	number	with	another,	you	can’t	do	a	straightforward	string	comparison:	2.6.4
would	be	interpreted	as	greater	than	2.6.12.	And	a	numeric	comparison	won’t	work
because	they’re	not	valid	numbers.

Puppet’s	versioncmp	function	comes	to	the	rescue.	If	you	pass	two	things	that	look	like
version	numbers,	it	will	compare	them	and	return	a	value	indicating	which	is	greater:

versioncmp(A,	B)

returns:

0	if	A	and	B	are	equal
Greater	than	1	if	A	is	higher	than	B
Less	than	0	if	A	is	less	than	B

How	to	do	it…
Here’s	an	example	using	the	versioncmp	function:

1.	 Modify	your	site.pp	file	as	follows:

node	'cookbook'	{

		$app_version	=	'1.2.2'

		$min_version	=	'1.2.10'

	

		if	versioncmp($app_version,	$min_version)	>=	0	{

				notify	{	'Version	OK':	}

		}	else	{

				notify	{	'Upgrade	needed':	}

		}

}

2.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Notice:	Upgrade	needed

3.	 Now	change	the	value	of	$app_version:

$app_version	=	'1.2.14'

4.	 Run	Puppet	again:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Notice:	Version	OK

How	it	works…
We’ve	specified	that	the	minimum	acceptable	version	($min_version)	is	1.2.10.	So,	in
the	first	example,	we	want	to	compare	it	with	$app_version	of	1.2.2.	A	simple	alphabetic
comparison	of	these	two	strings	(in	Ruby,	for	example)	would	give	the	wrong	result,	but
versioncmp	correctly	determines	that	1.2.2	is	less	than	1.2.10	and	alerts	us	that	we	need
to	upgrade.

In	the	second	example,	$app_version	is	now	1.2.14,	which	versioncmp	correctly
recognizes	as	greater	than	$min_version	and	so	we	get	the	message	Version	OK.

Chapter	5.	Users	and	Virtual	Resources
“Nothing	is	a	problem,	until	it’s	a	problem.”

In	this	chapter,	we	will	cover	the	following	recipes:

Using	virtual	resources
Managing	users	with	virtual	resources
Managing	users’	SSH	access
Managing	users’	customization	files
Using	exported	resources

Introduction
Users	can	be	a	real	pain.	I	don’t	mean	the	people,	though	doubtless	that’s	sometimes	true.
But	keeping	UNIX	user	accounts	and	file	permissions	in	sync	across	a	network	of
machines,	some	of	them	running	different	operating	systems,	can	be	very	challenging
without	some	kind	of	centralized	configuration	management.

Each	new	developer	who	joins	the	organization	needs	an	account	on	every	machine,	along
with	sudo	privileges	and	group	memberships,	and	needs	their	SSH	key	authorized	for	a
bunch	of	different	accounts.	The	system	administrator	who	has	to	take	care	of	this
manually	will	be	at	the	job	all	day,	while	the	system	administrator	who	uses	Puppet	will	be
done	in	minutes,	and	head	out	for	an	early	lunch.

In	this	chapter,	we’ll	look	at	some	handy	patterns	and	techniques	to	manage	users	and
their	associated	resources.	Users	are	also	one	of	the	most	common	applications	for	virtual
resources,	so	we’ll	find	out	all	about	those.	In	the	final	section,	we’ll	introduce	exported
resources,	which	are	related	to	virtual	resources.

Using	virtual	resources
Virtual	resources	in	Puppet	might	seem	complicated	and	confusing	but,	in	fact,	they’re
very	simple.	They’re	exactly	like	regular	resources,	but	they	don’t	actually	take	effect
until	they’re	realized	(in	the	sense	of	“made	real”);	whereas	a	regular	resource	can	only	be
declared	once	per	node	(so	two	classes	can’t	declare	the	same	resource,	for	example).	A
virtual	resource	can	be	realized	as	many	times	as	you	like.

This	comes	in	handy	when	you	need	to	move	applications	and	services	between	machines.
If	two	applications	that	use	the	same	resource	end	up	sharing	a	machine,	they	would	cause
a	conflict	unless	you	make	the	resource	virtual.

To	clarify	this,	let’s	look	at	a	typical	situation	where	virtual	resources	might	come	in
handy.

You	are	responsible	for	two	popular	web	applications:	WordPress	and	Drupal.	Both	are
web	apps	running	on	Apache,	so	they	both	require	the	Apache	package	to	be	installed.	The
definition	for	WordPress	might	look	something	like	the	following:

class	wordpress	{

		package	{'httpd':

				ensure	=>	'installed',

		}

		service	{'httpd':

				ensure	=>	'running',

				enable	=>	true,

		}

}

The	definition	for	Drupal	might	look	like	this:

class	drupal	{

		package	{'httpd':

				ensure	=>	'installed',

		}

		service	{'httpd':

				ensure	=>	'running',

				enable	=>	true,

		}

}

All	is	well	until	you	need	to	consolidate	both	apps	onto	a	single	server:

node	'bigbox'	{

		include	wordpress

		include	drupal

}

Now	Puppet	will	complain	because	you	tried	to	define	two	resources	with	the	same	name:
httpd.

You	could	remove	the	duplicate	Apache	package	definition	from	one	of	the	classes,	but
then	nodes	without	the	class	including	Apache	would	fail.	You	can	get	around	this
problem	by	putting	the	Apache	package	in	its	own	class	and	then	using	include	apache
everywhere	it’s	needed;	Puppet	doesn’t	mind	you	including	the	same	class	multiple	times.
In	reality,	putting	Apache	in	its	own	class	solves	most	problems	but,	in	general,	this
method	has	the	disadvantage	that	every	potentially	conflicting	resource	must	have	its	own
class.

Virtual	resources	can	be	used	to	solve	this	problem.	A	virtual	resource	is	just	like	a	normal
resource,	except	that	it	starts	with	an	@	character:

@package	{	'httpd':	ensure	=>	installed	}

You	can	think	of	it	as	being	like	a	placeholder	resource;	you	want	to	define	it	but	you
aren’t	sure	you	are	going	to	use	it	yet.	Puppet	will	read	and	remember	virtual	resource
definitions,	but	won’t	actually	create	the	resource	until	you	realize	the	resource.

To	create	the	resource,	use	the	realize	function:

realize(Package['httpd'])

You	can	call	realize	as	many	times	as	you	want	on	the	resource	and	it	won’t	result	in	a
conflict.	So	virtual	resources	are	the	way	to	go	when	several	different	classes	all	require
the	same	resource,	and	they	may	need	to	coexist	on	the	same	node.

How	to	do	it…
Here’s	how	to	build	the	example	using	virtual	resources:

1.	 Create	the	virtual	module	with	the	following	contents:

class	virtual	{

		@package	{'httpd':	ensure	=>	installed	}

		@service	{'httpd':	

				ensure		=>	running,

				enable		=>	true,

				require	=>	Package['httpd']

		}

}

2.	 Create	the	Drupal	module	with	the	following	contents:

class	drupal	{

		include	virtual

		realize(Package['httpd'])

		realize(Service['httpd'])

}

3.	 Create	the	WordPress	module	with	the	following	contents:

class	wordpress	{

		include	virtual

		realize(Package['httpd'])

		realize(Service['httpd'])

}

4.	 Modify	your	site.pp	file	as	follows:

node	'bigbox'	{

		include	drupal

		include	wordpress

}

5.	 Run	Puppet:

bigbox#	puppet	agent	-t

Info:	Caching	catalog	for	bigbox.example.com

Info:	Applying	configuration	version	'1413179615'

Notice:	/Stage[main]/Virtual/Package[httpd]/ensure:	created

Notice:	/Stage[main]/Virtual/Service[httpd]/ensure:	ensure	changed	

'stopped'	to	'running'

Info:	/Stage[main]/Virtual/Service[httpd]:	Unscheduling	refresh	on	

Service[httpd]

Notice:	Finished	catalog	run	in	6.67	seconds

How	it	works…
You	define	the	package	and	service	as	virtual	resources	in	one	place:	the	virtual	class.
All	nodes	can	include	this	class	and	you	can	put	all	your	virtual	services	and	packages	in
it.	None	of	the	packages	will	actually	be	installed	on	a	node	or	services	started	until	you
call	realize:

class	virtual	{

		@package	{	'httpd':	ensure	=>	installed	}

}

Every	class	that	needs	the	Apache	package	can	call	realize	on	this	virtual	resource:

class	drupal	{

		include	virtual

		realize(Package['httpd'])

}

Puppet	knows,	because	you	made	the	resource	virtual,	that	you	intended	to	have	multiple
references	to	the	same	package,	and	didn’t	just	accidentally	create	two	resources	with	the
same	name.	So	it	does	the	right	thing.

There’s	more…
To	realize	virtual	resources,	you	can	also	use	the	collection	spaceship	syntax:

Package	<|	title	=	'httpd'	|>

The	advantage	of	this	syntax	is	that	you’re	not	restricted	to	the	resource	name;	you	could
also	use	a	tag,	for	example:

Package	<|	tag	=	'web'	|>

Alternatively,	you	can	just	specify	all	instances	of	the	resource	type,	by	leaving	the	query
section	blank:

Package	<|	|>

Managing	users	with	virtual	resources
Users	are	a	great	example	of	a	resource	that	may	need	to	be	realized	by	multiple	classes.
Consider	the	following	situation.	To	simplify	administration	of	a	large	number	of
machines,	you	defined	classes	for	two	kinds	of	users:	developers	and	sysadmins.	All
machines	need	to	include	sysadmins,	but	only	some	machines	need	developers:

node	'server'	{	

		include	user::sysadmins	

}

node	'webserver'	{

		include	user::sysadmins	

		include	user::developers	

}

However,	some	users	may	be	members	of	both	groups.	If	each	group	simply	declares	its
members	as	regular	user	resources,	this	will	lead	to	a	conflict	when	a	node	includes	both
developers	and	sysadmins,	as	in	the	webserver	example.

To	avoid	this	conflict,	a	common	pattern	is	to	make	all	users	virtual	resources,	defined	in	a
single	class	user::virtual	that	every	machine	includes,	and	then	realizing	the	users
where	they	are	needed.	This	way,	there	will	be	no	conflict	if	a	user	is	a	member	of
multiple	groups.

How	to	do	it…
Follow	these	steps	to	create	a	user::virtual	class:

1.	 Create	the	file	modules/user/manifests/virtual.pp	with	the	following	contents:

class	user::virtual	{

		@user	{	'thomas':		ensure	=>	present	}

		@user	{	'theresa':	ensure	=>	present	}

		@user	{	'josko':			ensure	=>	present	}

		@user	{	'nate':				ensure	=>	present	}

}

2.	 Create	the	file	modules/user/manifests/developers.pp	with	the	following
contents:

class	user::developers	{

		realize(User['theresa'])

		realize(User['nate'])

}

3.	 Create	the	file	modules/user/manifests/sysadmins.pp	with	the	following	contents:

class	user::sysadmins	{

		realize(User['thomas'])

		realize(User['theresa'])

		realize(User['josko'])

}

4.	 Modify	your	nodes.pp	file	as	follows:

node	'cookbook'	{

		include	user::virtual

		include	user::sysadmins

		include	user::developers

}

5.	 Run	Puppet:

cookbook#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413180590'

Notice:	/Stage[main]/User::Virtual/User[theresa]/ensure:	created

Notice:	/Stage[main]/User::Virtual/User[nate]/ensure:	created

Notice:	/Stage[main]/User::Virtual/User[thomas]/ensure:	created

Notice:	/Stage[main]/User::Virtual/User[josko]/ensure:	created

Notice:	Finished	catalog	run	in	0.47	seconds

How	it	works…
When	we	include	the	user::virtual	class,	all	the	users	are	declared	as	virtual	resources
(because	we	included	the	@	symbol):

		@user	{	'thomas':		ensure	=>	present	}

		@user	{	'theresa':	ensure	=>	present	}

		@user	{	'josko':			ensure	=>	present	}

		@user	{	'nate':				ensure	=>	present	}

That	is	to	say,	the	resources	exist	in	Puppet’s	catalog;	they	can	be	referred	to	by	and	linked
with	other	resources,	and	they	are	in	every	respect	identical	to	regular	resources,	except
that	Puppet	doesn’t	actually	create	the	corresponding	users	on	the	machine.

In	order	for	that	to	happen,	we	need	to	call	realize	on	the	virtual	resources.	When	we
include	the	user::sysadmins	class,	we	get	the	following	code:

		realize(User['thomas'])

		realize(User['theresa'])

		realize(User['josko'])

Calling	realize	on	a	virtual	resource	tells	Puppet,	“I’d	like	to	use	that	resource	now”.
This	is	what	it	does,	as	we	can	see	from	the	run	output:

Notice:	/Stage[main]/User::Virtual/User[theresa]/ensure:	created

However,	Theresa	is	in	both	the	developers	and	sysadmins	classes!	Won’t	that	mean	we
end	up	calling	realize	twice	on	the	same	resource?

realize(User['theresa'])

...

realize(User['theresa'])

Yes,	it	does,	and	that’s	fine.	You’re	explicitly	allowed	to	realize	resources	multiple	times,
and	there	will	be	no	conflict.	So	long	as	some	class,	somewhere,	calls	realize	on
Theresa’s	account,	it	will	be	created.	Unrealized	resources	are	simply	discarded	during
catalog	compilation.

There’s	more…
When	you	use	this	pattern	to	manage	your	own	users,	every	node	should	include	the
user::virtual	class,	as	a	part	of	your	basic	housekeeping	configuration.	This	class	will
declare	all	users	(as	virtual)	in	your	organization	or	site.	This	should	also	include	any	users
who	exist	only	to	run	applications	or	services	(such	as	Apache,	www-data,	or	deploy,	for
example).	Then,	you	can	realize	them	as	needed	on	individual	nodes	or	in	specific	classes.

For	production	use,	you’ll	probably	also	want	to	specify	a	UID	and	GID	for	each	user	or
group,	so	that	these	numeric	identifiers	are	synchronized	across	your	network.	You	can	do
this	using	the	uid	and	gid	parameters	for	the	user	resource.

Note
If	you	don’t	specify	a	user’s	UID,	for	example,	you’ll	just	get	whatever	is	the	next	ID
number	available	on	a	given	machine,	so	the	same	user	on	different	machines	will	have	a
different	UID.	This	can	lead	to	permission	problems	when	using	shared	storage,	or
moving	files	between	machines.

A	common	pattern	when	defining	users	as	virtual	resources	is	to	assign	tags	to	the	users
based	on	their	assigned	roles	within	your	organization.	You	can	then	use	the	collector
syntax	instead	of	realize	to	collect	users	with	specific	tags	applied.

For	example,	see	the	following	code	snippet:

@user	{	'thomas':		ensure	=>	present,	tag	=>	'sysadmin'	}

@user	{	'theresa':	ensure	=>	present,	tag	=>	'sysadmin'	}

@user	{	'josko':			ensure	=>	present,	tag	=>	'dev'	}

User	<|	tag	==	'sysadmin'	|>

In	the	previous	example,	only	users	thomas	and	theresa	would	be	included.

See	also
The	Using	virtual	resources	recipe	in	this	chapter
The	Managing	users’	customization	files	recipe	in	this	chapter

Managing	users’	SSH	access
A	sensible	approach	to	access	control	for	servers	is	to	use	named	user	accounts	with
passphrase-protected	SSH	keys,	rather	than	having	users	share	an	account	with	a	widely
known	password.	Puppet	makes	this	easy	to	manage	thanks	to	the	built-in
ssh_authorized_key	type.

To	combine	this	with	virtual	users,	as	described	in	the	previous	section,	you	can	create	a
define,	which	includes	both	the	user	and	ssh_authorized_key	resources.	This	will	also
come	in	handy	when	adding	customization	files	and	other	resources	to	each	user.

How	to	do	it…
Follow	these	steps	to	extend	your	virtual	users’	class	to	include	SSH	access:

1.	 Create	a	new	module	ssh_user	to	contain	our	ssh_user	definition.	Create	the
modules/ssh_user/manifests/init.pp	file	as	follows:

define	ssh_user($key,$keytype)	{

		user	{	$name:

				ensure					=>	present,

		}

		file	{	"/home/${name}":

				ensure	=>	directory,

				mode			=>	'0700',

				owner		=>	$name,

				require	=>	User["$name"]

		}

		file	{	"/home/${name}/.ssh":

				ensure	=>	directory,

				mode			=>	'0700',

				owner		=>	"$name",

				require	=>	File["/home/${name}"],

		}

		ssh_authorized_key	{	"${name}_key":

				key					=>	$key,

				type				=>	"$keytype",

				user				=>	$name,

				require	=>	File["/home/${name}/.ssh"],

		}

}

2.	 Modify	your	modules/user/manifests/virtual.pp	file,	comment	out	the	previous
definition	for	user	thomas,	and	replace	it	with	the	following:

@ssh_user	{	'thomas':

		key					=>	'AAAAB3NzaC1yc2E…XaWM5sX0z',

		keytype	=>	'ssh-rsa'

}

3.	 Modify	your	modules/user/manifests/sysadmins.pp	file	as	follows:

class	user::sysadmins	{

				realize(Ssh_user['thomas'])

}

4.	 Modify	your	site.pp	file	as	follows:

node	'cookbook'	{

		include	user::virtual

		include	user::sysadmins

}

5.	 Run	Puppet:

cookbook#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413254461'

Notice:	

/Stage[main]/User::Virtual/Ssh_user[thomas]/File[/home/thomas/.ssh]/ens

ure:	created

Notice:	

/Stage[main]/User::Virtual/Ssh_user[thomas]/Ssh_authorized_key[thomas_k

ey]/ensure:	created

Notice:	Finished	catalog	run	in	0.11	seconds

How	it	works…
For	each	user	in	our	user::virtual	class,	we	need	to	create:

The	user	account	itself
The	user’s	home	directory	and	.ssh	directory
The	user’s	.ssh/authorized_keys	file

We	could	declare	separate	resources	to	implement	all	of	these	for	each	user,	but	it’s	much
easier	to	create	a	definition	instead,	which	wraps	them	into	a	single	resource.	By	creating	a
new	module	for	our	definition,	we	can	refer	to	ssh_user	from	anywhere	(in	any	scope):

define	ssh_user	($key,	$keytype)	{	

		user	{	$name:

				ensure					=>	present,

		}

After	we	create	the	user,	we	can	then	create	the	home	directory;	we	need	the	user	first	so
that	when	we	assign	ownership,	we	can	use	the	username,	owner	=>	$name:

		file	{	"/home/${name}":

				ensure	=>	directory,

				mode	=>	'0700',

				owner	=>	$name,

				require	=>	User["$name"]

		}

Tip
Puppet	can	create	the	users’	home	directory	using	the	managehome	attribute	to	the	user
resource.	Relying	on	this	mechanism	is	problematic	in	practice,	as	it	does	not	account	for
users	that	were	created	outside	of	Puppet	without	home	directories.

Next,	we	need	to	ensure	that	the	.ssh	directory	exists	within	the	home	directory	of	the
user.	We	require	the	home	directory,	File["/home/${name}"],	since	that	needs	to	exist
before	we	create	this	subdirectory.	This	implies	that	the	user	already	exists	because	the
home	directory	required	the	user:

		file	{	"/home/${name}/.ssh":

				ensure	=>	directory,

				mode			=>	'0700',

				owner		=>	$name	,

				require	=>	File["/home/${name}"],

		}

Finally,	we	create	the	ssh_authorized_key	resource,	again	requiring	the	containing	folder
(File["/home/${name}/.ssh"]).	We	use	the	$key	and	$keytype	variables	to	assign	the
key	and	type	parameters	to	the	ssh_authorized_key	type	as	follows:

		ssh_authorized_key	{	"${name}_key":

				key					=>	$key,

				type				=>	"$keytype",

				user				=>	$name,

				require	=>	File["/home/${name}/.ssh"],

		}

}

We	passed	the	$key	and	$keytype	variables	when	we	defined	the	ssh_user	resource	for
thomas:

@ssh_user	{	'thomas':

		key	=>	'AAAAB3NzaC1yc2E…XaWM5sX0z',

		keytype	=>	'ssh-rsa'

}

Tip
The	value	for	key,	in	the	preceding	code	snippet,	is	the	ssh	key’s	public	key	value;	it	is
usually	stored	in	an	id_rsa.pub	file.

Now,	with	everything	defined,	we	just	need	to	call	realize	on	thomas	for	all	these
resources	to	take	effect:

realize(Ssh_user['thomas'])

Notice	that	this	time	the	virtual	resource	we’re	realizing	is	not	simply	the	user	resource,
as	before,	but	the	ssh_user	defined	type	we	created,	which	includes	the	user	and	the
related	resources	needed	to	set	up	the	SSH	access:

Notice:	/Stage[main]/User::Virtual/Ssh_user[thomas]/User[thomas]/ensure:	

created

Notice:	

/Stage[main]/User::Virtual/Ssh_user[thomas]/File[/home/thomas]/ensure:	

created

Notice:	

/Stage[main]/User::Virtual/Ssh_user[thomas]/File[/home/thomas/.ssh]/ensure:	

created

Notice:	

/Stage[main]/User::Virtual/Ssh_user[thomas]/Ssh_authorized_key[thomas_key]/

ensure:	created

There’s	more…
Of	course,	you	can	add	whatever	resources	you	like	to	the	ssh_user	definition	to	have
Puppet	automatically	create	them	for	new	users.	We’ll	see	an	example	of	this	in	the	next
recipe,	Managing	users’	customization	files.

Managing	users’	customization	files
Users	tend	to	customize	their	shell	environments,	terminal	colors,	aliases,	and	so	forth.
This	is	usually	achieved	by	a	number	of	dotfiles	in	their	home	directory,	for	example,
.bash_profile	or	.vimrc.

You	can	use	Puppet	to	synchronize	and	update	each	user’s	dotfiles	across	a	number	of
machines	by	extending	the	virtual	user	setup	we	developed	throughout	this	chapter.	We’ll
start	a	new	module,	admin_user	and	use	the	file	types,	recurse	attribute	to	copy	files	into
each	user’s	home	directory.

How	to	do	it…
Here’s	what	you	need	to	do:

1.	 Create	the	admin_user	defined	type	(define	admin_user)	in	the
modules/admin_user/manifests/init.pp	file	as	follows:

define	admin_user	($key,	$keytype,	$dotfiles	=	false)	{	

		$username	=	$name

		user	{	$username:

				ensure					=>	present,

		}

		file	{	"/home/${username}/.ssh":

				ensure		=>	directory,

				mode				=>	'0700',

				owner			=>	$username,

				group			=>	$username,

				require	=>	File["/home/${username}"],

		}

		ssh_authorized_key	{	"${username}_key":

				key					=>	$key,

				type				=>	"$keytype",

				user				=>	$username,

				require	=>	File["/home/${username}/.ssh"],

		}

		#	dotfiles

		if	$dotfiles	==	false	{

				#	just	create	the	directory

				file	{	"/home/${username}":

						ensure		=>	'directory',

						mode				=>	'0700',

						owner			=>	$username,

						group			=>	$username,

						require	=>	User["$username"]

				}

		}	else	{

				#	copy	in	all	the	files	in	the	subdirectory

				file	{	"/home/${username}":

						recurse	=>	true,

						mode				=>	'0700',

						owner			=>	$username,

						group			=>	$username,

						source		=>	"puppet:///modules/admin_user/${username}",

						require	=>	User["$username"]

				}

		}

}

2.	 Modify	the	file	modules/user/manifests/sysadmins.pp	as	follows:

class	user::sysadmins	{

		realize(Admin_user['thomas'])

}

3.	 Alter	the	definition	of	thomas	in	modules/user/manifests/virtual.pp	as	follows:

@ssh_user	{	'thomas':

		key	=>	'AAAAB3NzaC1yc2E…XaWM5sX0z',

		keytype	=>	'ssh-rsa',

		dotfiles	=>	true

}

4.	 Create	a	subdirectory	in	the	admin_user	module	for	the	file	of	user	thomas:

$	mkdir	-p	modules/admin_user/files/thomas

5.	 Create	dotfiles	for	the	user	thomas	in	the	directory	you	just	created:

$	echo	"alias	vi=vim"	>	modules/admin_user/files/thomas/.bashrc

$	echo	"set	tabstop=2"	>	modules/admin_user/files/thomas/.vimrc

6.	 Make	sure	your	site.pp	file	reads	as	follows:

node	'cookbook'	{

		include	user::virtual

		include	user::sysadmins

}

7.	 Run	Puppet:

cookbook#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413266235'

Notice:	

/Stage[main]/User::Virtual/Admin_user[thomas]/User[thomas]/ensure:	

created

Notice:	

/Stage[main]/User::Virtual/Admin_user[thomas]/File[/home/thomas]/ensure

:	created

Notice:	

/Stage[main]/User::Virtual/Admin_user[thomas]/File[/home/thomas/.vimrc]

/ensure:	defined	content	as	'{md5}cb2af2d35b18b5ac2539057bd429d3ae'

Notice:	

/Stage[main]/User::Virtual/Admin_user[thomas]/File[/home/thomas/.bashrc

]/ensure:	defined	content	as	'{md5}033c3484e4b276e0641becc3aa268a3a'

Notice:	

/Stage[main]/User::Virtual/Admin_user[thomas]/File[/home/thomas/.ssh]/e

nsure:	created

Notice:	

/Stage[main]/User::Virtual/Admin_user[thomas]/Ssh_authorized_key[thomas

_key]/ensure:	created

Notice:	Finished	catalog	run	in	0.36	seconds

How	it	works…
We	created	a	new	admin_user	definition,	which	defines	the	home	directory	recursively	if
$dotfiles	is	not	false	(the	default	value):

		if	$dotfiles	==	'false'	{

				#	just	create	the	directory

				file	{	"/home/${username}":

						ensure		=>	'directory',

						mode				=>	'0700',

						owner			=>	$username,

						group			=>	$username,

						require	=>	User["$username"]

				}

		}	else	{

				#	copy	in	all	the	files	in	the	subdirectory

				file	{	"/home/${username}":

						recurse	=>	true,

						mode				=>	'0700',

						owner			=>	$username,

						group			=>	$username,

						source		=>	"puppet:///modules/admin_user/${username}",

						require	=>	User["$username"]

				}

		}

We	created	a	directory	to	hold	the	user’s	dotfiles	within	the	admin_user	module;	all	the
files	within	that	directory	will	be	copied	into	the	user’s	home	directory,	as	shown	in	the
puppet	run	output	in	the	following	command	line:

Notice:	

/Stage[main]/User::Virtual/Admin_user[thomas]/File[/home/thomas/.vimrc]/ens

ure:	defined	content	as	'{md5}cb2af2d35b18b5ac2539057bd429d3ae'

Notice:	

/Stage[main]/User::Virtual/Admin_user[thomas]/File[/home/thomas/.bashrc]/en

sure:	defined	content	as	'{md5}033c3484e4b276e0641becc3aa268a3a'

Using	the	recurse	option	allows	us	to	add	as	many	dotfiles	as	we	wish	for	each	user
without	having	to	modify	the	definition	of	the	user.

There’s	more…
We	could	specify	that	the	source	attribute	of	the	home	directory	is	a	directory	where	users
can	place	their	own	dotfiles.	This	way,	each	user	could	modify	their	own	dotfiles	and	have
them	transferred	to	all	the	nodes	in	the	network	without	our	involvement.

See	also
The	Managing	users	with	virtual	resources	recipe	in	this	chapter

Using	exported	resources
All	our	recipes	up	to	this	point	have	dealt	with	a	single	machine.	It	is	possible	with	Puppet
to	have	resources	from	one	node	affect	another	node.	This	interaction	is	managed	with
exported	resources.	Exported	resources	are	just	like	any	resource	you	might	define	for	a
node	but	instead	of	applying	to	the	node	on	which	they	were	created,	they	are	exported	for
use	by	all	nodes	in	the	environment.	Exported	resources	can	be	thought	of	as	virtual
resources	that	go	one	step	further	and	exist	beyond	the	node	on	which	they	were	defined.

There	are	two	actions	with	exported	resources.	When	an	exported	resource	is	created,	it	is
said	to	be	defined.	When	all	the	exported	resources	are	harvested,	they	are	said	to	be
collected.	Defining	exported	resources	is	similar	to	virtual	resources;	the	resource	in
question	has	two	@	symbols	prepended.	For	example,	to	define	a	file	resource	as	external,
use	@@file.	Collecting	resources	is	done	with	the	space	ship	operator,	<<|	|>>;	this	is
thought	to	look	like	a	spaceship.	To	collect	the	exported	file	resource	(@@file),	you	would
use	File	<<|	|>>.

There	are	many	examples	that	use	exported	resources;	the	most	common	one	involves
SSH	host	keys.	Using	exported	resources,	it	is	possible	to	have	every	machine	that	is
running	Puppet	share	their	SSH	host	keys	with	the	other	connected	nodes.	The	idea	here	is
that	each	machine	exports	its	own	host	key	and	then	collects	all	the	keys	from	the	other
machines.	In	our	example,	we	will	create	two	classes;	first,	a	class	that	exports	the	SSH
host	key	from	every	node.	We	will	include	this	class	in	our	base	class.	The	second	class
will	be	a	collector	class,	which	collects	the	SSH	host	keys.	We	will	apply	this	class	to	our
Jumpboxes	or	SSH	login	servers.

Note
Jumpboxes	are	machines	that	have	special	firewall	rules	to	allow	them	to	log	in	to
different	locations.

Getting	ready
To	use	exported	resources,	you	will	need	to	enable	storeconfigs	on	your	Puppet	masters.	It
is	possible	to	use	exported	resources	with	a	masterless	(decentralized)	deployment;
however,	we	will	assume	you	are	using	a	centralized	model	for	this	example.	In	Chapter	2,
Puppet	Infrastructure,	we	configured	puppetdb	using	the	puppetdb	module	from	the	forge.
It	is	possible	to	use	other	backends	if	you	desire;	however,	all	of	these	except	puppetdb	are
deprecated.	More	information	is	available	at	the	following	link:
http://projects.puppetlabs.com/projects/puppet/wiki/Using_Stored_Configuration.

Ensure	your	Puppet	masters	are	configured	to	use	puppetdb	as	a	storeconfigs	container.

http://projects.puppetlabs.com/projects/puppet/wiki/Using_Stored_Configuration

How	to	do	it…
We’ll	create	an	ssh_host	class	to	export	the	ssh	keys	of	a	host	and	ensure	that	it	is
included	in	our	base	class.

1.	 Create	the	first	class,	base::ssh_host,	which	we	will	include	in	our	base	class:

class	base::ssh_host	{

		@@sshkey{"$::fqdn":

				ensure							=>	'present',

				host_aliases	=>	["$::hostname","$::ipaddress"],

				key										=>	$::sshdsakey,

				type									=>	'dsa',

		}

}

2.	 Remember	to	include	this	class	from	inside	the	base	class	definition:

class	base	{

		...

		include	ssh_host

}

3.	 Create	a	definition	for	jumpbox,	either	in	a	class	or	within	the	node	definition	for
jumpbox:

node	'jumpbox'	{

		Sshkey	<<|	|>>

}

4.	 Now	run	Puppet	on	a	few	nodes	to	create	the	exported	resources.	In	my	case,	I	ran
Puppet	on	my	Puppet	server	and	my	second	example	node	(node2).	Finally,	run
Puppet	on	jumpbox	to	verify	that	the	SSH	host	keys	for	our	other	nodes	are	collected:

[root@jumpbox	~]#	puppet	agent	-t	

Info:	Caching	catalog	for	jumpbox.example.com

Info:	Applying	configuration	version	'1413176635'

Notice:	

/Stage[main]/Main/Node[jumpbox]/Sshkey[node2.example.com]/ensure:	

created

Notice:	/Stage[main]/Main/Node[jumpbox]/Sshkey[puppet]/ensure:	created

Notice:	Finished	catalog	run	in	0.08	seconds

How	it	works…
We	created	an	sshkey	resource	for	the	node	using	the	facter	facts	fqdn,	hostname,
ipaddress,	and	sshdsakey.	We	use	the	fqdn	as	the	title	for	our	exported	resource	because
each	exported	resource	must	have	a	unique	name.	We	can	assume	the	fqdn	of	a	node	will
be	unique	within	our	organization	(although	sometimes	they	may	not	be;	Puppet	can	be
good	at	finding	out	such	things	when	you	least	expect	it).	We	then	go	on	to	define	aliases
by	which	our	node	may	be	known.	We	use	the	hostname	variable	for	one	alias	and	the
main	IP	address	of	the	machine	as	the	other.	If	you	had	other	naming	conventions	for	your
nodes,	you	could	include	other	aliases	here.	We	assume	that	hosts	are	using	DSA	keys,	so
we	use	the	sshdsakey	variable	in	our	definition.	In	a	large	installation,	you	would	wrap
this	definition	in	tests	to	ensure	the	DSA	keys	existed.	You	would	also	use	the	RSA	keys	if
they	existed	as	well.

With	the	sshkey	resource	defined	and	exported,	we	then	created	a	jumpbox	node
definition.	In	this	definition,	we	used	the	spaceship	syntax	Sshkey	<<|	|>>	to	collect	all
defined	exported	sshkey	resources.

There’s	more…
When	defining	the	exported	resources,	you	can	add	tag	attributes	to	the	resource	to	create
subsets	of	exported	resources.	For	example,	if	you	had	a	development	and	production	area
of	your	network,	you	could	create	different	groups	of	sshkey	resources	for	each	area	as
shown	in	the	following	code	snippet:

@@sshkey{"$::fqdn":

				host_aliases	=>	["$::hostname","$::ipaddress"],

				key										=>	$::sshdsakey,

				type									=>	'dsa',

				tag										=>	"$::environment",

		}

You	could	then	modify	jumpbox	to	only	collect	resources	for	production,	for	example,	as
follows:

Sshkey	<<|	tag	==	'production'	|>>

Two	important	things	to	remember	when	working	with	exported	resources:	first,	every
resource	must	have	a	unique	name	across	your	installation.	Using	the	fqdn	domain	name
within	the	title	is	usually	enough	to	keep	your	definitions	unique.	Second,	any	resource
can	be	made	virtual.	Even	defined	types	that	you	created	may	be	exported.	Exported
resources	can	be	used	to	achieve	some	fairly	complex	configurations	that	automatically
adjust	when	machines	change.

Note
One	word	of	caution	when	working	with	an	extremely	large	number	of	nodes	(more	than
5,000)	is	that	exported	resources	can	take	a	long	time	to	collect	and	apply,	particularly	if
each	exported	resource	creates	a	file.

Chapter	6.	Managing	Resources	and	Files
	 “The	art	of	simplicity	is	a	puzzle	of	complexity”. 	

	 —Douglas	Horton

In	this	chapter,	we	will	cover	the	following	recipes:

Distributing	cron	jobs	efficiently
Scheduling	when	resources	are	applied
Using	host	resources
Using	exported	host	resources
Using	multiple	file	sources
Distributing	and	merging	directory	trees
Cleaning	up	old	files
Auditing	resources
Temporarily	disabling	resources

Introduction
In	the	previous	chapter,	we	introduced	virtual	and	exported	resources.	Virtual	and
exported	resources	are	ways	to	manage	the	way	in	which	resources	are	applied	to	a	node.
In	this	chapter,	we	will	deal	with	when	and	how	to	apply	resources.	In	some	cases,	you
may	only	wish	to	apply	a	resource	off	hours,	while	in	others,	you	may	wish	to	only	audit
the	resource	but	change	nothing.	In	other	cases,	you	may	wish	to	apply	completely
different	resources	based	on	which	node	is	using	the	code.	As	we	will	see,	Puppet	has	the
flexibility	to	deal	with	all	these	scenarios.

Distributing	cron	jobs	efficiently
When	you	have	many	servers	executing	the	same	cron	job,	it’s	usually	a	good	idea	not	to
run	them	all	at	the	same	time.	If	all	the	jobs	access	a	common	server	(for	example,	when
running	backups),	it	may	put	too	much	load	on	that	server,	and	even	if	they	don’t,	all	the
servers	will	be	busy	at	the	same	time,	which	may	affect	their	capacity	to	provide	other
services.

As	usual,	Puppet	can	help;	this	time,	using	the	inline_template	function	to	calculate	a
unique	time	for	each	job.

How	to	do	it…
Here’s	how	to	have	Puppet	schedule	the	same	job	at	a	different	time	for	each	machine:

1.	 Modify	your	site.pp	file	as	follows:

node	'cookbook'	{

		cron	{	'run-backup':

				ensure		=>	present,

				command	=>	'/usr/local/bin/backup',

				hour				=>	inline_template('<%=	@hostname.sum	%	24	%>'),

				minute		=>	'00',

		}

}

2.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413730771'

Notice:	/Stage[main]/Main/Node[cookbook]/Cron[run-backup]/ensure:	

created

Notice:	Finished	catalog	run	in	0.11	seconds

3.	 Run	crontab	to	see	how	the	job	has	been	configured:

[root@cookbook	~]#	crontab	-l

#	HEADER:	This	file	was	autogenerated	at	Sun	Oct	19	10:59:32	-0400	2014	

by	puppet.

#	HEADER:	While	it	can	still	be	managed	manually,	it	is	definitely	not	

recommended.

#	HEADER:	Note	particularly	that	the	comments	starting	with	'Puppet	

Name'	should

#	HEADER:	not	be	deleted,	as	doing	so	could	cause	duplicate	cron	jobs.

#	Puppet	Name:	run-backup

0	15	*	*	*	/usr/local/bin/backup

How	it	works…
We	want	to	distribute	the	hour	of	the	cron	job	runs	across	all	our	nodes.	We	choose
something	that	is	unique	across	all	the	machines	and	convert	it	to	a	number.	This	way,	the
value	will	be	distributed	across	the	nodes	and	will	not	change	per	node.

We	can	do	the	conversion	using	Ruby’s	sum	method,	which	computes	a	numerical	value
from	a	string	that	is	unique	to	the	machine	(in	this	case,	the	machine’s	hostname).	The	sum
function	will	generate	a	large	integer	(in	the	case	of	the	string	cookbook,	the	sum	is	855),
and	we	want	values	for	hour	between	0	and	23,	so	we	use	Ruby’s	%	(modulo)	operator	to
restrict	the	result	to	this	range.	We	should	get	a	reasonably	good	(though	not	statistically
uniform)	distribution	of	values,	depending	on	your	hostnames.	Another	option	here	is	to
use	the	fqdn_rand()	function,	which	works	in	much	the	same	way	as	our	example.

