

Puppet 8 for DevOps Engineers

Automate your infrastructure at an enterprise scale

David Sandilands

BIRMINGHAM—MUMBAI

Puppet 8 for DevOps Engineers
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Associate Group Product Manager: Preet Ahuja

Senior Editor: Athikho Sapuni Rishana

Technical Editor: Rajat Sharma

Copy Editor: Safis Editing

Project Coordinator: Sean Lobo

Proofreader: Safis Editing

Indexer: Hemangini Bari

Production Designer: Alishon Mendonca

Marketing Coordinator: Rohan Dobhal

First published: June 2023

Production reference: 1300523

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80323-170-9

www.packtpub.com

http://www.packtpub.com

This book is dedicated to my family: my wife, Linzi, for always supporting and believing in me; my
sons, John and Jude, for inspiring me to push myself; and my parents, Neil and Janet, who have always

been so nurturing and loving throughout my life.

– David Sandilands

Foreword

I’m not exactly sure when I first became aware of David Sandilands as a member of the Puppet
Community, but it must have been about a decade ago, when I was the CTO of Puppet, and DevOps,
infrastructure as code, and automated configuration management were all still things I was having to
evangelize and explain to enterprises. It was immediately apparent that David was a rare individual,
someone who was keenly plugged into the cutting edge of IT automation, but with extensive experience
inside large, and relatively conservative, organizations.

This combination meant that David understood that automation at scale is a social activity as much as
a technical one, and that driving real value and improvement means treating your Puppet installation
as a platform for collaboration, not just a collection of technical capabilities.

In the decade since, we’ve seen DevOps explode in popularity and the emergence of the platform
engineering movement, where enterprises all over the planet have realized they need to be taking the
approach that David knew was necessary 10 years ago.

This foresight, concern for the human side of automation, and collaborative mindset are why, many
years later, I was thrilled to have David join my team at Puppet as a principal solutions architect,
helping companies big and small build out true Puppet platforms at scale.

There have been a number of books written about Puppet over the years, but this is a truly special
one, distilling David’s immense knowledge and experience into a pragmatic journey through the
core concepts and tooling around Puppet, all with an eye toward building a collaborative platform.

I don’t believe we’ve ever seen a Puppet book like this, and whether you’re a first-time Puppet user
or an enterprise IT architect, or you’re looking to use your existing Puppet skills to deliver more for
your organization, I know you’re going to find this an invaluable reference.

Nigel Kersten

VP of product and engineering at Synadia

(Nigel served in a variety of senior technical executive roles at Puppet over 12 years, from CTO to
VP of engineering to head of product.)

Contributors

About the author
David Sandilands is a principal solutions architect at Puppet, with a focus on the product management
of Puppet’s development ecosystem and integrations. This includes management of the Forge, supported
modules, the Puppet Developer Kit, and integrations such as ServiceNow and Splunk. Before this, David
worked within Puppet’s solutions architect team, helping Puppet’s largest customers deliver infrastructure
automation at scale, and supported these customers in their DevOps working practices. He spent eight
years at NatWest as a cloud infrastructure engineer delivering their IaaS platform. Based in Falkirk,
Scotland, David has a Bachelor of Engineering in computer science from the University of Edinburgh.

I want to thank my wife, sons, parents, and parents-in-law for their love, support, and patience.

I would also like to thank Nigel Kersten for championing my work on this book, along with so
many Puppet colleagues and Puppet Community friends who I have learned so much from on this
research journey.

Finally, thanks to my editors and reviewers for their endless patience with me throughout the
writing of this book.

About the reviewers
Aditya Soni is a DevOps/SRE tech professional who has taken an inspiring journey with technology
and achieved a lot in a short period of time. He has worked with product- and service-based companies,
including Red Hat and Searce, and is currently positioned at Forrester as a DevOps engineer. He holds
AWS, GCP, Azure, Red Hat, and Kubernetes certifications. He mentors and contributes to the open
source community. He is a CNCF ambassador and has been an AWS Community Builder for four
years. He leads AWS, CNCF, and HashiCorp user groups for the state of Rajasthan in India. He has
spoken at many conferences, both in-person and virtual. He is a hardcore traveler who loves food,
exploring, and self-care and shares stories on social media as @adityasonittyl.

I would like to thank my parents and family who support me in numerous ways with my busy
schedule. Taking the time to review the book wouldn’t have been easy without them. To my friends,
who always cheer me up and give me confidence whenever I feel lost. Last but not least, to the open
source communities, mentors, managers, and co-workers from the early days up to now who have
helped me along my path.

Jerald Sheets has been an industry system administration professional for over 30 years specializing
in automation with Puppet. He owns and operates a Puppet consulting firm within the Metro Atlanta,
GA, area and can be reached via https://sscgatl.com. He has been a Puppet Partner since
2014, has consulted for both employers and clients in the areas of Puppet Enterprise and Puppet
Community, and has authored for the Puppet Blog. He can be found on the Puppet Community Slack
under the handle CVQuesty and loves to help other Puppet Community users in any way he can. A
father and step-father of 7, he lives, works, and worships with his family in rural Georgia.

Edwin Maldonado has worked in the tech industry for more than 15 years. He is a product manager
at Puppet by Perforce, where he leads the Puppet Forge. Before joining the product team, Edwin
worked as a solutions architect at Puppet, and as a software engineer and consulting architect in the
Americas and Europe. Edwin loves learning about history and being a home barista.

Preface xv

Part 1 – Introduction to Puppet and the Basics
of the Puppet Language

1
Puppet Concepts and Practices� 3

Puppet’s history and relationship to
DevOps 3
Puppet as a declarative and
idempotent language� 5
Key terms in the Puppet language� 6

Puppet as a platform� 12
Common misconceptions� 15
Summary 17

2
Major Changes, Useful Tools, and References� 19

Technical requirements� 20
Major changes since Puppet 5� 21
Puppet 5� 21
Puppet 6� 22
Puppet 7� 22

Legacy Puppet patterns� 23
IDEs and tools to assist in Puppet
development 23
How to deploy your Puppet lab and
development tools� 24

Mac desktop� 25
Windows desktop� 26
Linux desktop – RPM-based� 26
Linux desktop – APT-based� 27
Configuring tools� 28

References and further research� 30
Summary 32

Table of Contents

Table of Contentsviii

3
Puppet Classes, Resource Types, and Providers� 33

Technical requirements� 34
Classes and defined types� 34
Including a class� 35
Defined types� 36
Namespaces� 37

Resources, types, and providers� 37
Lab� 40
The package type� 42
The file type� 44
Service types� 47
Lab� 51
Core resource types� 52
The exec type� 53
The Augeas type� 55
The notify type� 56

Metaparameters and advanced
resources� 57
audit� 57
tag� 57
The resources metatype� 58
Arrays of titles� 59
Overriding parameters� 59
Attribute splats� 60
Lab� 60

Anti-patterns� 61
Abstract resource types� 61
Defaults� 61
schedule� 63

Summary� 64

4
Variables and Data Types� 67

Technical requirements� 68
Variables� 68
Naming� 69
Reserved variable names� 69
Interpolation� 70

Data types� 70
Strings� 71
Numbers� 76
undef� 80
Booleans� 80
Regexp� 81
Lab� 81

Arrays and hashes� 82
Assigning arrays� 82
Accessing an array index� 82
Accessing a subset of an array� 83
Nested array� 83
Array operators� 84
Array data type� 86
Assigning hashes� 86
Accessing hash values� 87
Nested hashes� 87
Hash operators� 88
Hash data type� 88
Mixing hashes and arrays� 89

Table of Contents ix

Lab� 89

Abstract data types,
including Sensitive� 89
Prefixes� 90
Patterns� 91

Arrays and hashes� 92
Parent data types� 94
Lab� 94

Scope� 94
Summary� 96

5
Facts and Functions� 97

Technical requirements� 98
Facts and Facter� 98
Custom facts and external facts� 102
External facts� 102
Custom facts� 105
Lab� 112

Functions� 113
Statement functions� 113

Prefix and chained functions� 114
A selection of built-in functions� 115

stdlib module functions� 122
Lab� 123
Deferred functions� 124
Summary� 126

Part 2 – Structuring, Ordering, and
Managing Data in the Puppet Language

6
Relationships, Ordering, and Scope� 129

Technical requirements� 130
Relationships and ordering� 130
Containment� 135
Scope� 140
Best practices and pitfalls� 142

Lab – overview of relationships,
ordering, and scope� 142
Summary� 143

Table of Contentsx

7
Templating, Iterating, and Conditionals� 145

Technical requirement� 145
Templating formats in Puppet – EPP
and ERB� 146
EPP templates� 146
ERB templates� 151
EPP and ERB comparison� 152

Iteration and loops� 153
Iterative loops� 156
Data transformation� 157

Nested data� 158

Conditional statements� 159
If and unless statements� 159
Case statement� 160
Selectors� 161
Capture variables� 162

Lab – creating and testing templates
containing loops and conditions� 162
Summary� 163

8
Developing and Managing Modules� 165

Technical requirements� 166
What is a module and what is in it?� 166
Lab – reviewing the apache module� 171
Roles and profiles method� 171
Writing and testing a module using
the PDK� 175
Testing with RSpec using the PDK� 182
The describe and context keywords� 184
Examples, expectations, and matchers� 185
Parameters and preconditions� 187

Relationships� 188
Data from Hiera and facts� 189
Managing dependencies with fixtures� 192
Coverage reports� 193
Further research and tools for RSpec� 193
Serverspec� 194

Understanding Puppet Forge� 194
Lab – creating a module
and testing it� 198
Summary� 199

9
Handling Data with Puppet� 201

Technical requirements� 202
What is Hiera?� 202
Using the built-in backends� 203
Accessing data� 206

Using custom backends� 214

Hiera layers� 216
Lab – add data to a module� 219

Table of Contents xi

Deciding when to use static code or
dynamic data� 220
Keeping data secure� 221
Lab – use eyaml to store a secret� 223

Pitfalls, gotchas, and issues� 224
Lab – troubleshoot Hiera� 228
Summary� 229

Part 3 – The Puppet Platform
and Bolt Orchestration

10
Puppet Platform Parts and Functions� 233

Technical requirements� 235
Puppet platform installation
and versioning� 235
Puppet Server� 236
The embedded web server� 236
The Puppet API service� 237
The Admin API� 239
CA� 239
JRuby interpreters� 243
Configuration and logs for Puppet Server� 243

The Puppet agent-to-server lifecycle� 246
Lab – monitoring certificate signing logging� 250

PuppetDB and PostgreSQL� 251
Lab – querying PuppetDB� 255

Scaling with compilers� 256
Lab – viewing compiler and load balancer
configuration� 257

Summary� 258

11
Classification and Release Management� 261

Technical requirements� 262
Puppet environments� 262
Environment directories and paths� 263
Environment configuration files� 264
Environment validation and deployment� 265

Understanding node classification� 266
Node definitions� 266
Classifying nodes with Hiera� 268
ENC scripts� 271
PE classifier� 272

Recommended approach� 275

Puppet runs� 276
Managing and deploying
Puppet code� 277
Creating a workflow� 284

Lab – classifying and
deploying code� 285
Summary� 286

Table of Contentsxii

12
Bolt for Orchestration� 289

Technical requirements� 289
Exploring and configuring Bolt� 290
Connecting to clients with transports and
targets� 290
Running ad hoc commands with Bolt� 292
Output and debugging� 294

Understanding the structure of
projects� 296
Configuring a project� 297
Configuring transports� 298
System level and legacy� 300

Introducing tasks and plans� 301
Creating tasks� 301
Creating Puppet plans� 305

Constructing targets� 305
Using plan functions� 306
Logging and results� 307
Handling errors� 308
Managing data sources� 309
Documenting plan metadata� 310
Plan testing� 311
Introducing YAML plans� 311

Plugins� 313
Reference plugins� 314
Secret plugins� 315
Puppet library� 315

Lab – creating and using a Bolt
project� 316
Summary� 316

13
Taking Puppet Server Further� 319

Technical requirements� 320
Logging and status� 320
Exploring log locations� 320
Forwarding server logs� 322
Report processors� 324
Accessing status APIs� 325

Metrics, tuning, and scaling� 327
Exploring metrics dashboards� 328
Identifying and avoiding common issues� 330

Lab – configuring metric dashboards� 334

External data provider pattern� 335
Understanding external data provider
components� 336
External data provider implementations� 337
Lab – hands-on with Splunk and Puppet Data
Service� 339

Summary� 340

Table of Contents xiii

Part 4 – Puppet Enterprise and Approaches
to the Adoption of Puppet

14
A Brief Overview of Puppet Enterprise� 345

Technical requirements� 346
What is Puppet Enterprise?� 346
Exploring the Puppet Enterprise
console and services� 347
Puppet Server� 348
Introducing Puppet web console components� 348
Using Bolt with Puppet Enterprise� 351
Orchestrator services� 352
Running jobs� 354
Configuring performance settings� 355

Automating deployment and
reference architectures� 356

Understanding supported architectures� 356
Deployment and configuration� 359

Puppet Enterprise-related projects
and tooling� 361
Monitoring and troubleshooting Puppet
Enterprise infrastructure� 361
Managing deployments and ensuring
compliance� 362

Lab – Puppet Enterprise extensions
and configuration� 364
Summary� 364

15
Approaches to Adoption� 367

Scope and focus� 368
Managing heritage estates with
no-op mode� 370
A platform engineering approach� 372

Adoption in regulated environments� 374
Moving to the cloud� 375
Summary� 376

Index� 379

Other Books You May Enjoy� 392

Preface

As DevOps and platform engineering have pushed demand for powerful internal development
platforms, the need for infrastructure automation solutions has never been greater. Puppet is one of
the most powerful infrastructure automation solutions used by the largest enterprises in the world and
has a strong open source community. This book comprehensively explains both the Puppet language
and the platform. Starting with the basic concepts and approach of how Puppet works as a stateful
language, it builds up to explaining how to structure Puppet code to scale and allow flexibility and
collaboration among teams. It then looks at how the Puppet platform allows management and reporting
of infrastructure configuration, showing how the platform can be integrated with other tools such as
ServiceNow and Splunk. Finally, approaches will be discussed to understand how to implement Puppet
to fit into heavily regulated and audited environments as well as modern hybrid cloud environments.

By the end of this book, you will have a full understanding of the capabilities of both the Puppet
language and platform and be able to structure and scale Puppet to create a platform to provide
enterprise-grade infrastructure automation.

Who this book is for
This book is ideal for DevOps engineers looking to automate infrastructure configuration with Puppet.
It specifically focuses on Puppet’s configuration management capabilities but goes on to touch on other
infrastructure management practices in general. It will allow both beginners and current Puppet users
to learn about the full power of the Puppet language and platform.

What this book covers
Chapter 1, Puppet Concepts and Practices, focuses on why Puppet was developed, how it has changed
over time, and the core concepts and practices of Puppet. It also focuses on how Puppet assists in a
DevOps transformation and our approach to it.

Chapter 2, Major Changes, Useful Tools, and References, discusses major changes such as harmful
terminology, sensitive values, deferred functions, and other high-level items that have emerged since
Puppet 5. It will also highlight items that have dropped out of Puppet. It will cover useful tools to assist
development, such as VS Code and the Puppet Development Kit (PDK), showing how the lab and
development environment will work for the book. It will also show various Puppet and community
references for further learning.

Prefacexvi

Chapter 3, Puppet Classes, Resource Types, and Providers, introduces the most basic building blocks of
Puppet and how to use them so you can understand the initial stages of writing Puppet code, showing
how resource types and providers work together to create stateful code independent of the underlying
OS implementation and how classes allow us to group these resources.

Chapter 4, Variables and Data Types, details how to assign variables with data types in Puppet, how
they can be managed in arrays and hashes, the use of the sensitive data type to secure variables, and
how the variable scope is managed. Then, we’ll provide some best practice advice on how to use these
variables and data structures well within Puppet.

Chapter 5, Facts and Functions, looks at the facts and factors that it provides, how to use them in Puppet
code, and how to customize them. It will also look at functions: what they are, how lambdas can be used
with them, and how the relatively recent deferred functions can be used with them

Chapter 6, Relationships, Ordering, and Scope, covers how Puppet handles relationships and order as
well as scope and containment. These issues come together to help the user understand how cross-
module or cross-class resources and variables will intersect.

Chapter 7, Templating, Iterating, and Conditionals, shows how to use templates, iteration, loops, and
various conditional statements, such as if cases and selectors to affect the flow and management of code.

Chapter 8, Developing and Managing Modules, discusses the structure of modules, the use of the PDK
to create them, and how we can test modules. It will also discuss how to use Puppet Forge well to both
consume and share code and understand the quality of shared modules.

Chapter 9, Handling Data with Puppet, runs through how Puppet handles data, discussing what Hiera
is, at what levels to store data, and some pitfalls and mistakes to avoid in structure and approach.

Chapter 10, Puppet Platform Parts and Functions, helps you understand what Puppet is as a platform,
how the various components work together and communicate, and common architecture approaches
to deliver scale.

Chapter 11, Classification and Release Management, discusses how Puppet manages servers and code
in environments, how servers can be classified, and how the Puppet run of this classification actually
runs. The tooling to deploy code into these environments will also be discussed.

Chapter 12, Bolt for Orchestration, looks at how to use Bolt as an orchestrator for procedural tasks,
showing the various transport options – SSH, WinRM, and PCP – to use via Puppet agents. You will
see how tasks and plans can complement Puppet code and how Puppet code can be orchestrated and
deployed via Bolt itself.

Chapter 13, Taking Puppet Server Further, looks at more advanced topics to ensure you can monitor
and scale your infrastructure, deal with common issues, and integrate external data sources.

Chapter 14, A Brief Overview of Puppet Enterprise, highlights the differences between Puppet Enterprise
compared to open source, and the integrations and services available to help scale and tune infrastructure.

Preface xvii

Chapter 15, Approaches to Adoption, discusses how Puppet can be adopted and worked with in real
brownfield environments, highlighting lessons learned in the field and from various adoptions, and
looking at correctly scoping use cases to benefit from delivering regularly. It will look at how Puppet
can work within platform engineering as well as with heritage estates, and even in highly regulated
and change-managed estates.

To get the most out of this book
Some background understanding of system administration for Unix and Windows systems and
application deployment is required. Also, some core development concept knowledge is required,
such as revision control tools (Git, virtualization, and testing) and coding tooling (such as vi or Visual
Studio Code).

Software/hardware covered in the book Operating system requirements
Puppet 7 or 8 Windows, macOS, or Linux
Bolt Windows, macOS, or Linux
Visual Studio Code Windows, macOS, or Linux
Azure
Puppet Development Kit (PDK) Windows, macOS, or Linux
The PEADM module Windows, macOS, or Linux

The full configuration of the required software for the lab environment will be covered in Chapter 2.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Puppet-8-for-DevOps-Engineers. If there’s an update to the code,
it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/vPsXh

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/vPsXh

Prefacexviii

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "The lookup
function key, data_hash, accepts yaml_data, json_data and hocon_data as values but most
Puppet implementations just use YAML data, so this book will default to the yaml_data backend."

A block of code is set as follows:

hierarchy:
- name: "YAML layers"
  paths:
    - "nodes/%{trusted.certname}.yaml"
    - "location/%{fact.data_center}.yaml"
    - "common.yaml"

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

 type { 'title':
   attribute1 => value1,
   attribute2 => value2,
 }

Any command-line input or output is written as follows:

bolt --verbose plan run pecdm::provision @params.json

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance,
words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the
Administration panel.”

Tips or important notes
Appear like this.

Preface xix

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Puppet 8 for DevOps Engineers, we’d love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
https://packt.link/r/180323170X
https://packt.link/r/180323170X

Prefacexx

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803231709

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803231709

Part 1
– Introduction to Puppet

and the Basics of the
Puppet Language

This part will establish the core concepts of what Puppet is, what you can achieve with Puppet, how it
fits into a DevOps approach, and how we will approach it in this book. We will then take a high-level
overview of the core components of Puppet. The development lab environment used throughout the
book will be reviewed, along with useful references and further learning resources. Then, we will begin
with the basics of the language by looking at classes, resources, variables, and functions.

This part has the following chapters:

•	 Chapter 1, Puppet Concepts and Practices

•	 Chapter 2, Major Changes, Useful Tools, and References

•	 Chapter 3, Puppet Classes, Resources Types, and Providers

•	 Chapter 4, Variables and Data Types

•	 Chapter 5, Facts and Functions

1
Puppet Concepts and Practices

This chapter will focus on the origins of Puppet, why it was created, and how it is used in DevOps
engineering. It will look at Puppet’s approach to configuration management and how its declarative
approach differs from more regular procedural languages. Puppet has many features that are common
in other languages such as variables, conditional statements, and functions. But in this chapter, we will
cover the key terms, structure, and ideas of the language that make it different and how the underlying
platform runs. We will give a clear, high-level overview of its approach and how it relates to customer
needs and infrastructure environments. Finally, as there are a lot of preconceptions regarding Puppet,
this chapter will finish by addressing some of the most common ones, including where they come
from, and unwrap them.

This should ensure a fundamental understanding of Puppet and its approach before we build up a
deeper, technical understanding of the language in upcoming chapters. It will also ensure this book
is not just about technology but how genuine value can be delivered to customers using the service
that Puppet provides.

In this chapter, we are going to cover the following main topics:

•	 Puppet’s history and relationship to DevOps

•	 Puppet as a declarative and idempotent language

•	 Key terms in the Puppet language

•	 Puppet as a platform

•	 Common misconceptions

Puppet’s history and relationship to DevOps
Puppet was started by creator and founder Luke Kaines, who was working as a sysadmin and
consultant. He was unable to find the tooling he wanted to use and that his customers could rely on,
so he created Puppet as a Ruby-based open source configuration management language in 2005. The
success of this open source project resulted in the release of a commercial offering, Puppet Enterprise,

Puppet Concepts and Practices4

in February 2011. But as the demands increased and Puppet needed to reform and expand as both a
company and an open source project, Luke stood down, stating that the challenges of growing Puppet
to enterprise-scale were far from what I love to do most, and far from my core skills. We need to scale,
and we need to execute.

The new leadership that followed took a direction that saw the company develop its professional
services, and focus more effort on developer tooling and education while expanding its product range
both organically and via acquisitions, striking a difficult balance between the open source community
and its enterprise customer demands. Puppet was acquired by Perforce Software on May 17, 2022,
following the Chef (2020) and Ansible (2015) acquisitions, as the last of the standalone configuration
management start-ups. Luke summed up the change that has taken place in the industry: DevOps
teams are different now. Companies are looking for a complete solution, rather than wanting to integrate
individual best-of-breed vendors.

This history has seen Puppet move from a tool that left it to the developer to decided how best to
use it to solve problems to, today, a tool with patterns and solutions that users can just consume to
standardize their automation and deployment. This has allowed users to focus on their solutions and
not the underlying technology.

DevOps itself has become a frustrating term in the IT industry; the definition given by formal sources
differs hugely from how companies actually use it, and references to it can be used as a cynical
buzzword or sales gimmick. The focus of this book is on DevOps engineering, as used particularly
by large companies and has been well r1esearched and discussed in studies such as the Puppet-run
State of DevOps Report. DevOps engineering is normally delivered as part of projects such as digital
transformations, cloud-first migrations, and various other modernization projects. What is typically
seen in these projects is a desire to automate self-service deployment, compliance, and remove toil.
This approach follows the DevOps goal of breaking down the silos between developers and ops teams
by allowing better communication and establishing shared goals. What is noticeable is that the system
administrator role in which Luke worked originally has effectively been replaced by roles such as
DevOps engineers.

Puppet will be used as part of a DevOps toolchain, and Figure 1.1 shows an example set of tools and
their relative functions. It is typical for Puppet to start its role at the end of a provisioning pipeline, as
infrastructure is stood up in a platform and needs to be configured and enforced:

Puppet as a declarative and idempotent language 5

Figure 1.1 – A DevOps toolset

This book will focus not just on a technological understanding but also on how to use the maturity
of the Puppet language, tooling, and platform with opinionated patterns. These approaches have
been developed through years of customer engagements for Puppet and the communities’ own
implementations to allow users to reduce their effort in finding the right approach, focus on their
solutions, and deliver immediate benefit and return to their customers.

Puppet as a declarative and idempotent language
The first important thing to understand is how Puppet differs from normal scripting or coding
languages. Puppet is declarative, meaning you describe the state you want the system to be in. For
example, you could describe that your system should have a user called username with UID 1234, a
configuration file should not exist, and a kernel setting should be at a particular value. In comparison
to most languages where you have to describe the process to get to the state, Puppet’s approach brings
us closer to how customers request services. They don’t want to know how it’s done, just that it will
meet their requirements. These resource definitions can be saved in your version control system.
Often, this approach is described as being part of Infrastructure as Code.

Puppet is idempotent, meaning that it will only make the changes required to get into the declared
state. Meanwhile, most procedural languages will run steps every time and, typically, require various
checks such as if statements to be added to make checks to avoid duplication. This is particularly
powerful as what is called enforcement can be run with the Puppet language, ensuring the state you
declared has been reached, and is capable of detecting whether a change happened because of you
updating the state you wished the machine to be in or whether it was a change that happened on the
machine itself moving away from the desired state. This can greatly assist with audits and avoid any
configuration drifts in an estate and ensure change is managed and deliberate.

Puppet Concepts and Practices6

Puppet is OS-independent; the language is focused on the state, not the underlying implementation of
how particular OSes install a package or add a user. This gives us a universal language that is independent
of any underlying implementations, allowing for less duplication of code, avoiding the need to use
layers of case/if statements to detect differences, and allowing multiple language implementations
such as PowerShell for Windows and Bash for Unix-based systems. Additionally, it makes it easier
to recover after failures in applying code. If in a procedural language, a step fails, it might not be safe
to run the script in full again depending on how well the check steps have been coded. In contrast,
Puppet code is able to resume only performing the steps it needs to reach the correct state.

A simple example of Puppet code to create a user would look like this:

user { 'david'
  uid => '123'
}

In contrast, a shell script might have a section like this:

if ! getent passwd david; then
  useradd -u 123 david
elif ! $(uid david) == 123; then
  usermod -u 123 david
fi

In the preceding shell example, we have to check whether a user exists, and if not, create one. If it
does exist, then does it have the right UID? If not, we change it. This script only covers OSes that can
use useradd and usermod. To achieve compatibility with multiple OSes, we would need a test to
detect the OS type and produce a section of code like this for every OS or group of OSes and their
required commands. Often, it would be more practical to write in multiple languages and scripts to
cover a broader base of OS flavors, that is, if we wanted to cover both Unix and Windows, for example.

This compares to the Puppet declaration, which will work on multiple OSes without change as Puppet
will detect the required commands and perform all the necessary state checks as part of that.

This example is all just for a single resource with a single attribute. You can quickly see how the shell
script example will not scale as it becomes increasingly complex with almost endless checks and options.

Key terms in the Puppet language
Looking at the Puppet language in more detail, the most fundamental item in Puppet is a resource.
Each resource describes some part of the system and the desired state you wish it to be in. Each
resource has a type, which is a definition for the Puppet language of how this particular resource
can be configured, which attributes can be set, and what providers can be used. The attributes are
what describe the state. So, for a user, this might be a home directory or, for a file, the permissions.
Providers are what make the Puppet OS independent since they do the underlying commands be
they for creating a user or installing a package.

Key terms in the Puppet language 7

So, let’s take an example of a company that typically submits build request forms to an environments
team to request the configuration for a server:

Table 1.1 – An example build request form

In Table 1.1, the request form, we see groupings of users, groups, and directories, which are all,
essentially, types. Each item under them is a resource, and the configuration settings are the attributes.

This request could translate to something like the following:

user { 'exampleapp':
  uid => '1234'.
  gid => '123'
}

group { 'exampleapp':
  Gid => '123'
}

file { '/opt/exampleapp/':
  owner => 'exampleapp',
  group => 'exampleapp',
  mode  => 755
}

Puppet Concepts and Practices8

file { '/etc/exampleapp/':
  owner => 'exampleapp',
  group => 'exampleapp',
  mode  => 750
}

The preceding example shows how Puppet translates more directly to user requests and can remain
readable without even understanding any of the Puppet language.

What isn’t visible, in this example, is the providers. Puppet has defaults, such as in the preceding
example, where the user resource assumes a RedHat host will use the usermod provider. Instead,
if I wished to use LDAP commands for user creation, I would set my provider attribute to LDAP.

The next important thing to note is that due to the nature of writing Puppet in a stateful way, we are
not writing an ordered process that executes line by line but only declaring the state of resources
that could be implemented in any order. Therefore, if we have any dependencies, we need to use the
relationship parameter; this describes a before/after relationship, which is exactly as it sounds,
or a subscribe/refresh, whereby, for example, updating a configuration file could cause a service to
restart. In the previous example, Puppet automatically creates certain dependencies such as ensuring
the group is created before the user, so we don’t have to add a relationship parameter.Often, these
relationships are seen as one of the most difficult parts of Puppet to adapt to, as many coders are used
to writing a process to follow and mistakes can be made. This can cause a cycle of dependencies,
whereby a chain of these dependencies cycles round, and there is no way to create a starting resource
that isn’t dependent on another.

Evidently, the resources we declare need a structure, and the first step is for this code to be in a file.
Puppet calls these manifest files, which have an extension of .pp. Classes are blocks of Ppuppet
code that give us a way to specifically call sections of code to be run on hosts. Normally, as a good
practice, we only have one class in a manifest file. Puppet then uses modules as a way to group these
manifests and classes. This grouping is based on the principle that a module should do a single thing
well and represent a technical implementation, such as a module configuring the IIS application or
configuring postfix as a mail relay. Modules are simply a directory structure storing the manifests,
classes, and other Puppet items (which we will cover, in detail, in Chapter 8) and are not a keyword
in the language itself. So, ideally, modules should be shareable and reusable for different users and
organizations with many taken straight from the Puppet Forge, which is Puppet’s catalog of modules
with both commercial and open source offerings.

Key terms in the Puppet language 9

An example of one common style and practice for modules is to have a manifest file with a single
class for the following:

•	 install.pp (grouping resources related to installing software)

•	 config.pp (grouping resources related to configuring software)

•	 service.pp (grouping resources related to running services)

•	 init.pp (a way of initializing the module and accepting parameters)

At a higher level, we then have roles and profiles, which are used to create the structure of your
organization. While modules should be sharable and repeatable installations of technical implementations,
such as Oracle or IIS, roles and profiles will only have context within your organization. Roles and
profiles are classes used to group modules and selected parameters into logical technical stacks and
customer solutions. It is common to make a roles module and a profiles module while keeping
together the classes used.

What can be confusing, at this point, is that you can end up with an Oracle Role, an Oracle profile, and
an Oracle module. So, while the Oracle module configures and installs Oracle with various parameters
available to it to customize the installation, the Oracle profile is about how your organization uses this
module and what other modules it might add to this technology stack. You might specify that you
always use Oracle with a cluster service and, therefore, your Oracle profile contains both an Oracle
module and a cluster module. Alternatively, it might pass parameters to the Oracle module within
your profile, which set default kernel settings for your organization’s configuration.

You can think of a role as being what the customer actually wants when they submit a build request; they
need a particular type of server, be it an Oracle or an IIS server. They don’t care about the underlying
implementations – only that it meets their requirements. While the Oracle role will certainly need
the Oracle profile, it will expect it to meet the OS security standard and to have any agents or other
supporting tools your organization defines. Therefore, a common profile for many organizations is a
base OS security standard that ensures every server is compliant and that is part of almost every role.

Figure 1.2 shows an example of what has just been described as an Oracle role class in the roles module,
which includes an Oracle profile class and an OS security profile class, both from the profile module.
Then, the Oracle profile includes an Oracle module, while the os_security profile includes the
DNS module:

Puppet Concepts and Practices10

Figure 1.2 – The structure of roles, profiles, and modules

In Chapter 8, we will go into more technical detail, but the key takeaway from this overview is to
understand that modules provide sharable and reusable single-use technical installations. In contrast,
the roles and profiles pattern provides the context for your organization. Roles are for customers
ordering server offerings; they don’t need to understand the technical implementation, only that it
meets their business requirement. The profiles in your organization’s technology stack are managed by
technical designers and architects, who combine and specify modules according to your organization’s
standards and configurations. These roles are responsible for defining how different components are
integrated to create the desired technology stack. So while an Oracle module by itself can configure and
install Oracle, it is the profile that defines the exact configurations that should be passed to that Oracle
module and the other modules it may be dependent on such as having a NetBackup client installed.

With what we have covered in modules, roles, and profiles, going back to Table 1.1, instead, we can
have a customer submitting the build request form but not having to specify everything they need;
they could simply order an exampleapp role server.

Key terms in the Puppet language 11

What we have seen so far is fine when servers meet all the specifications and are standard, but exceptions
are commonplace. Hiera is Puppet's data system, and it can be used to pass parameters to the roles and
profiles model to handle exceptions. Hiera, as its name suggests, is hierarchical. It defines an ordered
lists of data sources to access to find the most relevant setting. These data sources will typically be
ordered from the default value for all nodes to a more specific group such as a particular role and
specific values for an individual node.

For example, if email servers were disabled by the default OS security profile but were required for
exampleapp, we could have the following YAML file:

exampleapp.yaml
profile::os_security:email_enabled: true

Similarly, if server1 needed a different UID, we could have the following YAML file:

server1.yaml
profile::exampleapp:uid: '1235'

One of the most important points of creating these patterns is to avoid hardcoded values in your
modules. By using Hiera, you give yourself a dynamic way to change the values in the future without
modifying the code. This could evolve to access the data via a self-service portal – automating away
from builds ordered via spreadsheets, emails, and discussions, which would have to be configured by
the build teams instead of portals such as VMware vRealize Automation or ServiceNow:

Figure 1.3 – An example portal

Puppet Concepts and Practices12

In Figure 1.3, an example portal shows how customers can be presented with simplified products.
The focus of the Puppet language should be to deliver consistent products to customers and allow
customers, architects, and technical staff to focus on what they care about and not have to delve into
the technical requirements or coding sections themselves.

Puppet as a platform
So far, this chapter has focused on the Puppet language, but now we will look at the Puppet platform
and how it applies the desired state to client servers. Puppet can be run with just an installed agent
and all the files locally, which is common for testing, but this overview will focus on the client-server
setup. In Chapters 10, 13, and 14, we will go into much more detail about resilience, scalability, and
more advanced running options. However, for now, we will focus on how a Puppet client talks to a
server to request and apply its desired state.

Every client under Puppet control will install a Puppet agent. Figure 1.4 shows the steps of a Puppet
agent run, which this section will outline:

Figure 1.4 – The Puppet agent run life cycle

The first step is for the agent to identify itself to the primary server with SSL keys or to create new SSL
keys for the primary server to sign. This will secure communication between the server and client.

The next action is for the client to use a Ruby library called Facter. This is a system profiler to
gather what is known as facts about the system. This can be things such as the OS version or RAM
size. These facts can be used in code or by Hiera to make choices about what state a host should be
in, such as Windows Server 2022 having a particular registry setting.

Then, the server identifies what classes should be applied to a server. Typically, this is done by what is
called an end node classifier (ENC) script, which is based on the facts and user definitions. Normally,
this will apply a role class to a server, which, as we discussed in the previous section, builds up a
definition of profiles and module classes.

Puppet as a platform 13

Then, the primary server compiles a catalog and a YAML file of the resources to be applied to the node
(ensuring the CPU-intensive work happens on the server and not the client).

This catalog is then sent to the client who uses the catalog as a blueprint of what the state should look
like and makes any necessary changes to enforce the state on the client.

Finally, a report is sent back to the primary server confirming what resources were applied and whether
these resources had to be changed due to a change in Puppet code or whether they were changed
outside of Puppet control (which might be an audit or security breach).

In Figure 1.5, we see an example extract from a Puppet report showing the name of the resource, the
type of change made, and the value it needed to change. Additionally, the report includes a record of
unchanged resources highlighting what is part of Puppet's enforcement:

Figure 1.5 – The Puppet console server report

Puppet Concepts and Practices14

By default, this cycle takes place every 30 minutes. In the previous sections, the focus was on how the
language can automate the building of servers. Here, we can see that, via the platform, we can ensure
all our deployed servers are enforced with the state we set out to achieve; whether that be a security
standard profile or whether we decided to update the settings in a particular implementation such as
adding extra features to IIS. This avoids server drift, where servers on the estate are difficult to keep
up to date or are vulnerable to changes made manually in error or that maliciously breach standards.
Figure 1.6 shows the dashboard view of Puppet Enterprise, giving a clear view of an estate of servers
and the status of the last run. This highlights whether the servers are in compliance with our state or
had to make changes in their previous run:

Figure 1.6 – The Puppet console status dashboard

What we have reviewed so far would presume a common code base, and when any code changes are
made, all clients would have a new state enforced within the next 30 minutes as agents contact the
primary server. This would clearly be problematic, as bugs will affect all servers within a brief period.

Common misconceptions 15

This is why Puppet has environments. An environment is a collection of versioned modules. This is
achieved by storing the modules in revision control, such as git, where the version can be declared
as a commit, a tag, or a branch, which we can list in a file called a Puppetfile.

An example module declaration would look like this:

mod 'apache',
  :git => 'https://github.com/exampleorg/exampleapp'
  :tag => '1.2'

By maintaining this Puppetfile in git, in what is known as a control repo, it is possible to represent
multiple environments by having different branches with different versions of the Puppet file.

A common practice is to match environments against how your organization classifies server usage.
Normally, this means a minimum of a development environment and a production environment. So,
changes can be tested against servers in development, and then the successfully tested ones can be
deployed to production. This can be taken further using canary environments to test small subsets of
the server. This approach can all be customized to the change and risk setup of different organizations.

All the facts and reports we mentioned, as part of the agent cycle, are stored in PuppetDB, a frontend
database for PostgreSQL. which is designed to manage Puppet data such as reports and facts. This is
used with the Puppet Query Language (PQL), which allows us to search the information we have
gathered. This can allow for searching of facts giving CMDB style data and for combinations where we
can check whether a certain resource for a role had changed, which could indicate a change breach
had taken place.

So, in this section, we have seen that the Puppet platform gives a way to progressively deploy new
code based on environments. It stores facts about the clients along with the reports generated on each
run, giving a powerful view of CMDB along with audit and compliance information in the reports
as we confirm what state the servers are in. This can all be searched using PQL. This can lead to huge
savings in operational toil in terms of audit and compliance report generation and helps avoid building
technical debt as standards and configurations change.

Common misconceptions
Isn’t Puppet dead?

The focus of bleeding-edge technology has moved on to serverless and other Software-as-a-Service
(SaaS)/containerized offerings, while at an Infrastructure-as-a-Service (IaaS) level, development in
Puppet has reached a much greater level of maturity. 10 years ago, you might have bought this book
assuming it was relevant regardless of whether you were going to work with Puppet. Today, you have
a Puppet solution to implement or understand.

I need to know Ruby to use Puppet.

Puppet Concepts and Practices16

Some basic knowledge of Ruby would be an advantage for certain areas of Puppet code. A focus
on the good use of the Puppet language to get early returns is what this book will focus on, and the
reality is that the majority of Puppet professionals don’t spend much time with Ruby trying to create
customizations. Even specialists working for Puppet itself find that it can be some time before they
need to write something custom in Ruby.

Puppet won’t work with our change management.

A big fear is the idea of Puppet making changes outside the scope of governance and change management.
This often reflects assumptions and a lack of communication with change management teams. Puppet
will enforce the state you have described; therefore, changes will only happen if the state described in
the code has changed or if it has been changed outside of Puppet’s control. As previously mentioned,
as long as it is agreed that Puppet is the way to define particular resources, any change to the state
should be seen as outside of governance and, therefore, put back into place. Later chapters will discuss
how to release code and environments to ensure that Puppet remains properly access-controlled and,
therefore, within governance.

I can’t make manual changes or exceptions.

This could certainly happen if users try to work around Puppet. To avoid this, it’s important to define
what Puppet is responsible for, what other tooling or manual processes are responsible for, and how
exceptions should be requested and approved in your system. As will be discussed in Chapters 8 and
9, by using parameters in modules and Hiera for exceptions, a controlled method can be used for
exceptions, which also keeps a record in code.

I need Puppet Enterprise to use add-ons and integrations.

There is a huge amount of confusion, particularly from industry analysts, who make comparisons
about what users get with Puppet Enterprise and how open source might be limited. This book will
go into more depth in Chapter 14, but the fundamental difference for Puppet Enterprise is you are
paying for support, services, and pre-canned modules, infrastructure, and solutions. If you have the
skills, developers, and time, all of these features can be replicated in open source. Ultimately, Enterprise
runs on the open source components.

Everyone will need to learn Puppet.

A major focus of this book will be the importance of structuring code to allow for self-service processes.
This avoids users who might wish to have small exceptions or integrations having to learn everything
as a Puppet developer and only having to understand your offerings.

It will clash with other systems.

The key part is to understand what Puppet will be responsible for and what other systems will be
responsible for, and to document this well. Many environments will run multiple configuration
management, orchestration, and software management tools. The important thing is to use them to
their strengths with clear boundaries.

Summary 17

Summary
In this chapter, you learned how Puppet was created by Luke Kaines as a stateful language to ease the
automation of the configuration management of servers. We learned how using this stateful approach
provides a language more natural for describing user requirements for configuration management
and reduces the complexity involved in more traditional procedural approaches.

We looked at an overview of the core language terms and components and how they are structured via
roles, profiles, and modules. This structure offers a natural way to create customer offerings, technical
stacks, and reusable technical modules.

We looked at how the states described in the language are then applied to hosts via Puppet runs, and
from these runs, we examined how valuable audit and compliance information can be gathered and
stored in PuppetDB. We discussed how code can be managed in environments to allow the gradual
release of state changes in a managed way in logical groups of servers that suits your organization’s
risk appetite and development structure.

The chapter discussed some misconceptions around Puppet along with the main themes of relevance,
complexity, and flexibility. Puppet’s maturity and focus on IaaS make it less fashionable, but using
patterns and modules developed by Puppet and the community allows you to use Puppet to its strengths
and deliver automation and self-service configuration and compliance to customers. Ensuring clear
boundaries and responsibilities so that Puppet can integrate with, and work alongside, other tooling
and teams avoids clashes and allows others to interact with Puppet and gain the benefits.

In the next chapter, we will review the major changes that have taken place in Puppet since version 5
and in the latest version, 7. Recommendations of the tooling to use to create an effective development
environment will be made, and the creation of lab environments will be outlined and demonstrated.
Additional reference sites will be outlined to allow readers to continue their research and stay up to
date with developments in Puppet. This will ensure that as we start on the technical details in the
following chapters, you will have the capability to test and experiment in your own environment and
follow up in more detail on your points of interest.

2
Major Changes,

Useful Tools, and References

This chapter will set out the major changes that have taken place since Puppet 5 up to the current
versions, Puppet 6.28 and 7.21. This is viewed as the modern era of Puppet, where in the previous
chapter, the change of focus was highlighted in the history of Puppet. This summary of changes will
also cover some redundant patterns and approaches that might still be seen from earlier versions
of Puppet, as these can still be visible in code and various sources. The chapter will then go on to
discuss tooling to create a productive developer environment for Puppet, which will be used for the
lab environment throughout this book. The aim will be to give an opinionated view of how to develop
Puppet code and tooling that can assist with this. These tools can be installed in an environment of the
readers’ choice. The lab environment itself will then be demonstrated by standing up a simple setup
and logging in. The chapter will finish by looking at what resources are available for you to keep up
to date with Puppet and research further topics of interest.

In this chapter, we’re going to cover the following main topics:

•	 Major changes since Puppet 5

•	 Legacy patterns before Puppet 5

•	 IDEs and tooling to assist in Puppet development

•	 How to deploy your Puppet lab and development tools

•	 References and further research

Major Changes, Useful Tools, and References20

Technical requirements
The development environment will require an OS with access to the internet, which can be any of
the following:

•	 macOS using Homebrew to install the software

•	 Windows 10/11 or Windows Server using Chocolatey to install the software

•	 A Linux environment using package managers such as apt for Ubuntu or RHEL-based using Yum

The following software is required for the development environment:

•	 Puppet agent (https://www.puppet.com/docs/puppet/8/install_agents.
html)

•	 Bolt (https://puppet.com/docs/bolt/latest/bolt.html)

•	 Visual Studio Code (https://code.visualstudio.com/) with the following extensions:

	� JSON for Visual Studio Code

	� Puppet

	� rest client

	� Ruby

	� ShellCheck

	� Thunder client

	� VSCode Ruby

	� YAML

	� PowerShell

	� The Puppet module PECDM (https://github.com/puppetlabs/puppetlabs-
pecdm)

•	 The GitHub CLI (https://github.com/cli/cli)

•	 The Puppet development toolkit (https://puppet.com/try-puppet/puppet-
development-kit/)

•	 The Azure CLI (https://docs.microsoft.com/en-us/cli/azure/install-
azure-cli)

•	 An Azure account

•	 A GitHub account (free account)

•	 The SSH keys created to communicate with GitHub

https://www.puppet.com/docs/puppet/8/install_agents.html
https://www.puppet.com/docs/puppet/8/install_agents.html
https://puppet.com/docs/bolt/latest/bolt.html
https://code.visualstudio.com/
https://github.com/cli/cli
https://puppet.com/try-puppet/puppet-development-kit/
https://puppet.com/try-puppet/puppet-development-kit/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Major changes since Puppet 5 21

The PECDM module (https://github.com/puppetlabs/puppetlabs-pecdm) will
create resources as specified via the bolt command. The cost of running the labs in Azure should be
carefully watched via the Azure cost analysis tools to avoid unexpected bills. Labs not in use should
be destroyed or at least deallocated to reduce charges.

All of these components have equivalents that you might use in your organization. However, the purpose
of this development and lab setup is to make it as simple and automated a setup as possible. It might
well be an exercise you wish to do as the book progresses to test out your own components. PECDM
itself supports AWS, Azure, and GCP with instructions on the module to configure the necessary CLI.

The code for this section can be found at https://github.com/PacktPublishing/
Puppet-8-for-DevOps-Engineers/tree/main/ch02.

Major changes since Puppet 5
Puppet 5 reflects the change in direction of Puppet as an organization, which was highlighted in the
previous chapter. Its focus is on performance and scaling for infrastructure and stability in the language.
This section will cover the changes that have taken place between Puppet 5 and 7; these versions reflect
the versions of Puppet in use, which you are likely to see in code bases you are working with and in
modules you would take from the Puppet forge. It will also cover some old patterns and issues you
might see in code that reflect how Puppet was before version 5.

Puppet 5

Puppet 4 had a large number of deprecated features, which were almost all removed in Puppet 5. It
is not worth listing all of these features, but just to set the context of the release, it was more about
finishing what had been started in Puppet 4 by introducing more new features. It standardized package
numbering, with all the Puppet packages starting at 5.0.0 instead of the mismatches of various packages,
such as Puppet 4 requiring Puppet Server 2.x and Puppet agent 1.x.

Puppet 5 as a server platform delivered big boosts in performance: agent runtimes were 30 percent
lower, CPU utilization was at least 20 percent lower, the catalog compile times reported by Puppet
Server were 7 to 10 percent lower, and Puppet 5 was able to scale to 40 percent more agents. Puppet
Server metrics were introduced to give greater observability of the Puppet platform. In addition to
this greater performance and scalability, Puppet Enterprise 2017.4 onward had capabilities to allow for
disaster recovery along with package inspection, which stored information about software installed
across the estate regardless of whether Puppet managed it or not. Full technical details of the Puppet
Enterprise features will be discussed in Chapter 14.

Although not affiliated directly with Puppet 5, the Puppet Development Kit (PDK) was released
around the same time, which automated a lot of tool installation, testing, linting, and the creation of
module directories (this will be covered in detail in Chapter 8). Previously, this had to be done by hand

https://github.com/puppetlabs/puppetlabs-pecdm
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch02
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch02

Major Changes, Useful Tools, and References22

or by individual developer automation. Additionally, Hiera 5 integrated with EYAML (a mechanism
of encrypted data covered in Chapter 9), which was introduced and massively simplified how data
could be secured and still used.

Puppet 6

Puppet 6 came with a substantial change when a lot of types that had been included with the core
Puppet install were removed and put into modules, which users could choose to download from the
Puppet forge. This was to narrow down the installation, as the number of core types had grown over
time, and it was far more efficient for users to choose what they wanted. A review of what functions
were being consistently used took place, and a number of string and math functions were moved
from the stdlib module into core Puppet to reflect their core use. The trusted external command
was also introduced; this allowed for external data sources to be queried and brought in like facts,
so an API on a Satellite server or a database server could be called and brought in for use in Puppet
code. This will be covered in detail in Chapter 13. Additionally, the deferred data type was introduced,
which allowed variables to run deferred functions locally on machines at deployment time. This is
particularly useful for use cases such as secret management, for example, a vault, where a traditional
function would make its call from the Puppet primary server and send the secret to the agent over the
Puppet infrastructure. Parametrized execs were introduced in 6.24, which allow for the separation of
commands from parameters when using the exec resource type – a powerful security measure to
prevent commands from being passed instead of parameters.

On the platform side, the Puppet certificate commands were changed from puppet cert commands
to puppet server ca, which were more complete and more powerful commands. Also, PuppetDB
was included on Puppet compiler servers to better manage the load of requests on PuppetDB. The
full details of the platform are covered in Chapter 10.

Puppet 7

One of the most noticeable changes in Puppet 7 was the removal of harmful terminology following
a review and work beginning in 2014. This focused on phrases such as master/slave and blacklists/
whitelists. For Puppet, this means that master servers became primary servers, master services became
server services, and in modules, the master branch became the main branch. It also means blacklist/
whitelist terminology was replaced with allow list/block list.

The parameterized execs mentioned in the Puppet 6 updates were available with the 7.9 Puppet language.
Factor was upgraded to version 4, a re-write in Ruby, which provides features such as benchmarking,
timeouts, and user caching, which will be discussed in Chapter 5. The option to not include legacy
facts via the include_legacy_facts option was included as of 7.21.

The platform upgraded to Postgres 11 and Ruby 2.7, which further increased performance.

The reporting mechanism also had the option to not include unchanged resources in its reports via
the exclude_unchanged_resources option.

Legacy Puppet patterns 23

Again, although not affiliated with Puppet releases directly, PDK 2.0 was released close to Puppet 7,
dropping support for Puppet 4.

Legacy Puppet patterns
This section will highlight some old patterns and their reason for use in old versions of Puppet. This
will help you to understand code that can be commonly found in older, unmaintained modules or
code that simply has never been refactored over time. Puppet 4 introduced data types, but before
this, all variables were strings, and a lot of comparisons and other functions could have quite strange
and inconsistent results. To understand the full extent of this, you can view www.youtube.com/
watch?v=aU7vjKYqMUo. Therefore, you might see in historic code the odd handling of variables
and checks for undefined variables. Originally, facter facts were also just called top-level variables,
which could be very confusing with normal variables and created the opportunity for accidental
overrides. This changed to the facts hash, which we will show in more detail in Chapter 5.

The platform infrastructure was more complicated and varied with the options of using Rack or WEBrick
configurations. In very early versions of Puppet code, which predate the file_line function of
the Puppet stdlib module, there was no way to manage single lines of a file. This resulted in the
overuse of Augeas (a tool that can parse files to allow for manipulation) and templates (which allow
for the creation of file using conditional logic and variables). Augeuas is very advanced but often
over-complicated and a drain on performance, while the overuse of templates resulted in whole files
being enforced instead of just the individual line or setting required. Therefore, when working with
Puppet code that was developed in earlier versions, it is worth reviewing to make sure any code you
inherit really does need to control a whole file and does not overuse Augeas when simpler solutions
now exist. The params.pp pattern was heavily used in modules before Hiera offered the ability for
class parameters to be overwritten. The sensitive data type was not introduced until 4.6, which made
it hard to handle any secret data securely in code. Finally, the original Puppet versions had no concept
of loops, as provided by lambda functions, which were introduced in Puppet 4. So, you might find, in
old code examples, obscure patterns being used to achieve a similar effect.

IDEs and tools to assist in Puppet development
One of the greatest issues with early Puppet development was the lack of a consensus around how
to develop and a lack of integration. As discussed in Chapter 1 this changed greatly around the time
Puppet 5 was released. This section highlights some tools as opinionated recommendations based on
usage and experience in Puppet, and most of them will be used in the labs and demonstrations. This
is certainly not the only way to develop Puppet code, and your organization might require the usage
of different tools depending on the environment.

https://www.youtube.com/watch?v=aU7vjKYqMUo
https://www.youtube.com/watch?v=aU7vjKYqMUo

Major Changes, Useful Tools, and References24

The PDK is central to how Puppet development has changed for the better and will be discussed, in
full, in Chapter 8. It bundles various elements of tooling for creating modules, linting, and testing and
allows them to be run from the pdk command. Previously, Puppet developers had to gather the tools,
install dependencies, and then run each of the various commands that pdk is made up of.

Visual Studio Code has become an incredibly powerful and popular source code editor. It is free
and multiplatform, with a vast selection of extensions including the Puppet extension (https://
marketplace.visualstudio.com/items?itemName=puppet.puppet-vscode). It
creates powerful shortcuts that allow all your work to take place in the IDE, which will be demonstrated
throughout this book.

I will not be using it as part of the lab directly, but since many prefer a command-line editor as
opposed to Visual Studio Code, it should be noted there are Vim modules (https://github.
com/rodjek/vim-puppet) that can provide linting and syntax checking within VIM.

A particularly useful web page for development is the https://validate.puppet.com/ site,
which can be used to quickly paste in Puppet code to validate and parse it and create relationship graphs.

At an even more advanced level is the Puppet debugger (https://github.com/nwops/
puppet-debugger), which allows for running Puppet code and taking breaks in the code, which
allows you to see the state of variables. This will become useful as more advanced code is authored.

How to deploy your Puppet lab and development tools
This section will run through how to install and configure your desktop environment and then use
that environment to stand up the Puppet infrastructure in Azure, configure it with a control repo,
deploy some modules to an environment, and test logins to the web console. This will confirm the
lab environment functions as expected and should give you the confidence to start up and shut down
the labs as required to avoid paying for unecessary virtual machine running time costs on Azure.

In Figure 2.1, the final result of this exercise is shown. The device you use as a development environment
will have Visual Studio Code installed to edit the code that has been cloned from GitHub. A PowerShell
or shell session, depending on the OS, will use Bolt with Terraform to stand up the infrastructure
in Azure and then apply the configuration to that infrastructure, configuring a Puppet Enterprise
server and an attached instance to that server. The web console of the Puppet Enterprise server will
be accessible via HTTPS to a web browser:

https://marketplace.visualstudio.com/items?itemName=puppet.puppet-vscode
https://marketplace.visualstudio.com/items?itemName=puppet.puppet-vscode
https://github.com/rodjek/vim-puppet
https://github.com/rodjek/vim-puppet
https://validate.puppet.com/
https://github.com/nwops/puppet-debugger
https://github.com/nwops/puppet-debugger

How to deploy your Puppet lab and development tools 25

Figure 2.1 – The lab setup

Mac desktop

The Mac installation will rely on Homebrew to automate the installation process, for which Puppet
has created its own repos (https://github.com/puppetlabs/homebrew-puppet).
Run the following commands to install the desktop tooling that was highlighted in the Technical
requirements section:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/HEAD/install.sh)"
brew update
brew install azure-cli
brew install --cask puppetlabs/puppet/puppet-agent
brew install --cask puppetlabs/puppet/pdk
brew install --cask puppetlabs/puppet/puppet-bolt
brew install --cask visual-studio-code
brew install gh
brew install shellcheck
brew install puppetlabs/puppet/pe-client-tools
brew install git

https://github.com/puppetlabs/homebrew-puppet

Major Changes, Useful Tools, and References26

Windows desktop

The Windows installation relies on Chocolatey for installation. Run the following code in a PowerShell
session; note that administrative rights are only required for the first command:

Set-ExecutionPolicy Bypass -Scope Process -Force; [System.
Net.ServicePointManager]::SecurityProtocol = [System.Net.
ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object
System.Net.WebClient).DownloadString('https://community.chocolatey.
org/install.ps1'))
choco install pdk -y
choco install puppet-agent -y
choco install vscode-puppet-y
choco install puppet-bolt -y
choco install vscode -y
choco install git -y
choco install pe-client-tools -y
choco install gh -y
choco install azure-cli -y
choco install shellcheck -y
Install-Module PuppetBolt
Add-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0

Linux desktop – RPM-based

This RPM-based Linux desktop installation was tested with Rocky Linux 8. So, some localized
adjustments need to be made depending on your specific OS version and the difference in flavor.
However, running the following code will add necessary the Yum repositories from the vendors and
install the packages:

release=$(rpm -E '%{?rhel}')
sudo rpm --import https://packages.microsoft.com/keys/microsoft.asc
sudo sh -c 'echo -e "[code]\nname=Visual Studio Code\nbaseurl=https://
packages.microsoft.com/yumrepos/vscode\nenabled=1\ngpgcheck=1\
ngpgkey=https://packages.microsoft.com/keys/microsoft.asc" > /etc/yum.
repos.d/vscode.repo'
sudo rpm -Uvh https://yum.puppet.com/puppet7-release-el-${release}.
noarch.rpm
sudo rpm --import https://packages.microsoft.com/keys/microsoft.asc
echo -e "[azure-cli]
name=Azure CLI
baseurl=https://packages.microsoft.com/yumrepos/azure-cli
enabled=1
gpgcheck=1
gpgkey=https://packages.microsoft.com/keys/microsoft.asc" | sudo tee /
etc/yum.repos.d/azure-cli.repo
sudo dnf config-manager --add-repo https://cli.github.com/packages/
rpm/gh-cli.repo

How to deploy your Puppet lab and development tools 27

sudo rpm -Uvh https://yum.puppet.com/puppet-tools-release-el-8.noarch.
rpm
sudo yum -y install epel-release
sudo yum check-update
sudo dnf install gh
sudo yum install code
sudo dnf install azure-cli
sudo yum install ShellCheck
sudo yum install puppet-bolt
sudo yum install https://pm.puppetlabs.com/pe-client-
tools/2021.7.0/21.7.0/repos/el/8/PC1/x86_64/pe-client-tools-21.7.0-1.
el8.x86_64.rpm

The client tools are at a specific version and should be adjusted to match your installation. Check out
https://puppet.com/try-puppet/puppet-enterprise-client-tools/ to find
the curl command.

Linux desktop – APT-based

The APT-based Linux desktop was tested with Ubuntu 20.04, so some localized adjustments need
to be made depending on your specific OS version and the difference in flavor. However, running
the following code should add the necessary APT repositories and install the desktop development
software required:

release=$(lsb_release -c | awk '{print $2}')
wget -qO- https://packages.microsoft.com/keys/microsoft.asc | gpg
--dearmor > packages.microsoft.gpg
sudo install -o root -g root -m 644 packages.microsoft.gpg /etc/apt/
trusted.gpg.d/
sudo sh -c 'echo "deb [arch=amd64,arm64,armhf signed-by=/etc/apt/
trusted.gpg.d/packages.microsoft.gpg] https://packages.microsoft.com/
repos/code stable main" > /etc/apt/sources.list.d/vscode.list'
wget https://apt.puppet.com/puppet7-release-${release}.deb
wget https://apt.puppet.com/puppet-tools-release-${release}.deb
curl -fsSL https://cli.github.com/packages/githubcli-archive-keyring.
gpg | sudo dd of=/usr/share/keyrings/githubcli-archive-keyring.gpg
echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/
keyrings/githubcli-archive-keyring.gpg] https://cli.github.com/
packages stable main" | sudo tee /etc/apt/sources.list.d/github-cli.
list > /dev/null
sudo apt-get update
sudo dpkg -i puppet7-release-${release}.deb
sudo dpkg -i puppet-tools-release-${release}.deb
rm packages.microsoft.gpg
rm puppet7-release-${release}.deb
rm puppet-tools-release-${release}.deb
sudo apt install apt-transport-https
sudo apt update

https://puppet.com/try-puppet/puppet-enterprise-client-tools/

Major Changes, Useful Tools, and References28

sudo apt install code
sudo apt –y install puppet-agent
sudo apt-get install git
sudo dpkg -i puppet-tools-release-${release}.deb
sudo apt-get install puppet-bolt
sudo apt install gh
curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash
sudo apt install shellcheck
curl -JLO ' https://pm.puppetlabs.com/pe-client-tools/2021.7.0/21.7.0/
repos/deb/focal/PC1/pe-client-tools_21.7.0-1focal_amd64.deb'
sudo apt install ./pe-client-tools_21.7.0-1focal_amd64.deb

The client tools are at a specific version and should be adjusted to match your installation. Check out
https://puppet.com/try-puppet/puppet-enterprise-client-tools/ to find
the curl command.

Configuring tools

Now that you have the core tools installed on whichever desktop environment you are using, the core
steps will be the same for running and managing the applications.

First of all, we need to register with GitHub (https://github.com/join) and register with
Azure (https://azure.microsoft.com/en-gb/free/). Once these registrations are
complete, log in to the CLIs for both. Run the following and log in to the web page that will appear:

gh auth login
az login

The next step is to generate keys that will allow for communication with GitHub. You can do this by
running the following:

ssh-keygen -t rsa –b 4096 -P ''

Then, we upload the key we have created using the GitHub CLI. For Mac or Linux, run the following:

gh ssh-key add ~/.ssh/id_rsa.pub

For the equivalent location of the SSH key in Windows, run the following:

gh ssh-key add %USERPROFILE%\.ssh\id_rsa.pub

Then, extensions for Visual Studio Code can be added by downloading the extensions.list
file from the Packt GitHub repo at https://github.com/PacktPublishing/Puppet-8-
for-DevOps-Engineers/blob/main/ch02/extensions.list and looping through
the lines to install.

https://puppet.com/try-puppet/puppet-enterprise-client-tools/
https://github.com/join
https://azure.microsoft.com/en-gb/free/
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch02/extensions.list
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch02/extensions.list

How to deploy your Puppet lab and development tools 29

For Mac or Linux, you can achieve this by running the following:

cat extensions.list | xargs -L1 code --install-extension

For Windows, you can run the following:

foreach($line in get-content extensions.list) {code --install-
extension $($line)}

The next step will be to create an area for you to have a code workspace and then download the pecdm
module into it. For Linux and Mac, in your home directory, we will create a workspace and then clone
pecdm into this directory by running the following:

mkdir ~workspace/pecdm
git clone git@github.com:puppetlabs/puppetlabs-pecdm.git ~workspace/
pecdm
cd ~workspace/pecdm

For Windows, we will assume the equivalent directory in the user profile, creating a workspace
directory there, and then cloning it by running the following:

mkdir %USERPROFILE%\workspace
git clone git@github.com:puppetlabs/puppetlabs-pecdm.git
%USERPROFILE%\workspace\pecdm
cd %USERPROFILE%\workspace\pecdm

Now that we have everything installed and have a work area with the cloned module, we can configure
the module and run the following Bolt plan to create the Puppet infrastructure in Azure. This will stand
up a Puppet 2021.7.0 primary server and create a single client registered to it. The SSH user allows you
to use the SSH keys created earlier to connect to the hosts. For this example, the params.json file
should be downloaded to the pecdm directory from https://github.com/PacktPublishing/
Puppet-8-for-DevOps-Engineers/blob/main/ch02/params.json, I have used the
UK south region and allowed an open-to-anything firewall, but you will want to choose the cloud
region closest to you and set a firewall with rules to allow only your desktop environment and Azure
region to access it. The following links can help you to work out this choice:

•	 https://azure.microsoft.com/en-gb/global-infrastructure/
geographies/#geographies

•	 https://www.azurespeed.com/Azure/Latency

The code is as follows:

bolt module install --no-resolve
bolt --verbose plan run pecdm::provision @params.json

This should take around 20 to 30 minutes to complete.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch02/params.json
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch02/params.json
https://azure.microsoft.com/en-gb/global-infrastructure/geographies/#geographies
https://azure.microsoft.com/en-gb/global-infrastructure/geographies/#geographies
https://www.azurespeed.com/Azure/Latency

Major Changes, Useful Tools, and References30

You can then run the following Azure CLI command to return the list of hostnames and public IPs:

az network public-ip list -g packtlab --query "[].
{Hostname:name,Public_IP:ipAddress}" --output tsv

The output will look similar to this:

pe-node-packtlab-0-cffe02      20.108.156.266
pe-server-packlab-0-cffe02    20.108.156.67

Copy the IP address listed for the entry that starts with pe-server into a web browser to reach the
Puppet Enterprise console screen. Then, you can use the login details with the username of admin
and the password as puppetlabs.

To destroy this infrastructure and ensure no unnecessary costs are incurred, run the following command:

bolt plan run pecdm::destroy provider=azure

Alternatively, if labs are to be kept for periods of time, it is possible to stop and deallocate each virtual
machine to minimize the charge and then restart them later using the following commands:

az vm deallocate --resource-group packtlab --name <VM name>
az vm start --resource-group packtlab --name <VM name>

This section has fully run through the creation of your developer desktop and then standing up and
destroying Puppet infrastructure. It ensures you are ready for the labs in future chapters. In this
lab, the pecdm and peadm modules are used to configure a standard architecture, which is one of
Puppet’s supported architectures: https://puppet.com/docs/pe/latest/supported_
architectures.html. In Chapter 14, we will discuss, in more detail, the different architecture
options. But for now, it is important to understand that the standard is the base level providing a single
Puppet Server. In this scenario, pecdm configures the necessary infrastructure using Terraform, while
peadm installs the Puppet Enterprise components. Both modules will be used as examples of using
Bolt projects, tasks, and plans and will be reviewed in Chapter 12.

References and further research
This section will cover further resources and references that can be used alongside this book. They
go into further depth and enable you to learn about Puppet from both Puppet and the community.

The general page (https://puppet.com/docs/) is the core doc page, where you can find all
the products of Puppet and sections such as patterns and tactics. We will highlight different sections
of the docs to refer to as we progress through the book.

https://puppet.com/docs/pe/latest/supported_architectures.html
https://puppet.com/docs/pe/latest/supported_architectures.html
https://puppet.com/docs/

References and further research 31

Puppet runs through various media forms where a variety of articles are published covering new
product releases, security updates, and guides for implementations. Their handles are listed as follows:

•	 Blog: https://puppet.com/blog

•	 Podcast: https://pulling-the-strings.simplecast.com/

•	 Dev.to articles: https://dev.to/puppetecosystem and https://dev.to/puppet

•	 Twitter: https://twitter.com/puppetize and https://twitter.com/
PuppetEcosystem

•	 YouTube: https://www.youtube.com/channel/UCPfMWIY-qNbLhIrbZm2BFMQ

Puppet has its own learning site (https://training.puppet.com/learn),this site includes
various elements such as the Puppet practice labs, which are online labs you can run entirely from a
web browser and tackle boxes, which are guides on achieving small focused tasks. Puppet’s support
knowledge base was made public in April 2022, allowing anyone to search and view the troubleshooting
guides, best practices, and FAQs, which are available at https://support.puppet.com, without
the need for a login. Archived articles for the older version of Puppet can be found at https://
github.com/puppetlabs/docs-archive/tree/main/supportkb#readme.

Puppet previously run two, instructor-led training courses, which had to be paid for and lasted 3 days
(Getting started with Puppet and Puppet Practioner). During 2022 the Fundamental Core Training modules
replaced Getting started with Puppet, and the Advanced Core Training modules replaced Puppet Practioner.

The key difference is that the Fundamental Core Training modules are free to register for,
and both training sets are broken up into three module sets that are each a day long. More details can
be found on the Puppet Compass site.

Fundamental Core Training:

•	 PE101: Deploy and Discover

•	 PE201: Design and Manage

•	 PE301: Develop and Maintain

Advanced Core Training:

•	 PE401: Extend Capability

•	 PE501: Continuously Deliver

•	 PE601: Automate at Scale

Enterprise modules that produce commercially licensed Puppet modules on the Puppet forge have a
blog discussing various Puppet topics at https://www.enterprisemodules.com/blog/
and a Twitter account at https://twitter.com/enterprisemodul.

https://puppet.com/blog
https://pulling-the-strings.simplecast.com/
https://dev.to/puppetecosystem
https://dev.to/puppet
https://twitter.com/puppetize
https://twitter.com/PuppetEcosystem
https://twitter.com/PuppetEcosystem
https://www.youtube.com/channel/UCPfMWIY-qNbLhIrbZm2BFMQ
https://training.puppet.com/learn
https://support.puppet.com
https://github.com/puppetlabs/docs-archive/tree/main/supportkb#readme
https://github.com/puppetlabs/docs-archive/tree/main/supportkb#readme
https://www.enterprisemodules.com/blog/
https://twitter.com/enterprisemodul

Major Changes, Useful Tools, and References32

Two other noted Puppet consultancy and development groups were formed after the split of Example42
GmbH into Example42, which is now a brand of Lab42 with a blog at https://blog.example42.
com/blog/ and a Twitter account at https://twitter.com/example42, and Betabots, which
has a blog at https://dev.to/betadots and a Twitter account at https://twitter.com/
betadots. Both provide insights into their Puppet development work and approaches.

To ask questions about Puppet or talk with people in the community, you can join https://slack.
puppet.com/ and https://www.reddit.com/r/Puppet/ to ask questions about Puppet
and the community.

This section is not supposed to be an exhaustive list of references. It is to give a view of some of the
better-known and long-lasting sources of information and communities to view and follow to get to
know Puppet better.

Summary
In this chapter, we discussed the changes in the modern versions of Puppet 5 to 7 and some antipatterns
to look out for that could be left over from legacy Puppet code. It might be more practical to come
back to this section if you aren’t familiar with Puppet and read through the changes again once
completing the book.

We covered the available tooling to use in a developer environment and the IDE to automate and
quicken your Puppet development environment, and we have installed these tools to introduce the
lab. We have learned how to stand up both the reader’s development environment and the Puppet
infrastructure in Azure.

At the end of this chapter, we covered the various sources and communities that can be used to further
learn about Puppet, keep up to date with ongoing developments, and signpost where to ask questions
and discuss Puppet with the community.

In the next chapter, we will begin to look at the Puppet language, covering the fundamental building
blocks of resources, types, and providers. We will look at the basic syntax and style of coding in
Puppet and how to use various references and commands to make it easier to generate code and find
documentation. We will look at the core types to start coding in Puppet and how to use them well.
Then, we will look at how to use defined types for repeatable patterns of resources, use classes to
contain and include resources in catalogs, and finally, finish by looking at the more advanced feature
of exporting and collecting resources to share resource declarations across multiple clients.

https://blog.example42.com/blog/
https://blog.example42.com/blog/
https://twitter.com/example42
https://dev.to/betadots
https://twitter.com/betadots
https://twitter.com/betadots
https://slack.puppet.com/
https://slack.puppet.com/
https://www.reddit.com/r/Puppet/

3
Puppet Classes, Resource

Types, and Providers

This chapter will cover how classes and defined types provide structure and a way to group resources,
allowing code to be modular and reusable. You will learn about the components that make up resources;
types, providers, and the attributes applied to them. You will be shown how to use Puppet commands
to understand the current state of the system and by looking at three of the most common resource
types – packages, files, and services. You will see how to find out the attributes that are available to a
resource and how to declare a state.

Using these three resource types, you will see how a simple installation of a package, configuration
file, and service can be quickly used to start up an application with Puppet code, such as Apache or
Grafana. The other core resource types will then be discussed, highlighting the best practices and
approaches. A number of metaparameters (attributes that can be applied to any resource) will be
discussed, along with some advanced patterns for resource declaration.

You will then come across some anti-patterns, which, although still documented Puppet language
features, are not recommended for use. This will help you understand any legacy code you may
encounter and consider where code needs to be refactored.

In this chapter, we’re going to cover the following main topics:

•	 Classes and defined types

•	 Resources, types, and providers

•	 Core resource types

•	 Metaparameters and advanced features

•	 Anti-patterns

Puppet Classes, Resource Types, and Providers34

Technical requirements
Provision a standard sized Puppet server with a Windows client and a Linux client by downloading
the params.json file from https://github.com/PacktPublishing/Puppet-8-for-
DevOps-Engineers/tree/main/ch03 using the following command:

bolt --verbose plan run pecdm::provision –params @params.json

Classes and defined types
As discussed in Chapter 1, Puppet code is stored in manifest files ending with .pp . It is possible
to just write resources into a single manifest file and then, using the apply command, puppet
apply example.pp, enforce the code locally. It can also be done without the manifest file using
the execute flag with the Puppet code in the field of the command, such as puppet apply -e
'Package { 'vscode': }'.

Note
puppet apply can also be run against a directory of manifests and it will parse every file in
order, descending a directory structure. In Chapter 11, node definitions will allow us to utilize this.

While both of these approaches are useful for testing and learning purposes, they have a clear limitation
in terms of lacking any structure, which will result in both having to run a lot of large static commands
or files and having no way to pass data. Classes are named sections of code that provide this structure,
offering a way of grouping resources together and assigning data, which we can apply to servers. A
class definition goes into a manifest file and within the class definition, we put our resource definitions.
The syntax is as follows:

•	 The class keyword.

•	 The name of the class.

•	 Optional parameters within ().

•	 Puppet code with {}:

class  example_class (
  String example_parameter
)
{
   <code block>
}

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch03
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch03

Classes and defined types 35

Parameters will be discussed in greater detail in Chapter 4, but for now, it should be understood that
class parameters allow classes to be supplied with external data. For example, a class might have
a resource that installs a package, and a parameter can be used to specify the version of that package
to be installed.

Note
An optional inherit keyword can be added to a class to allow class inheritance, whereby
you can create a general base class and then extend it in an inheriting class or classes. This
pattern is no longer used and is no longer discussed in the Puppet documentation as of Puppet
6, beyond saying it exists as a keyword. There are better ways to achieve this behavior using
data, which we will cover in Chapter 9.

A common early source of confusion with classes is that this structure only defines a class; it does
not declare it to be included in the catalog compiled from the Puppet code. This contrasts with the
resource statement in manifests, which by being written and then applied are added to the catalog.

This means running puppet apply on a manifest containing a class will do nothing. To add the
classes to a catalog, we must declare the class using the include function, make a class resource
declaration, or we must use an External Node Classifier (ENC). ENCs will be covered in Chapter 11,
but for now, they can be understood as Puppet server scripts that identify the classes to be included
in a node.

Including a class

The include function is the simplest way to add classes via the declaration in the code block of a
class in a manifest file of include class_name. It can be used multiple times across multiple
classes and will result in only one entry. To declare a class with puppet apply directly, we can
instead run puppet apply –e "include class_name", which will test a manifest file
with a class. Following the module structure, this would apply the manifest from the class_name/
manifest/init.pp path.

The class resource declaration

In the next section, resource declaration will be covered in more detail, but declaring a class such as
a resource allows us to pass in the attributes we have defined or looked up. It looks like this, but can
only be used once in a catalog:

Class {'class_name':
  paramter1 => 'value1'
}

Puppet Classes, Resource Types, and Providers36

Defined types

A defined type is a block of Puppet code, which, in contrast to a class, can be declared multiple times
in a catalog by passing in parameters and a unique name. Like a class, it is by best practice defined
in a manifest file by itself.

The syntax is as follows:

•	 Starts with a define keyword

•	 The type name

•	 Open brackets (()

•	 List of parameters

•	 Open braces ({)

•	 The resource body

•	 Close braces (})

In addition to the parameter list defined, the $title and $name variables are available to be used
within the definition. This ensures the resources we declare are unique. A very simple example could
take a name and a group and ensure a user and a group are created and a file is placed in the user
home directory owned by the user and group we have created:

define exampledefine (
  String user = "${title}",
  String group
) {
user { ${user}: }
group { ${group}: }
file { '/export/home/${user}/.examplesetting':
  user => ${user},
  group => ${group},
  content => "User is ${user} and group is ${group}",
}
}

Defined types are the same as classes; applying the manifest file will not produce anything. A defined
type resource declaration must be made in a class, which can then be included:

exampledefine {'user1':
  group => 'group1'
}
exampledefine {'user2':
  group => 'group2'
}

Resources, types, and providers 37

This example has its dangers since if the second declaration for user2 also used a group of group1,
this would result in a duplicated resource declaration.

Namespaces

Namespaces are segments that identify the directory and file structure for classes in manifest files.
These namespaces are separated with two colons (::), so, for example, the following directories
would translate as follows:

File path name Namespace
/manifests/base.pp base
/manifests/windows/grafana.pp windows::grafana
/manifests/linux/apache.pp linux::apache
/manifests/linux/ubuntu/landscape.pp linux::ubuntu::landscape

Table 3.1 – Namespace directory translation

If we wanted only to apply the windows::grafana class, we could therefore run puppet apply
–e "include windows::grafana" from within the manifest directory.

There is no limit to the depth a namespace can have, but the best practice would be to stick to a couple
of levels.

In Chapter 8, we will see modules that have namespaces where the module name is the root level for
all classes except one.

Resources, types, and providers
Resources are the fundamental basic unit of the Puppet language; every stateful item we wish to
describe is a resource. Resources must be unique in terms of what they manage since Puppet has no
way of managing or prioritizing conflict between resources. It will simply call out that a clash exists
and fail to compile a catalog.

Each resource will have a type, which is a description of what we are configuring, such as a file or a
registry setting; parameters, which are variables containing the settings we can customize for the resource;
and a provider, which is the underlying implementation allowing Puppet to be OS independent. This
provider is often a default based on the OS but can be added as an attribute if required. So, a resource
declaration has the following syntax:

•	 Opens with the type name, such as file, with no quotes and in lowercase

•	 A curly brace ({)

•	 The title of the resource in quotes

Puppet Classes, Resource Types, and Providers38

•	 A colon (:)

•	 A list of attribute names and the value of that named attribute with => between, ending with
a comma (,)

•	 A closing curly brace (})

Note
Everything between the two curly braces is known as the resource body. It is possible to have
multiple bodies in a single resource declaration, essentially declaring multiple resources of the
same type, but for clarity, I would generally advise against this.

As pseudocode, this syntax looks like the following:

type { 'title':
   attribute1  => value1,
   attribute2 => value2,
}

Here’s a real example of ensuring a package named vscode is at the latest version on the system:

package { 'vscode':
  ensure => 'latest',
}

What was given in the syntax list for both the resource and class declarations/definitions was the
minimum required, while the code examples were spaced and broken over several lines for stylistic
reasons and following best practices. It is possible to write declarations and definitions as a single
line but Puppet has developed a style guide – https://www.puppet.com/docs/puppet/8/
style_guide.html – that we will use throughout this book, along with other opinionated best
practices to create readable, maintainable, and simple code.

Here are some examples of the style guide being applied in the code examples:

•	 Use a two-space indent

•	 No trailing whitespace

•	 Attribute names should align

•	 Attribute => symbols should align

•	 Attribute values should align

•	 Include trailing commas after all attributes

https://www.puppet.com/docs/puppet/8/style_guide.html
https://www.puppet.com/docs/puppet/8/style_guide.html

Resources, types, and providers 39

Although there are no limits or syntactical meanings for whitespace, the Puppet language style guide’s
recommendations aim to make the code more readable and consistent. The style guide states all
attributes should have trailing commas; this ensures adding a new attribute will only show a single
change in a Git diff, but you may find some code follows a pattern of having no comma on the last
attribute, which would make it clear it was the last element. This will pass linting checks but may cause
issues for not meeting Puppet style guides if you wish to get code approved by Puppet for module use.

As there are a number of syntactic and stylistic rules, the best way to learn is to use style guide linting,
made available via the Ruby gem, puppet-lint, with syntax validation made available via the
puppet parser validate command. The Puppet extension on Visual Studio Code has these
commands integrated into its checks, so it highlights syntax and lint issues as you edit. In the screenshot
in Figure 3.1, the warning output of the lab is visible with some stylistic and syntactical errors:

Figure 3.1 – Visual Studio Code showing syntax and lint issues

Similar effects can be achieved in vim using https://github.com/rodjek/vim-puppet.

Important note
Throughout this book, advice will be given on best practices and approaches to coding, with
a lot of this advice taken from sources such as the Puppet style guide. One of the best things
an organization can do to develop clear and consistent Puppet code is to write its own best
practices and style guidelines, building on top of the foundation provided by the Puppet style
guide and ensuring it is followed when reviewing code. This can equally disagree with points
raised in the style guide or this book, as long as it is best for your organization and developers
and it is agreed to.

Resources of each type must be uniquely titled, so you could have file, service, and package resources
all titled ntp, but not two service type resources both titled ntp. There are no other limitations on
how they are named in terms of characters or spacing, but for performance purposes, titles should be
kept short and never be longer than 140 characters. This title is what identifies the resource to Puppet
itself when it generates a catalog.

https://github.com/rodjek/vim-puppet

Puppet Classes, Resource Types, and Providers40

The namevar attribute (also known as the name attribute) is what the target system uses to identify
the resource and confirm uniqueness. namevar by default is the same as the title unless attributes are
assigned. In some cases, types will use multiple attributes to define namevar, such as a package using
the command and name together. This is used in cases where multiple copies of the same configuration
can be installed via different mechanisms, such as installing a package of the same name as a Ruby
gem and as a Red Hat Package Manager (RPM).

Installing the Apache package can demonstrate the difference between namevar and title. For
example, the apache_package name variable is set based on the operating system. For Fedora,
the package name will be httpd, while for all other operating systems, it will be apache2. This
means our title for this package resource is apache, and when referring to this resource in Puppet
code, we can always refer to it as the apache resource package, while the target system will refer to
it by the appropriate package name, ensuring it is a uniquely managed installation:

$apache_package_name = $facts['os']['name']? {
  Fedora  => 'httpd',
  default => 'apache2',
}

package { 'apache':
  ensure => 'latest',
  name   => "$apach_package_name",
}

Let us now move on to some practical examples.

Lab

To practice what has been learned so far, look at the file at https://github.com/
PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/lint_
and_validate.pp and try to correct the errors highlighted in VS Code. Alternatively, use the
puppet-lint -f (-f automatically fixes issues where possible) and puppet parser validate
commands from the VS Code integrated terminal or a separate terminal session.

https://validate.puppet.com/ can also be used to do validation checks online.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/lint_and_validate.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/lint_and_validate.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/lint_and_validate.pp
https://validate.puppet.com/

Resources, types, and providers 41

Examining the current system state

This chapter so far has discussed how resources should be structured and styled and, with all these
rules, it can be intimidating when starting to write your own resources. The puppet resource
command allows us to produce Puppet code from the state of a current machine; this command is
supplied parameters of a type and a namevar variable. To give an example, looking at the directory
on which a Windows desktop puppet has been installed would produce something like the following:

C:\ProgramData\PuppetLabs>puppet resource file "c:\Program Files\
Puppet Labs"
file { 'c:\Program Files\Puppet Labs':
  ensure   => 'directory',
  ctime    => '2022-01-31 22:01:02 +0000',
  group    => 'S-1-5-18',
  mode     => '2000770',
  mtime    => '2022-01-31 22:01:02 +0000',
  owner    => 'S-1-5-18',
  provider => 'windows',
  type     => 'directory',
}

From this example, it should be noted that certain attributes are returned only for the information we
refer to as properties and cannot be managed by Puppet, such as mtime and ctime. Other attributes
such as provider do not need to be declared, as windows would be the presumed provider on a
Windows machine. Apart from this, with minor adjustments, this output can just be directly put into
Puppet manifests and run. (Later in this chapter, we will show you how to review type attributes.)

Note
Visual Studio Code allows you to run Puppet commands via the command palette (Ctrl + Shift
+ P, or for Mac, Command + Shift + P). Type puppet resource, then the resource type,
and optionally name var. It will then paste the output into your open file.

In the previous example, we ran puppet resource against a single namevar attribute. For certain
types, you can discover what the state of every resource of that type would be on a machine, such as
running puppet resource package for packages. This clearly will not work for the likes of
files, as recursively going through every file on a host would produce too much information, but you
can quickly produce information on your host’s setup.

In VSCode, try opening a new file, running the command palette with puppet resource, and just
entering package. This will list all the packages recognized by Puppet and available Puppet providers.
An example of this output is available at https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/blob/main/ch03/puppet_resource_package.pp.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/puppet_resource_package.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/puppet_resource_package.pp

Puppet Classes, Resource Types, and Providers42

Introducing types with the package, file, and service pattern

Having discussed the structure and style of declaring resources, the next step is to introduce the core
types available to Puppet and how you can discover the attributes and features of a type.

The core types are documented online at https://www.puppet.com/docs/puppet/8/
type.html#puppet-core-types and can be viewed on the command line with the puppet
describe Puppet command. Using puppet describe --list will list all the types available
in your environment; you can then review a type by passing the type name, for example, puppet
describe package. This documentation is also visible in VS Code when you hover the mouse
pointer over the types and attribute names in a resource declaration.

Starting with the combination of package, file, and service types, you will be able to install, configure,
and start an application.

The package type

Running puppet describe package or viewing the web contents at https://www.puppet.
com/docs/puppet/8/types/package.html, we can view the description of what the type
is for and a list of attributes and available providers.

A package used at its simplest level can just be declared as a package resource with a title:

package { 'vscode': }

This sets several attributes to defaults, resulting in using the default provider for the underlying
operating system, such as yum for Red Hat or, for Windows, the Windows provider, which handles
.exe and .msi files. It will also install at the latest package version available but, when enforced,
will only ensure the package is installed and not maintain it at the latest version.

