O'REILLY"

Best Practlces

DESIGN PATTERNS FOR MAINTAINABLE CODE

Chris Barbour

Puppet Best Practices

Chris Barbour

Beijing + Cambridge - Farnham - Kdln - Sebastopol + Tokyo [KOAR{=|MN4

Puppet Best Practices
by Chris Barbour

Copyright © 2010 Chris Barbour. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson Indexer: FIX ME!

Production Editor: FIX ME! Cover Designer: Karen Montgomery
Copyeditor: FIX ME! Interior Designer: David Futato
Proofreader: FIX ME! lllustrator: Rebecca Demarest
January -4712: First Edition

Revision History for the First Edition:

2015-03-13: First early release

2015-06-04: Early release revision 2
See http://oreilly.com/catalog/errata.csp?isbn=0636920038528 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. I'FILL THIS IN!! and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 063-6-920-03852-8
(2]

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=0636920038528

Preface

2.

Forward........ccovviivniiiiiiininninen

What's new?
About best practices
About this pre-release

The Puppet Design Philosophy...............

Declarative Code
What is declarative code anyway?
A practical example
Non-Declarative Code with Puppet
Idempotency
Side Effects
Resource Level Idempotence
Run Level Idempotence
Non-deterministic code
Stateless
Sources of State
Summary

. Code and Data; High Level Design............

Code and Data
Application Logic
Business Logic
Site Specific Data
Node Specific Data
Service Data
Breaking it down
Application Logic & Puppet Modules

Table of Contents

................................. 29

29
30
31
31
31
32
32
33

Business logic with Roles and Profiles

Hiera & Site Specific Data

Node Classification

Exported Resources & Service Discovery
Summary

Coding Practices.covveriiiiiiiiiniiiiiieriieeeneennn,

The Style Guide
Coding Principles
KISS
The Single Responsibility Principle
Seperation of Concerns
Interface Driven Design
Don't Repeat Yourself (the DRY principle)
General Coding Recommendations
The balance of Code and Resources
Conditional Logic
Selectors
Variables
Variable Naming
Referencing Variables
Other Variable Use Cases
Function Calls
Functions for logging and Debugging
String manipulation functions
Path Manipulation
Input validation functions
Catalog tests
Iteration
Iteration with Puppet 3
Iteration with Puppet 4 and the Future Parser
Generating lists
Data Transformation
Templates
ERB Templates
EPP Templates
EPP vs. ERB
Template abuse
The puppet:file defined type
Other Language Features
Summary

36
39
40
41
42

45
45
46
46
48
49
51
52
55
55
57
59
61
61
61
66
66
67
68
68
68
70
72
72
73
75
76
78
78
79
80
80
80
81
81

iv

| Table of Contents

5. PuppetModuleDesign.covvuiiiuiiiiiiiiiiiiiii it iiiriiereieenaes 83

Design modules for public consumption 84
Using public modules 84
Picking good modules 84
Module checklist 85
Module Applicability 85
Contributing Modules 86
Planning and scoping your module 87
Basic Module Layout 87
manifests/init.pp; the module entry point 88
An example init class 89
Parameterizing your module 91
Input validation 95
params.pp pattern 96
Module data sources; the alternative to params.pp 98
Subclasses 99
Subclass relationships 99
Subclass containment 101
Interfacing with subclasses. 105
Defined Types 108
Iteration and DRY with defined types 108
Module Interfaces with defined types 108
Providing services with defined types 109
Defined types for simplifying complex tasks 111
Interacting with the rest of the module 112
Documentation 113
Markdown 113
In-line documentation 115
Rake tasks 116
Testing 116
Rspec 117
Acceptance testing 120
Module testing best practices 121
Continuous Integration 122
Dependencies 122
Summary 123
6. BUilt-inTypes. ...ooveeit i e 125

Table of Contents | v

CHAPTER 1
Forward

First of all, I'd like to thank you for taking the time to read this early preview of Puppet
Best Practices. The reception to the book has been amazing, and we've received great
feedback about our initial update.

What's new?

This months update includes two new chapters. Chapter 4 focusing on coding best
practices and the features of the Puppet DSL. This chapter explores iterators, variables,
and conditional logic among other language features. It also discusses coding principles
as they apply to Puppet.

Chapter 5 focuses on the development of Puppet modules. In this chapter we explore
module structure, scoping, the use of defined types, and module testing.

Puppet 4.0 was officially launched following our previous pre-release. We had already
been discussing practices relating to Puppet 4. This update significantly extends our
Puppet 4 coverage.

Puppet 4 is our target platform for this book, however we expect that a lot of sites will
continue to use Puppet 3 for the foreseeable future. We attempt to address practices for
both major releases of Puppet, directly exploring differences between the two releases
where applicable. This should both help you handle your current requirements, and
plan your approach for the future.

The introduction of the future parser and the release of Hiera 2 are both fairly significant
changes for Puppet 4. We are excited about the introduction of iterators to the Puppet
DSL, as well as module data sources, and the improvements for data handling. We have
however, found that most best practices apply to both releases of Puppet.

Best practices will become even more important to this release; the new features of
Puppet 4 are powerful, but carry a lot of potential for mis-use. This book should prove
to be invaluable as you upgrade, grow, and improve your environment.

About best practices

Best practices books are the result of years of professional experience. Unlike purely
technical works, there often isn't always objectively correct best practices answer for
every conceivable situation. By exposing this early release to your criticism, I hope to
identify weaknesses in this book; sections that can be improved upon. If you find any-
thing in this book confusing or incomplete, I encourage you to reach out for clarifica-
tion. My goal is to produce the best work I possibly can. Your feedback is invaluable to
this process, and very much appreciated.

My objective for this book is to share professional experience, help other IT professio-
nals solve problems, and to improve the overall quality of code and infrastructure de-
ployed in the real world.

About this pre-release

This work has not yet been professionally edited, and I hope you will forgive the gram-
mar, syntax, and formatting errors that are present in this initial draft. Our goal is to
document the core concepts of this book first, and then correct the flaws iteratively.
What you currently see here is the product of passion and many sleepless nights fueled
only by caffeine and determination.

While all feedback is sincerely appreciated, the most valuable feedback you can provide
are your thoughts regarding the concepts and recommendations provided by this book.
Do you find the discussion of programming principles useful? Do you disagree with
any of the recommendations, and if so why? Is the material easy to understand, or
confusing?

If you have any feedback, I request that you please reach out. Please feel free to email
me at puppet.best.practices@gmail.com

Sincerely,

Chris Barbour, Author, Puppet Best Practices

2 | Chapter1:Forward

mailto:puppet.best.practices@gmail.com

Preface

This book is a work in progress — new chapters will be added as they are written. We
welcome feedback - if you spot any errors or would like to suggest improvements, please
email the author at puppet.best.practices@gmail.com.

In this book, we discuss on how to build and deploy highly maintainable Puppet code,
with a focus on avoiding and eliminating technical debt.

Puppet is by far the most popular configuration management and automation platform
available today, and is quickly being adopted by companies of all sizes, from single
platform startups to established enterprises that may be using it to manage halfa dozen
different operating systems.

This book does not attempt to explain the basics of using Puppet; instead we will be
looking at how to use Puppet most effectively. This will include discussions about the
design decisions behind Puppet, an exploration of how to organize code and data, a
look at many common features of Puppet, and discussions about common pitfalls and
traps when deploying Puppet infrastructure.

Who Should Read This Book

This book is intended for readers who have some basic familiarity with Puppet and are
interested in improving their understanding of Puppet and the surrounding ecosystem
of tools. The concepts described in this book are appropirate for Puppet novices and
experts alike, however readers who are new to Puppet should consider using this as a
suppliment to Puppet Labs training or other introductory work that can provide a
foundational understanding of Puppet.

This book is appropriate for all professionals working with Puppet, regardless of wheth-
er you are responsible for architecting Puppet infrastructure or responsible for writing
a module or two to support a single application.

mailto:puppet.best.practices@gmail.com

The information contained in this book will be invaluable to both green and brown field
deployments of Puppet. If you are building a new environment, we will discuss how to
lay a solid foundation that provides flexibility to grow and change. If you already have
an exiting environment or are inheriting an environment, we will explore useful strate-
gies to eliminate many pain points in your code base and improve upon what you have.

Why | Wrote This Book

This book draws heavily from experiences as a Puppet consultant. The folks I've met
while deploying Puppet have been very bright and talented individuals who were quick
to learn the features of Puppet, and could often find very innovative ways of using those
features to solve immediate problems, and to produce code that is impossible to un-
derstand.

Almost universlly, sites deploying Puppet have grown both quickly and organically. The
consequences of design decisions made early in development often had reprocussions
that were not obvious when they were originally made. As code became established and
moved to production, it became harder and harder to correct those problems without
risking the stability of the site that code manages.

None of these problems are specific to Puppet. As with any CFM solution, the amount
of code being maintained will grow with the size of the site. It will often dwarf any other
single codebase maintained by your operations team.

This book highlights design patterns, both good and bad, that can be used when building
Puppet environments and discusses the impact of each decision. The coding patterns
contained in this book will help you design code that can be extended, maintained, and
supported not only by yourself, but by the people who may inherit your work down the
road.

A Word on Puppet Today

Puppet Best Practices have changed significantly since Pupet’s early releases. In some
ways, Puppet is much easier to work with and support. For example, parameterized
modules and automatic data bindings have made it much simpler to re-use 3rd party
modules. On the other hand, Puppet has added many new features and design patterns
since then, and the demarcation points between various systems aren’t always clear.

Best practices will continue to evolve. Puppet 4 will introduce new syntax and features.
Common complaints will be resolved. New issues will be discovered.

The goal of this book is not just to help you solve the problems you may be experiencing
today, but also to help prepare you for the future.

iv | Preface

Navigating This Book

This book is organized roughly as follows:

o Chapters 1 and 2 discuss design concepts that drive the recommendations made
throughout this book.

o Chapters 3 through 8 explore major features of Puppet such as Hiera in depth and
provide many concrete recommendations for each component.

o Chapter 9 and 10 discusses release management practices and development tools.

o Chapter 11 and 13 discuss advanced topics relating to extending Puppet and other
infrastructure management tools that may be useful to your site.

This book is organized so that it can be read front to back, however most of the chapters
in this book are fairly self contained and will provide references to other topics where
appropriate.

I strongly encourage you to start with chapters 2 and 3. From there, feel free to skip
around if youre the impatient type, or continue reading through to gain a wholistic
understanding of the Puppet infrastructure. Once you've read through this book, it is
my sincere hope that you will return to individual sections when needed to address a
difficult problem, to refresh your knowledge, or to pickup strategies that may have been
missed the first time through.

Online Resources

o https://docs.puppetlabs.com/
o https://ask.puppetlabs.com

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Preface | v

https://docs.puppetlabs.com/
https://ask.puppetlabs.com

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

N

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/title_title.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Book Title by Some Author (O'Reilly).
Copyright 2012 Some Copyright Holder, 978-0-596-xxxx-Xx.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
{ od delivers expert content in both book and video form from

the world’s leading authors in technology and business.

vi | Preface

https://github.com/oreillymedia/title_title
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://www.oreilly.com/catalog/<catalog page>.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This book would not have been possible without the patience and support of my wife
and son.

Preface | vii

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://www.oreilly.com/catalog/<catalog page>
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 2
The Puppet Design Philosophy

Before we begin to explore practical best practices with Puppet, it’s valuable to under-
stand the reasoning behind these recommendations.

Puppet can be somewhat alien to technologists who have a background in automation
scripting. Where most of our scripts scripts are procedural, Puppet is declarative. While
a declarative language has many major advantages for configuration management, it
does impose some interesting restrictions on the approaches we use to solve common
problems.

Although Puppet’s design philosophy may not be the most exciting topic to begin this
book, it drives many of the practices in the coming chapters. Understanding that phi-
losophy will help contextualize many of the recommendations covered in this book.

Declarative Code

The Puppet Domain Specific Language (DSL) is a declarative language, as opposed to
the imperative or procedural languages that system administrators tend to be most
comfortable and familiar with.

In an imperative language, we describe how to accomplish a task. In
a declarative language, we describe what we want to accomplish. Im-
perative languages focus on actions to reach a result, and declara-
tive languages focus on the result we wish to achieve. We will see
examples of the difference below.

Puppet’s language is (mostly) verb-less. Understanding and internalizing this paradigm
is critical when working with Puppet; attempting to force Puppet to use a procedural
or imperative process can quickly become an exercise in frustration and will tend to
produce fragile code.

In theory, a declarative language ideal for configuration base-lining tasks. With the
Puppet DSL, we describe the desired state of our systems, and Puppet handles all re-
sponsibility for making sure the system conforms to this desired state. Unfortunately,
mostofusareused to a procedural approach to system administration. The vast majority
of the bad Puppet code I've seen has been the result of trying to write procedural code
in Puppet, rather than adapting existing procedures to Puppet’s declarative model.

Procedural Code with Puppet

In some cases writing procedural code in Puppet is unavoidable. However, such code is
rarely elegant, often creates unexpected bugs, and can be difficult to maintain. We will
see practical examples and best practices for writing procedural code when we look at
the exec resource type in Chapter 6

Of course, it’s easy to simply say “be declarative” In the real world, we are often tasked
to deploy software that isn’t designed for a declarative installation process. A large part
of this book will attempt to address how to handle many uncommon tasks in a declar-
ative way. As a general rule, if your infrastructure is based around packaged open source
software, writing declarative Puppet code will be relatively straight forward. Puppet’s
built in types and providers will provide a declarative way to handle most of your op-
erational tasks. If youre infrastructure includes Windows clients and a lot of Enterprise
software writing declarative Puppet code may be significantly more challenging.

Another major challenge system administrators face when working within the con-
straints of a declarative model is that we tend to operate using an imperative work-flow.
How often have you manipulated files using regular expression substitution? How often
do we massage data using a series of temp files and piped commands? While Puppet
offers many ways to accomplish the same tasks, most of our procedural approaches do
not map well into Puppet’s declarative language. We will explore some examples of this
common problem, and discuss alternative approaches to solving it.

What is declarative code anyway?

As mentioned earlier, declarative code tends not to have verbs. We don’t create users
and we don’t remove them; we ensure that the users are present or absent. We don’t
install or remove software; we ensure that software is present or absent. Where create
and install are verbs, present and absent are adjectives. The difference seems trivial at
first, but proves to be very important in practice.

A real world example:
Imagine that I'm giving you directions to the Palace of Fine Arts in San Francisco.

Procedural instructions:

10 | Chapter2: The Puppet Design Philosophy

o Head North on 19th Avenue

e Geton US-101S

o Take Marina Blvd. to Palace Dr.

o Park at the Palace of Fine Arts Theater

These instructions make a few major assumptions:

o You aren’t already at the Palace of Fine Arts

 You are driving a car

 You are currently in San Francisco

 You are currently on 19th avenue or know how to get there.
« You are heading North on 19th avenue.

o There are no road closures or other traffic disruptions that would force you to a
different route.

Compare this to the declarative instructions:
o Beat 3301 Lyon Street, San Francisco, CA 94123 at 7:00PM
The declarative approach has a few major advantages in this case:

o It makes no assumptions about your mode of transportation. These instructions
are still valid if your plans involve public transit or parachuting into the city.

o The directions are valid even if you're currently at the Palace of Fine Arts

o These instructions empower you to route around road closures and traffic

The declarative approach allows you to chose the best way to reach the destination based
on your current situation, and it relies on your ability to find your way to the destination
given.

Declarative languages aren’t magic. Much like an address relies on you understanding
how to read a map or use a GPS device, Puppet’s declarative model relies on it's own
procedural code to turn your declarative request into a set of instructions that can ach-
ieve the declared state. Puppet’s model uses a Resource type to model an object, and a
provider implementing procedural code to produce the state the model describes.

The major limitation imposed by Puppet’s declarative model might be somewhat obvi-
ous. If a native resource type doesn’t exist for the resource you're trying to model, you
can’'t manage that resource in a declarative way. Declaring that I want a red two story
house with 4 bedrooms might empower you to build the house out of straw or wood or

Declarative Code | 11

brick, but it probably won't actually accomplish anything if you don’t happen to be a
general contractor.

There is some good news on this front, however. Puppet already includes native types
and providers for most common objects, the Puppet community has supplied additional
native models, and if you absolutely have to accomplish something procedurally you
can almost always fall back to the exec resource type.

A practical example

Let’s examine a practical example of procedural code for user management. We will
discuss how to make the code can be made robust, it's declarative equivalent in Puppet,
and the benefits of using Puppet rather than a shell script for this task.

Imperitive / Procedural Code

Here’s an example of an imperative process using BASH. In this case, we are going to
create a user with a home directory and an authorized SSH key on a CentOS 6 Host.
Example 2-1. Imperative user creation with BASH

groupadd examplegroup

useradd -g examplegroup alice

mkdir ~alice/.ssh/

chown alice.examplegroup ~alice/.ssh

echo "ssh-rsa AAAAB3NzaClyc2EAAAABIWAAAIEAM3TAGMF/2RY+r7KIeUoNbQb1TP6ApOtgIPNV\
0TY6teCibxm7fjzBxDrHXBS1vr+fe6xa67G5ef4sRL1OkkTZisnIguXqX0aeQTJ4Idy4LZEVVbngkd\
2R9rAOvQ7Qx/XrZ0hgGpBA99AKXENMSUFrD/E5TunvRHICzaI9HyOIMXc= \

alice@localhost" > ~alice/.ssh/authorized_keys

What if we decide this user should also be a member of the wheel group?

Example 2-2. Imperative user modification with BASH

useradd -g examplegroup alice
usermod -G wheel alice

And if we want to remove that user and that user’s group?

Example 2-3. Imperative user removal with BASH

userdel alice
groupdel examplegroup

Notice a few things about this example:
o Each process is completely different

o The correct process to use depends on the current state of the user

o Each of these processes will produce errors if invoked more than one time

12 | Chapter2: The Puppet Design Philosophy

Imagine for a second that we have several systems. On some systems, example user is
absent. On other systems, Alice is present, but not a member of the wheel group. On

some systems, Alice is present and a member of the wheel group. Imagine that we need
to write a script to ensure that Alice exists, and is a member of the wheel group on every

system, and has the correct authorized key. What would such a script look like?

Example 2-4. Robust user management with BASH

#!/bin/bash

if | getent group examplegroup; then
groupadd examplegroup
fi

if | getent passwd alice; then
useradd -g examplegroup -G wheel alice
fi

if ! 1d -nG alice | grep -q 'examplegroup wheel'; then

usermod -g examplegroup -G wheel alice
fi

if | test -d ~alice/.ssh; then
mkdir -p ~alice/.ssh

fi

chown alice.examplegroup ~alice/.ssh

if | grep -q alice@localhost ~alice/.ssh/authorized_keys; then

echo "ssh-rsa AAAAB3NzaC1lyc2EAAAABIWAAAIEAm3TAgMF/2RY+r7KIeUoNbQb1TP6ApOtg\
JPNVOTY6teCjbxm7fjzBXxDrHXBS1vr+fe6xa67G5ef4sRL10kkTZisnIguXqX0aeQTJ4Idy4LZEVVb\
ngkd2R9rAOVQ7Qx/XrZ0hgGpBA99AKXENMSUFrD/E5TunvRHICcZaI9HYOIMXc= \

alice@localhost" >> ~alice/.ssh/authorized_keys
fi

chmod 600 ~alice/.ssh/authorized_keys

Of course, this example only covers the use case of creating and managing a few basic

properties about a user. If our policy changed, we would need to write a completely

different script to manage this user. Even fairly simple changes, such as revoking this
user’s wheel access could require somewhat significant changes to this script.

This approach has one other major disadvantage; it will only work on platforms that
implement the same commands and arguments of our reference platform. This example

will fail on FreeBSD (implements adduser, not useradd) Mac OSX, and Windows.

Dedlarative Code

Let’s look at our user management example using Puppet’s declarative DSL.

Creating a user and group:

Declarative Code

13

Example 2-5. Declarative user creation with Puppet

$ssh_key = "AAAAB3NzaClyc2EAAAABIWAAAIEAm3TAGMF/2RY+r7KIeUoNbQb1TP6ApOtgIPNVOT\
Y6teCjbxm7fjzBxDrHXBS1vr+fe6xa67G5ef4sRL1OkkTZisnIguXqX0aeQTJI4Idy4LZEVVbngkd2R\
9rAOvQ7Qx/XrZ0hgGpBA99AKXENMSUFrD/E5TunvRHIczaI9HyOIMXc=""

group { 'examplegroup':
ensure => 'present',

}

user { 'alice':
ensure => 'present',
gid => 'examplegroup',
managehome => true,

}

ssh_authorized_key { 'alice@localhost':
ensure => 'present',

user => 'alice',
type => 'ssh-rsa’',
key => $ssh_key,

}
Adding alice to the wheel group:

Example 2-6. Declarative group membership with puppet

$ssh_key = "AAAAB3NzaClyc2EAAAABIWAAAIEAM3TAGMF /2RY+r7KIeUoNbQb1TP6ApOtgIPNVAT\
Y6teCibxm7fjzBxDrHXBS1vr+fe6xa67G5ef4sRL1OKkTZisnIguXqX0aeQTI4Idy4LZEVWbngkd2R\
9rAOvQ7Qx/XrZohgGpBA99AKXENMSUFrD/E5TunvRHICzaI9HyOIMXc=""

group { 'examplegroup':
ensure => 'present’,

}

user { 'alice':
ensure => 'present',
gid => 'examplegroup',
groups => 'wheel', #Q
managehome => true,

}

ssh_authorized_key { 'alice@localhost':
ensure => 'present',

user => 'alice',
type => 'ssh-rsa',
key => $ssh_key,

}

©® Note that the only change between this example and the previous example is the
addition of the groups parameter for the alice resource.

14 | Chapter2: The Puppet Design Philosophy

Remove alice:

Example 2-7. Ensure that a user is absent using Puppet

$ssh_key = "AAAAB3NzaClyc2EAAAABIWAAAIEAM3TAGMF/2RY+r7KIeUoNbQb1TP6APOtgIPNVOT)
Y6teCjbxm7fjzBXxDrHXBS1vr+fe6xa67G5ef4sRL1OkkTZisnIguXqX0aeQTJ4Idy4LZEVVbngkd2R\
9rAOVQ7Qx/XrZOhgGpBA99AKXENMSUFFD/E5TunvRHICzaI9HyOIMXc="

group { 'examplegroup':
ensure => 'absent', #Q

}

user { 'alice':
ensure => 'absent', 2]
gid => 'examplegroup',
groups => 'wheel',
managehome => true,

}

ssh_authorized_key { 'alice@localhost':
ensure => 'absent', #©
user => 'alice',
type => 'ssh-rsa',
key => $ssh_key,

}

Ssh_authorized_key['alice@localhost'] -> # @
User['alice'] > # @
Group['examplegroup']

© O Ensure values are changed from Present to Absent.

(3]

O O Resource ordering is added to ensure groups are removed after users. Normally,
the correct order is implied due to the Autorequire feature discussed in Chapter 6

You may notice the addition of resource ordering in this example
when it wasn required in previous examples. This is a byproduct of
Puppet’s Autorequire feature. PUP-2451 explains the issue in greater
depth.

In practice, rather than managing Alice as 3 individual resources, we
would abstract this into a defined type that has its own ensure pa-
rameter, and conditional logic to enforce the correct resource de-
pendency ordering.

Declarative Code | 15

https://tickets.puppetlabs.com/browse/PUP-2451

In this example, we are able to remove the user by changing the ensure state from present
to absent on the user’s resources. Although we could remove other parameters such as
gid, groups, and the users key, in most cases it’s better to simply leave the values in place,
just in case we ever decide to restore this user.

It’s usually best to disable accounts rather than remove them. This
helps preserve file ownership information and helps avoid UID reuse.