If	all	your	machines	have	the	same	name	(it	does	happen),	don’t	expect	this	trick	to	work!
In	this	case,	you	can	use	some	other	string	that	is	unique	to	the	machine,	such	as
ipaddress	or	fqdn.

There’s	more…
If	you	have	several	cron	jobs	per	machine	and	you	want	to	run	them	a	certain	number	of
hours	apart,	add	this	number	to	the	hostname.sum	resource	before	taking	the	modulus.
Let’s	say	we	want	to	run	the	dump_database	job	at	some	arbitrary	time	and	the
run_backup	job	an	hour	later,	this	can	be	done	using	the	following	code	snippet:

cron	{	'dump-database':

		ensure		=>	present,

		command	=>	'/usr/local/bin/dump_database',

		hour				=>	inline_template('<%=	@hostname.sum	%	24	%>'),

		minute		=>	'00',

}

cron	{	'run-backup':

		ensure		=>	present,

		command	=>	'/usr/local/bin/backup',

		hour				=>	inline_template('<%=	(@hostname.sum	+	1)	%	24	%>'),

		minute		=>	'00',

}

The	two	jobs	will	end	up	with	different	hour	values	for	each	machine	Puppet	runs	on,	but
run_backup	will	always	be	one	hour	after	dump_database.

Most	cron	implementations	have	directories	for	hourly,	daily,	weekly,	and	monthly	tasks.
The	directories	/etc/cron.hourly,	/etc/cron.daily,	/etc/cron.weekly,	and
/etc/cron.monthly	exist	on	both	our	Debian	and	Enterprise	Linux	machines.	These
directories	hold	executables,	which	will	be	run	on	the	referenced	schedule	(hourly,	daily,
weekly,	or	monthly).	I	find	it	better	to	describe	all	the	jobs	in	these	folders	and	push	the
jobs	as	file	resources.	An	admin	on	the	box	searching	for	your	script	will	be	able	to	find
it	with	grep	in	these	directories.	To	use	the	same	trick	here,	we	would	push	a	cron	task
into	/etc/cron.hourly	and	then	verify	that	the	hour	is	the	correct	hour	for	the	task	to	run.
To	create	the	cron	jobs	using	the	cron	directories,	follow	these	steps:

1.	 First,	create	a	cron	class	in	modules/cron/init.pp:

class	cron	{

		file	{	'/etc/cron.hourly/run-backup':

				content	=>	template('cron/run-backup'),

				mode				=>	0755,

		}

}

2.	 Include	the	cron	class	in	your	cookbook	node	in	site.pp:

node	cookbook	{

		include	cron

}

3.	 Create	a	template	to	hold	the	cron	task:

#!/bin/bash

runhour=<%=	@hostname.sum%24	%>

hour=$(date	+%H)

if	["$runhour"	-ne	"$hour"];	then

		exit	0

fi

echo	run-backup

4.	 Then,	run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413732254'

Notice:	/Stage[main]/Cron/File[/etc/cron.hourly/run-backup]/ensure:	

defined	content	as	'{md5}5e50a7b586ce774df23301ee72904dda'

Notice:	Finished	catalog	run	in	0.11	seconds

5.	 Verify	that	the	script	has	the	same	value	we	calculated	before,	15:

#!/bin/bash

runhour=15

hour=$(date	+%H)

if	["$runhour"	-ne	"$hour"];	then

		exit	0

fi

echo	run-backup

Now,	this	job	will	run	every	hour	but	only	when	the	hour,	returned	by	$(date	+%H),	is
equal	to	15	will	the	rest	of	the	script	run.	Creating	your	cron	jobs	as	file	resources	in	a
large	organization	makes	it	easier	for	your	fellow	administrators	to	find	them.	When	you
have	a	very	large	number	of	machines,	it	can	be	advantageous	to	add	another	random	wait
at	the	beginning	of	your	job.	You	would	need	to	modify	the	line	before	echo	run-backup
and	add	the	following:

MAXWAIT=600

sleep	$((RANDOM%MAXWAIT))

This	will	sleep	a	maximum	of	600	seconds	but	will	sleep	a	different	amount	each	time	it
runs	(assuming	your	random	number	generator	is	working).	This	sort	of	random	wait	is
useful	when	you	have	thousands	of	machines,	all	running	the	same	task	and	you	need	to
stagger	the	runs	as	much	as	possible.

See	also
The	Running	Puppet	from	cron	recipe	in	Chapter	2,	Puppet	Infrastructure

Scheduling	when	resources	are	applied
So	far,	we	looked	at	what	Puppet	can	do,	and	the	order	that	it	does	things	in,	but	not	when
it	does	them.	One	way	to	control	this	is	to	use	the	schedule	metaparameter.	When	you
need	to	limit	the	number	of	times	a	resource	is	applied	within	a	specified	period,	schedule
can	help.	For	example:

exec	{	"/usr/bin/apt-get	update":

				schedule	=>	daily,

}

The	most	important	thing	to	understand	about	schedule	is	that	it	can	only	stop	a	resource
being	applied.	It	doesn’t	guarantee	that	the	resource	will	be	applied	with	a	certain
frequency.	For	example,	the	exec	resource	shown	in	the	preceding	code	snippet	has
schedule	=>	daily,	but	this	just	represents	an	upper	limit	on	the	number	of	times	the
exec	resource	can	run	per	day.	It	won’t	be	applied	more	than	once	a	day.	If	you	don’t	run
Puppet	at	all,	the	resource	won’t	be	applied	at	all.	Using	the	hourly	schedule,	for	instance,
is	meaningless	on	a	machine	configured	to	run	the	agent	every	4	hours	(via	the
runinterval	configuration	setting).

That	being	said,	schedule	is	best	used	to	restrict	resources	from	running	when	they
shouldn’t,	or	don’t	need	to;	for	example,	you	might	want	to	make	sure	that	apt-get
update	isn’t	run	more	than	once	an	hour.	There	are	some	built-in	schedules	available	for
you	to	use:

hourly

daily

weekly

monthly

never

However,	you	can	modify	these	and	create	your	own	custom	schedules,	using	the
schedule	resource.	We’ll	see	how	to	do	this	in	the	following	example.	Let’s	say	we	want
to	make	sure	that	an	exec	resource	representing	a	maintenance	job	won’t	run	during	office
hours,	when	it	might	interfere	with	production.

How	to	do	it…
In	this	example,	we’ll	create	a	custom	schedule	resource	and	assign	this	to	the	resource:

1.	 Modify	your	site.pp	file	as	follows:

schedule	{	'outside-office-hours':

		period	=>	daily,

		range		=>	['17:00-23:59','00:00-09:00'],

		repeat	=>	1,

}

node	'cookbook'	{

		notify	{	'Doing	some	maintenance':

				schedule	=>	'outside-office-hours',

		}

}

2.	 Run	Puppet.	What	you’ll	see	will	depend	on	the	time	of	the	day.	If	it’s	currently
outside	the	office	hours	period	you	defined,	Puppet	will	apply	the	resource	as
follows:

[root@cookbook	~]#	date

Fri	Jan		2	23:59:01	PST	2015

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413734477'

Notice:	Doing	some	maintenance

Notice:	/Stage[main]/Main/Node[cookbook]/Notify[Doing	some	

maintenance]/message:	defined	'message'	as	'Doing	some	maintenance'

Notice:	Finished	catalog	run	in	0.07	seconds

3.	 If	the	time	is	within	the	office	hours	period,	Puppet	will	do	nothing:

[root@cookbook	~]#	date

Fri	Jan		2	09:59:01	PST	2015

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413734289'

Notice:	Finished	catalog	run	in	0.09	seconds

How	it	works…
A	schedule	consists	of	three	bits	of	information:

The	period	(hourly,	daily,	weekly,	or	monthly)
The	range	(defaults	to	the	whole	period,	but	can	be	a	smaller	part	of	it)
The	repeat	count	(how	often	the	resource	is	allowed	to	be	applied	within	the	range;
the	default	is	1	or	once	per	period)

Our	custom	schedule	named	outside-office-hours	supplies	these	three	parameters:

schedule	{	'outside-office-hours':

		period	=>	daily,

		range		=>	['17:00-23:59','00:00-09:00'],

		repeat	=>	1,

}

The	period	is	daily,	and	range	is	defined	as	an	array	of	two	time	intervals:

17:00-23:59

00:00-09:00

The	schedule	named	outside-office-hours	is	now	available	for	us	to	use	with	any
resource,	just	as	though	it	were	built	into	Puppet	such	as	the	daily	or	hourly	schedules.	In
our	example,	we	assign	this	schedule	to	the	exec	resource	using	the	schedule
metaparameter:

notify	{	'Doing	some	maintenance':

		schedule	=>	'outside-office-hours',

}

Without	this	schedule	parameter,	the	resource	would	be	applied	every	time	Puppet	runs.
With	it,	Puppet	will	check	the	following	parameters	to	decide	whether	or	not	to	apply	the
resource:

Whether	the	time	is	in	the	permitted	range
Whether	the	resource	has	already	been	run	the	maximum	permitted	number	of	times
in	this	period

For	example,	let’s	consider	what	happens	if	Puppet	runs	at	4	p.m.,	5	p.m.,	and	6	p.m.	on	a
given	day:

4	p.m.:	It’s	outside	the	permitted	time	range,	so	Puppet	will	do	nothing
5	p.m.:	It’s	inside	the	permitted	time	range,	and	the	resource	hasn’t	been	run	yet	in
this	period,	so	Puppet	will	apply	the	resource
6	p.m.:	It’s	inside	the	permitted	time	range,	but	the	resource	has	already	been	run	the
maximum	number	of	times	in	this	period,	so	Puppet	will	do	nothing

And	so	on	until	the	next	day.

There’s	more…
The	repeat	parameter	governs	how	many	times	the	resource	will	be	applied	given	the
other	constraints	of	the	schedule.	For	example,	to	apply	a	resource	no	more	than	six	times
an	hour,	use	a	schedule	as	follows:

period	=>	hourly,

repeat	=>	6,

Remember	that	this	won’t	guarantee	that	the	job	is	run	six	times	an	hour.	It	just	sets	an
upper	limit;	no	matter	how	often	Puppet	runs	or	anything	else	happens,	the	job	won’t	be
run	if	it	has	already	run	six	times	this	hour.	If	Puppet	only	runs	once	a	day,	the	job	will	just
be	run	once.	So	schedule	is	best	used	to	make	sure	things	don’t	happen	at	certain	times
(or	don’t	exceed	a	given	frequency).

Using	host	resources
It’s	not	always	practical	or	convenient	to	use	DNS	to	map	your	machine	names	to	IP
addresses,	especially	in	cloud	infrastructures,	where	those	addresses	may	change	all	the
time.	However,	if	you	use	entries	in	the	/etc/hosts	file	instead,	you	then	have	the
problem	of	how	to	distribute	these	entries	to	all	machines	and	keep	them	up	to	date.

Here’s	a	better	way	to	do	it;	Puppet’s	host	resource	type	controls	a	single	/etc/hosts
entry,	and	you	can	use	this	to	map	a	hostname	to	an	IP	address	easily	across	your	whole
network.	For	example,	if	all	your	machines	need	to	know	the	address	of	the	main	database
server,	you	can	manage	it	with	a	host	resource.

How	to	do	it…
Follow	these	steps	to	create	an	example	host	resource:

1.	 Modify	your	site.pp	file	as	follows:

node	'cookbook'	{

		host	{	'packtpub.com':

				ensure	=>	present,

				ip					=>	'83.166.169.231',

		}

}

2.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413781153'

Notice:	/Stage[main]/Main/Node[cookbook]/Host[packtpub.com]/ensure:	

created

Info:	Computing	checksum	on	file	/etc/hosts

Notice:	Finished	catalog	run	in	0.12	seconds

How	it	works…
Puppet	will	check	the	target	file	(usually	/etc/hosts)	to	see	whether	the	host	entry
already	exists,	and	if	not,	add	it.	If	an	entry	for	that	hostname	already	exists	with	a
different	address,	Puppet	will	change	the	address	to	match	the	manifest.

There’s	more…
Organizing	your	host	resources	into	classes	can	be	helpful.	For	example,	you	could	put	the
host	resources	for	all	your	DB	servers	into	one	class	called	admin::dbhosts,	which	is
included	by	all	web	servers.

Where	machines	may	need	to	be	defined	in	multiple	classes	(for	example,	a	database
server	might	also	be	a	repository	server),	virtual	resources	can	solve	this	problem.	For
example,	you	could	define	all	your	hosts	as	virtual	in	a	single	class:

class	admin::allhosts	{

		@host	{	'db1.packtpub.com':

				tag	=>	'database'

				...

		}

}

You	could	then	realize	the	hosts	you	need	in	the	various	classes:

class	admin::dbhosts	{

		Host	<|	tag=='database'	|>

}

class	admin::webhosts	{

		Host	<|	tag=='web'	|>

}

Using	exported	host	resources
In	the	previous	example,	we	used	the	spaceship	syntax	to	collect	virtual	host	resources	for
hosts	of	type	database	or	type	web.	You	can	use	the	same	trick	with	exported	resources.
The	advantage	to	using	exported	resources	is	that	as	you	add	more	database	servers,	the
collector	syntax	will	automatically	pull	in	the	newly	created	exported	host	entries	for	those
servers.	This	makes	your	/etc/hosts	entries	more	dynamic.

Getting	ready
We	will	be	using	exported	resources.	If	you	haven’t	already	done	so,	set	up	puppetdb	and
enable	storeconfigs	to	use	puppetdb	as	outlined	in	Chapter	2,	Puppet	Infrastructure.

How	to	do	it…
In	this	example,	we	will	configure	database	servers	and	clients	to	communicate	with	each
other.	We’ll	make	use	of	exported	resources	to	do	the	configuration.

1.	 Create	a	new	database	module,	db:

t@mylaptop	~/puppet/modules	$	mkdir	-p	db/manifests

2.	 Create	a	new	class	for	your	database	servers,	db::server:

class	db::server	{

		@@host	{"$::fqdn":

				host_aliases	=>	$::hostname,

				ip											=>	$::ipaddress,

				tag										=>	'db::server',

		}

		#	rest	of	db	class

}

3.	 Create	a	new	class	for	your	database	clients:

class	db::client	{

		Host	<<|	tag	==	'db::server'	|>>

}

4.	 Apply	the	database	server	module	to	some	nodes,	in	site.pp,	for	example:

node	'dbserver1.example.com'	{

		class	{'db::server':	}

}

node	'dbserver2.example.com'	{

		class	{'db::server':	}

}

5.	 Run	Puppet	on	the	nodes	with	the	database	server	module	to	create	the	exported
resources.

6.	 Apply	the	database	client	module	to	cookbook:

node	'cookbook'	{

		class	{'db::client':	}

}

7.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413782501'

Notice:	/Stage[main]/Db::Client/Host[dbserver2.example.com]/ensure:	

created

Info:	Computing	checksum	on	file	/etc/hosts

Notice:	/Stage[main]/Db::Client/Host[dbserver1.example.com]/ensure:	

created

Notice:	Finished	catalog	run	in	0.10	seconds

8.	 Verify	the	host	entries	in	/etc/hosts:

[root@cookbook	~]#	cat	/etc/hosts

#	HEADER:	This	file	was	autogenerated	at	Mon	Oct	20	01:21:42	-0400	2014

#	HEADER:	by	puppet.		While	it	can	still	be	managed	manually,	it

#	HEADER:	is	definitely	not	recommended.

127.0.0.1	 localhost		localhost.localdomain	localhost4	

localhost4.localdomain4	

::1		localhost		localhost.localdomain	localhost6	

localhost6.localdomain6

83.166.169.231		packtpub.com

192.168.122.150		dbserver2.example.com		dbserver2

192.168.122.151		dbserver1.example.com		dbserver1

How	it	works…
In	the	db::server	class,	we	create	an	exported	host	resource:

@@host	{"$::fqdn":

		host_aliases	=>	$::hostname,

		ip											=>	$::ipaddress,

		tag										=>	'db::server',

}

This	resource	uses	the	fully	qualified	domain	name	($::fqdn)	of	the	node	on	which	it	is
applied.	We	also	use	the	short	hostname	($::hostname)	as	an	alias	of	the	node.	Aliases	are
printed	after	fqdn	in	/etc/hosts.	We	use	the	node’s	$::ipaddress	fact	as	the	IP	address
for	the	host	entry.	Finally,	we	add	a	tag	to	the	resource	so	that	we	can	collect	based	on	that
tag	later.

The	important	thing	to	remember	here	is	that	if	the	ip	address	should	change	for	the	host,
the	exported	resource	will	be	updated,	and	nodes	that	collect	the	exported	resource	will
update	their	host	records	accordingly.

We	created	a	collector	in	db::client,	which	only	collects	exported	host	resources	that
have	been	tagged	with	'db::server':

Host	<<|	tag	==	'db::server'	|>>

We	applied	the	db::server	class	for	a	couple	of	nodes,	dbserver1	and	dbserver2,	which
we	then	collected	on	cookbook	by	applying	the	db::client	class.	The	host	entries	were
placed	in	/etc/hosts	(the	default	file).	We	can	see	that	the	host	entry	contains	both	the
fqdn	and	the	short	hostname	for	dbserver1	and	dbserver2.

There’s	more…
Using	exported	resources	in	this	manner	is	very	useful.	Another	similar	system	would	be
to	create	an	NFS	server	class,	which	creates	exported	resources	for	the	mount	points	that	it
exports	(via	NFS).	You	can	then	use	tags	to	have	clients	collect	the	appropriate	mount
points	from	the	server.	In	the	previous	example,	we	made	use	of	a	tag	to	aid	in	our
collection	of	exported	resources.	It	is	worth	noting	that	there	are	several	tags	automatically
added	to	resources	when	they	are	created,	one	of	which	is	the	scope	where	the	resource
was	created.

Using	multiple	file	sources
A	neat	feature	of	Puppet’s	file	resource	is	that	you	can	specify	multiple	values	for	the
source	parameter.	Puppet	will	search	them	in	order.	If	the	first	source	isn’t	found,	it
moves	on	to	the	next,	and	so	on.	You	can	use	this	to	specify	a	default	substitute	if	the
particular	file	isn’t	present,	or	even	a	series	of	increasingly	generic	substitutes.

How	to	do	it…
This	example	demonstrates	using	multiple	file	sources:

1.	 Create	a	new	greeting	module	as	follows:

class	greeting	{

		file	{	'/tmp/greeting':

				source	=>	['puppet:///modules/greeting/hello.txt',

																'puppet:///modules/greeting/universal.txt'],

		}

}

2.	 Create	the	file	modules/greeting/files/hello.txt	with	the	following	contents:

Hello,	world.

3.	 Create	the	file	modules/greeting/files/universal.txt	with	the	following
contents:

Bah-weep-Graaaaagnah	wheep	ni	ni	bong

4.	 Add	the	class	to	a	node:

node	cookbook	{

		class	{'greeting':	}

}

5.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413784347'

Notice:	/Stage[main]/Greeting/File[/tmp/greeting]/ensure:	defined	

content	as	'{md5}54098b367d2e87b078671fad4afb9dbb'

Notice:	Finished	catalog	run	in	0.43	seconds

6.	 Check	the	contents	of	the	/tmp/greeting	file:

[root@cookbook	~]#	cat	/tmp/greeting	

Hello,	world.

7.	 Now	remove	the	hello.txt	file	from	your	Puppet	repository	and	rerun	the	agent:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413784939'

Notice:	/Stage[main]/Greeting/File[/tmp/greeting]/content:	

---	/tmp/greeting	 2014-10-20	01:52:28.117999991	-0400

+++	/tmp/puppet-file20141020-4960-1o9g344-0	 2014-10-20	

02:02:20.695999979	-0400

@@	-1	+1	@@

-Hello,	world.

+Bah-weep-Graaaaagnah	wheep	ni	ni	bong

Info:	Computing	checksum	on	file	/tmp/greeting

Info:	/Stage[main]/Greeting/File[/tmp/greeting]:	Filebucketed	

/tmp/greeting	to	puppet	with	sum	54098b367d2e87b078671fad4afb9dbb

Notice:	/Stage[main]/Greeting/File[/tmp/greeting]/content:	content	

changed	'{md5}54098b367d2e87b078671fad4afb9dbb'	to	

'{md5}933c7f04d501b45456e830de299b5521'

Notice:	Finished	catalog	run	in	0.77	seconds

How	it	works…
On	the	first	Puppet	run,	puppet	searches	for	the	available	file	sources	in	the	order	given:

source	=>	[

		'puppet:///modules/greeting/hello.txt',

		'puppet:///modules/greeting/universal.txt'

],

The	file	hello.txt	is	first	in	the	list,	and	is	present,	so	Puppet	uses	that	as	the	source	for
/tmp/greeting:

Hello,	world.

On	the	second	Puppet	run,	hello.txt	is	missing,	so	Puppet	goes	on	to	look	for	the	next
file,	universal.txt.	This	is	present,	so	it	becomes	the	source	for	/tmp/greeting:

Bah-weep-Graaaaagnah	wheep	ni	ni	bong

There’s	more…
You	can	use	this	trick	anywhere	you	have	a	file	resource.	A	common	example	is	a
service	that	is	deployed	on	all	nodes,	such	as	rsyslog.	The	rsyslog	configuration	is	the
same	on	every	host	except	for	the	rsyslog	server.	Create	an	rsyslog	class	with	a	file
resource	for	the	rsyslog	configuration	file:

class	rsyslog	{

		file	{	'/etc/rsyslog.conf':

				source	=>	[

						"puppet:///modules/rsyslog/rsyslog.conf.${::hostname}",

						'puppet:///modules/rsyslog/rsyslog.conf'],

		}

Then,	you	put	the	default	configuration	in	rsyslog.conf.	For	your	rsyslog	server,	logger,
create	an	rsyslog.conf.logger	file.	On	the	machine	logger,	rsyslog.conf.logger	will
be	used	before	rsyslog.conf	because	it	is	listed	first	in	the	array	of	sources.

See	also
The	Passing	parameters	to	classes	recipe	in	Chapter	3,	Writing	Better	Manifests

Distributing	and	merging	directory	trees
As	we	saw	in	the	previous	chapter,	the	file	resource	has	a	recurse	parameter,	which
allows	Puppet	to	transfer	entire	directory	trees.	We	used	this	parameter	to	copy	an	admin
user’s	dotfiles	into	their	home	directory.	In	this	section,	we’ll	show	how	to	use	recurse
and	another	parameter	sourceselect	to	extend	our	previous	example.

How	to	do	it…
Modify	our	admin	user	example	as	follows:

1.	 Remove	the	$dotfiles	parameter,	remove	the	condition	based	on	$dotfiles.	Add	a
second	source	to	the	home	directory	file	resource:

define	admin_user	($key,	$keytype)	{	

		$username	=	$name

		user	{	$username:

				ensure					=>	present,

		}

		file	{	"/home/${username}/.ssh":

				ensure		=>	directory,

				mode				=>	'0700',

				owner			=>	$username,

				group			=>	$username,

				require	=>	File["/home/${username}"],

		}

		ssh_authorized_key	{	"${username}_key":

				key					=>	$key,

				type				=>	"$keytype",

				user				=>	$username,

				require	=>	File["/home/${username}/.ssh"],

		}

		#	copy	in	all	the	files	in	the	subdirectory

		file	{	"/home/${username}":

				recurse	=>	true,

				mode				=>	'0700',

				owner			=>	$username,

				group			=>	$username,

				source		=>	[

						"puppet:///modules/admin_user/${username}",

						'puppet:///modules/admin_user/base'],

				sourceselect	=>	'all',

				require						=>	User["$username"],

		}

}

2.	 Create	a	base	directory	and	copy	all	the	system	default	files	from	/etc/skel:

t@mylaptop	~/puppet/modules/admin_user/files	$	cp	-a	/etc/skel	base

3.	 Create	a	new	admin_user	resource,	one	that	will	not	have	a	directory	defined:

node	'cookbook'	{

		admin_user	{'steven':

				key					=>	'AAAAB3N…',

				keytype	=>	'dsa',

		}

}

4.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413787159'

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[steven]/User[steven]/ensure

:	created

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[steven]/File[/home/steven]/

ensure:	created

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[steven]/File[/home/steven/.

bash_logout]/ensure:	defined	content	as	

'{md5}6a5bc1cc5f80a48b540bc09d082b5855'

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[steven]/File[/home/steven/.

emacs]/ensure:	defined	content	as	

'{md5}de7ee35f4058681a834a99b5d1b048b3'

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[steven]/File[/home/steven/.

bashrc]/ensure:	defined	content	as	

'{md5}2f8222b4f275c4f18e69c34f66d2631b'

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[steven]/File[/home/steven/.

bash_profile]/ensure:	defined	content	as	

'{md5}f939eb71a81a9da364410b799e817202'

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[steven]/File[/home/steven/.

ssh]/ensure:	created

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[steven]/Ssh_authorized_key[

steven_key]/ensure:	created

Notice:	Finished	catalog	run	in	1.11	seconds

How	it	works…
If	a	file	resource	has	the	recurse	parameter	set	on	it,	and	it	is	a	directory,	Puppet	will
deploy	not	only	the	directory	itself,	but	all	its	contents	(including	subdirectories	and	their
contents).	As	we	saw	in	the	previous	example,	when	a	file	has	more	than	one	source,	the
first	source	file	found	is	used	to	satisfy	the	request.	This	applies	to	directories	as	well.

There’s	more…
By	specifying	the	parameter	sourceselect	as	‘all’,	the	contents	of	all	the	source
directories	will	be	combined.	For	example,	add	thomas	admin_user	back	into	your	node
definition	in	site.pp	for	cookbook:

admin_user	{'thomas':

				key					=>	'ABBA…',

				keytype	=>	'rsa',

		}

Now	run	Puppet	again	on	cookbook:

[root@cookbook	thomas]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413787770'

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[thomas]/File[/home/thomas/.bash

_profile]/content:	content	changed	'{md5}3e8337f44f84b298a8a99869ae8ca76a'	

to	'{md5}f939eb71a81a9da364410b799e817202'

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[thomas]/File[/home/thomas/.bash

_profile]/group:	group	changed	'root'	to	'thomas'

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[thomas]/File[/home/thomas/.bash

_profile]/mode:	mode	changed	'0644'	to	'0700'

Notice:	/File[/home/thomas/.bash_profile]/seluser:	seluser	changed	

'system_u'	to	'unconfined_u'

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[thomas]/File[/home/thomas/.bash

_logout]/ensure:	defined	content	as	'{md5}6a5bc1cc5f80a48b540bc09d082b5855'

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[thomas]/File[/home/thomas/.bash

rc]/content:	content	changed	'{md5}db2a20b2b9cdf36cca1ca4672622ddd2'	to	

'{md5}033c3484e4b276e0641becc3aa268a3a'

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[thomas]/File[/home/thomas/.bash

rc]/group:	group	changed	'root'	to	'thomas'

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[thomas]/File[/home/thomas/.bash

rc]/mode:	mode	changed	'0644'	to	'0700'

Notice:	/File[/home/thomas/.bashrc]/seluser:	seluser	changed	'system_u'	to	

'unconfined_u'

Notice:	

/Stage[main]/Main/Node[cookbook]/Admin_user[thomas]/File[/home/thomas/.emac

s]/ensure:	defined	content	as	'{md5}de7ee35f4058681a834a99b5d1b048b3'

Notice:	Finished	catalog	run	in	0.86	seconds

Because	we	previously	applied	the	thomas	admin_user	to	cookbook,	the	user	existed.	The
two	files	defined	in	the	thomas	directory	on	the	Puppet	server	were	already	in	the	home
directory,	so	only	the	additional	files,	.bash_logout,	.bash_profile,	and	.emacs	were
created.	Using	these	two	parameters	together,	you	can	have	default	files	that	can	be
overridden	easily.

Sometimes	you	want	to	deploy	files	to	an	existing	directory	but	remove	any	files	which
aren’t	managed	by	Puppet.	A	good	example	would	be	if	you	are	using	mcollective	in
your	environment.	The	directory	holding	client	credentials	should	only	have	certificates
that	come	from	Puppet.

The	purge	parameter	will	do	this	for	you.	Define	the	directory	as	a	resource	in	Puppet:

file	{	'/etc/mcollective/ssl/clients':

		purge			=>	true,

		recurse	=>	true,

}

The	combination	of	recurse	and	purge	will	remove	all	files	and	subdirectories	in
/etc/mcollective/ssl/clients	that	are	not	deployed	by	Puppet.	You	can	then	deploy
your	own	files	to	that	location	by	placing	them	in	the	appropriate	directory	on	the	Puppet
server.

If	there	are	subdirectories	that	contain	files	you	don’t	want	to	purge,	just	define	the
subdirectory	as	a	Puppet	resource,	and	it	will	be	left	alone:

file	{	'/etc/mcollective/ssl/clients':

		purge	=>	true,

		recurse	=>	true,

}

file	{	'/etc/mcollective/ssl/clients/local':

		ensure	=>	directory,

}

Note
Be	aware	that,	at	least	in	current	implementations	of	Puppet,	recursive	file	copies	can	be
quite	slow	and	place	a	heavy	memory	load	on	the	server.	If	the	data	doesn’t	change	very
often,	it	might	be	better	to	deploy	and	unpack	a	tar	file	instead.	This	can	be	done	with	a
file	resource	for	the	tar	file	and	an	exec,	which	requires	the	file	resource	and	unpacks	the
archive.	Recursive	directories	are	less	of	a	problem	when	filled	with	small	files.	Puppet	is
not	a	very	efficient	file	server,	so	creating	large	tar	files	and	distributing	them	with	Puppet
is	not	a	good	idea	either.	If	you	need	to	copy	large	files	around,	using	the	Operating
Systems	packager	is	a	better	solution.

Cleaning	up	old	files
Puppet’s	tidy	resource	will	help	you	clean	up	old	or	out-of-date	files,	reducing	disk	usage.
For	example,	if	you	have	Puppet	reporting	enabled	as	described	in	the	section	on
generating	reports,	you	might	want	to	regularly	delete	old	report	files.

How	to	do	it…
Let’s	get	started.

1.	 Modify	your	site.pp	file	as	follows:

node	'cookbook'	{

		tidy	{	'/var/lib/puppet/reports':

				age					=>	'1w',

				recurse	=>	true,

		}

}

2.	 Run	Puppet:

[root@cookbook	clients]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Notice:	

/Stage[main]/Main/Node[cookbook]/File[/var/lib/puppet/reports/cookbook.

example.com/201409090637.yaml]/ensure:	removed

Notice:	

/Stage[main]/Main/Node[cookbook]/File[/var/lib/puppet/reports/cookbook.

example.com/201409100556.yaml]/ensure:	removed

Notice:	

/Stage[main]/Main/Node[cookbook]/File[/var/lib/puppet/reports/cookbook.

example.com/201409090631.yaml]/ensure:	removed

Notice:	

/Stage[main]/Main/Node[cookbook]/File[/var/lib/puppet/reports/cookbook.

example.com/201408210557.yaml]/ensure:	removed

Notice:	

/Stage[main]/Main/Node[cookbook]/File[/var/lib/puppet/reports/cookbook.

example.com/201409080557.yaml]/ensure:	removed

Notice:	

/Stage[main]/Main/Node[cookbook]/File[/var/lib/puppet/reports/cookbook.

example.com/201409100558.yaml]/ensure:	removed

Notice:	

/Stage[main]/Main/Node[cookbook]/File[/var/lib/puppet/reports/cookbook.

example.com/201408210546.yaml]/ensure:	removed

Notice:	

/Stage[main]/Main/Node[cookbook]/File[/var/lib/puppet/reports/cookbook.

example.com/201408210539.yaml]/ensure:	removed

Notice:	Finished	catalog	run	in	0.80	seconds

How	it	works…
Puppet	searches	the	specified	path	for	any	files	matching	the	age	parameter;	in	this	case,
2w	(two	weeks).	It	also	searches	subdirectories	(recurse	=>	true).

Any	files	matching	your	criteria	will	be	deleted.

There’s	more…
You	can	specify	file	ages	in	seconds,	minutes,	hours,	days,	or	weeks	by	using	a	single
character	to	specify	the	time	unit,	as	follows:

60s

180m

24h

30d

4w

You	can	specify	that	files	greater	than	a	given	size	should	be	removed,	as	follows:

size	=>	'100m',

This	removes	files	of	100	megabytes	and	over.	For	kilobytes,	use	k,	and	for	bytes,	use	b.

Note
Note	that	if	you	specify	both	age	and	size	parameters,	they	are	treated	as	independent
criteria.	For	example,	if	you	specify	the	following,	Puppet	will	remove	all	files	that	are
either	at	least	one	day	old,	or	at	least	512	KB	in	size:

age	=>	“1d”,

size	=>	“512k”,

Auditing	resources
Dry	run	mode,	using	the	--noop	switch,	is	a	simple	way	to	audit	any	changes	to	a	machine
under	Puppet’s	control.	However,	Puppet	also	has	a	dedicated	audit	feature,	which	can
report	changes	to	resources	or	specific	attributes.

How	to	do	it…
Here’s	an	example	showing	Puppet’s	auditing	capabilities:

1.	 Modify	your	site.pp	file	as	follows:

node	'cookbook'	{

		file	{	'/etc/passwd':

				audit	=>	[owner,	mode],

		}

}

2.	 Run	Puppet:

[root@cookbook	clients]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413789080'

Notice:	/Stage[main]/Main/Node[cookbook]/File[/etc/passwd]/owner:	audit	

change:	newly-recorded	value	0

Notice:	/Stage[main]/Main/Node[cookbook]/File[/etc/passwd]/mode:	audit	

change:	newly-recorded	value	644

Notice:	Finished	catalog	run	in	0.55	seconds

How	it	works…
The	audit	metaparameter	tells	Puppet	that	you	want	to	record	and	monitor	certain	things
about	the	resource.	The	value	can	be	a	list	of	the	parameters	that	you	want	to	audit.

In	this	case,	when	Puppet	runs,	it	will	now	record	the	owner	and	mode	of	the	/etc/passwd
file.	In	future	runs,	Puppet	will	spot	whether	either	of	these	has	changed.	For	example,	if
you	run:

[root@cookbook	~]#	chmod	666	/etc/passwd

Puppet	will	pick	up	this	change	and	log	it	on	the	next	run:

Notice:	/Stage[main]/Main/Node[cookbook]/File[/etc/passwd]/mode:	audit	

change:	previously	recorded	value	0644	has	been	changed	to	0666

There’s	more…
This	feature	is	very	useful	to	audit	large	networks	for	any	changes	to	machines,	either
malicious	or	accidental.	It’s	also	very	handy	to	keep	an	eye	on	things	that	aren’t	managed
by	Puppet,	for	example,	application	code	on	production	servers.	You	can	read	more	about
Puppet’s	auditing	capability	here:

http://puppetlabs.com/blog/all-about-auditing-with-puppet/

If	you	just	want	to	audit	everything	about	a	resource,	use	all:

file	{	'/etc/passwd':

		audit	=>	all,

}

http://puppetlabs.com/blog/all-about-auditing-with-puppet/

See	also
The	Noop	-	the	don’t	change	anything	option	recipe	in	Chapter	10,	Monitoring,
Reporting,	and	Troubleshooting

Temporarily	disabling	resources
Sometimes	you	want	to	disable	a	resource	for	the	time	being	so	that	it	doesn’t	interfere
with	other	work.	For	example,	you	might	want	to	tweak	a	configuration	file	on	the	server
until	you	have	the	exact	settings	you	want,	before	checking	it	into	Puppet.	You	don’t	want
Puppet	to	overwrite	it	with	an	old	version	in	the	meantime,	so	you	can	set	the	noop
metaparameter	on	the	resource:

noop	=>	true,

How	to	do	it…
This	example	shows	you	how	to	use	the	noop	metaparameter:

1.	 Modify	your	site.pp	file	as	follows:

node	'cookbook'	{

		file	{	'/etc/resolv.conf':

				content	=>	"nameserver	127.0.0.1\n",

				noop				=>	true,

		}

}

2.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1413789438'

Notice:	

/Stage[main]/Main/Node[cookbook]/File[/etc/resolv.conf]/content:	

---	/etc/resolv.conf		2014-10-20	00:27:43.095999975	-0400

+++	/tmp/puppet-file20141020-8439-1lhuy1y-0	 2014-10-20	

03:17:18.969999979	-0400

@@	-1,3	+1	@@		

-;	generated	by	/sbin/dhclient-script

-search	example.com

-nameserver	192.168.122.1

+nameserver	127.0.0.1

Notice:	

/Stage[main]/Main/Node[cookbook]/File[/etc/resolv.conf]/content:	

current_value	{md5}4c0d192511df253826d302bc830a371b,	should	be	

{md5}949343428bded6a653a85910f6bdb48e	(noop)

Notice:	Node[cookbook]:	Would	have	triggered	'refresh'	from	1	events

Notice:	Class[Main]:	Would	have	triggered	'refresh'	from	1	events

Notice:	Stage[main]:	Would	have	triggered	'refresh'	from	1	events

Notice:	Finished	catalog	run	in	0.50	seconds

How	it	works…
The	noop	metaparameter	is	set	to	true,	so	for	this	particular	resource,	it’s	as	if	you	had	to
run	Puppet	with	the	--noop	flag.	Puppet	noted	that	the	resource	would	have	been	applied,
but	otherwise	did	nothing.

The	nice	thing	with	running	the	agent	in	test	mode	(-t)	is	that	Puppet	output	a	diff	of	what
it	would	have	done	if	the	noop	was	not	present	(you	can	tell	puppet	to	show	the	diff’s
without	using	-t	with	--show_diff;	-t	implies	many	different	settings):

---	/etc/resolv.conf		2014-10-20	00:27:43.095999975	-0400

+++	/tmp/puppet-file20141020-8439-1lhuy1y-0	 2014-10-20	

03:17:18.969999979	-0400

@@	-1,3	+1	@@

-;	generated	by	/sbin/dhclient-script

-search	example.com

-nameserver	192.168.122.1

+nameserver	127.0.0.1

This	can	be	very	useful	when	debugging	a	template;	you	can	work	on	your	changes	and
then	see	what	they	would	look	like	on	the	node	without	actually	applying	them.	Using	the
diff,	you	can	see	whether	your	updated	template	produces	the	correct	output.

Chapter	7.	Managing	Applications
	 Everyone	knows	that	debugging	is	twice	as	hard	as	writing	a	program	in	the	first	place.	So	if	you’re	as	clever	as	you
can	be	when	you	write	it,	how	will	you	ever	debug	it?

