Quick answers to common problems

Puppet 3 Cookbook

Build reliable, scalable, secure, and high-performance systems to
fully utilize the power of cloud computing

John Arundel [] open source

PUBLISHING

Puppet 3 Cookbook

Build reliable, scalable, secure, and high-performance
systems to fully utilize the power of cloud computing

John Arundel

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Puppet 3 Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2011

Second published: August 2013
Production Reference: 1190813

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-976-5
www . packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail . com)

Credits

Author Project Coordinator
John Arundel Kranti Berde
Reviewers Proofreader
Dhruv Ahuja Lawrence A. Herman

Carlos Nilton Araujo Corréa

Daniele Sluijters Indexers

Dao Thomas Hemangini Bari

Monica Ajmera Mehta

Acquisition Editor

Kartikey Pandey Graphics
Ronak Dhruv

Lead Technical Editor

Madhuja Chaudhari Production Coordinator
Kyle Albuquerque
Technical Editors
Anita Nayak Cover Work
Kyle Albuquerque

Larissa Pinto

About the Author

John Arundel is a devops consultant, which means he solves difficult problems for a living.
(He doesn't get called in for easy problems.)

He has worked in the tech industry for 20 years, and during that time has done wrong (or seen
done wrong) almost everything that you can do wrong with computers. That comprehensive
knowledge of what not to do, he feels, is one of his greatest assets as a consultant. He is still
adding to it.

He likes writing books, especially about Puppet (The Puppet 3 Beginner's Guide is available
from the same publisher). It seems that at least some people enjoy reading them. He also
provides training and coaching on Puppet, which it turns out is far harder than simply doing
the work himself.

Off the clock, he can usually be found driving a Land Rover up some mountain or other. He lives
in a small cottage in Cornwall and believes, like Cicero, that if you have a garden and a library,
then you have everything you need.

You can follow him on Twitter at @bitfield.

My thanks go to Rene Lehmann, Cristian Leonte, German Rodriguez, Keiran
Sweet, Dean Wilson, and Dan White for their help with proofreading and
suggestions. Special thanks are due to Lance Murray and Sebastiaan

van Steenis, who diligently read and tested every chapter, and provided
invaluable feedback on what did and didn't make sense.

About the Reviewers

Dhruv Ahuja is a Lead Engineer at a managed hosting provider. He specializes in
infrastructure solutions design and configuration, with a keen eye on achieving mechanical
sympathy. His first brush with Puppet was in 2011 when he developed a solution on
dynamically scaling compute nodes for a multi-purpose grid platform. He also holds a
master's degree in Advanced Software Engineering from King's College London, and won

the Red Hat UK Channel Consultant of the Year award in 2012 for delivering progressive
solutions. A long history in conventional software development and traditional systems
administration equip him with aptness in both areas, and he bridges many infrastructural
gaps in a well-delimited way. In this era of infrastructure as code, he believes that declarative
abstraction is essential for a maintainable systems life-cycle process.

Carlos N. A. Corréa is an IT Operations manager and consultant, and is also a

Puppet enthusiast and an old-school Linux hacker. He has a Master's Degree in Systems
Virtualization and holds CISSP and RHCE certifications. Backed by a 15-year career on
systems administration, Carlos leads IT Operations teams for companies both in Brazil

and Africa. He is also a part-time professor for graduate and undergraduate courses in
Brazil. Carlos co-authored several research papers on network virtualization and OpenFlow,
presented on peer-reviewed IEEE and ACM conferences worldwide.

| thank God for all the opportunities of hard work and all the lovely people |
always found on my way. To the sweetest of them all, my wife Nanda,

| give thanks for all the loving care and support that pushes me forward.
And to my parents, Nilton and Zélia, for being such a big inspiration for all
the things that | do.

Daniele Sluijters is a student of Informatics and has been working as a systems operator
for a few years. Initially it all started out as a hobby, but eventually it turned into both his field of
study and work. His primary focus in both work and study for the past years have been large(r)
networks made up of mostly Unix systems offering services to the world disclosed over the
internet and how to manage and secure both the systems, the services they provide, and the
networks they use. He has also worked on the book Zabbix Network Monitoring Essentials,
Munin Plugin Starter

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www . PacktPub . com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

IE\ PACKT! 5"

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content

» On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents

Preface 1
Chapter 1: Puppet Infrastructure 7
Introduction 7
Installing Puppet 8
Creating a manifest 10
Managing your manifests with Git 11
Creating a decentralized Puppet architecture 14
Writing a papply script 16
Running Puppet from cron 18
Deploying changes with Rake 22
Bootstrapping Puppet with Rake 26
Automatic syntax checking with Git hooks 29
Chapter 2: Puppet Language and Style 33
Introduction 34
Using community Puppet style 34
Checking your manifests with puppet-lint 36
Using modules 38
Using standard naming conventions 42
Using inline templates 44
Iterating over multiple items 45
Writing powerful conditional statements 47
Using regular expressions in if statements 49
Using selectors and case statements 50
Using the in operator 53
Using regular expression substitutions 54

Table of Contents

Chapter 3: Writing Better Manifests 57
Introduction 58
Using arrays of resources 58
Using definitions 59
Using dependencies 61
Using tags 65
Using run stages 68
Using node inheritance 71
Passing parameters to classes 73
Using class inheritance and overriding 75
Writing reusable, cross-platform manifests 79
Getting information about the environment 81
Importing dynamic information 83
Passing arguments to shell commands 84

Chapter 4: Working with Files and Packages 87
Introduction 87
Making quick edits to config files 88
Using Augeas to automatically edit config files 89
Building config files using snippets 91
Using ERB templates 94
Using array iteration in templates 96
Using GnuPG to encrypt secrets 98
Installing packages from a third-party repository 103
Building packages automatically from source 106
Comparing package versions 108

Chapter 5: Users and Virtual Resources 111
Introduction 112
Using virtual resources 112
Managing users with virtual resources 115
Managing users' SSH access 118
Managing users' customization files 121
Efficiently distributing cron jobs 126
Using schedules to limit when resources can be applied 129
Using host resources 132
Using multiple file sources 133
Distributing directory trees 135
Cleaning up old files 137

Table of Contents

Auditing resources 139
Temporarily disabling resources 140
Chapter 6: Applications 143
Introduction 143
Managing Apache servers 144
Creating Apache virtual hosts 145
Creating Nginx virtual hosts 150
Managing MySQL 153
Managing Ruby 158
Chapter 7: Servers and Cloud Infrastructure 165
Introduction 165
Building high-availability services using Heartbeat 166
Managing NFS servers and file shares 171
Using HAProxy to load-balance multiple web servers 174
Managing firewalls with iptables 178
Managing EC2 instances 188
Managing virtual machines with Vagrant 193
Chapter 8: External Tools and the Puppet Ecosystem 199
Introduction 200
Creating custom facts 200
Adding external facts 202
Setting facts as environment variables 205
Importing configuration data with Hiera 206
Storing secret data with hiera-gpg 210
Generating manifests with puppet resource 213
Generating manifests with other tools 214
Testing your manifests with rspec-puppet 218
Using public modules 221
Using an external node classifier 223
Creating your own resource types 226
Creating your own providers 228
Creating your own functions 231
Chapter 9: Monitoring, Reporting, and Troubleshooting 235
Introduction 235
Doing a dry run 236
Logging command output 237
Logging debug messages 239

Table of Contents

Generating reports 240
Producing automatic HTML documentation 242
Drawing dependency graphs 245
Understanding Puppet errors 248
Inspecting configuration settings 251
Index 253

Preface

A revolution is underway in the field of IT operations. The new generation of configuration
management tools can build servers in seconds and automate your entire network. Tools such
as Puppet are essential to take full advantage of the power of cloud computing, and build
reliable, scalable, secure, high-performance systems.

This book takes you beyond the basics and explores the full power of Puppet, showing you in
detail how to tackle a variety of real-world problems and applications. At every step, it shows you
exactly what commands you need to type and includes complete code samples for every recipe.

It takes the reader from rudimentary knowledge of Puppet to a more complete and expert
understanding of Puppet's latest and most advanced features, community best practices,
writing great manifests, scaling and performance, and how to extend Puppet by adding your
own providers and resources.

This book also includes real examples from production systems and techniques that are in
use in some of the world's largest Puppet installations. It will show you different ways to do
things using Puppet and point out some of the pros and cons of these approaches.

The book is structured so that you can dip in at any point and try out a recipe without having to
work your way through from cover to cover. You'll find links and references to more information
on every topic, so that you can explore further for yourself. Whatever your level of Puppet
experience, there's something for you, from simple workflow tips to advanced, high-performance
Puppet architectures.

I've tried hard to write the kind of book that would be useful to me in my day-to-day work as a
devops consultant. | hope it will inspire you to learn, to experiment, and to come up with your
own new ideas in this exciting and fast-moving field.

Preface

What this book covers

You'll find the following chapters in this book:

Chapter 1, Puppet Infrastructure, shows how to set up Puppet for the first time, including
instructions on installing Puppet, creating your first manifests, using version control with
Puppet, building a distributed Puppet architecture based on Git, writing a script to apply
Puppet manifests, running Puppet automatically, using Rake to bootstrap machines and
deploy changes, and using Git hooks to automatically syntax-check your manifests.

Chapter 2, Puppet Language and Style, covers aspects of writing good Puppet code, including
using Puppet community style, checking your manifests with puppet - 1int, structuring your
manifests with modules, using standard naming and style conventions, using inline templates,
using iteration, conditional statements, and regular expressions, using selectors and case
statements, and string operations.

Chapter 3, Writing Better Manifests, goes into detail on specific features of Puppet that you
can use to improve your code quality and usability, including arrays, definitions, ordering your
resources with dependencies, inheriting from nodes and classes, passing parameters to
classes, overriding parameters, reading information from the environment, writing reusable
manifests, and using tags and run stages.

Chapter 4, Working with Files and Packages, deals with some of the most common sysadmin
tasks, including managing config files, using Augeas, generating files from snippets and
templates, managing third-party package repositories, using GnuPG to encrypt secret data

in Puppet, and building packages from source.

Chapter 5, Users and Virtual Resources, explains what virtual resources are and how they
can help you manage different combinations of users and packages on different machines,
and shows you how to use Puppet's resource scheduling and auditing features.

Chapter 6, Applications, focuses on some specific applications that you may need to manage
with Puppet, including complete recipes for Apache and Nginx, MySQL, and Ruby.

Chapter 7, Servers and Cloud Infrastructure, extends the power of Puppet to manage virtual
machines, both on the cloud and on your desktop, with recipes for Vagrant and EC2 instances.
It also shows you how to set up load balancing with HAProxy, firewalls with iptables,
network filesystems with NFS, and high-availability services with Heartbeat.

Chapter 8, External Tools and the Puppet Ecosystem, looks at some of the tools that have
grown up around Puppet, including Hiera, Facter, and rspec-puppet. It also introduces you
to some advanced topics including writing your own resource types, providers, and external
node classifiers.

Preface

Chapter 9, Monitoring, Reporting, and Troubleshooting, covers ways that Puppet can report
information about what it's doing, and the status of your system. This includes reports,

log, and debug messages, dependency graphing, testing and dry-running your manifests,
and a guide to some of Puppet's more common error messages.

What you need for this book

To run the examples in this book, you will need a computer with Ubuntu Linux 12.04 and an
Internet connection.

Who this book is for

The book assumes that the reader has a little experience of Linux systems administration,
including familiarity with the command line, file system, and text editing. No programming
experience is required.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You can
check your manifests for style guide compliance using the puppet-1int tool."

A block of code is set as follows:

node 'cookbook'
cron { 'randomised cron job':
command => '/bin/echo Hello, world >>/tmp/hello.txt',
hour => '*!,
minute => random minute (),
}
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

newparam(:path) do
validate do |value]|
basepath = File.dirname (value)
unless File.directory? (basepath)
raise ArgumentError , "The path %s doesn't exist" % basepath
end
end
end

Preface
Any command-line input or output is written as follows:

ubuntu@cookbook: ~/puppet$ papply
Notice: Hello, I was included by your ENC!

Notice: /Stage[main]/Admin::Helloenc/Notify[Hello, I was included by your
ENC!] /message: defined 'message' as 'Hello, I was included by your ENC!'

Notice: Finished catalog run in 0.29 seconds

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

—a1

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http: //www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will

be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any aspect
of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Puppet Infrastructure

Computers in the future may have as few as 1,000 vacuum tubes and weigh
only 1.5 tons.

—Popular Mechanics, 1949
In this chapter, we will cover:

» Installing Puppet

» Creating a manifest

» Managing your manifests with Git

» Creating a decentralized Puppet architecture
» Writing a papply script

» Running Puppet from cron

» Deploying changes with Rake

» Bootstrapping Puppet with Rake

» Automatic syntax checking with Git hooks

Introduction

Some of the recipes in this book represent best practices as agreed upon by the Puppet
community. Others are tips and tricks which will make it easier for you to work with Puppet,
or introduce you to features that you may not have been previously aware of. Some recipes
are shortcuts that | wouldn't recommend you use as standard operating procedure, but may
be useful in emergencies. Finally, there are some experimental recipes that you may like

to try, but are only useful or applicable in very large-scale infrastructures or otherwise
unusual circumstances.

Puppet Infrastructure

My hope is that, by reading through and thinking about the recipes presented here, you will
gain a deeper and broader understanding of how Puppet works and how you can use it to
improve your infrastructure. Only you can decide whether a particular recipe is appropriate
for you and your organization, but | hope this collection will inspire you to experiment, find out
more, and most of all have fun using Puppet!

Linux distributions

Because Linux distributions, such as Ubuntu, Red Hat, and CentOS differ in the specific details
of package names, configuration file paths, and many other things, | have decided that for
reasons of space and clarity the best approach for this book is to pick one distribution
(Ubuntu 12.04 Precise) and stick to that. However, Puppet runs on most popular operating
systems, so you should have very little trouble adapting the recipes to your own favored 0S
and distribution.

Puppet versions

At the time of writing, Puppet 3.2 is the latest stable version available, and consequently |
have chosen that as the reference version of Puppet used in the book. The syntax of Puppet
commands changes often, so be aware that while older versions of Puppet are still perfectly
usable, they may not support all of the features and syntax described in this book.

Installing Puppet

If you already have a working Puppet installation, you can skip this section. If not, or if you
want to upgrade or re-install Puppet, we'll go through the installation process step by step.

I'm using an Amazon EC2 cloud instance to demonstrate setting up Puppet, though you may
prefer to use a physical server, a Linux workstation, or a virtual machine such as Vagrant,
VMWare, or VirtualBox (with Internet access). I'll log in as the ubuntu user and use sudo to
run commands that need root privileges (the default setup on Ubuntu).

. On EC2 Ubuntu images, the ubuntu user is already set up with the sudo
% permissions to run any commands as root. If you're using a different Linux
s distribution or you're not on EC2, you'll need to configure this yourself in the
/etc/sudoers file.

Getting ready...

To prepare the machine for Puppet, we need to set its hosthame.

1. Set a suitable hostname for your server (ignore any warning from sudo):

—e1]

Chapter 1

ubuntu@domU-12-31-39-09-51-23:~% sudo hostname cookbook
ubuntu@domU-12-31-39-09-51-23:~% sudo su -c 'echo cookbook
>/etc/hostname’

sudo: unable to resolve host cookbook

2. Logout and log back in to check the hostname is now correctly set:

ubuntu@cookbook: ~$

3. Find out the local IP address of the server:

ubuntu@cookbook:~$ ip addr show |grep ethO
inet 10.96.247.132/23 brd 10.96.247.255 scope global ethO

4. Copy the IP address of your server (here it's 10.96.247.132) and add this to
the /etc/hosts file so that it looks something like this (use your own hostname
and domain):

10.96.247.132 cookbook cookbook.example.com

How to do it...

Puppet packages for most Linux distributions, including Ubuntu, are available from Puppet
Labs. Here's how to install the version for Ubuntu 12.04 Precise:

1. Download the Puppet Labs repo package:
ubuntu@cookbook:~$ wget http://apt.puppetlabs.com/puppetlabs-

release-precise.deb

2. Install the repo package:
ubuntu@cookbook:~$ sudo dpkg -i puppetlabs-release-precise.deb
Selecting previously unselected package puppetlabs-release.
(Reading database ... 33975 files and directories currently
installed.)
Unpacking puppetlabs-release (from puppetlabs-release-
precise.deb)

Setting up puppetlabs-release (1.0-5)

3. Update your APT configuration:
ubuntu@cookbook:~$ sudo apt-get update

If you're not using Ubuntu 12.04 Precise, you can find out how to add the
% Puppet Labs repos package to your system here:
S

http://docs.puppetlabs.com/guides/
puppetlabs package repositories.html

Puppet Infrastructure

4. Install Puppet:
ubuntu@cookbook:~$ sudo apt-get -y install puppet

If you're on Mac, you can download and install suitable DMG images
from Puppet Labs available at:
https://downloads.puppetlabs.com/mac/
7S

If you're using Windows, you can download MSI packages from the
Puppet Labs website available at:

https://downloads.puppetlabs.com/windows/

5. Run the following command to check that Puppet is properly installed:

ubuntu@cookbook:~$ puppet --version
3.2.2
If the version of Puppet you've installed is not exactly the same, it doesn't matter; you'll get

whatever is the latest version made available by Puppet Labs. So long as your version is at
least 3.0, you should have no trouble running the examples in this book.

If you have an older version of Puppet, you may find that some things don't work or work
differently to the way you'd expect. | recommend that you upgrade to Puppet 3.x or later if
at all possible.

Now that Puppet is set up, you can use it to make some configuration changes by creating a
manifest. We'll see how to do this in the next section.

Creating a manifest

If you already have some Puppet code (known as a Puppet manifest), you can skip this section
and go on to the next. If not, we'll see how to create and apply a simple manifest.

How to do it...

Follow these steps:

1. First, let's create a suitable directory structure to keep the manifest code in:
ubuntu@cookbook:~$ mkdir puppet
ubuntu@cookbook:~$ cd puppet
ubuntu@cookbook: ~/puppet$ mkdir manifests

2. Within your puppet directory, create the file manifests/site.pp with the
following contents:

import 'nodes.pp'

Chapter 1

3. Create the file manifests/nodes . pp with the following contents (use your machine's
hostname in place of cookbook):

node 'cookbook'
file { '/tmp/hello’:
content => "Hello, world\n",

}
}

4. Test your manifest with the puppet apply command. This will tell Puppet to read the
manifest, compare it to the state of the machine, and make any necessary changes to
that state:

ubuntu@cookbook: ~/puppet$ sudo puppet apply manifests/site.pp
Notice: /Stagel[main]//Node[cookbook]/File[/tmp/hello] /ensure:
defined content as '{md5}a7966bf58e23583c9a5a4059383£f£850"

Notice: Finished catalog run in 0.06 seconds

5. To see if Puppet did what we expected (create the file /tmp/hello with the contents
Hello, world), run the following command:

ubuntu@cookbook: ~/puppet$ cat /tmp/hello
Hello, world

Managing your manifests with Git

It's a great idea to put your Puppet manifests in a version control system such as Git or
Subversion (I recommend Git) and give all Puppet-managed machines a checkout from
your repository. This gives you several advantages:

» You can undo changes and revert to any previous version of your manifest

» You can experiment with new features using a branch

» If several people need to make changes to the manifests, they can make them
independently, in their own working copies, and then merge their changes later

» Youcanusethe git log feature to see what was changed, and when (and by whom)

Getting ready...

In this section we'll import your existing manifest files into Git. If you have created a puppet
directory in the previous section, use that, otherwise use your existing manifest directory.

I'm going to use the popular GitHub service as my Git server. You don't have to do this, it's easy
to run your own Git server but it does simplify things. If you already use Git and have a suitable
server, feel free to use that instead.

s

Puppet Infrastructure

%\ manifests). This isn't a good idea if your manifest contains secret data such

Note that GitHub currently only offers free repository hosting for public
repositories (that is, everyone will be able to see and read your Puppet

as passwords. It's fine for playing and experimenting with the recipes in this
book, but for production use, consider a private GitHub repo instead.

Here's what you need to do to prepare for importing your manifest:

1.

First, you'll need Git installed on your machine:

ubuntu@cookbook: ~/puppet$ sudo apt-get install git

Next, you'll need a GitHub account (free for open-source projects, or you'll need to pay
a small fee to create private repositories) and a repository. Follow the instructions at
github.comto create and initialize your repository (from now on, just "repo" for short).
Make sure you tick the box that says, Initialize this repository with a README.

Authorize your SSH key for read/write access to the repo (see the GitHub site for
instructions on how to do this).

How to do it...

You're now ready to add your existing manifests to the Git repo. We're going to clone the repo,
and then move your manifest files into it, as follows:

1.

First, move your puppet directory to a different name:
mv puppet puppet. import
Clone the repo onto your machine into a directory named puppet (use your own repo
URL, as shown on GitHub):
ubuntu@cookbook:~$ git clone
git@github.com:bitfield/cookbook.git puppet
Cloning into 'puppet'...
remote: Counting objects: 3, done.
remote: Total 3 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (3/3), done.

Move everything from puppet . import to puppet:
ubuntu@cookbook:~$ mv puppet.import/* puppet/

Add and commit the new files to the repo, setting your Git identity details if necessary:
ubuntu@cookbook:~$ cd puppet

ubuntu@cookbook: ~/puppet$ git status

Chapter 1

On branch master

Untracked files:

(use "git add <file>..." to include in what will be
committed)

#

manifests/

nothing added to commit but untracked files present (use "git
add" to track)

ubuntu@cookbook: ~/puppet$ git add manifests/

ubuntu@cookbook: ~/puppet$ git config --global user.name "John
Arundel"

ubuntu@cookbook: ~/puppet$ git config --global user.email
"john@bitfieldconsulting.com"

ubuntu@cookbook: ~/puppet$ git commit -m "Importing"

[master a063a5b] Importing

Committer: John Arundel <john@bitfieldconsulting.com>

2 files changed, 6 insertions(+)

create mode 100644 manifests/nodes.pp

create mode 100644 manifests/site.pp
Finally, push your changes back to GitHub:

ubuntu@cookbook: ~/puppet$ git push -u origin master
Counting objects: 6, done.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (5/5), 457 bytes, done.

Total 5 (delta 0), reused 0 (delta 0)

To git@github.com:bitfield/cookbook.git

6d6aa5l..a063a5b master -> master

Git tracks changes to files, and stores a complete history of all changes. The history of the
repo is made up of commits. A commit represents the state of the repo at a particular point
in time, which you create with the git commit command and annotate with a message.

You've added your Puppet manifest files to the repo and created your first commit. This updates
the history of the repo, but only in your local working copy. To synchronize the changes with
GitHub's copy, the git push command pushes all changes made since the last sync.

[}

Puppet Infrastructure

There's more...

Now that you have a central Git repo for your Puppet manifests, you can check out
multiple copies of it in different places and work on them, before committing your
changes. For example, if you're working in a team, each member can have her own
local copy of the repo and synchronize changes with the others via GitHub.

Now that you've taken control of your manifests with Git, you can use it as a simple,
scalable way to distribute manifest files to lots of machines. We'll see how to do this
in the next section.

Creating a decentralized Puppet

architecture

Some systems work best when they're decentralized. The Mafia is a good example, although,
of course, there is no Mafia.

A common way to use Puppet is to run a Puppet Master server, which Puppet clients can
then connect to and receive their manifests. However, you don't need a Puppet Master to
use Puppet. You can run the puppet apply command directly on a manifest file to have
Puppet apply it:

ubuntu@cookbook: ~/puppet$ puppet apply manifests/site.pp

Notice: Finished catalog run in 0.08 seconds

In other words, if you can arrange to distribute a suitable manifest file to a client machine,
you can have Puppet execute it directly without the need for a central Puppet Master.
This removes the performance bottleneck of a single master server, and also eliminates
a single point of failure. It also avoids having to sign and exchange the SSL certificates
when provisioning a new client machine.

There are many ways you could deliver the manifest file to the client, but Git (or any version
control system) does most of the work for you. You can edit your manifests in a local working
copy, commit them to Git, and push them to a central repo, and from there they can be
automatically distributed to the client machines.

Getting ready

If your Puppet manifests aren't already in Git, follow the steps in Managing your manifests
with Git.

You'll need a second machine to check out a copy of your Puppet repo. If you're using EC2
instances, create another instance, and call it something like cookbook2.

Sz

How to do it...

Follow these steps:

1. Check out your GitHub repo on the new machine:

ubuntu@cookbook2:~$ git clone
git@github.com:bitfield/cookbook.git puppet
Cloning into 'puppet'...

remote: Counting objects: 8, done.

remote: Compressing objects: 100% (5/5), done.

remote: Total 8 (delta 0), reused 5 (delta 0)

Receiving objects: 100% (8/8), done.