This versioning behavior is controlled by the ensure parameter and the example defaulted to a value
of present, which can also be declared as installed. The latest value, just as it sounds, ensures
the package is at the latest version available to the provider. For more flexible versioning, it is possible
to set a value as a string version, such as 1.2.3, and, depending on the support of the provider, to
use ranges, such as > 1.0.0 < 2.0.0. Using the value of absent is an important part of Puppet,
where resources don’t just ensure what is present in the server state but also what should not be there.

Related to using the absent value for ensure is the purged value, which is a provider-dependent
option. If set to true, it removes configuration files on the removal of packages.

The providers attribute is often left as the default, but if it is required to be installed via another
package management system such as pip or rubygems, can be assigned an appropriate provider’s
name as its value.

To see what providers can be used, the -p flag can be used on the describe command: puppet
describe package -p.

https://www.puppet.com/docs/puppet/8/type.html#puppet-core-types
https://www.puppet.com/docs/puppet/8/type.html#puppet-core-types
https://www.puppet.com/docs/puppet/8/types/package.html
https://www.puppet.com/docs/puppet/8/types/package.html

Resources, types, and providers 43

Taking the example of Windows, it is important to note that it tells us the Windows provider is the
default provider and it lists the supported features, which are attributes that will work with this provider.
This difference in attributes reflects the different underlying commands used by the provider.

The source attribute is a URL to the package file; this allows for remote calls to web sources such as
JFrog Artifactory or locally downloaded files and is a required parameter for certain providers, such
as Windows, which requires a location of the .bin or .exe file.

The command attribute, new since Puppet 6, allows you to select which command the provider
should run. This is necessary for situations where you have multiple versions of an installer command
available on a machine.

The name attribute, which should be the name of the package, will be set as the title by default and
combined with the command attribute; since Puppet 6, this is what makes the namevar attribute for
a package. In Puppet 5, the provider attribute is used instead of the command attribute.

Note
Sometimes, it may be necessary due to dependency issues to run install commands such as yum
with multiple packages in a single command. There isn’t a way to do this under the package type;
the best approach would be to use an exec type, which we will talk about later in this chapter.

So, as an exercise, write a manifest for the following; create a new file for each platform example,
package_rhel8.pp, in vscode or a terminal.

On RHEL 8, do the following:

•	 Install rubygem activerecord so that it is greater than version 7

•	 Install the latest cowsay from yum

•	 Ensure the pinball package is absent from the system in a resource titled no games

View the suggested solution at https://github.com/PacktPublishing/Puppet-8-
for-DevOps-Engineers/blob/main/ch03/package_rhel8_answer.pp.

On Windows Server, do the following:

•	 Install ruby and devkit from the .exe file already downloaded to c:\tmp\
rubyinstaller-devket-3.1.1-1-x64.exe with the /VERYSILENT install option

•	 Install rubygem activerecord so that it is greater than version 7 but less than 9

•	 Ensure the pinball package is installed at version 2005-xp in a resource titled fun games

View the suggested solution at https://github.com/PacktPublishing/Puppet-8-
for-DevOps-Engineers/blob/main/ch03/package_windows_answer.pp.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/package_rhel8_answer.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/package_rhel8_answer.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/package_windows_answer.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/package_windows_answer.pp

Puppet Classes, Resource Types, and Providers44

Note
For more advanced Windows package management, it is worth looking at Chocolatey, which will
be covered in Chapter 8 (https://forge.puppet.com/puppetlabs/chocolatey).

The file type

Having installed packages, it is then common to add application configuration files and directories
to contain them. The file type is ideal for creating files and making directory structures. It can handle
the content, ownership, and permissions of files, links, and directories.

The simplest declaration of a file type is the title as a fully declared path:

file { '/var/tmp/testfile' : }

Looking at the file type via puppet describe file, in this case, there are only two providers – a
Windows file or a POSIX file, which will match whichever operating system family you are configuring.

For the ensure attribute, there are present and absent options. Selecting present will default
to the file value, ensuring the created resource is a normal file but only enforcing that the file path
exists regardless of whether it is a symbolic link, a file, or a directory.

To create and enforce a resource, we must select the value of a file and use direct to create a directory
or directory nest or link to create a symbolic link.

The path is the namevar attribute for this type and should be a fully qualified path, or it can default
from the title.

For example, a resource titled Puppet directory, which creates ensure for the existing
directory at C:\ProgramData\PuppetLabs, is as follows:

file {'Puppet directory' :
  ensure => 'directory',
  path   => 'C:\ProgramData\PuppetLabs'
}

For resources we ensure as files, the content attribute gives us multiple ways of putting content into
the file. The simplest version is simply to put a string of the text into the file but using the functions,
file, and template, we can copy the contents of whole files stored in Puppet modules or use templated
files, allowing us to substitute values into pre-parsed files. These functions will be covered in detail
in Chapter 7 and Chapter 8.

https://forge.puppet.com/puppetlabs/chocolatey

Resources, types, and providers 45

Three attributes are then used to manage ownership and permissions: user, group, and mode. For
user and group, this is as simple as entering the UID and GID or the username and group name.
If this is not set, this will default to the user and group Puppet is running under. mode deals with
permissions using the Unix 4-digit-style permissions mode, but for Windows systems, entering this
gives a very rough and limited translation and it is better to leave mode undeclared and supplement
files with the ACL module: https://forge.puppetlabs.com/puppetlabs/acl.

To give an example of the attributes we have covered, the following declaration creates a file called
config.test with both owner and group set and the content of two lines of text:

file {'Example config':
  ensure => 'file',
  path   => '/app/exampleapp/config.txt',
  owner => 'exampleapp',
  group => 'examplegroup',
  content => "verbose = true\nselinux=permissive"
}

The recurse parameter allows recursive management of the contents of a directory. If set to true
when ensuring a directory and using source, it will copy the directory contents recursively. It is
important to note Puppet is not a file synchronization tool, so do not put too many files under Puppet
management, or files that are too big. There is no specific number documented, but a common
recommendation is 10 or fewer files in a recursive file resource and no greater than 25 MB. This is due
to the comparative nature of Puppet, which uses md5 checksums for content, which are expensive to
run over large-sized files or large numbers of files.

Information
In the case of large numbers of files and directory structure, the module archive – https://
forge.puppet.com/modules/puppet/archive – can be used to download and
extract it into place. Alternatively, when auditing and versioning files, it is better to build a
package and manage it with the package resource we spoke of previously.

Several parameters can provide protection with recurse using max_files, which can warn or
error if a command is going to go over a certain limit. recurselimit can be used to limit how
many levels of recursion will be performed.

There are only two scenarios in which it is advised to use this parameter – when you have a small
number of files and the content of the files should be enforced, or when also using the purge parameter,
which, when set to true, will ensure no files outside of Puppet’s control will remain in the directory.

Note
We will review data types and variables in detail in the next chapter, but for now, note a parameter
that takes true or false can take a value without quotes, and that is the style this book will use.

https://forge.puppetlabs.com/puppetlabs/acl
https://forge.puppet.com/modules/puppet/archive
https://forge.puppet.com/modules/puppet/archive

Puppet Classes, Resource Types, and Providers46

The purge parameter can only be used with ensure set to directory and recursive set to
true and provides a powerful way to ensure the directory only contains files under Puppet management,
removing any other files it finds. In the following, we give an example of recursion, ensuring the
/etc/httpd/conf directory only contains files under Puppet’s control:

file {'Remove apache config files outside of puppet control' :
  ensure  => 'directory',
  purge   => true,
  recurse => true,
  path    => '/etc/httpd/conf'

}

Note
There is a recursive_file_permissions module (https://forge.puppet.
com/modules/npwalker/recursive_file_permissions), which can assist in
managing recursive permissions over a large number of files in a performant way. This can be
combined with the archive module we previously mentioned.

The validate_cmd parameters can be particularly useful with configuration files, where there is a
known way to check the file we are putting in place. If the validation command fails, the old file will
be left in place, preventing issues.

The target parameter is required if ensuring a link. By combining it with the path value, we get
a symlink, as demonstrated in the following code:

file {'Picking a python on Rhel 8' :
  ensure  => link,
  path    => /usr/bin/python3,
  target  => /usr/bin/python,
}

The source parameter can be of several types: URIs, local files, NFS shares, or web or Puppet modules.
This can also be presented as an array to provide multiple choices depending on the hostname or
operating system, where it would use the first file it could find. In the following code block, we show an
example, where host would be substituted with the applicable hostname and operatingsystem
with the locally installed operating system:

file {'/etc/exampleapp.conf':
  source => [
    "nfsserver:///exampleapp/conf.${host}",
    "nfsserver:///exampleapp/conf.${operatingsystem}",
    'nfsserver:///exampleapp/conf'
  ]
}

https://forge.puppet.com/modules/npwalker/recursive_file_permissions
https://forge.puppet.com/modules/npwalker/recursive_file_permissions

Resources, types, and providers 47

In this example, on a Windows server called server1, applying this resource declaration would look
on nfsserver under the exampleapp share to find the first match, looking for conf.server1,
then conf.windows if it could not find it, and finally conf.

The backup parameter is not recommended, as managing and scaling file buckets to store these
backups proves difficult, and as we will see in Chapter 11, there are better approaches we can consider,
managing our code in Git to allow for back-out scenarios.

The replace parameter should be used sparingly, but if set to true, allows for a file to have content
enforced only if it does not exist. If the file exists, the state is met. This can be useful for applications
that require an initial configuration file but then overwrite it.

Having discussed a lot of attributes, try practicing constructing examples by writing a manifest file
to meet the requirements listed:

1.	 On a Unix-based system, ensure only Puppet-controlled files are in the /etc/
sudoers.d directory.

2.	 Add a /etc/sudoers.d/mongodb file with robin All=(ALL) NOPASSWD: su –
mongo content and a validation command, visudo -c, owned by root, a group of root,
and permission 0660.

3.	 Create a symlink from /opt/mongodb/mongos /home/robin/mongos.

4.	 View the suggested solution at https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/blob/main/ch03/file_unix_answer.pp.

For Windows, see the following:

1.	 On a Windows-based system, ensure only Puppet-controlled files are in the c: \inetpub\
wwwroot directory but subdirectories are untouched.

2.	 Add a c:\inetpub\wwwroot\page with source nfsshare1:\\publish\
page.html and a validation command c:\program files\httpvalidator\
httpvlidate.exe file.

3.	 Create a symlink from c:\program files\httpvalidator\httpvlidate.exe
C:\Users\david\Desktop and use the replace option to replace the file if it exists.

4.	 View the suggested solution at https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/blob/main/ch03/file_windows_answer.pp.

Service types

Having installed software and created configuration files, the next common step is to start services with
the service type. Since system services can vary widely in terms of what they support and provide, we
must be careful to provide all the necessary parameters. Some services lack proper status commands
but can be provided via the parameters of service.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/file_unix_answer.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/file_unix_answer.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/file_windows_answer.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/file_windows_answer.pp

Puppet Classes, Resource Types, and Providers48

Running and reviewing the output of puppet describe service -p, you will see various
providers, although in most cases, the default service provider is what will be required. On certain
occasions, such as legacy software on a modern Red Hat system only providing init scripts, we may
expect to select a different provider.

The first two parameters to consider are enable and ensure. ensure accepts the values stopped
or running, which can also be represented as false or true, respectively. This is a simple binary
of whether the service should be running or not. enable defines in the service whether it should
start on boot and is only provided by certain providers. This can be true or false to be enabled or
disabled, and then there are several provider-dependent options; for example, on Windows, false
means the service is disabled and cannot be started, and manual means the service is set to a manual
startup type, which doesn’t start with Windows but does allow the service to be started manually.
true is an automatic startup type and delayed means the service is set to the automatic (delayed)
startup type, which starts the service a couple of minutes after Windows has started up.

One final parameter to highlight for Windows would be logonaccount, which specifies an account
for the service to run as.

To give examples of the attributes we have covered, see the following code for a Windows service,
wuauserv, a running service with a delayed startup service and running as the localsystem
user. The bam service is stopped and disabled:

service { 'wuauserv':
  ensure       => running,
  enable       => 'delayed',
  logonaccount => 'LocalSystem'
}
service { 'bam':
  ensure => stopped,
  enable => 'false'
}

Comparing this to systemd, the default provider for RHEL 8 and other Linux systems, we can see in
the description under supported features that systemctl does not have delayed login or manual
but does have mask, which, in system terms, means it disables the service so not even services that
are dependent on it can activate it.

Note
Beware that the defaults for ensure and enabled are entirely dependent on the underlying
provider implementation.

Resources, types, and providers 49

In cases where there are no startup scripts provided for an application, combining the start and
stop parameters, you can use Puppet to bridge this gap, defining which commands start and stop
the service in these parameters. The pattern parameter would by default take the name of the
service and look for the name in the process table to confirm a running status, or you can supply a
regular expression, strings, or any permissible Ruby pattern to search the process table. Alternatively,
the status parameter can be used to point at a status script, which should return a zero-exit code
if the service is running.

The following shows an example of a legacy service with scripts for starting, stopping, and checking
the status of the server pulled together in this service resource:

service {'legacy service':
  ensure       => running,
  enable       => true,
  start  => '/opt/legacyapp/startlegacy -e production'
  stop   => '/opt/legacyapp/stoplegacy -e production'
  status => '/opt/legacyapp/legacystatus -e production'
}

It can be seen based on the nature of implementation that a careful parameter choice must be made
and that this varies by scenario. Later in this chapter, we will show methods for how to cover these
differences while declaring resources using a splat (*).

Running Puppet locally with multiple resources

In Chapter 8 and Chapter 10, we will cover using Puppet agents and classification to apply Puppet code,
but to test the code developed just now, as mentioned at the start of the chapter, puppet apply
can be used to run code locally. In our labs, we will use Bolt to automatically copy our manifest files
to our remote labs and run puppet apply.

Note
An additional way of applying resources is via the resource command we reviewed earlier.
Adding parameters and settings to the command will cause it to be applied to the resource.
The Puppet service could be enforced as enabled and running with the puppet resource
service puppet ensure=running enable=true command. You will often see
this command in Puppet knowledge base articles when performing fixes to Puppet services
since it can usefully start/restart services without having to think about which operating system
it is running on.

Puppet Classes, Resource Types, and Providers50

Relationships will be covered in detail in Chapter 6, but to allow for resources that are dependent on
one another, as the package, file, and service pattern requires, the basics of the require, before,
subscribe, and notify metaparameters need to be known. require and before mirror
one another, creating a relationship between two resources so that when Puppet runs one resource,
it will run before the other. It is not semantically important which way you define the relationship,
although it may prove more logical where there is a many-to-one relationship to apply the dependency
metaparameter to many resources.

Similarly, the subscribe and notify metaparameters allow a resource to not only have this
dependency but also to send refresh events to types that support them if the resource state changes
(this can be confirmed in the type documentation using puppet describe). This is particularly
useful in service resources where updating a configuration file should result in the service restarting.

The syntax for these metaparameters is a resource reference, which comprises a resource type with
a capital letter and a resource name in square brackets. To give some examples of this, the following
shows examples of before, notify, and require being used to make the package, file, and
service pattern:

package { 'example app package':
  ensure => latest,
  name   => 'exampleapp'
  before => File['example app configuration']
}
file { 'example app configuration':
  content => 'attribute=value',
  notify    => Service['example app service']
}
Service {'example app service':
  name    => 'exampleapp',
  enable  => true,
  ensure  => running,
  require => Package['example app package']
}

In this example, package is installed first, the configuration file is then added, and the service should
start. If the configuration file changes state, this will cause the service to restart. In the next section,
we will talk in more detail about resource references.

Shorthand can be used to create an array of the same resource types in a dependency:

file { ' C:\Program Files\Common Files\Example':
  require => Package['package1',package2],
}

Resources, types, and providers 51

Running Puppet will generate reports that describe how resources, if not in the desired state, were
changed into the correct state and, if the server was in the correct state, will produce little output
beyond the time it took to run checks. The code can also be run in noop mode, which will list out
what changes are needed to get to the correct state but without applying them. In Chapter 10, Puppet
platform parts and functions will be discussed in more detail around reporting and using noop.

Lab

So, use the lab environment to apply some Puppet code to our client servers.

For CentOS, we will install httpd and serve a web page displaying Hello World. Create an apache_
linux.pp file; this will require the httpd package to be installed and a file to be created at /var/
www/html/index.html with the following content:

<html>
<head>
</head>
<body>
   <h1>Hello World<h1>
</body>
</html>

We have a /etc/httpd/conf/httpd.conf configuration file with content sourced from
https://raw.githubusercontent.com/PacktPublishing/Puppet-8-for-
DevOps-Engineers/main/ch03/httpd.conf and validated by running httpd -t -f
and an httpd service, which is enabled on boot and running.

For Windows, create a grafana_windows.pp file; we will install the Grafana server from
https://dl.grafana.com/oss/release/grafana-8.4.3.windows-amd64.msi,
ensuring the service is running and enabled and, in the C:\Program Files\GrafanaLabs\
grafana\conf\grafana.ini configuration file, ensuring the content contains the following:

[server]
Protocol = HTTP
Http_port = 8080

Updating the configuration file should restart the service.

You can apply the code you have written using Bolt, which will be covered in Chapter 12. Using the
bolt apply apache_linux.pp –server linuxclient.example.com or bolt
apply grafana_windows.pp –server windowsclient.example.com command will
copy the manifest to the server and run puppet apply on the client. For both Linux and Windows
examples, test your solution by navigating to http://hostname:8080 and confirming Hello
World for Linux or the Grafana login page for Windows is visible.

https://raw.githubusercontent.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/main/ch03/httpd.conf
https://raw.githubusercontent.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/main/ch03/httpd.conf
https://dl.grafana.com/oss/release/grafana-8.4.3.windows-amd64.msi

Puppet Classes, Resource Types, and Providers52

Example solutions are available at https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/blob/main/ch03/apache_linux.pp and https://
github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/
ch03/grafana_windows.pp.

To test the runs in noop mode, you can apply the _noop => true option to the Bolt command.

While it would be impractical to discuss every core type in detail, the next section will cover at a high
level the other core types, which are useful for creating more advanced configurations.

Core resource types

In this section, we will discuss the core resource types.

User and group types

The user type and group type are core to most configurations, allowing the ensure attribute to be
set to present or absent. With a Unix platform as the provider, the user would normally have a
minimum set of attributes of uid and gid, with the group having a minimum of gid. The user can
be further enforced via the password attribute, which can ensure the limits for any password set,
passing an encrypted password and enforcing the home directory and shell. For Windows Server, it is
important to note only local users and groups can be managed, although a group resource can manage
adding domain accounts to the membership of that group via the members parameter. The names
are case sensitive in Puppet but case insensitive in Windows. The case should match so we do not lose
any of the auto requirements that are formed. Windows also uses multiple types of names, so it can
be <name of computer\<user name>, BUILTIN\<username>, or just <username>.

So, for example, 'DESKTOP-1MT10AJ\david, 'BUILTIN\david' and david are all treated
the same by Puppet.

The following code shows examples in Windows and Unix of an account and a group:

user { 'david':
  ensure   => 'present',
  groups   => ['BUILTIN\Administrators', 'BUILTIN\Users']
}

group { 'Users':
  ensure   => 'present',
  members  => ['NT AUTHORITY\INTERACTIVE', 'NT AUTHORITY\Authenticated
Users', 'DESKTOP-1MT10AJ\david'],
}

user { 'ubuntu':
  ensure             => 'present',
  comment            => 'Ubuntu',

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/apache_linux.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/apache_linux.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/grafana_windows.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/grafana_windows.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/grafana_windows.pp

Resources, types, and providers 53

  gid                => 1000,
  groups             => ['adm', 'dialout', 'cdrom', 'floppy', 'sudo',
'audio', 'dip', 'video', 'plugdev', 'lxd', 'netdev'],
  home               => '/home/ubuntu',
  password           => '!',
  password_max_age   => 99999,
  password_min_age   => 0,
  password_warn_days => 7,
  shell              => '/bin/bash',
  uid                => 1000
}

group { 'ubuntu':
  ensure   => 'present',
  gid      => 1000
}

We see here that Windows user David is a member of the administrator’s group and user’s group. We
see the user’s group and its list of members. We can then see the detailed setup of a Ubuntu user on
Unix with password settings, a home directory, and group settings. Similarly, certain users and groups
can be added as resource declarations, ensured absent, and removed from the system.

The exec type

The exec type is quite different from most Puppet types and can be dangerous if not used correctly.
While most Puppet types try to describe the state a server should be in, exec provides a way of
running scripts or commands on servers. This means declaring an exec type takes effort to make
sure the resource will be idempotent. We can achieve this if the command itself is already idempotent,
such as apt-get update (the command for updating package sources in Ubuntu), if we use the
onlyif attribute, unless, or creates, or if the exec has a refresh-only attribute.

In the first case, if the command is idempotent, it will do no harm, but it will log in each Puppet run
that it has run, and therefore using the other two methods is better to avoid the exec reporting runs.

With the onlyif attribute, we can declare a command that if it returns true, then our exec will
run. unless is the opposite of onlyif, using a command that if it returns true, then our exec
will not run. Finally, creates looks for a file to be created to show the script has run.

This first example looks at disabling public Chocolatey access unless the command finds in the sources
that it is already disabled:

exec { 'disable_public_chocolatey':
    command => "C:/ProgramData/chocolatey/choco.exe source disable
-n=chocolatey",
    unless  => "\$sourceOutput = choco.exe source list; if
(\$sourceOutput.Contains('chocolatey [Disabled]')) {exit 0} else {exit

Puppet Classes, Resource Types, and Providers54

1}",
    provider => powershell,
}

This second example shows an example command, which generates a file using the cowsay command
unless that file has already been created:

exec { 'Cowsay file':
   command => '/bin/cowsay Hello world > /etc/cowsaysays',
   creates => '/etc/cowsaysays'
}

Note
There is an optional PowerShell provider to allow exec to run PowerShell scripts: https://
forge.puppet.com/puppetlabs/powershell.

The third scenario uses the refreshonly attribute, so using the notify and subscribe
attributes, we can set the exec to only run if another resource is refreshed. The following exec can
be useful when scripts are simply not going to be replaced by Puppet code:

exec  { 'refresh exampleapp configuration' :
  command   => [''/bin/exampleapp/rereadconfig']
  refreshonly => true
  subscribe    => File['config file']
}
file {'config file':
  path => '/etc/exampleapp/configfile',
  content => 'setting 1 = value'
}

This might be the case if the script/command is vendor-provided or simply a heritage script that
works, and the effort of refactoring it into Puppet code would not be worth it.

On Unix platforms, a recent feature called parametrized execs was introduced with Puppet 6.24+ and 7.9+,
allowing you to pass a command attribute as an array, the first part of the array being the command and
the second part being the arguments. This uses the secure method of parametrized system calls to ensure
code cannot be injected. In the following example, a traditional exec with just the command would run
all the commands separated by the semi-colon, in our simple example echoing real parameters and
running rm, while with the improvement of parametrized execs, it will take the second argument as a string
to be passed and echo it, ensuring the original purpose of the command and preventing command injection:

exec  { 'parametrized command'
  command => ['/bin/echo', 'real parameters; rm -rf /']
}

https://forge.puppet.com/puppetlabs/powershell
https://forge.puppet.com/puppetlabs/powershell

Resources, types, and providers 55

This example using echo is obviously simplified and it will become clearer where this plays a part
when we look at Chapter 8 and Chapter 9. There, we will see how user data can be fed into Puppet
code and that we must code defensively.

The Augeas type

Augeas is a type only available on Linux; it was used more historically in earlier versions of Puppet
when the options for manipulating files were much more limited, but in more advanced situations, it
can have its uses. It can be computationally more expensive, so you should be careful in how you use
it. Augeas can parse files in their native formats into a tree, which you can then manipulate. It uses
lenses to perform these translations.

To give an example, if we want to manipulate the access.conf file, we can view the file using
augtool (the CLI interface for Augeas) and print it using the following command:

augtool print /files/etc/security/access.conf

Let’s say our file contains the following lines:

+ : john : 2001:4ca0:0:101::/64
+ : root : 192.168.200.1 192.168.200.4 192.168.200.9
- : ALL : ALL

This would result in the following being printed using the default lens:

/files/etc/security/access.conf/access[1] = "+"
/files/etc/security/access.conf/access[1]/user = "john"
/files/etc/security/access.conf/access[1]/origin =
"2001:4ca0:0:101::/64"
/files/etc/security/access.conf/#comment[83] = "All other users should
be denied to get access from all sources."
/files/etc/security/access.conf/access[2] = "+"
/files/etc/security/access.conf/access[2]/user = "root"
/files/etc/security/access.conf/access[2]/origin[1] = "192.168.200.1"
/files/etc/security/access.conf/access[2]/origin[2] = "192.168.200.4"
/files/etc/security/access.conf/access[2]/origin[3] = "192.168.200.9"
/files/etc/security/access.conf/access[3] = "-"
/files/etc/security/access.conf/access[3]/user = "ALL"
/files/etc/security/access.conf/access[3]/origin = "ALL"

This allows you to make programmatical references to individual sections and values in the syntax, so
if in the client state, you wanted to remove any entry with the user john from all entries, augtool
could run the following:

augtool rm /files/etc/security/access.conf/*[user="john"]

Puppet Classes, Resource Types, and Providers56

To use this in Puppet, Augeas only has one provider, and the core attributes are changes, which
is the Augeas command you wish to run, lens if you wish to use a different translation from the
default, and onlyif, which can perform a check of the content of the tree to see whether the change
needs to be run. Creating the previous example as a Puppet resource would look like the following:

Augeas { 'remove John from access.conf' :
  changes => 'rm /files/etc/security/access.conf/*[user="john"]'
}

Note
Augeas is a powerful tool but should be used sparingly. More details on the syntax can be found
at http://augeas.net/docs/ and https://forge.puppet.com/modules/
puppetlabs/augeas_core/reference.

The notify type

The notify type is used to send messages to the logs. This is more likely to be used for debugging
purposes than production use, as it is not idempotent, and it will cause the Puppet report to see
changes on every run. Using the message parameter as a string of what to print will take a default
from the title. A simple example would be as follows:

notify { 'print a message to logs'}

Note
The notice function can be more practical for printing messages, as they will not show up
in the Puppet report change logs. See Chapter 5.

There are more core types, but the commands demonstrated in this chapter to list types available, view
the attribute, and provide documentation should give you the ability to understand how to go on and
investigate other types that you may find useful, including types installed from puppet forge,
which will be covered in Chapter 8.

Information
Throughout this chapter, we have highlighted resources coming under Puppet’s control by
being added to the catalog, whether they enforce presence or absence. Puppet has no concept
of back-out, so removing a resource from Puppet’s control will just leave it unmanaged as it
was set in the last Puppet run. This should therefore always be considered in your back-out
process for a code change.

http://augeas.net/docs/
https://forge.puppet.com/modules/puppetlabs/augeas_core/reference
https://forge.puppet.com/modules/puppetlabs/augeas_core/reference

Metaparameters and advanced resources 57

Metaparameters and advanced resources
This section will start by looking at metaparameters, which are attributes that work on any resource
type. For the lab work, we covered before, required, notify, and subscribe, which were
used to create dependencies between resources. To follow this, there are several other useful attributes
with a range of effects on resources. To see the full documentation of metaparameters on types and
providers, the meta flag can be added to the describe command: puppet describe <file
type> --meta.

audit

The audit metaparameter allows us to monitor unmanaged Puppet parameters; this could either
be an array list of attributes or all for monitoring all undeclared attributes. In the following example,
we declare this:

file {'/var/tmp/example'
  mode => 0770,
  audit  => [owner,group]
}

This creates a /opt/puppetlabs/puppet/cache/state/state.yaml file on Puppet
Enterprise or /var/lib/puppet/state/state.yaml in the open source version of Puppet,
which records the audit state. Applying the preceding resource would produce the following output:

Notice: /Stage[main]/Main/File[/var/tmp/example]/owner: audit change:
previously recorded value 'absent' has been changed to 'root'
Notice: /Stage[main]/Main/File[/var/tmp/example]/group: audit change:
previously recorded value 'absent' has been changed to 'root'

As the resource was created, its state will be recorded as changing from absent to present, and
it will then be reported whether the previously recorded value was found to have changed on Puppet
runs. The state.yaml file would update to this new value, so it’s important to take action on this
change if it is required.

tag

The tag parameter allows us to apply tags to our resource, which can be a single string or multiple
tags with an array of strings. By default, several tags are applied to a resource: the title, resource type,
and the class the resource is contained in. Tags are particularly useful in scenarios where we only want
to run parts of our manifests since both Puppet local and agent-based runs can take a --tag flag to
run only resources with a particular tag.

Puppet Classes, Resource Types, and Providers58

For example, let’s look at the Puppet resources in a manifest called example.pp:

class example::access {
  group {'ubuntu':
    ensure   => 'present',
    gid      => 1000,
    tag      => ['pci','sox']
  }
  user {'ubuntu':
    ensure  => 'present',
    tag         => 'pci'
  }
}

The group will have the group, ubuntu, pci, and sox tags while the user will have the user,
ubuntu, and pci tags. Additionally, both would have a tag of the class name, example::access.
With the puppet apply --tags pci example.pp command, both resources would be
applied similarly; ubuntu would apply both while running with a tag of sox would just run the group.

There are further metaparameters, such as alias and loglevel, that are simply not in common
use although they have no risks worth discussing in detail; they can be read about at https://
www.puppet.com/docs/puppet/8/metaparameter.html or by running puppet
describe <any type> -m.

The resource declarations shown before now have followed the same simple declaration pattern, but
there are several other methods to allow more flexibility and advanced features.

The resources metatype

Puppet has a resources metatype, which can be used to ensure unmanaged resources of a type are
removed. If it is thought of like the output of the <type> Puppet resource, finding anything with no
matching namevar attributes from your code to mark as absent. It uses four attributes; a name,
which is the type you want to apply to, the purge attribute, which can be true or false, and
two attributes relevant when you are using resources on the user type – unless_system_user,
which accepts true, false, or a specified minimum UID and ensures the system definition, or you
can define integers or an array of integers in the minimum_uid parameter, which will be protected
from the purge. To generate a list of numbers, the range() function from the stdlib module can
make this easier. We will discuss functions in Chapter 5, to make it clear how functions work. As with
all resources, the metaparameters can be used and noop is advisable here, as purging all users may
be too aggressive, so seeing which users will be removed may initially be the best reporting to see:

resources {'user':
  purge => true,
  noop => true
}

https://www.puppet.com/docs/puppet/8/metaparameter.html
https://www.puppet.com/docs/puppet/8/metaparameter.html

Metaparameters and advanced resources 59

Note
The ssh_authorized_key type should be managed on the user type via the purge_
ssh_keys attribute.

Arrays of titles

When declaring several resources with the same attributes, the title can be declared as an array of
resources, acting like multiple resource declarations. We will cover arrays in Chapter 4, but for now,
understand an array of titles can be used with opening square brackets and a separating comma, so
the title for a resource would be like the following example:

file{ ['/opt/example1','/opt/example1/etc','/opt/example1/bin'] :
  owner => user,
  group => user,
  mode  => 0750
}

Overriding parameters

Here’s the syntax for a resource reference:

•	 Type starting with a capital

•	 Title in square brackets

•	 Opening curly brace ({)

•	 Attributes to override

•	 Closing curly brace (})

It is possible to override attributes of a declared resource. In this example, we set Audit to true and
group to other_group on the resource /opt/example/bin file:

File['/opt/example/bin/'] {
  group  => other_group,
  Audit   => true
}

This is best used combined with the array of titles so that common defaults can be defined and then
particular attributes set for a named resource. In this book, we recommend using this sparingly to
avoid confusion when everything is declared.

Puppet Classes, Resource Types, and Providers60

Attribute splats

The attribute splat (*) is a mechanism of using a hash to fill out attributes of a type; this can be useful
in situations where we want to cover the differences in attributes used by different providers. In a
resource using the normal syntax, you can have set of the attributes as * and then create a hash of
the attributes you would use. We will cover hashes, variables, and case statements in Chapter 4 and
Chapter 7, but for this example, it should be clear that we are setting the package options hash to
contain a name attribute equal to apache2 for Debian and httpd as a default:

case $facts['os']['name'] {
  /^(Debian|Ubuntu)$/: {
  $package_options = {
    "name"  => "apache2"
    }
  }
  default:  {
  $package_options = {
    "name"  => "httpd"
    }
  }
}
Package { 'http' :
  ensure => latest,
  *       =>  ${package_options}
}

This results in the package http resource using the name http2 for Ubuntu and Debian systems
and httpd by default for any other systems. This feature should be used carefully so as not to detract
from readability.

Lab

To practice a little of what we have discussed, let us follow up on our previous example and have a
single manifest, all_grafana.pp, which can install, configure, and run Grafana on both Linux
and Windows. As we have not covered facts yet, understand that as in our previous example, a case
statement could use $facts ['os']['family'] to look for Red Hat or Windows to distinguish
between our two clients. Note the rpm install file is available at https://dl.grafana.
com/enterprise/release/grafana-enterprise-8.4.3-1.x86_64.rpm and the
configuration file for Linux is at /etc/grafana/grafana.ini.

As a second exercise, create a separate manifest to create some users on the Linux client, linux_users.
pp create 3 users exampleappdev, exampleapptest, exampleappprod, and a
group, exampleapp, with all the users using this group as their primary group. exampleappprod
should purge ssh keys from authorized. Finally, it should check whether there are any other
non-system-level users on the client (but not enforce anything).

https://dl.grafana.com/enterprise/release/grafana-enterprise-8.4.3-1.x86_64.rpm
https://dl.grafana.com/enterprise/release/grafana-enterprise-8.4.3-1.x86_64.rpm

Anti-patterns 61

As per the previous lab, you can test your manifests by running a bolt command with your manifest
name and client name listed: bolt apply manifestname.pp –server servername.
example.com.

You can find solutions at https://github.com/PacktPublishing/Puppet-8-for-
DevOps-Engineers/blob/main/ch03/all_grafana.pp and https://github.
com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/
linux_users.pp.

Anti-patterns
In this section, we will talk about some resource features you will find documented and useable with Puppet
but that this book strongly recommends you do not use and make it part of your best practices to avoid.
The resource features we highlight here are powerful but make resource declarations harder to read and
require more translation and calculations required to see the state we are attempting to get the server into.

Abstract resource types

An abstract resource type is used for declaring a resource when we do not want to predefine a type
and may decide which resource we will use based on the client. In this simple example, a variable is
set to the type and the resource is then declared using the Resource[<TYPE>] { <RESOURCE
BODY>} syntax:

$selectedtype = exec
resource[$mytype] { "/bin/echo 'don't use this' > /tmp/badidea":
creates => /tmp/badidea , }

A simple translation of this statement would be as follows:

exec {"/bin/echo 'don't use this' > /tmp/badidea":
  creates  =>  /tmp/badidea
}

This book recommends against using abstracts, it is not commonly used, and it makes the code a
lot less readable, particularly for less experienced Puppet users. The best approach is to use case
statements or if statements, which we will cover in Chapter 7. If there is too much divergence in
the code, it becomes best to separate the resources into separate classes and not force platforms that
share little in resource types together.

Defaults

There are two methods of declaring defaults, but this book advises against using either. A default body
with multiple bodies in a resource declaration breaks good practices around single purposes for a
declaration, and a default resource statement can be dangerous in terms of understanding its scoping.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/all_grafana.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/all_grafana.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/linux_users.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/linux_users.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch03/linux_users.pp

Puppet Classes, Resource Types, and Providers62

A default resource body

Here, a resource can have a default body, following the same syntax as a normal resource declaration
but starting one of the bodies with default:; the ordering of the bodies does not matter.

This example shows two sets of arrays of titles, taking the defaults and changing the default mode for
the second array of the titles set:

file {
  default:
    ensure => directory,
    owner => 'exampleapp',
    group => 'exampleapp',
    mode => '0660'
  ;
  ['/opt/example','/opt/example/app','/etc/exampleapp']:
  ;
  ['/var/example','/var/example/app',]:
    mode => '0644'
  ;
}

As discussed when declaring resources, this book strongly recommends keeping a clear single-purpose
resource declaration as grouping multiple bodies together makes the code harder to read. The recommended
method for comparable results is to use arrays of titles and override parameters where appropriate.

Resource default syntax

The second method is to use a default resource statement syntax:

•	 The type starting with a capital and {

•	 A List of attributes and default values

•	 Ending with }

If the type has multiple namespaces, such as concat::fragment, then each namespace section
should be capitalized.

In this example, we use a file to set the default for all files resources that do not declare a value for an
attribute’s owner group or mode:

file {
  owner  => 'exampleapp',
  group  => 'exampleapp',
  mode   => 0660
}

Anti-patterns 63

Commonly used in early versions of Puppet, this is now considered only suitable for use on the site.
pp file (a global settings file we will cover in Chapter 11). This is a result of Puppet no longer using a
dynamic scope for variable lookup and default resources still being dynamically scoped, which can
result in scope creep and unintentionally affect other resources in your catalog. (Scope will be discussed
in detail in Chapter 6). Since having defaults in site.pp makes them unexpected and less visible,
this book recommends against using resource defaults.

schedule

schedule is a metaparameter used in conjunction with the schedule resource type. This allows us
to describe a specific schedule with a resource type, which defines when a particular resource can
be run so that if Puppet is applied outside of this time, it will ignore the resource and how many
times it can run in this period. The schedule resource type uses various attributes to describe ranges,
repetition, or days: a simple example would be to cover the hours 6 p.m. to 9 a.m. over Friday night
and Saturday morning:

schedule { 'Friday Night':
  day=> 'Friday',
  range  => '18 - 9',
}

That could then be applied to a resource:

exec {'/bin/echo weekend start > /tmp/example'
  Schedule = > 'Friday Night'
}

This book advocates against this use case. It may seem tempting, particularly for highly regulated
environments that have restricted windows for changes, but Puppet should enforce the expected state,
so diverging from this state should be an issue. Creating schedules makes it obscure as to what will
be applied and opens the state to periods of vulnerability where servers are only partially enforced
by Puppet.

Exporters and collectors

Exporting and collecting Puppet resources happens when Puppet tries to allow information to be
exchanged between nodes for interdependency. It allows a resource to be declared and run on one
node and then other nodes to also apply these resources. This is done by exporting the information
to the PuppetDB database, which Puppet runs will consult with when collecting. This means it can
only be run via a Puppet agent setup and not via local Puppet runs.

Puppet Classes, Resource Types, and Providers64

Exporting a resource just involves adding @@ in front of a normal resource declaration. The exported
resource must be unique in PuppetDB, so commonly the hostname fact (a variable containing the
hostname) is used in the declaration. In this example, a host entry is being exported to be put in the
host file of each collecting server:

@@host { "Oracle database host entry ${::hostname}" :
  name  => 'dbserver1',
  ip    => '192.168.0.6',
  tag   => 'oracle'
}

Collecting the resource then involves declaring a collector, which is the type starting with a capital
and a spaceship (<<| |>>) declaration; inside this, tags can be declared to filter the collection.
Completing this example, this collection would ensure all exported host resources tagged oracle
would be applied to the server:

Host <<| tag = oracle |>>

Exporting and collecting have two key issues; the first is it becomes harder to read the code and
understand the resources that may be applied to a node. The second is it complicates the scalability
and high-availability considerations for your Puppet infrastructure setup. As a result, by best practice,
this book recommends avoiding any use of exporters and collectors.

Summary
In this chapter, you learned about declaring resources and the syntax and styling checks that can be
performed to develop consistent code. Classes were shown to be a way to group resources and allow
us to call classes and apply these groups of resources to servers. Defined types were then shown as a
way to create repeatable patterns of Puppet code, which can vary by parameters.

We showed how to explore and use types and providers and saw some of the most commonly used
core types and how to use them well. The file, package, and service types were shown to provide a
great foundation for installing, configuring, and starting an application. It was seen how Puppet
resources can relate to each other to ensure an order and how to then apply these resources written
locally to servers for testing.

The chapter covered the core resource metaparameters to understand how to use various features of
resources – tagging to allow filtered runs of resources; auditing to monitor changes, which happen
to unmanaged attributes on a resource, and using noop to allow a resource to be declared as
non-executable but reported on.

Summary 65

Finally, various anti-patterns were covered – default resources, which have scoping issues; default
bodies, which result in overloaded resource statements; schedules, which make understanding Puppet
runs complex; and export and collectors, which have issues both in terms of scalability and availability
and in terms of abstracting data away from the code.

In the next chapter, we will cover variables and data types, which will allow us to assign values to
variables and control what those values are and how they can be interacted with. This will allow us to
reduce duplication and make our resources easier to update and manage, as well as providing a way
to pass in data to our classes.

4
Variables and Data Types

This chapter will cover how Puppet handles variables and, in particular, how Puppet differs from
most declarative languages in terms of how they are used and declared. We will look at the core data
types that are used to define what the value of a variable can contain and how it can be interacted
with. Then, we will look at how data types and variables allow the classes we discussed in Chapter 3
to receive external data and handle default values.

Arrays and hashes will be discussed in detail, including how to declare them, access values, and
manipulate them with operations. The Sensitive data type will be shown, which you can use to
secure values in logs and reports while making the limitations of this data type and what it does not
secure clear. We will also cover abstract data types and show you how to allow more complex and
flexible definitions of variables and values. The chapter will finish by covering how variable scopes
and namespaces work with variables. We will also discuss the scope of variables and how variables
from different scopes can be accessed and which scopes can access which levels of data.

In this chapter, we are going to cover the following main topics:

•	 Variables

•	 Data types

•	 Arrays and hashes

•	 Abstract data types, including Sensitive

•	 Scope

Variables and Data Types68

Technical requirements
For this chapter, you will need to provision a Puppet server standard architecture with a Windows
client and a Linux client by downloading the params.json file from https://github.com/
PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/params.
json and then using the following command from your pecdm directory:

bolt --verbose plan run pecdm::provision –params @params.json

In various sections of this chapter, examples will be given of using the notify function, which outputs
to the agent command line. These examples can just be run in the local development environment by
putting all the code into a manifest file – for example, example.pp – and then running puppet
apply example.pp.

Alternatively, any variables that are required can be set using the environment variable format of
FACTER_variable_name and running puppet apply –e '<example_code>'. To run
one of the substring examples, you can run the following code:

export FACTER_example_string='substring'
puppet apply -e 'notify{ "${example_string[3]}": }'

Variables
In this section, we will cover how to use variables in Puppet and how this differs from other procedural
languages. The key thing to understand about Puppet variables is that they are only assigned once
during compilation in a given scope. In a traditional procedural language, it’s common to use variables
throughout your code, where you might gather the current state as your code runs, use variables to
keep track of it, and update it to act and make procedural decisions at various stages of your code. The
following is an example of a simple PowerShell script that runs a command several times and adds
the output to a single variable. It does so by using select-string to search for files containing ?
in the .sh and .pp files in the user’s code directory:

$Matches = Select-String -Path "$PSHOME\code*.sh" -Pattern '\?
…
…
$Matches = $Matches + Select-String -Path "$PSHOME\code*.pp" -Pattern
'\?

This state check is not done in Puppet since all evaluation takes place at the start of the catalog, based
on the state the server sent to be compiled. This, in turn, provides the steps required to get it into a
desired state. In Puppet, we assign variables for repetitive uses such as file paths or conditional logic
such as if or case. In these cases, a value must be chosen to be assigned, depending on the initial state.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/params.json
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/params.json
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/params.json

Variables 69

Note
We are simplifying the process slightly here as there are now deferred functions that can run
after complications. However, this still does not allow us to reassign variables. We will cover
this in more detail in Chapter 5.

Puppet variables are declared with a dollar sign ($) followed by the variable’s name, an equals symbol
(=), and the value to assign. For example, a variable called example_variable that’s assigned a
value of 'this is a value' would look like this:

$example_variable = 'this is a value'

Note that, unlike resources, variables depend on the order of evaluation and must be declared in code
before they are called.

Note
There are several variables known as built-in variables that return server information. However,
since these are more about infrastructure and the environment, they will be covered in Chapter 10
and Chapter 11, where they will be relevant.

Naming

Variable names are case-sensitive, and they can include upper and lowercase letters, numbers, and
underscores but must start with an underscore (_) or lowercase letter. The exception is regex capture
variables, which are variables only named with numbers such as $0, $1, and so on. We will cover these
in Chapter 7 and Chapter 11, where we will use them as part of conditionals and node definitions.

Note
Starting a variable name with an underscore will limit it to local scope use, as discussed in
detail at the end of this chapter.

Reserved variable names

There are several built-in variables that you cannot use in your code. These are as follows:

•	 $facts

•	 $trusted

•	 $server_facts

Variables and Data Types70

These are all built-in variables generated from Facter, which cannot be used or reassigned. We will
discuss these variables in detail in Chapter 5, as well as what values they provide.

As we covered in Chapter 3, the $title and $name variables are used by classes and defined types
and should not be used.

The full list of reserved words can be viewed in the Puppet documentation at https://www.
puppet.com/docs/puppet/8/lang_reserved.html.

Interpolation

Puppet variables can be evaluated and resolved into their assigned values when called without quotes
or as part of a variable mixed with our data in double quotes. The style guide enforced by the lint
checks will ensure single quotes are used when an assignment does not contain a variable and no
quotes are used when an assignment only contains a variable. A mix of values and variables can be
written with double quotes. When you should use a mix is stated in the style guide. This is checked
by the linter to ensure it uses curly braces {}. This can be seen in the following example of assigning
mixed_variable to the variable’s declaration when using double quotes for interpolation:

$database_id = $dbname
$base_directory = '/opt'
$database_directory = "${base_directory}/database/${database_id}"

As we described in the previous chapter, the notify function can be used to check the values
of variables:

notify{'debug variable':
  message => "The database directory is ${database_directory}"
}

This section discussed how Puppet variables differ compared to other programming languages due
to statefulness and how it can declare, access, and name variables.

Data types
Every value in Puppet has a data type; in the previous section, for example, the variables had String
values assigned. A data type, when used as a capitalized unquoted string, such as Integer, can be
used to specify what parameters in a class, defined type, or lambda should contain, allowing the data
to be validated:

class example (
  String example_string = 'hello world',
  Integer example_integer = 1
) {
}

https://www.puppet.com/docs/puppet/8/lang_reserved.html
https://www.puppet.com/docs/puppet/8/lang_reserved.html

Data types 71

Data types can also be used to compare a variable’s value, conditionally check values, and take different
actions, depending on the result. For example, to confirm that a variable contains an integer, the
following match expression can be used. Here, we are confirming that the example_integer
variable contains an integer:

$example_integer =~ Integer

Conditional statements and comparisons will be covered in full in Chapter 7.

The next section will run through the most commonly used core Puppet data types. Unfortunately,
Puppet has no equivalent to the puppet describe command for data types .so all references
must be taken from the web and GitHub documentation at https://www.puppet.com/docs/
puppet/8/lang_data_type.html. If you’re using types provided by modules from the forge,
which will be covered in detail in Chapter 8, the documentation should be on the reference page of
the module. Various functions work with data types, but we will not cover this here. We will look at
functions in detail in Chapter 5.

Strings

Strings are the most common data type used in Puppet and, as discussed in Chapter 1, were originally
the only type of data used in early Puppet. Strings are pieces of unstructured text of any length, encoded
in UTF-8. There are four ways to declare strings in Puppet:

•	 Unquoted

•	 Single quoted

•	 Double quoted

•	 Heredocs

Unquoted strings

Unquoted strings are single words starting with a lowercase letter and containing only letters, digits,
hyphens (-), and underscores (_) and must not be reserved words. Reserved words are typically
keywords such as class or other language functions; the full list can be viewed at https://www.
puppet.com/docs/puppet/8/lang_reserved.html#lang_reserved_words.

Unquoted strings are used for resource attributes that accept a limited set of words, such as the Puppet
service resource type, which accepts running or stopped for its ensure attribute:

service { 'defragsvc':
  ensure => stopped
}

https://www.puppet.com/docs/puppet/8/lang_data_type.html
https://www.puppet.com/docs/puppet/8/lang_data_type.html
https://www.puppet.com/docs/puppet/8/lang_reserved.html#lang_reserved_words
https://www.puppet.com/docs/puppet/8/lang_reserved.html#lang_reserved_words

Variables and Data Types72

Single-quoted strings

Single-quoted strings can contain multiple words but, as previously discussed, cannot interpolate
variables. However, they can contain line breaks and escape sequences using a backslash (\), an escape
backslash, or a single quote ('). This allows the use of single quotes within the string itself and for a
backslash to be used at the end of a string. Additionally, a line break can be achieved via the Enter key.

The following example shows the sed_command variable with the single quotes needed as part of
the sed command to escape in the single-quoted string and then the install_dir variable for a
Windows file path with an ending backslash:

$sed_command = '/usr/bin/sed -i \'s/old/new/g\''
$intall_dir = 'c:\Program Files(x86)\exampleapp\\'

Double-quoted

Double-quoted strings can fully interpolate variables and more available escape characters. In addition
to the single quote, backslash, and escape characters, double quotes can interpret the following:

•	 \n: Newline

•	 \r: Carriage return

•	 \s: Space

•	 \t: Tab

•	 \$: Dollar sign, to prevent variable interpolation

•	 \uXXXX: Here, xxxx is a four-digit hex number for a Unicode character

•	 \u{X}: Here, X is a hex number between two and six digits between curly braces, {}

•	 \": Double quote

•	 \r\n: Window line break

As per single quotes, a line break can also be used within text (that is, just by hitting Enter).

Note
If a backslash is used in double quotes without you escaping it and without a valid escape
character after, it will continue and treat it as normal characters but result in the following
message in the logs: Warning: Unrecognized escape sequence. Here is an example:

Warning: Unrecognized escape sequence '\T' at C:/Users/david/
code/test.pp:1:50

This commonly affects Windows user paths that are used in double quotes.

Data types 73

A simple example of a double-quoted string making use of new lines and tabs (which are important to
the syntax of Makefile content) is as follows. This creates a string to then be used in the content of a file:

$make_file_content = "hello:\n\techo \"hello world\""

file '/home/david/makefile' : {
  content => $make_file_content
}

Heredocs

Puppet’s implementation of heredocs involves using a tag to indicate the start and end of the heredoc
file’s content. The starting tag is typically composed of the following elements:

•	 '@('

•	 A string, known as the end text, that may be surrounded by double quotes to enable interpolation

•	 An optional escape switch (or switches) that begin with a forward slash to enable escape
switches in the text

•	 An optional colon (:) followed by a syntax name check

•	 ')'

To use a heredoc in Puppet, the content should be entered on the lines immediately following the
starting tag, with the exact formatting that is desired. The end of the heredoc is indicated by an end
tag, which should include the following elements:

•	 An optional vertical bar (|), which indicates how much indentation should be stripped from
the lines of the text

•	 An optional hyphen (-), which removes the final line break from the heredoc

•	 The same end text tag that was used in the starting tag

The end text in a Puppet heredoc is a string that can consist of mixed-case letters, numbers, and spaces,
but cannot include line breaks, slashes, colons, or parentheses. By default, the content of the heredoc
will not interpret escape characters, so optional escape switches must be declared if they are needed.
The following escape switches are available and mirror the same escape sequences for double-quoted
strings, but do not require double quotes (since they have no special meaning in heredocs):

•	 n: New line

•	 r: Carriage return

•	 t: Tab

•	 s: Space

Variables and Data Types74

•	 $: Dollar sign, to prevent interpolation if the end text is double-quoted

•	 u: Unicode characters

•	 L: A new line or carriage return

•	 \:: All of the previously mentioned escape sequences are available

When any escape sequence is selected, you can use \\ to escape a backslash.

Variable interpolation is disabled by default so, as discussed, the end text should be surrounded in
double quotes if needed.

Syntax checking is available for various content, such as Puppet manifests via pp or Ruby files via ruby:

@(END:pp)
@(END:ruby)

Syntax checking will only run if variable interpolation is not turned on; if a type unavailable to Puppet
is entered, it will be ignored. The full details of available syntax checkers can be found in the Puppet
specification, which also contains details on creating custom syntax checkers.

Heredoc declarations can be placed anywhere a string declaration can be, so, for example, a long
command in an exec command could be declared as follows:

exec { 'create databases':
  command => @("Database Commands"/L)
    sudo -u postgres psql \
    -c "CREATE DATABASE ${database1} ENCODING 'utf8' LC_COLLATE 'en_
US.UTF-8' LC_CTYPE 'en_US.UTF-8'" \
    -c "CREATE DATABASE ${database2} ENCODING 'utf8' LC_COLLATE 'en_
US.UTF-8' LC_CTYPE 'en_US.UTF-8'" \
    -c "CREATE DATABASE ${database3} ENCODING 'utf8' LC_COLLATE 'en_
US.UTF-8' LC_CTYPE 'en_US.UTF-8'"
    |-"Database Commands"

This book recommends using heredocs sparingly. For long commands in exec, as shown in the preceding
example, this may be suitable, but particularly for file content, it typically clutters and confuses the
code with text and is better placed in templates, as covered in Chapter 7, or as files in modules, as
covered in Chapter 8. The topic of how best to store data will be discussed in Chapter 9.

Accessing substrings in variables

To call a string in Puppet, the simplest method is to use the $ symbol, followed by the variable name.
However, if the variable name contains invalid characters, such as a space, Puppet will assume that
the variable name has ended. Therefore, to ensure proper interpolation of variables within strings, it
is safest to enclose the variable name in curly braces, {}.

Data types 75

To access a particular character or substring within a string, Puppet allows you to specify a range of
indices using [<start index>, <stop position>], which can include support for negative
numbers to count back from the end of a string or change the order of characters to be returned. For
example, the following code sets a variable named 'example_string' to the 'substring' string:

$example_string = 'substring'

Various combinations can be used; for example, a single character can be called by taking an index
from the start, such as 3, to return s (we start at 0).

To extract a single character from a string variable in Puppet, you can specify the index of the desired
character starting from 0. For example, to extract the third character of a string variable, you would
use an index of 3 (since indexing starts at 0). In Puppet, this can be expressed as follows:

notify { "${example_string[3]}" :}

This would return the character at index 3, which in this case would be 's'.

A negative index can go from the end and return the same s character with -6:

notify { "${example_string[-6]}" :}

To extract a specific portion of a string variable in Puppet, you can use the square bracket notation
to indicate the start index and the stop position of the substring. For example, if you have a string
variable named 'example_string' with a value of 'substring', and you want to extract
a substring that starts at the third character and includes the next five characters, you can use the
following syntax in Puppet:

notify { "${example_string[3,6]}" :}

This would return the substring that starts at index 3 (which corresponds to the letter 's' in
'substring') and includes the next five characters, which in this case would be 'string'.

To extract a substring starting from a negative index position, you can specify a negative value for
the stop position. For example, to extract the substring that starts from the fourth index from the end
and includes the next three characters, you can use the following syntax:

notify { "${example_string[-4,-1]}" :}

This would return the substring that starts at the fourth character from the end (which corresponds
to the letter 't' in 'substring') and includes the next three characters, which in this case would
be 'tri'.

Finally, to extract a substring that starts from a negative index position and includes a positive number
of characters, you can use the following syntax:

notify { "${example_string[-4,4]}" :}

Variables and Data Types76

This would return the substring that starts at the fourth character from the end (which corresponds
to the letter 't' in 'substring') and includes the next four characters, which in this case would
be 'ring'.

This sort of substring work can be particularly useful when package names, application versions,
or other consistent name strings need to be broken up into different variables. As a more practical
example, an organization has hostnames that start with a location code and contain a role, their
environment, and a server ID:

$hostname = flkoracprd00034
$location = $hostname[0,3]
$role =$hostname[3,3]
$environment = $hostname[6,3]
$id = $hostname[-5,5]

String data type parameter

When setting the type of a parameter as a string, the capitalized keyword of String is used, along
with optional minimum and maximum lengths of the string:

String[<Minimum length>, <Maximum Length>] $variable_name

The default for the minimum is 0 and the maximum is infinity. To use the default implicitly, you can
use the default unquoted string keyword.

Let’s look at a class called database, which accepts a database ID string of four characters, a username
between six and eight characters that defaults to dbuser if it’s not provided, and a description of
any length:

class 'database': {
  String[4,4] database_id,
  String[6,8] username = 'dbuser' ,
  String description,
}:

Numbers

This section will cover the two types Puppet uses for numbers: integers and floating points. We will
also look at what arithmetic operations can be performed on them, how numbers can convert to and
from strings, and the variations on these types.

Data types 77

Both types of numbers are declared without quotation marks. Here, casing does not matter where
letters are used. The following patterns are available:

•	 Integers and octal integers:

	� An optional negative, – (positive is presumed in absence)

	� Numeric digits (starting with a 0 for octal)

•	 Hexadecimal Integers:

	� An optional negative, – (positive is presumed in absence)

	� 0x or 0X (case is not important)

	� A mix of numeric digits and upper or lowercase letters

•	 Floating point:

	� An optional negative, – (positive is presumed in absence)

	� Numeric digits (a 0 is required if using a number between -1 and 1)

	� A decimal point

	� Numeric digits

	� An optional e or E preceded by digits (for scientific float)

The following are some simple and appropriately named examples of each of the preceding types:

$integer = 42
$negative_integer = -84
$float = 32.3333
$scientific float = 3e5
$octal = 0678
$hex = 0x

It is important to note that an octal or hexadecimal number cannot be expressed as a floating-point
number and will result in an error as it is not a valid octal or hexadecimal number, as applicable.

Arithmetic operators

We cannot perform operations to reassign a variable but can assign new variables based on operations
between assigned variables. The following expressions can be used between variables:

•	 +: Addition

•	 -: Subtraction

•	 /: Division

Variables and Data Types78

•	 *: Multiplication

•	 %: Modulo, the remainder of dividing left by right

•	 <<: Left shift

•	 >>: Right shift

Left shift and right shift are less familiar and need further explanation. A left shift is the first variable
multiplied by two to the power of the second variable. Taking an example of 5 << 3, this would
translate into 5 * 23, which would result in 40.

A right shift is the first variable divided by two to the power of the second variable. Taking an example
of 32 >> 2, this would translate into 32 / 22, which would result in 8.

Note
For both left shift and right shift, floats will round down to an integer.

Additionally, the negative symbol (-) can be used as a prefix to negate a variable and brackets can
be used to manage the priority of operations, where Brackets, Orders (powers/indices or roots),
Division, Multiplication, Addition, and Subtraction (BODMAS) rules apply. Shifts are essentially
treated as multiplication and modulo division in this priority.

Any operations between an integer and a float will result in a float and an operation on an integer,
which would result in a float being rounded down to an integer.

The following are some examples of using these operators:

$a = 5
$b = 3
$addition = $a + $b
$subtraction = $a - $b
$division = $a / $b
$multiplication = $a * $b
$modulo = $a % $b
$shift_left = $a << $b
$shift_right = $a >> $b
$negate = -$a

To further show brackets enforcing BODMAS rules, the following example will be equal to negative 40:

$bodmas_example = ($a + $b) * -$a

Data types 79

String to numeric conversion

If a string is used in a numeric operation, it will automatically convert, but this will not happen in
any other context. To convert a string into a number, an object can be declared as an integer, float,
or numeric (we will cover numeric objects in the Abstract data types, including Sensitive section). An
example of conversion is taking a string, 1, to an integer and a string, 1.1, to a float:

$string_integer='1'
$string_float='1.1'
$converted_integer=Integer($string_integer)
$converted_float=Float($string_float)

Numeric to string conversion

Numeric types automatically convert into strings when interpolated in a string; the automatic conversion
uses base 10 notation. The String object declaration can also be used to convert, as follows:

$string_from_integer = String(342)

Integer data type

When setting the type of a parameter as an integer, the capitalized Integer keyword is used, along
with optional minimum and maximum values of the integer:

Integer[<Minimum Value>, <Maximum Value>]

The defaults are technically negative infinity and positive infinity but as Puppet uses 64-bit signed
integers, this is in the region of −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

Float data type

When setting the type of a parameter as a float, the capitalized Float keyword is used, along with
optional minimum and maximum values of the integer:

Float[<Minimum Value>, <Maximum Value>]

The defaults are technically plus and negative infinity but in practical terms, this is the range of a
double precision float of -1.7E+308 to +1.7E+308 in Ruby implementation.

As an example, consider the following code block, which defines Class application::filesystem
for assigning a percentage of a volume group within known limits of 100 to 10000:

Class application::filesystem (
Float[0.1, 99.9] percentage_application,
Integer[100, 10000] volume_group_size
) {
}

Variables and Data Types80

undef

undef is considered equivalent to nil in Ruby and represents the absence of a value assigned to a
variable. By default, the strict_variables setting is set to false, which means variables that
have not been declared have a default value of undef. In Chapter 10, we will see that this can be set
in the puppet.conf configuration file.

As a simple example, the following line will notify Print that test1 has not been declared:

  notify {"Print $test1":}

The only value an undef data type has is the unquoted undef and it is not used for parameter data
typing by itself. This is because enforcing the absence of a value would have no purpose.

In the Abstract data types, including Sensitive section of this chapter, we’ll see how undef values can
be accepted for parameters as a part of a selection of feasible options.

When interpolated into a string, undef is converted into an empty string ('').

Callout
In Chapter 5 and Chapter 8, we will learn about functions such as delete_undef_values
and filter, which can be used to trim the arrays and hashes of undef values.

Booleans

Booleans in Puppet represent true or false and in Chapter 7, when looking at if/case statements,
you’ll see that all Puppet comparisons return a Boolean type. A Boolean variable should simply
contain an unquoted true or false value. As a result, this makes the data type quite simple with
no parameters – just the capitalized Boolean keyword.

As an example, the following code is for an exampleapp class that has a parameter to manage users
that are set to true by default and a couple of variables hard-coded:

Class exampleapp (
  Boolean manage_users = true
) {
  $install_ssh = true
  $install_telnet = false
}

Data types 81

Conversion

Automatic conversion into Boolean values will occur in most cases unless an explicit data type has
been specified. For example, in an if statement, a variable can be used as if it were a Boolean by
simply writing $variable_name. However, automatic conversion can be confusing because only
undef will result in a conversion to false. This means that the 'false' string, an empty string
(''), an integer of 0, and a float of 0.0 will all convert into true.

When using a Boolean declaration, an empty string will fail to convert, as will undef, while a string
of 'false', an integer of 0, or a float of 0.0 will convert into false.

Since this is confusing, it is safer to use the num2bool and str2bool functions from the
puppetlabs-stdlib module, which will be covered in Chapter 8.

Regexp

The regexp type is different from the types we’ve seen so far. It represents a valid regular expression
in Puppet, which are expressions contained between forward slashes based on Ruby’s regex
implementation: http://ruby-doc.org/core/Regexp.html.

Regex use will be covered in more detail in Chapter 7, where it will be more practically applied.
However, it is worth noting that, later in this chapter, several abstract types that combine multiple
types, including regexp, will be covered.

Lab

In the previous chapter, a combined all_grafana manifest was created and a solution was provided
at https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/
blob/main/ch04/all_grafana.pp. Adjust this file so that it is within a class called all_
grafana and instead of using Facter, parameters are used.

These parameters should include the following:

•	 Source download: A string variable defaulting to https://dl.grafana.com/
enterprise/release/grafana-enterprise-8.4.3-1.x86_64.rpm

•	 Port: The port for the service to listen on as an integer

•	 Service enabled: By a Boolean

To achieve class assignment, write a class declaration that assigns the variables to ensure the class is
included in a catalog run. When you run bolt against your manifest, it will ensure you have included
your variables. Solutions are available at https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/blob/main/ch04/all_grafana.pp.

http://ruby-doc.org/core/Regexp.html
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/all_grafana.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/all_grafana.pp
https://dl.grafana.com/enterprise/release/grafana-enterprise-8.4.3-1.x86_64.rpm
https://dl.grafana.com/enterprise/release/grafana-enterprise-8.4.3-1.x86_64.rpm
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/all_grafana.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/all_grafana.pp

Variables and Data Types82

Arrays and hashes
This section will cover the two core collections of data in Puppet: arrays and hashes. You will learn
how to create, access, and perform operations to manipulate the values into a new variable.

Assigning arrays

Puppet arrays are created by surrounding comma-separated lists of values with square brackets. An
optional comma can be added after the last element, but this book recommends against that for styling.
For example, an array called example_array containing the first, second, and third strings,
and would be declared as follows:

$example_array = ['first','second','third']

Arrays can contain any data type, as well as a mix of data types. A Puppet variable cannot be reassigned
in terms of individual values or in terms of any other manipulation such as the addition or removal of
values. The following code shows how to assign the mixed_example_array array with the integer
of 1, a Boolean value of false from the example_boolean variable, and the example string:

$example_boolean = false
$mixed_example_array = [1, $example_boolean , 'example']

Arrays can also be empty with nothing between the brackets, []. They will not be identified as undef
but as an empty array. It would be unlikely to declare an array empty directly; this normally occurs
as a result of interpolated variables and operators causing it to become empty.

Accessing an array index

To access an array variables element, a specific element can be specified by index, which will return
that element. For example, to take the second string in the second index of example_array and
assign it to a variable, you can use the following code:

$example_array = ['first','second','third']
$second_index = $example_arrary [1]

The following code shows a notify resource outputting the string interpolating the third element
from example_array as negative numbers counting back from the end of the array:

notify{ "The first element is ${example_array[-1]}"

Accessing an element that does not exist will result in undef being returned. You mustn’t put any
spacing between the square bracket and the variable name; otherwise, it will be interpreted as a variable
and the square brackets will be separate.

Arrays and hashes 83

Accessing a subset of an array

When accessing a subset of an array, a second number is used to indicate the stopping point. This
is different from how substrings are handled. In the case of arrays, a positive number represents the
number of elements to return. For example, using a count position of 1 will return an array with a single
element. To extract a sub-array containing only the 'second' element from example_array,
you could use the following code:

$sub_array =  example_array[1,1]

This will assign the ['second'] sub-array to the $sub_array variable.

Choosing a length beyond the length of the array will simply return the available elements.

A negative length will count back from the end of the array. Importantly, unlike accessing substrings,
you cannot reverse the order by going past the starting index; this will simply return an empty array. In
the following example, the negative_sub array will return the whole array since its starting position
is 0 and its finishing position is the first element from the end of the array. The empty_sub_array
variable will be assigned an empty array since the ending position would be before the starting position.
The second_element_array variable would be assigned an array with the second element:

$negative_sub_array = example_array[0, -1]
$empty_sub_array = example_array[1, -3]
$second_element_array = example_array[1, -2]

Nested array

A nested array can be declared by inserting an array value within an array as many times as needed.
The value can then be accessed by using multiple sets of square brackets to access the desired level. As
an example, if a nested array is created with the first element as a string, a second value as an array of
three strings, and a third value of a string, attempting to access the first element as a nested element
results in returning a string, i, since the element at index 0 returns a string. A second set of brackets
are then used on the first string.

The nest_second variable returns the nest_second string since it returns the nested array at
element 1; then, with the second set of brackets accesses the second element:

$nested_array= ['first',['nest_first','nest_second','nest_
third'],'third']
$sub_string = $nested_array[0][1]
$nest_second = $nested_array[1][2]

To interpolate nesting in an array, curly brackets must surround the variable name and square brackets.
For example, the following notify resource will print the first element of nested_array:

notify {"Print ${nested_array[1][0]}":}

Variables and Data Types84

It is possible to use the subset approach within nested brackets, but this can create confusing and
hard-to-follow accesses and is not a recommended style in this book.

Array operators

Arrays cannot be manipulated once assigned but operators can manipulate the content of arrays to
assign new array variables. The following operators are available:

•	 <<: Append

•	 +: Concatenate

•	 -: Remove

•	 *: Splat

Append

Append takes any type of value and adds it as a new element at the end of the array. This includes adding
an array as a nested array. To combine two arrays, concatenate (+) must be used. To demonstrate this,
let’s look at an example of an array with integers 1 and 2 as elements that appends 3 into a new array.
This will produce a new array, [1,2,'three']; appending an array of [3,4] to example_array
will produce a new nested array, [1,2,[3,4]]:

$example_array=[1,2]
$new_array=$example_array << 'three'
$append_nest=$example_array << [3,4]

Concatenate

Concatenate takes an array and essentially combines its content with another array. If the first value
is not an array, the compiler will assume this is a numerical operator. For numbers, strings, Booleans,
and regular expressions, it will essentially work the same as an append and add the value to the end. To
achieve a nested array entry, you must supply a nested array. So, to show some examples, combined_1
will become an array of [1,2,1], combined_2 will be assigned [1,2,1,2], and combined_3
will result in a nested array being assigned [1,2,[1]]:

$combined_1 = $example_array + 1
$combined_2 = $example_array + [1,2]
$combined_3 = $example_array + [[1,2]]

Arrays and hashes 85

If a hash must be concatenated, it will be converted into an array unless it is turned into an array with
a single hash element. So, in the following code, the converted variable would be assigned a nested
array with elements of test and value, giving it an array of [1,2,[test,'value'], while the
nested_hash variable would add a nested hash that assigns [1,2,{test => 'value'}]:

$converts = $example_array + {test => 'value'}
$nested_hash =$example_array + [{test => 'value'}]

Remove

Remove assigns an array after removing all matching elements from a source. The first variable must
be an array; otherwise, it will be assumed to be a numeric operator. For the second variable, if it’s a
number, string, Boolean, or regular expression, it will search each element of the first variable array
and remove it if there is a match. For example, removing the one string from another_example_
array will match the first element and the third element and remove them, but not the first element
of the nested array, assigning ['two','three','four','three',['one','three','f
our'] to the remove_string variable:

$another_example_array = ['one','two','one','three','four','three',['o
ne','three','four']]
$remove_string = $another_example_array – 'one'

When you have an array as a second variable, it will iterate through each element in that array, removing
them as if they had been presented directly, as in our previous example. In this example, it will remove
one as per the previous example and then perform the searches for matching strings of three and four,
removing the fourth, fifth, and sixth elements while assigning ['two',['one','three','four']]
to the remove_array variable:

$another_example_array = ['one','two','one','three','four','three',['o
ne','three','four']]
$remove_array = $another_example_array – ['one','three','four']

When a nested array is used as the second variable, it will match any elements with the same array and
remove them. So, in this example, the remove_nested_array variable will be assigned ['one'
,'two','one','three','four','three']:

$remove_nested_array = $another_example_array –
[['one','three','four']]

As with concatenation, hashes must be placed in an array; otherwise, they will remove any matching
element of a translated nested array.

Variables and Data Types86

Splat

Splats are different from the other operators as they are used to make an array provide comma-separated
lists as an argument in a function call. This is true for both case and selector statements. Using array
splats will be covered in detail in Chapter 5 and Chapter 7.

Array data type

When setting the data type of a parameter to an array, the capitalized Array keyword must be used
with a data type for elements of the array, the minimum size of the array, and the maximum size of
the array:

Array[<Data Type>, <Minimum Size>, <Maximum Size>]

The defaults for data types are data, which will be covered in the Abstract data types, including Sensitive
section of this chapter, but this means that numbers (both integers and floats), strings, Booleans, and
regular expressions, as well as arrays and hashes of these types apply. If you select a more specific data
type, such as String, it will expect every element in the array to contain a string. In the Abstract
data types, including Sensitive section, other mixed types will be covered that provide more flexibility.

The minimum size is 0, while the maximum size is infinite.

As an example, the database class could accept a variable of db_uids, where at least one element
is expected in the array but could contain up to six elements. The user_names variable can be an
empty array or up to five elements but most only contain strings. Finally, the extra_flags variable
is an array with default values, so it can be an empty array up to an infinite size with the contents
matched against data types:

class 'database': {
  Array[default,1,6] db_uids,
  Array[string,0,5] user_names,
  Array extra_flags,
}

Assigning hashes

Hashes are written as comma-spaced key-value pairs separated by => and the list is surrounded by curl
braces, { }. A trailing comma can be added after the last pair, but this is not a recommended style
by this book. For example, the following hash pairs could be declined to assign the make key with
the skoda string, the model key with the rapid string, and the year key with the 2014 integer:

$my_car = { make => 'skoda', model => 'rapid', year => 2014 }

Arrays and hashes 87

For style purposes, a new line is often taken with each key to ensure the start of the keys line up and
the arrows line up. Taking a final new line for the closing curly brace and lining it up with the opening
curly brace is what this book recommends when writing arrays:

$my_car = { make  => 'skoda',
            model => 'rapid',
            year  => 2014
          }

Hash keys and values can be any type, but it rarely makes sense for the keys to be anything but strings.
Just like arrays, hashes are variables in Puppet and can only be assigned once and not manipulated
unless a new hash is assigned.

Note
Puppet can only serialize string hash keys into a catalog. Therefore, you cannot assign a hash
with non-string keys to a resource attribute or class parameter.

Accessing hash values

Similarly to arrays, hash values can be accessed using square brackets with the key value to access. As
an example, the following would print the rapid value:

notify {"Print ${my_car[model]}":}

Nested hashes

As with arrays, by declaring a hash within a hash, a nested hash can be created, which can be accessed
with chained keys. The following example shows a variable package list containing the packages
and services keys. The packages key contains the httpd key, with a string value of latest,
and the cowsay key, with a float value of 4.0. The services key contains the httpd key with a
string value of running and the nginx key with a string value of stopped:

$package_list = { packages  => { httpd  => 'latest',
                          cowsay => 4.0
                        }
                  services => { httpd => 'running',
                                nginx => 'stopped'
                              }
                 }

To print both of the nested httpd keys, a notify resource can be declared, as follows:

notify {"Print ${package_list[packages][httpd]} ${package_
list[services][httpd]}":}

Variables and Data Types88

Hash operators

There are two operators for hashes – merging (+), which can assign a new hash by adding key pairs
to an existing hash, and removal (-), which can assign a new hash by removing key pairs from an
existing hash.

Merging

Merging is performed by taking a hash variable, a + symbol, and a hash or an array with an even
number of values. Note that this is done while looking to add a new key; if a key already exists, it will
not be added. In the following example, merging a hash with the database key with an oracle
string and a version key with an integer of 11 with the app_web hash with a web_server key
with a string of httpd and a version key with a value of 12 will result in the combined_app
variable containing the database key and value and the web_server key and value. However, it
will ignore the app_web key version as a key already existed in app_db:

$app_db    = { database => 'oracle', version = > 11}
$app_web = { web_server => 'httpd', version => 12 }
$combined_app = $app_db + $app_web

Removal

The removal operator takes a hash variable, a – symbol, and a hash, an array of keys, or a single string
key. If giving a hash, the values in the hash will not matter as the removal is simply removing any
matching keys. In the following example, a hash of software_versions with the oracle key
and an integer of 11, the httpd key and a value of 12, and the cowsay key with a value of 9 can be
seen. When a single key is removed to create the no_cowsay variable, the key-value pair of cowsay
and 9 is removed. When only_cowsay is assigned, the values of oracle and httpd in the hash
to be removed do not matter and it will simply remove the key and value. For the only_oracle
variable, removing an array will make the removal operator run through each matching key and
remove matches:

$software_versions = { oracle => 11, httpd => 12, cowsay => 9}
$no_cowsay = $software_versions – cowsay
$only_cowsay = $software_versions – { oracle => 'anything' , httpd =>
'anything' }
$only_oracle = $software_versions – [httpd,cowsay]

Hash data type

The hash data type accepts an optional key type and value type; if a key type is specified, a value type
must be specified. A minimum size and maximum size can be specified for how many key pairs there
should be:

Hash[<Key type>, <Value type>, <Minimum size>, <Maximum size>]

Abstract data types, including Sensitive 89

For example, the following class has a tunables parameter, which must contain a hash with 1 to
10 key-value pairs of strings and integers:

Class kernel_overrides (
  Hash[String,integer,1,10] tunables
)

Mixing hashes and arrays

Since the value of a hash key value or an array value can be any data type, nesting can be performed.
Care should be taken not to overcomplicate the structure.

The following example shows the server_cmdb hash containing a hash of nfs_share_servers,
with the prod and dev keys containing arrays of strings:

$server_cmdb = {
  'nfs_share_servers => {
     prod =>  ['prdnfs01','prdnfs02','prdnfs02']
     dev => ['devnfs01','devnfs02,'devnfs03']
  }
}

To access the first prod array’s third value, prdnfs02, the following call could be made:

$server_cmdb[nfs_share_servers][prod][2]

Lab

To practice what we’ve covered, write a class that takes an array of packages and installs the packages
with a hash-defining standard parameter for installing the provider and version. Remember to declare
the class with variables, as per the previous lab. As an example, you could install the latest version
of the RubyGems webrick, puma, and sinatra. The suggested solution can be found at https://
github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/
ch04/packages_array_hash_paramters.pp.

Abstract data types, including Sensitive
Abstract data types give you the flexibility to mix the core data types for parameter enforcement and
particular patterns, as well as provide some more advanced features in terms of parameter checking.
There are a large number of abstract types, so this section will cover the most commonly used ones. Other
types can be found at https://github.com/puppetlabs/puppet-specifications/
blob/master/language/types_values_variables.md and https://www.puppet.
com/docs/puppet/8/lang_data_abstract.html#variant-data-type.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/packages_array_hash_paramters.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/packages_array_hash_paramters.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/packages_array_hash_paramters.pp
https://github.com/puppetlabs/puppet-specifications/blob/master/language/types_values_variables.md
https://github.com/puppetlabs/puppet-specifications/blob/master/language/types_values_variables.md
https://www.puppet.com/docs/puppet/8/lang_data_abstract.html#variant-data-type
https://www.puppet.com/docs/puppet/8/lang_data_abstract.html#variant-data-type

Variables and Data Types90

Prefixes

Although not Puppet terminology, the types we’ll review will be described as prefixes, where a type
is prefixed in front of another type with no options.

Sensitive

The Sensitive data type is used to mark strings as sensitive, which means the value will be displayed
in plain text in the code and the catalog, but not in any Puppet reports or logs. By prefixing the
Sensitive keyword to parameters and assignments with brackets, the strings’ contents are made
sensitive. This affects both string types and resources that can contain strings or can be converted
into strings. In the following example, we are showing a string, a string in an array, and an array that
can be assigned. The output will print [value redacted] over the section that has been marked
as sensitive:

$secret_string = Sensitive('password')
notify {"Print ${secret_string}":}
$single_sensitive_array = [Sensitive('password'),'password']
notify {"Print ${single_sensitive_array}":}
$secret_array = Sensitive(['password','password'])
notify {"Print ${secret_array}":}

When the value must be used in code, the unwrap function allows us to view the sensitive value.
This example shows how it could be unwrapped to print with a notify resource:

notify {"Print ${secret_string.unwrap}":}

This is purely an example and would defeat the purpose of hiding a value from logging and reporting;
more likely, it would be passed to another resource. Resources such as user-recognized sensitive
values for attributes such as password do not need to be unwrapped, but resources such as exec
do not interpolate, so the values must be unwrapped. To avoid leaking data resources such as exec,
which cannot interpolate, you can wrap it as Sensitive to ensure no part is exposed in logging.
The following example shows passing the sensitive string to user and passing the sensitive string as
a password to a curl command:

user { 'max'
  id => 7
  password => $secret_string
}
exec {'secure curl':
  command => Sensitive("C:\\Windows\\System32\\curl.exe -u
david:${secret_string.unwrap} http://example.com")
}

If only the unwrap is performed when running Puppet with debug, the command and password
would be fully visible.

Abstract data types, including Sensitive 91

In Chapter 7, we will cover templates, including how to use sensitive values. However, as of Puppet
7.0 and 6.20, you no longer need to unwrap sensitive values before using them in templates.

Note
Securing data fully from end to end will be discussed in Chapter 9.

Enum and more advanced pattern data type patterns, which will be covered in the next section, will not
work with Sensitive and should be avoided. Here, you should only use basic types such as string.

Optional

The Optional data type allows undef to be used as an acceptable input for a data type, in addition
to the types allowed by the data type it prefixes:

Optional <type> <variable name>

For example, to allow an Integer parameter or undef to be assigned to the oracle_uid variable,
simply add the Optional keyword in front of the Integer type:

class oracle (
  Optional Integer orace_uid
)

The notundef type has the opposite effect but is of much more limited and exceptional use.

Patterns

Pattern types allow for combinations of types, such as regular expressions or specific choices of strings,
to be enforced on attributes.

Enum

The Enum data type allows you to enumerate strings, allowing multiple options to be used on a
class parameter. The following code declares Enum, followed by an array of strings as options with
a minimum of one string or more:

Enum[<string>,*<string>]

The following example shows how to use this in a class called regional with a parameter of uk_
region accepting one of the available UK regions:

class regional (
  Enum['Scotland,'England','Wales','Northern Ireland'] uk_region
)

Variables and Data Types92

Variant

The Variant data type allows you to combine any other data types as an array. The following code
uses the Variant keyword and declares the list of allowed types on a parameter:

Variant[<type>,*<type>]

For example, the following class accepts Booleans of true and false or the true or false
strings for the create_user_home variable. It will also take a string or an array of strings for the
user_names variable:

class user_accounts(
  Variant[Boolean, Enum['true', 'false']] create_user_home
  Variant[String,Array[String]] user_names
)

Pattern

The Pattern data type is similar to Variant but is a way of providing a list of regular expressions
where the parameter can match any of them. The syntax is as follows:

Pattern[<regexcp>*<regexcp>]

Here, we are declaring with the Pattern keyword, followed by an array of regexp types. For
example, the following defined type, server_access, takes a hostname that must have a string
starting with edi, gla, or abe:

Define server_access (
  Pattern[/^edi/,/^gla/,/^abe/] hostname
)

Arrays and hashes

In this section, we will cover the various arrays and hashes types.

Tuple

In the previous section, we discussed that the array type could have one type declared for all of its
content. Tuple allows any number of types to be used at specific indexes within an array and optional
minimum and maximum sizes. The minimum size, if smaller than the number of types assigned, makes
those types optional, while a maximum size allows for the last type to be repeated if the maximum size
is greater than the number of types declared. A maximum size requires a minimum size to be declared:

Tuple[<type>, *<type>,  <minimum size>, <maximum size>]

Abstract data types, including Sensitive 93

To provide an example of this, let’s consider three variables: user_declaration, calculation,
and file_download. The user_declaration variable requires a string for the username,
an integer for the UID, and at least one string up to eight characters in length, which represents the
groups that a user can be assigned to. The calculation variable requires an integer, a float, and
an integer. The file_download variable requires a URI and a string, and, optionally, an integer.
Please note that the integer is optional and is not required:

class exampleapp (
Tuple [string, integer, string, 3 , 10] user_declaration
Tuple [integer, float, integer] calculation
Tuple [uri, string , integer, 2] file_dowload
)

Struct

Struct provides a similar type to Tuple for hashes. In the Hash data type, a single key type and
value type was declared, while a struct allows for a particular order string keys with the option to
have optional or undef and value types to be declared. Unlike Tuple, there is no minimum or
maximum size:

Hash[<*optional *undef String name>, <Value type>, *(<*optional *undef
String name >,<value type>)

To illustrate how the use of optional keys and values can affect variable assignments, let’s consider
three examples: config_file, application_binary, and application_startup. The
config_file variable requires key pairs, including the mode key with a string value of either file
or link, and a path key with a string value. The application_binary variable is similar to
config_file, but it allows for an optional owner key with a string value. If present, the owner
key must have a string value. The application_startup variable requires an owner key that can
either be undefined or a string. Additionally, the value for each key must match the expected data type:

class skeleton (
Struct[{mode => Enum[file, link],
        path => String config_file

Struct[{mode            => Enum[file, link],
        path            => String,
        Optional[owner] => String}] application_binary

Struct[{mode            => Enum[file, link],
        path            => String,
        owner           => Optional[String]}] application_startup
)

Variables and Data Types94

Parent data types

The following data types allow you to group multiple data types into a single parameter. Using them
directly can make code shorter and clearer:

•	 Any: The Any type matches any Puppet data type, making it useful when the exact data type
is unknown or does not matter.

•	 Collection: The Collection type matches any array or hash data type, making it useful
when an array or hash can have multiple data types.

•	 Scalar: The Scalar data type matches strings, Booleans, regular expressions, and numerics.
It is useful when a single value with any of these data types is required.

•	 Data: The Data type matches scalar, undefs, and arrays containing values that match data,
and hashes with keys matching scalars and values that match data. It is useful when complex
data structures are required.

•	 Numeric: The Numeric type matches float and integer data types, which is useful when a
numerical value is required.

Lab

Continuing our work on the all_grafana class, create an all_grafana_data_types class
and add to it so that it accepts a file_options parameter. This must have a name but can optionally
have a mode, a user, and a group as a hash. Ensure each of those resources has restricted data types.
Add a Grafana user and a sensitive parameter password that is passed to the user.

To achieve class assignment, write a class declaration before you assign the class some variables.
When you run bolt against your manifest, it will include your variables. The solutions are available
at https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/
blob/main/ch04/all_grafana_data_types.pp.