	

	 —Brian	W.	Kernighan.

In	this	chapter,	we	will	cover	the	following	recipes:

Using	public	modules
Managing	Apache	servers
Creating	Apache	virtual	hosts
Creating	nginx	virtual	hosts
Managing	MySQL
Creating	databases	and	users

Introduction
Without	applications,	a	server	is	just	a	very	expensive	space	heater.	In	this	chapter,	I’ll
present	some	recipes	to	manage	some	specific	software	with	Puppet:	MySQL,	Apache,
nginx,	and	Ruby.	I	hope	the	recipes	will	be	useful	to	you	in	themselves.	However,	the
patterns	and	techniques	they	use	are	applicable	to	almost	any	software,	so	you	can	adapt
them	to	your	own	purposes	without	much	difficulty.	One	thing	that	is	common	about	these
applications,	they	are	common.	Most	Puppet	installations	will	have	to	deal	with	a	web
server,	Apache	or	nginx.	Most,	if	not	all,	will	have	databases	and	some	of	those	will	have
MySQL.	When	everyone	has	to	deal	with	a	problem,	community	solutions	are	generally
better	tested	and	more	thorough	than	homegrown	solutions.	We’ll	use	modules	from	the
Puppet	Forge	in	this	chapter	to	manage	these	applications.

When	you	are	writing	your	own	Apache	or	nginx	modules	from	scratch,	you’ll	have	to
pay	attention	to	the	nuances	of	the	distributions	you	support.	Some	distributions	call	the
apache	package	httpd,	while	others	use	apache2;	the	same	can	be	said	for	MySQL.	In
addition,	Debian-based	distributions	use	an	enabled	folder	method	to	enable	custom	sites
in	Apache,	which	are	virtual	sites,	whereas	RPM	based	distributions	do	not.	For	more
information	on	virtual	sites,	visit	http://httpd.apache.org/docs/2.2/vhosts/.

http://httpd.apache.org/docs/2.2/vhosts/

Using	public	modules
When	you	write	a	Puppet	module	to	manage	some	software	or	service,	you	don’t	have	to
start	from	scratch.	Community-contributed	modules	are	available	at	the	Puppet	Forge	site
for	many	popular	applications.	Sometimes,	a	community	module	will	be	exactly	what	you
need	and	you	can	download	and	start	using	it	straight	away.	In	most	cases,	you	will	need
to	make	some	modifications	to	suit	your	particular	needs	and	environment.

Like	all	community	efforts,	there	are	some	excellent	and	some	less	than	excellent	modules
on	the	Forge.	You	should	read	the	README	section	of	the	module	and	decide	whether
the	module	is	going	to	work	in	your	installation.	At	the	least,	ensure	that	your	distribution
is	supported.	Puppetlabs	has	introduced	a	set	of	modules	that	are	supported,	that	is,	if	you
are	an	enterprise	customer,	they	will	support	your	use	of	the	module	in	your	installation.
Additionally,	most	Forge	modules	deal	with	multiple	operating	systems,	distributions,	and
a	great	number	of	use	cases.	In	many	cases,	not	using	a	forge	module	is	like	reinventing
the	wheel.	One	caveat	though	is	that	Forge	modules	may	be	more	complex	than	your	local
modules.	You	should	read	the	code	and	get	a	sense	of	what	the	module	is	doing.	Knowing
how	the	module	works	will	help	you	debug	it	later.

How	to	do	it…
In	this	example,	we’ll	use	the	puppet	module	command	to	find	and	install	the	useful
stdlib	module,	which	contains	many	utility	functions	to	help	you	develop	Puppet	code.	It
is	one	of	the	aforementioned	supported	modules	by	puppetlabs.	I’ll	download	the	module
into	my	user’s	home	directory	and	manually	install	it	in	the	Git	repository.	To	install
puppetlabs	stdlib	module,	follow	these	steps:

1.	 Run	the	following	command:

t@mylaptop	~	$	puppet	module	search	puppetlabs-stdlib

Notice:	Searching	https://forgeapi.puppetlabs.com…

NAME															DESCRIPTION																									AUTHOR								

KEYWORDS								

puppetlabs-stdlib		Puppet	Module	Standard	Library						@puppetlabs			

stdlib	stages		

2.	 We	verified	that	we	have	the	right	module,	so	we’ll	install	it	with	module	install
now:

t@mylaptop	~	$	puppet	module	install	puppetlabs-stdlib

Notice:	Preparing	to	install	into	/home/thomas/.puppet/modules…

Notice:	Downloading	from	https://forgeapi.puppetlabs.com…

Notice:	Installing—do	not	interrupt…

/home/thomas/.puppet/modules

└──	puppetlabs-stdlib	(v4.3.2)

3.	 The	module	is	now	ready	to	use	in	your	manifests;	most	good	modules	come	with	a
README	file	to	show	you	how	to	do	this.

How	it	works…
You	can	search	for	modules	that	match	the	package	or	software	you’re	interested	in	with
the	puppet	module	search	command.	To	install	a	specific	module,	use	puppet	module
install.	You	can	add	the	-i	option	to	tell	Puppet	where	to	find	your	module	directory.

You	can	browse	the	forge	to	see	what’s	available	at	http://forge.puppetlabs.com/.

More	information	on	supported	modules	is	available	at
https://forge.puppetlabs.com/supported.

The	current	list	of	supported	modules	is	available	at
https://forge.puppetlabs.com/modules?endorsements=supported.

http://forge.puppetlabs.com/
https://forge.puppetlabs.com/supported
https://forge.puppetlabs.com/modules?endorsements=supported

There’s	more…
Modules	on	the	Forge	include	a	metadata.json	file,	which	describes	the	module	and
which	operating	systems	the	module	supports.	This	file	also	includes	a	list	of	modules	that
are	required	by	the	module.

Note
This	file	was	previously	named	Modulefile	and	not	in	JSON	format;	the	old	Modulefile
format	was	deprecated	in	Version	3.6.

As	we	will	see	in	our	next	section,	when	installing	a	module	from	the	Forge,	the	required
dependencies	will	automatically	be	installed	as	well.

Not	all	publically	available	modules	are	on	Puppet	Forge.	Some	other	great	places	to	look
at	on	GitHub	are:

https://github.com/camptocamp
https://github.com/example42

Though	not	a	collection	of	modules	as	such,	the	Puppet	Cookbook	website	has	many
useful	and	illuminating	code	examples,	patterns,	and	tips,	maintained	by	the	admirable
Dean	Wilson:

http://www.puppetcookbook.com/

https://github.com/camptocamp
https://github.com/example42
http://www.puppetcookbook.com/

Managing	Apache	servers
Apache	is	the	world’s	favorite	web	server,	so	it’s	highly	likely	that	part	of	your	Puppetly
duties	will	include	installing	and	managing	Apache.

How	to	do	it…
We’ll	install	and	use	the	puppetlabs-apache	module	to	install	and	start	Apache.	This
time,	when	we	run	puppet	module	install,	we’ll	use	the	-i	option	to	tell	Puppet	to
install	the	module	in	our	Git	repository’s	module’s	directory.

1.	 Install	the	module	using	puppet	modules	install:

t@mylaptop	~/puppet	$	puppet	module	install	-i	modules	puppetlabs-

apache

Notice:	Preparing	to	install	into	/home/thomas/puppet/modules…

Notice:	Downloading	from	https://forgeapi.puppetlabs.com…

Notice:	Installing—do	not	interrupt…

/home/thomas/puppet/modules

└─┬	puppetlabs-apache	(v1.1.1)

		├──	puppetlabs-concat	(v1.1.1)

		└──	puppetlabs-stdlib	(v4.3.2)

2.	 Add	the	modules	to	your	Git	repository	and	push	them	out:

t@mylaptop	~/puppet	$	git	add	modules/apache	modules/concat	

modules/stdlib

t@mylaptop	~/puppet	$	git	commit	-m	"adding	puppetlabs-apache	module"

[production	395b079]	adding	puppetlabs-apache	module

	647	files	changed,	35017	insertions(+),	13	deletions(-)

	rename	modules/{apache	=>	apache.cookbook}/manifests/init.pp	(100%)

	create	mode	100644	modules/apache/CHANGELOG.md

	create	mode	100644	modules/apache/CONTRIBUTING.md

...

t@mylaptop	~/puppet	$	git	push	origin	production

Counting	objects:	277,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(248/248),	done.

Writing	objects:	100%	(266/266),	136.25	KiB	|	0	bytes/s,	done.

Total	266	(delta	48),	reused	0	(delta	0)

remote:	To	

puppet@puppet.example.com:/etc/puppet/environments/puppet.git

remote:				9faaa16..395b079		production	->	production

3.	 Create	a	web	server	node	definition	in	site.pp:

node	webserver	{

		class	{'apache':	}

}

4.	 Run	Puppet	to	apply	the	default	Apache	module	configuration:

[root@webserver	~]#	puppet	agent	-t

Info:	Caching	certificate	for	webserver.example.com

Notice:	/File[/var/lib/puppet/lib/puppet/provider/a2mod]/ensure:	

created

...

Info:	Caching	catalog	for	webserver.example.com

...

Info:	Class[Apache::Service]:	Scheduling	refresh	of	Service[httpd]

Notice:	/Stage[main]/Apache::Service/Service[httpd]:	Triggered	

'refresh'	from	51	events

Notice:	Finished	catalog	run	in	11.73	seconds

5.	 Verify	that	you	can	reach	webserver.example.com:

[root@webserver	~]#	curl	http://webserver.example.com

<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	3.2	Final//EN">

<html>

	<head>

		<title>Index	of	/</title>

	</head>

	<body>

<h1>Index	of	/</h1>

<table><tr><th></th><th>Name</th><th>Last	modified

</th><th>Size</th><th><a	href="?

C=D;O=A">Description</th></tr><tr><th	colspan="5"><hr></th></tr>

<tr><th	colspan="5"><hr></th></tr>

</table>

</body></html>

How	it	works…
Installing	the	puppetlabs-Apache	module	from	the	Forge	causes	both	puppetlabs-concat
and	puppetlabs-stdlib	to	be	installed	into	our	modules	directory.	The	concat	module	is
used	to	stitch	snippets	of	files	together	in	a	specific	order.	It	is	used	by	the	Apache	module
to	create	the	main	Apache	configuration	files.

We	then	defined	a	web	server	node	and	applied	the	Apache	class	to	that	node.	We	used	all
the	default	values	and	let	the	Apache	module	configure	our	server	to	be	an	Apache	web
server.

The	Apache	module	then	went	and	rewrote	all	our	Apache	configurations.	By	default,	the
module	purges	all	the	configuration	files	from	the	Apache	directory	(/etc/apache2	or
/etc/httpd	depending	on	the	distribution).	The	module	can	configure	many	different
distributions	and	handle	the	nuances	of	each	distribution.	As	a	user	of	the	module,	you
don’t	need	to	know	how	your	distribution	deals	with	the	Apache	module	configuration.

After	purging	and	rewriting	the	configuration	files,	the	module	ensures	that	the	apache2
service	is	running	(httpd	on	Enterprise	Linux	(EL)).

We	then	tested	the	webserver	using	curl.	There	was	nothing	returned	but	an	empty	index
page.	This	is	the	expected	behavior.	Normally,	when	we	install	Apache	on	a	server,	there
are	some	files	that	display	a	default	page	(welcome.conf	on	EL-based	systems),	since	the
module	purged	those	configurations,	we	only	see	an	empty	page.

In	a	production	environment,	you	would	modify	the	defaults	applied	by	the	Apache
module;	the	suggested	configuration	from	the	README	is	as	follows:

class	{	'apache':

		default_mods								=>	false,

		default_confd_files	=>	false,

}

Creating	Apache	virtual	hosts
Apache	virtual	hosts	are	created	with	the	apache	module	with	the	defined	type
apache::vhost.	We	will	create	a	new	vhost	on	our	Apache	webserver	called	navajo,	one
of	the	apache	tribes.

How	to	do	it…
Follow	these	steps	to	create	Apache	virtual	hosts:

1.	 Create	a	navajo	apache::vhost	definition	as	follows:

apache::vhost	{	'navajo.example.com':

				port										=>	'80',

				docroot	=>	'/var/www/navajo',

		}

2.	 Create	an	index	file	for	the	new	vhost:

file	{'/var/www/navajo/index.html':

				content	=>	"

<html>\nnavajo.example.com\nhttp://en.wikipedia.org/wiki/Navajo_people\

n</html>\n",

				mode				=>	'0644',

				require	=>	Apache::Vhost['navajo.example.com']

		}

3.	 Run	Puppet	to	create	the	new	vhost:

[root@webserver	~]#	puppet	agent	-t

Info:	Caching	catalog	for	webserver.example.com

Info:	Applying	configuration	version	'1414475598'

Notice:	

/Stage[main]/Main/Node[webserver]/Apache::Vhost[navajo.example.com]/Fil

e[/var/www/navajo]/ensure:	created

Notice:	

/Stage[main]/Main/Node[webserver]/Apache::Vhost[navajo.example.com]/Fil

e[25-navajo.example.com.conf]/ensure:	created

Info:	

/Stage[main]/Main/Node[webserver]/Apache::Vhost[navajo.example.com]/Fil

e[25-navajo.example.com.conf]:	Scheduling	refresh	of	Service[httpd]

Notice:	

/Stage[main]/Main/Node[webserver]/File[/var/www/navajo/index.html]/ensu

re:	defined	content	as	'{md5}5212fe215f4c0223fb86102a34319cc6'

Notice:	/Stage[main]/Apache::Service/Service[httpd]:	Triggered	

'refresh'	from	1	events

Notice:	Finished	catalog	run	in	2.73	seconds

4.	 Verify	that	you	can	reach	the	new	virtual	host:

[root@webserver	~]#	curl	http://navajo.example.com

<html>

navajo.example.com

http://en.wikipedia.org/wiki/Navajo_people

</html>

How	it	works…
The	apache::vhost	defined	type	creates	a	virtual	host	configuration	file	for	Apache,	25-
navajo.example.com.conf.	The	file	is	created	with	a	template;	25	at	the	beginning	of	the
filename	is	the	“priority	level”	of	this	virtual	host.	When	Apache	first	starts,	it	reads
through	its	configuration	directory	and	starts	executing	files	in	an	alphabetical	order.	Files
that	begin	with	numbers	are	read	before	files	that	start	with	letters.	In	this	way,	the	Apache
module	ensures	that	the	virtual	hosts	are	read	in	a	specific	order,	which	can	be	specified
when	you	define	the	virtual	host.	The	contents	of	this	file	are	as	follows:

#	************************************

#	Vhost	template	in	module	puppetlabs-apache

#	Managed	by	Puppet

#	************************************

<VirtualHost	*:80>

		ServerName	navajo.example.com

		##	Vhost	docroot

		DocumentRoot	"/var/www/navajo"

		##	Directories,	there	should	at	least	be	a	declaration	for	

/var/www/navajo

		<Directory	"/var/www/navajo">

				Options	Indexes	FollowSymLinks	MultiViews

				AllowOverride	None

				Order	allow,deny

				Allow	from	all

		</Directory>

		##	Load	additional	static	includes

		##	Logging

		ErrorLog	"/var/log/httpd/navajo.example.com_error.log"

		ServerSignature	Off

		CustomLog	"/var/log/httpd/navajo.example.com_access.log"	combined

</VirtualHost>

As	you	can	see,	the	default	file	has	created	log	files,	set	up	directory	access	permissions
and	options,	in	addition	to	specifying	the	listen	port	and	DocumentRoot.

The	vhost	definition	creates	the	DocumentRoot	directory,	specified	as	‘root’	to	the
apache::virtual	definition.	The	directory	is	created	before	the	virtual	host	configuration
file;	after	that	file	has	been	created,	a	notify	trigger	is	sent	to	the	Apache	process	to	restart.

Our	manifest	included	a	file	that	required	the	Apache::Vhost['navajo.example.com']

resource;	our	file	was	then	created	after	the	directory	and	the	virtual	host	configuration
file.

When	we	run	curl	on	the	new	website	(if	you	haven’t	created	a	hostname	alias	in	DNS,
you	will	have	to	create	one	in	your	local	/etc/hosts	file	for	navajo.example.com,	or
specify	the	host	as	curl	-H	'Host:	navajo.example.com'	<ipaddress	of
navajo.example.com>),	we	see	the	contents	of	the	index	file	we	created:

file	{'/var/www/navajo/index.html':

				content	=>	"

<html>\nnavajo.example.com\nhttp://en.wikipedia.org/wiki/Navajo_people\n</h

tml>\n",

				mode				=>	'0644',

				require	=>	Apache::Vhost['navajo.example.com']

		}	

[root@webserver	~]#	curl	http://navajo.example.com

<html>

navajo.example.com

http://en.wikipedia.org/wiki/Navajo_people

<\html>

There’s	more…
Both	the	defined	type	and	the	template	take	into	account	a	multitude	of	possible
configuration	scenarios	for	virtual	hosts.	It	is	highly	unlikely	that	you	will	find	a	setting
that	is	not	covered	by	this	module.	You	should	look	at	the	definition	for	apache::virtual
and	the	sheer	number	of	possible	arguments.

The	module	also	takes	care	of	several	settings	for	you.	For	instance,	if	we	change	the
listen	port	on	our	navajo	virtual	host	from	80	to	8080,	the	module	will	make	the	following
changes	in	/etc/httpd/conf.d/ports.conf:

Listen	80

+Listen	8080

	NameVirtualHost	*:80

+NameVirtualHost	*:8080

And	in	our	virtual	host	file:

-<VirtualHost	*:80>

+<VirtualHost	*:8080>

So	that	we	can	now	curl	on	port	8080	and	see	the	same	results:

[root@webserver	~]#	curl	http://navajo.example.com:8080

<html>

navajo.example.com

http://en.wikipedia.org/wiki/Navajo_people

</html>

And	when	we	try	on	port	80:

[root@webserver	~]#	curl	http://navajo.example.com	

<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	3.2	Final//EN">

<html>

	<head>

		<title>Index	of	/</title>

	</head>

	<body>

<h1>Index	of	/</h1>

<table><tr><th></th><th><a	href="?

C=N;O=D">Name</th><th>Last	modified</th><th>Size</th><th>Description</th>

</tr><tr><th	colspan="5"><hr></th></tr>

<tr><th	colspan="5"><hr></th></tr>

</table>

</body>

</html>

As	we	can	see,	the	virtual	host	is	no	longer	listening	on	port	80	and	we	receive	the	default
empty	directory	listing	we	saw	in	our	earlier	example.

Creating	nginx	virtual	hosts
Nginx	is	a	fast,	lightweight	web	server	that	is	preferred	over	Apache	in	many	contexts,
especially	where	high	performance	is	important.	Nginx	is	configured	slightly	differently
than	Apache;	like	Apache	though,	there	is	a	Forge	module	that	can	be	used	to	configure
nginx	for	us.	Unlike	Apache,	however,	the	module	that	is	suggested	for	use	is	not	supplied
by	puppetlabs	but	by	James	Fryman.	This	module	uses	some	interesting	tricks	to	configure
itself.	Previous	versions	of	this	module	used	R.I.	Pienaar’s	module_data	package.	This
package	is	used	to	configure	hieradata	within	a	module.	It’s	used	to	supply	default	values
to	the	nginx	module.	I	wouldn’t	recommend	starting	out	with	this	module	at	this	point,	but
it	is	a	good	example	of	where	module	configuration	may	be	headed	in	the	future.	Giving
modules	the	ability	to	modify	hieradata	may	prove	useful.

How	to	do	it…
In	this	example,	we’ll	use	a	Forge	module	to	configure	nginx.	We’ll	download	the	module
and	use	it	to	configure	virtualhosts.

1.	 Download	the	jfryman-nginx	module	from	the	Forge:

t@mylaptop	~	$	cd	~/puppet

t@mylaptop	~/puppet	$	puppet	module	install	-i	modules	jfryman-nginx

Notice:	Preparing	to	install	into	/home/thomas/puppet/modules…

Notice:	Downloading	from	https://forgeapi.puppetlabs.com…

Notice:	Installing—do	not	interrupt…

/home/thomas/puppet/modules

└─┬	jfryman-nginx	(v0.2.1)

		├──	puppetlabs-apt	(v1.7.0)

		├──	puppetlabs-concat	(v1.1.1)

		└──	puppetlabs-stdlib	(v4.3.2)

2.	 Replace	the	definition	for	webserver	with	an	nginx	configuration:

node	webserver	{

		class	{'nginx':}

		nginx::resource::vhost	{	'mescalero.example.com':

						www_root	=>	'/var/www/mescalero',

		}

		file	{'/var/www/mescalero':

				ensure		=>	'directory''directory',

				mode				=>	'0755',

				require	=>	Nginx::Resource::Vhost['mescalero.example.com'],

		}

		file	{'/var/www/mescalero/index.html':

				content	=>	"

<html>\nmescalero.example.com\nhttp://en.wikipedia.org/wiki/Mescalero\n

</html>\n",

				mode				=>	0644,

				require	=>	File['/var/www/mescalero'],

		}

}

3.	 If	apache	is	still	running	on	your	webserver,	stop	it:

[root@webserver	~]#	puppet	resource	service	httpd	ensure=false

Notice:	/Service[httpd]/ensure:	ensure	changed	'running'	to	'stopped'

service	{	'httpd':

		ensure	=>	'stopped',

}

Run	puppet	agent	on	your	webserver	node:

[root@webserver	~]#	puppet	agent	-t

Info:	Caching	catalog	for	webserver.example.com

Info:	Applying	configuration	version	'1414561483'

Notice:	

/Stage[main]/Main/Node[webserver]/Nginx::Resource::Vhost[mescalero.exam

ple.com]/Concat[/etc/nginx/sites-

available/mescalero.example.com.conf]/File[/etc/nginx/sites-

available/mescalero.example.com.conf]/ensure:	defined	content	as	

'{md5}35bb59bfcd0cf5a549d152aaec284357'

Info:	

/Stage[main]/Main/Node[webserver]/Nginx::Resource::Vhost[mescalero.exam

ple.com]/Concat[/etc/nginx/sites-

available/mescalero.example.com.conf]/File[/etc/nginx/sites-

available/mescalero.example.com.conf]:	Scheduling	refresh	of	

Class[Nginx::Service]

Info:	Concat[/etc/nginx/sites-available/mescalero.example.com.conf]:	

Scheduling	refresh	of	Class[Nginx::Service]

Notice:	

/Stage[main]/Main/Node[webserver]/Nginx::Resource::Vhost[mescalero.exam

ple.com]/File[mescalero.example.com.conf	symlink]/ensure:	created

Info:	

/Stage[main]/Main/Node[webserver]/Nginx::Resource::Vhost[mescalero.exam

ple.com]/File[mescalero.example.com.conf	symlink]:	Scheduling	refresh	

of	Service[nginx]

Notice:	

/Stage[main]/Main/Node[webserver]/File[/var/www/mescalero]/ensure:	

created

Notice:	

/Stage[main]/Main/Node[webserver]/File[/var/www/mescalero/index.html]/e

nsure:	defined	content	as	'{md5}2bd618c7dc3a3addc9e27c2f3cfde294'

Notice:	

/Stage[main]/Nginx::Config/File[/etc/nginx/conf.d/proxy.conf]/ensure:	

defined	content	as	'{md5}1919fd65635d49653273e14028888617'

Info:	Computing	checksum	on	file	/etc/nginx/conf.d/example_ssl.conf

Info:	

/Stage[main]/Nginx::Config/File[/etc/nginx/conf.d/example_ssl.conf]:	

Filebucketed	/etc/nginx/conf.d/example_ssl.conf	to	puppet	with	sum	

84724f296c7056157d531d6b1215b507

Notice:	

/Stage[main]/Nginx::Config/File[/etc/nginx/conf.d/example_ssl.conf]/ens

ure:	removed

Info:	Computing	checksum	on	file	/etc/nginx/conf.d/default.conf

Info:	/Stage[main]/Nginx::Config/File[/etc/nginx/conf.d/default.conf]:	

Filebucketed	/etc/nginx/conf.d/default.conf	to	puppet	with	sum	

4dce452bf8dbb01f278ec0ea9ba6cf40

Notice:	

/Stage[main]/Nginx::Config/File[/etc/nginx/conf.d/default.conf]/ensure:	

removed

Info:	Class[Nginx::Config]:	Scheduling	refresh	of	Class[Nginx::Service]

Info:	Class[Nginx::Service]:	Scheduling	refresh	of	Service[nginx]

Notice:	/Stage[main]/Nginx::Service/Service[nginx]:	Triggered	'refresh'	

from	2	events

Notice:	Finished	catalog	run	in	28.98	seconds

4.	 Verify	that	you	can	reach	the	new	virtualhost:

[root@webserver	~]#	curl	mescalero.example.com

<html>

mescalero.example.com

http://en.wikipedia.org/wiki/Mescalero

</html>

How	it	works…
Installing	the	jfryman-nginx	module	causes	the	concat,	stdlib,	and	APT	modules	to	be
installed.	We	run	Puppet	on	our	master	to	have	the	plugins	created	by	these	modules	added
to	our	running	master.	The	stdlib	and	concat	have	facter	and	Puppet	plugins	that	need	to	be
installed	for	the	nginx	module	to	work	properly.

With	the	plugins	synchronized,	we	can	then	run	puppet	agent	on	our	web	server.	As	a
precaution,	we	stop	Apache	if	it	was	previously	started	(we	can’t	have	nginx	and	Apache
both	listening	on	port	80).	After	puppet	agent	runs,	we	verified	that	nginx	was	running	and
the	virtual	host	was	configured.

There’s	more…
This	nginx	module	is	under	active	development.	There	are	several	interesting	solutions
employed	with	the	module.	Previous	releases	used	the	ripienaar-module_data	module,
which	allows	a	module	to	include	default	values	for	its	various	attributes,	via	a	hiera
plugin.	Although	still	in	an	early	stage	of	development,	this	system	is	already	usable	and
represents	one	of	the	cutting-edge	modules	on	the	Forge.

In	the	next	section,	we’ll	use	a	supported	module	to	configure	and	manage	MySQL
installations.

Managing	MySQL
MySQL	is	a	very	widely	used	database	server,	and	it’s	fairly	certain	you’ll	need	to	install
and	configure	a	MySQL	server	at	some	point.	The	puppetlabs-mysql	module	can
simplify	your	MySQL	deployments.

How	to	do	it…
Follow	these	steps	to	create	the	example:

1.	 Install	the	puppetlabs-mysql	module:

t@mylaptop	~/puppet	$	puppet	module	install	-i	modules	puppetlabs-mysql

Notice:	Preparing	to	install	into	/home/thomas/puppet/modules…

Notice:	Downloading	from	https://forgeapi.puppetlabs.com…

Notice:	Installing—do	not	interrupt…

/home/thomas/puppet/modules

└─┬	puppetlabs-mysql	(v2.3.1)

		└──	puppetlabs-stdlib	(v4.3.2)

2.	 Create	a	new	node	definition	for	your	MySQL	server:

node	dbserver	{

		class	{	'::mysql::server':

				root_password				=>	'PacktPub',

				override_options	=>	{	

						'mysqld'	=>	{	'max_connections'	=>	'1024'	}	

				}

		}

}

3.	 Run	Puppet	to	install	the	database	server	and	apply	the	new	root	password:

[root@dbserver	~]#	puppet	agent	-t

Info:	Caching	catalog	for	dbserver.example.com

Info:	Applying	configuration	version	'1414566216'

Notice:	/Stage[main]/Mysql::Server::Install/Package[mysql-

server]/ensure:	created

Notice:	/Stage[main]/Mysql::Server::Service/Service[mysqld]/ensure:	

ensure	changed	'stopped'	to	'running'

Info:	/Stage[main]/Mysql::Server::Service/Service[mysqld]:	Unscheduling	

refresh	on	Service[mysqld]

Notice:	

/Stage[main]/Mysql::Server::Root_password/Mysql_user[root@localhost]/pa

ssword_hash:	defined	'password_hash'	as	

'*6ABB0D4A7D1381BAEE4D078354557D495ACFC059'

Notice:	

/Stage[main]/Mysql::Server::Root_password/File[/root/.my.cnf]/ensure:	

defined	content	as	'{md5}87bc129b137c9d613e9f31c80ea5426c'

Notice:	Finished	catalog	run	in	35.50	seconds

4.	 Verify	that	you	can	connect	to	the	database:

[root@dbserver	~]#	mysql

Welcome	to	the	MySQL	monitor.		Commands	end	with	;	or	\g.

Your	MySQL	connection	id	is	11

Server	version:	5.1.73	Source	distribution

Copyright	(c)	2000,	2013,	Oracle	and/or	its	affiliates.	All	rights	

reserved.

Oracle	is	a	registered	trademark	of	Oracle	Corporation	and/or	its

affiliates.	Other	names	may	be	trademarks	of	their	respective

owners.

Type	'help;'	or	'\h'	for	help.	Type	'\c'	to	clear	the	current	input	

statement.

mysql>

How	it	works…
The	MySQL	module	installs	the	MySQL	server	and	ensures	that	the	server	is	running.	It
then	configures	the	root	password	for	MySQL.	The	module	does	a	lot	of	other	things	for
you	as	well.	It	creates	a	.my.cnf	file	with	the	root	user	password.	When	we	run	the	mysql
client,	the	.my.cnf	file	sets	all	the	defaults,	so	we	do	not	need	to	supply	any	arguments.

There’s	more…
In	the	next	section,	we’ll	show	how	to	create	databases	and	users.

Creating	databases	and	users
Managing	a	database	means	more	than	ensuring	that	the	service	is	running;	a	database
server	is	nothing	without	databases.	Databases	need	users	and	privileges.	Privileges	are
handled	with	GRANT	statements.	We	will	use	the	puppetlabs-mysql	package	to	create	a
database	and	a	user	with	access	to	that	database.	We’ll	create	a	MySQL	user	Drupal	and	a
database	called	Drupal.	We’ll	create	a	table	named	nodes	and	place	data	into	that	table.

How	to	do	it…
Follow	these	steps	to	create	databases	and	users:

1.	 Create	a	database	definition	within	your	dbserver	class:

mysql::db	{	'drupal':

				host				=>	'localhost',

				user				=>	'drupal',

				password				=>	'Cookbook',

				sql					=>	'/root/drupal.sql',

				require	=>	File['/root/drupal.sql']

		}

		file	{	'/root/drupal.sql':

				ensure	=>	present,

				source	=>	'puppet:///modules/mysql/drupal.sql',

		}

2.	 Allow	the	Drupal	user	to	modify	the	nodes	table:

mysql_grant	{	'drupal@localhost/drupal.nodes':

				ensure					=>	'present',

				options				=>	['GRANT'],

				privileges	=>	['ALL'],

				table						=>	'drupal.nodes'nodes',

				user							=>	'drupal@localhost',

		}

3.	 Create	the	drupal.sql	file	with	the	following	contents:

CREATE	TABLE	users	(id	INT	PRIMARY	KEY	AUTO_INCREMENT,	title	

VARCHAR(255),	body	TEXT);

INSERT	INTO	users	(id,	title,	body)	VALUES	(1,'First	Node','Contents	of	

first	Node');

INSERT	INTO	users	(id,	title,	body)	VALUES	(2,'Second	Node','Contents	

of	second	Node');

4.	 Run	Puppet	to	have	user,	database,	and	GRANT	created:

[root@dbserver	~]#	puppet	agent	-t

Info:	Caching	catalog	for	dbserver.example.com

Info:	Applying	configuration	version	'1414648818'

Notice:	/Stage[main]/Main/Node[dbserver]/File[/root/drupal.sql]/ensure:	

defined	content	as	'{md5}780f3946cfc0f373c6d4146394650f6b'

Notice:	

/Stage[main]/Main/Node[dbserver]/Mysql_grant[drupal@localhost/drupal.no

des]/ensure:	created

Notice:	

/Stage[main]/Main/Node[dbserver]/Mysql::Db[drupal]/Mysql_user[drupal@lo

calhost]/ensure:	created

Notice:	

/Stage[main]/Main/Node[dbserver]/Mysql::Db[drupal]/Mysql_database[drupa

l]/ensure:	created

Info:	

/Stage[main]/Main/Node[dbserver]/Mysql::Db[drupal]/Mysql_database[drupa

l]:	Scheduling	refresh	of	Exec[drupal-import]

Notice:	

/Stage[main]/Main/Node[dbserver]/Mysql::Db[drupal]/Mysql_grant[drupal@l

ocalhost/drupal.*]/ensure:	created

Notice:	/Stage[main]/Main/Node[dbserver]/Mysql::Db[drupal]/Exec[drupal-

import]:	Triggered	'refresh'	from	1	events

Notice:	Finished	catalog	run	in	10.06	seconds

5.	 Verify	that	the	database	and	table	have	been	created:

[root@dbserver	~]#	mysql	drupal

Reading	table	information	for	completion	of	table	and	column	names

You	can	turn	off	this	feature	to	get	a	quicker	startup	with	-A

Welcome	to	the	MySQL	monitor.		Commands	end	with	;	or	\g.

Your	MySQL	connection	id	is	34

Server	version:	5.1.73	Source	distribution

Copyright	(c)	2000,	2013,	Oracle	and/or	its	affiliates.	All	rights	

reserved.

Oracle	is	a	registered	trademark	of	Oracle	Corporation	and/or	its

affiliates.	Other	names	may	be	trademarks	of	their	respective

owners.

Type	'help;'	or	'\h'	for	help.	Type	'\c'	to	clear	the	current	input	

statement.

mysql>	show	tables;

+------------------+

|	Tables_in_drupal	|

+------------------+

|	users												|

+------------------+

1	row	in	set	(0.00	sec)

6.	 Now,	verify	that	our	default	data	has	been	loaded	into	the	table:

mysql>	select	*	from	users;

+----+-------------+-------------------------+

|	id	|	title							|	body																				|

+----+-------------+-------------------------+

|		1	|	First	Node		|	Contents	of	first	Node		|

|		2	|	Second	Node	|	Contents	of	second	Node	|

+----+-------------+-------------------------+

2	rows	in	set	(0.00	sec)

How	it	works…
We	start	with	the	definition	of	the	new	drupal	database:

		mysql::db	{	'drupal':

				host				=>	'localhost',

				user				=>	'drupal',

				password				=>	'Cookbook',

				sql					=>	'/root/drupal.sql',

				require	=>	File['/root/drupal.sql']

		}

We	specify	that	we’ll	connect	from	localhost	(we	could	connect	to	the	database	from
another	server)	using	the	drupal	user.	We	give	the	password	for	the	user	and	specify	a	SQL
file	that	will	be	applied	to	the	database	after	the	database	has	been	created.	We	require	that
this	file	already	exist	and	define	the	file	next:

file	{	'/root/drupal.sql':

				ensure	=>	present,

				source	=>	'puppet:///modules/mysql/drupal.sql',

		}

We	then	ensure	that	the	user	has	the	appropriate	privileges	with	a	mysql_grant	statement:

		mysql_grant	{	'drupal@localhost/drupal.nodes':

				ensure					=>	'present',

				options				=>	['GRANT'],

				privileges	=>	['ALL'],

				table						=>	'drupal.nodes',

				user							=>	'drupal@localhost',

		}

There’s	more…
Using	the	puppetlabs-MySQL	and	puppetlabs-Apache	module,	we	can	create	an	entire
functioning	web	server.	The	puppetlabs-Apache	module	will	install	Apache,	and	we	can
include	the	PHP	module	and	MySQL	module	as	well.	We	can	then	use	the	puppetlabs-
Mysql	module	to	install	the	MySQL	server,	and	then	create	the	required	drupal	databases
and	seed	the	database	with	the	data.

Deploying	a	new	drupal	installation	would	be	as	simple	as	including	a	class	on	a	node.

Chapter	8.	Internode	Coordination
	 “Rest	is	not	idleness,	and	to	lie	sometimes	on	the	grass	under	trees	on	a	summer’s	day,	listening	to	the	murmur	of	the
water,	or	watching	the	clouds	float	across	the	sky,	is	by	no	means	a	waste	of	time.”

	

	 —John	Lubbock

In	this	chapter,	we	will	cover	the	following	recipes:

Managing	firewalls	with	iptables
Building	high-availability	services	using	Heartbeat
Managing	NFS	servers	and	file	shares
Using	HAProxy	to	load-balance	multiple	web	servers
Managing	Docker	with	Puppet

Introduction
As	powerful	as	Puppet	is	to	manage	the	configuration	of	a	single	server,	it’s	even	more
useful	when	coordinating	many	machines.	In	this	chapter,	we’ll	explore	ways	to	use
Puppet	to	help	you	create	high-availability	clusters,	share	files	across	your	network,	set	up
automated	firewalls,	and	use	load-balancing	to	get	more	out	of	the	machines	you	have.
We’ll	use	exported	resources	as	the	communication	between	nodes.

Managing	firewalls	with	iptables
In	this	chapter,	we	will	begin	to	configure	services	that	require	communication	between
hosts	over	the	network.	Most	Linux	distributions	will	default	to	running	a	host-based
firewall,	iptables.	If	you	want	your	hosts	to	communicate	with	each	other,	you	have	two
options:	turn	off	iptables	or	configure	iptables	to	allow	the	communication.

I	prefer	to	leave	iptables	turned	on	and	configure	access.	Keeping	iptables	is	just	another
layer	on	your	defense	across	the	network.	iptables	isn’t	a	magic	bullet	that	will	make	your
system	secure,	but	it	will	block	access	to	services	you	didn’t	intend	to	expose	to	the
network.