Modify your manifests/nodes.pp file, as follows:

node 'cookbook', 'cookbook2' {
file { '/tmp/hello':
content => "Hello, world\n",

}

Run the following command:

Chapter 1

ubuntu@cookbook2: ~/puppet$ sudo puppet apply manifests/site.pp

Notice: /Stagel[main]//Node [cookbook2]/File[/tmp/hello] /ensure:

defined content as '{md5}a7966bf58e23583c9a5a4059383££850"

Notice: Finished catalog run in 0.05 seconds

We've created a new working copy of the Puppet repo on the new machine:

ubuntu@cookbook2:~$ git clone git@github.com:bitfield/cookbook.git puppet

However, before we can run Puppet, we have to create a node declaration for the

cookbook?2 node:

node 'cookbook', 'cookbook2' {

}

Now, we apply the manifest:

ubuntu@cookbook2: ~/puppet$ sudo puppet apply manifests/site.pp

]

Puppet Infrastructure

Puppet finds the node declaration for cookbook2 and applies the same manifest that we
used before on cookbook:

Notice: /Stagel[main]//Node[cookbook2]/File[/tmp/hello] /ensure:
defined content as '{md5}a7966bf58e23583c9a5a4059383£f£850"

There's more...

Having scaled your Puppet infrastructure from one machine to the other, you can now extend
it to as many as you like! All you need to do is check out the Git repo on a machine, and run

puppet apply.
This is a great way to add Puppet management to your existing machines without lots of
complicated setup, or using an extra machine to serve as a Puppet Master. Many of my

clients have switched to using a Git-based infrastructure because it's simpler, easier to
scale, and easier to maintain.

A refinement which you might like to consider is having each machine automatically pull
changes from GitHub and apply them with Puppet. Then all you need to do is push a change
to GitHub, and it will roll out to all your Puppet-managed machines within a certain time.
We'll see how to do this in the following sections.

Writing a papply script

We'd like to make it as quick and easy as possible to apply Puppet on a machine, so | usually
write a little script that wraps the puppet apply command with the parameters it needs.
And to deploy the script where it's needed, what better tool than Puppet itself?

How to do it...

Follow these steps:

1. Inyour Puppet repo, create the directories needed for a puppet module:
ubuntu@cookbook: ~/puppet$ mkdir modules
ubuntu@cookbook: ~/puppet$ mkdir modules/puppet
ubuntu@cookbook: ~/puppet$ mkdir modules/puppet/manifests
ubuntu@cookbook: ~/puppet$ mkdir modules/puppet/files

2. Create the file modules/puppet/files/papply.sh with the following contents

(change the path /home/ubuntu/puppet to where your Puppet repo is located).
The sudo puppet apply command should all be on one line:

Chapter 1

#!/bin/sh

sudo puppet apply /home/ubuntu/puppet/manifests/site.pp
--modulepath=/home/ubuntu/puppet/modules/ $*

Create the file modules/puppet /manifests/init . pp with the following contents:

class puppet ({
file { '/usr/local/bin/papply’:
source => 'puppet:///modules/puppet/papply.sh',
mode => '0755"',
}
}

Modify your manifests/nodes.pp file as follows:

node 'cookbook'
include puppet

}

Apply your changes:

ubuntu@cookbook: ~/puppet$ sudo puppet apply manifests/site.pp
--modulepath=/home/ubuntu/puppet/modules

Notice: /Stagel[main]/Puppet/File[/usr/local/bin/papply]
/ensure: defined content as '{md5}

171896840d39664c00909eb8cf47a53c!

Notice: Finished catalog run in 0.07 seconds

Test that the script works:

ubuntu@cookbook: ~/puppet$ papply

Notice: Finished catalog run in 0.07 seconds

Now whenever you need to run Puppet, you can simply run papply. In future, when we apply
Puppet changes, I'll ask you to run papply instead of the full puppet apply command.

As you've seen, to run Puppet on a machine and apply a specified manifest file, we use the
puppet apply command:

puppet apply manifests/site.pp

When you're using modules (such as the puppet module we just created) you also need to tell
Puppet where to search for modules, using the modulepath argument:

puppet apply manifests/nodes.pp --

modulepath=/home/ubuntu/puppet/modules

[}

Puppet Infrastructure

In order to run Puppet with the root privileges it needs, we have to put sudo before everything:

sudo puppet apply manifests/nodes.pp --
modulepath=/home/ubuntu/puppet/modules

Finally, any additional arguments passed to papply will be passed through to Puppet itself,
by adding the $* parameter:

sudo puppet apply manifests/nodes.pp --
modulepath=/home/ubuntu/puppet/modules $*

That's a lot of typing, so putting this in a script makes sense. We've added a Puppet file
resource that will deploy the scriptto /usr/local/bin and make it executable:

file { '/usr/local/bin/papply’:
source => 'puppet:///modules/puppet/papply.sh',
mode => '0755",

}
Finally, we include the puppet module in our node declaration for cookbook:

node 'cookbook'
include puppet

}

You can do the same for any other nodes managed by Puppet.

Running Puppet from cron

You can do a lot with the setup you already have: work on your Puppet manifests as a
team, communicate changes via GitHub, and manually apply them on a machine using
the papply script.

However, you still have to log into each machine to update the Git repo and re-run Puppet.

It would be helpful to have each machine update itself and apply any changes automatically.
Then all you need to do is to push a change to the repo, and it will go out to all your machines
within a certain time.

The simplest way to do this is with a cron job that pulls updates from the repo at regular
intervals and then runs Puppet if anything has changed.

Getting ready...

You'll need the Git repo we set up in Managing your manifests with Git and Creating a
decentralized Puppet architecture, and the papply script from Writing a papply script.

]

Chapter 1

You'll also need to create an SSH key that each machine can use to pull changes from the Git
repo. To create this, follow these steps:

1. Run the following command to generate the keyfile:
ubuntu@cookbook: ~/puppet$ ssh-keygen -£f ubuntu
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in ubuntu.
Your public key has been saved in ubuntu.pub.
The key fingerprint is:
ae:80:48:1c:14:51:d6:b1:73:4f:60:e2:cf:3d:ce:fl1 ubuntu@cookbook

The key's randomart image is:

+--[RSA 2048]----+
| ++o0.0.0 |
| * |
| + |
| =+ |
| o oS= |
| o + |
| o E |
| |
| |
e T +

2. Print the contents of the ubuntu. pub file:

ubuntu@cookbook: ~/puppet$ cat ubuntu.pub

ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQC8EsSdLAZHIgGInnMzJuIQ5jEcCFL1W
I5AVhm16Z3Gw4zc4xw6F1lCitomc+3DexcaD+y3VrD3WEOGcXweCsxJFOEGyJoc4RbP
AJaP3D4V/+9FQVZcH90GukasvtIrfJYy2KFfRBROKtr fckMbB1WF7U2U+FwaalMOtg
LzZeECSDU4eYuheN3UVcyg9Zx87zrLYUSEK1JH2WV0oZd3UmdH73 /rwPJWtSEQ3xs9A
2wMr01JsCF4CcFCVWrAIoEf5WzIoHbhWyZaVyPR4gHUHA3wNIzZCOrmoRiYWES5uYvVB
ObLN10uZhn7zGPWHEc5tYU7DMbz61iTe4NLtauwJkZxmXUiPJh ubuntu@cookbook

Copy this and add it to your GitHub repo as a deploy key (refer to the GitHub site for instructions
on how to do this). This will authorize the key to clone the Puppet repo from GitHub.

Puppet Infrastructure

How to do it...

Follow these steps:

1.

Move the public key file into your puppet module:
ubuntu@cookbook: ~/puppet$ mv ubuntu.pub
modules/puppet/files/ubuntu.pub

Keep the private key file somewhere separate from your Puppet repo (you'll distribute
this via some other channel to machines which need to check out the repo).

Create the file modules/puppet/files/pull-updates.sh with the
following contents:

#!/bin/sh

cd /home/ubuntu/puppet

git pull && /usr/local/bin/papply

Modify the file modules/puppet/manifests/init . pp to look like this:

class puppet ({
file { '/usr/local/bin/papply’:
source => 'puppet:///modules/puppet/papply.sh',
mode => '0755"',

file { '/usr/local/bin/pull-updates’:
source => 'puppet:///modules/puppet/pull-updates.sh',
mode => '0755"',

file { '/home/ubuntu/.ssh/id rsa':
source => 'puppet:///modules/puppet/ubuntu.priv',
owner => 'ubuntu',
mode => '0600"',

cron { 'run-puppet':
ensure => 'present',
user => 'ubuntu',
command => '/usr/local/bin/pull-updates’',
minute => '*/10',
hour => '*!,

Chapter 1

5. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply
Notice: /Stagel[main] /Puppet/Cron[run-puppet] /ensure: created
Notice: /Stagel[main] /Puppet/File[/usr/local/bin/pull-
updates] /ensure: defined content as
1 {md5}20cfc6c£2a40155d4055d475a109137d"
Notice:
/Stage [main] /Puppet/File[/home/ubuntu/.ssh/id rsa]/ensure:
defined content as '{md5}db19£750104d3bf4e2603136553c6£3e’

Notice: Finished catalog run in 0.27 seconds

6. Test that the new SSH key is authorized to GitHub correctly:
ubuntu@cookbook: ~/puppet$ ssh git@github.com
PTY allocation request failed on channel 0
Hi bitfield/cookbook! You've successfully authenticated, but
GitHub does not provide shell access.

Connection to github.com closed.
7. Check that the pull-updates script works properly:

ubuntu@cookbook: ~/puppet$ pull-updates
Already up-to-date.

Notice: Finished catalog run in 0.16 seconds

Up to now, you've been using your own SSH credentials to access GitHub from the managed
machine (using SSH agent forwarding), but that won't work if we want the machine to be able
to pull updates unattended, while you're not logged in. So we've created a new SSH keypair
and added the public part of it as a deploy key on GitHub, which gives repo access to anyone
who has the private half of the key.

We've added this private key as the ubuntu user's default SSH key:

file { '/home/ubuntu/.ssh/id rsa':
source => 'puppet:///modules/puppet/ubuntu.priv',
owner => 'ubuntu',
mode => '0600',

s

Puppet Infrastructure

This enables the ubuntu user to run git pull in the puppet directory. We've also added
the pull-updates script, which does this and runs Puppet if any changes were pulled:

#!/bin/sh
cd /home/ubuntu/puppet
git pull && papply

We deploy this script to the box with Puppet:

file { '/usr/local/bin/pull-updates’:
source => 'puppet:///modules/puppet/pull-updates.sh',
mode => '0755",

}

Finally, we've created a cron job that runs pull-updates at regular intervals (every 10
minutes, but feel free to change this if you need to):

cron { 'run-puppet':

ensure => 'present',

command => '/usr/local/bin/pull-updates’',
minute => '*/10',

hour => '*!,

}

There's more...

Congratulations, you now have a fully-automated Puppet infrastructure! Once you have checked
out the repo on a new machine and applied the manifest, the machine will be set up to pull any
new changes and apply them automatically.

So, for example, if you wanted to add a new user account to all your machines, all you have
to do is add the account in your working copy of the manifest, and commit and push the
changes to GitHub. Within 10 minutes it will automatically be applied to every machine that's
running Puppet.

That's very handy, but sometimes we'd like to be able to apply the changes to a specific machine
right away, without waiting for them to be picked up by the cron job. We can do this using the
Rake tool, and we'll see how to do that in the next section.

Deploying changes with Rake

Rake is a useful tool from the Ruby world which you can use to help automate your

Puppet workflow. Although there are lots of other ways to run commands on remote
servers, this happens to be the one | use, and it's easily extensible to whatever you

need it to do.

=

Chapter 1

The first helpful thing we can have Rake perform for us is log into the remote machine and run
the pull-updates script to apply any new Puppet manifest changes. This is fairly simple to
do, as you'll see in the following sections.

Getting ready

You may already have Rake installed (try running rake), but if not, here's how to install it:

1.

Run the following command:

sudo apt-get install rake

How to do it...

Perform the following steps:

1.

In your Puppet repo, create the file, Rakefile with the following contents.
Replace ssh. . . with the correct ssh command line for you to log into your server:

SSH = 'ssh -A -1 ~/git/bitfield/bitfield.pem -1 ubuntu'

desc "Run Puppet on ENV['CLIENT']"
task :apply do
client = ENV['CLIENT']
sh "git push"
sh "#{SsH} #{client} pull-updates"
end
Add, commit, and push the change to the Git repo:
ubuntu@cookbook: ~/puppet$ git add Rakefile
ubuntu@cookbook: ~/puppet$ git commit -m "adding Rakefile"
[master 63bb0cl] adding Rakefile
1 file changed, 8 insertions(+)
create mode 100644 Rakefile
ubuntu@cookbook: ~/puppet$ git push
Counting objects: 31, done.
Compressing objects: 100% (22/22), done.
Writing objects: 100% (28/28), 4.67 KiB, done.
Total 28 (delta 1), reused 0 (delta 0)
To git@github.com:bitfield/cookbook.git
a063a5b..63bb0cl master -> master

s

Puppet Infrastructure

3. Onyour own computer, check out a working copy of the Puppet repo, if you haven't
already got one (replace the Git URL with the URL to your own repo):
[john@Susie:~/gitl$ git clone
git@github.com:bitfield/cookbook.git
Cloning into 'cookbook'...
remote: Counting objects: 36, done.
remote: Compressing objects: 100% (26/26), done.
remote: Total 36 (delta 1), reused 33 (delta 1)
Receiving objects: 100% (36/36), 5.28 KiB, done.
Resolving deltas: 100% (1/1), done.

4. Run the following command, replacing cookbook with the address of your server:

[john@Susie:~/git]l$ cd cookbook

[john@Susie:~/git/cookbook (master)]$ rake CLIENT=
cookbook apply

(in /Users/john/git/cookbook)

git push

Everything up-to-date

ssh -A -i ~/git/bitfield/bitfield.pem -1 ubuntu cookbook
pull-updates

Already up-to-date.

Notice: Finished catalog run in 0.18 seconds

Connection to cookbook closed.

What you'd do manually to update your server is log into it using SSH, and then run
pull-updates. The Rakefile simply automates this for you. First, we set up the correct
SSH command line:

SSH = 'ssh -A -i ~/git/bitfield/bitfield.pem -1 ubuntu’
The arguments to ssh are as follows:
» -A: Forward your SSH key to the remote server, so that you can use it for

further authentication

» -1 KEYFILE: Setthe SSH private key to use (in this case, it's the Amazon AWS keyfile
that I'm using. You may not need this argument if you're already set up for SSH access
to the server with your default key.)

» -1 ubuntu:lLogin as user ubuntu (the standard arrangement on EC2 servers;
you may not need this argument if you log into servers using the same username
as on your local machine.)

=

Chapter 1

We then define a Rake task named apply:

desc "Run Puppet on ENV['CLIENT']"
task :apply do

end

The desc is just a helpful description, which you'll see if you run the command, rake -T,
which lists available tasks:

$ rake -T

(in /Users/john/git/cookbook)

rake apply # Run puppet on ENV['CLIENT']

The code between task and end will be run when you run rake apply. Here's what it does:

client = ENV['CLIENT']

This captures the value of the CLIENT environment variable, which tells the script the
address of the remote servers to connect to.

The next line is as follows:
sh "git push"

sh simply runs a command in your local shell, in this case to make sure any changes to the
Puppet repo have been pushed to GitHub. If they weren't, they wouldn't be picked up on the
remote machine.

sh "#{SSH} #{client} pull-updates"

This is the line which actually connects to the client, using the ssh command line we
defined at the start of the script, and the client address. Having logged in, it will then run
the pull-updates command as the remote user.

Since we already set up the pull-updates script to do everything necessary to get the latest
changes from GitHub and apply Puppet, that's all we need to do.

There's more...

You can now make and apply Puppet changes to your remote servers without ever explicitly
logging into them. Once you've installed Puppet on a machine, checked out a copy of the
manifest repo, and run Puppet for the first time, you can then do all the administration for
that machine remotely.

If you're as lazy as | am, you're already asking, "Couldn't we use a Rake task to do the initial
Puppet install and checkout, as well as just applying changes?"

We certainly can, and we'll see how to do that in the next section.

=]

Puppet Infrastructure

Bootstrapping Puppet with Rake

To make a newly provisioned machine part of our Puppet infrastructure, we just need to run a
few commands on it, so let's make this process even easier by adding a new bootstrap task to
the Rakefile.

Getting ready...

To get ready for the recipe, do the following:

1. Add the following line to the top of your Rakefile:
REPO = 'git@github.com:bitfield/cookbook.git'

2. Add the following task anywhere in the Rakefile:

desc "Bootstrap Puppet on ENV['CLIENT'] with
hostname ENV['HOSTNAME']"
task :bootstrap do
client = ENV['CLIENT']
hostname = ENV['HOSTNAME'] || client
commands = <<BOOTSTRAP
sudo hostname #{hostname} && \
sudo su - c¢ 'echo #{hostname} >/etc/hostname' && \
wget http://apt.puppetlabs.com/puppetlabs-release-precise.deb && \
sudo dpkg -1 puppetlabs-release-precise.deb && \
sudo apt-get update && sudo apt-get -y install git
puppet && \
git clone #{REPO} puppet && \
sudo puppet apply --modulepath=/home/ubuntu/puppet
/modules /home/ubuntu/puppet/manifests/site.pp

BOOTSTRAP
sh "#{ssH} #{client} '#{commands}'"
end

How to do it...

You'll need a freshly provisioned server (one that you can log in to, but that doesn't have
Puppet installed or any other config changes made on it). If you're using EC2, create a
new EC2 instance. Get the public instance address from the AWS control panel; it'll be
something like:

ec2-107-22-22-159.compute-1.amazonaws.com

=]

Chapter 1

Here are the steps to bootstrap the new server using Rake:

1.

Add a node declaration to your nodes . pp file for the hostname you'll be using on the
new server. For example, if you wanted to call it cookbook-test, you could use

node 'cookbook-test'
include puppet

}

Run the following command in the Puppet repo on your own machine (substitute the
address of the new server as the value of CLIENT, and the hostname you want to
use as the value of HOSTNAME). The command should all be on one line:

$ rake CLIENT=ec2-107-22-22-159.compute-1.amazonaws.com
HOSTNAME=cookbook-test bootstrap

You'll see output something like the following:

(in /Users/john/git/cookbook)

ssh -A -i ~/git/bitfield/bitfield.pem -1 ubuntu ec2-107-22-22-159.
compute-1.amazonaws.com 'sudo hostname cookbook-test && sudo su -c
'echo cookbook-test >/etc/hostname' && wget http://apt.puppetlabs.
com/puppetlabs-release-precise.deb && sudo dpkg -i puppetlabs-
release-precise.deb && sudo apt-get update && sudo apt-get -y
install git puppet && git clone git@github.com:bitfield/cookbook.
git puppet && sudo puppet apply --modulepath=/home/ubuntu/puppet/
modules /home/ubuntu/puppet/manifests/site.pp’

The authenticity of host 'ec2-107-22-22-159.compute-1.amazonaws.
com (107.22.22.159)' can't be established.

RSA key fingerprint is 23:c5:06:ad:58:£3:8d:e5:75:bd:94:6e:1le:al:a
3:a4.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'ec2-107-22-22-159.compute-1l.amazonaws.
com,107.22.22.159"' (RSA) to the list of known hosts.

sudo: unable to resolve host cookbook-test

--2013-03-15 15:53:44-- http://apt.puppetlabs.com/puppetlabs-
release-precise.deb

Resolving apt.puppetlabs.com (apt.puppetlabs.com)...
96.126.116.126, 2600:3c00::£f03c:91ff:fe93:711a

Connecting to apt.puppetlabs.com (apt.puppetlabs.
com) |96.126.116.126|:80... connected.

HTTP request sent, awaiting response... 200 OK
Length: 3392 (3.3K) [application/x-debian-packagel
Saving to: “puppetlabs-release-precise.deb’

0K 100%
302M=0s

Puppet Infrastructure

2013-03-15 15:53:44 (302 MB/s) - “puppetlabs-release-precise.deb'’
saved [3392/3392]

Selecting previously unselected package puppetlabs-release.

(Reading database ... 25370 files and directories currently
installed.)

Unpacking puppetlabs-release (from puppetlabs-release-precise.deb)

Setting up puppetlabs-release (1.0-5) ...

Processing triggers for initramfs-tools ...

update-initramfs: Generating /boot/initrd.img-3.2.0-29-virtual
Ign http://us-east-l.ec2.archive.ubuntu.com precise InRelease
[... apt output redacted ...]

Setting up hiera (1.1.2-1lpuppetlabsl) ...

Setting up puppet-common (3.2.2-lpuppetlabsl) ...

Setting up puppet (3.2.2-1lpuppetlabsl) ...

* Starting puppet agent

puppet not configured to start, please edit /etc/default/puppet to
enable

...done.
Processing triggers for libec-bin ...
ldconfig deferred processing now taking place
Cloning into 'puppet'...

Warning: Permanently added 'github.com,207.97.227.239' (RSA) to
the list of known hosts.

Notice: /Stagel[main]/Puppet/Cron[run-puppet] /ensure: created

Notice: /Stagel[main]/Puppet/File[/usr/local/bin/pull-updates]/
ensure: defined content as '{md5}20cfc6cf2a40155d4055d475a1091374"

Notice: /Stagel[main] /Puppet/File[/usr/local/bin/papplyl/ensure:
defined content as '{md5}171896840d39664c00909eb8cf47a53c"

Notice: /Stagel[main]/Puppet/File[/home/ubuntu/.ssh/id rsal]/ensure:
defined content as '{md5}db19£750104d3bf4e2603136553c6f3e’

Notice: Finished catalog run in 0.11 seconds

Here's a line by line breakdown of what the Rake task does. In order to make the machine
ready to run Puppet, we need to set its hostname to the nhame you've chosen:

sudo hostname #{hostname}
sudo echo #{hostname} >/etc/hostname

=]

Chapter 1

Next, we download and install the Puppet Labs repo package, and install Puppet and Git:

wget http://apt.puppetlabs.com/puppetlabs-release-precise.deb
sudo dpkg -i puppetlabs-release-precise.deb
sudo apt-get update && sudo apt-get -y install git puppet

We need to disable the SSH StrictHostKeyChecking option to avoid being prompted
when the script clones the Git repo:

echo -e \"Host github.com\n\tStrictHostKeyChecking no\n\"
>> ~/.ssh/config

We check out the repo:
git clone #{REPO} puppet
And finally, run Puppet:

sudo puppet apply --modulepath=/home/ubuntu/puppet/modules
/home /ubuntu/puppet/manifests/site.pp

The new machine will now pull and apply Puppet changes automatically, without you ever
having to log into it interactively. You can use this Rake task to bring lots of new servers under
Puppet control quickly.

Automatic syntax checking with Git hooks

It would be nice if we knew there was a syntax error in the manifest before we even committed
it. You can have Puppet check the manifest using the puppet parser validate
command:

ubuntu@cookbook: ~/puppet$ puppet parser validate manifests/nodes.pp

Error: Could not parse for environment production: Syntax error at end
of file; expected '}' at /home/ubuntu/puppet/manifests/nodes.pp:3

Error: Try 'puppet help parser validate' for usage

This is especially useful because a mistake anywhere in the manifest will stop Puppet

from running on any node, even on nodes that don't use that particular part of the manifest.
So checking in a bad manifest can cause Puppet to stop applying updates to production

for some time, until the problem is discovered, and this could potentially have serious
consequences. The best way to avoid this is to automate the syntax check, by using a
pre-commit hook in your version control repo.

s

Puppet Infrastructure

How to do it...

Follow these steps:

1. Inyour Puppet repo, create a new hooks directory:
ubuntu@cookbook: ~/puppet$ mkdir hooks

2. Create the file hooks/check syntax.sh with the following contents (based on a
script by Puppet Labs):

#!/bin/sh

syntax_errors=0
error msg=$ (mktemp /tmp/error msg.XXXXXX)

if git rev-parse --quiet --verify HEAD > /dev/null

then
against=HEAD

else
Initial commit: diff against an empty tree object
against=4b825dc642cb6eb9a060e54bf8d69288fbee4904

fi

Get list of new/modified manifest and template files
to check (in git index)
for indexfile in “git diff-index --diff-filter=AM --
name-only --cached $against | egrep '\. (pp|erb)'"
do
Don't check empty files
if [“git cat-file -s :0:$indexfile” -gt 0]

then
case S$indexfile in
*.pp)
Check puppet manifest syntax
git cat-file blob :0:$indexfile |
puppet parser validate > $error msg ;;
*.erb)
Check ERB template syntax
git cat-file blob :0:$indexfile |
erb -x -T - | ruby -c 2> $error msg >
/dev/null ;;
esac
if ["$?" -ne 0]

NED

then
echo -n "Sindexfile: "
cat $error msg
syntax errors="expr $syntax errors + 1°
fi
fi
done

rm -f $Serror msg

if ["$syntax errors" -ne 0]
then
echo "Error: $syntax errors syntax errors found,
aborting commit."
exit 1
fi

Set execute permission for the hook script with the following command:
ubuntu@cookbook: ~/puppet$ chmod a+x .hooks/check syntax.sh

Add the following task to your Rakefile:

desc "Add syntax check hook to your git repo"
task :add check do
here = File.dirname(FILE)
sh "ln -s #{here}/hooks/check syntax.sh
#{here}/.git/hooks/pre-commit"
puts "Puppet syntax check hook added"
end

Run the following command:

ubuntu@cookbook: ~/puppet$ rake add check

In -s /home/ubuntu/puppet/hooks/check syntax.sh
/home/ubuntu/puppet/.git/hooks/pre-commit

Puppet syntax check hook added

Chapter 1

Es

Puppet Infrastructure

The check syntax. sh script will prevent you from committing any files with syntax errors:

ubuntu@cookbook: ~/puppet$ git commit -m "test commit"

Error: Could not parse for environment production: Syntax error at
'}' at line 3

Error: Try 'puppet help parser validate' for usage

manifests/nodes.pp: Error: 1 syntax errors found, aborting commit.