Scope
In Puppet, a scope is a level of code that has limited access to variables and default settings for
resources. The three levels of scope are top scope, node scope, and local scope. Top scope variables
reflect variables that are declared globally, most commonly in the site.pp manifest file. Node scope
variables are assigned in node definitions, which are typically also made in site.pp or via an External
Node Classifier (ENC). For example, variables can be declared in the site.pp manifest file within
a Puppet environment to make them globally available to all nodes. Alternatively, variables can be
declared in a node definition in site.pp or the ENC to be made available at the node level for a
particular server or group of servers. site.pp is a special manifest file in Puppet that contains the
main configuration for a Puppet environment. A resource default is a default setting for a resource,
which can be overridden in a more specific scope, such as node scope or local scope. The full use of
site.pp, ENC, and node definitions will be explained in detail in Chapter 10.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/all_grafana_data_types.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/all_grafana_data_types.pp

Scope 95

When accessing a variable, by default, the server will access the lowest level first and essentially
override variables of the same name at higher levels. Other local scopes can be accessed by using the
namespace but cannot be assigned values.

Here’s an example of how these concepts work together in a single Puppet manifest file. We can
define a global variable called 'global' with a string value of 'world', and a node definition
that, by default, assigns all nodes a variable called 'node' with a string value of 'mynode'. The
node definition includes two classes, 'local' and 'also_local'. In the 'local' class, we
assign a variable called 'global' with a string value of 'override', which has a local scope
and overrides the global value. We will use two notify resources to demonstrate how variable scope
works. The first notify resource prints 'Print override', showing that the 'global' local
variable has overridden the global value. The second notify resource uses the :: syntax to reference
the global variable, so it prints 'Print world'. The third notify resource prints 'Print node'
because there are no local variables with that name. In the 'also_local' class, we define a new
variable called 'another_global' with a string value of 'another world'. The first notify
resource in this class uses the directly-accessed variable to print 'Print another override'.
The second notify resource uses the :: syntax to reference the global variable and prints 'Print
another world' because no local variable called 'global' is declared. A notify resource is
a Puppet resource type that simply logs a message to the console or system log. It’s commonly used
for debugging or informational purposes:

$global = 'world'

node default {
  $node = 'mynode'
  include local
  include also_local
}

class local
{
$global = 'override'
  notify {"Print ${global}":}
  notify {"Print ${::global}":}
  notify {"Print ${node}":}
}

class also_local {
  notify {"Print another ${local::global}":}
  notify {"Print another ${global}":}
}

Variables and Data Types96

Resource titles or references to resources are not limited by scope as they must be unique to the whole
catalog. As shown in the preceding example, the notify resources that were used in the also_local
class had their titles adjusted so that they contained another. This helps us avoid resource title clashes
when the variables are interpolated. Otherwise, both the local and also_local classes would
have contained notify resources called Print override and Print world and would fail
to compile with duplicate resources.

As discussed, the also_local class can call the global variable from the local class but cannot
assign it to that local scope.

Summary
In this chapter, we learned that Puppet variables are different from those in normal procedural
languages as they can only be assigned once. We saw that certain words are reserved and cannot be
used in naming variables. We also saw that Puppet variables can be interpolated, depending on how
and where strings are placed.

We covered various core data types and how they can be used to both restrict parameters and assign
variables. We also looked at undef and Booleans, which need to be carefully managed when translating
values to get the expected results.

Next, we looked at arrays and hashes and how to assign them. Although they can’t be changed, we
learned how operators can manipulate them into new assignments. We also covered how arrays and
hashes can be nested and mixed as hashes of arrays and arrays of hashes.

Then, we looked at abstract data types and how they apply restrictions to parameters more flexibly
with the Sensitive type, which provides scoped protection for logs and reporting.

After, we reviewed how Puppet variables can be declared at different scopes and how variables can
be shared/seen in different scopes.

In the next chapter, we will cover facts and functions. We will look at the system profiling tool, Facter,
the information it gathers, and how it can be customized to gather user-specific data on system
profiles. Functions provide Ruby code plugins, allowing code to be run at compile time, which can
perform actions such as data manipulation or affect the catalog run. We will cover built-in functions
and functions from the standard lib module, from Puppet Forge, which can be used to manipulate
data types into the variables we discussed in this chapter.

5
Facts and Functions

This chapter will cover facts. We will show you how the Facter tool gathers them to show the profile
of systems, how to interact with Facter, and how to use them in Puppet code. We will also cover how
custom and external facts can be added to the provided core facts, to allow for more user-specific facts
to be gathered.

Then, we will cover functions. We will explain what functions do and the three types of functions –
statement, prefix, and chained. We will examine a selection of the core provided functions to show
you their capabilities. A selection of functions will also be shown from the stdlib module, where
we will explain the module’s approach and uses.

Deferred functions, which were introduced in Puppet 6, will also be covered. Here, we will show you
how deferred functions differ from normal functions, how to make a function deferred, and pitfalls
to avoid while using deferred functions.

In a nutshell, the following topics will be covered in this chapter:

•	 Facts and Facter

•	 Custom facts and external facts

•	 Functions

•	 The stdlib module functions

•	 Deferred functions

Facts and Functions98

Technical requirements
For this chapter, you will need to provision a Puppet server standard architecture with a Windows
client and a Linux client by downloading the params.json file from https://github.com/
PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch05/params.
json and then using the following command from your pecdm directory:

bolt --verbose plan run pecdm::provision –params @params.json

Facts and Facter
Facter is Puppet’s system profiler, a set of Ruby libraries that work cross-platform and gather information,
known as facts, about clients. This tooling provides the necessary information to evaluate the profile
of the client and allows configuration decisions to be made based on the pre-existing state of the host
in Puppet code.

Puppet 5 and 6 use Facter 3, while Puppet 7 uses Facter 4. Only a handful of features are available in
Facter 4, which will be highlighted, and a small number of facts have changed, but most users will find
no difference. These differences can be viewed by running the puppet facts diff command. In
Chapter 8, we will highlight how module testing can ensure code is compatible across different versions.

The output of Facter can be seen by running the facter -p or puppet facts command on the
command line or VSCode terminal. Running either of these commands without any further options will
return all the core facts. The -p flag ensures that Puppet-specific facts are gathered. Due to a circular
dependency being created between Facter and Puppet, it had been previously planned to depreciate
the -p flag and replace it with the puppet facts command. This approach was abandoned with
the release of Facter 4. This book will use the facter command for its examples, which follows the
documentation and community practices.

Note
By default, the facter command outputs in a Puppet hash format, while puppet facts outputs
in JSON format. Both of these commands accept options for choosing the appropriate format.

We will now look at some examples of Facter output. The simplest type of fact is a simple key-value
pair, such as the Kernel fact, which in this case tells us that the kernel is Windows-based:

"Kernel": "windows"

There are also hashes, known as structured facts, which can be broken into nested levels. The os fact is
commonly used. The following example of a Windows 10 laptop shows the various levels that are available:

os => {
  architecture => "x64",
  family => "windows",

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch05/params.json
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch05/params.json
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch05/params.json

Facts and Facter 99

  hardware => "x86_64",
  name => "windows",
  release => {
    full => "10",
    major => "10"
  },
  windows => {
    display_version => "21H2",
    edition_id => "Core",
    installation_type => "Client",
    product_name => "Windows 10 Home",
    release_id => "21H2",
    system32 => "C:\WINDOWS\system32"
  }
}

The full list of core facts can be found at https://puppet.com/docs/puppet/latest/
core_facts.html; running facter -p on your client system and reviewing the output is
recommended. An individual fact can be accessed by running the facter command against the
fact’s name, such as facter -p kernel, to return the kernel fact. To access a specific nested
level value in a structured fact, dot notation is used, which separates each key level name with dots
(.). So, to access the family fact within the os structured fact, the facter -p os.family
command can be run.

As Facter has gone through several iterations and structured facts were not in earlier versions,
Facter 3 hid several legacy facts such as architecture, which was put into the os structured fact as
os.structured. The --show-legacy flag allows these facts to be made visible in the Facter
output; they are documented in the core fact documentation.

When Puppet is run, either via the agent or by running puppet apply on the command line,
Facter will run, with legacy facts, and the output will be assigned to global variables.

These variables can then be accessed in Puppet manifests in two ways – either directly by the name
of the fact on a global variable or via the facts array. It is strongly recommended to access facts only
via the facts array since this makes it clear that facts are being accessed and not potentially other
global variables.

For example, in the following code, the notify resources would access the kernel and os family
variables and print logging messages containing the kernel and os families of the host it was run on:

notify { "This clients kernel is ${facts[kernel]}": }
notify { "This client is a member of the os family ${facts[os]
[family]": }

https://puppet.com/docs/puppet/latest/core_facts.html
https://puppet.com/docs/puppet/latest/core_facts.html

Facts and Functions100

Note that not all facts will appear on all clients. Facts often have a context on which to filter themselves,
such as which operating system is running or if a particular underlying hardware is being used.

Note
As you’ll see in the next section, functions use dots for chained functions, so the dot-separated
access syntax of the facter command cannot be used to call the facts variable directly.
However, the getvar function can be used.

Facter can be customized and tuned on a host-by-host basis by configuring a facter.conf file. This
file is not created by default and should be created at /etc/puppetlabs/facter/facter.
conf on Nix-based systems and C:\ProgramData\PuppetLabs\facter\etc\facter.
conf on Windows. For testing purposes, the facter command can be run with the -c flag to select
a configuration file to be run.

An example facter.conf group looks like this:

facts : {
    blocklist : ["disks", "dmi.product.serial_number", "file system"
],
    ttls : [
        { "processor" : 30 days },
    ]
}
global : {
    external-dir     : ["/home/david/external1", "/home/david/
external2"],
    custom-dir       : ["/home/david/customtest"],
    no-exernal-facts : false,
    no-custom-facts  : false,
    no-ruby          : false
}
cli : {
    debug     : false,
    trace     : true,
    verbose   : false,
    log-level : "warn"
}
fact-groups : {
 custom-exampleapp : ["exampleapp1", "exampleapp2"],
}

Facts and Facter 101

The first section, facts, includes a blocklist, which allows us to list facts and fact groups that will not
be run. This can be useful in situations where calculating the fact can be computationally expensive.
For example, in the preceding example, we block the disks and file system groups since, in
some legacy UNIX systems, SAN storage can be configured with thousands of paths. It also disables
dmi.product.serial_number, which might be decided as something secure that should not be
visible in Puppet. To see a full list of blockable groups, you can run the facter --list-block-
groups command, which will list the group names and a list of the facts inside it. For example, the
disks group looks like this:

disks
- blockdevices
- disks

The other part of the facts section is ttls, which allows caching to be configured. Cached facts are
stored as JSON in /opt/puppetlabs/facter/cache/cached_facts on UNIX-based
systems and C:\ProgramData\PuppetLabs\facter\cache\cached_facts on Windows.
In the preceding example, the processor group will only be refreshed every 30 days. To see a full
list of cacheable groups, you can run the facter --list-cache-groups command, which
will display a similar format to the block groups.

The global section allows an array of directories to be passed to external-dir so that you can
define where facter should look for external facts. Similarly, an array directory can be passed to
custom-dir to define where facter should look for custom facts. Custom and external facts will
be covered in the next section.

The global section has three Boolean values:

•	 no-external-facts: To disable external facts if set to true.

•	 no-custom-facts: To disable custom facts if set to true.

•	 no-ruby: To prevent Facter loading via Ruby. Any facts that use Ruby and custom facts are
set to true.

All these settings are more likely to be used for debugging and development purposes.

The cli section sets a log level with a string of (none, trace, debug, info, warn, error,
fatal) and has three options: verbose, trace, and debug. Each of these three options is enabled
or disabled with a true or false Boolean. The trace option will show a backtrace if an exception
occurs in a custom fact. This should not be confused with the trace log level; a better name for this
option might have been stacktrace. The verbose option enables verbose information output from
Facter, while the debug option enables debug-level output from Facter.

The fact-group section is new to Facter 4 for Puppet and allows you to define custom groups for
caching and blocking. Core facts and custom facts can be specified but not external facts.

Facts and Functions102

Note
As the facter.conf file uses a HOCON format, it can be easier to manage it via the HOCON
module from Puppet Forge (https://forge.puppet.com/modules/puppetlabs/
hocon), where it can be classified on an individual node or group of nodes basis as required.

Facter 4 in Puppet 7 also reintroduced benchmarking of facts, which had previously been in Facter 2.
To run benchmarks on a particular fact, you can run the facter -t <fact name> command.
For example, running facter -t os will produce an output similar to the following:

fact 'os.name', took: (0.000007) seconds
fact 'os.family', took: (0.000006) seconds
fact 'os.hardware', took: (0.000007) seconds

If a structured fact is selected, it will time each part of the fact and will return it to the normal output
of the facter call after.

Having covered what core facts are and how to run and configure Facter to test and manage them,
the next stage is adding customizations via custom and external facts.

Custom facts and external facts
In this section, you will learn how to add to the facts provided by core via custom facts. These are
written in Ruby, similar to core facts or external facts, which are either hard-rigged values or client-
native executable scripts. While it can be tempting to gather everything, the extra burden facts put
on the Puppet infrastructure, particularly with many agents, should be considered and balanced with
the need for data.

External facts

External facts are executables that can set facts based on the logic within the scripts or facts set statically
by the structured data of the file.

External facts can be stored in the following directories for Unix-based operating systems:

•	 /opt/puppetlabs/facter/facts.d/

•	 /etc/puppetlabs/facter/facts.d/

•	 /etc/facter/facts.d/

For Windows systems, they can be stored in C:\ProgramData\PuppetLabs\facter\
facts.d\.

In Chapter 8, you will learn how external facts can be distributed to clients from modules via the plugin
sync process, where facts are added from modules contained in a facts.d folder within the module.

https://forge.puppet.com/modules/puppetlabs/hocon
https://forge.puppet.com/modules/puppetlabs/hocon

Custom facts and external facts 103

Note
Puppet can be run as a non-root user on UNIX-based systems, while external facts can be stored
in ~/.facter/facts.d/. However, this book will not cover running as a non-root user.

Static external facts

Static external facts must be in JSON, YAML, or TXT format. As an example, let’s set an Application
fact to exampleapp, a Use fact to production, and an Owner fact to exampleorg. In a YAML
file, this can be created like so:

Application :  exampleapp
Use : Production
Owner : exampleorg

In a JSON file, they would be set like this:

{ "Application": "exampleapp", "Use": "Production", "Owner":
"exampleorg"}

In a TXT file, the same facts would be set like this:

Application=exampleapp
Use=Production
Owner=exampleorg

For Windows, the line endings used in these files must be either LF (Line feed, Unicode character
000A) or CRLF (Carriage return and line feed, Unicode characters 000D and 000A) and the file
encoding used for the files must be either ANSI or UTF8 without BOM.

The examples we’ve looked at so far are all known as flat facts. However, structured facts can be
returned by creating an array format. For example, in YAML, we could allow two owners by adding
arrays and nested arrays to YAML. In this example, let’s assume there are multiple applications, and
each application can have joint ownership:

Application :
  Exampleapp
Use : production
Owner
- Exampleorg
- anotherorg
  Anotherapp
Use : Production
Owner : exampleorg

Facts and Functions104

This would allow us to call facter application.exampleapp.owner to retrieve an array of
owners or to call facter application.anotherapp to receive the use and owner key pairs.

Note that static external facts will always return a string type in their output.

Executable external facts

Executable external facts differ on Windows and UNIX, but both are runnable scripts that output key
pairs or arrays to return facts or structured facts.

On Windows, the following file types can be used:

•	 Binary executables (.com and .exe files)

•	 Batch scripts (.bat and .cmd files)

•	 PowerShell scripts (.ps1 files)

On UNIX platforms, any executable file with a valid shebang (#!) statement can be run. If the shebang
statement is missing, the execution of the script will fail.

For both platforms, the scripts should return text. This will be read as key pairs or as YAML or JSON,
which can be parsed into a structured fact.

For example, a Unix bash script that returns the PID of the exampleapp process as a fact, along
with a fact for exampleapp_cpu_use and example_memory_use, may look like this:

#!/bin/bash
echo "exampleapp_pid = ${pidof exampleapp}"
echo "exampleapp_cpu_use = ${ps -C exampleapp} %cpu"
echo "exampleapp_memory_use = ${ps -C exampleapp} %mem"

For Windows, a PowerShell script to return the same facts would look like this:

Write-Output "exampleapp_pid=$((Get-Process explorer).id)"
Write-Output "exampleapp_cpu=$(Get-Process explorer).cpu)"
Write-Output "exampleapp_mem=$(Get-Process explorer).pm)"

Note
To find issues with external facts, you can run facter –debug. This will highlight if the
fact is visible to Facter and if any output is not being parsed and getting ignored.

Custom facts and external facts 105

Custom facts

Custom facts are sections of Ruby code that can be used to set facts and expand on the core Facter
facts. The main advantage of using custom facts over external facts surrounds the built-in mechanisms
that are available. In this section, you will learn how the use of custom facts allows you to access the
value of other facts within custom facts, how you can have multiple weighted resolutions, and how
to use confine to ensure only certain nodes will attempt to run the fact.

The main disadvantage of using custom facts is that they need to be written in Ruby, which is a learning
curve. It’s beyond the scope of this book to dive deeper into the details of Ruby, but its basic structure
and some of its core libraries, which work well on Windows and UNIX-based systems, will be shown
to give enough you a head start so that you can research them further.

Like external facts, custom facts are normally distributed by Puppet modules. However, when
performing local testing, there are three ways to direct Facter to locations where we store our facts
locally while testing:

•	 The Ruby library load path

•	 Using the –custom-dir option on the Facter command (note that this can be flagged
multiple times)

•	 Setting the FACTERLIB environment variable

The Ruby library load path can be checked by running ruby -e 'puts $LOAD_PATH'.
Remember to make sure that the Ruby binary being used is the Puppet-provided version at C:\
Program Files\Puppet Labs\Puppet\puppet\bin\ruby.exe on Windows or /
opt/puppetlabs/puppet/bin on UNIX-based systems.

Custom facts declare themselves using Facter.add('<fact_name>') and use a setcode
statement to run a code block to resolve the fact. This is the way a fact’s value is determined. As a simple
example, it is possible to run a UNIX shell or Windows terminal command directly by surrounding
the command with backticks (`):

Facter.add('exampleapp_version') do
  setcode do
    `exampleapp –version`
  end
end

Since there is only one command, this could also be written with a single setcode line:

Facter.add('exampleapp_version') do
  setcode `exampleapp --version`
end

Facts and Functions106

Both would set the exampleapp_version fact to the output of the exampleapp –
version command.

If your facts were more complicated and you needed to run multiple commands or manipulate the
output, the command could be run using a Ruby class.

In the following example, the Facter::Core::Execution.execute Ruby class will run a
command called exampleapp, with a flag of version, and then pipe the output of the command
to awk to print the second returned value:

Facter::Core::Execution.execute('exampleapp –version' | awk '{print
$2}')

PowerShell commands can be executed using the powershell command, like so:

Facter::Core::Execution.execute('powershell (Get-WindowsCapability
-Online -Name "Microsoft.Windows.PowerShell.ISE~~~~0.0.1.0").state')

It can be tempting to run everything as terminal commands for familiarity, but care must be taken as
not everything that can be used in a terminal will work. For example, bash-style if statements will
not work and should be written in Ruby code.

It can be useful to call the value of another fact into a variable. The following code will put the os
arch fact into the arch variable:

arch = Facter.value('os.arch')

Confining custom facts

One of the main advantages of custom facts is the ability to confine the nodes they will run on. This
can be achieved with the confine statement and by selecting the facts and values to match for the
fact to run. The confine functions syntax follows this format:

confine <fact_name>: '<fact_value>'

The fact defined after the confine function will only run if the conditions are met. For example,
you can confine a fact to only run on nodes with Windows-based kernels:

confine kernel: 'Windows'

An array can also be used, where matching any of the values will allow the fact to run. For example,
we can check if the kernel is from Linux or Solaris:

confine kernel: ['Linux', 'Solaris']

Custom facts and external facts 107

For structured facts, the Facter.value method can be used to access it. For example, to test that
the os.release.major fact is equal to 10, the following code can be used, where => is used
instead of a colon (:) to match the fact to its value:

confine Facter.value(:os)['release']['major'] => '10'

In addition to facts, Ruby commands and library commands can be used to confine facts.
For example, confine can be used with Facter::Core::Execution.where or
Facter::Core::Execution.which to confirm a command exists in the path for Windows
or Linux, respectively. Additionally, Ruby libraries such as File can be used to check this.

For example, to confine a fact if the git command was found in the Windows path, the following
code can be run:

confine { Facter::Core::Execution.where('git') }

The following code would confine a fact to only run if /opt/app/exampleapp existed as a file
or as a directory:

confine { File.exist? '/opt/app/exampleapp' }

To write a single fact that can cover multiple implementations and confine with granularity, we can
use both resolutions (Facter.add statements) and multiple confine blocks. The following example
shows a simple example of setting the Facter value of whoami to either I am windows 10 if
the kernel fact is Windows and os.release.major is 10 or to the I am Sparc string if the
kernel is sparc:

Facter.add('whoami') do
  setcode do
    confine kernel: 'Windows'
    confine Facter.value(:os)['release']['major'] => '10'
    'I am windows 10'
  end
end
Facter.add('whoami') do
  setcode do
    confine kernel: 'Sparc'
    'I am Sparc'
  end
end

Facts and Functions108

Another method of confining facts is using features. A feature is a section of Ruby code that’s added
to lib/puppet/feature in a module. For example, the exampleapp module could contain
an exampleapp.rb feature that checks whether exampleapp was installed on either Windows
or Linux:

require 'puppet/util/feature'
Puppet.features.add(:example_app)
do
windows= `powershell '(Get-Command exampleapp).source'`.strip
linux = `sh -c 'command -v exampleapp`.strip
windows.empty? && linux.empty? ? false : true end

A custom fact could then use a confine statement so that only nodes with the exampleapp
command available would run the fact:

Facter.add('exampleapp) do
setcode do
confine { Puppet.features.example_app? }

This removes the need to create additional facts and gather and process information not needed except
for evaluating confinement.

Note
It is important to perform all logical code inside the setcode and confine blocks; otherwise,
when the facts are loaded, it will run this code, rather than when the fact is queried for resolution.
The order in which facts will be loaded is not predictable, so if code is required by the fact but
it is outside of the blocks, it can result in ordering errors.

Weighted resolutions

Another approach to writing custom facts is to have multiple resolutions while knowing that some
may return null values, but we want to work through various options. When reviewing resolutions,
Facter eliminates any that are not confined. Then, it looks at the weight of each resolution. By default,
this is set to 0 but it can be set using the has_weight function. If two resolutions have the same
weight, Facter will use whichever was listed in the code first.

For example, to set the exampleapp_version fact with multiple resolution options, in the first
resolution, it will run the command with the version flag weighted at 100 and then try to look for
the version in the config file weighted at 50:

Facter.add('exampleapp_version') do
has_weight 100
setcode do
`exampleapp --version`

Custom facts and external facts 109

end
Facter.add('exampleapp_version') do
has_weight 50
setcode do
`grep version /etc/exampleapp/exampleapp.conf | awk '{print $2}'`
end

This allows the command to fail so that it can be backed up with a second source.

Note
External facts have a weight of 1000. So, to prevent an external fact from being able to overwrite
your custom fact resolutions, you can set a value higher than 1000 on the resolution weight.

Rescue blocks

By default, Facter will error and fail to return any value if any resolution fails with an error. Using rescue
blocks can allow default values to be returned as a result of failures and to opt to print warnings. This
works in conjunction with weighted resolutions, where it’s common to expect failures in resolutions.

A simple rescue block that returns nil on the failure of resolution after running the exampleapp
–version command and logging a failure would look like this:

setcode do
`exampleapp --version`
rescue
  nil
  Facter.warn("exampleapp command failed")
end

Using Facter.warn ensures this message is printed to STDERR when used via the Facter
command. When used during the Puppet catalog application, it will ensure it is printed in Puppet’s
logs. Returning nil would ensure other resolutions can be used if they return non-nil values.

Timeouts

As part of Facter 4, which was made available in Puppet 7, it is now possible to add a timeout to a
resolution. This can be done by adding a comma after the fact’s name as part of the Facter.add
resolution statement and using the {timeout: <value in seconds>} syntax, where the
value in seconds can be an integer or a float. For example, to ensure a 0.2-second timeout on the
exmpleapp_version fact, the code can be set like this:

Facter.add('exampleapp_version', {timeout: 0.2}) do

Facts and Functions110

Although this is only a feature in Facter 4 and Puppet 7, in Facter 3 and Puppet 5 and higher, it is
possible to put timeouts on the execution command by directly setting the options variable on
the execute function. For example, the same 0.2-second timeout could be applied to the execution
of the exampleapp –version command rather than the whole resolution by modifying the
execute command:

Facter::Core::Execution.execute('exampleapp --version', options =
{:timeout => 0.2})

Aggregate and structured facts

Aggregate facts allow the resolutions of a fact to be broken up into chunks. These chunks can then
be merged. Merging arrays or hashes creates a structured fact or performs other functions, such as
adding the values of facts together.

An aggregate fact still has a Facter.add declaration, but within Facter.add, it sets the type
variable to aggregate. Then, instead of using setcode sections, it uses chunk sections for the
resolutions. By default, each chunk will be merged unless an aggregate block is declared to perform
another function.

For example, the following code would create a structured fact called exampleapp. It would have
exampleapp.version and exampleapp.fullpath containing the output of the commands
in the chunks:

Facter.add(:exampleapp, :type => :aggregate) do
  Chunk(:version) do
`exampleapp –version`
  end
  Chunk(:fullpath) do
`which exampleapp`
  end
end

To use an aggregate block and sum facts together, you can use the following code, which makes a
fact called exampleapp_memory_usage that takes a chunk using a fact containing the total
memory used by exampleapp and adds it to the memory used by exampleapp2 to give us the
total memory usage:

Facter.add(: exampleapp_memory_usuage, :type => :aggregate) do
  chunk(:exampleapp1_usage) do
    Facter.value(:exampleapp1_usage)
  end
  chunk(:exampleapp2_usage) do
    Facter.value(:exampleapp2_usage))
  end
  aggregate do |chunks|

Custom facts and external facts 111

    total = 0
    chunks.each_count do |value|
      total += value
    end
    total
  end
end

A new method to return structured facts is available in Puppet 7 with Facter 4. This follows the use
of dot notation in the fact’s name, which allows a definition to assign different levels of a structured
fact. For example, to set the exampleapp fact with a nested level of exampleapp.version and
exampleapp.pid, you can use the following code:

Facter.add('exampleapp.version') do
setcode do
`exampleapp --version`
end
Facter.add('exampleapp.pid') do
setcode do
`pidof exampleapp`
end

This has a core advantage over using an aggregate. Unlike an aggregate, a failure of one part of the
declaration will only affect that declaration; the rest will be assigned.

Note
This section has tried to give you enough information to get started with custom facts. In
Puppet’s documentation for custom facts and module code, you will find alternative syntax
for many of the features we’ve discussed. Since it is in Ruby code, there is a greater variation
of what can be declared. This book has chosen what it considers the best style and practice to
follow to keep things simple and avoid listing too many options.

Some modules that can be useful to follow examples further are available on GitHub:

https://github.com/puppetlabs/puppetlabs-pe_status_check/blob/
main/lib/facter/

https://github.com/puppetlabs/puppetlabs-stdlib/tree/main/lib/
facter

https://github.com/puppetlabs/puppetlabs-lvm/tree/master/lib/
facter

https://github.com/puppetlabs/puppetlabs-java/tree/main/lib/
facter

https://github.com/puppetlabs/puppetlabs-pe_status_check/blob/main/lib/facter/
https://github.com/puppetlabs/puppetlabs-pe_status_check/blob/main/lib/facter/
https://github.com/puppetlabs/puppetlabs-stdlib/tree/main/lib/facter
https://github.com/puppetlabs/puppetlabs-stdlib/tree/main/lib/facter
https://github.com/puppetlabs/puppetlabs-lvm/tree/master/lib/facter
https://github.com/puppetlabs/puppetlabs-lvm/tree/master/lib/facter
https://github.com/puppetlabs/puppetlabs-java/tree/main/lib/facter
https://github.com/puppetlabs/puppetlabs-java/tree/main/lib/facter

Facts and Functions112

Lab

For this lab, we will create a static external fact and a custom fact and distribute them with bolt
upload before running the facts and viewing them on the console to see if they have become visible.

For the static external fact, create a structure that sets packtlab.use equal to lab and packlab.
student equal to your name.

For the custom fact, a tmp_count fact will be created, which will count the number of files in the
/tmp directory on Linux and C:\Users\admin\AppData\Local\Temp on Windows. For
Linux, the first resolution with a higher weighting should be 'find /tmp -type f | wc -l',
while the second with a lower weighting should be ls /tmp | wc -l. For Windows, the first
higher-weighted resolution should be the (ls $env:Temp | Measure-Object -line).
Lines PowerShell command and the lower weighted resolution – that is, (Get-ChildItem
$env:Temp | Measure-Object).Count.

All resolutions should return undef in the result of an error and should time out after 10 seconds.

Note that it can be useful to look at your clients’ current facts on the web console so that you know
how to confine them.

For each of the facts, use the bolt command as follows to upload them to the correct locations:

bolt file upload path_of_your_fact /path/to/destination --targets
windows_server_fqdn linux_sever_fqdn

bolt task run facts --targets windows_server_fqdn linux_sever_fqdn

Go to the web console and view the facts in your nodes to confirm they are on your clients.

You can find the example solutions at https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/blob/main/ch05/tmp_count.rb and https://github.
com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch05/
packlab.yaml.

Note
When testing custom or external facts, they can be set manually with environment variables by
setting FACTER_<fact_name> in UNIX environments using export FACTER_exampleapp
="test" or in Windows environments by using env FACTER_exampleapp="test" –
this would hard-set the exampleapp fact. This method only works with custom or external
facts and not core facts.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch05/tmp_count.rb
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch05/tmp_count.rb
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch05/packlab.yaml
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch05/packlab.yaml
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch05/packlab.yaml

Functions 113

Functions
Functions are sections of Ruby code that can be run during catalog compilation and allow you to
modify the catalog or calculate and return values. Puppet has many built-in functions and more can
be supplied via modules from Puppet Forge, such as https://forge.puppet.com/modules/
puppetlabs/stdlib, or custom-written functions added to modules. This book will not cover
writing functions, but a complete guide can be found at https://puppet.com/docs/puppet/
latest/writing_custom_functions.html.

In this section, we will cover the three different types of functions: statement, prefix, and chained. A
selection of the core Puppet functions will be shown, grouped by purpose to demonstrate the most
used and useful functions.

Note
A lot of functions were moved from sources such as the stdlib module into the core Puppet
function. The full list can be reviewed at https://puppet.com/docs/puppet/6/
release_notes_puppet.html#release_notes_puppet_x-0-0.

Statement functions

Statement functions are Puppet language-provided functions used only for their side effects, which
always return undef values. Statement functions can omit brackets, unlike the other functions we
will review in this section. You cannot add custom or Forge-provided statement functions.

Catalog statements

Catalog statements affect the content of the catalog, allowing classes to be included, dependencies
and containment to affect the order of the catalog, and tags to be applied. The following shows an
example syntax of catalog statements:

Include <class name>
require <class name>
contain <class name>
tag <tag name> , *<tag name>

The use of Include and tag was discussed in Chapter 3, but we didn’t look at the tag function
in much detail. The tag function is used within a class to mark that class, and all contained objects
with the tag or list of tags.

In Chapter 6, we will cover the full use of require and contain.

https://forge.puppet.com/modules/puppetlabs/stdlib
https://forge.puppet.com/modules/puppetlabs/stdlib
https://puppet.com/docs/puppet/latest/writing_custom_functions.html
https://puppet.com/docs/puppet/latest/writing_custom_functions.html
https://puppet.com/docs/puppet/6/release_notes_puppet.html#release_notes_puppet_x-0-0
https://puppet.com/docs/puppet/6/release_notes_puppet.html#release_notes_puppet_x-0-0

Facts and Functions114

Logging statements

Logging statements allow for string messages to be sent to log output on the Puppet server. In Chapter 10,
server and agent logging will be reviewed in full as logging locations depend on the configuration
and whether Puppet enterprise or open source is used. The syntax for a logging statement is simply
<logging level>(<string >).

The following log levels can be applied:

•	 debug

•	 info

•	 notice

•	 warning

•	 err

•	 fail

To log a warning message of 'code unexpected', the Puppet code would be as follows:

warning('code unexpected')

The string message can include variables if they are double-quoted for interpolation. So, to produce
an error message of 'pa-risc is unsupported' on a pa-risc architecture system, the Facter
os.arch fact can be used within the error function string:

error("${facts['os']['arch']} is unsupported")

This differs from the examples this book has used up till now, particularly with the notify resource
used in the previous chapter’s examples. The notify resource returns to the client’s logging while
the log-level functions will log to the Puppet server. As notify is a resource and not a function, it
will result in the report showing that a resource is changed every time a notify resource is called.

fail differs from the other levels as calling it as a function will terminate the compilation and result
in no catalog being sent to the agent.

Prefix and chained functions

Puppet functions can be called in two ways and for many functions, either can be applicable.

Prefix functions are called by writing the name of the function and then providing a list of arguments
in brackets:

function_name(argument, *argument)

Functions 115

Chained functions are created from an argument, a full stop (.), then the function name with brackets,
and any further arguments in those brackets:

argument.function_name(argument, *argument)

A selection of built-in functions

There are many functions available in core Puppet, and this section will group different functions to
show examples of how they can be used or refer to where in this book we will cover them in more detail.
The intention of this chapter is not to give the full syntax of every function but to expose a breadth
of functions. You can refer to the full functions list at https://puppet.com/docs/puppet/
latest/function.html. Make sure you select the correct version of the documentation for the
Puppet environment you are working with.

Comparison and sizing

The following functions allow you to compare and measure the size of variables. They provide additional
capability beyond what can directly be done with data types.

The length and size functions are effectively the same and can both be used as prefixes or chained
functions on arrays (number of elements), hashes (number of key-value pairs), strings (characters), or
binaries (bytes) to confirm the relative size/length of the variable. For example, the following command
would return 4 as the length of the string four and 5 as the size of the array:

Stringwithfour = 'four'.length()
Array_of_five = Size([8,4,5,7,0])

match is used as a chained function on a string or an array of strings with a regular expression to
match patterns. It returns an array containing the string that has been matched in index 0, followed
by the pattern(s) that matched. If there are no patterns in the following example, where there’s a string
that must start with a lowercase letter to start, then the numbers will be 6 to 8 in length. The variable
matches a123456 and returns an array containing ['a123456', 'a' , '123456']:

$matches = "a123456".match(/([a-z]{1})([1-9]{6,8})/)

If we tried this same regular expression on a non-matching string, 1a23456, undef will be returned:

$nomatch = "1a23456".match(/([a-z]{1})([1-9]{6,8})/)# $matches
contains [abc123]

Using an array of strings ('a123456', 'b1254678', and '1a23456') with the same regular
expression results in the multi_match variable containing an array of arrays. This is the output if
match had been used on each string individually:

$multi_match = ['a123456','b1254678','1a23456'].match(/([a-z]{1})([1-
9]{6,8})/)

https://puppet.com/docs/puppet/latest/function.html
https://puppet.com/docs/puppet/latest/function.html

Facts and Functions116

This means multi_match will contain [['a123456','a','123456'],['b1254678',
'b','1254678'],undef].

max and min are used as prefix functions. They take an array of strings or numeric values and return
the largest and smallest values in each case. Before Puppet 6.0, there was guidance as to how it would
convert and handle mixed types used in these functions. However, now that it’s deprecated, it is strongly
advised that you ensure comparisons are like for like. In the following example, the variable highest
number would contain 88, while the lowest letter would contain 'a':

$highest_number = max([5,3,88,46])
$lowest_letter = ['d','b','a'].min()

empty is used as a prefix or chained function to confirm if an array or hash contains no elements or
if a string or binary contains no length. In the following examples, the empty_array and empty
strings would contain true, while the non_empty_string variable would contain false:

$empty_array = [].empty
$empty_string =empty('')
$nonempty_string='not_empty'.empty()

compare is used as a prefix function that compares two values and returns -1, 0, or 1 if the first
value is less than, equal to, or greater than the second, respectively. The two values must be of the
same type and can be numeric, strings, timespans, timestamps, or semvars. For two strings, a third
argument (a Boolean) can be used to check whether the comparison should ignore casing.

For example, the numeric_compare variable would contain -1, while the string_compare
variable would contain 1 as capitals would be greater than lowercase letters and A would come before
b. If the Boolean were set to true, it would return 1:

$numeric_compare = compare(5 , 6)
$string_compare = compare('A', 'b', false)

Change case

The following functions change the case of strings or arrays/hashes of strings. In the case of integers,
they remain unchanged and will contain other incomputable data type errors.

capitalize, camelCase, downcase, and upcase are all used as prefixes or chained functions
to change the capitalization of a string or a set of strings on an iterable, such as an array. downcase
and upcase can also be used on an array. All can be used on a numeric but will simply return the
numeric unaffected.

CamelCase removes any underscores (_) that were used when applied. camelCase and capitalize
are not recursive on an array but upcase and downcase are.

Functions 117

If downcase or upcase changes keys in an array while being used recursively and this creates
duplicates, it will overwrite the key, using the last key-value pair that was updated in its place. To show
some examples, the upper_case variable will contain a string called UPANDDOWN upon making
the whole string upper case, while downcase will contain a hash of {'lower' => 'case2'}
upon downcasing both keys and overwriting the first:

$upper_case = 'UpAnDdOwN'.upcase()

The capitals variable will contain an array called ['Up, Mix'] after capitalizing each string
in the array:

$capitals =capitalize(['down','miX'])

The downcase variable will contain a hash of {'lower' => 'case2'} after downcasing both
keys and overwriting the first:

$downcase = {'lower' = > 'case', 'Lower => 'Case2}.downcase()

The camel variable will contain Word1Word2Word3 after removing the underscores and setting
the capitalization to camelCase:

$camel = camelCase('word1_word2_word3')

If you’re using international characters, you need to review how to Ruby system locale handles these
characters as it is used to handle changes in casing.

String manipulation

The lstrip, rstrip, and strip functions allow spacing to be removed from strings. They are all
prefixes or chained functions that are used to remove spaces from a string. lstrip removes leading
spacing, rstrip removes trailing spacing, and strip removes both leading and trailing white
spacing such as space, tab, newline, and return but not hard space. They can be used on a string or an
iterable but not recursively. If used on numerics, they will return numeric unadjusted types but will
result in an error on any other unsupported type.

The following example, which uses all three functions, will result in the left variable containing
'first second', the right variable containing 'first second', and the all variable
containing 'firstsecond':

$spaces = " first second "
$left = $spaces.lstrip()
$right = rstrip($spaces)
$all = $spaces.strip()

Facts and Functions118

Lambdas

These functions are not lambdas themselves but are most useful when used with lambdas since they
allow arrays or hashes variables to be iterated over or transformed and passed to lambdas, which are
sections of Puppet code. The following functions are used on variables to define their behavior: all,
any, break, each, filter, index, lest, map, next, return, reduce, reverse_each,
step, then, tree_each, unique, and with.

The syntax and behaviors of these functions will be covered in full in Chapter 6, but to show an
example, here, we are using the each function and a hash containing user name keys and numbers
representing their user ID. The each function can take each key pair as an array and allow user
resources to be created with the assigned IDs:

$usersids = {'admin' => 1, 'operator' => 2, 'viewer' => 3}
$userids.each |$users| {
  user { $users[0]:
    id  => $users[1]
  }
}

Note
Many functions can use lambdas for error handling, which allows you to loop through the
error sections, messages, and issue codes and allows for more detailed messages or actions to
be taken. This will be covered in Chapter 6.

Templating

Templates allow you to create complicated text with simple inputs for substitution. In Chapter 6, we
will cover templates in full, but the template and epp functions allow the ERB and EPP formats
for templates to be used via the content attribute of the file resource. An example of using the
ERB format and informing the content attribute can be found in the exampleapp module:

file { '/etc/exampleapp.conf':
  ensure  => file,
  content => template(exampleapp/exampleapp.conf.erb')
}

The structure of modules and how to store template files will be covered in Chapter 8.

Functions 119

Alternatively, to use a string containing a template format and pass the value, inline_template
and epp_inline can be used. For example, to use an EPP style template where it is presumed
$exampleapp_conf_template contains a string in EPP template format, inline_epp will
substitute the port and debug the variable values of exampleapp_port and exampleapp_
debugging_enabled:

file { '/etc/ntp.conf':
  ensure  => file,
  content => inline_epp($exampleapp_conf_template, {'port' =>
$exampleapp_port, 'debugging' => $exampleapp_debugging_enabled}),
}

Hash/array

The following functions are used to either access and manipulate hash and array data beyond the
normal operators available, which were discussed in Chapter 4, or to manipulate variables into hashes
and arrays.

The dig function is used to search through a complex data structure by providing various keys or
indices. It is particularly useful in situations where the structure is not well defined. For instance,
suppose we have a data structure called exampleapp_proc, and we want to access the state
of the process with ID 124. If we tried to access it using a hash index such as exampleapp_
proc['exampleapp_pids']['124']['state'], but the 124 key was not present in the
hash, we would get an error and the catalog run would fail. However, by using the dig function
instead, the notice will be undefined:

$exampleapp_proc = { exmpleapp_pids => { 123 => { state => running ,
user => root } }
notice exampleapp_proc.dig('exampleapp_pids','124','state')

The getvar function is used to return parts of a structured variable using dot notation. If the variable
does not exist, it will return undef instead of throwing an error, unlike direct access to structured
variables. You can also set a default value if the value is not found; otherwise, it will return undef.

The first command uses getvar to access the os.release.full fact, while the second command
sets the return value to 'not_found' if the structured fact is not found:

getvar('facts.os.release.full')
getvar('facts.os.release.full','not_found')

Facts and Functions120

The join function is used to convert an array into a string of elements using a specified delimiter. For
instance, if you have an array of data center locations such as dc_locations = ['london',
'falkirk', 'portland', 'belfast'], you can use the join function to print a colon-
separated string of those locations; for example, notice(join(${dc_locations}, ":"))
This will produce the "london:falkirk:portland:belfast" string in the notice:

dc_locations = ['london','falkirk','portland','belfast']
notice (join(${dc_locations}, ":")

However, if you use join on an array that contains a nested array, it will flatten the array, but it
won’t affect hashes or arrays within hashes. For example, join([{London => ['bromley',
'brentford']}, 'Berlin', 'Falkirk', 'Grangemouth'], '@@') would print [{
London => ['bromley', 'brentford'] }@@Berlin@@Falkirk@@Grangemouth
] because the first element of the array is a hash and it won’t be flattened despite it containing a hash:

dr_locations = [{ London = > [
'bromley','brentford']},Berlin,['Falkirk','Grangemouth']]
notice (join(${dr_locations}, "@@")

The keys and values functions take a hash and return an array of the keys in the hash it can be
run as a prefix or chained function. For example, to print the list of keys of the offices variable,
the first two notice functions would print an array of ['Germany','Holland'], while the
next two would print an array of ['Berlin',Amsterdam']:

$offices = {'Germany' => 'Berlin', 'Holland' => 'Amsterdam'}
notice(keys(${offices})
notice($offices.keys())
notice(values(${offices})
notice($offices.values())

These keys or values will be in the same order as they were declared in the hash. If the hash is empty,
it will return an empty array.

The split function takes a string and, using a pattern to represent a field separator, can break a
string into an array of elements. This pattern can be a string, regexp, or regexp. The following example
shows how to split using each pattern method and pick different separators or multiple separators:

$exmple_split = north@south.east@west
$split_on_at = split($example_split, /@/)
$split_on_fullstop = split($example_split, '[.]'
$split_on_both = split($example_split, Regexp['[.@]')

The split_on_at variable would contain an array of ['north','south.east','west'],
split_on_fullstop would contain an array of ['north@south ', 'east@west'] and
split_on_both would contain an array of ['north','south,'east','west'].

Functions 121

The sort function takes an array and sorts the array numerically or by lexicographical order. It is
not possible to mix these orderings and have numeric and lexigraphic values as this will result in an
error and no conversion. Comparing characters is based on system locale and is case-sensitive unless
compare and lambdas are used.

In its simplest form, sort will sort numbers and strings in ascending order – for example, we can take
an unordered array of numbers and an unordered array of strings and use sort as a prefix or a chained
function. In this example, the code will result in ordered numbers containing [0,1,2,3,4,5,7,8,9]
and ordered strings containing ['a','b','c','d']:

$unordered_numbers = [7,9,8,0,2,4,3,1,5]
$unordered_strings = ['d','c','b','a']
$ordered_numbers = $unordered_numbers.sort()
$ordered_strings = sort($unordered_strings)

To specify the order explicitly, you can use the compare function to order the variables, highlighting
if they should be ascending or descending. In the following example, the integers will be ordered
[1950,1980,1984,1985] in the ascending variable and [1985,1984,1980,1950] in the
descending variable:

$ascending =(sort([1984,1950,1985,1980]) |$a,$b| { compare($a, $b) })
$descending = (sort([1984,1950,1985,1980]) |$a,$b| { compare($b, $a)
})

As we learned when we discussed compare in the Comparison and sizing section, a Boolean can be
used on compare to order by capitals or not.

Note
Instead of using the compare function, other functions from the Comparison and sizing
section such as max or min can be used.

Data handling

There are several data-related functions for Hiera and encrypted EYAML. These will be covered in
full in Chapter 9, but for reference, they are eyaml_look_up_key, lookup, and yaml_data.
The function documentation states that a few hiera_<type> functions were depreciated for the
lookup function.

The unwrap function was previously covered in Chapter 3, whereby the function was used to make
sensitive data types visible/accessible in Puppet code, as necessary.

Facts and Functions122

stdlib module functions
Modules will be discussed in full in Chapter 8, but the stdlib module (https://forge.
puppet.com/modules/puppetlabs/stdlib) is so widely used that it is worth highlighting
some of the functions that are available from the module as virtually every install of Puppet will make
them available.

It is important to be aware that the functions in stdlib allow advanced behaviors that are not always
best practice approaches to Puppet code, such as being able to read the contents of a YAML file into a
string and using the ensure_package function, which is used to allow for multiple declarations
of a package resource. They can provide useful workarounds in complex situations or when code is
managed in multiple teams’ political situations.

Note
Many functions have been made redundant by file type conversion, which was made available
in Puppet 5, as well as other new features, but those have been left for compatibility purposes.

Array and strings

The following functions interact with strings and arrays by combining, manipulating, and producing
new arrays in several ways.

The intersection function is a chained function that, when provided with two arrays, will produce
a single array of values contained in both. For example, the following code will put the ['both']
array into the chained_array variable:

$chained_array = intersection(['first','both']['second','both])

The union function is a chained function that, when provided with two arrays, will produce a
single array of unique values. In the following example, the union_array variable will contain the
['first','second'] array:

$union_array = union(['first','both'],['second','both']

The range function is a chained function that can be provided a start, end, or step interval (if not
provided, this defaults to 1). The start and end can be strings or numerics, while the optional step
should be an integer.

For example, the onetoten variable would contain an array of [1,2,3,4,5,6,7,8,9,10],
the etog variable would contain ['E','F','G'] , and good_trek would
contain ['StarTrek2','startrek4',startrek6','starttrek8']:

$onetoten = range(1,10)
$etog = range('E','G')
$good_trek = ('StarTrek2', 'StarTrek8', 2)

https://forge.puppet.com/modules/puppetlabs/stdlib
https://forge.puppet.com/modules/puppetlabs/stdlib

Lab 123

The start_with and end_with functions are chained functions that allow you to check if a string
starts or ends with a provided string or list of strings, attempting to match any string in the list. It
will return true or false, depending on the match. In the following example, truestart will
contain true as server matches the start of server1234, falseend will contain false as
wales does not end in land, and trueoptions will contain true as aws104 starts with aws
and could match other strings starting with gcp or az:

$truestart = 'server1234'.startswith('server')
$falseend = 'wales'.endswith('land')
$trueoptions = 'aws104'.startswith['gcp','az','aws']

File information

The basename, dirname, and extname functions can be used either as separate functions or
chained together to extract the filename, directory, or extension from a file path. Here’s an example:

$full_path = 'C:\Users\david\fact.ps1'
$file_name = basename(${full_path})
$dir_name = dirname(${full_path})
$ext =  ${full_path}.extname

Note that extname only works with filenames in the format of filename.extension. If the
string does not contain a dot (.), or if the dot appears at the beginning or end of the string, it will
simply return an empty string.

Lab
Having covered a wide variety of functions, let’s practice using a handful of them. Let’s create a class called
example_functions that takes the parameters of the user prefix as a string and several users as an
integer. This class should take two parameters: a user prefix as a string, and several users as an integer.
Ensure that the prefix is in lowercase. An array of usernames should be created starting from 0 up to
the number of users specified. This array should then be passed to a user resource to create the users.

Define your class with the user string and the number 5.

The code should also log a warning message containing text with the contents of the os.windows.
product_name fact or linux if you’re not using a Windows machine.

Finally, the code should take the fact path and ensure every directory is audited. Hint: you will want
to separate this path into an array and pass it to a file resource. windows and linux use different
separators for path objects – that is, ; and :. The following if statement should help:

if $facts['os.family'] == 'windows' {
}else{
}

Facts and Functions124

You should use bolt to make stdlib available locally on our clients:

bolt command run "puppet module install stdlib" -t windowsclient
linuxclient

Then, apply the puppet class via bolt with the following command:

bolt puppet apply example_functions.pp -t windowsclient linuxclient

You can find some example solutions at https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/blob/main/ch05/example_functions.pp.

Deferred functions
A Deferred function (also known as an agent side function) is a function with the Deferred
type applied to it. This causes the function to run locally on a client when the catalog is applied, rather
than on a Puppet server during compilation. The catalog for a deferred function contains what to run
on the client rather than the output of the function. The deferred type was introduced in Puppet 6.0
and is available in all later versions.

This is typically used when the compilation server can’t access a necessary source in a function – for
example, when retrieving a secret from a HashiCorp Vault server, where security is set up to only
allow the client to access a secret.

The syntax for applying Deferred is as follows:

Deferred(name of function, [arguments])

The following is an example of retrieving a secret from vault. This can be used within a user resource
for exampleapp to set the password from a Vault path of exampleapp/password:

user { 'exampleapp':
password => Deferred('vault_lookup::lookup', ["exampleapp/password"])
}

This function is from the vault_lookup module (https://forge.puppet.com/modules/
puppet/vault_lookup) and requires an underlying vault client setup to be available, as per the
instructions within the module and the guide from Hashicorp: https://www.hashicorp.com/
resources/agent-side-lookups-with-hashicorp-vault-puppet-6.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch05/example_functions.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch05/example_functions.pp
https://forge.puppet.com/modules/puppet/vault_lookup
https://forge.puppet.com/modules/puppet/vault_lookup
https://www.hashicorp.com/resources/agent-side-lookups-with-hashicorp-vault-puppet-6
https://www.hashicorp.com/resources/agent-side-lookups-with-hashicorp-vault-puppet-6

Deferred functions 125

It is important to understand the difference in using functions with Deferred. You cannot use a
Deferred function to pass a variable to a string. This would result in the catalog creating a stringified
version of the object. In the following example, which involves looking up a key value from vault
called exampleapp/message, the first notify will return a string containing a stringified
translation of the function name in the catalog, while the second notify will return the value of
the vault lookup itself:

$deferred =>  Deferred('vault_lookup::lookup', ["exampleapp/message"])
notify {'this will return the object name':
  message => "Secret message is ${deferred"
}
notify {'this will return the message':
message => $deferred
}

This reflects the catalog compilation calculating the string value at compilation time. This mismatch
can happen in other places, such as templates, but can be overcome by ensuring any deferred values
are only used in isolation or within other deferred functions. In Chapter 7, you will learn how to use
a deferred template.

A function can only be deferred if it uses core data types because the client only has core data types
made available to it at runtime via plugin sync. In Chapter 10, you will learn how plugin sync works
with the client.

Also, note that it is down to the implementation of the function itself whether it returns a sensitive
value, and how it fails. In the case of the vault_lookup function, there is no graceful failure; it
will return an error, resulting in an errored catalog run.

Note
As of Puppet 7.17.0, deferred functions can now be called on demand instead of being
preprocessed. Using this method, the catalog can provide inputs to the deferred function. If
the deferred function fails, then only the affected resource will fail, while all other resources
will still be applied. To enable this behavior, set Puppet[:preprocess_deferred] =
false or use --no-preprocess_deferred.

All these behaviors apply to a local puppet apply run since a puppet apply run will
generate a catalog and apply it locally.

Facts and Functions126

Summary
In this chapter, you learned how the Facter tool provides system profiling information with its facts
and how this can be expanded using external facts and custom facts. We warned you that there is
an infrastructure cost to gathering facts and that the scale it will work with should be balanced. We
stated that external facts can be simple flat files of static data or executable scripts, as allowed by the
operating system. Custom facts, although written in Ruby, were shown to have several advantages
over external facts. Being able to confine the custom fact to only run on certain systems allows you to
choose different resolutions with a weight as to which should be selected and timeouts at the resolution
level in Puppet 7 or the execution level in Puppet 6 and below.

Next, we reviewed functions and highlighted the vast range of tasks functions can do to manipulate
the catalog or return calculated values in Puppet code. Here, we discussed catalog statements, which
are used to include classes in the catalog, and logging statements, which are used to set logging
messages. The other two types of functions, prefix and chained, were highlighted, along with their
syntax. Then, a selection of core functions was shown, along with various categories that expose the
available functions.

Then, we discussed a small selection of functions from the stdlib module to highlight what can
be provided. Note that some of the stdlib functions have been deprecated and are only there for
backward compatibility or to be used for edge cases, which is not a best practice.

Finally, we discussed deferred functions, which allow functions to run during the application of the
catalog on a client. We highlighted the advantage of this for services that may only be available to
the client, such as making API calls to secure services, or may be undesirable to be run on Puppet
infrastructure shared with other services.

In the next chapter, you will learn how relationships and dependencies work between resources and
classes. We will look at how scope and containment affect resources, variables, and classes and how to
structure code and necessary dependencies without encountering common pitfalls and dependency hell.

Part 2 –
Structuring, Ordering,

and Managing Data in the
Puppet Language

This part will look at the more advanced Puppet language features. We will show how to manage
dependencies and flow within code using iteration and conditions. We will then see how to use best
practices to structure Puppet into modules using roles and profile patterns. Puppet Forge will be
shown to be a useful source of pre-built modules and we will look at how to understand and review
the source and content of those modules. We will then look at how to manage data with Puppet using
Hiera and understand the best practices in terms of when to use separate data sources and variables.

This part has the following chapters:

•	 Chapter 6, Relationships, Ordering, and Scope

•	 Chapter 7, Templating, Iterating, and Conditionals

•	 Chapter 8, Developing and Managing Modules

•	 Chapter 9, Handling Data with Puppet

6
Relationships, Ordering,

and Scope

In this chapter, we will be discussing relationships, ordering, and scope in Puppet. These topics are
often considered complicated because Puppet’s approach differs greatly from traditional languages.
However, we will show you how to manage these aspects effectively and avoid unnecessary complexities.

We will start by discussing Puppet’s approach to relationships and ordering. By default, Puppet treats
resources as independent and can apply them in any order in the catalog. However, where ordering
is necessary, we will show you how to use metaparameters such as before, after, notify, and
subscribe to enforce ordering and create relationships between resources.

After that, we will cover the concept of containment. We will explain that including classes are not
contained within their calling classes, so relationships/dependencies made between classes do not
automatically create relationships and dependencies with the resources in those classes. To address
this, we will introduce the contain function, which allows you to contain the resources within a
class and create those relationships.

Finally, we will discuss scopes and how variables and resource defaults can have different visibility
depending on where they are in the code and their relative scope. We will then provide best practices
and pitfalls to ensure that you take the simplest path and avoid unnecessary complexity.

Overall, this chapter will equip you with the knowledge and skills to effectively manage relationships,
ordering, and scope in Puppet.

In this chapter, we’re going to cover the following main topics:

•	 Relationships and ordering

•	 Containment

•	 Scope

•	 Best practices and pitfalls

Relationships, Ordering, and Scope130

Technical requirements
All examples and labs in this chapter can be run within your own local dev environment.

Relationships and ordering
By default, Puppet treats all resources as independent of each other, which means they can be applied
in any order. This is different from traditional declarative code, which runs line by line and executes in
the order it is written. One of the main advantages of Puppet’s approach is that if a single part of the
code fails, Puppet will continue to apply all other resources. This eliminates the need to stop or have
substantial failure handling in place to continue code. As a result, Puppet can bring a client server as
close to the desired state as possible, even if some resources fail.

It’s clear that some resources will be dependent on each other, such as a configuration file that can only
exist after a package has been installed. Puppet provides metaparameters to create these dependencies:

•	 before: The resource should be applied before the named resource(s).

•	 require: The resource should be applied after the named resource(s).

•	 notify: The resource should be applied before the named resource(s). The named resource
refreshes if the resource changes.

•	 subscribe: The resource should be applied after the named resource(s). The resource refreshes
if the named resource changes.

The before and require metaparameters can be used to enforce a dependency relationship.
However, it’s important to note that a relationship only needs to be applied in one direction. Therefore,
there is no need to use both before and require on either side of a dependency.

For example, to indicate that the httpd package should be installed before managing a file, either
before or require can be used, as shown:

package { 'httpd':
  ensure => latest,
  before => File['/etc/httpd.conf'],
}

file { '/etc/httpd.conf':
  ensure => file,
  require => Package['httpd'],
}

Relationships and ordering 131

A dependency chart, also known as a Directed Acyclic Graph (DAG), can be created using the Puppet
validator at https://validate.puppet.com/ by selecting the show relationships option.
Alternatively, the DAG can be generated by selecting open node graphs to the side in the Puppet
Development Kit (PDK), or by using the --graph option with the puppet command to produce
a dot file that can be used to create a graphic in an appropriate program.

In Figure 6.1, the require on the file resource has been removed to produce a DAG for the example code:

Figure 6.1 – A DAG of resource dependencies

If both the before and require metaparameters were present, an extra arrow would be visible in
the DAG, but it would have no effect on the compilation or resources applied. It’s worth noting that the
starting and finishing classes, named Main, in the example code reflect that the code is not contained
within a class and the code is at a global level. This will be discussed further in the Scope section.

In a DAG, loops are not expected, so the flow of dependencies should only go downward. If a third
resource, such as a service, is added that should be enforced before the httpd package after the
/etc/httpd.conf file, the DAG would look like this:

service { 'httpd':
  ensure  => running,
  before  => Package['httpd'],
  require => File['/etc/httpd.conf'],
}

https://validate.puppet.com/

Relationships, Ordering, and Scope132

This would result in a dependency cycle, as illustrated in Figure 6.2. When compiled, the code would
produce an error, as there would be no way to determine the order in which to apply the resources.

Figure 6.2 – A DAG showing a dependency cycle

It is also possible to represent multiple dependencies with an array, which can be an array of names
either of the same type or of different types. For example, if a package were required by two files and
two services for exampleapp, it could be represented like this:

package { 'exampleapp':
  ensure => latest,
  before => [File['/opt/exampleapp.content','/var/exampleapp.
variables],Service['exampleapp','exampleapp2']]
}

Sometimes, it can be easier to have all the resource dependencies on one side rather than on each
individual resource.

As was mentioned in Chapter 3, some Puppet types have automatic rules for creating dependencies,
which can be found in the documentation for the Puppet type under Autorequires either online
or using the Puppet describe command. For example, the user type autorequires any group under
Puppet’s control, that a user resource has as its primary or secondary group.

Relationships and ordering 133

As well as an ordering concept, Puppet has the refresh attribute, so if a resource has a dependency
on another resource, it will refresh itself. This is useful in situations such as when a configuration file
is updating and the service should restart to reread the configuration file.

The notify and subscribe metaparameters create the same dependency as before and
require but add the refresh attribute to the dependent resource. Of the built-in Puppet types,
service exec and package can be refreshed. If a notify or subscribe metaparameter is
used with a resource type incapable of refreshing, it will just enforce the dependency and do nothing
on a refresh event.

Note
The notify metaparameter should not be confused with the notify resource type used to
send messages to the agents log.

For example, a service resource could use subscribe or notify from the file resource so
that the service would be dependent on the file being created. It would also receive a refresh event
if the file was updated and restart the service assuming the provider had the capability. As shown
in the following code, again we show both sides of the dependency, although only one relationship
attribute should be given:

service { 'httpd':
  ensure => running,
  subscribe => File['/etc/httpd.conf'],
}
file { '/etc/httpd.conf':
  ensure => file,
  notify => Service['httpd'],
}

In a DAG diagram, this would be identical to using before and require, and it can use the same
resource reference or arrays of resource references.

The default behaviors and parameters of a refresh event for each type are shown in Table 6.1. Here,
we see that by default, a service will use the provider’s restart variable if it is provided. Otherwise,
hasrestart can define an init script or restart can define a custom restart script. If no init
script is provided, the service name will be searched for in the process tree, but it is strongly advised
to provide clear service management scripts.

For the package type, the default behavior is to ignore the restart event, but the parameter can be
set to reinstall the package as the result of a refresh event.

Relationships, Ordering, and Scope134

Exec will rerun its command on a refresh but can be changed to run a different refresh command
or to only run as a result of a refresh event.

Type Default Behavior Parameter(s)
Service Restart the service if the provider

has a restart feature; otherwise,
stop and start

hasrestart

restart

Package Ignore refresh event reinstall_on_refresh

Exec Rerun the command refresh

refresh only

Table 6.1– Puppet native type refresh options

Metaparameter dependencies can produce three types of errors. The first is missing dependencies,
where the resource is not found in the compiled catalog. This should normally be investigated for
typos or logic, meaning the resource is not included. The second type of error is failed dependencies,
where an issue with a resource means none of its dependencies can be applied. Troubleshooting this
resource and rerunning Puppet should then allow all dependent resources to be applied. The third
type of error is the dependency cycle, which we discussed and showed in figure 6.2, where producing
a DAG can help identify where the loop is and fix the dependency logic.

Despite having said so far that resources have no order beyond dependencies, this is not quite true
since Puppet runs in what is known as manifest order. So, an individual manifest file will be applied
in the order it is written unless dependencies change that. Although this could allow you not to use
dependencies, the main purpose is to prevent random compilations causing code to behave differently
on different servers as it could do if read in at random.

Note
Puppet went through a strange philosophical/purity argument around ordering in earlier
versions. It was viewed as necessary to break the bad habits of developers assuming ordering
would be like in other languages, line by line. So, Puppet initially chose a random order. This
was chaotic and resulted in code that might work in your lab but ran in a different order in
production and broke.

Containment 135

A variation of the dependency metaparameters is chaining arrows, where before and require
are represented by -> and <- and notify and subscribe by ~> and <~. They are generally
used to show relationships between classes, such as to represent a module pattern, which will be
seen in Chapter 8. For example, if we wanted an install class to apply before a config class and
then for a service class to be applied and refreshed if the config class was updated, it could be
represented as follows:

include examplemodule::install, examplemodule::config,
examplemodule::service
Class['examplemodule::install']
-> Class['examplemodule::config']
~> Class['examplemodule::service']

The include function is necessary, as discussed in Chapter 3, to ensure the classes are added to
a catalog.

For style purposes, only the right-facing arrows are recommended to be used, to make it consistent
while reading. While dependency parameters can be used in classes and resource declarations and
chaining arrows on other resource types, it is not recommended to do so to make it clearer to read.

In simpler cases, the required function can also be used from within a class to create a dependency on
other classes. However, no refresh or before equivalent exists, so for styling and consistency, it’s
generally easier to use ordering arrows. A simple example, using the require function to represent
that the install class should applied before the config class, would be as follows:

class examplemodule::config {
  require examplemodule::install
}

What we have just discussed in terms of the approach to class dependency is not quite as simple as
it may seem because Puppet classes do not actually contain other classes. A class will include other
classes by default, so the dependencies do not cover them. We will now look at what this containment
problem means and how to handle it.

Containment
Containment in Puppet means that included classes are not contained in the same way as resources
in a class; so, when setting up a dependency to a class that includes another class via the include
function or a class resource, the dependency will only cover the resources. For example, say we
created a requirement for class1 to be applied before class2 and class2 contained a package
resource and an include call to class3, as shown in the following code:

include examplemodule::class1, examplemodule::class2
Class['examplemodule::class1'] -> Class['examplemodule::class2']
class examplemodule::class2 {

Relationships, Ordering, and Scope136

  include examplemodule::class3
  package{'PDS':}
}

So, while there might be an assumption that this would ensure class1 was before class3 but
class1 was before class2, it doesn’t, as can be seen in the DAG diagram in Figure 6.3.

Figure 6.3 – DAG showing lack of containment

Remembering back to Chapter 3, where the include function was introduced, this containment is
not automatic because we may want to include this class in different places for different situations and
for it only to appear once in the catalog without dependency or containment issues.

To contain a class, the contain function is used. Change the include line to
contain examplemodule::class3, which will change the DAG diagram to contain
examplemodule::class3, as We can see in Figure 6.4.

Containment 137

Figure 6.4 – DAG showing the use of the contain function

If a class resource is used alongside a contain statement, it must appear in manifest order after the
class resource. Failure to do so will cause the class resource to interpret the contain statement
as an attempt to declare a duplicate resource, resulting in an error. For example, if the following code
is used, the attribute can be passed successfully:

class {'examplemodule::class3':
  attribute1 => 'value1''
}
contain examplemodule::class3

Relationships, Ordering, and Scope138

The immediate question to this containment problem might be why not just use contain for everything?
That comes down to the needless and confusing dependencies it could create. If our original example
were updated to use contain instead of class and we had another class, anothermodule:class,
which required examplemodule:class3 to be in the catalog, we could add the following code:

class anothermodule::class {
  contain examplemodule::class3
  package{'PTOP':}
}

Then, the DAG would look like Figure 6.5. It can be immediately seen that we have created needless
dependencies just with a small number of classes.

Figure 6.5 – DAG showing cycle caused by the overuse of contain

Containment 139

Worse, it can be easy to create a cyclical dependency. If, for example, the security::default class
were to be included in all application classes, a cyclical dependency could be created by a require
function being used between a class, application2, requiring the application1 class, as
shown in the following code:

class application1 {
  contain security::default
}
class application2 {
  contain security::default
  require application1
}

This would produce the DAG shown in Figure 6.6. If only includes were used, we would have avoided
the need for an unnecessary relationship from the application classes to security::default:

Figure 6.6 – DAG showing how the over-use of contain causes cyclic dependencies

In the Best practices and pitfalls section, we will further discuss how to avoid worrying about containment
using consistent patterns.

Relationships, Ordering, and Scope140

Before the contain function was introduced in Puppet 3.4, there was another approach, which you
may see in heritage code: using anchor resources. This can either be done with a specific anchor
resource provided by the stdlib module or any other pair or resources in the class. To ensure that
the current class contains examplemodule::class3, the code using the anchor resource
directly would look as follows:

anchor {['start', 'stop']: }
include examplemodule::class3
Anchor['start'] -> Class[' examplemodule::class3'] -> Anchor['stop']

Alternatively, if the two package resources, pdk and cowsay, were in this class, they could be borrowed
to create a relationship and contain the class:

Package['pds'] -> Class[' examplemodule::class3'] -> Package['cowsay']

The issue with this pattern is that it clutters up the DAG with extra anchor resources or unnecessary
relationships, which can be confusing. Therefore, if you find that anchors are being used, it is
recommended that you modernize your approach by using the contain keyword instead.

Having discussed dependencies and the containment of resources and classes, we will now see how
variables and resource defaults are scoped across the Puppet language.

Scope
In Puppet terms, scope reflects the location in the code where variables can be directly accessed
without the use of namespaces and where resource defaults can be affected.

There are three levels of scope:

•	 Top scope: Any code outside of a class, type, or node definition. Any variable or resource
declaration in the top scope will be accessible to be read or used anywhere.

•	 Node scope: Any code defined in a node definition. Any variables and resource defaults in the node
scope will be visible to nodes that match the node definition at the node and local scope levels.

•	 Local scope: Any code defined in a class, defined type, or lambda. So, any variables and resource
defaults defined will only be visible within that specific resource.

Both External Node Classifiers (ENCs) and node definitions will be discussed in Chapter 11. All we
need to understand for this section is that an ENC is an executable script that returns variables and
classes to be applied to a host. This script can inject custom logic and data by performing various actions,
such as performing a database lookup or using AWS Lambda. It can also be used to access third-party
sources, such as Configuration Management Databases (CMDBs). The variables returned are at the
top-scope level, while the classes are at the node-scope level. This allows the provided variables to be
visible anywhere, but only for the classes declared to have access to node-scope variables. In contrast,
a node definition is a section of code that is applied to matching nodes.

Scope 141

Classes have what is known as a named scope, where the name of the class is used in the namespace.
For example, a variable created in exampleclass called test can be accessed from anywhere via
exampleclass::test. Variables created in the global scope, such as site.pp, can be accessed
from an empty namespace by calling ::variablename. However, accessing data like this is generally
not recommended. In Chapter 9, we will show how to centrally manage data.

Node-scope definitions and local-scope definitions on lambdas and defined types are anonymous
and can only be accessed directly by name from where they are visible. It is also possible to override
higher scope variables by declaring a variable in the current scope, such as a class overriding a global
variable with its own.

To show this, consider the following code:

$top='toptest'
$test='testing123'
notify "Top = ${top} node = ${node} local = ${local} test =
${testing}"
notify "Access directly ${example::local}"
node default {
  include example
  $test='hello world'
  $node='nodetest'
  notify "Top = ${top} node = ${node} local = ${local} test =
${testing}"
  notify "Access directly ${example::local}"
}
class example {
  test='an example'
  $local ='localtest'
  notify "Top = ${top} node = ${node} local = ${local} test =
${testing}"
}

The first notify would fail to find the local or node variable since it is in the global scope, and
testing would be set to testing123. The second notify would directly access the local
namespace, example, and print localtest. The third notify would be unable to access the local
variable and would print hello world. The fourth notify would again access the local scope
via the namespace. The final notify would be able to access all the variables, and local would
be set to localtest. This example shows the flow of variables between scopes.

Resource titles and resource references are unaffected by the scope and can be declared in any scope.
For example, a resource can declare a dependency for any resource in the catalog. However, it is not
good practice to rely on accessing external variables like this.

Relationships, Ordering, and Scope142

Best practices and pitfalls
In earlier versions of Puppet, scope, dependencies, and containment were some of the most challenging
issues, which led to significant problems for newer developers. One major solution that largely addressed
these issues was the widespread adoption of the roles and profiles method, which will be covered in
full detail in Chapter 8. Hiera data will be covered in Chapter 9.

The roles and profiles method involves grouping single-use component modules that perform one
independent function well. For instance, a component module could install and configure Oracle.
The module structure would contain a group of manifests with specific purposes, such as installing
packages or managing services. This simplifies module organization and allows for the easier ordering
of classes. For example, the install class can be applied before the service class.

Component modules should function independently of one another and have no direct dependencies
across modules. The profile layer groups modules together to create technology stacks and can put
modules in order if necessary. Roles abstract another layer up to create business solutions using these
technology stacks and can order the profiles. In this structure, any global or node data should come
from Hiera instead of being set in node or global scopes, which reduces code complexity. It may feel
counterintuitive to developers to avoid setting global variables in code, but following this practice
is recommended.

As mentioned in Chapter 3, it is advisable to avoid using resource collectors/exported resources.
However, it is worth noting that they can be used as part of chaining arrows. Using them can be risky
as it may result in unpredictable outcomes and create significant dependency cycles that are difficult
to map until runtime. Dependencies should always be created as required, and you should not rely
on manifest ordering for this purpose. Omitting these dependencies could significantly reduce code
maintainability and create complications during future refactoring.

Use chaining arrows for class dependencies and contain them only where necessary, as in the roles and
profiles method. Avoid enforcing resource defaults globally, such as in site.pp or node definitions,
as this approach makes the code unpredictable for everyone, especially when working with multiple
application teams who may not be aware of these defaults in their own code. In summary, avoid
attempting overly complex or familiar approaches from other languages and instead follow established
roles/profiles and Hiera patterns. Review roles/profiles and Hiera patterns carefully and refactor any
code that does not follow these guidelines.

Lab – overview of relationships, ordering, and scope
In this lab, we will provide some code to review and run to ensure the concepts discussed are understood.
All the code can be found at https://github.com/PacktPublishing/Puppet-8-for-
DevOps-Engineers/tree/main/ch06.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch06
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch06

Summary 143

The code at https://github.com/PacktPublishing/Puppet-8-for-DevOps-
Engineers/blob/main/ch06/lab6_1.pp currently has no dependencies. To meet the
following requirements, the code needs to be adjusted accordingly:

•	 The install class and all its resources should run before config and service

•	 The config class and all its resources should run before service

•	 The service class and all its resources should be refreshed if any resource in the config
class is updated

•	 The httpd package should be installed before the exampleapp package

•	 The exampleuser user should be created after the examplegroup group

•	 The /etc/exampleapp/ directory should be created after the exampleuser user and
the examplegroup group

•	 The /etc/exampleapp/exampleapp.conf file should be created after the exampleuser
user, the examplegroup group, and the /etc/exampleapp directory

•	 The httpd service should start before the exampleapp service, and the exampleapp
service should refresh if the httpd service restarts

It is recommended to use https://validate.puppet.com/ to check your Puppet code, as
you should not rely on manifest ordering alone. Additionally, it’s important to remember that some
resources have auto-requirement behavior. A sample example is provided at https://github.
com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch06/
lab6_2.pp. Examine the code and see what the notify function would print.

Summary
In this chapter, we discussed how resources are assumed to be applied in any order by default, and
how metaparameters such as before, require, notify, and subscribe can be used to define
any required order. We learned that DAGs can be used to visualize dependencies between resources,
and that dependency cycles should be avoided to ensure the catalog can be applied successfully. We
also discussed how certain resources automatically apply dependencies, such as a user requiring
its primary group. The notify and subscribe metaparameters were explained, and their use
of refresh was highlighted as particularly useful for resources such as exec, package, and
service. This allows for these resources to be restarted, reinstalled, or rerun when necessary, such
as when a configuration file changes. Additionally, we acknowledged that although resources should
be assumed to have no order, they are in fact applied in the order they are written in a manifest to
ensure consistency across environments. We also discussed the three types of errors that can occur:
cyclic, missing dependencies, and dependent resource failures.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch06/lab6_1.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch06/lab6_1.pp
https://validate.puppet.com/
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch06/lab6_2.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch06/lab6_2.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch06/lab6_2.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch06/lab6_2.pp

Relationships, Ordering, and Scope144

After that, we discussed chaining arrows as a variation of metaparameters, allowing them to be used
between classes. We emphasized that only right-facing arrows should be used to comply with the style
guide. While metaparameters can be used on classes and chaining arrows on resources for consistency
and styling, we recommend avoiding this practice. Instead, we showed that the require function
can be used within a class that is dependent on another class for relatively simple class dependencies.

We then discussed the issue of containment, which arises when including classes within other classes
does not create resource dependencies. This was achieved using the contain function instead of
an include function within a class causing this class to contain the other classes’ resources and
creating the dependencies. We discussed how this may bring the temptation to contain all classes, but
we demonstrated that this would create needless or cyclic dependencies. The older anchor pattern was
shown since heritage code could still contain this. We highlighted that the anchor function is no longer
a recommended approach and, where found, it should be modernized to use the contain function.

The scope was shown to affect variables and defaults for resources, where the global scope is anything
set outside of the class, type, or node definition. The node scope is anything in a node definition and
the local scope is anything in a class, type, or lambda.

Finally, for best practice, it is recommended to follow the roles and profiles method to ensure consistency
in dependencies and ordering. It is also recommended to use Hiera instead of complex variable usage
and to avoid setting resource defaults in the global scope, such as site.pp or node definitions. It is
important to never rely on manifest ordering, use explicit dependencies to ensure consistency.

The next chapter will explore templates, iteration, and conditional statements in Puppet. It will
demonstrate how Puppet can generate file content by leveraging variables, conditions, and text
manipulation functions. Additionally, it will explain how iterative functions and lambda code sections
enable Puppet to loop through and manipulate collections of data. Finally, the chapter will cover the
usage of conditional statements in Puppet to create different configurations based on conditional logic.

7
Templating, Iterating, and

Conditionals

This chapter will cover advanced structures for the Puppet language, including templates that enable
the insertion of variables into templated files. The two formats available in Puppet, Embedded Ruby
(ERB) templates, which are based on native Ruby templating, and Embedded Puppet (EPP) templates,
which are modern Puppet language-based templates, will be discussed, highlighting the differences
between the two and the core advantages of using EPP over ERB.

Additionally, the chapter will delve into the use of iteration and loops in Puppet, showing how iterative
functions are used with sections of code known as lambdas in Puppet instead of more traditional
loop keywords of other languages. Finally, the chapter will examine the different types of conditional
statements available in Puppet, including if, case, and unless statements, which are typical of any
programming language, and the Puppet-specific selector, which allows a value on a key or variable
to be chosen based on a fact or variable. The chapter will also examine the use of regular expressions
within conditionals in detail.

In this chapter, we’re going to cover the following main topics:

•	 Templating formats in Puppet – EPP and ERB

•	 Iteration and loops

•	 Conditional statements

Technical requirement
All code in this section can be tested on the local development server.

Templating, Iterating, and Conditionals146

Templating formats in Puppet – EPP and ERB
Templating in Puppet allows for the generation of content in a standard format, by substituting variables
and using conditional logic to customize the content. Puppet supports two templating formats: ERB,
which is a native Ruby templating format (https://github.com/ruby/erb) and has been
available in all versions of Puppet; and EPP templates, which are based on the Puppet language, were
introduced in Puppet 4, and are available in later versions of Puppet 3 with the future parser enabled.

Templates provide greater flexibility than strings but are less flexible than using resources such as
file_line, augueas, or concat for controlling individual or groups of settings. Therefore, a
balance of complexity needs to be struck when deciding whether to use templates or resources.

For relatively short heredoc files or simple strings, templates with variable interpolation may
be sufficient. However, for more complex files and particular files where multiple modules may be
managing different settings or where manual edits may be accepted, using resources for each setting
or section would be less complex and more manageable.

In older code, it is possible to find that templates were overused, which can reflect the lack of
availability of resource types such as file_line in previous versions of Puppet. It is important to
review what state was being attempted to be achieved and ensure that by using templates to control
all the content settings, a whole file is not being unnecessarily enforced, which may contain settings
that have become redundant as the underlying application associated with the configuration file has
updated and changed its configuration settings.

While there is no reason to use ERB for new code, many forge modules and legacy code bases may
contain ERB, and thus both formats will be covered in this section to provide understanding. After
showing the syntax of both formats, the advantages of using EPP and reasons to convert ERB to EPP
will be discussed.

Templates can be generated either by using content in template files or via a string, which is known
as an inline template. For template files, ERB uses the template function and EPP uses the epp
function. For inline templates, EPP uses the inline_epp function and ERB uses the inline_
template function.

EPP templates

An EPP template file is a text file that contains a mixture of text and Puppet language expressions
surrounded by tags. These tags indicate how the Puppet expression should be evaluated and can
modify the text in the template, allowing for the creation of a file based on Puppet language features
such as variable interpolation, logic statements, and functions.

https://github.com/ruby/erb

Templating formats in Puppet – EPP and ERB 147

Table 7.1 shows the available tag types that can be used:

Tag Name S t a r t i n g t a g
(with trimming)

E n d i n g t a g
(with trimming)

Purpose

Parameter <% | (<%- |) |%> (| - %>) Declare parameters
accepted by the template

Non-printing expression <% (<%-) %> (<%-) Evaluate the Puppet code
but don’t print

Expression printing <%= %> (-%>) Evaluate the code to a value
to print

Comment <%# (<%#-) %> (-%>) Allow the addition of
comment lines just for the
template file itself

Table 7.1 – EPP template tags

When a template is evaluated, it switches between text mode and Puppet mode as it encounters start
tags, and returns to text mode as it reaches end tags. In text mode, it outputs the text as content, and
when it finds a tag, the Puppet code between the start and end tags is evaluated, depending on the
kind of start tag.

As noted in Table 7.1, some of the tags can be modified with a hyphen (-) to trim spaces and new
lines as appropriate.

The parameter tag is optional and, if used, must be the first content in a template file, except for a
comment tag, which must use a closing hyphen. It produces behavior similar to how parameters can
be declared at the start of Puppet classes, as was shown in Chapter 8. The parameters follow the same
pattern as a class, so they can optionally include a type at the beginning. They must then have a dollar
($) symbol followed by a variable name, optionally followed by an equal (=) symbol and a default
value, and finally, they must end with a comma.

For example, to have an options parameter containing a string set to an empty string by default, an
application_mode parameter, which can contain full, partial, or none strings and defaults to node,
and a cluster_enabled parameter, which is a Boolean, the following code would start our template:

<%- |
String $options = '',
Enum[full,partial,none] $application_mode = 'none',
Boolean $cluster_enabled,
|-%>

Templating, Iterating, and Conditionals148

When parameters are passed to an EPP template, they become local scope and can just be called
directly by name, but variables from the calling class must be called by full namespace name; this is
similar to a defined type. Any parameters without a default value, such as cluster_enabled in
the preceding example, are mandatory and must be passed in.

Note
It is recommended to always use hyphens with parameters to avoid any accidental white space
at the start of a template.

If parameters are not used, class variables can be directly accessed using the class scope, such
as $example_module::example_param.

Parameters allow a template to be more flexible if it is to be used in several different places, ensuring
the data is more defined and locked down to requirements and making it clear at a glance what data is
consumed. It may become a better option to just use variables when you need to use a lot of variables
and parameters would just not scale. Passing parameters not defined in the parameter list will result in
a syntax error, although if no parameters are used, any parameters can be passed to the template. Later
in this section, it will be seen how to pass a hash to the epp_template function when referencing it.

The comment tag in Puppet templates allows for comments to be added within the template file
itself. These comments will not appear in the output when the template is evaluated and its content is
generated. Here’s an example of what a comment would look like in a Puppet template:

<%#- An example comment. -%>

Note
The <%#- hyphen trimming feature is available from Puppet 6.0.0 onward. Before this, the
trimming behavior was assumed.

An expression printing tag puts the returned value of a Puppet expression into the output. This can
be a variable or fact, the output of a function, or the output for operators. The final output is a string
and will be automatically converted if necessary. At its simplest level, this can be used to print a
fact as a value. For example, the following line will read application = exampleapp if the
application_name fact contained the exampleapp value:

application = <%= $facts[application_name] -%>

This example is also the first time variables have been shown in this context, but they are accessed in
the same way as variables in regular Puppet code.

Templating formats in Puppet – EPP and ERB 149

Non-printing tags contain iterative and conditional logic. This is different from other tags because the
effect of the tag can span multiple lines until another tag closes the iterator or conditional logic. For
example, the if statement (which will be covered in the Conditional statement section) opens with
a curly brace, {, and closes with a curly brace, }. In the following example, we can ensure that if the
application name returns undef from the getvar function, it will not output application =
as it would have in our previous example. Instead, it will ignore the line if the variable is not defined:

<% if getvar(facts.application_name) { -%>
 application = <%= $facts[application_name] -%>
<% } -%>

Multiple levels of non-printing tags can be used to create nested if or case statements as appropriate.

There are some syntax mistakes to be careful with. If a non-printing expression tag contains a comment,
it will essentially comment to the end of the line and require the close tag on the next line, as per
this example:

<%-# I don't finish commenting here  -%> but on the next line
-%>

This mistake could clearly happen with a mistyped comment tag so care must be taken and any tags,
not just a comment closing tag, would be ignored till the new line.

To include literal <% or %> characters in the template output without having them evaluated as EPP
tags, you can use an additional % character to escape them. For instance, to output <% Puppet
expression example %> as text, you would write <%% Puppet expression example
%%%>. Note that the escape only applies to the first <% or %> encountered, so if you need to escape
only one of them in a line, you can use the escape once and then the other symbol normally.

EPP templates can be validated using the puppet epp validate <template_name.epp>
command, and in Chapter 8, it will be seen that the Puppet Development Kit (PDK) will run this
command as part of its validation.

To test the rendering of templates, the render command can be used with a hash of values as
required: puppet epp render <template_name.epp> --values '{key1 =>
value1, key2 => value2}'.

Note
The full specification for EPP templates can be viewed online at https://github.com/
puppetlabs/puppet-specifications/blob/master/language/templates.md.

https://github.com/puppetlabs/puppet-specifications/blob/master/language/templates.md
https://github.com/puppetlabs/puppet-specifications/blob/master/language/templates.md

Templating, Iterating, and Conditionals150

After reviewing the syntax of the EPP template file, let’s see how to use the epp function in a Puppet
resource. The epp function can be used with resources such as file by passing it to the content
attribute. Additionally, a key-value hash can be provided to specify the parameters, as discussed in
the previous section on the parameter tag:

file { '/etc/exampleapp.conf':
  ensure => file,
  content => epp('exampleapp/exampleapp.conf.epp', {'version' => '1',
'clustered' => false}),
}

Note
If you wish to try the preceding example on your developer environment, create a suitable
template file on your system and change the exampleapp module name to the absolute
path containing the template, such as /var/tmp or C:\Users\David Sandilands.

The namespace used in epp assumes that either it will form a module path, <modulename/
templatename.epp>, which translates to modulepath/modulename/templates/
templatename.epp, or it will be an absolute path on disk. In Chapter 8, the structure of modules
will be covered in detail.