Configuring	iptables	properly	is	a	complicated	task,	which	requires	deep	knowledge	of
networking.	The	example	presented	here	is	a	simplification.	If	you	are	unfamiliar	with
iptables,	I	suggest	you	research	iptables	before	continuing.	More	information	can	be	found
at	http://wiki.centos.org/HowTos/Network/IPTables	or
https://help.ubuntu.com/community/IptablesHowTo.

http://wiki.centos.org/HowTos/Network/IPTables
https://help.ubuntu.com/community/IptablesHowTo

Getting	ready
In	the	following	examples,	we’ll	be	using	the	Puppet	Labs	Firewall	module	to	configure
iptables.	Prepare	by	installing	the	module	into	your	Git	repository	with	puppet	module
install:

t@mylaptop	~	$	puppet	module	install	-i	~/puppet/modules	puppetlabs-

firewall

Notice:	Preparing	to	install	into	/home/thomas/puppet/modules…

Notice:	Downloading	from	https://forgeapi.puppetlabs.com…

/home/thomas/puppet/modules

└──	puppetlabs-firewall	(v1.2.0)

How	to	do	it…
To	configure	the	firewall	module,	we	need	to	create	a	set	of	rules,	which	will	be	applied
before	all	other	rules.	As	a	simple	example,	we’ll	create	the	following	rules:

Allow	all	traffic	on	the	loopback	(lo)	interface
Allow	all	ICMP	traffic
Allow	all	traffic	that	is	part	of	an	established	connection	(ESTABLISHED,
RELATED)
Allow	all	TCP	traffic	to	port	22	(ssh)

We	will	create	a	myfw	(my	firewall)	class	to	configure	the	firewall	module.	We	will	then
apply	the	myfw	class	to	a	node	to	have	iptables	configured	on	that	node:

1.	 Create	a	class	to	contain	these	rules	and	call	it	myfw::pre:

class	myfw::pre	{

		Firewall	{

				require	=>	undef,

		}

		firewall	{	'0000	Allow	all	traffic	on	loopback':

				proto	=>	'all',

				iniface	=>	'lo',

				action	=>	'accept',

		}

		firewall	{	'0001	Allow	all	ICMP':

				proto	=>	'icmp',

				action	=>	'accept',

		}

		firewall	{	'0002	Allow	all	established	traffic':

				proto	=>	'all',

				state	=>	['RELATED',	'ESTABLISHED'],

				action	=>	'accept',

		}

		firewall	{	'0022	Allow	all	TCP	on	port	22	(ssh)':

				proto	=>	'tcp',

				port	=>	'22',

				action	=>	'accept',

		}

}

2.	 When	traffic	doesn’t	match	any	of	the	previous	rules,	we	want	a	final	rule	that	will
drop	the	traffic.	Create	the	class	myfw::post	to	contain	the	default	drop	rule:

class	myfw::post	{

		firewall	{	'9999	Drop	all	other	traffic':

				proto		=>	'all',

				action	=>	'drop',

				before	=>	undef,

		}	

}

3.	 Create	a	myfw	class,	which	will	include	myfw::pre	and	myfw::post	to	configure	the
firewall:

class	myfw	{

		include	firewall

		#	our	rulesets

		include	myfw::post

		include	myfw::pre

		#	clear	all	the	rules

		resources	{	"firewall":

				purge	=>	true

		}

		#	resource	defaults

		Firewall	{

				before	=>	Class['myfw::post'],

				require	=>	Class['myfw::pre'],

		}

}

4.	 Attach	the	myfw	class	to	a	node	definition;	I’ll	do	this	to	my	cookbook	node:

node	cookbook	{

		include	myfw

}

5.	 Run	Puppet	on	cookbook	to	see	whether	the	firewall	rules	have	been	applied:

[root@cookbook	~]#	puppet	agent	-t	

Info:	Retrieving	pluginfacts

Info:	Retrieving	plugin

Info:	Loading	facts

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1415512948'

Notice:	/Stage[main]/Myfw::Pre/Firewall[000	Allow	all	traffic	on	

loopback]/ensure:	created

Notice:	/File[/etc/sysconfig/iptables]/seluser:	seluser	changed	

'unconfined_u'	to	'system_u'

Notice:	/Stage[main]/Myfw::Pre/Firewall[0001	Allow	all	ICMP]/ensure:	

created

Notice:	/Stage[main]/Myfw::Pre/Firewall[0022	Allow	all	TCP	on	port	22	

(ssh)]/ensure:	created

Notice:	/Stage[main]/Myfw::Pre/Firewall[0002	Allow	all	established	

traffic]/ensure:	created

Notice:	/Stage[main]/Myfw::Post/Firewall[9999	Drop	all	other	

traffic]/ensure:	created

Notice:	/Stage[main]/Myfw/Firewall[9003	

49bcd611c61bdd18b235cea46ef04fae]/ensure:	removed

Notice:	Finished	catalog	run	in	15.65	seconds

6.	 Verify	the	new	rules	with	iptables-save:

#	Generated	by	iptables-save	v1.4.7	on	Sun	Nov		9	01:18:30	2014

*filter

:INPUT	ACCEPT	[0:0]

:FORWARD	ACCEPT	[0:0]

:OUTPUT	ACCEPT	[74:35767]

-A	INPUT	-i	lo	-m	comment	--comment	"0000	Allow	all	traffic	on	

loopback"	-j	ACCEPT	

-A	INPUT	-p	icmp	-m	comment	--comment	"0001	Allow	all	ICMP"	-j	ACCEPT	

-A	INPUT	-m	comment	--comment	"0002	Allow	all	established	traffic"	-m	

state	--state	RELATED,ESTABLISHED	-j	ACCEPT	

-A	INPUT	-p	tcp	-m	multiport	--ports	22	-m	comment	--comment	"022	Allow	

all	TCP	on	port	22	(ssh)"	-j	ACCEPT	

-A	INPUT	-m	comment	--comment	"9999	Drop	all	other	traffic"	-j	DROP	

COMMIT

#	Completed	on	Sun	Nov		9	01:18:30	2014

How	it	works…
This	is	a	great	example	of	how	to	use	metaparameters	to	achieve	a	complex	ordering	with
little	effort.	Our	myfw	module	achieves	the	following	configuration:

All	the	rules	in	the	myfw::pre	class	are	guaranteed	to	come	before	any	other	firewall	rules
we	define.	The	rules	in	myfw::post	are	guaranteed	to	come	after	any	other	firewall	rules.
So,	we	have	the	rules	in	myfw::pre	first,	then	any	other	rules,	followed	by	the	rules	in
myfw::post.

Our	definition	for	the	myfw	class	sets	up	this	dependency	with	resource	defaults:

		#	resource	defaults

		Firewall	{

				before	=>	Class['myfw::post'],

				require	=>	Class['myfw::pre'],

		}

These	defaults	first	tell	Puppet	that	any	firewall	resource	should	be	executed	before
anything	in	the	myfw::post	class.	Second,	they	tell	Puppet	that	any	firewall	resource
should	require	that	the	resources	in	myfw::pre	already	be	executed.

When	we	defined	the	myfw::pre	class,	we	removed	the	require	statement	in	a	resource
default	for	Firewall	resources.	This	ensures	that	the	resources	within	the	myfw::pre-class
don’t	require	themselves	before	executing	(Puppet	will	complain	that	we	created	a	cyclic
dependency	otherwise):

Firewall	{

				require	=>	undef,

		}

We	use	the	same	trick	in	our	myfw::post	definition.	In	this	case,	we	only	have	a	single
rule	in	the	post	class,	so	we	simply	remove	the	before	requirement:

firewall	{	'9999	Drop	all	other	traffic':

				proto		=>	'all',

				action	=>	'drop',

				before	=>	undef,

		}

Finally,	we	include	a	rule	to	purge	all	the	existing	iptables	rules	on	the	system.	We	do	this
to	ensure	we	have	a	consistent	set	of	rules;	only	rules	defined	in	Puppet	will	persist:

#	clear	all	the	rules

resources	{	"firewall":

		purge	=>	true

}

There’s	more…
As	we	hinted,	we	can	now	define	firewall	resources	in	our	manifests	and	have	them
applied	to	the	iptables	configuration	after	the	initialization	rules	(myfw::pre)	but	before
the	final	drop	(myfw::post).	For	example,	to	allow	http	traffic	on	our	cookbook	machine,
modify	the	node	definition	as	follows:

		include	myfw

		firewall	{'0080	Allow	HTTP':

				proto		=>	'tcp',

				action	=>	'accept',

				port		=>	80,

		}

Run	Puppet	on	cookbook:

[root@cookbook	~]#	puppet	agent	-t

Info:	Retrieving	pluginfacts

Info:	Retrieving	plugin

Info:	Loading	facts

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1415515392'

Notice:	/File[/etc/sysconfig/iptables]/seluser:	seluser	changed	

'unconfined_u'	to	'system_u'

Notice:	/Stage[main]/Main/Node[cookbook]/Firewall[0080	Allow	HTTP]/ensure:	

created

Notice:	Finished	catalog	run	in	2.74	seconds

Verify	that	the	new	rule	has	been	added	after	the	last	myfw::pre	rule	(port	22,	ssh):

[root@cookbook	~]#	iptables-save

#	Generated	by	iptables-save	v1.4.7	on	Sun	Nov		9	01:46:38	2014

*filter

:INPUT	ACCEPT	[0:0]

:FORWARD	ACCEPT	[0:0]

:OUTPUT	ACCEPT	[41:26340]

-A	INPUT	-i	lo	-m	comment	--comment	"0000	Allow	all	traffic	on	loopback"	-j	

ACCEPT	

-A	INPUT	-p	icmp	-m	comment	--comment	"0001	Allow	all	ICMP"	-j	ACCEPT	

-A	INPUT	-m	comment	--comment	"0002	Allow	all	established	traffic"	-m	state	

--state	RELATED,ESTABLISHED	-j	ACCEPT	

-A	INPUT	-p	tcp	-m	multiport	--ports	22	-m	comment	--comment	"0022	Allow	

all	TCP	on	port	22	(ssh)"	-j	ACCEPT	

-A	INPUT	-p	tcp	-m	multiport	--ports	80	-m	comment	--comment	"0080	Allow	

HTTP"	-j	ACCEPT	

-A	INPUT	-m	comment	--comment	"9999	Drop	all	other	traffic"	-j	DROP	

COMMIT

#	Completed	on	Sun	Nov		9	01:46:38	2014

Tip
The	Puppet	Labs	Firewall	module	has	a	built-in	notion	of	order,	all	our	firewall	resource
titles	begin	with	a	number.	This	is	a	requirement.	The	module	attempts	to	order	resources
based	on	the	title.	You	should	keep	this	in	mind	when	naming	your	firewall	resources.

In	the	next	section,	we’ll	use	our	firewall	module	to	ensure	that	two	nodes	can
communicate	as	required.

Building	high-availability	services	using
Heartbeat
High-availability	services	are	those	that	can	survive	the	failure	of	an	individual	machine	or
network	connection.	The	primary	technique	for	high	availability	is	redundancy,	otherwise
known	as	throwing	hardware	at	the	problem.	Although	the	eventual	failure	of	an
individual	server	is	certain,	the	simultaneous	failure	of	two	servers	is	unlikely	enough	that
this	provides	a	good	level	of	redundancy	for	most	applications.

One	of	the	simplest	ways	to	build	a	redundant	pair	of	servers	is	to	have	them	share	an	IP
address	using	Heartbeat.	Heartbeat	is	a	daemon	that	runs	on	both	machines	and	exchanges
regular	messages—heartbeats—between	the	two.	One	server	is	the	primary	one,	and
normally	has	the	resource;	in	this	case,	an	IP	address	(known	as	a	virtual	IP,	or	VIP).	If	the
secondary	server	fails	to	detect	a	heartbeat	from	the	primary	server,	it	can	take	over	the
address,	ensuring	continuity	of	service.	In	real-world	scenarios,	you	may	want	more
machines	involved	in	the	VIP,	but	for	this	example,	two	machines	works	well	enough.

In	this	recipe,	we’ll	set	up	two	machines	in	this	configuration	using	Puppet,	and	I’ll
explain	how	to	use	it	to	provide	a	high-availability	service.

Getting	ready
You’ll	need	two	machines,	of	course,	and	an	extra	IP	address	to	use	as	the	VIP.	You	can
usually	request	this	from	your	ISP,	if	necessary.	In	this	example,	I’ll	be	using	machines
named	cookbook	and	cookbook2,	with	cookbook	being	the	primary.	We’ll	add	the	hosts	to
the	heartbeat	configuration.

How	to	do	it…
Follow	these	steps	to	build	the	example:

1.	 Create	the	file	modules/heartbeat/manifests/init.pp	with	the	following	contents:

#	Manage	Heartbeat

class	heartbeat	{

		package	{	'heartbeat':

				ensure	=>	installed,

		}

		service	{	'heartbeat':

				ensure		=>	running,

				enable		=>	true,

				require	=>	Package['heartbeat'],

		}

		file	{	'/etc/ha.d/authkeys':

				content	=>	"auth	1\n1	sha1	TopSecret",

				mode				=>	'0600',

				require	=>	Package['heartbeat'],

				notify		=>	Service['heartbeat'],

		}

		include	myfw

		firewall	{'0694	Allow	UDP	ha-cluster':

				proto		=>	'udp',

				port			=>	694,

				action	=>	'accept',

		}

}

2.	 Create	the	file	modules/heartbeat/manifests/vip.pp	with	the	following	contents:

#	Manage	a	specific	VIP	with	Heartbeat

class	

		heartbeat::vip($node1,$node2,$ip1,$ip2,$vip,$interface='eth0:1')	{

		include	heartbeat

		file	{	'/etc/ha.d/haresources':

				content	=>	"${node1}	IPaddr::${vip}/${interface}\n",

				require	=>	Package['heartbeat'],

				notify		=>	Service['heartbeat'],

		}

		file	{	'/etc/ha.d/ha.cf':

				content	=>	template('heartbeat/vip.ha.cf.erb'),

				require	=>	Package['heartbeat'],

				notify		=>	Service['heartbeat'],

		}

}

3.	 Create	the	file	modules/heartbeat/templates/vip.ha.cf.erb	with	the	following
contents:

use_logd	yes

udpport	694

autojoin	none

ucast	eth0	<%=	@ip1	%>

ucast	eth0	<%=	@ip2	%>

keepalive	1

deadtime	10

warntime	5

auto_failback	off

node	<%=	@node1	%>

node	<%=	@node2	%>

4.	 Modify	your	site.pp	file	as	follows.	Replace	the	ip1	and	ip2	addresses	with	the
primary	IP	addresses	of	your	two	nodes,	vip	with	the	virtual	IP	address	you’ll	be
using,	and	node1	and	node2	with	the	hostnames	of	the	two	nodes.	(Heartbeat	uses	the
fully-qualified	domain	name	of	a	node	to	determine	whether	it’s	a	member	of	the
cluster,	so	the	values	for	node1	and	node2	should	match	what’s	given	by	facter
fqdn	on	each	machine.):

node	cookbook,cookbook2	{

		class	{	'heartbeat::vip':

				ip1			=>	'192.168.122.132',

				ip2			=>	'192.168.122.133',

				node1	=>	'cookbook.example.com',

				node2	=>	'cookbook2.example.com',

				vip			=>	'192.168.122.200/24',

		}

}

5.	 Run	Puppet	on	each	of	the	two	servers:

[root@cookbook2	~]#	puppet	agent	-t

Info:	Retrieving	pluginfacts

Info:	Retrieving	plugin

Info:	Loading	facts

Info:	Caching	catalog	for	cookbook2.example.com

Info:	Applying	configuration	version	'1415517914'

Notice:	/Stage[main]/Heartbeat/Package[heartbeat]/ensure:	created

Notice:	/Stage[main]/Myfw::Pre/Firewall[0000	Allow	all	traffic	on	

loopback]/ensure:	created

Notice:	/Stage[main]/Myfw::Pre/Firewall[0001	Allow	all	ICMP]/ensure:	

created

Notice:	/File[/etc/sysconfig/iptables]/seluser:	seluser	changed	

'unconfined_u'	to	'system_u'

Notice:	/Stage[main]/Myfw::Pre/Firewall[0022	Allow	all	TCP	on	port	22	

(ssh)]/ensure:	created

Notice:	/Stage[main]/Heartbeat::Vip/File[/etc/ha.d/haresources]/ensure:	

defined	content	as	'{md5}fb9f5d9d2b26e3bddf681676d8b2129c'

Info:	/Stage[main]/Heartbeat::Vip/File[/etc/ha.d/haresources]:	

Scheduling	refresh	of	Service[heartbeat]

Notice:	/Stage[main]/Heartbeat::Vip/File[/etc/ha.d/ha.cf]/ensure:	

defined	content	as	'{md5}84da22f7ac1a3629f69dcf29ccfd8592'

Info:	/Stage[main]/Heartbeat::Vip/File[/etc/ha.d/ha.cf]:	Scheduling	

refresh	of	Service[heartbeat]

Notice:	/Stage[main]/Heartbeat/Service[heartbeat]/ensure:	ensure	

changed	'stopped'	to	'running'

Info:	/Stage[main]/Heartbeat/Service[heartbeat]:	Unscheduling	refresh	

on	Service[heartbeat]

Notice:	/Stage[main]/Myfw::Pre/Firewall[0002	Allow	all	established	

traffic]/ensure:	created

Notice:	/Stage[main]/Myfw::Post/Firewall[9999	Drop	all	other	

traffic]/ensure:	created

Notice:	/Stage[main]/Heartbeat/Firewall[0694	Allow	UDP	ha-

cluster]/ensure:	created

Notice:	Finished	catalog	run	in	12.64	seconds

6.	 Verify	that	the	VIP	is	running	on	one	of	the	nodes	(it	should	be	on	cookbook	at	this
point;	note	that	you	will	need	to	use	the	ip	command,	ifconfig	will	not	show	the
address):

[root@cookbook	~]#	ip	addr	show	dev	eth0

2:	eth0:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	pfifo_fast	

state	UP	qlen	1000

				link/ether	52:54:00:c9:d5:63	brd	ff:ff:ff:ff:ff:ff

				inet	192.168.122.132/24	brd	192.168.122.255	scope	global	eth0

				inet	192.168.122.200/24	brd	192.168.122.255	scope	global	secondary	

eth0:1

				inet6	fe80::5054:ff:fec9:d563/64	scope	link	

							valid_lft	forever	preferred_lft	forever

7.	 As	we	can	see,	cookbook	has	the	eth0:1	interface	active.	If	you	stop	heartbeat	on
cookbook,	cookbook2	will	create	eth0:1	and	take	over:

[root@cookbook2	~]#	ip	a	show	dev	eth0

2:	eth0:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	pfifo_fast	

state	UP	qlen	1000

				link/ether	52:54:00:ee:9c:fa	brd	ff:ff:ff:ff:ff:ff

				inet	192.168.122.133/24	brd	192.168.122.255	scope	global	eth0

				inet	192.168.122.200/24	brd	192.168.122.255	scope	global	secondary	

eth0:1

				inet6	fe80::5054:ff:feee:9cfa/64	scope	link	

							valid_lft	forever	preferred_lft	forever

How	it	works…
We	need	to	install	Heartbeat	first	of	all,	using	the	heartbeat	class:

#	Manage	Heartbeat

class	heartbeat	{

		package	{	'heartbeat':

				ensure	=>	installed,

		}

		...

}

Next,	we	use	the	heartbeat::vip	class	to	manage	a	specific	virtual	IP:

#	Manage	a	specific	VIP	with	Heartbeat

class	

		heartbeat::vip($node1,$node2,$ip1,$ip2,$vip,$interface='eth0:1')	{

		include	heartbeat

As	you	can	see,	the	class	includes	an	interface	parameter;	by	default,	the	VIP	will	be
configured	on	eth0:1,	but	if	you	need	to	use	a	different	interface,	you	can	pass	it	in	using
this	parameter.

Each	pair	of	servers	that	we	configure	with	a	virtual	IP	will	use	the	heartbeat::vip	class
with	the	same	parameters.	These	will	be	used	to	build	the	haresources	file:

file	{	'/etc/ha.d/haresources':

		content	=>	"${node1}	IPaddr::${vip}/${interface}\n",

		notify		=>	Service['heartbeat'],

		require	=>	Package['heartbeat'],

}

This	tells	Heartbeat	about	the	resource	it	should	manage	(that’s	a	Heartbeat	resource,	such
as	an	IP	address	or	a	service,	not	a	Puppet	resource).	The	resulting	haresources	file	might
look	as	follows:

cookbook.example.com	IPaddr::192.168.122.200/24/eth0:1

The	file	is	interpreted	by	Heartbeat	as	follows:

cookbook.example.com:	This	is	the	name	of	the	primary	node,	which	should	be	the
default	owner	of	the	resource
IPaddr:	This	is	the	type	of	resource	to	manage;	in	this	case,	an	IP	address
192.168.122.200/24:	This	is	the	value	for	the	IP	address
eth0:1:	This	is	the	virtual	interface	to	configure	with	the	managed	IP	address

For	more	information	on	how	heartbeat	is	configured,	please	visit	the	high-availability	site
at	http://linux-ha.org/wiki/Heartbeat.

We	will	also	build	the	ha.cf	file	that	tells	Heartbeat	how	to	communicate	between	cluster
nodes:

file	{	'/etc/ha.d/ha.cf':

		content	=>	template('heartbeat/vip.ha.cf.erb'),

		notify		=>	Service['heartbeat'],

http://linux-ha.org/wiki/Heartbeat

		require	=>	Package['heartbeat'],

}

To	do	this,	we	use	the	template	file:

use_logd	yes

udpport	694

autojoin	none

ucast	eth0	<%=	@ip1	%>

ucast	eth0	<%=	@ip2	%>

keepalive	1

deadtime	10

warntime	5

auto_failback	off

node	<%=	@node1	%>

node	<%=	@node2	%>

The	interesting	values	here	are	the	IP	addresses	of	the	two	nodes	(ip1	and	ip2),	and	the
names	of	the	two	nodes	(node1	and	node2).

Finally,	we	create	an	instance	of	heartbeat::vip	on	both	machines	and	pass	it	an
identical	set	of	parameters	as	follows:

class	{	'heartbeat::vip':

		ip1			=>	'192.168.122.132',

		ip2			=>	'192.168.122.133',

		node1	=>	'cookbook.example.com',

		node2	=>	'cookbook2.example.com',

		vip			=>	'192.168.122.200/24',

}

There’s	more…
With	Heartbeat	set	up	as	described	in	the	example,	the	virtual	IP	address	will	be
configured	on	cookbook	by	default.	If	something	happens	to	interfere	with	this	(for
example,	if	you	halt	or	reboot	cookbook,	or	stop	the	heartbeat	service,	or	the	machine
loses	network	connectivity),	cookbook2	will	immediately	take	over	the	virtual	IP.

The	auto_failback	setting	in	ha.cf	governs	what	happens	next.	If	auto_failback	is	set
to	on,	when	cookbook	becomes	available	once	more,	it	will	automatically	take	over	the	IP
address.	Without	auto_failback,	the	IP	will	stay	where	it	is	until	you	manually	fail	it
again	(by	stopping	heartbeart	on	cookbook2,	for	example).

One	common	use	for	a	Heartbeat-managed	virtual	IP	is	to	provide	a	highly	available
website	or	service.	To	do	this,	you	need	to	set	the	DNS	name	for	the	service	(for	example,
cat-pictures.com)	to	point	to	the	virtual	IP.	Requests	for	the	service	will	be	routed	to
whichever	of	the	two	servers	currently	has	the	virtual	IP.	If	this	server	should	go	down,
requests	will	go	to	the	other,	with	no	visible	interruption	in	service	to	users.

Heartbeat	works	great	for	the	previous	example	but	is	not	in	widespread	use	in	this	form.
Heartbeat	only	works	in	two	node	clusters;	for	n-node	clusters,	the	newer	pacemaker
project	should	be	used.	More	information	on	Heartbeat,	pacemaker,	corosync,	and	other
clustering	packages	can	be	found	at	http://www.linux-ha.org/wiki/Main_Page.

Managing	cluster	configuration	is	one	area	where	exported	resources	are	useful.	Each
node	in	a	cluster	would	export	information	about	itself,	which	could	then	be	collected	by
the	other	members	of	the	cluster.	Using	the	puppetlabs-concat	module,	you	can	build	up	a
configuration	file	using	exported	concat	fragments	from	all	the	nodes	in	the	cluster.

Remember	to	look	at	the	Forge	before	starting	your	own	module.	If	nothing	else,	you’ll
get	some	ideas	that	you	can	use	in	your	own	module.	Corosync	can	be	managed	with	the
Puppet	labs	module	at	https://forge.puppetlabs.com/puppetlabs/corosync.

http://www.linux-ha.org/wiki/Main_Page
https://forge.puppetlabs.com/puppetlabs/corosync

Managing	NFS	servers	and	file	shares
NFS	(Network	File	System)	is	a	protocol	to	mount	a	shared	directory	from	a	remote
server.	For	example,	a	pool	of	web	servers	might	all	mount	the	same	NFS	share	to	serve
static	assets	such	as	images	and	stylesheets.	Although	NFS	is	generally	slower	and	less
secure	than	local	storage	or	a	clustered	filesystem,	the	ease	with	which	it	can	be	used
makes	it	a	common	choice	in	the	datacenter.	We’ll	use	our	myfw	module	from	before	to
ensure	the	local	firewall	permits	nfs	communication.	We’ll	also	use	the	Puppet	labs-
concat	module	to	edit	the	list	of	exported	filesystems	on	our	nfs	server.

How	to	do	it…
In	this	example,	we’ll	configure	an	nfs	server	to	share	(export)	some	filesystem	via	NFS.

1.	 Create	an	nfs	module	with	the	following	nfs::exports	class,	which	defines	a	concat
resource:

class	nfs::exports	{

		exec	{'nfs::exportfs':

				command					=>	'exportfs	-a',

				refreshonly	=>	true,

				path								=>	'/usr/bin:/bin:/sbin:/usr/sbin',

		}

		concat	{'/etc/exports':

				notify	=>	Exec['nfs::exportfs'],

		}

}

2.	 Create	the	nfs::export	defined	type,	we’ll	use	this	definition	for	any	nfs	exports	we
create:

define	nfs::export	(

		$where	=	$title,

		$who	=	'*',

		$options	=	'async,ro',

		$mount_options	=	'defaults',

		$tag					=	'nfs'

)	{

		#	make	sure	the	directory	exists

		#	export	the	entry	locally,	then	export	a	resource	to	be	picked	up	

later.

		file	{"$where":

				ensure	=>	'directory',

		}

		include	nfs::exports

		concat::fragment	{	"nfs::export::$where":

				content	=>	"${where}	${who}(${options})\n",

				target		=>	'/etc/exports'

		}

		@@mount	{	"nfs::export::${where}::${::ipaddress}":

				name				=>	"$where",

				ensure		=>	'mounted',

				fstype		=>	'nfs',

				options	=>	"$mount_options",

				device		=>	"${::ipaddress}:${where}",

				tag					=>	"$tag",

		}

}

3.	 Now	create	the	nfs::server	class,	which	will	include	the	OS-specific	configuration
for	the	server:

class	nfs::server	{

		#	ensure	nfs	server	is	running

		#	firewall	should	allow	nfs	communication

		include	nfs::exports

		case	$::osfamily	{

				'RedHat':	{	include	nfs::server::redhat	}

				'Debian':	{	include	nfs::server::debian	}

		}

		include	myfw

		firewall	{'2049	NFS	TCP	communication':

				proto		=>	'tcp',

				port			=>	'2049',

				action	=>	'accept',

		}

		firewall	{'2049	UDP	NFS	communication':

				proto		=>	'udp',

				port			=>	'2049',

				action	=>	'accept',

		}

		firewall	{'0111	TCP	PORTMAP':

				proto		=>	'tcp',

				port			=>	'111',

				action	=>	'accept',

		}

		firewall	{'0111	UDP	PORTMAP':

				proto		=>	'udp',

				port			=>	'111',

				action	=>	'accept',

		}

		firewall	{'4000	TCP	STAT':

				proto		=>	'tcp',

				port			=>	'4000-4010',

				action	=>	'accept',

		}

		firewall	{'4000	UDP	STAT':

				proto		=>	'udp',

				port			=>	'4000-4010',

				action	=>	'accept',

		}

}

4.	 Next,	create	the	nfs::server::redhat	class:

class	nfs::server::redhat	{

		package	{'nfs-utils':

				ensure	=>	'installed',

		}

		service	{'nfs':

				ensure	=>	'running',

				enable	=>	true

		}

		file	{'/etc/sysconfig/nfs':

				source	=>	'puppet:///modules/nfs/nfs',

				mode			=>	0644,

				notify	=>	Service['nfs'],

		}

}

5.	 Create	the	/etc/sysconfig/nfs	support	file	for	RedHat	systems	in	the	files	directory

of	our	nfs	repo	(modules/nfs/files/nfs):

STATD_PORT=4000

STATD_OUTGOING_PORT=4001

RQUOTAD_PORT=4002

LOCKD_TCPPORT=4003

LOCKD_UDPPORT=4003

MOUNTD_PORT=4004

6.	 Now	create	the	support	class	for	Debian	systems,	nfs::server::debian:

class	nfs::server::debian	{

		#	install	the	package

		package	{'nfs':

				name			=>	'nfs-kernel-server',

				ensure	=>	'installed',

		}

		#	config

		file	{'/etc/default/nfs-common':

				source	=>	'puppet:///modules/nfs/nfs-common',

				mode			=>	0644,

				notify	=>	Service['nfs-common']

		}

		#	services

		service	{'nfs-common':

				ensure	=>	'running',

				enable	=>	true,

		}

		service	{'nfs':

				name			=>	'nfs-kernel-server',

				ensure	=>	'running',

				enable	=>	true,

				require	=>	Package['nfs-kernel-server']

		}

}

7.	 Create	the	nfs-common	configuration	for	Debian	(which	will	be	placed	in
modules/nfs/files/nfs-common):

STATDOPTS="--port	4000	--outgoing-port	4001"

8.	 Apply	the	nfs::server	class	to	a	node	and	then	create	an	export	on	that	node:

node	debian	{

		include	nfs::server

		nfs::export	{'/srv/home':	

				tag	=>	"srv_home"	}

}

9.	 Create	a	collector	for	the	exported	resource	created	by	the	nfs::server	class	in	the
preceding	code	snippet:

node	cookbook	{

		Mount	<<|	tag	==	"srv_home"	|>>	{

				name			=>	'/mnt',

		}

}

10.	 Finally,	run	Puppet	on	the	node	Debian	to	create	the	exported	resource.	Then,	run
Puppet	on	the	cookbook	node	to	mount	that	resource:

root@debian:~#	puppet	agent	-t

Info:	Caching	catalog	for	debian.example.com

Info:	Applying	configuration	version	'1415602532'

Notice:	Finished	catalog	run	in	0.78	seconds

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1415603580'

Notice:	

/Stage[main]/Main/Node[cookbook]/Mount[nfs::export::/srv/home::192.168.

122.148]/ensure:	ensure	changed	'ghost'	to	'mounted'

Info:	Computing	checksum	on	file	/etc/fstab

Info:	

/Stage[main]/Main/Node[cookbook]/Mount[nfs::export::/srv/home::192.168.

122.148]:	Scheduling	refresh	of	

Mount[nfs::export::/srv/home::192.168.122.148]

Info:	Mount[nfs::export::/srv/home::192.168.122.148](provider=parsed):	

Remounting

Notice:	

/Stage[main]/Main/Node[cookbook]/Mount[nfs::export::/srv/home::192.168.

122.148]:	Triggered	'refresh'	from	1	events

Info:	

/Stage[main]/Main/Node[cookbook]/Mount[nfs::export::/srv/home::192.168.

122.148]:	Scheduling	refresh	of	

Mount[nfs::export::/srv/home::192.168.122.148]

Notice:	Finished	catalog	run	in	0.34	seconds

11.	 Verify	the	mount	with	mount:

[root@cookbook	~]#	mount	-t	nfs

192.168.122.148:/srv/home	on	/mnt	type	nfs	(rw)

How	it	works…
The	nfs::exports	class	defines	an	exec,	which	runs	'exportfs	-a',	to	export	all
filesystems	defined	in	/etc/exports.	Next,	we	define	a	concat	resource	to	contain
concat::fragments,	which	we	will	define	next	in	our	nfs::export	class.	Concat
resources	specify	the	file	that	the	fragments	are	to	be	placed	into;	/etc/exports	in	this
case.	Our	concat	resource	has	a	notify	for	the	previous	exec.	This	has	the	effect	that
whenever	/etc/exports	is	updated,	we	run	'exportfs	-a'	again	to	export	the	new
entries:

class	nfs::exports	{

		exec	{'nfs::exportfs':

				command					=>	'exportfs	-a',

				refreshonly	=>	true,

				path								=>	'/usr/bin:/bin:/sbin:/usr/sbin',

		}

		concat	{'/etc/exports':

				notify	=>	Exec['nfs::exportfs'],

		}

}

We	then	created	an	nfs::export	defined	type,	which	does	all	the	work.	The	defined	type
adds	an	entry	to	/etc/exports	via	a	concat::fragment	resource:

define	nfs::export	(

		$where	=	$title,

		$who	=	'*',

		$options	=	'async,ro',

		$mount_options	=	'defaults',

		$tag					=	'nfs'

)	{

		#	make	sure	the	directory	exists

		#	export	the	entry	locally,	then	export	a	resource	to	be	picked	up	later.

		file	{"$where":

				ensure	=>	'directory',

		}

		include	nfs::exports

		concat::fragment	{	"nfs::export::$where":

				content	=>	"${where}	${who}(${options})\n",

				target		=>	'/etc/exports'

		}

In	the	definition,	we	use	the	attribute	$where	to	define	what	filesystem	we	are	exporting.
We	use	$who	to	specify	who	can	mount	the	filesystem.	The	attribute	$options	contains	the
exporting	options	such	as	rw	(read-write),	ro	(read-only).	Next,	we	have	the	options	that
will	be	placed	in	/etc/fstab	on	the	client	machine,	the	mount	options,	stored	in
$mount_options.	The	nfs::exports	class	is	included	here	so	that	concat::fragment	has
a	concat	target	defined.

Next,	the	exported	mount	resource	is	created;	this	is	done	on	the	server,	so	the
${::ipaddress}	variable	holds	the	IP	address	of	the	server.	We	use	this	to	define	the
device	for	the	mount.	The	device	is	the	IP	address	of	the	server,	a	colon,	and	then	the

filesystem	being	exported.	In	this	example,	it	is	'192.168.122.148:/srv/home':

@@mount	{	"nfs::export::${where}::${::ipaddress}":

				name				=>	"$where",

				ensure		=>	'mounted',

				fstype		=>	'nfs',

				options	=>	"$mount_options",

				device		=>	"${::ipaddress}:${where}",

				tag					=>	"$tag",

		}

We	reuse	our	myfw	module	and	include	it	in	the	nfs::server	class.	This	class	illustrates
one	of	the	things	to	consider	when	writing	your	modules.	Not	all	Linux	distributions	are
created	equal.	Debian	and	RedHat	deal	with	NFS	server	configuration	quite	differently.
The	nfs::server	module	deals	with	this	by	including	OS-specific	subclasses:

class	nfs::server	{

		#	ensure	nfs	server	is	running

		#	firewall	should	allow	nfs	communication

		include	nfs::exports

		case	$::osfamily	{

				'RedHat':	{	include	nfs::server::redhat	}

				'Debian':	{	include	nfs::server::debian	}

		}

		include	myfw

		firewall	{'2049	NFS	TCP	communication':

				proto		=>	'tcp',

				port			=>	'2049',

				action	=>	'accept',

		}

		firewall	{'2049	UDP	NFS	communication':

				proto		=>	'udp',

				port			=>	'2049',

				action	=>	'accept',

		}

		firewall	{'0111	TCP	PORTMAP':

				proto		=>	'tcp',

				port			=>	'111',

				action	=>	'accept',

		}

		firewall	{'0111	UDP	PORTMAP':

				proto		=>	'udp',

				port			=>	'111',

				action	=>	'accept',

		}

		firewall	{'4000	TCP	STAT':

				proto		=>	'tcp',

				port			=>	'4000-4010',

				action	=>	'accept',

		}

		firewall	{'4000	UDP	STAT':

				proto		=>	'udp',

				port			=>	'4000-4010',

				action	=>	'accept',

		}

}

The	nfs::server	module	opens	several	firewall	ports	for	NFS	communication.	NFS
traffic	is	always	carried	over	port	2049	but	ancillary	systems,	such	as	locking,	quota,	and
file	status	daemons,	use	ephemeral	ports	chosen	by	the	portmapper,	by	default.	The
portmapper	itself	uses	port	111.	So	our	module	needs	to	allow	2049,	111,	and	a	few	other
ports.	We	attempt	to	configure	the	ancillary	services	to	use	ports	4000	through	4010.

In	the	nfs::server::redhat	class,	we	modify	/etc/sysconfig/nfs	to	use	the	ports
specified.	Also,	we	install	the	nfs-utils	package	and	start	the	nfs	service:

class	nfs::server::redhat	{

		package	{'nfs-utils':

				ensure	=>	'installed',

		}

		service	{'nfs':

				ensure	=>	'running',

				enable	=>	true

		}

		file	{'/etc/sysconfig/nfs':

				source	=>	'puppet:///modules/nfs/nfs',

				mode			=>	0644,

				notify	=>	Service['nfs'],

		}

}

We	do	the	same	for	Debian-based	systems	in	the	nfs::server::debian	class.	The
packages	and	services	have	different	names	but	overall	the	process	is	similar:

class	nfs::server::debian	{

		#	install	the	package

		package	{'nfs':

				name			=>	'nfs-kernel-server',

				ensure	=>	'installed',

		}

		#	config

		file	{'/etc/default/nfs-common':

				source	=>	'puppet:///modules/nfs/nfs-common',

				mode			=>	0644,

				notify	=>	Service['nfs-common']

		}

		#	services

		service	{'nfs-common':

				ensure	=>	'running',

				enable	=>	true,

		}

		service	{'nfs':

				name			=>	'nfs-kernel-server',

				ensure	=>	'running',

				enable	=>	true,

		}

}

With	everything	in	place,	we	include	the	server	class	to	configure	the	NFS	server	and	then
define	an	export:

		include	nfs::server

		nfs::export	{'/srv/home':	

				tag	=>	"srv_home"	}

What’s	important	here	is	that	we	defined	the	tag	attribute,	which	will	be	used	in	the
exported	resource	we	collect	in	the	following	code	snippet:

Mount	<<|	tag	==	"srv_home"	|>>	{

		name			=>	'/mnt',

}

We	use	the	spaceship	syntax	(<<|	|>>)	to	collect	all	the	exported	mount	resources	that
have	the	tag	we	defined	earlier	(srv_home).	We	then	use	a	syntax	called	“override	on
collect”	to	modify	the	name	attribute	of	the	mount	to	specify	where	to	mount	the
filesystem.

Using	this	design	pattern	with	exported	resources,	we	can	change	the	server	exporting	the
filesystem	and	have	any	nodes	that	mount	the	resource	updated	automatically.	We	can
have	many	different	nodes	collecting	the	exported	mount	resource.

Using	HAProxy	to	load-balance	multiple
web	servers
Load	balancers	are	used	to	spread	a	load	among	a	number	of	servers.	Hardware	load
balancers	are	still	somewhat	expensive,	whereas	software	balancers	can	achieve	most	of
the	benefits	of	a	hardware	solution.