If you add the hooks directory to your Git repo, anyone who has a checkout can run the rake
add_check task and get this syntax checking behavior.

=

Puppet Language
and Style

Computer language design is just like a stroll in the park. Jurassic Park, that is.
—Larry Wall
In this chapter we will cover:

» Using community Puppet style

» Checking your manifests with puppet-lint
» Using modules

» Using standard naming conventions

» Using inline templates

» lIterating over multiple items

» Writing powerful conditional statements

» Using regular expressions in if statements
» Using selectors and case statements

» Using the in operator

» Using regular expression substitutions

Puppet Language and Style

Introduction

In this chapter you'll learn to write elegant Puppet manifests. By elegant in this context | mean
readable, efficient, and consistent code that conforms to community usage.

We'll look at how to organize and structure your code into modules following community
conventions, so that other people will find it easy to read and maintain your code. I'll also
show you some powerful features of the Puppet language which will let you write concise,
yet expressive, manifests.

Using community Puppet style

If other people need to read or maintain your manifests, or if you want to share code with the
community, it's a good idea to follow the existing style conventions as closely as possible.
These govern such aspects of your code as layout, spacing, quoting, alignment, and variable
references, and the official Puppet Labs recommendations on style are available at

http://docs.puppetlabs.com/guides/style guide

How to do it...

In this section I'll show you a few of the more important examples and how to make sure that
your code is style-compliant.

Indentation
Indent your manifests using two spaces (not tabs), as follows:

node 'monitoring' inherits 'server' {
include icinga::server
include repo::apt

}

Quoting
Always quote your resource names, for example:

package { 'exim4':
Not
package { exim4:
Use single quotes for all strings, except when:

» The string contains variable references (for example, $ {name})

» The string contains character escape sequences (for example, \n)

S E

Chapter 2

In these cases you should use double quotes. Puppet doesn't process variable references
or escape sequences unless they're inside double quotes.

Always quote parameter values that are not reserved words in Puppet. For example,
the following values are not reserved words:

name => 'Nucky Thompson',
mode => '0700"',
owner => 'deploy',

But these values are reserved words and therefore not quoted:

ensure => installed,
enable => true,
ensure => running,

Variables
Always include curly braces ({ }) around variable names when referring to them in strings,
for example:

source => "puppet:///modules/webserver/${brand}.conf",

Otherwise Puppet's parser has to guess which characters should be a part of the variable
name and which belong to the surrounding string. Curly braces make it explicit.

Parameters
Always end lines that declare parameters with a comma, even if it is the last parameter:

service { 'memcached':
ensure => running,
enable => true,

}

This is allowed by Puppet, and makes it easier if you want to add parameters later, or re-order
the existing parameters.

When declaring a resource with a single parameter, make the declaration all on one line and
with no trailing comma:

package { 'puppet': ensure => installed }
Where there is more than one parameter, give each parameter its own line:

package { 'rake':
ensure => installed,
provider => gem,
require => Package['rubygems'],

}

s

Puppet Language and Style

To make the code easier to read, line up the parameter arrows in line with the longest
parameter, as follows:

file { "/var/www/${app}/shared/config/rvmrc":
owner => 'deploy',
group => 'deploy',
content => template('rails/rvmrc.erb'),
require => File["/var/www/${app}/shared/config"],

}

The arrows should be aligned per resource, but not across the whole file, otherwise it can
make it difficult for you to cut and paste code from one file to another.

Symlinks

When declaring £ile resources which are symlinks, use ensure => link and setthe
target attribute, as follows:

file { '/etc/php5/cli/php.ini':
ensure => link,
target => '/etc/php.ini',

}

There's more...

When several people are working on a codebase, it's easy for style inconsistencies to creep in.
Fortunately, there's a tool available which can automatically check your code for compliance
with the style guide: puppet-1int. We'll see how to use this in the next section.

Checking your manifests with puppet-lint

The Puppet Labs official style guide outlines a number of style conventions for Puppet code,
some of which we've touched on in the preceding section. For example, according to the style
guide, manifests:

» Must use two-space soft tabs

» Must not use literal tab characters

» Must not contain trailing white space

» Should not exceed an 80 character line width

» Should align parameter arrows (=>) within blocks
Following the style guide will make sure that your Puppet code is easy to read and maintain
and, if you're planning to release your code to the public, style compliance is essential.

The puppet-1int tool will automatically check your code against the style guide. Here's how
to use it:

NEQ

Chapter 2

Getting ready

Here's what you need to do to install puppet-1int:

1.

Run the following command (we'll install puppet-1int as a gem, because that
version is much more up-to-date than the APT package available in the Ubuntu
Precise repo):
ubuntu@cookbook: ~/puppet$ sudo gem install puppet-lint

--no-ri --no-rdoc
Successfully installed puppet-lint-0.3.2
1l gem installed

How to do it...

Follow these steps to use puppet-1lint:

1.

Choose a Puppet manifest file that you want to check with puppet-1int, and run
the following command:

ubuntu@cookbook: ~/puppet$ puppet-lint modules/admin/manifests/ntp.
pp

WARNING: indentation of => is not properly aligned on line 9
ERROR: trailing whitespace found on line 13
WARNING: double quoted string containing no variables

on line 3

As you can see, puppet -1int found a number of problems with the manifest.

Correct them, save the file, and rerun puppet -1int to check that all is well. If so,

you'll see no output:

ubuntu@cookbook: ~/puppet$ puppet-lint
modules/admin/manifests/ntp.pp

ubuntu@cookbook: ~/puppet$

You can find out more about puppet -1int at the website

http://puppet-lint.com/

The website lists each of the style checks in detail, and explains what the error messages
mean and what to do about them.

Eis

Puppet Language and Style

Should you follow the Puppet style guide and, by extension, keep your code lint-clean? It's up
to you, but here are a couple of things to think about:

» It makes sense to use some style conventions, especially when you're working
collaboratively on code. Unless you and your colleagues can agree on standards
for whitespace, tabs, quoting, alignment, and so on, your code will be messy and
difficult to read or maintain.

» If you're choosing a set of style conventions to follow, the logical choice would be that
issued by Puppet Labs and adopted by the community for use in public modules.

Having said that, it's possible to tell puppet-1int to ignore certain checks if you've chosen
not to adopt them in your codebase. For example, if you don't want puppet-1int to warn you
about code lines exceeding 80 characters, you can run puppet -1int with the following option:

puppet-lint --no-80chars-check

Run puppet-1int --help to see the complete list of check configuration commands.

» The Automatic syntax checking with Git hooks recipe in Chapter 1,
Puppet Infrastructure

» The Testing your manifests with rspec-puppet recipe in Chapter 8, External Tools and
the Puppet Ecosystem

Using modules

One of the most important things you can do to make your Puppet manifests clearer and more
maintainable is to organize them into modules.

A module is simply a way of grouping related things: for example, a webserver module might
include everything necessary for a machine to be a web server: Apache configuration files,
virtual host templates, and the Puppet code necessary to deploy these.

Separating things into modules makes it easier to re-use and share code; it's also the most
logical way to organize your manifests. In this example we'll create a module to manage
memcached, @ memory caching system commonly used with web applications.

How to do it...

Here are the steps to create an example module.

1. Create the following new directories in your Puppet repo:

ubuntu@cookbook: ~/puppet$ mkdir modules/memcached

NED

Chapter 2

ubuntu@cookbook: ~/puppet$ mkdir modules/memcached/manifests

ubuntu@cookbook: ~/puppet$ mkdir modules/memcached/files

Create the file modules/memcached/manifests/init . pp with the
following contents:

Manage memcached

class memcached ({

package { 'memcached':
ensure => installed,
}

file { '/etc/memcached.conf':

source => 'puppet:///modules/memcached/memcached.conf’,
owner => 'root',
group => 'root',
mode => '0644"',

require => Package['memcached'],

}

service { 'memcached':
ensure => running,
enable => true,
require => [Package['memcached'],
File['/etc/memcached.conf']],

}
}

Create the file modules/memcached/files/memcached. conf with the
following contents:

-m 64

-p 11211

-u nobody

-1 127.0.0.1

Add the following to your nodes . pp file:

node 'cookbook'
include memcached

}

Run Puppet to test the new configuration:
ubuntu@cookbook: ~/puppet$ papply
Notice: /Stage[main]/Memcached/Package [memcached] /ensure:
created
Notice: /Stage[main]/Memcached/File[/etc/memcached.conf]/content:
content changed '{md5}58c9e04b29e08c2e9b3094794d3ebdle’
to '{md5}9429eff3e3354c0be232a020bcf78£75"

Notice: Finished catalog run in 4.54 seconds

s

Puppet Language and Style

6. Check whether the new service is running;:

ubuntu@cookbook: ~/puppet$ service memcached status

* memcached is running

Modules have a specific directory structure. Not all of these directories need to be present,
but if they are, this is how they should be organized:

modules/
MODULE_NAME/
files/
templates/
manifests/

All manifest files (those containing Puppet code) live in the manifests directory. In our
example, the memcached class is defined in the file manifests/init . pp, which will
be imported automatically.

Inside the memcached class, we refer to the memcached. conf file:

file { '/etc/memcached.conf':
source => 'puppet:///modules/memcached/memcached.conf"',

}

As we saw in the section on Puppet's file server and custom mount points, the preceding
source parameter tells Puppet to look for the file in

MODULEPATH/
memcached/
files/
memcached.conf

Learn to love modules, because they'll make your Puppet life a lot easier. They're not
complicated. However, practice and experience will help you judge when things should
be grouped into modules, and how best to arrange your module structure. Here are a
few tips which may help you on the way.

Templates

If you need to use a template as a part of the module, place it in the module's templates
directory and refer to it as follows:

=)

Chapter 2

file { '/etc/memcached.conf':
content => template ('memcached/memcached.conf.erb'),

}
Puppet will look for the file in:

MODULEPATH/
memcached/
templates/
memcached. conf .erb

Facts, functions, types, and providers

Modules can also contain custom facts, custom functions, custom types, and providers.
For more information about these, refer to Chapter 8, External Tools and the Puppet Ecosystem.

Autogenerating module layout

You can also use the puppet module generate command to generate the directory
layout for new modules, rather than doing it by hand. See the Using public modules section
in Chapter 8, External Tools and the Puppet Ecosystem, for more details.

Third party modules

You can download modules provided by other people and use them in your own manifests just
like the modules you create. For more on this, see the section on using public modules.

Module organization
For more details on how to organize your modules, see the Puppet Labs website:

http://docs.puppetlabs.com/puppet/3/reference/modules fundamentals.
html

See also

» The Creating custom facts recipe in Chapter 8, External Tools and the
Puppet Ecosystem

» The Using public modules recipe in Chapter 8, External Tools and the
Puppet Ecosystem

» The Creating your own resource types recipe in Chapter 8, External Tools and the
Puppet Ecosystem

» The Creating your own providers recipe in Chapter 8, External Tools and the
Puppet Ecosystem

Puppet Language and Style

Using standard naming conventions

Choosing appropriate and informative names for your modules and classes will be a big help
when it comes to maintaining your code. This is even truer if other people need to read and
work on your manifests.

How to do it...

Here are some tips on how to name things in your manifests:

1.

Name modules after the software or service they manage, for example,
apache or haproxy

Name classes within modules after the function or service they provide to the
module, for example, apache: : vhosts or rails: :dependencies.

If a class within a module disables the service provided by that module,
name it disabled. For example, a class which disables Apache should
be named apache: :disabled.

If a node provides multiple services, have the node definition include one
module or class named for each service, for example:

node 'server014' inherits 'server' ({
include puppet::server
include mail::server
include repo::gem
include repo::apt
include zabbix

}

The module that manages users should be named user.

Within the user module, declare your virtual users within the class user: :virtual
(for more about virtual users and other resources, see the Using virtual resources
section in Chapter 5, Users and virtual resources).

Within the user module, subclasses for particular groups of users should be named
after the group, for example, user: : sysadmins Or user: :contractors.

Where you need to override a class for some specific node or service, inherit that
class and prefix the name of the subclass with the node, for example, if your node
cartman needs a special SSH configuration, and you want to override the ssh class,
perform the function as follows:

class cartman ssh inherits ssh {
[override config here]

}

=

Chapter 2

9. When using Puppet to deploy the config files for different services, name the file after
the service, but with a suffix indicating what kind of file it is, for example:

o Apache init script: apache.init
o Logrotate config snippet for Rails: rails.logrotate
o Nginx vhost file for mywizzoapp: mywizzoapp.vhost .nginx
o MySQL config for standalone server: standalone .mysql
10. If you need to deploy a different version of a file depending on the operating system
release, for example, you can use a naming convention like this one:
memcached. lucid.conf
memcached.precise.conf
11. You can have Puppet automatically select the appropriate version with:
source = > "puppet:///modules/memcached

/memcached.s${::1sbdistrelease}.conf",

12. If you need to manage, for example, different Ruby versions, name the class after
the version it is responsible for, for example, ruby192 or ruby186.

There's more...

The Puppet community maintains a set of best practice guidelines for your Puppet
infrastructure which includes some hints on naming conventions:

http://docs.puppetlabs.com/guides/best practices.html

Some people prefer to include multiple classes on a node by using a comma-separated
list, rather than separate include statements, for example:

node 'server0l4' inherits 'server' {
include mail::server, repo::gem, repo::apt, zabbix

}

This is a matter of style, but | prefer to use separate include statements, one to a line,
because it makes it easier to copy and move around class inclusions between nodes,
without having to tidy up the commas and indentation every time.

I mentioned inheritance in a couple of the preceding examples; if you're not sure what this is,
don't worry, I'll explain this in detail in the next chapter.

&1

Puppet Language and Style

Using inline templates

Templates are a powerful way of using embedded Ruby to help build config files dynamically
and iterate over arrays, for example. But you can embed Ruby in your manifests directly
without having to use a separate file by calling the inline template function.

How to do it...

Here's an example of using inline template:

Pass your Ruby code to inline template within the Puppet manifest, as follows:

cron { 'chkrootkit':
command => '/usr/sbin/chkrootkit >
/var/log/chkrootkit.log 2>&1',
hour => inline template('<%= @hostname.sum % 24 %>'),
minute => '00',

}

Anything inside the string passed to inline template is executed as if it were an ERB
template. That is, anything inside <%= and %> delimiters will be executed as Ruby code,
and the rest will be treated as a string.

In this example, we use inline template to compute a different hour for this cron resource
(a scheduled job) for each machine, so that the same job does not run at the same time on

all machines. For more on this technique, see the Efficiently distributing cron jobs section in
Chapter 5, Users and Virtual Resources.

There's more...

In ERB code, whether inside a template file or an inline template string, you can access
your Puppet variables directly by name using an @ prefix, if they are in the current scope:

<%= @name %>
If they are in another scope you can reference them using scope . lookupvar, as follows:

<%= "The variable from otherclass is " +
scope.lookupvar ('otherclass: :variable') %>

You should use inline templates sparingly. If you really need to do some complicated logic in
your manifest, consider using a custom function instead (see the Creating custom functions
section in Chapter 8, External tools and the Puppet ecosystem).

=

Chapter 2

See also

» The Using ERB templates in recipe Chapter 4, Working with Files and Packages

» The Using array iteration in templates recipe in Chapter 4, Working with Files
and Packages

Iterating over multiple items

Arrays are a powerful feature in Puppet; wherever you want to perform the same operation
on a list of things, an array may be able to help. You can create an array just by putting its
contents in square brackets:

Slunch = ['franks', 'beans', 'mustard']

How to do it...

Here's a common example of how arrays are used:

1. Add the following code to your manifest:

Spackages = ['rubyl.8-dev',
'rubyl.8"',
'ril.8"',
'rdocl.8',
'irb1l.8"',
'libreadline-rubyl.8"',
'librubyl.8"',
'libopenssl-ruby' 1

package { $packages: ensure => installed }

2. Run Puppet and note that each package should now be installed.

Where Puppet encounters an array as the name of a resource, it creates a resource for each
element in the array. In the example, a new package resource is created for each of the
packages in the $packages array, with the same parameters (ensure => installed).
This is a very compact way of instantiating lots of similar resources.

There's more...

Although arrays will take you a long way with Puppet, it's also useful to know about an even
more flexible data structure: the hash.

=]

Puppet Language and Style

Using hashes
A hash is like an array, but each of the elements can be stored and looked up by name
(referred to as the key), for example:

$interface = {'name' => 'etho0',
'address' => '192.168.0.1'}
notify { "Interface ${interface['name']} has address
${interface(['address']}": }

Interface eth0 has address 192.168.0.1

Hash values can be anything that you can assign to a variable: strings, function calls,
expressions, even other hashes or arrays.

Creating arrays with the split function
You can declare literal arrays using square brackets, as follows:

define lunchprint () {
notify { "Lunch included ${name}": }
}

$lunch = ['egg', 'beans',6 'chips']
lunchprint { $lunch: }

Lunch included egg
Lunch included beans
Lunch included chips

But Puppet can also create arrays for you from strings, using the split function, as follows:

Smenu = 'egg beans chips'
Sitems = split(Smenu, ' ')
lunchprint { $items: }

Lunch included egg
Lunch included beans
Lunch included chips

Note that split takes two arguments: the first is the string to be split. The second is the
character to split on; in this example, a single space. As Puppet works its way through the
string, when it encounters a space, it will interpret it as the end of one item and the beginning
of the next. So, given the string egg beans chips, this will be split into three items.

The character to split on can be any character, or a string:

Smenu = 'egg and beans and chips'
Sitems = split(Smenu, ' and ')

=)

Chapter 2

It can also be a regular expression, for example, a set of alternatives separated by
a | (pipe) character:

$lunch = 'egg:beans,chips'

$items = split($lunch, ':|,')

Writing powerful conditional statements

Puppet's i f statement allows you to change the manifest based on the value of a variable

or an expression. With it, you can apply different resources or parameter values depending
on certain facts about the node, for example, the operating system, or the memory size.

You can also set variables within the manifest which can change the behavior of included
classes. For example, nodes in data center A might need to use different DNS servers than
nodes in data center B, or you might need to include one set of classes for an Ubuntu system,
and a different set for other systems.

How to do it...

Here's an example of a useful conditional statement:
1. Add the following code to your manifest:

if $::operatingsystem == 'Ubuntu' ({
notify { 'Running on Ubuntu': }
} else {
notify { 'Non-Ubuntu system detected. Please upgrade
to Ubuntu immediately.': }

}

Puppet treats whatever follows an if keyword as an expression and evaluates it. If the
expression evaluates to true, Puppet will execute the code within the curly braces.

Optionally, you can add an else branch, which will be executed if the expression evaluates
to false.

Here are some more tips on using if statements.

@1

Puppet Language and Style

Elsif branches
You can add further tests using the elsif keyword, as follows:

if $::operatingsystem == 'Ubuntu'
notify { 'Running on Ubuntu': }
} elsif $::operatingsystem == 'Debian' ({
notify { 'Close enough...': }
} else {
notify { 'Non-Ubuntu system detected. Please upgrade to Ubuntu
immediately.': }
}
Comparisons

You can check if two values are equal using the == syntax, as in our example:

if $::operatingsystem == 'Ubuntu'

}
Or, you can check if they are not equal using ! =:

if $::operatingsystem != 'CentOS'

}
You can also compare humeric values using < and »>:
if $::uptime days > 365 {
notify { 'Time to upgrade your kernel!': }
}
To test if a value is greater (or less) than or equal to another value, use <= or >=:

if $::1sbmajdistrelease <= 12
}

Combining expressions

You can put together the kind of simple expressions described previously into more complex
logical expressions, using and, or, and not:

if ($::uptime _days > 365) and ($::operatingsystem == 'Ubuntu') {

}

if (Srole == 'webserver') and (($datacenter == 'A') or (Sdatacenter
== 'B")) {

——

=

Chapter 2

See also

» Using the in operator, in this chapter

» Using selectors and case statements, in this chapter

Using regular expressions in if statements

Another kind of expression you can test in i f statements and other conditionals is the regular
expression. A regular expression is a powerful way of comparing strings using pattern matching.

How to do it...

This is one example of using a regular expression in a conditional statement:

1. Add the following to your manifest:

if $::1sbdistdescription =~ /LTS/ {
notify { 'Looks like you are using a Long Term Support
version of Ubuntu.': }
} else {

notify {'You might want to upgrade to a Long Term Support
version of Ubuntu...': }

}

Puppet treats the text supplied between the forward slashes as a regular expression specifying
the text to be matched. If the match succeeds, the if expression will be true and so the code
between the first set of curly braces will be executed.

If you wanted instead to do something if the text does not match, use ! ~ rather than =~:

if $::1sbdistdescription !~ /LTS/ {

There's more...

Regular expressions are very powerful, but can be difficult to understand and debug. If you
find yourself using a regular expression so complex that you can't see at a glance what it does,
think about simplifying your design to make it easier. However, one particularly useful feature
of regular expressions is the ability to capture patterns.

@]

Puppet Language and Style

Capturing patterns
You can not only match text using a regular expression, but also capture the matched text and
store it in a variable:

Sinput = 'Puppet is better than manual configuration'
if $input =~ /(.*) is better than (.*)/ {
notify { "You said '${0}'. Looks like you're comparing ${1}
to ${2}1": }
}

The preceding code produces this output:

You said 'Puppet is better than manual configuration'. Looks

like you're comparing Puppet to manual configuration!

The variable $0 stores the whole matched text (assuming the overall match succeeded). If you
put brackets around any part of the regular expression, that creates a group and any matched

groups will also be stored in variables. The first matched group will be $1, the second $2, and so
on, as in the preceding example.

Regular expression syntax

Puppet's regular expression syntax is the same as Ruby's, so resources that explain Ruby
regular expression syntax will also help you with Puppet. You can find a good introduction
to Ruby regular expression syntax at this website:

http://www.tutorialspoint.com/ruby/ruby regular expressions.htm

See also

» Using regular expression substitutions, in this chapter

Using selectors and case statements

Although you could write any conditional statement using i £, Puppet provides a couple of extra
forms to help you express conditionals more easily: the selector and the case statement.

How to do it...

Here are some examples of selector and case statements:

1. Add the following code to your manifest:
$systemtype = $::operatingsystem ? {
'Ubuntu' => 'debianlike',
'Debian' => 'debianlike',

SNED

Chapter 2

'RedHat' => 'redhatlike',
'Fedora' => 'redhatlike',
'Cent0OS' => 'redhatlike',
default => 'unknown',

notify { "You have a ${systemtype} system": }
2. Add the following code to your manifest:

class debianlike ({
notify { 'Special manifest for Debian-like systems': }

}

class redhatlike ({
notify { 'Special manifest for RedHat-like systems': }

}

case $::operatingsystem {
'Ubuntu’',
'Debian':
include debianlike
}
'RedHat',
'Fedora',
'CentOS':
include redhatlike
}
default: {
notify { "I don't know what kind of system you have!": }

}
}

Our example demonstrates both the selector and the case statement, so let's see in detail
how each of them works.

Selector

In the first example, we used a selector (the ? operator) to choose a value for the $systemtype
variable depending on the value of $: : operatingsystem. This is similar to the ternary
operator in C or Ruby, but instead of choosing between two possible values, you can have as
many values as you like.

i

Puppet Language and Style

Puppet will compare the value of $: : operatingsystem to each of the possible values
we have supplied: Ubuntu, Debian, and so on. These values could be regular expressions
(for example, for a partial string match, or to use wildcards), but in our case we have just
used literal strings. As soon as it finds a match, the selector expression returns whatever
value is associated with the matching string. If the value of $: : operatingsystemis
Fedora, for example, the selector expression will return the string redhatlike and this
will be assigned to the variable $systemtype.

Case statement

Unlike selectors, the case statement does not return a value. case statements are handy
where you want to execute different code depending on the value of some expression. In our
second example, we used the case statement to include either the class debianlike or the
class redhatlike, depending on the value of $: : operatingsystem.

Again, Puppet compares the value of $: :operatingsystem to a list of potential matches.
These could be regular expressions or strings, or as in our example, comma-separated lists
of strings. When it finds a match, the associated code between curly braces is executed.

So, if the value of $: :operatingsystem is Ubuntu, then the code include debianlike
will be executed.

There's more...