In our procedural examples, we saw a script that would bring several divergent systems
into conformity. For each step of that example script, we had to analyze the current state
of the system, and perform an action based on state. With a declarative model, all of
that work is abstracted away. If we wanted to have a user who was a member of 2 groups,
we would simply declare that user as such, as in Example 2-6.

Non-Declarative Code with Puppet
It is possible to write non-declarative code with Puppet. Please don’t do this:

Sapp_source = 'http://www.example.com/application.tar.gz'
Sapp_target = '/tmp/application.tar.gz'

exec { 'download application':
command => "/usr/bin/wget -q ${app_source} -0 ${app_target}",
creates => '/usr/local/application/',
notify => exec['extract application'],

}

exec { 'extract application':
command => "/bin/tar -zxf ${app_target} -C /usr/local",
refreshonly => true,
creates => 'Jusr/local/application/',

}

This specific example has a few major problems:

1. Execresources have a set timeout. This example may work well over a relatively fast
corporate netowkr connection, and then fail completely from a home DSL line. The
solution would be to set the timeout parameter of the exec resources to a reasonably
high value.

2. This example does not validate the checksum of the downloaded file, which could
produce some odd results upon extraction. An additional exec resource might be
used to test and correct for this case automatically.

16 | Chapter2: The Puppet Design Philosophy

3. Insome cases, a partial or corrupted download may wedge this process. We attempt
to work around this problem by overwriting the archive each time it's downloaded.

4. This example makes several assumptions about the contents of application.tar.gz.
If any of those assumptions are wrong, these commands will repeat every time
Puppet is invoked.

5. This example is not particularly portable, and would require a platform specific
implementation for each supported OS.

6. This example would not be particularly useful for upgrading the application.

This is a relatively clean example of non-declarative Puppet code, and tends to be seen
when working with software that is not available in a native packaging format. Had this
application been distributed as an RPM, dpkg, or MSI, we could have simply used a
package resource for improved portability, flexibility, and reporting. While this example
is not best practices, there are situations where is unavoidable, often for business or
support reasons.

This example could be made declarative using the nanliu/staging
module.

Another common pattern is the use of conditional logic and custom facts to test for the
presence of software. Please don't do this unless it’s absolutely unavoidable:

Facter.add(:example_app_version) do
confine :kernel => 'Linux'
setcode do
Facter::Core::Execution.exec('/usr/local/app/example_app --version')
end
end

$Sapp_source "http://www.example.com/app-1.2.3.tar.gz"'
Sapp_target = '/tmp/app-1.2.3.tar.gz'

if $example_app_version != '1.2.3"' {
exec { 'download application':
command => "/usr/bin/wget -q ${app_source} -0 ${app_target}",
before => exec['extract application'],

}

exec { 'extract application':
command => "/bin/tar -zxf ${app_target} -C /usr/local",
}
}

Declarative Code | 17

https://forge.puppetlabs.com/nanliu/staging

This particular example has many of the same problems of the previous example, and
introduces one new problem: it breaks Puppet’s reporting and auditing model. The
conditional logic in this example causes the download and extraction resources not to
appear in the catalog sent to the client following initial installation. We won’t be able to
audit our run reports to see whether or not the download and extraction commands
are in a consistent state. Of course, we could check the example_application_ver
ston fact if it happens to be available, but this approach becomes increasingly useless
as more resources are embedded in conditional logic.

This approach is also sensitive to facter and pluginsync related issues, and would defi-
nitely produce some unwanted results with cached catalogs.

Using facts to exclude parts of the catalog does have one benefit: it can be used to
obfuscate parts of the catalog so that sensitive resources do not exist in future Puppet
runs. This can be handy if, for example, your wget command embeds a pass-phrase,
and you wish to limit how often it appears in your catalogs and reports. Obviously, there
are better solutions to that particular problem, but in some cases there is also benefit to
security in depth.

|dempotency

In computer science, an idempotent function is a function that will return the same
value each time it’s called, whether it’s only called once, or called 100 times. For example:
X = lisanidempotent operation.X = X + 1isa non-idempotent,recursive operation.

Puppet as a language is designed to be inherently idempotent. As a system, Puppet
designed to be used in an idempotent way. A large part of this idempotency owed to it’s
declarative resource management model, however Puppet also enforces a number of
rules on it’s variable handling, iterators, and conditional logic to maintain it's idempo-
tency.

Idempotence has major benefits for a configuration management language:

o The configuration is inherently self healing
« State does not need to be maintained between invocations
« Configurations can be safely re-applied
For example, if for some reason Puppet fails part way through a configuration run, re-

invoking Puppet will complete the run and repair any configurations that were left in
an inconsistent state by the previous run.

18 | Chapter2: The Puppet Design Philosophy

Convergence vs Idempotence

Configuration management languages are often discussed in terms of their convergence
model. Some tools are designed to be eventually convergent; others immediately con-
vergent and/or idempotent.

With an eventually convergent system, the configuration management tool is invoked
over and over; each time the tool is invoked, the system approaches a converged state,
where all changes defined in the configuration language have been applied, and no more
changes can take place. During the process of convergence, the system is said to be in a
partially converged, or inconsistent state.

For Puppet to be idempotent, it cannot by definition also be eventually convergent. It
must reach a convergent state in a single run, and remain in the same state for any
subsequent invocations. Puppet can still be described as an immediately convergent
system, since it is designed to reach a convergent state after a single invocation.

Convergence of course also implies the existence of a diverged state. Divergence is the
act of moving the system away from the desired converged state. This typically happens
when someone attempts to manually alter a resource that is under configuration man-
agement control.

There are many practices that can break Puppets idempotence model. In most cases,
breaking Puppet’s idempotence model would be considered a bug, and would be against
best practices. There are however some cases where a level of eventual convergence is
unavoidable. One such example is handling the numerous post-installation software
reboots that are common when managing Windows nodes.

Side Effects

In computer science, a side effect is a change of system or program state that is outside
the defined scope of the original operation. Declarative and idempotent languages usu-
ally attempt to manage, reduce, and eliminate side effects. With that said, it is entirely
possible for an idempotent operation to have side effects.

Puppet attempts to limit side effects, but does not eliminate them by any means; doing
so would be nearly impossible given Puppet’s role as a system management tool.

Some side effects are designed into the system. For example, every resource will generate
a notification upon changing a resource state that may be consumed by other resources.
The notification is used to restart services in order to ensure that the running state of
the system reflects the configured state. File bucketing is another obvious intended side-
effect designed into Puppet.

Idempotency | 19

Some side effects are unavoidable. Every access to a file on disk will cause that file’s atime
to be incremented unless the entire file-system is mounted with the noatime attribute.
This is of course true whether or not Puppet is being invoked in noop mode.

Resource Level Idempotence

Many common tasks are not idempotent by nature, and will either throw an error or
produce undesirable results if invoked multiple times. For example, the following code
is not idempotent because it will set a state the first time, and throw an error each time
it’s subsequently invoked.

Example 2-8. A non-idempotent operation that will throw an error

useradd alice

The following code is not idempotent, because it will add undesirable duplicate host
entries each time it’s invoked:

Example 2-9. A non-idempotent operation that will create duplicate records

echo '127.0.0.1 example.localdomin' >> /etc/hosts
The following code is idempotent, but will probably have undesirable results:

Example 2-10. An idempotent operation that will destroy data

echo '127.0.0.1 example.localdomin' > /etc/hosts

To make our example idempotent without clobbering /etc/hosts, we can add a simple
check before moditying the file:

Example 2-11. An imperative idempotent operation
grep -q '7127.0.0.1 example.localdomin$' /etc/hosts \
|| echo '127.0.0.1 example.localdomin' >> /etc/hosts

The same example is simple to write in a declarative and idempotent way using the
native Puppet host resource type:

Example 2-12. Declarative Idempotence with Puppet

host { 'example.localdomain':
ip => '127.0.0.1',
}

Alternatively, we could implement this example using the file_line resource type from
the optional stdlib Puppet module:
Example 2-13. Idempotent host entry using the File_line resource type

file_line { 'example.localdomin host':
path => '/etc/hosts',

20 | Chapter2: The Puppet Design Philosophy

line => '127.0.0.1 example.localdomain',

}

In both cases, the resource is modeled in a declarative way and is idempotent by it’s very
nature. Under the hood, Puppet handles the complexity of determining whether the
line already exists, and how it should be inserted into the underlying file. Using the
native host resource type, Puppet also determines what file should be modified and
where that file is located. Example 2-12 will work on Windows.

The idempotent examples are safe to run as many times as you like. This is a huge benefit
across large environments; when trying to apply a change to thousands of hosts, its
relatively common for failures to occur on a small subset of the hosts being managed.
Perhaps the host is down during deployment? Perhaps you experienced some sort of
transmission loss or timeout when deploying a change? If you are using an idempotent
language or process to manage your systems, it’s possible to handle these exceptional
cases simply by performing a second configuration run against the affected hosts (or
even against the entire infrastructure.)

When working with native resource types, you typically don’t have to worry about
idempotence; most resources handle idempotence natively. A couple of notable excep-
tions to this statement are the exec and augeas resource types. We'll explore those in
depth in Chapter 6.

Puppet does however attempt to track whether or not a resource has changed state. This
is used as part of Puppet’s reporting mechanism and used to determine whether or not
a signal should be send to resources with a notify relationship. Because Puppet tracks
whether or not a resource has made a change, it’s entirely possible to write code that is
functionally idempotent, without meeting the criteria of idempotent from Puppet’s re-
source model.

For example, the following code is functionally idempotent, but will report as having
changed state with every Puppet run.

Example 2-14. Puppet code that will report as non-idempotent

exec { 'grep -q /bin/bash /etc/shells || echo /bin/bash >> /etc/shells':
path => '/bin',
provider => 'shell',

}

Puppet’s idempotence model relies on a special aspect of it’s resource model. For every
resource, Puppet first determines that resource’s current state. If the current state does
not match the defined state of that resource, Puppet invokes the appropriate methods
on the resources native provider to bring the resource into conformity with the desired
state. In most cases, this is handled transparently, however there are a few exceptions
that we will discuss in their respective chapters. Understanding these cases will be critical
in order to avoid breaking Puppet’s simulation and reporting models.

Idempotency | 21

This example will report correctly:

Example 2-15. Improved code that will report as Idempotent
exec { 'echo /bin/bash >> /etc/shells':

path == '/bin',

unless => 'grep -q /bin/bash /etc/shells',
}

In this case, unless provides a condition Puppet can use to determine whether or not a
change actually needs to take place.

Using condition such as unless and onlyif properly will help pro-
duce safe and robust exec resources. We will explore this in depth in
Chapter 6

A final surprising example is the notify resource, which is often used to produce de-
bugging information and log entries.

Example 2-16. The Notify resource type

notify { 'example':
message => 'Danger, Will Robinson!'

}

The notify resource generates an alert every time its invoked, and will always report as
a change in system state.

Run Level Idempotence

Puppet is designed to be idempotent both at the resource level and at the run level. Much
like resource idempotence means that a resource applied twice produces the same result,
run level idempotence means that invoking Puppet multiple times on a host should be
safe, even on live production environment.

You don't have to run Puppet in enforcing mode in production.

Run level idempotence is a place where Puppet’s idea of change is just as important as
whether or not the resources are functionally idempotent. Remember that before per-
forming any configuration change, Puppet must first determine whether or not the
resource currently conforms to policy. Puppet will only make a change if resources are

22 | Chapter2: The Puppet Design Philosophy

in an inconstant state. The practical implication is that if Puppet does not report having
made any changes, you can trust this is actually the case.

In practice, determining whether or not your Puppet runs are truly idempotent is fairly
simple: If Puppet reports no changes upon it's second invocation on a fresh system, your
Puppet code base is idempotent.

Because Puppet’s resources tend to have side effects, it's much possible (easy) to break
Puppet’s idempotence model if we don't carefully handle resource dependencies.

Example 2-17. Ordering is critical for run-level idempotence

package { 'httpd':
ensure => 'installed',

}

file { '/etc/httpd/conf/httpd.conf':

ensure => 'file',

content => template('apache/httpd.conf.erb"),
}

Package['httpd'] ->
File['/etc/httpd/conf/httpd.conf']

The file resource will not create paths recursively. In Example 2-17, the httpd package
must be installed before the httpd.conf file resource is enforced; and it depends on the
existence of /etc/httpd/conf/httpd.conf, which is only present after the httpd pack-
age has been installed. If this dependency is not managed, the file resource becomes
non-idempotent; upon firstinvocation of Puppet it may throw an error, and only enforce
the state of httpd.conf upon subsequent invocations of Puppet.

Suchissues will render Puppet convergent. Because Puppet typically runs on a 30 minute
interval, convergent infrastructures can take a very long time to reach a converged state.

There are a few other issues that can render Puppet non-idempotent

Non-deterministic code

As a general rule, the Puppet DSL is deterministic, meaning that a given set of inputs
(manifests, facts, exported resources, etc) will always produce the same output with no
variance.

For example, the language does not implement a random() function; instead a
fqdn_rand() function is provided that returns random values based on a static seed
(the host’s fully qualified domain name.) This function is by it’s very nature not cryp-
tographically secure, and not actually random at all. It is however useful for in cases
where true randomness is not needed, such as distributing the start times of load in-
tensive tasks across the infrastructure.

Idempotency | 23

Non-deterministic code can pop up in strange places with Puppet. A notorious example
is Ruby 1.8.7’s handling of hash iteration. The following code is non-deterministic with
Ruby 1.8.7; the output will not preserve the original order and will change between runs:

Example 2-18. Non-deterministic hash ordering with Ruby 1.8.x

Sexample = {
la| => l1|,
'b' = ‘2",
lc| => l3|,

}

alert(inline_template("<%= @example.to_a.join(' ') %>\n"))

Another common cause of non-deterministic code pops up when our code is dependent
on a transient state.

Environment induced non-determinism.
file { '/tmp/example.txt':
ensure => 'file',
content => "${::servername}\n",
}
Environment induced non-determinism will not be idempotent if you have a load bal-

anced cluster of Puppet Masters. The value of $: :servername changes depending on
which master compiles the catalog for a particular run.

With non-deterministic code, Puppet loses run level idempotence. For each invocation
of Puppet, some resources will change shape. Puppet will converge, but it will always
report your systems as having been brought into conformity with it’s policy, rather than
being conformant. As a result, it's virtually impossible to determine whether or not
changes are actually pending for a host. It’s also more difficult to track what changes
were made to the configuration, and when they were made.

Non deterministic code also has the side effect that it can cause services to restart due
to Puppet’s notify behavior. This can cause unintended service disruption.

Stateless

Puppet’s client / server API is stateless, and with a few major (but optional) exceptions,
catalog compilation is a completely stateless process.

A stateless system is a system that does not preserve state between requests; each request
is completely independent from previous request, and the compiler does not need to
consult data from previous request in order to produce a new catalog for a node.

Puppet uses a RESTful API over HTTPS for client server communications.

24 | Chapter2: The Puppet Design Philosophy

With master/agent Puppet, the Puppetmaster need only have a copy of the facts supplied
by the agent in order to compile a catalog. Natively, Puppet doesn’t care whether or not
this is the first time it’s generated a catalog for this particular node, nor whether or not
the last run was successful, or if any change occurred on the client node during the last
run. The nodes catalog is compiled in it’s entirety every time the node issues a catalog
request. The responsibility for modeling the current state of the system then rests en-
tirely on the client, as implemented by the native resource providers.

IF you don’t use a puppetmaster or have a small site with a single master, statelessness
may not be a huge benefit to you. For medium to large sites however, keeping Puppet
stateless is tremendously useful. In a stateless system, all Puppetmasters are equal. There
is no need to synchronize data or resolve conflicts between masters. There is no locking
to worry about. There is no need to design a partition tolerant system in case you lose
a data-center or data-link, and no need to worry about clustering strategies. Load can
easily be distributed across a pool of masters using a load balancer or DNS SRV record,
and fault tolerance is as simple as ensuring nodes avoid failed masters.

It is entirely possible to submit state to the master using custom facts or other other
techniques. It’s also entirely possible to compile a catalog conditionally based on that
state. There are cases where security requirements or particularly idiosyncratic software
will necessitate such an approach. Of course, this approach is most often used when
attempting to write non-declarative code in Puppet’s DSL. Fortunately, even in these
situations, the Server doesn't have to actually store the node’s state between runs; the
client simply re-submits it’s state as part of it’s catalog request.

If you keep your code declarative, it’s very easy to work with Puppet’s stateless client/
server configuration model. IF a manifest declares that a resource such as a user should
exist, the compiler doesn’t have to be concerned with the current state of that resource
when compiling a catalog. The catalog simply has to declare a desired state, and the
Puppet agent simply has to enforce that state.

Puppet’s stateless model has several major advantages over a stateful model:

o Puppet scales horizontally
o Catalogs can be compared

o Catalogs can be cached locally to reduce server load

It is worth noting that there are a few stateful features of Puppet. It's important to weigh
the value of these features against the cost of making your Puppet infrastructure stateful,
and to design your infrastructure to provide an acceptable level of availability and fault
tolerance. We will discuss how to approach each of these technologies in upcoming
chapters, but a quick overview is provided here.

Stateless | 25

Sources of State

In the beginning of this section, I mentioned that there are a few features and design
patterns that can impose state on Puppet catalog compilation. Let’s look at some of these
features in a bit more depth.

Filebucketing

File-bucketing is an interesting and perhaps under-appreciated feature of the File re-
source type. If a file-bucket is configured, the file provider will create a backup copy of
any file before overwriting the original file on disk. The backup may be bucketed locally,
or it can be submitted to the Puppetmaster.

Bucketing your files is useful for keeping backups, auditing, reporting, and disaster
recovery. It's immensely useful if you happen to blast away a configuration you needed
to keep, or if you discover a bug and would like to see how the file is changed. The
Puppet enterprise console can use file-bucketing to display the contents of managed
files.

File-buckets can also be used for content distribution, however using a file-bucket this
way creates state. Files are only present in a bucket when placed there; either as a backup
from a previous run, or by the static_compiler terminus. Placing a file in the bucket only
happens during a Puppet run, and Puppet has no internal facility to synchronize buckets
between masters. Reliance upon file buckets for content distribution can create prob-
lems if not applied cautiously. It can create problems when migrating hosts between
data-centers, when rebuilding masters. Use of file bucketing in your modules can also
create problems during local testing with puppet apply.

Exported Resources

Exported resources provide a simple service discovery mechanism for Puppet. When a
puppetmaster or agent compiles a catalog, resources can be marked as exported by the
compiler. Once the resources are marked as exported, they are recorded in a SQL da-
tabase. Other nodes may then collect the exported resources, and apply those resources
locally. Exported resources persist until they are overwritten or purged.

As you might imagine, exported resources are, by definition stateful and will affect your
catalog if used.

We will take an in depth look at PuppetDB and exported resources in (to come). For
the time being, just be aware that exported resources introduce a source of state into
your infrastructure.

In this example, a pool of web-servers export their pool membership information to a
haproxy load balancer, using the puppetlabs/haproxy module and exported resources.

26 | Chapter2: The Puppet Design Philosophy

https://forge.puppetlabs.com/puppetlabs/haproxy/1.1.0/readme

Example 2-19. Declaring state with an exported resource
include haproxy
haproxy::1listen { 'web':

ipaddress => $::ipaddress,

ports => '80"',
}

Haproxy::Balancermember <<| listening_service == 'web' |>>

Example 2-20. Applying state with an exported resource

@@haproxy: :balancermember { $::fqgdn:
listening_service => 'web',

server_names => $::hostname,
ipaddresses => $::1ipaddress,
ports => '80',
options => 'check',

This particular example is a relatively safe use of exported resour-
ces; if PuppetDB for some reason became unavailable the pool would
continue to work; new nodes would not be added to the pool until
PuppetDB was restored. TODO: Validate what I just said is true giv-
en the internal use of concat on this module...

Exported resources rely on PuppetDB, and are typically stored in a PostgreSQL database.
While the PuppetDB service is fault tolerant and can scale horizontally, the PostgreSQL
itself scales Vertically and introduces a potential single point of failure into the infra-
structure. We will discuss approaches to scale and mitigate risk in (to come)

Hiera

Hiera is by design a pluggable system. By default is provides JSON and YAML back-
ends, both of which are completely stateless. However, it is possible to attach Hiera to
a database or inventory service, including PuppetDB. If you use this approach, it can
introduce a source of state into your Puppet Infrastructure. We will explore Hiera in
depth in [Link to Come].

Inventory and Reporting

The Puppet Infrastructure maintains a considerable amount of reporting information
pertaining to the state of each node. This information includes facts about each node,
detailed information about the catalogs sent to the node, and the reports produced at
the end of each Puppet run. While this information is stateful, this information is not
typically consumed when compiling catalogs. We'll be taking a close look at inventory
and reporting services in [Link to Come]

Stateless | 27

There are plug-ins to Puppet that allow inventory information to be used during catalog
compilation, however these are not core to Puppet.

Custom Facts

Facts themselves do not inherently add state to your Puppet manifests, however they
can be used to communicate state to the Puppetmaster, which can then be used to
compile conditional catalogs. We saw an example of this in [Link to Come] when dis-
cussing non-declarative code. Using facts in this way does not create the scaling and
availability problems inherent in server site state, but it does create problems if you
intend to use cached catalogs, and it does reduce the effectiveness of your reporting
infrastructure.

Summary

In this chapter, we reviewed the major design features of Puppets language, both in
terms of the benefits provided by Puppet’slanguage, and the restrictions it’s design places
on us. Future chapters will provide more concrete recommendations for the usage of
Puppet’s language, overall architecture of Puppet, and usage of Puppet’s native types
and providers. Building code that leverages Puppet’s design will be a major driving force
behind may of the considerations in future chapters.

Takeaways from this chapter:
o Puppet is declarative, idempotent, and stateless

o In some cases violation of these design ideals is unavoidable

o Write declarative, idempotent, and stateless code whenever possible

28 | Chapter2: The Puppet Design Philosophy

CHAPTER 3
Code and Data; High Level Design

In this chapter, we will look at the primary structures of a Puppet code-base, and discuss
how the design of your site will impact module maintenance, code reuse, debugging,
and scaling.

Here, we introduce the major systems of Puppet, including Hiera and Puppet Modules
as well as several common design patterns. We also attempt to broadly classify the com-
mon kinds of code and data-sources seen with puppet into categories, so that we can
discuss the most appropriate way of handling each concern.

Organization of your Puppet infrastructure becomes critical as your environment
grows; correct placement of your data will improve the flexibility of your code-base and
control the disruption caused by environmental changes. Correct separation of your
code will help to create small problem domains that are much easier to debug and
improve. Correct organization and design will help promote code re-use as you bring
up new applications, and will reduce the impact of changes to business logic and ap-
plication stack design driven by ever changing business requirements.

As with Chapter 2 this document focuses primarily on “why” rather than “how;” and
will help lay a foundation for many of the recommendations in coming chapters.

Code and Data

When I discuss Puppet architecture with new clients, I generally define 5 major cate-
gories of code and data typically seen in the infrastructure.

1. Application logic
2. Business logic (site specific logic)
3. Site specific data

4. Node specific data (node classification)

29

5. Service discovery data (optional)

These terms are not universally accepted, but are useful for discussing the organization
of your code, and how it maps to the various features and design patterns of Puppet.

These concepts loosely map to a number of Puppet features and design patterns:

» Thelogic to manage an application, service, or subsystem can usually be contained
in a single Puppet module.

o Business logic is usually contained within roles and profiles
o Site specific data is usually stored in Hiera

« Node specific data is usually managed using some sort of console and/or stored in
a database

o Service data is usually managed with Hiera, PuppetDB, or a service discovery sys-
tem

Application Logic

Application logic is the logic to manage a single service, application, or subsystem. As
a general rule, application logic will manage a single named product and some of it’s
dependencies. E.g. Apache, Nginx, and IIS are applications. A web-server is a higher
level abstraction that will probably contain multiple applications, services, and their
dependencies.