HAProxy	is	the	software	load	balancer	of	choice	for	most	people:	fast,	powerful,	and
highly	configurable.

How	to	do	it…
In	this	recipe,	I’ll	show	you	how	to	build	an	HAProxy	server	to	load-balance	web	requests
across	web	servers.	We’ll	use	exported	resources	to	build	the	haproxy	configuration	file
just	like	we	did	for	the	NFS	example.

1.	 Create	the	file	modules/haproxy/manifests/master.pp	with	the	following	contents:

class	haproxy::master	($app	=	'myapp')	{

		#	The	HAProxy	master	server

		#	will	collect	haproxy::slave	resources	and	add	to	its	balancer

		package	{	'haproxy':	ensure	=>	installed	}

		service	{	'haproxy':

				ensure		=>	running,

				enable		=>	true,

				require	=>	Package['haproxy'],

		}

		include	haproxy::config

		concat::fragment	{	'haproxy.cfg	header':

				target		=>	'haproxy.cfg',

				source		=>	'puppet:///modules/haproxy/haproxy.cfg',

				order			=>	'001',

				require	=>	Package['haproxy'],

				notify		=>	Service['haproxy'],

		}

		#	pull	in	the	exported	entries

		Concat::Fragment	<<|	tag	==	"$app"	|>>	{

				target	=>	'haproxy.cfg',

				notify	=>	Service['haproxy'],

		}

}

2.	 Create	the	file	modules/haproxy/files/haproxy.cfg	with	the	following	contents:

global

								daemon

								user	haproxy

								group	haproxy

								pidfile	/var/run/haproxy.pid

defaults

								log					global

								stats			enable

								mode				http

								option		httplog

								option		dontlognull

								option		dontlog-normal

								retries	3

								option		redispatch

								timeout	connect	4000

								timeout	client	60000

								timeout	server	30000

listen		stats	:8080

								mode	http

								stats	uri	/

								stats	auth	haproxy:topsecret

listen		myapp	0.0.0.0:80

								balance	leastconn

3.	 Modify	your	manifests/nodes.pp	file	as	follows:

node	'cookbook'	{

		include	haproxy

}

4.	 Create	the	slave	server	configuration	in	the	haproxy::slave	class:

class	haproxy::slave	($app	=	"myapp",	$localport	=	8000)	{

		#	haproxy	slave,	export	haproxy.cfg	fragment

		#	configure	simple	web	server	on	different	port

		@@concat::fragment	{	"haproxy.cfg	$::fqdn":

				content	=>	"\t\tserver	${::hostname}	${::ipaddress}:${localport}			

check	maxconn	100\n",

				order			=>	'0010',

				tag					=>	"$app",

		}

		include	myfw

		firewall	{"${localport}	Allow	HTTP	to	haproxy::slave":

				proto		=>	'tcp',

				port			=>	$localport,

				action	=>	'accept',

		}

		class	{'apache':	}

		apache::vhost	{	'haproxy.example.com':

				port										=>	'8000',

				docroot	=>	'/var/www/haproxy',

		}

		file	{'/var/www/haproxy':

				ensure		=>	'directory',

				mode				=>	0755,

				require	=>	Class['apache'],

		}

		file	{'/var/www/haproxy/index.html':

				mode				=>	'0644',

				content	=>	"<html><body><h1>${::fqdn}	haproxy::slave\n</body>

</html>\n",

				require	=>	File['/var/www/haproxy'],

		}

}

5.	 Create	the	concat	container	resource	in	the	haproxy::config	class	as	follows:

class	haproxy::config	{

		concat	{'haproxy.cfg':

				path		=>	'/etc/haproxy/haproxy.cfg',

				order	=>	'numeric',

				mode		=>	'0644',

		}

}

6.	 Modify	site.pp	to	define	the	master	and	slave	nodes:

node	master	{

		class	{'haproxy::master':

				app	=>	'cookbook'

		}

}

node	slave1,slave2	{

		class	{'haproxy::slave':

				app	=>	'cookbook'

		}

}

7.	 Run	Puppet	on	each	of	the	slave	servers:

root@slave1:~#	puppet	agent	-t

Info:	Caching	catalog	for	slave1

Info:	Applying	configuration	version	'1415646194'

Notice:	

/Stage[main]/Haproxy::Slave/Apache::Vhost[haproxy.example.com]/File[25-

haproxy.example.com.conf]/ensure:	created

Info:	

/Stage[main]/Haproxy::Slave/Apache::Vhost[haproxy.example.com]/File[25-

haproxy.example.com.conf]:	Scheduling	refresh	of	Service[httpd]

Notice:	

/Stage[main]/Haproxy::Slave/Apache::Vhost[haproxy.example.com]/File[25-

haproxy.example.com.conf	symlink]/ensure:	created

Info:	

/Stage[main]/Haproxy::Slave/Apache::Vhost[haproxy.example.com]/File[25-

haproxy.example.com.conf	symlink]:	Scheduling	refresh	of	Service[httpd]

Notice:	/Stage[main]/Apache::Service/Service[httpd]/ensure:	ensure	

changed	'stopped'	to	'running'

Info:	/Stage[main]/Apache::Service/Service[httpd]:	Unscheduling	refresh	

on	Service[httpd]

Notice:	Finished	catalog	run	in	1.71	seconds

8.	 Run	Puppet	on	the	master	node	to	configure	and	run	haproxy:

[root@master	~]#	puppet	agent	-t

Info:	Caching	catalog	for	master.example.com

Info:	Applying	configuration	version	'1415647075'

Notice:	/Stage[main]/Haproxy::Master/Package[haproxy]/ensure:	created

Notice:	/Stage[main]/Myfw::Pre/Firewall[0000	Allow	all	traffic	on	

loopback]/ensure:	created

Notice:	/Stage[main]/Myfw::Pre/Firewall[0001	Allow	all	ICMP]/ensure:	

created

Notice:	/Stage[main]/Haproxy::Master/Firewall[8080	haproxy	

statistics]/ensure:	created

Notice:	/File[/etc/sysconfig/iptables]/seluser:	seluser	changed	

'unconfined_u'	to	'system_u'

Notice:	/Stage[main]/Myfw::Pre/Firewall[0022	Allow	all	TCP	on	port	22	

(ssh)]/ensure:	created

Notice:	/Stage[main]/Haproxy::Master/Firewall[0080	http	

haproxy]/ensure:	created

Notice:	/Stage[main]/Myfw::Pre/Firewall[0002	Allow	all	established	

traffic]/ensure:	created

Notice:	/Stage[main]/Myfw::Post/Firewall[9999	Drop	all	other	

traffic]/ensure:	created

Notice:	

/Stage[main]/Haproxy::Config/Concat[haproxy.cfg]/File[haproxy.cfg]/cont

ent:	

...

+listen		myapp	0.0.0.0:80

+								balance	leastconn

+				server	slave1	192.168.122.148:8000			check	maxconn	100

+				server	slave2	192.168.122.133:8000			check	maxconn	100

Info:	Computing	checksum	on	file	/etc/haproxy/haproxy.cfg

Info:	

/Stage[main]/Haproxy::Config/Concat[haproxy.cfg]/File[haproxy.cfg]:	

Filebucketed	/etc/haproxy/haproxy.cfg	to	puppet	with	sum	

1f337186b0e1ba5ee82760cb437fb810

Notice:	

/Stage[main]/Haproxy::Config/Concat[haproxy.cfg]/File[haproxy.cfg]/cont

ent:	content	changed	'{md5}1f337186b0e1ba5ee82760cb437fb810'	to	

'{md5}b070f076e1e691e053d6853f7d966394'

Notice:	/Stage[main]/Haproxy::Master/Service[haproxy]/ensure:	ensure	

changed	'stopped'	to	'running'

Info:	/Stage[main]/Haproxy::Master/Service[haproxy]:	Unscheduling	

refresh	on	Service[haproxy]

Notice:	Finished	catalog	run	in	33.48	seconds

9.	 Check	the	HAProxy	stats	interface	on	master	port	8080	in	your	web	browser
(http://master.example.com:8080)	to	make	sure	everything	is	okay	(The	username
and	password	are	in	haproxy.cfg,	haproxy,	and	topsecret).	Try	going	to	the
proxied	service	as	well.	Notice	that	the	page	changes	on	each	reload	as	the	service	is
redirected	from	slave1	to	slave2	(http://master.example.com).

How	it	works…
We	built	a	complex	configuration	from	various	components	of	the	previous	sections.	This
type	of	deployment	becomes	easier	the	more	you	do	it.	At	a	top	level,	we	configured	the
master	to	collect	exported	resources	from	slaves.	The	slaves	exported	their	configuration
information	to	allow	haproxy	to	use	them	in	the	load	balancer.	As	slaves	are	added	to	the
system,	they	can	export	their	resources	and	be	added	to	the	balancer	automatically.

We	used	our	myfw	module	to	configure	the	firewall	on	the	slaves	and	the	master	to	allow
communication.

We	used	the	Forge	Apache	module	to	configure	the	listening	web	server	on	the	slaves.	We
were	able	to	generate	a	fully	functioning	website	with	five	lines	of	code	(10	more	to	place
index.html	on	the	website).

There	are	several	things	going	on	here.	We	have	the	firewall	configuration	and	the	Apache
configuration	in	addition	to	the	haproxy	configuration.	We’ll	focus	on	how	the	exported
resources	and	the	haproxy	configuration	fit	together.

In	the	haproxy::config	class,	we	created	the	concat	container	for	the	haproxy
configuration:

class	haproxy::config	{

		concat	{'haproxy.cfg':

				path		=>	'/etc/haproxy/haproxy.cfg',

				order	=>	'numeric',

				mode		=>	0644,

		}

}

We	reference	this	in	haproxy::slave:

class	haproxy::slave	($app	=	"myapp",	$localport	=	8000)	{

		#	haproxy	slave,	export	haproxy.cfg	fragment

		#	configure	simple	web	server	on	different	port

		@@concat::fragment	{	"haproxy.cfg	$::fqdn":

				content	=>	"\t\tserver	${::hostname}	${::ipaddress}:${localport}			

check	maxconn	100\n",

				order			=>	'0010',

				tag					=>	"$app",

		}

We	are	doing	a	little	trick	here	with	concat;	we	don’t	define	the	target	in	the	exported
resource.	If	we	did,	the	slaves	would	try	and	create	a	/etc/haproxy/haproxy.cfg	file,	but
the	slaves	do	not	have	haproxy	installed	so	we	would	get	catalog	failures.	What	we	do	is
modify	the	resource	when	we	collect	it	in	haproxy::master:

#	pull	in	the	exported	entries

		Concat::Fragment	<<|	tag	==	"$app"	|>>	{

				target	=>	'haproxy.cfg',

				notify	=>	Service['haproxy'],

		}

In	addition	to	adding	the	target	when	we	collect	the	resource,	we	also	add	a	notify	so	that

the	haproxy	service	is	restarted	when	we	add	a	new	host	to	the	configuration.	Another
important	point	here	is	that	we	set	the	order	attribute	of	the	slave	configurations	to	0010,
when	we	define	the	header	for	the	haproxy.cfg	file;	we	use	an	order	value	of	0001	to
ensure	that	the	header	is	placed	at	the	beginning	of	the	file:

concat::fragment	{	'haproxy.cfg	header':

				target		=>	'haproxy.cfg',

				source		=>	'puppet:///modules/haproxy/haproxy.cfg',

				order			=>	'001',

				require	=>	Package['haproxy'],

				notify		=>	Service['haproxy'],

		}

The	rest	of	the	haproxy::master	class	is	concerned	with	configuring	the	firewall	as	we
did	in	previous	examples.

There’s	more…
HAProxy	has	a	vast	range	of	configuration	parameters,	which	you	can	explore;	see	the
HAProxy	website	at	http://haproxy.1wt.eu/#docs.

Although	it’s	most	often	used	as	a	web	server,	HAProxy	can	proxy	a	lot	more	than	just
HTTP.	It	can	handle	any	kind	of	TCP	traffic,	so	you	can	use	it	to	balance	the	load	of
MySQL	servers,	SMTP,	video	servers,	or	anything	you	like.

You	can	use	the	design	we	showed	to	attack	many	problems	of	coordination	of	services
between	multiple	servers.	This	type	of	interaction	is	very	common;	you	can	apply	it	to
many	configurations	for	load	balancing	or	distributed	systems.	You	can	use	the	same
workflow	described	previously	to	have	nodes	export	firewall	resources	(@@firewall)	to
permit	their	own	access.

http://haproxy.1wt.eu/#docs

Managing	Docker	with	Puppet
Docker	is	a	platform	for	rapid	deployment	of	containers.	Containers	are	like	a	lightweight
virtual	machine	that	might	only	run	a	single	process.	The	containers	in	Docker	are	called
docks	and	are	configured	with	files	called	Dockerfiles.	Puppet	can	be	used	to	configure	a
node	to	not	only	run	Docker	but	also	configure	and	start	several	docks.	You	can	then	use
Puppet	to	ensure	that	your	docks	are	running	and	are	consistently	configured.

Getting	ready
Download	and	install	the	Puppet	Docker	module	from	the	Forge
(https://forge.puppetlabs.com/garethr/docker):

t@mylaptop	~	$	cd	puppet

t@mylaptop	~/puppet	$	puppet	module	install	-i	modules	garethr-docker

Notice:	Preparing	to	install	into	/home/thomas/puppet/modules…

Notice:	Downloading	from	https://forgeapi.puppetlabs.com…

Notice:	Installing—do	not	interrupt…

/home/thomas/puppet/modules

└─┬	garethr-docker	(v3.3.0)

		├──	puppetlabs-apt	(v1.7.0)

		├──	puppetlabs-stdlib	(v4.3.2)

		└──	stahnma-epel	(v1.0.2)

Add	these	modules	to	your	Puppet	repository.	The	stahnma-epel	module	is	required	for
Enterprise	Linux-based	distributions;	it	contains	the	Extra	Packages	for	Enterprise	Linux
YUM	repository.

https://forge.puppetlabs.com/garethr/docker

How	to	do	it…
Perform	the	following	steps	to	manage	Docker	with	Puppet:

1.	 To	install	Docker	on	a	node,	we	just	need	to	include	the	docker	class.	We’ll	do	more
than	install	Docker;	we’ll	also	download	an	image	and	start	an	application	on	our	test
node.	In	this	example,	we’ll	create	a	new	machine	called	shipyard.	Add	the
following	node	definition	to	site.pp:

			node	shipyard	{

		class	{'docker':	}

		docker::image	{'phusion/baseimage':	}

		docker::run	{'cookbook':

				image			=>	'phusion/baseimage',

				expose		=>	'8080',

				ports			=>	'8080',

				command	=>	'nc	-k	-l	8080',

		}

}

2.	 Run	Puppet	on	your	shipyard	node	to	install	Docker.	This	will	also	download	the
phusion/baseimage	docker	image:

[root@shipyard	~]#	puppet	agent	-t

Info:	Retrieving	pluginfacts

Info:	Retrieving	plugin

Info:	Loading	facts

Info:	Caching	catalog	for	shipyard

Info:	Applying	configuration	version	'1421049252'

Notice:	/Stage[main]/Epel/File[/etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-

6]/ensure:	defined	content	as	'{md5}d865e6b948a74cb03bc3401c0b01b785'

Notice:	/Stage[main]/Epel/Epel::Rpm_gpg_key[EPEL-6]/Exec[import-EPEL-

6]/returns:	executed	successfully

...

Notice:	/Stage[main]/Docker::Install/Package[docker]/ensure:	created

...

Notice:	

/Stage[main]/Main/Node[shipyard]/Docker::Run[cookbook]/File[/etc/init.d

/docker-cookbook]/ensure:	created

Info:	

/Stage[main]/Main/Node[shipyard]/Docker::Run[cookbook]/File[/etc/init.d

/docker-cookbook]:	Scheduling	refresh	of	Service[docker-cookbook]

Notice:	

/Stage[main]/Main/Node[shipyard]/Docker::Run[cookbook]/Service[docker-

cookbook]:	Triggered	'refresh'	from	1	events

3.	 Verify	that	your	container	is	running	on	shipyard	using	docker	ps:

[root@shipyard	~]#	docker	ps

CONTAINER	ID								IMAGE																						COMMAND													

CREATED														STATUS														PORTS																					

NAMES

f6f5b799a598								phusion/baseimage:0.9.15			"/bin/nc	-l	8080"			

About	a	minute	ago			Up	About	a	minute			0.0.0.0:49157->8080/tcp			

suspicious_hawking		

4.	 Verify	that	the	dock	is	running	netcat	on	port	8080	by	connecting	to	the	port	listed
previously	(49157):

[root@shipyard	~]#	nc	-v	localhost	49157

Connection	to	localhost	49157	port	[tcp/*]	succeeded!

How	it	works…
We	began	by	installing	the	docker	module	from	the	Forge.	This	module	installs	the
docker-io	package	on	our	node,	along	with	any	required	dependencies.

We	then	defined	a	docker::image	resource.	This	instructs	Puppet	to	ensure	that	the	named
image	is	downloaded	and	available	to	docker.	On	our	first	run,	Puppet	will	make	docker
download	the	image.	We	used	phusion/baseimage	as	our	example	because	it	is	quite
small,	well-known,	and	includes	the	netcat	daemon	we	used	in	the	example.	More
information	on	baseimage	can	be	found	at	http://phusion.github.io/baseimage-docker/.

We	then	went	on	to	define	a	docker::run	resource.	This	example	isn’t	terribly	useful;	it
simply	starts	netcat	in	listen	mode	on	port	8080.	We	need	to	expose	that	port	to	our
machine,	so	we	define	the	expose	attribute	of	our	docker::run	resource.	There	are	many
other	options	available	for	the	docker::run	resource.	Refer	to	the	source	code	for	more
details.

We	then	used	docker	ps	to	list	the	running	docks	on	our	shipyard	machine.	We	parsed	out
the	listening	port	on	our	local	machine	and	verified	that	netcat	was	listening.

http://phusion.github.io/baseimage-docker/

There’s	more…
Docker	is	a	great	tool	for	rapid	deployment	and	development.	You	can	spin	as	many	docks
as	you	need	on	even	the	most	modest	hardware.	One	great	use	for	docker	is	having	docks
act	as	test	nodes	for	your	modules.	You	can	create	a	docker	image,	which	includes	Puppet,
and	then	have	Puppet	run	within	the	dock.	For	more	information	on	docker,	visit
http://www.docker.com/.

http://www.docker.com/

Chapter	9.	External	Tools	and	the	Puppet
Ecosystem
	 “By	all	means	leave	the	road	when	you	wish.	That	is	precisely	the	use	of	a	road:	to	reach	individually	chosen	points
of	departure.”

	

	 —Robert	Bringhurst,	The	Elements	of	Typographic	Style

In	this	chapter,	we	will	cover	the	following	recipes:

Creating	custom	facts
Adding	external	facts
Setting	facts	as	environment	variables
Generating	manifests	with	the	Puppet	resource	command
Generating	manifests	with	other	tools
Using	an	external	node	classifier
Creating	your	own	resource	types
Creating	your	own	providers
Creating	custom	functions
Testing	your	Puppet	manifests	with	rspec-puppet
Using	librarian-puppet
Using	r10k

Introduction
Puppet	is	a	useful	tool	by	itself,	but	you	can	get	much	greater	benefits	by	using	Puppet	in
combination	with	other	tools	and	frameworks.	We’ll	look	at	some	ways	of	getting	data
into	Puppet,	including	custom	Facter	facts,	external	facts,	and	tools	to	generate	Puppet
manifests	automatically	from	the	existing	configuration.

You’ll	also	learn	how	to	extend	Puppet	by	creating	your	own	custom	functions,	resource
types,	and	providers;	how	to	use	an	external	node	classifier	script	to	integrate	Puppet	with
other	parts	of	your	infrastructure;	and	how	to	test	your	code	with	rspec-puppet.

Creating	custom	facts
While	Facter’s	built-in	facts	are	useful,	it’s	actually	quite	easy	to	add	your	own	facts.	For
example,	if	you	have	machines	in	different	data	centers	or	hosting	providers,	you	could
add	a	custom	fact	for	this	so	that	Puppet	can	determine	whether	any	local	settings	need	to
be	applied	(for	example,	local	DNS	servers	or	network	routes).

How	to	do	it…
Here’s	an	example	of	a	simple	custom	fact:

1.	 Create	the	directory	modules/facts/lib/facter	and	then	create	the	file
modules/facts/lib/facter/hello.rb	with	the	following	contents:

Facter.add(:hello)	do

		setcode	do

				"Hello,	world"

		end

end

2.	 Modify	your	site.pp	file	as	follows:

node	'cookbook'	{

		notify	{	$::hello:	}

}

3.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Notice:	/File[/var/lib/puppet/lib/facter/hello.rb]/ensure:	defined	

content	as	'{md5}f66d5e290459388c5ffb3694dd22388b'

Info:	Loading	facts

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1416205745'

Notice:	Hello,	world

Notice:	/Stage[main]/Main/Node[cookbook]/Notify[Hello,	world]/message:	

defined	'message'	as	'Hello,	world'

Notice:	Finished	catalog	run	in	0.53	seconds

How	it	works…
Facter	facts	are	defined	in	Ruby	files	that	are	distributed	with	facter.	Puppet	can	add
additional	facts	to	facter	by	creating	files	within	the	lib/facter	subdirectory	of	a	module.
These	files	are	then	transferred	to	client	nodes	as	we	saw	earlier	with	the	puppetlabs-
stdlib	module.	To	have	the	command-line	facter	use	these	puppet	facts,	append	the	-p
option	to	facter	as	shown	in	the	following	command	line:

[root@cookbook	~]#	facter	hello

[root@cookbook	~]#	facter	-p	hello

Hello,	world

Tip
If	you	are	using	an	older	version	of	Puppet	(older	than	3.0),	you	will	need	to	enable
pluginsync	in	your	puppet.conf	file	as	shown	in	the	following	command	line:

[main]

pluginsync	=	true

Facts	can	contain	any	Ruby	code,	and	the	last	value	evaluated	inside	the	setcode	do…	end
block	will	be	the	value	returned	by	the	fact.	For	example,	you	could	make	a	more	useful
fact	that	returns	the	number	of	users	currently	logged	in	to	the	system:

Facter.add(:users)	do

		setcode	do

				%x{/usr/bin/who	|wc	-l}.chomp

		end

end

To	reference	the	fact	in	your	manifests,	just	use	its	name	like	a	built-in	fact:

notify	{	"${::users}	users	logged	in":	}

Notice:		2	users	logged	in

You	can	add	custom	facts	to	any	Puppet	module.	When	creating	facts	that	will	be	used	by
multiple	modules,	it	may	make	sense	to	place	them	in	a	facts	module.	In	most	cases,	the
custom	fact	is	related	to	a	specific	module	and	should	be	placed	in	that	module.

There’s	more…
The	name	of	the	Ruby	file	that	holds	the	fact	definition	is	irrelevant.	You	can	name	this
file	whatever	you	wish;	the	name	of	the	fact	comes	from	the	Facter.add()	function	call.
You	may	also	call	this	function	several	times	within	a	single	Ruby	file	to	define	multiple
facts	as	necessary.	For	instance,	you	could	grep	the	/proc/meminfo	file	and	return	several
facts	based	on	memory	information	as	shown	in	the	meminfo.rb	file	in	the	following	code
snippet:

File.open('/proc/meminfo')	do	|f|

		f.each_line	{	|line|

		if	(line[/^Active:/])

				Facter.add(:memory_active)	do

						setcode	do	line.split(':')[1].to_i

						end

				end

		end

		if	(line[/^Inactive:/])

				Facter.add(:memory_inactive)	do

						setcode	do	line.split(':')[1].to_i

						end

				end

		end

		}

end

After	synchronizing	this	file	to	a	node,	the	memory_active	and	memory_inactive	facts
would	be	available	as	follows:

[root@cookbook	~]#	facter	-p	|grep	memory_

memory_active	=>	63780

memory_inactive	=>	58188

You	can	extend	the	use	of	facts	to	build	a	completely	nodeless	Puppet	configuration;	in
other	words,	Puppet	can	decide	what	resources	to	apply	to	a	machine,	based	solely	on	the
results	of	facts.	Jordan	Sissel	has	written	about	this	approach	at
http://www.semicomplete.com/blog/geekery/puppet-nodeless-configuration.html.

You	can	find	out	more	about	custom	facts,	including	how	to	make	sure	that	OS-specific
facts	work	only	on	the	relevant	systems,	and	how	to	weigh	facts	so	that	they’re	evaluated
in	a	specific	order	at	the	puppetlabs	website:

http://docs.puppetlabs.com/guides/custom_facts.html

http://www.semicomplete.com/blog/geekery/puppet-nodeless-configuration.html
http://docs.puppetlabs.com/guides/custom_facts.html

See	also
The	Importing	dynamic	information	recipe	in	Chapter	3,	Writing	Better	Manifests
The	Configuring	Hiera	recipe	in	Chapter	2,	Puppet	Infrastructure

Adding	external	facts
The	Creating	custom	facts	recipe	describes	how	to	add	extra	facts	written	in	Ruby.	You
can	also	create	facts	from	simple	text	files	or	scripts	with	external	facts	instead.

External	facts	live	in	the	/etc/facter/facts.d	directory	and	have	a	simple	key=value
format	like	this:

message="Hello,	world"

Getting	ready
Here’s	what	you	need	to	do	to	prepare	your	system	to	add	external	facts:

1.	 You’ll	need	Facter	Version	1.7	or	higher	to	use	external	facts,	so	look	up	the	value	of
facterversion	or	use	facter	-v:

[root@cookbook	~]#	facter	facterversion

2.3.0

[root@cookbook	~]#	facter	-v

2.3.0

2.	 You’ll	also	need	to	create	the	external	facts	directory,	using	the	following	command:

[root@cookbook	~]#	mkdir	-p	/etc/facter/facts.d

How	to	do	it…
In	this	example,	we’ll	create	a	simple	external	fact	that	returns	a	message,	as	shown	in	the
Creating	custom	facts	recipe:

1.	 Create	the	file	/etc/facter/facts.d/local.txt	with	the	following	contents:

model=ED-209

2.	 Run	the	following	command:

[root@cookbook	~]#	facter	model

ED-209

Well,	that	was	easy!	You	can	add	more	facts	to	the	same	file,	or	other	files,	of	course,
as	follows:

model=ED-209

builder=OCP

directives=4

However,	what	if	you	need	to	compute	a	fact	in	some	way,	for	example,	the	number
of	logged-in	users?	You	can	create	executable	facts	to	do	this.

3.	 Create	the	file	/etc/facter/facts.d/users.sh	with	the	following	contents:

#!/bin/sh

echo	users=`who	|wc	-l`

4.	 Make	this	file	executable	with	the	following	command:

[root@cookbook	~]#	chmod	a+x	/etc/facter/facts.d/users.sh

5.	 Now	check	the	users	value	with	the	following	command:

[root@cookbook	~]#	facter	users

2

How	it	works…
In	this	example,	we’ll	create	an	external	fact	by	creating	files	on	the	node.	We’ll	also	show
how	to	override	a	previously	defined	fact.

1.	 Current	versions	of	Facter	will	look	into	/etc/facter/facts.d	for	files	of	type	.txt,
.json,	or	.yaml.	If	facter	finds	a	text	file,	it	will	parse	the	file	for	key=value	pairs
and	add	the	key	as	a	new	fact:

[root@cookbook	~]#	facter	model

ED-209

2.	 If	the	file	is	a	YAML	or	JSON	file,	then	facter	will	parse	the	file	for	key=value	pairs
in	the	respective	format.	For	YAML,	for	instance:

registry:	NCC-68814

class:	Andromeda

shipname:	USS	Prokofiev

3.	 The	resulting	output	will	be	as	follows:

[root@cookbook	~]#	facter	registry	class	shipname

class	=>	Andromeda

registry	=>	NCC-68814

shipname	=>	USS	Prokofiev

4.	 In	the	case	of	executable	files,	Facter	will	assume	that	their	output	is	a	list	of
key=value	pairs.	It	will	execute	all	the	files	in	the	facts.d	directory	and	add	their
output	to	the	internal	fact	hash.

Tip
In	Windows,	batch	files	or	PowerShell	scripts	may	be	used	in	the	same	way	that
executable	scripts	are	used	in	Linux.

5.	 In	the	users	example,	Facter	will	execute	the	users.sh	script,	which	results	in	the
following	output:

users=2

6.	 It	will	then	search	this	output	for	users	and	return	the	matching	value:

[root@cookbook	~]#	facter	users

2

7.	 If	there	are	multiple	matches	for	the	key	you	specified,	Facter	determines	which	fact
to	return	based	on	a	weight	property.	In	my	version	of	facter,	the	weight	of	external
facts	is	10,000	(defined	in	facter/util/directory_loader.rb	as
EXTERNAL_FACT_WEIGHT).	This	high	value	is	to	ensure	that	the	facts	you	define	can
override	the	supplied	facts.	For	example:

[root@cookbook	~]#	facter	architecture

x86_64

[root@cookbook	~]#	echo	

"architecture=ppc64">>/etc/facter/facts.d/myfacts.txt

[root@cookbook	~]#	facter	architecture

ppc64

There’s	more…
Since	all	external	facts	have	a	weight	of	10,000,	the	order	in	which	they	are	parsed	within
the	/etc/facter/facts.d	directory	sets	their	precedence	(with	the	last	one	encountered
having	the	highest	precedence).	To	create	a	fact	that	will	be	favored	over	another,	you’ll
need	to	have	it	created	in	a	file	that	comes	last	alphabetically:

[root@cookbook	~]#	facter	architecture

ppc64

[root@cookbook	~]#	echo	"architecture=r10000"	>>/etc/facter/facts.d/z-

architecture.txt

[root@cookbook	~]#	facter	architecture

r10000

Debugging	external	facts
If	you’re	having	trouble	getting	Facter	to	recognize	your	external	facts,	run	Facter	in
debug	mode	to	see	what’s	happening:

ubuntu@cookbook:~/puppet$	facter	-d	robin

Fact	file	/etc/facter/facts.d/myfacts.json	was	parsed	but	returned	an	empty	

data	set

The	X	JSON	file	was	parsed	but	returned	an	empty	data	set	error,	which	means	Facter
didn’t	find	any	key=value	pairs	in	the	file	or	(in	the	case	of	an	executable	fact)	in	its
output.

Note
Note	that	if	you	have	external	facts	present,	Facter	parses	or	runs	all	the	facts	in	the
/etc/facter/facts.d	directory	every	time	you	query	Facter.	If	some	of	these	scripts	take
a	long	time	to	run,	that	can	significantly	slow	down	anything	that	uses	Facter	(run	Facter
with	the	--iming	switch	to	troubleshoot	this).	Unless	a	particular	fact	needs	to	be
recomputed	every	time	it’s	queried,	consider	replacing	it	with	a	cron	job	that	computes	it
every	so	often	and	writes	the	result	to	a	text	file	in	the	Facter	directory.

Using	external	facts	in	Puppet
Any	external	facts	you	create	will	be	available	to	both	Facter	and	Puppet.	To	reference
external	facts	in	your	Puppet	manifests,	just	use	the	fact	name	in	the	same	way	you	would
for	a	built-in	or	custom	fact:

notify	{	"There	are	$::users	people	logged	in	right	now.":	}

Unless	you	are	specifically	attempting	to	override	a	defined	fact,	you	should	avoid	using
the	name	of	a	predefined	fact.

See	also
The	Importing	dynamic	information	recipe	in	Chapter	3,	Writing	Better	Manifests
The	Configuring	Hiera	recipe	in	Chapter	2,	Puppet	Infrastructure
The	Creating	custom	facts	recipe	in	this	chapter

Setting	facts	as	environment	variables
Another	handy	way	to	get	information	into	Puppet	and	Facter	is	to	pass	it	using
environment	variables.	Any	environment	variable	whose	name	starts	with	FACTER_	will	be
interpreted	as	a	fact.	For	example,	ask	facter	the	value	of	hello	using	the	following
command:

[root@cookbook	~]#	facter	-p	hello

Hello,	world

Now	override	the	value	with	an	environment	variable	and	ask	again:

[root@cookbook	~]#	FACTER_hello='Howdy!'	facter	-p	hello

Howdy!

It	works	just	as	well	with	Puppet,	so	let’s	run	through	an	example.

How	to	do	it…
In	this	example	we’ll	set	a	fact	using	an	environment	variable:

1.	 Keep	the	node	definition	for	cookbook	the	same	as	our	last	example:

node	cookbook	{

		notify	{"$::hello":	}

}

2.	 Run	the	following	command:

[root@cookbook	~]#	FACTER_hello="Hallo	Welt"	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1416212026'

Notice:	Hallo	Welt

Notice:	/Stage[main]/Main/Node[cookbook]/Notify[Hallo	Welt]/message:	

defined	'message'	as	'Hallo	Welt'

Notice:	Finished	catalog	run	in	0.27	seconds

Generating	manifests	with	the	Puppet
resource	command
If	you	have	a	server	that	is	already	configured	as	it	needs	to	be,	or	nearly	so,	you	can
capture	that	configuration	as	a	Puppet	manifest.	The	Puppet	resource	command	generates
Puppet	manifests	from	the	existing	configuration	of	a	system.	For	example,	you	can	have
puppet	resource	generate	a	manifest	that	creates	all	the	users	found	on	the	system.	This
is	very	useful	to	take	a	snapshot	of	a	working	system	and	get	its	configuration	quickly	into
Puppet.

How	to	do	it…
Here	are	some	examples	of	using	puppet	resource	to	get	data	from	a	running	system:

1.	 To	generate	the	manifest	for	a	particular	user,	run	the	following	command:

[root@cookbook	~]#	puppet	resource	user	thomas

user	{	'thomas':

		ensure											=>	'present',

		comment										=>	'thomas	Admin	User',

		gid														=>	'1001',

		groups											=>	['bin',	'wheel'],

		home													=>	'/home/thomas',

		password									=>	'!!',

		password_max_age	=>	'99999',

		password_min_age	=>	'0',

		shell												=>	'/bin/bash',

		uid														=>	'1001',

}

2.	 For	a	particular	service,	run	the	following	command:

[root@cookbook	~]#	puppet	resource	service	sshd

service	{	'sshd':

		ensure	=>	'running',

		enable	=>	'true',

}

3.	 For	a	package,	run	the	following	command:

[root@cookbook	~]#	puppet	resource	package	kernel

package	{	'kernel':

		ensure	=>	'2.6.32-431.23.3.el6',

}

There’s	more…
You	can	use	puppet	resource	to	examine	each	of	the	resource	types	available	in	Puppet.
In	the	preceding	examples,	we	generated	a	manifest	for	a	specific	instance	of	the	resource
type,	but	you	can	also	use	puppet	resource	to	dump	all	instances	of	the	resource:

[root@cookbook	~]#	puppet	resource	service

service	{	'abrt-ccpp':

		ensure	=>	'running',

		enable	=>	'true',

}

service	{	'abrt-oops':

		ensure	=>	'running',

		enable	=>	'true',

}

service	{	'abrtd':

		ensure	=>	'running',

		enable	=>	'true',

}

service	{	'acpid':

		ensure	=>	'running',

		enable	=>	'true',

}

service	{	'atd':

		ensure	=>	'running',

		enable	=>	'true',

}

service	{	'auditd':

		ensure	=>	'running',

		enable	=>	'true',

}

This	will	output	the	state	of	each	service	on	the	system;	this	is	because	each	service	is	an
enumerable	resource.	When	you	try	the	same	command	with	a	resource	that	is	not
enumerable,	you	get	an	error	message:

[root@cookbook	~]#	puppet	resource	file

Error:	Could	not	run:	Listing	all	file	instances	is	not	supported.		Please	

specify	a	file	or	directory,	e.g.	puppet	resource	file	/etc

Asking	Puppet	to	describe	each	file	on	the	system	will	not	work;	that’s	something	best	left
to	an	audit	tool	such	as	tripwire	(a	system	designed	to	look	for	changes	on	every	file	on
the	system,	http://www.tripwire.com).

http://www.tripwire.com

Generating	manifests	with	other	tools
If	you	want	to	quickly	capture	the	complete	configuration	of	a	running	system	as	a	Puppet
manifest,	there	are	a	couple	of	tools	available	to	help.	In	this	example,	we’ll	look	at
Blueprint,	which	is	designed	to	examine	a	machine	and	dump	its	state	as	Puppet	code.

Getting	ready
Here’s	what	you	need	to	do	to	prepare	your	system	to	use	Blueprint.

Run	the	following	command	to	install	Blueprint;	we’ll	use	puppet	resource	here	to
change	the	state	of	the	python-pip	package:

[root@cookbook	~]#	puppet	resource	package	python-pip	ensure=installed

Notice:	/Package[python-pip]/ensure:	created

package	{	'python-pip':

		ensure	=>	'1.3.1-4.el6',

}

[root@cookbook	~]#	pip	install	blueprint

Downloading/unpacking	blueprint

		Downloading	blueprint-3.4.2.tar.gz	(59kB):	59kB	downloaded

		Running	setup.py	egg_info	for	package	blueprint

Installing	collected	packages:	blueprint

		Running	setup.py	install	for	blueprint

				changing	mode	of	build/scripts-2.6/blueprint	from	644	to	755

...

Successfully	installed	blueprint

Cleaning	up…

Tip
You	may	need	to	install	Git	on	your	cookbook	node	if	it	is	not	already	installed.