Once you've got the grip with the basic use of selectors and case statements, you may find
the following tips useful:

Regular expressions

As with if statements, you can use regular expressions with selectors and case statements,
and you can also capture the values of the matched groups and refer to them using $1, $2,
and so on:

case $::1lsbdistdescription {
/Ubuntu (.+)/: {
notify { "You have Ubuntu version ${1}": }

}
/Cent0S (.+)/: {
notify { "You have CentOS version ${1}": }

}

default: {}

Defaults

Both selectors and case statements let you specify a default value, which is chosen if none
of the other options match:

=

Chapter 2

$lunch = 'Burger and fries'

$lunchtype = $lunch ?
/fries/ => 'unhealthy',
/salad/ => 'healthy’',
default => 'unknown',

notify { "Your lunch was ${lunchtype}": }

Your lunch was unhealthy

Using the in operator

The in operator tests whether one string contains another. Here's an example:
if 'spring' in 'springfield'

The preceding expression is true if the string spring is a substring of springfield, which it
is. The in operator can also test for membership of arrays as follows:

if $crewmember in ['Frank', 'Dave', 'HAL']
When in is used with a hash, it tests whether the string is a key of the hash:

$interfaces = { 'lo' => '127.0.0.1"',
'ethO0' => '192.168.0.1" }
if 'eth0' in $interfaces ({
notify { "ethO has address ${interfaces['eth0']}": }

}

How to do it...

The following steps will show you how to use the in operator:

1. Add the following code to your manifest:
if $::operatingsystem in ['Ubuntu', 'Debian'] {
notify { 'Debian-type operating system detected': }
} elsif $::operatingsystem in ['RedHat', 'Fedora', 'SuSE',
"CentOs' 1 {
notify { 'RedHat-type operating system detected': }
} else {
notify { 'Some other operating system detected': }

}

-

Puppet Language and Style

2. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply
Notice: Debian-type operating system detected

Notice: /Stagel[main] /Admin::Test/Notify[Debian-type operating
system detected] /message: defined 'message' as 'Debian-type
operating system detected'

Notice: Finished catalog run in 0.08 seconds

There's more...

The value of an in expression is Boolean (true or false) so you can assign it to a variable:
Sdebianlike = $::operatingsystem in ['Debian', 'Ubuntu']
if $debianlike ({

notify { 'You are in a maze of twisty little packages, all alike': }

}

Using regular expression substitutions

Puppet's regsubst function provides an easy way to manipulate text, search and replace
within strings, or extract patterns from strings. We often need to do this with data obtained
from a fact, for example, or from external programs.

In this example, we'll see how to use regsubst to extract the first three octets of an IPv4
address (the network part, assuming it's a class C address).

How to do it...

Follow these steps to build the example:

1. Add the following code to your manifest:

Sclass_c = regsubst ($::ipaddress, ' (.*)\..*', '\1.0')
notify { "The network part of ${::ipaddress} is
${class c}": }

2. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply

Notice: The network part of 10.96.247.132 is 10.96.247.0

Notice: /Stagel[main]/Admin::Test/Notify[The network part of
10.96.247.132 is 10.96.247.0] /message: defined 'message' as 'The

=

Chapter 2

network part of 10.96.247.132 is 10.96.247.0"'

Notice: Finished catalog run in 0.09 seconds

regsubst takes at least three parameters: source, pattern, and replacement. In our
example, we specified the source string as $: : ipaddress, which on this machine is
as follows:

10.96.247.132

We specified the pattern as:
(L*)\..*

and the replacement as:
\1.0

The pattern will match the whole IP address, capturing the first three octets in round
brackets. The captured text will be available as \ 1 for use in the replacement string.

The whole of the matched text (in this case the whole string) is replaced with
replacement. This is \1 (the captured text from the source string) followed
by the string . 0, which evaluates to

10.96.247.0
We could have got the same result in other ways, of course, including:

$class_c = regsubst ($::ipaddress, '\.\d+s', '.0')

pattern can be any regular expression, using the same (Ruby) syntax as regular expressions
in if statements.

See also

» The Importing dynamic information recipe in Chapter 3, Writing Better Manifests

» The Getting information about the environment recipe in Chapter 3,
Writing Better Manifests

» Using regular expressions in if statements, in this chapter

Writing Better Manifests

There are only two kinds of programming languages: those people always bitch
about and those nobody uses.

—Bjarne Stroustrup
In this chapter we will cover:

» Using arrays of resources

» Using definitions

» Using dependencies

» Using tags

» Using run stages

» Using node inheritance

» Passing parameters to classes

» Using class inheritance and overriding

» Writing reusable, cross-platform manifests
» Getting information about the environment
» Importing dynamic information

» Passing arguments to shell commands

Downloading the example code

M You can download the example code files for all Packt books you have
Q purchased from your account at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.packtpub.com/supportand
register to have the files e-mailed directly to you.

Writing Better Manifests

Introduction

Your Puppet manifest is the living documentation for your entire infrastructure. Keeping it tidy
and well organized is a great way to make it easier to maintain and understand. Puppet gives
you a number of tools to do this, including

» Arrays
» Definitions
» Dependencies
» Inheritance
» Class parameters
We'll see how to use all of these and more. As you read through the chapter, try out the

examples, and look through your own manifests to see where these features might help
you simplify and improve your Puppet code.

Using arrays of resources

Anything you can do to a resource, you can do to an array of resources. Use this idea to
refactor your manifests to make them shorter and clearer.

How to do it...

Here are the steps to refactor using arrays of resources:

1. Identify a class in your manifest where you have several instances of the same kind
of resource for example, packages:

package { 'sudo' : ensure => installed }
package { 'unzip' : ensure => installed }
package { 'locate' : ensure => installed }
package { 'lsof' : ensure => installed }
package { 'cron' : ensure => installed }
package { 'rubygems' : ensure => installed }

2. Group them together and replace them with a single package resource using an array:

package { ['crom',
'locate’',
'lsof',
'rubygems"',
'sudo',

Chapter 3

'unzip' 1:
ensure => installed,

}

Most of Puppet's resource types can accept an array instead of a single name, and will
create one instance for each of the elements in the array. All the parameters you provide
for the resource (for example, ensure => installed) will be assigned to each of the
new resource instances.

See also

» The lterating over multiple items recipe in Chapter 2, Puppet Language and Style

Using definitions

In the previous example, we saw how to reduce redundant code by grouping identical resources
into arrays. However, this technique is limited to resources where all the parameters are the
same. When you have a set of resources have some parameters in common, you need to use a
definition to group them together.

How to do it...

The following steps will show you how to create a definition:

1. Add the following code to your manifest:

define tmpfile() {
file { "/tmp/${name}":
content => "Hello, world\n",

}
}

tmpfile { ['a', 'b', 'c'l: }
2. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stage[main]/Admin::Test/Admin::Test::Tmpfilelal/
File[/tmp/al /ensure: defined content as '{md5}
a7966bf58e23583¢c9a5a4059383££850"

Notice: /Stage[main] /Admin::Test/Admin::Test::Tmpfile[b]/

Writing Better Manifests

File[/tmp/bl /ensure: defined content as '{md5}
a7966bf58e23583¢c9a5a4059383££850"

Notice: /Stage[main] /Admin::Test/Admin::Test::Tmpfilelc]l/
File[/tmp/c]l /ensure: defined content as '{md5}
a7966bf58e23583¢c9a5a4059383££850"

Notice: Finished catalog run in 0.12 seconds

You can think of a definition (introduced with the define keyword) as a cookie-cutter.

It describes a pattern which Puppet can use to create lots of similar resources. Any time
you declare a tmpfile instance in your manifest, Puppet will insert all the resources
contained in the tmpfile definition.

In our example, the definition of tmpfile contains a single £ile resource, whose content
isHello, world\n, and whose pathis /tmp/s${name}. If you declared an instance of
tmpfile with the name foo as follows:

tmpfile { 'foo': }

Puppet would create a file with the path /tmp/foo. In other words, ${name} in the definition
will be replaced by the name of any actual instance that Puppet is asked to create. It's almost
as though we created a new kind of resource: tmpfile, which has one parameter: its name.

Just like with regular resources, we don't have to pass just one name; as in the preceding
example, we can provide an array of names and Puppet will create as many resources
as required.

There's more...

In the example, we created a definition where the only parameter that varies between
instances is the name. But we can add whatever parameters we want, so long as we
declare them in the definition, in parentheses after the name, as follows:

define tmpfile(Sgreeting)
file { "/tmp/${name}":
content => $greeting,
}
}

And pass values to them when we declare an instance of the resource:

tmpfile{ 'foo':
greeting => "Hello, world\n",

}

&)

Chapter 3

You can declare multiple parameters as a comma-separated list:

define webapp ($domain, $path, $platform) {

}

webapp { 'mywizzoapp':
domain => 'mywizzoapp.com',
path => '/var/www/apps/mywizzoapp',
platform => 'Rails’,

}

You can also declare default values for any parameters which aren't supplied, thus making
them optional:

define tmpfile (Sgreeting, $mode='0644") {

}

This is a powerful technique for abstracting out everything that's common to certain
resources, and keeping it in one place so that you Don't Repeat Yourself. In the preceding
example, there might be many individual resources contained within webapp : packages,
config files, source code checkouts, virtual hosts, and so on. But all of them are the same
for every instance of webapp except the parameters we provide. These might be referenced
in a template, for example, to set the domain for a virtual host.

» Passing parameters to classes, in this chapter

Using dependencies

To make sure things happen in the right order, you can specify in Puppet that one resource
depends on another; for example, you need to install package X before you can start the
service it provides, so you would mark the service as dependent on the package. Puppet will
sort out the required order to meet all the dependencies.

In some configuration management systems, resources are applied in the order you write them,
in other words, the ordering is implicit. That's not the case with Puppet, where resources are
applied in a more or less random (but consistent) order unless you state an explicit order using
dependencies. Some people prefer the implicit approach, because you can write the resource
definitions in the order that they need to be done, and that's the way they'll be executed.

[ei-

Writing Better Manifests

On the other hand, in many cases the ordering of resources doesn't matter. With an implicit-
style system, you can't tell whether resource B is listed after resource A because B depends
on A, or because it just happens to have been written in that order. That makes refactoring
more difficult, as moving resources around may break some implicit dependency.

Puppet makes you do a little more work by specifying the dependencies up front, but the
resulting code is clearer and easier to maintain. We'll see an example of how to do this in
the following recipe.

How to do it...

Follow these steps to create an example of resource ordering using dependencies:

1.

In your Puppet repo, create the file modules/admin/manifests/ntp.pp with the
following contents:

Manage NTP
class admin::ntp {
package { 'ntp':
ensure => installed,

}

service { 'ntp':
ensure => running,
require => Package['ntp'],

}

file { '/etc/ntpd.conf':
source => 'puppet:///modules/admin/ntp.conf',
notify => Service['ntp'],
require => Package['ntp'],
}
}

Create the file modules/admin/files/ntp.conf with the following contents:
driftfile /var/lib/ntp/ntp.drift

server us.pool.ntp.org prefer
server 0.ubuntu.pool.ntp.org

server 1l.ubuntu.pool.ntp.org

server 2.ubuntu.pool.ntp.org

server 3.ubuntu.pool.ntp.org

server ntp.ubuntu.com

restrict -4 default kod notrap nomodify nopeer noquery

Chapter 3

restrict -6 default kod notrap nomodify nopeer noquery
restrict 127.0.0.1
restrict ::1

Modify your manifests/nodes.pp file, as follows:

node 'cookbook'
include admin: :ntp

}
Run Puppet:

ubuntu@cookbook: ~/puppet$ papply
Notice: /Stage[main]/Admin::Ntp/Packagel[ntp]/ensure: created

Notice: /Stage[main]/Admin::Ntp/File[/etc/ntpd.conf]/content:
content changed '{md5}bb59234£5041c60a5b3a869f3e6a38b6' to '{md5}6
5e3b66fbf63d0c6c667179b5d0c5216"

Notice: /Stage[main]/Admin::Ntp/Filel[/etc/ntpd.conf] /owner: owner
changed 'root' to 'ubuntu'

Notice: /Stage[main]/Admin::Ntp/Filel[/etc/ntpd.conf]/group: group
changed 'root' to 'ubuntu'

Notice: /Stage[main]/Admin::Ntp/Servicel[ntp]l: Triggered 'refresh'
from 3 events

Notice: Finished catalog run in 11.71 seconds

This example demonstrates two kinds of dependency: require, and notify. In the first
case, the ntp service requires the ntp package to be applied first:

service { 'ntp':

ensure => running,

require => Package['ntp'],

In the second case, the NTP config file is set to not i fy the ntp service; in other words, if the
file changes, Puppet should restart the ntp service to pick up its new configuration.

file { '/etc/ntpd.conf':

source => 'puppet:///modules/admin/ntp.conf',
notify => Service['ntp'],
require => Package['ntp'],

(&5}

Writing Better Manifests

This implies that the service depends on the file as well as on the package, and so Puppet will
be able to apply all three resources in the correct order:

Package['ntp'] -> File['/etc/ntp.conf'] ~> Service['ntp']

In fact, this is another way to specify the same dependency chain. Adding the previous line
to your manifest will have the same effect as the require and notify parameters in our
example (- > means require, while ~> means notify).

However, | prefer to use require and notify because the dependencies are defined as part
of the resource, so it's easier to see what's going on. For complex chains of dependencies,
though, you may want to use the - > notation instead.

There's more...

You can also specify that a resource depends on a certain class:
require => Class['my-apt-repo']

You can specify dependencies not just between resources and classes, but between collections,
as follows:

Yumrepo <| |> -> Package <| provider == yum |>

This is a powerful way to express that all yumrepo resources should be applied before all
package resources whose provider is yum.

Getting your dependencies sorted out can be one of the most difficult parts of building a Puppet
manifest. It's common to see manifests which require two or three Puppet runs to complete
successfully, because the resources aren't being applied in just the right order, for example:

» Files require their parent directory to exist before they can be applied. For config files,
the config directory is often created by the package that provides the software, so the
config file should require the package.

» Services require the appropriate package to be installed before the service can be
used, so the service should require the package.

» Services controlled by a custom init or upstart script need the script file to be
in place first, so the service should require the file.

» Exec resources that run a script depend on the script file being deployed first,
S0 exec should require the file.

» Exec resources that install some important binary (Ruby, for example) must run
before anything which uses that binary, so any resources which depend on it should
require the exec resource.

=

Chapter 3

If a resource requires everything in some particular class to be applied before it, a quick
way to do this is to have the resource require the whole class (using require =>
Class['important thing']).If lots of things depend on this class, you might decide
it's cleaner to put the class into its own run stage (see the section on Using run stages)
that comes before anything else.

Once you think you've got a working set of dependencies, test your manifest by re-imaging the
machine with a fresh operating system (or use a spare machine) and applying Puppet. The run
should complete with no errors and leave you with a working system. If there are any problems
with the ordering of resources, add an appropriate dependency and try again.

Sometimes one Puppet class needs to know about another or at least, to know whether or not
it's present. For example, a class that manages the firewall may need to know whether or not
the node is a web server.

Puppet's tagged function will tell you whether a named class or resource is present in the
catalog for this node. You can also apply arbitrary tags to a node or class and check for the
presence of these tags.

How to do it...

To help you find out if you're running on a particular node or class of node, all nodes are
automatically tagged with the node name and the names of any parent nodes they inherit
from. Here's an example which shows how to use tagged to get this information:

1. Add the following code to your manifests/nodes.pp file (replacing cookbook with
your machine's hostname):

node 'bitfield server' {

}

node 'cookbook' inherits 'bitfield server' {
if tagged('cookbook') {
notify { 'this will succeed': }
}
if tagged('bitfield server') ({
notify { 'so will this': }

}

]

Writing Better Manifests
2. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply
Notice: this will succeed

Notice: /Stagelmain]//Node[cookbook] /Notify[this will succeed]/
message: defined 'message' as 'this will succeed'

Notice: so will this

Notice: /Stage[main]//Node [cookbook] /Notify[so will this]/message:
defined 'message' as 'so will this'

Notice: Finished catalog run in 0.10 seconds

Nodes are also automatically tagged with the names of all the classes they include, and their
parent classes. You can use tagged to find out what classes are included on the node, as in
the following example:

1. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
include admin: :ntp

if tagged('admin::ntp')
notify { 'This node is running NTP': }

}
if tagged('admin') ({
notify { 'This node includes at least one class from the admin
module': }

}
}
2. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply
Notice: This node is running NTP

Notice: /Stage[main]//Node [cookbook] /Notify[This node is running
NTP] /message: defined 'message' as 'This node is running NTP'

Notice: This node includes at least one class from the admin
module

Notice: /Stage[main]//Node [cookbook] /Notify[This node includes at
least one class from the admin module] /message: defined 'message'
as 'This node includes at least one class from the admin module'

Notice: Finished catalog run in 0.42 seconds

You're not just limited to checking the tags automatically applied by Puppet. You can also add
your own. To set an arbitrary tag on a node, use the tag function, as in the following example:

1. Modify your manifests/nodes.pp file as follows:

node 'cookbook'

(&)

Chapter 3

tag('big-server')
if tagged('big-server')

notify { 'Big server detected. Adding extra workload': }
}

}
2. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply
Notice: Big server detected. Adding extra workload

Notice: /Stagel[main]//Node [cookbook] /Notify[Big server detected.
Adding extra workload] /message: defined 'message' as 'Big server
detected. Adding extra workload'

Notice: Finished catalog run in 0.08 seconds

You can also use tags to determine which parts of the manifest to apply. If you use the --tags
option on the Puppet command line, Puppet will apply only those classes or resources tagged
with the specific tags you include. For example, if you want to update only the admin: :ntp
configuration, but not run any other parts of the manifest, use a command line, as follows:

ubuntu@cookbook: ~/puppet$ papply --tags admin::ntp

Notice: /Stage[main]/Admin::Ntp/Service[ntp]/ensure: ensure
changed'stopped' to 'running'

Notice: Finished catalog run in 0.70 seconds

There's more...

You can use tags to create a collection of resources, and then make the collection a
dependency for some other resource. For example, if some service depends on a config
file that is built up from a number of file snippets, as in the following example:

class firewall::service ({
service { 'firewall':

}

File <| tag == 'firewall-snippet' |> ~> Service['firewall']

}

class myapp {
file { '/etc/firewall.d/myapp.conf':
tag => 'firewall-snippet',

&7}

Writing Better Manifests

Here, we've specified that the £irewall service should be notified if any file resource tagged
firewall-snippet is updated. All we need to do to add a firewall config snippet for any
particular app or service is to tag it firewall-snippet, and Puppet will do the rest.

Although we could add a notify => Service["firewall"] to each snippet resource,
if our definition of the firewall service were ever to change we would have to hunt down
and update all the snippets accordingly. The tag lets us encapsulate the logic in one place,
making future maintenance and refactoring much easier.

What's the <| tag == 'firewall-snippet' |[> syntax? It's called
a resource collector, and it's a way of specifying a group of resources by
- searching for some piece of data about them: in this case, the value of a
% tag. You can find out more about resource collectors and the < | | > operator
e (sometimes known as the spaceship operator) on the Puppet Labs website:

http://docs.puppetlabs.com/puppet/3/reference/
lang collectors.html

Using run stages

A common requirement is to apply a certain group of resources before other groups

(for example, installing a package repository or a custom Ruby version), or after others
(for example, deploying an application once its dependencies are installed). Puppet's run
stages feature allows you to do this.

By default, all resources in your manifest are applied in a single stage named main. If you
need a resource to be applied before all others, you can assign it to a new run stage that is
specified to come before main. Similarly, you could define a run stage that comes after main.
In fact, you can define as many run stages as you need and tell Puppet which order they
should be applied in.

In this example, we'll use stages to ensure one class is applied first and another last.

How to do it...

Here are the steps to create an example of using run stages:

1. Create the file modules/admin/manifests/stages.pp with the following contents:
class admin::stages {
stage { 'first': before => Stage['main'] }
stage { 'last': require => Stage['main'] }

class me_first ({
notify { 'This will be done first': }

Chapter 3

}

class me_last {
notify { 'This will be done last': }
}

class { 'me _first':
stage => 'first',
}

class { 'me_last':
stage => 'last',
}

}

2. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
include admin::stages

}

3. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply
Notice: This will be done first

Notice: /Stage[first]/Admin::Stages::Me first/Notify[This will
be done first] /message: defined 'message' as 'This will be done
first!'

Notice: This will be done last

Notice: /Stagel[last]/Admin::Stages::Me last/Notify[This will be
done last] /message: defined 'message' as 'This will be done last'

Notice: Finished catalog run in 0.10 seconds

Let's examine this code in detail to see what's happening. First, we declare the run
stages first and last, as follows::

stage { 'first': before => Stage['main'] }
stage { 'last': require => Stage['main'] }

For the first stage, we've specified that it should come before main. That is,
every resource marked as being in stage first will be applied before any resource
in stage main (the default stage).

The last stage requires stage main, SO no resource in 1last can be applied until
after every resource in stage main.

[}

Writing Better Manifests
We then declare some classes which we'll later assign to these run stages:

class me_first {
notify { 'This will be done first': }

}

class me_last {
notify { 'This will be done last': }

}

We can now put it all together, and include these classes on the node, specifying the run
stages for each as we do so:

class { 'me first':
stage => 'first',

}

class { 'me_last':
stage => 'last',

}

Note that in the class declarations for me_first and me last we didn't have to specify that
they take a stage parameter. stage is a metaparameter, which means it can be applied to
any class or resource without having to be explicitly declared.

There's more...

You can define as many run stages as you like, and set up any ordering for them. This can
greatly simplify a complicated manifest which otherwise would require lots of explicit
dependencies between resources. Beware of accidentally introducing dependency cycles,
though; when you assign something to a run stage you're automatically making it dependent
on everything in prior stages.

You may like to define your stages in the site.pp file instead, so that it's easy to see at the
top level of the manifest what stages are available.

Gary Larizza has written a helpful introduction to using run stages, with some real-world
examples, on his website:

http://garylarizza.com/blog/2011/03/11/using-run-stages-with-puppet/

A caveat: many people don't like to use run stages, feeling that Puppet already provides
sufficient resource ordering control, and that using run stages indiscriminately can make your
code very hard to follow (as one of my technical reviewers said, "though useful they tend to be
quickly abused"). In my consulting work | often come across tortuously complicated Puppet
manifests made almost unmaintainable by the widespread use of run stages. So, think carefully
before deciding to solve a problem by using run stages, and use them sparingly.

[

Chapter 3

See also

» Using tags, in this chapter

» The Drawing dependency graphs recipe in Chapter 9, Monitoring, Reporting,
and Troubleshooting

Using node inheritance

Well-organized Puppet manifests are easy to read, and the node declarations (usually in
manifests/nodes.pp) are the most important part of the manifest. You should be able to
tell by looking at a node declaration exactly what the node is for, and ideally also any special
configuration it requires.

To make the node declarations as readable as possible, you can use node inheritance to
remove all duplicated code. For example, some things that might be common to all nodes are:

» SSH configuration

» NTP
» Puppet
» Backups

Nodes may also share configuration because they are in the same data center, or located
at the same ISP or cloud provider. To avoid repeatedly including the same classes on lots of
nodes, you can use node inheritance to tidy up your code.

How to do it...

The following steps will show you how to use node inheritance:

1. Modify your manifests/nodes.pp file to declare a base node, which contains
only the classes that all nodes need (these will probably be different for your
infrastructure):

node 'base' {
include admin::basics
include admin::ssh
include admin: :ntp
include puppet::client
include backup::client

7}

Writing Better Manifests

2. Have your real nodes inherit from this base node:

node 'cookbook' inherits 'base' {
notify { 'I get everything in base': }

}

3. If you have special configuration for data center X, declare a datacenter_x node
that inherits from base but adds the required class:

node 'datacenter x' inherits 'base' ({
include admin::datacenter x

}

4. Nodes which need the datacenter x configuration should inherit from this node:

node 'cookbook' inherits 'datacenter x' {
notify { 'I get everything in base plus datacenter x': }

}

When one node inherits from another, it picks up all the configuration that the parent node
had. You can then add anything which makes this particular node different.

You can have a node inherit from a node that inherits from another node, and so on. You can't
inherit from more than one node at once, though; so you can't have, for example:

node 'thiswontwork' inherits datacenter_x, datacenter y {
This won't work

}

Just as with a normal node definition, you can specify a list of node names which will all
inherit the same definition:

node 'web' inherits 'base' ({
include webserver

node 'webl', 'web2', 'web3' inherits 'web' {}
Or a regular expression that will match multiple servers:

node /web\d+/ inherits 'web' {}

Chapter 3

See also

» Using class inheritance and overriding, in this chapter

» The Importing configuration data with Hiera recipe in Chapter 8, External Tools and
the Puppet Ecosystem

Passing parameters to classes

Sometimes it's very useful to parameterize some aspect of a class. For example, you might
need to manage different versions of a gem package, and rather than making separate
classes for each which differ only in the version number, or using inheritance and overrides,
you can pass in the version number as a parameter.

How to do it...