The application logic for Apache will contain resources to deploy Apache’s packages,
manage Apache’s configuration files, and ensure that the Apache service is running. The
application logic may also contain code to setup virtual hosts that can be declared by
other modules or as part of an application stack.

Application logic may also contain conditional logic and data to handle platform specific
implementation details. For example, an Apache module should contain platform spe-
cific logic to ensure that the correct package is installed (E.g. httpd on RedHat and
apache2 on Debian platforms) that the configuration file is installed to the correct lo-
cation and contains the correct platform specific configurations, and that the correct
service name is used when managing the apache service state.

The Apache module contains a lot of data about Apache; package names, configuration
details, file locations, default port numbers, docroot, and file ownership information. It
may even include generic usernames, passwords, hostnames, and contact information
for the cases where the user simply wants to test the module or isn't concerned about
such details.

30 | Chapter3: Code and Data; High Level Design

In some cases, the application may include some data that tends to be universal but may
be overridden in a site specific way. For example, the NTP module includes a set of
publicly available NTP servers that will be used if site specific servers are not configured.

Business Logic

Business logic also manages applications, but typically at a higher level. At this level, we
aren’t managing Apache, we are managing a web-server. At this level, we aren’t con-
cerned with package names or the platform specific implementation details of our serv-
ices; instead we're concerned with what components are deployed to our web-server.
Theimplementation details of each components are abstracted away as application code.

Business logic contains code that ensures our web-servers have the appropriate HTTP
server installed with the necessary extensions, and that the module deploying our web-
site is applied. Business logic may still contain conditional code; e.g. we might declare
that Windows hosts get the IIS and Linux hosts get the Apache Module. The database
names used by your applications are site specific data.

Business logic may pass higher level data on to your applications. For example, your
application may require that web-server listen on a nonstandard port.

Site Specific Data

Site specific data is the data that is proprietary to your site, and isn’t fundamental to any
of your applications. The usernames and passwords your applications use to authenti-
cate to their respective database servers are site specific data. Your internal YUM repo-
sitories and NTP servers are site specific data.

In some cases, Puppet resources may also be handled as site specific data. It’s very easy
to store users, packages, or yum repositories as a data structure and convert that data
into resources inside a profile. The key here is that these resources need to be site specific;
the fact that mlocate and tree should be installed on all your hosts is site specific. The
dependencies for your Apache module are business logic, and the name of the package
that contains the Apache2 daemon is application logic.

Node Specific Data

Node specific data is a special case of site specific data. Node specific data is the list of
hosts managed by Puppet, basic properties about those systems such as their tier, owner,
or location, and a list of what Puppet should apply to that host.

While this list can be maintained with the same system that manages your site specific
data (see Hiera below) it’s usually separated. Node classification is incredibly transient;
nodes are constantly brought up, shut down, modified, and re-assigned.

CodeandData | 31

In the olden days, Nodes were typically managed using node statements within the site
wide Puppet manifest. Nodes classification could be a mix of code and data with In-
heritance thrown on top. In modern sites, nodes definition is handled entirely as data,
and any logic that needs to be applied on top of the node classification is handled using
a hierarchical data lookup if site specific data, or at a higher level as business or appli-
cation specific logic.

Service Data
Service data is another subset of site specific data, and is related to node classification.

Service data is the record of what hosts provide a specific service as part of a specific
application stack. This kind of data is prevalent with horizontally scaled and multi-tier
applications.

For example, the classic 3-tier application stack consisting of Apache, Tomcat, and
MySQL would typically have 2 pools of service data that would need to be maintained
to configure every host in the stack.

One pool of application data would consist of service data for the Tomcat servers. This
service data would be consumed by the Apache servers in order to configure reverse
proxies. The Apache servers could use this data to load balance requests to the appli-
cation servers. Service data about the Tomcat servers could also be consumed by the
MySQL servers in order to define database grants. Doing so would provide much more
granular control than authorizing access by user-name and password alone or by au-
thorizing an entire subnet of hosts.

The other pool of application data would contain information about the MySQL servers.
This could allow the Tomcat servers to load balance read requests across a set of read-
only slaves. It might also identify the write master in a pool of database servers.

Service discovery is often handled as site-specific data and updated manually, however
this approach does not facilitate auto-scaling, or automatic fail-over, and adds extra
manual steps to the process of bringing up new nodes in a pool of hosts. For these and
other reasons, it’s typical to handle service data as a special class of data, managed using
a special set of tools.

More on service discovery tools below, and in (to come)

Breaking it down

Let’s take a look at how these concerns map to the features and common design patterns
of Puppet.

32 | Chapter3: Code and Data; High Level Design

Application Logic & Puppet Modules

The Puppet Labs documentation describes modules as “self-contained bundles of code
and data” Modules serve many purposes in Puppet, and it’s difficult to provide a more
specific description than that while remaining concise and accurate.

For this chapter, when we discuss Modules and module design we are almost always
looking at modules from the perspective of service or application management using
the Puppet DSL.

With this scope in mind, Puppet modules map fairly well to the concept of application
logic. A single module can easily manage a single application, service, or component of
a larger system. The prerequisites, and dependencies of the service can be managed by
other modules, and multiple modules can be combined into application stacks at a
higher level of abstraction.

Modules are most effective when the serve a single purpose, limit dependencies, and
concern themselves only with managing system state relating to their named purpose.
Puppet modules are intended to be portable and reusable. A good module will usually
manage a single service, and accept just enough input to be re-used with multiple ap-
plication stacks. In an ideal world, our modules are entirely self contained. They provide
complete functionality without creating dependencies on any other modules, and can
be combined as needed to build different application stacks.

Modules need not contain or even declare all of their own dependencies; doing so almost
invariably begins to embed business logic into our modules. Let’s consider the example
of a Java application that depends on the availability of a Java Runtime Environment
(JRE.) On a modern Linux distribution, installing the default JRE is usually just a simple
package resource declaration, and at first it makes sense to install a JRE as part of our
application. However, there are several different JRE offerings available, and usually
different releases and feature sets for each offering. If we bundle OpenJDK into our
module, we would prevent our users installing Oracle JRE instead. We would force our
users to use our preferred JRE and our own installation parameters, but that could create
a conflict with any other module that attempts to install it's own JRE. In this case, the
cleanest approach would be to document our module’s Java dependency, and provide a
test manifest demonstrating how to install a JRE and other dependencies along with
our module. This approach allows our users to handle the JRE dependency themselves
with their own business logic. It also allows our users to manage conflicts and interde-
pendencies using their own site-specific logic.

As mentioned earlier, a good module has no interdependencies. This should not be
taken as advise to eliminate module interdependencies altogether; instead this is a rec-
ommendation to create interdependencies with care. There are many cases where mod-
ules extended the features to Puppet and provide useful functionality to be used in your
own code. For example, it’s typical for a module to depend on puppetlabs/stdlib due to

Breakingitdown | 33

https://forge.puppetlabs.com/puppetlabs/stdlib

the number of useful functions it offers. As another example, it’s usually better to create
a dependency on nanliu/staging than to re-implement your own archive retrieval and
extraction code on a per-module basis.

Tightly scoped modules provide a lot of flexibility, but their greatest benefit is their ease
of maintenance. Writing test cases for small simple modules is much easier than writing
test cases for big complex modules. Debugging a problem is much simpler when you
can test each module in isolation and confirm that each module’s behavior is reasonable
and its test cases are correct.

Modules may contain Puppet resources, Puppet code, and data relating to the module.

Let’s take a look at the Puppetlabs/ntp module as an example.

o Package, File, and Service resources manage the basic components of the NTP ser-
vice.

« Conditional logic provides platform specific defaults for NTP servers, service
names, and file locations

o A list of default, platform specific public NTP servers

« Parameters to change the behavior of the module or set your own NTP servers

o Input validation to ensure that data supplied to the module is sane (if not correct)
o Documentation describing the features use of the module

o Test cases for ensuring correctness and stability of the module

o Meta-data that can be consumed by the Puppet Forge and Puppet Module utility

The NTP module is fairly simple as far as Puppet modules are concerned. It contains
few resources, and a lot of data. However, all of this data is specific to the NTP module.
You can easily use this module as is in your site either by applying it with default pa-
rameters, or you could overriding the the default parameters with your own site specific
data using site-specific logic or automatic parameter lookups.

From a business logic perspective, this module would probably be part of your baseline
system configuration, and would most likely be applied to every node in your infra-
structure.

Although this module is concerned with service data, the list of NTP servers in your
site will tend to remain fairly static. In this case, service discovery can be handled as
generic site-specific data provided by Hiera.

Identifying business logic in Puppet modules

As a general rule, you are writing business logic rather than application logic when:

34 | Chapter3: Code and Data; High Level Design

https://forge.puppetlabs.com/nanliu/staging
https://forge.puppetlabs.com/puppetlabs/ntp

e Your code could create a conflict with another module that otherwise does not
overlap with your module

o The thing you're including is outside the explicit scope/concern of your module
o The thing youre including could be a standalone application or service
o The thing youre including has usefulness outside your module

o The dependency you're resolving could be handled using other solutions

When you start to notice that your code meets one or more of the above criteria, consider
how your module might be split into multiple modules and managed using the Roles
and Profiles design pattern.

Site specific data vs application data in Puppet Modules

Modules will tend to contain a lot of data. This data takes the form of variable defaults,
package and file names, hostnames, ports, files, and templates. As a guideline, the ideal
module contains no data specific to your site, but does contain the necessary data to
bring this application or service up in a generic way with appropriate values for sup-
ported platforms.

An example of site-specific data is a URL to download a file from an internal server. An
example of application specific data is the name of a package resource that should be
deployed, and the general layout of its configuration file.

There are several important reasons to keep site specific data out of your module, even
if your module is completely proprietary and would never be released to the public.

One issue is that embedding data in a module module tends to create module interde-
pendencies. When a module contains data about your site, it’s tempting to de-duplicate
the data by referencing data stored in other modules rather than redefining that data in
each module. Doing so creates explicit interdependencies. This pattern also tends to
violate the principles of interface driven design; Puppets language doesn’t offer getter
methods, or the concept of private vs public variables.

Data changes. Constantly. This is by far the greatest issue created by embedding site-
data in modules. If your site specific data is spread across multiple modules, simple
changes to your site’s configuration can suddenly require a massive effort to hunt down
and update each module that might be affected by the change.

Data stored inside your modules is rarely going to be formed in a consistent way, and
it will tend to be spread across a large set of files. If you are using R10k and the module-
per-repo pattern, all this data may not even be stored in the same RCS repository, and
you may even have to be concerned about situations where the data has to be updated
in more than one revision of the module, and the module revisions need to be updated
in multiple control repositories.

Breakingitdown | 35

By designing your module to be portable, you force your site specific data to be cen-
tralized and stored outside of the module. By adhering to this simple pattern, you en-
courage use of node classification and Hiera.

Conversely, it is a good idea to contain application specific data entirely inside your
module. If application data, such as the name of the packages your module installs or
the template used to configure a service are externalized, the module becomes unusable
in isolation; it can only be tested in the greater context of your infrastructure. It can’t be
reused without also supplying the data that lives outside the module, and it isn’t going
to be easily portable since that data is often stored or formulated in such a way to become
non portable. Storing application data outside the module also tends to increase de-
pendencies; if your module depends on data stored in Hiera in order to perform a basic
smoke test, you must have hiera configured and your data deployed in order to simply
test the module.

One caution about this recommendation: Always try to provide sane defaults for site
specific data, even if those defaults aren’t terribly useful in the real world. This provides
significant benefits for anyone attempting to debug, test, or simply play with your mod-
ule.

Business logic with Roles and Profiles

Roles and Profiles are not a design feature of Puppet, instead they are a desgin patern
originally described in Craig Dunn’s blog post Designing Puppet - Roles and Profiles.
We will take a closer look at the Roles and Profiles design pattern in [Link to Come].

Roles and profiles have a few important design properties:

1. They describe application stacks and business logic

2. They are typically site specific

A major feature of Puppet is code reuse. Modules provide a way to model applications
and services in a portable and reusable way. Application stacks can be created by com-
bining multiple modules together in interesting ways using the roles and profiles pat-
tern.

For example, if you wanted to setup an instance of WordPress, we would need an ap-
plication stack containing the following components:

« A database server (MySQL)

o A web-server (such as Apache)

- PHP
WordPress

36 | Chapter3: Code and Data; High Level Design

http://www.craigdunn.org/2012/05/239/

While you could create a monolithic Puppet Module to configure Wordpress and all of
its dependencies, such a module would be quite complex and inflexible. We could build
a module that concerns itself only with the deployment of Wordpress, and relies on the
official puppetlabs/apache, puppetlabs/mysql Puppet modules. Using this approach al-
lows us to rely on the development efforts and support provided by the authors of the
Apache and PHP modules (in this case, Puppet Labs) and provides the benefits of com-
munity experience and bugfixes.

By writing a module that only concerned it’s self with WordPress, the consumer of your
module could easily swap in arbitrary web-servers and database servers. Each module
could be self contained, which would make it simpler to test each system in isolation,
and help reduce the amount of code that would need to be reviewed to identify and
isolate bugs.

The modular approach also facilitates code re-use. Other users will consume public
Apache and MySQL modules even if they aren’t interested in WordPress. By using those
modules, you can leverage their shared experience, improvements, and bug fixes.

Leveraging public modules creates a new design problem: if we have two modules as-
signed to a host that both depend on Apache, which of those modules should be the one
to own and declare it?

The answer is neither. Instead, we abstract our application stacks into a profile. The
profile simply defines the modules needed to build our application stack, their ordering
dependencies, and if absolutely necessary any parameters that should be passed to the
modules. Because a profile is site specific, we can design our profiles to avoid conflicts.
For example, we could have the profiles both include apache, and only use resource style
declaration for our application vhost, via defined types. With this approach, the one
node could potentially apply multiple profiles that declare Apache without issue.

Roles and Profiles vs. Node Classifiers

Roles and profiles are a design pattern. Strictly speaking, both roles and profiles are
simply modules containing Puppet Manifests. What makes roles and profiles special
are their purpose as an abstraction layer between your modules and your node classifier.

In the old days, this sort of thing was common:

Example 3-1. Node classification with Inheritance

node base {
include ::accounts
include ::security
include ::repos
class { '::ntp':
servers => ['ntpl.corp.com', 'ntp2.corp.com'],
}
}

Breakingitdown | 37

https://forge.puppetlabs.com/puppetlabs/apache
https://forge.puppetlabs.com/puppetlabs/mysql

node web inherits base {
include ::apache
include ::php

}

node db inherits base {
include ::mysql

}
node wwwl.example.com www2.example.com inherits web { }

node www-devl.example.com inherits web {
include ::mysql

}

etc.

This approach tended to be difficult to maintain, and had a few major limitations; node
definitions do not support multiple inheritance, so it’simpossible to build a development
box that contains both the db and web node classifications. Node inheritance also has
some very surprising behavior relating to variable inheritance and scope.

Trying to migrate this approach to an external node classifier creates some issues as well.
Many web console ENCs support the concept of groups and group inheritance, however
they often don’t support parameterized classes, and when they do they may only support
strings as a data-type.

Of course, conditional logic isn't really an option with an off-the-shelf console; if you
want to install IIS on your Windows web nodes and Apache on your RHEL nodes, you
need to create two groups and assign them manually.

With roles and profiles, you move node classification logic to a set of conventional
puppet manifests/classes.

Example 3-2. Node Classification with Roles & Profiles

class profiles::base {
include ::accounts
include ::security
include ::repos
class { '::ntp':
servers => ['ntpl.corp.com', 'ntp2.corp.com'],
}
}

class profiles:web {
include ::apache
include ::php

}

38 | Chapter3: Code and Data; High Level Design

class profiles::db {
include ::mysql
}

class roles::webserver {
include ::profiles::base
include ::profiles::web

}

class roles::webserver::dev {
include ::profiles::base
include ::profiles::web
include ::profiles::db

}

With this approach you can simply apply : :roles: :webserver or ::roles: :db using
our external node classifier. We can use an extremely simple ENC. This approach also
has the benefit of codifying what belongs on a pariticular type of host.

We will explore roles and profiles in a lot more depth in [Link to Come]

Hiera & Site Specific Data

Hiera is a store for your site specific data; that is, the stuff that is specific to you; data
that no one else would really want to use in their own environments.

An example of site specific data is user account information, SSH keys, your read-only
LDAP bind password, or the email address that needs to be stamped on all your DNS
zones.

As a general rule, application defaults and application data do not belong in Hiera. For
example, it might be tempting to embed platform specific package names in Hiera,
because Hiera provides a simple mechanism for returning the correct value based on
the osfamily fact. Doing so creates an explicit dependency on Hiera that might not be
easy to satisfy in all situations.

Site specific data tends to change far more often than application code or business logic.
New sites come up, infrastructure changes, hosts are upgraded or decommissioned.
Keeping all of the data describing your site in a centralized location makes it very easy
to identify anything that might be affected by an environmental change. Keeping it all
in a well formed data file makes searching and manipulating the data in mass simple.
Using such a database also offers a benefit that it’s fairly easy to query your data using
a standard set of tools; this is extremely valuable for debugging.

Although Hiera is almost ubiquitous as a datastore for Puppet, other solutions do exist,
including the extlookup() function call.

We will look at Hiera in depth in [Link to Come]

Breakingitdown | 39

Hiera vs. Service Discovery

Service information is a very specific form of site specific data. Service data is informa-
tion about what hosts currently provide a specific service. For example, you might have
a particular web application running on a pool of web-servers. In order to configure
your load balancers or reverse proxies, you need to enumerate what hosts belong to that
particular pool.

In a small site that changes infrequently or with fairly stable services, it’s simple to embed
such service data in your site data-store (Hiera.) Even with powerful service discovery
data, it’s not uncommon for core services such as the IP addresses of your DNS servers
or the hostnames of your package repositories to be fairly static; good candidates for
Hiera or another site specific data pool.

However, modern environments are rarely static. Auto-scaling pools are becoming in-
creasingly common, and service clusters are becoming increasingly large, and dis-
tributed. In these cases, manually editing data files every time a host comes up becomes
unrealistic, slow, and in many cases error prone. It also tends to drive incredible levels
of configuration churn in your code repositories, which can become annoying to deal
with at integration time.

If you have a complex environment, it often makes sense to use a purpose built tool to
handle service discovery data. PuppetDB and exported resources offer service discovery
featuresas part of a fairly standard Puppet Installation, however there are other solutions
with their own strengths and weaknesses.

We will discuss service discovery and other ecosystem tools in (to come).

Node Classification

Node classification is the system that determines what modules (or roles) should be
assigned toa specific node. Node classification typically also stores some basic properties
of each node, such as the physical location of the node, the tier of the node, and the
Puppet Environment assigned to that note. These properties can be consumed by Hiera
to perform hierarchical lookups, or by Puppet to determine what puppet environment
should be used when building a node’s catalog.

There are many many options available for node classification. The Puppet Enterprise
Console provides a node classifier, and there are several other mature web consoles as
Foreman and Cobbler. A node classifier does not have to be a web application; Hiera
can be used as a classifer. Node classification can be driven by facts. Node classification
can be stored in an LDAP database, or in MongoDB. Integrating with a data-center
database or data warehousing application is also fairly simple. Because classifers are
simple to write, virtually anything that can store information about the nodes in your
environment can be used as a node classifier.

40 | Chapter3:Code and Data; High Level Design

Using an existing data store as a classifier does not preclude you from using a web
console for reporting and analysis purposes.

Node classification is a form of site specific data, but it is usually handled separately
from more generalized forms of site data due to it’s nature.

Site specific data tends to be relatively static. Nodes may be added to your classification
store every time a node is brought up or down in your infrastructure.

Node classification also tends to integrate with provisioning systems. Such systems
typically maintain their own host databases and are concerned with managing many
more properties of a system than Puppet requires to classify a host.

Conversely, such systems rarely provide the flexibility of the Puppet DSL for defining
application stacks and setting class parameters. For example, the node classifier in Cob-
bler cannot set class parameters, and has limited support for defining groups of classes.
The Puppet Enterprise node classifier is much fuller featured, but still cannot define
class ordering relationships (this is a limitation of the Puppet Classifier API.)

Exported Resources & Service Discovery

Service discovery is the act of discovering or broadcasting what hosts offer a particular
service, so that inter-node relationships can be automatically managed. We touched on
service discovery earlier when we looked at the place of Hiera in your infrastructure.

Here’s an example of how Service Discovery with Exported Resources can simplify
monitoring a pool of web-servers.

First, we must export a nagios_host resource definition:

Example 3-3. Exporting a nagios_host resource definition

@@nagios_host { $::fqdn:

ensure => 'present',
alias => $::hostname,
address => $::1ipaddress,
use => 'generic-host',
check_command => 'check_http',

}

With each of our web-servers exporting their Nagios configuration, we can now apply
those resources to our Nagios host using a resource collector. This simple example would
automate the process of monitoring our web-servers using Nagios.

Example 3-4. Collecting nagios_host exported resources

nagilos_command { 'check_http':
command_line => 'SUSER1$/check_http -I $HOSTADDRESSS $ARG1S'
}

Breakingitdown | 41

Nagios_host <<||>>

This example is extremely simplified for illustrative purposes. It also makes a lot of
assumptions about the configuration of your Nagios configuration. Typically we would
use Nagios hostgroups, service groups and service definitions to better organize our
configuration and abstract out our checks.

Exported resources provide one method for service discovery. With exported resources,
a resource is defined on a node, but instead of being applied locally, it’s stored in a
database, and made available for other nodes to apply.

In simple sites with minimal churn, exported resources may not be necessary; you can
simply enumerate service relationships in Hiera. Your nodes can consume that data,
and apply it using conventional resources.

Suchasolution is untenable in environments that have thousands of nodes, or constantly
have new nodes being provisioned and old nodes being decommissioned; managing a
constantly changing list of service data becomes burdensome, and often creates delays
in node provisioning.

Exported by resources are not by any means the only option for service discovery. In
fact, there are many third party solutions that provide very real benefits compared to
exported resources.

With that said, exported resources are usually free. You do have to configure PuppetDB
inorder toleverage exported resources, butit'sa good idea to setup PuppetDB regardless
of whether or not you intend to use them. Exported resources also have the benefit that
they are fairly simple to use if you're already familiar with Puppet, and are well supported
by Puppet Labs and generally well understood by the community.

As we discussed in “Stateless” on page 24, exported resources do create state that must
be maintained in our Puppet infrastructure, and all the issues associated with server-
side state. Before employing exported resources, its critical to compare the cost of
maintaining state against the benefits of automating service discovery.

We can sidestep the issue of state using a 3rd party service discovery tool. We will look
at 3rd party service discovery solutions in (to come).

Summary

This chapter introduced the major types of code and data you’ll be working with as part
of a Puppet Deployment, and discussed how each major component of puppet and
design pattern can be most effectively used to to manage that code and data.

Takeaway from this chapter:

42 | Chapter3: Code and Data; High Level Design

Before writing new code, try to categorize what you are adding into one of the above
classes of code and data

Keep modules clean and modular so that they can be reused

Contain application logic inside Puppet modules

Manage business logic and application interdependencies using roles & profiles
Chose a node classification tool and contain node definitions and properties there.
Use Hiera to manage site specific data

Consider using exported resources or another service discovery tool to manage
inter-node relationships and service data

Summary | 43

CHAPTER 4
Coding Practices

In this chapter, we will be looking at best practices related to using the Puppet Language.
This chapter will focus predominantly on Puppet’s conditional logic, operators, function
calls, and data structures. We will focus on Resource types and classes at a high level so
that we can delve deeper on those subjects in Chapter 5 when we discuss Module Design,
and Chapter 6 when we explore best practices relating to a number of common resource
types, and [Link to Come] when we look at code organization and inter-module rela-
tionships.