How	to	do	it…
These	steps	will	show	you	how	to	run	Blueprint:

1.	 Run	the	following	commands:

[root@cookbook	~]#	mkdir	blueprint	&&	cd	blueprint

[root@cookbook	blueprint]#	blueprint	create	-P	blueprint_test

#	[blueprint]	searching	for	APT	packages	to	exclude

#	[blueprint]	searching	for	Yum	packages	to	exclude

#	[blueprint]	caching	excluded	Yum	packages

#	[blueprint]	parsing	blueprintignore(5)	rules

#	[blueprint]	searching	for	npm	packages

#	[blueprint]	searching	for	configuration	files

#	[blueprint]	searching	for	APT	packages

#	[blueprint]	searching	for	PEAR/PECL	packages

#	[blueprint]	searching	for	Python	packages

#	[blueprint]	searching	for	Ruby	gems

#	[blueprint]	searching	for	software	built	from	source

#	[blueprint]	searching	for	Yum	packages

#	[blueprint]	searching	for	service	dependencies

blueprint_test/manifests/init.pp

2.	 Read	the	blueprint_test/manifests/init.pp	file	to	see	the	generated	code:

#

#	Automatically	generated	by	blueprint(7).		Edit	at	your	own	risk.

#

class	blueprint_test	{

		Exec	{

				path	=>	'/usr/lib64/qt-

3.3/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/r

oot/bin',

		}

		Class['sources']	->	Class['files']	->	Class['packages']

				class	files	{

						file	{

								'/etc':

										ensure	=>	directory;

								'/etc/aliases.db':

content	=>	template('blueprint_test/etc/aliases.db'),

										ensure		=>	file,

group			=>	root,

										mode				=>	0644,

										owner			=>	root;

'/etc/audit':

										ensure	=>	directory;

'/etc/audit/audit.rules':

										content	=>	template('blueprint_test/etc/audit/audit.rules'),

										ensure		=>	file,

										group			=>	root,

										mode				=>	0640,

										owner			=>	root;

								'/etc/blkid':

										ensure	=>	directory;

'/etc/cron.hourly':

										ensure	=>	directory;

'/etc/cron.hourly/run-backup':

										content	=>	template('blueprint_test/etc/cron.hourly/run-

backup'),

										ensure		=>	file,

										group			=>	root,

										mode				=>	0755,

owner			=>	root;

'/etc/crypttab':

										content	=>	template('blueprint_test/etc/crypttab'),

										ensure		=>	file,

										group			=>	root,

										mode				=>	0644,

										owner			=>	root;

There’s	more…
Blueprint	just	takes	a	snapshot	of	the	system	as	it	stands;	it	makes	no	intelligent	decisions,
and	Blueprint	captures	all	the	files	on	the	system	and	all	the	packages.	It	will	generate	a
configuration	much	larger	than	you	may	actually	require.	For	instance,	when	configuring	a
server,	you	may	specify	that	you	want	the	Apache	package	installed.	The	dependencies	for
the	Apache	package	will	be	installed	automatically	and	you	need	to	specify	them.	When
generating	the	configuration	with	a	tool	such	as	Blueprint,	you	will	capture	all	those
dependencies	and	lock	the	versions	that	are	installed	on	your	system	currently.	Looking	at
our	generated	Blueprint	code,	we	can	see	that	this	is	the	case:

class	yum	{

		package	{

				'GeoIP':

						ensure	=>	'1.5.1-5.el6.x86_64';

				'PyXML':

						ensure	=>	'0.8.4-19.el6.x86_64';

				'SDL':

						ensure	=>	'1.2.14-3.el6.x86_64';

				'apr':

						ensure	=>	'1.3.9-5.el6_2.x86_64';

				'apr-util':

						ensure	=>	'1.3.9-3.el6_0.1.x86_64';

If	you	were	creating	this	manifest	yourself,	you	would	likely	specify	ensure	=>
installed	instead	of	a	specific	version.

Packages	install	default	versions	of	files.	Blueprint	has	no	notion	of	this	and	will	add	all
the	files	to	the	manifest,	even	those	that	have	not	changed.	By	default,	Blueprint	will
indiscriminately	capture	all	the	files	in	/etc	as	file	resources.

Blueprint	and	similar	tools	have	a	very	small	use	case	generally,	but	may	help	you	to	get
familiar	with	the	Puppet	syntax	and	give	you	some	ideas	on	how	to	specify	your	own
manifests.	I	would	not	recommend	blindly	using	this	tool	to	create	a	system,	however.

There’s	no	shortcut	to	good	configuration	management,	those	who	hope	to	save	time	and
effort	by	cutting	and	pasting	someone	else’s	code	as	a	whole	(as	with	public	modules)	are
likely	to	find	that	it	saves	neither.

Using	an	external	node	classifier
When	Puppet	runs	on	a	node,	it	needs	to	know	which	classes	should	be	applied	to	that
node.	For	example,	if	it	is	a	web	server	node,	it	might	need	to	include	an	apache	class.
The	normal	way	to	map	nodes	to	classes	is	in	the	Puppet	manifest	itself,	for	example,	in
your	site.pp	file:

node	'web1'	{

		include	apache

}

Alternatively,	you	can	use	an	External	Node	Classifier	(ENC)	to	do	this	job.	An	ENC	is
any	executable	program	that	can	accept	the	fully-qualified	domain	name	(FQDN)	as	the
first	command-line	argument	($1).	The	script	is	expected	to	return	a	list	of	classes,
parameters,	and	an	optional	environment	to	apply	to	the	node.	The	output	is	expected	to	be
in	the	standard	YAML	format.	When	using	an	ENC,	you	should	keep	in	mind	that	the
classes	applied	through	the	standard	site.pp	manifest	are	merged	with	those	provided	by
the	ENC.

Note
Parameters	returned	by	the	ENC	are	available	as	top-scope	variables	to	the	node.

An	ENC	could	be	a	simple	shell	script,	for	example,	or	a	wrapper	around	a	more
complicated	program	or	API	that	can	decide	how	to	map	nodes	to	classes.	The	ENC
provided	by	Puppet	enterprise	and	The	Foreman	(http://theforeman.org/)	are	both	simple
scripts,	which	connect	to	the	web	API	of	their	respective	systems.

In	this	example,	we’ll	build	the	most	simple	of	ENCs,	a	shell	script	that	simply	prints	a	list
of	classes	to	include.	We’ll	start	by	including	an	enc	class,	which	defines	notify	that	will
print	a	top-scope	variable	$enc.

http://theforeman.org/

Getting	ready
We’ll	start	by	creating	our	enc	class	to	include	with	the	enc	script:

1.	 Run	the	following	command:

t@mylaptop	~/puppet	$	mkdir	-p	modules/enc/manifests

2.	 Create	the	file	modules/enc/manifests/init.pp	with	the	following	contents:

class	enc	{

		notify	{"We	defined	this	from	$enc":	}

}

How	to	do	it…
Here’s	how	to	build	a	simple	external	node	classifier.	We’ll	perform	all	these	steps	on	our
Puppet	master	server.	If	you	are	running	masterless,	then	do	these	steps	on	a	node:

1.	 Create	the	file	/etc/puppet/cookbook.sh	with	the	following	contents:

#!/bin/bash

cat	<<EOF

classes:

enc:

parameters:

		enc:	$0

EOF

2.	 Run	the	following	command:

root@puppet:/etc/puppet#	chmod	a+x	cookbook.sh	

3.	 Modify	your	/etc/puppet/puppet.conf	file	as	follows:

[main]

		node_terminus	=	exec

		external_nodes	=	/etc/puppet/cookbook.sh

4.	 Restart	Apache	(restart	the	master)	to	make	the	change	effective.
5.	 Ensure	your	site.pp	file	has	the	following	empty	definition	for	the	default	node:

node	default	{}

6.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1416376937'

Notice:	We	defined	this	from	/etc/puppet/cookbook.sh

Notice:	/Stage[main]/Enc/Notify[We	defined	this	from	

/etc/puppet/cookbook.sh]/message:	defined	'message'	as	'We	defined	this	

from	/etc/puppet/cookbook.sh'

Notice:	Finished	catalog	run	in	0.17	seconds

How	it	works…
When	an	ENC	is	set	in	puppet.conf,	Puppet	will	call	the	specified	program	with	the
node’s	fqdn	(technically,	the	certname	variable)	as	the	first	command-line	argument.	In
our	example	script,	this	argument	is	ignored,	and	it	just	outputs	a	fixed	list	of	classes
(actually,	just	one	class).

Obviously	this	script	is	not	terribly	useful;	a	more	sophisticated	script	might	check	a
database	to	find	the	class	list,	or	look	up	the	node	in	a	hash,	or	an	external	text	file	or
database	(often	an	organization’s	configuration	management	database,	CMDB).
Hopefully,	this	example	is	enough	to	get	you	started	with	writing	your	own	external	node
classifier.	Remember	that	you	can	write	your	script	in	any	language	you	prefer.

There’s	more…
An	ENC	can	supply	a	whole	list	of	classes	to	be	included	in	the	node,	in	the	following
(YAML)	format:

classes:

		CLASS1:

		CLASS2:

		CLASS3:

For	classes	that	take	parameters,	you	can	use	this	format:

classes:

		mysql:

				package:	percona-server-server-5.5

				socket:		/var/run/mysqld/mysqld.sock

				port:				3306

You	can	also	produce	top-scope	variables	using	an	ENC	with	this	format:

parameters:

		message:	'Anyone	home	MyFly?'

Variables	that	you	set	in	this	way	will	be	available	in	your	manifest	using	the	normal
syntax	for	a	top-scope	variable,	for	example	$::message.

See	also
See	the	puppetlabs	ENC	page	for	more	information	on	writing	and	using	ENCs:
http://docs.puppetlabs.com/guides/external_nodes.html

http://docs.puppetlabs.com/guides/external_nodes.html

Creating	your	own	resource	types
As	you	know,	Puppet	has	a	bunch	of	useful	built-in	resource	types:	packages,	files,	users,
and	so	on.	Usually,	you	can	do	everything	you	need	to	do	by	using	either	combinations	of
these	built-in	resources,	or	define,	which	you	can	use	more	or	less	in	the	same	way	as	a
resource	(see	Chapter	3,	Writing	Better	Manifests	for	information	on	definitions).

In	the	early	days	of	Puppet,	creating	your	own	resource	type	was	more	common	as	the	list
of	core	resources	was	shorter	than	it	is	today.	Before	you	consider	creating	your	own
resource	type,	I	suggest	searching	the	Forge	for	alternative	solutions.	Even	if	you	can	find
a	project	that	only	partially	solves	your	problem,	you	will	be	better	served	by	extending
and	helping	out	that	project,	rather	than	trying	to	create	your	own.	However,	if	you	need	to
create	your	own	resource	type,	Puppet	makes	it	quite	easy.	The	native	types	are	written	in
Ruby,	and	you	will	need	a	basic	familiarity	with	Ruby	in	order	to	create	your	own.

Let’s	refresh	our	memory	on	the	distinction	between	types	and	providers.	A	type	describes
a	resource	and	the	parameters	it	can	have	(for	example,	the	package	type).	A	provider	tells
Puppet	how	to	implement	a	resource	type	for	a	particular	platform	or	situation	(for
example,	the	apt/dpkg	providers	implement	the	package	type	for	Debian-like	systems).

A	single	type	(package)	can	have	many	providers	(APT,	YUM,	Fink,	and	so	on).	If	you
don’t	specify	a	provider	when	declaring	a	resource,	Puppet	will	choose	the	most
appropriate	one	given	the	environment.

We’ll	use	Ruby	in	this	section;	if	you	are	not	familiar	with	Ruby	try	visiting
http://www.ruby-doc.org/docs/Tutorial/	or	http://www.codecademy.com/tracks/ruby/.

http://www.ruby-doc.org/docs/Tutorial/
http://www.codecademy.com/tracks/ruby/

How	to	do	it…
In	this	section,	we’ll	see	how	to	create	a	custom	type	that	we	can	use	to	manage	Git
repositories,	and	in	the	next	section,	we’ll	write	a	provider	to	implement	this	type.

Create	the	file	modules/cookbook/lib/puppet/type/gitrepo.rb	with	the	following
contents:

Puppet::Type.newtype(:gitrepo)	do

		ensurable

		newparam(:source)	do

				isnamevar

		end

		newparam(:path)

end

How	it	works…
Custom	types	can	live	in	any	module,	in	a	lib/puppet/type	subdirectory	and	in	a	file
named	for	the	type	(in	our	example,	that’s
modules/cookbook/lib/puppet/type/gitrepo.rb).

The	first	line	of	gitrepo.rb	tells	Puppet	to	register	a	new	type	named	gitrepo:

Puppet::Type.newtype(:gitrepo)	do

The	ensurable	line	automatically	gives	the	type	an	ensure	property,	such	as	Puppet’s
built-in	resources:

ensurable

We’ll	now	give	the	type	some	parameters.	For	the	moment,	all	we	need	is	a	source
parameter	for	the	Git	source	URL,	and	a	path	parameter	to	tell	Puppet	where	the	repo
should	be	created	in	the	filesystem:

newparam(:source)	do

		isnamevar

end

The	isnamevar	declaration	tells	Puppet	that	the	source	parameter	is	the	type’s	namevar.
So	when	you	declare	an	instance	of	this	resource,	whatever	name	you	give,	it	will	be	the
value	of	source,	for	example:

gitrepo	{	'git://github.com/puppetlabs/puppet.git':

		path	=>	'/home/ubuntu/dev/puppet',

}

Finally,	we	tell	Puppet	that	the	type	accepts	the	path	parameter:

newparam(:path)

There’s	more…
When	deciding	whether	or	not	you	should	create	a	custom	type,	you	should	ask	a	few
questions	about	the	resource	you	are	trying	to	describe	such	as:

Is	the	resource	enumerable?	Can	you	easily	obtain	a	list	of	all	the	instances	of	the
resource	on	the	system?
Is	the	resource	atomic?	Can	you	ensure	that	only	one	copy	of	the	resource	exists	on
the	system	(this	is	particularly	important	when	you	want	to	use	ensure=>absent	on
the	resource)?
Is	there	any	other	resource	that	describes	this	resource?	In	such	a	case,	a	defined	type
based	on	the	existing	resource	would,	in	most	cases,	be	a	simpler	solution.

Documentation
Our	example	is	deliberately	simple,	but	when	you	move	on	to	developing	real	custom
types	for	your	production	environment,	you	should	add	documentation	strings	to	describe
what	the	type	and	its	parameters	do,	for	example:

Puppet::Type.newtype(:gitrepo)	do

		@doc	=	"Manages	Git	repos"

		ensurable

		newparam(:source)	do

				desc	"Git	source	URL	for	the	repo"

				isnamevar

		end

		newparam(:path)	do

				desc	"Path	where	the	repo	should	be	created"

		end

end

Validation
You	can	use	parameter	validation	to	generate	useful	error	messages	when	someone	tries	to
pass	bad	values	to	the	resource.	For	example,	you	could	validate	that	the	directory	where
the	repo	is	to	be	created	actually	exists:

newparam(:path)	do

		validate	do	|value|

				basepath	=	File.dirname(value)

				unless	File.directory?(basepath)

						raise	ArgumentError	,	"The	path	%s	doesn't	exist"	%	basepath

				end

		end

end

You	can	also	specify	the	list	of	allowed	values	that	the	parameter	can	take:

newparam(:breakfast)	do

		newvalues(:bacon,	:eggs,	:sausages)

end

Creating	your	own	providers
In	the	previous	section,	we	created	a	new	custom	type	called	gitrepo	and	told	Puppet	that
it	takes	two	parameters,	source	and	path.	However,	so	far,	we	haven’t	told	Puppet	how	to
actually	check	out	the	repo;	in	other	words,	how	to	create	a	specific	instance	of	this	type.
That’s	where	the	provider	comes	in.

We	saw	that	a	type	will	often	have	several	possible	providers.	In	our	example,	there	is
only	one	sensible	way	to	instantiate	a	Git	repo,	so	we’ll	only	supply	one	provider:	git.	If
you	were	to	generalize	this	type—to	just	repo,	say—it’s	not	hard	to	imagine	creating
several	different	providers	depending	on	the	type	of	repo,	for	example,	git,	svn,	cvs,	and
so	on.

How	to	do	it…
We’ll	add	the	git	provider,	and	create	an	instance	of	a	gitrepo	resource	to	check	that	it
all	works.	You’ll	need	Git	installed	for	this	to	work,	but	if	you’re	using	the	Git-based
manifest	management	setup	described	in	Chapter	2,	Puppet	Infrastructure,	we	can	safely
assume	that	Git	is	available.

1.	 Create	the	file	modules/cookbook/lib/puppet/provider/gitrepo/git.rb	with	the
following	contents:

require	'fileutils'

Puppet::Type.type(:gitrepo).provide(:git)	do

		commands	:git	=>	"git"

		def	create

				git	"clone",	resource[:source],	resource[:path]

		end

		def	exists?

				File.directory?	resource[:path]

		end

end

2.	 Modify	your	site.pp	file	as	follows:

node	'cookbook'	{

		gitrepo	{	'https://github.com/puppetlabs/puppetlabs-git':

				ensure	=>	present,

				path			=>	'/tmp/puppet',

		}

}

3.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Notice:	/File[/var/lib/puppet/lib/puppet/type/gitrepo.rb]/ensure:	

defined	content	as	'{md5}6471793fe2b4372d40289ad4b614fe0b'

Notice:	/File[/var/lib/puppet/lib/puppet/provider/gitrepo]/ensure:	

created

Notice:	

/File[/var/lib/puppet/lib/puppet/provider/gitrepo/git.rb]/ensure:	

defined	content	as	'{md5}f860388234d3d0bdb3b3ec98bbf5115b'

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1416378876'

Notice:	

/Stage[main]/Main/Node[cookbook]/Gitrepo[https://github.com/puppetlabs/

puppetlabs-git]/ensure:	created

Notice:	Finished	catalog	run	in	2.59	seconds

How	it	works…
Custom	providers	can	live	in	any	module,	in	a	lib/puppet/provider/TYPE_NAME
subdirectory	in	a	file	named	after	the	provider.	(The	provider	is	the	actual	program	that	is
run	on	the	system;	in	our	example,	the	program	is	Git	and	the	provider	is	in
modules/cookbook/lib/puppet/provider/gitrepo/git.rb.	Note	that	the	name	of	the
module	is	irrelevant.)

After	an	ntitial	require	line	in	git.rb,	we	tell	Puppet	to	register	a	new	provider	for	the
gitrepo	type	with	the	following	line:

Puppet::Type.type(:gitrepo).provide(:git)	do

When	you	declare	an	instance	of	the	gitrepo	type	in	your	manifest,	Puppet	will	first	of	all
check	whether	the	instance	already	exists,	by	calling	the	exists?	method	on	the	provider.
So	we	need	to	supply	this	method,	complete	with	code	to	check	whether	an	instance	of	the
gitrepo	type	already	exists:

def	exists?

		File.directory?	resource[:path]

end

This	is	not	the	most	sophisticated	implementation;	it	simply	returns	true	if	a	directory
exists	matching	the	path	parameter	of	the	instance.	A	better	implementation	of	exists?
might	check,	for	example,	whether	there	is	a	.git	subdirectory	and	that	it	contains	valid
Git	metadata.	But	this	will	do	for	now.

If	exists?	returns	true,	then	Puppet	will	take	no	further	action	because	the	specified
resource	exists	(as	far	as	Puppet	knows).	If	it	returns	false,	Puppet	assumes	the	resource
doesn’t	yet	exist,	and	will	try	to	create	it	by	calling	the	provider’s	create	method.

Accordingly,	we	supply	some	code	for	the	create	method	that	calls	the	git	clone
command	to	create	the	repo:

def	create

		git	"clone",	resource[:source],	resource[:path]

end

The	method	has	access	to	the	instance’s	parameters,	which	we	need	to	know	where	to
check	out	the	repo	from,	and	which	directory	to	create	it	in.	We	get	this	by	looking	at
resource[:source]	and	resource[:path].

There’s	more…
You	can	see	that	custom	types	and	providers	in	Puppet	are	very	powerful.	In	fact,	they	can
do	anything—at	least,	anything	that	Ruby	can	do.	If	you	are	managing	some	parts	of	your
infrastructure	with	complicated	define	statements	and	exec	resources,	you	may	want	to
consider	replacing	these	with	a	custom	type.	However,	as	stated	previously,	it’s	worth
looking	around	to	see	if	someone	else	has	already	done	this	before	implementing	your
own.

Our	example	was	very	simple,	and	there	is	much	more	to	learn	about	writing	your	own
types.	If	you’re	going	to	distribute	your	code	for	others	to	use,	or	even	if	you	aren’t,	it’s	a
good	idea	to	include	tests	with	it.	puppetlabs	has	a	useful	page	on	the	interface	between
custom	types	and	providers:

http://docs.puppetlabs.com/guides/custom_types.html

on	implementing	providers:

http://docs.puppetlabs.com/guides/provider_development.html

and	a	complete	worked	example	of	developing	a	custom	type	and	provider,	a	little	more
advanced	than	that	presented	in	this	book:

http://docs.puppetlabs.com/guides/complete_resource_example.html

http://docs.puppetlabs.com/guides/custom_types.html
http://docs.puppetlabs.com/guides/provider_development.html
http://docs.puppetlabs.com/guides/complete_resource_example.html

Creating	custom	functions
If	you’ve	read	the	recipe	Using	GnuPG	to	encrypt	secrets	in	Chapter	4,	Working	with	Files
and	Packages,	then	you’ve	already	seen	an	example	of	a	custom	function	(in	that
example,	we	created	a	secret	function,	which	shelled	out	to	GnuPG).	Let’s	look	at
custom	functions	in	a	little	more	detail	now	and	build	an	example.

How	to	do	it…
If	you’ve	read	the	recipe	Distributing	cron	jobs	efficiently	in	Chapter	6,	Managing
Resources	and	Files,	you	might	remember	that	we	used	the	inline_template	function	to
set	a	random	time	for	cron	jobs	to	run,	based	on	the	hostname	of	the	node.	In	this	example,
we’ll	take	that	idea	and	turn	it	into	a	custom	function	called	random_minute:

1.	 Create	the	file
modules/cookbook/lib/puppet/parser/functions/random_minute.rb	with	the
following	contents:

module	Puppet::Parser::Functions

		newfunction(:random_minute,	:type	=>	:rvalue)	do	|args|

				lookupvar('hostname').sum	%	60

		end

end

2.	 Modify	your	site.pp	file	as	follows:

node	'cookbook'	{

		cron	{	'randomised	cron	job':

				command	=>	'/bin/echo	Hello,	world	>>/tmp/hello.txt',

				hour				=>	'*',

				minute		=>	random_minute(),

		}

}

3.	 Run	Puppet:

[root@cookbook	~]#	puppet	agent	-t

Info:	Retrieving	pluginfacts

Info:	Retrieving	plugin

Notice:	

/File[/var/lib/puppet/lib/puppet/parser/functions/random_minute.rb]/ens

ure:	defined	content	as	'{md5}e6ff40165e74677e5837027bb5610744'

Info:	Loading	facts

Info:	Caching	catalog	for	cookbook.example.com

Info:	Applying	configuration	version	'1416379652'

Notice:	/Stage[main]/Main/Node[cookbook]/Cron[custom	fuction	example	

job]/ensure:	created

Notice:	Finished	catalog	run	in	0.41	seconds

4.	 Check	crontab	with	the	following	command:

[root@cookbook	~]#	crontab	-l

#	HEADER:	This	file	was	autogenerated	at	Wed	Nov	19	01:48:11	-0500	2014	

by	puppet.

#	HEADER:	While	it	can	still	be	managed	manually,	it	is	definitely	not	

recommended.

#	HEADER:	Note	particularly	that	the	comments	starting	with	'Puppet	

Name'	should

#	HEADER:	not	be	deleted,	as	doing	so	could	cause	duplicate	cron	jobs.

#	Puppet	Name:	run-backup

0	15	*	*	*	/usr/local/bin/backup

#	Puppet	Name:	custom	fuction	example	job

15	*	*	*	*	/bin/echo	Hallo,	welt	>>/tmp/hallo.txt

How	it	works…
Custom	functions	can	live	in	any	module,	in	the	lib/puppet/parser/functions
subdirectory	in	a	file	named	after	the	function	(in	our	example,	random_minute.rb).

The	function	code	goes	inside	a	module…	end	block	like	this:

module	Puppet::Parser::Functions

		...

end

We	then	call	newfunction	to	declare	our	new	function,	passing	the	name
(:random_minute)	and	the	type	of	function	(:rvalue):

newfunction(:random_minute,	:type	=>	:rvalue)	do	|args|

The	:rvalue	bit	simply	means	that	this	function	returns	a	value.

Finally,	the	function	code	itself	is	as	follows:

				lookupvar('hostname').sum	%	60

The	lookupvar	function	lets	you	access	facts	and	variables	by	name;	in	this	case,
hostname	to	get	the	name	of	the	node	we’re	running	on.	We	use	the	Ruby	sum	method	to
get	the	numeric	sum	of	the	characters	in	this	string,	and	then	perform	integer	division
modulo	60	to	make	sure	the	result	is	in	the	range	0..59.

There’s	more…
You	can,	of	course,	do	a	lot	more	with	custom	functions.	In	fact,	anything	you	can	do	in
Ruby,	you	can	do	in	a	custom	function.	You	also	have	access	to	all	the	facts	and	variables
that	are	in	scope	at	the	point	in	the	Puppet	manifest	where	the	function	is	called,	by	calling
lookupvar	as	shown	in	the	example.	You	can	also	work	on	arguments,	for	example,	a
general	purpose	hashing	function	that	takes	two	arguments:	the	size	of	the	hash	table	and
optionally	the	thing	to	hash.	Create
modules/cookbook/lib/puppet/parser/functions/hashtable.rb	with	the	following
contents:

module	Puppet::Parser::Functions

		newfunction(:hashtable,	:type	=>	:rvalue)	do	|args|

				if	args.length	==	2

						hashtable=lookupvar(args[1]).sum

				else

						hashtable=lookupvar('hostname').sum

				end

				if	args.length	>	0

						size	=	args[0].to_i

				else

						size	=	60

				end

				unless	size	==	0

						hashtable	%	size

				else

						0

				end

		end

end

Now	we’ll	create	a	test	for	our	hashtable	function	and	alter	site.pp	as	follows:

node	cookbook	{

		$hours	=	hashtable(24)

		$minutes	=	hashtable()

		$days	=	hashtable(30)

		$days_fqdn	=	hashtable(30,'fqdn')

		$days_ipaddress	=	hashtable(30,'ipaddress')

		notify	{"\n	hours=${hours}\n	minutes=${minutes}\n	days=${days}\n	

days_fqdn=${days_fqdn}\n	days_ipaddress=${days_ipaddress}\n":}

}

Now,	run	Puppet	and	observe	the	values	that	are	returned:

Notice:		hours=15

	minutes=15

	days=15

	days_fqdn=4

	days_ipaddress=2

Our	simple	definition	quickly	grew	when	we	added	the	ability	to	add	arguments.	As	with
all	programming,	care	should	be	taken	when	working	with	arguments	to	ensure	that	you

do	not	have	any	error	conditions.	In	the	preceding	code,	we	specifically	looked	for	the
situation	where	the	size	variable	was	0,	to	avoid	a	divide	by	zero	error.

To	find	out	more	about	what	you	can	do	with	custom	functions,	see	the	puppetlabs
website:

http://docs.puppetlabs.com/guides/custom_functions.html

http://docs.puppetlabs.com/guides/custom_functions.html

Testing	your	puppet	manifests	with	rspec-
puppet
It	would	be	great	if	we	could	verify	that	our	Puppet	manifests	satisfy	certain	expectations
without	even	having	to	run	Puppet.	The	rspec-puppet	tool	is	a	nifty	tool	to	do	this.	Based
on	RSpec,	a	testing	framework	for	Ruby	programs,	rspec-puppet	lets	you	write	test	cases
for	your	Puppet	manifests	that	are	especially	useful	to	catch	regressions	(bugs	introduced
when	fixing	another	bug),	and	refactoring	problems	(bugs	introduced	when	reorganizing
your	code).

Getting	ready
Here’s	what	you’ll	need	to	do	to	install	rspec-puppet.

Run	the	following	commands:

t@mylaptop~	$	sudo	puppet	resource	package	rspec-puppet	ensure=installed	

provider=gem

Notice:	/Package[rspec-puppet]/ensure:	created

package	{	'rspec-puppet':

		ensure	=>	['1.0.1'],

}

t@mylaptop	~	$	sudo	puppet	resource	package	puppetlabs_spec_helper	

ensure=installed	provider=gem

Notice:	/Package[puppetlabs_spec_helper]/ensure:	created

package	{	'puppetlabs_spec_helper':

		ensure	=>	['0.8.2'],

}

How	to	do	it…
Let’s	create	an	example	class,	thing,	and	write	some	tests	for	it.

1.	 Define	the	thing	class:

class	thing	{

		service	{'thing':

				ensure		=>	'running',

				enable		=>	true,

				require	=>	Package['thing'],

		}

		package	{'thing':

				ensure	=>	'installed'

		}

		file	{'/etc/thing.conf':

				content	=>	'fubar\n',

				mode				=>	0644,

				require	=>	Package['thing'],

				notify		=>	Service['thing'],

		}

}

2.	 Run	the	following	commands:

t@mylaptop	~/puppet]$cd	modules/thing

t@mylaptop~/puppet/modules/thing	$	rspec-puppet-init

	+	spec/

	+	spec/classes/

	+	spec/defines/

	+	spec/functions/

	+	spec/hosts/

	+	spec/fixtures/

	+	spec/fixtures/manifests/

	+	spec/fixtures/modules/

	+	spec/fixtures/modules/heartbeat/

	+	spec/fixtures/manifests/site.pp

	+	spec/fixtures/modules/heartbeat/manifests

	+	spec/fixtures/modules/heartbeat/templates

	+	spec/spec_helper.rb

	+	Rakefile

3.	 Create	the	file	spec/classes/thing_spec.rb	with	the	following	contents:

require	'spec_helper'

describe	'thing'	do

		it	{	should	create_class('thing')	}

		it	{	should	contain_package('thing')	}

		it	{	should	contain_service('thing').with(

				'ensure'	=>	'running'

)	}

		it	{	should	contain_file('/etc/things.conf')	}

end

4.	 Run	the	following	commands:

t@mylaptop	~/.puppet/modules/thing	$	rspec

...F

Failures:

		1)	thing	should	contain	File[/etc/things.conf]

					Failure/Error:	it	{	should	contain_file('/etc/things.conf')	}

							expected	that	the	catalogue	would	contain	File[/etc/things.conf]

					#	./spec/classes/thing_spec.rb:9:in	`block	(2	levels)	in	<top	

(required)>'

Finished	in	1.66	seconds

4	examples,	1	failure

Failed	examples:

rspec	./spec/classes/thing_spec.rb:9	#	thing	should	contain	

File[/etc/things.conf]

How	it	works…
The	rspec-puppet-init	command	creates	a	framework	of	directories	for	you	to	put	your
specs	(test	programs)	in.	At	the	moment,	we’re	just	interested	in	the	spec/classes
directory.	This	is	where	you’ll	put	your	class	specs,	one	per	class,	named	after	the	class	it
tests,	for	example,	thing_spec.rb.

The	spec	code	itself	begins	with	the	following	statement,	which	sets	up	the	RSpec
environment	to	run	the	specs:

require	'spec_helper'

Then,	a	describe	block	follows:

describe	'thing'	do

		..

end

The	describe	identifies	the	class	we’re	going	to	test	(thing)	and	wraps	the	list	of
assertions	about	the	class	inside	a	do	..	end	block.

Assertions	are	our	stated	expectations	of	the	thing	class.	For	example,	the	first	assertion	is
the	following:

		it	{	should	create_class('thing')	}

The	create_class	assertion	is	used	to	ensure	that	the	named	class	is	actually	created.	The
next	line:

		it	{	should	contain_package('thing')	}

The	contain_package	assertion	means	what	it	says:	the	class	should	contain	a	package
resource	named	thing.

Next,	we	test	for	the	existence	of	the	thing	service:

it	{	should	contain_service('thing').with(

		'ensure'	=>	'running'

)	}

The	preceding	code	actually	contains	two	assertions.	First,	that	the	class	contains	a	thing
service:

contain_service('thing')

Second,	that	the	service	has	an	ensure	attribute	with	the	value	running:

with(

		'ensure'	=>	'running'

)

You	can	specify	any	attributes	and	values	you	want	using	the	with	method,	as	a	comma-
separated	list.	For	example,	the	following	code	asserts	several	attributes	of	a	file
resource:

it	{	should	contain_file('/tmp/hello.txt').with(

		'content'	=>	"Hello,	world\n",

		'owner'			=>	'ubuntu',

		'group'			=>	'ubuntu',

		'mode'				=>	'0644'

)	}

In	our	thing	example,	we	need	to	only	test	that	the	file	thing.conf	is	present,	using	the
following	code:

it	{	should	contain_file('/etc/thing.conf')	}

When	you	run	the	rake	spec	command,	rspec-puppet	will	compile	the	relevant	Puppet
classes,	run	all	the	specs	it	finds,	and	display	the	results:

...F

Failures:

		1)	thing	should	contain	File[/etc/things.conf]

					Failure/Error:	it	{	should	contain_file('/etc/things.conf')	}

							expected	that	the	catalogue	would	contain	File[/etc/things.conf]

					#	./spec/classes/thing_spec.rb:9:in	`block	(2	levels)	in	<top	

(required)>'

Finished	in	1.66	seconds

4	examples,	1	failure

As	you	can	see,	we	defined	the	file	in	our	test	as	/etc/things.conf	but	the	file	in	the
manifests	is	/etc/thing.conf,	so	the	test	fails.	Edit	thing_spec.rb	and	change
/etc/things.conf	to	/etc/thing.conf:

		it	{	should	contain_file('/etc/thing.conf')	}

Now	run	rspec	again:

t@mylaptop	~/.puppet/modules/thing	$	rspec

....

Finished	in	1.6	seconds

4	examples,	0	failures

There’s	more…
There	are	many	conditions	you	can	verify	with	rspec.	Any	resource	type	can	be	verified
with	contain_<resource	type>(title).	In	addition	to	verifying	your	classes	will	apply
correctly,	you	can	also	test	functions	and	definitions	by	using	the	appropriate
subdirectories	within	the	spec	directory	(classes,	defines,	or	functions).

You	can	find	more	information	about	rspec-puppet,	including	complete	documentation
for	the	assertions	available	and	a	tutorial,	at	http://rspec-puppet.com/.

When	you	want	to	start	testing	how	your	code	applies	to	nodes,	you’ll	need	to	look	at
another	tool,	beaker.	Beaker	works	with	various	virtualization	platforms	to	create
temporary	virtual	machines	to	which	Puppet	code	is	applied.	The	results	are	then	used	for
acceptance	testing	of	the	Puppet	code.	This	method	of	testing	and	developing	at	the	same
time	is	known	as	Test-driven	development	(TDD).	More	information	about	beaker	is
available	on	the	GitHub	site	at	https://github.com/puppetlabs/beaker.

http://rspec-puppet.com/
https://github.com/puppetlabs/beaker

See	also
The	Checking	your	manifests	with	puppet-lint	recipe	in	Chapter	1,	Puppet	Language
and	Style

Using	librarian-puppet
When	you	begin	to	include	modules	from	the	forge	in	your	Puppet	infrastructure,	keeping
track	of	which	versions	you	installed	and	ensuring	consistency	between	all	your	testing
areas	can	become	a	bit	of	a	problem.	Luckily,	the	tools	we	will	discuss	in	the	next	two
sections	can	bring	order	to	your	system.	We	will	first	begin	with	librarian-puppet,	which
uses	a	special	configuration	file	named	Puppetfile	to	specify	the	source	location	of	your
various	modules.

Getting	ready
We’ll	install	librarian-puppet	to	work	through	the	example.

Install	librarian-puppet	on	your	Puppet	master,	using	Puppet	of	course:

root@puppet:~#	puppet	resource	package	librarian-puppet	ensure=installed	

provider=gem

Notice:	/Package[librarian-puppet]/ensure:	created

package	{	'librarian-puppet':

		ensure	=>	['2.0.0'],

}

Tip
If	you	are	working	in	a	masterless	environment,	install	librarian-puppet	on	the	machine
from	which	you	will	be	managing	your	code.	Your	gem	install	may	fail	if	the	Ruby
development	packages	are	not	available	on	your	master;	install	the	ruby-dev	package	to
fix	this	issue	(use	Puppet	to	do	it).

How	to	do	it…
We’ll	use	librarian-puppet	to	download	and	install	a	module	in	this	example:

1.	 Create	a	working	directory	for	yourself;	librarian-puppet	will	overwrite	your	modules
directory	by	default,	so	we’ll	work	in	a	temporary	location	for	now:

root@puppet:~#	mkdir	librarian

root@puppet:~#	cd	librarian

2.	 Create	a	new	Puppetfile	with	the	following	contents:

#!/usr/bin/env	ruby

#^syntax	detection

forge	"https://forgeapi.puppetlabs.com"

#	A	module	from	the	Puppet	Forge

mod	'puppetlabs-stdlib'

Note
Alternatively,	you	can	use	librarian-puppet	init	to	create	an	example	Puppetfile
and	edit	it	to	match	our	example:

root@puppet:~/librarian#	librarian-puppet	init

						create		Puppetfile

3.	 Now,	run	librarian-puppet	to	download	and	install	the	puppetlabs-stdlib	module	in
the	modules	directory:

root@puppet:~/librarian#	librarian-puppet	install

root@puppet:~/librarian	#	ls

modules		Puppetfile		Puppetfile.lock

root@puppet:~/librarian	#	ls	modules

stdlib

How	it	works…
The	first	line	of	the	Puppetfile	makes	the	Puppetfile	appear	to	be	a	Ruby	source	file.
These	are	completely	optional	but	coerces	editors	into	treating	the	file	as	though	it	was
written	in	Ruby	(which	it	is):

#!/usr/bin/env	ruby

We	next	define	where	the	Puppet	Forge	is	located;	you	may	specify	an	internal	Forge	here
if	you	have	a	local	mirror:

forge	"https://forgeapi.puppetlabs.com"

Now,	we	added	a	line	to	include	the	puppetlabs-stdlib	module:

mod	'puppetlabs-stdlib'

With	the	Puppetfile	in	place,	we	ran	librarian-puppet	and	it	downloaded	the	module
from	the	URL	given	in	the	Forge	line.	As	the	module	was	downloaded,	librarian-
puppet	created	a	Puppetfile.lock	file,	which	includes	the	location	used	as	source	and
the	version	number	for	the	downloaded	module:

FORGE

		remote:	https://forgeapi.puppetlabs.com

		specs:

				puppetlabs-stdlib	(4.4.0)

DEPENDENCIES

		puppetlabs-stdlib	(>=	0)

There’s	more…
The	Puppetfile	allows	you	to	pull	in	modules	from	sources	other	than	the	forge.	You	may
use	a	local	Git	url	or	even	a	GitHub	url	to	download	modules	that	are	not	on	the	Forge.
More	information	on	librarian-puppet	can	be	found	on	the	GitHub	website	at
https://github.com/rodjek/librarian-puppet.

Note	that	librarian-puppet	will	create	the	modules	directory	and	remove	any	modules	you
placed	in	there	by	default.	Most	installations	using	librarian-puppet	opt	to	place	their	local
modules	in	a	/local	subdirectory	(/dist	or	/companyname	are	also	used).