In this example we'll create a definition which accepts parameters:

1. Declare the parameter as a part of the class definition:

class eventmachine ($version)
package { 'eventmachine':
provider => gem,
ensure => $version,
}

}

2. Use the following syntax to include the class on a node:

class { 'eventmachine':
version => '1.0.3"',

}

The class definition

class eventmachine ($version)

is just like a normal class definition except it specifies that the class takes one parameter:
$version. Inside the class, we've defined a package resource:

package { 'eventmachine':
provider => gem,
ensure => $version,

}

This is a gem package, and we're requesting to install version $version.

Writing Better Manifests

When you include the class on a node, instead of the usual include syntax
include eventmachine
there's a class statement:

class { 'eventmachine':
version => '1.0.3"',

}

that has the same effect but also sets a value for the parameter version.

There's more...

You can specify multiple parameters for a class
class mysql ($package, $socket, $port) {
and supply them in the same way:

class { 'mysqgl':
package => 'percona-server-server-5.5',
socket => '/var/run/mysgld/mysqgld.sock',
port => '3306"',

}
You can also give default values for some of your parameters:
class mysql (Spackage, $socket, $port='3306"') ({
orall:

class mysqgl (
package = percona-server-server-5.5",

socket
port

' /var/run/mysgld/mysgld.sock’,
'3306"')

Unlike a definition, only one instance of a parameterized class can exist on a node. So where
you need to have several different instances of the resource, use define instead.

See also

» Using node inheritance, in this chapter

Chapter 3

Using class inheritance and overriding

Just as nodes can inherit from other nodes, the same idea works for classes. You can inherit
from any class and add resources to it, or override existing resources with modified versions.

In this section we'll use the admin: :ntp class we created previously as an example. The NTP
servers we set up in the ntpd. conf file are US-based, which makes sense if your server is

in a US data center. For UK-located servers, we'll create a modified version of admin: :ntp
which uses the official UK NTP servers.

How to do it...

Follow these steps to create the example class:

1. Create the file modules/admin/manifests/ntp_ uk.pp with the following contents:

class admin::ntp uk inherits admin::ntp {
File['/etc/ntpd.conf']
source => 'puppet:///modules/admin/ntp uk.conf',

}
}

2. Create the file modules/admin/files/ntp_ uk.conf with the following contents:
driftfile /var/lib/ntp/ntp.drift

server 0.uk.pool.ntp.org
server l.uk.pool.ntp.org
server 2.uk.pool.ntp.org
server 3.uk.pool.ntp.org

restrict -4 default kod notrap nomodify nopeer noquery
restrict -6 default kod notrap nomodify nopeer noquery
restrict 127.0.0.1

restrict ::1

3. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
include admin::ntp uk

}

(7]

Writing Better Manifests

4. Run Puppet:

Notice: /Stagel[main]/Admin::Ntp/File[/etc/ntpd.conf]/content:
content changed '{md5}65e3b66fbf63d0c6c667179b5d0c5216"' to '{md5}4
b096d8d8aae71e8745db1l415e80d06a"

Notice: /Stagel[main]/Admin::Ntp/Servicelntpl: Triggered 'refresh'
from 1 events

Notice: Finished catalog run in 0.57 seconds

Let's remind ourselves what's in the admin: : ntp class we're inheriting from:
p

Manage NTP
class admin::ntp {
package { 'ntp':
ensure => installed,

}

service { 'ntp':
ensure => running,
require => Package['ntp'],

}

file { '/etc/ntpd.conf':
source => 'puppet:///modules/admin/ntp.conf',
notify => Service['ntp'],
require => Package['ntp'],
}
}

And here's the beginning of the admin: :ntp uk class declaration:
class admin::ntp uk inherits admin::ntp {

The inherits keyword tells Puppet that we want everything in admin: :ntp to be included
in admin: :ntp uk: thatis, the ntp package, the ntp service, and the ntpd. conf file.

However, we're going to override the ntpd. conf resource as follows:

File['/etc/ntpd.conf']
source => 'puppet:///modules/admin/ntp uk.conf',
}

Notice that unlike a normal £ile resource, File is capitalized. This tells Puppet that
we're not creating a new resource, but referring to one that already exists. We've specified
a source attribute:

source => 'puppet:///modules/admin/ntp uk.conf',

7@

Chapter 3
which will override the source of the original file:
source => 'puppet:///modules/admin/ntp.conf',

The other attributes of the ntpd. conf file will be inherited unmodified, so the resource
Puppet creates will look like the following:

file { '/etc/ntpd.conf':
source => 'puppet:///modules/admin/ntp uk.conf',
notify => Service['ntp'],
require => Package['ntp'],

}

The result will be exactly the same as if we had copied the whole class definition from
admin: :ntp but changed the value of source. So we will get identical NTP configuration
except for the contents of the ntpd. conf file, which will contain the UK NTP servers.

There's more...

Overriding inherited classes may seem complicated at first. Once you get the idea, though,

it's actually quite simple. It's a great way to make your manifests more readable because it
removes lots of duplication, and focuses only on the parts which differ. Here are some more
ways to use overriding.

Removing inherited attributes

What if you wanted to generate ntpd. conf from a template in your inherited class, or specify
a literal content string, instead of using a file source? Well, the obvious approach won't work:

File['/etc/ntpd.conf']
content => 'server 0.uk.pool.ntp.org',

gives
Error: You cannot specify more than one of content, source, target

That's because Puppet adds any attributes you specify to the inherited resource declaration,
so you'd end up with this:

file { '/etc/ntpd.conf':
source => 'puppet:///modules/admin/ntp uk.conf',
content => 'server 0.uk.pool.ntp.org',
notify => Service['ntp'],
require => Package['ntp'],

}

Writing Better Manifests

which isn't allowed. To get what you want, you need to remove the source attribute from the
inherited resource. To do this, use the undef keyword, as follows:

File['/etc/ntpd.conf']
source => undef,
content => 'server 0.uk.pool.ntp.org',

Adding extra values using +>

Similarly, instead of replacing a value, you may want to add more values to those defined in
the parent class. The plusignment operator +> will do this:

File['/etc/ntpd.conf']
require +> Package['tzdata'l,

}

The +> operator adds a value (or an array of values surrounded by square brackets) to the
value defined in the parent class. The ntpd. conf file already has a require attribute,
so ours will be appended to it. The resulting resource will look as follows:

file { '/etc/ntpd.conf':
source => 'puppet:///modules/admin/ntp.conf',
notify => Service['ntp'],
require => [Packagel'ntp'], Packagel'tzdata'll,

Disabling resources

One of the most common uses for inheritance and overrides is to disable services or other
resources:

class apache::disabled inherits apache {
Service['apache2'] {
enable => false,
ensure => stopped,

}

Any class which might otherwise conflict with Apache (for example, one that manages Nginx)
can easily disable it, as follows:

class nginx {
include apache: :disabled

Chapter 3

See also

» Using node inheritance, in this chapter
» Passing parameters to classes, in this chapter

» The Using standard naming conventions recipe in Chapter 2, Puppet Language
and Style

Writing reusable, cross-platform manifests

Every system administrator dreams of a unified, homogeneous infrastructure, of identical
machines all running the same version of the same 0S. As in other areas of life, however,
the reality is often messy and doesn't conform to the plan.

You are probably responsible for a bunch of assorted servers of varying age and architecture,
running different kernels from different OS distributions, often scattered across different data
centers and ISPs.

This situation should strike terror into the hearts of the sysadmins of the SSH in a for loop
persuasion, because executing the same commands on every server can have different,
unpredictable, and even dangerous results.

We should certainly strive to bring older servers up-to-date and get working as far as possible
on a single reference platform to make administration simpler, cheaper, and more reliable.
But until we get there, Puppet makes coping with heterogeneous environments slightly easier.

How to do it...

Here are some examples of how to make your manifests more portable.

1. If you have servers in different data centers that need slightly different network
configuration, for example, use the node inheritance technique to encapsulate
the differences:

node 'misspiggy' inherits 'datacenter x' {

}

2. Where you need to apply the same manifest to servers with different OS distributions,
the main differences will probably be the names of packages and services, and the
location of config files. Try to capture all these differences into a single class, by using
selectors to set global variables:

$ssh service = $::operatingsystem? {
/Ubuntu|Debian/ => 'ssh',
default => 'sshd',

}

(7]

Writing Better Manifests

You needn't worry about the differences in any other part of the manifest; when you
refer to something, use the variable in confidence that it will point to the right thing in
each environment:

service { $ssh service:
ensure => running,

}

3. Often we need to cope with mixed architectures; this can affect the paths to shared
libraries, and also may require different versions of packages. Again, try to encapsulate
all the required settings in a single architecture class that sets global variables:
$libdir = $::architecture ?

amdé4 => '/usr/lib6e4',
default => '/usr/lib',

}

Then you can use these wherever an architecture-dependent value is required,
in your manifests or even in templates:

; php.ini

[PHP]

; Directory in which the loadable extensions (modules) reside.
extension dir = <%= @libdir %>/php/modules

The advantage of this approach (which could be called top-down) is that you only need to make
your choices once. The alternative, bottom-up approach would be, to have a selector or case
statement everywhere a setting is used:

service { $::operatingsystem? {
/Ubuntu|Debian/ => 'ssh',
default => 'sshd' }:
ensure => running,

}

This not only results in lots of duplication, but makes the code harder to read. And when a
new operating system is added to the mix, you'll need to make changes throughout the whole
manifest, instead of just in one place.

Chapter 3

There's more...

If you are writing a module for public distribution (for example, on Puppet Forge), you can
make it much more valuable by making it as cross-platform as possible. As far as you can,
test it on lots of different distributions, platforms, and architectures, and add the appropriate
variables so it works everywhere.

If you use a public module and adapt it to your own environment, consider updating the public
version with your changes if you think they might be helpful to other people.

Even if you are not thinking of publishing a module, bear in mind that it may be in production
use for a long time and may have to adapt to many changes in the environment. If it's designed
to cope with this from the start, it'll make life easier for you or whoever ends up maintaining
your code.

Always code as if the guy who ends up maintaining your code will be a violent
psychopath who knows where you live.

—Dave Carhart

» Using node inheritance, in this chapter
» Using class inheritance and overriding, in this chapter

» The Using public modules recipe in Chapter 8, External Tools and the
Puppet Ecosystem

» The Importing configuration data with Hiera recipe in Chapter 8, External Tools
and the Puppet Ecosystem

Getting information about the environment

Often in a Puppet manifest, you need to know some local information about the machine
you're on. Facter is the tool that accompanies Puppet to provide a standard way of getting
information (facts) from the environment about things such as

» Operating system

» Memory size

» Architecture

» Processor count

Writing Better Manifests

To see a complete list of the facts available on your system, run:
ubuntu@cookbook:~/puppet$ sudo facter

architecture => amdé4
augeasversion => 0.10.0
p domain => compute-1l.internal

% ec2_ami_ id => ami-137bcf7a
! ec2_ami_launch_index => 0

While it can be handy to get this information from the command line,
the real power of Facter lies in being able to access these facts in your
Puppet manifests.

How to do it...

Here's an example of using Facter facts in a manifest.

1.

Reference a Facter fact in your manifest like any other variable. Facts are global
variables in Puppet, so should be prefixed with a double colon (: :), as in the following
code shippet:

notify { "This is $::operatingsystem version
$::operatingsystemrelease, on $::architecture architecture, kernel
version $::kernelversion": }

When Puppet runs, it will fill in the appropriate values for the current node:

ubuntu@cookbook: ~/puppet$ papply

Notice: This is Ubuntu version 12.04, on amdé4 architecture,
kernel version 3.2.0

Facter provides an abstraction layer for Puppet, and a standard way for manifests to get
information about their environment. When you refer to a fact in a manifest, Puppet will
query Facter to get the current value, and insert it into the manifest.

You can also use facts in ERB templates. For example, you might want to insert the node's
hostname into a file, or change a config setting for an application based on the memory size
of the node. When you use fact names in templates, remember that they don't need a dollar
sign, because this is Ruby, not Puppet:

[

Chapter 3

$KLogPath <%= case @kernelversion when '2.6.31' then '/var/run/
rsyslog/kmsg' else '/proc/kmsg' end %>

See also

» The Creating custom Facter facts recipe in Chapter 8, External Tools and the
Puppet Ecosystem

Importing dynamic information

Even though some system administrators like to wall themselves off from the rest of the office
using piles of old printers, we all need to exchange information with other departments from
time to time. For example, you may want to insert data into your Puppet manifests which is
derived from some outside source. The generate function is ideal for this.

Getting ready

Follow these steps to prepare for running the example.

1. Create the script /usr/local/bin/message. rb with the following contents:
#!/usr/bin/env ruby

puts "Hi, I'm Ruby! Will you play with me?"

2. Make the script executable:

ubuntu@cookbook: ~/puppet$ sudo chmod a+x /usr/local/bin/message.rb

How to do it...

This example calls the external script we created previously and gets its output.

1. Add the following to your manifest:
Smessage = generate('/usr/local/bin/message.rb')
notify { $message: }
2. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply
Notice: Hi, I'm Ruby! Will you play with me?

Writing Better Manifests

The generate function runs the specified script or program and returns the result, in this case,
a cheerful message from Ruby.

This isn't terribly useful as it stands, but you get the idea. Anything a script can do, print, fetch,
or calculate, for example, the results of a database query can be brought into your manifest
using generate. You can also, of course, run standard UNIX utilities such as cat and grep.

There's more...

If you need to pass arguments to the executable called by generate, add them as extra
arguments to the function call:

Smessage = generate('/bin/cat', '/etc/motd')

Puppet will try to protect you from malicious shell calls by restricting the characters you can use
in a call to generate, so shell pipes and redirection aren't allowed, for example. The simplest
and safest thing to do is to put all your logic into a script and then call that script.

See also

» The Creating custom Facter facts recipe in Chapter 8, External Tools and the
Puppet Ecosystem

» The Importing configuration data with Hiera recipe in Chapter 8, External Tools and
the Puppet Ecosystem

Passing arguments to shell commands

If you want to insert values into a command line (to be run by an exec resource, for example),
they often need to be quoted, especially if they contain spaces. The shellquote function will
take any number of arguments, including arrays, and quote each of the arguments and return
them all as a space-separated string that you can pass to commands.

In this example, we would like to set up an exec resource which will rename a file, but both
the source and the target name contain spaces, so they need to be correctly quoted in the
command line.

How to do it...

Here's an example of using the shellquote function.

1. Add the following to your manifest:

$source = 'Hello Jerry'

=

Chapter 3

Starget = 'Hello... Newman'

Sargstring = shellquote ($source, S$Starget)
$command = "/bin/mv ${argstring}"

notify { $command: }

2. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply

NoOtice: /bin/mv "Hello Jerry" "Hello... Newman"

First we define the $source and $target variables, which are the two filenames we want to
use in the command line.

$source = 'Hello Jerry'
Starget = 'Hello... Newman'

Then we call shellquote to concatenate these variables into a quoted, space-separated string,.
Sargstring = shellquote ($source, S$Starget)

Then we put together the final command line:

$command = "/bin/mv ${argstring}"
The result is:
/bin/mv "Hello Jerry" "Hello... Newman"

This command line can now be run with an exec resource. What would happen if we didn't
use shellquote?

$source = 'Hello Jerry'
Starget = 'Hello... Newman'
$command = "/bin/mv ${source} ${target}"

notify { $command: }

Notice: /bin/mv Hello Jerry Hello... Newman

This won't work because mv expects space-separated arguments, so will interpret this as a
request to move three files Hello, Jerry, and Hello. . . into a directory named Newman,
which probably isn't what we want.

&1

Working with Files
and Packages

A writer has the duty to be good, not lousy; true, not false; lively, not dull; accurate,
not full of error.

—E.B. White

In this chapter we will cover:

>

v

Making quick edits to config files

Using Augeas to automatically edit config files
Building config files using snippets

Using ERB templates

Using array iteration in templates

Using GnuPG to encrypt secrets

Installing packages from a third-party repository
Building packages automatically from source

Comparing package versions

Introduction

In this chapter we'll see how to make small edits to files, how to make larger changes in a
structured way using the Augeas tool, how to construct files from concatenated snippets,
and how to generate files from templates. We'll also learn how to install packages from
additional repositories, and how to manage those repositories. In addition, we'll see how to
store and decrypt secret data with Puppet.

Working with Files and Packages

Making quick edits to config files

When you need to have Puppet change a particular setting in a config file, it's common to simply
deploy the whole file with Puppet. This isn't always possible, though; especially if it's a file which
several different parts of your Puppet manifest may need to modify.

What would be useful is a simple recipe to add a line to a config file if it's not already present,
for example, adding a module name to /etc/modules to tell the kernel to load that module at
boot. You can use an exec resource to do jobs like this.

How to do it...

This example shows how to use exec to append a line to a text file:

1. Add the following code to your manifests/site.pp file:
define append if no such line($file,$line) {
exec { "/bin/echo '${line}' >> '${file}'":
unless => "/bin/grep -Fx '${line}' '${file}'",
}
}

2. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
append if no_such line { 'enable-ip-conntrack':
file => '/etc/modules’',
line => 'ip conntrack',
}
}

3. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stage[main]//Node [cookbook]/Append if no such
line[enable-ip-conntrack] /Exec[/bin/echo 'ip conntrack' >> '/etc/
modules'] /returns: executed successfully

Notice: Finished catalog run in 0.60 seconds

First of all, Puppet will run the command specified in the unless parameter, to check whether
or not the line is already present:

/bin/grep -Fx 'ip conntrack' '/etc/modules'

(e

Chapter 4

The first time you run Puppet, this command will fail (because /etc/modules doesn't contain
this line), and so Puppet will run:

/bin/echo 'ip conntrack' >> '/etc/modules'
p_

On future runs, the grep command will succeed because the line is already present, and so
Puppet will not run the echo command again.

You can use the append if no such line definition anywhere in your manifest when you
need to add a single line to a config file.

There's more...

You can use similar definitions to perform other minor operations on text files. For example,
this will enable you to search and replace within a file:

define replace matching line($file, $match, $replace)
exec { "/usr/bin/ruby -i -p -e 'sub(%r{Smatch}, \"Sreplace\")'
${file}":
onlyif => "/bin/grep -E '${match}' ${file}",
}
}

replace matching line { 'disable-ip-conntrack':
file => '/etc/modules',
match => '“ip conntrack',
replace => '#ip conntrack',

}

Using Augeas to automatically edit

config files

Sometimes it seems like every application has its own subtly different config file format,
and writing regular expressions to parse and modify all of them can be a tiresome business.

Thankfully, Augeas is here to help. Augeas is a system that aims to simplify working with
different config file formats by presenting them all as a simple tree of values. Puppet's Augeas
support allows you to create augeas resources that can make the required config changes
intelligently and automatically.

]

Working with Files and Packages

How to do it...

Follow these steps to create an example augeas resource:

1. Modify your manifests/nodes.pp file as follows

node 'cookbook'
augeas { 'enable-ip-forwarding':
context => '/files/etc/sysctl.conf',
changes => ['set net.ipv4.ip forward 1'],

}
}

2. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node [cookbook] /Augeas[enable-ip-forwarding]/
returns: executed successfully

Notice: Finished catalog run in 0.55 seconds
3. Check that the setting has been correctly applied:

ubuntu@cookbook: ~/puppet$ sudo sysctl -p |grep forward

net.ipv4.ip forward = 1

We declare an augeas resource named enable-ip-forwarding:
augeas { 'enable-ip-forwarding':

We specify that we want to make changes in the context of the file /etc/sysctl.conf:
context => '/files/etc/sysctl.conf',

The changes parameter specifies the changes we want to make. Its value is an array,
because we can supply several changes at once. In this example, there is only change,
so the value is an array of one element:

changes => ['set net.ipv4.ip forward 1'],
In general Augeas changes take the form
set <parameter> <value>

Augeas uses a set of translation files called lenses to enable it to write these settings in the
appropriate format for the given config file. In this case, the setting will be translated into a
line like thisin /etc/sysctl.conft

net.ipv4.ip forward=1

5]

Chapter 4

There's more...

I've chosen /etc/sysctl.conf as the example because it can contain a wide variety of
kernel settings and you may want to change these settings for all sorts of different purposes
and in different Puppet classes. You might want to enable IP forwarding, as in the example,
for a router class, but you might also want to tune the value of net . core. somaxconn for a
load-balancer class.

This means that simply Puppetizing the /etc/sysctl. conf file and distributing it as a text
file won't work, because you might have several different and conflicting versions, depending
on the setting you want to modify. Augeas is the right solution here because you can define
augeas resources in different places which modify the same file, and they won't conflict.

For more about using Puppet and Augeas, see the page on the Puppet Labs website:

http://projects.puppetlabs.com/projects/1/wiki/Puppet Augeas

Building config files using snippets

Sometimes you can't deploy a whole config file in one piece, yet making line-by-line edits isn't
enough. Often, you need to build up a config file from various bits of configuration managed
by different classes. For example, you might have two or three services which require rsync
modules to be configured, so you can't distribute a single rsyncd. conf file. In this situation,
you can use a shippet approach: write several separate snippets or fragments which are then
concatenated into a single file.

How to do it...

Here's an example of building a config file using the snippet pattern:

1. Create the file modules/admin/manifests/rsyncdcont . pp with the
following contents:

class admin::rsyncdconf {
file { '/etc/rsyncd.d':
ensure => directory,

}

exec { 'update-rsyncd.conf':

command => '/bin/cat /etc/rsyncd.d/*.conf > /etc/rsyncd.
conf',

refreshonly => true,

}
}

i

http://projects.puppetlabs.com/projects/1/wiki/Puppet_Augeas
http://projects.puppetlabs.com/projects/1/wiki/Puppet_Augeas

Working with Files and Packages

2. Create the file modules/admin/files/myapp . rsync with the following contents:

[myapp]
uid

myappuser
gid = myappuser

path = /opt/myapp/shared/data
comment = Data for myapp

list = no

read only = no

auth users = myappuser

3. Modify your nodes . pp file as follows:

node 'cookbook'
include admin::rsyncdconf

file { '/etc/rsyncd.d/myapp.conf':
ensure => present,
source => 'puppet:///modules/admin/myapp.rsync',
require => File['/etc/rsyned.d'],
notify => Exec['update-rsyncd.conf'l],

}
}

4. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply

Notice: /Stage[main]//Node[cookbook] /Filel[/etc/
rsyncd.d/myapp.conf] /ensure: defined content as '{md5}
d85e5aa28aca2faf3e32b98e96b405e4"

Notice: /Stagel[main]/Admin::Rsyncdconf/Exec[update-rsyncd.conf]:
Triggered 'refresh' from 1 events

Notice: Finished catalog run in 0.31 seconds
5. Check that the rsyncd. conf file has been assembled correctly:

ubuntu@cookbook: ~/puppet$ sudo cat /etc/rsyncd.conf
[myappl

uid = myappuser

gid = myappuser

path = /opt/myapp/shared/data

comment = Data for myapp

list = no

read only = no

auth users = myappuser

[

Chapter 4

The admin: : rsyncdconf class creates a directory for the rsync config snippets to be
placed into:

file { '/etc/rsyncd.d':
ensure => directory,

}

It doesn't matter what the directory is called, since it's just for our use. rsync itself only reads
the single file /etc/rsynd. conf, so we will write our snippets into the /etc/rsyncd.d
directory and then concatenate them all into the main file.

When you create a config snippet, all you need to do is have it require this directory:
require => File['/etc/rsyncd.d'l],

and notify the exec that updates the main config file:
notify => Exec['update-rsyncd.conf'l],

This exec will then be run every time one of these snippets is updated:

exec { 'update-rsyncd.conf':
command => '/bin/cat /etc/rsyncd.d/*.conf > /etc/rsyncd.conf',
refreshonly => true,

}

which will concatenate all the snippets in /etc/rsyncd.d into rsyncd. conf.

Note that the refreshonly parameter means that the exec command will only be run when
it's triggered by a not i fy from another resource, in this case, the myapp . conf snippet.

The reason this is useful is that you can have many different snippet resources spread
throughout different classes and modules, all of which will eventually be combined into a
single rsyncd. conf file, but you can keep the code to do this combining in one place.

This is a useful pattern whenever you have a service such as rsync that has a single config file
which may contain distinct snippets. In effect, it gives you the same functionality as Apache's
conf.d or PHP's php-ini .d directories.

» The Using tags recipe in Chapter 3, Writing Better Manifests

55}

Working with Files and Packages

Using ERB templates

While you can deploy config files easily with Puppet as simple text files, templates are much
more powerful. A template file can do calculations, execute Ruby code, or reference the values
of variables from your Puppet manifests. Anywhere you might deploy a text file using Puppet,
you can use a template instead.

In the simplest case, a template can just be a static text file. More usefully, you can insert
variables into it using the ERB (embedded Ruby) syntax. For example:

<%= @name %>, this is a very large drink.

If the template is used in a context where the variable $name contains Zaphod
Beeblebrox, the template will evaluate to:

Zaphod Beeblebrox, this is a very large drink.