The Style Guide

Before we begin this chapter, I strongly advise you to review the Puppet Language Style
Guide which covers most of the language basics. We are not going to attempt to repeat
the style guide in this chapter; instead we are going to expand upon the information
Puppet Labs provides in the guide, emphasizing a few key and often overlooked aspects
of the guide.

The Puppet Labs style guide focuses on keeping the your code clear and easy to under-
stand, as well as maintaining a clean revision history.s

A major benefit of following the official style guide is that you can better leverage the
available lint and editor plug-ins to automatically correct and identify violations of the
guide.

Be aware that recommendations in the Puppet Labs style guide may not always reflect
best practices for the most recent releases of Puppet. Often, there are recommendations
made to for the purposes of ensuring backwards compatibility with older Puppet re-

45

https://docs.puppetlabs.com/guides/style_guide.html
https://docs.puppetlabs.com/guides/style_guide.html

leases '. If youre planning to release code that might be used with older revisions of
Puppet, you should follow those elements of the style explicitly. Otherwise, it's usually
best to code to current best practices, ignoring conflicting recommendations.

Having a set style guide is invaluable for peer review. Consistent formatting allows re-
viewers to focus on the function of your code without spending as much time under-
standing the form. Simple rules such as indentation can make errors pop out. Correct
use of white space, variable assignment and interpolation make the code cleaner and
easier to follow. If you chose not to follow the Puppet Labs style guide, I recommend
documenting and publishing a style guide for your site. When working at a site that
follows it's own style, it's a good idea to adapt that style for site-wide consistency. In
many cases, having one consistent imperfect style is much better than having multiple
coding styles *

I strongly encourage you to deploy puppet-lint and to include it as a pre-push hook for
your projects in order to encourage conformity to the style guide. We’ll discuss puppet-
lint more extensively in [Link to Come].

This book does not attempt to replace the official style guide; instead the material here
can be viewed as a supplement to the guide.

Coding Principles

Principles are guidelines for development that will tend to improve the quality of your
code when followed. Books such as Practical Object-Oriented Design in Ruby by Sandi
Metz and Clean Code by Robert C. Martin go into great depth on coding practices, and
do so in a way that is applicable beyond the scope of the language examples used in the
book.

Many, but notall Object Oriented development principles apply to Puppet, though some
principles can even be counter-productive due to the nature of Puppets declarative
language and the limitations of Puppet’s DSL. In this section, we will briefly introduce
some of the more useful coding principles that will be referenced throughout the book.

KISS

Keep It Simple. Good Puppet code is not clever. Good code, is simple, obvious, and
boring. There is no twist, no mystery. While there are many neat tricks that can reduce
the amount of code you have to write, ultimately you will spend a lot more time read-
ing your code than you will writing it. Simple code is less error prone, easier to debug,

1. For example, until recently Puppet advised against using the params.pp pattern in the style guide in order to
maintain compatibility with 2.x releases

2. This doesn’t mean adopting bad practices, however.

46 | Chapter4: Coding Practices

http://puppet-lint.com/

and much easier to extend. The DRY principle is not a means-unto it’s self. Code re-
duction is most beneficial when it eliminates potential bugs and improves readability.

Clever code tends to make sense when written, but often becomes confusing when read
months later. Clever code often hides subtle bugs, and can be difficult to extend or re-
factor. In the worst cases, it solves unexpected problems in non-obvious ways, and bites
anyone who attempts to re-factor it.

If trick improves the readability and clarity of your code by all means use it. If the neat
trick has obtuse inner workings or makes you scratch your head, consider using a more
conventional approach that’s easier to understand.

Please remember: Code that’s obvious to you may not be obvious to the person that
inherits your work. Sometimes even documented design patterns and techniques can
be confusing to those new to Puppet °.

How simple can we get?

Some of our clients have only had part time support staff to maintain their site. Inex-
perienced staff were often expected make configuration changes in emergencies. At one
site, we deployed Puppet without using Hiera or ERB templates. The result was a dead
simple installation that allowed staff to make application level configuration changes
with minimal knowledge of Ruby and Puppet.

Here’s an example of needless complexity.

Example 4-1. Violating the KISS principle using create_resources()

S$files = {
'"/tmp/foo' => {
'content' => 'foo',
}!
"/tmp/bar' => {
'content' => 'bar',
}
'/tmp/baz' => {
'ensure' => 'link',
'target' => '/tmp/foo',
}
}

Sdefaults = {

ensure => 'file',
mode => '0644',

3. the benefit of documented tricks is that they tend to be well understood and well explained.

Coding Principles | 47

create_resources('file', $files, $defaults)

Example 4-1 has no benefits over using conventional file resource declarations with (or
even without) resource defaults. See “Don’'t Repeat Yourself (the DRY principle)” on
page 52 for more examples.

While this example is entirely written using the Puppet DSL, it is fairly common to see
code like this implemented when a developer wishes to store resources in Hiera. There
are a few specific cases where such an approach is entirely valid. Those considerations
are discussed in [Link to Come].

The Single Responsibility Principle

Resources, data Structures, classes, and function calls in Puppet should have one re-
sponsibility, and no more than one responsibility. Ideally, you should be able to describe
anything you build in Puppet without using the word and.

For example:

o This class manages Apache’s packages

o This case statement sets platform specific defaults

o This conditional determines the correct resource ensure state
o This function call validates URLs

o This resource downloads a file

o This hierarchy supplies location specific data.

o This module installs Tomcat

o That other module is responsible for installing Java

o This profile builds a web-server

o This role builds our 3-tier application stack on a single machine for our developers

The Single Responsibility Principle applies to data structures, control structures, and
classes. When applied correctly, it helps create modular, extensible, and reusable code
that’s easier to debug. It also helps ensure that you have minimized side-effects of your
code.

Example of things that might violate the Single Purpose Principle:

o This module installs Java and Tomcat
« This conditional sets the ensure state and determines the correct version.
« This resource downloads and extracts a tar-ball

« This class configures Nginx and installs a baseline environment

48 | Chapter4: Coding Practices

o This module encrypts data and syncs the system clock

A Puppet module that follows the single purpose principle is easy to re-use, maintain,
and extend. That module doesn’t include it’s own version of Java; it allows you to chose
your own Java binary, satisfying that dependency in domain logic. It’s organized into
subclasses with a single purpose, making it easier to understand the flow of the module
and the relationships between the module’s components.

Because everything has a single responsibility, data structures and function calls can be
given a clear concise name that clearly communicates it’s intent and purpose. Testing is
also simplified because the behaviors of each individual function call or values of each
data structure are simple.

Modular code is much less likely to be re-written as your site grows and changes. For
example, if you have a monolithic base module containing policy enforcement, user
accounts, drivers, and packages, you may run into problems if you decide that a new
type of host needs to have a non-standard base. In this scenario, you could probably
parameterize your module to support this special exception, but doing so could poten-
tially break nodes that would not otherwise be affected by the change. However, if you
were to build your base from several modules and codity it using a profile, you could
easily create a new profile for your specific case with absolutely no risk to existing hosts.

Seperation of Concerns

Separation of concernsis the creation of loosely integrated, modular code. It is is strongly
related to interface driven design and the single responsibility principle.

Many of the concepts discussed early in this book service the separation of concerns;
understanding the purpose and use of Hiera, Roles & Profiles, and Modules helps to
create clear lines between component of a complete Puppet code base.

The concept of modularity should be emphasized. With modular Puppet code, depen-
dencies are minimized; testing one of your modules should mean deploying that mod-
ule, stdlib, and perhaps one or two other dependencies (if necessary.) In sites that do
not separate concerns, it’s very common to find situations where it’s impossible to test
a module without deploying a large portion of the entire site’s code base. With modular
code, you can learn the system and debug the system by isolating one component at a
time. With a highly integrated code-base, understanding and troubleshooting any single
component of the system involves troubleshooting and understanding the whole sys-
tem. This isn’t usually a problem in a program with a few hundred lines of code, but can
become a major issue in a site with thousands of resources.

Coding Principles | 49

Use of Puppet modules doesn’t necessary mean your code is modular

There is a huge difference between using Puppet modules and writing modular code. It
is absolutely possible to write non-modular code using modules. As a general rule, if
your module calls other modules using the include or contain function, your module is
no longer modular.

This should be not taken to mean that your module cannot have dependencies. You
might depend on the apt module to install packages on Debian hosts, or one of Puppet’s
many utility modules such as concat and staging.

Your module may also be dependent by necessity on functionality provided by other
modules. For example, your web service might need to have a web-server. The key to
modularity in this case is that while your module might need a web-server, your module
doesn’t concern it’s self with deploying a web-server. Your module allows that depend-
ency to be handled at a higher layer of abstraction. In this example, a profile would install
the web-server and your module. You would also provide a test manifest using an ex-
ample web-server to satisfy the dependency for the purpose of testing and experimen-
tation.

Separation of concerns means that the purpose of each chunk of code is well defined
and clearly thought out. It means asking questions such as “does this belong in Hiera
or in a profile?” “Should this be module logic or profile logic?” “Should this be one
module or two?”

Separation of concerns usually requires careful thought to where a particular bit of code
oraresource belongs. For example, does a VM Ware specific time setting belong in your
NTP module or in your VMWare module? Footnote:[In this scenario, I would recom-
mend putting the resource inside the NTP module, or possibly even splitting it into it’s
own module (if necessary.) The main reason being that the code is almost certainly
going to be more dependent on the NTP code than on the VMWare code. If the code
is highly dependent on both, the correct solution may be to write an additional module
and handle integration between your NTP module and VMWare module at a higher
level of abstraction, such as in a profile.]

Separation of concerns can be painful when building a new site. Often, referencing an
existing variable from another module seems like a quick and easy way to feed data into
your new module. It avoids duplicating data, and avoids re-factoring the data to use
Hiera. It avoids the need to re-think the way your site is structured. Unfortunately, this
is often a trap; while such solutions are easy to implement, they tend to be difficult to
debug and maintain, and often constrain design and hamper refactoring further down
the road.

50 | Chapter4: Coding Practices

Separation of concerns often requires a lot of long term thinking, and a mentality that
long term support is as important as the rapid implementation of new code.

Interface Driven Design

Your Puppet modules should interact with each other using well defined interfaces. In
most cases, this means you interact with classes via class parameters and class based
resource relationships rather than using fully qualified variables and direct resource
relationships.

Because Puppet is a declarative language and does not offer getter or setter methods,
Interface driven design tends to enforce a structure to the way data flows through your
site. Data originates from sources such as Hiera, ENCs, and your site.pp manifest up
through your roles and profiles and finally into your modules. This all happens using
parameterized classes following the path of module inclusion. With this approach, data
isn’t passed laterally between classes.

Using class parameters as your primary interface has some major troubleshooting ben-
efits. Information about the classes and class parameters applied to a node are sent to
that node as part of its catalog. Using the catalog information, you can isolate and debug
a single module, without worrying so much about how it's parameters are being gen-
erated. You can also use the parameters to better understand how data flows through
your manifests.

Example 4-2 is an example of code that abuses fully qualified variables in violation of
the principle of interface driven design.

Example 4-2. Vhost template violating the principle of Interface Driven Design

class myapp {
include apache
Svhost_dir = $apache::vhost_dir

file { "${vhost_dir}/myapp.conf":
ensure => 'file',
content => template('myapp/vhost.conf.erb')

}
}

Example 4-3 is functionally the same as Example 4-2 except that it uses a defined type
as an interface:
Example 4-3. Interface Driven Design vhost template

class myapp {
include apache

apache: :custom_vhost { 'myapp':
ensure => 'present',

Coding Principles | 51

content => template('myapp/vhost.conf.erb'),
}
}

In Example 4-2, we reach into the Apache module and grab the contents of an internal
variable. If it is not a parameter or otherwise documented interface of the class, there is

no guarantee the variable or it’s contents will be available or consistent between releases
4

Rather than querying the apache module to determine the directory for vhost files, in
Example 4-3 we create a defined type inside the apache module which accepts our tem-
plate as a parameter. With this approach, we can declare a stable interface into the apache
module, while retaining our ability to restructure the implementation of the module.
And because apache::custom_vhost is internal to the apache module, it can access other
internal variables without violating the principles of interface driven design.

Although Apache is used in this example, this code will not work with the puppetlabs/
apache module. As of this writing, puppetlabs/apache does not provide an apache::cus-
tom_vhost defined type accept content as a parameter of the apache::vhost defined type.
If you wish to apply this concept to the puppetlabs/apache module, I'd recommend
forking and extending the existing module.

Again, I should emphasize that there isn’t a technical reason you can’t simple access
variables from other modules using fully qualified variable names. The advisory against
that technique is to improve the quality of your code, facilitate debugging and analysis,
and to avoid headaches as you re-factor your code.

Don’t Repeat Yourself (the DRY principle)

The DRY principle suggests that if you find yourself writing the same code more than
once, it should be abstracted into a function call or or defined type.

You cannot declare function or method calls natively in the Puppet DSL, but Puppet
does provide defined types, inheritance, default values, and native functions that can be
used to reduce repetition in your code.

Of all the coding practices, DRY is the most subjective. In some cases, reducing repe-
tition in your code can obfuscate your code, reducing the code quality rather than en-
hancing it. I strongly advise preferring readability over DRY in any case where the
principles conflict.

Consider the following example:

4. If you insist on doing this, remember that parameters tend to be fairly sable and they are part of a module’s
interface.

52 | Chapter4: Coding Practices

Example 4-4. Not very DRY resource declarations

file { '/etc/puppet/puppet.conf':
ensure => 'file',
content => template('puppet/puppet.conf.erb'),
group => 'root',
mode => '0444',
owner => 'root',

}

file { '/etc/puppet/auth.conf':
ensure => 'file',
content => template('puppet/auth.conf.erb'),
group => 'root',
mode => '0444',
owner => 'root',

}

file { '/etc/puppet/routes.yaml':
ensure => 'file',
content => template('puppet/routes.yaml.erb'),
group => 'root',
mode => '0444',
owner => 'root',

}
This example could be made more DRY using a resource default:

Example 4-5. Resource declarations with resource defaults
File {

ensure => 'file',

owner => 'root',

mode => '0444',

group => 'root',

}

file { '/etc/puppet/puppet.conf':
content => template('puppet/puppet.conf.erb')
}

file { '/etc/puppet/auth.conf':
content => template('puppet/auth.conf.erb')
}

file { '/etc/puppet/routes.yaml':
content => template('puppet/routes.yaml.erb")
}

In this case, readability is improved using a resource default; the code is condensed, and
exceptions are highlighted.

Coding Principles | 53

Resource defaults should only be used in classes that do not de-
clare or include any other classes. Resource defaults are inherited,
~ and often produce surprising behavior when unexpectedly inherit-
ed into new contexts.

This example could be further simplified using a defined type:

Example 4-6. Resource declarations with a defined type

S$files = [
' Jetc/puppet/puppet.conf’,
' /etc/puppet/auth.conf',
'/etc/puppet/routes.yaml’,
1

puppet::file { $files: }

Although this approach reduces verbosity, the resulting behavior relies on the internal
implementation of the Puppet::File defined type, which I've excluded from this example
to highlight the inherent problem with this approach. Because of the way the Puppet
classloader works, the defined type used in this case will be declared in it’s own manifest.
While this isn’'t a huge hurdle, it means that you’ll have yet another tab open while
attempting to extend or debug this code, and it could result in some ugly bugs if you
decide down the road to use resource defaults in this class, or you make an invalid
assumption about the implementation of the defined type.

See “The puppet::file defined type” on page 80 if you're interested in seeing the imple-
mentation of puppet: :file.

With Puppet 4 or with the future parser enabled, you can accomplish the same thing
using an each loop. This example has an implicit dependency on the basename() func-
tion call from puppetlabs/stdlib.

Example 4-7. Resource declarations with an each loop

S$files = [
' /etc/puppet/puppet.conf',
' /etc/puppet/auth.conf',
'/etc/puppet/routes.yaml’,
1

$files.each |$file| {
file { $file:
ensure => 'file',
content => template("puppet/${basename($file)}"),
group => 'root',
mode => '0444',
owner => 'root',

54 | Chapter4: Coding Practices

}
}

If you're already using Puppet 4, this approach is preferable to using a defined type; by
keeping the resource declaration logic and iterator in the same file and context as the
resource declaration, the code is better contextualized, and we reduce our problem space
when trying to fix a bug or extend our code.

In practice, I find Example 4-5 to be the most readable approach, despite being less DRY
than Example 4-6 or Example 4-7. This is a case where simplicity wins out over other
considerations.

There are a few cases where we can produce very clean and DRY code using auto-
requires and array resource declaration:

Example 4-8. Directory creation using arrays

Sdirectories = [
"/tmp',
'/tmp/examplel’,
'/tmp/example2’',

' /tmp/examplel/foo',
' /tmp/examplel/bar’,
1

file { Sdirectories:
ensure => 'directory',
mode => '0755',

}

General Coding Recommendations

In the following sections, we will discuss specific coding recommendations.

This section is designed to provide very generalized recommendations. You will find
additional coding practices in Chapter 5 and Chapter 6.

The balance of Code and Resources

Puppet code is best when the bulk of your manifests are comprised of resource decla-
rations rather than logic. Although Puppet boilerplate, conditionals, input handling,
and variable declaration is absolutely necessary, the Puppet language at its core works
best when it can be treated as a simple collection of data about your systems.

Puppet is often described as an “infrastructure as code” tool rather than an “infrastruc-
ture as data” tool. At their heart however, native Puppet types are simply well-formed
data declaring resource states.

Compare the following examples:

General Coding Recommendations | 55

Example 4-9. Code

case S$::osfamily {
'RedHat': {
exec { 'install_apache':
command => '/usr/bin/yum install -y nmap',
unless => '/bin/rpm -q nmap',
}
}
'Debian': {
exec { 'install_apache':
command => '/usr/bin/apt-get install -y nmap',
unless => '/usr/bin/dpkg -p nmap',
}
}
}

Example 4-10. Data

package { 'nmap':
ensure => 'installed’,

}

When you find your modules becoming very heavy with conditional logic, case state-
ments, and variable handling code take a moment to re-assess your approach. Is there
a way to re-factor your code to be more declarative?

There isn’t always a one-size-fits-all approach to reducing conditional logic within your
code, rather there are a number of strategies and approaches that often need to be em-
ployed.

Reinventing the Wheel

In my professional experience, attempts to re-invent and existing tool using the Puppet
DSL are the most common cause of code heavy Puppet manifests. For example, it can
take several resources and a lot of conditional logic to download, cache, and extract a
tar-ball, where the same process is a single resource with no logic using a package.

Puppet is not a software packaging tool; there are literally 3 dozen package providers
for this purpose. Puppet is also not in it’s heart an orchestration tool. There are cases
where using Puppet this way is unavoidable, but the quality of code tends to suffer for
it, and the complexity of code tends to increase dramatically.

56 | Chapter4: Coding Practices

Conditional Logic

As we saw in Example 4-9, it’s often tempting to wrap resources inside of conditional
logic. Doing so often results in a lot of duplication in your code, and often compromises
readability. Consider the following example:

Example 4-11. Resources embedded in conditional logic

case S$::osfamily {
'RedHat': {
package { 'httpd':
ensure => 'installed',
}
}
'Debian': {
package { 'apache2':
ensure => 'installed’,

}
}
}

Ultimately, Package['httpd'] and Package['apache2'] describe the same resource
for two different platforms. The same code is simpler and it’s purpose much cleaner
using conditional logic to declare a variable rather than conditional logic to declare a
resource.

Example 4-12. Use of variable declaration to simplify resource management
Spackage_name => $::osfamily ? {

'RedHat' => 'httpd',

'Debian' => 'apache2',

}

package { 'apache':
ensure => 'installed',
name => Spackage_name,

}

Example 4-12 is somewhat more DRY than Example 4-11 and better communicates its
intent. It also allows use of a selector rather than a case statement. I find that selectors
are often cleaner than case statements for such simple cases.

This concept extends to resources that might be optional within a catalog. Take for
example, a puppetmaster module that optionally creates an autosign.conf file:

Example 4-13. Conditionally adding a resource to a catalog

class puppetmaster (
Sautosign = false,

) {
if Sautosign {

Conditional Logic | 57

file { '/etc/puppet/autosign.conf':
ensure => 'file',
content => template('puppetmaster/autosign.conf.erb'),
}
}
}

Example 4-14. conditionally managing resource state

class puppetmaster (
Sautosign = false,

) {
Sautosign_ensure = $autosign ? {
true = 'file',
"true' => 'file',
default => 'absent',

}

file { '/etc/puppet/autosign.conf':
ensure => $autosign_ensure,
content => template('puppetmaster/autosign.conf.erb'),
}
}

Although Example 4-14 seems to be slightly more complex than Example 4-13, the latter
approach is significantly more functional.

The major advantage of the second approach is that if at some point we decide we wish
to disable auto-signing on this master, Puppet will correctly remove the auto
sign.conf file. In the first example, the file simply becomes unmanaged; if it’s already
present on the system, it will remain present.

The use of a selector also improves handling of input. Our second case will correctly
evaluate the string 'false' asa false value, where the first example would evaluate the
string 'false' asa true value.

There are some cases where it makes absolute sense to wrap a resource in conditional
logic:

Example 4-15. OS specific resources

if $::osfamily == 'Debian' {
file { "/etc/apache2/sites-enabled/${title}.conf":
ensure => 'link',
target => "../sites-available/${title}.conf",
}
}

This resource would be nonsensical on a RedHat based system because RedHat does
not manage VirtualHosts using symbolic links. In this case, conditionally adding the

58 | Chapter4: Coding Practices

resource to the catalog is the correct approach. We might still add a variable to manage
the ensure property of this resource so that it can be removed if desired.

Selectors

Although selectors can be embedded in resource declarations, doing so almost always
produces obtuse code.

Example 4-16. Selectors embedded in resources

class example (
Sensure = 'present',
) {
service { example:
ensure => Sensure ? {
'absent' => 'stopped',
default => 'running',
1,
enabled => Sensure ? {
'absent' => false,
default => true,
1,
}

file { '/tmp/example.txt':
ensure => Sensure ? {
'absent' => 'absent',
default => 'file',
1,
content => template('example/example.txt.erb'),
}
}

This same example is significantly improved by using selectors to declare a variable that
is then applied by the resource, such as in Example 4-17

Example 4-17. Variable declaration and selectors

class example (
Sensure = 'present',

) {

$service_ensure = Sensure ?
'absent' => 'stopped',
default => 'running',

3

$service_enable = Sensure ? {
'absent' => false,
default => true,

}

Conditional Logic | 59

S$file_ensure = Sensure ? {
'absent' => 'absent',
default => 'file',

}

service { example:
ensure => S$service_ensure,
enable => $service_enable,

3

file { '/tmp/example.txt':
ensure => $file_ensure,
content => template('example/example.txt.erb'),
}
}

In this case, the code would be further improved using a case statement.

Example 4-18. Using a case statement for variable declaration

class example (
Sensure = 'present',
) {
case Sensure {
'present': {

$service_ensure = 'running’
$service_enable = true
$file_ensure = '"file'

}

'absent': {
$service_ensure = 'stopped'
$service_enable = false
$file_ensure = 'absent'

}

}

service { example:
ensure => $service_ensure,
enable => $service_enable,

}

file { '/tmp/example.txt':
ensure => $file_ensure,
content => template('example/example.txt.erb"),
}
}

Another solution would be to embed resources inside the case statement, but as dis-
cussed in “The balance of Code and Resources” on page 55. Such an approach is not
advised.

60 | Chapter4: Coding Practices

Variables

This section covers a number of best practices relating to use of variables in the Puppet
DSL.

Variable Naming
Correct naming of variables is very important for both usability and compatibility.

Puppet 4 introduces new restrictions on variable naming, the most major of which is
that you can no-longer use capital letters in your variable names.