In	the	next	section,	we’ll	talk	about	r10k,	which	goes	one	step	further	than	librarian	and
manages	your	entire	environment	directory.

https://github.com/rodjek/librarian-puppet

Using	r10k
The	Puppetfile	is	a	very	good	format	to	describe	which	modules	you	wish	to	include	in
your	environment.	Building	upon	the	Puppetfile	is	another	tool,	r10k.	r10k	is	a	total
environment	management	tool.	You	can	use	r10k	to	clone	a	local	Git	repository	into	your
environmentpath	and	then	place	the	modules	specified	in	your	Puppetfile	into	that
directory.	The	local	Git	repository	is	known	as	the	master	repository;	it	is	where	r10k
expects	to	find	your	Puppetfile.	r10k	also	understands	Puppet	environments	and	will
clone	Git	branches	into	subdirectories	of	your	environmentpath,	simplifying	the
deployment	of	multiple	environments.	What	makes	r10k	particularly	useful	is	its	use	of	a
local	cache	directory	to	speed	up	deployments.	Using	a	configuration	file,	r10k.yaml,	you
can	specify	where	to	store	this	cache	and	also	where	your	master	repository	is	held.

Getting	ready
We’ll	install	r10k	on	our	controlling	machine	(usually	the	master).	This	is	where	we	will
control	all	the	modules	downloaded	and	installed.

1.	 Install	r10k	on	your	puppet	master,	or	on	whichever	machine	you	wish	to	manage
your	environmentpath	directory:

root@puppet:~#	puppet	resource	package	r10k	ensure=installed	

provider=gem

Notice:	/Package[r10k]/ensure:	created

package	{	'r10k':

		ensure	=>	['1.3.5'],

}

2.	 Make	a	new	copy	of	your	Git	repository	(optional,	do	this	on	your	Git	server):

[git@git	repos]$	git	clone	--bare	puppet.git	puppet-r10k.git

Initialized	empty	Git	repository	in	/home/git/repos/puppet-r10k.git/

3.	 Check	out	the	new	Git	repository	(on	your	local	machine)	and	move	the	existing
modules	directory	to	a	new	location.	We’ll	use	/local	in	this	example:

t@mylaptop	~	$	git	clone	git@git.example.com:repos/puppet-r10k.git

Cloning	into	'puppet-r10k'...

remote:	Counting	objects:	2660,	done.

remote:	Compressing	objects:	100%	(2136/2136),	done.

remote:	Total	2660	(delta	913),	reused	1049	(delta	238)

Receiving	objects:	100%	(2660/2660),	738.20	KiB	|	0	bytes/s,	done.

Resolving	deltas:	100%	(913/913),	done.

Checking	connectivity…	done.

t@mylaptop	~	$	cd	puppet-r10k/

t@mylaptop	~/puppet-r10k	$	git	checkout	production

Branch	production	set	up	to	track	remote	branch	production	from	origin.

Switched	to	a	new	branch	'production'

t@mylaptop	~/puppet-r10k	$	git	mv	modules	local

t@mylaptop	~/puppet-r10k	$	git	commit	-m	"moving	modules	in	preparation	

for	r10k"

[master	c96d0dc]	moving	modules	in	preparation	for	r10k

	9	files	changed,	0	insertions(+),	0	deletions(-)

	rename	{modules	=>	local}/base	(100%)

	rename	{modules	=>	local}/puppet/files/papply.sh	(100%)

	rename	{modules	=>	local}/puppet/files/pull-updates.sh	(100%)

	rename	{modules	=>	local}/puppet/manifests/init.pp	(100%)

How	to	do	it…
We’ll	create	a	Puppetfile	to	control	r10k	and	install	modules	on	our	master.

1.	 Create	a	Puppetfile	into	the	new	Git	repository	with	the	following	contents:

forge	"http://forge.puppetlabs.com"

mod	'puppetlabs/puppetdb',	'3.0.0'

mod	'puppetlabs/stdlib',	'3.2.0'

mod	'puppetlabs/concat'

mod	'puppetlabs/firewall'

2.	 Add	the	Puppetfile	to	your	new	repository:

t@mylaptop	~/puppet-r10k	$	git	add	Puppetfile

t@mylaptop	~/puppet-r10k	$	git	commit	-m	"adding	Puppetfile"

[production	d42481f]	adding	Puppetfile

	1	file	changed,	7	insertions(+)

	create	mode	100644	Puppetfile

t@mylaptop	~/puppet-r10k	$	git	push

Counting	objects:	7,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(5/5),	done.

Writing	objects:	100%	(5/5),	589	bytes	|	0	bytes/s,	done.

Total	5	(delta	2),	reused	0	(delta	0)

To	git@git.example.com:repos/puppet-r10k.git

			cf8dfb9..d42481f		production	->	production

3.	 Back	to	your	master,	create	/etc/r10k.yaml	with	the	following	contents:

:cachedir:	'/var/cache/r10k'

:sources:

	:plops:

		remote:	'git@git.example.com:repos/puppet-r10k.git'

		basedir:	'/etc/puppet/environments'

4.	 Run	r10k	to	have	the	/etc/puppet/environments	directory	populated	(hint:	create	a
backup	of	your	/etc/puppet/environments	directory	first):

root@puppet:~#	r10k	deploy	environment	-p

5.	 Verify	that	your	/etc/puppet/environments	directory	has	a	production	subdirectory.
Within	that	directory,	the	/local	directory	will	exist	and	the	modules	directory	will
have	all	the	modules	listed	in	the	Puppetfile:

root@puppet:/etc/puppet/environments#	tree	-L	2

.

├──	master

│			├──	manifests

│			├──	modules

│			└──	README

└──	production

				├──	environment.conf

				├──	local

				├──	manifests

				├──	modules

				├──	Puppetfile

				└──	README

How	it	works…
We	started	by	creating	a	copy	of	our	Git	repository;	this	was	only	done	to	preserve	the
earlier	work	and	is	not	required.	The	important	thing	to	remember	with	r10k	and	librarian-
puppet	is	that	they	both	assume	they	are	in	control	of	the	/modules	subdirectory.	We	need
to	move	our	modules	out	of	the	way	and	create	a	new	location	for	the	modules.

In	the	r10k.yaml	file,	we	specified	the	location	of	our	new	repository.	When	we	ran	r10k,
it	first	downloaded	this	repository	into	its	local	cache.	Once	the	Git	repository	is
downloaded	locally,	r10k	will	go	through	each	branch	and	look	for	a	Puppetfile	within
the	branch.	For	each	branch/Puppetfile	combination,	the	modules	specified	within	are
downloaded	first	to	the	local	cache	directory	(cachedir)	and	then	into	the	basedir,	which
was	given	in	r10k.yaml.

There’s	more…
You	can	automate	the	deployment	of	your	environments	using	r10k.	The	command	we
used	to	run	r10k	and	populate	our	environments	directory	can	be	easily	placed	inside	a	Git
hook	to	automatically	update	your	environment.	There	is	also	a	marionette	collective
(mcollective)	plugin	(https://github.com/acidprime/r10k),	which	can	be	used	to	have	r10k
run	on	an	arbitrary	set	of	servers.

Using	either	of	these	tools	will	help	keep	your	site	consistent,	even	if	you	are	not	taking
advantage	of	the	various	modules	available	on	the	Forge.

https://github.com/acidprime/r10k

Chapter	10.	Monitoring,	Reporting,	and
Troubleshooting
	 “Show	me	a	completely	smooth	operation	and	I’ll	show	you	someone	who’s	covering	mistakes.	Real	boats	rock.” 	

	 —Frank	Herbert,	Chapterhouse:	Dune

In	this	chapter,	we	will	cover	the	following	recipes:

Noop:	the	don’t	change	anything	option
Logging	command	output
Logging	debug	messages
Generating	reports
Producing	automatic	HTML	documentation
Drawing	dependency	graphs
Understanding	Puppet	errors
Inspecting	configuration	settings

Introduction
We’ve	all	had	the	experience	of	sitting	in	an	exciting	presentation	about	some	new
technology	and	rushing	home	to	play	with	it.	Of	course,	once	you	start	experimenting	with
it,	you	immediately	run	into	problems.	What’s	going	wrong?	Why	doesn’t	it	work?	How
can	I	see	what’s	happening	under	the	hood?	This	chapter	will	help	you	answer	some	of
these	questions,	and	give	you	the	tools	to	solve	common	Puppet	problems.

We’ll	also	see	how	to	generate	useful	reports	on	your	Puppet	infrastructure	and	how
Puppet	can	help	you	monitor	and	troubleshoot	your	network	as	a	whole.

Noop	–	the	don’t	change	anything	option
Sometimes	your	Puppet	manifest	doesn’t	do	exactly	what	you	expected,	or	perhaps
someone	else	has	checked	in	changes	you	didn’t	know	about.	Either	way,	it’s	good	to
know	exactly	what	Puppet	is	going	to	do	before	it	does	it.

When	you	are	retrofitting	Puppet	into	an	existing	infrastructure	you	might	not	know
whether	Puppet	is	going	to	update	a	config	file	or	restart	a	production	service.	Any	such
change	could	result	in	unplanned	downtime.	Also,	sometimes	manual	configuration
changes	are	made	on	a	server	that	Puppet	would	overwrite.

To	avoid	these	problems,	you	can	use	Puppet’s	noop	mode,	which	means	no	operation	or
do	nothing.	When	run	with	the	noop	option,	Puppet	only	reports	what	it	would	do	but
doesn’t	actually	do	anything.	One	caveat	here	is	that	even	during	a	noop	run,	pluginsync
still	runs	and	any	lib	directories	in	modules	will	be	synced	to	nodes.	This	will	update
external	fact	definitions	and	possibly	Puppet’s	types	and	providers.

How	to	do	it…
You	may	run	noop	mode	when	running	puppet	agent	or	puppet	apply	by	appending	the
--noop	switch	to	the	command.	You	may	also	create	a	noop=true	line	in	your
puppet.conf	file	within	the	[agent]	or	[main]	sections.

1.	 Create	a	noop.pp	manifest	that	creates	a	file	as	follows:

file	{'/tmp/noop':

		content	=>	'nothing',

		mode				=>	0644,

}

2.	 Now	run	puppet	agent	with	the	noop	switch:

t@mylaptop	~/puppet/manifests	$	puppet	apply	noop.pp	--noop

Notice:	Compiled	catalog	for	mylaptop	in	environment	production	in	0.41	

seconds

Notice:	/Stage[main]/Main/File[/tmp/noop]/ensure:	current_value	absent,	

should	be	file	(noop)

Notice:	Class[Main]:	Would	have	triggered	'refresh'	from	1	events

Notice:	Stage[main]:	Would	have	triggered	'refresh'	from	1	events

Notice:	Finished	catalog	run	in	0.02	seconds

3.	 Now	run	without	the	noop	option	to	see	that	the	file	is	created:

t@mylaptop	~/puppet/manifests	$	puppet	apply	noop.pp

Notice:	Compiled	catalog	for	mylaptop	in	environment	production	in	0.37	

seconds

Notice:	/Stage[main]/Main/File[/tmp/noop]/ensure:	defined	content	as	

'{md5}3e47b75000b0924b6c9ba5759a7cf15d'

How	it	works…
In	the	noop	mode,	Puppet	does	everything	it	would	normally,	with	the	exception	of
actually	making	any	changes	to	the	machine	(the	exec	resources,	for	example,	won’t	run).
It	tells	you	what	it	would	have	done,	and	you	can	compare	this	with	what	you	expected	to
happen.	If	there	are	any	differences,	double-check	the	manifest	or	the	current	state	of	the
machine.

Note
Note	that	when	we	ran	with	--noop,	Puppet	warned	us	that	it	would	have	created	the
/tmp/noop	file.	This	may	or	may	not	be	what	we	want,	but	it’s	useful	to	know	in	advance.
If	you	are	making	changes	to	the	code	applied	to	your	production	servers,	it’s	useful	to	run
puppet	agent	with	the	--noop	option	to	ensure	that	your	changes	will	not	affect	the
production	services.

There’s	more…
You	can	also	use	noop	mode	as	a	simple	auditing	tool.	It	will	tell	you	whether	any	changes
have	been	made	to	the	machine	since	Puppet	last	applied	its	manifest.	Some	organizations
require	all	config	changes	to	be	made	with	Puppet,	which	is	one	way	of	implementing	a
change	control	process.	Unauthorized	changes	to	the	resources	managed	by	Puppet	can	be
detected	using	Puppet	in	noop	mode	and	you	can	then	decide	whether	to	merge	the
changes	back	into	the	Puppet	manifest	or	undo	them.

You	can	also	use	the	--debug	switch	when	running	puppet	agent	to	see	the	details	of	every
change	Puppet	makes	during	an	agent	run.	This	can	be	helpful	when	trying	to	figure	out
how	Puppet	is	applying	certain	exec	resources	or	to	see	in	what	order	things	are
happening.

If	you	are	running	a	master,	you	can	compile	the	catalog	for	a	node	on	the	master	with	the
--trace	option	in	addition	to	--debug.	If	the	catalog	is	failing	to	compile,	this	method
will	also	fail	to	compile	the	catalog	(if	you	have	an	old	definition	for	the	cookbook	node
that	is	failing,	try	commenting	it	out	before	running	this	test).	This	produces	a	lot	of
debugging	output.	For	example,	to	compile	the	catalog	for	our	cookbook	host	on	our
master	and	place	the	results	into	/tmp/cookbook.log:

root@puppet:	~#puppet	master	--compile	cookbook.example.com	--debug	--trace	

--logdest	/tmp/cookbook.log

Debug:	Executing	'/etc/puppet/cookbook.sh	cookbook.example.com'

Debug:	Using	cached	facts	for	cookbook.example.com

Info:	Caching	node	for	cookbook.example.com

Debug:	importing	

'/etc/puppet/environments/production/modules/enc/manifests/init.pp'	in	

environment	production

Debug:	Automatically	imported	enc	from	enc	into	production

Notice:	Compiled	catalog	for	cookbook.example.com	in	environment	production	

in	0.09	seconds

Info:	Caching	catalog	for	cookbook.example.com

Debug:	Configuring	PuppetDB	terminuses	with	config	file	

/etc/puppet/puppetdb.conf

Debug:	Using	cached	certificate	for	ca

Debug:	Using	cached	certificate	for	puppet

Debug:	Using	cached	certificate_revocation_list	for	ca

Info:	'replace	catalog'	command	for	cookbook.example.com	submitted	to	

PuppetDB	with	UUIDe2a655ca-bd81-4428-b70a-a3a76c5f15d1

{

		"metadata":	{

				"api_version":	1

		},

		"data":	{

				"edges":	[

						{

								"target":	"Class[main]",

								"source":	"Stage[main]"

...

Note

After	compiling	the	catalog,	Puppet	will	print	out	the	catalog	to	the	command	line.	The
log	file	(/tmp/cookbook.log)	will	have	a	lot	of	information	on	how	the	catalog	was
compiled.

See	also
The	Auditing	resources	recipe	in	Chapter	6,	Managing	Resources	and	Files
The	Automatic	syntax	checking	with	Git	hooks	recipe	in	Chapter	2,	Puppet
Infrastructure
The	Generating	reports	recipe	in	this	chapter
The	Testing	your	Puppet	manifests	with	rspec-puppet	recipe	in	Chapter	9,	External
Tools	and	the	Puppet	Ecosystem

Logging	command	output
When	you	use	the	exec	resources	to	run	commands	on	the	node,	Puppet	will	give	you	an
error	message	such	as	the	following	if	a	command	returns	a	non-zero	exit	status:

Notice:	/Stage[main]/Main/Exec[/bin/cat	/tmp/missing]/returns:	/bin/cat:	

/tmp/missing:	No	such	file	or	directory

Error:	/bin/cat	/tmp/missing	returned	1	instead	of	one	of	[0]

Error:	/Stage[main]/Main/Exec[/bin/cat	/tmp/missing]/returns:	change	from	

notrun	to	0	failed:	/bin/cat	/tmp/missing	returned	1	instead	of	one	of	[0]

As	you	can	see,	Puppet	not	only	reports	that	the	command	failed,	but	shows	its	output:

/bin/cat:	/tmp/missing:	No	such	file	or	directory

This	is	useful	to	figure	out	why	the	command	didn’t	work,	but	sometimes	the	command
actually	succeeds	(in	that	it	returns	a	zero	exit	status)	but	still	doesn’t	do	what	we	wanted.
In	that	case,	how	can	you	see	the	command	output?	You	can	use	the	logoutput	attribute.

How	to	do	it…
Follow	these	steps	in	order	to	log	command	output:

1.	 Define	an	exec	resource	with	the	logoutput	parameter	as	shown	in	the	following
code	snippet:

exec	{	'exec	with	output':

		command			=>	'/bin/cat	/etc/hostname',

logoutput	=>	true,

}

2.	 Run	Puppet:

t@mylaptop	~/puppet/manifests	$	puppet	apply	exec.pp

Notice:	Compiled	catalog	for	mylaptop	in	environment	production	in	0.46	

seconds

Notice:	/Stage[main]/Main/Exec[exec	with	outout]/returns:	mylaptop

Notice:	/Stage[main]/Main/Exec[exec	with	outout]/returns:	executed	

successfully

Notice:	Finished	catalog	run	in	0.06	seconds

3.	 As	you	can	see,	even	though	the	command	succeeds,	Puppet	prints	the	output:

mylaptop

How	it	works…
The	logoutput	attribute	has	three	possible	settings:

false:	This	never	prints	the	command	output
on_failure:	This	only	prints	the	output	if	the	command	fails	(the	default	setting)
true:	This	always	prints	the	output,	whether	the	command	succeeds	or	fails

There’s	more…
You	can	set	the	default	value	of	logoutput	to	always	display	command	output	for	all	exec
resources	by	defining	the	following	in	your	site.pp	file:

Exec	{

logoutput	=>	true,

Note
Resource	defaults:	What’s	this	Exec	syntax?	It	looks	like	an	exec	resource,	but	it’s	not.
When	you	use	Exec	with	a	capital	E,	you’re	setting	the	resource	default	for	exec.	You	may
set	the	resource	default	for	any	resource	by	capitalizing	the	first	letter	of	the	resource	type.
Anywhere	that	Puppet	see’s	that	resource	within	the	current	scope	or	a	nested	subscope,	it
will	apply	the	defaults	you	define.

If	you	never	want	to	see	the	command	output,	whether	it	succeeds	or	fails,	use:

logoutput	=>	false,

More	information	is	available	at
https://docs.puppetlabs.com/references/latest/type.html#exec.

https://docs.puppetlabs.com/references/latest/type.html#exec

Logging	debug	messages
It	can	be	very	helpful	when	debugging	problems	if	you	can	print	out	information	at	a
certain	point	in	the	manifest.	This	is	a	good	way	to	tell,	for	example,	if	a	variable	isn’t
defined	or	has	an	unexpected	value.	Sometimes	it’s	useful	just	to	know	that	a	particular
piece	of	code	has	been	run.	Puppet’s	notify	resource	lets	you	print	out	such	messages.

How	to	do	it…
Define	a	notify	resource	in	your	manifest	at	the	point	you	want	to	investigate:

notify	{	'Got	this	far!':	}

How	it	works…
When	this	resource	is	applied,	Puppet	will	print	out	the	message:

notice:	Got	this	far!

There’s	more…
In	addition	to	simple	messages,	we	can	output	variables	within	our	notify	statements.
Additionally,	we	can	treat	the	notify	calls	the	same	as	other	resources,	having	them
require	or	be	required	by	other	resources.

Printing	out	variable	values
You	can	refer	to	variables	in	the	message:

notify	{	"operatingsystem	is	${::operatingsystem}":	}

Puppet	will	interpolate	the	values	in	the	printout:

Notice:	operatingsystem	is	Fedora

The	double	colon	(::)	before	the	fact	name	tells	Puppet	that	this	is	a	variable	in	top	scope
(accessible	to	all	classes)	and	not	local	to	the	class.	For	more	about	how	Puppet	handles
variable	scope,	see	the	Puppet	Labs	article:

http://docs.puppetlabs.com/guides/scope_and_puppet.html

Resource	ordering
Puppet	compiles	your	manifests	into	a	catalog;	the	order	in	which	resources	are	executed
on	the	client	(node)	may	not	be	the	same	as	the	order	of	the	resources	within	your	source
files.	When	you	are	using	a	notify	resource	for	debugging,	you	should	use	resource
chaining	to	ensure	that	the	notify	resource	is	executed	before	or	after	your	failing
resource.

For	example,	if	the	exec	failing	exec	is	failing,	you	can	chain	a	notify	resource	to	run
directly	before	the	failed	exec	resource	as	shown	here:

notify{"failed	exec	on	${hostname}":	}->

exec	{'failing	exec':

		command			=>	"/bin/grep	${hostname}	/etc/hosts",

logoutput	=>	true,

}

If	you	don’t	chain	the	resource	or	use	a	metaparameter	such	as	before	or	require,	there	is
no	guarantee	your	notify	statement	will	be	executed	near	the	other	resources	you	are
interested	in	debugging.	More	information	on	resource	ordering	can	be	found	at
https://docs.puppetlabs.com/puppet/latest/reference/lang_relationships.html.

For	example,	to	have	your	notify	resource	run	after	'failing	exec'	in	the	preceding
code	snippet,	use:

notify	{	'Resource	X	has	been	applied':

		require	=>	Exec['failing	exec'],

}

Note,	however,	that	in	this	case	the	notify	resource	will	fail	to	execute	since	the	exec
failed.	When	a	resource	fails,	all	the	resources	that	depended	on	that	resource	are	skipped:

http://docs.puppetlabs.com/guides/scope_and_puppet.html
https://docs.puppetlabs.com/puppet/latest/reference/lang_relationships.html

notify	{'failed	exec	failed':	

		require	=>	Exec['failing	exec']

}

When	we	run	Puppet,	we	see	that	the	notify	resource	is	skipped:

t@mylaptop	~/puppet/manifests	$	puppet	apply	fail.pp

...

Error:	/bin/grepmylaptop	/etc/hosts	returned	1	instead	of	one	of	[0]

Error:	/Stage[main]/Main/Exec[failing	exec]/returns:	change	from	notrun	to	

0	failed:	/bin/grepmylaptop	/etc/hosts	returned	1	instead	of	one	of	[0]

Notice:	/Stage[main]/Main/Notify[failed	exec	failed]:	Dependency	

Exec[failing	exec]	has	failures:	true

Warning:	/Stage[main]/Main/Notify[failed	exec	failed]:	Skipping	because	of	

failed	dependencies

Notice:	Finished	catalog	run	in	0.06	seconds

Generating	reports
If	you’re	managing	a	lot	of	machines,	Puppet’s	reporting	facility	can	give	you	some
valuable	information	on	what’s	actually	happening	out	there.

How	to	do	it…
To	enable	reports,	just	add	this	to	a	client’s	puppet.conf:	within	the	[main]	or	[agent]
sections:

report	=	true

Tip
In	recent	versions	(greater	than	3.0)	of	Puppet,	report	=	true	is	the	default	setting.

How	it	works…
With	reporting	enabled,	Puppet	will	generate	a	report	file,	containing	data	such	as:

Date	and	time	of	the	run
Total	time	for	the	run
Log	messages	output	during	the	run
List	of	all	the	resources	in	the	client’s	manifest
Whether	Puppet	changed	any	resources,	and	how	many
Whether	the	run	succeeded	or	failed

By	default,	these	reports	are	stored	on	the	node	at	/var/lib/puppet/reports	in	a
directory	named	after	the	hostname,	but	you	can	specify	a	different	destination	using	the
reportdir	option.	You	can	create	your	own	scripts	to	process	these	reports	(which	are	in
the	standard	YAML	format).	When	we	run	puppet	agent	on	cookbook.example.com,	the
following	file	is	created	on	the	master:

/var/lib/puppet/reports/cookbook.example.com/201411230717.yaml

There’s	more…
If	you	have	more	than	one	master	server,	you	can	have	all	your	reports	sent	to	the	same
server	by	specifying	report_server	in	the	[agent]	section	of	puppet.conf.

If	you	just	want	one	report,	or	you	don’t	want	to	enable	reporting	all	the	time,	you	can	add
the	--report	switch	to	the	command	line	when	you	run	Puppet	agent	manually:

[root@cookbook	~]#	puppet	agent	-t	--report

Notice:	Finished	catalog	run	in	0.34	seconds

You	won’t	see	any	additional	output,	but	a	report	file	will	be	generated	in	the	report
directory.

You	can	also	see	some	overall	statistics	about	a	Puppet	run	by	supplying	the	--summarize
switch:

[root@cookbook	~]#	puppet	agent	-t	--report	--summarize

Notice:	Finished	catalog	run	in	0.35	seconds

Changes:

												Total:	2

Events:

												Total:	2

										Success:	2

Resources:

												Total:	10

										Changed:	2

						Out	of	sync:	2

Time:

Filebucket:	0.00

									Schedule:	0.00

											Notify:	0.00

Config	retrieval:	0.94

												Total:	0.95

									Last	run:	1416727357

Version:

Config:	1416727291

											Puppet:	3.7.3

Other	report	types
Puppet	can	generate	different	types	of	reports	with	the	reports	option	in	the	[main]	or
[master]	section	of	puppet.conf	on	your	Puppet	master	servers.	There	are	several	built-
in	report	types	listed	at	https://docs.puppetlabs.com/references/latest/report.html.	In
addition	to	the	built-in	report	types,	there	are	some	community	developed	reports	that	are
quite	useful.	The	Foreman	(http://theforeman.org),	for	example,	provides	a	Foreman	report
type	that	you	can	enable	to	forward	your	node	reports	to	the	Foreman.

https://docs.puppetlabs.com/references/latest/report.html
http://theforeman.org

See	also
The	Auditing	resources	recipe	in	Chapter	6,	Managing	Resources	and	Files

Producing	automatic	HTML
documentation
As	your	manifests	get	bigger	and	more	complex,	it	can	be	helpful	to	create	HTML
documentation	for	your	nodes	and	classes	using	Puppet’s	automatic	documentation	tool,
puppet	doc.

How	to	do	it…
Follow	these	steps	to	generate	HTML	documentation	for	your	manifest:

1.	 Run	the	following	command:

t@mylaptop	~/puppet	$	puppet	doc	--all	--outputdir=/tmp/puppet	--mode	

rdoc	--modulepath=modules/

2.	 This	will	generate	a	set	of	HTML	files	at	/tmp/puppet.	Open	the	top-level
index.html	file	with	your	web	browser	(file:///tmp/puppet/index.html),	and
you’ll	see	something	like	the	following	screenshot:

3.	 Click	the	classes	link	on	the	left	and	select	the	Apache	module,	something	similar	to
the	following	will	be	displayed:

How	it	works…
The	puppet	doc	command	creates	a	structured	HTML	documentation	tree	similar	to	that
produced	by	RDoc,	the	popular	Ruby	documentation	generator.	This	makes	it	easier	to
understand	how	different	parts	of	the	manifest	relate	to	one	another.

There’s	more…
The	puppet	doc	command	will	generate	basic	documentation	of	your	manifests	as	they
stand,	but	you	can	include	more	useful	information	by	adding	comments	to	your	manifest
files,	using	the	standard	RDoc	syntax.	When	we	created	our	base	class	using	puppet
module	generate,	these	comments	were	created	for	us:

#	==	Class:	base

#

#	Full	description	of	class	base	here.

#

#	===	Parameters

#

#	Document	parameters	here.#

#	[*sample_parameter*]

#			Explanation	of	what	this	parameter	affects	and	what	it	defaults	to.

#			e.g.	"Specify	one	or	more	upstream	ntp	servers	as	an	array."

#

#	===	Variables

#

#	Here	you	should	define	a	list	of	variables	that	this	module	would	

require.

#

#	[*sample_variable*]

#			Explanation	of	how	this	variable	affects	the	funtion	of	this	class	and	

if

#			it	has	a	default.	e.g.	"The	parameter	enc_ntp_servers	must	be	set	by	

the

#			External	Node	Classifier	as	a	comma	separated	list	of	hostnames."	

(Note,

#			global	variables	should	be	avoided	in	favor	of	class	parameters	as

#			of	Puppet	2.6.)

#

#	===	Examples

#

#		class	{	base:

#				servers	=>	['pool.ntp.org',	'ntp.local.company.com'],

#		}

#

#	===	Authors

#

#	Author	Name	<author@domain.com>

#

#	===	Copyright

#

#	Copyright	2014	Your	name	here,	unless	otherwise	noted.

#

class	base	{

After	generating	the	HTML	documentation,	we	can	see	the	result	for	the	base	module	as
shown	in	the	following	screenshot:

Drawing	dependency	graphs
Dependencies	can	get	complicated	quickly,	and	it’s	easy	to	end	up	with	a	circular
dependency	(where	A	depends	on	B,	which	depends	on	A)	that	will	cause	Puppet	to
complain	and	stop	working.	Fortunately,	Puppet’s	--graph	option	makes	it	easy	to
generate	a	diagram	of	your	resources	and	the	dependencies	between	them,	which	can	be	a
big	help	in	fixing	such	problems.

Getting	ready
Install	the	graphviz	package	to	view	the	diagram	files:

t@mylaptop	~	$	sudo	puppet	resource	package	graphviz	ensure=installed

Notice:	/Package[graphviz]/ensure:	created

package	{	'graphviz':

		ensure	=>	'2.34.0-9.fc20',

}

How	to	do	it…
Follow	these	steps	to	generate	a	dependency	graph	for	your	manifest:

1.	 Create	the	directories	for	a	new	trifecta	module:

ubuntu@cookbook:~/puppet$	mkdir	modules/trifecta

ubuntu@cookbook:~/puppet$	mkdir	modules/trifecta/manifests

ubuntu@cookbook:~/puppet$	mkdir	modules/trifecta/files

2.	 Create	the	file	modules/trifecta/manifests/init.pp	with	the	following	code
containing	a	deliberate	circular	dependency	(can	you	spot	it?):

class	trifecta	{

		package	{	'ntp':

				ensure		=>	installed,

				require	=>	File['/etc/ntp.conf'],

		}

		service	{	'ntp':

				ensure		=>	running,

				require	=>	Package['ntp'],

		}

		file	{	'/etc/ntp.conf':

				source		=>	'puppet:///modules/trifecta/ntp.conf',

				notify		=>	Service['ntp'],

				require	=>	Package['ntp'],

		}

}

3.	 Create	a	simple	ntp.conf	file:

t@mylaptop~/puppet	$	cd	modules/trifecta/files

t@mylaptop~/puppet/modules/trifecta/files	$	echo	"server	127.0.0.1"	

>ntp.conf

4.	 Since	we’ll	be	working	locally	on	this	problem,	create	a	trifecta.pp	manifest	that
includes	the	broken	trifecta	class:

include	trifecta

5.	 Run	Puppet:

t@mylaptop	~/puppet/manifests	$	puppet	apply	trifecta.pp

Notice:	Compiled	catalog	for	mylaptop	in	environment	production	in	1.32	

seconds

Error:	Could	not	apply	complete	catalog:	Found	1	dependency	cycle:

(File[/etc/ntp.conf]	=>	Package[ntp]	=>	File[/etc/ntp.conf])

Try	the	'--graph'	option	and	opening	the	resulting	'.dot'	file	in	

OmniGraffle	or	GraphViz

6.	 Run	Puppet	with	the	--graph	option	as	suggested:

t@mylaptop	~/puppet/manifests	$	puppet	apply	trifecta.pp	--graph

Notice:	Compiled	catalog	for	mylaptop	in	environment	production	in	1.26	

seconds

Error:	Could	not	apply	complete	catalog:	Found	1	dependency	cycle:

(File[/etc/ntp.conf]	=>	Package[ntp]	=>	File[/etc/ntp.conf])

Cycle	graph	written	to	

/home/tuphill/.puppet/var/state/graphs/cycles.dot.

Notice:	Finished	catalog	run	in	0.03	seconds

7.	 Check	whether	the	graph	files	have	been	created:

t@mylaptop	~/puppet/manifests	$	cd	~/.puppet/var/state/graphs

t@mylaptop	~/.puppet/var/state/graphs	$	ls	-l

total	16

-rw-rw-r--.	1	thomasthomas		121	Nov	23	23:11	cycles.dot

-rw-rw-r--.	1	thomasthomas	2885	Nov	23	23:11	expanded_relationships.dot

-rw-rw-r--.	1	thomasthomas	1557	Nov	23	23:11	relationships.dot

-rw-rw-r--.	1	thomasthomas	1680	Nov	23	23:11	resources.dot

8.	 Create	a	graphic	using	the	dot	command	as	follows:

ubuntu@cookbook:~/puppet$	dot	-Tpng	-o	relationships.png	

/var/lib/puppet/state/graphs/relationships.dot

9.	 The	graphic	will	look	something	like	the	this:

How	it	works…
When	you	run	puppet	agent	--graph	(or	enable	the	graph	option	in	puppet.conf),
Puppet	will	generate	three	graphs	in	the	DOT	format	(a	graphics	language):

resources.dot:	This	shows	the	hierarchical	structure	of	your	classes	and	resources,
but	without	dependencies
relationships.dot:	This	shows	the	dependencies	between	resources	as	arrows,	as
shown	in	the	preceding	image
expanded_relationships.dot:	This	is	a	more	detailed	version	of	the	relationships
graph

The	dot	tool	(part	of	the	graphviz	package)	will	convert	these	to	an	image	format	such	as
PNG	for	viewing.

In	the	relationships	graph,	each	resource	in	your	manifest	is	shown	as	a	balloon	(known	as
a	vertex),	with	arrowed	lines	connecting	them	to	indicate	the	dependencies.	You	can	see
that	in	our	example,	the	dependencies	between	File['/etc/ntp.conf']	and
Package['ntp']	are	bidirectional.	When	Puppet	tries	to	decide	where	to	begin	applying
these	resources,	it	can	start	at	File['/etc/ntp.conf']	and	look	for	what	depends	on
File['/etc/ntp.conf']	and	end	up	at	Package['ntp'].	When	Puppet	looks	for	the
dependencies

of	Package['ntp'],	it	will	end	up	back	at	File['/etc/ntp.conf'],	forming	a	circular
path.	This	type	of	problem	is	known	as	a	circular	dependency	problem;	Puppet	can’t
decide	where	to	start	because	the	two	resources	depend	on	each	other.

To	fix	the	circular	dependency	problem,	all	you	need	to	do	is	remove	one	of	the
dependency	lines	and	break	the	circle.	The	following	code	fixes	the	problem:

class	trifecta	{

		package	{	'ntp':

				ensure		=>	installed,

		}

		service	{	'ntp':

				ensure		=>	running,

				require	=>	Package['ntp'],

		}

		file	{	'/etc/ntp.conf':

				source		=>	'puppet:///modules/trifecta/ntp.conf',

				notify		=>	Service['ntp'],

				require	=>	Package['ntp'],

		}

}

Now	when	we	run	puppet	apply	or	agent	with	the	--graph	option,	the	resulting	graph
does	not	have	any	circular	paths	(cycles):

In	this	graph	it	is	easy	to	see	that	Package[ntp]	is	the	first	resource	to	be	applied,	then
File[/etc/ntp.conf],	and	finally	Service[ntp].

Tip
A	graph	such	as	that	shown	previously	is	known	as	a	Directed	Acyclic	Graph	(DAG).
Reducing	the	resources	to	a	DAG	ensures	that	Puppet	can	calculate	the	shortest	path	of	all
the	vertices	(resources)	in	linear	time.	For	more	information	on	DAGs,	look	at
http://en.wikipedia.org/wiki/Directed_acyclic_graph.

http://en.wikipedia.org/wiki/Directed_acyclic_graph

There’s	more…
Resource	and	relationship	graphs	can	be	useful	even	when	you	don’t	have	a	bug	to	find.	If
you	have	a	very	complex	network	of	classes	and	resources,	for	example,	studying	the
resources	graph	can	help	you	see	where	to	simplify	things.	Similarly,	when	dependencies
become	too	complicated	to	understand	from	reading	the	manifest,	the	graphs	can	be	a
useful	form	of	documentation.	For	instance,	a	graph	will	make	it	readily	apparent	which
resources	have	the	most	dependencies	and	which	resources	are	required	by	the	most	other
resources.	Resources	that	are	required	by	a	large	number	of	other	resources	will	have
numerous	arrows	pointing	at	them.

See	also
The	Using	run	stages	recipe	in	Chapter	3,	Writing	Better	Manifests

Understanding	Puppet	errors
Puppet’s	error	messages	can	sometimes	be	a	little	confusing.	Updated	and	increasingly
helpful	error	messages	are	one	reason	to	upgrade	your	Puppet	installation	if	you	are
running	any	version	prior	to	Version	3.

Here	are	some	of	the	most	common	errors	you	might	encounter,	and	what	to	do	about
them.

How	to	do	it…
Often	the	first	step	is	simply	to	search	the	Web	for	the	error	message	text	and	see	what
explanations	you	can	find	for	the	error,	along	with	any	helpful	advice	about	fixing	it.	Here
are	some	of	the	most	common	puzzling	errors,	with	possible	explanations:

Could	not	retrieve	file	metadata	for	XXX:	getaddrinfo:	Name	or	service	not	

known

Where	XXX	is	a	file	resource,	you	may	have	accidentally	typed	puppet://modules…	in	a
file	source	instead	of	puppet:///modules…	(note	the	triple	slash):

Could	not	evaluate:	Could	not	retrieve	information	from	environment	

production	source(s)	XXX

The	source	file	may	not	be	present	or	may	not	be	in	the	right	location	in	the	Puppet	repo:

Error:	Could	not	set	'file'	on	ensure:	No	such	file	or	directory	XXX

The	file	path	may	specify	a	parent	directory	(or	directories)	that	doesn’t	exist.	You	can	use
separate	file	resources	in	Puppet	to	create	these:

change	from	absent	to	file	failed:	Could	not	set	'file	on	ensure:	No	such	

file	or	directory

This	is	often	caused	by	Puppet	trying	to	write	a	file	to	a	directory	that	doesn’t	exist.	Check
that	the	directory	either	exists	already	or	is	defined	in	Puppet,	and	that	the	file	resource
requires	the	directory	(so	that	the	directory	is	always	created	first):

undefined	method	'closed?'	for	nil:NilClass

This	unhelpful	error	message	is	roughly	translated	as	something	went	wrong.	It	tends	to	be
a	catch-all	error	caused	by	many	different	problems,	but	you	may	be	able	to	determine
what	is	wrong	from	the	name	of	the	resource,	the	class,	or	the	module.	One	trick	is	to	add
the	--debug	switch,	to	get	more	useful	information:

[root@cookbook	~]#	puppet	agent	-t	--debug

If	you	check	your	Git	history	to	see	what	was	touched	in	the	most	recent	change,	this	may
be	another	way	to	identify	what’s	upsetting	Puppet:

Could	not	parse	for	environment	---	"---	production":	Syntax	error	at	end	

of	file	at	line	1

This	can	be	caused	by	mistyping	command	line	options,	for	example,	if	you	type	puppet
-verbose	instead	of	puppet	--verbose.	This	kind	of	error	can	be	hard	to	see:

Duplicate	definition:	X	is	already	defined	in	[file]	at	line	Y;	cannot	

redefine	at	[file]	line	Y

This	one	has	caused	me	a	bit	of	puzzlement	in	the	past.	Puppet’s	complaining	about	a
duplicate	definition,	and	normally	if	you	have	two	resources	with	the	same	name,	Puppet
will	helpfully	tell	you	where	they	are	both	defined.	But	in	this	case,	it’s	indicating	the
same	file	and	line	number	for	both.	How	can	one	resource	be	a	duplicate	of	itself?