This simple technique is very useful for generating lots of files which only differ in the values
of one or two variables, for example, virtual hosts, and for inserting values into a script such
as database names and passwords.

How to do it...

In this example, we'll use an ERB template to insert a password into a backup script:

1. Create the file modules/admin/templates/backup-mysqgl . sh.erb with the
following contents:

#!/bin/sh

/usr/bin/mysgldump -uroot -p<%= @mysgl password %> --all-databases
| /bin/gzip > /backup/mysgl/all-databases.sqgl.gz

2. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
$mysgl password = 'secret'
file { '/usr/local/bin/backup-mysqgl':
content => template ('admin/backup-mysgl.sh.erb'),
mode => '0755"',

Chapter 4

3. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node [cookbook]/Filel[/usr/local/bin/backup-
mysqgl] /ensure: defined content as '{md5}5853b6d4dd72420e341fa7ecb8
91ad43'

Notice: Finished catalog run in 0.09 seconds

4. Check that Puppet has correctly inserted the password into the template:

ubuntu@cookbook: ~/puppet$ cat /usr/local/bin/backup-mysql
#!/bin/sh

/usr/bin/mysqldump -uroot -psecret --all-databases | /bin/gzip > /
backup/mysql/all-databases.sql.gz

Wherever a variable is referenced in the template, for example
<%= @mysgl password %>
Puppet will replace it with the corresponding value

secret

There's more...

In the example, we only used one variable in the template, but you can have as many as you
like. These can also be facts:

ServerName <%= @fgdn %>
or Ruby expressions:

MAILTO=<%= @emails.join(',') %>
or any Ruby code you want:

ServerAdmin <%= @sitedomain == 'coldcomfort.com' ? 'sethecoldcomfort.
com' : 'flora@poste.com' %>

See also

» Using GnuPG to encrypt secrets, in this chapter

[55]-

mailto:seth@coldcomfort.com
mailto:flora@poste.com
mailto:flora@poste.com

Working with Files and Packages

Using array iteration in templates

In the previous example we saw that you can use Ruby to interpolate different values in
templates depending on the result of an expression. But you're not limited to getting one
value at a time. You can put lots of them in a Puppet array and then have the template
generate some content for each element of the array, using a loop.

How to do it...

Follow these steps to build an example of iterating over arrays:

1. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
$ipaddresses = ['192.168.0.1",
'158.43.128.1",
'10.0.75.207" 1

file { '/tmp/addresslist.txt':
content => template('admin/addresslist.erb')

}

2. Create the file modules/admin/templates/addresslist.erb with the
following contents:

<% @ipaddresses.each do |ip]| -%>
IP address <%= ip %> is present.
<% end -%>

3. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node[cookbook] /Filel[/tmp/addresslist.txt]/
ensure: defined content as '{md5}7adl264ebdael0lbb5ealafef474b3ed!’

Notice: Finished catalog run in 0.08 seconds
4. Check the contents of the generated file:

ubuntu@cookbook: ~/puppet$ cat /tmp/addresslist.txt
IP address 192.168.0.1 is present.
IP address 158.43.128.1 is present.
IP address 10.0.75.207 is present.

5]

Chapter 4

In the first line of the template, we reference the array ipaddresses, and call its each method:

<% @ipaddresses.each do |ip]| -%>

In Ruby, this creates a loop which will execute once for each element of the array. Each time
round the loop, the variable ip will be set to the value of the current element.

In our example, the ipaddresses array contains three elements, so the following line will be
executed three times, once for each element:

IP address <%= 1ip %> is present.

This will result in three output lines:

IP address 192.168.0.1 is present.
IP address 158.43.128.1 is present.
IP address 10.0.75.207 1is present.

The final line ends the loop:

Note that the first and last lines end with -%>, instead of just %> as we saw before. The effect
of the - is to suppress the newline that would otherwise be generated on each pass through
the loop, giving us unwanted blank lines in the file.

Templates can also iterate over hashes, or arrays of hashes:

$interfaces = [{name => 'eth0', ip => '192.168.0.1'},
{name => 'ethl', ip => '158.43.128.1'},
{name => 'eth2', ip => '10.0.75.207'} 1

<% @interfaces.each do |interface| -%>

Interface <%= interface['name'] %> has the address <%= interface['ip']
o

$>.

)

<% end -%>
Interface eth0 has the address 192.168.0.1.

Interface ethl has the address 158.43.128.1.
Interface eth2 has the address 10.0.75.207.

» Using ERB templates, in this chapter

o7}

Working with Files and Packages

Using GnuPG to encrypt secrets

We often need Puppet to have access to secret information, such as passwords or crypto keys,
for it to configure systems properly. But how do you avoid putting such secrets directly into your
Puppet code, where they're visible to anyone who has read access to your repository?

It's a common requirement for third-party developers and contractors to be able to
make changes via Puppet, but they definitely shouldn't see any confidential information.
Similarly, if you're using a distributed Puppet setup like that described in Chapter 1,
Puppet Infrastructure, every machine has a copy of the whole repo, including secrets
for other machines that it doesn't need and shouldn't have. How can we prevent this?

One answer is to encrypt the secrets using the GnuPG tool, so that any secret information in
the Puppet repo is undecipherable (for all practical purposes) without the appropriate key.
Then we distribute the key securely to the people or machines who need it.

Getting ready

First you'll need an encryption key, so follow these steps to generate one. If you already have
a GnuPG key that you'd like to use, go on to the next section:

1. Run the following command. Answer the prompts as shown, except to substitute your
name and e-mail address for mine. When prompted for a passphrase, just hit Enter:

ubuntu@cookbook: ~/puppet$ gpg --gen-key

gpg (GnuPG) 1.4.11; Copyright (C) 2010 Free Software Foundation,
Inc.

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Please select what kind of key you want:
(1) RSA and RSA (default)
(2) DSA and Elgamal
(3) DSA (sign only)
(4) RSA (sign only)
Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 2048
Requested keysize is 2048 bits
Please specify how long the key should be valid.

0 = key does not expire

5]

Chapter 4

<n> = key expires in n days

<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years

Key is valid for? (0) 0
Key does not expire at all

Is this correct? (y/N) y

You need a user ID to identify your key; the software constructs
the user ID

from the Real Name, Comment and Email Address in this form:

"Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: John Arundel

Email address: john@bitfieldconsulting.com
Comment:

You selected this USER-ID:

"John Arundel <john@bitfieldconsulting.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
You need a Passphrase to protect your secret key.

Enter passphrase:

You don't want a passphrase—this is probably a *bad* idea!
I will do it anyway. You can change your passphrase at any time,

using this program with the option "--edit-key".

B ek T 5 L X X R ++++++++++
gpg: key 46055037 marked as ultimately trusted

public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model

gpg: depth: 0 wvalid: 1 signed: 0 trust: 0-, 0q, On, Om, Of,
lu

pub 2048R/46055037 2013-05-06

Key fingerprint = 8C7C CCF5 C9C9 8F1F 8756 3818 E084 73F2
4605 5037

uid John Arundel <john@bitfieldconsulting.com>

sub 2048R/D5B0735B 2013-05-06

s

Working with Files and Packages

2. You may see a message like this if your system is not configured with a source
of randomness:

We need to generate a lot of random bytes. It is a good idea to
perform some other action (type on the keyboard, move the mouse,
utilize the disks) during the prime generation; this gives the

random number generator a better chance to gain enough entropy.

Not enough random bytes available. Please do some other work
to give the 0OS a chance to collect more entropy! (Need 274 more
bytes)

3. Inthis case, run the following command:
ubuntu@cookbook: ~/puppet$ sudo apt-get install haveged

This will install and start the HAVEGE daemon, which helps the system generate
random digits required for your key.

How to do it...

With your encryption key installed on the ubuntu user's keyring (the key generation
process described in the previous section will do this for you), you're ready to set up
Puppet to decrypt secrets:
1. Create the following directory:
ubuntu@cookbook: ~/puppet$ mkdir -p modules/admin/lib/puppet/
parser/functions
2. Create the file modules/admin/lib/puppet/parser/functions/secret.rb
with the following contents:

module Puppet::Parser::Functions

newfunction(:secret, :type => :rvalue) do |args|
“gpg --no-tty -d #{args[o0]}"
end
end

3. Create the file /home/ubuntu/secret _message with the following contents:
The money is buried under the old oak.

4. Encrypt this file with the following command (use the e-mail address you supplied
when creating the GnuPG key):

ubuntu@cookbook: ~/puppet$ gpg -e -r john@bitfieldconsulting.com/
home/ubuntu/secret message

100

Chapter 4

5. Move the resulting encrypted file into your Puppet repo:
ubuntu@cookbook: ~/puppet$ mv /home/ubuntu/secret message.gpg
modules/admin/files/

6. Remove the original (plaintext) file:

ubuntu@cookbook: ~/puppet$ rm /home/ubuntu/secret message

7. Modify your nodes . pp file as follows:

node 'cookbook'

Smessage = secret ('/home/ubuntu/puppet/modules/admin/files/
secret_message.gpg')
notify { "The secret message is: ${message}": }

}
8. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

gpg: encrypted with 2048-bit RSA key, ID D5B0735B, created 2013-
05-06

"John Arundel <john@bitfieldconsulting.com>"

Notice: The secret message is: The money is buried under the old
oak.

First, we've created a custom function to allow Puppet to decrypt the secret files using GnuPG:

module Puppet::Parser::Functions

newfunction(:secret, :type => :rvalue) do |args|
“gpg --no-tty -d #{args[o0]}"
end
end

The preceding code creates a function named secret that takes a file path as argument,
and returns the decrypted text. It doesn't manage encryption keys, so you need to ensure
that the ubuntu user has the necessary key installed. You can check this with:
ubuntu@cookbook: ~/puppet$ gpg --list-secret-keys
/home/ubuntu/.gnupg/secring.gpg

sec 2048R/46055037 2013-05-06

uid John Arundel <john@bitfieldconsulting.com>

ssb 2048R/D5B0735B 2013-05-06

Working with Files and Packages

Having set up the secret function and the required key, we now encrypt a message to this key:

ubuntu@cookbook: ~/puppet$ gpg -e -r john@bitfieldconsulting.com /home/
ubuntu/secret message

This creates an encrypted file which can only be read by someone with access to the secret
key (or Puppet running on a machine which has the secret key).

We then call the secret function to decrypt this file and get the contents:

Smessage = secret ('/home/ubuntu/puppet/modules/admin/files/secret
message.gpg')

You should use the secret function, or something like it, to protect any confidential data in
your Puppet repo: passwords, AWS credentials, license keys, even other secret keys such as
SSL host keys.

You may decide to use a single key which you push to machines as they're built, perhaps as
part of a bootstrap process like that described in the Bootstrapping Puppet with Rake recipe
in Chapter 1, Puppet Infrastructure. For even greater security, you might like to create a new
key for each machine, or group of machines, and encrypt a given secret only for the machines
that need it.

For example, your web servers might need a certain secret that you don't want to be
accessible on any other machine. You could create a key for web servers, and encrypt
the data only for this key.

If you want to use encrypted data with Hiera, there is a GnuPG backend for Hiera available:

http://www.craigdunn.org/2011/10/secret-variables-in-puppet-with-
hiera-and-gpg/

» The Importing configuration data with Hiera recipe in Chapter 8, External Tools and
the Puppet Ecosystem

» The Storing secret data with hiera-gpg recipe in Chapter 8, External Tools and the
Puppet Ecosystem

102

http://www.craigdunn.org/2011/10/secret-variables-in-puppet-with-hiera-and-gpg/
http://www.craigdunn.org/2011/10/secret-variables-in-puppet-with-hiera-and-gpg/
http://www.craigdunn.org/2011/10/secret-variables-in-puppet-with-hiera-and-gpg/

Chapter 4

Installing packages from a third-party

repository

Most often you will want to install packages from the main distribution repo, so a simple
package resource will do:

package { 'exim4': ensure => installed }

Sometimes, though, you need a package which is only found in a third-party repository
(an Ubuntu PPA, for example). Or it might be that you need a more recent version of a
package than that provided by the distribution, which is available from a third party.

On a manually-administered machine, you would normally do this by adding the repo source
configuration to /etc/apt/sources.list.d (and, if necessary, a GPG key for the repo)
before installing the package. We can automate this process easily with Puppet.

How to do it...

In this example we'll use the popular Percona APT repo (Percona is a MySQL consulting firm
who maintain and release their own specialized version of MySQL).

1. Create the file modules/admin/manifests/percona_repo.pp With the
following contents:

Install Percona APT repo
class admin::percona_repo {
exec { 'add-percona-apt-key':
unless => '/usr/bin/apt-key list |grep percona',
command => '/usr/bin/gpg --keyserver hkp://keys.gnupg.net
--recv-keys 1C4CBDCDCD2EFD2A && /usr/bin/gpg -a --export CD2EFD2A
| apt-key add -',
notify => Exec|['percona-apt-update'l],

}

exec { 'percona-apt-update!':
command => '/usr/bin/apt-get update',
require => [File['/etc/apt/sources.list.d/percona.list'],
File['/etc/apt/preferences.d/00percona.pref'l],
refreshonly => true,

}

file { '/etc/apt/sources.list.d/percona.list':
content => 'deb http://repo.percona.com/apt precise main',
notify => Exec|['percona-apt-update'l],

}

Working with Files and Packages

file { '/etc/apt/preferences.d/0O0Opercona.pref':
content => "Package: *\nPin: release o=Percona Development
Team\nPin-Priority: 1001",
notify => Exec|['percona-apt-update'l],

}

2. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
include admin::percona repo

package { 'percona-server-server-5.5":
ensure => installed,
require => Class|['admin::percona repo'],

3. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stage[main]/Admin::Percona repo/Exec[add-percona-apt-
keyl /returns: executed successfully

Notice: /Stage[main] /Admin::Percona repo/File[/etc/apt/
sources.list.d/percona.list] /ensure: defined content as '{md5}
b8d479374497255804ffbf0a7bcdf6c2!

Notice: /Stage[main]/Admin::Percona repo/Exec[percona-apt-update]:
Triggered 'refresh' from 2 events

Notice: /Stagel[main]//Node [cookbook] /Package [percona-server-
server-5.5] /ensure: ensure changed 'purged' to 'present'

Notice: Finished catalog run in 55.16 seconds

In order to install any Percona package, we need first to have the repository configuration
installed on the machine. This is why the percona-server-server-5.5 package
(Percona's version of the standard MySQL server) requires the admin: : percona_repo class:

package { 'percona-server-server-5.5":
ensure => installed,
require => Class|['admin::percona repo'],

}

Chapter 4

So, what does the admin: : percona repo class do?

» Installs the Percona APT key with which the packages are signed

» Configures the Percona repo URL as a file in /etc/apt/sources.list.d
» Runs apt-get update to retrieve the repo metadata

» Adds an APT pin configuration in /etc/apt/preferences.d

First of all, we install the APT key:

exec { 'add-percona-apt-key':

unless => '/usr/bin/apt-key list |grep percona',

command => '/usr/bin/gpg --keyserver hkp://keys.gnupg.net --recv-
keys 1C4CBDCDCD2EFD2A && /usr/bin/gpg -a --export CD2EFD2A | apt-key
add -',

notify => Exec|['percona-apt-update'l],

}

The unless parameter checks the output of apt-key 1ist to make sure that the
Percona key is not already installed, in which case we needn't do anything. Assuming it
isn't, the command runs:

/usr/bin/gpg --keyserver hkp://keys.gnupg.net --recv-keys
1C4CBDCDCD2EFD2A && /usr/bin/gpg -a --export CD2EFD2A | apt-key add -

This command retrieves the key from the GnuPG keyserver, exports it in the ASCII format,
and pipes this into the apt -key add command, which adds it to the system keyring.
You can use a similar pattern for most third-party repos which require an APT signing key.

Having installed the key, we add the repo configuration:

file { '/etc/apt/sources.list.d/percona.list':
content => 'deb http://repo.percona.com/apt precise main',
notify => Exec|['percona-apt-update'l],

}

and then run apt-get update to update the system APT cache with the metadata from the
new repo:

exec { 'percona-apt-update':

command => '/usr/bin/apt-get update',

require => [File['/etc/apt/sources.list.d/percona.list'],
File['/etc/apt/preferences.d/00percona.pref'l],

refreshonly => true,

}

Working with Files and Packages

Finally, we configure the APT pin priority for the repo:

file { '/etc/apt/preferences.d/00percona.pref':

content => "Package: *\nPin: release o=Percona Development Team\
nPin-Priority: 1001",

notify => Exec|['percona-apt-update'l],

}

This ensures that packages installed from the Percona repo will never be superseded by
packages from somewhere else (the main Ubuntu distro, for example). Otherwise you could
end up with broken dependencies and be unable to install the Percona packages automatically.

There's more...

The APT package framework is specific to the Debian and Ubuntu systems, which as we've
said is our reference platform for the book. If you're on a Red Hat or CentOS-based system,
you can use the yumrepo resources to manage RPM repositories directly:

http://docs.puppetlabs.com/references/latest/type.html#yumrepo

See also

» The Distributing directory trees recipe in Chapter 5, Users and Virtual Resources

Building packages automatically from

source

Packages aren't always available, or convenient to create, for the software you need to manage
with Puppet. A source install (downloading the program source files and compiling them on the
target machine) is sometimes the only way to get what you need.

If you have to build a program from source, Puppet can help with this process. The general
procedure is to automate the following steps:

1. Download the source tarball

2. Unpack the tarball

3. Configure and build the program

4

Install the program

106

http://docs.puppetlabs.com/references/latest/type.html#yumrepo
http://docs.puppetlabs.com/references/latest/type.html#yumrepo

Chapter 4

How to do it...

In this example we'll build the popular load testing tool Httperf (there's no need to do this for
production, as there's a distro package available in Ubuntu, but it's a pretty straightforward
example of a source install):

1. Modify your manifests/nodes.pp file as follows

node 'cookbook'
exec { 'install-httperf':
cwd => '/root',
command => '/usr/bin/wget https://httperf.googlecode.com/
files/httperf-0.9.0.tar.gz && /bin/tar xvzf httperf-0.9.0.tar.gz
&& cd httperf-0.9.0 && ./configure && make all && make install',

creates => '/usr/local/bin/httperf’',
timeout => 0,

}
2. Run Puppet (it may take a while):

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node [cookbook]/Exec[install-httperf]/
returns: executed successfully

Notice: Finished catalog run in 147.51 seconds

First, we check whether Httperf has already been installed, by looking for the httperf
executable with creates:

creates => '/usr/local/sbin/httperf’',

Assuming this isn't present, we execute the installation command, which is in five separate
stages, delimited by the && operators. This means that should any subcommand fail, the whole
command will stop and fail. It's a useful construct for making sure each subcommand has
succeeded before going on to the next.

The first stage downloads the source tarball:

/usr/bin/wget https://httperf.googlecode.com/files/httperf-0.9.0.tar.
gz

The second stage unpacks it:

/bin/tar xvzf httperf-0.9.0.tar.gz

Working with Files and Packages

The third stage changes working directory to the source tree:
cd httperf-0.9.0

The fourth stage runs the configure script (this is usually where you will need to specify any
options or customizations):

./configure
The final stage builds and installs the software:
make all && make install

Because the compilation process may take a while, we set a zero t imeout parameter
(Puppet times out exec commands after 5 minutes by default):

timeout => 0,

There's more...

If you have to build quite a few packages from source, it may be worth converting the preceding
recipe into a definition, so that you can use more or less the same code to build each package.

For maximum control and flexibility, you can build packages yourself and distribute them to
machines from a local APT repository. This can also be a cache server for the main distribution
repo (Ubuntu, for example), which may speed up package operations significantly and reduce
bandwidth costs, especially if you're managing a large number of machines.

See also

» The Using definitions recipe in Chapter 3, Writing Better Manifests

Comparing package versions

Package version numbers are odd things. They look like decimal numbers, but they're not: a
version number is often in the form 2. 6. 4, for example. If you need to compare one version
number with another, you can't do a straightforward string comparison: 2.6 .4 would be
interpreted as greater than 2.6 .12. And a numeric comparison won't work because they're
not valid numbers.

Puppet's versioncmp function comes to the rescue. If you pass two things that look like
version numbers, it will compare them and return a value indicating which is the greater:

versioncmp(A, B)

108

Chapter 4

returns:

» Oif Aand B are equal
» Greater than 1 if Ais higher than B
» LessthanOifAislessthanB

How to do it...

Here's an example using the versioncmp function:

1. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
Sapp_version = '1.2.2"'
$min_version = '1.2.10"'

if versioncmp ($app version, $min version) >= 0 {
notify { 'Version OK': }

} else {
notify { 'Upgrade needed': }

}
}

2. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply
Notice: Upgrade needed

3. Now change the value of Sapp version:

Sapp_version = '1.2.14'
4. Run Puppet again:

ubuntu@cookbook: ~/puppet$ papply

Notice: Version OK

We've specified that the minimum acceptable version ($Smin version)is1.2.10.

So in the first example, we want to compare it with Sapp_version of 1.2.2. Asimple
alphabetic comparison of these two strings (in Ruby, for example) would give the wrong
result, but versioncmp correctly determines that 1.2 .2 islessthan 1.2.10 and alerts
us that we need to upgrade.

In the second example, Sapp_versionis now 1.2.14 which versioncmp correctly
recognizes as greater than smin_version and so we get the message Version OK.

Users and
Virtual Resources

There are no big problems, there are just a lot of little problems.
—Henry Ford
In this chapter we will cover:

» Using virtual resources

» Managing users with virtual resources
» Managing users' SSH access

» Managing users' customization files

» Efficiently distributing cron jobs

» Using schedules to limit when resources can be applied
» Using host resources

» Using multiple file sources

» Distributing directory trees

» Cleaning up old files

» Auditing resources

» Temporarily disabling resources

Users and Virtual Resources

Introduction

Users can be a real pain. | don't mean the people, though doubtless that's sometimes true.
But keeping UNIX user accounts and file permissions in sync across a network of machines,
some of them running different operating systems, can be very challenging without some kind
of centralized configuration management.

So a new developer joins the organization and needs an account on every machine, along with
sudo privileges and group memberships, and needs her SSH key authorized for a bunch of
different accounts? The sysadmin who has to take care of this manually will be at the job all day.
The sysadmin who uses Puppet will be done in minutes, and heading out for an early lunch.

In this chapter we'll look at some handy patterns and techniques for managing users and their
associated resources. Users are also one of the most common applications for virtual resources,
so we'll find out all about those. We'll also see how to schedule resources in Puppet, how to
spread cron jobs around the clock for efficiency, how to handle /etc/hosts entries, and how to
have Puppet collect audit data so you know when someone's messing with your machines.

Using virtual resources

Virtual resources in Puppet might seem complicated and confusing, but in fact they're very
simple. They're exactly like regular resources, but they don't actually take effect until they're
realized (in the sense of "made real"). Whereas a regular resource can only be declared once
per node (so two classes can't declare the same resource, for example), a virtual resource
can be realized as many times as you like.

This comes in handy when you need to move applications and services around between
machines. If two applications that use the same resource end up sharing a machine,
they would cause a conflict unless you make the resource virtual.

To clarify this, let's look at a typical situation where virtual resources might come in useful.

You are responsible for two popular web applications, FaceSquare and Flipr. Both are
web apps running on Apache, so they both require the Apache package to be installed.
The definition for FaceSquare might look something like the following:

class app::facesquare {
package { 'apache2-mpm-worker': ensure => installed }

112

Chapter 5

The definition for Flipr might look like this:

class app::flipr
package { 'apache2-mpm-worker': ensure => installed }

}
All is well until you need to consolidate both apps onto a single server:

node 'bigbox' {
include app::facesquare
include app::flipr

}

Now Puppet will complain because you tried to define two resources with the same name:
apache2-mpm-worker

Error: Duplicate declaration: Package[apache2-mpm-worker] is already
declared in file /home/ubuntu/puppet/modules/app/manifests/facesquare.pp
at line 2; cannot redeclare on node cookbook.compute-1l.internal

Error: Duplicate declaration: Package[apache2-mpm-worker] is already
declared in file /home/ubuntu/puppet/modules/app/manifests/facesquare.pp
at line 2; cannot redeclare on node cookbook.compute-1l.internal

You could remove the duplicate package definition from one of the classes, but then it would
fail if you tried to include the app class on another server that didn't already have Apache.

You can get round this problem by putting the Apache package in its own class and then using
include apache everywhere it's needed; Puppet doesn't mind you including the same class
multiple times. But this has the disadvantage that every potentially conflicting resource must
have its own class.

Virtual resources to the rescue. A virtual resource is just like a normal resource, except that it
starts with an @ character:

@package { 'apache2-mpm-worker': ensure => installed }

You can think of it as being like an FYI resource: Puppet, I'm just giving you a description of
this resource, and | don't actually want you to do anything with it yet. Puppet will read and
remember virtual resource definitions, but won't actually create the resource until you say so.

To create the resource, use the realize function:
realize (Package['apache2-mpm-worker'])

You can call realize as many times as you want on the resource and it won't result in a
conflict. So virtual resources are the way to go when several different classes all require the
same resource and they may need to co-exist on the same node.