The following guidelines are recommended:

o Begin variable names with an underscore or lower case letter
 Subsequent characters may be lowercase letters, numbers, or underscores

« Favor descriptive variable names over terse variable names

Mostidentifiersin Puppetloosely follow Ruby symbol naming restrictions; the identifier
cannot begin with a number, and cannot contain dashes. Variables are slightly more
forgiving than class names, however I would advise erring on the side of using more
restrictive conventions.

Referencing Variables

The following guidelines are recommended when referencing a variable:

o Avoid variable inheritance

o Local variables should be unqualified

« Global variables should be fully qualified
o Reference facts using the $facts[] array

+ Avoid referencing undefined variables

Variable Inheritance

Versions of Puppet since 3.0 severely limit variable inheritance. Prior to Puppet 3.0,
variables would be inherited between scopes. Sites that leveraged variable inheritance
would somewhat reduce the amount of variable declarations and scope calls in their
code, at the cost of introducing very difficult to maintain and debug code.

Puppet 3.0 still permits a few special cases of variable inheritance. One such case is the
use of class inheritance. If one class inherits another class, the parent class’ variables are
inherited into the child class.

Variables | 61

Example 4-19. Class inheritance and variable inheritence

class parent {
$foo 'alpha’
Sbar 'beta’

alert($foo) # Prints 'alpha'
alert($bar) # Prints 'beta'
}

class child inherits parent {
$foo = 'delta’

alert($foo) # Prints 'delta’
alert($bar) # Prints 'beta'
}

Class inheritance is strongly counter-advised, but has a few specific use cases that will
be explored in greater depth in Chapter 5.

Top-level (or global) variables and facts also have some inheritence like behaviors, but
because there is only one possible scope in which global variables can be defined, un-
qualified global variables are somewhat less problematic than general case variable in-
heritance.

Variable Qualifiecation

Local variables should be unqualified, global variables should be fully qualified, and
fully qualified out-of-scope variable references should be avoided if possible.

Fully qualifying variable names accomplishes two goals:

1. Clarifies your intent

2. Disambiguates local and global variables

When a variable is fully qualified, it becomes clear that your module is attempting to
consume a top level variable, and eliminates the possibility that you simply forgot to
define that variable or are attempting to inherit a variable from a higher scope. This
disambiguation is important when you revisit your code in the future, either to extend
the code or debug a problem.

Many validation tools also assume that unqualified variables are local, and will throw a
warning if the variable is not defined in scope. With puppet-lint, this behavior can be
disabled, however I recommend against doing so as it’s a useful way to catch subtle bugs.

While you can fully qualify references to local variables, using unqualified names makes
it clear at a glance that the variable is local and has been defined in the current scope.
This hint again is used by the validators.

62 | Chapter4: Coding Practices

Finally, I strongly recommend against creating inter-class variable references using fully
qualified variable names. Such references are a useful stop-gap measure when upgrading
code that relies on variable inheritance, however it usually violates the principle of
separation of concerns. A major issue with inter-class variable references is that there’s
no way to tell from the referenced class that such a reference exists. As a result, it’s very
easy to break the reference when re-factoring code. Instead, consider parameterizing
your classes, using class parameters to pass data from one module to another. A side
benefit of this approach is that it tends to reduce and eliminate circular dependencies.

Example 4-20. Passing variables using fully qualified variables
class parent {

$foo = 'alpha'
}

class parent::child {
$foo = $::parent::foo
alert($foo) #Prints 'alpha'
}

Example 4-21. Passing variables using class parameters

class parent {
$foo = 'alpha'

class { 'child':
foo => $foo,
}
}

class parent::child (
$foo,

) {
alert($foo) # Prints 'alpha'

}

Example Example 4-21 is somewhat more verbose than Example 4-20, but is designed
in such a way that variable handling is strictly enforced and clearly documented in code.
This increase in verbosity improves the quality of our code.

Of course, separation of concerns would also dictate that a class should only declare its
own subclasses; declaration of unrelated classes should be handled at a higher layer of
abstraction; our domain logic °.

Example 4-22. Passing variables using class parameters

class profiles::variable_scope {
$foo = 'alpha'

5. see [Link to Come] for more information.

Variables | 63

class { 'first':
foo => $foo,

3

class { 'unrelated':
foo => $foo,
}
}

class first (
$foo,

) {
alert($foo) # Prints 'alpha'

}

class unrelated (
$foo,

) {
alert($foo) # Prints 'alpha'

}

I generally recommend referencing out of scope variables. Instead, pass variables into
classes using class parameters. This may seem like an arbitrary guideline at first, but it
helps to control a flow of data through your code and avoids surprises when re-factoring
code. Fully qualified variables make it simple to pass data laterally, where use of pa-
rameters for passing values tends to enforce a top-down approach to data handling.

There are a few exceptions to this guideline of course; the params.pp pattern discussed
in “params.pp pattern” on page 96 is the primary example.

Trusted variables

Puppet 3.4 introduces the $trusted[] data hash and Puppet 3.5 introduces the
$facts[] data hash. These hashes are disabled by default as of Puppet 3.7.5, but can be
enabled with the setting trusted_node_data = true in your puppet.conf file.

Because these variables are not enabled by default, you should not rely on their presence
when developing code for public release via GitHub or the Puppet Forge. While you
can test for the presence of these variables, the cleanest approach for the time being is
to use the old method of referencing facts as top-scope variables. In security sensitive
contexts, you may wish to rely on the $trusted[] hash regardless.

For modules intended for internal use, I would strongly advise using trusted data hashes.
Doing so helps disambiguate your code, and can help avoid some nasty attacks against
exported resources.

Remember that facts can be arbitrarily defined by the client. Data in the trusted[] hash
is guaranteed to be declared or validated by your Puppet master.

64 | Chapter4: Coding Practices

If you are using global variables for anything security sensitive, I strongly advise en-
suring that they are declared unconditionally in your site.pp file or ENC, in order to
avoid the risk of abuse via client-side facts.

Order of authority for Global variables

Global variables may be defined from a number of different sources, including your
ENC, your site-wide manifests, by the Puppet interpreter, by the Puppet Master, and
via facts supplied by the client.

In some cases, the variables defined by different sources are reserved; for example in-
terpreter defined variables such as $name $title and $module_name. In other cases,
more authoritative data sources will override less authoritative data sources.

For example:

o Global variables from site.pp override ENC supplied global parameters.
o ENC supplied variables override facts

o Facts have the lowest preference

Understanding this can be important when writing security sensitive code, and can be
leveraged to enable or disable user-overrides based on conditions such as the tier of a
host.

Strict variables

Puppet 3.5 introduces the strict_variables setting in puppet. conf. With strict_variables
enabled, referencing an undefined variable will throw an error. Enabling this setting
can help you catch all kinds of bugs and typos.

Example 4-23. Strict variables example

$field_color = 'green'
notify { "The field is ${feild_color}"}

Example 4-23 would compile and produce an incorrect result without strict_vart
ables and throw an easily identified error with strict_variables enabled.

This setting may cause problems with publically available Forge modules and legacy
code. It is however a hugely beneficial setting. I strongly recommend enabling it if pos-
sible.

If you happen to encounter a module that fails with strict_variables enabled, I recom-
mend submitting a fix to the module author. I strongly encourage you to test your
modules with this setting enabled.

Variables | 65

Other Variable Use Cases

Variables are tremendously powerful for cleaning up your code. Variables can be used
to give meaning to complex data and can tremendously simplify complex quoting and
escaping.

A non-puppet example: the purpose of the following regular expression might not be
immediately clear:

Example 4-24. Regex without a name
grep -o '“\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b" " logfile

The purpose of this regular expression is immediately appearent by assigning it to a
variable before using it:

Example 4-25. Regex with a variable assignment
IPV4_ADDR_REGEX="\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b"
grep -o $IPV4_ADDR_REGEX logfile

Variables are invaluable when you have complex quoting requirements, as is often the
case when working with directory paths on Windows hosts.

Consider the following example:

Example 4-26. OS specific resources

'"C:\Program Files\7-Zip\7z.exe"'
'"C:\temp\archive.zip'
'"C:\temp\deploy"'

$sevenzip
Sarchive
Soutput_path

exec { 'extract_archive.zip':
command => "${sevenzip} e ${archive} -o${output_path} -y"
creates => Soutput_path,

}

This example is dramatically simplified by declaring our paths as single quotes strings
and interpolating everything together in a double quoted string. Single quotes strings
allow us to embed quotes in our paths to better handle spaces, and avoids the need to
double escape our directory delimiting backslashes.

Function Calls

Puppet’s rich assortment of built-in and stdlib function calls are one of the more fre-
quently overlooked features of Puppet. I strongly recommend reading through both the
list of built-in functions and the list of puppetlabs/stdlib function calls once or twice
to familiarize yourself with what’s already available.

66 | Chapter4: Coding Practices

Very often there is a function call that can help you debug or solve a problem you’re
currently experiencing while developing a module.

stdlib compatibility

Be aware that puppetlabs/stdlib has 4 major releases, not all of which
are compatible with older releases of Puppet. You may also find
\ situations where the puppet module tool will not install modules due
to version dependency conflicts between other modules and stdlib.

Be aware that many useful functions available in modern versions of
stdlib may not be available in the version of stdlib installed at your
site.

Know your minimum version compatibility with stdlib

When writing a module that depends on stdlib, it’s good to take a
moment to determine the actual minimum version of stdlib your
module depends on. If all of the features you require are available in
stdlib 3.x, declaring that as a minimum version in your module meta-
data will make life much easier for folks wishing to use your mod-
ule on older existing sites. This is especially true for PE users, which
often have a slightly outdated release of stdlib bundled with PE.

Functions for logging and Debugging

alert() crit() debug() emerg() err() info() warning() are useful for adding de-
bugging information to your code. I strongly recommend these function calls over the
notify resource type, as they do not insert extra resources into the catalog and do not
report as a change to the client state.

Notify resources should be used in cases where you do wish to see a change reported to
the puppet console.

If in doubt, use a function call rather than a notify resource.

fail() is also incredibly useful in this regard. Fail allows you to use conditional logic
to test for unexpected conditions, and terminate catalog compilation if such a condition
is met. It is commonly used by module authors to kill a puppet run when modules are
applied to an unsupported platform.

fail() is also valuable when decommissioning obsolete code. Inserting a fail() state-
ment can make it clear that a module or code path has been intentionally removed, and
allows you to supply a message explaining why the code is gone, and what the user
should do to rectify the problem.

FunctionCalls | 67

String manipulation functions

The list of string manipulation functions in puppetlabs/stdlib is fairly extensive. I
strongly recommend reading the documentation for stdlib for an overview of all the
available functions.

A few specific useful function calls:

split() converts a string into an array, splitting at a specific character. This is very
useful for handling delimited inputs, or for for performing directory and filename ma-
nipulation. join() from puppetlabs/stdlib can be used to convert an array back into a
string.

strip() lstrip() rstrip() are useful for trimming whitespace from input. With Pup-
pet, most input is machine generated, and striping the data is rarely necessary, except
perhaps to remove problematic newline characters.

downcase() accepts a string as input and returns it converted to lowercase. upcase()
and swapcase() are also available.

Path Manipulation

dirname() and basename() can be used to parse the filename or directory name out of
a fully qualified file path. This is often very useful for file manipulation.

You can also use split() join() and array indexing to perform more complex path
manipulation if necessary. This approach can be useful when working with older re-
leases of puppetlabs/stdlib which do not provide the dirname() function call.

Input validation functions

puppetlabs/stdlib provides a very rich assortment of input validation function calls. In
many cases, the calls simply accept an input parameter and produce a useful failure
message if the input fails validation. In other cases, function calls can be used with
conditional logic to declare the fail() function.

Before we continue, a best practices recommendation regarding input validation: Unlike
your typical web application, you probably don't need to validate absolutely every user
input from Puppet, especially when those inputs originate from the Puppetmaster itself.
In many cases, data supplied by the client is returned directly to the client, and is unlikely
to have tangible impact on any other node in your infrastructure. The security risk in
such cases is low; unless you are using dangerously insecure permissions on your client
infrastructure, only already privileged users should have the necessary permissions to
modify Puppet or its environment.

68 | Chapter4: Coding Practices

If you are operating in a high security environment and cannot trust the authors of your
code 4, I strongly recommend using a peer review / maintainer process to audit code
and data before it is deployed to your puppet-masters rather than relying on input
validation for security 7

Do however consider validating inputs that might be executed locally to the Puppet-
master via function calls, or might be exported to other nodes in the infrastructure.

Input validation can create problems when when it rejects otherwise valid inputs. Use
validation to improve user experience; to produce more useful information than the
user would otherwise have by allowing malformed data to create failures elsewhere.

We will discuss input validation in more depth in Chapter 5.

Automatic Validation Functions

These function calls accept an input and automatically cause the Puppet run to fail with
a useful error if the input does not match the function calls validation critera. For ex-
ample:

Example 4-27. Input validation using function calls and conditional logic

validate_absolute_path('/tmp/test.txt")

validate_absolute_path() is useful for ensuring that that a supplied path is valid and
fully qualified.

validate_re() validate input against a regular expression. This can be used to validate
any string within reason.

validate_slength() Validate that a string or elements of an array are not longer than
a specified character count.

validate_array(), validate_bool(), validate_hash(), validate_string() vali-
date that the argument passed is of the correct data type.

validate_augeas() Validate the content passed to this function call using an augeas
lens, and optionally ensure that certain nodes do not exist in the supplied configuration.

validate_cmd() Validate input string using an external command. Be cautious, as this
validation function could potentially be used to execute arbitrary code on your Pup-
petmaster.

assert_type introduced in Puppet 4 provides a more generalized way of validating an
objects type. Although not required, it allows you to define a block to be called if the

6. this is common in multi-tenant enterprise environments

7. see [Link to Come] for a deeper dive into release management.

FunctionCalls | 69

object is of the wrong type. I strongly advise against abusing this function for non-input
validation related uses.

Other Useful Functions for Validation
These function calls will return true or false depending on the supplied data. Using

conditional logic, it’s fairly simple to fail catalog compilation if one of these tests returns
a negative value.

For example:

Example 4-28. Input validation using function calls and conditional logic

unless is_domain_name($domain) {
fail("'${domain}' does not appear to be a valid domain name")

}

is_domain_name() is_1ip_address() is_mac_address() validate that the input is a
syntactically valid domain name, IP address, or mac address. These function calls do
not check to see if the input is actually reachable on the wire.

is_numeric() is_float() is_integer() Returnstrueifthe supplied value is anumber,
is a floating point number, or is an integer respectively.

has_interface_with() has_ip_address() has_ip_network() Uses the interfacesfacts
to validate that the supplied IP address, network name, or interface is present on the
node. Because these tests rely on untrusted client supplied facts, it is possible to spoof
them.

grep() has_key() member () Test if the supplied value is part of a data structure. These
tests are very useful for ensuring that a supplied value is a member of an explicit list of
values.

Example 4-29. Input validation using the member () function

Sensure_values = ['present', 'absent']

unless member(Sensure_values, Sensure) {
fail('Sensure must be 'present' or 'absent')

}

Catalog tests
defined() defined_with_params() ensure_packages() ensure_resource()

These function calls either return a boolean value if a resource exists in the catalog, or
they check if a resource exists, and define it if it does not.

At first glance, these functions appear to be a useful way to solve duplicate resource
declaration issues.

70 | Chapter4: Coding Practices

Example 4-30. Using defined() to see if Java is in the catalog

unless defined(Package['openjdk']) {
package { 'openjdk':
ensure => 'installed',
}
}

Unfortunately, the above code won’t work, as it’s parse order dependent. If Open]JDK is
added to the catalog after this block is evaluated, a resource conflict will still be created.

Example 4-31. Example of parse order dependent defined() behavior
alert (defined(package['openjdk'])) # returns false

Package { 'opendjk':
ensure => 'installed',

}

alert (defined(package['openjdk'])) # returns true

The obvious answer would be to wrap every potentially conflicting resource in a de-
fined() test, or to declare every resource using the ensure_resource() function calls.
Doing so creates other potential issues:

Example 4-32. conflicting ensure_resource() declarations

ensure_resource('package', 'jre', {'ensure' => '1.7.0'})
ensure_resource('package', 'jre', {'ensure' => '1.8.0'})

Example 4-32 raises a duplicate resource declaration error. The same code written using
the defined() function call would result in non-deterministic and potentially non-
idempotent Puppet runs. defined_with_params() works around the problem, but cre-
ates other issues.

Managing conflicts using defined() or ensure_resource() also subtly violates the
principle of separation of concerns; it requires that all modules use the same approach
to handling package version tests. To update the test or resource declaration in one
module, you would have to update all potentially conflicting modules.

These function calls do have two valid use cases. You can use these tests to ensure that
a defined type only declares a resource one time, even when invoked more than once.
You can also use these tests when one or more subclasses of the same module could
potentially declare the same resource.

Be aware that these function calls are functionally similar to using the include() suite
of function calls, and they are functionally similar to virtual resources. You may find
designing around one of those approaches to be more robust.

FunctionCalls | 71

[teration

Iteration is the act of applying the same process to multiple elements in a set. Puppet 3
has limited support for iteration, generally using a functional approach to iteration.
Puppet 4 introduces new parameterized block iterators that provide a great deal more
flexibility, and are often more readable than previous solutions.

Iteration with Puppet 3

Puppet 3 provides two primary approaches to iteration:

1. Array style resource declaration

2. The create_resources() function call

Either approach may be combined with defined types to iterate over a set of resources.
create_resources() works by accepting a resource type as an argument, and a hash
where the resource name is the key, and the values are a nested hash containing pa-
rameter name / parameter value pairs. Because of the way create_resources() is im-
plemented, supplied data must take a specific structure; create_resources() is inca-
pable of iterating over a flat hash because it has no way of determining which property
the value should be applied to. It must be provided a nested hash of parameter names
and values.

Example 4-33. Iteration using create_resources()

$services = {

'puppet’ => { 'ensure' => 'running', },
'puppetserver' => { 'ensure' => 'running', },
"httpd' => { 'ensure' => 'stopped', },

}

create_resources('service', $services)

In cases where you wish to declare a bunch of resources and are able to simply pass a
parameter hash to each resource, this approach can be simpler than using a Future
Parser each loop. The only disadvantage to this approach is that create_resources()
isn’t always intuitive.

However, you may run into situations where you don’t simply wish to turn a data struc-
ture into resources. Example 4-34 is a fairly arbitrary example; in this case, we want to
automatically determine the enabled state of a resource based on the ensure parameter.
Example 4-34. Iteration using create_resources()

$services = {

'puppet’ => { 'ensure' => 'running', },
'puppetserver' => { 'ensure' => 'running', },
"httpd' => { 'ensure' => 'stopped', },

72 | (Chapter4: Coding Practices

}

create_resources('ensure_service', $services)

define ensure_service (
Sensure => undef,

) {

Senabled = $ensure ? {
'running' => true,
default => false,

}

service { Stitle:
ensure => Sensure,
enabled => S$enabled,
}
}

In this case, the only solution to our problem is to combine a nested data structure, with
the create_resources() function call, and a defined type. The defined type should be
declared in it's own puppet manifest so that it can be handled by the autoloader. The
result is fairly unwieldy and difficult to debug.

Iteration and KISS

Example 4-33 creates a huge amount of complexity in order to auto-
magically determine the correct value for the enabled parameter. I
would recommend against using this example in practice; it would be
much simpler to use the example in Example 4-33. The complexity of
trying to automatically set the enabled parameter simply isn’t justi-
fied in this case. You will however see this pattern in other situa-
tions, for example if you have an account defined type to handle user,
group, and home directory management as a single resource.

Iteration with Puppet 4 and the Future Parser

Puppet 4 introduces a number of block iterators. Most, such as filter, map, reduce,
scanf, and slice are most useful for data transformation and iteration within EPP
templates.

The each block provides a useful way to iterate over data sets, and provides a level of
flexibility not previously available to Puppet. For example, each may be used to trans-
form a flat hash into a list of resources.

Example 4-35. Iterating over a flat hash using each

$services = {
'puppet’ => 'running',
'puppetserver' => 'running',

Iteration | 73

"httpd' => 'stopped',
}

$services.each |$service, S$Sensure| {
Senabled => $ensure ? {
'running' => true,
default => false,
}

service { $service:
ensure => Sensure,
enabled => $enabled,

}
}

Compare Example 4-35 to Example 4-33. In this case, the each block is cleaner, and
much more flexible than the create_resources() equivalent.

Be aware that there are many situations where you should still use a defined type and
the create_resources() iterator even with Puppet 4 or the future parser. The following
example code makes good use of both features; an account defined type (not defined
here) abstracts away the logic for defining users, groups, and home directories, while
create_resources() handles the logic of turning a hash into resource definitions. The
equivalent code using an each iterator would be much more complex, and would violate
several coding principles, including separation of concerns .

Example 4-36. Iterating over a flat hash using each

Saccounts = {
'alice => { 'uid' => 101, },
'bob' => { 'uid' => 102, }
'carol' => {
uid => 103,
groups => 'admin',
1,
}

create_resources('account', $accounts)

The other block iterators can prove to be incredibly useful in certain situations. For
example, we can use filter to test if our host has an interface belonging to a list.

Example 4-37. Testing for membership using filter
$cluster = ['192.168.1.1', '192.168.1.5', '192.168.1.10"]

Smembership = Scluster.filter |$ip| { has_ip_address($ip) }

8. The class responsible for defining accounts is domain logic, and should not be concerned with what is actually
involved with defining an individual user.

74 | (Chapter4: Coding Practices

if size(Smembership) > 0 {
alert('I am a member of the cluster')

}

Example 4-37 only works with Puppet 4. This code example fails on Puppet 3 with the
future parser.

Each blocks are very sensitive to the use of boolean function calls, such as has_ip_ad
dress() in Example 4-37. While Puppet typically allows the omission of round brackets
on function calls, the syntax has_ip_address $ip would throw an error in this example,
where has_1ip_adress($ip) is accepted.

Generating lists

There are a number of cases where you may wish to dynamically generate a list of items
to iterate over. This can happen for benchmarking purposes, and is often required when
creating cron jobs.

range() A useful function that accepts a beginning point, end point, and iterator and
returns an array of elements based on that criteria. While the documentation explains
that it can iterate through names, I find it's much more reliable to generate an array of
integers, and use prefix() and suffix() to create names.

prefix() suffix() are useful functions with generate. They accept an array and a prefix
or suffix respectively, and return an array with the prefix or suffix applied to each ele-
ment.

Example 4-38. Iterating over a flat hash using each

$range range('0', '3')
Srange_with_prefix = prefix($range, '/tmp/test')
Sfiles = suffix(Srange_with_prefix, '.txt')

Sfiles == ['/tmp/testO.txt', '/tmp/testl.txt', '/tmp/test02.txt']
Sdefaults = {

ensure => 'file',

content => 'example',

}

create_resources('file', $files, $defaults)
range is useful for specifying intervals, such as with cron.

Example 4-39. Iterating over a flat hash using each

'Jusr/bin/git --git-dir=/var/www/site/ pull'
range(fgdn_rand(14), 59, 15)

$command
Sminutes

Generatinglists | 75

cron { 'pull_website':
command => $command,
minute => $minutes,

}

In this example, we use fqdn_rand() to specify a pseudo-random starting minute be-
tween 0 and 14, and range to create an array containing 15 minute increments of that
value. This approach is very useful if we have hundreds of web-servers that might
otherwise overwhelm our infrastructure if they all synchronized at the same minute °.
This approach is somewhat more flexible than using cron step values, though using a
fqdn_rand() with a cron range and a step value might produce comparable results in
this case.

Data Transformation

Data Transformation is the act of manipulating data in one or more ways. We've already
seen a few examples of data transformation, such as Example 4-38 where we converted
an array of integers into a list of filenames.

Puppet does not transform data in place; instead data may be transferred when passing
it between classes, or transformed when defining a new variable.