Inline templates are similar to regular templates, but instead of using a separate template file, they
require a string or variable to be passed to them. They are generally used for workarounds or where
using a heredoc feels easier than using a template file.

One example of a workaround is when using the Vault module, which was discussed in Chapter 5, to
retrieve secrets using deferred functions. The Vault module returns a key-value pair, but we may only
want to access the value of the password. As the value is deferred, it can’t be manipulated as a string.
Using the inline_epp function, as shown in the following example, allows us to unwrap the string
during agent runtime and apply it to the file:

$vault_keypair = { 'password' => Deferred('vault_lookup::lookup',
["secret/examleapp", 'https://vault:8200']), }
file { '/etc/exampleapp_secret.conf':
  ensure => file,
  content => Deferred('inline_epp', ['PASSWORD=<%= $password.unwrap
%>', $vault_keypair]),
}

Having covered EPP templates for the management of heritage code, we will now review how ERB
is different.

Templating formats in Puppet – EPP and ERB 151

ERB templates

ERB templates are similar to EPP templates, but there are some differences worth noting. ERB templates
are text files that contain a mixture of text and Ruby language expressions surrounded by tags. ERB uses
the same tags as EPP, except it does not have parameter tags, and it is not possible to pass parameters.

In ERB, a template has a local scope and a parent scope, which is the class or defined type evaluating
the template. Variables in the current scope can be accessed using the @ symbol, which is how Ruby
normally accesses variables. To access variables out of scope, you can use the scope object or the
older scope.lookup function, which was used before the hash format was introduced into Puppet.

To give some simple Ruby examples, you can use an if statement to check whether the exampleapp_
extras variable does not contain NONE, and to output the extras <exampleapp_version>
string in the template. You can also use an unless statement to check whether the exampleapp_key
variable is not nil, and to output the key <exampleapp_nill> string if it has a defined value:

<% if @exampleapp_extras!= "NONE" %>extras<%= @exampleapp_version%><%
end %>
<% unless @exampleapp_key.nil? -%>
key <%= @exampleapp_%>
<% end -%>

Iteration in Ruby is similar, with the each function also available. The following example shows
an array of settings from a variable being output one by one in the template content using iteration:

<% @array_of_settings.each do |setting| -%>
<%= val %>
<% end -%>

Data from Puppet variables will be translated from their Puppet type to the equivalent Ruby type
(more information can be found in the official Puppet documentation at https://www.puppet.
com/docs/puppet/latest/lang_template_erb.html#erb_variables-puppet-
data-types-ruby). However, it is beyond the scope of this book to discuss how Ruby can
transform this data.

It is also possible to call Puppet functions in ERB templates using the <%scope.function_
name(<Name of function>, <Array of Arguments>)%> syntax.

For example, to use the downcase function on the example_variable variable and output
the result to the template, the following code can be used:

<%= scope.call_function('downcase', [@example_variable]) %>

Validating the syntax of an ERB template can be done by running the erb command: erb -P -x
-T '-' example.erb | ruby -c. As with EPP, the PDK will check for both types of templates
when running validation. Unfortunately, there is no way to render an ERB template.

https://www.puppet.com/docs/puppet/latest/lang_template_erb.html#erb_variables-puppet-data-types-ruby
https://www.puppet.com/docs/puppet/latest/lang_template_erb.html#erb_variables-puppet-data-types-ruby
https://www.puppet.com/docs/puppet/latest/lang_template_erb.html#erb_variables-puppet-data-types-ruby

Templating, Iterating, and Conditionals152

Using the content of an ERB template file in a file looks very similar to EPP, but as discussed, it does
not have parameters and uses the template()function. Converting the EPP example would look
like this:

file { '/etc/exampleapp.conf':
  ensure => file,
  content => template('exampleapp/exampleapp.conf.erb'),
}

It is possible to pass and evaluate multiple template files, which will be concatenated together. For
example, updating content as follows would combine the two templates:

content => [template('exampleapp/exampleapp.conf.erb'),
template('exampleapp/exampleapp2.conf.erb')]

Inline ERB just uses the inline_template function in the same system as inline EPP, and was
often written in the past to allow Ruby code to provide a workaround for the lack of iteration/loops
provided by past versions of Puppet and perform data transformation.

Now that ERB has been discussed, it is time to highlight why EPP is preferred over ERB and reasons
to consider converting heritage code.

EPP and ERB comparison

After reviewing both syntax templates, it is clear that EPP has several advantages over ERB. Firstly, EPP
has significantly better performance than ERB. ERB creates a scope object for all facts and top-scope
variables each time a template is evaluated, while EPP only uses facts and variables relevant to the
template. In environments with a large number of facts, this can have a significant impact on performance.

Furthermore, EPP provides greater security because templates can be provided with a limited scope
of data to be used and validate that all data exists before use. ERB, on the other hand, has no built-in
validation, and non-existent variables will simply be dropped. For example, if a variable in a class has
not been evaluated before the template is used, ERB will not catch this.

EPP can also be seen as easier to use since it is in the Puppet DSL style and does not require any
Ruby knowledge. This makes it easier to code, especially with the ability to use the puppet epp
render and validate commands. Additionally, EPP is under more active development, and
recent features, such as templates being able to automatically unwrap sensitive variables in 6.20 and
later, will only be available in EPP.

Iteration and loops 153

Iteration and loops
Puppet’s approach to iteration and loops is influenced by the fact that its variables are immutable,
meaning that once they are set, they cannot be changed. This makes many normal approaches used
with loop or do keywords to transform data impossible. In early versions of the language, this was
worked around by passing an array to defined types, as discussed in Chapter 3, or using inline ERB
templates with Ruby code to manipulate arrays and hashes.

However, the issue with the defined type approach was that the code doing the work was abstracted
away and not visible. Furthermore, every time a different type of iteration was required, it would
require its own defined type, bloating the code. Therefore, it is important to review heritage code and
refactor these patterns to the approaches that will be discussed.

In modern Puppet, the approach taken is to use iterative functions that pass data from arrays and
hashes to lambdas. A lambda is a function with no name, so it cannot be called anywhere else except
by a function. A lambda can be attached to any function call, including custom functions. Table 7.2
provides a full list of functions involved with iteration and lambdas. While some functions may not
be considered iterators, they have similar behaviors. It should also be noted that other functions could
be combined/chained into these examples, such as unique:

Function name Purpose Return type Parameters
all Runs through all elements until

false is returned from the lambda
or completes and returns true.

true or false 1 or 2

any Runs through all elements until
true is returned from the lambda
or completes and returns false.

true or false 1 or 2

break Used within a lambda and stops
the iteration.

n/a n/a

each, reverse_
each, tree_each

Passes each element of a hash or array
in turn for the lambda to process
(reverse order or recursive variations).

n/a 1 or 2

filter Runs through all elements and
matches with lambda code, returning
matching elements in an array.

Array 1 or 2

index Runs through all elements and
on the first match within lambda
code, returns the index of the
matching element.

Integer 1 or 2

Templating, Iterating, and Conditionals154

lest The function takes one argument; if
this value is undefined it will run a
lambda and return the outcome. If
the argument is not undefined it will
return the argument.

Any valid type 0

map Runs through all elements and applies
lambda code to that element. Returns
an array of elements post lambda.

array 1 or 2

next Used within a lambda to change
the value of the next element in
the iteration.

n/a n/a

reduce Runs through all elements and applies
lambda code passing the outcome
forward to each iteration.

array 2

return Used to cause a lambda to return
(cannot be used at top scope).

n/a n/a

slice Runs through a sliced size of elements
such as three elements per iteration.

Array 1 or size of slice

step Chained into another iterable
function passing a sequence of
elements incrementing at a step
size from a starting element to a
finishing element.

Iterable n/a

then Takes one argument and if it is not
undefined, it will call a lambda with
the argument. Otherwise, it will
return undefined.

Any valid type 1

with Ta k e s o n e a r g u m e n t a n d
unconditionally passes it to a lambda
and runs with the argument. Returns
the result of the lambda.

Any valid type 1

Table 7.2 – Functions for iteration and lambdas

The basic syntax structure for iterative functions using lambdas in Puppet is as follows:

<function acting on data> | <parameter(s)> | { lambda of Puppet code }

Iteration and loops 155

As an example, consider using the each function to loop around an array, with a single parameter
(optionally typed), and printing the output:

['first', 'second', 'third'].each | String $x | { notice $x }

This would result in the notice function printing for each string in the array, similar to a for loop
with a print/echo command in most languages.

The each function can also use two parameters, which would give the index as the first parameter
and the content of that index as the second parameter. The following code would print index 2
contains second for the second iteration of the lambda:

['first', 'second', 'third'].each | $index $value | { notice "index
$index contains $value" }

Note
To test these examples on your developer desktop, simply run puppet apply -e '<example
code>'.

To clarify, when using the each function with a single parameter on a hash, each key-value pair will
be passed as an array to the lambda. For example, running the code [{ key1 => 'val1', key2
=> 'val2' }].each | $key_pair | { notice $key_pair } will output two arrays,
one for each key-value pair: ['key1', 'val1'] and ['key2', 'val2'].

If two parameters are used in the lambda, the first parameter will represent the key and the second
parameter will represent the value. For example, running the code [{ key1 => 'val1',
key2 => 'val2' }].each | $key, $value | { notice "$key contains
$value" } will output two strings, one for each key-value pair: key1 contains val1 and
key2 contains val2

It is also worth noting that other data types, such as strings, can be automatically converted into arrays
where each character in the string will be treated as an element. Additionally, a range of numbers can
be declared using an Integer type; for example, running the code Integer[100, 150].each
| Integer $number | { notice $number } will output all integers from 100 to 150.

Finally, iteration can be nested; for example, to handle a hash with array values, an iterative function
can be used within the lambda. Running the following code will output each value in the array of the
key1 key-value pair – 'value1' and 'value2':

[{ key1 => ['value1', 'value2'], key2 => 'val2' }].each | $key,
$value_array | {
  $value_array.each | $value | {
    notice $value
  }
}

Templating, Iterating, and Conditionals156

Overall, this section provides an overview of the most commonly used functions in Puppet, but
for more in-depth descriptions, users can refer to the official documentation at https://www.
puppet.com/docs/puppet/latest/function.html .

Iterative loops

The main function reviewed so far is each, and there are several functions that perform this loop of
elements or manipulate the loop. reverse_each simply takes the reverse order of the elements, as
its name suggests. tree_each allows values in nested arrays/hashes to be returned with different
behaviors depending on the flags provided. It is relatively complicated and niche. The slice function
allows us to take a specific number of elements in each iteration. For example, the following code
would pass arrays of three numbers at a time from the sequence to the lambda:

Integer[100, 151].slice(3) | Array $numbers | { notice $numbers }

On the last iteration, it would provide the remaining elements; in this example, an array with just
[151]. It is also possible to use multiple parameters, but the number of parameters must be the
same as the slice size:

Integer[100, 151].slice(3) | Integer $first, Integer $second, Integer
$third  | { notice $numbers }

The step function allows us to choose which elements of an iterable we wish to pass. In this code
example, it would start at the first element, then the fourth, the seventh, and so on:

Integer[100, 150].step(3) | Integer $numbers | { notice $numbers }

This can be useful when chained into another iterable function. The next type of function is for matching
patterns. This is a different style of iteration function where instead of just passing the elements to
the lambda to perform some action, the iterative function defines how the lambda will return. For
example, all is looking for all elements to match the check in the lambda to return true. If any of
the lambdas return false, the function will return false. For example, the following code would
print true because all the elements were greater than 99:

Integer[100, 151].all | Integer $number | { $number > 99 }.notice()

The any function is the opposite of all, returning false if there are no matches and true if the
lambda returns true in any iteration. The index function is similar to any, but instead of returning
true or false, it returns the index number of the element that matches, or undef if there is no
match. For example, the following code would print 20, as number would match the 20th element:

Integer[100, 151].index | Integer $number | { $number == 120
}.notice()

All of the functions can work with two parameters on arrays or hashes, as shown in the examples for
the each function.

https://www.puppet.com/docs/puppet/latest/function.html
https://www.puppet.com/docs/puppet/latest/function.html

Iteration and loops 157

Data transformation

Data transformation is another way iterators are used to iterate through elements and perform
adjustments before returning them. This is one of the main reasons why the iterator to lambda pattern
was developed, as Puppet is unable to reassign variables. For example, the map function iterates over
each element and applies a lambda whose result is stored in an array. For example, the following code
would divide each element by 1024 and return an array of [2, 3, 1]:

[2048, 3096, 1024].map | $size | {  $size / 1024 } .notice()

The filter function takes each element in the iteration and applies the code in the lambda. If the
lambda returns true, the element will be added to an array for return. Otherwise, if false, it will
continue to the next iteration. For example, the following filter would iterate through each array,
checking whether the size is greater than 0, which would result in an output of [[1, 2, 3],
['a', 'b', 'c']], with the second element’s empty array being removed:

[[1,2,3], [], [a,b,c]].filter | $array | { $array.size > 0   }
.notice()

Both filter and map can handle one or two parameters, as shown with the each function on
arrays and hashes.

The reduce function allows for cumulative work to take place in the lambdas. It is different from
the other functions and requires two parameters: the first parameter keeps its value through the
iterations, while the second is the element. Additionally, the starting value can be chosen for the first
parameter by passing a value to the reduce function. In this example, the total parameter would
start at 1 and, in each round, add the element to its total, resulting in 15 being returned and printed:

[2, 4, 8].reduce(1) | $total, $number | {  $total + $number }
.notice()

Within a lambda, it is also possible to change the flow of iteration. The next function can change
what the next element will be: undef if nothing is provided to the next function, or the value
provided to the next function. The break function stops the iterator at that point in the code and
returns to the iterative function, effectively ending the iterator at that point. The return function,
in comparison, returns from the iterative function, so it will not complete at all and returns to the
containing class, function, or defined type.

To demonstrate this change in flow, the first example using map over a series of numbers will run a
next function, and when the element matches 101, it will replace the next element, 102, with 1984,
and then a break function will be run when the element is greater than 104. So, with the notice at
the end printing, this will return an array of [100, 1984, 102]:

Integer[100, 151].map | Integer $number | { if $number == 101 {
next(1984) } if $number > 103 { break() } $number }.notice()

Templating, Iterating, and Conditionals158

To highlight the different behavior of replacing the break function with a return function, the
following example will result in nothing being printed:

class example {

 Integer[100, 151].map | Integer $number | { if $number == 101 {
next(1984) } if $number > 103 { return() } $number }.notice()

}

This is the reason, in this example, that we have put the function within a class because return
cannot be called at a top scope level only within a class, function, or defined type.

Nested data

The last types of functions are useful when handling nested data or generally handling undefined
values. then is chained after a lambda and if it receives undef outputted from that lambda, it will
return undef; otherwise, it will pass the value to another lambda. So the following example would
use the dig function to attempt to access a c element that doesn’t exist in the second hash in the
array, and as then would receive undef, it would therefore return undef:

$example = {first => { second => [{a => 10, b => 20}, {d => 30, e =>
40}]}}
$example.dig(first, second, 1, c).then |$x| { $x / 10 }.notice()

To clarify the previous statement, if dig(first, second, 1, d) is changed to dig(first,
second, 2, d), it would then pass 30 to the lambda, which would divide by 10 and print 3.

lest is the opposite of then and returns the value it is defined; otherwise, it passes undef to the
lambda, which can take an action such as setting a default value instead. This can be useful; when
used alongside then, taking the preceding example, adding lest would allow a value of undef
to be returned if it is 0:

$example.dig(first, second, 1, c).then |$x| { $x / 10 }.lest() || { 0
} .notice()

The with function is somewhat of a specialist edge, as it is used to pass values through if our lambda
is able to handle undef or defined values.

So, having reviewed the various functions and seeing the data transformation and explorations of
data possible, it is worth highlighting again how, instead of using a defined type, as was done in the
past, when we need to create multiple resources. So, for example, to create a directory for as many
instances as requested, the following code could be used:

Integer[1,$instance_number].each |Integer $id | {
  file {"/opt/app/exampleapp/instance${id}":

Conditional statements 159

    ensure => directory,
  }
}

Having covered how Puppet can perform loops and iteration, the conditional statements will be
reviewed next.

Conditional statements
Puppet has the conditional statements you would expect of any language, with if, unless, and
case allowing code behavior to be different depending on things such as facts or data from external
sources. Puppet additionally uses selectors, which are similar to a case statement but return a value
instead of executing code on result.

If and unless statements

The if statement follows a specific syntax that includes the if keyword followed by a condition, an
opening curly brace ({), the Puppet code to execute if the condition evaluates to true, and a closing
curly brace (}).

The following example is a simple check on a Boolean in example_bool to print a notice if it
contains true:

if $example_bool {
  notice 'It was true'
}

This can be optionally extended by adding an else keyword after the closing curly brace (}) of the
if statement and then using an opening curly brace ({) with Puppet code to perform if the condition
is false. This is then closed with a closing curly brace (}). To also print when example_bool is
false, the code would be updated as follows:

if $example_bool {
 notice 'It was true'
}else{
  notice 'It was false'
}

Templating, Iterating, and Conditionals160

Similarly, to perform multiple if checks together, the elsif keyword can be used after the if
statement’s closing curly brace (}), allowing the same if syntax to be followed again. This can be
nested and repeated as required. To provide an example, following up on the Boolean check with
elsif, we can add a second check to see whether the value variable is greater than 2, print a notice
if it is, and an else statement that prints that both conditions were false:

if $example_bool {
  notice 'It was true'
}elsif $value > 2{
  notice 'It was false and value is greater than 2'
}else {
  notice 'It was false and the value was 2 or less'
}

The unless statement is simply the inverse of the if statement. It allows you to avoid having to
negate a condition, and it can also be used in combination with an if statement. However, it has
no equivalent to elsif and will cause a compilation failure if used. To demonstrate this with the
previous if example, the unless statement can be used instead to check whether example_bool
is false and print a notice in that case:

unless $example_bool {
  notice 'It was false'
}else{
  notice 'It was true'
}

Any non-Boolean values used in the conditions will be converted to Booleans as per the data type
rules, as covered in Chapter 4.

The Puppet style guide recommends for the lines which follow the keywords if and unless that
the code should be indented by two spaces and aligned as was shown in the examples.

Case statement

The case statement works by matching the value outputted from a control expression. This is
commonly the content of a fact or variable, but it could also be an expression or function. The format
starts with the case keyword, followed by a control expression, resolving to a value and enclosed
within curly braces. Each following line starts with either a matching case or a comma-separated list
of cases, followed by a colon, and the Puppet code enclosed within curly braces to be applied for the
matching case. The case statement is then closed with a curly brace.

Conditional statements 161

For example, to test the value of the hardwareisa fact and include a profile based on the type of
processor architecture in use, the following code can be used. It includes a Unix profile for sparc
or powerpc values, the Linux 32-bit profile for i686 and i386 values, the 64-bit profile for any
value ending in 64, and the default profile for any value failing to match a case:

case $facts[' hardwareisa'] {
  'sparc', 'powerpc': { include profile::unix}
  'i686', 'i386': { include profile::linux::32bit}
  /(*64)/: { include profile::linux::64bit}
  default: { include profile::default }
}

The Puppet style guide recommends always using a default case, which can be a failure or even
just an empty curly brace.

Selectors

Selectors are similar to case statements, but instead of applying Puppet code for the matching case,
they return a value. Selectors can be used wherever a value is expected, such as variable assignment,
resource attributes, and function arguments. The Puppet style guide recommends only using selectors
in variable assignments to improve readability, but it may be seen in legacy code in resource attributes
as it was previously a popular pattern.

The syntax of a selector is a control expression resolving to a value, a question mark (?), and an opening
curly brace ({). It then has a number of case matches, starting with a single case or the default
keyword, a hash rocket (=>), the value to return, and a closing comma. The selector is then closed
with a closing curly brace (}).

The following example shows the apache_package_name variable assigned based on the output
of the os.family fact, using the httpd name for Red Hat, apache2 for Debian or Ubuntu,
apache-httpd for Windows, and defaulting to httpd if there is no match. A package resource
could then use this name to install the relevant package:

$apache_package_name = $facts['os']['family'] ? {
  'RedHat' => 'httpd',
  /(Debian|Ubuntu)/ => ' apache2 ',
  'Windows' => 'apache-httpd',
  default => 'httpd',
}
package { $apache_package_name }

As with the case statement, the Puppet style guide recommends that selectors always use a default
case, which can be a failure or even just an empty curly brace.

Templating, Iterating, and Conditionals162

Capture variables

If the case statement used was a regular expression, then what is known as capture variables will be
available within the associated code as number variables such as $1 and $2, with the entire match
available at $0.

To modify the example in the Case statement section, if the match was against amd64, this would
include profile::linux::amd64:

/(*64)/: { include profile::linux::${1} }

Having reviewed all aspects of templates, conditionals, iterations, and loops, we will now use a lab to
recap and bring these concepts together.

Lab – creating and testing templates containing loops and
conditions
In this lab, we will bring together everything you have seen in this chapter so far, testing and validating
some example templates and creating a template using logic and iteration:

1.	 Download the template files at https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/tree/main/ch07/templates_to_check and
validate and parse each of them to ensure the templates produce the following (<> shows where
interpolation needs to happen):

	� “This template was run on a machine with <# number of cpus of your machine> cpus”

	� “The custom fact pack.lab was < set to content of fact or the string ‘not set’ > “

Hint
You would want to use the getvar function to test the fact and test it by passing in a hash,
setting it when parsing to test it.

	� “The system uptime is < showing only days hours mins if they are non zero > “

	� “This machine is <not/is> virtual <and runs on <$virtual>”

2.	 Create a template that prints the following

“This is a < os family > machine running version < os release full > ““The following directories
are in the path < list each path >”

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch07/templates_to_check
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch07/templates_to_check
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch07/templates_to_check

Summary 163

Hint
Use the split function (https://www.puppet.com/docs/puppet/latest/
function.html#split) to separate the path fact string into an array that can be iterated,
and remember that Windows paths are split by ; while Unix/Linux based paths are split by :
. See the answer at https://github.com/PacktPublishing/Puppet-8-for-
DevOps-Engineers/blob/main/ch07/2_sample.epp.

Summary
In this chapter, the use of templates in Puppet was examined. It showed Puppet’s two types of templates
– EPP and ERB – which worked in similar ways, using a mix of plain text and tags surrounding code to
allow for Puppet/Ruby to apply logic and variables and create more complex content when evaluated. It
was warned that the level of complexity should be carefully considered before using templates instead
of functions such as file_line, and controlling resources individually. Additionally, because of the
lack of functions for a single line or setting control in files, templates had been overused, and heritage
code should be examined carefully to ensure that a template was the correct level of complexity.

EPP was shown to be the recommended way of producing templates since it was in the Puppet
language and easier to learn for a Puppet developer. It was also more secure since it could limit its
scope with parameters, and similarly, more performant since it only created a scope for the variables
and facts required, unlike ERB, which, for every template used, would generate a scope for all facts.
Furthermore, it was mentioned that all Puppet future development work would be for EPP, as was
shown by the inclusion of automatic unwrapping of sensitive variables in EPP files, and the capability
of rendering a template was only available in EPP.

EPP and ERB templates were shown to be referenced and evaluated from files via the epp and
template functions, where multiple files could be combined together. It was also shown that inline
templates were possible via the inline-template or inline-epp functions, where the text
could be passed directly to the function instead of being stored in a file.

Iteration and loops were then shown, highlighting Puppet’s previous lack of capability to do this with
the immutable nature of Puppet variables making more traditional loop keywords impractical.
Puppet was shown to instead use iterative functions on arrays and hashes, which passed values as
parameters to lambda functions. These unnamed lambda functions, which could only be called by
other functions, allow the creation of a scope entirely local to the lambda function and, therefore,
allow variable names to be reused. The iterative function chooses how values should be passed to the
lambda, such as each passing one value or key pair at a time, or Reduce, which allows the use of a
parameter that is passed through each lambda function along with each value and key pair and can
be useful to do cumulative transformations.

https://www.puppet.com/docs/puppet/latest/function.html#split
https://www.puppet.com/docs/puppet/latest/function.html#split
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch07/2_sample.epp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch07/2_sample.epp

Templating, Iterating, and Conditionals164

Puppet’s conditional logic was then discussed, showing it to be similar to most other languages. if
checks evaluate a check to a Boolean statement/comparison, which if true, is acted on with Puppet
code. The else keyword allows an action to take place if the Boolean was false, and the elsif
keyword allows the chaining of checks together. unless was shown to be the inverse of if, acting
on the check if it was negative and allowing else to act if it was true, although it had no equivalent
of elsif.

The case keyword was then discussed. We showed that it works by taking the value and matching it
to run Puppet code based on the match or to a default if no value was found. The selector keyword
was shown to be similar to the behavior of the case statement but is used instead of running Puppet
code to assign a value. It was highlighted that, despite it being a common pattern in the past to use
a selector within resources, this was no longer considered best practice. Finally, capture variables
were shown as variables available to conditionals that had used regular expressions to show what the
match had been.

Having now reviewed the core Puppet language, it is time to learn how to structure the manifest file
and classes we have used so far. The next chapter will demonstrate how modules provide the necessary
structure to hold the manifests, classes, and other configuration and implementation files that we have
examined. The roles and profiles pattern will also be explored, providing an additional abstraction
to represent the technology stacks and business needs of customers. Moreover, Puppet Forge will be
demonstrated as a source of modules that can be consumed to reduce the need for development and
to collaborate with the Puppet community to enhance the available code.

8
Developing and Managing

Modules

Having reviewed many aspects of the Puppet language, it is clear that using manifest files and classes
alone would not scale or provide the structure needed as a code base grows for a diverse range of
servers and customer requirements. In this chapter, we will review the components required to create
Puppet code at scale. We will be looking at Puppet modules, which allow us to bundle code and
data focused on a single technology implementation, thus making it easy to share and combine with
other implementations. Then, we’ll explore the roles and profiles method to show you how profiles
can group modules to create technology stacks and roles, then combine profiles to match business
requirements. After, we’ll cover the Puppet Development Kit (PDK), showing how it can automate
the process of creating and managing modules. The directories and files templated by the PDK will
be shown, highlighting its built-in validation and linting checks, as well as unit compilation checks.
Next, we’ll look at Rspec, as a method that expands on this to provide more thorough unit testing,
as well as ServerSpec, which is used for server testing, at a high level. Then, we’ll discuss the Puppet
Forge catalog, which acts as the source of modules developed by Puppet itself, as well as vendors and
members of the community. We will show you how to filter various aspects of modules to understand
how they are supported, their compatibility with OS and Puppet versions, and scoring/scanning ratings
so that you can choose the best module for your organization’s needs.

In this chapter, we’re going to cover the following main topics:

•	 What is a module and what is in it?

•	 Roles and profiles method

•	 The PDK and how to write and test a module

•	 Testing using RSpec with PDK

•	 Understanding Puppet Forge

Developing and Managing Modules166

Technical requirements
This chapter does not require any infrastructure to be deployed. All actions can be performed from
your developer desktop.

What is a module and what is in it?
Modules provide us with a way to group code and data, making it easier to share and reuse code
that is part of a specific technology implementation. Almost all of your Puppet code will be stored
in modules of one kind or another. You should work out the scope of your module to create focused
modules with a single clear responsibility. If you were deploying a LAMP or WAMP stack, you would
not make a single module that configured all components; instead, you would break it into individual
modules, including OS settings, MySQL, and Apache. This allows greater code reuse and reduces the
complexity of any individual module.

A module is a directory named with similar criteria to a class, so it must begin with a lowercase letter
and can only contain lowercase letters, numbers, and underscores. Unlike classes, modules cannot
be nested and do not use the :: symbol. Reserved words and class names should not be used as
module names.

Modules have a directory structure that allows Puppet to know where various types of code and
data will be stored and autoloaded as requested. As discussed in Chapter 6, a scope namespace and
file service namespace for that module will be created. The core code and data are stored in the
following directories:

•	 data: Contains module-based data for parameter defaults, which will be covered in Chapter 9.

•	 examples: Contains examples of how to declare the modules’ classes and defined types.

•	 files: Contains static file content that can be placed by Puppet.

•	 manifests: Contains all the manifests of the module and directories that provide structure.

•	 template: Contains the EPP and ERB template files to be used by Puppet code.

•	 tasks: Contains tasks for procedural work. This will be covered in Chapter 12

Modules also have what is known as plugins, allowing them to distribute various custom Puppet
components to the Puppet server or agent, as relevant. Some of these plugins are as follows:

•	 lib/facter: Custom facts written in Ruby that are used on the agent

•	 lib/puppet/functions: Custom functions written in Ruby that are used by the server

•	 lib/puppet/type: Custom resource types that are used on both the server and agent

What is a module and what is in it? 167

•	 lib/puppet/provider: Custom resource providers written in Puppet that are used on
both the server and agent

•	 lib/augeaus/lenses: Custom Augeas lenses that are used on the agent side

•	 facts.d: External facts or static scripts that are used on the agent

•	 functions: Customs functions written in Puppet that are used on the server

It is important to note that certain plugin types, such as resource types, are not isolated fully in
environments. Environments will be discussed in detail in Chapter 11, where we will focus on
classification and release management, but for now, note that environments allow isolated code bases
to be used by nodes so that they can use different versions of code. This is due to the way Ruby loads
the first resource type and makes it global, ignoring any duplicates found. Therefore, it is important
to consult the Puppet documentation: https://puppet.com/docs/puppet/latest/
environment_isolation.html#environment_isolation. You can configure environment
isolation as necessary if you use modules containing plugins that cannot be isolated. Puppet Enterprise
provides isolation in environments by default.

Modules can be used in different ways. While most of this chapter will focus on modules that use
Puppet code for configuration, modules can be used to distribute an item or items. An example of
this is the PowerShell module in Puppet Forge (https://forge.puppet.com/modules/
puppetlabs/powershell), which is used only to distribute a new exec provider using the
provider plugin directory.

Focusing on the manifests directory, the manifest files will have the same name as the class name
they contain. The major exception to this is the main manifest, which is named init.pp, but has
the class name of the module. This main manifest is often used as the entry point to the module. As
discussed in Chapter 6, a module namespace is created for the module, allowing us to include the
module in code by running include <module name>.

The classes should be self-contained and small, focusing on one aspect. A common piece of advice on
how to identify a class that is too big is when it is too large to view in a single editor screen. With this
in mind, one of the most common patterns when starting with modules is to use the main manifest,
init.pp, as an entry point that takes parameters to be used across the module. After, it calls other
classes that are used and sets their ordering. An example of this is using an install class to install
resources such as packages, a config class to add any configuration files or users, and a service
class to manage the service. The following code shows an example of a main manifest for this pattern:

class exampleapp (
  Boolean $package_managed = true,
  Integer $package_version = 3,
  Boolean $user_managed = true,
  Integer $user_id= 10,

https://puppet.com/docs/puppet/latest/environment_isolation.html#environment_isolation
https://puppet.com/docs/puppet/latest/environment_isolation.html#environment_isolation
https://forge.puppet.com/modules/puppetlabs/powershell
https://forge.puppet.com/modules/puppetlabs/powershell

Developing and Managing Modules168

  Boolean $service_enable = true,
  Integer $jmx_heap_size = 1024,
  Integer $thread_number = 10,
)
{
  contain exampleapp::install
  contain exampleapp::config
  contain exampleapp::service

  Class['exampleapp::install']
  -> Class['exampleapp::config']
  ~> Class['exampleapp::service']
}

Considering the available parameters, such as the public API of the module, would allow the module
to be flexible; in addition, consistency should be maintained when naming these parameters. Here,
we use an approach where parameters are named based on their effect. So, for exampleapp, it can
be seen that both the package and user take a Boolean to declare if the module is managing them
as a resource. A Boolean is used on service_enable to decide if the service is enabled on boot,
while integers are provided for user_id and package_version. Two additional integers are
then used for configuring the application, setting the Java memory size, and the thread number.
These parameters can be accessed using the module namespace and performing a data lookup for the
variable at modulename::variablename. This is known as automatic parameter lookup and
will be covered in detail when we review how Puppet handles data in Chapter 9.

Note
Parameters and other aspects of a module can be documented via comments in the header of the
code, which can then be generated in different formats using the Puppet Strings gem. Details can be
found in the Puppet Strings style guide and on the following web page: https://
puppet.com/docs/puppet/latest/puppet_strings_style.html.

We adopt the approach of using containment and ordering on the classes within the module. This
ensures, if requested, that the package is installed, the configuration is added, and the service is then
managed or refreshed since each stage depends on the next. The contain keyword should not be
considered a default to be used instead of include; it should only be used when it is this component
module style and when the classes will only ever only be used within the main class. In the Roles and
profiles method section, you will see where containment and ordering like this would be inappropriate.

https://Puppet Strings style guide
https://puppet.com/docs/puppet/latest/puppet_strings_style.html
https://puppet.com/docs/puppet/latest/puppet_strings_style.html

What is a module and what is in it? 169

From this, we can see how these subclasses use the parameters from the main manifest. For example,
the install manifest uses an if statement on the package_managed variable; if it’s True, it
installs the version of the exampleapp package set by the package_version variable:

class exampleapp::install {
if $exampleapp::package_managed {
  package { 'exampleapp':
    ensure => $exampleapp::package_version
  }
 }
}

For the config manifest, we can see how the jmx_heap_size and thread_number variables
can be substituted into a template by using the module namespace to access the template stored in
the templates folder in the exampleapp module:

class exampleapp::config {
  file { '/etc/exampleapp/app.conf':
    ensure  => file,
    content => epp('exampleapp/app.conf.epp', {' jmx_heap_size ' =>
$exampleapp::jmx_heap_size , ' thread_number' => $exampleapp::thread_
number }),
  }
}

The service class is very similar in style to the install class. It uses an if statement; if this is
True, it adds a service of exampleapp and sets the enable parameter based on the service_
enable variable:

class exampleapp::service
  if $exampleapp::service_managed {
    service{'exampleapp':
    ensure => 'running',
    enable => $exampleapp::service_enable ,
    }
  }
}

Note
A common module pattern was to use a params.pp file to manage default module data. Hiera
5 can now manage module-level data in a more structured way than a manifest file, as will be
shown in Chapter 9. The params.pp file is still commonly seen in code, particularly where
the structure of the data is simple and there is little value in changing it to Hiera.

Developing and Managing Modules170

The examples directory could contain a file called init.pp, specifying how the class could be called:

class { 'exampleapp':
  package_managed => true,
  package_version => 3,
  user_managed => true,
  user_id => 10,
  service_enable => true,
  jmx_heap_size => 1024,
  thread_number => 10,
}

The naming of files is not important in the examples directory; there could be several different
examples to show common selections of module attributes for different setups. For example, a module
might show how it can be included with the minimum default values, but also the required attributes
for a specific architecture, such as deploying in a cluster setup.

As the configuration use case becomes more complex, the other most common approach to the
module structure can be seen in the Apache module in the Puppet Forge catalog: https://forge.
puppet.com/modules/puppetlabs/apache. Instead of grouping resources based on simple
package and config classes, the apache module breaks down the different components of the
application. In this example, the main manifest for Apache performs a default installation of Apache,
with a default virtual host and a document root directory, and starts the Apache service. This can be
configured by using the relevant module parameters. Here, the Apache service is managed in a separate
class, but the resources that would normally have been in the package and config classes are
managed within the Apache main class. There are also various implementation classes, such as vhosts,
mod, and mpm, for different apache configuration items. This gives the main class a clear purpose
of performing the basic installation and configuring the apache server so that the implementation
classes can focus on specific customizations. For example, the vhosts classes are defined types that
can be defined for each virtual host the apache server requires.

These examples provide a structure that you can follow for your modules and can be adapted as needed.
However, the key lessons to take away are that modules should focus on a single task, only manage
their resources (no cross-module dependencies), and be granular and portable.

In this section, we looked at the directory and file structure of a Puppet module and two common
patterns for creating modules. These modules, by themselves, configure focused individual technical
implementations. In the next section, we will see how a module’s structure can be used to combine
modules to produce technical stacks and, by combining technical stacks and configuration, meet the
business requirements customers have for servers.

https://forge.puppet.com/modules/puppetlabs/apache
https://forge.puppet.com/modules/puppetlabs/apache

Lab – reviewing the apache module 171

Lab – reviewing the apache module
It would be impractical to print all the key parts of the apache module’s code in this book. However,
reviewing the code at https://forge.puppet.com/modules/puppetlabs/apache
and reading the examples directory to see how the main class, apache, is combined with various
classes within the module to configure different components will help you understand how this
module pattern can be structured.

Roles and profiles method
In the previous section, the modules we discussed are what are known as component modules since they
cover single implementations. These modules are mostly of interest to users directly involved with the
technology implementation, such as Unix or Windows administrators, where understanding that specific
resources have been applied is the most important aspect of the configuration. But different users are
not interested in how a node is configured; instead, they are interested in what it does. An application
specialist, for example, would care that, for their application, Tomcat and MySQL were installed, not
how it was configured. A project manager would care that they got a server that met a business need but
not what technical stacks were used. The project manager may also see each implementation as unique,
but there will often be a lot of similarities, such as various technology stacks being used across multiple
applications using Apache or Java with variations of settings based on location or environment.

Without providing some sort of structure for these levels of logic, trying to apply these modules to
nodes would require a lot of duplication and complexity of if statements.

A pattern called roles and profiles uses a modular structure to achieve this. Role and profile are not keywords
but just patterns to use within modules and classes. A simple approach can be to have a module called
role and a module called profile, with each class in these modules representing a role or profile.

These roles represent the business need that a customer, such as a project manager, would require,
while a profile would reflect a technical stack for an application.

When looking at how to apply the role and profiles method to the configuration of pre-existing
applications, it’s important to look from the role down to the module to avoid the natural temptation
of trying to find the technical solution first without the business logic. This involves breaking things
down into components and granularly thinking about what it is and not what it looks like. One trick
to identifying roles is often to take hostnames, which generally contain information about the location,
environment use, and application. For example, a hostname may look like fk1ora005prd, where
fk1 is a data center location, 005 is a numerator, and prd is the production environment, leaving
ora as the Oracle application, which would match the role’s name. So, roles should be business names
such as buildserver, proxyserver, or ecomwebserver, while the profile should be the
technology stack name, such as Apache, Jenkins, or nginx.

https://forge.puppet.com/modules/puppetlabs/apache

Developing and Managing Modules172

This naming isn’t always perfect and sometimes, some of the terms may simply be the same ones that
project managers use for ordering Oracle servers. They may be unaware of the underlying profiles of
the Oracle role, which would include an Oracle profile and other relevant profiles.

In this case, a role class should simply call the required profiles with no variables, as shown here:

class role::exampleapp {
  include profile::core
  include profile::java
  include profile::apache
}

In contrast, a profile class should contain parameters to customize the module and class declarations
to add the required modules:

class profile::java(
  Pattern[/present|installed|latest|^[.+_0-9a-zA-Z:~-]+$/] $java_
version
  String $java_distribution
) {
class { 'java':
  version      => $java_version,
  distribution =>  $java_distribution,
  }
}

In Chapter 9, which deals with Puppet and data, you’ll see how Hiera can model the data that overrides
the profile defaults. A server should only have one role; if it needs two roles, then it is in itself a new
role, but a role will have multiple profiles. Figure 8.1 shows a simple example of using roles, profiles,
and modules and how the classes would include one another. With this setup, as we’ll see later in
Chapter 11, classifying a box is as simple as ensuring the right role is assigned to the node:

Roles and profiles method 173

Figure 8.1 – An example of roles, profiles, and modules

The framework shown in the preceding figure is all about abstraction, so we decouple the business
logic, implementation, and resource management and reduce the node-level complexity.

This pattern is not a requirement but provides suggestions on how you can structure code to avoid
duplication and provide a model. In this scenario, several adaptations could be considered.

Using complexity escalation allows us to not create too much structure when we have little code
initially. If there are only a couple of resources in a profile, then it may be easier to keep it that way
and expand to a module when it becomes more complicated.

Depending on your organization’s change management and delivery requirements, it may make sense
to have multiple profile or role modules to allow for more granular control and access – for example,
teama_profiles and teamb_profiles.

Developing and Managing Modules174

As discussed in Chapter 3, it is generally advised against using inheritance in Puppet code, but it
may be worthwhile expanding the namespaces of a profile module by grouping manifests in a
directory, such as creating an exampleapp directory within profile and creating client.pp
and server.pp to represent the server and client versions (profile::exampleapp::server
and profile::exampleapp::client, respectively). This could also be done for specific OSs.
Before considering this approach, note that this structure is an edge case and carries a lot of risks
when using inheritance.

If profiles are found to be too rigid to plan for in a changing stack or if adopting heritage servers
means that it becomes necessary to drop certain parts of profiles or roles, then using parameters to
make the profile more dynamic can allow classes to be defined through the parameter of the profile
class, either by Hiera or default values.

As a simple example, the following code uses include_classes with the default values listed in
the exampleapp module:

class profile::exampleapp(
  Array[String] $include_classes = ['exampleapp'],
) {
  include $include_classes
}

This would allow us to override the include_classes array from Hiera or the module data in
the profile. This could be made tighter for inclusions by us only allowing classes from a set module:

class profile::exampleapp(
  Array[String] $include_classes = ['server'],
) {
$modules = $include_classes.map | String $module | {
  "exampleteam_exampleapp::${profile}"
}
include $modules
}

To add more structure to the parameters and make it clear in approval and code review processes, the
class parameters could be broken out further. Here, we can add default, mandatory, additional, and
knockout arrays, thus providing full flexibility:

class profile::exampleapp(
  Array[String] $include_default          = ['my_default'],
  Array[String] $include_mandatory        = ['my_base_profile'],
  Array[String] $include_additional       = ['my_test_default_
profile'],
  Array[String] $include_removal          = ['my_default'],
){

Writing and testing a module using the PDK 175

$profiles = $include_default + $include_mandatory + $include_
additional + $include_removal
include $profiles
}

It is possible to mix this pattern even further by, say, limiting multiple namespaces and having lists of
class arrays for each namespace. This will be dictated by what approach will give your organization
enough flexibility while making it clear what will be affected by the code and who should review it.

With this method, it may also be useful to define a noop flag using a parameter and then noop on
resources. You could also do this via the noop function from https://forge.puppet.com/
modules/trlinkin/noop to allow modules to be added and put into noop mode until they
are accepted.

These adjustments to the patterns are more complex and involve reading the Hiera data to understand
what a role and profile represent, but it will be up to your organization to decide which approach will
work best. While a reduction in variation with rigid roles and profiles is ideal, this can lead to adoption
resistance or issues with heritage if there are no appropriate ways to manage it.

Having reviewed the structure of modules that the roles and profiles pattern can create and the contents
of such modules, we can see that this is a lot of content to manage manually by creating files and
managing various testing tools. The next section looks at how to automate the life cycle of module
creation and testing using the PDK.

Writing and testing a module using the PDK
The PDK was introduced to ease the effort required to consistently create the directories and files for
modules and to also group some commonly used testing and validation tooling. We will be reviewing
PDK version 2.7.1, the latest available at the time of writing. PDK installs its own Ruby gems and
environment to provide the following tools:

Ruby Gem Name Ruby Gem Purpose Project Page
metadata-json-lint Validates the syntax and

lints metadata.json to
style guidelines

https://github.com/
voxpupuli/metadata-
json-lint

pdk Generates modules and
m o du l e c ont e nt w i t h
automated testing commands

https://github.com/
puppetlabs/pdk

puppet-lint Lints Puppet manifest code
against the Puppet language
style guide

https://github.com/
puppetlabs/puppet-lint

https://forge.puppet.com/modules/trlinkin/noop
https://forge.puppet.com/modules/trlinkin/noop
https://github.com/voxpupuli/metadata-json-lint
https://github.com/voxpupuli/metadata-json-lint
https://github.com/voxpupuli/metadata-json-lint
https://github.com/puppetlabs/pdk
https://github.com/puppetlabs/pdk
https://github.com/puppetlabs/puppet-lint
https://github.com/puppetlabs/puppet-lint

Developing and Managing Modules176

puppet-syntax Checks Puppet manifests,
templates, and Hiera YAML
for correct syntax

https://github.com/
voxpupuli/puppet-syntax

puppetlabs_spec_helper Provides the tooling necessary
to test against different
versions of Puppet

https://github.com/
puppetlabs/puppetlabs_
spec_helper

rspec-puppet Compiles Puppet code
and tests the expected
behavior using a Puppet-
specific implementation of
Ruby RSpec

https://github.com/
puppetlabs/rspec-puppet

Rspec-puppet-facts Gives a method that provides
facts for supported OSs using
the output of facterdb

https://github.com/
voxpupuli/rspec-puppet-
facts

facterdb Provides example output
of facts for various OSs on
different Facter versions

https://github.com/
voxpupuli/facterdb

Table 8.1 – PDK gem list

The common misconception about the PDK is that it is packaging and installing these tools. What
it is actually doing is running a bundle install in each module that’s created. After, the PDK
cache is saved, making it appear like PDK is packaging the tools.

Using the gems discussed in Table 8.1, the PDK can generate the following:

•	 Modules with complete module skeletons, metadata, and README templates

•	 Classes, defined types, tasks, custom facts and functions, and Ruby providers

•	 Unit test templates for classes and defined types

The PDK performs linting to check styles and best practices and to run syntax validation against
the following:

•	 The metadata.json file; see Table 8.2 for details

•	 Puppet manifest files (.pp) against specific Puppet versions

•	 Ruby files (.rb) against specific Puppet versions of Ruby

•	 EPP and ERB template files

•	 Puppetfile and environment.conf, which provides the module list for an environment
and its environment settings, as will be discussed in Chapter 11

•	 YAML files

https://github.com/voxpupuli/puppet-syntax
https://github.com/voxpupuli/puppet-syntax
https://github.com/puppetlabs/puppetlabs_spec_helper
https://github.com/puppetlabs/puppetlabs_spec_helper
https://github.com/puppetlabs/puppetlabs_spec_helper
https://github.com/puppetlabs/rspec-puppet
https://github.com/puppetlabs/rspec-puppet
https://github.com/voxpupuli/rspec-puppet-facts
https://github.com/voxpupuli/rspec-puppet-facts
https://github.com/voxpupuli/rspec-puppet-facts
https://github.com/voxpupuli/facterdb
https://github.com/voxpupuli/facterdb

Writing and testing a module using the PDK 177

The PDK runs RSpec unit tests on modules and classes. This will be discussed in detail in the Testing
with RSpec using the PDK section.

The PDK has build and release commands to make a .tar file for uploading to Puppet Forge and the
Puppet debugging console.

To create a module, the pdk new module command (optionally with the module’s name at the end)
is run. Answer the questions regarding the module’s name (if it wasn’t provided, specify your Puppet
Forge username, if you have one), who wrote the module, the license the code should fall under, and
the OSs that will be supported. This process can be seen in the following screenshot:

Figure 8.2 – pdk new module questions

The answers provided for user details and licenses will be offered as defaults in future runs and can be
checked by running pdk get config and reviewing the user.module_defaults settings.

Note
The puppet module generate command, which was used before the introduction of
the PDK, was deprecated in Puppet 5 and removed in Puppet 6.

Once the answers have been entered and confirmed, a directory containing the module names will
be created. It will contain the following content directories, which were previously discussed in the
What is a module and what is in it? section:

•	 data

•	 examples

Developing and Managing Modules178

•	 files

•	 Manifests

•	 spec

•	 tasks

•	 templates

Using the default built-in template, it then creates the following additional configuration files
and directories:

File/Directory Name File/Directory Use
appveyor.yml Appveyor CI integration configuration file
CHANGELOG.md A change log that can be maintained
.devcontainer How a container should be configured to

test this module
.fixtures.yml Test module dependencies configuration
Gemfile Ruby gem dependencies
Gemfile.lock Ruby gem dependencies
.gitattributes Associates attributes and behaviors with

file types
.gitignore Files Git should ignore
.gitlab-ci.yml Example configuration for using with

GitLab CI
metadata.json •	 Metadata, including questions filled

out during creation
.pdkignore •	 Files to ignore when building a

package for Puppet Forge
.puppet-lint.rc Configuration for the puppet-lint gem
Rakefile Ruby task configuration
README.md A template for a README page for

the module
.rspec Configuration defaults for rspec for

unit testing
.rubocop.yml Settings for Ruby style checking
/spec A directory containing files for rspec

unit testing
/spec/default_facts.yaml Default facts available for all tests

Writing and testing a module using the PDK 179

/spec/spec_helper.rb Entry point script for rspec that sets
various configurations

.sync.yml A file to customize the PDK template in use

.vscode Configuration for VSCode, such as
recommended extensions

.yardopts Configuration file for Puppet Strings

Table 8.2 – PDK default template files and directories

For a pre-existing module, it is also possible to run pdk convert to adapt the module to the
template. It will confirm the changes it would make before applying them.

The size of the contents of PDK has grown over time and the default template can contain a lot of
unused files. It is possible to create a custom template simply by forking from https://github.
com/puppetlabs/pdk-templates and following the README file to adjust the template as
required. It can then be used in a module by using --template-url on the new module or convert
commands. Alternatively, the .sync.yml files can be set to be deleted, unmanaged, or have settings
changed. The following .sync.yml file example would set the .gitlab-ci.yml file so that
it’s not in the module. It would ensure the .vscode directory is not managed by PDK templates,
avoiding any future updates. It would also disable legacy facts (global variables of facts, which were
covered in Chapter 5):

common
  disable_legacy_facts: true
.gitlab-ci.yml
  delete: true
.vscode
  Unmanaged: true

The full settings that can be adjusted are documented in the PDK template README file: https://
github.com/puppetlabs/pdk-templates/blob/main/README.md.

Note
If a configuration change is required across several existing modules, the modulesync
module can be useful for managing this. It is available on the following web page: https://
github.com/voxpupuli/modulesync.

Now that the contents of a PDK module and its tooling have been described in detail, we will describe
the workflow of developing a module, as shown in Figure 8.3.

https://github.com/puppetlabs/pdk-templates
https://github.com/puppetlabs/pdk-templates
https://github.com/puppetlabs/pdk-templates/blob/main/README.md
https://github.com/puppetlabs/pdk-templates/blob/main/README.md
https://github.com/voxpupuli/modulesync
https://github.com/voxpupuli/modulesync

Developing and Managing Modules180

¶¶¶

Figure 8.3 – The PDK workflow

As was discussed, by running pdk new to create a new module or pdk convert on an uncontrolled
module, an initial module of PDK content and its settings is established. Using pdk update, the
configuration of a module can be updated since we can change its settings, provide a new template,
or change the PDK version.

The next step is to add any new content files that are required. This may include a class, defined_
type, fact, function provider, task, or transport and can be done by using the pdk new command
and the relevant content. This will create a file by using the template for the chosen content and a
rspec test file. For content that’s not available through PDK, such as external facts or plans, the files
and tests must be created manually.

Once the file and test for the content are in place, your code should be added. At regular intervals, the
code can be validated and tested via the pdk validate command, which checks the linting and
syntax parsing. This command can also be used with the -a flag, which will attempt to auto-correct any

Writing and testing a module using the PDK 181

errors. For linting errors, specific checks can be ignored in a section of a file by using inline comments
or by surrounding areas of code with comments via lint:ignore:<rule name>. The following
example shows how a line could be set to ignore the 140-character lint rule. In this case, the section
of code would ignore the check for double quotes, which should only be used where both strings and
variables are used in variable assignment:

$long_variable_text = "Pretend this is more than 140 characters" #
lint:ignore:140chars
  # lint:ignore:double_quoted_strings
  $variable1 = "don't do this"
  $variable2 = "this is just a simple example"
  # lint:endignore

If the check must be ignored in all code, the .puppet-lint.rc file could be updated by adding
a flag such as --no-selector_inside_resource-check to ensure puppet-lint does
not run the check to ensure selector code is inside a resource. The full list of puppet-lint checks
can be viewed at https://github.com/puppetlabs/puppet-lint/tree/gh-pages/
checks. Note that disabling checks should be avoided as much as possible as this may affect your
module scoring or ability to get a module endorsed in Puppet Forge. This drives your code further
away from recommended Puppet practices.

Note
http://puppet-lint.com/checks/ is not owned by Puppet and is out of date. Puppet
forked the module to https://github.com/puppetlabs/puppet-lint, which is why it
is recommended that https://puppetlabs.github.io/puppet-lint is used instead.

Once pdk validate is running cleanly, the pdk test unit command can be run to perform
unit testing. The checks provided by the templates are basic and are meant to check if the code works at
all; in the case of Puppet code, it ensures the code will compile. A powerful feature is that checks can be
run against specific Puppet or Puppet Enterprise versions by using the --puppet-version flag or
--pe-version – for example, pdk test unit –pe-version=2019.11 – so that code testing
can take place before upgrades. In the next section, you will learn how to expand the rspec checks further.

Puppet Forge will be discussed in detail at the end of this chapter. Releasing to Puppet Forge is beyond
the scope of this book but if the code is to be released for use in Puppet Forge, you can run the pdk
build command to create a .tar file to be uploaded or the pdk release command to automate
the process of uploading modules to Puppet Forge.

It is important to keep metadata.json up to date as it will restrict what testing takes place based
on Puppet’s supported version and is a key part of the documentation. The format and its options can
be viewed at https://docs.puppet.com/puppet/latest/modules_metadata.html.

https://github.com/puppetlabs/puppet-lint/tree/gh-pages/checks
https://github.com/puppetlabs/puppet-lint/tree/gh-pages/checks
http://puppet-lint.com/checks/
https://github.com/puppetlabs/puppet-lint
https://puppetlabs.github.io/puppet-lint
https://docs.puppet.com/puppet/latest/modules_metadata.html

Developing and Managing Modules182

To view all the options available, you can review the full PDK command reference at https://
puppet.com/docs/pdk/2.x/pdk_reference.html.

Having reviewed how to use the PDK to create and manage modules, as well as its validation and
testing capabilities, let’s learn how to perform full unit testing using RSpec.

Testing with RSpec using the PDK
To take this initial validation and compilation testing further at the unit test level, RSpec can be
used to test the behavior and logic of modules, while ServerSpec can be used to test at the system
integration level.

RSpec is a Ruby framework for testing Ruby code and is written in a domain-specific language
(DSL) to make it easier to read. The rspec-puppet test is an implementation of RSpec, specifically
designed for testing Puppet modules.

Note
It is important to note that the current project code is available at https://github.com/
puppetlabs/rspec-puppet, forked from https://github.com/rodjek/rspec-
puppet, with core guides and documentation available at http://rspec-puppet.com/.

When users start using RSpec, some may feel that it is just mimicking the Puppet code but in a different
language. RSpec runs through the different logic and behavior of your Puppet code and ensures that the
correct catalogs and output will be produced in various environments and cases. This protects against
regressions when refactoring or upgrading to new Puppet releases. If the RSpec code is becoming a
simple mimic of the code in the manifest, then the test scenarios are not being reviewed properly.

The advantage of this style of unit testing is that it allows you to test code without having to spin up
any specific infrastructure or make any changes.

RSpec tests are contained in Ruby files in a module inside the spec directory, with directories
containing the tests for different types of code, such as classes in the spec/classes directory, and
defined types in the spec/defines directory.

We are ignoring the other possible test directories (the types, type_alias, and functions
test directories) as creating them is beyond the scope of this book. However, most of what will be
discussed here can apply to these types.

RSpec configuration is covered within the PDK and the files are created automatically with the pdk
new commands. However, they can be added either when converting a module or using the PDK by
adding the --add-tests flag to the convert command, pdk convert --add-tests, and
with the pdk new test --unit <name> command, respectively.

https://puppet.com/docs/pdk/2.x/pdk_reference.html
https://puppet.com/docs/pdk/2.x/pdk_reference.html
https://github.com/puppetlabs/rspec-puppet
https://github.com/puppetlabs/rspec-puppet
https://github.com/rodjek/rspec-puppet
https://github.com/rodjek/rspec-puppet
http://rspec-puppet.com/

Testing with RSpec using the PDK 183

Before we look at what a defined type and class will get by default from the PDK, we must run the
pdk new class exampleapp and pdk new define example_define commands on
the exampleapp module to create the main manifest and a defined type called example_define.
This will result in a file called spec/classes/exampleapp.rb with the following contents:

require 'spec_helper'

describe 'exampleapp' do
  on_supported_os.each do |os, os_facts|
    context "on #{os}" do
      let(:facts) { os_facts }

      it { is_expected.to compile }
    end
  end
end

Further, spec/defined/example_define.rb can be created as follows:

require 'spec_helper'

describe 'exampleapp::example_define' do
  let(:title) { 'namevar' }
  let(:params) do
    {}
  end

  on_supported_os.each do |os, os_facts|
    context "on #{os}" do
      let(:facts) { os_facts }

      it { is_expected.to compile }
    end
  end
end

Breaking this down, the first step is to require spec_helper, which results in the spec/
spec_helper.rb file being loaded. Because the spec directory is loaded into the path automatically,
it only needs to state the title; this configures RSpec, which will be discussed in more detail later in
this section. The next part, describe, is an RSpec keyword that’s used to describe a group of tests.
For both the exampleapp and example_define tests, the name of the class and defined class
are described since there is only one basic group of tests for each.

Developing and Managing Modules184

Note
If you have used puppet-rspec previously, you may have set an additional type definition
in the describe statement, such as describe 'exampleapp', :type => :class
do. This is unnecessary due to the folders acting as auto identifiers of the type.

A defined type always needs a title and any parameters. Upon using the let keyword, a title is set,
as well as parameters, which in this case are blank.

Both the exampleapp and example_define classes then perform a loop using the on_
supported_os function, which is provided by the rspec-puppet-facts gem, taking the
input from the metadata.json file, which contains details regarding the OSs that are supported
and producing an array of facts in the os_facts variable. This is then passed to another let, which
assigns these facts to the contents of the os_facts array.

The it keyword is known as an example in rspec terms and can be either a single line or encased
within a do end block. This is a test case and contains an expect statement called is_expected.
to, which is a verification step of a condition. This condition is expressed via a matcher. In this case,
this will compile the Puppet code of the class and defined type and confirm that a catalog will be
generated successfully.

Note
We recommend the styling guide available at https://www.betterspecs.org/, which
is for the general Ruby RSpec style. We will be quoting recommendations from it throughout
this chapter.

Having briefly examined the default compile test, let’s look at each component and how to expand
them further.

The describe and context keywords

One of the big confusions for many Puppet developers who have previously tried to use RSpec is
understanding where to use the describe keyword and where to use context. They seem to be
interchangeable, and this is for a very good reason. The context keyword is an alias of describe,
so they are interchangeable, and your use only affects how your code reads.

Betterspecs recommends using describe to describe the method being tested. In terms of Puppet RSpec,
this was why we saw describe with a class name of exampleapp and exampleapp::example_
define as its defined class in the Testing with RSpec using the PDK section.

It is recommended that context be written in a style of when, with, or without situations, which
should make it clear what scenario is being tested.

https://www.betterspecs.org/

Testing with RSpec using the PDK 185

The style recommendation of this book is to write a single describe to match the Puppet type, such
as class, and then context to match the scenarios to be tested.

The blocks of describe and context allow the situation being tested to be described and for us
to set facts, variables, and parameters. Since they can be nested, it allows inheritance to take place,
which will build up more detailed scenarios, or different logical routes to be tried, though care should
be taken not to make the cases too hard to read.

The aim should be to test all cases. So, a plan should be made to test valid, edge, and invalid cases,
allowing both positive and negative cases to be tested. As a simple example without any code tests or
parameters set, the following code for the exampleapp class would look at the contexts for each
supported OS, based on whether the install version is a middle value, a low edge version, or an
invalid version:

describe 'exampleapp' do
  on_supported_os.each do |os, _os_facts|
    context "on #{os}" do
      context 'When install_version is 6' do
        it { is_expected.to compile }
      end
      context 'When install_version is 1' do
        it { is_expected.to compile.and_raise_error('unsupported
version') }
      end
      context 'When install_version is invalid string' do
        it { is_expected.to compile.and_raise_error('Invalid version
string') }
      end
    end
  end
end

Now that we have the basic structure of the scenarios to test, the next step is to use matchers to test
what is produced in the catalog based on context.

Examples, expectations, and matchers

The sample it statements can be either a single line, as demonstrated in the Testing with RSpec using
the PDK section, or can be broken up over multiple lines when the matcher that’s used is too long
to be on a single line. Using do and end, the same compile example could be expressed as follows:

it do
is_expected.to compile
end

Developing and Managing Modules186

In the general Ruby RSpec implementation, expectations have a broader choice, but in puppet-
rspec, our expectations will be limited to just using the is_expected keyword. However, this
can be negated by using not_to – for example, It { is_expected.not_to.

The matchers provide a variety of tests for testing various resource types. The matcher syntax
is contain_<resource_type>('<title>').<options>.

For the compile matcher, we could be more explicit by adding the with_all_deps option to
the compile – for example, it { is_expected.to compile.with_all_deps }. This
would test that all the relationships in the catalog contain resources. Alternatively, we could look for a
compile error with the and_raise_error('error_message') option, which will contain the
message we expect to be thrown as a string – for example, it { is_expected.to compile.
raise_error('lets cause failure' }.

The main set of matches is based on resource types using a pattern of contain_<resource_
type>('<resource_title>') – for example,

it { is_expected.to contain_class('exampleclass::install') } and it
{ is_expected.to contain_service('httpd') }.

Rspec-puppet does not do class name parsing or lookup, so the matcher will only accept
qualified classes without leading colons. So, install won’t be found in exampleclass, but
exampleclass::install will. If a resource type contains a :: symbol, this needs to be converted
into a __ symbol, which will make it contain_exampleapp__exampletype.

Resource matchers can be further expanded by chaining them using the with, only_with, and
without methods. This allows us to check the parameters of resources; with ensures the resource
in the catalog has the parameters as specified, only_with ensures that only the parameters provided
have been set and no others, and without accepts an array of parameters and ensures those parameters
are not set. When using these methods, it is more readable to use an it do...end format, as shown
in the following example:

it do
  is_expected.to contain_package('httpd').with(
  'ensure' => 'latest',
  'provider' => 'solaris',
  )
end

This can be shortened to only one parameter by following the method syntax for with and only_with:

<with_method>_<parameter name>
it {is_expected.to contain_server('exampleserver').only_with_
enable(true)  }

Testing with RSpec using the PDK 187

For without, the method accepts an array of parameters that should not be set on the resource:

it {is_expected.to contain_user('exampleuser').
.without(['managehome', 'home']) }

These methods can be chained together either as the same methods or as a mix:

it {is_expected.to contain_server('exampleserver').with_enable(true).
without_ensure  }

A different kind of matcher for resources is using a count, which allows the have_<resource_
type>_count syntax. For example, to verify if the total number of resources is 5 and the total
number of classes is 4, the following code can be run:

it { is_expected.to have_resource_count(5) }
it { is_expected.to have_class_count(4) }

Having reviewed how to set examples, it is clear that for the describe and context keywords,
parameters and pre-conditions will need to be set for there to be a testing scenario. For example, if
the context is that the install version is 1, then the parameter install version will need to be set to 1.

Parameters and preconditions

In the default example for defined types, we explained how the let keyword can be used to set specify
the title and empty parameters of a test instantiation of a defined type. However, these can also be
used for other types, such as parameterized classes.

To populate parameters, an array of keys and values separated by a => symbol can be supplied in
strings with an undefined value declared as :undef, which is translated to undef when it compiles
the test. For example, to set param1 to the yup string and param2 to undef, the following let
could be used:

let(:params) { {'param1' => 'yup', 'param2' => :undef } }

In addition to parameters, preconditions can also be set. So, if the manifest being tested is dependent
on another class or variable being in the catalog, this could be added so it will be evaluated before
the test class. For example, in the module pattern, we showed that the config class needed to be
evaluated after the install class in the catalog but before the service class. This could be done
using the following code:

let(:pre_condition) { 'include exampleapp::install' }
let(:post_condition){ 'include exampleapp::service' }

Developing and Managing Modules188

An array of strings can also be used if there are multiple conditions. If the test is for a specific node
or environment, this can be set as follows:

let(:node) { puppet.packtpub.com' }
let(:environment) { 'production' }

The node should be a fully qualified domain name (FQDN).

Relationships

The relationships of resources can be tested with the that_requires, that_comes_before,
that_notifies, and that_subscribes_to methods. It is not important if the Puppet code is
using a require and RSpec is using that_comes_before or if the Puppet code is using directional
arrows, so long as the variants are logically equivalent to each other since the test is on the catalog.

These methods are chained into the example with the requirement, but there are some differences
between how relationships are declared in a Puppet manifest and how they are declared in a rspec
test: the name should not be quoted, it cannot have multiple resource names under a single type, and
if a class is referenced, there should be no leading :: to mark it as the top scope. As a simple example,
a file called exampleconfig that requires the exampleapp package can be checked as follows:

it { is_expected.to contain_file('exampleconfig').that_
requires('Package[exampleapp]') }

To check that the exampleapp package was before the exampleapp::service and
exampleapp::config classes, an array can be passed. However, note that they cannot be under
one class:

it { is_expected.to contain_package('exampleapp').that_comes_
before('Class[exampleapp::service]','Class[exampleapp::config]') }

An example of a resource with parameters using it do...end that notified two files is as follows

it do
  is_expected.to contain_service('anotherapp').with(
    'ensure' => 'running',
    'enable' => 'true',
  ).that_notifies('File[config_a]', 'File[config_b]')
end

If the test is on something like a defined class that has require or before as part of its definition,
this relationship can be set in parameters. However, the ref helper must be used to name the resource
it is dependent on, using the ref('<type>','<title'>) syntax. For a defined type that requires
the exampleapp package, the following code would add the relationship via parameters:

let(:params) { 'require' => ref('Package', 'exampleapp') }

Testing with RSpec using the PDK 189

Data from Hiera and facts

Data from Hiera and facts have a huge influence on the logic in our code, so it must be able to be
supplied and customized to cover the different scenarios to be tested. As was shown in the default
examples in the Testing with RSpec using the PDK section, the rspec-puppet-facts gem checks
the metadata.json file to find the list of supported OSs. However, metadata.json does not
have a way to provide architectures, and by default, rspec-puppet-facts chooses a default
architecture depending on the OS, such as i86PC for Solaris or x86_64 for Fedora. If you want to be
able to check additional architectures, you can pass hardware models in a comma-separated array.
This will be combined with the following code:

  additional_archs = {
    :hardwaremodels => ['i386'],
  }
on_supported_os(additional_archs).each do |os, os_facts|

If it only makes sense to test a subsection such as a class that has been specifically made for an OS, then
you can pass the relevant details using the operatingsystem and operatingsystemreleases
parameters; this will override metadata.json:

    ubuntu = {
      supported_os: [
        {
          'operatingsystem'        => 'Ubuntu',
          'operatingsystemrelease' => ['18.04', '16.04'],
        },
      ],
    }

on_supported_os(ubuntu).each do |os, os_facts|

Using the on_supported_os method, this can only be set on all choices. If nothing is found,
such as i386 on Windows 11, it fails to find it silently. View the facterdb module at https://
github.com/voxpupuli/facterdb to see what is available.

It is not mandatory to use on_supported_os but without it, by default, there will be no facts.
When you need to test data that doesn’t exist in facterdb, it is possible to declare the facts using
let(:facts) and the values you wish. For example, if you were testing what would happen with
a theoretical RedHat 10 fact set, you would use the following code:

Context "when OS is redhat-10-x86_64" do
    let(:facts) do
      {
        :osfamily                  => 'RedHat',
        :operatingsystem           => 'RedHat',

https://github.com/voxpupuli/facterdb
https://github.com/voxpupuli/facterdb

Developing and Managing Modules190

        :operatingsystemmajrelease => '10',
        …
      }
    end

Similarly, if additional facts were to be added to the os_facts variable in a nested context, the
merge method could be used with the super method:

     let(:facts) do
        super().merge({
          :student => 'david',
        })
      end

Note
For structured facts, these merges can become more difficult. Voxpupli has an override_
facts helper in https://github.com/voxpupuli/voxpupuli-test that can
assist with this.

To add facts that can be consumed by the PDK for validation and testing the code, add a spec/
default_module_facts.yml. This will contain YAML similar to the following:

---,
choco_install_path: C:\ProgramData\chocolatey
chocolateyversion: 0.9.9

The default_facts.yml file should not be edited as it is managed by the PDK and provides
minimal facts for the PDK to run.

It is possible to add default facts via .sync.yaml either by adding a standard code block or by adding
default_facts.yml, but this is needlessly complicated compared to default_module_
facts.yml.

Any facts you provided with let(:facts) in a spec will merge on top of default facts.

In addition to these facts, three additional variables come from classification and external data sources:
node parameters, which are global variables assigned from the classification to a node, trusted facts,
which are variables assigned from within a Puppet client certificate, and trusted external facts, which
are variables sourced from an external data source by a script. The full implementation of these will
be described in detail in Chapter 11 and Chapter 14.

All three types of variables can be added by using a let statement in the spec file or by setting them
as defaults in spec_helper.

https://github.com/voxpupuli/voxpupuli-test

Testing with RSpec using the PDK 191

Trusted facts from Puppet 4.3 onwards will contain trusted fact keys (certname, domain, and
hostname) that are populated based on the node name, as set with :node. However, trusted external
facts and node parameters will be empty.

Trusted facts use trusted_facts, trusted external data uses trusted_external_data, and
node parameters use node_params. For example, to declare trusted facts and trusted external data,
the following let statements can be used:

let(:trusted_facts) { {'pp_role' => 'puppet/server', 'pp_cluster' =>
'A'} }
let(:trusted_external_data) do,
{
  pds: {
     puppet_classes: some_class,
     example: hiera_data,
   },
}
end

To set defaults, .sync.yaml can add additional lines by passing an array via spec_overrides;
however, adding a spec_helper_local.rb file that contains the necessary lines will be easier than
following the YAML syntax. Within a Rspec.config block, it is about following the c.<fact_
type> = {<fact/parameters_keys>} format and using the fact/parameter name with
default_ at the beginning. So, to assign node parameters as defaults, spec_helper_local.
rb can be updated as follows:

RSpec.configure do |c|
  c.default_node_params = {
    'owner'  => 'oracle',
    'site'   => 'Falkirk1',
    'state' => 'live',
  }
end

Similarly, trusted external data can be set like this:

Rspec.configure do |c|
  c.default_trusted_external_data = {
    pds: {
      puppet_classes: some_class,
      example: hiera_data,
    },
  }

end

Developing and Managing Modules192

Hiera will be covered in full in Chapter 9, but for now, it is adequate to know that Hiera provides a
hiera.yaml file to help you learn how to look up the data and a configuration file. We have created
a hiera.yaml definition at spec/fixtures/hiera/hiera.yaml, which would typically
have a datadir defined at spec/fixtures/hieradata.

This configuration for Hiera can be set in two ways, as documented at https://github.com/
puppetlabs/rspec-puppet. The first option is to use let and set the necessary variables,
as follows:

let(:hiera_config) { 'spec/fixtures/hiera/hiera.yaml' }
hiera = Hiera.new(:config => 'spec/fixtures/hiera/hiera.yaml')

Lookups can then be performed as follows:

 primary_dns = hiera.lookup('primary_dns', nil, nil)
  let(:params) { 'primary_dns' => primary_dns}

Alternatively, the following could be added to spec_helper_local.rb. Here, automatic lookup
of parameters would take place:

RSpec.configure do |c|
  c.hiera_config = 'spec/fixtures/hiera/hiera.yaml'
end

Having reviewed how to create tests for individual modules, one of the issues that you’ll quickly find
is that various resources, such as functions, are used within modules. These are dependent on the
content of other modules. In this next section, you will learn how to use fixtures to make this content
available for testing.

Managing dependencies with fixtures

puppetlabs_spec_helper can put dependent modules in spec/fixtures/modules for
when an RSpec test unit is run. The .fixtures.yml file can specify repositories: for GitHub
repository sources and forge_modules: for modules from Puppet Forge.

The main arguments that are taken are repo, which is either the Git repository link or the Puppet
Forge module name, ref for a Git commit ID, or Forge module version number and branch, which
is for a Git branch. The ref and branch arguments can be used together to revise a branch.

So, an example .fixtures.yml containing two Git repositories and two Forge modules would
look like this:

fixtures:
  forge_modules:
    peadm: "puppetlabs/peadm"
    stdlib:

https://github.com/puppetlabs/rspec-puppet
https://github.com/puppetlabs/rspec-puppet

Testing with RSpec using the PDK 193

      repo: "puppetlabs/stdlib"
      ref: "2.6.0"
  repository:
     pecdm:  "git://github.com/puppetlabs/pecdm"
   Puppet-data-service:
      repo: "git://github.com/puppetlabs/puppetlabs-puppet_data_
service"
      Ref:  "feature_branch_1"

If there are no arguments other than repo, it can be shortened to one line, as shown here. If the
fixtures file has changed, it is possible to run the --clean-fixtures flag with a pdk test
unit command to ensure all contents are deleted.

More flags and options can be used with fixtures, as documented at https://github.com/
puppetlabs/puppetlabs_spec_helper#fixtures-examples.

Coverage reports

It is possible to produce coverage reports by adding the following piece of code to spec_helper_
local.rb:

RSpec.configure do |c|
  c.after(:suite) do
    RSpec::Puppet::Coverage.report!
  end
end

This checks whether Puppet resources have been covered and produces a percentage of resources
covered and a list of untouched resources. The resource that’s checked must be within the module being
tested and not contain any dependencies brought in by fixtures. The resource coverage percentage can
also be made into a pass or failure point by adding a percentage pass rate in brackets. For example, by
updating the line to RSpec::Puppet::Coverage.report! (100), this would ensure every
resource (100%) is covered. This can sometimes be a motivator to push for RSpec use and coverage
and only allow the resource percentage coverage to be reduced due to any particular issue or exception.

Further research and tools for RSpec

This section has tried to provide you with enough information that you can build meaningful rspec-
puppet tests with facts data and dependencies. Also, note that normal Ruby code can be used,
such as case or if statements and variables, and that there are many more options for advanced
configurations in spec_helper_local, as documented at https://rspec-puppet.com/
documentation/configuration/.

https://github.com/puppetlabs/puppetlabs_spec_helper#fixtures-examples
https://github.com/puppetlabs/puppetlabs_spec_helper#fixtures-examples
https://rspec-puppet.com/documentation/configuration/
https://rspec-puppet.com/documentation/configuration/

Developing and Managing Modules194

This book advises against Augeas use, but it is possible to test Augeas in RSpec. Details can be found
here: https://github.com/domcleal/rspec-puppet-augeas.

Although it’s beyond the scope of this book, when using custom functions and types, it is necessary
to perform stubs and mocks, which can be done via rspec-mocks, as documented at https://
github.com/puppetlabs/puppetlabs_spec_helper#mock_with.

It was mentioned at the start of the Testing with RSpec using the PDK section that for large manifests,
having to type out all the RSpec for resources can be painful. However, several tools can do this for
you. These include https://github.com/logicminds/puppet-retrospec, https://
github.com/enterprisemodules/puppet-catalog_rspec, and https://github.
com/alexharv074/create_specs.git; all of these can be used to generate RSpec from
code or catalogs.

As with almost everything, it is possible to do all these tasks in YAML instead by using the rspec-
puppet-yaml gem at https://rubydoc.info/gems/rspec-puppet-yaml. However,
we would strongly advise against this.

For further research on RSpec, it can be useful to review the core RSpec documentation at https://
rspec.info/documentation/.

Serverspec

Serverspec is an RSpec implementation that’s designed to test at the server level once configuration
management has been deployed. It is a tool that’s independent of Puppet and doesn’t integrate with
PDK; it is typically added to a pipelining tool to run and requires you to remotely connect from a
server to a test target. Many of the same principles and ideas that we saw in the RSpec apply. The
documentation and a tutorial for this can be found at https://serverspec.org/.

Having learned all about how to create and test modules in this chapter, we can now look at how to
use Puppet Forge to source pre-written modules.

Understanding Puppet Forge
Puppet Forge provides a rich resource of modules from Puppet, the Puppet community, and third-
party vendors to reduce the amount of code your organization must write and maintain. It also allows
you to contribute to projects or publish modules, allowing others to contribute to your projects.

https://github.com/domcleal/rspec-puppet-augeas
https://github.com/puppetlabs/puppetlabs_spec_helper#mock_with
https://github.com/puppetlabs/puppetlabs_spec_helper#mock_with
https://github.com/logicminds/puppet-retrospec
https://github.com/enterprisemodules/puppet-catalog_rspec
https://github.com/enterprisemodules/puppet-catalog_rspec
https://github.com/alexharv074/create_specs.git
https://github.com/alexharv074/create_specs.git
https://rubydoc.info/gems/rspec-puppet-yaml
https://rspec.info/documentation/
https://rspec.info/documentation/
https://serverspec.org/

Understanding Puppet Forge 195

It is important to understand the different types of authors, endorsements, and quality scores available
in Puppet Forge to understand who is developing the modules, what you can expect from them, and
how to make choices regarding the 7,000+ modules.

Anyone can register and publish modules. However, the Puppet company itself publishes under
the puppetlabs username, while the Vox Pupuli community organization publishes under the
puppet username. This confusion originates from Puppet originally being called Puppet Labs. This
should not detract from the fact the Vox Pupli community develops to very high standards and works
closely with Puppet, with both organizations contributing to one another. Full details about the Vox
Pupuli community can be viewed at https://voxpupuli.org/, including how to contribute
and be involved.

There are several other key consultancy contributors, such as example42, enterprisemodules,
camptocamp, and betadots, who contribute modules and offer services. There are vendor
organizations, such as foreman, datadog, SIMP, cyberark, and Elastic, that provide
modules related to their products. Finally, individual contributors such as saz and ghoneycut
have contributed several quality modules. Puppet has a Champions program, highlighting known
contributors to Puppet, which can assist in understanding the reliability of module authors: https://
puppet-champions.github.io/profiles.html.

Note
The process of releasing modules to Puppet Forge is beyond the scope of this book, but it can be
reviewed at https://puppet.com/docs/puppet/latest/modules_publishing.
html and used along with the pdk build and pdk release commands, as discussed in
the Writing and testing a module using the PDK section.

In terms of understanding how to filter for modules to use while looking at the screen shown in
Figure 8.4, which allows us to search for all the modules that are available in Puppet Forge, we have
various options:

https://voxpupuli.org/
https://puppet-champions.github.io/profiles.html
https://puppet-champions.github.io/profiles.html
https://puppet.com/docs/puppet/latest/modules_publishing.html
https://puppet.com/docs/puppet/latest/modules_publishing.html

Developing and Managing Modules196

Figure 8.4 – Puppet Forge search screen

The most immediate valuable filter is COMPATIBILITY, which reflects the content of the metadata.
json file for OS and Puppet version compatibility. The release date, latest release, and number of
downloads can be key measures to show if this is a commonly used module and if it is being kept up
to date.

Puppet implements an endorsement scheme that’s managed by the Content and Tooling Team (CAT)
with three different types: Partner, Approved, and Supported.

Approved modules pass specific criteria documented at https://forge.puppet.com/about/
approved/criteria, which ensure the modules meet usability and quality standards. This can
help you when you’re trying to choose a reliable module or allow your team to aim for a standard
and submit your modules via https://github.com/puppetlabs/puppet-approved-
modules.

Supported modules follow the same standards as approved modules but are fully supported by Puppet
or a Puppet-approved third-party vendor, allowing Puppet Enterprise customers to raise support cases
if issues are experienced. Note that only the latest version of the module is supported, and Puppet
Enterprise OS versions have limited windows of support beyond end-of-life dates. The full details can
be viewed at https://forge.puppet.com/about/supported.

https://forge.puppet.com/about/approved/criteria
https://forge.puppet.com/about/approved/criteria
https://github.com/puppetlabs/puppet-approved-modules
https://github.com/puppetlabs/puppet-approved-modules
https://forge.puppet.com/about/supported

Understanding Puppet Forge 197

The third type of partner is when support and testing are provided but not by Puppet. For this support
to be valid, a separate partner licensing scheme might be required.

As well as this endorsement approach, a score is put on each Puppet module. Since the mechanism
for scoring was last updated, the details haven’t been published in full and a breakdown of the scoring
is not visible, but the module quality score is based on code style checks, compatibility tests, and
metadata validation. This score gives you an idea of the module’s overall adherence to Puppet code
standards upon running anubis-docker to evaluate https://github.com/puppetlabs/
anubis-docker.

Malware scanning was introduced in 2021 using VirtusTotal. A visible pass or failure of the module
is visible on the description page; details are available via the quality checks tab. This is not intended
as a replacement for internal malware-scanning processes but provides an extra level of protection.
At the time of writing, this can only be on puppetlabs user modules, but this will be extended to
Approved, Partner, and all future module releases at a later date.

Modules can be deprecated as new implementations come out or simply because the use case is no
longer valid and won’t be supported. These modules will be hidden by default but can be made visible
by selecting the show deprecated option.

Premium modules were recently added with the release of the Puppet Comply product but they
currently only apply to cem_windows and cem_linux modules, which can only be used upon
purchasing Puppet Comply.

One area that had previously been neglected in Puppet due to its historic development focus on Linux
is the Windows platform. Puppet Forge has a collection page (https://forge.puppet.com/
collections/windows) that highlights modules designed for Windows, such as the Chocolatey
package provider: https://forge.puppet.com/modules/puppetlabs/chocolatey.
Another major development has been the auto-generation of PowerShell Desired State Configuration
(DSC) Puppet modules. This automation looks at all the DSC content on PowerShell Gallery at https://
www.powershellgallery.com/ and wraps up the PowerShell code so that by including the Puppet
module version of the DSC, you can download and install the code and then configure it using Puppet.
These modules can be found under the DSC user at https://forge.puppet.com/modules/
dsc; each module provides a reference to the available resource types that can be called. The modules
include simple single actions such as xInternetExplorerHomePage for setting the home page for
Internet Explorer and modules such as xActiveDirectory, which is used to deploy and configure
Active Directory. xInternetExplorerHomePage is simple and has a single resource type called
dsc_xinternetexplorerhomepage that can be used to set the default home page, like so:

dsc_xinternetexplorerhomepage { 'set home page':
  dsc_startpage => 'https://www.packtpub.com'
}

xActiveDirectory has various resource types to configure and deploy different aspects of
Active Directory.

https://github.com/puppetlabs/anubis-docker
https://github.com/puppetlabs/anubis-docker
https://forge.puppet.com/collections/windows
https://forge.puppet.com/collections/windows
https://forge.puppet.com/modules/puppetlabs/chocolatey
https://www.powershellgallery.com/
https://www.powershellgallery.com/
https://forge.puppet.com/modules/dsc
https://forge.puppet.com/modules/dsc

Developing and Managing Modules198

This has limitations since it is a fully automatic conversion and Puppet has no ownership of the DSC
code. This makes testing limited and dependent on the quality of the code and documentation provided
by the DSC code owner. You may also find some modules are deprecated in the PowerShell Gallery,
so it is worth checking this. Also, note that due to a bug in minitar, only the Puppet Enterprise
code manager can correctly unpack these modules from Puppet Forge directly. For open source users,
refer to the module documentation instructions, which explain how to download the module from
a web link to Puppet Forge and unpack the archive manually, ensuring that the module is installed
and the DSC code is unpacked fully.

There are some further blogs and tools to be aware of, which are beyond the scope of this book
but would be worth investigating for further information. To keep up to date with Puppet Forge
and Puppet-managed modules, the CAT team runs a blog https://puppetlabs.github.
io/content-and-tooling-team/. Puppet Forge also has an API, available at https://
forgeapi.puppet.com/, that allows more programmatic queries to be run, and the denmark
module, developed by Ben Ford, provides additional scans and checks to assist with reviewing
modules: https://github.com/binford2k/denmark.

Lab – creating a module and testing it
In this lab, you will use the knowledge you’ve gained about module structure, the PDK, and testing to
create and test a Grafana module. Then, using what you learned about Puppet Forge, you will explore
the Forge site to choose modules:

•	 Using either the code you wrote for Chapter 4 for the combined Grafana, Windows, and Linux
class or the example answer at https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/blob/main/ch04/all_grafana_data_types.
pp, create a new module called packt_grafana, with this Puppet code broken up into
appropriate classes following the init, service, config, and install pattern (for this
number of resources, a single class in the real world would be more appropriate, but this is
just for practice). I recommend creating classes with pdk new class. Follow https://
puppet.com/docs/puppet/latest/puppet_strings_style.html to ensure
classes are fully documented and pass tests.

•	 Expand the default tests provided by the PDK and design the contexts to be covered while
considering the parameters that could be passed and the OS choices available. Use the https://
github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/
main/ch08/.sync.yml file in the module, which will include the gem file for puppet-
catalog_rspec, and run pdk update. To generate some of the RSpec resources
automatically, you can add it { dump_catalog } to each class spec file (you will need to
define some parameters for this to work) and remove the line once you have got the output.
Add a coverage test at 100% and ensure your tests achieve this.

https://puppetlabs.github.io/content-and-tooling-team/
https://puppetlabs.github.io/content-and-tooling-team/
https://forgeapi.puppet.com/
https://forgeapi.puppet.com/
https://github.com/binford2k/denmark
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/all_grafana_data_types.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/all_grafana_data_types.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch04/all_grafana_data_types.pp
https://puppet.com/docs/puppet/latest/puppet_strings_style.html
https://puppet.com/docs/puppet/latest/puppet_strings_style.html
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch08/.sync.yml
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch08/.sync.yml
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch08/.sync.yml

Summary 199

•	 Using pdk validate and pdk test unit, correct the errors that can be found in the
module, as shown here: https://github.com/PacktPublishing/Puppet-8-
for-DevOps-Engineers/tree/main/ch08/mistakemodule.