Users and Virtual Resources

How to do it...

Here's how to build the example using virtual resources:

1. Run the following command:
ubuntu@cookbook: ~/puppet$ mkdir -p modules/app/manifests

2. Create the file modules/app/manifests/facesquare.pp with the
following contents:
class app::facesquare {

include admin::virtual
realize (Package ['apache2-mpm-worker'])

}

3. Create the file modules/app/manifests/flipr.pp with the following contents:

class app::flipr {
include admin::virtual
realize (Package ['apache2-mpm-worker'])

}

4. Create the file modules/admin/manifests/virtual . pp with the
following contents:

class admin::virtual ({
@package { 'apache2-mpm-worker': ensure => installed }

}
5. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
include app::facesquare
include app::flipr

}
6. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]/Admin::Virtual/Package [apache2-mpm-worker]/
ensure: ensure changed 'purged' to 'present'

Notice: Finished catalog run in 7.86 seconds

You define the package as a virtual resource in one place, the admin: : virtual class.
All nodes can include this class and you can put all your virtual packages in it. None of
them will actually be installed on a node until you call realize.

114

Chapter 5

class admin::virtual ({
@package { 'apache2-mpm-worker': ensure => installed }

}

Every class that needs the Apache package can call realize on this virtual resource:
class app::flipr {

include admin::virtual
realize (Package ['apache2-mpm-worker'])

}

Puppet knows, because you made the resource virtual, that you intended multiple references
to the same package, and didn't just accidentally create two resources with the same name.
So it does the right thing.

There's more...

To realize virtual resources you can also use the collection syntax:
Package <| title = "apache2-mpm-worker" |>

The advantage of this syntax is that you're not restricted to the resource name; you could also
use a tag, for example:

Package <| tag = "security" |»>
Or you can just specify all instances of the resource type, by leaving the query section blank:

Package <| |>

Managing users with virtual resources

Users are a great example of a resource which may need to be realized by multiple classes.
Consider the following situation. To simplify administration of a large number of machines,
you have defined classes for two kinds of users: developers and sysadmins. All machines
need to include sysadmins, but only some machines need developer access.

node 'server' {
include user::sysadmins

}

node 'webserver' inherits 'server' {
include user::developers

}

Users and Virtual Resources

But some users may be members of both groups. If each group simply declares its members
as regular user resources, this will lead to a conflict when a node includes both developers
and sysadmins, as in the webserver example.

To avoid this conflict, a common pattern is to make all users virtual resources, defined in
a single class user: :virtual that every machine includes, and then realizing the
users where they are needed. This way, there will be no conflict if a user is a member of
multiple groups.

How to do it...

Follow these steps to create a user: : virtual class:

1.

Run the following command:

ubuntu@cookbook: ~/puppet$ mkdir -p modules/user/manifests

Create the file modules/user/manifests/virtual . pp with the following contents:

class user::virtual (

@user { 'mirmala': ensure => present }
@user { 'sarah': ensure => present }
@user { 'jeff': ensure => present }
@user { 'ayomide': ensure => present }

}

Create the file modules/user/manifests/developers.pp with the
following contents:
class user: :developers {

realize (User['nirmala'])
realize (User['jeff'])

}

Create the file modules/user/manifests/sysadmins. pp with the
following contents:

class user::sysadmins {
realize (User['nirmala'])
realize (User['sarah'])

}

Modify your nodes . pp file as follows:

node 'cookbook'
include user::virtual
include user::sysadmins
include user::developers

Chapter 5
6. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main] /User::Virtual/User[nirmalal /ensure: created
Notice: /Stagel[main] /User::Virtual/User[jeff]/ensure: created
Notice: /Stagel[main] /User::Virtual/User[sarah] /ensure: created

Notice: Finished catalog run in 1.02 seconds

When we include the user: : virtual class, all the users are declared as virtual resources
(because we included the @ symbol):

@user { 'mirmala': ensure => present }
@user { 'sarah': ensure => present }
@user { 'jeff': ensure => present }
@user { 'ayomide': ensure => present }

That is to say, the resources exist in Puppet's catalog; they can be referred to by and linked
with other resources, and they are in every respect identical to regular resources, except that
Puppet doesn't actually create the corresponding users on the machine.

In order for that to happen, we need to call realize on the virtual resources. When we include
the user: : sysadmins class, we get the following code:

realize (User['nirmala'])
realize (User['sarah'])

Calling realize on a virtual resource tells Puppet, "OK, go ahead and create the user now.
This is what it does, as we can see from the run output:

Notice: /Stagel[main] /User::Virtual/User[nirmalal /ensure: created

But Nirmala is in both the developers and the sysadmins class! Won't that mean we end
up calling realize twice on the same resource?

realize (User['nirmala'])
realize (User['nirmala'])

Yes, it does, and that's fine. You're explicitly allowed to realize resources multiple times,
and there will be no conflict. So long as some class, somewhere, calls realize on
Nirmala's account, it will be created. If not, it won't.

Notice that the ayomide user wasn't created in our example. Although we declared it as a
virtual resource in user: : virtual along with the others, no class we include actually realizes
ayomide, S0 it remains a virtual resource and Puppet doesn't create it on the machine.

Users and Virtual Resources

There's more...

When you use this pattern to manage your own users, every node should include the

user: :virtual class, as a part of your basic housekeeping configuration. This class will
declare all users (as virtual) in your organization or site. This should also include any users
who exist only to run applications or services (such as Apache, www-data, or deploy, for
example). Then you can realize them as needed on individual nodes or in specific classes.

For production use, you'll probably also want to specify a UID and GID for each user or group,
so that these numeric identifiers are synchronized across your network. You can do this
using the uid and gid parameters for the user resource. If you don't specify a user's UID,
for example, you'll just get whatever is the next ID number available on a given machine, so
the same user on different machines will have a different UID. This can lead to permission
problems when using shared storage, or moving files around between machines.

» Using virtual resources, in this chapter
» Managing users' customization files, in this chapter

Managing users’' SSH access

A sensible approach to access control for servers is to use named user accounts with
passphrase-protected SSH keys, rather than having users share an account with a
widely known password. Puppet makes this easy to manage thanks to the built-in
ssh authorized key type.

To combine this with virtual users, as described in the previous section, you can create
define which includes both the user and ssh_authorized key. This will also come
in useful for adding customization files and other per-user resources.

How to do it...

Follow these steps to extend your virtual users class to include SSH access:

1. Modify your modules/user/manifests/virtual.pp file as follows (if you haven't
created this yet, work through the Managing users with virtual resources section first):

class user::virtual ({
define ssh _user (Skey)
user { $name:
ensure => present,
managehome => true,

Chapter 5

}

file { "/home/${name}/.ssh":
ensure => directory,
mode => '0700"',
owner => Sname,

}

ssh_authorized key { "${name} key":

key => Skey,
type => 'ssh-rsa',
user => S$name,

require => File["/home/${name}/.ssh"],

}
}

@ssh_user { 'aliza':

key => 'AAAAB3NzaClyc2EAAAABIWAAAIEA3ATENg+GWACa
2BzeqgTdGnJdhNoBer8x6pfWkzNzeM8Zx7/2Tf2pl 7kHdbsiTXEUawg
zXZQtZzt/j30ya+PZjcRpWNRzprSmd2UXEEPTgDWILgY5S2B80og/
NyzWaIYPsKoatcgC7VgYHplcThbzEhGu8BsoEVBGYU3IRy5RkAcZik=",

}
}

Modify your modules/user/manifests/sysadmins. pp file as follows:

class user::sysadmins {
search User::Virtual

realize (Ssh user(['aliza'l])
}
Modify your manifests/nodes.pp file as follows:

node 'cookbook'
include user::virtual
include user::sysadmins

}
Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]/User::Virtual/User::Virtual
User[alizal] /ensure: created

Notice: /Stagel[main]/User::Virtual/User::Virtual
File[/home/aliza/.ssh] /ensure: created

Notice: /Stagel[main]/User::Virtual/User::Virtual
Ssh authorized keylaliza keyl /ensure: created

Notice: Finished catalog run in 0.29 seconds

::Ssh user[alizal/
::Ssh user[alizal/

::Ssh user[alizal/

Users and Virtual Resources

For each user in our user: :virtual class, we need to create:

» The user account itself
» The user's home directory and . ssh directory
» Theuser's .ssh/authorized keys file

We could declare separate resources to implement all of these for each user, but it's much
easier to create a definition instead which wraps them into a single resource:

define ssh _user (Skey) {
user { $name:
ensure => present,
managehome => true,

}

file { "/home/${name}/.ssh":
ensure => directory,
mode => '0700"',

owner => Sname,

ssh_authorized key { "${name} key":

key => Skey,
type => 'ssh-rsa',
user => S$name,

require => File["/home/${name}/.ssh"],

}

You can see that the user account is implemented by the user resource. The user's home
directory is created by the user's managehome parameter, which if true causes Puppet to
create the directory /home/$ {name}.

Finally, the authorized keys file will be created by the ssh_authorized key resource.
All we need to pass in is the value for key. Here's where we do that while declaring the aliza
user (as virtual, thanks to the @ prefix):

@ssh _user { 'aliza':

key => 'AAAAB3NzaClyc2EAAAABIWAAAIEA3ATQENg+GWACa2
BzeqgTdGnJdhNoBer8x6pfWkzNzeM8Zx7/2Tf2pl 7kHdbsiTXEUawg
zXZQtZzt/j30ya+PZjcRpWNRzprSmd2UXEEPTgDWILgY5S2B80og/
NyzWaIYPsKoatcgC7VgYHplcThbzEhGu8BsoEVBGYU3IRy5RkAcZik=",

}

120

Chapter 5

Now, everything's set. We just need to call realize on aliza for all these resources to
take effect:

realize (Ssh user(['aliza'])

Notice that this time the virtual resource we're realizing is not simply the user resource,
as before, but the ssh_user definition we created, which includes the user and the related
resources needed to set up SSH access:

Notice: /Stagel[main]/User::Virtual/User::Virtual::Ssh user[aliza]/
User [alizal /ensure: created

Notice: /Stagel[main]/User::Virtual/User::Virtual::Ssh user[aliza] /Filel[/
home/aliza/.ssh] /ensure: created

Notice: /Stagel[main]/User::Virtual/User::Virtual::Ssh user([aliza]/Ssh_
authorized keylaliza key] /ensure: created

What's the search User: : Virtual syntax? As you know, we normally
refer to definitions and classes using their full namespace path, in this case,
we would need to refer to Ssh_user as User: :Virtual::Ssh user
(module User, class Virtual, definition Ssh_user).

%;%‘ To save ourselves a lot of typing, we can tell Puppet to search the
User: :Virtual namespace for names we mention thereafter.
That's what the search keyword does. You can use this wherever
you would otherwise have to specify an unwieldy namespace path
for a resource.

There's more...

Of course you can add whatever resources you like to the ssh_user definition, to have
Puppet automatically create them for new users. We'll see an example of this in the next
section, Managing users' customization files.

Managing users’' customization files

Users, like cats, often feel the need to mark their territory. Unlike most cats, though,
users tend to customize their shell environments, terminal colors, aliases, and so forth.
This is usually achieved by a number of dotfiles in their home directory, for example,
.bash profileor .emacs.

You can use Puppet to synchronize and update each user's dotfiles across a number of
machines by extending the virtual user setup we've developed throughout this chapter.

Users and Virtual Resources

How to do it...

Here's what you need to do:

1. Modify the modules/user/manifests/virtual.pp file as follows:

class user::virtual ({
define user dotfile($Suser) {
$source = regsubst ($name, "*/home/${user}/.(.*)$", "puppet:///
modules/user/${user}-\\1")
file { $name:
source => S$Ssource,
owner => Suser,
group => Suser,

}

define ssh user ($key, $dotfile='") {
user { $name:
ensure => present,
managehome => true,
shell => '/bin/bash’',

file { "/home/${name}/.ssh":
ensure => directory,
mode => '0700"',
owner => Sname,

ssh_authorized key { "${name} key":

key => Skey,
type => 'ssh-rsa',
user => Sname,

require => File["/home/${name}/.ssh"],

if $dotfile {
$filepath = regsubst ($dotfile, '™ (.*)$',"/home/${name}/.\\O",
G
user dotfile { $filepath:
user => S$name,

122

Chapter 5

@ssh_user { 'jamil':
key => 'xyz',
dotfile => ['bashrc', 'vimrc'],

@ssh_user { 'scarlet':
key => 'abc',
dotfile => ['rvmrc', 'emacs'],

}

Modify the file modules/user/manifests/sysadmins.pp as follows:

class user::sysadmins {
search User::Virtual

realize (Ssh user['jamil'])
realize (Ssh user|['scarlet'])

}

Run the following command:
ubuntu@cookbook: ~/puppet$ mkdir -p modules/user/files

Create the file modules/user/files/jamil-bashrc with the following contents:

echo Hello, world.

Create the file modules/user/files/jamil-vimrc with the following contents:

syn on

Create the file modules/user/files/scarlet-rvmrc with the following contents:

rvm use 1.9.3

Create the file modules/user/files/scarlet -emacs with the following contents:

(setqg inhibit-startup-screen t)

Make sure your manifests/nodes.pp file reads as follows:

node 'cookbook'
include user::virtual
include user::sysadmins

Users and Virtual Resources

9.

Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]/User::Virtual/User::Virtual::Ssh
user [scarlet] /User[scarlet] /ensure: created

Notice: /Stagel[main]/User::Virtual/User::Virtual::Ssh
user [scarlet] /File[/home/scarlet/.ssh] /ensure: created

Notice: /Stagel[main]/User::Virtual/User::Virtual::Ssh

user [scarlet] /User::Virtual::User dotfilel[/home/scarlet/.rvmrcl/
File[/home/scarlet/.rvmrc] /ensure: defined content as '{md5}393765
cc540ad44696266beclae38b5a’

Notice: /Stagel[main]/User::Virtual/User::Virtual::Ssh

user [scarlet] /User::Virtual::User dotfilel[/home/scarlet/.emacs]/
File[/home/scarlet/.emacs] /ensure: defined content as '{md5}
fadb5fcf67fae2377c8d4e6e92344e0c’

Notice: /Stagel[main]/User::Virtual/User::Virtual::Ssh
user [scarlet] /Ssh_authorized keyl[scarlet keyl] /ensure: created

Notice: /Stagel[main]/User::Virtual/User::Virtual::Ssh user[jamil]/
User[jamil] /ensure: created

Notice: /Stagel[main]/User::Virtual/User::Virtual::Ssh user[jamil]/
File[/home/jamil/.ssh] /ensure: created

Notice: /Stagel[main]/User::Virtual/User::Virtual::Ssh user[jamil]/
Ssh authorized keyl[jamil keyl]/ensure: created

Notice: /Stagel[main]/User::Virtual/User::Virtual::Ssh user[jamil]/
User::Virtual::User dotfilel[/home/jamil/.bashrc]/File[/home/
jamil/.bashrc] /content: content changed '{md5}8da3déblfdbdfe97c6be
8adadce98172' to '{md5}300f56a869ff4lcelca7a36cd64dfla3"

Notice: /Stagel[main]/User::Virtual/User::Virtual::Ssh user[jamil]/
User::Virtual::User dotfilel[/home/jamil/.bashrc]/File[/home/
jamil/.bashrc] /mode: mode changed '0644' to '0664'

Notice: /Stagel[main]/User::Virtual/User::Virtual::Ssh

user [jamil] /User::Virtual::User dotfile[/home/jamil/.vimrc]/
File[/home/jamil/.vimrc] /ensure: defined content as '{md5}
cb1778d0el1588852145eaece9a86c239"

Notice: Finished catalog run in 0.87 seconds

We've added a new user dotfile definition:

define user dotfile(Suser) ({

$source = regsubst ($name, "*/home/${user}/.(.*)$", "puppet:///

modules/user/${user}-\\1")

file { $name:

124

Chapter 5

source => S$source,
owner => Suser,
group => Suser,

This takes a full path to a user's dotfile as the $name parameter, and the appropriate username
as Suser. For example, we might call this definition as follows:

user dotfile { '/home/john/.muttrc':
user => 'john',

}

This will look for a file named modules/user/files/john-muttrc and deploy it to the node
as /home/john/.muttrc. Here's how that works.

$source = regsubst ($name, "*/home/${user}/.(.*)$", "puppet:///modules/
user/${user}-\\1")

This nasty-looking regsubst call takes the dotfile path (/home/john/.muttrc in
our example) and transforms it into the source parameter Puppet needs to find the file
(modules/user/files/john-muttrc). For more information about regsubst,
see the Using regular expression substitutions section in Chapter 2, Puppet Language
and Style.

So, how do we specify dotfiles for individual users?

@ssh_user { 'jamil':
key => 'xyz',
dotfile => ['bashrc', 'vimrc'],

}

We've passed in an array of strings to the dotfile parameter of our ssh_user definition.
Here's where that gets expanded into resource declarations:

if $dotfile {
$filepath = regsubst ($dotfile,'*(.*)$',"/home/${name}/.\\O", 'G")
user dotfile { $filepath:
user => S$name,

}
}

So, if a value is passed in for dot £i1le, we first of all transform it into the full path for dotfile
(bashrc becomes /home/jamil/.bashrc) using regsubst. Then we declare an instance
of user dotfile

user dotfile { '/home/jamil/.bashrc':
user => 'jamil',

}

Users and Virtual Resources

Why do we need these strange regsubst calls? Couldn't we just pass in
the name of the dotfile and the name of the user? The answer is complicated,
but has to do with the way Puppet handles arrays of resources. Each resource
title must be unique, so the name of the dotfile resource must include at least
the username and the filename. We might try to interpolate these in a string,
as follows:

user dotfile { "${name}-${dotfile}": }

But this fails when $dotfile is an array. When you reference an array
variable in a string context, Puppet simply concatenates all the array
elements together, and we'd end up with:
L user dotfile { 'jamil-bashrcvimrc': }

which clearly isn't what we want. We wanted Puppet to declare two
resources, one for Jamil's .bashrc and one for his . vimrc. To do

that, we have to go via this slightly weird route, to transform the string
before referring to it in a resource context.

If this doesn't make much sense to you, don't worry; it really doesn't
matter. The important thing is that a trick like this lets us declare multiple
user_ dotfile resources from an array of names, which otherwise we
wouldn't be able to do. The way Puppet handles arrays may change in the
future to make this unnecessary, but for now we need this workaround.

» Managing users with virtual resources, in this chapter

Efficiently distributing cron jobs

When you have many servers executing the same cron job, it's usually a good idea not to run
them all at the same time. If the jobs all access a common server (for example, when running
backups), it may put too much load on that server, and even if they don't, all the servers will
be busy at the same time, which may affect their capacity to provide other services.

As usual, Puppet can help; this time using the inline template function to calculate a
unique time for each job.

How to do it...

Here's how to have Puppet schedule the same job at a different time for each machine:

126

Chapter 5

1. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
cron { 'run-backup':

ensure => present,

command => '/usr/local/bin/backup',

hour => inline template('<%= @hostname.sum % 24 %>'),
minute => '00',

}

2. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node [cookbook] /Cron[run-backup]/ensure:
created

Notice: Finished catalog run in 0.24 seconds
3. Check the cron tab to see how the job has been configured:

ubuntu@cookbook: ~/puppet$ sudo crontab -1

HEADER: This file was autogenerated at Mon May 20 17:14:51 +0000
2013 by puppet.

HEADER: While it can still be managed manually, it is definitely
not recommended.

HEADER: Note particularly that the comments starting with
'Puppet Name' should

HEADER: not be deleted, as doing so could cause duplicate cron
jobs.

Puppet Name: run-backup
0 15 * * * /usr/local/bin/backup

We want to choose a random hour for each cron job; that is, not genuinely random (or it would
change every time Puppet runs), but simply different for each host (or as widely distributed
across the day as possible).

We can do this by using Ruby's sum method which computes a numerical value from a
string which is unique to the machine (in this case, the machine's hostname). The value
will be the same each time, so although the value looks random, it will not change when
Puppet runs again.

Users and Virtual Resources

sum Will generate a large integer (in the case of the string cookbook, the sum is 855),
and we want values for hour between O and 23, so we use Ruby's % (modulo) operator to
restrict the result to this range. We should get a reasonably good (though not statistically
uniform) distribution of values, depending on your hostnames.

If all your machines have the same name (it does happen) don't expect this trick to work! In this
case, you can use some other string which is unique to the machine, such as ipaddress.

If you have several cron jobs per machine and you want to run them a certain number of hours
apart, add this number to the hostname . sum resource before taking the modulus. Let's say
we want to run the dump_database job at some arbitrary time and the run_backup job an
hour later.

cron { 'dump-database':

ensure => present,

command => '/usr/local/bin/dump database',

hour => inline template('<%= @hostname.sum % 24 %>'),
minute => '00',

}

cron { 'run-backup':

ensure => present,

command => '/usr/local/bin/backup',

hour => inline template('<%= (@hostname.sum + 1) % 24 %>'),
minute => '00',

}

The two jobs will end up with different hour values for each machine Puppet runs on, but
run_backup Wwill always be one hour after dump database.

» The Running Puppet from cron recipe in Chapter 1, Puppet Infrastructure

128

Chapter 5

Using schedules to limit when resources

can be applied

So far, we've looked at what Puppet can do, and the order that it does things in, but not when
it does them. One way to control this is to use the schedule metaparameter (a parameter
you can apply to any type of resource).

When you need to limit the number of times a resource is applied within a specified period,
schedule can help. For example:

exec { "/usr/bin/apt-get update":
schedule => daily,

}

The most important thing to understand about schedule is that it can only stop a resource
being applied. It doesn't guarantee that the resource will be applied with a certain frequency.
For example, the exec resource shown above has schedule => daily, but this just
represents an upper limit on the number of times the exec resource can run per day. It won't
be applied more than once a day. If you don't run Puppet at all, the resource won't be applied
at all.

That being so, schedule is best used to restrict resources from running when they shouldn't,
or don't need to; for example, you might want to make sure that apt -get update isn't run
more than once an hour. There are some built-in schedules available for you to use:

» hourly
» daily

» weekly
» monthly
» never

However, you can modify these and create your own custom schedules, using schedule
resources. We'll see how to do this in the following example. Let's say we want to make sure
that an exec resource representing a maintenance job won't run during office hours, when it
might interfere with production.

Users and Virtual Resources

How to do it...

In this example, we'll create a custom schedule and assign this to the resource:

1. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
schedule { 'outside-office-hours':
period => daily,
range => ['17:00-23:59','00:00-09:00'],
repeat => 1,

}

exec { '/bin/echo Doing some maintenance':
schedule => 'outside-office-hours',

}

2. Run Puppet. What you'll see will depend on the time of day. If it's currently outside the
office hours period you've defined, Puppet will apply the resource:
ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node [cookbook]/Exec[/bin/echo Doing some
maintenance] /returns: executed successfully

Notice: Finished catalog run in 0.36 seconds
3. If the time is within the office hours period, Puppet will do nothing;:

ubuntu@cookbook: ~/puppet$ papply

Notice: Finished catalog run in 0.11 seconds

A schedule consists of three bits of information:

» Theperiod (hourly, daily, weekly, or monthly)
» The range (defaults to the whole period, but can be a smaller part of it)
» The repeat count (how often the resource is allowed to be applied within the range)

Our custom schedule named outside-office-hours supplies these three parameters:

schedule { 'outside-office-hours':
period => daily,
range => ['17:00-23:59','00:00-09:00'],
repeat => 1,

}

130

Chapter 5

The periodis daily, and the range is defined as an array of two time intervals:

17:00-23:59
00:00-09:00

The schedule named outside-office-hours is now available for us to use with any
resource, just as though it were built into Puppet like the daily or hourly schedules. In our
example, we assign this schedule to the exec resource using the schedule metaparameter:

exec { '/bin/echo Doing some maintenance':
schedule => 'outside-office-hours',

}

Without this schedule parameter, the resource would be applied every time Puppet runs.
With it, Puppet will check the following to decide whether or not to apply the resource:

» Whether the time is in the permitted range
» Whether the resource has already been run the maximum permitted number of times
in this period

For example, let's consider what happens if Puppet runs at 4 p.m., 5 p.m., and 6 p.m.on a
given day:

» 4 p.m.: It's outside the permitted time range, so Puppet will do nothing

» 5 p.m.:It'sinside the permitted time range, and the resource hasn't been run yet in
this period, so Puppet will apply the resource

» 6 p.m.: It's inside the permitted time range, but the resource has already been run
the maximum number of times in this period, so Puppet will do nothing.

And so on until the next day.

There's more...

The repeat parameter governs how many times the resource will be applied given the other
constraints of the schedule. For example, to apply a resource no more than six times an hour,
use a schedule as follows:

period => hourly,
repeat => 6,

Remember that this won't guarantee that the job is run six times an hour. It just sets an
upper limit; no matter how often Puppet runs or anything else happens, the job won't be
run if it has already run six times this hour. If Puppet only runs once a day, the job will just
be run once. So schedule is best used for making sure things don't happen at certain
times (or don't exceed a given frequency).