Best practices with Puppet is to avoid transforming data unless necessary. When data
must be transformed, I recommend doing so in the same class that initially defines the
data, or within the init manifest of the module that consumes the data.

Take the following example:

Example 4-40. Some YAML data

files:

- foo.txt

- bar.txt

- baz.txt
directory: /tmp

Example 4-41. Some YAML data

class roles::myfiles {
$files = hiera('files')
Sdirectory = hiera('directory"')

class { 'profiles::myfiles':
files => $files,
directory => Sdirectory,

}

9. often referred to as a thundering heard

76 | Chapter4: Coding Practices

}

class profiles::myfiles (
Sfiles,
Sdirectory,

) {
Sapnfiles = prefix($files, S$directory)

class { 'myfiles':
files => Sapnfiles,
}
}

class myfiles (
Sfiles,
) {
file { $files:
ensure => 'present’',
}
}

This somewhat confusing chunk of code defines data using Hiera, passes it between 3
classes, and transforms the data as it’s passed through profiles: :myfiles. Imaigne for
a moment that the file resource contained in the class myfiles was producing an
unusual result. Our first reaction would be to look at the class myfiles, and then perhaps
to look at the data in Hiera that feeds myfiles. Unfortunately, the developer would not
be seeing the full picture, because the data is transformed in profiles::myfiles. In
this case, debugging will go slowly because we have to follow the path the data transverses
our code-base to identify the step where the transformation takes place.

This example could be improved significantly using one of several approaches:

1. Store the data in its final form.
2. Transform the data in Hiera using interpolation tokens.
3. Transform the data in the class myfiles
In this case, the correct solution would be to store the absolute pathname in Hiera.

When that is not feasible, the next best solution is usually to pass the data verbatim to
the module, transforming the data in the same class that applies it.

While this approach may violate the DRY principle, it's much simpler to debug.

There are a number of cases where data must be transformed inside the module. One
such example are cases where the default of one parameter should be based on the value
supplied to another parameter. We'll see examples of this in Chapter 5.

Data Transformation | 77

Whenever possible, it’s best to avoid passing data needlessly through multiple classes.
The Hiera data terminus can be very helpful this way. See [Link to Come] for an in-
depth discussion of the pros and cons of various approaches relating to Hiera.

Templates

Templating is a traditional way of separating presentation logic from business logic. In
the case of Puppet, templateing allows us to easily interpolate data from Puppet into our
configuration files, while maintaining a layer of separation between the source config-
uration files and the logic used to populate those files.

ERB Templates

The ERB templateing language is built into Ruby, and has been supported since the very
early days of Puppet. ERB allows ruby code to be embedded into configuration files,
and allows the use of Ruby iterators and function calls within those templates.

There are a few best practices relating to the use of ERB template:

Never source a template from another module. This violates the separation of concerns,
and often results in problems down the line when someone changes the template in the
other module without realizing your module will be affected. If you need to pass tem-
plates between modules, render the template in the source module, pass the template
in its rendered form as parameter data.

Try to avoid referencing out of scope variables within your template, even when those
variables are declared in other classes of the same module. Absolutely avoid referencing
variables from other modules. Instead, copy out of scope variables into the local scope,
and reference the local scope variables. The reason for this recommendation is that it’s
often hard to tell what variables are being used by a template, especially when reviewing
Puppet code. Referencing only local variables guarantee that any variable used by your
template is defined in the same class that declares the template. This also helps avoid
subtle bugs created when out of scope variables change and are treated as nil within
the template rather than throwing an exception.

Example 4-42. Referencing an out of scope variable using ERB

class example::alpha {
inline_template('<%= scope["::example::beta::foo"] %>"')

}

Variables local to the template function call are available as Ruby class variables within
the template. Out of scope variables must be referenced using the scope.lookup
var () function call, or the scope[] array (recommended for Puppet 3+.)

78 | Chapter4: Coding Practices

Besides creating maintenance problems, out of scope variables lookup methods have
inconsistent behaviors when tested as boolean value, evaluating to true in unexpected
situations.

EPP Templates

Embedded Puppet Programming Language (EPP) templates were introduced with the
future parser, and are available to all Puppet 4 users.

EPP is stylistically similar to ERB templateing, however it uses Puppet iterators and
interpolation tokens, rather than native Ruby code.

The huge advantage of using EPP templates over ERB templates is that EPP templates
permit you to parameterize your template and to pass an explicit list of input values to
the template using the EPP function call. This is a huge maintainability win.

Example 4-43. Declaring an EPP template
$epp_args {
'arg_a' => 'Value 1',

'arg_b' => 'value 2',
}

Sexample_content = epp('example_module/template.epp', Sepp_args),

file { '/tmp/example.txt':
ensure => 'file',
content => Sexample_content,

}
Example 4-44. EPP template with input parameters
<%-| Sarg_a, Sarg_b |-%>

arg_a is <%= $arg_a %>
arg_b is <%= $arg_b %>

Best practices is to always explicitly pass variables into your EPP templates using this
syntax.

I strongly recommend against declaring EPP input parameters inside a resource dec-
laration; instead either assign the output of the epp template to a variable and pass that
to the resource, or assign the variables to a hash and pass that to the EPP statement (both
approaches are demonstrated in Example 4-43)

The general recommendations for ERB templates also apply; do not reference out of
scope variables, and never render templates stored outside the scope of your module.

Templates | 79

EPP vs. ERB

The ability to explicitly pass input parameters to EPP templates is a significant advantage
over the ERB templateing engine. If you do not need to support Puppet 3 clients, you
should seriously consider adopting EPP templates for this reason alone.

Otherwise, the choice between the two comes down to whether you need to support
older agents, and personal preference.

ERB is a very common templateing language, and as a result enjoys a lot of tooling that
isn't available with EPP templates. This may or may not be an issue for you.

Template abuse

Because templates are simply rendered into strings within Puppet, it’s often tempting
to use ERB syntax to do things that might be more difficult in the Puppet DSL, such as
appending strings or variables.

Try to avoid this temptation; it’s often a sign that you need to re-think your data inputs,
or that your code can be re-factored to be more declarative.

inline_template() is especially prone to such abuse.

The puppet:file defined type

Here’san implementation of the puppet : : file defined type mentioned in “Don’t Repeat
Yourself (the DRY principle)” on page 52. It is placed here to demonstrate how splitting
your logic between manifests can create readability problems.

Example 4-45. An implementation of the puppet::file defined type

define puppet::file {
Sbasename = basename($title)

file { Stitle:
ensure => 'file',
mode => '0440',
owner => 'root',
group => 'puppet’,
source => 'puppet:://modules/puppet/${basename}’,
}
}

Although this code is very DRY, having to flip back and forth between files can be painful
when debugging code. This simple example only involves two files; the init. pp manifest
and the file.pp manifest containing this defined type. In more complex cases it’s easy
to end up with a problem space spanning many more files than this. Imagine if you were
debugging a problem involving your profiles, hieradata, your site.pp file, your ENC, 2

80 | Chapter4: Coding Practices

custom functions, 3 manifests, and a few DRY defined types such as this one thrown in
the mix. Would saving a few lines of code be justified in such an example?

Other Language Features

« Resource relationships, exported resources, meta-parameters, and virtual resources
will be discussed in Chapter 6.

o Classes and defined types will be discussed in Chapter 5
 Node statements will be explorded in (to come).

o We will look at run-stages in [Link to Come].

Summary

This chapter discussed a number of coding practices, and provided an overview of useful
function calls. Applying clean coding practices as discussed in this chapter will help
make your code easier to understand, and thus easier to maintain. In many cases, simple
and clean code will often result in fewer defects as well.

Recommendations from this chapter:

o Apply common development principles to improve the quality of your code
+ Reduce the amount of code in your Puppet manifests

o Separate your code from your resource declarations

o Use clearly named variables to clarify the purpose of your code.

o Separate your code into modules for re-usability

 Avoid creating additional scope needlessly

o Use Puppet’s built-in and stdlib function calls to enhance your code

o Be extremely careful with scope when using templates

Other Language Features | 81

CHAPTER 5
Puppet Module Design

In this chapter, we discuss practices related to designing Puppet Modules.

Puppet modules are self-contained bundles of code and data. Being self-contained al-
lows modules to be portable; the module is placed into the module path; it’s code is auto-
loaded when requested, and the data contained within the module may be referenced
by the module name rather than its location on the host machine.

Because modules must be auto-loaded, they have a fairly strict structure. However,
modules are very flexible in terms of their contents; a module may extend puppet with
new facts, functions, types and providers. It may also include native Puppet DSL code,
files relating to the module, meta-data and documentation, or data completely unrelated
to Puppet.

For the purposes of this chapter, we will focus on Modules containing native Puppet
DSL code in the form of Puppet manifests, templates, files, meta-data, and tests. We will
discuss modules containing native code in [Link to Come] and the creation of modules
for roles and profiles in [Link to Come]. Distribution and deployment of modules is
discussed in [Link to Come].

Good module design relates very strongly to good code design. We touched on a number
of coding principles and practices in Chapter 4, including separation of concerns, the
single responsibility principle, KISS, and interface driven design. We apply those princi-
ples in this chapter.

I also recommend reading [Link to Come] for information on how to build a develop-
ment environment in which to author Puppet modules. Use of available tools and a good
development environment tends to promote good coding practices, will help identity
and eliminate code defects, and will improve the overall quality of your modules.

83

Design modules for public consumption

All modules (other than your roles and profiles) should be designed as if they are going
to be released to the public.

This is not to say that you should release all of your modules, or that your modules are
generally available. It means that the design patterns for the creation good public mod-
ules are the design patterns for creating good modules in general.

Your modules should seek to be well defined, well documented, well tested. They should
minimize dependencies, and contain the application specific data needed for generic
cases. When building a module, ask “is this data or dependency specific to my site?” If
the answer to this question is “yes” you may be dealing with domain logic or site specific
data that should be shifted to Hiera or your profiles.

Modules absolutely do need to meet the requirements of your site. The design consid-
erations that went into creating the puppetlabs/apache module creates a lot of com-
plexity. The complexity means that puppetlabs/apache is very heavy, and isn’t suitable
for bulk hosting.

Designing modules for portability ultimately makes them simpler to support and ex-
tend. It helps to eliminate technical debt. The design patterns for creating public mod-
ules encourage re-use. Re-use means that you won’t have to re-write the module from
scratch every time your requirements or environment change.

Design every module for public consumption, even if it will never be released to the
public.

Using public modules

Before you begin the process of developing your own modules, it’s a very good idea to
check what’s already available on the Puppet Forge module repository. In many cases,
someone may already have developed a module suitable for your site.

Modules from the forge have a number of benefits:
 You don’t have to spend time developing the module
o Public modules tend to be maintained

o Public modules tend to see community reporting of bugs

o Public modules often include good documentation and test-cases

Picking good modules

To paraphrase Sturgeon’s law: 90% of everything is crud.

84 | Chapter5:Puppet Module Design

http://forge.puppetlabs.com

There are a lot of great modules on the forge, but there are many-many poor modules
as well. The forge is not a curated list; anyone can write and publish a module, regardless
of quality.

There are thousands of modules available on the forge, and for the most part Puppet
Labs does a good job of highlighting the best modules. Download statistics, ratings,
platform support, test results, and module documentation is published. Puppet Labs
provides first party support for their own modules, and highlights approved modules
which have undergone a review process.

Module checklist

When considering a module from the forge, it’s a very good idea to review the module.
There are a few key points to check:

o Is the module well documented?

 Does the module include a clean interface?

» Does the module include spec tests, and do those tests pass in your environment?
 Does the module follow the Puppet Labs style guide?

 Does the module conform to module development best practices?

o Does the module pull in a lot of dependencies? Are those dependencies warranted?
o Does the module license meet your requirements?

o Is the module hosted publicly? On GitHub perhaps?

o Is the author responsive to pull requests and issues?

o Is the module actively maintained?

Module Applicability

Often otherwise good modules simply won't be suitable for your site, or your specific
needs. It’s important to carefully consider your requirements when selecting a module.

Platform support
Does the module support the platforms you have deployed?

If you are a CentOS only site, there’s a high probability any published module will work
on your site. However, if you must also support Solaris or Windows nodes, you choices
may be somewhat more limited. While there are great multi-platform modules available,
many published modules only support Debian and Enterprise Linux platforms. If the
module doesn’t support your platform, consider how difficult it would be to extend the
module. Perhaps you can fork the module or submit a pull request to the original author?

Using publicmodules | 85

Scaling
Will the module scale?

In some cases, the actual implementation of a module can limit the scalability of that
module. The puppetlabs/apache module is a prime example; it’s hugely powerful, but
the extensive internal use of concat resources to build configuration files means that it’s
not suitable for large scale hosting. In those cases, you’ll need to use another module,
or write your own vhost template.

Modules that rely on exported resources are another common example. Many Nagios
modules simply won't scale to support huge sites.

Features

Does the module support the application features you require?

Most modules only manage the more common configuration features of an application
or service. While some of the more popular modules, such as MySQL and apache can
be incredibly comprehensive, you may find some limitations in less popular modules.

If you find a module that meets most of your requirements, consider how difficult it
would be to extend the module, and consider contributing your extensions to the up-
stream author.

Embracing and extending modules

If you find a module that meets most but not all of your requirements, remember that
you can always fork and extend the module. R10k is very helpful in these cases; With
R10k you can simply fork the upstream module and maintain it as an independent
repository, maintaining your own features as a branch to the original module. From
that point, it’s fairly straight-forward to re-base and integrate your changes with updates
provided by the original author.

Of course, it's best to contribute up-stream when possible. Code accepted into the
mainline branch is code that can be maintained by the original author, and general
public. Merged code is a much lower risk of breaking in future releases.

See [Link to Come] for more information regarding R10k and module management.

Contributing Modules

If you've written a new and interesting module, or if you've improved significantly upon
modules already available on the forge, consider publishing your module. Assuming
you've created documentation and meta-data, the puppet module utility can easily
package a module for distribution on the puppet forge.

86 | Chapter5:Puppet Module Design

Planning and scoping your module

Before you begin writing your module, it’s important to first determine your module’s
scope. For many of us, our first instinct is to write a jumbo module that installs and
manages all of its dependencies. Unfortunately, this approach tends to create problems
down the line; such modules are often inflexible and become difficult to maintain. They
can create compatibility problems when they manage a dependency that’s needed by
another module.

Design modules using “Seperation of Concerns” on page 49 and “The Single Respon-
sibility Principle” on page 48 as a guideline. As a rule of thumb, if a resource in your
module might be declared in any other module it should probably be it's own module.

Dependencies outside the scope of your module should be externalized into their own
modules. Domain logic should be handled using roles and profiles '.

In many cases you can rely on your package manager to
handle dependencies.

The Java dependency for tomcat is a classic example of a dependency that should be
externalized as domain logic. By separating the management of Java from the manage-
ment of Tomcat, the process of upgrading Java is simplified, and potential conflicts with
other modules also attempting to deploy Java are eliminated.

Even if you never plan on ever distributing the module, it should be designed as if you
were. By designing your modules to be portable, they can be adapted to new require-
ments and new environments with minimal effort.

Basic Module Layout

A puppet module has a fairly standardized structure made up of a number of optional
components.
» manifests/ containing Puppet manifests written in the Puppet DSL.
 templates/ containing ERB and EPP templates.

o files containing files made available through the modules Puppet file server
mountpoint.

1. see [Link to Come]

Planning and scoping your module | 87

o tests/ containing test manifests used for system testing, experimentation, and
demonstration

« spec/ containing rspec unit tests and Beaker acceptance tests

o docs/ containing additional documentation if available (ignored by Puppet.)

o lib/ native Ruby extensions for Puppet

o README.md containing documentation describing your module and its interfaces.
 Gemfile containing gem dependencies for testing and extending Puppet

o Rakefile containing rake tasks for validating and testing the module

» metadata.json containing meta-data about the module for the Puppet Forge and
for the puppet module tool.

o .fixtures.yaml containing dependencies for puppet apply, rspec and Beaker
testing.

o Additional meta-data for CI, editing, RVM, GIT, and other tools.

Every one of these components is optional. Although many of these will be automatically
generated using the puppet module tool, they should be removed if not used in order
to simplify the module layout and clarify the design and intent of your module.

For example, if you are writing a module that contains only native Puppet extensions,
there’s no need to have a manifests directory or an init.pp file. Likewise, if your
module contains no files or templates, you should remove those directories.

Finally, while I strongly encourage you to document your code, it’s best to remove the
auto-generated README . markdown file, as well as any meta-data that you don’t intend to
use or maintain. In most cases, incorrect data is worse than no data, so this bit of cleanup
will help to avoid confusion, and will quickly focus attention on what your module does
provide.

manifests/init.pp; the module entry point

manifests/init.pp is the Puppet manifest containing the root class of your module.
This manifest should be present in most modules written in the Puppet DSL, but may
be omitted in special cases, such as modules that don’t contain DSL code, or the roles
and the profiles modules (see [Link to Come].)

As the entry point, init.pp is the go to manifest to see what input the module accepts,
to understand the basic layout of the module, to perform input validation, and to handle
user input and transformation of input data.

88 | Chapter 5: Puppet Module Design

As a general rule, I recommend moving resources to subclasses, and performing all
subclass inclusion and relationship handling in init. This approach makes the module
easier to understand, and centralizes the flow and features of the module.

While the init manifest should be the main entry point into your module, this recom-
mendation does not exclude having defined types or other subclasses bundled with your
module that might be declared or referenced from outside your module.

An example init class

Let’s take a look at the init class for an Apache module. This particular example is ex-
tremely simplified; it was designed as an instructional tool. A real Apache module would
likely have many more input parameters.

Example 5-1. An example init class for a simple Apache module

class apache (# @

Sensure = 'installed',

Sconfig_file = $::apache::params::config_file,
Sdocumentroot = $::apache::params::documentroot,
Serrorlog = $::apache::params::errorlog,
Sgroup = $::apache::params::group,
Slisten = 80,

Sservername = $::fqdn,

Suser = $::apache::params::user,

) inherits ::apache::params { # @

validate_absolute_path($config_file)
validate_absolute_path($documentroot)
validate_absolute_path($errorlog)

group should match debian's useradd filter # @
validate_re($group, '~[_.A-Za-z0-9][-\@_.A-Za-z0-9]*\2")

unless is_numeric($listen) {
fail("${module_name}: listen ${listen} must be an integer")

}

unless S$listen >= 0 and $listen <= 65534 {
fail("${module_name}: listen ${listen} must be a port between 0 and 65534")
}

package must be one or more printable characters
validate_re($package, '~[[:print:]]+$")

user should match debian's useradd filter
validate_re($Suser, '~[_.A-Za-z0-9][-\@_.A-Za-z0-9]*\$?$")

service must only contain printable characters, and length > 1
validate_re($service, '"A[[:print:]]+$")

manifests/init.pp; the module entry point | 89

servername must match apache's specifications
http://httpd.apache.org/docs/2.2/mod/core.html#servername
validate_re($servername, '~([a-z]+:\/\/)?2[\w\-\.]+(:[\d]+)2$")

class { '::apache::install': # @

3

package => $package,
ensure => Sensure,

class { '::apache::config':

config_file => Sconfig_file,
documentroot => $documentroot,

errorlog => Serrorlog,
group => $group,
listen => $listen,
servername => S$servername,
user => Suser,

}

class { '::apache::service':

3

service => $service,

contain apache::install # @
contailn apache::config
contain apache::service

Class['::apache::install'] -> # @
Class['::apache::config'] ~>
Class['::apache::service']

}

©® Asof Puppet 3.7.5 class declarations cannot use fully qualified class names.

® Inheritance is used to enforce ordering between the init class and the params
class. This is one of the few remaining use cases for class inheritance, and doesn’t
actually use any inheritance features.

©® Some input validation such as validate_absolute_path is self-documenting. This
regular expression is not, so it's a good idea to add a comment regarding it’s
purpose.

O Iprefer to use resource style class declaration for submodules. Other approaches
will be discussed in “Subclasses” on page 99

O Containment is critical so that we can create resource relationships between
modules. See “Subclass containment” on page 101

@ Using class relationships is dramatically simpler than maintaining resource
relationships. We use chaining arrows since they are easier to read at a glance,
and simpler to wrap in conditional logic if necessary.

90 | Chapter5:Puppet Module Design

Although simplified, this example demonstrates a layout usable for much larger and
more complex modules.

The class begins by accepting its set if input parameters. Defaults that are universal for
all platforms are declared here, and platform specific defaults are pulled from
the : :apache: :params sub-class.

Input is validated using simple conditional logic and functions from the puppetlabs/
stdlib module. We could also include debugging and logging statements here.

If necessary, any data transformation would happen after input validation. None was
needed in this example, but if one parameter default was based on another, it could be
handled here.

The validated input is then passed to sub-classes using class parameters, and contain-
ment of the sub-classes is declared using the contain() function.

Finally, relationships are established between classes.

Parameterizing your module

If your module accepts any kind of input, it should be parameterized *. Class parameters
are a well defined module interface that permit you to declare the class with data. This
data can be passed directly to your module’s resources or it can alter the behavior of
your module using conditional logic.

Example 5-2. A NTP class with a parameter

class ntp (

Sservers = 'pool.ntp.org',
) {

Resources go here
}

If your module has special case input needs, such as to lookup data using hi
era_hash() ? thebestapproach is to still define an input parameter and to set the default
value of that parameter so that the lookup you wish to use is performed automatically
if no value is explicitly supplied.

Example 5-3. A NTP class with a parameter

class ntp (
$servers = hiera_array('ntp::servers', 'pool.ntp.org'), # @

) {

2. This statement seems obvious now, but in the past it was common to use global variables to pass data into
modules

3. with Puppet 4 you should use lookup() instead.

manifests/init.pp; the module entry point | 91

Resources go here

}

©® Note that we still supply an optional default value in our Hiera lookup to be used
in case Hiera is not available.

Automatic parameter lookups take precedence over parameter de-
faults. Example 5-3 contains a subtle bug; with parameter lookups
enabled, ntp::servers if defined would perform a conventional look-
up via the data bindings rather than an array merge lookup. The
workaround is to perform this lookup in the profile that declares the
class instead.

The approach demonstrated in Example 5-3 has several major advantages over alter-
natives:

1. It avoids creating an explicit dependency on Hiera
2. It allows you to declare the class with an explicit value

3. It facilitates debugging by embedding the result of the lookup in your catalog.

Parameter defaults

It’s a good idea to supply default values for all parameters, even if those defaults aren’t
necessarily going to be useful in a real world environment. In many cases, a default of
undef is perfectly valid and simple value.

There are two main reasons for this recommendation:

1. It simplifies experimentation with your module.

2. Tt avoids creating nasty Hiera dependencies during testing

There are many situations where one may wish to test or experiment with one or many
modules. This is common when deciding whether or not a module from the Puppet
Forge is suitable for a site.

In these cases, It’s ideal to be able to test the module by installing it into a temporary
module path, testing the module with the apply command.

$ mkdir -p example

$ puppet module install --modulepath=example puppetlabs/ntp
Notice: Preparing to install into /home/vagrant/example ...
Notice: Downloading from https://forgeapi.puppetlabs.com ...
Notice: Installing -- do not interrupt ...
/home/vagrant/example

|--- puppetlabs-ntp (v3.3.0)

92 | Chapter5: Puppet Module Design

|--- puppetlabs-stdlib (v4.6.0)
$ sudo puppet apply ./example/ntp/tests/init.pp -modulepath="'./example' --noop
Notice: Compiled catalog for localhost in environment production in 0.74 seconds
Notice: /Stage[main]/Ntp::Config/File[/etc/ntp.conf]/content: current_value
{md5}7fda24f62b1c7ae951db0f746dc6edcc, should be
{md5}c9d83653966c1e9b8dfbca77b97ff356 (noop)
Notice: Class[Ntp::Config]: Would have triggered 'refresh' from 1 events
Notice: Class[Ntp::Service]: Would have triggered 'refresh' from 1 events
Notice: /Stage[main]/Ntp::Service/Service[ntp]/ensure: current_value stopped,
should be running (noop)
Notice: Class[Ntp::Service]: Would have triggered 'refresh' from 1 events
Notice: Stage[main]: Would have triggered 'refresh' from 2 events
Notice: Finished catalog run in 0.67 seconds

The puppetlabs/ntp module includes a test manifest and supplies sane defaults for all
of its parameters. There is no need to read the documentation to determine what inputs
are mandatory, and there’s no trial and error involved in a simple test application of the
module. As a result, it’s very easy to test, evaluate, and deploy this module.