•	 Go to Puppet Forge and decide which module you wish to use for the following tasks:

	� Configuring SSH on Ubuntu

	� Installing and configuring IIS

	� Configuring the time zone using DSC on a Windows machine (hint: It’s not xtimezone;
refer to https://www.powershellgallery.com/)

	� Install and configure Logstash

See suggested answers at https://github.com/PacktPublishing/Puppet-8-
for-DevOps-Engineers/blob/main/ch08/module_choice.txt

Summary
In this chapter, you learned how modules allow you to group code and data, making it easier to share
and reuse code. We discussed that modules should focus on a clear single-use responsibility. We
examined the directory structure of a module and highlighted where specific Puppet code and data
were stored. A good starter manifest structure was shown, highlighting the main manifest (init.
pp) that’s used as an entry point, with parameters acting like public APIs to allow the module to be
flexible and include the other classes required. We also saw that the install.pp, config.pp,
and service.pp classes focused on installation, configuration, and services, respectively. In the
case that the application becomes more complex than this, we discussed how a module can use classes
and directories for different components.

Next, we looked at the PDK as a way to automate how modules are created and group common
tooling to help us manage and test Puppet modules. We created a Ruby environment and installed
the communities’ most used development tools with configuration files in the module directory. The
default template for producing modules was examined, as well as how to customize this by forking
on sync.yaml.

After, we looked at the life cycle of development when using various PDK commands to create or convert
a module, as well as adding different Puppet types such as classes or defined types, which create unit
tests. We looked at the pdk validate command as a way to perform linting and syntax validation,
as well as to autocorrect where possible with the -a flag. The templates created basic RSpec tests to
check the compilation of catalogs. The PDK build and release commands were also mentioned
as ways to bundle the PDK for Puppet Forge or to bundle and upload it as one command – release.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch08/mistakemodule
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch08/mistakemodule
https://www.powershellgallery.com/
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch08/module_choice.txt
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch08/module_choice.txt

Developing and Managing Modules200

Next, you learned how to expand RSpec using describe and context to structure the test cases
and expectations and matchers for defining individual tests. You learned that preconditions can be set
via let statements, allowing dependencies for the class to be created in the test. You also learned how
relationships can be defined by chaining the relevant function. You saw how let statements can be
used to define facts, node data, trusted facts, and trusted external facts in data and that by using the
default_module_facts.yaml and spec_helper_local files, defaults can be set for the
module. After this, we covered Hiera, detailing how the configuration file can be set in a spec or via
spec_helper and how lookups can be performed. For external dependencies, the fixtures.yml
file was shown to be able to bring in module dependencies from Puppet Forge or local repositories to
allow for catalog compilation. Coverage reporting was then added to the local spec helper, allowing
unit tests to show what resources were not covered by tests and to put a pass percentage on the test.
Then, we looked at some further RSpec tooling and sources, which allow you to generate RSpec
code and some checks that are beyond the scope of this book. ServerSpec was then highlighted as a
server-level testing framework that uses RSpec. It’s independent of Puppet and beyond the scope of
this book, but it’s worth investing in and, ideally, adding to a pipeline.

Having shown you how to develop and structure your modules, you learned how to source modules
from Puppet Forge, understand the different types of module support and endorsement available from
Puppet, how scoring and scanning took place on modules, and ways to understand who contributors
were and their place in the Puppet community. The Windows collection of modules was mentioned,
as well as the PowerShell DSC collection, which provides automated wraparounds for modules in the
PowerShell Gallery, allowing the content to be downloaded and used within Puppet code. The CAT
team was mentioned as maintainers of Puppet Forge that support content with their blog publishing
updates. The Denmark module was then highlighted as an additional way to score modules.

In the next chapter, you will learn how Puppet handles data and be introduced to Hiera and explore
how it layers data into different scopes. We will discuss when best to use Puppet code, variables, and
Hiera to store data and how to structure and feed this data to module parameters. We will also cover
the correct ways to store data security at rest and in transport, as well as some common issues with
using data in Puppet and how to approach them.

9
Handling Data with Puppet

This chapter will focus on how to handle data using Puppet. It will look at Hiera, Puppet’s key-value data
lookup tool, and how it ensures that Puppet’s reusable code is made more configurable without burdening
it with excessive logic and variables. The basic structure of Hiera will be reviewed, showing how it stores
data in hierarchies that provide a rules-based key lookup without a lot of fuss and how it can look up keys
in this data to return values using different backends, which are implementations such as YAML files of
data or API calls to applications. The use of automatic parameter lookup will be discussed showing how
this allows the parameterized profiles to receive data automatically and how the lookup function can be
used in Puppet code directly to call data. We will briefly discuss the changes between Hiera 3 and Hiera 5
in terms of legacy Puppet. Then, the three Hiera layers will be reviewed in detail (the global, environment,
and module layers), discussing how hierarchies and data should be managed in these different layers. The
options available for lookup merging and priority behavior will be shown to highlight how data can either
be found on the first match or by combining or merging different values found. We will then discuss when
and where data should be used depending on the use case and best practice, and where the code should
be kept in terms of directly in a control repo or in its own Hiera data repo. The security of data will then
be discussed showing how data can be kept secure with different methods in storage, in transport, and
while being used in Puppet code, highlighting the effects and limitations of using the Sensitive type,
the node_encrypt module, and encryption of files via eyaml. Finally, some common issues and
troubleshooting approaches/tools will be reviewed, showing how the lookup command can be optimally
used to debug and explain values, and showing why we should never use global variables in hierarchies, how
to avoid defaults, the dangers of using Hiera for classification, and how the Hiera Data Manager (HDM)
can act as a tool to make your data more accessible.

In this chapter, we’re going to cover the following main topics:

•	 What is Hiera?

•	 Hiera levels

•	 Deciding when to use static code or dynamic data

•	 Keeping data secure

•	 Pitfalls, gotchas, and issues

Handling Data with Puppet202

Technical requirements
Clone the control repo from https://github.com/puppetlabs/control-repo to your
GitHub account as controlrepo-chapter9 and update the following in this repo on the
production branch:

•	 Puppetfile with https://github.com/PacktPublishing/Puppet-8-for-
DevOps-Engineers/blob/main/ch09/Puppetfile

•	 Manifests/site.pp with https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/blob/main/ch09/site.pp

•	 Create a branch from production called lab_error and replace the following:

	� data with https://github.com/PacktPublishing/Puppet-8-for-DevOps-
Engineers/blob/main/ch09/data

	� hiera.yaml with https://github.com/PacktPublishing/Puppet-8-
for-DevOps-Engineers/blob/main/ch09/hiera.yaml

Build a standard cluster with two Linux clients and two Windows clients by downloading the params.
json file from https://github.com/PacktPublishing/Puppet-8-for-DevOps-
Engineers/blob/main/ch09/params.json and updating it with the location of your
control repo and your SSH key from the control repo. Then, run the following command from your
pecdm directory:

bolt --verbose plan run pecdm::provision –params @params.json

Let us first find out what Hiera is and why it is used.

What is Hiera?
So far, we have discussed how using Puppet creates stateful and reusable code and how, by using the
roles and profiles method, parameters can be made available to make modules configurable. We also
showed how to use those parameters in code, but to create a scalable, readable, and site-specific data
source, Puppet uses a tool called Hiera. Without using Hiera data in Puppet code, it would require
endless logic and variables to represent data variations required for node exceptions, location differences,
OS version variations, organization differences, and many other circumstances.

Hiera is a data lookup tool that looks up values in files of JSON, HOCON, YAML, and EYAML,
the built-in backends, or using custom backends that can call external sources such as websites or
databases. It stores data in key-value pairs that can be looked up either explicitly via a function call in
code or automatically using the automatic parameter lookup, which matches parameter names from
classes to Hiera data values. As this name would suggest, Hiera is focused on using a hierarchy to
find data, and the lookups follow a common default with a hierarchy of data sources that override as
a more specific node match is found for the data. The hierarchies are configured in a hiera.yaml

https://github.com/puppetlabs/control-repo
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch09/Puppetfile

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch09/Puppetfile

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch09/site.pp

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch09/site.pp

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch09/data

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch09/data

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch09/hiera.yaml
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch09/hiera.yaml
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch09/params.json
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch09/params.json

What is Hiera? 203

file; this YAML file lists out the levels in order of priority. This hiera.yaml file sets the version of
Hiera to be used, which is required, although 5 is the only active version.

Using the built-in backends

For built-in backends in a hierarchy map, there will be a list of hierarchies, each of which will have
the following:

•	 name – A readable label describing the level

•	 datadir – The base path relative to hiera.yaml where all data is stored

•	 data_hash – The Hiera backend/file type to use

•	 Either path, paths, glob, globs, or mapped_paths – The file path or paths to the
data relative to datadir

A default map can also be created with these keys so that values don’t need to be needlessly repeated
in each layer of the hierarchy.

The data_hash lookup function key accepts yaml_data, json_data, and hocon_data
as values but most Puppet implementations just use YAML data, so this book will default to the
yaml_data backend.

The file path allows a hierarchy level to state a specific location for the data file of that hierarchy using
variables interpolated in the code associated with the node, such as global variables associated with
the External Node Classifier (ENC), discussed in Chapter 11, or facts and trusted facts. In YAML, the
format is to use a percentage sign and a variable name within curly braces, %{<variable_name}, and
to call a fact, the facts array is accessed using dots (.). So, %{facts.application_owner}
would access the application_owner fact. Further dots can be used to access structured facts,
such as %{facts.os.family} to access the family value within the os fact. Trusted facts
similarly are accessed from the trusted array, such as %{trusted.certname}, and trusted
external facts can be accessed using %{trusted.external.pds.data}.

So, a simple hierarchy could be created in the hiera.yaml file with the following piece of code:

version: 5
defaults:
  datadir: data
  data_hash: yaml_data
hierarchy:
  - name: "Node data"
    path: "nodes/%{trusted.certname}.yaml"
  - name: "Location"
    path: "location/%{fact.data_center}.yaml"

Handling Data with Puppet204

  - name: "Common data"
    path: "common.yaml"

This hierarchy would mean that a host with the certname trusted fact of examplehost and a
data_center fact of enterprisedc1 would first look in data/nodes/examplehost.
yaml, then in data/location/enterprisedc1.yaml, and lastly, in the /data/common.
yaml common file.

It is also possible to combine multiple variable interpolations together on a path, such as updating the
location layer to differentiate on another fact – for example, assuming a brand fact existed and different
brands within the organization would have variation for a data center, path: "location/%{facts.
brand}-%{fact.data_center}.yaml".

So, if examplehost had the brand fact set to retail, it would look in data/location/
retail-enterprisedc1.yaml.

In these lookups, if it doesn’t find a matching file for its level, it will return nothing and go to the
next level. Using the paths path file variable instead would allow simplification. Since the only real
difference between the hierarchy levels is the path, it could instead be declared with a single hierarchy
and paths with an array of paths. For example, the hierarchy from the previous example could be
reduced to one layer with paths:

 hierarchy:
  - name: "YAML layers"
    paths:
    - "nodes/%{trusted.certname}.yaml"
    - "location/%{fact.data_center}.yaml"
    - "common.yaml"

If additional Hiera layers were required for a different backend, it would need to be understood that
any hierarchy would have all its paths examined in order before moving on to the next hierarchy,
which may prevent this simplification to maintain the correct order of hierarchy.

In this section, we will cover globs, only because they can be found in code bases, but they should not
be used, as they make the data structure a lot more complicated than any environment truly needs.

The file path can use glob or globs to pass Ruby’s style Dir.glob method. The full documentation
of this can be viewed at https://www.puppet.com/docs/puppet/latest/hiera_
config_yaml_5.html#specifying_file_paths. This allows the use of the following:

•	 An asterisk (*) as a wildcard

•	 Two asterisks (**) to match recursively through directories

•	 A question mark (?) to match any one character

https://www.puppet.com/docs/puppet/latest/hiera_config_yaml_5.html#specifying_file_paths
https://www.puppet.com/docs/puppet/latest/hiera_config_yaml_5.html#specifying_file_paths

What is Hiera? 205

•	 A comma-separated list within curly braces ({this,that,or,not}) for a literal match
with any option in the list

•	 Sets of characters within square brackets ([xyz]) to match any one character in the given set

•	 A backslash (\) to escape special characters

For example, take the facts.os.windows fact and then match either from display_id (which
was introduced in later versions of Windows 2019) or from release_id (which was introduced in
Windows 2016 and deprecated in Windows 2019). This combination allows a consistent Hiera layer
for a source that has changed repeatedly and needs a combination of facts to find different versions:

- name: "Windows Release"
  glob: "windows_release/{%{facts.windows.display_id},%{facts.windows.
release_id}}"

To create a layer containing network information for the network on the primary interface or the
network domain, the following code could be created, which would search through any directory
structure in the network folder to match:

- name: "Domain or Network"
    glob: "network/**/{%{facts.networking.domain},%{facts.networking.
interfaces.ethernet.bindings.0.network}}.yaml"

If multiple matches are found, the files will be searched in alphanumerical order. Also, multiple strings
can be used in the search using globs: and passing an array of strings in a similar fashion to paths.

The final file path option is mapped_paths. This option works by providing a variable containing
a collection of strings, a variable name (which maps each element of the collection of strings), and a
template. For example, if a fact called $oracle_sids contained the ['ora1','ora2','ora3']
array, the following hierarchy would perform lookups in the /oracle_dbs/ora1.yaml, /
oracle_dbs/ora2.yaml, and /oracle_dbs/ora3.yaml files:

- name: "Oracle sids"
    mapped_paths: [oracle_sid, sid, "oracle_dbs/%{sid}.yaml"]

Although we have taken some time to cover globs, it’s important to reiterate that this should only be
used to understand pre-existing complex data structures in code and for you to try and refactor and
simplify. This should not be used in new code bases.

Having discussed the hierarchy in detail, it’s now time to shift focus to the data used and how to call
the lookups to the hierarchy. As was mentioned in the Using the built-in backends section, YAML is
the most commonly used built-in data type and will be used in all examples, but the difference will
only be in the presentation of the language rather than the actual structures used.

Handling Data with Puppet206

In the YAML data files, we create key-value pairs and keys with lists of values. The keys can just be single
values but, more commonly, will be structured with the format <module_name>::<paramater_
name>, where module_name can contain multiple segments reflecting a certain class namespace
within the module.

To give an example of this, for the exampleapp profile module, a data file could contain the
settings for the enable_service parameter to be true, it could contain an array of options of
[opt1,opt2,opt3], and for a user’s parameter, it could contain a hash of each user’s settings
to be created for exampleuser and anotheruser. This would look like this:

profile::exampleapp::enable_service: true
profile::exampleapp::options:
  - opt1
  - opt2
  - opt3
profile::exampleapp::users:
  exampleuser:
    uid: 101
    home: /app/exampleapp
    gig: 102
  anotheruser:
    uid: 201

Accessing data

The next point would be how this hierarchy and data is accessed in Puppet code and, as was mentioned
at the beginning of this chapter, there are two ways Puppet looks up data in code: via the automatic
class parameter lookup or via the Puppet lookup function. The recommended model involves driving
virtually all data required via automatic parameter lookups to profile classes using the Role and Profile
model (discussed in Chapter 8) and the Forge.

The automatic class parameter lookup works by taking any parameters of a class that has been included/
declared as a resource and, first, checking whether the parameter has been set by the declaration, and
if not, performing a Hiera lookup on each parameter of the <module_name>::< parameter_
name> form. It is important to note that this is not a namespaced key itself in Hiera; it is just a string
name and values can’t be inserted into the data structure. In the case of using profiles and having a
set profile module and an Oracle profile, this could look like profile::oracle::version.
To set data for this, we might have a specific version for a server1.example.com node in a
data/nodes/server1.example.com.yaml file, such as setting the version parameter for
profile::oracle to Oracle 21c with the following line:

profile::oracle::version: 21c

What is Hiera? 207

If this lookup had failed, it would look to see whether any default value was set in the parameter in
the class manifest, before then assigning it as undef.

The data found in Hiera by default will return as a string or an array of strings; we will show later
how this can be converted.

Note
The automatic class parameter lookups do not work for defined resource types, only classes. To
mimic the functionality, you can use an explicit lookup() call in your code.

The other mechanism in Puppet code is the lookup function. It is more direct and can be used
within Puppet code; it is called with a key, which can be multiple segments, each separated by two
colons (::), or it can be simple global values. The colons are used here simply for convention and do
not drill down into a data structure. To look up the same Oracle parameter, the following example
would assign it to an oracle_version variable:

$oracle_version=lookup(profile::oracle::version)

If the data is an array, it is possible to access a specific key using dot notation:

$exampleuser_id=lookup(profile::exampleapp::users.exampleuser.id)

It is possible to provide a default value if no value is returned by using the arguments in the function or
an options hash (the full options can be viewed in the documentation at https://www.puppet.
com/docs/puppet/latest/hiera_automatic.html#puppet_lookup-arguments)
and providing a value to return – for example, to return the no id found string if the lookup in
the previous example had returned no value, the following could be used:

exampleuser_id=lookup(profile::exampleapp::users.exampleuser.id,
{default_value => 'no id found'})

This will be discussed in more detail in the Pitfalls, gotchas, and issues section, but providing defaults
is considered poor practice, as it hides failures and may make people assume a value has in fact been
found and things are functioning correctly. It will also be noticed that the second and third arguments
are marked as undef; these are for data type and the merge strategy, which will be discussed next.

Note
The lookup function replaces the legacy hiera_<data_type> and hiera functions
that existed with Hiera 3. As these functions are deprecated, they should not be used as they
can produce inconsistent results.

https://www.puppet.com/docs/puppet/latest/hiera_automatic.html#puppet_lookup-arguments
https://www.puppet.com/docs/puppet/latest/hiera_automatic.html#puppet_lookup-arguments

Handling Data with Puppet208

What has been discussed so far is the simplest case, where we expect to simply look up a value and
find the first match. This is Hiera’s default behavior and allows you to override values to varying
degrees of specificity. Sometimes, though, you might want to return some combination of all the
values present in all the layers of the hierarchy. Lookup options can be set in the data files to describe
how this should happen.

The lookup_options reserved key allows for different merge behaviors to be set on lookups that
are set against either a particular key or against a regular expression following this format:

lookup_options:
  <key name or regular expression>:
  merge: <MERGE OPTION>

The most common approach is to put this behavior in the common.yaml file, but if, say, a node
override or some priority override may be more important, it can make sense to then put it into
different levels of the hierarchy.

There are four merge behaviors that can be set with the data files:

•	 first – Return the first match in the hierarchy order

•	 unique – Return an array of all matching unique values in the hierarchy

•	 hash – Return a hash of shallow merged hash keys using the highest hierarchy key match

•	 deep – Return a hash of deep merged hash keys using the highest hierarchy key match

Hiera’s default behavior, first, will look for the first value to match in hierarchy order. Assuming
there is no other lookup_option value declared for the key, there is no need to implicitly declare
it. But if, for example, common.yaml was set to unique and, for our node exception, we wanted
to set only the values we had declared for profile:oracle::limits, we could set the following
in our node’s YAML data file:

lookup_options:
  profile::oracle::limits:
    merge: first

The unique keyword will find all matching keys and return a merged and flattened array. So, for
example, if we wanted to install all requested Oracle versions in a profile, we could set the following:

lookup_options:
  profile::oracle::versions
    merge: unique

What is Hiera? 209

If the 11 value was found at the node level, 12 at the organizational level, and 11,13 found at the
common hierarchy level, the returned value would be an array of [11,12,13].

The hash keyword will merge hashes from all matching levels by merging the top-level keys of the
hashes together. This essentially performs a shallow hash merge, which means that top-level keys are
merged but the merge will not recursively descend and merge data structures nested underneath. This
will keep the order in which the keys are written as matched from the lowest priority data source but
will take the values from the highest priority source. It’s easiest to think of this as it is adding the keys
to a hash as it steps from highest to lowest levels. It will override and append values as it does so but
it won’t recursively merge the values in the keys. For example, imagine a lookup was performed on
profile::oracle::limits and at the lowest level, common.yaml existed and contained
the following:

lookup_options:
  profile::oracle::limits
    merge: hash
profile::oracle::limits:
  '*/nofile':
    soft: 2048
    hard: 8192
  'oracle/nofile':
    soft: 65536
    hard: 65536
  'oracle/nproc':
    soft: 2048
    hard: 16384
  'oracle/stack':
    soft: 10240
    hard: 32768

Then imagine that /node/examplenode.server.com.yaml had a higher priority due to
the following hiera.yaml section:

hierarchy:
  - name: "Per-node data"
    path: "nodes/%{trusted.certname}.yaml"
  - name: "Common data"
    path: "common.yaml"

Handling Data with Puppet210

And /node/examplenode.server.com.yaml contained the following:

profile::oracle::limits:
  'oracle/nproc':
    soft: 4096
    hard: 16384
  'oracle/memlock':
    soft:  3145728
    hard:  4194304
  'oracle/stack':
    hard: 65536

The hash lookup on profile::oracle::limits would return the following:

profile::oracle::limits:
  '*/nofile':
    soft: 2048
    hard: 8192
  'oracle/nofile':
    soft: 65536
    hard: 65536
  'oracle/nproc':
    soft: 4096
    hard: 16384
  'oracle/stack':
    hard: 65536
  'oracle/memlock':
    soft:  3145728
    hard:  4194304

Note that, in this case, the profile::oracle::limits.oracle/stack key was taken from
the highest priority so only the hard value was seen, and no recursive merge was performed. This
shortcut syntax with a dot (.) can be used to access an element in hash or array, where, in the case
of an array, the index number is used.

A deep merge combines any number of hashes or arrays but is able to merge values inside the hash or
array recursively. This means that hash values are merged with another deep merge and arrays are
not flattened and can contain nested arrays. If the previous example lookup options were configured as
deep_merge, then the lookup would return both hard and soft limits for the oracle/stack key.

What is Hiera? 211

Note
Merging more than three nested levels of nesting in a hash will have a serious performance
impact on Hiera and should be avoided.

There are also options that can be assigned to affect the merging of arrays. For instance, sort_
merged_arrays will result in the merged array being sorted by key rather than the default behavior,
where the array is ordered from lowest priority to highest, and merge_hash_arrays, where hashes
within arrays will be deep merged if set to true. One final option allows deep merges to have a
knockout_prefix key, whereby a key containing a value, normally as double dashes (--), is
used as a prefix before the value and will cause a value to be removed instead of added.

For example, if the model given in Chapter 8 for using flexible classes is implemented, using a deep
merge and a knockout prefix would allow classes to be added or removed at each hierarchy level:

lookup_options:
 profile::base::extra_classes:
   merge:
     strategy: deep
     knockout_prefix: --
     sort_merged_arrays: true

Some example data could be for node/example.server.com.yaml, where the highest level
of the hierarchy, node, contained the following code:

profile::base::extra_classes:
  - pci::dss
  - email

In contrast, datacenter/europe.dc.1.yaml, a lower hierarchy, contained the following:

profile::base::extra_classes:
  - email
  - gdpr

This would result in a lookup on profile::base::extra_classes containing gdpr and
pci::dss, in that order, but not email.

Handling Data with Puppet212

So far, the examples have used the most common place to set lookup_options in common.yaml.
But lookup_options performs a hash merge, which will take the highest order of each key found.
So let’s say, for example, that /data/common.yaml, the lowest level, contained the following code:

lookup_options:
  profile::base::extra_classes:
    merge:
      strategy: deep
      knockout_prefix: --
      sort_merged_arrays: true

And /data/example.server.com.yaml, at a higher level, contained the following:

lookup_options:
  profile::base::extra_classes:
    merge: first:

Then a lookup that matched the profile::base::extra_classes key in /data/example.
server.com.yaml would use the first match lookup and not a deep merge.

Another lookup option is to use regex and the convert_to option, which converts values to
something other than a string. One particularly useful example of this is when using values we wish
to keep sensitive, we could simply add a regex string in the common level of the hierarchy, which
would match all keys beginning with profile and a final key name that ended with password
and ensure that the parameter was converted to Sensitive:

lookup_options:
  '^profile::.+::\w+_password$':

In the Keeping data secure section, there will be more discussion on securing data.

While it is possible to essentially override the lookup settings set in the data file in the lookup function
itself, we would strongly recommend against this as it could be confusing to have the data saying one
thing and the lookup function behaving otherwise. It could lead to changes in the data that have
unexpected consequences for the lookup function. If it is required, the syntax can be found in the
documentation at https://www.puppet.com/docs/puppet/8/hiera_automatic.
html#puppet_lookup.

Interpolation is also available in Hiera data via both variables and functions. While this can be useful
to avoid the repetition of data, it can also make the data vastly more complicated than we would want
it to be, and in general, we would advise against it.

https://www.puppet.com/docs/puppet/8/hiera_automatic.html#puppet_lookup
https://www.puppet.com/docs/puppet/8/hiera_automatic.html#puppet_lookup

What is Hiera? 213

As with hierarchies using facts, trusted and server_facts can provide consistent variables,
and the variables are interpolated in the same way, so a simple example would be to set a config
file that uses the hostname as follows:

tivoli_config_file: '/opt/app/tivoli/client/%{trusted.hostname}.conf'

Hiera provides a limited number of special interpolation functions. They are not the same as Puppet
functions. The following functions can be used to interpolate Hiera data:

•	 lookup (or hiera)

•	 alias

•	 literal

•	 scope

Using the same format as variables, a function can be declared as ${<function>(<arguments>)}.

The lookup function allows a Hiera value to be looked up from within the data. This can be useful
to prevent data having to be repeatedly entered and reduce maintenance since, if the data changed, it
would only need to be changed in one place. For example, something like a repository server could
vary depending on the client’s location or be used repeatedly to provide the full location of packages.
The following example shows how two binaries could provide their full paths using a lookup and
reduce repetition:

profile::base::artifactoryserver: artifactory.example.com
profile::exampleapp1::binary:  %{lookup
(profile::base::artifactoryserver)}/exampleapp1.rpm
profile::anotherapp::binary:  %{lookup
(profile::base::artifactoryserver)}/anotherapp.rpm

This would also make maintenance much simpler; if the artifactory server was to change, only one
line would need to be updated.

The alias function allows for data structures in Hiera data to be returned since lookup would
only return a string. So, if the base profile had an extensions parameter that took an array of
strings and we wanted to pass the same list of extensions to another profile, exampleapp, it would
be coded like this:

profile::base::extensions:
  -  'option1'
  -  'option2'
  -  'option3'

profile::exampleapp::extensions: "%{alias(profile::base::extensions)}"

Handling Data with Puppet214

The literal function allows the escaping of the percentage sign (%) so that it does not assume it
is for a variable or function to be interpolated. To do this, we use the %{literal('%')} function
where a % sign is to be used. This can be useful in scenarios such as Apache configuration files or
for Windows environmental variables; if, for example, we wanted to have the %PACKAGEHOME%/
External string at profile::nuget::, then the following code could be used:

profile::nuget::
: %{literal('%')}{PACKAGEHOME} %{literal('%')}

The scope function is likely only to be used in legacy code. It really just interpolates variables
and only had a use case when Puppet variables were dynamically scoped. The same Tivoli example
in this section would be written as tivoli_config_file: '/opt/app/tivoli/
client/%{scope(facts.hostname)}.conf'.

Using custom backends

In addition to the built-in backends described so far, custom backends can be written or downloaded
from the Forge and configured into Hiera. It is beyond the scope of this book to write custom backends
but Puppet’s documentation covers how to write them at https://www.puppet.com/docs/
puppet/8/hiera_custom_backends.html#custom_backends_overview.

Custom backends use one of three data types, selected based on their performance requirements for
the type of data being accessed.

The data_hash backend type, as was seen for the built-in backend, is used for data sources that
are cheap to read, such as files on a disk. This profile is used where the data is small, static, can be read
all at once, and most of it gets used. It returns a hash of key-value pairs.

The lookup_key type is used for data sources that are expensive to read, such as secure HTTP
API connections. This profile is used where the data is big, only part is used, and it can change during
compilation. It returns a key pair. The most commonly used custom backend is hiera-eyaml for
encrypting Hiera, which will be covered in detail in the Keeping data secure section.

The data_dig backend type is used for data sources that access arbitrary elements of a collection,
such as a database. With a similar profile to lookup_key but accessing subkeys of elements to
return a key pair, the function will dig into a dotted key.

A final data type to mention is hiera3_backend, which was only relevant as a stepover from legacy
Puppet setups; this book will not cover this configuration, but details can be found in the Puppet
documentation at https://www.puppet.com/docs/puppet/8/hiera_config_yaml_5.
html. The Puppet documentation advises how to migrate from Hiera 3 backends if you encounter them
in legacy code at https://www.puppet.com/docs/puppet/8/hiera_migrate.html.

https://www.puppet.com/docs/puppet/8/hiera_custom_backends.html#custom_backends_overview
https://www.puppet.com/docs/puppet/8/hiera_custom_backends.html#custom_backends_overview
https://www.puppet.com/docs/puppet/8/hiera_config_yaml_5.html
https://www.puppet.com/docs/puppet/8/hiera_config_yaml_5.html
https://www.puppet.com/docs/puppet/8/hiera_migrate.html

What is Hiera? 215

Note
From a user perspective, Hiera version 5 is an evolution of Hiera 3, with Hiera 4 as an experimental
version, but Hiera 5 was fully implemented in Puppet itself while Hiera 3 was its own standing
implementation. Puppet 7 and below has a dependency on a Ruby gem for Hiera version 3 to
support any legacy Hiera 3 backends where Hiera:Backend was extended. This dependency
was removed in Puppet 8.

These data types can then be combined with the file paths, as already discussed with the built-in
backends, but with the additional paths of uri and uris to allow the direction to URIs such as
web sources.

The options parameter then allows a hash of anything required by the custom backend, such as
credentials or key information, and the content will depend on the implementation.

Most modules will explain in their README file how to use the options parameter. For example,
https://forge.puppet.com/modules/petems/hiera_vault/ is a Hiera backend for
HashiCorp’s Vault; building on their example, the following code shows an example assuming that
the keys would all start with secret_, come from a vault.example.com server, and have
mounts for two teams (digital and trade), which used the node name, location, and common
for their secret hierarchy:

hierarchy:
  - name: "Vault secrets"
    lookup_key: hiera_vault
    options:
      confine_to_keys:
        - "^secret_.*"
      ssl_verify: false
      address: https://vault.example.com:8200
      token: notreallyatoken>
      default_field: value
      mounts:
        digital:
          - %{::trusted.certname}
          - %{::trusted.extensions.pp_region}
          - common
        trade:
          - %{::trusted.certname}
          - %{::trusted.extensions.pp_region}
          - common

https://forge.puppet.com/modules/petems/hiera_vault/

Handling Data with Puppet216

Another example is https://forge.puppet.com/modules/tragiccode/azure_
key_vault/, allowing access to secrets in Azure, which, if we were to create a lookup based on the
department assigned to the server looking for keys starting with secret, would look like the following:

- name: 'Department Azure secrets'
    lookup_key: azure_key_vault::lookup
    options:
      vault_name: "%{trusted.extensions.pp_department}"
      vault_api_version: '2023-02-04'
      metadata_api_version: '2023-02-11'
      key_replacement_token: '-'
      confine_to_keys:
        - '^secret_.*'

In Chapter 13, the Puppet Data Service (PDS) will be examined, along with a series of backends
useful for extending Puppet’s data access.

Now that we have reviewed how Hiera works, let us look at how it works in the different layers of Puppet.

Hiera layers
Hiera has been discussed just in the context of the levels in a single hierarchy but there are three layers
of hierarchy, each of which contains its own configuration of levels. When a lookup is performed
by Puppet as part of a Puppet run, it will look through each of these layers, examining the levels of
hierarchy within each.

The global layer is the first layer and is configured by default in $confdir/hiera.yaml, usually
/etc/puppetlabs/puppet/hiera.yaml. Hiera version 3 only works at this layer, and its
existence is more just a leftover for compatibility purposes. Puppet’s documentation suggests its only
purpose should be for Hiera 3 compatibility and acting as a global override, but we would advise you
to not use it at all since it exists outside of the code deployment and control processes, which will
be reviewed in Chapter 11. This would leave control of the file localized to the Puppet server, which
would only be desirable if you wanted to step around the code deployment process.

The environment layer is the next and main layer of data, and it is configured inside each environment
usually at a path such as /etc/puppetlabs/code/production/hiera.yaml. Environments
and control repos will be discussed in complete detail in Chapter 11, but to understand the context
here, an environment is a set of Puppet modules and manifests at fixed versions for a specific group of
Puppet nodes, and a control repo is a module structure used to manage the environments, containing
a file called a Puppetfile detailing the sources of the modules, at which version they should be deployed,
and where they should be deployed.

https://forge.puppet.com/modules/tragiccode/azure_key_vault/
https://forge.puppet.com/modules/tragiccode/azure_key_vault/

Hiera layers 217

A choice needs to be made as to whether the hiera.yaml file and data will be contained in the
control repo together, or whether to have a separate control repo and modules containing Hiera data.
This is configured by the control repo deploying the modules typically into a data directory in the
environment and ensuring that Hiera uses that data path in its hiera.yaml file. This separation
can make sense when the control of a set of data needs to be managed by a certain team or group
and containing it within the control repo would allow too much access/visibility. For example, if our
hiera.yaml file was configured to use data as a source path, we could add Hiera data from a
module into that path with an entry into a Puppetfile:

mod 'exampleorg_hieradata',
  :git    => 'https://<your_git_server>/exampleorg/hieradata.git',
  :install_path => 'data'

The final layer is the module layer, and this is configured by a hiera.yaml file inside each module,
typically with a data folder in the module too. So, when deployed in an environment on a server, the
hiera.yaml file would be in a location such as /etc/puppetlabs/code/environments/
production/modules/example_module/hiera.yaml. The best use for the module layer
is to set defaults for the parameters of all classes in the modules, being careful to keep them relevant to
the focus of the module, and not external organizational data, which would be better placed into the
environment layer. An example of setting defaults can be seen in the puppetlabs/ntp module,
available at https://github.com/puppetlabs/puppetlabs-ntp, which sets defaults
based on the OS version. The hiera.yaml file could also be configured to allow for increasing
granularity of specific OS versions, going from defaults and a general OS family such as Windows to
a specific full OS version, such as AlmaLinux-8.5, as shown in the following code:

hierarchy:
  - name: 'Full Version'
    path: '%{facts.os.name}-%{facts.os.release.full}.yaml'
  - name: 'Major Version'
    path: '%{facts.os.name}-%{facts.os.release.major}.yaml'
  - name: 'Distribution Name'
    path: '%{facts.os.name}.yaml'
  - name: 'Operating System Family'
    path: '%{facts.os.family}-family.yaml'
  - name: 'common'
    path: 'common.yaml

https://github.com/puppetlabs/puppetlabs-ntp

Handling Data with Puppet218

Note
The module layer is often seen as an alternative to the params.pp class, which used to be
part of the module pattern and contained default values and Hiera lookup calls. It was used
before the modern Hiera layers existed with automatic parameter lookups.

You can only bind data keys in the module’s namespace, so in the exampleapp module, only
exampleapp::key values could be set, not a global key such as key1 or another module such
as anotherapp::key. This can lead to another pattern option particularly useful for in-house
written modules, whereby this limitation is used to allow application teams to have full control of
their environmental data for modules without being able to affect other modules. This might be a
consideration for the profiles modules owned by a particular team who wishes to manage expectations.

default_hierarchy is sometimes known as the fourth layer and is only available in the module
layer; it essentially involves declaring a default_hierarchy key within the module hierarchy.
The key difference with this layer is that it will only be called if there is no match within the other
three layers, so there is no merging behavior:

default_hierarchy:
  - name: 'defaults'
    path: 'defaults.yaml'
    data_hash: yaml_data

Note
default_hierarchy produces the same behavior as the params.pp approach did since
any match in the three Hiera layers will ignore and not merge any matching values.

Having reviewed these layers, this leads to a question of how should the hierarchies be constructed.
Hierarchies can be made complicated very quickly but we should remember that the underlying approach
is that they should be made to run from the most specific data for a node down to general data. They should
be as short as possible since data files are easier to work with, and the more evaluations of hierarchies you
create, the greater the impact on Puppet’s infrastructure performance. Too many backends (particularly
customized backends) will create complications and external dependencies, which can break Puppet
compilation. The Roles and Profiles method should allow less data to be managed in Hiera, and if built-in
facts are not enough, custom facts can be created and multiple facts can be used in a path together.

The global level lends itself to just being structured on the name of the node and data common to all
nodes since it would only be used for overrides outside of Puppet code environment control.

For the environment layer, the common structure of node data to look at is as follows:

•	 The name of the node

•	 The node owner

Hiera layers 219

•	 The node’s purpose

•	 The location of the node

•	 Data common to all nodes

This could lead to a simple hierarchy such as the following:

- name: "Node data"
  path: "node/%{trusted.certname}.yaml"
- name: "Org data"
  path: "node/%{facts.org}.yaml"
- name: "Application-Tier"
  path: "app_tier/%{facts.app_tier}.yaml"
- name: "Datacenter"
  path: "datacenter/%{facts.datacenter}.yaml"
- name: "Common data"
  path: "common.yaml"

The module layer, as discussed, then just becomes a focus for defaults for values often based on facts
such as OS version and platform.

Note
Do not use the environment fact itself in any hierarchy. Use the environment layer for
environment-based data.

Lab – add data to a module

In this lab, download and update the Grafana module from Chapter 8 to contain defaults in Hiera
data instead of on the parameters.

To do this, let us assume the common.yaml file will contain all the present defaults in init.pp.

For Red Hat, we will have the following: download_source = 'https://dl.grafana.com/
enterprise/release/grafana-enterprise-8.4.3-1.x86_64.rpm'package_
provider ='yum'.

While for Windows, we will have the following:

download_source = 'https://dl.grafana.com/enterprise/release/grafana-
enterprise-9.4.1.windows-amd64.msi'
package_provider = 'windows'

https://dl.grafana.com/enterprise/release/grafana-enterprise-8.4.3-1.x86_64.rpm
https://dl.grafana.com/enterprise/release/grafana-enterprise-8.4.3-1.x86_64.rpm

Handling Data with Puppet220

You can refer to https://github.com/PacktPublishing/Puppet-8-for-DevOps-
Engineers/tree/main/ch08/grafana.

An example answer is at https://github.com/PacktPublishing/Puppet-8-for-
DevOps-Engineers/tree/main/ch09/grafana.

Later, in the Keeping data secure section, it will be shown how the password can be properly secured
and not just in plain text in the YAML file.

In this section, we have seen how to use the three layers of Hiera and how to structure the hierarchy
in these layers. Now, we will look at when data should be used in Hiera and when it should just be
used in code directly.

Deciding when to use static code or dynamic data
Having viewed all the possibilities of managing data structure and looking over the code examples
covered in this book, it probably raises the question about when to write code and when to use data.
Figure 9.1 highlights a decision tree to follow:

Figure 9.1 – Data or code decision tree

The first key thing is if the data doesn’t vary over nodes and it’s only used once, the simplest thing
is to hardcode the data in Puppet code – for example, just directly setting the owner of a file as
exampleuser in a file resource attribute.

If a value is used multiple times, then there is clearly a value in assigning a variable and using this
variable where it is required. This simplifies maintenance if the value needs to be changed but does
mean you have to keep track of variables when reading the code.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch08/grafana
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch08/grafana
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch09/grafana

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch09/grafana

Keeping data secure 221

If, on the other hand, there is variation across nodes and overriding the value on certain conditions,
the first question should be about how complex the logic is. If it is as simple as a single check, then
the gain from abstracting into Hiera is not big; the issue with abstracting values into Hiera is that
they are no longer clearly visible looking at the code and require translation and thought. So, if simple
conditional logic can be used, it’s generally better to keep the values in code.

Once logic becomes more complicated and can vary based on combinations of conditions, then we can
use Hiera data and an auto parameter lookup, or if it was found to be required, the lookup function.

It is also best throughout this to use the simplest method available at the time and escalate through
the levels of complexity as code changes and grows. Creating complex data structures and performing
abstraction for the future simply creates complexity and requires more work without really gaining benefits.

Keeping data secure
One of the key elements of managing data is ensuring that secret data is kept secure, and this can be
challenging with Puppet when this data must be stored, transferred across the infrastructure to the client,
and used within Puppet code to set the state. In this section, we will discuss the methods available to
secure data, what levels data can be secured at, and the limitations of the methods used at each level.

The most common first step is to secure data in storage. This can be achieved using hiera-eyaml, a
custom Hiera backend available at https://github.com/voxpupuli/hiera-eyaml. This
module creates pkcs7 keys, which are then used to encrypt and decrypt data. Having followed the
instructions in the module to create and distribute keys, a hierarchy can be created, such as the following:

hierarchy:
  - name: "Hiera data in yaml and eyaml files committed to the
control-repo"
    lookup_key: eyaml_lookup_key
    options:
      pkcs7_private_key: /etc/puppetlabs/puppet/eyaml/private_key.
pkcs7.pem
      pkcs7_public_key:  /etc/puppetlabs/puppet/eyaml/public_key.
pkcs7.pem
    paths:
      - "nodes/%{trusted.certname}.yaml"
      - "location/%{facts.whereami}/%{facts.group}.yaml"
      - "groups/%{facts.group}.yaml"
      - "secrets/nodes/%{trusted.certname}.eyaml"
      - "os/%{facts.os.family}.yaml"
      - "common.yaml"

https://github.com/voxpupuli/hiera-eyaml

Handling Data with Puppet222

It can simplify the hierarchy to note that the eyaml backend can read YAML files too, and there’s
no reason to separate yaml and eyaml files into different hierarchies assuming their path and
options are the same, as shown in the previous example.

hiera-eyaml is fine for simple encryption and limited numbers of users involved with encrypting
secrets, but for larger setups, using gpg keys with https://github.com/voxpupuli/hiera-
eyaml-gpg becomes more practical rather than sharing signing keys amongst multiple teams. Once
the configuration and key management are done, this simply varies by using gpg_gnugpghome
options rather than pkcs7 key options, such as the following:

    options:
      gpg_gnupghome: /opt/puppetlabs/server/data/puppetserver/.gnupg

An alternative to these encrypted data file approaches is if an appropriate secure key store exists, such
as HashiCorp Vault, or a cloud-native key store, such as Azure Key Vault, then using a backend that
can access these services will ensure data is securely stored.

Regardless of the backend choice, this will only ensure the data is secured in storage. As was discussed
in the Accessing data section, by default, Hiera will return a string when accessed by Puppet code.
lookup_options can be used to convert the parameter type to Sensitive in Puppet 5.5 and
above, and care should be taken to ensure all secure parameters are covered either via wildcards or
explicit naming.

Care must be taken to use the Sensitive data type well; it can be easy to either mistakenly keep
it secured so the value can’t be used where it is needed or accidentally expose it when using the
unwrap function.

When using file and content, for example, the following attempt to put secret_value into
a /etc/secure file would be exposed on a file diff, which, as discussed in Chapter 3, is when a
comparison of changes to files is recorded into the report logs:

file {'/etc/secure':
  ensure => present,
  content => ${secret_value},
}

This could be prevented by setting the file_diff parameter to false or setting the server not
to use file diffs.

Similarly, for templates, care must be taken. If using Puppet 6.2 or greater, then templates will work
directly with Sensitive values and you can simply use the Sensitive value in a template:

file {'/tmp/test1':
  ensure => present,
  content => (epp('example.epp', { 'password' => $secure_password })),
}

https://github.com/voxpupuli/hiera-eyaml-gpg
https://github.com/voxpupuli/hiera-eyaml-gpg

Lab – use eyaml to store a secret 223

For versions below Puppet 6.2, you would need to unwrap the variable in the template and then mark
the contents as Sensitive, as in this example:

content => Sensitive(epp('example.epp', { 'password' => unwrap($secure_
password)})),

Using Sensitive well keeps the data out of the logs, but unfortunately, not the catalog file itself, and
if you are using PuppetDB, catalogs will be stored there too. In this case, using the node_encrypt
module available at https://forge.puppet.com/modules/binford2k/node_encrypt
allows for any secret to be encrypted in the catalog using the clients’ keys, and using a Deferred
function decrypts them at the time of catalog application. This keeps secrets out of the catalog and
the report produced after a catalog is applied.

Assuming the instructions to configure node_encrypt have been followed on the infrastructure,
this means the line assigning values to the content parameter in the previous piece of code could
be updated to invoke the node_encrypt::secret function as follows:

content => (epp('example.epp', { 'password' => $secure_password })).
node_encrypt::secret,

Note
The current version of node_encrypt relies on Deferred functions, which became
available in Puppet 6, so version 0.4.1 needs to be used to work on older versions, and you would
use the node_encrypt::file type instead of the file type to encrypt file resources.

This section has shown how to keep data secure in storage, transport to catalog, and report processing,
and some of the issues that can be experienced. In the next section, we will discuss general issues and
problems when handling data in Hiera.

Lab – use eyaml to store a secret
In this lab, the puppet-hiera_eyaml module has been used to set up eyaml with default
pkcs keys, with a global Hiera setup to look at the node name, OS, and common values. In site.
pp, a Hiera lookup is performed to look up the value of secret::examplefiles, which is
used as content to create a /var/tmp/secret_example file on the Puppet primary server. The
lookup has a default of not set. In this lab, you will encrypt a secret and add it within the OS level so
the content of the file changes.

https://forge.puppet.com/modules/binford2k/node_encrypt

Handling Data with Puppet224

SSH to the primary server and elevate to root:

ssh centos@<primary_host>
sudo su -

Run the eyaml encrypt –p command from within the /etc/puppetlabs/puppet
directory and enter a secret of your choice at the prompt:

cd /etc/puppetlabs/puppet
eyaml encrypt -p

Copy the output after the string starting with ENC[and paste it into the data section at /etc/
puppetlabs/puppet/data/os/RedHat.eyaml so it contains something like this:

secret::example: ENC[PKCS7,<long string of chars>]

Run puppet agent –t and observe the change in the /var/tmp/secret_example content
to the content you set.

This was a very simple example and it should be noted, as was highlighted in the Hiera layers section,
that you would more likely be using an environment hierarchy and keeping your data secure, as was
shown in the Keeping data secure section, by using the Sensitive option in the lookup options
parameter. Additionally, the public key used for eyaml could be copied to a desktop to encrypt
secrets, if that was secure enough for your organization’s policies.

Now that we have fully reviewed the Hiera configuration, we will show how we can understand issues
with lookup and data.

Pitfalls, gotchas, and issues
When working in large datasets with multiple levels and layers, it can become complicated to understand
why certain answers have been generated or where errors have been inserted. This section will focus on
approaches to understanding and debugging data lookups and tools that can make the data more visible.

Hiera problems tend to fall into a few categories: syntax, formatting, backend communication and
performance issues, hierarchy ordering mistakes, and many others.

The puppet lookup command is the best way to test Hiera data and is, in effect, like the lookup
function used in Puppet code. Using this on the primary server, the basic syntax of this command is
puppet lookup <key> --node <node_name> --environment <environment_name>.

Pitfalls, gotchas, and issues 225

This command will return the value, if found, or nothing. It is important to understand the effect of
the various flags available to the command to return more detailed information. A common mistake is
to use the --debug and --explain flags together; they shouldn’t be used together as the former
is focused on high levels of logging to allow you to understand why errors such as syntax, formatting,
or the backend are being generated, while the latter is focused on showing how a value was reached,
where Hiera looked, and what it found.

For example, an explain lookup on motd::content might look like the following:

puppet lookup --explain motd::content --node node-name --environment
production

 Searching for "lookup_options"
  Global Data Provider (hiera configuration version 5)
    Using configuration "/etc/puppetlabs/puppet/hiera.yaml"
    Hierarchy entry "Classifier Configuration Data"
      No such key: "lookup_options"
  Environment Data Provider (hiera configuration version 5)
    Using configuration "/etc/puppetlabs/code/environments/production/
hiera.yaml"
    Merge strategy hash
      Hierarchy entry "Yaml backend"
        Merge strategy hash
          Path "/etc/puppetlabs/code/environments/production/data/
nodes/pe-server-0-540983.05eqwrwxv1ourfszstaygpgbth.zx.internal.
cloudapp.net.yaml"
            Original path: "nodes/%{trusted.certname}.yaml"
            Path not found
          Path "/etc/puppetlabs/code/environments/production/data/
common.yaml"
            Original path: "common.yaml"
           Found key: "motd::content" value: "test"

Looking at the output from debug, we see far more information with regards Facter and other system
work going on, as can be seen from the command and sample output as follows:

puppet lookup motd::content –-node node-name –-environment production
-–debug

Debug: Facter: Managed to read hostname: pe-server-0-d6a9f5 and
domain: vhcpsckl41fedgadugqovud0sa.cwx.internal.cloudapp.net
Debug: Facter: Loading external facts
Debug: Facter: fact "domain" has resolved to:
vhcpsckl41fedgadugqovud0sa.cwx.internal.cloudapp.net
Debug: Lookup of 'motd::content'
  Searching for "lookup_options"

Handling Data with Puppet226

    Global Data Provider (hiera configuration version 5)
      Using configuration "/etc/puppetlabs/puppet/hiera.yaml"
      Hierarchy entry "Example yaml"
        Merge strategy hash
          Path "/etc/puppetlabs/puppet/data/nodes/pe-server-0-d6a9f5.
vhcpsckl41fedgadugqovud0sa.cwx.internal.cloudapp.net.eyaml"

Without a node being provided, the lookup will assume the lookup is for the server you are running
the command from, and the environment will default to production.

In terms of syntax and formatting problems, one of the most common errors is when the opening
--- of the YAML file is malformed. This can happen in a couple of ways:

•	 A space is inadvertently added to the start of the line or a Unicode character conversion takes
place, changing it to —. In this case, an error in debug will look like this:

Error: Could not run: (<unknown>): mapping values are not allowed
in this context at line 2 column 8

•	 If a space is inserted within the dashes, such as -- -, then an error in debug will be seen
like this:

Error: Could not run: (<unknown>): did not find expected '--'
indicator while parsing a block collection at line 1 column 1

Another common syntax mistake is using key-value pairs without a space between the colon symbol
(:) and the value; so key: value and key : value are valid but key:value is not and it
will error in debugging like so:

Error: Could not run: (<unknown>): mapping values are not allowed
in this context at line 3 column 10

If tabs are used instead of spaces for indentation, then in debugging, an error will be caused such as
the following:

Error: Could not run: (<unknown>): found character that cannot start
any token while scanning for the next token at line 4 column 1

For formatting, using single quotes in data with variables will result in a literal string of the variable
name being returned instead of interpolation.

File permissions can also be an issue and, therefore, it is worth ensuring you are running the lookup
commands as the same user, as Puppet will be typically running under the pe-puppet or puppet user.

Pitfalls, gotchas, and issues 227

Using --debug, it can be useful to see whether custom backends are the areas that experience
issues, errors, or slowdowns. In general, we would recommend examining patterns such as the PDS
and external data providers.

Be careful to note this will not debug the actual data but only the hiera.yaml file, data files that
are not valid YAML will just be ignored, which can be seen using --explain.

In terms of hierarchy problems, this is where the --explain flag will prove most useful since it
will step through explaining the configuration files used, the hierarchies found, the merge strategy,
and the paths examined in detail so that it becomes clear how it stepped through the hierarchy and
how it may not be working as expected.

Depending on what variables are being used in your hierarchy, it may be required to use the --compile
flag since, by default, when using Puppet lookup, it will not perform a catalog compilation, so only
the $facts, $trusted, and $server_facts variables will be available. We strongly advise
against using arbitrary values from manifests as these can vastly overcomplicate the lookup and
produce unpredictable results.

From this, it can be seen that you always want to use the Facter array, to avoid the risk of module
variables and top-scope Facter variables clashing.

Some other options can be useful to test what would happen if you changed the configuration, such as
changing the merge strategy with the --merge flag or by providing updating facts using --facts,
for example.

The full command reference of options for lookups can be seen at https://www.puppet.com/
docs/puppet/latest/man/lookup.html.

If updating the global Hiera file, be careful to restart the Puppet Server Services to ensure it is re-read.

Having touched on the point previously in the Accessing data section, we do not recommend using
defaults on lookup functions. Data defaults in modules or profiles should be meaningful as well.
So, providing the default config file location makes sense for a module if you expect most users just
to use it, but if it is being added just to avoid failure in lookup, that can be a serious mistake and
will mask issues in Hiera data or code that won’t be noticed, as the code is successfully applied with
defaults. The key thing to avoid is passing a default value that then requires lots of logic in Puppet
code to work out how to translate it.

Classification in Hiera is possible since some users choose to look up Hiera data and include classes
in the site.pp file. Modules such as https://github.com/ripienaar/puppet-
classifier focus on this sort of approach. There is a balance of coding structure to consider, as
can also be seen in our flexible roles and profiles approach. By putting too much data into Hiera, it
can abstract away from clear coding since the data is then not directly visible in the code. So, it is best
to consider whether the complexity elevation is worth it.

https://www.puppet.com/docs/puppet/latest/man/lookup.html
https://www.puppet.com/docs/puppet/latest/man/lookup.html
https://github.com/ripienaar/puppet-classifier
https://github.com/ripienaar/puppet-classifier

Handling Data with Puppet228

One of the issues of Hiera can be its structure, which makes it inaccessible to less involved users. To
make Hiera data more visible, Betadots Hiera Data Manager (https://forge.puppet.com/
modules/betadots/hdm) is an excellent option as it allows graphical search, updates, and deletion
of Hiera data. However, in production environments, this should be limited to just viewing data.

Figure 9.2 – Hiera Data Manager example lookup

Another option to make Hiera data more accessible for self-service is the PDS, which will be discussed
in detail in Chapter 13.

Lab – troubleshoot Hiera
Troubleshoot the Hiera data in the production environment:

1.	 SSH to the primary server, elevate to root, and deploy the lab_error environment:

ssh centos@<primary_host>
sudo su -
puppet code deploy environment lab_error --wait

2.	 Perform a lookup with the debug flag of the profile::error::example key on the
primary server in the lab_error environment and work through the errors found, correcting
them in your control repo and running the code deploy command from the previous step:

puppet lookup profile::error::example --debug --environment lab_
error

3.	 Resolve the errors in the data in controlrepo-chapter9/data and hiera.yaml.

https://forge.puppet.com/modules/betadots/hdm
https://forge.puppet.com/modules/betadots/hdm

Summary 229

4.	 Run the same command with explain to understand how it gets to the current solution
and why it is not finding a value based on its os.family fact:

puppet lookup profile::error::example --debug --environment lab_
error

5.	 Update the Hiera data in the control repo branch, lab_error, and redeploy so that the
lookup now finds the value for the os.family fact of the primary node:

puppet code deploy environment lab_error --wait

puppet lookup profile::error::example --debug --environment lab_error

Check the commented solutions at https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/tree/main/ch09/data_solutions.

As part of creating the lab environment in the Technical requirements section, HDM has been installed
using the puppet-HDM module. Try using HDM to view the data following these steps:

1.	 Open a web browser at http://<public IP of puppetserver>:3000.

2.	 Complete the signup details to create an admin user (the details are not important).

3.	 Click Create a new user on the next page and enter non-admin user (the details again
are not important).

4.	 Click the admin user name on the top right, log out, and then log back in as the non-admin
user you created.

5.	 Select environment production and lab_error in turn.

6.	 Explore the Hiera keys and values visible to HDM in each environment.

Summary
In this chapter, we examined how Puppet can handle data using the Hiera tool, reducing how much
complexity would need to be put into code to represent a node, data center, organizational, OS, and
other configuration differences. Hiera was shown to be a tool based on hierarchies of data that allowed
us to access different files based on facts. It had built-in backends for data to be stored in YAML, JSON,
HOCON, and EYAML files. The data structure was shown; we examined how values could be put
into data files and how lookups can be performed; the types of merge were examined here as well as
how special setups such as knockout prefixes can be used in arrays.

We then showed how some custom backends can be used that have data types on different profiles;
typically, these are specific integrations such as Vault or EYAML from the Forge, or in-house developed
integrations to access data.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch09/data_solutions
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch09/data_solutions

Handling Data with Puppet230

We then covered how Hiera worked over three layers – global, environment, and module – showing
how global layers had little purpose in a modern Puppet setup but can be used as an override system,
environment as the main source for data, and module allowing for defaults to be set on modules.
Some common approaches to structuring hierarchies were then discussed, including an approach
that stepped through the name of the node, the node owner, the node’s purpose, the location of the
node, and common to all nodes’ data.

A review of how to make decisions on whether to use data in code or in Hiera showed that it depended
on how flexible data needed to be, and this can vary from static data that is hardcoded in Puppet code to
more advanced and flexible data requiring the full hierarchy to be described accurately. It was advised not
to build ahead but to refactor as required so as not to make data more complicated than it needs to be.

We then discussed how to keep data secure in storage and transport, and when being used in Puppet
catalogs, reports, and PuppetDB. We saw how to use eyaml to secure data in storage by encrypting
values with the more flexible PGP approach, allowing multiple keys and teams. Then, the Sensitive
value was shown to ensure values were not exposed in logs or code. This did not prevent values in
catalogs and reports, and the node_encrypt module was shown to allow resources and values to
be encrypted and be applied at configuration time using Deferred functions.

Approaches to debugging and troubleshooting were then reviewed, highlighting the difference between
--explain and --debug. The former allows an understanding of how the hierarchy was reviewed
and the latter returns errors such as syntax and failures with backends. The advice was given to be
careful with using Hiera as a classifier, as this would abstract classification information away from
code, but highlighted that the PDS did use this approach in later chapters.

In the next chapter, having reviewed the Puppet language in detail, the focus will change to the Puppet
infrastructure. We will examine the open source components that make up the Puppet platform, how
they make themselves available to the system via APIs, and how they communicate and log. The full
Puppet agent life cycle will be examined, looking at the process of agent registration and communication
with the platform. PuppetDB and PostgreSQL will be seen to allow the storage of data such as facts,
reports, and catalogs, allowing discovery and examination with the Puppet Query Language (PQL).
Compile servers will then be discussed as Puppet’s method of scaling horizontally.

Part 3 –
The Puppet Platform and

Bolt Orchestration

In this part, you will understand how Puppet is structured as a platform, how the various components
work together and communicate, and the common architecture approaches used to deliver scale.
We will then show the various methods that can be used to classify which code is applied to servers
and how code is versioned and deployed to infrastructure. Bolt will be introduced as Puppet’s way of
running procedural scripts and code, which can be traditional scripts in various languages or plans
based on the Puppet language. We will then review how you can monitor, tune, and integrate Puppet
infrastructure with various tools and third-party products.

This part has the following chapters:

•	 Chapter 10, Puppet Platform Parts and Functions

•	 Chapter 11, Classification and Release Management

•	 Chapter 12, Bolt for Orchestration

•	 Chapter 13, Taking Puppet Server Further

10
Puppet Platform Parts

and Functions

So far, we have discussed Puppet as a language, but in this chapter and the following chapters, we
will start to focus on Puppet as a platform and the infrastructure and components of the platform.

In Figure 10.1, the full architecture of services involved in Puppet Server and the Puppet client, to be
discussed in this chapter, is shown. These services focus on how Puppet code is enforced on servers:

Figure 10.1 – Puppet server and client components

We will start by highlighting that we do not run through installation methods in this book. There are
several open source projects to base automation on for open source Puppet and Puppet Enterprise;
throughout this book, we have used the peadznd pecdm modules as the most automated mechanism
for installing Puppet Editor (PE). As components are discussed, it will be noted how the versioning
of Puppet packages can differ, and we’ll look at some related install versions, as well as the key users,
directories, configuration files, and services installed.

Puppet Platform Parts and Functions234

First of all, we will examine the core services provided by the Puppet Server. These services include
catalog compilation to receive requests from clients, process their current state, and determine how
they should be configured based on Puppet code. A certificate authority (CA) allows agents to register
and communicate with the Puppet server securely. It also includes some associated API services to
access, request, and control those services.

Having established how the server functions, we will then show how the Puppet agent communicates
with the server, requesting to have a key signed by the CA, what the communication for a catalog
compilation involves, and how the agent processes and stores the returned catalog.

We’ll then view how PuppetDB is used to store, facts, catalogs, and events and how we can access this
information via both APIs and Puppet Query Language (PQL). The relationship between PuppetDB
and PostgreSQL will be examined as a frontend application to a backend database architecture, and
we will also discuss how other data is stored in PostgreSQL by the Puppet services directly.

It will then be shown how the compilation can horizontally scale to compile catalogs of hundreds of
thousands of servers using compile servers.

Throughout these topics, subtle differences between how PE and Puppet open source are set up will
be highlighted.

This chapter will not cover the PE-specific features of the orchestrator, the PE console, or the supported
architectures (which can allow for these services to be split out into more scalable infrastructure);
these will be covered in Chapter 14.

In this chapter, we’re going to cover the following main topics:

•	 Puppet platform installation and versioning

•	 Puppet Server

•	 Puppet agent-to-server life cycle

•	 PuppetDB and PostgreSQL

•	 Scaling with compilers

Note
As part of an effort to remove harmful terminology from its products, Puppet dropped the use
of the terms master server and compile master and now uses primary server and compile server.
As these names were quite embedded, there will be some places where classes or configuration
settings do still refer to master.

Technical requirements 235

Technical requirements
Clone the control repo from https://github.com/puppetlabs/control-repo to your
GitHub account in a repo called controlrepo-chapter10.

Build a large cluster with three compilers and three clients by downloading the params.json file
from https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/
blob/main/ch10/params.json and update it with the location of your control repo and your
SSH key for the control repo. Then, run the following command from your pecdm directory:

bolt --verbose plan run pecdm::provision –-params @params.json

Puppet platform installation and versioning
This book makes the choice not to go into the methods of installing Puppet; there is little to add to
the installation instructions for open source, documented at https://puppet.com/docs/
puppet/latest/server/install_from_packages.html, and any further choice of
automation will depend heavily on the use case of your organization and available tooling and product
sets you want to integrate with.

For open source Puppet, there are a number of projects automating the deployment, configuration,
and integration of Puppet, such as example42’s psick (https://github.com/example42/
psick) or the Foreman project (https://github.com/theforeman/foreman-installer),
which has a specific module for installing Puppet Server (https://forge.puppet.com/
modules/theforeman/puppet) that can be used even outside of Foreman to install Puppet.
Dashboards similar to what has been provided by the PE setup can also be found in projects such
as Puppetboard (https://forge.puppet.com/modules/puppet/puppetboard) or
Puppet Summary (https://github.com/skx/puppet-summary).

For PE, although manual instructions are available at https://puppet.com/docs/pe/2021.7/
installing_pe.html, the automation choice is clear with the Puppet-supported peadm module;
in Chapter 12, we will review how the module is used for the lab along with pecdm as a Bolt project.

Key points to recognize with the packages installed are that Puppet repositories provide set versions
of Ruby, OpenSSL, Hiera, and Facter to use for different versions of Puppet and that packages such as
puppetserver may not match the Puppet version being installed—for example, Puppet 7.17 will
have Puppet server version 7.8 installed; these associated versions are available in the release notes. For
PE, you can see all the underlying open source package versions in the documentation at https://
puppet.com/docs/pe/2021.7/component_versions_in_recent_pe_releases.
html#component_versions_in_recent_pe_releases.

https://github.com/puppetlabs/control-repo
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch10/params.json
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch10/params.json
https://puppet.com/docs/puppet/latest/server/install_from_packages.html
https://puppet.com/docs/puppet/latest/server/install_from_packages.html
https://github.com/example42/psick
https://github.com/example42/psick
https://github.com/theforeman/foreman-installer
https://forge.puppet.com/modules/theforeman/puppet
https://forge.puppet.com/modules/theforeman/puppet
https://forge.puppet.com/modules/puppet/puppetboard
https://github.com/skx/puppet-summary
https://puppet.com/docs/pe/2021.7/installing_pe.html
https://puppet.com/docs/pe/2021.7/installing_pe.html
https://puppet.com/docs/pe/2021.7/component_versions_in_recent_pe_releases.html#component_versions_in_recent_pe_releases
https://puppet.com/docs/pe/2021.7/component_versions_in_recent_pe_releases.html#component_versions_in_recent_pe_releases
https://puppet.com/docs/pe/2021.7/component_versions_in_recent_pe_releases.html#component_versions_in_recent_pe_releases

Puppet Platform Parts and Functions236

Puppet Server
In historic versions of Puppet, Ruby-based solutions such as WEBrick or Passenger were used for
running the Puppet service, but in all modern versions of Puppet, to improve scaling and performance,
Puppet Server is run as a Clojure and Ruby application on a Java Virtual Machine (JVM). Puppet
Server has a number of related services that share state and route requests between them. These
services run inside a single JVM process, using the Trapperkeeper service framework, which is a
Clojure framework for hosting long-running applications.

Puppet Server is installed via the puppetserver package in open source Puppet and the
pe-puppetserver package in PE. This will create a system service of the same name and
configuration files that, by default, will be placed in /etc/puppetlabs/puppetserver/
conf.d in Human-Optimized Config Object Notation (HOCON) format.

Note
The Puppet hocon module is the best way to automate the management of HOCON
files (https://forge.puppet.com/modules/puppetlabs/hocon).

Next, we’ll look at the services that make up Puppet Server.

The embedded web server

Puppet contains a Jetty-based web server in the JVM that sets up the mount points and communications
necessary for web requests to take place between components and to access the APIs.

The webserver.conf file sets the main configuration for the web server, such as the file location
of Secure Sockets Layer (SSL) keys, the port, and the host IP, which should only ever need adjusting
if using an external CA. The web-routes.conf file sets the mount points for web API access by
mounting the handlers, as shown in the following example file:

Configure the mount points for the web apps.
web-router-service: {
    # These two should not be modified because the Puppet 4 agent
expects them to
    # be mounted at these specific paths.
    "puppetlabs.services.ca.certificate-authority-service/certificate-
authority-service": "/puppet-ca"
    "puppetlabs.services.master.master-service/master-service": "/
puppet"

    # This controls the mount point for the Puppet administration API.
    "puppetlabs.services.puppet-admin.puppet-admin-service/puppet-
admin-service": "/puppet-admin-api"
}

https://forge.puppet.com/modules/puppetlabs/hocon

Puppet Server 237

The core mount points that can be seen in this file required for client-to-server communication are
listed here:

The puppet-ca mount point is used by clients to communicate with the CA service and check or
make a certificate signing request (CSR).

•	 master-service provides a mount point used by clients to request catalogs that are
compiled via JRuby interpreters.

•	 The request logging configuration set by default in webserver.conf is at /etc/
puppetlabs/puppetserver/request-logging.xml and determines how HTTP
access requests are logged. By default, messages will be logged to /var/log/puppetlabs/
puppetserver/puppetserver-access.log.

This section should have given you an understanding of how the embedded web service sets up a web
server in the JVM with the mount points necessary for requests to be made to the different components
of Puppet Server and how it will log these requests. Now, we will see the two core APIs accessed via
the endpoints made available by the mount points, Puppet API via /puppet and /puppet_ca,
and then the Admin API via /puppet_admin_api.

The Puppet API service

The Puppet API service is made up of two endpoints created by the embedded web server—/puppet
for configuration-related services and /puppet-ca for the CA.

Both are versioned with a string such as /v3 and authorization is controlled via the auth.conf file,
a HOCON formatted file. It is unlikely you will need to edit this file unless requiring more advanced
access to integrate services, but to show an example of content, the following code allows Puppet
nodes to request their own catalog from the API:

        {
            # Allow nodes to retrieve their own catalog
            match-request: {
                path: "^/puppet/v3/catalog/([^/]+)$"
                type: regex
                method: [get, post]
            }
            allow: "$1"
            sort-order: 500
            name: "puppetlabs v3 catalog from agents"
        },

Puppet Platform Parts and Functions238

Note
More detailed instructions for customization authorization are available at https://
github.com/puppetlabs/trapperkeeper-authorization/blob/main/
doc/authorization-config.md.

The Puppet agent on all modern versions of Puppet 5 to 8 uses /puppet/v3 endpoint services to
manage clients. The v3 API has two types of endpoints—indirectors and environment endpoints.

Indirectors take the form /puppet/v3/<indirection>/<key>?environment=<envi-
ronment>.

Here, the indirection value is the indirector requested, the key is the key relevant to the call to the
indirector, and the environment is the environment that should be used for this request. For example,
to request a catalog be compiled, a client would construct the following:

/puppet/v3/catalog/pe.example.com?environment=production

The following indirectors exist under /puppet/v3/ for clients:

•	 Facts: The facts endpoint allows setting facts for the specified node name

•	 Catalog: Returns a catalog for the specified node

•	 Node: Returns node information such as classification

•	 File bucket file: Manages the contents of a file bucket

•	 File content: Returns file content such as files in modules

•	 File metadata: Returns the metadata of a file such as the permissions of a file in modules

•	 Report: Allows the storing of Puppet reports for nodes

The following indirectors exist under /puppet/v3/ for the server:

•	 Environment classes: Returns all the classes that can be parsed in the requested environment

•	 Environment modules: Returns information about all the modules found in an environment,
such as their names and versions

•	 Static file content: Returns the file content of a specific version of a file resource in an environment

The separate environment endpoint that was not an indirector allows a simple call to /puppet/
v3/environments that returns all environments known to the server. In the next chapter, we
will talk about environments in more detail.

Tools and services can also access these same endpoints to examine data, and a v4 API exists with
a catalog endpoint that allows for more extensive use of PuppetDB to manipulate facts and the
catalog. It is used by tools such as octocatalog-diff (https://github.com/github/
octocatalog-diff), which can generate, compare, and manipulate catalogs.

https://github.com/puppetlabs/trapperkeeper-authorization/blob/main/doc/authorization-config.md
https://github.com/puppetlabs/trapperkeeper-authorization/blob/main/doc/authorization-config.md
https://github.com/puppetlabs/trapperkeeper-authorization/blob/main/doc/authorization-config.md
https://github.com/github/octocatalog-diff
https://github.com/github/octocatalog-diff

Puppet Server 239

The /puppet-ca endpoint follows a similar format using v1 and indirectors, as follows:

•	 Certificate: Returns the certificate of a specified name

•	 Certificate Clean: Revokes and deletes a certificate

•	 Certificate Status: Requests the status of a certificate or a CSR

•	 Certificate Revocation List: Requests the Certificate Revocation List (CRL) file

As an example, to request a certificate for server.example.com, the following endpoint would
be hit: /puppet-ca/v1/certificate/server.example.com.

These actions will be discussed in more detail in the CA section of this chapter.

In this section, we did not go into full detail about each endpoint and making API calls to them, but
later in the chapter, where we look at the client-to-server lifecycle, we will follow the logging of calls
and highlight their use to show how these APIs are used by Puppet. Full details of the endpoints can be
viewed at https://puppet.com/docs/puppet/latest/http_api/http_report.html.

The Admin API

The Admin API has just two endpoints at /puppet_admin/v1/, as follows:

•	 Environment cache: Used to clear the cache of environment data

•	 JRuby pool: Used to clear the JRuby pool or retrieve a Ruby thread dump of running JRuby instances

Both endpoints are for more in-depth development work, so are beyond the scope of this book but
help complete the picture of the Puppet server components. Details of these endpoints can be viewed
at https://puppet.com/docs/puppet/latest/server/admin-api/v1/jruby-
pool.html and https://puppet.com/docs/puppet/latest/server/admin-api/
v1/environment-cache.html.

CA

By default, Puppet uses its own in-built CA and public key infrastructure (PKI) to secure all
SSL communications.

Two commands are used to interact with the Puppet CA setup—puppetserver ca for server-side
actions such as signing or revoking certificates and puppet ssl for agent-side tasks such as requesting
and downloading certificates. These commands make calls to the puppet-ca endpoint via the CLI.

https://puppet.com/docs/puppet/latest/http_api/http_report.html
https://puppet.com/docs/puppet/latest/server/admin-api/v1/jruby-pool.html
https://puppet.com/docs/puppet/latest/server/admin-api/v1/jruby-pool.html
https://puppet.com/docs/puppet/latest/server/admin-api/v1/environment-cache.html
https://puppet.com/docs/puppet/latest/server/admin-api/v1/environment-cache.html

Puppet Platform Parts and Functions240

Note
Despite the introduction of the puppet-ca endpoint, the five commands of the previous
ruby ca implementation were still available until their removal in Puppet 6: puppet
certificate, puppet cert, puppet certificate_request, puppet ca,
and puppet certificate_revocation_list. They have all been replaced by the
puppetserver ca and puppet ssl commands. Even if you are using Puppet 5, it is
strongly advised not to use these Ruby commands as using both API and Ruby implementations
simultaneously can corrupt the CA.

While the automation of installation discussed in the introduction should cover the initial setup, it is
worth knowing whether the CA setup has been performed by running puppetserver ca setup.
Before the puppetserver/pe-puppetserver service has started, it will create a separate
root CA and an intermediate signing CA. If the puppetserver/pe-puppetserver service
is started before this step, it will create a single combined root and signing CA, which was the prior
way Puppet operated. Unless you have a specific need for a single certificate, this should be avoided.
From PE 2019.x and Puppet 6.x, these certificates last 15 years; previously, this was 5 years, and it’s
important to understand that upgrading Puppet versions does not extend the CA.

Note
Extending an expired CA is possible via the ca_extend module (https://forge.
puppet.com/modules/puppetlabs/ca_extend).

The keys and certificates created in this step will be created in a directory called /etc/puppetlabs/
puppetserver/ca for Puppet 7 and above or one called /etc/puppetlabs/puppet/ca
for Puppet 6 and below. There is a symbolic link (symlink) for /etc/puppetlabs/puppet/ca
to the new location to avoid confusion. The directory will contain the following:

•	 ca_crl.pem: The CRL

•	 ca_crt.pem: The CA-signed certificate public certificate

•	 ca_key.pem: The CA private key

•	 ca_pub.pem: The CA public key

•	 inventory.txt: A list of certificates the CA signed with their serial numbers and expiry dates

•	 requests: Unsigned CSR files

https://forge.puppet.com/modules/puppetlabs/ca_extend
https://forge.puppet.com/modules/puppetlabs/ca_extend

Puppet Server 241

•	 root_key.pem: This is the root key used to sign the CA certificate if using a separate root
CA and an intermediate CA

•	 serial: This file contains an incrementing counter of the new serial number for certificates

•	 signed: This folder contains all signed CSR files

In addition to these files, an infrastructure CRL can be maintained, which by default is not used in
open source Puppet but is used in PE. To have a smaller CRL, the infra_inventory.txt file
is managed to contain the Puppet infrastructure servers; when revoked, these systems are added to
infra_crl.pem. This is enabled by setting infra certificate-authority.enable-
infra-crl to true in the puppet.conf file. We will talk in more detail about the puppet.
conf file later in this chapter. This approach means the Puppet clients only need to receive the small
infrastructure CRL, which is important for estates with a high churn of servers. The following files
will be maintained:

•	 Infra_inventory.txt: A list of certificates the CA signed for infrastructure servers

•	 Infra_serials: This file contains an incrementing counter of the new serial number for
infrastructure servers

•	 Infra_crl.pem: The CRL of infrastructure servers

If your organization requires the use of an external CA, it is possible to use your organization’s own root
CA and import it using the puppetserver ca import command (the full process is outlined
at https://puppet.com/docs/puppet/latest/server/intermediate_ca.html),
leaving Puppet to act just as an intermediate CA. Alternatively, the CA service can be disabled by
deploying a single externally generated root and signing CA, as outlined at https://puppet.
com/docs/puppet/latest/config_ssl_external_ca.html. This book recommends
against using this approach as it would require automating the distribution of certificates, which
Puppet services no longer perform.

When an agent makes a request to the CA, a CSR is sent and the signing policy by default has to wait
for a manual signing with the CSR stored in the requests folder. Waiting requests can be reviewed
by running puppetserver ca list and then signed by running puppetserver ca sign
--certname < certname to sign >. All certificates that have been signed can be viewed
by running puppetserver ca list --all.

If you are using PE, certificate signing can be performed and viewed on the PE web console, as
pictured in Figure 10.2:

https://puppet.com/docs/puppet/latest/server/intermediate_ca.html
https://puppet.com/docs/puppet/latest/config_ssl_external_ca.html
https://puppet.com/docs/puppet/latest/config_ssl_external_ca.html

Puppet Platform Parts and Functions242

Figure 10.2 – PE console certificate signing

Certificates can be revoked using the puppetserver ca revoke --certname < certname
to revoke > command, and to clean up and remove a revoked certificate from the CA, you can
then run puppetserver ca clean --certname < revoked certname >.

It is common when manual auto signing is used for a workflow that tools such as VMware’s vRealize
Orchestrator (VRO) will make calls to the CA API as part of the deployment and decommissioning
of servers.

To automate this process, auto signing can be configured in three ways. In what is known as naïve
signing whereby autosign = true is added to the master section of puppet.conf, this
change causes the CA to sign any request and should never be used in a production environment.

The second way is to create an autosign.conf file at /etc/puppetlabs/puppet/autosign.
conf. In this file, there can be server names or domain name globs where each line represents a node
name or a domain that can be auto-signed. For example, let’s say a file had the following content:

server1.puppet.com
*.example.com

This would mean that server1.puppet.com and any server in the example.com domain
would be auto-signed.

The third method is to set the autosign value in the puppet.conf file to be equal to a script.
This script can be in any language and will receive as its first argument the certificate name and then
the CSR contents as standard input. The script should then end with a zero-return code to sign the
script or a non-zero code to not sign it. This leads to a common method of CSRs containing a secret
to check in the script, or in the public cloud, tags can be used. It is beyond the scope of this book to

Puppet Server 243

discuss writing these scripts, and while Puppet only provides a description of how to construct these
scripts at https://puppet.com/docs/puppet/latest/ssl_autosign.html#ssl_
policy_based_autosigning, Amazon gives an excellent example at https://aws.
amazon.com/blogs/mt/aws-opsworks-puppet-enterprise-and-an-alternate-
implementation-for-policy-based-auto-signing/.

This section has laid out how a CA is configured and run as a Puppet server. Later in this chapter,
the full lifecycle of agents will be reviewed, showing how the client creates a CSR and uses the CA to
finish the services offered by Puppet Server and looking at JRuby interpreters.

JRuby interpreters

JRuby is a Java implementation of Ruby allowing for the use of Ruby on JVMs; this allows for greater
scalability than with traditional Ruby deployments such as Ruby on Rails as most Ruby interpreters
aren’t capable of thread safety and use locks to run one thread at a time. Puppet Server has a pool
of JRuby interpreters/instances that are available to perform various application work such as
compiling catalogs and handling reports. The number of interpreters in the pool reflects how many
Ruby application actions can be run simultaneously and can be configured with the max-active-
instances parameter in the puppetserver.conf file, in PE via Hiera in the console, or
in code via puppet_enterprise::master::puppetserver:: jruby_max_active_
instances. We will be looking at this in more detail in Chapter 13, where we discuss the metrics
and tooling to review and set this sizing.

Having discussed the components of Puppet Server, we will now look at the configuration such as
users, logging, and filesystems to understand where these services can be customized and what is
required by them.

Configuration and logs for Puppet Server

We briefly touched on certain configuration files and the settings available as we discussed each
component, but we will give a summary here. For most of the configuration files, it is unnecessary to
customize them, and most defaults will meet your requirements.

For PE, the pe-puppetserver Puppet Server service will run under a pe-puppet account,
while on open source Puppet, the puppetserver service will be run under the puppet account.
In both accounts, they will have a nologin shell set so that the user just provides an account to run
the service and own relevant files for the service.

The following configuration files and application directories will be created and used:

•	 /etc/puppetlabs/puppetserver/bootstrap.cfg: A file containing a list of services
that Trapperkeeper should start up; these are the handlers mounted by the embedded web server.

•	 /etc/puppetlabs/puppetserver/request-logging.xml: A file defining how
HTTP access requests are logged.

https://puppet.com/docs/puppet/latest/ssl_autosign.html#ssl_policy_based_autosigning
https://puppet.com/docs/puppet/latest/ssl_autosign.html#ssl_policy_based_autosigning
https://aws.amazon.com/blogs/mt/aws-opsworks-puppet-enterprise-and-an-alternate-implementation-for-policy-based-auto-signing/
https://aws.amazon.com/blogs/mt/aws-opsworks-puppet-enterprise-and-an-alternate-implementation-for-policy-based-auto-signing/
https://aws.amazon.com/blogs/mt/aws-opsworks-puppet-enterprise-and-an-alternate-implementation-for-policy-based-auto-signing/

Puppet Platform Parts and Functions244

•	 /etc/puppetlabs/puppetserver/conf.d: This directory contains the following
main configuration files for components in HOCON format:

	� global.conf: This file sets global configuration settings for Puppet and by default just
contains the logging config file location.

	� webserver.conf: This file configures the embedded web server with details such as
port and logging.

	� web-routes.conf: This file sets mount points for Puppet’s web services.

	� puppetserver.conf: This file sets the configuration for the core Puppet server application
such as the number of jruby instances running.

	� auth.conf: This file sets the access permissions for endpoints mounted by web-routes.
conf.

	� ca.conf: This file configures settings for the CA.

	� products.conf: An optional file that can set product settings such as analytics data
and update checks.

•	 /etc/puppetlabs/puppetserver/ssl/ca: Certificates and keys related to the Puppet
CA (/etc/puppetlabs/puppet/ssl/ca in Puppet 6 and below).

•	 /opt/puppetlabs/puppet/lib/ruby/vendor_gems: Puppet Server puts Ruby
gems related to the operation of the CA in this directory.

•	 /opt/puppetlabs/server: This directory contains the JRuby-gems and binaries
for running Puppet Server.

•	 /var/run/puppetlabs/puppetserver/puppetserver.pid: This file contains
the PID of the running Puppet process.

•	 /etc/puppetlabs/puppet.conf: This file holds the configuration for both the Puppet
client and Puppet Server on the primary. These settings can be viewed by running puppet
config print.

The vast majority of settings in the files will be used at default values unless external integrations such
as the external root CA are required and are only worth mentioning as a reference to understand the
setup of the Puppet. A full reference and options for settings can be reviewed at https://puppet.
com/docs/puppet/latest/server/configuration.html for /etc/puppetlab/
puppetserver-based settings.

Note
If you have chosen one of the open source Puppet automation tools/modules discussed in the
introduction, it may allow the setting of configuration values on installation.

https://puppet.com/docs/puppet/latest/server/configuration.html
https://puppet.com/docs/puppet/latest/server/configuration.html

Puppet Server 245

PE users should be aware due to extra automation of configuration that a lot of those settings such as those
in puppetserver.conf are configured via Hiera, and the documentation at https://puppet.
com/docs/pe/2021.7/config_puppetserver.html should be followed for the configuration.

The configuration for tuning these settings will be looked at in more detail in Chapter 13.

The full options for the settings for /etc/puppetlabs/puppet.conf can be reviewed at
https://www.puppet.com/docs/puppet/latest/config_file_main.html; the
file itself provides sections that can configure the Puppet server, the Puppet agent, and how puppet
apply runs. The sections are main, which provides default values, agent, which provides settings to
the Puppet client, user, which provides settings for when using Puppet apply, and master/server
for applying settings to the Puppet server.

Since Puppet 6, it has been possible to use a server section instead of a master section, but many
automation tools have not caught up with this change, and as they are not interchangeable terms and
could create confusion, be careful to only use the term relevant to your implementation.

Puppet applies settings from the master/server, apply, or agent section first, then falls back
to the main section and, if it finds no setting, will use a default.

Let’s look at some example content of a file on a peadm built Puppet lab server:

[master]
node_terminus = classifier
storeconfigs = true
storeconfigs_backend = puppetdb
reports = puppetdb
certname = pe-server-davidsand-0-cffe02.tq2kpafq5bsehkpub4ur5a35ya.
xx.internal.cloudapp.net

The square brackets indicate the name of a section and then a set of key-value pairs. The settings here
show the certificate name (certname) of our Puppet server and also show that it sends reports to
PuppetDB via the reports setting, that it is set up to store catalog, node, and fact information with
storeconfigs set to true, that these will be stored in PuppetDB, and that storeconfigs_
backend is set to PuppetDB. Finally, node_terminus is set to classifier, which reflects how
the primary server should classify clients. This will be discussed in greater detail in the next chapter.

The best way to view and manipulate the settings including defaults not set by puppet.conf is by using
the puppet config command, which can show all settings. By running puppet config print
all known, the settings will be printed, or an individual setting can be printed by detailing the section and
value to print via puppet config print --section master certname. The puppet config
command can also add or remove values using the set or delete options and selecting a section key and
value to perform an action on. For example, the following commands will delete storeconfigs from the
master section and change the certificate name to newname.example.com:

puppet config delete --section master storeconfigs
puppet config add --section master certname newname.example.com

https://puppet.com/docs/pe/2021.7/config_puppetserver.html
https://puppet.com/docs/pe/2021.7/config_puppetserver.html
https://www.puppet.com/docs/puppet/latest/config_file_main.html

Puppet Platform Parts and Functions246

These commands will automatically add a section if it’s not already in the file, but the Puppet service
would need to be restarted for any changes to take place.