The	answer	is,	if	it’s	a	defined	type	(a	resource	created	with	the	define	keyword).	If	you
create	two	instances	of	a	defined	type	you’ll	also	have	two	instances	of	all	the	resources
contained	within	the	definition,	and	they	need	to	have	distinct	names.	For	example:

define	check_process()	{

		exec	{	'is-process-running?':

				command	=>	"/bin/ps	ax	|/bin/grep	${name}	>/tmp/pslist.${name}.txt",

		}

}

check_process	{	'exim':	}

check_process	{	'nagios':	}

When	we	run	Puppet,	the	same	error	is	printed	twice:

t@mylaptop	~$	puppet	apply	duplicate.pp

Error:	Duplicate	declaration:	Exec[is-process-running?]	is	already	declared	

in	file	duplicate.pp:4;	cannot	redeclare	at	duplicate.pp:4	on	node	

cookbook.example.com

Error:	Duplicate	declaration:	Exec[is-process-running?]	is	already	declared	

in	file	duplicate.pp:4;	cannot	redeclare	at	duplicate.pp:4	on	node	

cookbook.example.com

Because	the	exec	resource	is	named	is-process-running?,	if	you	try	to	create	more	than
one	instance	of	the	definition,	Puppet	will	refuse	because	the	result	would	be	two	exec
resources	with	the	same	name.	The	solution	is	to	include	the	name	of	the	instance	(or
some	other	unique	value)	in	the	title	of	each	resource:

exec	{	"is-process-${name}-running?":

		command	=>	"/bin/ps	ax	|/bin/grep	${name}	>/tmp/pslist.${name}.txt",

}

Every	resource	must	have	a	unique	name,	and	a	good	way	to	ensure	this	with	a	definition
is	to	interpolate	the	${name}	variable	in	its	title.	Note	that	we	switched	from	using	single
to	double	quotes	in	the	resource	title:

"is-process-${name}-running?"

The	double	quotes	are	required	when	you	want	Puppet	to	interpolate	the	value	of	a
variable	into	a	string.

See	also
The	Generating	reports	recipe	in	this	chapter
The	Noop:	the	don’t	change	anything	option	recipe	in	this	chapter
The	Logging	debug	messages	recipe	in	this	chapter

Inspecting	configuration	settings
You	probably	know	that	Puppet’s	configuration	settings	are	stored	in	puppet.conf,	but
there	are	many	parameters,	and	those	that	aren’t	listed	in	puppet.conf	will	take	a	default
value.	How	can	you	see	the	value	of	any	configuration	parameter,	regardless	of	whether	or
not	it’s	explicitly	set	in	puppet.conf?	The	answer	is	to	use	the	puppet	config	print
command.

How	to	do	it…
Run	the	following	command.	This	will	produce	a	lot	of	output	(it	may	be	helpful	to	pipe	it
through	less	if	you’d	like	to	browse	the	available	configuration	settings):

[root@cookbook	~]#	puppet	config	print	|head	-25

report_serialization_format	=	pson

hostcsr	=	/var/lib/puppet/ssl/csr_cookbook.example.com.pem

filetimeout	=	15

masterhttplog	=	/var/log/puppet/masterhttp.log

pluginsignore	=	.svn	CVS	.git

ldapclassattrs	=	puppetclass

certdir	=	/var/lib/puppet/ssl/certs

ignoreschedules	=	false

disable_per_environment_manifest	=	false

archive_files	=	false

hiera_config	=	/etc/puppet/hiera.yaml

req_bits	=	4096

clientyamldir	=	/var/lib/puppet/client_yaml

evaltrace	=	false

module_working_dir	=	/var/lib/puppet/puppet-module

tags	=	

cacrl	=	/var/lib/puppet/ssl/ca/ca_crl.pem

manifest	=	/etc/puppet/manifests/site.pp

inventory_port	=	8140

ignoreimport	=	false

dbuser	=	puppet

postrun_command	=	

document_all	=	false

splaylimit	=	1800

certificate_expire_warning	=	5184000

How	it	works…
Running	puppet	config	print	will	output	every	configuration	parameter	and	its	current
value	(and	there	are	lots	of	them).

To	see	the	value	for	a	specific	parameter,	add	it	as	an	argument	to	puppet	config	print
command:

[root@cookbook	~]#	puppet	config	print	modulepath

/etc/puppet/modules:/usr/share/puppet/modules

See	also
The	Generating	reports	recipe	in	this	chapter

Index
A

apache**vhost	defined	type	/	How	it	works…
Apache	servers

managing	/	Managing	Apache	servers,	How	to	do	it…,	How	it	works…
Apache	virtual	hosts

creating	/	Creating	Apache	virtual	hosts,	How	it	works…,	There’s	more…
APT-based	distribution	/	How	it	works…
arguments

passing,	to	shell	commands	/	Passing	arguments	to	shell	commands,	How	it
works…

array	iteration
using,	in	templates	/	Using	array	iteration	in	templates,	How	it	works…

arrays
creating,	with	split	function	/	Creating	arrays	with	the	split	function
concatenating	/	Appending	to	and	concatenating	arrays
appending	to	/	Appending	to	and	concatenating	arrays
using,	of	resources	/	Using	arrays	of	resources,	How	it	works…

auditing	capability
reference	link	/	There’s	more…

Augeasproviders
about	/	There’s	more…
URL	/	There’s	more…

Augeas	tool	/	Introduction
used,	for	editing	config	files	/	Using	Augeas	to	reliably	edit	config	files,	How	it
works…
URL	/	There’s	more…

automatic	HTML	documentation
producing	/	How	to	do	it…,	How	it	works…

auto_failback	setting	/	There’s	more…

B
baseimage

reference	link	/	How	it	works…
bash

Puppet,	bootstrapping	with	/	Bootstrapping	Puppet	with	bash,	How	to	do	it…,
How	it	works…

beaker,	GitHub	site
URL	/	There’s	more…

before	metaparameter	/	Learning	metaparameters	and	ordering
Blueprint

about	/	There’s	more…
built-in	report	types

reference	link	/	Other	report	types

C
capitalization

about	/	Capitalization
case	statements

using	/	How	to	do	it…,	Case	statement
centralized	Puppet	infrastructure

creating	/	Creating	a	centralized	Puppet	infrastructure,	How	it	works…
certificate	authority	(CA)	/	Getting	ready
certificates

creating,	with	multiple	DNS	names	/	Creating	certificates	with	multiple	DNS
names,	How	to	do	it…

classes
parameters,	passing	to	/	Passing	parameters	to	classes,	How	it	works…

classification	system
URL,	for	blog	/	Using	roles	and	profiles

command	output
logging	/	Logging	command	output,	How	it	works…

community	Puppet	style
using	/	Using	community	Puppet	style

comparisons	operators	/	Comparisons
conditional	statements

writing	/	Writing	powerful	conditional	statements,	How	to	do	it…
elseif	branches	/	Elseif	branches
comparisons	operators	/	Comparisons
expressions,	combining	/	Combining	expressions

config	files
quick	edits,	making	for	/	Making	quick	edits	to	config	files,	How	it	works…
editing,	Augeas	tool	used	/	Using	Augeas	to	reliably	edit	config	files,	How	it
works…
building,	snippets	used	/	Building	config	files	using	snippets,	How	to	do	it…,
How	it	works…

configuration	management	database	(CMDB)	/	How	it	works…
configuration	settings

inspecting	/	Inspecting	configuration	settings,	How	it	works…
Corosync

URL	/	There’s	more…
cron

Puppet,	running	from	/	Running	Puppet	from	cron,	How	to	do	it…,	How	it
works…

cron	jobs
distributing,	efficiently	/	Distributing	cron	jobs	efficiently,	How	it	works…,
There’s	more…

cross-platform	manifests

writing	/	Writing	reusable,	cross-platform	manifests,	How	to	do	it…,	How	it
works…

custom	facts	/	Facts,	functions,	types,	and	providers
creating	/	Creating	custom	facts,	How	it	works…
reference	link	/	There’s	more…

custom	functions	/	Facts,	functions,	types,	and	providers
creating	/	Creating	custom	functions,	How	to	do	it…,	How	it	works…,	There’s
more…
URL	/	There’s	more…

custom	type
resource,	considerations	/	There’s	more…

custom	types	/	Facts,	functions,	types,	and	providers
reference	link	/	There’s	more…

D
databases

creating	/	Creating	databases	and	users,	How	to	do	it…,	How	it	works…
debug	messages

logging	/	Logging	debug	messages,	How	it	works…
decentralized	Puppet	architecture

creating	/	Creating	a	decentralized	Puppet	architecture,	How	to	do	it…,	How	it
works…

default	keyword
about	/	How	it	works…

defaults	/	Defaults
default	values

specifying,	for	parameters	/	Specifying	default	values
defined	types	/	Adding	a	resource	to	a	node

using	/	Using	defined	types,	How	it	works…,	There’s	more…
dependency	graphs

drawing	/	Drawing	dependency	graphs,	How	to	do	it…,	How	it	works…
directed	acyclic	graph	(DAG)

about	/	How	it	works…
URL	/	How	it	works…

directory	trees
distributing	/	Distributing	and	merging	directory	trees,	How	to	do	it…,	How	it
works…,	There’s	more…
merging	/	Distributing	and	merging	directory	trees,	How	to	do	it…,	How	it
works…,	There’s	more…

Docker
about	/	Managing	Docker	with	Puppet,	There’s	more…
URL,	for	downloading	/	Getting	ready
managing,	with	Puppet	/	Getting	ready,	How	it	works…
URL	/	There’s	more…

documentation	strings
adding	/	Documentation

dotfiles	/	Managing	users’	customization	files
dynamic	information

importing	/	Importing	dynamic	information,	There’s	more…

E
each	function

about	/	Each
elseif	branches	/	Elseif	branches
Embedded	Ruby	(ERB)	/	Using	inline	templates
environment

information,	obtaining	of	/	Getting	information	about	the	environment,	How	it
works…

environment,	in	Puppet
setting	up	/	Setting	up	the	environment,	How	to	do	it…,	There’s	more…

Environments
managing,	with	Git	/	Managing	Environments	with	Git,	How	it	works…,
There’s	more…

environment	variables
facts,	setting	as	/	Setting	facts	as	environment	variables,	How	to	do	it…

epp	function	/	There’s	more…
EPP	templates

using	/	Using	EPP	templates
ERB	templates

facts,	using	in	/	There’s	more…
using	/	Using	ERB	templates,	How	it	works…

Exec	syntax
about	/	There’s	more…
URL	/	There’s	more…

exported	host	resources
using	/	Using	exported	host	resources,	How	to	do	it…,	How	it	works…

exported	resources
using	/	Using	exported	resources,	Getting	ready,	How	it	works…,	There’s
more…

expressions
combining	/	Combining	expressions

external	facts
adding	/	Adding	external	facts,	How	it	works…
debugging	/	Debugging	external	facts
using,	in	Puppet	/	Using	external	facts	in	Puppet

external	node	classifier	(ENC)
using	/	Using	an	external	node	classifier,	How	to	do	it…,	There’s	more…

External	Node	Classifier	(ENC)	/	How	to	do	it…

F
Facter

about	/	Using	Facter	to	describe	a	node
used,	for	describing	node	/	How	to	do	it…

facts
using,	in	ERB	templates	/	There’s	more…
setting,	as	environment	variables	/	Setting	facts	as	environment	variables,	How
to	do	it…

file	shares
managing	/	Managing	NFS	servers	and	file	shares,	How	to	do	it…,	How	it
works…

file_line	resource
adding	/	There’s	more…

filter	function
about	/	Filter

firewalls
managing,	with	iptables	/	Getting	ready,	How	to	do	it…,	How	it	works…

Forge,	Puppet	Labs
URL	/	How	it	works…

forge	module,	for	managing	apt	repos
URL	/	There’s	more…

fqdn_rand()	function	/	How	it	works…
fully	qualified	domain	name	(FQDN)

about	/	Variables
future	parser

using	/	Using	the	future	parser
future	parser,	puppet	labs	website

URL	/	Other	features

G
Git

Puppet	manifests,	managing	with	/	Managing	your	manifests	with	Git,	How	to
do	it…,	There’s	more…
hook,	creating	with	/	Pushing	code	around	with	Git,	How	to	do	it…,	How	it
works…
Environments,	managing	with	/	Managing	Environments	with	Git,	How	it
works…,	There’s	more…

Git	hooks
syntax	check,	automating	with	/	Automatic	syntax	checking	with	Git	hooks,
How	to	do	it…,	How	it	works…

GnuPG
about	/	Using	GnuPG	to	encrypt	secrets
used,	for	encrypting	secrets	/	Getting	ready,	How	to	do	it…,	How	it	works…

GnuPG	backend,	Hiera
URL	/	There’s	more…

graphs,	DOT	format
resources.dot	/	How	it	works…
relationships.dot	/	How	it	works…
expanded_relationships.dot	/	How	it	works…

H
HAProxy

about	/	Using	HAProxy	to	load-balance	multiple	web	servers
used,	for	load	balancing	multiple	web	servers	/	How	to	do	it…,	How	it	works…
URL	/	There’s	more…

hashes
using	/	Using	hashes

Heartbeat
used,	for	building	high-availability	services	/	Building	high-availability	services
using	Heartbeat,	How	to	do	it…,	How	it	works…
reference	link	/	How	it	works…

Hiera
configuring	/	Configuring	Hiera,	How	it	works…,	There’s	more…
node-specific	data,	setting	with	/	Setting	node-specific	data	with	Hiera,	How	it
works…
parameters,	passing	from	/	Passing	parameters	from	Hiera,	How	it	works…

hiera-eyaml
URL	/	There’s	more…

hiera-gpg
secret	data,	storing	with	/	Storing	secret	data	with	hiera-gpg,	How	to	do	it…,
How	it	works…

high-availability	services
about	/	Building	high-availability	services	using	Heartbeat
building,	Heartbeat	used	/	Building	high-availability	services	using	Heartbeat,
How	to	do	it…,	How	it	works…

hook
creating,	with	Git	/	Pushing	code	around	with	Git,	How	to	do	it…,	How	it
works…

host	resources
using	/	Using	host	resources,	How	it	works…,	There’s	more…

httpd	package
about	/	How	it	works…

I
idempotency

about	/	Idempotency
if	statements

regular	expressions,	using	in	/	Using	regular	expressions	in	if	statements,	How	it
works…

INI	style	files
editing,	with	puppetlabs-inifile	/	Getting	ready,	How	it	works…

INI	syntax	/	There’s	more…
ini_subsetting

using	/	There’s	more…
inline	templates

using	/	How	to	do	it…
inline_epp	function	/	There’s	more…
inline_template	function	/	There’s	more…,	Distributing	cron	jobs	efficiently
in	operator

using	/	Using	the	in	operator,	How	to	do	it…
installation,	package

before	starting	service	/	Installing	a	package	before	starting	a	service,	How	it
works…

installation,	service	/	How	to	do	it…,	How	it	works…
iptables

about	/	Managing	firewalls	with	iptables
reference	link	/	Managing	firewalls	with	iptables
firewalls,	managing	with	/	Getting	ready,	How	to	do	it…,	How	it	works…

J
jfryman-nginx	module	/	How	it	works…
Jumpboxes	/	Using	exported	resources

L
Lambda	functions

about	/	Lambda	functions
reduce	/	Reduce
filter	/	Filter
map	/	Map
slice	/	Slice
each	/	Each

librarian-puppet
using	/	Using	librarian-puppet,	How	it	works…
reference	link	/	There’s	more…

Linux-HA
URL	/	There’s	more…

load	balancers
about	/	Using	HAProxy	to	load-balance	multiple	web	servers

logoutput	attribute
false	setting	/	How	it	works…
on_failure	setting	/	How	it	works…
true	setting	/	How	it	works…

M
manifest

about	/	Adding	a	resource	to	a	node
creating	/	Creating	a	manifest,	How	to	do	it…,	There’s	more…
checking,	with	Puppet-lint	tool	/	Getting	ready,	How	to	do	it…

manifests
generating,	with	Puppet	resource	command	/	Generating	manifests	with	the
Puppet	resource	command,	How	to	do	it…
generating,	with	other	tools	/	Generating	manifests	with	other	tools,	How	to	do
it…

map	function
about	/	Map

marionette	collective	(mcollective)	plugin
about	/	There’s	more…

master	port	8080
reference	link	/	How	to	do	it…

meminfo.rb	file
about	/	There’s	more…

MessagePack	(msgpack)	/	Using	MessagePack	serialization
MessagePack	serialization

using	/	Using	MessagePack	serialization,	How	it	works…
metadata.json	file	/	There’s	more…
metaparameters

about	/	Learning	metaparameters	and	ordering
before	/	Learning	metaparameters	and	ordering
require	/	Learning	metaparameters	and	ordering
notify	/	Learning	metaparameters	and	ordering
subscribe	/	Learning	metaparameters	and	ordering

module
writing,	for	public	distribution	/	There’s	more…

module	organization
about	/	Module	organization
URL	/	Module	organization

modules
about	/	Using	modules
using	/	How	to	do	it…,	How	it	works…

module_data	package	/	Creating	nginx	virtual	hosts
multiple	DNS	names

certificates,	creating	with	/	Creating	certificates	with	multiple	DNS	names,	How
to	do	it…

multiple	file	sources
using	/	Using	multiple	file	sources,	How	it	works…,	There’s	more…

multiple	items

iterating	over	/	Iterating	over	multiple	items,	There’s	more…
multiple	web	servers

HAProxy,	used	for	load	balancing	/	How	to	do	it…,	How	it	works…
MySQL

about	/	Managing	MySQL
managing	/	How	to	do	it…,	How	it	works…

N
navajo	/	Creating	Apache	virtual	hosts
NFS

about	/	Managing	NFS	servers	and	file	shares
nfs**exports	class	/	How	it	works…
NFS	servers

managing	/	Managing	NFS	servers	and	file	shares,	How	to	do	it…,	How	it
works…

nginx
about	/	Introduction

nginx	virtual	hosts
creating	/	Creating	nginx	virtual	hosts,	How	to	do	it…,	How	it	works…

node
resource,	adding	to	/	Adding	a	resource	to	a	node,	How	it	works…
Facter,	used	for	describing	/	How	to	do	it…

node-specific	data
setting,	with	Hiera	/	Setting	node-specific	data	with	Hiera,	How	it	works…

node	definition
modifying	/	There’s	more…

nodeless	Puppet	configuration
reference	link	/	There’s	more…

noop	mode
about	/	Noop	–	the	don’t	change	anything	option
running	/	How	to	do	it…,	How	it	works…
using,	as	simple	auditing	tool	/	There’s	more…

notify	metaparameter	/	Learning	metaparameters	and	ordering

O
old	files

cleaning	up,	tidy	resource	used	/	Cleaning	up	old	files,	How	it	works…
oneline.pp	file

modifying	/	There’s	more…
ordering

about	/	Learning	metaparameters	and	ordering

P
package

installing,	before	starting	service	/	Installing	a	package	before	starting	a	service,
How	it	works…

packages
installing,	from	third-party	repository	/	Installing	packages	from	a	third-party
repository,	How	to	do	it…,	How	it	works…

package	versions
comparing	/	Comparing	package	versions,	How	to	do	it…

papply	script
writing	/	Writing	a	papply	script,	How	to	do	it…,	How	it	works…

parameters
passing,	to	classes	/	Passing	parameters	to	classes,	How	it	works…
default	values,	specifying	for	/	Specifying	default	values
passing,	from	Hiera	/	Passing	parameters	from	Hiera,	How	it	works…

parameter	validation
used,	for	generating	error	messages	/	Validation

passenger
Puppet,	running	from	/	Running	Puppet	from	passenger,	How	to	do	it…,	There’s
more…
about	/	Running	Puppet	from	passenger

patterns
capturing	/	Capturing	patterns

Percona
about	/	How	to	do	it…
URL	/	How	to	do	it…

profiles
using	/	Using	roles	and	profiles,	How	it	works…

Provider
about	/	How	it	works…

providers	/	Facts,	functions,	types,	and	providers
creating	/	Creating	your	own	providers,	How	it	works…
reference	link	/	There’s	more…

public	modules
using	/	Using	public	modules,	How	it	works…

public	modules,	on	GitHub
URL	/	There’s	more…

Puppet
installing	/	Installing	Puppet,	How	to	do	it…
running,	from	cron	/	Running	Puppet	from	cron,	How	to	do	it…,	How	it
works…
bootstrapping,	with	bash	/	Bootstrapping	Puppet	with	bash,	How	to	do	it…,
How	it	works…

running,	from	passenger	/	Running	Puppet	from	passenger,	How	to	do	it…,
There’s	more…
Docker,	managing	with	/	Getting	ready,	How	it	works…
about	/	Introduction
external	facts,	using	in	/	Using	external	facts	in	Puppet

Puppet-lint	tool
about	/	Checking	your	manifests	with	Puppet-lint
manifests,	checking	with	/	Getting	ready,	How	to	do	it…
URL	/	There’s	more…

Puppet	community
URL,	for	best	practice	guidelines	/	There’s	more…

Puppet	Cookbook
URL	/	There’s	more…

PuppetDB
configuring	/	Configuring	PuppetDB,	How	to	do	it…,	How	it	works…

puppet	doc	file
about	/	There’s	more…
basic	documentation,	of	manifests	/	There’s	more…

Puppet	errors
about	/	Understanding	Puppet	errors,	How	to	do	it…

Puppetfile
about	/	There’s	more…

Puppet	Labs
URL	/	Using	community	Puppet	style
URL,	for	YUM-based	systems	/	How	to	do	it…
URL,	for	APT-based	systems	/	How	to	do	it…

puppetlabs-Apache	module
using	/	There’s	more…

puppetlabs-inifile
used,	for	editing	INI	style	files	/	Getting	ready,	How	it	works…

puppetlabs-Mysql
using	/	There’s	more…

puppetlabs-mysql	module	/	Managing	MySQL
puppetlabs-mysql	package	/	Creating	databases	and	users
puppetlabs-stdlib	module

installing	/	Getting	ready
Puppet	labs	ENC	page

URL,	for	information	/	See	also
Puppet	labs	release	package

URL	/	Getting	ready
Puppet	labs	website

URL	/	There’s	more…,	There’s	more…
Puppet	manifests

managing,	with	Git	/	Managing	your	manifests	with	Git,	How	to	do	it…,	There’s

more…
puppet	manifests

testing,	with	rspec-puppet	tool	/	Testing	your	puppet	manifests	with	rspec-
puppet,	How	to	do	it…,	How	it	works…

puppet	module	command	/	How	to	do	it…
Puppet	resource	command

manifests,	creating	with	/	Generating	manifests	with	the	Puppet	resource
command,	How	to	do	it…
used,	for	examining	resource	types	/	There’s	more…

Q
quick	edits

making,	for	config	files	/	Making	quick	edits	to	config	files,	How	it	works…

R
r10k

about	/	Using	r10k
using	/	Getting	ready,	How	to	do	it…,	How	it	works…

RDoc
about	/	How	it	works…

reduce	function
about	/	Reduce

regsubst	function	/	How	it	works…
regular	expressions

using,	in	if	statements	/	Using	regular	expressions	in	if	statements,	How	it
works…
syntax	/	Regular	expression	syntax
URL,	for	tutorials	/	Regular	expression	syntax
using	/	Regular	expressions

regular	expression	substitutions
using	/	Using	regular	expression	substitutions,	How	it	works…

relationship	graphs
about	/	There’s	more…

repeat	parameter	/	There’s	more…
reports

generating	/	Generating	reports,	How	it	works…
require	metaparameter	/	Learning	metaparameters	and	ordering
resource

adding,	to	node	/	Adding	a	resource	to	a	node,	How	it	works…
about	/	Adding	a	resource	to	a	node,	There’s	more…
reference	link	/	There’s	more…

Resource	Abstraction	Layer	(RAL)	/	How	it	works…
resource	collectors

about	/	There’s	more…
URL	/	There’s	more…

resource	defaults
using	/	How	to	do	it…
specifying,	for	resource	type	/	There’s	more…

/	There’s	more…
resource	ordering

about	/	Resource	ordering
reference	link	/	Resource	ordering

resources
arrays,	using	of	/	Using	arrays	of	resources,	How	it	works…
auditing	/	Auditing	resources,	How	to	do	it…
disabling,	temporarily	/	Temporarily	disabling	resources

resource	type

resource	defaults,	specifying	for	/	There’s	more…
resource	types

creating	/	Creating	your	own	resource	types,	How	it	works…
reusable	manifests

writing	/	Writing	reusable,	cross-platform	manifests,	How	to	do	it…,	How	it
works…

ripienaar-module_data	module	/	There’s	more…
ro	(read-only)	/	How	it	works…
roles

using	/	Using	roles	and	profiles,	How	it	works…
rspec-puppet	tool

puppet	manifests,	testing	with	/	Testing	your	puppet	manifests	with	rspec-
puppet,	How	to	do	it…,	How	it	works…
URL,	for	tutorial	/	There’s	more…

Ruby
references	/	Creating	your	own	resource	types

run	stages
using	/	Using	run	stages,	How	to	do	it…,	How	it	works…,	There’s	more…

rw	(read-write)	/	How	it	works…

S
schedule	metaparameter

using	/	Scheduling	when	resources	are	applied,	How	to	do	it…,	How	it	works…
scope

about	/	Scope
secret	data

storing,	with	hiera-gpg	/	Storing	secret	data	with	hiera-gpg,	How	to	do	it…,
How	it	works…

secret	function
using	/	There’s	more…

secrets
encrypting,	GnuPG	used	/	Getting	ready,	How	to	do	it…,	How	it	works…

selectors
using	/	How	to	do	it…,	Selector

service
installing	/	How	to	do	it…,	How	it	works…
configuring	/	How	to	do	it…,	How	it	works…
starting	/	How	to	do	it…,	How	it	works…

shell	commands
arguments,	passing	to	/	Passing	arguments	to	shell	commands,	How	it	works…

shellquote	function	/	Passing	arguments	to	shell	commands
slice	function

about	/	Slice
snippets

used,	for	building	config	files	/	Building	config	files	using	snippets,	How	to	do
it…,	How	it	works…

split	function
arrays,	creating	with	/	Creating	arrays	with	the	split	function

SSH	keys	/	Getting	ready
stages,	Puppet

URL,	for	examples	/	There’s	more…
stahnma-epel	module	/	Getting	ready
standard	naming	conventions

using	/	Using	standard	naming	conventions,	How	to	do	it…
standard	types,	puppet	labs	website

URL	/	Adding	a	resource	to	a	node
stdlib	module	/	How	to	do	it…
stored	configuration

reference	link	/	Getting	ready
style	compliant,	code

indentation	/	Indentation
quoting	/	Quoting
false	value	/	False

variables	/	Variables
parameters	/	Parameters
symlinks	/	Symlinks

subscribe	metaparameter	/	Learning	metaparameters	and	ordering
supported	modules

references	/	How	it	works…
symlinks

about	/	Symlinks
syntax	check

automating,	with	Git	hooks	/	Automatic	syntax	checking	with	Git	hooks,	How	to
do	it…,	How	it	works…

T
tagged	function	/	Using	tags
tags

using	/	Using	tags,	How	to	do	it…,	There’s	more…
templates

using,	as	part	of	module	/	Templates
array	iteration,	using	in	/	Using	array	iteration	in	templates,	How	it	works…,
There’s	more…

Test-driven	development	(TDD)	/	There’s	more…
The	Foreman

URL	/	Using	an	external	node	classifier,	Other	report	types
third-party	modules	/	Third-party	modules
third-party	repository

packages,	installing	from	/	Installing	packages	from	a	third-party	repository,
How	to	do	it…,	How	it	works…

tidy	resource
used,	for	cleaning	up	old	files	/	Cleaning	up	old	files,	How	it	works…

trifecta
about	/	Trifecta

tripwire
reference	link	/	There’s	more…

type	/	Adding	a	resource	to	a	node

U
user**virtual	class	/	How	to	do	it…,	How	it	works…,	There’s	more…
users

managing,	with	virtual	resources	/	Managing	users	with	virtual	resources,	How
to	do	it…,	How	it	works…
creating	/	Creating	databases	and	users,	How	to	do	it…,	How	it	works…

users,	customization	files
managing	/	Managing	users’	customization	files,	How	to	do	it…,	How	it
works…

users,	SSH	access
managing	/	Managing	users’	SSH	access,	How	to	do	it…,	How	it	works…

V
variables

about	/	Variables
variable	scope,	Puppet	Labs	article

URL	/	Printing	out	variable	values
variable	values

printing	out	/	Printing	out	variable	values
versioncmp	function	/	Comparing	package	versions
virtual	resources

about	/	Using	virtual	resources
using	/	Using	virtual	resources,	How	to	do	it…,	How	it	works…
realizing	/	There’s	more…
users,	managing	with	/	Managing	users	with	virtual	resources,	How	to	do	it…,
How	it	works…

virtual	sites
reference	link	/	Introduction

W
WEBrick

about	/	Creating	a	centralized	Puppet	infrastructure

Y
YUM

URL	/	Getting	ready
yumrepo	resources

URL	/	There’s	more…

	Puppet Cookbook Third Edition
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Puppet Language and Style
	Introduction
	Adding a resource to a node
	How to do it...
	How it works...
	Using Facter to describe a node
	How to do it...
	How it works...
	There's more...
	Variables
	Scope
	Installing a package before starting a service
	How to do it...
	How it works...
	Capitalization
	Learning metaparameters and ordering
	Trifecta
	Idempotency
	Installing, configuring, and starting a service
	How to do it...
	How it works…
	Using community Puppet style
	How to do it…
	Indentation
	Quoting
	False
	Variables
	Parameters
	Symlinks
	Creating a manifest
	How to do it...
	There's more…
	Checking your manifests with Puppet-lint
	Getting ready
	How to do it...
	There's more...
	See also
	Using modules
	How to do it…
	How it works…
	There's more…
	Templates
	Facts, functions, types, and providers
	Third-party modules
	Module organization
	See also
	Using standard naming conventions
	How to do it…
	There's more…
	Using inline templates
	How to do it…
	How it works…
	There's more...
	See also
	Iterating over multiple items
	How to do it…
	How it works…
	There's more…
	Using hashes
	Creating arrays with the split function
	Writing powerful conditional statements
	How to do it…
	How it works…
	There's more…
	Elseif branches
	Comparisons
	Combining expressions
	See also
	Using regular expressions in if statements
	How to do it…
	How it works…
	There's more…
	Capturing patterns
	Regular expression syntax
	See also
	Using selectors and case statements
	How to do it…
	How it works…
	Selector
	Case statement
	There's more…
	Regular expressions
	Defaults
	Using the in operator
	How to do it…
	There's more…
	Using regular expression substitutions
	How to do it…
	How it works…
	There's more…
	See also
	Using the future parser
	Getting ready
	How to do it...
	Appending to and concatenating arrays
	Lambda functions
	Reduce
	Filter
	Map
	Slice
	Each
	Other features
	2. Puppet Infrastructure
	Introduction
	Installing Puppet
	Getting ready
	How to do it...
	Managing your manifests with Git
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating a decentralized Puppet architecture
	Getting ready
	How to do it...
	How it works...
	Writing a papply script
	How to do it...
	How it works...
	Running Puppet from cron
	Getting ready
	How to do it...
	How it works...
	There's more...
	Bootstrapping Puppet with bash
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating a centralized Puppet infrastructure
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating certificates with multiple DNS names
	Getting ready
	How to do it...
	How it works...
	Running Puppet from passenger
	Getting ready
	How to do it...
	How it works...
	There's more...
	Setting up the environment
	Getting ready
	How to do it...
	There's more...
	Configuring PuppetDB
	Getting ready
	How to do it...
	How it works...
	There's more...
	Configuring Hiera
	Getting ready
	How to do it...
	How it works...
	There's more...
	Setting node-specific data with Hiera
	Getting ready
	How to do it...
	How it works...
	Storing secret data with hiera-gpg
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Using MessagePack serialization
	Getting ready
	How to do it...
	How it works...
	Automatic syntax checking with Git hooks
	How to do it...
	How it works...
	Pushing code around with Git
	Getting ready
	How to do it...
	How it works...
	Managing Environments with Git
	Getting ready
	How to do it...
	How it works...
	There's more...
	3. Writing Better Manifests
	Introduction
	Using arrays of resources
	How to do it…
	How it works…
	See also
	Using resource defaults
	How to do it...
	How it works...
	There's more...
	Using defined types
	How to do it…
	How it works…
	There's more…
	See also
	Using tags
	How to do it...
	There's more…
	Using run stages
	How to do it…
	How it works…
	There's more…
	See also
	Using roles and profiles
	How to do it…
	How it works…
	There's more…
	Passing parameters to classes
	How to do it…
	How it works…
	There's more…
	Specifying default values
	Passing parameters from Hiera
	Getting ready
	How to do it...
	How it works...
	There's more...
	Writing reusable, cross-platform manifests
	How to do it…
	How it works...
	There's more…
	See also
	Getting information about the environment
	How to do it…
	How it works…
	There's more…
	See also
	Importing dynamic information
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Passing arguments to shell commands
	How to do it…
	How it works…
	4. Working with Files and Packages
	Introduction
	Making quick edits to config files
	Getting ready
	How to do it...
	How it works…
	There's more…
	Editing INI style files with puppetlabs-inifile
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using Augeas to reliably edit config files
	How to do it…
	How it works…
	There's more…
	Building config files using snippets
	Getting ready
	How to do it...
	How it works...
	Using ERB templates
	How to do it…
	How it works…
	There's more…
	See also
	Using array iteration in templates
	How to do it…
	How it works…
	There's more…
	See also
	Using EPP templates
	How to do it...
	How it works...
	There's more...
	Using GnuPG to encrypt secrets
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Installing packages from a third-party repository
	How to do it…
	How it works…
	There's more...
	Comparing package versions
	How to do it…
	How it works…
	5. Users and Virtual Resources
	Introduction
	Using virtual resources
	How to do it...
	How it works...
	There's more...
	Managing users with virtual resources
	How to do it...
	How it works...
	There's more...
	See also
	Managing users' SSH access
	How to do it...
	How it works...
	There's more...
	Managing users' customization files
	How to do it...
	How it works...
	There's more...
	See also
	Using exported resources
	Getting ready
	How to do it...
	How it works...
	There's more...
	6. Managing Resources and Files
	Introduction
	Distributing cron jobs efficiently
	How to do it...
	How it works...
	There's more...
	See also
	Scheduling when resources are applied
	How to do it...
	How it works...
	There's more...
	Using host resources
	How to do it...
	How it works...
	There's more...
	Using exported host resources
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using multiple file sources
	How to do it...
	How it works...
	There's more...
	See also
	Distributing and merging directory trees
	How to do it...
	How it works...
	There's more...
	Cleaning up old files
	How to do it...
	How it works...
	There's more...
	Auditing resources
	How to do it...
	How it works...
	There's more...
	See also
	Temporarily disabling resources
	How to do it...
	How it works...
	7. Managing Applications
	Introduction
	Using public modules
	How to do it...
	How it works...
	There's more...
	Managing Apache servers
	How to do it...
	How it works...
	Creating Apache virtual hosts
	How to do it...
	How it works...
	There's more...
	Creating nginx virtual hosts
	How to do it...
	How it works...
	There's more...
	Managing MySQL
	How to do it...
	How it works...
	There's more...
	Creating databases and users
	How to do it...
	How it works...
	There's more...
	8. Internode Coordination
	Introduction
	Managing firewalls with iptables
	Getting ready
	How to do it...
	How it works...
	There's more...
	Building high-availability services using Heartbeat
	Getting ready
	How to do it…
	How it works…
	There's more...
	Managing NFS servers and file shares
	How to do it...
	How it works…
	Using HAProxy to load-balance multiple web servers
	How to do it…
	How it works…
	There's more...
	Managing Docker with Puppet
	Getting ready
	How to do it...
	How it works...
	There's more...
	9. External Tools and the Puppet Ecosystem
	Introduction
	Creating custom facts
	How to do it...
	How it works...
	There's more...
	See also
	Adding external facts
	Getting ready
	How to do it...
	How it works...
	There's more...
	Debugging external facts
	Using external facts in Puppet
	See also
	Setting facts as environment variables
	How to do it...
	Generating manifests with the Puppet resource command
	How to do it...
	There's more...
	Generating manifests with other tools
	Getting ready
	How to do it...
	There's more...
	Using an external node classifier
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating your own resource types
	How to do it...
	How it works...
	There's more...
	Documentation
	Validation
	Creating your own providers
	How to do it...
	How it works...
	There's more...
	Creating custom functions
	How to do it...
	How it works...
	There's more...
	Testing your puppet manifests with rspec-puppet
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Using librarian-puppet
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using r10k
	Getting ready
	How to do it...
	How it works...
	There's more...
	10. Monitoring, Reporting, and Troubleshooting
	Introduction
	Noop – the don't change anything option
	How to do it...
	How it works...
	There's more...
	See also
	Logging command output
	How to do it...
	How it works...
	There's more...
	Logging debug messages
	How to do it...
	How it works...
	There's more...
	Printing out variable values
	Resource ordering
	Generating reports
	How to do it...
	How it works...
	There's more...
	Other report types
	See also
	Producing automatic HTML documentation
	How to do it...
	How it works...
	There's more...
	Drawing dependency graphs
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Understanding Puppet errors
	How to do it...
	See also
	Inspecting configuration settings
	How to do it...
	How it works...
	See also
	Index