Another case where sane defaults are useful is during rspec testing. If your module has
mandatory parameters and may be invoked via an include() call from another module,
you've implicitly created a dependency on Hiera (or another data binding.) This can
complicate the setup for your rspec test cases, because your Hiera data will not be avail-
able in this context.

====== Parameter default complexity

Puppet allows fairly complex generation of parameter defaults. The default may be a
function call, nested function, selector, or a complex data structure.

As a general recommendation, if your default value is more than one line long, it should
probably me moved into your params. pp subclass, even if is not dynamic.

While you can also embed selectors and other complex logic in your parameter defaults,
doing so makes the default somewhat difficult to comprehend. The params.pp pattern
is a way to move such complex logic outside the parameter default block without losing
the benefits of parameterization. See “params.pp pattern” on page 96 later in this chapter.

====== Parameter default limitations

A major limitation of parameter defaults is that a parameter default cannot contain the
value of another parameter. For example, the following code is sadly invalid:

Example 5-4. An example of invalid inter-parameter references

class chroot (

$root_dir = '/chroot',
Sprefix = "${root_dir}/usr",
$bindir = "${prefix}/bin",

Y {1}

manifests/init.pp; the module entry point | 93

The workaround to this problem is to use the _real variable pattern. With this pattern,
we default variables to undef, and declare a new variable depending on the value of the
original variable.

Example 5-5. An example of parameter interpolation using pick and real variables

class chroot (

Sroot_dir = '/chroot',
$prefix = undef,
Sbindir = undef,
) {
$ root_dir = S$root_dir (1]
$_prefix = pick(Sprefix, "${root_dir}/usr")

$ bindir = pick($bindir, "${prefix}/usr")
}
© Note that while redefining $root_dir is not necessary, declaring this variable
makes your code more consistent, and thus easier to read and maintain. It's much
simpler to prefix pathing variables consistently than it is to try to remember
which variables have been redefined and which haven't.

We would then use the underscored variable names in place of the original variable
names.

The pick() function is from puppetlabs/stdlib and is almost ideal for this purpose. It
checks to see if the leftmost variable is defined. If so, it returns that value, otherwise it
returns the right side variable.

Why is it called the _real variable pattern?

This pattern gets its name because it's common to use the word real in new variables.
E.g. sprefixvs$prefix_reallpersonally feel that prefixing the redefined variable with
_is cleaner. Youre welcome to use any convention you prefer.

====== Parameter naming conventions

A Good parameter name has a few properties:

o It should be unambiguous
o It should be are self-descriptive
o Its purpose is fairly obvious

o It should be memorable

A good rule of thumb is to name the parameter after whatever will consume it’s value.
For example, if your parameter will supply a DocumentRoot value for an Apache con-

94 | Chapter5: Puppet Module Design

figuration file, the most intuitive name for your parameter will be documentroot. If your
parameter provides a source for a package resource, the most intuitive name will be
source or source prefixed with the package name when necessary to disambiguate
multiple sources.

For example, If I was writing an apache module, the following parameter names would
be fairly obvious:

e serverroot

 documentroot

» listen

 servername

e errorlog
If I were writing a module for a relocatable service, I might follow the GNU coding
standards and use the directory naming conventions:

o prefix

o bindir

e sysconfidir

» localstatedir
In all of these cases, we attempt to conform to pre-existing naming conventions, with
minimal transformation to meet Puppet’s variable naming requirements.

When a parameter is to be passed to a puppet resource, we might simply re-use the
resource’s parameter name, possibly prepended with the resource name or resource title
to remove ambiguity.

e ensure

 source

o package_httpd_source

Input validation

Input validation is the act of testing input supplied to your module to ensure that it
conforms to a specification and doesn’t contain any nefarious data.

Available input validation functions and techniques are discussed in “Input validation
functions” on page 68.

manifests/init.pp; the module entry point | 95

The design of input validation is very important to consider, and is extremely environ-
ment specific. It is important to access the goals of validating input, and the risks asso-
ciated with invalid input.

In many cases, data supplied to your module will come from a trusted source, such as
from Hiera data committed into your sites control repository. In these cases, the goal
of input validation is not so much about security as it is about about generating useful
failure messages when the input is malformed, ands protecting your systems from in-
valid or dangerous input.

Input validation should be designed to provide useful troubleshooting information, and
overly restrictive validation should be carefully avoided. Specifically, when designing
input validation, be cautious that your tests don't reject inputs that are otherwise per-
fectly valid, such as non-fully qualified paths when your application will happily accept
them. For example, with apache, unqualified paths are valid in many cases, and become
relative to the ServerRoot directive. With Puppet, variable interpolation can be used in
pathnames, allowing many paths to be relative to $confdir and other base directories.

The most common source of external untrusted data are facts generated by a managed
node when working in a master/agent environment. In many cases, the facts are simply
interpolated into data returned by the client, or used to provide platform specific de-
faults. However, there is a risk of privilege escalation if your site allows non-privileged
users to supply arbitrary facts to privileged Puppet runs.

When using exported resources or other forms of shared data, facts from one node may
be used to attack other nodes on the network. In these cases, input should absolutely be
validated to help protect nodes from each other. The best way to protect against privilege
escalation is to avoid sharing untrusted data between nodes, and to control access to the
Puppet agent so that unprivileged users may never modify it’s environment, or config-
uration and so that it is never invoked with greater privileges than the users capable of
modifying it’s behavior, libraries, configuration, or environment.

params.pp pattern

The params.pp pattern is a design pattern designed to simplify the creation of platform
specific parameter defaults by moving default definition into a dedicated manifest. For
those familiar with Chef, the params.pp pattern is somewhat analogis to cookbook at-
tributes, with a somewhat less flexible interface.

This pattern is still a common practice as of early release of Puppet 4, but is likely to be
deprecated in favor of module data sources in the near future.

With the params.pp pattern, default module parameters are defined in a subclass using
conditional logic, and then referenced using their full path in the init class of your
module. While Hiera makes it very simple to provide platform specific values to your

96 | Chapter5: Puppet Module Design

module, with Puppet 3.x there isn't a simple way for module authors to ship Hiera data
inside their module in a portable way. Requiring your users to add specific data to their
site-wide Hiera configuration can be difficult given the number of potential hierarchies
and hierarchy back-ends, and it would remove many of the benefits of supplying pa-
rameter defaults in the first place.

The params.pp pattern violates several best practices. The pattern relies on the otherwise
highly discouraged inherits feature of Puppet classes in order to enforce ordering
between it and your modules init class. It also relies on fully qualified resource references
from outside the init class scope, which is otherwise discouraged by this very book. The
params.pp pattern is however far preferable to other alternatives such as embedding
selectors in your parameter defaults.

Example 5-6. The init class declaration for a module using the params.pp pattern

class apache (

Sensure = 'installed',

Sconfig_file = $::apache::params::config_file,
Sdocumentroot = $::apache::params::documentroot,
Serrorlog = $::apache::params::errorlog,
Sgroup = $::apache::params::group,
Slisten = 80,

Sservername = $::fqdn,

Suser = $::apache::params::user,

) inherits ::apache::params { # @

Module contents go here

©® Inherits is mandatory. Otherwise, Puppet will throw an error complaining that
we've referenced variables from a class that has not been evaluated. This is a case
in puppet where ordering does matter. Inherits is a convenient way to ensure
the params class is evaluated before the apache class.

Example 5-7. The params class declaration for a module using the params.pp pattern

class apache::params {
case S$::osfamily { # @

'RedHat': {
Sconfig_file = '/etc/httpd/conf/httpd.conf’
Serrorlog = '/var/log/httpd/error.log’
Spackage = 'httpd'
Sservice = 'httpd'
Suser = 'apache'
$group = 'apache' #@®
$documentroot = '/var/www/html'
}
'Debian': {
Sconfig_file = '/etc/apache2/apache2.conf'

params.pp pattern | 97

Serrorlog = '/var/log/apache2/error.log'
Spackage = 'apache2'
Sservice = 'apache2'
Suser = 'www-data'
Sgroup = 'www-data'
Sdocumentroot = '/var/www'
}
default: {

fatll("${::0sfamily} isn't supported by ${module_namel}") # @
}
3
}
©® Inthis case, we are only concerned with platform specific default values. A single
case statement is sufficient to meet our needs. We could have other logic, such
as to set defaults based on available memory, processor cores, or storage space.

@ Repetition of user and group names would seem to violate the DRY principle,
but actually doesn’t in this case. Despite having the same value, the user name
and group name are conceptually distinct, where re-using a key would imply
the opposite.

© The default case should always be supplied to fail the module on unsupported
platforms. Users can easily fork the module an add additional cases if needed.
This process is discussed in [Link to Come]

The params. pp pattern isn't limited to platform specific defaults; you might have a set
of defaults depending on whether or not the host is virtualize, the size and resource
availability of the node, etc. etc.

You may also wish to place complex data structures and default values here to better
organize your parameters list.

When using the params.pp pattern, it's important to keep in mind that the values should
be application specific defaults, not site specific defaults. params.pp is application spe-
cific data. Try to use this pattern to provide values that would be true no matter where
the module is deployed, and use Hiera or parameters from your roles and profiles to
override these defaults based on your domain logic and site-specific needs.

Module data sources; the alternative to params.pp

Puppet 4 introduces module data sources, allowing the module to define it'’s own data
terminus. This ability is expected to replace the params.pp pattern. I have yet to see a
practical implementation of module data sources, but will update this section when one
is available.

Module data sources will allow a module author to embed a hierarchy within their
module, allowing default parameters to be stored as YAML data. This would solve all

98 | Chapter5: Puppet Module Design

the problems inherent in the params.pp pattern and eliminate one of the few remaining
use cases for class inheritance.

Although there are other implementations of data-in-module for Puppet, all of them
are to one degree or another a bit of a hack. I generally advise using the params.pp
pattern until we have useful examples of module data sources to build from.

Subclasses

Subclasses are additional classes in your module; anything that isn’t your module’s root
class in your modules init.pp manifest.

Subclass relationships

Subclasses are a useful way to organize data and establish relationships between re-
sources. If we were to write a puppetmaster module for example, we could establish a
notify relationship between puppet.conf, auth.conf, route.yaml, puppetdb.conf and
the puppet services or we could place these resources into seperate subclasses and simply
declare relationships between the subclasses.

Building resource relationships this way then becomes a huge maintainability win. If
we add a new resource to our module, we simply place it in the appropriate class and
Puppet automatically establishes relationships between it and the rest of our resources.

Example 5-8. Resource based relationships

file { '/etc/puppet/puppet.conf':
notify => Service['puppet', 'puppetserver'],

}

file { '/etc/puppet/auth.conf':
notify => Service['puppet', 'puppetserver'],

}

file { '/etc/puppet/puppetdb.conf':
notify => Service['puppet', 'puppetserver'],

}

file { '/etc/puppet/routes.yaml':
notify => Service['puppet', 'puppetserver'],

}

service { 'puppet':
ensure => 'running'.
enable => true,

}

service { 'puppetserver':
ensure => 'running'.

Subclasses | 99

enable => true,

}

Example 5-9. Class based relationships

class { '::puppet::config': }
class { '::puppet::service': }

contain ::puppet::config
contain ::puppet::service

Class['::suppet::config'] ~>
Class['::puppet::service']

Class based relationships are also a huge win if we wish to make our module un-
installable. Removing an application in most cases requires reversing all of the resource
relationships and in some cases removing resources from the catalog completely. Es-
tablishing class based relationships is very simple, making it easy to reverse the rela-
tionships when necessary.

I strongly recommend using relationships as a guide to how to subclass your modules.
If you are finding yourself declaring a lot of relationships between two sets of resources,
consider using subclasses and class based relationships instead. It is not uncommon to
see modules designed with 3 classes for 3 resources.

A final benefit of the subclass pattern is that it can be used to limit the number of variables
available to our templates, better indicate what variables are used where, and normalize
our variable names after the variables have been transformed.

Example 5-10. Class based relationships
class example (

Sprefix => 'Jusr',

$sysconfdir => undef,

)
$_sysconfdir = pick($sysconfdir, "${prefix}/etc")

class { '::example::config':
sysconfdir => $_sysconfdir,
}
}

In example <modules-subclasses-03>, the class : :example: :config can reference the
variable $sysconfdir ‘rather than the transformed variable name ‘$_sysconf
dir.

As a general rule, I recommend sub-classing any module that contains more than one
resource, and I recommend against nesting subclasses without an extremely good rea-
son. A two level module design where the init class declares subclasses allows init to
provide a complete picture of the module layout and flow, while the subclasses provide

100 | Chapter5: Puppet Module Design

organization to your resources. When your subclasses themselves contain subclasses,
you risk violating the single responsibility principle.

Subclass containment

Containment causes relationships with a parent class to be applied to subclasses. Con-
sider the following example:

Example 5-11. Class based relationships

class java {
package { 'openjdk':
ensure => 'installed',
}
}

class tomcat {
notify { 'tomcat': }

class { '::tomcat::package': } ~>
class { '::tomcat::service': }

}

class tomcat::package {
package { 'tomcat'
ensure => 'installed',
}
}

class tomcat::service {
service { 'tomcat':
ensure => 'running’',

include java
include tomcat

Class['java'] ->
Class['tomcat']

In this example, The class : : java has a before relationship with the class : : tomcat and
the resource Notify[tomcat]. ::tomcat: :package and ::tomcat: :service counter-
intuitively have no relationship with their parent class, : : tomcat and thus no relation-
ship with the : : java class.

Although the submodules are defined in the class ::tomcat, the relationships with
tomcat apply only to resources declared directly in the ::tomcat class and not to the
resources in any of its subclasses. In the above example, the following relationships exist:

Subclasses | 101

Example 5-12. Class based relationships

Class['::java'] ->
Paclage['openjdk'] ->
Class['::tomcat'] ->
Notify['tomcat']

Class['::tomcat::package'] ->
Package['tomcat'] ~>
Class['tomcat::service'] ~>
Service['tomcat']

To solve this problem, we need to either anchor or contain the subclasses.

Containment

The contain keyword includes a class and creates a relationship between the included
class and its parent class. Here is an example of our previous module using containment.

Example 5-13. Class based relationships

class java {
package { 'openjdk':
ensure => 'installed',
}
}

class tomcat {
notify { 'tomcat': }

contain ::tomcat::package
contain ::tomcat::service

Class['::tomcat::package'] ~>
Class['::tomcat::service']

}

class tomcat::package {
package { 'tomcat'
ensure => 'installed',
}
}

class tomcat::service {
service { 'tomcat':
ensure => 'running',

include java
include tomcat

102 | Chapter5: Puppet Module Design

Class['java'] ->
Class['tomcat']

Using contains, the above example now has the following relationships:

Example 5-14. Class based relationships
Class['::java'] ->

Paclage['openjdk'] ->

Class['::tomcat'] ->
Class['::tomcat::package'] ->
Package['tomcat'] ~>
Class['tomcat::service'] ~>

Service['tomcat']

Notice that Class['::tomcat'] now has a relationship with it’s child Class["'::tom
cat::package'], where this relationship did not exist in Example 5-11

Although the contatin function automatically includes the class being contained, it can
be combined with Class style resource declarations. Doing so is parse order dependent,
which gives this soltion the air of a hack. Regardless, this approach is currently the best
practices solution to handling containment and is the officially recommended approach
to building modules. See Example 5-14 for an example.

Example 5-15. Contain with resource style class declarations and chaining

class { '::tomcat::package':
ensure => $ensure,
source => $source,

}

class { '::tomcat::service':
ensure => $ensure,
enable => S$enable,

contain '::tomcat::package'
contain '::tomcat::service'

Class['::tomcat::package'] ~>
Class['::tomcat::service']

The contain keyword was added to Puppet in version 3.4.0. If you are writing modules
for modern releases of Puppet, it is recommended that you use the contatin function in
your classes rather than the anchor pattern.

Anchors

The anchor pattern is the original solution to the class containment problem. Anchors
are a resource type provided by the puppetlabs/stdlib module. Anchors themselves per-
form no actions, but they do provide an anchor with which to establish class relation-

Subclasses | 103

ships inside a modoule. They also pass along notify signals, so that notification works
between modules as expected.

Here is Class[: : tomcat] with anchors:

Example 5-16. Class[::tomcat] using the Anchor pattern

class tomcat {

anchor { '::tomcat::begin'} ->
class { '::tomcat::package': } ~>
class { '::tomcat::service': } ~>
anchor { '::tomcat::end'}

}

Although this seems to be somewhat simpler than our containment example, it carries
a huge amount of extra complexity in ensuring that our resource relationships behave
the way we expect. Example 5-16 contains a subtle bug; Anchor[: : tomcat: :begin] does
not have a notify relationship with Anchor[::tomcat::service']. As a result, notifi-
cations sent to the Tomcat module would not cause the tomcat service to restart. This
mightbe an issue if, for example, you updated Java to patch a vulnerability using Puppet,
and the Tomcat service remained resident in memory running under the old release of
Java because it’s service resource never received a notification to restart.

Beyond that, the anchor pattern creates some ugly resource relationship graphs that can
be painful to read when attempting to analyze Puppet’s graph output.

Intentionally uncontained classes

There are some cases where you may wish to intentionally avoid containing resources.
Consider a case where we need to insert the deployment of one application after it’s
dependent module has been installed and configured, but before the service from its
dependent service has been started.

Example 5-17. Class[::tomcat] using the Anchor pattern

include ::tomcat
include ::my_tomcat_app

Class['::tomcat'] ->
Class['::my_tomcat_app'] ~>
Class['::tomcat::service']

This example will only work if Class[::tomcat: :service] is not contained inside of
Class[::tomcat]. Otherwise, a dependency loop would be created; Class[: : tomcat]
-> (lass[::tomcat::service] -> Class[::my_tomcat_app] -> Class[::tom
cat::service]

104 | Chapter5: Puppet Module Design

Internally, the rest of the tomcat module may have a notify relationship with
Class[::tomcat: :service] andarelationship loop will not be created. We could create
such a module using this basic layout:

Example 5-18. Class[::tomcat] using the Anchor pattern

class tomcat {

contain '::tomcat::install'
contain '::tomcat::config'
include '::tomcat::service'

Class['::tomcat::install'] ->
Class['::tomcat::config'] ~>
Class['::tomcat::service']

}

This works because resource relationships do not require that one resource be evaluated
immediately after another when a relationship is defined. The relationship simply sets
general ordering requirements, and allows for other resources to be inserted into the
order. Puppet maintains the relationship ordering internally using a dependency graph.

When using an approach such as this, remember that you lose the ability for the un-
contained resources to generate notifications for the parent class; anything that wishes
to subscribe to Class[::tomcat: :service] must do so explicitly now.

Because such module designs do not conform to the typical design pattern for a module,
it’s critical to test and document this special behavior, and to treat the un-contained class
as an interface into the module; not to be changed without planning for the break in
compatibility.

Inter-module relationships like this are typically domain logic and should typically
handled in your profiles rather than hard-coded into your modules.

This approach is useful when you need to complex relationships between arbitrary
modules. In many cases, it's much better to use a defined type as an interface, as discussed
in “Module Interfaces with defined types” on page 108.

Interfacing with subclasses.

There are three popular ways to pass data from your modules init class to it’s subclasses:

1. Use a resource style class declaration with parameterized subclasses.

2. Use contain or include style class declaration with fully qualified variable references
inside the subclass.

3. Use class inheritance.

Subclasses | 105

Passing data via parameterized class declarations

This is my preferred approach for passing data from an init class to a subclass. This
approach it makes variable handling extremely explicit and causes immediate failures
in the event of a typo or hasty change.

Example 5-19. Passing data using parameterized subclasses and resource style class
declaration

class apache (
$ensure => 'installed',
Spackage => $::apache::params::package,
) {
class { '::apache::install':
ensure => Sensure,
package => $package,
}

contailn ::apache::install

}

class apache::install (
Sensure,
$package,

) {
package { $package:

ensure => $ensure,

}

}

With this approach, if either the package or ensure parameter are missing or if there is
a typo, the declaration of : :apache: :install will throw an error. If the : :apache: :in
stall class does not accept a parameter that’s passed to it from the init class, an error
is also thrown.

This pattern makes it very clear what variable is being used where, and explicitly states
what will be affected by a parameter change.

The only downside of this class is the ugly combination of a class declaration and a
contain function call.

Passing data via fully qualified variable references

With this approach, the : :apache: : install subclass pulls variables from the init class.

Example 5-20. Passing data using fully qualified variables

class apache (

Sensure => 'installed',

Spackage => $::apache::params::package,
) {

contain ::apache::install

}

106 | Chapter5: Puppet Module Design

class apache::install (

Sensure = $::apache::ensure,
Spackage = $::apache::package,
) {

package { Spackage:
ensure => $ensure,
}
}

The benefit of this approach is that inclusion of the : :apache::install subclass and
containment of the subclass are handled with a simple contain statement. The disad-
vantage of this approach is that the use of fully qualified variables is a bit more verbose,
and the consumption of values from init is no longer visible within init, which somewhat
mitigates the use of init to view the flow of a module.

Passing data via class inheritence

You can also pass variables using class inheritance. With this approach, variables local
to the init class are available in the local scope of any class that inherits from the init
class.

Example 5-21. Passing data using class inheritance

class apache (

Sensure => 'installed',

Spackage => $::apache::params::package,
) {

contain ::apache::install

}

class apache::install inherits ::apache {
package { Spackage:
ensure => $ensure,
}
}

This approach carries the least initial development overhead. Variables are declared in
the init module, and are automatically made available to any of the submodules as if
they were declared locally. This effectively re-implements variable inheritance from the
Puppet 2.x days, but does it in a more limited and controlled way.

The two major disadvantages of this approach are that you won’t be able to see or control
what variables are passed into a subclass, and that without it's own scope, you cannot
re-use variable names declared in the parent classes.

While I do not personally recommend this pattern, it is used in alot of official Puppetlabs
modules, making it a fairly common and well understood approach for passing data
into subclasses.

Subclasses | 107

Defined Types

A defined type is a Puppet class that behaves similarly to a native Puppet resource.

Unlike a class, you can declare multiple instances of a defined type so long as those
instances and their individual resources do not conflict with each other.

Defined types are commonly used in one of four ways within a module:

1. For iteration or the DRY principle
2. For creating interfaces into a module
3. Asaservice to the outside world

4. As the core purpose of a module

Iteration and DRY with defined types

Defined types may be used in a manor analogous to methods or functions from im-
perative languages. This use of defined types is fairly universal, and isn’t really specific
to module development. Both concepts are explored in Chapter 4; “Don’t Repeat Your-
self (the DRY principle)” on page 52 and “Iteration” on page 72

Module Interfaces with defined types

There are many situations where you may need to create complex relationships between
modules. The principle of interface driven design * would strongly advise against ac-
cessing the data structures and referencing resources from other modules directly.

In “Intentionally uncontained classes” on page 104 we discuss the use of un-contained
classes as an interface. When applicable, the use of defined types as an interface into
your module is the preferable approach for handling inter-module dependencies. De-
fined types are often used as an interface into a module, making this the obvious choice
for building interfaces. Defined types provide a clean parameterized interface that can
be defined and tested, allowing the internal structure of the module to change without
breaking dependent modules.