We will work with more examples of manipulating the puppet.conf file as we look at the agent
lifecycle in the next section, but the full options and syntax for the puppet.conf file can be viewed
at https://puppet.com/docs/puppet/latest/config_file_main.html.

Puppet Server by default keeps logs at /var/log/puppetlabs/puppetserver in the
following files:

•	 Puppetserver.log: This is where the primary server logs activity such as compilation
errors and warnings

•	 Puppetserver-access.log: This is where requests to HTTP endpoints are logged

•	 Puppetserver_gc.log: This is where logs of garbage collection are gathered

Now that we have reviewed the Puppet server components fully, we will look at the Puppet agent
configuration and lifecycle, which will show how these services are used by a client, and how to
monitor and review the logging of a cycle.

The Puppet agent-to-server lifecycle
This section will look at how the Puppet agent makes requests to the Puppet server components we
have run through and how it secures its communications before requesting configuration to enforce
from the Puppet servers. It should be noted the Puppet servers themselves also contain Puppet agents.

The installation of Puppet agents is detailed at https://puppet.com/docs/puppet/latest/
install_agents.html#install_agents for open source and https://puppet.com/
docs/pe/2021.7/installing_agents.html#installing_agents for PE. Integrating
this install with your server deployment workflow and ensuring the necessary configuration is placed
at /etc/puppetlab/puppet.conf is critical for automation.

Note
The puppet_conf module provides tasks to manage Puppet configuration files (https://
forge.puppet.com/modules/puppetlabs/puppet_conf).

Most of the settings will depend on your environment setup, but for most environments, the defaults
will be taken with the critical setting of ensuring that the server setting in the agent section is set
so that the agent knows which Puppet server to contact – open source Puppet or PE-Puppet. The PE
service can then be started under the root user. This will contact the Puppet server every 30 minutes
by default or can be triggered by running the puppet agent -t command.

Figure 10.3 shows the workflow of this Puppet certificate process as the client ensures it has the signed
SSL certificate to ensure secure communication with the Puppet server:

https://puppet.com/docs/puppet/latest/config_file_main.html
https://puppet.com/docs/puppet/latest/install_agents.html#install_agents
https://puppet.com/docs/puppet/latest/install_agents.html#install_agents
https://puppet.com/docs/pe/2021.7/installing_agents.html#installing_agents
https://puppet.com/docs/pe/2021.7/installing_agents.html#installing_agents
https://forge.puppet.com/modules/puppetlabs/puppet_conf
https://forge.puppet.com/modules/puppetlabs/puppet_conf

The Puppet agent-to-server lifecycle 247

Figure 10.3 – Puppet client certificate workflow

Puppet Platform Parts and Functions248

The first step is to validate the certificates. In the ssl directory titled /etc/puppetlabs/
puppet/ssl, the following files will already exist or be created in this process:

•	 private_keys/<certificate_name>.pem: The private key used to create a CSR

•	 certs/<certificate_name>.pem: The signed certificate returned for this client

•	 certs/ca.pem: A copy of the CA certificate sent from the Puppet server

•	 crl.pem: The CRL from the Puppet server

•	 certificate_requests/<certificate_name>.pem: The CSR to be sent to the
Puppet server, which is deleted once a signed certificate is received

In addition to this directory, it is possible to create a /etc/puppetlabs/puppet/csr_
attributes.yaml file and include the trusted facts to be created in the CSR. This will cause the
trusted facts to be included in the certificate for the client when the CSR is signed by the Puppet server.

Using trusted facts can be useful to ensure hard classification information is not changed, such as a
production server being reclassified for development, or the role being changed, since both could
result in lower levels of security. The organization ID (OID) numbers translate into names, which
can be reviewed at https://puppet.com/docs/puppet/latest/ssl_attributes_
extensions.html. This file must exist before the CSR is created; otherwise, the only way to change
the CSR or certificate is to start again.

As Figure 10.3 shows, if a private key doesn’t exist, the client makes a new key before checking for
local copies of ca.pem and CRL.pem, making a request to the server, and downloading if either
is absent. The next step is to then check whether a signed certificate exists and request it from the
client if it does not. If a signed client certificate exists, it can continue to request node data; otherwise,
it will create a CSR file and send it to the primary server. If the waitcert setting is enabled in
puppet.conf, the client will then wait for the CSR to be signed by the server and check the status
with the primary server every 2 minutes On future runs, the client will present its signed certificate
to the server as proof of its identity.

Having secured communication, the first step is to perform plugin sync from the server to the client,
which ensures all facts, functions, resource types, resource providers, and Augeas lenses are downloaded
to the client using the file_metadata endpoint.

Once this has been completed, the client runs facter, sends the output to the Puppet client, and
requests a catalog from the Puppet server using the \catalog endpoint. A copy of this catalog is
stored in the cache directory (configured using the vardir parameter in puppet.conf) on the
client, which by default is %PROGRAMDATA%\PuppetLabs\puppet\cache\client_data\
catalog\<certname>.json. (PROGRAMDATA is generally C:\Program Data\ on Windows
and /opt/puppetlabs/puppet/cache/client_data/catalog/<certname>.json
for Linux- and Unix-based systems.) The client then receives this catalog and implements the steps,
enforcing the state described in the Puppet code, or if the client is set to be run in no-op mode, it will

https://puppet.com/docs/puppet/latest/ssl_attributes_extensions.html
https://puppet.com/docs/puppet/latest/ssl_attributes_extensions.html

The Puppet agent-to-server lifecycle 249

simulate the catalog. The client generates a report, which is then sent back by default to the Puppet
server using the report endpoint. This can be configured to send the report to other report processors
such as Splunk, which will be discussed in Chapter 13.

In addition to the catalog in the client_data folder, several other useful files for investigation
are generated in the cache directory:

•	 lib: This is a cache for various plugins synced by plugin sync from the primary server.

•	 facter: This will contain custom facts.

•	 facts.d: Here, external facts are cached by plugin sync from the primary.

•	 reports: This contains the last generated report file.

•	 state: This directory contains the files and directories associated with the state of previous
Puppet runs:

	� classes.txt: A list of classes that were included in the last catalog applied

	� graphs: If the graph option is used during a Puppet run, the generated .dot graph files
of resources and dependencies will be saved here

	� last_run_report.yaml: This is a full report of all resources and how they were checked
or changed during the catalog enforcement

	� resources.txt: A list of resources that were included in the last catalog applied

	� state.yaml: A list of all resources and when they were last checked or synced, used with
features such as audit

Several directories and files have been ignored as they are either for legacy purposes or for practices
that this book does not recommend, such as filebucket. A full listing can be seen at https://
puppet.com/docs/puppet/latest/dirs_vardir.html.

Note
The cached catalog will be used in the event of the client losing communication with the Puppet
infrastructure to ensure it continues to enforce its last known state.

The last step of the agent-to-server cycle is to send the event report to the Puppet Server. These reports
will reflect events of what happened for each resource in the catalog. These events can have one of
the following states:

•	 Failure – This will be an event with errors in applying the catalog or issues such as dependencies
or an issue with that particular resource

•	 Corrective – The resource was in the correct state in the previous run but has had to be corrected

https://puppet.com/docs/puppet/latest/dirs_vardir.html
https://puppet.com/docs/puppet/latest/dirs_vardir.html

Puppet Platform Parts and Functions250

•	 Intentional – The resource had to be created or corrected but was not in the correct state in
the previous run

•	 Unchanged – The resource is in the correct state and requires no change

Unchanged events are not reported in Puppet 8 by default. This change was made to reduce the
store space required for storing reports. This can be changed by setting exclude_unchanged_
resources=false in each agent's puppet.conf file.

The report events will also reflect what mode the client agent is running or whether a resource is set to
be applied differently from the client. While the same event states still apply, each event will report if
the event took place in execution mode or in no-op mode. As was previously discussed in Chapter 3,
no-op mode means the resource is only effectively tested to see whether the resource will need to be
changed to meet its declared state. In Chapter 15, we will discuss how this can be useful in heritage
envionments where we want to see how big the configuration drift is and choose a progressive approach
to get there to avoid causing issues on production systems.

In terms of accessing these reports, we will see in Chapter 13 how report processors can be used to
send them to third-party tools and in Chapter 14 how Puppet Enterprise provides an event viewer
interface as part of its graphical console.

Lab – monitoring certificate signing logging

To better understand the process, we will now describe how we can monitor the process of a Puppet
run by removing the certificates of our node and re-registering. During the registration, we will
monitor the logs to see the API requests made through this process and note the steps of the process.
Here are the steps:

1.	 Open SSH terminal sessions to the Linux client and two separate SSH terminal sessions to the
primary Puppet server.

2.	 On the Linux client, run the following command:

puppet ssl clean

3.	 On one of the server sessions, run puppetserver ca clean --certname <instance
name> (note that this should be the certificate name, which can be checked via puppet
config print certname on the node).

4.	 On the Linux client, move the ssl directory to a backed-up location using the following command:

mv /etc/puppetlabs/puppet/ssl /etc/puppetlabs/puppet/ssl.old

5.	 On one of the Puppet server’s sessions, run tail -f /var/log/puppetlabs/
puppetserver/puppetserver-access.log, and on the other, run tail -f /
var/log/puppetlabs/puppetserver/puppetserver.log.

PuppetDB and PostgreSQL 251

6.	 On the node, run puppet agent -t and see the calls on the Puppet server sessions.

7.	 On the web console, under the Certificates section, select the Unsigned tab, sign the certificate
request, and then run puppet agent –t on the client. Note the new calls on the server
in the access.log and puppetserver.log files and how this relates to the steps
discussed in this section.

8.	 View the catalog received for the client and investigate the other files in the cache.

Hint
Using a tool such as jq can make viewing JSON much easier (https://stedolan.
github.io/jq/download/).

To view an example output of logging for this lab, see the following files:

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/
blob/main/ch10/puppet_access_log_extract shows the access logs with comments
explaining the output

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/
blob/main/ch10/puppet_server_log_extract shows the Puppet server log with
comments explaining the output

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/
main/ch10/puppet_client_terminal.txt shows the client terminal and commands entered

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/
main/ch10/puppet_server_terminal.txt shows the server terminal and commands entered

PuppetDB and PostgreSQL
PuppetDB allows for the collection of Puppet data and advanced features such as exported resources.
In open source Puppet, it is entirely optional, while PE installs PuppetDB by default. The following
is kept by PuppetDB:

•	 The last facts from the nodes

•	 The last catalog compiled for each node

•	 14 days (default) of event reports for each node

•	 Exported resources

https://stedolan.github.io/jq/download/
https://stedolan.github.io/jq/download/
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch10/puppet_access_log_extract
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch10/puppet_access_log_extract
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch10/puppet_server_log_extract
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch10/puppet_server_log_extract
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch10/puppet_client_terminal.txt
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch10/puppet_client_terminal.txt
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch10/puppet_server_terminal.txt
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch10/puppet_server_terminal.txt

Puppet Platform Parts and Functions252

PuppetDB is a Clojure frontend application running on a JVM, using PostgreSQL as a backend
database. This common architecture is where the backend database just provides the tables, and the
frontend database contains the application objects, giving some key advantages compared to a single
database. It eases the updating process of PuppetDB since the actual data can be left in the backend
table, and it also allows great scalability—as we will see in the last section of this chapter, Scaling with
compilers—where PuppetDB can be scaled horizontally by running PuppetDB on many compiler
servers, as a result reducing the load on the primary server PuppetDB service.

Information on the installation and configuration of PuppetDB is provided at https://forge.
puppet.com/modules/puppetlabs/puppetdb. PuppetDB is likely to be included in any
automation you choose and is part of PE.

PostgreSQL creates a pe-postgres user for PE or a postgres user for open source Puppet,
which is created as a user to run the PostgreSQL database. This user will use a nologin shell and
own relevant files for running Postgres. The following directories are used by PostgreSQL:

•	 /opt/puppetlabs/server/apps/postgresql/{version}: To install the
database application

•	 /opt/puppetlabs/server/data/postgresql/{version}: To contain the data
files of the database

•	 /var/log/puppetlabs/postgresql/{version}: To contain the logs of the database

PuppetDB creates a pe-puppetdb user for PE or a puppetdb user for open source Puppet,
which is created as a user to run the PuppetDB database under with a nologin shell and to own
the relevant file for running PuppetDB. As PuppetDB is a Clojure application running on the JVM;
it is very similar to puppet web server in its structure with a handler mounted at a /pdb endpoint
and an auth.conf file defining who can access this endpoint. The following directories are used
by PuppetDB, and some key files are highlighted:

•	 /etc/puppetlabs/puppetdb: This directory contains configuration files for PuppetDB,
including the following:

	� bootstrap.conf: The bootstrap.conf file the lists services that should be started
in the Trapperkeeper framework

•	 /etc/puppetlabs/puppetdb/conf.d: This directory contains configuration files in
an ini format:

	� auth.conf: Configures authorization for who can access the endpoints made available

	� routing.ini: Configures which handlers should be made available at endpoints

•	 /opt/puppetlabs/server/apps/puppetdb: This directory contains the application
binaries for PuppetDB

https://forge.puppet.com/modules/puppetlabs/puppetdb
https://forge.puppet.com/modules/puppetlabs/puppetdb

PuppetDB and PostgreSQL 253

•	 /opt/puppetlabs/server/data/puppetdb: This directory contains the data
of PuppetDB

It is beyond the scope of this book to look at the in-depth configuration of PuppetDB, but you can
refer to https://puppet.com/docs/puppetdb/latest/configure.html for more
information. However, in Chapter 13, we will look in more depth at how to monitor, review, and tune
PuppetDB and PostgreSQL performance and how modules such as https://forge.puppet.
com/modules/puppetlabs/pe_databases can assist with maintenance.

For now, we will review how the data can be accessed by using PQL with HTTP calls to the /pdb
endpoint or via the puppet query command line to make calls to the endpoint.

Note
The Abstract Syntax Tree (AST) query language is also available as a format to use for queries.
However, with PQL available, it has little use now but can be reviewed at https://www.
puppet.com/docs/puppetdb/8/api/query/v4/ast.html.

PuppetDB is structured into entities to allow for accessing different types of data. Here is a list of each
entity and a brief description of what the endpoint contains:

•	 aggregate_event_counts: Aggregate counts of the event_counts entity

•	 catalogs: The catalogs stored for each node

•	 edges: Edges are relationship information in catalogs such as contains or requires

•	 environments: The environments known to PuppetDB

•	 event_counts: Event counts about various resources in reports

•	 events: Events reflect the actions performed for a resource returned by a report

•	 facts: The facts returned for each node

•	 fact_contents: This entity is structured to access fact content more easily

•	 fact_names: All known fact names

•	 fact_paths: Similar to the fact_names entity but provides further granularity for
structured facts

•	 nodes: Node information

•	 producers: Producers are the servers that compiled the catalog and sent the report

•	 reports: Reports contain the outcome of applying a catalog

•	 resources: Resource information in catalogs

https://puppet.com/docs/puppetdb/latest/configure.html
https://forge.puppet.com/modules/puppetlabs/pe_databases
https://forge.puppet.com/modules/puppetlabs/pe_databases
https://www.puppet.com/docs/puppetdb/8/api/query/v4/ast.html
https://www.puppet.com/docs/puppetdb/8/api/query/v4/ast.html

Puppet Platform Parts and Functions254

To begin looking at PQL queries, the simplest way is to return all the data in an entity. This can be
done by simply listing an entity name and empty curly braces. For example, to return all node data, it
would be nodes {}; to search for nodes with particular parameters within the curly braces, we use
attribute names and the value they should equal (=), contain (~), be less than (<), or greater than (>).
For example, to return nodes whose last report status was unchanged, the query would be nodes {
latest_report_status = "unchanged"}.

We will not list the output for any of these queries as they can be verbose, but you will try to make
examples in your lab at the end of this section.

These attribute statements can be further negated with !, chained with and/or, and parenthesized
with brackets () to contain different statements. For example, to make a more complicated query to
find whether a particular file was declared with the wrong permissions, we could run this PQL query:

resources { (type = "File" and title = "/etc/motd") and ! (
parameters.mode = "0644" and parameters.owner ="root") }

On the command line, this can also be run via the puppet query resource {'latest_
report_status = "unchanged"}'.

PuppetDB queries can also be used in Puppet code with the PuppetDB function. Here’s an example:

$changed_nodes = puppetdb_query(node[certname]{ resource {'latest_
report_status = "unchanged"}}) .map |$value| { $value["certname"] }
notify {"Nodes changed":
    message => "The following nodes changed on their last run
${join($changed_nodes, ', ')}",
}

In all these examples, it has been assumed certificates are set up for secure SSL communication either
directly on Puppet infrastructure or with clients running the query. If using default locations, the
puppet query command picks up the certificates automatically but can also be set like so:

puppet query '<PQL query>' \
  --urls https://puppetdb.example.com:8081 \
  --cacert /etc/puppetlabs/puppet/ssl/certs/ca.pem \
  --cert /etc/puppetlabs/puppet/ssl/certs/<certname_of_local_host>..
pem \
  --key /etc/puppetlabs/puppet/ssl/private_keys/<certname_of_local_
host>..pem

Web points can also be accessed via curl or equivalent commands, like so:

curl -X GET <fqdn_of_puppetDB_host>https://<fqdn_of_puppetDB_
host>:8081/pdb/query/v4\
  --tlsv1 \
  --cacert /etc/puppetlabs/puppet/ssl/certs/ca.pem \

PuppetDB and PostgreSQL 255

  --cert /etc/puppetlabs/puppet/ssl/certs/<certname_of_local_host>.pem
\
  --key /etc/puppetlabs/puppet/ssl/private_keys/<cert_name_of_local_
host.pem \
  --data-urlencode 'query=<PQL query>'

To allow queries to be made directly from a desktop or other nodes, the Puppet client tools can be used.
The setup instructions for installing on Open Source Puppet are detailed at https://puppet.com/
docs/puppetdb/latest/pdb_client_tools.html and Puppet Enterprise has instructions
at https://www.puppet.com/docs/pe/2021.7/installing_pe_client_tools.
html.

Alternatively, the SSL authentication can be deactivated to allow unauthenticated queries following
the instructions at https://puppet.com/docs/puppetdb/latest/configure.
html#jetty-http-settings. This book would strongly advise against this as it would open
the data for anyone to access on your network.

In this section, we showed some of entities and queries it was possible to use with PQL. It would
be impractical to go through all the possible options available to these entities and the range of
options available to PQL, but the full details can be seen in the documentation at https://
puppet.com/docs/puppetdb/latest/api/query/v4/entities.html.
Additionally further examples of PQL queries can be seen in the documentation at https://
puppet.com/docs/puppetdb/latest/api/query/examples-pql.html,
and the Vox Pupuli community is building useful examples on its web pages at https://
voxpupuli.org/docs/pql_queries/.

Lab – querying PuppetDB

SSH to the primary server and query PuppetDB for the following information:

•	 List the memory size of all the compiler servers (hint: compiler servers all have a trusted fact
and Facter has a memory fact)

•	 List all the services being enforced on the Puppet server

•	 List the start and end times of the latest report of each server

Example answers can be found at https://github.com/PacktPublishing/Puppet-8-
for-DevOps-Engineers/blob/main/ch10/PQL_samples_answers.txt.

Note
Be careful with these queries in production systems working at scale; some endpoints such as
reports could contain a lot of data, and a query may put a lot of stress and load on a system.

https://puppet.com/docs/puppetdb/latest/pdb_client_tools.html
https://puppet.com/docs/puppetdb/latest/pdb_client_tools.html
https://www.puppet.com/docs/pe/2021.7/installing_pe_client_tools.html
https://www.puppet.com/docs/pe/2021.7/installing_pe_client_tools.html
https://puppet.com/docs/puppetdb/latest/configure.html#jetty-http-settings
https://puppet.com/docs/puppetdb/latest/configure.html#jetty-http-settings
https://puppet.com/docs/puppetdb/latest/api/query/v4/entities.html
https://puppet.com/docs/puppetdb/latest/api/query/v4/entities.html
https://puppet.com/docs/puppetdb/latest/api/query/examples-pql.html
https://puppet.com/docs/puppetdb/latest/api/query/examples-pql.html
https://voxpupuli.org/docs/pql_queries/
https://voxpupuli.org/docs/pql_queries/
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch10/PQL_samples_answers.txt
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch10/PQL_samples_answers.txt

Puppet Platform Parts and Functions256

Scaling with compilers
1.	 The review of Puppet platform components so far assumes that all components are present

on a single primary server. However, as the number of managed nodes increases, it becomes
impractical for a single server to handle them. According to Puppet’s documentation, a primary
server can manage up to 2,500 clients on default settings. To handle the growing number of nodes,
Puppet uses horizontal scaling, which involves using Puppet compile servers. In Figure 10.4,
a subset of primary services is shown to be moved onto compile servers. These servers can be
configured in a round-robin selection in the client’s configuration file or placed behind a load
balancer. This enables multiple nodes to work together to compile catalogs while still allowing
certain services to run on the primary server. According to Puppet’s documentation, with the
default compiler settings, up to 3,000 clients can be served per compiler:

Figure 10.4 – Puppet compiler services

A compile server hosts a subset of services that are present on the primary server, such as Puppet
Server and PuppetDB. This enables remote completion and synchronization of catalog compilation
requests, thereby increasing the number of JRuby instances required for compiling catalogs.

1.	 The most widely used approach for directing client requests to compile servers is to utilize a
hardware - or cloud-based load balancer. As there are several load balancer options available,
Puppet does not provide explicit instructions on configuration. However, it recommends
using the /status/v1/simple endpoint to check the health of compile servers. If the
load balancer does not support HTTP health checks, checking whether the host is listening
for TCP connections on port 8140 can provide a limited check.

Scaling with compilers 257

2.	 There are alternatives to a load balancer, such as using DNS SRV records, which is detailed at
https://puppet.com/docs/puppet/latest/server/scaling_puppet_
server.html#using-dns-srv-records, or using a DNS entry with round-robin
settings, as detailed at https://puppet.com/docs/puppet/latest/server/
scaling_puppet_server.html#using-round-robin-dns, but as these tend to
be much less frequently used, we will not go into detail in this book.

Note
In the puppet.conf file, it is possible to add a list of servers in the client server value to
contact but this list would work only in the event of failures and would not try to balance
out connections.

3.	 With compile servers, the CA remains on a single Puppet primary server and is referred back
to when clients send their CSR or certificates for checking.

4.	 As stated at the beginning of the chapter, we will refrain from delving into the installation process
in detail, as it would not add much value to Puppet’s own instructions, available at https://
puppet.com/docs/puppet/latest/server/scaling_puppet_server.html
for open source and https://puppet.com/docs/pe/2021.7/installing_
compilers.html for PE. However, it is essential to note that compile servers may require
dns_alt_names to be added to their puppet.conf file if load balancers are being used
in TCP proxying mode or a DNS round-robin method. This is necessary to enable all server
names that may be used in requests through the load balancer.

5.	 Even with a load balancer enabled, it is possible to just target compile servers directly by running
puppet agent -t server=<server to send request>.

6.	 In Chapter 13, we will provide more detailed information on how to monitor and manage server
settings for scalability, and in Chapter 14, we will discuss Puppet’s reference architectures for
achieving scalability. However, it is important to note that there may be latency issues if compile
servers are located too far away from the primary server. Therefore, it is recommended to keep
them within the same region in cloud terms, as per best practices.

Lab – viewing compiler and load balancer configuration

The deployed lab environment consists of three compile servers. You can view the reports they are
compiling and how pecdm configured the load balancer, as follows:

1.	 Log in to the web console and review the report runs of the Puppet instance server. In the
Metrics section of a report, look for the Report submitted by section and note that this may
vary in different reports. If there are few reports available, enter the Jobs section and run Puppet
several times on your instance node to generate more reports.

https://puppet.com/docs/puppet/latest/server/scaling_puppet_server.html#using-dns-srv-records
https://puppet.com/docs/puppet/latest/server/scaling_puppet_server.html#using-dns-srv-records
https://puppet.com/docs/puppet/latest/server/scaling_puppet_server.html#using-round-robin-dns
https://puppet.com/docs/puppet/latest/server/scaling_puppet_server.html#using-round-robin-dns
https://puppet.com/docs/puppet/latest/server/scaling_puppet_server.html
https://puppet.com/docs/puppet/latest/server/scaling_puppet_server.html
https://puppet.com/docs/pe/2021.7/installing_compilers.html
https://puppet.com/docs/pe/2021.7/installing_compilers.html

Puppet Platform Parts and Functions258

2.	 View how PECDM created the Azure load balancer in the Terraform module at https://
github.com/puppetlabs/terraform-azure-pe_arch/blob/main/modules/
loadbalancer/main.tf.

Summary
In this chapter, we learned about the services provided by the Puppet server and how the embedded web
server attaches handlers to mount points, which can then be requested via HTTP requests to endpoints.

It was shown that the /puppet endpoint provides services for configuration requests and how
indirectors or environments can request specific components such as requesting a catalog from a
server. The /puppet-ca endpoint similarly used indirectors to allow for requests to the CA. The
/puppet-admin-api endpoint was then shown to allow for clearing the environment cache and
JRuby instances as more advanced administrative actions.

It was then shown how Puppet creates a CA server with a root CA and an intermediate CA to sign or can
run in legacy mode with a single combined CA. The options for using externally provided certificates
were then discussed. The process of signing certificate requests was shown, with the puppetserver
certificate command for managing certificates and requests and the puppet ssl command
for managing agent certificate management. It was then shown how this process could be automated
with auto signing, which could auto-sign everything, based on naming or based on a script running
and viewing the certificate request.

JRuby interpreters were discussed, showing how JRuby is an implementation of Ruby on Java and
capable of running Puppet’s Ruby components, such as compiling Puppet code, in a scalable and
concurrent way.

An overview of the user, service, and configuration files and logging was shown, examining the
server side of puppet.conf and how to configure and view settings in the file and defaults using
the puppet config commands.

Having reviewed the components of Puppet Server, the Puppet client lifecycle was then viewed,
seeing how the agent makes CSRs to the CA and sends facts and a request for a catalog. The logs were
viewed to show where requests re made and how this can be tracked through requests. It was shown
how the client could be configured via puppet.conf and how additional information could be
added to the CSR.

PuppetDB and PostgreSQL were then explored as a frontend/backend database architecture that can
store reports generated from applying Puppet catalogs along with the latest facts and events from
nodes. We reviewed the file directories and logging locations and then saw how PuppetDB could be
queried on the API, command line, and Puppet code using PQL.

Compilers were then shown to be able to allow Puppet Server to scale horizontally by allowing Puppet
Server and the PuppetDB services to be put onto multiple servers, which could be load-balanced
for clients.

https://github.com/puppetlabs/terraform-azure-pe_arch/blob/main/modules/loadbalancer/main.tf
https://github.com/puppetlabs/terraform-azure-pe_arch/blob/main/modules/loadbalancer/main.tf
https://github.com/puppetlabs/terraform-azure-pe_arch/blob/main/modules/loadbalancer/main.tf

Summary 259

In the next chapter, we will show how Puppet classifies clients requesting catalog compilations so that
it knows which version of code to apply and which classes. We will show how environments allow
multiple versions of code to exist on the primary server and how to use a control repo to manage the
modules and versions that should be included.

11
Classification and

Release Management

The focus of this chapter will be on how Puppet deploys code and classifies this code to servers.
Environments will be examined first, showing how this creates isolated groups of servers with particular
versions of modules. We will discuss how this can provide both static and temporary environments.
We will show how modern Puppet uses directory-based environments to have environment code in
a specific location that Puppet Server can automatically discover. The methods a primary server can
use to classify nodes will be discussed, at the most basic level using node definitions in the site.
pp main manifest file or a collection of manifests, using Hiera lookups within these node definitions
or with an External Node Classifier (ENC) script run by the primary server. The implementation
of the classification service for Puppet Enterprise will be discussed, showing how it builds on top of
these solutions using its own ENC script and the additional feature of node groups in the web console.

The Puppet agent run will be looked at in detail to show the steps involved and how data is loaded,
cached, and refreshed when a catalog is compiled.

It will then be shown how to use the control repo structure with Puppetfiles to manage modules to deploy
code into environments using r10k or g10k, with a discussion of various methods to synchronize
code depending on the configuration of the local infrastructure. The PE-specific implementation,
Code Manager, built on r10k, will then be discussed.

Having reviewed the technical structures for classification and release management, focus will then
be put on the challenges and limitations of using this with regulated processes and multiple teams.

Classification and Release Management262

In this chapter, we’re going to cover the following main topics:

•	 Puppet environments

•	 Understanding node classification

•	 Puppet runs

•	 Managing and deploying Puppet code

•	 Lab—classifying and deploying code

Technical requirements
Clone the control repo from https://github.com/puppetlabs/control-repo to your
controlrepo-chapter11 GitHub account and update the following files in this repo:

•	 Puppetfile with https://github.com/PacktPublishing/Puppet-8-for-
DevOps-Engineers/blob/main/ch11/Puppetfile.

•	 Build a standard cluster with three clients by downloading the params.json file from
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/
blob/main/ch11/params.json and updating it with the location of your control repo
and your SSH key for the control repo. Then, run the following command from your pecdm
directory:

bolt --verbose plan run pecdm::provision --params @params.json

Puppet environments
Puppet environments are a way to define specific versions of modules, manifests, and data to be
used for groups of servers. Unfortunately, environment is a general technology term used for other
purposes in organizations, and can easily be confused. The best advice would be to always say Puppet
code environment if used in discussions outside of a purely Puppet context. This prevents a Puppet
environment being associated directly with anything else.

Modern Puppet environments are dynamic directory-based, which means the Puppet server—or,
in the case of puppet apply, the client—will look for the assigned environment to exist within
a directory. Several variables set the location of related directories, including the environments
directory itself, and we strongly recommend leaving all these settings at default to avoid confusion
and issues. We will now look at the levels of code directories and paths within an environment.

https://github.com/puppetlabs/control-repo
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/Puppetfile
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/Puppetfile
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/params.json
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/params.json
https://github.com/PacktPublishing/Puppet-7-for-DevOps-Engineering/blob/main/ch11/params.json

Puppet environments 263

Environment directories and paths

The first level is the code and data directory set by the codedir variable in puppet.conf,
defaulting to /etc/puppetlabs/code for Unix and %PROGRAMDATA%\PuppetLabs\code
for Windows (this is normally C:\ProgramData\PuppetLabs\code). Puppet Server does not
use the codedir setting in puppet.conf and uses jruby-puppet.master-code-dir
in puppetserver.conf, so both would need to be set if changed.

Note
Prior to Puppet 3.3, environments were declared in the puppet.conf file and each
environment had to be declared in a section with modulepath and manifests variables
set. This is still technically possible in Puppet today if codedir was not set but there is no
reason to implement this approach.

The code and data directory contains two directories. First, there is a module directory to provide
global user modules included in the default basemodulepath variable in puppet.conf. This
basemodulepath variable by default contains $codedir/modules:/opt/puppetlabs/
puppet/modules on Unix and $codedir\modules on Windows. The extra directory for
Unix is used by the PE Server installation to place modules used to configure PE. These modules
are prefixed with pe to avoid confusion with any modules that are already in use in environments.

The second directory is an environment directory; by the default setting of environmentpath in
puppet.conf, this is $codedir/environments and is where environments will be viewed.

NOTE
The codedir directory is used to contain global Hiera data and configuration and, by default,
hiera_config settings. If it finds a $codedir/hiera.yaml file, it will override the
default $confdir/hiera.yaml file, which is now standard, as discussed in Chapter 9.

Within the environments directory, each environment to be created will have a directory that
can have a name containing lowercase letters, numbers, and underscores. Each environment directory
can contain the following:

•	 Puppet modules in directories specified by $modulepath

•	 Hiera data configured in a hiera.yaml file in the directory

•	 Classification data in a manifest or set of manifests in a directory specified by $manifest

•	 Environment configuration data in an environment.conf file in the directory

Having reviewed the directories and paths of environments, we will now look at the environment
configuration files in more detail.

Classification and Release Management264

Environment configuration files

Environment configuration data can be set in an environment.conf file within the environment
directory; this file has an INI-style format like puppet.conf but with no sections.

By default, if the modulepath environment variable is not set in environment.conf, it will
be set to $environmentpath/$environment/modules:$basemodulepath.

So, in Unix-based systems, by default this will be the following:

/etc/puppetlabs/code/environments/$environment/modules: /opt/
puppetlabs/puppet/modules

In Windows systems, it will be this:

C:/ProgramData/PuppetLabs/code/environments/production/modules;C:/
ProgramData/PuppetLabs/code/modules

Remember to use a semicolon (;) to separate Windows directories in a list and a colon (:) for
Unix systems.

In the Managing and deploying Puppet code section, we will discuss how the modules are deployed
into this directory and how to list the contents of each directory in modulepath.

Note
Never set a modulepath variable to read from another environment directory. In the Puppet
runs section, we will discuss the potentially inconsistent effects of environment data being
cached and refreshed.

The manifest variable can be a single manifest file or a directory containing multiple manifests that
will be read in alphabetical order. Puppet will see this variable as containing a directory if the path ends
with a forward slash (/) or a full stop (.) and will recognize if it is a directory. If there is no setting in
environment.conf, the default will be a directory at $environmentpath/$environment/
manifests, which is /etc/puppetlabs/code/environments/$environment/
manifests for Unix-based systems and C:/ProgramData/PuppetLabs/code/
environments/$environment/manifests for Windows-based systems. The directory
environment will never use the global manifest setting from puppet.conf. In the next section,
we will go into further detail about how node definitions and Hiera lookups can be used to classify
servers in this environment with these manifests.

The environment_timeout variable states how long Puppet Server will cache a particular
environment, overriding what is set. Puppet advises not to set this in environment.conf, only
using the global version in puppet.conf, and to only use 0 or unlimited. The role of caching
will be discussed further in the Puppet runs section of this chapter.

Puppet environments 265

The config_version variable can set a script to run once the catalog has compiled and return
the output as part of the logging. If not set by default, a script will return the time the catalog was
compiled in the Unix epoch format (the number of seconds that have elapsed since January 1, 1970
midnight UTC/GMT). For the default epoch script, the output will appear as follows:

Info: Applying configuration version '1663239677'

A more useful example will be shown when using Git-based deployment solutions in the Managing
and deploying Puppet code section.

Note
environment.conf and the config_version script can use the basemodulepath,
environment, and codedir global variables.

Now that we have reviewed the configuration of environments, it is useful to understand how we can
validate the configuration and the types of environments deployed.

Environment validation and deployment

The settings discussed in puppet.conf and environment.conf can be checked by using the
puppet config print command, deploying the --environment flag to look at a particular
environment and --section for a particular section in puppet.conf. For example, to check
the codedir variable in puppet.conf and the modulepath variable in the production
environment, the following commands could be run:

puppet config print codedir
puppet config print --environment production modulepath

By default, Puppet Server will create a production environment but a Puppet client running apply
will not. For both scenarios, production is the default environment Puppet will run from. In the next
section of this chapter, we will show how servers get classified into other environments.

There are three environmental strategies: permanent, temporary, and organizational silos. Permanent
environments are long-lived and the environment naming typically matches the server’s use, such as
if the server is a product or development server. Temporary environments are those that can be used
in situations such as testing changes before they are promoted, while organizational silo environments
reflect divided infrastructure where different teams such as Windows and Linux teams own different
servers and have different environments. These strategies can be mixed together as required to meet
your organization’s approach.

Now that we’ve learned about Puppet code environments, we will see how to classify clients based on
their use in an environment and set of modules from that environment.

Classification and Release Management266

Understanding node classification
Classification of a node involves finding which environment a node should use, which classes should
be applied to a node, and which parameters should be applied to a node. The ideal scenario is to have
a single role class applied to a host, but the business logic can be more complicated. This applies to
both agent runs to the Puppet Server and puppet apply runs.

Having defined what node classification is, we will now look at the methods that can be used for
classification, taking node definitions first as the simplest approach.

Node definitions

The most basic method of node classification is using a node definition, which is a section of Puppet
code allowing matching against node names to assign classification information and top-level variables
to servers but not the environment. If only using node definitions, the client’s requested environment
based on puppet.conf will be used. The node name will be the same as the certname setting
from puppet.conf, which by default is the node’s fully qualified domain name (FQDN).

The syntax of a node definition is set out here:

•	 The node keyword

•	 A node name as a quoted string, regular expression (regex), or default

•	 A mixture of the following Puppet code items within curly braces ({}):

	� Class declarations

	� Variables

	� Resource declarations

	� Collectors

	� Conditional statements

	� Chaining relationships

	� Functions

It is recommended to keep node definitions down to a minimum and only use class declarations and
variables. If any manifest contains a node definition, then the node definitions must match all nodes,
or compilation for nodes that do not match will fail. This is normally made safe by ensuring there is
a default definition even if the default definition contains no code.

Understanding node classification 267

A node will only match one node definition, and this is prioritized by the following:

•	 An exact name match

•	 A regex match (multiple regex matches are unpredictable, and only one will be used)

•	 default (the keyword that nodes will match if they have failed to match any other definition)

Note
A prioritization step before default would look for any partial matches of the hostname
if strict_hostname_checking were set to false in the puppet.conf primary
server. To avoid this insecure matching, it is set to true by default in Puppet 5.5.19 + and
6.13.0+, and in Puppet 7 onward was removed as an option.

For example, the following code will classify server1.exampleapp.com to the role::oracle
class and server2.exampleapp.com and server3.exampleapp.com to the role::apache
class. Any other servers that end with exampleapp.com will be classified to role::example_
common_windows or role::example_common_linux depending on the OS family, such
as server5.exampleapp.com, and any other node will be classified to role::common, such
as server1.anotherapp.com:

node /.exampleapp.com$ {
  if $facts['os']['family'] {
    include role::example_common_windows
  else
    include role::example_common_linux
  }
}
node 'server1.exampleapp.com' {
  include role::oracle
}
node 'server2.exampleapp.com','server3.exampleapp.com' {
  include role::apache
}
node default {
  include role::common
}

Classification and Release Management268

It is a default to have a site.pp file in a manifest directory to keep things simple, but multiple
manifests in this directory can contain node definitions that could be used to organize the files based
on organization, use case, or ownership. It is clear having many node definitions simply will not scale;
a recommended way of keeping node definitions simple is to use a default definition that looks at the
certificate of the node to have a pp_role extension that contains the name of the role, as shown
in this code example:

node default {
  $role = getvar('trusted.extensions.pp_role')
  if ($role == undef) {
    fail("${trusted['certname']} does not have a pp_role trusted
fact")
  }
  elsif (!defined($role)) {
    fail("${role} is not a valid role class")
  }
  else {
    include($role)
  }
}

Using the getvar function to avoid issues with hosts without certificates and the defined
function to confirm the declared role is visible in the environment, it will include the role declared
in the certificate.

Any code applied outside of the node definitions will apply to all nodes, but setting uncontrolled global
defaults like this is not a recommended approach. In the previous code block, role classes were used,
but any class could be included for exceptions.

A local puppet apply call will not look for manifests in the manifest variable setting from
puppet.conf but is expected to do what is passed on the command line either via the –e flag
or by passing a specific manifest file.

Having looked at the code-driven approach of node classification, we will now look at how Hiera data
can be used to classify nodes.

Classifying nodes with Hiera

A more data-driven approach can be made in the default node definitions with Hiera arrays using the
lookup function. While the lookup function could be used outside of the node definition, we
recommend avoiding this to ensure, if any other node definition were specifically added for a node,
it would have the expected result of only applying the node definition and not a less predictable mix.

Understanding node classification 269

The first step would be, as we saw in Chapter 9, to ensure an appropriate Hiera hierarchy is in place
for each environment, assuming a simple hierarchy of node, OS, and defaults in the hiera.yaml
environment, as shown here:

datadir: data
data_hash: yaml_data
  - name: "Node data"
    path: "nodes/%{trusted.certname}.yaml"
  - name: "OS defaults"
    path: "os/%{facts.os.family}.yaml"
  - name: "Common data"
    path: "common.yaml

We could then add a lookup within a default node definition:

node default {
lookup({
  'name'          => 'classes',
  'value_type'    => Array,
  'default_value' => [],
  'merge'         => {
    'strategy' => 'unique',
  },
}).each | $classification | {
  include $classification
}

While it would seem more appropriate to call the variable class, this is not possible due to class
being a reserved word.

Data in the environment-level Hiera could then be added to a common.yaml file to ensure that by
default, servers get the core role:

classes:
  - role::core

Then, we create an os/RedHat.yaml file in the data file containing the following code:

classes:
  - role::core::redhat

Classification and Release Management270

This would ensure all servers from the Red Hat family such as CentOS would get assigned the
role::core::redhat class. To assign a particular role to a server, we create a node/exampleapp.
example.com.yaml file, containing the following code:

classes:
  - role::docker

This would assign the role::docker class to the exampleapp.example.com node.

To allow exceptions and a more complex combination setup, hashes instead of arrays could be used,
changing the lookup in site.pp from a unique to a deep merge strategy and the data from an
array to a hash:

node default {
lookup({
  'name'          => 'classes',
  'value_type'    => Hash,
  'default_value' => []
  'merge' =>
    'strategy' =>  'deep',
}).each | $classification | {
  include $classification
}

In this case, we could use keys within Hiera that are only visible in Hiera to take over the role construct
and use profiles directly, setting a common.yaml file to ensure the default classification gets a core
profile and a security profile:

classes:
base profile: profile::core
security profile: profile::security

Then, for a specific server exampleapp.example.com, the security_profile variable
could be set in node/exampleapp.example.com.yaml:

classes:
security_profile: profile::security::legacy

This would override the security profile key and result in exampleapp.example.com being
classified as profile::security::legacy and profile::core.

Understanding node classification 271

More complex Hiera-based key lookups could be constructed to look up based on Facter values, but
since this is not a recommended approach in this book, enough detail has been shown to understand
how Hiera can be used. It is worth seeing the psick module https://forge.puppet.com/
modules/example42/psick by example42 that uses the Hiera approach and can be used to
have a preset and staged way of including modules in the Linux case. Including the psick class and
simply setting the Hiera keys with hashes would be enough to classify a host:

psick::firstrun::linux_classes
psick::pre::linux_classes
psick::base::linux_classes
psick::profiles::linux_classes

Having reviewed the code and data approaches for classification in detail, we will now cover the more
advanced approach of using ENC scripts.

ENC scripts

An ENC is a script that the Puppet Server or a puppet apply call can run. The requirements of
the script are to take an argument of the certname of the client and return either a nonzero return
code for unknown nodes or a YAML output containing the classes, parameters, and environment for
catalog compilation. Inside this ENC, it is possible to access various external data source references
such as PuppetDB or internal data sources of your organization. It is not important which language
the ENC is written in.

An example output would look like this:

classes:
  role::core::windows
  sqlserver_instance:
    features:
      - SQL
    source: E:/
    sql_sysadmin_accounts:
      - myuser
parameters:
  dns_servers:
    - 2001:4860:4860::8888
     - 2001:4860:4860::8844
  mail_server: mail.example.com
  vault_enabled: true
environment: uat

https://forge.puppet.com/modules/example42/psick
https://forge.puppet.com/modules/example42/psick

Classification and Release Management272

In this example, it can be seen the server will have the role::core::windows class applied
and the sqlserver_instance class with associated parameters, a list of parameters that will be
global variables in the catalog, and an environment of user acceptance testing (UAT).

It would normally be better to pass class parameters via Hiera data but this is just to demonstrate
what is possible in the ENC output.

To configure the use of ENC scripts, two variables must be set in puppet.conf: first, node_
terminus, which defaults to plain, to only use the manifests to define classification. Setting
node_terminus to exec causes the second variable, external_nodes, to be checked, which
should be set to the location of a script. For example, the Foreman project uses an ENC that is defined
in puppet.conf by its configuration module as follows:

node_terminus = exec
external_nodes = /etc/puppetlabs/puppet/node.rb

The contents of the script can be seen here: https://github.com/theforeman/puppet-
puppetserver_foreman/blob/master/files/enc.rb.

The configuration module for placing this script can be found at https://forge.puppet.com/
modules/theforeman/puppetserver_foreman.

Developing ENCs is beyond the scope of this book, and it would be advisable to avoid the complexities
involved in accessing external data this way as it can be expensive to access.

We have covered how ENC scripts work, but PE uses its own type of ENC script with additional features.

PE classifier

PE provides its own ENC classifier that accesses the classification service API, which is a Clojure app,
and stores node group information in the PostgreSQL classification database.

This is configured by setting node_terminus = classifier in puppet.conf by the
installer and should not be changed as it will not be supported.

Note
node_terminus for PE used to be called console on PE 4 and previous versions.

The node groups come in two types: environment and classification. The environment groups are used
to assign environments to nodes, while the classification nodes are intended for assigning classes and
adding parameters and variables. The node groups can be viewed and configured from the PE web
console in the Node groups section.

https://github.com/theforeman/puppet-puppetserver_foreman/blob/master/files/enc.rb
https://github.com/theforeman/puppet-puppetserver_foreman/blob/master/files/enc.rb
https://forge.puppet.com/modules/theforeman/puppetserver_foreman
https://forge.puppet.com/modules/theforeman/puppetserver_foreman

Understanding node classification 273

All node groups can contain rules to define based on facts or by directly naming servers to be contained
by a node group. They can contain any classes with any defined class parameters that will be classified to
these matching nodes, parameters known as configuration data that act like Hiera data, acting as overrides
and taking precedence over Hiera, and variables that are declared as global variables for the group.

Note
Older versions of PE did not enable configuration data by default and a section in /etc/
puppetlabs/puppet/hiera.yaml had to be added:

hierarchy: - name: "Classifier Configuration Data" data_hash:
classifier_data

By default, as pictured in Figure 11.1, PE will have an All Nodes node group as a containing parent node
group for all configurations, and beneath that split out to All Environments, an environment group
acting as a parent group for all declared environment groups, and PE Infrastructure, a classification
group used for configuring the PE architecture:

Figure 11.1 – PE default node groups

Classification and Release Management274

The environment groups are marked in Figure 11.1 as Env group. The environment node groups by
default use the trusted.extensions.pp_environment fact in a rule to match production
or development into groups of the same name and ensure the named environment is assigned. If
trusted.extensions.pp_environment is not set, the All environments node group will
act as a catch-all to assign production as the default environment. Using the pp_enviroment
trusted fact prevents the server from being moved to another environment without regenerating the
server certificates, which will require access to both the client and primary server. The Development
one-time run exception node group (called Agent-specified in previous PE versions) sets rules
to allow development servers to run environments specified by the client. This can be useful when
developing modules in feature branches, allowing testing to take place simply by running puppet
agent –t --environment=myfeaturebranch.

Approaches to the development and deployment of environments will be discussed further in the
Managing and deploying Puppet code section, but it may prove necessary to have more environment
levels between production and development, in which case the recommended approach would be to
create a node group of that environment name under all environments and create a rule matching
trusted.extensions.pp_environment with your set environment name.

Environment groups should be kept simple, so avoid assigning any class parameters or variables.

When classification groups are nested, they inherit the definition from their parent group. When
creating a group structure, it will make sense to start with a general layer of configuration and narrow
it down to classification groups that are more specific. This can be seen in the PE Infrastructure node
groups, which start by ensuring general top-level parameters such as puppet_master_host are
set, which apply to all Puppet infrastructure hosts, and then have specific services and functions such
as a compiler or PuppetDB, which will be configured only on a subset of nodes.

It can be confusing because this inheritance applies to rules as well, so if the parent rule has already
set a rule limiting nodes, the child node groups’ rules will be combined with the parent node group.
This also applies to the pinning of nodes; you cannot just ignore rules and pin any server visible to
the primary server. It is also important to note if the child node group contains no rules, it will not
apply classification, even that inherited from a parent group.

Further confusion can arise from the purpose of the environment variable in classification node
groups; this does not define where the assigned classes will run from but, in fact, tells the node group
the environment in which to look for available class names. This can create issues if node groups
are shared between development and production nodes and new classes are initially introduced to
a development environment before being promoted to production, so it can often be the case that it
makes the most sense for application node groups to use the lowest level of environment to have full
visibility of classes.

To keep things simple, it is recommended to use straightforward classification roles that are kept as
children of all nodes and simply have rules matching trusted.extensions.pp_role to a
specific class role name, and then assign that role class to the classification role group.

Understanding node classification 275

To automate the creation of node groups, the node_manager module (https://forge.
puppet.com/modules/WhatsARanjit/node_manager) can be used to manage them through
Puppet code, which is how the peadm module itself configures Puppet node group information. For
example, peadm ensures that nodes with the puppet/puppetdb-database trusted extension
are assigned to the PE Database node group with the following code:

node_group { 'PE Database':,
  rule => ['or',
    ['and', ['=', ['trusted', 'extensions', peadm::oid('peadm_role')],
'puppet/puppetdb-database']],
    ['=', 'name', $primary_host],
  ]
}

Note
The node manager module has the purge_behavior setting, which, if set to none
for resources, ensures only the specific changes you wish to make are applied to node groups.
By default this is set to all, removing any settings you have not declared.

Alternatively, the APIs can be used to perform backups and restores of node group data, saving to
a file with /classifier-api/v1/groups and restoring with /classifier-api/v1/
import-hierarchy. Peadm implements backup and restore classification tasks using these
APIs: https://github.com/puppetlabs/puppetlabs-peadm/tree/main/tasks.

Note
Since PE version 2019.2, a $pe_node_groups top-scope variable that returns all node
groups is available.

A further method to use external data to add classes with the Puppet Data Service (PDS) will be
shown in Chapter 13. But having reviewed the various methods of classification, we will now discuss
best-practice approaches to classifying nodes.

Recommended approach

A mixture of ENCs and node definition approaches can be used as it will merge the information, but
this can make it harder to understand where classification has taken place. It would be best practice to
choose one option if possible or at least to be clear on the purpose of each mechanism, such as node
definition to match roles based on certificate and Hiera to match node exceptions.

https://forge.puppet.com/modules/WhatsARanjit/node_manager
https://forge.puppet.com/modules/WhatsARanjit/node_manager
https://github.com/puppetlabs/puppetlabs-peadm/tree/main/tasks

Classification and Release Management276

Presuming classification has not already been chosen by your organization or is specific within your
configuration model, such as using Foreman or psick, we recommend the simple pattern of assigning
a default node definition based on the pp_role extension in the certificate for open source Puppet:
use node groups matching the pp_role extension against node group role, and pp_environment
against the environment to be used for PE. This is what Puppet Support expects and is the built model,
but it limits the use of any variables or configuration data within the Hiera data setup.

The other mechanisms in sections Node definitions and Classifying nodes with Hiera were discussed since
in many organizations, classification will already be in place and will not be easily changed and therefore
must be understood. It is important to know if complex classifications must be produced; this can mean
data is not being put in the right place or—worse—Puppet is not being used well and too many variations
of servers are being produced. When we maintain tight standards with minimal exceptions, servers can be
disposed of and rebuilt easily, reducing operational complexity and the cognitive load of support teams.

Now that you have understood how servers are classified to an environment and to classes, we will
show how different data is loaded and cached during Puppet runs.

Puppet runs
In this section, the steps of a Puppet run and classification will be detailed. For the case of Puppet
runs, a puppet apply command should be considered as the equivalent of a Puppet server and
client on the same node.

When a catalog request is made by a client, four things are sent to the server:

•	 The node name

•	 The node’s certificate (not sent for apply)

•	 Facts

•	 The requested environment

The node name is the certname, and along with the requested environment is embedded in the
API request made—for example, /puppet/v3/catalog/exampleserver.example.
com?environment=uat.

The certificate can contain extensions, which will be turned into trusted facts.

After the server receives the agent data, it asks the configured node terminus for a node object. In the
case of plain, this will be blank, or for exec or classifier, YAML output will be returned
containing classes, parameters, and environment.

By default, puppet.conf sets strict-environment-mode to false, and this returned
environment will override the agent request; if it is set to true, the catalog compilation will fail. The
agent_specified_environment fact will appear if the agent specified an environment on
the Puppet run.

Managing and deploying Puppet code 277

The variables will then be set from the facts as both top-scope variables and the $facts hash,
extensions in the certificate as trusted facts in the $trusted hash, and parameters returned from
the node terminus as top-scope variables.

The main manifest will then be evaluated, looking for it to be defined by the environment configuration
first and then the client’s puppet.conf file if it is unset. If any node definitions exist, Puppet will
attempt to match the certname and fail compilation if it does not.

Any resources outside of the node definition are evaluated and added to the catalog and any classes.
As was noted in the Node definitions section, it is not recommended to declare anything outside of
node definitions. The matching node definition will then evaluate the code, overriding any top-scope
variables with variables declared in the node definition, adding resources to the catalog, and loading
and declaring classes in the node definition.

Puppet will then load the manifest containing classes declared in the main manifest using the
modulepath variable configured for the environment. As a class is loaded, the code is evaluated and
resources are added to the catalog, and any classes declared within them will be loaded and evaluated.

Puppet then loads and evaluates the classes that were returned from the node object.

Having seen how Puppet classifies nodes and how agent runs process these classification methods, it
is now time to see how the environments are managed and deployed to the primary server to make
the right versions of code available to the nodes.

Managing and deploying Puppet code
By default, just creating the folders and dropping module contents into place combined with the
puppet module install command to automate pulling from the Forge API is enough to
make modules visible in environments and to allow them to be wrapped up in package management
to create versions. But this is not an approach that we recommend as it centralizes the deployment of
modules and environments, most likely making a single team a gatekeeper. We will see that control
repos provide more flexible control.

The most common approach is to use a Git repository known as a control repo. Puppet provides a
template for this repository at https://github.com/puppetlabs/control-repo.

Note
The Puppet Forge author example42 provides its own templated control repo for use with
its integrations and pre-designed implementation approaches: https://github.com/
example42/psick.

Puppet’s control repo template contains many of the directories and files discussed in the first section of
the chapter, along with Hiera data and some additional files specific to module deployment. Figure 11.2
shows the contents of the Puppet control repo:

https://github.com/puppetlabs/control-repo
https://github.com/example42/psick
https://github.com/example42/psick

Classification and Release Management278

Figure 11.2 – File structure of the Puppet control repo template

Managing and deploying Puppet code 279

In the first section of this chapter, Puppet environments, we discussed many files and directories, with
environment.conf, config version scripts, and the manifests directory for classification. Also
visible is the Hiera configuration in hiera.yaml and a data directory showing a simple initial two
layers of nodes, to match specific node names and common data, to act as a default for nodes that do not
match. The site-modules directory intends to show that ad hoc plans and tasks can be deployed as
part of this control repo as well as potentially give a home to roles and profiles. The scripts directory
is also worth reviewing to see in the config version script at https://github.com/puppetlabs/
control-repo/blob/production/scripts/config_version.sh how it will add Git
revision control information about the environment to the run. The part that we have not reviewed is
the Puppetfile file.

The Puppetfile file is a Ruby-based Domain-Specific Language (DSL) that provides a way to declare
which modules should be downloaded to an environment, where to source them from, and which
version to use. It is also possible to override module location settings by declaring moduledir as
a variable or the installpath parameter on a particular module. We do not recommend this as
good practice as it can be confusing to users unfamiliar with your environment and, if set to be outside
the environment directory, can affect caching and make the environment inconsistent. This will be
discussed later in this section.

Puppetfile module declarations at their simplest level contain the following:

•	 mod keyword

•	 A name in single quotes

•	 Optionally a comma, then a version number or the :latest keyword

For example, the following code block assumes Puppet Forge as the source and installs the latest version
of dsc-octopusdsc if the module is not present, but will not result in the module being updated:

mod 'dsc-octopusdsc'
mod 'puppetlabs-chocolatey', '6.2.0'
mod 'puppetlabs-stdlib' , :latest

This piece of code will install puppetlabs-chocolatey to the fixed version 6.2.0 and will install
puppetlabs-stdlib and keep updating it to the latest version. It is important to note this will
not result in Puppet Forge dependencies being installed—this must be managed within the Puppetfile
manually. Looking at module documentation on the Puppet Forge you will see example code on how
to add the modules to Puppetfiles.

https://github.com/puppetlabs/control-repo/blob/production/scripts/config_version.sh
https://github.com/puppetlabs/control-repo/blob/production/scripts/config_version.sh

Classification and Release Management280

To access modules within other Git repositories, the git option and the HTTP address to the repository
should be given. These can then be paired with one of the following options to clone a specific version
of the Git repository:

•	 ref, with a reference to a tag, a commit, or a branch

•	 tag, with a specific tag

•	 commit, with a specific commit reference

•	 branch, with the name of a branch or the :control_branch keyword (which will
automatically look up the control repo’s branch name)

•	 default_branch, a branch to use if all the preceding options fail

The following code demonstrates how the git options in the preceding list can be mixed and matched:

mod 'exampleorg-examplemodule1',
  :git => 'https://internalgitservice.com/exampleorg/examplemodule1',
  :tag =>  'v.0.1'
mod 'exampleorg-examplemodule2',
  :git => 'https://internalgitservice.com/exampleorg/examplemodule2',
  :commit => '68a140bd096a55019b3d5c8c347436b318779161'
mod 'anotherorg-anothermodule',
  :git => 'https://internalgitservice.com/anotherorg/anothermodule',
  :branch => :control_branch,
  :default_branch => 'main'

This code block takes examplemodule1 at tag version v.0.1 and examplemodule2 at
commit version 68a140bd096a55019b3d5c8c347436b318779161 from the same Git
organization. For anothermodule, if a branch with the same name as the environment that we are
trying to deploy exists, it will use that; otherwise, it will clone at the main branch.

In air-gapped environments where access to the Puppet Forge API is limited or in regulated environments
where it is an audit requirement to have a company-stored copy of all code, it may prove necessary
to download copies of code from the Forge and use it from your organization’s own Git system. In
this case, it is strongly advised that you follow the project URL on the module page, perform a Git
clone of the source of the Puppet Forge module, and then change the remote directory to your own
Git repository copy. This ensures the commit history is maintained and on a regular basis, you can
simply clone the code again and add new commits to your own local repository.

Managing and deploying Puppet code 281

Regardless of how Forge modules are downloaded, if they are not coming directly from the Forge at
their latest version it is important to frequently check versions and make this part of a regular cycle to
test and update. This ensures you are getting the latest features and fixes and means you avoid having
to perform large version upgrades that are harder to test. Following the Content and Tooling (CAT)
team at https://puppetlabs.github.io/content-and-tooling-team/blog/ can
help keep track of module releases.

Note
JFrog Artifactory users can use a Puppet Forge plugin to synchronize and host modules
internally, as documented at https://www.jfrog.com/confluence/display/
JFROG/Puppet+Repositories.

With this structure to manage several environments, it is simply a case of creating branches on the
Git repository, with each branch representing an environment that can have its own independent
content to be deployed.

To manage deployment, the standard system used for Open Source Puppet is known as r10k, and the
system used for Puppet Code Manager for PE is based on r10k but has further integrations for PE.

The installation instructions for r10k are straightforward and available direct from the repository
at https://forge.puppet.com/modules/puppet/r10k. Instructions to configure Code
Manager in PE either in node groups or via Hiera are available at https://puppet.com/docs/
pe/2021.7/code_mgr_config.html.

In both cases, as part of these instructions, an SSH key will be generated to allow for communication
between r10k and any Git repositories you have declared.

An alternative option for Puppet Open Source is to use g10k (https://forge.puppet.com/
modules/landcareresearch/g10k), which is a rewrite of r10k in Go and has substantial
performance improvements.

Note
You can still use r10k directly in PE, but this is not an approach Puppet will provide support for.

For open source Puppet, having configured and deployed r10k, it is then possible to run a sudo
-H -u puppet r10k deploy production command to deploy a specific branch or leave
off an environment name to deploy all available environments. A Webhook can also be configured
using the Sinatra server, as detailed in the r10k instructions at https://forge.puppet.com/
modules/puppet/r10k/readme#webhook-support.

https://puppetlabs.github.io/content-and-tooling-team/blog/
https://www.jfrog.com/confluence/display/JFROG/Puppet+Repositories
https://www.jfrog.com/confluence/display/JFROG/Puppet+Repositories
https://forge.puppet.com/modules/puppet/r10k
https://puppet.com/docs/pe/2021.7/code_mgr_config.html
https://puppet.com/docs/pe/2021.7/code_mgr_config.html
https://forge.puppet.com/modules/landcareresearch/g10k
https://forge.puppet.com/modules/landcareresearch/g10k
https://forge.puppet.com/modules/puppet/r10k/readme#webhook-support
https://forge.puppet.com/modules/puppet/r10k/readme#webhook-support

Classification and Release Management282

For PE, Puppet Code Manager is a Clojure application that exposes an /code-manager API
using a token generated in the PE role-based access control (RBAC) system, which will be covered
in detail in Chapter 14. It can be accessed either directly to the API or by running the puppet code
deploy command. For example, the following code will generate a token for the currently logged-in
user for the next 2 hours and then deploy in the production environment:

puppet-access login --lifetime 2h
puppet code deploy production --wait

In either version, to see the deployed modules you can use puppet module --list, which will
also show any dependency issues.

Note
Puppet Code Manager uses r10k underneath. To get more detailed debugging information,
the following command can be run, which is used for deploying in production:

runuser -u pe-puppet -- /opt/puppetlabs/puppet/bin/r10k -c /opt/
puppetlabs/server/data/code-manager/r10k.yaml deploy environment
production --puppetfile --verbose debug2

For these deployments, it is important to understand caching that can take place. All Puppet code is
read and parsed when the environment is loaded—as is the hiera.yaml file—and it is not re-read
until the environment cache is expired, or the JRuby instance is refreshed. The environment.conf
file by default sets this to unlimited. While Puppet templates and Hiera data are read anew from
disk on every function call, they are not cached. This means that if any local edits take place to Hiera
data or Puppet templates outside of r10k, they will be viewed. It also means that if environments
have module paths that look into other environments, a deployment would result in it only seeing the
Hiera and template updates. This is why it is strongly recommended to avoid this approach.

When using compilers to synchronize code, open source Puppet,\ has various options depending on
your environment as to how to deploy the code: installing and running r10k on every compiler
node, performing a rsync operation from the primary server to compilers, or using a read-only
network file share (NFS) from the primary to all compilers. This choice will be entirely down to what
is best for your organization in terms of network configuration and security standards.

On PE, Code Manager has a specific implementation using the file sync client and server, as shown
in Figure 11.3:

Managing and deploying Puppet code 283

Figure 11.3 – Puppet Code Manager architecture

A code deployment request will come in a request with an RBAC token either via the command line
or tooling. This will pull down the code to the commit staging directory on the primary server. The file
sync clients for all infrastructure nodes have a polling watcher that sees the deployment and alerts the
file sync process. This will result in the file sync process doing one of two things, depending on whether
lockless code deploys are enabled (which were introduced in PE 2021.2). If lockless code deploys are
not enabled on the relevant server, all JRuby instances will need to be reserved to prevent any catalog
runs using inconsistent environments. Remembering how different environment data is cached in
the Puppet runs section, once reserved, the files will be synced into the environment directory, and
the JRuby instances released. This does mean code deployments can be impactful on performance.

If lockless code deployment is enabled, symbolic links or symlinks are used for the environment
directories, which means the file sync will synchronize to a folder named after the version commit
and, on completion of synchronization, redirect the environment symlink to this new folder. This
requires more disk space because more environments will be deployed at once but ensures catalogs can
continue to run since they will use the directory the symlink had when they started to run. To enable
lockless code deploys, follow the instructions at https://puppet.com/docs/pe/2021.7/
lockless-code-deploys.html.

Now that we understand how Puppet deploys code to environments, we will look at workflows that
can be used to manage the promotion of module code through those environments.

https://puppet.com/docs/pe/2021.7/lockless-code-deploys.html
https://puppet.com/docs/pe/2021.7/lockless-code-deploys.html

Classification and Release Management284

Creating a workflow

There are two common approaches for creating a workflow to deploy code. The first method is to put
the control repo as a central gatekeeper of versions. This means that every module declaration on the
Puppetfile has specific versions and typically will have the lowest-level environment updated with a
specific reference such as tag, commit, or branch. These changes are tested in feature branches
and then promoted through environments by merging the changes from one branch to the next,
running the code on servers, and confirming expected results. For example, the steps involved in
such as process may include the following:

•	 Creating a feature branch of the control repo and updating the module1 tag version from
1.1 to 1.2

•	 Merging the feature branch with the development branch and deploying development

•	 Merging the development branch with the UAT branch and deploying UAT

•	 Merging UAT with production and deploying production

This is not a natural Git flow and does not use the main branch. It is very focused on deployment,
requiring a lot more management of environments. This approach can be particularly difficult with
multiple teams since it will result in the requirement of a gatekeeper such as the Puppet platform team
to manage changes to the Puppetfile control repo and manage the schedule of when code deployments
are made.

If this approach is taken, it is advisable to have multiple control repos using the prefix configuration
settings—this can be useful for teams that want to use different sets of modules, such as Windows and
Linux, or want to have isolation and protection around the control repo and have separate ownership
of code and servers but want to share infrastructure.

The second approach is to have all modules in the Puppetfile in the control repo set to use a branch
of control_branch and a default of main. Maintenance of the Puppetfile will then only involve
the addition and removal of modules. The management of versions will be on the modules themselves,
with code changes pushed to the main branch from temporary feature branches before being merged
into each static environment branch. Here’s an example:

•	 Create a feature branch on module1 and control repo testing code changes

•	 Merge the feature branch of module1 with main

•	 Merge changes of the module branch from main to development, then deploy and test

•	 Merge changes of the module branch from development to UAT, then deploy and test

•	 Merge changes of the module branch from UAT to production, then deploy and test

Lab – classifying and deploying code 285

Using pipelining tools as part of the pull request (PR) and deployment process is strongly advised.
Continuous Delivery for PE (CD4PE) (discussed in Chapter 14) comes with prebuilt checks to make
this easier, but various tools exist, such as Jenkins or GitHub, with which you can ensure the pre-commit
hook checks and testing we discussed in Chapter 8 are performed before a PR can be completed.

Note
Some excellent sources of existing pre-commit hooks to copy into place can be found at
https://pre-commit.com/hooks.html, https://github.com/pre-commit/
pre-commit-hooks, and https://github.com/mattiasgeniar/puppet-
pre-commit-hook.

Lab – classifying and deploying code
In this lab, complete the following tasks:

•	 Create a node definition that assigns the motd module to any node with node in the certname
in the manifest/site.pp file of the production environment

	� The motd module is already in the Puppetfile file in the production control repo

	� The defaults for motd should be fine using include motd

	� See an example solution at https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/blob/main/ch11/default.pp

•	 Create a node definition to assign the icinga2 module to all Windows nodes that get created

	� The icinga2 module is already in the Puppetfile file in the production control repo

	� The defaults for icigna2 should be fine using include incigna2

	� Windows nodes will always contain windows-node in the certname

	� To deploy on the PE web console, run the peadm code_manager task from the
Orchestration task menu, entering the 'deploy production' action string

	� See an example solution at https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/blob/main/ch11/node.pp

•	 Create and deploy a development environment, adding the docker module:

	� On the GitHub web page, go to your control repo and select the arrow next to the production
branch, and type development

	� Click the text generated below, which should say create branch: development
from 'production'

https://pre-commit.com/hooks.html
https://github.com/pre-commit/pre-commit-hooks
https://github.com/pre-commit/pre-commit-hooks
https://github.com/mattiasgeniar/puppet-pre-commit-hook
https://github.com/mattiasgeniar/puppet-pre-commit-hook
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/default.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/default.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/node.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/node.pp

Classification and Release Management286

	� Add the line mod 'puppetlabs-docker', latest to Puppetfile, making sure you
are on the development branch

	� On the PE web console, run the peadm code_manager task from the task menu,
entering the 'deploy development' action string

•	 Create a node group for a role that includes Docker pinning one of your nodes to it and
development, then promote the development branch to production and deploy:

	� Create a node group called docker by selecting node groups under inventory and add
node groups, ensuring this node group is under All Nodes, has the environment set to
development, and has your choice of node pinned to it

	� On the Development environment node group, pin your choice of node to it

	� Under Enforcement, select jobs, run puppet, select your choice of node, and set it to
apply docker

	� See sample solutions at https://github.com/PacktPublishing/Puppet-8-for-
DevOps-Engineers/blob/main/ch11/docker_group1.png, https://github.
com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/
ch11/docker_group2.png, and https://github.com/PacktPublishing/
Puppet-8-for-DevOps-Engineers/blob/main/ch11/docker_group3.png

Summary
In this chapter, we discussed how Puppet environments can be used to manage specific versions of
modules, classification, and data to apply to groups of Puppet clients. The directory structure and
variables to configure this was reviewed.

The options to classify servers into environments and to assign classes and parameters were reviewed,
looking at node definitions in manifest files, using Hiera in the node definitions to create more complex
data-driven calculations, and then ENC scripts that can access sources such as PuppetDB and return
YAML output of classes, environment, and parameters for classification. PE was then shown to build
on the ENC approach with its own ENC script used in conjunction with node groups to store data
on how to classify servers into environments and assign classes.

It was highlighted that the various methods could be used together but the recommended approach was
to keep it simple; for open source Puppet, just use a default node definition to look for pp_role trusted
facts to classify and to put the environment setting in puppet.conf, while for PE, it was recommended
to use 1-to-1 matching of node groups with pp_role and pp_environment trusted facts.

It was then shown how a Puppet catalog request sends data to the Puppet server and how classification
files and scripts are used to generate catalogs highlighting how different types of Puppet resources
are cached.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/docker_group1.png
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/docker_group1.png
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/docker_group2.png
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/docker_group2.png
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/docker_group2.png
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/docker_group2.png
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/docker_group3.png
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/docker_group3.png
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch11/docker_group3.png

Summary 287

The methods of deploying environments were then shown, using a Git-based Puppet control repo
to contain the files and directories of environments, with each Git branch representing a particular
environment. The Puppetfile was shown as a way to list which modules should be deployed to an
environment, specifying the version and location of the module.

It was then discussed how r10k and the PE Code Manager implementation on top of r10k can
deploy code to servers. For servers using compilers, we reviewed various approaches to keep code
deployed on all infrastructure, which would depend on local infrastructure and standards. For PE, it
was shown that Code Manager contained File sync, which kept code synchronized.

Workflow approaches were then viewed, showing the more gated and traditional approach of using
a control repo with a Puppetfile at set versions and updating the lowest-level environment such as
development before pushing these module version changes up through the environments. The second
recommended approach showed the control would rely on the modules themselves and the control
repo would look for environment-named branches, allowing teams to work and deploy independently.
Highlighting the idea in either of these systems is to use a proper pipelining tool with Webhooks to
automate deployment.

Having focused on Puppet infrastructure and language for stateful configuration management in this
chapter, the next chapter will look at Bolt and orchestrator to show how procedural tasks can be run
either using Bolt as an independent tool or through the PE infrastructure via the PE orchestrator.

12
Bolt for Orchestration

In this chapter, we will cover Bolt and Puppet Enterprise’s orchestrator. We will show how Bolt is
Puppet’s tool for ad hoc orchestration, allowing work to be done that does not fit into Puppet’s state-
based enforcement model. We will discuss how to configure it to connect to clients with different
transport mechanisms and credentials and run simple commands and upload files. Furthermore, we
will show how tasks allow single-action scripts in various languages to be run via Bolt, while plans
allow combinations of tasks to be written using logic and variables in the Puppet or YAML language.
The project directory structure will be examined, allowing Bolt content to be stored and shared. This
will be compared to how plans and tasks can be stored in a Puppet module using the Puppet Enterprise
Cloud Deployment Module (PECDM) Bolt project as an example. We will then show how Bolt can
be extended with plugins to dynamically load information from other sources. We will also show how
Bolt can directly be used with Puppet to apply manifest blocks, connect to PuppetDB, and use Hiera.

In this chapter, we’re going to cover the following main topics:

•	 Exploring and configuring Bolt

•	 Understanding the structure of projects

•	 Introducing tasks and plans

•	 Plugins

Technical requirements
Clone the control repo, controlrepo-chapter12, from https://github.com/puppetlabs/
control-repo to your GitHub account and update the Puppetfile with the contents of https://
github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/
ch12/Puppetfile

https://github.com/puppetlabs/control-repo
https://github.com/puppetlabs/control-repo
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch12/Puppetfile
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch12/Puppetfile
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch12/Puppetfile
https://github.com/PacktPublishing/Puppet-7-for-DevOps-Engineering/blob/main/ch12/Puppetfile

Bolt for Orchestration290

Build a standard cluster with two Unix clients and two Windows clients by downloading the params.
json file from https://github.com/PacktPublishing/Puppet-8-for-DevOps-
Engineers/blob/main/ch12/params.json and updating it with the location of your control
repo and your SSH key for the control repo. Then, run the following command from your pecdm directory:

bolt --verbose plan run pecdm::provision --params @params.json

Exploring and configuring Bolt
Throughout this book so far, we have focused on Puppet’s strengths as a state-based and idempotent
configuration management tool. But there are situations where this approach simply doesn’t fit, such
as service restarts as part of troubleshooting or ordering application deployments with vendor-based
install scripts. There is any number of tasks that fit into the wider automation effort that are ad hoc
and single use; therefore, Bolt was introduced by Puppet to act as an agentless orchestrator. Bolt is
now in its 3.x version, since its release in 2017, and a lot of rapid development has taken place. Over
2022, it stabilized, with far fewer releases and changes to features, but we would strongly advise you
to keep Bolt as up to date as possible to avoid any confusion.

Having reviewed the general purpose of Bolt as an ad hoc task runner, the first step is to understand
how Bolt can connect to clients with transports and targets.

Connecting to clients with transports and targets

Bolt is a fully open sourced project available at https://github.com/puppetlabs/bolt,
written in Ruby and installed as a single package with a binary, bolt. It connects to devices via
one of the various transports it offers, which is the mechanism/protocol that allows it to establish a
connection to multiple platforms, such as virtual machines, network devices, or containers without
an agent. The transports available are as follows.

System transports:

•	 Local, which, as would be expected, just runs commands on a local machine.

•	 Secure Shell (SSH), using the net-ssh Ruby library or native ssh, if selected. Commonly
used for Linux and Unix machines.

•	 Windows Remote Management (WinRM) for connecting to Microsoft Windows-based machines.

Remote, which is used for API- or web-based devices, for example, network devices such as switches.

Puppet Enterprise transport:

•	 Puppet Communication Protocol (PCP), used with the Puppet Enterprise orchestrator service,
discussed in Chapter 14

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch12/params.json
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch12/params.json
https://github.com/puppetlabs/bolt

Exploring and configuring Bolt 291

Container transports:

•	 Docker, which is an application container technology developed by Docker Inc

•	 Pod Manager (Podman), which is an application container engine developed by Red Hat

•	 Linux Container Hypervisor (LXD), which is a system container engine that uses Linux
Containers (LXC), developed by https://linuxcontainers.org and sponsored
by Canonical

Note
Bolt fails to connect to targets from Windows using SSH unless native-ssh is set to
true in the transport settings, as per https://puppet.com/docs/bolt/latest/
bolt_known_issues.html#unable-to-authenticate-with-ed25519-keys-
over-ssh-transport-on-windows.

By default, Bolt will use local SSH configuration and at its simplest level can run commands directly
on devices that are known in Bolt terminology as targets. A simple example command is as follows:

bolt command run 'uname' --targets examplehost.example.com

Here, the command is within single quotes and the provided target is a resolvable hostname or an IP
address. Bolt also has PowerShell cmdlets, which provide a more integrated experience for PowerShell
users with more flexibility for chaining commands and using structured data for arguments. The same
command as previously but as a PowerShell cmdlet would look as follows:

Invoke-BoltCommand -Command 'uname' -Targets examplehost.example.com

This takes the default settings of the SSH transport using the current user and any saved credentials.
To make a choice on the command line, a transport choice can be added ahead of the transport name,
<transport_name>://, multiple targets are listed, separated with commas (,) and additional
options are set to configure the transport. For example WinRM requires a username, password and the
no-ssl option set if SSL is not setup for WinRM connections. Take the following example command:

bolt command run 'systeminfo' --targets winrm:// host1.example.
com,winrm://host2.example.com --user windows --password Pupp3tL@
b5P0rtl@nd! --no-ssl

This command will run systeminfo on the host1.example.com and host2.example.
com targets using winrm to connect, and the windows and Pupp3tL@b5P0rtl@nd! credentials
with no SSL check. Bolt runs requests concurrently, by default up to 50 at a time. This can be changed
using the concurrent argument, --concurrent.

A full list of options available to be used with each transport can be viewed in the documentation: https://
puppet.com/docs/bolt/latest/bolt_transports_reference.html.

https://linuxcontainers.org
https://puppet.com/docs/bolt/latest/bolt_known_issues.html#unable-to-authenticate-with-ed25519-keys-over-ssh-transport-on-windows
https://puppet.com/docs/bolt/latest/bolt_known_issues.html#unable-to-authenticate-with-ed25519-keys-over-ssh-transport-on-windows
https://puppet.com/docs/bolt/latest/bolt_known_issues.html#unable-to-authenticate-with-ed25519-keys-over-ssh-transport-on-windows
https://puppet.com/docs/bolt/latest/bolt_transports_reference.html
https://puppet.com/docs/bolt/latest/bolt_transports_reference.html

Bolt for Orchestration292

Note
Bolt 1.3.6 deprecated the nodes flag in favor of targets and removed it in Bolt 2.0.0.

Running ad hoc commands with Bolt

In this section, we will show how to run ad hoc commands with Bolt, using both Windows PowerShell
and Linux Shell command examples. The following table shows how these commands compare across
the implementations:

Figure 12.1 – PowerShell and Linux Bolt commands

To run quoted commands, use double quotes or backslashes (\) to escape. For example, we could
run a search for lang in /etc/locale with grep -I 'lang'. To do this, the following
command could be run in PowerShell:

Invoke-BoltCommand -Command "grep -i 'lang' /etc/locale" -Targets
ssh://examplehost.example.com –User centos -PasswordPrompt -RunAs root

In this example, the password-prompt option would ask for the password securely on the
command line rather than directly entering it into the executed command.

To run multiple commands listed in a file, we are not suggesting running a script but a step-by-step
set of commands; for multiple targets in a file, the at symbol (@) can be used with the filename within
quotes (''). So, for example, to run a list of commands from a file called commandlist on a list
of targets in targetfile, the following command could be run:

bolt command run '@commandlist' --targets '@targetfile'

For Unix-based systems, to read input from stdin for targets or commands, the minus symbol (-)
can be used in place of a target or command string. So, to take the same targetfile and send the
output of the cat command to the bolt command, the following could be run:

cat targetfile | bolt command run '@commandlist' --targets -

Exploring and configuring Bolt 293

To run the uname and date commands on the hosts1.example.com and host2.example.
com targets, the following could be command could be used:

echo -e "uname \\ndate" | bolt command run - --targets host1.example.
com, host2.example.com

Note
Using both a file and stdin with a list of commands will result in a single connection to the
target to run all the commands.

To run a script in a file, the bolt script run command or Invoke-BoltScript -Script
PowerShell cmdlet can be used along with any arguments to be passed at the end of the command.
For example, on a Unix host, the following command could be used to run an install.sh script
on the targets in the application_clients file with 10.6 no-gui arguments:

bolt script run ./scripts/install.sh --targets @application_clients
10.6 no-gui

The arguments flag can be used to be clearer on the name of the argument for each passed value.
Any argument with spaces can be surrounded with quotes (''). For example, on a Windows system
running the dotnet-install.ps1 script on a list of targets on a file with the -Channel LTS
argument, the command would be as follows:

Invoke-BoltScript -Script dotnet-install.ps1 -Targets @targetsfile
'-Channel LTS'

In Unix, any script can be executed on a target by including a shebang (#!) line at the top of the
file specifying the interpreter. For Windows targets, the .ps1, .rb, and .pp files are enabled by
default, but further extensions can be enabled in configuration files, which will be discussed in the next
section. The scripts can be located from the modulepath, this can be of the form <modulename>/
scripts/install.sh, a relative path from the root of the bolt folder, or as an absolute path.

In Unix systems, Puppet manifest files and sections of Puppet code can be applied to a set of targets
with the following:

bolt apply manifests/exampleapp.pp --targets @targetsfile

In PowerShell, this can be achieved with the following command:

Invoke-BoltApply -Manifest manifests/exampleapp.pp -Targets @
targetsfile

Bolt for Orchestration294

To apply Puppet code, the following command would ensure that a /etc/exampleapp directory
exists on the Unix systems:

bolt apply --execute "file { '/etc/exampleapp: ensure => present }"
--targets servers

For PowerShell cmdlets, the command used would be as follows:

Invoke-BoltApply -Execute "file { '/etc/exampleapp': ensure => present
}" -Targets servers

This format should seem similar to puppet apply and puppet apply -e '<code>'.
Similarly, for code to be applied via Bolt, we must ensure that the code is declared to be included in a
catalog and not just defined. When a class or type is defined, it is available to be used in the catalog but
it will not have been added to the catalog. In the previous example, if exampleapp.pp contained
a class definition with resources, this would result in a warning: Manifest only contains
definitions and will result in no changes on the targets. The class itself
would need to be included for it to be added to the catalog and applied via Bolt.

There are also commands to upload files from your local machine to the target or to download from
the targets to your machine. Some simple examples using both the Unix version and the Windows
version are shown in the following commands. The first file listed is the source and the second is the
target, regardless of whether you’re uploading or downloading:

bolt file upload /rpms/cowsay.rpm /tmp/ --targets @targets
Send-BoltFile -Source /installer/installer.exe -Destination /users/
exampleuser/installer.exe -Targets @targets
bolt file download /etc/exampleapp//logfile.log /var/tmp/logfile.log
--targets @targets
Receive-BoltFile -Source /ProgramData/exampleapp/logfile.log\puppet.
log -Destination /user/exampleuser/puppet.log -Targets @targets

Now, let’s take a look at the output.

Output and debugging

So far, the focus has been on how to run commands and not the output. Bolt by default logs these
commands to the bolt-debug.log file in the directory from which the Bolt command was run,
as well as to the console. There are six logging levels:

•	 trace: The most detailed level of logging, which shows the inner workings of Bolt.

•	 debug: Information about target-specific steps.

•	 info: This is high-level logging showing the steps taking place in Bolt.

•	 warn: Warning about deprecations and other harmful scenarios. This is the default console level.

Exploring and configuring Bolt 295

•	 error: Error messages experienced during the execution of Bolt commands.

•	 fatal: Error messages from Puppet code used with Bolt.

A specific log level can be chosen using the --log-level flag and the output format can be
selected using the format flag, which can use human, json, or rainbow. The output from a Bolt
command running uname on three hosts would look like this in JSON:

{ "items": [
{"target":"host1.example.com","action":"command","object":"uname",
"status":"success","value":{"stdout":"Linux\n","stderr":"","merged_
output":"Linux\n","exit_code":0}}
,
{"target":"host1.example.com","action":"command","object":"uname",
"status":"success","value":{"stdout":"Linux\n","stderr":"","merged_
output":"Linux\n","exit_code":0}}
,
{"target":"host1.example.com","action":"command","object":"uname",
"status":"success","value":{"stdout":"Linux\n","stderr":"","merged_
output":"Linux\n","exit_code":0}}
],
"target_count": 3, "elapsed_time": 2 }

In comparison, in human-readable format, it would look like this:

Started on host1.example.com...
Started on host2.example.com...
Started on host3.example.com...
Finished on host1.example.com:
  Linux
Finished on host2.example.com:
  Linux
Finished on host3.example.com:
  Linux
Successful on 3 targets: host1.example.com, host2.example.com, host3.
example.com
Ran on 3 targets in 2.89 sec

The rainbow output looks similar to human-readable format but, as the name suggests, it makes
the lines multi-colored.

Bolt for Orchestration296

As part of this output, a .rerun.json file will be generated. This will list the targets that were
processed during the run, indicating which targets failed and which succeeded. For the next Bolt
command, we can use a --rerun flag with a value of success, failure, or all. This reads
the relevant target section from .rerun.json to use targets from the previous run. For example,
the following command could be run as a result of an install task failing and choosing to run a
cleanup task on all failures:

Invoke-BoltTask -Name install_failure_cleanup -Targets @targets.file
-Rerun failure

There are more options for the commands; the full command reference is available at https://
puppet.com/docs/bolt/latest/bolt_command_reference.html for Unix-based
commands and https://puppet.com/docs/bolt/latest/bolt_cmdlet_reference.
html for PowerShell-based commands.

Note
Bolt has a built-in CLI guide that can be accessed by running bolt guide on the Unix or
PowerShell command line.

So far, what we have discussed using Bolt for is useful on a very small scale but clearly would work
with large numbers of servers and more complex configurations. So, the next area to cover is the
project structure and configuration files.

Understanding the structure of projects
A Bolt project is a simple directory structure providing configuration and data for Bolt to use. Within
this structure, Puppet modules from both Forge and private repositories can be stored along with task
plans and policies. Bolt identifies a directory as a Bolt project if a bolt-project.yaml file exists in
it, and this file contains a name key. To create this file, run bolt project init for Unix systems
or New-BoltProject for PowerShell from within a directory in which you wish to add Bolt project
files. This will use the name for the project as the name of the directory, but you can override this by
running it with a name using the bolt project init customname or New-BoltProject
-Name customname command, for Unix systems and PowerShell, respectively.

This project name must start with a lowercase letter and can only use lowercase letters, digits, and
underscores. This is because Bolt projects are like modules and get loaded into the module path. This
is important to note because modules contained within the Bolt project will essentially be overwritten
in the module path if the Bolt project has the same name as the module.

In the directory, the init command will have created a bolt-project.yaml, inventory.
yaml, and .git-ignore file.

Now, let’s look at how we can configure a Bolt project.

https://puppet.com/docs/bolt/latest/bolt_command_reference.html
https://puppet.com/docs/bolt/latest/bolt_command_reference.html
https://puppet.com/docs/bolt/latest/bolt_cmdlet_reference.html
https://puppet.com/docs/bolt/latest/bolt_cmdlet_reference.html

Understanding the structure of projects 297

Configuring a project

bolt-project.yaml contains settings to override the default Bolt behavior, a lot of which was
discussed in the previous section. The settings to be used with the Bolt command can be set here, as
well as project configuration such as paths to configuration files and data. Largely, the defaults for these
settings will not need to be changed and the core settings that will be configured include the modules
attribute, which defines modules to manage in the Bolt project, and the plans, policies, and
tasks attributes, which limit the visibility of each item by providing a list that will be visible to
project users. A sample bolt-project.yaml file containing some modules and choosing plans,
policies, and tasks to be publicly visible could look as follows:

name: packtproject
modules:
- name: puppetlabs-stdlib
- name: puppetlabs-peadm
  version_requirement: 3.9.0
- name: puppetlabs/bolt_shim
- git: https://github.com/binford2k/binford2k-rockstar
  ref: 0.1.0
plans:
- packproject
- peadm::provision
policies:
- packproject::lab
tasks:
- bolt_shim::command

The full list of settings can be found at https://puppet.com/docs/bolt/latest/bolt_
project_reference.html.

The module attribute has multiple ways to be updated. When adding items from Forge, this can
be updated via the bolt module add Unix command or the Add-BoltModule PowerShell
cmdlet. For example, in Unix systems, bolt module add puppetlabs/apt will update
the modules parameter to contain - name:puppetlabs-apt in bolt-project.yaml.

Then, the bolt module install Unix command or the Install-BoltModule PowerShell
cmdlet can be used, which will automatically do several things:

•	 Find dependencies on all Forge modules

•	 Find compatible versions

•	 Update the Puppetfile

•	 Install the modules into the Bolt project

https://puppet.com/docs/bolt/latest/bolt_project_reference.html
https://puppet.com/docs/bolt/latest/bolt_project_reference.html

Bolt for Orchestration298

The modules can also be added at project creation time using the following command in Unix systems:

bolt project init example_project --modules puppetlabs-
apache,puppetlabs-mysql

In PowerShell, this can be done using the following command:

New-BoltProject -Name example_project -Modules puppetlabs-
apache,puppetlabs-mysql

If you need modules pinned at a specific version or Git modules added, you will need to add these
manually to the Bolt project file and run the Force flag with the following Bolt module installation
command: Install-BoltModule -Force on Windows or bolt module install
--force on Unix systems.

These modules allow us to use Puppet code within plans, as well as bring in plans and tasks from
modules, which will be shown in detail in the Introducing tasks and plans section.

Configuring transports

The inventory.yaml file contains configuration information about targets, creating groups of
targets with details about how Bolt connects to them. The inventory contains a top level that includes
settings that act as defaults for all targets, group objects that allow targets to be grouped based on
common settings, such as all Windows nodes using certain WinRM settings, and target objects, which
are individual settings. For each setting, there are common fields that can be used:

•	 Alias: An alias to use instead of the Uniform Resource Identifier (URI), which can be shorter
and more human readable

•	 Config: A map of transport configuration options for the target

•	 Facts: A map of facts for the target(s)

•	 Features: An array of features to be enabled (features will be discussed later in the chapter)

•	 Name: Used with groups to give a human-readable name

•	 Plugin hooks: A map of plugin configurations (plugins will be discussed in the Plugins section
of this chapter)

•	 URI: A target’s URI

•	 Vars: A map of variables

A sample inventory file could look as follows:

config:
  transport: ssh
  ssh:

Understanding the structure of projects 299

    host-key-check: false
    run-as: root
    native-ssh: true
    ssh-command: 'ssh'
groups:
  - name: agents
 groups:
  - name: linux_agents
    targets:
      - 20.117.165.119
  -name: windows_agents
    targets:
     - 20.117.165.218
     config:
      winrm:
        user: windowsuser
        password: Pupp3tL@b5P0rtl@nd!
        ssl: false
targets:
  - name: primary:
  - 20.117.166.6

This would provide default settings for SSH transport. It should be noted in this example it was shown
how to create groups within groups in any inventory to ease management and settings for groups.
In this case, we have an agents group, which contains a linux_agents group and a windows_
agents group. The windows_agents group contains WinRM transport configuration. This
allows us to run Bolt against all agents but with different transports set. There is then a single target
called Primary outside of these groups.

The full inventory.yaml configuration documentation is available at https://puppet.
com/docs/bolt/latest/bolt_inventory_reference.html, while the transport
configuration is available at https://puppet.com/docs/bolt/latest/bolt_transports_
reference.html.

To return the contents of the inventory.yaml file, the bolt inventory show Unix
command or the Get-BoltInventory PowerShell cmdlet can be used. Specific targets can be
viewed with the targets flag.

As was discussed in the previous section, for Windows scripts, additional extensions can be allowed
using the inventory file, so in a config section, the following could be added to allow .py and
.pl scripts to be run:

config:
  winrm:
    extensions:

https://puppet.com/docs/bolt/latest/bolt_inventory_reference.html
https://puppet.com/docs/bolt/latest/bolt_inventory_reference.html
https://puppet.com/docs/bolt/latest/bolt_transports_reference.html
https://puppet.com/docs/bolt/latest/bolt_transports_reference.html

Bolt for Orchestration300

      - .py
      - .pl

Having reviewed how to configure settings at a project level in Bolt, it is now important to also know
how system-level settings can be set in Bolt and also how previous legacy versions of Bolt projects
may be configured differently.

System level and legacy

In addition to the project settings, system-level settings can be set in the /etc/puppetlabs/bolt/
bolt-defaults.yaml file on Unix-based systems and the %PROGRAMDATA%\PuppetLabs\
bolt\etc\bolt-defaults.yaml file on Windows systems. User-level settings can be set in
.puppetlabs/etc/bolt/bolt-defaults.yaml in the user’s home directory.

Bolt will choose which project to use with its commands based on the following order of priority:

1.	 The project location set in the BOLT_PROJECT environment variable

2.	 The project flag on a Bolt command with the project location set (--project /tmp/
myproject)

3.	 By traversing from the current directory up until a bolt-project.yaml or boltdir
directory is found

4.	 The .puppetlabs/bolt/ folder in the home directory of the user

Note
In the Unix environment, Bolt does not load a world-writeable Bolt project directory.

If you want to ship Bolt within an application project but the base Bolt project files would clutter
the application, it is possible to embed a Bolt project by creating a boltdir directory within the
application directory. Bolt could still be run from the parent directory as it would recognize boltdir
as containing the project.

If you have used older versions of Bolt before 2.36, you will note that projects used to create a single
bolt.yaml file instead of bolt-project.yaml and inventory.yaml. Support for v1
bolt.yaml projects was removed in v3.0.0 of Bolt. Additionally, Bolt-managed modules changed
with the deprecation of manual editing of the Puppetfile in v2.42 and the removal of manual editing
in v3.0.0. This also changed the module path from containing the site-modules and site
modules to the modern version of modules and .modules. Previously, managed modules had
existed in modules and unmanaged modules in site and site-modules. This has now been
changed to managed modules in .modules and unmanaged modules in modules. To migrate
an old-style Bolt project to the new style, the bolt project migrate Unix command or
Update-BoltProject PowerShell command can be run. As with all automated conversions,

Introducing tasks and plans 301

ensure your pre-migration configuration is backed up in revision control. The full details of changes
made during the migration process can be found at https://puppet.com/docs/bolt/
latest/projects.html#migrate-a-bolt-project.

Having reviewed the structure created for Bolt configuration and target transport, it is now time to
look at more structured ways of running Bolt via tasks and plans.

Introducing tasks and plans
Tasks and plans are more forms of scripts and allow users to manage parameters, logic, and flow
between actions. Unlike normal Puppet code, plans and tasks run through the script in sequential
order, even for Puppet plans that compile a catalog.

Creating tasks

Tasks are single-action scripts that can be in any language that will run on a target machine. The key
differences between the normal scripts we have run with Bolt previously and a task are as follows:

•	 Tasks are paired with a JSON file to provide metadata such as parameters, which allow them
to be shared and reused more easily

•	 Tasks can handle structure/typed input and output

•	 Tasks can handle multiple implementations to make them cross-platform

They can be stored in the task directory of a Bolt project or the task directory in a Puppet module.
Task implementations should contain their extension in the name. The name can include digits,
underscores, and upper and lowercase letters

When calling these tasks, a namespace is created that is made up of the name of the Bolt project or
module containing the task and the task name, except if the task has been named init, in which
case it will be referred to only by the Bolt project or module name.

For example, the task to install an agent with the Puppet Enterprise Administration Module (peadm)
is named peadm::agent_install.

Note
The.json and .md extensions are reserved and cannot be used for tasks.

For Unix shell systems the script part must contain a shebang (#!) line at the top of the file specifying
the interpreter.

https://puppet.com/docs/bolt/latest/projects.html#migrate-a-bolt-project
https://puppet.com/docs/bolt/latest/projects.html#migrate-a-bolt-project

Bolt for Orchestration302

An example of task implementation is when the PEADM module is used to configure the labs using
the following code on Unix systems under the agent_install.sh task name:

#!/bin/bash,
set -e
if [-x "/opt/puppetlabs/bin/puppet"]; then
echo "ERROR: Puppet agent is already installed. Re-install, re-
configuration, or upgrade not supported. Please uninstall the agent
before running this task."
exit 1
fi
flags=$(echo $PT_install_flags | sed -e 's/^\["*//' -e 's/"*\]$//' -e
's/", *"/ /g')
curl -k "https://${PT_server}:8140/packages/current/install.bash" |
bash -s -- $flags

Parameters are passed based on variables starting with $PT_.

With PowerShell, which has a built-in argument handler, this can be done without $PT_ using the
param function in a task called agent_install.ps1:

param(
  $install_flags
  $server
)
if (Test-Path "C:\Program Files\Puppet Labs\Puppet\puppet\bin\puppet")
{
Write-Host "ERROR: Puppet agent is already installed. Re-install, re-
configuration, or upgrade not supported. Please uninstall the agent
before running this task."
Exit 1
}
$flags=$install_flags -replace '^\["*','' -replace 's/"*\]$',''
-replace '/", *"',' '
[Net.ServicePointManager]::ServerCertificateValidationCallback =
{$true}; $webClient = New-Object System.Net.WebClient; $webClient.
DownloadFile("https://${server}:8140/packages/current/install.ps1",
'install.ps1'); .\install.ps1 $flags

To make these files visible to Bolt commands and allow callers to pass the parameters, a JSON file
is written with the same name as the task. For the agent_install example, it looks like this:

{
  "description": "Install the Puppet agent from a master",
  "parameters": {
    "server": {
      "type": "String",
      "description": "The resolvable name of the Puppet server to

Introducing tasks and plans 303

install from"
    },
    "install_flags": {
      "type": "Array[String]",
      "description": "Positional arguments to pass to the shell
installer",
      "default": []
    }
  },
  "implementations": [
    {"name": "agent_install.sh", "requirements": ["shell"]},
    {"name": "agent_install.ps1", "requirements": ["powershell"]}
  ]
}

The metadata provides a description of the task, which is displayed when listing tasks. In addition,
the metadata includes a list of parameters with names that must start with a lowercase letter and only
include lowercase letters, underscores, and digits. The parameter type, which may match any Puppet
type that can be represented in JSON format, and default values for the parameter can also be specified.

Ensuring the type is an enum or more specific type, such as an integer within a specified size range, can
make the task much more secure, limiting the input and therefore the attack vector. Also, within tasks,
you should ensure that the parameters for the implementation you are working on are properly separated
and do not allow strings to be called. Precise examples can be seen at https://puppet.com/docs/
bolt/latest/writing_tasks.html#secure-coding-practices-for-tasks.

The implementations parameter allows us to define what scripts are used in what environments.
In this case, ensure the .sh implementation is run on the Unix shell and .ps1 on PowerShell.

With this file in place, the bolt task show Unix command or Get-BoltTask PowerShell
cmdlet will show all modules available in the module path, and specific tasks can be viewed with
bolt task show <name of task> or Get-BoltTask –Name <name of task>.

Setting the private parameter to true prevents the task from being listed and can be useful for
hiding tasks that are under development, although as we showed in the Configuring a project section,
the same could be achieved at the Bolt project level.

A parameter can be marked as sensitive by setting the parameter value to true, and variables
can be set to sensitive within code to ensure they will be redacted in logs and output.

A parameter of supports_noop in the metadata allows users to pass a noop argument to the
task and will result in the _noop parameter being true or false. It is then possible to use this
parameter in your task code to logically check whether changes should be made or just tested.

If the remote parameter is set to true, the task will only be able to run on remote transport to
prevent tasks from being run on incompatible transports.

https://puppet.com/docs/bolt/latest/writing_tasks.html#secure-coding-practices-for-tasks
https://puppet.com/docs/bolt/latest/writing_tasks.html#secure-coding-practices-for-tasks

Bolt for Orchestration304

For a task with lots of options or that returns a lot of information, it may be better to use structured
input and output rather than just simple parameters.

Bolt passes task parameters as a single JSON object on STDIN, as well as environment variables by
default. These can then be read in as parameters by a Ruby script with the following line: params
= JSON.parse(STDIN.read).

For complex output, it should be ensured that the task prints a single JSON object to stdout in
the task. This can be useful if you want to use the result within another task. For example, in Python,
the following code snippet would dump the JSON of two value sets to stdout, using json.dump
to convert the result string into JSON and passing it to the sys.stdout method Python uses to
print to stdout:

result = { "example1": "value1 , "example2": "value2" }
json.dump(result, sys.stdout)

To return error messages from tasks, an Error object can be returned. In structured output, the
_error key is expected and the msg key is available as a human-readable message for the UI,
kind as the string for script handling, and details with structured data about the task failure,
such as exit code tails. Take the following example:

{ "_error": { "msg": "Task exit code 1", "kind": "puppetlabs.tasks/
task-error", "details": { "exitcode": 1 } } }

If the _error key is not present, Bolt generates a generic error instead.

Note
Within a module, pdk new task <taskname> can be run to generate a <taskname>.
json file and a <taskname>.sh file in the task folder.

To run these tasks, the bolt task run Unix command or Invoke-BoltTask PowerShell
cmdlet can be used with the parameters either passed as arguments or using the @ symbol via a
string of JSON or a filename with the .json extension. For example, the first task would install a
Puppet agent on targets in the agents group with the server and install_flags parameters set:

bolt task run peadm::install_agent --targets agents server=primary.
example.com install_flags= ["--puppet-service-ensure","stopped","agent
:certname=node.example.com"]

The second task would run the package task and take a JSON string with the params flag to
check the status of the apache2 package:

Invoke-BoltTask -Name package -Targets @targetservers -Params
'{action="status";name="apache2"}'

Introducing tasks and plans 305

Having seen how to create and run tasks, it is now time to review plans, which allow for greater
structure, logic,and flow to be applied in managing tasks and the ability to use Puppet code.

Creating Puppet plans

Plans are written in Puppet code or YAML and allow multiple tasks and commands to be brought
together and to apply logic and control of flow and data between them.

A Puppet plan is written in a manifest and in a similar format to a Puppet class. It starts with the
plan keyword, then the name of the plan, attributes within brackets (), and code between curly
braces {}. So, for example, a sample plan in a sample project contained in the plan directory would
look as follows:

plan exampleproject::exampleplan(
  TargetSpec $nodes,
  Enum ['true', 'false'] $manage_user,
) {
  <code>
}

Plans are named similarly to tasks, with the first segment the name of the module or project and the
second segment and all following segments named with lowercase letters, digits, and underscores.

They must not use a reserved word or have the same as a Puppet data type.

The init.pp class, as with tasks and modules, is different. It would skip the need for the task to be
named directly. However, it can only be used at the base level but not in any subdirectory.

To create a new plan, the following commands can be used for Unix systems and PowerShell, respectively:

bolt plan new <PLAN NAME> --pp
New-BoltPlan -Name <PLAN NAME> -Pp

Having reviewed how to create a plan, we will now see how plans receive their target and transport
information via the TargetSpec type.

Constructing targets

In addition to the normal attribute data types, plans use the TargetSpec type, which allows for
strings exactly like were used with Bolt command targets in the Connecting to clients with transports
and targets section, such as ssh://examplehost.com, arrays of Target types, and recursively,
an array of TargetSpec types.

The Target type represents a target and its specific connections in such a way that they can be
added to an inventory file.

Bolt for Orchestration306

Within a plan, the get_targets function can be used to return targets from a TargetSpec.
The following is a simple example of how this is used:

plan restart_apache_servers(
TargetSpec $apache_servers,
){
 get_targets($apache_servers).each |Target $apache_server | {
 run_task('apache', $target_node, 'action' => 'reload')
 }
}

This plan takes a TargetSpec object of apache_servers, which is passed to the get_targets
function. The Apache reload task is then run on each individual target server, with the action
parameter set to reload.

Target objects can also be constructed and changed within a plan manifest using functions beginning with
set_ or add_ for the various parts of the inventory config, such as the set_config, set_var,
add_facts, and add_to_group functions. For example, a new target could be assembled like so:

$example_server = Target.new('name'; => 'exampleserver')
$example_server.set_config('transport', 'ssh')
$example_server.set_config(['ssh', 'password', 's3cur3!')
$example_server.add_facts({'application' => 'example'})

It is possible to access parts of the target, such as $example_server.config['ssh'], but the
targets will only last in memory for as long as the plan is running.

Now that we understand how to connect to clients using plans, we will show how functions can be
used in the Puppet code block of a plan to use features of Bolt and the Puppet core language.

Using plan functions

As was shown in the Constructing targets section, using run_task, Bolt plan functions can be used
within the Puppet code block itself, many of which are the same types of commands that were run
directly in Bolt, such as run_command, run_script, and run_task. The full list is available
at https://puppet.com/docs/bolt/latest/plan_functions.html.

It is also possible to run a plan from within a plan using the run_plan function. This can be useful
to ensure no plan gets too large and they can be more easily reused. A pattern that can be observed
in the PEADM module is the use of the subplan folder for plans we only expect to be used within
plans, reducing the size and complexity of the catalogs.

https://puppet.com/docs/bolt/latest/plan_functions.html

Introducing tasks and plans 307

It should be noted that most Puppet language features, such as functions, the sensitive type, and
lambdas, can be used within this code, but other features, such as deferred functions, cannot since the
catalog is not being sent to the node to be applied. The differences are fully documented at https://
puppet.com/docs/bolt/latest/writing_plans.html#puppet-and-ruby-
functions-in-plans.

For example, within PEADM, the following run_command function stops Puppet on all the targets
stored in the $all_targets variable and then runs a modify_certificate plan on the
targets in the covert_target variable, passing in a primary add parameter and the extensions
to be added:

run_command('systemctl stop puppet', $all_targets)
run_plan('peadm::modify_certificate', $convert_targets,
 primary_host => $primary_target,
 add_extensions => {
 'pp_auth_role' => 'pe_compiler',
 },
)

Puppet code can also be applied via the apply function similar to how a puppet apply command
would run. For example, PEADM uses the following code to create node groups:

apply($primary_target) {
class { 'peadm::setup::node_manager_yaml':
 primary_host => $primary_target.peadm::certname(),
}

This applies the node_manager_yaml class, passing a primary_host parameter. It should
be noted that if Puppet libraries are needed in advance of applying Puppet code, the apply_prep
function can be used to ensure they are available before using the apply function.

Logging and results

To add logging to plans, the out::message and out::verbose functions are used, with
message logging on every run and verbose message output only if Bolt is run in verbose mode.
Take the following example:

out::message('Error')
out::verbose("Heres the error: $detailed_output")

Error would be printed on every Bolt run, but only when the –verbose flag is used would the
second message be displayed.

https://puppet.com/docs/bolt/latest/writing_plans.html#puppet-and-ruby-functions-in-plans
https://puppet.com/docs/bolt/latest/writing_plans.html#puppet-and-ruby-functions-in-plans
https://puppet.com/docs/bolt/latest/writing_plans.html#puppet-and-ruby-functions-in-plans

Bolt for Orchestration308

Each function returns an object type of ResultSet with each target containing its own Result
object type, except the apply function, whose ResultSet contains ApplyResult objects. A
plan returns a PlanResult type as output, which can contain all these data types and just about
any Puppet data type.

These objects can be assigned to variables and then functions used to expose data. There are two
common functions used in all of these object types. ok is a function that returns a simple Boolean
confirming whether there were any errors and the value function returns the output of the run.

Further type-specific functions can be viewed in the documentation at https://puppet.com/
docs/bolt/latest/bolt_types_reference.html.

To return output from the plan, the return function should be used with any appropriate data type;
this could be the direct output from a task or as simple as a string. If no return function is used, the
output will be undef. For example, the following code will run the task error_check_task and
only if that is successful will it return the ResultSet type output from the task output_task;
otherwise, it will return the string OH NO:

plan return_result($targets)
$did_this_work = run_task('error_check_task', $targets)
If $did_this_work.ok {
out::message('It worked')
return run_task('output_task', $targets)
}else{
Return "OH NO"
}

Now, let’s look at how we can handle errors.

Handling errors

To perform a simple check and fail a plan as a result, the fail_plan function can be used. For
example, the following code would check whether the $targets variable only contained a single target:

unless get_targets($targets).size == 1 {
    fail_plan('This plan only accepts one target.')
  }

If Bolt functions fail and _catch_errors is not set to true, then the plan will fail. If _catch_
errors is used, this allows the plan to continue and the error can be handled:

$install_agent_results = run_task('agent_install', $agents , '_catch_
errors' => true)
$ install_agent_results.each |$agent_result| {
$target = $agent_result.target.name
if $result.ok

https://puppet.com/docs/bolt/latest/bolt_types_reference.html
https://puppet.com/docs/bolt/latest/bolt_types_reference.html

Introducing tasks and plans 309

 { notice("${target} installed correctly ${result.value}")
} else {
 notice("${target} failed install with error: ${result.error.
message}")
 }
}

Alternatively, the catch_result function can be used to catch specific types of errors, as follows:

$install_agent_results = catch_error(agent_install/connection_error)
|| { run_task('agent_install', $agents , '_catch_errors' => true)
}

With an understanding of logging and error handling in plans, we can now look at how external data
can be used in plans. Since Bolt uses Puppet as a library, it can use Hiera to access external data. As was
covered in Chapter 9, this can ensure we separate code and data into plans as we do with Puppet code.

Managing data sources

Facts can be collected from the hosts using the built-in facts plan or from PuppetDB using puppetdb_
facts, assuming PuppetDB is set up in a Bolt configuration already. Using either plan would cause the
targets to query PuppetDB to automatically have their in-memory inventory updated with the facts.
The following example would run facts on targets, and those targets for which the os.name
fact is equal to Windows are assigned to the windows_targets variable:

run_plan('facts', 'targets' => $targets)
$windows_targets = get_targets($targets).filter |$target| { $target.
facts['os']['name'] == 'Windows' }

PuppetDB can also have general queries run against it using the puppetdb_query function. To
return all the certnames fact values of windows hosts listed in PuppetDB, use the following code:

$windows_targets = get_targets (puppetdb_query('inventory[certname] {
facts.os.name = "windows" }'))

Hiera can be used with plans by using either modules or Bolt project-level Hiera and having an appropriate
hiera.yaml. The lookup function can then be used either inside apply functions or simply in the
plan. If lookup is used within an apply function, and assuming the apply_prep function is run,
we can gather all the facts and Hiera will function as expected. When using it within a plan, the important
differences to note are that Bolt has no automatic parameter lookup capabilities like normal Puppet code
with classes and the Bolt hierarchy can’t use top scope variables or facts. When Hiera is used within Bolt, it
uses two levels of hierarchy, the project and module levels, with the project level being higher in precedence.

Bolt for Orchestration310

An example of the Bolt hierarchy would be a hiera.yaml project containing a hierarchy with
Node data and the plan_hierarchy key without Node data:

Hierarchy: -
- name: "Nodes" path: "targets/%{trusted.certname}.yaml"
- name: "Org" path: "%{org}.yaml"
plan_hierarchy:
- name: "Org" path: "%{org}.yaml"

A lookup function in the plan could do the following and with an application variable be
able to look up the dns_server_name variable in the org level of the plan hierarchy:

plan exampleproject::exampleplan(
TargetSpec $nodes,
String $application
){
$dns_server_name = lookup('dns_server_name)
}

In the following section, we will look at how comments can be used to document metadata.

Documenting plan metadata

Unlike tasks, since plans do not have a metadata.json file, it is necessary to document via
comments so that when puppet plans show <plan name> is run, a description is provided.
The first comment line is taken as the description, or an @summary tag can be used. Using @param
<param name> on a comment will indicate it is the description of a parameter and using @api
private will mark the plan as private. An example of using all of these fields is as follows:

@summary This plan is just for example
@api private
@param example_servers The targets to run this plan on
@param manage_user Whether the user account should be managed
plan exampleproject::exampleplan(
TargetSpec $example_servers,
Enum ['true', 'false'] $manage_user
){

The data type details are picked up automatically by the bolt plan show command.

Introducing tasks and plans 311

Note
It can be useful to add plans and tasks to the control repo, but it should be noted that when
using PDK validate, PDK cannot validate plans and will only ignore plans in the default bottom-
level plan directory. If you have a structure that puts plans at a lower level, you will have to run
pdk to ignore these lower level directories of plans, such as pdk set config project.
validate.ignore subdir1/subdir2/plan.

Plan testing

Testing Puppet plans is beyond the scope of the book. This is because plan testing is currently not
fully implemented and difficult compared to the normal RSpec testing we saw in Chapter 8. Certain
things are simply not implemented, such as mocking uploading a file or custom functions, which
makes it difficult to carry out meaningful and complete testing compared to module testing. The
testing functions currently available can be viewed at https://puppet.com/docs/bolt/
latest/testing_plans.html.

Introducing YAML plans

YAML plans will be summarized here due to their much lower level of usage than Puppet plans.
They are named similarly to Puppet-based plans but end with an extension of .yaml (not .yml).
However, there is no command to create them. YAML plans contain the following:

•	 Description: What will be displayed in the show command

•	 Parameters: A hash of parameters that can be passed to the plan

•	 Private: A Boolean stating whether the plan is visible to the show command

•	 Return: An array, Boolean, hash, number, or string to return from the plan

•	 Steps: An array of steps to be run

The steps essentially represent the action to be performed in that step and the variables the step needs.
There is a similarity between the options available in Bolt and the actions in Puppet plans, such as
commands, tasks, scripts, file downloads, and file uploads. As with Puppet plans, YAML plans can
call other plans with a plan step.

The following example task plan, which uses the Docker puppetlabs module from Forge
https://forge.puppet.com/modules/puppetlabs/docker to create and join an
additional manager node to a Docker swarm, shows some of these features in use:

description: configure docker swarm
paramters:
  firstnode
    type: TargetSpec

https://puppet.com/docs/bolt/latest/testing_plans.html
https://puppet.com/docs/bolt/latest/testing_plans.html
https://forge.puppet.com/modules/puppetlabs/docker

Bolt for Orchestration312

  Othernodes
    Type: Targetspec
- name: init
    task: docker::swarm_init
    targets: $firstnode
  - name: token
    task: docker::swarm_token
    targets: $firstnode
  - name:facts
    Fact:
    targets: $firstnode
  - name: managersjoin
    task: docker::join_swarm
    targets: $othernodes
    parameters:
      token: $token.map |$token_result| { $token_result['stdout'] }
       manager_ip: $facts.map |$facts_result| { $facts_
result['stdout']['networking']['interfaces']['ip'] }

return $managersjoin.map | $managersjoin_result| {$managersjoin_
result['stdout']}

This task takes the firstnode and othernodes variables of the TargetSpec type to provide
the servers to the target. It uses the swarm_init task to initialize on the first node and runs the
swarm_token task on this node. The Fact task is then run on firstnode, and in the final step,
the join_swarm task is run on othernodes. It can be seen calling a variable with the name of
previous step allows us to access the output created by that step. So we can take the output of the token
step and map out the taskspec type returned to use the stdout as the token. For the manager_ip
parameter, we perform a similar action, but this time, as there is more content in stdout, we must
find the networking.interface.ip address fact we wish to pass. The plan then sets the return
key to take the stdout output of the join step to confirm the result of the plan.

It is also possible to use the eval step to calculate values, and both Puppet and Bolt functions can be
used with this. The message and verbose steps are available for output just as they were in Puppet
plans, while string interpolation follows the normal Puppet principle of single quotes ('') having no
interpolation, just printing the text, double quotes ("") performing interpolation, and also using a pipe
(|) with a new line to allow for expressions of a block of Puppet code to be displayed on the next line.

To show some of this, the following plan takes an array of strings to install as packages:

parameters:
  packages:
    type: Array[String]
  servers:
    type: Targetspec

Plugins 313

Steps:
  -name: unique_packages
  eval: $packages.unique
  -name: numer_of_packages
  eval: $unique_packages.size
  - verbose: 'Installing ${number_of_packages} packages'
  - name: install
    task: example::install_packages
    parameters:
      packages:  $unique_packages
      Targets: $servers
Return: $install.map | $install_result| {$install_result['stdout']}

We can see that the unique_packages eval step uses the unique function to find only
unique values in the array and the numer_of_packages eval step uses the size function,
the result of which is passed to the verbose output and interpolated into a string which shows the
number of packages. The example::install_packages task is run with the output of the
unique_packages eval step before its output is used in the returned value.

This has been just a summary of using YAML plans. The full options available on each step and
more are available in the documentation: https://puppet.com/docs/bolt/latest/
writing_yaml_plans.html.

In the following section, let’s look at some examples of plugins that are commonly used with Bolt.

Plugins
Plugins allow Bolt to dynamically load data during a Bolt run. Plugins are essentially just modules
containing tasks with a bolt_plugin.json file identifying which tasks are plugins and what type
of plugins they are. Some are built into Bolt, while others can be added to extend the functionality.

There are three types of Bolt plugins:

•	 Reference: Used to fetch data from external sources, such as loading information into the
inventory file

•	 Secret: Used to create keys to encrypt text and decrypt cipher text

•	 Puppet library: Used to install Puppet libraries when the apply_prep function is called
on a target

We will look at these in detail in the following subsections.

https://puppet.com/docs/bolt/latest/writing_yaml_plans.html
https://puppet.com/docs/bolt/latest/writing_yaml_plans.html

Bolt for Orchestration314

Reference plugins

Reference plugins can be used in configuration files such as inventory.yaml or bolt-project.
yaml using a _plugin key with the plugin name as the value and followed by parameters associated
with the plugin. For example, to use the puppetdb plugin and query and select all the window
nodes in PuppetDB, we could add the following group to inventory.yaml:

groups:
  - name: windows
    targets:
      - _plugin: puppetdb
        query: 'inventory[certname] { facts.kernel = "Windows" }'

This is assuming the PuppetDB connection configuration details are set in one of the configuration files.

Note
With the PuppetDB plugin configured a one-time query like this can be used to query PuppetDB:
bolt task run 'inventory[certname] { facts.kernel = "Windows" }'.

Another approach to reference plugins can be with passwords where the prompt plugin will result
in user input from the command line that sets a password. For example, the following will ensure
that when running against target1.example.com, Bolt will connect on winrm with the user
bill and the password prompted by the message Enter your password:

targets:
  - target1.example.com
  config:
  winrm:
    user: bill
    password:
      _plugin: prompt
      message: Enter your password

Plugins can also be used in plans via the resolve_references function. The following example
shows a subsection of the pecdm module using plugins via the resolve_references function:

$inventory = ['server', 'psql', 'compiler', 'node', 'windows_node'
].reduce({}) |Hash $memo, String $i| {,
$memo + { $i => resolve_references({
'_plugin' => 'terraform',
'dir' => $tf_dir,

Plugins 315

In the preceding code block, it essentially iterates through each group name and builds an array of target
entries read in from the terraform directory set by the tf_dir variable. To see a further example, look
at the contents of the inventory.yaml file for your lab setup, which uses the terraform plugin.

Secret plugins

Secret plugins allow for the creation of keys and secrets, and encrypted values to be passed in.
Currently, pckcs7 is Bolt’s default and only secret plugin. To create the encryption keys, run the
bolt secret createkeys -–force Unix command or the New-BoltSecretKey
-Force PowerShell cmdlet. This will create the keys in the keys folder of your project. Cipher
text can be generated via the bolt secret encrypt 'N33dt0kn0wba515!' --plugin
pckcs7 Unix command or the Protect-BoltSecret -Text 'N33dt0kn0wba515! '
-Plugin pckcs7 PowerShell cmdlet.

The cipher text from this command can then be used in places such as inventory.yaml using
the pkcs7 reference plugin, for example:

targets:
  - uri: target1.example.com
    config:
      ssh:
        password:
          _plugin: pkcs7
          encrypted_value: |
            ENC[PKCS7,MIIBiQYJK]

Note the previous encrypted string was shortened and has a default key size of 2048. This can be
changed by configuring the plugin in bolt-project.yaml or the default and user configuration.

Puppet library

Puppet library plugins install Puppet libraries on a target when the apply_prep function is
called in a plan. Each target the plugin is run on must be able to use the scripting language used by
the plugin. Currently, only puppet-agent exists as a Puppet library plugin and it is configured
to be available by default. But any future libraries or custom written libraries would be added to the
Bolt, user, or default configuration in a similar fashion to this example:

plugin-hooks:
  puppet_library:
    plugin: task
    task: package
    parameters:
      name: puppet-agent
      action: install

Bolt for Orchestration316

The full list of supported and built-in plugins can be viewed at https://puppet.com/docs/
bolt/latest/supported_plugins.html. Writing plugins is beyond the scope of this book,
but the documentation at https://puppet.com/docs/bolt/latest/writing_plugins.
html advises further.

Having covered Bolt in detail, we will now practice creating and using a bolt project in the following lab.

Lab – creating and using a Bolt project
In this lab, we will create a Bolt project. We will create a task that runs the facter command on a
Windows and Linux node.

The steps are as follows:

•	 Create a Bolt project with the following line of code:

bolt project init packtlab

•	 Create an inventory.yaml file by performing a lookup of Windows and Linux clients
from the PECDM Bolt project and copying the output:

bolt inventory show --targets agent_nodes --detail
bolt inventory show --targets windows_agent_nodes --detail

•	 Write a task to cover both Windows and Linux that runs the facter command, taking a
single argument if only a single fact should be returned.

•	 Write a plan that uses run_command to run facter and return the results of the plan.

•	 Run the task and plan on your Windows and Linux clients.

•	 You can find example solutions at https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/tree/main/ch12.

Summary
In this chapter, we showed how Bolt complements Puppet’s state-based management by providing
a capability to run ad hoc actions for anything that doesn’t fit the declarative enforcement methods
of Puppet. We also showed how transports provide the ability for Bolt to connect to targets. We saw
how, using the Bolt commands via Unix or PowerShell, we could run commands, scripts, Puppet code,
and manifests on targets, as well as uploading and downloading files. We reviewed how Bolt logs to
bolt-debug.log and how to configure logging to get more logs for different issues.

https://puppet.com/docs/bolt/latest/supported_plugins.html
https://puppet.com/docs/bolt/latest/supported_plugins.html
https://puppet.com/docs/bolt/latest/writing_plugins.html
https://puppet.com/docs/bolt/latest/writing_plugins.html
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch12
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch12

Summary 317

We then showed how Bolt projects provide a directory structure to contain the configuration and
data for Bolt. Bolt projects provide the inventory.yaml file to contain target and transport
configuration and the bolt-project.yaml file to contain project-level configuration settings
for Bolt and to allow module dependencies to be downloaded into the project. We discussed how
the Bolt project is loaded into the module path along with any modules it had downloaded. We then
highlighted how the project format has changed over different versions of Bolt and how the bolt
migrate command can convert older projects to the new format.

We then discussed how tasks are single-action scripts that can be in any language that will run on
a target machine, paired with a JSON file to provide metadata such as parameters. We also showed
how a task can list multiple implementations depending on the target. We looked at how sensitive
parameters allow passwords and other secrets to be used by tasks without logging in the APIs. The
noop option was introduced as a standard way to pass a parameter to a task and run in no-execute
mode. We also showed how remote tasks contain the remote parameter, set to true, and a remote
transport to allow web access services to use tasks despite being unable to log on in the traditional way.

Then, we discussed how tasks are capable of sharing scripts in implementations and referring to other
modules. Some security practices were discussed to ensure parameters are safely passed to tasks.

Plans were then discussed as a way of running multiple tasks together and providing logic and control
flow. We saw how plans could be written in either the Puppet language or YAML and how targets can
be created using the targetspec data type and functions. We also saw how structured results can
be returned after running a plan.

We then discussed how Bolt plugins provide ways to dynamically load data into Bolt runs using
reference plugins to fetch data and store it, such as to fill the inventory with data from Terraform. We
can also use secret plugins to provide keys for encrypting and decrypting values in Bolt runs. The third
type of plugin we looked at was Puppet library plugins, which has only been implemented currently
for the installation of Puppet agent via Bolt.

In this chapter, we saw how Bolt can be paired with Puppet to get the best of both declarative and
stateful language approaches to allow for flexibility in Puppet configurations.

Having reviewed how to use Bolt and Puppet Enterprise, in the next chapter, we will look at more
advanced topics on how to monitor and scale Puppet infrastructure, review performance issues, and
use the Puppet Data Service to implement the external data pattern and allow users to enter data
into Puppet setups with self-service APIs.

13
Taking Puppet Server Further

This chapter will look at how you can monitor, tune, and integrate your Puppet infrastructure with
third-party sources. You will understand how to find the logs of the various services we have discussed
in previous chapters and how to find the current status APIs. You will then learn how these logs and
statuses can be integrated into services such as logstash to provide greater visibility and alerting
options. Then, we’ll review the metrics provided by Puppet, along with how these can be integrated
with dashboarding tools such as Splunk and Grafana to provide monitoring and observability for
Puppet’s infrastructure. We will set up a lab for both Splunk and Grafana as part of the Puppet
Operational Dashboard to show these dashboards. Using these metrics, you will learn how the various
components of Puppet’s infrastructure can be tuned and scaled to deal with common issues and
problems as Puppet grows. After, you’ll learn how the external provider pattern can allow for facts,
classification, and Hiera data to be fed from external data sources into Puppet and to allow Puppet
platform teams to provide self-service with Puppet data without requiring full knowledge of Puppet
or the environment release procedures. Various third-party implementations, including ServiceNow
and 1Password, will be shown. The Puppet Data Service (PDS) will be implemented in this chapter’s
lab to demonstrate this pattern.

In this chapter, we’re going to cover the following main topics:

•	 Logging and status

•	 Metrics, tuning, and scaling

•	 Identifying and avoiding common issues

•	 External data sources

Taking Puppet Server Further320

Technical requirements
Clone the control repository from https://github.com/puppetlabs/control-repo to
your GitHub account (controlrepo-chapter13) and update the following files in this repository:

•	 Puppetfile with https://github.com/PacktPublishing/Puppet-8-for-
DevOps-Engineers/blob/main/ch13/Puppetfile

•	 hiera.yaml with https://github.com/PacktPublishing/Puppet-8-for-
DevOps-Engineers/blob/main/ch13/hiera.yaml

•	 manifests/site.pp with https://github.com/PacktPublishing/Puppet-
8-for-DevOps-Engineers/blob/main/ch13/site.pp

Build a large cluster with three compilers and three clients by downloading the params.json file
from https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/
blob/main/ch13/params.json and update it with the location of your control repository and
your SSH key for the control repository. Then, run the following command from your pecdm directory:

bolt --verbose plan run pecdm::provision --params @params.json

First, we will look at where to find the logs and current status of the Puppet services and infrastructure.
This will be fundamental to how you will need to tune and troubleshoot Puppet.

Logging and status
When we discussed different Puppet components previously in this book, we listed logging directories,
but it is useful to have a single reference point for these logs.

Exploring log locations

This section provides a list of these logs, titled with the core function, the containing directory, and
the list of logs in that directory:

•	 Primary server logs:

	� /var/log/puppetlabs/puppetserver/: The primary server logging directory

	� puppetserver.log: The primary server which logs its activity

	� puppetserver-access.log: Requests to access endpoints

	� puppetserver-daemon.log: Crash reports and fatal errors

	� puppetserver-status.log: Debug status logging for the service

https://github.com/puppetlabs/control-repo
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch13/Puppetfile
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch13/Puppetfile
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch13/hiera.yaml
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch13/hiera.yaml
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch13/site.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch13/site.pp
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch13/params.json
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch13/params.json

Logging and status 321

•	 Database logs:

	� /var/log/puppetlabs/postgresql/<version>: PostgreSQL logging directory

	� pgstartup.log: Start-up logs

	� postgresql-<Mon – Sun>.log: Daily debugging logs

	� /var/log/puppetlabs/puppetdb/: PuppetDB logging directory

	� puppetdb.log: The PuppetDB service activity log

	� puppetdb-access.log: Requests to access endpoints

	� puppetdb-status.log: Debug status logging for the service

•	 Primary server logs (Puppet Enterprise only):

	� /var/log/puppetlabs/puppetserver/: The primary server logging directory

	� code-manager-access.log: Requests to access endpoints of the code manager

	� file-sync-access.log: Requests to access endpoints of file sync

	� pcp-broker.log: Puppet Communications Protocol brokers on compilers

•	 Console and console services logs (Puppet Enterprise only):

	� /var/log/puppetlabs/console-services/: Puppet Enterprise console service
logging directory

	� console-services.log: Console service activity logs

	� console-services-api-access.log: Requests to access the console service
API endpoints

	� console-services-access.log: Requests to access the console service endpoint

	� console-services-daemon.log: Crash reports and fatal errors logged

	� /var/log/puppetlabs/nginx/: nginx logging directory

	� access.log: Requests to nginx endpoints

	� error.log: nginx errors and general console errors

Taking Puppet Server Further322

•	 Agent logs:

The agent output that you see on your screen when you run Puppet manually is logged to a location
based on the logdest and logdir settings in the puppet.conf file. The logdest
parameter can be set to syslog (to be sent to the POSIX syslog service), eventlog (to be
sent to the Windows event log), console (for logs to be sent to the console), or a filename
so that they’re outputted to a file of this name in the location set by logdest. syslog is the
default for Unix-based systems, while eventlog is the default for Windows. The defaults for
logdest are /var/log/puppetlabs/puppet for Unix and C:\ProgramData\
PuppetLabs\puppet\var\log for Windows.

Note
It is possible to turn on server profiling, which can generate detailed catalog logging information.
This can then be graphed to show in-depth debugging information about the catalog compilation.
It is beyond the scope of this book to dive into this. More information can be found in Puppet’s
documentation at https://github.com/puppetlabs/puppet/blob/main/
docs/profiling.md.

Having examined the various locations of logging, it becomes clear that it would be useful to forward
these server logs to specialized tools so that they can be indexed and processed.

Forwarding server logs

As the number of Puppet clients grows, the log tracking exercise, which we completed in Chapter 10,
simply becomes impractical. In this scenario, more specialized log tooling should be used to filter and
view events. Previously, we saw that Puppet uses the Logback library, http://logback.qos.
ch/, for logging Java services on servers. This can be configured to output logging in JSON format
in logback.xml, which can be sent to a logging backend such as Elastic’s Logstash or Grafana’s
Loki. The logback.xml file contains appender definitions, which are the Logback components
for writing logs.

By observing the appender configuration for puppetserver.log, we will see the
current configuration:

    <appender name="F1" class="ch.qos.logback.core.rolling.
RollingFileAppender">
<file>/var/log/puppetlabs/puppetserver/puppetserver.log</file>
        <append>true</append>
        <rollingPolicy class="ch.qos.logback.core.rolling.
SizeAndTimeBasedRollingPolicy">
<fileNamePattern>/var/log/puppetlabs/puppetserver/puppetserver-
%d{yyyy-MM-dd}.%i.log.gz</fileNamePattern>
            <!-- each file should be at most 200MB, keep 90 days worth
of history, but at most 1GB total -->

https://github.com/puppetlabs/puppet/blob/main/docs/profiling.md
https://github.com/puppetlabs/puppet/blob/main/docs/profiling.md
http://logback.qos.ch/
http://logback.qos.ch/

Logging and status 323

            <maxFileSize>200MB</maxFileSize>
            <maxHistory>90</maxHistory>
            <totalSizeCap>1GB</totalSizeCap>
        </rollingPolicy>
        <encoder>
            <pattern>%d{yyyy-MM-dd'T'HH:mm:ss.SSSXXX} %-5p [%t]
[%c{2}] %m%n</pattern>
        </encoder>
    </appender>

Here, we can see how it appends to the log, the filename pattern it will use, along with dates for rolling
the log, and that the file size will not exceed 200 MB per file, no more than 1 GB, and that logs will
not be retained for more than 90 days. The encoder shows how the log entries should be formed.

To add a JSON version of the log, we could make a similar entry that consists of just 5 days of logging.
Here, the encoder is the Logstash encoder to output in JSON. Here’s the code for this appender:

<appender name="server_JSON" class="ch.qos.logback.core.rolling.
RollingFileAppender">
    <file>/var/log/puppetlabs/puppetserver/puppetserver.log.json</
file>
    <rollingPolicy class="ch.qos.logback.core.rolling.
TimeBasedRollingPolicy">
        <fileNamePattern>/var/log/puppetlabs/puppetserver/
puppetserver.log.json.%d{yyyy-MM-dd}</fileNamePattern>
        <maxHistory>5</maxHistory>
    </rollingPolicy>
    <encoder class="net.logstash.logback.encoder.LogstashEncoder"/>
</appender>

To enable this appender toward the bottom of the logback.xml file, add the following definitions:

    <root level="info">
        <!--<appender-ref ref="STDOUT"/>-->
        <appender-ref ref="${logappender:-DUMMY}" />
        <appender-ref ref="F1"/>
    </root>

Adding <appender-ref ref="server_JSON"/> within this root section would enable
our JSON appender. Restarting the puppetserver service would enable the new appender.

To set up server-access.log, you can use the code at https://github.com/
PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch13/
appender_example.xml, which will add an appender that will configure the JSON output
with an appropriate pattern.

https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch13/appender_example.xml
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch13/appender_example.xml
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch13/appender_example.xml

Taking Puppet Server Further324

You will need to consider disk space in such cases. It’s possible to run this with JSON logging. Logback
is a powerful library, but it’s beyond the scope of this book to go through the full options. These can be
reviewed at http://logback.qos.ch/manual/configuration.html and https://
logback.qos.ch/manual/appenders.html.

Now that logfiles exist in JSON, a tool such as Grafana’s Promtail or Elastic’s Filebeat could be
configured to forward the log files to a service such as Elastic’s Logstash or Grafana’s Loki. The Ruby
logs managed by Logrotate can also be gathered, but it would require more work to put suitable
patterns on them to be processed.

Note
Puppet Enterprise services, console-services, PuppetDB, and orchestration services all
use Logback and can have their logs forwarded like this.

Having reviewed how logs can be sent to external services to be processed, we will now see how the
reports that are generated from applying Puppet catalogs can also be sent to external tools using
report processors.

Report processors

As well as server logging, as shown in Chapter 10, every catalog run generates reports. In Chapter 10, you
saw how this was configured by peadm to be stored in puppetdb using reports = puppetdb
in the master/server section of puppet.conf. Setting this reports value told the server
to use a report processor, which is a Ruby script that’s run when Puppet Server receives a report. The
script then performs actions to pass it on to a target. In the case of PuppetDB, this is to send reports to
be stored in PuppetDB. There are three built-in report processors: http, log, and store. http,
which sends the report to an HTTP address set by the reporturl setting in puppet.conf in
YAML format. log sends the report output to the logging file specified in logdest and logdir in
puppet.conf, and store puts the report’s output into files specified by the reportdir setting
that’s set in puppet.conf. Other custom report processors are available in Puppet Forge, including
the Splunk integration module, as described at https://forge.puppet.com/modules/
puppetlabs/splunk_hec, and the Datadog agent module, as described at https://forge.
puppet.com/modules/datadog/datadog_agent, which allows report data to be viewed
in those third-party services. The instructions vary, depending on the module, but normally, the
minimum actions required to add a report processor is for Puppet Server to have the module deployed
in an environment and for the reports to have the name of the forwarder set. Writing custom report
processors is beyond the scope of this book but details can be found at https://puppet.com/
docs/puppet/latest/reporting_write_processors.html.

In addition to logs and reports, we can see what condition the current Puppet Infrastructure is by
calling the status APIs.

http://logback.qos.ch/manual/configuration.html
https://logback.qos.ch/manual/appenders.html
https://logback.qos.ch/manual/appenders.html
https://forge.puppet.com/modules/puppetlabs/splunk_hec
https://forge.puppet.com/modules/puppetlabs/splunk_hec
https://forge.puppet.com/modules/datadog/datadog_agent
https://forge.puppet.com/modules/datadog/datadog_agent
https://puppet.com/docs/puppet/latest/reporting_write_processors.html

https://puppet.com/docs/puppet/latest/reporting_write_processors.html

Logging and status 325

Accessing status APIs

Puppet provides a status endpoint that can be called at GET /status/v1/services. This
endpoint returns the status of all known services on the server. This access is controlled by auth.
conf and can be accessed locally via the Puppet CA certificates, as follows:

cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"
uri="https://$(puppet config print server):8140/status/v1/services"
curl --cert "$cert" --cacert "$cacert" --key "$key" "$uri" | jq

The final pipe to JQ (a command-line JSON processor) is optional but makes the output more readable.
Here’s an example of the output Puppet Server’s status would provide:

{
  "server": {
    "service_version": "7.6.0",
    "service_status_version": 1,
    "detail_level": "info",
    "state": "running",
    "status": {},
    "active_alerts": []
  },

It is possible to target an individual service by adding the service name to the URL – for example,
GET/status/v1/services/server. For PE installations that have additional services, the
specific port for each service should also be called. PE services will be discussed in Chapter 14.

The return code from these calls will be 200 for all services running, 404 when a service is not
found, or 503 when a service state is in any state other than running.

The server state can be running when all services are running, error if any service reports an
error, starting or stopping if any services are in those states, and unknown if any service
reports an unknown state.

Puppet Enterprise has an extra command-line option to call APIs via the puppet infrastructure
status command, which produces an output similar to the following:

Puppet Server: Running, checked via https://pe-server-davidsand-
0-cffe02.tq2kpafq5bsehkpub4ur5a35ya.xx.internal.cloudapp.net:8140/
status/v1/services
  PuppetDB: Running, checked via https://pe-server-davidsand-0-cffe02.
tq2kpafq5bsehkpub4ur5a35ya.xx.internal.cloudapp.net:8081/status/v1/
services

https://pe-server-davidsand-0-cffe02.tq2kpafq5bsehkpub4ur5a35ya.xx.internal.cloudapp.net:8081/status/v1/services

https://pe-server-davidsand-0-cffe02.tq2kpafq5bsehkpub4ur5a35ya.xx.internal.cloudapp.net:8081/status/v1/services

https://pe-server-davidsand-0-cffe02.tq2kpafq5bsehkpub4ur5a35ya.xx.internal.cloudapp.net:8081/status/v1/services

Taking Puppet Server Further326

In the web console, you can find the Puppet Service’s status by clicking the Puppet Services status
button, as per the following figure:

Figure 13.1 – Puppet Services status in the web console

Metrics, tuning, and scaling 327

Note
The puppet status command, which was depreciated in Puppet 5, was removed in Puppet
7. It didn’t use API endpoints.

The logs, reports, and statuses we have viewed so far allow us to observe what the Puppet infrastructure
and clients are doing, but they don’t tell us about the overall performance of the infrastructure and its
clients. Next, we will look at the metrics that Puppet supplies and how they can be used to monitor
the performance and capacity of infrastructure.

Metrics, tuning, and scaling
To provide more detailed data on the performance and health of Puppet services via the services status
API, the level flag can be set to debug; this will return metrics. For example, to return the metrics
for Puppet Server and filter them using JQ, the following commands can be run:

cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"
uri="https://$(puppet config print server):8140/status/v1/services/
server?level=debug"
curl --cert "$cert" --cacert "$cacert" --key "$key" "$uri" | jq
".status.experimental"

This would output data such as the following metric for the puppet-v3-catalog endpoint:

{
  "http-metrics": [
    {
      "route-id": "puppet-v3-catalog-/*/",
      "count": 41,
      "mean": 4459,
      "aggregate": 182819
    },

This gives us a count of how many calls have been made to the endpoint since the service last
restarted. mean is the average response time over 5 minutes, while aggregate is the total time
spent since the service started.

There are many metrics across all the different services. To find the definitions of these metrics, the
API services can be viewed in the documentation (for example, https://puppet.com/docs/
pe/2021.7/status_api.html). However, overall, they are poorly documented and may take
some exploration or you asking questions on Puppet’s Slack channels and support channels if you have
a contract. Do not be concerned by most of the metrics having experimental in their title – most of the
metrics have been available for years; they just haven’t had the experimental tag removed by Puppet.

https://puppet.com/docs/pe/2021.7/status_api.html
https://puppet.com/docs/pe/2021.7/status_api.html

Taking Puppet Server Further328

Note
In-depth details explaining how the underlying metrics library works for Puppet are available
at https://www.youtube.com/watch?v=czes-oa0yik&t=0s, provided by the
author of the metrics library.

Now, let’s take a look at the dashboards that are used to display metrics data.

Exploring metrics dashboards

Puppet provides three implementations that automate the process of gathering and displaying metrics data:

•	 Puppet Operational Dashboards, available at https://forge.puppet.com/modules/
puppetlabs/puppet_operational_dashboards, is a supported Puppet module from
Puppet Forge that implements Telegraf, InfluxDB, and Grafana to provide mechanisms to send
the API metric data, store it in a time series database, and visualize the data in preconfigured
dashboards. Operational Dashboards supports both Puppet Enterprise and open source Puppet.
An example of such a dashboard can be seen in the following figure:

Figure 13.2 – Grafana Puppetserver performance dashboard

https://www.youtube.com/watch?v=czes-oa0yik&t=0s
https://forge.puppet.com/modules/puppetlabs/puppet_operational_dashboards
https://forge.puppet.com/modules/puppetlabs/puppet_operational_dashboards

Metrics, tuning, and scaling 329

•	 The Splunk Plugin, an app on the Splunk store, available at https://splunkbase.
splunk.com/app/4413/#/overview, can be added to your Splunk setup to provide
preconfigured dashboards. The Splunk HTTP event collector (HEC) module can be found at
https://forge.puppet.com/modules/puppetlabs/splunk_hec. https://
forge.puppet.com/modules/puppetlabs/pe_event_forwarding can be
combined with this module to send the metrics over HTTP to the HEC module. An example
of a Splunk dashboard is shown in the following figure, with Puppet Server Memory graphed:

Figure 13.3 – Splunk Puppet Server Memory dashboard

Puppet teams work together to keep the Splunk and Grafana dashboards consistent.

For Puppet Enterprise, there is also the Puppet Metrics collector module (https://forge.
puppet.com/modules/puppetlabs/puppet_metrics_collector) installed by default
on Puppet Enterprise 2019.8.7 onwards. This module gathers metrics from the APIs and outputs them
to JSON files in the /opt/puppetlabs/puppet-metrics-collector directory. These JSON
files can then be searched using commands such as grep or JQ (assuming the terminal was in the
metric collector directory). Two common queries, which will be explained in detail in the Identifying
and avoiding common issues section, are average-free-jrubies and queue_depth. These
can be added like this:

grep -oP '"average-free-jrubies.*?,' puppetserver/primary.
example.com/*.json puppetserver/pe-server-davidsand-0-cffe02.
tq2kpafq5bsehkpub4ur5a35ya.xx.internal.cloudapp.net/*.json

"puppetserver/pe-server-davidsand-0-cffe02.tq2kpafq5bsehkpub4ur5a35ya.
xx.internal.cloudapp.net/20220731T220502Z.json":"average-free-
jrubies":3

https://splunkbase.splunk.com/app/4413/#/overview
https://splunkbase.splunk.com/app/4413/#/overview
https://forge.puppet.com/modules/puppetlabs/splunk_hec
https://forge.puppet.com/modules/puppetlabs/pe_event_forwarding
https://forge.puppet.com/modules/puppetlabs/pe_event_forwarding
https://forge.puppet.com/modules/puppetlabs/puppet_metrics_collector
https://forge.puppet.com/modules/puppetlabs/puppet_metrics_collector

Taking Puppet Server Further330

jq '.. |."queue_depth "? | select(. != null)| input_filename , .'
-- puppetdb/pe-server-davidsand-0-cffe02.tq2kpafq5bsehkpub4ur5a35ya.
xx.internal.cloudapp.net/*.json

"puppetdb/pe-server-davidsand-0-cffe02.tq2kpafq5bsehkpub4ur5a35ya.
xx.internal.cloudapp.net/20220731T221001Z.json"
0

To make it easier to share this data, it can be archived by running the /opt/puppetlabs/puppet-
metrics-collector/scripts/create-metrics-archive command, which will produce
a tarball file. It contains the –r flag if you wish to archive a set number of days.

Having looked at how to gather and display metrics, we will now discuss some common performance
and capacity issues and how to manage them using metrics.

Identifying and avoiding common issues

Having set up logging, statuses, and metrics, we need to consider what to look for and how to examine
our Puppet infrastructure. Normal monitoring of CPU, memory, and disk usage should be in place
but there are some key functional areas to focus on. We will discuss these in the following sections.

Catalog compilation

In Chapter 10, we learned how each catalog compilation required a JRuby instance to compile a
catalog for each Puppet request and that the Puppet Primary or Compiler Servers provided this JRuby
capacity. To calculate the necessary number of JRuby instances to handle the load for infrastructure,
we can take the run interval (how often servers will check in) and divide this by the average length
of compilation. This will sum up how many JRuby instances are required per server. We can take the
number of Puppet Clients we expect the infrastructure to have and divide this by the previous figure
to provide an estimate of the total required JRuby instances:

Add this here: Total JRuby Instances = Number of Puppet clients / (run interval / average compilation length

Choosing the sizing for your infrastructure can be complicated. The number of JRuby instances
on a primary server or compiler can be set by running max-active-instances in the
puppetserver.conf file; this defaults to the number of CPUs – 1 for a range of 1 to 4. Each
JRuby instance will require memory in the JVM stack. For Puppet Enterprise, this file is controlled by
setting the hiera value to puppet_enterprise::master::puppetserver::jruby_
max_active_instances:.

Metrics, tuning, and scaling 331

The total JVM stack memory is allocated by the Puppet Server startup script, which depending on
the operating system, will be at /etc/sysconfig/puppetserver or /etc/defaults/
puppetserver. This is set by the xmx argument, which can be calculated as each JRuby instance
requiring 512 MB of memory by default and leaving 512 MB of headroom for other Java tasks:

Add this here: Total stack heap size required = 512mb + maximum active instances * 512MB

It is recommended that you never exceed 32 GB of stack size for JVM. As seen from various field
experiments, the maximum effective number of JRuby instances appears to be between 11 and 13.
These maximum figures tend to be for much larger estates and concern should be given to allow for
compiler failures. In this case, it would be unwise to focus entirely on horizontal scaling; instead, it
should be balanced with vertical scaling (having more compiler servers).

Sizing recommendations can be difficult when you’re just starting – it can be very unclear what your
average compilation time will be and seconds in compilation can have a big impact, so it is wise to
monitor both JRuby usage and catalog compilation time as the estate grows and look for outliers as
they appear. Puppet has some guidelines for Puppet Enterprise sizing at https://puppet.com/
docs/pe/2021.7/tuning_infrastructure.html.

When monitoring catalog performance, we have some key concerns. The jruby.num-jrubies
and jruby.num-free-jrubies metrics show how many JRuby instances are on a server and
how many are free. When looking at these metrics, the average used capacity of the infrastructure
should be calculated. It is recommended that you avoid going beyond 80% usage as performance
tends not to scale beyond this. You should also confirm that there are no issues with load balancers
and that the free JRuby instance usage is even across compilers. One issue that can occur is known
as Thundering Herd, where many servers request catalog compilations at the same time. This can
be seen in the metrics as large spikes in JRuby instance usage. If you experience this, you can use
the puppet run scheduler module at https://forge.puppet.com/modules/reidmv/
puppet_run_scheduler to distribute the scheduling of Puppet agent runs.

If the capacity of the JRuby pool is exceeded, then requests will queue and timeout after a default of
10 seconds. The borrow-timeout-count metric provides a count of the number of requests
that have timed out while waiting for a JRuby instance to become available.

Catalog runtimes

As highlighted previously, the catalog’s runtime has a huge impact on the number of JRuby instances
that are required in the infrastructure. Looking at the metrics-time-total metric, which
shows the compile time for report events sent, we can look at the average time to compile to help with
our capacity calculations. We can also look at the distribution of these figures to see if we have any
extreme outliers we would want to investigate in that catalog and its Puppet code.

https://puppet.com/docs/pe/2021.7/tuning_infrastructure.html
https://puppet.com/docs/pe/2021.7/tuning_infrastructure.html
https://forge.puppet.com/modules/reidmv/puppet_run_scheduler
https://forge.puppet.com/modules/reidmv/puppet_run_scheduler

Taking Puppet Server Further332

Some key areas to check can be seen in the following table:

Metric Definition Metric Name
Catalog compilation time Metrics-time-config_retrieval

Time to apply the catalog Metrics-time.catalog_application

Number of resources in the catalog Metrics-resources-total

Time to generate facts Metrics-changes-total

Table 12.1 – Catalog metrics

Within each of these measures, you should ensure that there was a reason for it to be an outlier.
If the code or fact is complex or any particular resource is known to be slow, this may be normal,
or it may be inefficient code that can be reviewed before it is applied to more servers, thus saving
infrastructure capacity.

PuppetDB and PostgreSQL tuning

For PuppetD, the best metrics to monitor are jvm-metrics.heap-memory.committed
and jvm-metrics.heap-memory.used. If the used memory’s size is regularly approaching
the committed memory’s size, then it’s best to increase the stack’s size. Similar to compilers, this
involves updating the puppetdb or pe-puppetdb config file at /etc/sysconfig/ or
/etc/default/puppetdb, respectively, depending on your operating system, and updating
the JAVA_ARGS argument. For example, if you found that jvm-metrics.heap-memory.
committed was set to 512 MB but jvm-metrics.heap-memory.used was approaching
this limit regularly, the maximum heap size could be updated to 1 GB by changing JAVA_ARGS
="-Xmx512m" to JAVA_ARGS="-Xmx1g" in the config file. After doing this, you would need to
restart the PuppetDB service. However, note that all jobs that have been queued due to them running
out of memory would just continue after a restart. For Puppet Enterprise, this file can be controlled by
setting the hiera value to puppet_enterprise::profile::puppetdb::java_args:.

Another good indication of performance is the queue depth, which is represented by the puppetdb-
status.status.queue_depth metric. If this is high and there are free CPUs, it would be
beneficial to increase the number of CPU threads available to PuppetDB. This can be done in the
PuppetDB configuration file at /etc/puppetlabs/puppetdb/conf.d. If PuppetDB has
been installed by a package in the [command-processing] section with the threads key
or if the Puppet PuppetDB module has been used, as will be the case in Puppet Enterprise, the class
should be adjusted using the module’s settings. In Puppet Enterprise, this can be done in the node
groups section in the web console. Any changes that are made to threads will require you to restart
the PuppetDB service.

The reverse scenario, where CPU usage is high and throttling but the PuppetDB queue is low, should
allow threads to be released to improve the throughput of other services.

Metrics, tuning, and scaling 333

Tuning sizing

To assist in getting the right server settings based on available hardware, Puppet Enterprise has the
puppet infrastructure tune command.

This calculates the optimal settings to apply for your servers. The following example output extracts
only the suggested Hiera settings printed by the command:

puppet_enterprise::profile::database::shared_buffers: 3176MB
puppet_enterprise::puppetdb::command_processing_threads: 1
puppet_enterprise::profile::puppetdb::java_args:
  Xms: 1588m
  Xmx: 1588m
puppet_enterprise::profile::orchestrator::jruby_max_active_instances:
2
puppet_enterprise::profile::orchestrator::java_args:
  Xms: 1588m
  Xmx: 1588m
puppet_enterprise::profile::console::java_args:
  Xms: 1024m
  Xmx: 1024m
puppet_enterprise::master::puppetserver::jruby_max_active_instances: 2
puppet_enterprise::profile::master::java_args:
  Xms: 1536m
  Xmx: 1536m
puppet_enterprise::master::puppetserver::reserved_code_cache: 192m

This extracted data could be put in a Hiera file and classified against the primary server. Note that
if the RAM is high enough, it will recommend configurations for heap sizes above 32 GB. This is
sub-optimal, as we discussed when we looked at compilation sizing and issues.

The following is general advice:

It may seem difficult to process the number of metrics, especially given the lack of clear definitions,
but if the Splunk plugin or Operational dashboard is used, this can give you a view that’s consistent
with what Puppet Support teams use and monitor. Learning how your estate normally behaves in these
values and looking for spikes in the graph and relating them to others can go some way to finding issues.

Using Puppet’s knowledge base, which has been open to any user since April 2021, can help you
search for issues. Looking at collections of articles such as https://support.puppet.com/
hc/en-us/sections/360000926413-Performance-tuning can assist you in gaining
a deeper understanding of any issues that you experience.

https://support.puppet.com/hc/en-us/sections/360000926413-Performance-tuning
https://support.puppet.com/hc/en-us/sections/360000926413-Performance-tuning

Taking Puppet Server Further334

Lab – configuring metric dashboards

Having discussed metrics and Puppet’s two options for viewing them, we can configure the Splunk
dashboard and the Puppet Operational dashboard to see the dashboards provided. Using the issues
that were described in the previous section around PuppetDB and compiler capacity, find the graphs
that would assist in your investigation.

Configure the Puppet operational dashboard:

1.	 Choose one of your nodes to host the Puppet Operational dashboard and classify puppet_
operational_dashboards on the web console as a node group.

2.	 In the node group’s PE Infrastructure Agent, add puppet_operational_
dashboards::enterprise_infrastructure to the list of classes on the Classes tab.

3.	 Run puppet on all the nodes until the servers are showing clean.

4.	 Log in at https://<public_ip_of_operational_dashboard_node>:3000
user=admin password=admin.

Configure Splunk:

1.	 Sign up for a Splunk account at https://www.splunk.com/en_us/sign-up.
html?301=/page/sign_up (this is free).

2.	 Choose a different node to host Splunk Enterprise by classifying splunk::enterprise
as a node group on the web console and pinning the chosen node.

3.	 Install the Puppet report viewer:

I.	 Log in and download https://splunkbase.splunk.com/app/4413/.

II.	 Log in to https://<public_ip_of_splunk_server>:8000 username=admin
and password=changeme.

III.	 Select the cog to the top left of the Apps bar.

IV.	 On the next screen, select upload app from file at the top right.

4.	 Set the license to free in Splunk:

I.	 Click Settings at the top right.

II.	 In the dropdown under system, select Licensing.

III.	 Select change license group.

IV.	 Select free license and click Save.

https://www.splunk.com/en_us/sign-up.html?301=/page/sign_up
https://www.splunk.com/en_us/sign-up.html?301=/page/sign_up
https://splunkbase.splunk.com/app/4413/

External data provider pattern 335

5.	 Create an HEC token in Splunk:

I.	 Navigate to Settings | Data Input in your Splunk console.

II.	 Add a new HTTP Event Collector with a name of your choice.

III.	 Ensure Indexer acknowledgement is not enabled.

IV.	 Click Next and set source type to Automatic.

V.	 Ensure App Context is set to Puppet Report Viewer.

VI.	 Add the main index.

VII.	 Set Default Index to main.

VIII.	 Click Review and then Submit.

6.	 Classify puppet_metrics_collector with the metrics_server_type parameter
set to splunk_hec on the PE Infrastructure node group.

7.	 Classify splunk_hec on the PE HA Master node group with the following parameters:

	� enable_reports set to true

	� events_reporting_enabled set to true

	� manage_routes set to true

	� token set to <token number of generated in step 5>

	� url set to https://<public_ip_of_splunk_server>:8088/services/
collector

8.	 Log in at https://<public_ip_of_splunk_server>:8000 and run index=*
sourcetype=puppet:summary to ensure data is being gathered (it may take some
time to start).

Now that both the Puppet operational dashboard and Splunk have been configured, tour the various
graphs and panels to find the graphs that are relevant to catalog capacity and PuppetDB performance.

If possible, leave Splunk set up for the next section as the inventory and inventory trend views are the
dashboard views of the Facter terminus output.

Now that you know how to integrate Puppet’s status, logging, and metrics, we can look at a pattern
that allows us to integrate Puppet with other services and provide self-service to Puppet users.

External data provider pattern
Puppet will not be the only source of configuration and information in your estate. There are likely to
be numerous sources for Configuration Management Databases (CMDBs) such as ServiceNow or
internally developed systems that are used by application teams to store their information. Several of

Taking Puppet Server Further336

your colleagues and internal customers will want to be able to create exceptions and customizations
without having to understand Puppet code and the workflow for deployment. There will also be
demands to be able to feed Puppet data back into external systems. The external data provider pattern
allows this to happen by allowing you to do the following:

•	 Make changes in the classification

•	 Add and change trusted facts

•	 Feed existing data in as a fact or Hiera data

•	 Send Facter data to external sources

Having introduced the core concept of the external data provider pattern, we will now look at each
of the technical components used within it.

Understanding external data provider components

The underlying components of this pattern are shown in the following figure:

Figure 13.4 – Core components of the external data provider pattern

We will run through each to show how this pattern works. It is beyond the scope of this book to show
you how to write each of these components, but we will detail where documentation exists for this.
In the following section, sample implementations will be referenced:

A backend storage service (BSS) allows you to store data for consumption. The technical solution for
the BSS is not important, but it must be resilient and provide high throughput on reads.

This throughput can be calculated at 2 + <number of Hiera levels> reads per Puppet agent run. To
show how this would be calculated if an estate of 10,000 servers used the default agent run time of 30
minutes and had a 5-level Hiera setup, this would be calculated as (2+5) * 10,000 / 1,800 = 39 queries
per second (rounded up).

External data provider pattern 337

Tools such as CMDB or internal applications can be directly queried and act as the BSS, but the tool
can deal with the workload.

The trusted external command, which was introduced in Puppet 6.11 and 7.0, allows a script
to be run during Puppet runs and gather facts and classification information from external sources.
This script should take the certname property of the client as its argument, return a JSON hash
of facts, and exit with an error code for any unknown certname. This script can be configured by
using the trusted_external_command setting in the master/server section of puppet.
conf on each primary and compiler server. The facts that are returned by this command will be
contained under trusted.external.basename, where basename is the name of the script.
Since Puppet 6.17 and 7.0, it is also possible to use multiple trusted external commands by setting
trusted_external_command to be a directory containing multiple scripts. This can be useful
for querying multiple sources. Each source would then get a different base name. In the external data
provider pattern, it is used to query the BSS.

The Hiera backend uses functions written in Ruby or Puppet to query APIs or other sources when
Hiera lookups are performed. In the external data provider pattern, the backend queries the BSS for
values. Documentation on this is available at https://puppet.com/docs/puppet/latest/
hiera_custom_backends.html.

Puppet allows pluggable backends known as termini and uses indirectors, as discussed in Chapter 10,
to allow Ruby scripts to access key-value pairs at endpoints. Fact termini are Ruby scripts that access
the fact endpoints and allow the data to be sent on to other external systems. Further details on this
are available at https://puppet.com/docs/puppet/latest/indirection.html
and https://puppet.com/docs/puppet/latest/man/facts.html.

External data provider implementations

At the time of writing, no single implementation of the external data provider pattern implements all
parts, but they can be used together to integrate multiple systems and purposes. The list of examples
in this section is not meant to be exhaustive but should show the breadth of integrations that can be
investigated. We will also provide documentation examples, which can be expanded on if necessary.

Satellite

Red Hat Satellite can receive reports from Puppet Server through a report processor while using the module
available at https://forge.puppet.com/modules/puppetlabs/satellite_pe_tools.
However, it is also possible to use the puppetserver_foreman module to configure a trusted
external command to gather the various configuration data from Satellite, such as smart parameters and
organization as facts. With Puppet being removed as the default configuration management choice and
instead used as an optional plugin, and Puppet versions not keeping up with development in the Satellite
platform, as per https://www.redhat.com/en/blog/upcoming-changes-puppet-
functionality-red-hat-satellite, the use of this trusted external command allows Puppet

https://puppet.com/docs/puppet/latest/hiera_custom_backends.html
https://puppet.com/docs/puppet/latest/hiera_custom_backends.html
https://puppet.com/docs/puppet/latest/indirection.html
https://puppet.com/docs/puppet/latest/man/facts.html
https://forge.puppet.com/modules/puppetlabs/satellite_pe_tools
https://www.redhat.com/en/blog/upcoming-changes-puppet-functionality-red-hat-satellite
https://www.redhat.com/en/blog/upcoming-changes-puppet-functionality-red-hat-satellite

Taking Puppet Server Further338

Server’s functionality to be migrated as a separate Puppet infrastructure while the configuration is
maintained in the Foreman component of Satellite. See the files/Satellite at https://github.com/
theforeman/puppet-puppetserver_foreman to see the trusted external command.

ServiceNow

Several ServiceNow integrations have been developed for use with Puppet; the CMDB integration
allows a trusted command provided by the module available at https://forge.puppet.com/
modules/puppetlabs/servicenow_cmdb_integration.

ServiceNow should only be used with BSS on a smaller scale since using a large number of nodes could
overwhelm ServiceNow with queries. It provides a useful example of using the trusted command.

A better approach has been developed to ensure scaling where the ServiceNow graph connector connects
to the Puppet API and gathers the necessary data: https://store.servicenow.com/sn_
appstore_store.do#!/store/application/42ae987a1b832c10fa34a8233a4bcb0b.

Azure Key Vault

Azure Key Vault’s integration is a function that calls azure_key_vault::secret in Puppet
code. This can be used with a Hiera backend to access Azure Key Vault secrets. It is an approved
module (https://forge.puppet.com/modules/tragiccode/azure_key_vault).

1Password

The 1Password integration is a Hiera backend that allows lookup calls to be made for secrets in the
1Password setup: https://forge.puppet.com/modules/bryxxit/onepassword_lookup.

Vault

The two Vault solutions (server-side and client-side) were discussed and demonstrated in Chapter 9,
but to recap, it is the server-side Vault lookup that implements a Hiera backend lookup function called
hiera_vault in the module. As discussed at https://forge.puppet.com/modules/
petems/hiera_vault, this allows secrets from Vault to be called via Hiera and compiled into code.

Puppet Data Service

Puppet Data Service (PDS) provides one of the most complete implementations of the external data
provider pattern, except it implements a fact terminus. The following components are a part of PDS:

•	 A REST API and CLI that allow user and application interaction

•	 A pluggable backend database to provide a BSS (at the time of writing, only PostgreSQL
is supported)

•	 A Hiera backend to query the BSS

•	 A trusted external command to query the BSS

https://github.com/theforeman/puppet-puppetserver_foreman
https://github.com/theforeman/puppet-puppetserver_foreman
https://forge.puppet.com/modules/puppetlabs/servicenow_cmdb_integration
https://forge.puppet.com/modules/puppetlabs/servicenow_cmdb_integration
https://store.servicenow.com/sn_appstore_store.do#!/store/application/42ae987a1b832c10fa34a8233a4bcb0b
https://store.servicenow.com/sn_appstore_store.do#!/store/application/42ae987a1b832c10fa34a8233a4bcb0b
https://forge.puppet.com/modules/tragiccode/azure_key_vault
https://forge.puppet.com/modules/bryxxit/onepassword_lookup
https://forge.puppet.com/modules/petems/hiera_vault
https://forge.puppet.com/modules/petems/hiera_vault

External data provider pattern 339

PDS was designed to be less focused on a particular set of integrations and allow Puppet platform
teams to leverage the external data provider pattern to provide self-service and reduce operational
burdens. PDS has an install module (https://github.com/puppetlabs/puppetlabs-
puppet_data_service). The code that makes up the application and API (https://github.
com/puppetlabs/puppet-data-service) is packaged in deb and rpm, which are used by
the install module. At the time of writing, both modules are only designed for a Puppet Enterprise
installation, but nothing within the underlying setup limits the application to Puppet Enterprise, which
means it can be adapted to open source Puppet.

Splunk

In the Logging and status section of this chapter, we discussed and demonstrated how the splunk_hec
module provided communication from Puppet Server to the Splunk Hec URL on a Splunk server
using the same modules fact terminus (https://github.com/puppetlabs/puppetlabs-
splunk_hec/blob/main/lib/puppet/indirector/facts/splunk_hec.rb).

Facts from Puppet runs can be sent to Splunk, which can then be viewed in the Splunk app (https://
splunkbase.splunk.com/app/4413/) in terms of inventory and inventory trends.

Lab – hands-on with Splunk and Puppet Data Service

Having discussed several integrations, if you left the Splunk installation or reinstallation as per the
previous lab, you can log into Splunk and view the inventory and inventory trend tabs. Here, you will
see the Facter terminus output and can experiment with viewing the data from your nodes.

In this part of the lab, you will see how PDS can be used to classify nodes, update Hiera data, and
add trusted facts.

To install PDS, you will need to perform the following tasks:

1.	 Observe the hiera.yaml and site.pp file in the control repository you cloned and see
how PDS will use them.

2.	 Configure the two required application roles.

3.	 For the database server, do the following:

I.	 Add a new node group from the PE console:

Parent name: PE Infrastructure
Group name: PDS Database
Environment: production

II.	 Add the puppet_data_service::database class to the PDS database group
you created in the previous step.

https://github.com/puppetlabs/puppetlabs-puppet_data_service
https://github.com/puppetlabs/puppetlabs-puppet_data_service
https://github.com/puppetlabs/puppet-data-service
https://github.com/puppetlabs/puppet-data-service
https://github.com/puppetlabs/puppetlabs-splunk_hec/blob/main/lib/puppet/indirector/facts/splunk_hec.rb
https://github.com/puppetlabs/puppetlabs-splunk_hec/blob/main/lib/puppet/indirector/facts/splunk_hec.rb
https://splunkbase.splunk.com/app/4413/
https://splunkbase.splunk.com/app/4413/

Taking Puppet Server Further340

III.	 Add your existing primary server to the group using the Rules tab node before following
these steps.

IV.	 Commit your changes.

4.	 For the PDS API servers, do the following

I.	 Select the PE Master node group.

II.	 Select the classes tab.

III.	 Add the new puppet_data_service::server class

IV.	 Include the database_host: <FQDN of your primary server> parameter

V.	 Select the Configuration data tab

VI.	 Configure the sensitive pds_token parameter. You can use https://www.
uuidgenerator.net/ to generate a token

VII.	 Commit your changes.

5.	 Run Puppet on all nodes until reports show unchanged.

6.	 Create an SSH session to the primary server and one of the nodes in separate terminal windows.

7.	 On the primary server, run the pds-cli node upsert <fqdn_of_node> -c motd
-e production command.

8.	 On the node, run puppet agent –t. In the output of the command, you will see that motd
has been applied with default settings.

9.	 On the primary server, run pds-cli hiera upsert nodes/<fqdn_of_node>
motd::content -v '"Hello world its PDS\n"'.

10.	 On the node, run puppet agent –t. In the output of the command, you will see that motd
has been applied with the Hiera override we set.

11.	 On the primary, run pds-cli node upsert <fqdn_of_node> -c motd -d
'{"status": "Testing"}' -e production and pds-cli hiera upsert
nodes/<fqdn_of_name> motd::content -v '"Hello world, I am a PDS
%{trusted.external.pds.data.status} Server\n"'.

12.	 On the node, run puppet agent –t. Observe that it applies the new motd with the Hiera
override and value testing set for the trusted fact.

13.	 Log into the console and look at the node and its facts to see if it has a trusted fact, pds.
data.status, set to testing.

Summary
In this chapter, we summarized the various log locations and showed you how logs could be turned
into JSON and exported so that they can be handled in logging toolsets such as Elastic or Grafana,

https://www.uuidgenerator.net/
https://www.uuidgenerator.net/

Summary 341

which can better index them for viewing and analysis. We learned how report processors can be used
on Puppet Server to allow the reports to be generated by applying catalogs on clients. This allows them
to be sent to tools such as Splunk and allows for advanced visualizations and searches. The available
status APIs were discussed, indicating how an API call could be made to find the status of all running
services or a particular service. Puppet Enterprise was shown to have a command line (Puppet
Infrastructure status) and web console option to call this API. Using these mechanisms,
you learned how to access critical logging and metrics to understand the current state of the system.

To use this information and understand the performance of the services in depth, you learned how
Puppet metrics become available upon using the debug flag of the status API and how tools such
as the Puppet Operational Dashboard and the Puppet plugin for Splunk could be used to gather this
data and visualize it. Puppet Enterprise was noted as having the Metrics Collector module, which
gathers metrics locally in JSON files, which can be viewed manually or exported.

To better understand how these metrics and dashboards can be used, we reviewed some common issues,
looking at how to size the infrastructure for catalog compilation and avoid issues such as Thundering Herd
as servers squeeze demand and how PuppetDB could be adjusted as demand increases or decreases. Various
infrastructure tuning tools were shown to be an option in PE to optimize settings for deployed hardware.

Then, we covered the external data provider pattern, which provides mechanisms for self-service and
access to Puppet data on external services so that it can be integrated better. The core components of a
backend storage service were shown to provide a store for data that could cope with the level of queries
Puppet would make while trusted external commands and the Hiera backend were shown as ways to
query that data. Fact termini were shown to be ways to export data from the BSS to external services.

Various implementations of these components were shown when using various Hiera backends,
with 1Password, Azure Key Vault, and Vault being shown as ways to access external secret managers,
while Satellite and ServiceNow were shown to have trusted commands that allowed data within those
applications to be fed into Puppet code.

Puppet Data Service was shown to be one of the most complete implementations of the pattern and
provides a solid design to allow for self-service of internal customers who would be able to access
suitably exposed Puppet options without requiring full knowledge of the Git flow and Puppet language.

This coverage of the external data provider pattern showed you how powerful integrations can be
made with Puppet Enterprise to feed data into and out of different tools and work toward building a
platform with Puppet as a vital component.

Having covered the components of Puppet Server how to monitor performance at scale and integrate it,
the next chapter will look at Puppet Enterprise-specific services and their components. It will describe
what Puppet Enterprise is, how it differs from the open source version, what extra services it provides,
and the reference architectures provided by Puppet to allow for easier scaling and tooling to automate a
deployment and its status. Projects and integrations specifically for Puppet Enterprise will also be discussed.

Part 4 –
Puppet Enterprise

and Approaches to the
Adoption of Puppet

This part will look at Puppet Enterprise and how it differs from open source. It will review some
Puppet-related products that can extend Puppet Enterprise and some specific integrations for
Puppet Enterprise. We will then discuss approaches that can help organizations successfully adopt
Puppet. We will look at correctly scoping use cases to benefit from regular delivery, and how Puppet
can work within platform engineering as well as with heritage estates, and even in highly regulated,
change-managed estates.

This part has the following chapters:

•	 Chapter 14, A Brief Overview of Puppet Enterprise

•	 Chapter 15, Approaches to Adoption

14
A Brief Overview of Puppet

Enterprise

This chapter will give an overview of Puppet Enterprise, what it is, and what it provides compared
to Open Source Puppet. Although the author of this book is a Puppet employee, this is not intended
as a hard sell but to present where and how to use Puppet Enterprise well. It will cover the extra
Enterprise console services in the Puppet platform, showing how code deployment, orchestrator
service, RBAC, web console, and various other services are automatically configured and work with
each other. This will assist in understanding how Puppet Enterprise differs from Open Source Puppet
and the preconfigured and built-in features that would need to be manually created in Open Source
Puppet. Supported architectural patterns will be highlighted that help to understand how to deploy
and scale Puppet infrastructure using Puppet Enterprise packaging and modules to automatically
deploy these patterns. Some related projects and integrations will be discussed, along with how they
fit into the Puppet Enterprise environment.

In this chapter, we’re going to cover the following main topics:

•	 What is Puppet Enterprise?

•	 Exploring the Puppet Enterprise console and services

•	 Using Bolt with Puppet Enterprise

•	 Automating deployment and reference architectures

•	 Puppet Enterprise-related projects and tooling

•	 Lab—Puppet Enterprise extensions and configuration

A Brief Overview of Puppet Enterprise346

Technical requirements
Clone the control repo from https://github.com/puppetlabs/control-repo to
your controlrepo-chapter14 GitHub account and update the Puppetfile file in this
repo: https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/
blob/main/ch14/Puppetfile.