In “Interface Driven Design” on page 51 we give this example of the use of a defined
type as an interface into an apache module:

Example 5-22. Interface Driven Design vhost template

class myapp {
contailn ::myapp::config

4. see: “Interface Driven Design” on page 51

108 | Chapter5: Puppet Module Design

apache: :custom_vhost { 'myapp':
content => template('myapp/vhost.conf.erb'),
}

Class['::myapp::config'] ->
Apache: :Custom_vhost['myapp']
}

In Example 5-22, the class : :myapp is interfacing with the Apache module using the
apache: : custom_vhost defined type. The internal structure of that defined type might
look something like Example 5-23:

Example 5-23. Defined type vhost interface

define apache::custom_vhost (

Sservername = S$title,
Scontent = undef,
) {

$_content = pick($content, template('apache/custom_vhost.erb'))

file { '/etc/httpd/conf.d/${title}.conf"':
ensure => 'file',
content => $_content,

}

Class['::apache::config'] ->
Apache::Custom_vhost[$title] ~>
Class['::apache::service']

}

Notice that all relationships and references to the internal structure of the apache mod-
ule are entirely contained with the defined type apache::custom_vhost. We could
completely re-write the apache module, and so long as the defined type exists and con-
tinues to provide the servername and content parameters the : :myapp class will con-
tinue to work without change.

If we've documented apache: : custom_vhost as an interface into our module and writ-
ten spec tests for it, we can know without looking at any other module what changes
are safe to make to the apache module, and what changes are not safe. This flexibility
is the huge benefit of interface driven design. Without it, many sites are slow to adapt
to new needs because changes to one module often break code elsewhere.

Providing services with defined types

In many cases your module may be able to provide a useful feature to the outside world
via a defined type. The Apache module we’ve been looking at through this section is a
great example of this; our module can provide a defined type that handles the OS specific
implementation details of configuring a virtual host, and provides a useful template and
set of properties for defining the host.

Defined Types | 109

This defined type doesn't prevent other modules from implementing their own vhost
templates, but it does offer a simple way to define a virtual host that’s integrated nicely
into our module, and handles most common use cases.

Example 5-24. A conveince defined type for managing Virtual Hosts

define apache::vhost (

Sensure = 'present',
Sdocumentroot = undef,
Serrorlog = undef,
Sport = 80,
$servername = Stitle,

) {

Svhost_dir = $::osfamily ? {
'RedHat' => '/etc/httpd/conf.d',
'Debian' => '/etc/apache2/sites-available',
default => '/etc/httpd/conf.d',

}

$link_ensure = $ensure ? {
'absent' => 'absent',
default => 'link',

}

file { "${vhost_dir}/${title}.conf":
ensure => $ensure,
content => template('apache/vhost.conf.erb'),

group => 'root',
owner => 'root',
mode => '0444"',

3

if $::osfamily == 'Debian' {
file { "/etc/apache2/sites-enabled/${title}.conf":
ensure => $link_ensure,
target => "../sites-available/${title}.conf",
}
}

Class['::apache::install'] ->
Apache: :Vhost[$title] ~>
Class['::apache::service']

}

As in “Module Interfaces with defined types” on page 108, the use of a defined type is
much better than trying to manage virtual hosts as files, because the defined type can
establish relationships into the apache module and access data from inside that module
without violating the separation of concerns and the principles of interface driven de-
sign.

110 | Chapter5: Puppet Module Design

Defined types for simplifying complex tasks

There are often cases where a defined type can be used to provide a clean and simple

interface for complex operations.

Here’s an example of a module for managing network service names. It uses Augeas to
manage /etc/services and a defined type to provide a clean interface around the

Augeas resource.

Example 5-25. An Augeas resource wrapped in a defined type

define network_service_name (

Sport,

Sprotocol = 'tep',

Sservice_name = S$title,

Scomment = Stitle,
) {

Schanges = [

"set service-name[last()+1] ${service_name}",
"set service-name[last()]/port ${port}",

"set service-name[last()]/protocol ${protocol}",
"set service-name[last()]/#comment ${comment}",

]

Smatch = "service-name[port = '${port}']J[protocol = '${protocol}']"
Sonlyif = "match ${match} size == 0"

augeas { "service-S${service_name}-${port}-${protocol}":
lens => 'Services.lns',
incl => '/etc/services',
changes => $changes,
onlyif => $onlyif,
}
}

The defined type Example 5-24 can now be used to declare service names without having

to go through the somewhat error-prone process of reimplementing this Augeas state-

ment each time.

This approach helps a mixed team leverage experience. A more experienced module
creator can produce defined types such as this one to manage complex tasks, allowing
less senior team members use much more friendly resource declarations. The above

defined_type can now be declared very easily, as in Example 5-26.

Example 5-26. Declaration of a netwok_service_name defined type

network_service_name { 'example':
port => '12345',
protocol => 'tcp',

}

Defined Types

m

In an example like this, the defined type may be in the init manifest of the module, and
the module may contain no other manifests.

These kinds of defined type modules provide convenience features and extensions sim-
ilar to native Puppet resource types. You may chose in this case to utilize them directly
in your other other modules, creating inter-module dependencies. In these cases, the
features your defined types create may truly be part of your application logic rather than
your domain logic.

Interacting with the rest of the module

When a defined type is included in a an application module, it often needs to interact
with the rest of the module. Care must be taken when doing so to avoid dependency
loops, parse order dependence, and to keep the module simple to understand and use.

Resource relationships

As a general rule, the best place to put relationships between the defined type and the
rest of your module is inside the defined type. While you can use resource collectors
inside the module to declare relationships, resource collectors also have the behavior of
realizing virtual resources, which may not be what you want.

Including other classes

A somewhat dangerous pattern is for the defined type to include its parent init class.
This pattern is commonly used in cases where the defined type depends on resources
and variables defined in the init class. Unfortunately, this pattern can create parse-order
bugs. s

Another issue with this pattern is that it often results in the defined type becoming the
de-facto entry point to your module, rather than the init class. This can be confusing to
debug, especially with more complex modules.

Example 5-27. A conveince defined type for managing Virtual Hosts

defined example::defined_type {
include example # @

Do other stuff
}

© This can create parse order dependent conflict if class {'example': } appears
elsewhere in your code-base.

Instead, it’s usually best to keep your defined types as small and self-contained as pos-
sible. Try to avoid declaring other classes or referencing variables from other contexts
if at all possible.

112 | Chapter5: Puppet Module Design

Documentation

Documentation is an investment in the future. When you are in the middle of writing
a module, the behavior of the module, it’s inputs, and it’s quirks are self-evident. When
you've moved on, it’s easy to forget what each parameter does, what kind of input the
parameters accept, and what quirks exist in your module.

Documentation of a module takes three forms:

1. Documentation committed to your module’s repository
2. In-line documentation within your module

3. In-line comments

The puppet module generate command produces documentation templates that can
be a useful starting point to write your own documentation.

Markdown

Github, Gitlab and most other GIT collaboration tools provide built-in rendering of
Markdown and . txt documentation, making documentation committed to your soft-
ware repository one of the most user friendly ways of documenting your module for
your users.

It’s a good idea to include a README.markdown file containing the following infor-
mation:

1. The name of the module
2. Example invocations of the module for common use cases.
3. A description of each supported parameter for your module
4. Notes about bugs or known issues (if you are not using a public issue-tracker)
5. Any dependencies your module may have, either internal or external to Puppet
6. Contact information
7. The license for your module, if any
Usage documentation

Except for the most trivial modules, it’s a good idea to show some common usage ex-
amples of your modules. This can help the user test the module, can provide ideas as to
how to use your module, and can help the user if they get stuck deploying the module,
perhaps due to syntax errors in their input.

Documentation | 113

Usage documentation is also useful if you wish to highlight the most commonly set or
modified parameters for your module. It's very common for a module to have several
dozen parameters; this is the place your user will look for the most important param-
eters.

If your module has any dependencies or requires any setup, it’s a good idea to provide
an example of how to satisfy those dependencies as well.

Parameter documentation

Documenting your input parameters is key to writing a usable module. Parameter
names are often terse, tend to be numerous, and can often be confusing.

When documenting an input parameter, it’s good to provide the following information:

. The name of the parameter

. A brief description of the parameters purpose.

. The types of data accepted.

. The structure of the data if structured data is accepted.

. The default value of the parameter.

AN U R W N =

. Any constraints on the data enforced by the application, module design, or input
validation.

For example:

Example 5-28. Markdown documentation for a parameter

== Module parameters

=== document_root
The path to your site's document root. Must be a fully qualified path. Defaults to: '/var/www/html'

You should only document input parameters you wish to support long term. Unsup-
ported or deprecated parameters can be marked as such.

Dependencies

If your module depends on other modules, code, or setup, it’s a very good idea to note
those dependencies in your documentation. If the dependencies are very specific, noting
the modules required, providing a link to those modules, and noting version compati-
bility is extremely valuable.

If your dependencies are generic (this module requires a web-server,) it’s a good idea to
mention the dependencies, and show how a commonly available module can be used
to satisfy the dependency.

Your fixtures file, meta-data, and test.pp file also track these dependencies.

114 | Chapter5: Puppet Module Design

License information

If you plan to publicly release your module, it’s a good idea to attach a license your it.

Enterprise users may have constraints placed on the code that can be deployed to their
site. A license for the module may be required by their internal policies in order to
permit use of the module. Some companies restrict what software license are acceptable
for use internally, and may not be able to use code under more restrictive licenses such
as GPL 3.

If you are writing modules in house, you may wish to clarify with your management or
legal team regarding the license or restrictions that should be placed on the code. Some
companies are fairly generous with their modules releasing them publicly once scruti-
nized and sanitized. Others businesses will prefer to keep internally developed Puppet
modules proprietary. You will save alot of headache by making node of these constraints
in the documentation.

If you plan to release the module to the public, a license is a good way of communicating
what other users may do with your code. Most public licenses permit redistribution of
code, however the license used may limit the ability for others to fork your code.

If youre not sure what license to use, I recommend the Apache 2.0, which permitsliberal
modification and redistribution of your code, but requires that your authorship of the
module be recognized and prevents others from patenting your work.

I do recommend however researching licenses to identify the license that best suits your
requirements/wishes. You may find you prefer a more restrictive license such as the
AFPL.

In-line documentation

In-line documentation is documentation embedded into the code of your module. A
number of Puppet tools including the puppet doc command (3.x), puppet strings
command (4.x) and Geppetto can consume and display this documentation. A benefit
of in-line documentation is that Puppet can search for the docs in your module path,
and Geppetto can display the documentation as hover-text.

In most cases, you can reuse your markdown documentation as in-line documentation,
modifying formatting as needed. It may also be a good idea to document your unsup-
ported and internal parameters. This can simplify development; you can use the built-
in tools to check the documentation rather than keeping the class open in an editor.

In-line documentation usually takes the forms of comment blocks at the top of your
manifest, but you should check the documentation for the tool you are using.

Documentation | 115

Rake tasks

Puppetlabs provides a number of extremely useful Rake tasks that can dramatically
simplify module development.

Rake is Ruby’s variant of the Make command. Once defined, Rake tasks can be executed
from your module’s root directory and any of it’s sub directories using the rake com-
mand. Among other things, the Rakefile generated by the puppet module tool can be
used to:

o Quickly validate the syntax of your module
o Invoke the puppet-lint command to validate your module follows the style guide
o Compile your module using rspec-puppet
o Build a package for the Puppet Forge
Using these tasks is a great way to perform simple sanity checks prior to deploying your

module. As a general rule, you should lint and validate your module prior to pushing
changes to upstream repositories.

Testing

Testing, like documentation, is an investment in the future of your module.

Module testing takes two common forms:

1. Unit testing

2. Acceptance testing

Unit testing is your puppet-rspec tests. Unit tests may be run on your local workstation,
and are a quick way to validate that your changes have not altered your modules inter-
faces, broken support for other platforms, or otherwise generally broken your module
(E.g. it no longer compiles.) While the lint and validate commands will ensure that your
module parses, unit testing actually exercises the functions, logic, and resources in your
module.

Where validate may not catch a typo in the parameter of a resource type, unit testing
will. The limitation for unit testing is that it tests the logic of your modules; it doesn’t
validate external dependencies.

Acceptance tests are your rspec-system > and beaker tests. These tests spin up a virtual
machine and ensure that your module deploys correctly, that the packages, services, and

5. rspec-system is deprecated; use breaker

116 | Chapter5: Puppet Module Design

other resources in your module actually exist, that the syntax in your configuration files
and templates are valid, and that the service your modules manage actually comes up
and listens on the expected port. Integration testing is very slow, but and comprehensive;
it will catch dependencies and ordering problems that cannot be identified in other
ways.

Rspec

Rspec tests are performed entirely within the constructs of the ruby interpreter, with no
impact on the host system other than the need to install ruby gem and puppet module
dependencies.

Rspec tests are a quick and clean way to perform regression and smoke tests on your
code, and with limited exceptions, need not be run on the platform your module targets.
For example, puppet-rspec can test a module targeted for Debian and RedHat systems
on a Apple OSX host without issue.

Unfortunately, Puppet hard codes several special behaviors for Windows hosts; UNIX
tests will often fail on Windows workstations, and visa versa. Use a Vagrant box for rspec
testing in these situations.

Ideally, your rspec tests should accomplish four things:

1. Validate that your modules inputs match your documentation
2. Validate that the output of your module matches your expectations.
3. Test input validation

4. Prevent regression.

Your rspec tests do not need to validate the internal state of your module, and need not
be absolutely strict about the output. Overly strict testing with heavy focus on the in-
ternal structure of your module will neadlessly slow the development process.

Input testing with rspec

Input validation ensures compatibility with your documentation, and ensures that you
do not break compatibility within a major release of your module. Writing good input
validation tests provide the freedom to modify the module with the confidence of
knowing that if you break compatibility, you will know.

I recommend performing the following tests for each documented parameter of your
module:

1. Validate your modules behavior with the default parameter value.

2. Validate your modules behavior with a valid input supplied to the parameter.

Testing | 117

3. Validate your modules behavior with an invalid input supplied to the parameter.

Example 5-29. Input validation

require 'spec_helper'

describe 'apache' do
context "on RedHat" do
let(:facts) do
{ :osfamily => 'RedHat' }
end

context 'with document_root => unset' do
it { is_expected.to contain_file('/etc/httpd/conf/httpd.conf').with(
{ :content => %r{DocumentRoot /var/www/html}
)
}

end

context 'with document_root => /tmp' do
it { is_expected.to contain_file('/etc/httpd/conf/httpd.conf"').with(
{ :content => %r{DocumentRoot /tmp}
)
}

end

context "with document_root => false" do
let :params do
{ :documentroot => false }
end
it { expect{ is_expected.not_to compile }.to
raise_error(Puppet::Error, /not an absolute path/)
}
end
end
end

Resource validation

In most cases, input validation will by it’s nature check the output of the module. How-
ever, there are often resources in your module that are not affected by any of your input
parameters. Those resources should be tested explicitly.

Example 5-30. Output validation

require 'spec_helper'

describe 'apache' do
context "on RedHat" do
let(:facts) do
{ :osfamily => 'RedHat' }
end

118 | Chapter5: Puppet Module Design

it { is_expected.to contain_service('httpd').with({
:ensure => 'running',
:enable => true,
b
}

end

context "on Debian" do
let(:facts) do
{ :osfamily => 'Debian' }
end

it { is_expected.to contain_service('apache2').with({
:ensure => 'running',
:enable => true,
b
}

end
end

Testing input validation

If your module performs input validation, I strongly advise testing your input validation
to ensure that it behaves as expected. Nothing is more frustrating than having a valid
parameter input rejected because of a poorly designed regular expression validation
string.

In most cases, it’s fine to design your module first and your tests after. For input vali-
dation, I strongly recommend using test-driven development; write test cases test both
positive and negative outcome from your input validation scripts, and then write your
validation. In many cases, it's much easier to design tests than it is to build a validation
regular expression that handles every single case correctly on the first pass.

Example 5-31. Testing input validation

require 'spec_helper'

describe 'apache' do
protocols = ["', 'http://', 'ftp://']
hostnames = [
'localhost’,
'localhost.localdomain',
'1.2.3.4',
1
ports = ['', ':80', ':8080"]

Positive tests
protocols.each do |protocol|
hostnames.each do |hostname|
ports.each do |port|

Testing | 119

servername = "#{protocol}#{hostname}#{port}"
context "with servername => '#{servername}'" do
let :params do
{ :servername => servername }
end
it { is_expected.to contain_file('/etc/httpd/conf/httpd.conf"').with(
{ :content => /ServerName servername/ }
)
end
end
end
end

Negative tests

protocols = ["', 'http:/', '://', 'http:', '1://", /)"]
hostnames = ['', 'localhost']

ports =[", ', ':80"]

protocols.each do |protocol|
hostnames.each do |hostname|
ports.each do |port]|
servername = "#{protocol}#{hostname}#{port}"
unless servername == 'localhost' || servername == 'localhost:8080"
context "servername => '#{servername}'" do
let :params do
{ :servername => servername }
end
it { expect{ is_expected.not_to compile }.to
raise_error(Puppet::Error, /validate_re/)
}
end
end
end
end
end
end

Acceptance testing

It is a good idea to write acceptance tests for your modules. Acceptance tests provide a
quick way to apply your module to a real running system, and can catch issues related
to ordering, idempotence, undeclared dependencies, and external resources that cannot
be reliably tested in any other way.

With acceptance tests, the functionality of the applied module and the return codes
from applying the module. For example, with an apache module, you might wish to
ensure that the apache package is present on the system, the service is running, and that
Apache responds with a boilerplate site when queried using Curl.

120 | Chapter5: Puppet Module Design

It’s also very valuable to ensure that Puppet returns an exit code indicating that it modi-
fied system state with no errors upon initial invocation, and that further invocations
produced no change. These tests will quickly ensure that your module is idempotent
when applied to a live system.

Example 5-32. Beaker Acceptance tests for an Apache module

require 'spec_helper_acceptance'

describe 'apache' do
apply_manifest('include apache', :catch_failures => true)
apply_manifest('include apache', :catch_changes => true)

describe package('httpd') do
it { is_expected.to be_installed }
end

describe service('httpd') do
it { is_expected.to be_running }
end

describe port(80) do
it { should be_listening }
end
end

Beaker supports multiple back-ends for acceptance testing. The most commonly used
back-end is Vagrant, and is compatible with your existing boxes. However, Beaker can
build and invoke tests on VMWare, AWS, OpenStack, and other infrastructure as well.

When writing beaker tests, it's important to begin with a clean system image to ensure
that your module is not implicitly dependent on existing system state to run.

If your site uses a custom base image, I advise using a clean copy of that image as a base
for testing; often local security policy can create restrictions that are not present on
public boxes. You will also benefit if the base box has pre-configured local package
repositories for your site.

If you intend to publicly release the module, ideally the module should be tested against
a clean publicly available system image in order to ensure maximum compatibility.

Module testing best practices

As a best practice, module tests should be self contained within the module. I recom-
mend against using site-wide Hiera data to build a test environment. Instead, declare
your modules parameters inside your test cases, or use manifests inside your module’s
tests directory where applicable.

Testing | 121

The puppetlabs_spec_helper gem can handle the retrieval of your module depen-
dencies, and the creation of a test modules directory.

Testing outside the scope of your overall site is a good way to identify assumptions about
your module, and to catch unexpected dependencies.

We will explore end to end testing of your site logic and Hiera data in [Link to Come].

Continuous Integration

With automated testing in place, it’s fairly straightforward to perform CI testing on your
modules.

It's a good idea to build several gemsets for your module so that you can test on different
rubies and with different versions of Puppet. Even if your site currently uses Puppet 3,
rspec testing your modules with Puppet 4 is a good way to catch and resolve compati-
bility problems early in your development cycle. Resolving problems in this iterative
way is a great way to simplify the upgrade process and to avoid massive upgrade projects
when the time finally comes to upgrade.

Dependencies

In many cases, your module will have dependences on other modules. For example,
puppetlabs/stdlibisa nearly universal dependency due to the number of useful func-
tion calls it provides.

Module dependencies are typically created with other modules that extend Puppet;
modules containing custom functions, custom types and providers, and in some cases
useful defined types.

In these situations, the dependencies should be documented in your modules RE
ADME .markdown file ¢, listed in your modules meta-data, and inserted into your mod-
ules . fixtures file for easy deployment.

The puppetlabs_spec_helper gem provides a number of useful rake tasks for manag-
ing and deploying module dependencies in such a way that your module can be easily
tested, without the need to clone and deploy everything in your site. This clean approach
helps document your module, and allows flexibility in compatibility testing between
module versions.

I strongly recommend including a Gemfile and RVM meta-data in your module to
simplify the deployment of these and other useful gems. The puppet module gener

6. see “Documentation” on page 113

122 | Chapter5: Puppet Module Design

ate tool will create the appropriate Gemfile and meta-data for you when generating a
new module.

Summary

In this chapter we learned how to write clean modules that confirm to the best practices
discussed in Chapter 4

Takeaways from this chapter:

o Carefully design your module to limit its scope

o Structure your module to make it easy to understand and simple to deploy
o Design interfaces into your module and use them

« Document your module for future maintenance

o Use test cases in order to prevent regressions and ensure compatibility

Summary | 123

CHAPTER 6

Built-in Types

125

	Cover
	Copyright
	Table of Contents
	Chapter 1. Forward
	What’s new?
	About best practices
	About this pre-release

	Preface
	Who Should Read This Book
	Why I Wrote This Book
	A Word on Puppet Today
	Navigating This Book
	Online Resources
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 2. The Puppet Design Philosophy
	Declarative Code
	What is declarative code anyway?
	A practical example
	Non-Declarative Code with Puppet

	Idempotency
	Side Effects
	Resource Level Idempotence
	Run Level Idempotence
	Non-deterministic code

	Stateless
	Sources of State

	Summary

	Chapter 3. Code and Data; High Level Design
	Code and Data
	Application Logic
	Business Logic
	Site Specific Data
	Node Specific Data
	Service Data

	Breaking it down
	Application Logic & Puppet Modules
	Business logic with Roles and Profiles
	Hiera & Site Specific Data
	Node Classification
	Exported Resources & Service Discovery

	Summary

	Chapter 4. Coding Practices
	The Style Guide
	Coding Principles
	KISS
	The Single Responsibility Principle
	Seperation of Concerns
	Interface Driven Design
	Don’t Repeat Yourself (the DRY principle)

	General Coding Recommendations
	The balance of Code and Resources

	Conditional Logic
	Selectors

	Variables
	Variable Naming
	Referencing Variables
	Other Variable Use Cases

	Function Calls
	Functions for logging and Debugging
	String manipulation functions
	Path Manipulation
	Input validation functions
	Catalog tests

	Iteration
	Iteration with Puppet 3
	Iteration with Puppet 4 and the Future Parser

	Generating lists
	Data Transformation
	Templates
	ERB Templates
	EPP Templates
	EPP vs. ERB
	Template abuse
	The puppet::file defined type

	Other Language Features
	Summary

	Chapter 5. Puppet Module Design
	Design modules for public consumption
	Using public modules
	Picking good modules
	Module checklist
	Module Applicability
	Contributing Modules

	Planning and scoping your module
	Basic Module Layout
	manifests/init.pp; the module entry point
	An example init class
	Parameterizing your module
	Input validation

	params.pp pattern
	Module data sources; the alternative to params.pp

	Subclasses
	Subclass relationships
	Subclass containment
	Interfacing with subclasses.

	Defined Types
	Iteration and DRY with defined types
	Module Interfaces with defined types
	Providing services with defined types
	Defined types for simplifying complex tasks
	Interacting with the rest of the module

	Documentation
	Markdown
	In-line documentation

	Rake tasks
	Testing
	Rspec
	Acceptance testing
	Module testing best practices
	Continuous Integration

	Dependencies
	Summary

	Chapter 6. Built-in Types

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