Build a large cluster with a replica with three compilers and three clients by downloading the params.
json file from https://github.com/PacktPublishing/Puppet-8-for-DevOps-
Engineers/blob/main/ch14/params.json and updating it with the location of your
control repo and your SSH key for the control repo. Then, run the following command from your
pecdm directory:

bolt --verbose plan run pecdm::provision –-params @params.json

What is Puppet Enterprise?
A common misconception when discussing Puppet Enterprise is that features of the product are
held back and not available for open source users. The aim of Puppet Enterprise isn’t to limit what
is available to open source users but to instead provide value to customers who want to consume
Puppet easily and focus on gaining the value of configuration management by putting less of their
own development and automation work into the platform itself.

Puppet achieves this by ensuring that in Enterprise, the packing of components is versioned and
tested together with an automated installation script and module, reducing the effort required by
users managing the infrastructure. Puppet Enterprise works on two different types of releases. Puppet
Enterprise, which works on an xxxx.y pattern, is normally updated every 3 months, which at the time
of writing would be 2023.0. This version is planned to upgrade to Puppet 8.x versions in 2023.3 and
will receive new features throughout its lifetime. This release is recommended for users who want to
access the latest features and fixes and will require a regular update pattern. The other type of release
is the long-term support (LTS) version; this follows an xxxx.y.z pattern. This branch is normally
updated every 3 months, but the updates would only include fixes and not new features. The LTS
versions last 2 years and have an overlap of 6 months with the next major xxxx release, so the current
2021.7.z LTS will end mainstream support on August 31, 2024, at which point overlap support will
continue until February 28, 2025, after which users should migrate to whichever version of Puppet
they require. 2023.y becomes the new LTS release to continue to have support from Puppet. The two
running Puppet Enterprise versions generally mirror two Open Source Puppet versions in active
development. The release of 2023.0 retired Puppet 6 and 2023 should move to Puppet 8 in version
2023.3 or shortly after.

The most obvious feature of an Enterprise license is support, with access to raise support cases with
teams who can review infrastructure problems and assist with any issues or features required for
supported modules.

https://github.com/puppetlabs/control-repo
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch14/Puppetfile
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch14/Puppetfile
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch14/params.json
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/blob/main/ch14/params.json
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineering/blob/main/ch14/params.json

Exploring the Puppet Enterprise console and services 347

Puppet also provides various professional services, such as on-site engagements to provide hands-on training
and advice. This can lead to architecture reviews to understand how best to implement in your environment
and to feed into processes that develop products and solutions such as the Puppet Data Service (PDS) and
Puppet Enterprise Administration Module (peadm). Further, technical account managers (TAMs) are
assigned to give you a regular point of contact and champion you in Puppet, supporting you in creating a
success plan for your organization and focusing your deployment to achieve its goals.

Puppet provides reference architectures and patterns of Puppet products to show how to work at different
scales and implementation types. Additional applications built on top of the Puppet Server service allow for
access control, server classification, code deployment, visualization, and searching of data to be completed
in a standard way from the console. We will look at these in greater detail in the following section.

Exploring the Puppet Enterprise console and services
There are several additional services built into a Puppet Enterprise primary server, as shown in the
following diagram:

Figure 14.1 – Puppet Enterprise components

A Brief Overview of Puppet Enterprise348

Puppet Server

The Puppet service is the same as discussed in Chapter 10, with the certificate authority (CA) providing
a certificate signing process to secure communication and the Puppet agent contacting a compiler’s
Puppet Server service to request a catalog compilation. Facter is used to provide a server profile. In
Figure 14.1, we opt not to show that the primary server itself has a Puppet Server service, and both
the compiler and primary server have Puppet agents, which both request catalog compilations from
the primary server’s Puppet server.

Introducing Puppet web console components

The most obvious immediate difference of the Puppet Enterprise server is the web console, which
provides the login view we have been using in our lab throughout this book. Several services combine
to make up the console services

The console is a web frontend Jetty-based Clojure service with an NGINX server that acts as a reverse
proxy. The NGINX server listens on port HTTPS 443 and redirects HTTP 80 to HTTPS. The console
UI provides an aggregation and translation Jetty-based Clojure service to generate the correct pages
and access other console services.

The authentication UI generates login and resets password content pages. The simplest way to show this
is to use an example of the communication required when logging in, as shown in the following diagram:

Figure 14.2 – Steps to generate the login page

Exploring the Puppet Enterprise console and services 349

It can be seen from the diagram that as a first step, the NGINX server receives a GET request and,
after performing TLS negotiation, redirects to the console Jetty page. This page evaluates cookies,
establishes the user is not logged in, and redirects to the auth/login page, which is requested from
NGINX and redirected to the authentication UI. The authentication UI generates a login page and
gets Security Assertion Markup Language (SAML) configuration from the RBAC Jetty page, and
this login page is then passed back to the user.

The RBAC service has users and roles to construct access policies. It allows for both local and remote
users in Puppet Enterprise, with integration possible to Lightweight Directory Access Protocol
(LDAP) and SAML services. All users by default are denied permission to create, edit, or view any
part of Puppet Enterprise, and permissions are then granted via roles.

By default, there will be a local administrative user who acts as a superuser for the Puppet service
and an API user for authentication for Puppet services to communicate within Puppet Enterprise. It
cannot be used for login and only authenticates with certificate authentication. There is an allow list
that has the certname values of certificates that can be used with the API user.

Roles allow the grouping of permissions to give users permission to perform actions. A permission
is made up of a type, a permission, and an object. The type is what the permission will allow actions
on, such as users or node groups. A permission is a level of access from create, edit, or view, and an
object is a specific instance of the type such as the Puppet Enterprise infrastructure node group for
a node group type.

There are five roles provided by default:

•	 Administrators: All permissions

•	 Operators: Permission to create and modify node groups, deploy code, run Puppet, run sign
certificates, and view the console

•	 Viewers: Permission to view the console, node groups, and jobs

•	 Code deployers: Permission to deploy code with Code Manager

•	 Project deployers: Permission to deploy projects, run tasks and plans from projects, and start,
stop, and view jobs in orchestrator

Custom roles can be created with the consultation of https://puppet.com/docs/pe/2021.7/
rbac_permissions_intro.html#user_permissions to find the right granularity of
user permissions.

LDAP solutions such as Active Directory (AD) can map user groups to roles, while SAML solutions
such as Okta can do similar user group mapping with attributes to match to roles. Both LDAP and SAML
are configured in the web console on the Access control tab by selecting the corresponding option.

https://puppet.com/docs/pe/2021.7/rbac_permissions_intro.html#user_permissions
https://puppet.com/docs/pe/2021.7/rbac_permissions_intro.html#user_permissions

A Brief Overview of Puppet Enterprise350

Tokens are used for all web sessions, and instead of logging in with a password whenever running
commands, tokens can be generated for multiple uses. The tokens are alphanumeric values between 0
and 2^256 – 1 and stored in the database and, depending on the argument, a local file location.
Tokens are generated by either the token API endpoint, the web console in the My account tab, the
Tokens tab, or by running the puppet access login command on the CLI. The token is
against the user credentials provided, so will have the permissions set to that user. By default, the
puppet access login command will write the token to ~/.puppetlabs/token with
a lifetime of 30 minutes unless the --lifetime is used to set a lifetime such as 5h for 5 hours..
The --print flag will cause the token to only be printed and not stored, which is appropriate for
service-based API access.

The classifier service was discussed in Chapter 11, where we looked at how it used node groups to
classify servers in Puppet, but to reiterate the key points, node groups are used to classify classes to
servers either by using facts or directly pinning named servers. Node groups are inheritance based,
so each child of a node group will inherit everything above it.

Code Manager was discussed in Chapter 11, showing how the Code Manager service used r10k
to download modules based on a Puppet file in a control repo from a named Git repository, and the
filesync server and filesync clients then kept this copy of code in sync across the services.

The activity service is used to log all activities that have taken place through the console service and
can be viewed by the API endpoint and on the web console in various places, such as the activity tab
on any user and role.

The database components of Puppet Enterprise, PuppetDB with PostgreSQL, are the same as was
discussed in Chapter 10, but several of the services need additional databases to store their state and
records. So, the following databases are created:

•	 pe-activity: All auditable activities of console services

•	 pe-classifier: All node group information

•	 pe-inventory: Agentless client details and their access method for orchestrator

•	 pe-orchestrator: Job runs, job results, users, and node

•	 pe-postgres: Postgres databases for templating and general access. See https://www.
postgresql.org/docs/current/manage-ag-templatedbs.html to understand
template databases further.

•	 pe-puppetdb: Reports, node information, and last run catalog

•	 pe-rbac: Users, roles, groups, and AD/LDAP information

Note
All PostgreSQL communication is done using certificates, including communications to replicas.

https://www.postgresql.org/docs/current/manage-ag-templatedbs.html
https://www.postgresql.org/docs/current/manage-ag-templatedbs.html

Exploring the Puppet Enterprise console and services 351

The one component which was not covered in Figure 14.1 was the orchestrator services. We will now
cover how orchestrator provides the capability of using Bolt plans and tasks within Puppet Enterprise.

Using Bolt with Puppet Enterprise

In Chapter 12, it was seen how Bolt was run using the bolt binary within a Bolt project, but it can
be used integrated with Puppet Enterprise via the orchestrator service, allowing plans and tasks to
be run as part of Puppet Enterprise.

The key difference is that currently, only Puppet modules containing tasks and plans can be deployed
(including adding them to a control repo); there is no current method of deploying bolt projects to
Puppet Enterprise directly.

Note
With plans and tasks deployed through modules, this means the same plan or task can have
multiple versions, depending on the environment it is run from.

It is also important to realize not all of the features available to Bolt natively will be available within
Puppet Enterprise.

The following list highlights the key differences when running plans and tasks in Puppet Enterprise
in orchestrator instead of in native Bolt:

•	 Various Bolt functions for plans, such as prompt, parallelize, and file.upload,
have not been implemented

•	 puppet apply blocks can only be applied to nodes with a Puppet agent

•	 Targets and the localhost target are unavailable

•	 File sources must be module based and cannot be absolute paths

Most of these limitations reflect not running Bolt from a local machine and a lack of a prompt to run
them. Full details can be viewed in Puppet’s documentation at https://puppet.com/docs/
pe/2021.7/plans_limitations.html.

Puppet Enterprise handles three types of nodes with plans and tasks:

•	 Nodes with a Puppet agent installed, using the Puppet Communications Protocol (PCP) and
the PCP Execution Protocol (PXP)

•	 Agentless nodes via the Windows Remote Management (WinRM) and Secure Shell
(SSH) transports

•	 Agentless devices such as switches or firewalls via transports such as F5 and Palo Alto Netorks
Operating system (PAN-OS) or transports provided via the resource API

https://puppet.com/docs/pe/2021.7/plans_limitations.html
https://puppet.com/docs/pe/2021.7/plans_limitations.html

A Brief Overview of Puppet Enterprise352

Having highlighted what orchestrator is capable of running for plans and tasks, we will now look at
the components that make up orchestrator, highlighting the purpose of these services and key details
such as log locations and configuration files.

Orchestrator services

The orchestrator application is a Clojure application made up of the services shown in the
following diagram:

Figure 14.3 – Components of the Puppet orchestrator service

Let’s have an overview of these components and their relevant services and log files:

•	 Orchestrator service: The orchestrator service is the core service that requests for jobs, tasks,
and plans are made to. Users must first be authenticated, which verifies their user and permission
profile, as managed in the RBAC service. For nodes with agents, it contacts PuppetDB to retrieve
facts about nodes or inventory for agentless nodes. It will update the PostgreSQL database
orchestrator with details of job requests and direct jobs to service based on their transport.
The orchestrator service runs under pe-orchestration-services.service and
logs to /var/log/puppetlabs/orchestration-services/orchestration-
services.log.

Exploring the Puppet Enterprise console and services 353

•	 Inventory service: A register of agentless clients and their access method added via the web
console inventory page or via the POST /command/create-connection inventory API
call (https://puppet.com/docs/pe/2021.7/node-inventory-v1-command-
endpoints.html#node-inventory-v1-command-endpoints). These entries are
encrypted by a secret key, by default placed at /etc/puppetlabs/orchestration-
services/conf.d/secrets/keys.json, and although listed separately, the inventory
service runs within pe-orchestration-services. It stores its data in the PostgreSQL
inventory database.

Note
Agentless nodes added to the inventory are counted within the overall licensed number of
nodes for Puppet Enterprise.

•	 Bolt service: A Ruby service that allows actions such as tasks and commands to be run over
SSH and WinRM tasks to agentless nodes. It will also compute module metadata content. It
runs under pe-bolt-server.service and logs to /var/log/puppetlabs/bolt-
server/bolt-server.log.

•	 Ace service: A Ruby service that can run tasks, plans, and Puppet runs on agentless targets
remotely, such as network switches and firewall devices using transports such as PAN-OS, F5,
or any other transport defined with the resource API. The Ace service runs under pe-ace-
server.service and logs to /var/log/puppetlabs/ace-server/ace-server.
log.

•	 PCP broker: A Clojure application running on a Java Virtual Machine (JVM) acting as a
broker service on compiler servers that routes PXP messages using PCP, which routes PXP
messages to an agent and returns them to the orchestrator. API requests are logged to /var/
log/puppetlabs/orchestration-services/pcp-broker-access.log

and general service logs are logged to /var/log/puppetlabs/orchestration-
services/pcp-broker.log.

•	 PXP agent: The agent that allows requests for tasks to be run on Puppet clients via PXP, which
sends requests for task plans etc to be applied and returns results. It runs under pxp-agent.
service and logs to /var/log/puppetlabs/pxp-agent/pxp-agent.log.

The orchestrator service will verify via RBAC that the Puppet Enterprise console user has the correct
permissions. For plans, it is only possible to specify users or groups and which plans they can run with
no limit of nodes or which environment the plan will come from. For tasks, task targets allow a list of
tasks and either a Puppet Query Language (PQL) query of nodes or groups of nodes to be specified,
which the tasks can be run against. This can be done either via the API call, as shown at https://
www.puppet.com/docs/pe/2021.7/orchestrator_api_commands_endpoint.
html#orchestrator_api_post_command_task_target, or in the RBAC GUI, as shown
in the following screenshot:

https://puppet.com/docs/pe/2021.7/node-inventory-v1-command-endpoints.html#node-inventory-v1-command-endpoints
https://puppet.com/docs/pe/2021.7/node-inventory-v1-command-endpoints.html#node-inventory-v1-command-endpoints
https://www.puppet.com/docs/pe/2021.7/orchestrator_api_commands_endpoint.html#orchestrator_api_post_command_task_target
https://www.puppet.com/docs/pe/2021.7/orchestrator_api_commands_endpoint.html#orchestrator_api_post_command_task_target
https://www.puppet.com/docs/pe/2021.7/orchestrator_api_commands_endpoint.html#orchestrator_api_post_command_task_target

A Brief Overview of Puppet Enterprise354

Figure 14.4 – Creating a task target on the web console

In the next section, we will learn how to run tasks, plans, or Puppet runs through orchestrator.

Running jobs

When tasks, plans, or Puppet runs are run through orchestrator, they become known as jobs. There
are three ways to run jobs, as follows:

•	 The first way to do this is via the GUI by selecting the relevant menu on the left bar.

•	 The second is via the CLI on the primary server with largely the same syntax as the puppet
task run and puppet plan run Bolt commands. The key differences compared to
Bolt are that the --nodes flag is used instead of targets (reflecting the fact you will be
just providing a node name, for which orchestrator will lookup transport information) and
extra flags are available, such as the --node-groups flag, for choosing a node group to run
against. Here’s an example:

puppet task run examplemodule::exampletask paramter1=value1
paramter2=value2 --node-group <node group id>
puppet plan examplemodule::exampleplan
parameter1=value1  --nodes examplehost.com,examplehost2.com
puppet job run --query 'inventory { facts.os.name = "windows" }'

•	 The third way is via the APIs documented at https://puppet.com/docs/pe/2021.7/
orchestrator_api_commands_endpoint.html, with the key calls listed here:

	� POST /command/deploy: Run Puppet on demand

	� POST /command/plan_run: Run a plan

	� POST /command/task: Run a task on a set of nodes

Jobs in progress can be stopped by pressing Ctrl + C on the CLI, selecting Stop job on the GUI, or
by the POST /command/stop API command. Although we should be careful to note a stopped
jobs underlying process may run to completion regardless.

https://puppet.com/docs/pe/2021.7/orchestrator_api_commands_endpoint.html
https://puppet.com/docs/pe/2021.7/orchestrator_api_commands_endpoint.html

Exploring the Puppet Enterprise console and services 355

An API command was introduced in PE 2021.7.1 POST /command/stop_plan to allow for
plans to be stopped.

It is also possible to schedule jobs in orchestrator via the GUI or by API POST /scheduled_jobs/
environment_jobs, but great care should be taken to be aware of the system load of using the
scheduler. Orchestrator has limitations with how it scales since there is no way to horizontally scale,
and the queuing system for tasks and plans can be easily blocked by certain types of requests.

Configuring performance settings

The settings discussed in this section can all be configured in the Puppet Enterprise orchestrator
infrastructure node group on the web console or as code in Hiera.

orchestrator can run a maximum number of tasks concurrently; this maximum number of concurrent
tasks is configured with the puppet_enterprise::profile::orchestrator::task_
concurrency parameter (default: 250), along with puppet_enterprise::profile::bolt_
server::concurrency (default: 100) and puppet_enterprise::profile::ace_
server::concurrency (default: 100), which limit Ace and Bolt directly (they should not be
greater than the orchestrator::task_concurrency total). Their sizes are mainly limited
by orchestrator memory, which will reserve approximately ± 1 MB of RAM for each instance of
capacity you add. Tasks are dealt with in the order they are received until they are completed; this
means long-running tasks and tasks with large numbers of targets can potentially block other tasks
from running and monopolize resources. Taking the case of running tasks taking 10 minutes to
complete on 1,000, servers this would result in the task using the queue capacity of 250 four times
and taking a total executing time of 40 minutes to run the tasks on all targets, during which time
all other tasks would need to queue until it was complete. It is strongly recommended that a task
should take no longer than 5 minutes and that careful management should take place to run tasks
in smaller batches. It should also be noted there is no limit in the task queue and it risks running
out-of-memory (OOM) resources if too many requests are sent. Another effect can be the time a task
takes to time out. Every 12 seconds, orchestrator will request the status of a task and after a default
of 35 attempts will time out, meaning a timeout after 7 minutes. This number of attempts can be
adjusted by setting the puppet_enterprise::profile::orchestrator::allowed_
pcp_status_requests parameter. It is important to understand this does not mean the task
has failed but simply that orchestrator cannot get a status for it within the timeout. The task itself may
have completed after this time.

For plans, orchestrator is similar to Puppet Server in requiring JRuby instances to compile plans.
This capacity is set by puppet_enterprise::profile::orchestrator::jruby_
max_active_instances , with heap memory for the JVM set at puppet_
enterprise::profile::orchestrator::java_args.

Having discussed the core components and services of Puppet Enterprise, we will now look at how
these components can be deployed using automated tools, deploying to Puppet-advised reference
architectures to ensure that infrastructure will scale to user requirements.

A Brief Overview of Puppet Enterprise356

Automating deployment and reference architectures
Puppet Enterprise focuses on creating standard architectures and configurations and the automation
to deploy them. This ensures that less design effort is required from Puppet Enterprise customers who
can find the right standard architecture and pattern and deploy it using provided tooling.

Understanding supported architectures

Puppet documents three supported architectures for Puppet Enterprise, as follows:

•	 The standard installation is just a standalone primary server and supports up to 2,500 clients

•	 The large installation is a primary server with compile servers behind a load balancer and
supports up to 20,000 clients

•	 Extra-large installations are a primary server, a separate server with PuppetDB, and compile
servers behind a load balancer supporting over 20,000 servers

These are illustrated in the following diagram:

Figure 14.5 – Standard architectures

Automating deployment and reference architectures 357

The standard architecture is limited by how many clients a primary server can run catalogs for by
itself, up to 2,500 nodes. Over this level, the large architecture allows horizontal scaling using compiler
nodes but reaches limits of how much load a single primary server can take running all the services
together. So, at 25,000 nodes, the extra-large architecture recommends separating out PuppetDB as
one of the heaviest services to its own server.

In all these architectures, it is possible to provide a replica server to the primary server and a separate
PostgreSQL server, through a method named disaster recovery (DR). In the event of loss of the
primary or PostgreSQL server, DR gives the ability to perform failover actions and recover services
with an expected loss of some services, as listed in the following tabular breakdown of services:

Service name Replication type Failover approach
Puppet Server None Active / Active
Console services UI None Read-only until manual promotion
ACE service None Read-only until manual promotion
Bolt service None Read-only until manual promotion
CA One-way replication Read-only until manual promotion
RBAC One-way replication Read-only until manual promotion
Classifier One-way replication Read-only until manual promotion
Activity One-way replication Read-only until manual promotion
Orchestration One-way replication Read-only until manual promotion
File sync One-way replication Read-only until manual promotion
PuppetDB Bi-directional Active – Active

Table 14.1 – Service replication and failover approach for DR

PuppetDB is unique in its synchronization within Puppet Enterprise; it performs a read-write
synchronization between primary and replica, which is why it is the only service in the previous list
that synchronizes and is available on promotion. The other services that use PostgreSQL rely on a
PGLogical synchronization from primary to replica, making the data read-only on the replica.

What can be seen from this list is during the failure of a primary server, the replica will only be able to
take over and compile catalogs of servers already registered, queries and reports from PuppetDB, and
queries of node classification via the API. This means no new servers can be registered or removed,
no new code can be deployed, the web console cannot be used, classification cannot be changed, and
most of the CLI tools will be non-functional until manual promotion actions are taken via the puppet
infrastructure promote replica command on the replica.

This is an irreversible action, and the original failed primary server must be redeployed as a replica
before it can be used again. Therefore, for many users attempting to fix the original primary server,
this is less time-consuming than going through the DR process.

A Brief Overview of Puppet Enterprise358

DR should not be confused with high availability (HA), which would be expected for continuous
service in the event of the loss of a server, and that is not possible in any current Puppet architecture.

Note
When using DR, peadm ensures that the compilers are split and configured into two groups
and PuppetDB requests are distributed across the two sides of the PuppetDB replication to
maximize capacity. If you choose not to use pecdm, ensure you follow this optimization, which
can be seen in code at https://github.com/puppetlabs/puppetlabs-peadm/
blob/main/manifests/setup/node_manager.pp, with the A and B groups setting
parameters for databases.

The Puppet architecture also defines a set of multi-region patterns for how to deploy across regions
both public and private cloud, where a region is defined by cloud vendors as data centers with regional
low-latency connections. Full details are available at https://puppet.com/docs/patterns-
and-tactics/latest/reference-architectures/pe-multi-region-reference-
architectures.html. Best practice requires compilers to have low-latency connections, and
these are therefore best placed in the same region as primary and replica servers; similarly, the
connection between primary and replica must be low latency. The best practice is, therefore, to use
a centralized deployment where all Puppet infrastructure is in a management region that all regions
can communicate with, as shown in the following diagram:

Figure 14.6 – Centralized and federated deployments

https://github.com/puppetlabs/puppetlabs-peadm/blob/main/manifests/setup/node_manager.pp
https://github.com/puppetlabs/puppetlabs-peadm/blob/main/manifests/setup/node_manager.pp
https://puppet.com/docs/patterns-and-tactics/latest/reference-architectures/pe-multi-region-reference-architectures.html
https://puppet.com/docs/patterns-and-tactics/latest/reference-architectures/pe-multi-region-reference-architectures.html
https://puppet.com/docs/patterns-and-tactics/latest/reference-architectures/pe-multi-region-reference-architectures.html

Automating deployment and reference architectures 359

Alternatively, a federated model can be used whereby Puppet infrastructure is placed in each region,
with the downside that no single console views the whole estate.

Having discussed the architectures and patterns in full, it is time to see which tooling is available to
deploy these patterns.

Deployment and configuration

Puppet automates the deployment of its server infrastructure in several layers. The first layer uses the
Puppet Enterprise installer, a tarball file that is downloaded from Puppet containing all the necessary
packages and scripts to install Puppet Enterprise. Once downloaded on a target server and untarred,
the basic install can be done by running ./puppet-enterprise-installer. It is possible to
add custom configurations by creating a Human-Optimized Config Object Notation (HOCON)-
formatted file and adding a -c flag to its location, following the guidance at https://puppet.
com/docs/pe/2021.7/installing_pe.html. Once a Puppet server is configured, the
install scripts can be used to automate adding agents; a Bash script for Unix-based systems and a
PowerShell script for Windows are hosted on a file server on the primary, which ensures the correct
agent package is installed:

uri='https://<PRIMARY_HOST>:8140/packages/current/install.bash' curl
--insecure "$uri" | sudo bash -s -- --puppet-service-ensure stopped
agent:environment=production

[Net.ServicePointManager]::ServerCertificateValidationCallback =
{$true}; $webClient = New-Object System.Net.WebClient; $webClient.
DownloadFile('https://<PRIMARY_HOST>:8140/packages/current/install.
ps1', 'install.ps1'); .\install.ps1 -PuppetServiceEnsure stopped
agent:environment=production

In the example, the options set environment to production in the puppet.conf file and
ensure the service is not running. The full range of options is available and documented at https://
puppet.com/docs/pe/2021.7/installing_agents.html.

This install script would only have installed the primary server and would require further
manual steps to add compilers and replicas depending on the architecture we wanted. To deploy the
next layer instead of using the Enterprise installer directly, we use the peadm module (https://
forge.puppet.com/modules/puppetlabs/peadm), a supported Puppet module that
provides an automated way to run the Puppet Enterprise installer script and configure it to one of
the supported architectures automatically. This module assumes the infrastructure required for the
requested configuration is available and it is possible to go to another level and automatically provision
in public cloud environments using the pecdm module (https://github.com/puppetlabs/
puppetlabs-pecdm). An example of usage of these modules was discussed in detail in Chapter 12
and is what we have been using throughout this book to deploy labs.

https://puppet.com/docs/pe/2021.7/installing_pe.html
https://puppet.com/docs/pe/2021.7/installing_pe.html
https://puppet.com/docs/pe/2021.7/installing_agents.html
https://puppet.com/docs/pe/2021.7/installing_agents.html
https://forge.puppet.com/modules/puppetlabs/peadm
https://forge.puppet.com/modules/puppetlabs/peadm
https://github.com/puppetlabs/puppetlabs-pecdm
https://github.com/puppetlabs/puppetlabs-pecdm

A Brief Overview of Puppet Enterprise360

The peadm module itself goes beyond simple deployment and has plans and tasks to show the status
of the server and allow the performance of version upgrades via its tasks and plans.

Puppet Enterprise combines modules installed in the Enterprise folder and configured either in
the classifier or Hiera data with other file locations to place customizations. The console has a number
of configurations that can be set either in the classification in the web console or via Hiera, such as
failed login attempts set by puppet_enterprise::profile::console::rbac_failed_
attempts_lockout and password complexity rules such as minimum password length, set by
puppet_enterprise::profile::console::password_minimum_length. A full
list of console customizations can be found at https://puppet.com/docs/pe/2021.7/
config_console.html#configure_the_pe_console_and_console_services.

In addition, files can be placed for the console, by placing a file at the path specified by puppet_
enterprise::profile::console::disclaimer_content_path, which defaults to
/etc/puppetlabs/console-services. You can create a message to display when logging
in to the console, such as a legal warning your organization may have.

Additionally in the console, it is possible to search for nodes based on PQL with predefined PQL
examples selectable. It is possible to add your own PQL examples to the web console by simply placing
a file at /etc/puppetlabs/console-services/custom_pql_queries.json using
/etc/puppetlabs/console-services/custom_pql_queries.json.example as
a template. The web console itself uses a self-signed CA by default, and this can be replaced with one
signed by your organization’s CA system by placing the generated certificate at /etc/puppetlabs/
puppet/ssl/certs/console-cert.pem and /etc/puppetlabs/puppet/ssl/
private_keys/console-cert.pem. One last key file to consider is the license key, which is
issued to you by Puppet and placed at /etc/puppetlabs/license.key with 644 root:root
permissions. You can view the details of licensing under the License tab on the web console. A Puppet
agent run should be made for these changes and the console service restarted.

Some areas of Puppet Enterprise are not currently definable through native code such as RBAC,
classification, and LDAP, but there are APIs and Puppet modules that take advantage of those APIs,
which can allow for storing configuration. For classification, there is an API to view the classification
and configure node groups; this can also be done via the node_manager module (https://forge.
puppet.com/modules/WhatsARanjit/node_manager), which is used by peadm. For
RBAC and LDAP, the RBAC API (https://puppet.com/docs/pe/2021.7/rbac-api.
htm) has endpoints that can be used to manage groups, roles, and users. A Puppet module has been
developed to use these APIs (https://forge.puppet.com/modules/pltraining/rbac)
and it has an LDAP endpoint that has similarly had a module developed to use the APIs (https://
forge.puppet.com/modules/abuxton/puppet_ds).

Having reviewed the architecture and deployment recommendations, we will discuss other supporting
tools and products to work with Puppet in the following section.

https://puppet.com/docs/pe/2021.7/config_console.html#configure_the_pe_console_and_console_services
https://puppet.com/docs/pe/2021.7/config_console.html#configure_the_pe_console_and_console_services
https://forge.puppet.com/modules/WhatsARanjit/node_manager
https://forge.puppet.com/modules/WhatsARanjit/node_manager
https://puppet.com/docs/pe/2021.7/rbac-api.htm
https://puppet.com/docs/pe/2021.7/rbac-api.htm
https://forge.puppet.com/modules/pltraining/rbac
https://forge.puppet.com/modules/abuxton/puppet_ds).

https://forge.puppet.com/modules/abuxton/puppet_ds).

Puppet Enterprise-related projects and tooling 361

Puppet Enterprise-related projects and tooling
Puppet Enterprise has several modules and tools developed by Puppet to ease the management and
support of Puppet infrastructure. The most direct is the built-in support script; this command gathers
logs and system information and compresses it allowing users to send detailed status information
to cases with Puppet’s support teams. The simple version of the command is shown here: /opt/
puppetlabs/bin/puppet enterprise support.

Various options can be found in the documentation at https://puppet.com/docs/pe/2021.7/
getting_support_for_pe.html#pe_support_script that allow for selecting services
to be collected, to directly Secure File Transfer Protocol (SFTP) upload the archive as part of the
command, and to encrypt the archive, assuming GNU Privacy Guard (GPG) keys are available.

Note
It is possible to use SOScleaner to remove hostnames and IP addresses from the support script
contents. Visit https://support.puppet.com/hc/en-us/articles/115003312887
for details on how to install and run it.

Having seen how to deploy Puppet infrastructure, it is important for you to understand how to monitor
and troubleshoot any issues found, so let’s look at that next.

Monitoring and troubleshooting Puppet Enterprise infrastructure

The Puppet Enterprise status_check module (https://forge.puppet.com/modules/
puppetlabs/pe_status_check) performs checks on both Puppet infrastructure servers and
Puppet agents based on commonly found issues in support cases, such as confirming services are
running, disk space is free, and certificates are not expiring. These checks can be run as tasks, Puppet
code that will notify issues into reports, or as facts—the Splunk plugin shown in Chapter 13 has a
dashboard for displaying the fact output. Using these checks means if you do experience any issues
when you raise your support case with Puppet, you can reference the check number.

The support_tasks module (https://forge.puppet.com/modules/puppetlabs/
support_tasks/tasks) provides tasks that perform actions set out in knowledge base articles
such as regenerating certificates, running the support script, and printing Puppet database table sizes.

Some extra console views can be configured to be visible and usable in the console; value reporting
simply needs values entered in the Value report tab for how much time is to be reclaimed by using
tasks, plans, corrective changes, and intentional changes, and it will also generate statistics.

https://puppet.com/docs/pe/2021.7/getting_support_for_pe.html#pe_support_script
https://puppet.com/docs/pe/2021.7/getting_support_for_pe.html#pe_support_script
https://support.puppet.com/hc/en-us/articles/115003312887
https://forge.puppet.com/modules/puppetlabs/pe_status_check
https://forge.puppet.com/modules/puppetlabs/pe_status_check
https://forge.puppet.com/modules/puppetlabs/support_tasks/tasks
https://forge.puppet.com/modules/puppetlabs/support_tasks/tasks

A Brief Overview of Puppet Enterprise362

Puppet Enterprise can gather additional information about packages including unmanaged packages;
this information is made visible in the Packages tab. This will show which packages are installed on each
server, what type of package they are, their version, and if they are managed by Puppet. It is enabled
by adding the puppet_enterprise::profile::agent class to a node group covering nodes
you wish to collect from and by setting the package_inventory_enabled parameter to true.

The final extra that can be enabled allows the monitoring and management of patching. In the Patches
tab, it will create a view of nodes managed, patches available, and an option to run a task to patch.
This is enabled by creating a node group under the PE Patch Management group that contains the
pe_patch class.

In addition to the core Puppet Enterprise infrastructure, there are additional Puppet products allowing
management of pipelines for code deployment onto Puppet Enterprise and for compliance scans to
be run on Puppet nodes.

Managing deployments and ensuring compliance

There are two additional Puppet products to consider using with Puppet Enterprise, Continuous
Delivery for Puppet Enterprise (CD4PE) is a pipelining product for Puppet built on the acquired
Distelli pipelining product that looks to automate the process of managing deployment of Puppet
code. It can watch for events such as pull requests (PRs) or commits to control or module repositories
and then runs through pipelines that can automatically perform checks such as Puppet Development
Kit (PDK) or Onceover checks and bring its own check of impact analysis. If checks whether the
pipelines pass or are approved, and can then deploy and apply the code in various patterns. Impact
analysis uses the v4 catalog API to compile a new catalog with the new code and compare it with
the current code’s catalog, displaying the difference to ensure the impact is as the developer expected.
These pipelines can be made in the web console for CD4PE or created as code in YAML files inserted
into modules and control repos to be deployed.

Puppet Comply is a compliance tool based on the Centre for Internet Security (CIS) benchmarks.
It builds automation around the Java scanner developed by CIS, CIS-CAT Pro accessor (https://
www.cisecurity.org/cybersecurity-tools/cis-cat-pro). This allows hosts to be
accessed against the CIS benchmarks, using orchestrator in Puppet Enterprise to automate and schedule
runs of the scanner via tasks and producing dashboards of their compliance in a separate Puppet
Comply console. An example of the home screen of Comply is shown in the following screenshot:

https://www.cisecurity.org/cybersecurity-tools/cis-cat-pro
https://www.cisecurity.org/cybersecurity-tools/cis-cat-pro

Puppet Enterprise-related projects and tooling 363

Figure 14.7 – Puppet Comply home dashboard

It can be seen from the dashboard how many of the nodes are achieving compliance, how many nodes
have a compliance profile set, and a list of node results listing which profile is assigned and compliance
scores in a particular scan.

It also comes with the premium compliance enforcement modules (CEM) of cem_linux (https://
forge.puppet.com/modules/puppetlabs/cem_linux) and cem_windows (https://
forge.puppet.com/modules/puppetlabs/cem_windows) to speed up your adoption
of Puppet, allowing base security configuration to be taken based on CIS benchmarks via pre-made
Puppet modules. These modules are maintained and supported by Puppet, ensuring the enforcement
code is up to date with the latest CIS benchmarks.

Both products run in the framework known as Puppet Application Manager (PAM), a Kubernetes-
based tool for managing Puppet applications.

https://forge.puppet.com/modules/puppetlabs/cem_linux
https://forge.puppet.com/modules/puppetlabs/cem_linux
https://forge.puppet.com/modules/puppetlabs/cem_windows
https://forge.puppet.com/modules/puppetlabs/cem_windows

A Brief Overview of Puppet Enterprise364

Lab – Puppet Enterprise extensions and configuration
Executing the bolt command in the technical requirements section deploys a large deployment of Puppet
Enterprise 2021.5. With this infrstructure setup, we will try various extensions and configurations we
have discussed, as follows:

1.	 Examine the code in peadm and the node groups that set up the A and B groups. Note https://
github.com/puppetlabs/puppetlabs-peadm/blob/main/documentation/
classification.md provides an explanation of the groups.

2.	 Create a personal user with permission to view the console and create node groups and view
the activity log of the administrator user (try to log in without the view console permissions).

3.	 Enable package management on the web console for all nodes, log in as your personal user,
and view the activity log of this.

4.	 Enable patch management for the nodes by applying code using the node_manager module.

5.	 Customize the login message.

6.	 Perform an upgrade to 2021.6 using the peadm upgrade plan. Note: Since pecdm includes
peadm, this can be performed from your development environment.

Sample solutions are provided at https://github.com/PacktPublishing/Puppet-8-
for-DevOps-Engineers/tree/main/ch14.

Summary
This chapter has reviewed how Puppet Enterprise builds on top of the open source tooling, providing
the services necessary to secure and automate the deployment of Puppet. It was discussed how Puppet
Enterprise bundled the open source packages into consistent versions, with support offerings and
services from Puppet architecture and services teams.

We also discussed the additional services of Puppet Enterprise that secure user and API access via
RBAC, giving a web frontend and additional APIs in the console services the ability to deploy code
from Code Manager.

Puppet orchestrator was then seen, to show how tasks and plans could be run in Puppet Enterprise with
the orchestrator service running tasks and plans via PCP using PXP brokers to direct communication
from PXP agents on nodes. The agentless clients could be added to the inventory service storing their
transport details, and tasks or plans to run on them would ego via the Bolt server for nodes connected
by WinRM or SSH, while other transports’ particular network devices such as switches or firewalls used
the ACE server. We saw how orchestrator would store all the job details updating the activity service.
RBAC access was discussed, showing how you could only limit which plans were available to a user
but could set tasks to particular users and particular groups of nodes using target sets. Performance
and capacity aspects of orchestrator were discussed, as well as how to run tasks or plans via the web
console GUI or the CLI interface.

https://github.com/puppetlabs/puppetlabs-peadm/blob/main/documentation/classification.md
https://github.com/puppetlabs/puppetlabs-peadm/blob/main/documentation/classification.md
https://github.com/puppetlabs/puppetlabs-peadm/blob/main/documentation/classification.md
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch14
https://github.com/PacktPublishing/Puppet-8-for-DevOps-Engineers/tree/main/ch14

Summary 365

The supported architectures customers could take off the shelf to implement Puppet at scale and
regional requirements for their estate were reviewed, showing the modules and scripts that wrap up
to automatically deploy these architectures, the pecdm module deploying infrastructure in the public
cloud, peadm automating the various steps of install and maintenance, and using the installer script.

Extras services that could be enabled in the web console to help report on the value Puppet delivers,
patch management, and packaging reporting were reviewed, along with customizations and methods
to automate configuration within the console covering customization of the console message, the
certificate used on the web console, and the license key. Several modules were then discussed that could
assist in reporting the status of the infrastructure and running standard tasks in the support_task
and status_check modules.

Two further Puppet products that integrate with Puppet Enterprise were then discussed: CD4PE,
which provides a pipeline to assist in automating the deployment of code, and Puppet Comply, which
gives pre-written modules and dashboards to allow for reporting on CIS benchmarks.

While all of the architecture, tooling, packaging, and general automation could be achieved with Open
Source Puppet, it would require development and support work from your own teams. So, Puppet
Enterprise should be seen as a decision about the skills and people available in your team, tooling
already invested in the organization and money available for tooling, and where your organization
wants to focus its work.

Now, having fully reviewed the language, the platform, and how Puppet Enterprise can provide
preconfigured infrastructure to reduce the operational burden and design required, in the final chapter,
we will discuss approaches to adopting and using Puppet, focusing on getting the best use in your
organization, since understanding the technology is only part of the battle while understanding how
to integrate with people and processes is often the greater challenge.

15
Approaches to Adoption

Having discussed the Puppet language and platform in detail, this chapter will now look at approaches
to adoption and implementation. This chapter does make certain assumptions about the most likely
adopters of Puppet and their viewpoints. As a result, some of this advice will appear from a Puppet
platform team’s point of view but it will look to discuss how all the implementation teams, from
application to OS, should work together to boost adoption.

Too often, the view taken by a project or modernization program is that technology alone can solve
all the problems of an organization, and existing teams and processes are just in the way and will need
to be worked around to deliver the future. The most successful adoptions work with the current teams
and embed themselves in their processes. This chapter will cover this by discussing how to choose
the right scope and focus to make sure that the implementation can achieve its goals, delivering on
a regular interval, and showing value to encourage the adoption. We will discuss how to work with
other teams and stakeholders to ensure that Puppet as a technology is not an island that battles for
space but can be a platform among many tools that can integrate and maximize benefits. While it is
often more practical to start with greenfield newly provisioned servers, we will discuss how to safely
and progressively reach the heritage brownfield estate, where understanding the level of configuration
drift that has happened and developing automation to remediate can have huge benefits in reducing
costly auditing processes. Using Puppet in regulated environments will be discussed in detail as it is
often assumed that a tool that commits regular change and has elevated access simply cannot be used.
We will see how to present the processes and testing to not only make Puppet safe and secure but also
to show it is an integral part of enforcing the requirements of any regulated environment. Finally, we
will see where Puppet fits into the cloud, its appropriate uses, and how to avoid mistakes made by
public cloud migrations and not leave behind the benefits gained by Puppet in the private data center.

Approaches to Adoption368

In this chapter, we’re going to cover the following main topics:

•	 Scope and focus

•	 A platform engineering approach

•	 Managing heritage estates with no-op mode

•	 Adoption in regulated environments

•	 Moving to the cloud

Scope and focus
The pressure on scope and focus will depend on why your organization has started using Puppet. If it
is an exercise for an individual team, such as the Oracle team, to automate its deployment, the pressure
will be less than a transformation program that has bought a large Puppet Enterprise contract. In big
transformation programs, it can be tempting to pursue big goals quickly to earn this cost back. This is
dangerous because configuration problems are complex, and technologists are prone to optimism about
how quickly solutions can be created. Additional pressure can come from sales teams and decision-
makers who may have oversold how quickly change can be implemented to get the necessary funding.
This is not advocating against having a vision or a Jim Collins-style big hairy audacious goal. The future
vision is needed but it has to be shown that it will be an incremental journey of improvement to get
there, and these increments will deliver immediate and recurring value. This will develop trust and belief
from supporting teams and customers to invest in your platform because you reliably deliver something
tangible and not just a distant hope.

The best approach to this delivery is to follow good sprint practices, having epics such as delivering
a core OS role or an Oracle role, which can then be broken down to have a small number of focused
objectives for each sprint. Each task within an epic should be small enough to be completed in a
regular sprint cycle, typically 2 weeks. At the end of each sprint, these features can then be demoed
to stakeholders to show progress, benefit, and receive feedback.

Note
This book does not advocate for any agile methodology; there is a vast collection of books
and advice on how to implement agile working practices. What works for your organization
will depend on local culture and your team. So, this book’s recommendation would be to
research various approaches but remain flexible and find what is comfortable and works well
for your team and not just try to fully mimic anyone else’s system. Using techniques such as
retrospectives at the end of sprints can help ensure that how you are working is still effective
and that actions are taken on issues.

Scope and focus 369

If this approach is ignored and the team is split among many objectives, it can easily result in developers
working in isolation. When developers work in isolation, other team members cannot help or provide
meaningful reviews because they do not have an understanding of the work or why decisions have been made.

If the work is too large and complex, it will result in development problems, which are hard to test
and break down to understand. This can lead to frustration between management and developers
as nothing will be visible in terms of delivery. The pressure to deliver something can then lead to
developer exhaustion and this combined with the difficulties of reviewing and testing large complex
work can lead to something risky or incomplete being delivered, simply to deliver something. This
erodes confidence and morale in a vicious cycle of pressure and mounting issues to fix.

In the Adoption in regulated environments section, we will discuss how critical it is to demonstrate an ability
to reliably test and deliver to win confidence from change and risk teams in your processes and platform.

With this warning said, if the team does stick to a focus and scope, then an understanding among
the team can be built about the ongoing development work and strengthen the review, testing, and
learning processes. This produces opportunities for developers to pair on interesting or challenging
sections of work and use team breakout sessions to jointly make decisions on coding approaches. As
discussed in Chapter 1, keeping a Puppet best practices document updated with these decisions helps
spread the knowledge further. Most importantly, on review of the submission of code, it becomes
something the team has been actively discussing and working on together, not just something that
may have only been heard in brief morning meeting updates and something the team has to take the
developers’ word on. All of this works toward a better understanding of what the code is intended to
do and why the approach has been chosen.

To illustrate this approach, it is common for a base OS to need a security profile for the core build.
This security profile will contain various aspects such as core OS user accounts, SSH configuration,
kernel settings, and various other important settings. Making this profile the focus of a sprint could
result in developers pairing and working on the component modules that make up the profile. With
the pairs of developers focusing on elements such as user accounts and building up the profile piece
by piece, practical progress will be made and knowledge shared. Depending on the size of the profile
and the number of developers, it may make more sense to work on multiple profiles but the aim should
still be to limit the scope and focus.

This is not to say any development team should expect to get everything their own way and that
external pressures will not result in having to split this focus, but it should be strongly represented
that it will slow down work and create risk.

Approaches to Adoption370

The next key thing to understand after the focus and scope of Puppet code are the minimum acceptance
criteria for code to be delivered to production. The phrase minimum viable product (MVP) has
been tainted as an excuse to release something that is clearly not fit for production with items such as
testing to be added later. It is a simple reality this will not happen since there are always new features
to develop, creating an operational burden in the future as the code develops further. So, in your
organization and platform, the Puppet best practices should lay out what tests the code should pass.
An example standard could contain the following:

•	 Code must be clean in PDK validation with accepted listed exceptions

•	 RSpec tests provide 100% coverage of code

•	 ServerSpec tests for the module and passes core Serverspec tests

Another challenge can be scope creep, which can dilute the higher-level scope and focus of how
Puppet is used in your organization. When investing in a tool, it is tempting to maximize the return
on investment by expanding use cases, and as the implementation becomes successful, other teams will
want to attach to that success and try to use a provided tool. Therefore, it needs to be clear what the use
case of Puppet is; inappropriate uses such as the distribution of binaries or large-scale synchronization
of files need to be called out as inappropriate in platform documentation. In this example, it would
put a lot of burden on the infrastructure, as was discussed throughout this book. Also, in this regard
of focus, this book would strongly recommend against any policy encouraging mandatory rewriting/
re-platforming strategies to Puppet unless the current implementation has maintenance issues or
cannot be developed as needed. This sort of rewrite provides little value and, unless the original
implementation is well understood, can lead to mistakes in the translation, particularly for declarative
code since only the method is visible not the intended final state.

Having discussed the scope and focus for Puppet, we will now look at how to manage this approach
on heritage servers and handle the history and complexities of brownfield sites.

Managing heritage estates with no-op mode
Heritage can be more daunting for implementation; the extent of configuration drift can make it hard
to know where to start. Your organization could have been part of several mergers and acquisitions,
which have led to not only multiple configuration standards for the core organization itself but also
for anything that has been onboarded.

A common pattern of adoption is to progressively build up the automation levels in heritage servers
to build confidence, and we will step through a common approach to this.

Installing an agent on all nodes to gather facts is a common starting point, and having this data stored
in PuppetDB to create a valuable CMDB source. Then, as was discussed in Chapter 13, this data can
be sent to services such as ServiceNow to integrate with central CMDB services. In Puppet Enterprise,
this gives us access to the package view and the ability to manage patching, as was demonstrated in
Chapter 14. This rollout gives immediate capability and a better understanding of the estate without
even having written any code.

Managing heritage estates with no-op mode 371

The next step is to consider orchestration. It is likely there are common scripts and tasks performed
manually or semi-automatically by various teams on the heritage estate. Taking these scripts and
wrapping them in Bolt projects or Puppet modules and using Bolt or Orchestrator to run these scripts
and tasks can deliver greater control and process with these scripts without having to perform rework.

The simplest case is if you are using Puppet Enterprise and have rolled out agents in the first step, in
which case, Orchestrator can simply take advantage of the presence of the agent being deployed and
use the PCP transport to communicate and take advantage of Puppet Enterprise RBAC and logging
systems with Orchestrator. For open source Puppet or Puppet Enterprise users who do not want to
buy licenses for heritage, a Bolt server can be used to set up a golden host with SSH keys and WinRM.
There is an in-between option of using agentless Puppet Enterprise licenses but allowing the Puppet
Enterprise host to be used and to still have the RBAC and access logs. It was not discussed in previous
chapters but the advantages of agent-based servers are that they are more integrated and can perform
more actions and gather more data, and their approach to keys and security is managed by Puppet
as part of the product. Agentless approaches can be added without the issue of having to request an
agent be installed, which may not be compatible with all servers. Agentless also avoids the potential
issues of vulnerabilities and updates of Puppet agent code versions but does have the issue of separate
access management, such as deployment and management of SSH keys.

The next step is exactly what was discussed in the Scope and focus section: looking at a baseline
configuration and ideally finding something non-negotiable to start, which must be enforced on your
estate. For example, root logins must be turned off or application agents need versions to be upgraded
and managed to avoid vulnerabilities. Once these straightforward configurations are managed, it is
time to look at server configurations that may have historical exceptions. The difference for heritage
servers is even if the pre-existing configuration of the server does not follow current security and build
standards, it should first be flagged as an issue before being remediated to avoid causing potential
service issues. To flag configuration issues without immediate remediation, a no-op flag pattern at
a profile or module level can be used, as discussed in Chapter 8. The configuration drift can then be
understood and either accepted as exceptions, which are recorded in Hiera data, or remediated with
Puppet by switching from no-op mode to execution mode to apply the configuration.

Once base profiles are complete, this leads to having all the tools available for automated audit reporting
and compliance remediation in our heritage estate.

This approach can then be repeated by engaging with application teams to find their needs for
configuration and auditing and following the same pattern to build out their own roles and profiles
specific to their applications.

Having mentioned different teams involved in the development of Puppet code, it is important to
directly address the best approaches to cross-team working in Puppet.

Approaches to Adoption372

A platform engineering approach
As will be clear from the first two sections of this chapter, a common adoption start of Puppet is for
core base OS configuration to be created and then to reach out to application teams. This can often
lead to a setup where Puppet is a tool of the Linux/Unix operating system team, who dominate the
code base and are gatekeepers for the whole platform. To ensure effective cross-team working, what
is required is a platform engineering approach.

Note
More in-depth knowledge about how to run a platform team can be found in books and training
such as https://teamtopologies.com/, and platform engineering has been popularized
via communities such as https://platformengineering.org/.

The core concept of platform engineering is to have a platform team who are responsible for managing
the tooling, workflows, and development of a self-service platform. This platform should be treated
as a product, with its users treated as customers, ensuring their needs are met and that the platform is
evangelized throughout the organization. As was discussed in Chapter 1, Puppet is likely to be part of a
platform along with various other DevOps tools and workflows. Figure 15.1 shows a common toolset choice:

Figure 15.1 – A common DevOps toolset

Looking exactly where Puppet would fit, this would likely work in a day 0, day 1, and day 2 approach,
as shown in Figure 15.2, whereby provisioning would be done by a specialist tool such as Terraform
to create the infrastructure on day 0. Then, on day 1, Puppet code would be applied to the client to
configure the OS to build and security standards on the infrastructure. The day 2 Puppet role would
be to continue to enforce the configuration to avoid configuration drift as unintentional external
changes take place or intentional changes to standards result in code changes.

https://teamtopologies.com/
https://platformengineering.org/

A platform engineering approach 373

Figure 15.2 – A day 0, day 1, and day 2 approach

The key point to think about Puppet code in these platforms is that, ideally, the responsibility for running
the Puppet infrastructure should be part of the platform team’s role. This allows separate teams to
develop their own code and roles, which they have a clear path to deploy via the self-service platform.

This may not always be possible, and often, the Linux team remains running both their own code base
and the Puppet infrastructure. In this case, it would be best to still see this as two separate roles and to
not prioritize only the needs of the Linux team’s code base over other consumers. The platform team
should not try to be a gatekeeper for everyone’s Puppet code, as this blocks developers from using
Puppet as a self-service platform. The processes of your organization should cover responsibility and
escalation, which will be discussed further in the next section, Adoption in regulated environments.

It should also be ensured that the team responsible for managing the heritage estate takes ownership
of automation efforts. Bringing in a new team to automate systems without a full understanding of
them can be challenging. It may take more time to train and involve the heritage teams, but having
them lead the integration efforts can result in a more thorough understanding of the systems and
their processes.

While each team is responsible for its own code, it is important to collaboratively develop standards and
best practices to ensure that teams have the knowledge to appropriately test and pipeline their tools.

Cross-team collaboration is not just limited to using Puppet but also includes other integration points.
It is neither practical nor desirable to rewrite and run everything in Puppet. Creating communities of
practice, where various teams across departments can meet, discuss, and showcase their approaches
and progress toward automation can foster the exchange of ideas. In some cases, it may even be possible
to reuse what others have already developed within your organization. This should not be seen as a
competition but as an opportunity for mutual benefit and to exchange skills and ideas.

Evangelism at all levels is crucial. Attending various team meetings, lunch sessions, management
meetings, and external vendor or trade body events can help spread the news about your platform
and create enthusiasm for further development. External vendor events are often seen as legally
complicated, but with careful consideration and consultation with your legal and marketing teams,
you can increase the visibility of your platform within your organization and attract external talent by
generating interest in your work. Moreover, these external events, such as technical advisory boards,
are excellent opportunities to exchange best practices with like-minded organizations.

Approaches to Adoption374

Although already mentioned earlier in the Scope and focus section, it is worth emphasizing that you
should not try to solve every problem brought to you. People will become enthusiastic if you evangelize
well but it is essential to be completely honest about the capabilities and fit of your platform. You
should clearly communicate what you can realistically deliver and what they can expect to have to
commit if they want to onboard or engage with the Puppet platform.

With a scope and focus set and an understanding of collaborative working, the next major thought
should be around how regulation and process can affect these ways of working.

Adoption in regulated environments
Working in highly regulated environments can be challenging but it is often where Puppet can have the
most significant impact. Implementing automation may be more difficult in regulated environments but it
is even more challenging to perform large-scale manual actions, making the potential returns on investment
significant. The worst approach when trying to adopt new technology is to believe that “the processes just
need to change.” This attitude sets up the team for failure later in the process and can lead to a reputation
for being sloppy and neglecting process work, resulting in a setup that will not work in production.

The best approach is to engage with change, risk, audit, and other teams involved in the management
of processes in your organization before implementing Puppet. Often, despite regular complaints
about processes in the organization, no one has engaged with these teams, and they may have their
own programs to modernize to which you can align your adoption. Discussing what Puppet is and
how you plan to use it in production can provide credible feedback. Even if this feedback requires
scaling back your initial ambitions, it is better than treating these teams as gatekeepers, who end up
with a limited understanding of your adoption and have to reject things they haven’t had a chance to
understand the consequences of or influence the approach.

Note
Invite your process team to the community of practice sessions and demos; you are not on
different sides and will find you have far more challenges and objectives in common as you try
to deliver value for the organization.

It’s important to frame the discussion around what Puppet can do and how your approach to
development, testing, and release will work, as well as what scope it will cover. Puppet is a powerful
tool that operates at the administrative/root level, so it’s crucial to demonstrate that you are in control
and that any risks associated with your processes are understood.

To win the trust of all stakeholders, including process teams, you can show them the possibilities of
Puppet and discuss how it can benefit the organization. As discussed in the section on focus and scope,
iterative improvements to processes can be made, especially if they are discussed in communities of
practice sessions. This way, multiple teams and departments can agree on improvements that benefit
the organization as a whole without compromising security and risk.

Moving to the cloud 375

This approach may not seem revolutionary, but in regulated environments, change cannot happen
quickly. Therefore, it is important to focus on what can be done within the current constraints, show
how your solution fits into this, and work with stakeholders to modernize or improve processes. This
requires patience and consistency to win teams over. After completing the view of a traditional private
data center environment, it is important to consider how this approach differs in the cloud.

Moving to the cloud
The move to the public cloud has huge opportunities, particularly in terms of flexibility, with opportunities
to use cloud-specific technologies to reduce the operational burden on your organization. For example,
the ease of using availability zones for compilers to reduce the risk of data center failures is a complex
feature to implement in private data centers.

Unfortunately, there are two commonly seen anti-patterns for the cloud adoption approach. The first
is a wholesale copy of all infrastructure, processes, and components as they work in the private data
centers to the public cloud. This often happens with “cloud-first” programs, which tend to be a result
of Chief Information Officers’ (CIOs) disappointment in the take up of public cloud resources. This
forces deployments into the public cloud before organizations are ready and understand what is a
suitable fit. This results in surprise bills as the infrastructure deployed is not planned to be flexible and
ignores the rental nature of the public cloud, and many of the solutions that make sense in a private
data center are far better implemented in cloud-native solutions in the public cloud.

The second is where everything is left behind, which can be seen with application teams or departments
that are frustrated with internal processes and time to delivery. They may have justification for their
frustrations but rarely have the experience; sadly, the lessons hard won in private data centers are lost
and good practices in audit, configuration, and testing must be rebuilt as auditors find issues with
the new fractured setup.

You should consider what is really being done in the public cloud; when looking at how to deploy Puppet
infrastructure, the multi-region patterns and tactics mentioned in Chapter 13 show the options. Simply,
we can have public cloud servers managed by Puppet infrastructure in a private data center, or the
Puppet infrastructure could be migrated to the public cloud and manage both private data centers and
the public cloud, or have separate Puppet infrastructure for private data centers and the public cloud.

This choice depends on implementation aims. Is the public cloud going to be used to provide flexible
capacity for the private data centers, for example, by providing an alternate site that can be built in
disaster recovery? Or is the public cloud being used to start a new way of working with a more cloud-
native approach and new teams? In the first case, it is more likely you will want the configuration of
servers to be the same with a shared code base, and having a single pane of glass could be advantageous
for the team’s managing infrastructure. In this case, deciding whether the infrastructure should be
located privately or publicly will come down to cost and whether you intend to take advantage of
cloud-native features such as the flexibility of availability sets and load balancers, which could allow
compilers to be added on demand.

Approaches to Adoption376

In the second case, where a fresh start with new teams looking for a new approach is being made,
having a separate infrastructure will make the most sense, reviewing what is useful in the current build
and what is only relevant to the private data center. As was addressed in the a platform engineering
approach section, this involves finding out the requirements of the teams working in the cloud and
ensuring Puppet is used as part of a platform to meet these needs. The cloud teams should then be
able to use the APIs to self-service while gaining the advantage of Puppet providing the audit and
security requirements of your organization in the cloud.

It can also be an opportunity to move from heavily customized standards used in the traditional
organization and even consider adopting compliance to implement CIS standards, which was mentioned
in Chapter 14. This will be a cost consideration as to whether it makes sense to have your own team
maintaining these standards.

Summary
In this chapter, we discussed how to look beyond just pure technology consideration and make the
adoption of Puppet a success. We reviewed how to choose a focus and scope to allow Puppet to be
delivered in iterations of continuous improvement, using a regular delivery cadence and methods such
as sprints with a small focus for the team to work together on. We talked about breaking down this focus
into deliverables that can be collaboratively worked on and demoed on a regular cycle. We also covered
allowing the Puppet team to build confidence and learn as decisions are made together and coding practice
is established while showing meaningful returns and progress to management and stakeholders. We
discussed how the use cases of Puppet should be outlined and ensure that the temptation to maximize the
return from Puppet does not result in unsuited tasks trying to be shoehorned in, which can destabilize
the reliability and performance of the Puppet infrastructure and give general maintenance headaches.

The approach to adopting a heritage estate was then reviewed showing how even with estates fractured by
changes in standards and strategies as well as company mergers and acquisitions, can follow a progressive
adoption pattern to slowly reduce configuration drift over time and gather information about the estate.

We looked at rolling out an agent with no configuration first and gathering facts to create an asset view,
which could feed into a CMDB and, in the case of Puppet Enterprise, using built-in integrations to
manage patching and packaging. We then showed that orchestration could be considered to wrap up
current scripts and give better automation. This could be done using fully licensed Puppet Enterprise
via PCP or WinRM/SSH connections on an agentless license in Puppet Enterprise, or using a Bolt
server with WinRM/SSH connections. This would depend on your license considerations and the
need for RBAC and logging. We then covered forming a baseline of stateful Puppet code looking for
mandatory settings to enforce and using no-op where appropriate to get a current view of the estate,
slowly building a profile where exceptions could be accepted into Hiera or drift could be remediated.
Having established this baseline, we discussed repeating this process with application teams to bring
heritage applications under control and then use the configuration data to automate audit reporting.

Summary 377

We discussed how to work across multiple teams, establishing a Puppet platform team that championed
the platform and provided APIs and self-service to teams, setting standards for teams to adopt and
use Puppet well, but not gatekeeping their delivery.

Deployment into regulated environments was shown to be something that worked well with Puppet
by communicating how Puppet worked to key process teams, such as change and risk management,
and addressing the processes your implementation would use to develop and deploy code into
production while taking on board how best to integrate with the current process. Winning the
confidence of the process stakeholders and operation teams can lead to changing processes in the
future to further automation.

Finally, public cloud adoption was reviewed, discussing two of the biggest issues suffered in the public
cloud with either a cloud-first policy resulting in a poorly thought out lift and shift of technology and
process, or application teams going it alone and forgetting the lessons of automation for security and
audit made in private data centers. We explained that you should consider the purpose of your public
cloud. Is it an extension of the data center and something you would want to be brought into view
of an in-house Puppet server, something you are moving to? Moving Puppet infrastructure into the
public cloud can be something that starts to adopt the flexibility of the cloud. Is it something different
with a new approach and an opportunity to take new Puppet infrastructure with code optimized
for cloud adoption or taken from compliance as old customized in-house standards can be left for
industry-standard CIS approaches? The key action was shown to be meeting application teams
and ensuring the APIs and platform approach is available to them so they do not worry about core
infrastructure build and security configuration but only what is useful to them and that they should
be able to manage via self service.

Throughout this book, it has been shown how Puppet’s stateful approach can reduce drift and technical
debt, automating audit reporting and giving a standard way to deliver change, even in heavily regulated
environments, and providing a platform that users can trust to meet their infrastructure requirements
and freeing up teams to work on delivering their products to customers. Configuration management
is a complex problem with no silver bullet solutions but we have shown with a considered iterative
approach how, by working with the processes of your organization and involving everyone, Puppet
can bring transformational change to your organization.

Index

Symbols
1Password 338
 Puppet Code Manager 281

A
abstract data types 89

patterns 91
prefixes 90

abstract resource type 61
Abstract Syntax Tree (AST) 253
ad hoc commands

running, with Bolt 292-294
Admin API

environment cache 239
JRuby pool 239

adoption approaches
adoption, in regulated environments 374
cloud, moving to 375, 376
heritage servers, managing with

no-op mode 370, 371
platform engineering approach 372-374
scope and focus 368-370

aggregate facts 110
alias function 213

anti-patterns 61
abstract resource types 61
defaults 61
schedule 63

Any type 94
Apache module

reference link 170
reviewing 171

APT-based Linux desktop
Puppet lab, deploying on 27, 28

arithmetic operators 77, 78
array index

accessing 82
array operators 84

append 84
concatenate 84, 85
remove 85
splat 86

arrays 82, 86
assigning 82
nested array 83
subset, accessing of 83

arrays of titles 59
attribute splat (*) 60
audit metaparameter 57

Index380

Augeas type 55, 56
reference link 56

Azure Key Vault 338

B
backend storage service (BSS) 336
Betadots Hiera Data Manager 228
BODMAS rules 78
Bolt 289, 290

ad hoc commands, running 292-294
debugging 295, 296
logging levels 294, 295
output 294-296
plugins 313
reference link 290

Bolt project 296
configuring 297, 298
creating 316
structure 296
system-level settings 300, 301
transports, configuring 298-300
using 316

Booleans 80
conversion 81

built-in backends, Hiera
using 203-205

built-in functions
change case 116, 117
comparison 115, 116
data handling 121
hash/array 119-121
lambdas 118
sizing 115, 116
string manipulation 117
templating 118, 119

C
ca_extend module

reference link 240
capture variables 162
case statement 160, 161
catalog compilation 330
catalog statements 113
Centre for Internet Security

(CIS) benchmarks 362
certificate authority (CA) 234, 348
certificate signing logging

monitoring 250, 251
certificate signing request (CSR) 237
chained functions 115
Chief Information Officers’ (CIOs) 375
classes 34, 35

including 35
resource declaration 35
syntax 34

Clojure 282
Clojure application 352

Code Manager service 350
Collection type 94
collectors 63, 64
comment tag 148
common performance and capacity issues

catalog compilation 330, 331
catalog runtimes 331, 332
identifying 330
PuppetDB and PostgreSQL tuning 332
tuning sizing 333

compiler
scaling with 256, 257
viewing 257

compliance enforcement
modules (CEM) 363

Index 381

conditional statements 159
capture variables 162
case statement 160, 161
if statement 159, 160
selectors 161
unless statement 160

Configuration Management Databases
(CMDBs) 140, 335

container transports 291
containment 135-140
Content and Tooling Team (CAT) 196, 281
Continuous Delivery for Puppet

Enterprise (CD4PE) 285, 362
core facts

reference link 99
core resource types 52

group type 52, 53
user type 52, 53

custom backends, Hiera
data_dig backend type 214
data_hash backend type 214
hiera3_backend type 214
lookup_key type 214
using 214-216

custom facts 105, 106
aggregate facts 110
confining 106-108
rescue blocks 109
structured facts 111
timeouts 109
weighted resolutions 108, 109

D
data security 221-223

secret, storing with eyaml 223, 224
data transformation 157, 158

data types 70, 94
Booleans 80
numbers 76, 77
reference link 71
regexp 81
strings 71
undef 80

deep merge 210
defaults 61

resource body 62
resource default syntax 62, 63

deferred functions 124, 125
defined types 36, 37

syntax 36
Desired State Configuration (DSC)

Puppet modules 197
DevOps

relationship 4, 5
Directed Acyclic Graph (DAG) 131
disaster recovery (DR) 357
Docker 291
Domain-Specific Language (DSL) 279
double-quoted strings 72, 73
dynamic data

usage criteria 220, 221

E
Embedded Puppet (EPP) templates 145-150

versus ERB templates 152
Embedded Ruby (ERB)

templates 145, 151, 152
reference link 146

ENC scripts 12, 271, 272
Enum data type 91
environment 238
exec type 53-55
executable external facts 104

Index382

exporters 63, 64
expression printing tag 148
external data provider pattern 335

1Password integration 338
Azure Key Vault integration 338
components 336, 337
hiera_vault 338
implementations 337
Puppet Data Service (PDS) 338, 339
Satellite 337
ServiceNow integrations 338
Splunk 339

external facts 102
executable external facts 104
static external facts 103, 104

External Node Classifier
(ENC) 35, 94, 203, 261

F
Facter 12, 98, 348

examples 98-102
facts 23

Facter 2 102
Facter 3 98, 99
Facter 4 98, 102
facts 98-100, 309

custom facts 105, 106
external facts 102

facts hash 23
Filebeat 324
file type 44-47
flat facts 103
float data type 79
fully qualified domain name

(FQDN) 188, 266
functions 113

built-in functions 115

chained functions 115
prefix functions 114
reference link 115
statement functions 113

G
getvar function 162
group type 52, 53

H
hashes 82, 88, 98

assigning 86, 87
mixing, with arrays 89

hash operators 88
merging 88
removal 88

hash values
accessing 87

heredocs 73, 74
Hiera 11, 202

built-in backends, using 203-205
custom backends, using 214-216
data, accessing 206-214
issues 224-228
nodes, classifying with 268-271
pitfalls 224
troubleshooting 228, 229

Hiera layers 216
data, adding to module 219
environment layer 216, 217
global layer 216
module layer 217-219

hiera_vault 338
high availability (HA) 358
HOCON-formatted file 359

Index 383

I
idempotent 53
if statement 159, 160
include function 35
indirectors 238
Infrastructure-as-a-Service (IaaS) 15
Infrastructure as Code 5
inline template 146
integer data type 79
iteration 153-155

functions 153
iterative loops 156

J
Java Virtual Machine (JVM) 236, 353
jobs 354

running 354, 355
JRuby 243

L
lambda 153

functions 153
LDAP solutions

Active Directory (AD) 349
legacy Puppet patterns 23
Linux Container Hypervisor (LXD) 291
Linux Containers (LXC) 291
literal function 214
load balancer configuration

viewing 257
Logback library

URL 322
logging

adding, to plans 307
logging statements 114

Logrotate 324
logs

agent logs 322
console and console services logs 321
database logs 321
primary server logs 320, 321

logs and current status
finding 320
log locations, exploring 320-322
report processors 324
server logs, forwarding 322, 323
status APIs, accessing 325, 327

log tooling 322
lookup function 213
loops 153-155

M
Mac desktop

Puppet lab, deploying on 25
manifest order 134
metaparameters 57

for creating, dependencies 130
metrics 327
metrics dashboards

configuring 334, 335
exploring 328-330

module 165, 166
contents 166
directory and file structure 167-170
testing, with PDK 181
writing, with PDK 177-179

N
naïve signing 242
named scope 141
namespaces 37

Index384

namevar attribute 44
nested array 83
nested data 158
nested hashes 87
node classification 266

best-practice approaches 275
node definition 266-268
node groups 350
nodes

classifying, with Hiera 268-271
non-printing tags 149
noop mode 51
notify type 56
numbers 76, 77

arithmetic operators 77, 78
float data type 79
integer data type 79
numeric to string conversion 79
string to numeric conversion 79

Numeric type 94

O
Open Source Puppet 281
Optional data type 91
orchestrator 289
orchestrator services 352
orchestrator services, components

ace service 353
bolt service 353
inventory service 353
orchestrator service 352
PCP broker 353
PXP agent 353

ordering 130-135
overview 142, 143

organization ID (OID) 248
out-of-memory (OOM) resources 355

P
package type 42, 43
parameters 35

overriding 59
parameter tag 147
parent data types 94

Any type 94
Collection type 94
Data type 94
Numeric type 94
Scalar data type 94

Pattern data type 92
patterns 91

Enum data type 91
Pattern data type 92
Variant data type 92

PCP Execution Protocol (PXP) 351
PE classifier 272-275
plan functions

using 306, 307
plans 289, 301, 305

data sources, managing 309, 310
errors, handling 308, 309
logging, adding to 307
metadata, documenting 310
results 308
testing 311
YAML plans 311-313

plugin hooks 298
plugins 166
plugins, Bolt 313

Puppet library 313, 315
reference 313-315
secret 313, 315

Pod Manager (Podman) 291
PostgreSQL 252
PowerShell cmdlets 291

Index 385

prefixes 90
Optional data type 91
Sensitive data type 90, 91

prefix functions 114
Promtail 324
providers 6, 37, 44
public key infrastructure (PKI) 239
pull request (PR) 285, 362
Puppet

add-ons 16
best practices 142
change management 16
declarative 5, 6
defining 16
history 3, 4
installation 235
integrations 16
learning 16
pitfalls 142
running locally, with multiple

resources 49, 50
templating formats 146
versioning 235

Puppet 5 21
Puppet 6 22
Puppet 7 22
Puppet agent-to-server lifecycle 246-250

certificate signing logging, monitoring 250
Puppet Application Manager (PAM) 363
Puppet code

classifying 285, 286
deploying 277-286
managing 277-283
workflow, creating 284

Puppet Code Validator
reference link 131, 143

Puppet Communication Protocol (PCP) 290
Puppet Comply 362

Puppet Data Service
(PDS) 275, 338, 339, 347

installing 339, 340
PuppetDB 251-253

directories 252
performance tuning 253-255
querying 255
reference link 252

Puppet development
IDEs and tools, using 23, 24

Puppet Development Kit
(PDK) 24, 131, 175, 362

best practices 176
gem list 176
module, testing with 181
module, writing with 177, 179
used, for testing RSpec 182
workflow 179, 180

Puppet Enterprise
Bolt, using with 351
Code Manager service 350
compliance, ensuring 362, 363
configuration 359, 360
console and services 347
database components 350
deployment, automating 359, 360
deployments, managing 362
extensions and configurations 364
jobs, running 354, 355
long-term support (LTS) version 346
monitoring 361, 362
nodes, types 351
orchestrator services 351-353
overview 346, 347
performance settings, configuring 355
primary server 347
projects and tooling 361
Puppet Server service 348

Index386

Puppet web console components 348, 349
standard architectures 356, 357
status_check module 361
supported architectures 356-359
support_tasks module 361
transport 290
troubleshooting 361, 362

Puppet Enterprise Administration
Module (peadm) 347

Puppet environments 262
configuration files 264, 265
directories and paths 263
validation and deployment 265

Puppetfile 15
Puppet Forge 194

module, creating 198
module, testing 199
using 195-197

Puppet lab
deploying 24
deploying, on APT-based

Linux desktop 27, 28
deploying, on Mac desktop 25
deploying, on RPM-based

Linux desktop 26, 27
deploying, on Windows desktop 26
resources and references 30-32
tools, configuring 28-30

Puppet language
key terms 6-12

Puppet library plugins 313-315
Puppet Metrics collector module

reference link 329
Puppet native type refresh options 134
Puppet Operational Dashboards 328

reference link 328
Puppet plans

creating 305

Puppet platform 12-15
Puppet Query Language (PQL) 15, 234, 353
Puppet runs 276, 277
puppet run scheduler module

reference link 331
Puppet Server 236

Admin API 239
certificate authority (CA) 239-242
configuration files 243-246
embedded web server 236, 237
JRuby interpreters 243
logs 243-246
Puppet API service 237-239

R
RBAC service 349
Red Hat Package Manager (RPM) 40
Red Hat Satellite 337
reference plugins 313-315
regexp type 81
relationships 130-135

overview 142, 143
reserved variable names 69
reserved words

reference link 70, 71
resource body 38
resources 37

current system state, examining 41
Puppet, running locally 49, 50
title 39

resources metatype 58
role-based access control (RBAC) 282
roles 349

administrators 349
code deployers 349
custom roles 349
operators 349

Index 387

project deployers 349
viewers 349

roles and profiles method 142, 171-175
RPM-based Linux desktop

Puppet lab, deploying on 26, 27
RSpec 182

context keyword 184, 185
coverage reports 193
data, from Hiera and facts 189-192
dependencies, managing with fixtures 192
describe keyword 184, 185
examples 185
expectations 186
matchers 186, 187
parameters 187
preconditions 187, 188
relationships 188
research 194
Serverspec 194
testing with 182-184
tools 193

Ruby 166, 290
basics 16

run interval 330

S
SAML solutions

Okta 349
Scalar data type 94
scaling 327
schedule 63
scope 94-96, 140, 141

overview 142, 143
scope function 214
scope, levels

local scope 140
node scope 140

top scope 140
secret plugins 313, 315
Secure Shell (SSH) 290
Secure Sockets Layer (SSL) 236
selectors 161
Sensitive data type 90, 91
Serverspec 194
ServiceNow 338
service types 47-49
single-quoted strings 72
Software-as-a-Service (SaaS) 15
SOScleaner 361
split function

reference link 163
Splunk 339

installing 339
Splunk HTTP event collector (HEC) module

reference link 329
Splunk Plugin 329

reference link 329
statement functions 113

catalog statements 113
logging statements 114

static code
usage criteria 220, 221

static external facts 103, 104
stdlib module functions 122

for arrays, and strings 122, 123
for file information 123

string data type parameter 76
strings 71

double-quoted strings 72, 73
heredocs 73, 74
single-quoted strings 72
to numeric conversion 79
unquoted strings 71

struct 93
structured facts 111

Index388

style guides 39
examples 38
reference link 38

substrings
accessing, in variables 74-76

supported architectures, Puppet Enterprise
extra-large installation 356
large installation 356
standard installation 356

symbolic link (symlink) 240
system transports 290

T
tag parameter 57, 58
tarball file 330
targets 291

constructing 305, 306
used, for connecting to clients 291

tasks 289, 301
creating 301-304

technical account managers (TAMs) 347
templates, with loops and conditions

creating 162
testing 162

templating formats 146
EPP templates 146-150
ERP templates 151, 152

termini 337
Thundering Herd 331
tokens 350
top-level variables 23
transports 290

configuring 298-300
reference link 291
used, for connecting to clients 290, 291

troubleshooting
Hiera 228, 229

tuning 327
tuple 92, 93
types 37

Augeas type 55, 56
core resource types 52
exec type 53-55
file type 44-47
notify type 56
package type 42, 43
service types 47-49

U
undef 80
Uniform Resource Identifier (URI) 298
unless statement 160
unquoted strings 71
user acceptance testing (UAT) 272
user type 52, 53

V
variables 68, 69

interpolation 70
names 69
reserved variable names 69
substrings, accessing in 74-76

Variant data type 92
Vault module 150
vertical scaling 331
Vox Pupli community 195

URL 195
vRealize Orchestrator (VRO) 242

Index 389

W
web console 348
Windows desktop

Puppet lab, deploying on 26
Windows Remote Management

(WinRM) 290

Y
YAML plans 311-313

reference link 313

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learning DevOps - Second Edition

Mikael Krief

ISBN: 9781801818964

•	 Understand the basics of infrastructure as code patterns and practices

•	 Get an overview of Git command and Git flow

•	 Install and write Packer, Terraform, and Ansible code for provisioning and configuring cloud
infrastructure based on Azure examples

•	 Use Vagrant to create a local development environment

•	 Containerize applications with Docker and Kubernetes

•	 Apply DevSecOps for testing compliance and securing DevOps infrastructure

•	 Build DevOps CI/CD pipelines with Jenkins, Azure Pipelines, and GitLab CI

•	 Explore blue-green deployment and DevOps practices for open sources projects

https://packt.link/9781801818964

393Other Books You May Enjoy

Go for DevOps

John Doak, David Justice

ISBN: 9781801818896

•	 Understand the basic structure of the Go language to begin your DevOps journey

•	 Interact with filesystems to read or stream data

•	 Communicate with remote services via REST and gRPC

•	 Explore writing tools that can be used in the DevOps environment

•	 Develop command-line operational software in Go

•	 Work with popular frameworks to deploy production software

•	 Create GitHub actions that streamline your CI/CD process

•	 Write a ChatOps application with Slack to simplify production visibility

https://packt.link/9781801818896

394

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Puppet 8 for DevOps Engineers, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review
page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/180323170X
https://packt.link/r/180323170X

395

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803231709

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803231709

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1
– Introduction to Puppet
and the Basics of the
Puppet Language
	Chapter 01: Puppet Concepts and Practices
	Puppet’s history and relationship to DevOps
	Puppet as a declarative and idempotent language
	Key terms in the Puppet language
	Puppet as a platform
	Common misconceptions
	Summary

	Chapter 02: Major Changes,
Useful Tools, and References
	Technical requirements
	Major changes since Puppet 5
	Puppet 5
	Puppet 6
	Puppet 7

	Legacy Puppet patterns
	IDEs and tools to assist in Puppet development
	How to deploy your Puppet lab and development tools
	Mac desktop
	Windows desktop
	Linux desktop – RPM-based
	Linux desktop – APT-based
	Configuring tools

	References and further research
	Summary

	Chapter 03: Puppet Classes, Resource Types, and Providers
	Technical requirements
	Classes and defined types
	Including a class
	Defined types
	Namespaces

	Resources, types, and providers
	Lab
	The package type
	The file type
	Service types
	Lab
	Core resource types
	The exec type
	The Augeas type
	The notify type

	Metaparameters and advanced resources
	audit
	tag
	The resources metatype
	Arrays of titles
	Overriding parameters
	Attribute splats
	Lab

	Anti-patterns
	Abstract resource types
	Defaults
	schedule

	Summary

	Chapter 04: Variables and Data Types
	Technical requirements
	Variables
	Naming
	Reserved variable names
	Interpolation

	Data types
	Strings
	Numbers
	undef
	Booleans
	Regexp
	Lab

	Arrays and hashes
	Assigning arrays
	Accessing an array index
	Accessing a subset of an array
	Nested array
	Array operators
	Array data type
	Assigning hashes
	Accessing hash values
	Nested hashes
	Hash operators
	Hash data type
	Mixing hashes and arrays
	Lab

	Abstract data types, including Sensitive
	Prefixes
	Patterns
	Arrays and hashes
	Parent data types
	Lab

	Scope
	Summary

	Chapter 05: Facts and Functions
	Technical requirements
	Facts and Facter
	Custom facts and external facts
	External facts
	Custom facts
	Lab

	Functions
	Statement functions
	Prefix and chained functions
	A selection of built-in functions

	stdlib module functions
	Lab
	Deferred functions
	Summary

	Part 2 –
Structuring, Ordering,
and Managing Data in the Puppet Language
	Chapter 06: Relationships, Ordering,
and Scope
	Technical requirements
	Relationships and ordering
	Containment
	Scope
	Best practices and pitfalls
	Lab – overview of relationships, ordering, and scope
	Summary

	Chapter 07: Templating, Iterating, and Conditionals
	Technical requirement
	Templating formats in Puppet – EPP and ERB
	EPP templates
	ERB templates
	EPP and ERB comparison

	Iteration and loops
	Iterative loops
	Data transformation
	Nested data

	Conditional statements
	If and unless statements
	Case statement
	Selectors
	Capture variables

	Lab – creating and testing templates containing loops and conditions
	Summary

	Chapter 08: Developing and Managing Modules
	Technical requirements
	What is a module and what is in it?
	Lab – reviewing the apache module
	Roles and profiles method
	Writing and testing a module using the PDK
	Testing with RSpec using the PDK
	The describe and context keywords
	Examples, expectations, and matchers
	Parameters and preconditions
	Relationships
	Data from Hiera and facts
	Managing dependencies with fixtures
	Coverage reports
	Further research and tools for RSpec
	Serverspec

	Understanding Puppet Forge
	Lab – creating a module and testing it
	Summary

	Chapter 09: Handling Data with Puppet
	Technical requirements
	What is Hiera?
	Using the built-in backends
	Accessing data
	Using custom backends

	Hiera layers
	Lab – add data to a module

	Deciding when to use static code or dynamic data
	Keeping data secure
	Lab – use eyaml to store a secret
	Pitfalls, gotchas, and issues
	Lab – troubleshoot Hiera
	Summary

	Part 3 –
The Puppet Platform and
Bolt Orchestration
	Chapter 10: Puppet Platform Parts
and Functions
	Technical requirements
	Puppet platform installation and versioning
	Puppet Server
	The embedded web server
	The Puppet API service
	The Admin API
	CA
	JRuby interpreters
	Configuration and logs for Puppet Server

	The Puppet agent-to-server lifecycle
	Lab – monitoring certificate signing logging

	PuppetDB and PostgreSQL
	Lab – querying PuppetDB

	Scaling with compilers
	Lab – viewing compiler and load balancer configuration

	Summary

	Chapter 11: Classification and
Release Management
	Technical requirements
	Puppet environments
	Environment directories and paths
	Environment configuration files
	Environment validation and deployment

	Understanding node classification
	Node definitions
	Classifying nodes with Hiera
	ENC scripts
	PE classifier
	Recommended approach

	Puppet runs
	Managing and deploying Puppet code
	Creating a workflow

	Lab – classifying and deploying code
	Summary

	Chapter 12: Bolt for Orchestration
	Technical requirements
	Exploring and configuring Bolt
	Connecting to clients with transports and targets
	Running ad hoc commands with Bolt
	Output and debugging

	Understanding the structure of projects
	Configuring a project
	Configuring transports
	System level and legacy

	Introducing tasks and plans
	Creating tasks
	Creating Puppet plans
	Constructing targets
	Using plan functions
	Logging and results
	Handling errors
	Managing data sources
	Documenting plan metadata
	Plan testing
	Introducing YAML plans

	Plugins
	Reference plugins
	Secret plugins
	Puppet library

	Lab – creating and using a Bolt project
	Summary

	Chapter 13: Taking Puppet Server Further
	Technical requirements
	Logging and status
	Exploring log locations
	Forwarding server logs
	Report processors
	Accessing status APIs

	Metrics, tuning, and scaling
	Exploring metrics dashboards
	Identifying and avoiding common issues
	Lab – configuring metric dashboards

	External data provider pattern
	Understanding external data provider components
	External data provider implementations
	Lab – hands-on with Splunk and Puppet Data Service

	Summary

	Part 4 –
Puppet Enterprise
and Approaches to the Adoption of Puppet
	Chapter 14: A Brief Overview of Puppet Enterprise
	Technical requirements
	What is Puppet Enterprise?
	Exploring the Puppet Enterprise console and services
	Puppet Server
	Introducing Puppet web console components
	Using Bolt with Puppet Enterprise
	Orchestrator services
	Running jobs
	Configuring performance settings

	Automating deployment and reference architectures
	Understanding supported architectures
	Deployment and configuration

	Puppet Enterprise-related projects and tooling
	Monitoring and troubleshooting Puppet Enterprise infrastructure
	Managing deployments and ensuring compliance

	Lab – Puppet Enterprise extensions and configuration
	Summary

	Chapter 15: Approaches to Adoption
	Scope and focus
	Managing heritage estates with no-op mode
	A platform engineering approach
	Adoption in regulated environments
	Moving to the cloud
	Summary

	Index
	About Packt
	Other Books You May Enjoy