Users and Virtual Resources

Using host resources

It's not always practical or convenient to use DNS to map your machine names to IP addresses,
especially in cloud infrastructures where those addresses may be changing all the time.
However, if you use entries in the /etc/hosts file instead, you then have the problem of
how to distribute these entries to all machines and keep them up to date.

Here's a better way to do it; Puppet's host resource type controls a single /etc/hosts entry,
and you can use this to map a hostname to an IP address easily across your whole network.
For example, if all your machines need to know the address of the main database server,
you can manage it with a host resource.

How to do it...

Follow these steps to create an example host resource:

1. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
host { 'bitfieldconsulting.com':
ensure => present,
ip => '109.74.195.241",
target => '/etc/hosts',
}
}

2. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stage[main]//Node [cookbook] /Host[bitfieldconsulting.com]/
ensure: created

Notice: Finished catalog run in 0.21 seconds

Puppet will check the target file (usually /etc/hosts) to see if the host entry already
exists, and if not, add it. If an entry for that hostname already exists with a different address,
Puppet will change the address to match the manifest.

There's more...

Organizing your host resources into classes can be helpful. For example, you could put the
host resources for all your DB servers into one class called admin: : dbhosts which is
included by all web servers.

132

Chapter 5

Where machines may need to be defined in multiple classes (for example, a database server
might also be a repository server), virtual resources can solve this problem. For example,
you could define all your hosts as virtual in a single class:

class admin::allhosts {
@host { 'dbl.bitfieldconsulting.com':

}
}

and then realize the hosts you need in the various classes:

class admin: :dbhosts {
realize (Host['dbl.bitfieldconsulting.com'])

}

class admin::repohosts {
realize (Host['dbl.bitfieldconsulting.com'])

}

Using multiple file sources

A neat feature of Puppet's £ile resource is that you can specify multiple values for the source
parameter. Puppet will search them in order. If the first source isn't found, it moves on to the
next, and so on. You can use this to specify a default substitute if the particular file isn't present,
or even a series of increasingly generic substitutes.

How to do it...

This example demonstrates using multiple file sources:

1. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
file { '/tmp/greeting’:
source => ['puppet:///modules/admin/hello.txt',
'puppet:///modules/admin/generic.txt'],

}
}

2. Create the file modules/admin/files/hello. txt with the following contents:

Hello, world.

3. Create the file modules/admin/files/generic. txt with the following contents:

All-purpose greeting, sentient beings.

Users and Virtual Resources

4. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node [cookbook] /File[/tmp/greeting]/ensure:
defined content as '{md5}54098b367d2e87b078671fad4afb9dbb"

Notice: Finished catalog run in 0.15 seconds

5. Check the contents of the /tmp/greeting file:
ubuntu@cookbook: ~/puppet$ cat /tmp/greeting
Hello, world.

6. Now remove the hello. txt file from Puppet:
ubuntu@cookbook: ~/puppet$ rm modules/admin/files/hello.txt

7. Rerun Puppet:
ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node[cookbook] /File[/tmp/greeting] /content:
content changed '{md5}54098b367d2e87b078671fad4afb9dbb' to '{md5}6
b0734a22d9796e299baclebabceedlf!

Notice: Finished catalog run in 0.11] seconds
8. Check the contents of /tmp/greeting again:

ubuntu@cookbook: ~/puppet$ cat /tmp/greeting

All-purpose greeting, sentient beings.

On the first Puppet run, it searches for available file sources in the order given:

source => ['puppet:///modules/admin/hello.txt',
'puppet:///modules/admin/generic.txt'],

The file hello. txt is first in the list, and is present, so Puppet uses that as the source for
/tmp/greeting:

Hello, world.

On the second Puppet run, hello. txt is missing, so Puppet goes on to look for the next file,
generic.txt. This is present, so it becomes the source for /tmp/greeting:

All-purpose greeting, sentient beings.

Chapter 5

There's more...

You can use this trick anywhere you have a £ile resource. For example, some nodes might
need machine-specific configuration, but not others, so you could do something like:

file { '/etc/stuff.cfg':
source => ["puppet:///modules/admin/${::hostname}.cfg",
'puppet:///modules/admin/generic.cfg'],

}

Then you put the default configuration in generic.cfg. If machine cartman needs a special
config, just put it in the file cartman. cfg. This will be used in preference to the generic file
because it is listed first in the array of sources.

See also

» The Passing parameters to classes recipe in Chapter 3, Writing Better Manifests

Distributing directory trees

Puppet's £ile resource has another trick. It can deploy not just a single file, but a whole
directory; in fact, a whole tree of files, directories, subdirectories, and so on, all with just
one parameter, recurse.

How to do it...

Here's how to use the recurse parameter with £ile resources:

1. Create a suitable directory tree in the Puppet repo:

ubuntu@cookbook: ~/puppet$ mkdir -p modules/admin/files/tree/a/b/c/
d/e/f

2. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
file { '/tmp/tree':
source => 'puppet:///modules/admin/tree’,
recurse => true,

}
}

Users and Virtual Resources
3. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node [cookbook]/Filel[/tmp/treel] /ensure:
created

Notice: /File[/tmp/tree/al/ensure: created

Notice: /File[/tmp/tree/a/bl/ensure: created

Notice: /Filel[/tmp/tree/a/b/c]l/ensure: created
Notice: /File[/tmp/tree/a/b/c/d] /ensure: created
Notice: /Filel[/tmp/tree/a/b/c/d/el/ensure: created
Notice: /File[/tmp/tree/a/b/c/d/e/f]/ensure: created

Notice: Finished catalog run in 0.15 seconds

If a £ile resource has the recurse parameter set on it, and it is a directory, Puppet will
deploy not only the directory itself, but all its contents (including subdirectories and their
contents). This is a great way to put a whole tree of files onto a node, or to quickly create a
large number of paths using a single resource.

Sometimes you want to deploy files to an existing directory, but remove any files which aren't
managed by Puppet. For example, in Ubuntu's /etc/apt/sources.list.d directory,
you might want to make sure there are no files present which don't come from Puppet.

The purge parameter will do this for you. Define the directory as a resource in Puppet:

file { '/etc/apt/sources.list.d':
purge => true,
recurse => true,

}

The combination of recurse and purge will remove all files and subdirectories in /etc/apt/
sources.list.d that are not deployed by Puppet. You can then deploy your own files to that
location using a separate resource:

file { '/etc/apt/sources.list.d/bitfield.list':
content => "deb http://packages.bitfieldconsulting.com/ precise
main\n",

}

136

Chapter 5

If there are subdirectories which contain files you don't want to purge, just define the
subdirectory as a Puppet resource, and it will be left alone:

file { '/etc/exim4/conf.d/acl':
ensure => directory,

}

. Be aware that, at least in current implementations of Puppet, recursive
a file copies can be quite slow and place a heavy memory load on the
s server. If the data doesn't change very often, it might be better to deploy

and unpack a tar.gz file instead.

Cleaning up old files

Puppet's tidy resource will help you clean up old or out-of-date files, reducing disk usage.
For example, if you have Puppet reporting enabled as described in the section on generating
reports, you might want to regularly delete old report files.

How to do it...

Let's get started:

1. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
tidy { '/var/lib/puppet/reports':
age => 'lw',
recurse => true,
}
}

2. Run Puppet:

Notice: /Stagel[main]//Node [cookbook]/Tidy[/var/lib/puppet/
reports] : Tidying File[/var/lib/puppet/reports/cookbook.compute-1.
internal/201303151215.yaml]

Notice: /Stagel[main]//Node [cookbook]/Tidy[/var/lib/puppet/
reports] : Tidying File[/var/lib/puppet/reports/cookbook.compute-1.
internal/201305151327.yaml]

Notice: /Stagel[main]//Node [cookbook]/Tidy[/var/lib/puppet/
reports] : Tidying File[/var/lib/puppet/reports/cookbook.compute-1.
internal/201304121116.yaml]

Users and Virtual Resources

Notice: /Stagel[main]//Node [cookbook]/Tidy[/var/lib/puppet/
reports] : Tidying File[/var/lib/puppet/reports/cookbook.compute-1.
internal/201304081612.yaml]

Notice: /Stagel[main]//Node [cookbook]/Tidy[/var/lib/puppet/
reports] : Tidying File[/var/lib/puppet/reports/cookbook.compute-1.
internal/201305161117.yaml]

Notice: /Filel[/var/lib/puppet/reports/cookbook.compute-1.
internal/201303151215.yaml] /ensure: removed

Notice: /Filel[/var/lib/puppet/reports/cookbook.compute-1.
internal/201305151327.yaml] /ensure: removed

Notice: /Filel[/var/lib/puppet/reports/cookbook.compute-1.
internal/201304121116.yaml] /ensure: removed

Notice: /Filel[/var/lib/puppet/reports/cookbook.compute-1.
internal/201304081612.yaml] /ensure: removed

Notice: /Filel[/var/lib/puppet/reports/cookbook.compute-1.
internal/201305161117.yaml] /ensure: removed

Notice: Finished catalog run in 1.47 seconds

Puppet searches the specified path for any files matching the age parameter; in this case,
1w (one week). It also searches subdirectories (recurse => true).

Any files matching your criteria will be deleted.

There's more...

You can specify file ages in seconds, minutes, hours, days, or weeks by using a single character
to specify the time unit, as follows:

» 60s
» 180m
» 24h
» 30d
> 4w

138

Chapter 5

You can specify that files greater than a given size should be removed, as follows:

size => '100m',

removes files of 100 megabytes and over. For kilobytes, use k, and for bytes, use b.

: age => "id",
size => "512k",

Note that if you specify both age and size parameters, they are
treated as independent criteria. For example, if you specify:

Puppet will remove all files which are either at least one day old, or at
least 512 KB in size. _

Auditing resources

Dry run mode, using the - -noop switch, is a simple way to audit any changes to a machine
under Puppet's control. However, Puppet also has a dedicated audit feature, which can report
changes to resources or specific attributes.

How to do it...

Here's an example showing Puppet's auditing capabilities:

1.

Modify your manifests/nodes.pp file as follows:

node 'cookbook'
file { '/etc/passwd':
audit => [owner, mode 1],
}
}

Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node[cookbook]/Filel/etc/passwd] /owner:
audit change: newly-recorded value 0

Notice: /Stagelmain]//Node[cookbook] /Filel/etc/passwd] /mode: audit
change: newly-recorded value 644

Notice: Finished catalog run in 0.27 seconds

Users and Virtual Resources

The audit metaparameter tells Puppet that you want to record and monitor certain things
about the resource. The value can be a list of the parameters which you want to audit.

In this case, when Puppet runs, it will now record the owner and mode of the /etc/passwd
file. On future runs, Puppet will spot if either of these have changed. For example, if you run:

ubuntu@cookbook: ~/puppet$ sudo chmod 666 /etc/passwd
Puppet will pick up this change and log it on the next run:

Notice: /Stagel[main]//Node [cookbook] /Filel[/etc/passwd] /mode: audit
change: previously recorded value 0644 has been changed to 0666

There's more...

This feature is very useful for auditing large networks for any changes to machines, either
malicious or accidental. It's also very handy for keeping an eye on things which aren't
managed by Puppet, for example, application code on production servers. You can read
more about Puppet's auditing capability here:

http://puppetlabs.com/blog/all-about-auditing-with-puppet/
If you just want to audit everything about a resource, use all:

file { '/etc/passwd':
audit => all,

}

» The Doing a dry run recipe in Chapter 9, Monitoring, Reporting, and Troubleshooting

Temporarily disabling resources

Sometimes you want to disable a resource for the time being, so that it doesn't interfere with
other work. For example, you might want to tweak a configuration file on the server until you
have the exact settings you want, before checking it into Puppet. You don't want Puppet to
overwrite it with an old version in the meantime, so you can set the noop metaparameter on
the resource:

noop => true,

140

Chapter 5

How to do it...

This example shows you how to use the noop metaparameter.

1. Modify your manifests/nodes.pp file as follows

node 'cookbook'
file { '/tmp/test.cfg':
content => "Hello, world!\n",
noop => true,

}
}

2. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node[cookbook]/File[/tmp/test.cfgl/ensure:
current value absent, should be file (noop)

Notice: Node[cookbook]: Would have triggered 'refresh' from 1
events

Notice: Class[Main]: Would have triggered 'refresh' from 1 events
Notice: Stagel[main]: Would have triggered 'refresh' from 1 events

Notice: Finished catalog run in 0.24 seconds

3. Now remove the noop parameter:

node 'cookbook'
file { '/tmp/test.cfg':
content => "Hello, world!\n",

}

4. Run Puppet again:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node [cookbook]/File[/tmp/test.cfgl/ensure:
defined content as '{md5}746308829575e17¢c3331bbcb00c0898b"

Notice: Finished catalog run in 0.24 seconds

The first time we ran Puppet, the noop metaparameter was set to true, so for this particular
resource it's as if you had run Puppet with the - -noop flag. Puppet noted that the resource
would have been applied, but otherwise did nothing.

In the second case, with noop removed, the resource is applied as normal.

Applications

The best software in the world only sucks. The worst software is significantly worse
than that.

—Luke Kanies
In this chapter we will cover:

» Managing Apache servers

» Creating Apache virtual hosts
» Creating Nginx virtual hosts

» Managing MySQL

» Managing Ruby

Introduction

Without applications, a server is just a very expensive space heater. In this chapter, I'll present
some recipes for managing some specific software with Puppet: MySQL, Apache, Nginx,

and Ruby. | hope the recipes will be useful to you in themselves. However, the patterns and
techniques they use are applicable to almost any software, so you can adapt them to your own
purposes without much difficulty.

One point to watch (if you're not using Ubuntu 12) is that package names will often be different
from one Linux distribution to the next (mysqgld instead of mysqgl -server, for example).

So check with your distribution to find out the correct name for a given package. The name

of the service and the location of the config files for a package may also vary depending on

the packager's preferences. The logic of the Puppet manifests, however, shouldn't be affected
by these local differences. If you need to make your manifest portable across distributions,

you could use a mechanism like Hiera to abstract out these variations (see the recipe Importing
configuration data with Hiera in Chapter 8, External Tools and the Puppet Ecosystem).

Applications

Managing Apache servers

Apache is the world's favorite web server, so it's highly likely that part of your Puppetly duties
will include installing and managing Apache.

How to do it...

Here's some working code to get you started:

1. Run the following command:
ubuntu@cookbook: ~/puppet$ mkdir -p modules/apache/manifests

2. Create the file modules/apache/manifests/init .pp with the following
contents:

Manage Apache
class apache ({
package { 'apache2-mpm-prefork': ensure => installed }

service { 'apache2':
ensure => running,
enable => true,
require => Package['apache2-mpm-prefork'],

}

3. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
include apache

}

4. Apache and Nginx both want to listen on the same port, so make sure Nginx is
stopped if it happens to be installed:

ubuntu@cookbook: ~/puppet$ sudo service nginx stop

Stopping nginx: nginx.
5. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main] /Apache/Package[apache2-mpm-prefork]/ensure:
ensure changed 'purged' to 'present'

Notice: Finished catalog run in 7.12 seconds

Chapter 6

There's more...

In the next section, we'll look at how to create virtual host definitions for Apache. However,
you may find that you need special configuration options for the Apache server as a whole.
You could set these up by deploying apache?2 . conf with Puppet, but it's neater to

put a config snippet into /etc/apache2/conf . d. For example, you could create an
apache: : snippet class as follows (in modules/apache/manifests/snippet.pp):

Deploy an Apache config snippet
define apache: :snippet () {
include apache

file { "/etc/apache2/conf.d/${name}":
source => "puppet:///modules/apache/${name}",
require => Package['apache2-mpm-prefork'],
notify => Service['apache2'],
}
}

and include this on a node:

apache: :snippet { 'site-specific.conf': }

Creating Apache virtual hosts

Apache virtual hosts are an ideal place to use Puppet templates, because they generally
consist of boilerplate code with just a few different bits of information for each site.

How to do it...

Here's a recipe to manage a simple virtual host:

1. Create the file modules/apache/manifests/vhost . pp with the following contents:

Manage an Apache virtual host
define apache: :vhost ($domain="'UNSET', $root="'UNSET') {
include apache

if $domain == 'UNSET' (
$vhost domain = $name
} else {

$vhost domain = $domain

}

Applications

if $root == 'UNSET' (

$vhost_root = "/var/www/${name}"
} else {

$vhost root = $root

}

file { "/etc/apache2/sites-available/${vhost domain}.conf":
content => template ('apache/vhost.erb'),
require => Package['apache2-mpm-prefork'],
notify => Exec["enable-${vhost domain}-vhost"],

}

exec { "enable-${vhost domain}-vhost":

command => "/usr/sbin/a2ensite
${vhost domain}.conf",
require => File["/etc/apache2/sites-available/${vhost

domain}.conf"],
refreshonly => true,
notify => Service['apache2'],
}
}

2. Run this command:
ubuntu@cookbook: ~/puppet$ mkdir modules/apache/templates

3. Create the file modules/apache/templates/vhost . erb with the
following contents:

<VirtualHost *:80>
ServerName <%= @vhost domain %>
DocumentRoot <%= @vhost root %>
ErrorLog /var/log/apache2/<%= @vhost domain %>-error_ log
CustomLog /var/log/apache2/<%= @vhost domain %>-access_log
common

<Directory <%= @vhost root %>>
Allow from all
Options +Includes +Indexes +FollowSymLinks
AllowOverride all
</Directory>
</VirtualHost>

146

Chapter 6

Modify your manifests/nodes.pp file as follows::

node 'cookbook'
apache: :vhost { 'cat-pictures.com': }

}

Run Puppet:
ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node [cookbook] /Apache: :Vhost[cat-pictures.
com] /File[/etc/apache2/sites-available/cat-pictures.com.conf]/
ensure: defined content as

1 {md5}2d4a3b043£5£487bfbd753a5cb6£a962"

Notice: /Stagel[main]//Node [cookbook] /Apache::Vhost[cat-pictures.
com] /Exec [enable-cat-pictures.com-vhost] : Triggered
'refresh' from 1 events

Notice: /Stagel[main] /Apache/Service[apache2]: Triggered
'refresh' from 1 events

Notice: Finished catalog run in 1.81 seconds
Run this command to check that Puppet has correctly created the virtual host file:
ubuntu@cookbook: ~/puppet$ cat /etc/apache2/sites-enabled/cat-
pictures.com.conf
<VirtualHost *:80>

ServerName cat-pictures.com

DocumentRoot /var/www/cat-pictures.com

ErrorLog /var/log/apache2/cat-pictures.com-error log

CustomLog /var/log/apache2/cat-pictures.com-access log
common

<Directory /var/www/cat-pictures.com>
Allow from all
Options +Includes +Indexes +FollowSymLinks
AllowOverride all

</Directory>

</VirtualHost>

Applications

We need to do two things to create and enable a virtual host:

1. Create the virtual host file in /etc/apache2/sites-available
2. Enable the virtual host using the a2ensite command
For the first step, we need to know two pieces of information: the domain name of the site,

and the directory where the site files will be located. We've designed our apache: : vhost
definition so both of these values can be passed in as arguments:

define apache: :vhost ($domain='UNSET', $root="'UNSET')

In both cases, we've specified a default value of UNSET, so that you can leave these
parameters unspecified. If the domain argument isn't specified, we default to the name
of the apache: : vhost resource (cat-pictures.com in our example):

if $domain == 'UNSET' (
$vhost domain = $name
} else {

$vhost domain = $domain

}

If the root argument isn't specified, we default to /var/www/${name}, where again $name
is the name of the apache: : vhost resource:

if $root == 'UNSET' (

$vhost _root = "/var/www/${name}"
} else {

$vhost root = $root
}

Next, we create the virtual host file based on a template:

file { "/etc/apache2/sites-available/${vhost domain}.conf":
content => template ('apache/vhost.erb'),
require => Package['apache2-mpm-prefork'],
notify => Exec["enable-${vhost domain}-vhost"],

}
Here's the template:

<VirtualHost *:80>
ServerName <%= @vhost domain %>
DocumentRoot <%= @vhost root %>
ErrorLog /var/log/apache2/<%= @vhost domain %>-error log
CustomLog /var/log/apache2/<%= @vhost domain %>-access_log common

148

Chapter 6

<Directory <%= @vhost root %>>
Allow from all
Options +Includes +Indexes +FollowSymLinks
AllowOverride all
</Directory>
</VirtualHost>

You can see that the only pieces of information which need to be inserted into the template
are the vhost domain parameter and the vhost root parameter.

Finally, we call the a2ensite command to tell Apache this site should be enabled:

exec { "enable-${vhost domain}-vhost":

command => "/usr/sbin/a2ensite ${vhost_domain}.conf",
require => [File["/etc/apache2/sites-available/${vhost domain}.
conf"], Package['apache2-mpm-prefork']

1,
refreshonly => true,
notify => Service['apache2'],

}

Here the value of exec is refreshonly, so it will only be triggered when the
${vhost_domain}.conf file is created or changed. It also notifies the apache?2
service, to pick up the new configuration.

There's more...

This simple definition is enough to get you to start running websites with Apache, but there's
a lot more you can do with it.

Custom domains and docroots

As we've seen, the vhost domain parameter will default to the resource's name
(cat-pictures.comin the example). If you want the virtual host's domain to be
something different, pass in the domain parameter:

apache: :vhost { 'networkr':
domain => 'networkr.com',

apache: :vhost { 'networkr staging':
domain => 'staging.networkr.com',

Applications

Similarly, if you need to specify a different DocumentRoot parameter for the virtual host than
the default (/var/www/$ {name}), just pass in the root parameter:

apache: :vhost { 'communitysafety.org':
root => '/var/apps/commsafe',

}

Modifying all sites

The beauty of the template system is that if you want to make a slight change to the
configuration for all sites (for example, adding a ServerAdmin e-mail address) you can
do it once in the template file, and Puppet will update all the virtual hosts it manages.

In the example, we only used two variables in the template, but you can have as many as you
like. These can be local variables, as in the example, or they can be facts:

ServerName <%= @fgdn %>
Ruby expressions:

ServerAdmin<%$= @emails["admin"] %>
or arbitrary Ruby code:

ServerAdmin <%= vhost_domain == 'coldcomfort.com' ?
'seth@coldcomfort.com' : 'flora@poste.com' %>

The Using array iteration in templates recipe in Chapter 4, Working with Files and Packages

Creating Nginx virtual hosts

Nginx is a fast, lightweight web server that is preferred over Apache in many contexts,
especially where high performance is important. The specifics of managing virtual hosts
with Nginx are a little different, but the principles are the same.

How to do it...

In this recipe we'll see how to use Puppet to create and enable Nginx virtual hosts.

1. Run the following commands:
ubuntu@cookbook: ~/puppet$ mkdir -p modules/nginx/manifests

ubuntu@cookbook: ~/puppet$ mkdir -p modules/nginx/templates

150

Chapter 6

2. Create the file modules/nginx/manifests/init.pp with the following contents:

Manage Nginx
class nginx {
package { 'nginx': ensure => installed }

service { 'nginx':
ensure => running,
enable => true,

}

exec { 'reload nginx':
command => '/usr/sbin/service nginx reload',
require => Package['nginx'],
refreshonly => true,
}
}

3. Create the file modules/nginx/manifests/vhost . pp with the following contents:

Manage an Nginx virtual host
define nginx::vhost ($domain='UNSET', $root='UNSET') {
include nginx

if $domain == 'UNSET' (
$vhost domain = $name
} else {

$vhost domain = $domain

}

if Sroot == 'UNSET' ({
$vhost _root = "/var/www/${name}"
} else {

$vhost_root = $root

}

file { "/etc/nginx/sites-available/${vhost domain}.conf":
content => template ('nginx/vhost.erb'),
require => Package['nginx'],

}

file { "/etc/nginx/sites-enabled/${vhost domain}.conf":
ensure => link,
target => "/etc/nginx/sites-available/${vhost domain}.conf",
require => File["/etc/nginx/sites-available/${vhost domain}.
conf"],
notify => Exec['reload nginx'],

}
}

Applications

4.

Create the file modules/nginx/templates/vhost . erb with the following contents:

server {
listen 80;
server_name <%= @vhost domain %>;

access_log /var/log/nginx/<%= @vhost domain %>-access_log;
root <%= @vhost root %>;

}

Modify your manifests/nodes . pp file as follows:

node 'cookbook'
nginx::vhost { 'cat-pictures.com': }

}
Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main] /Nginx/Package[nginx]/ensure: ensure changed
'purged' to 'present'

Notice: /Stagel[main] /Nginx/Service[nginx]/ensure: ensure changed
'stopped' to 'running'

Notice: /Stagel[main]//Node [cookbook] /Nginx: :Vhost [cat-pictures.
com] /File[/etc/nginx/sites-available/cat-pictures.com.conf]/
ensure: defined content as '{md5}2f6b68e6e5e9b707£fe20£0d48d70c5£da"

Notice: /Stagel[main]//Node [cookbook] /Nginx: :Vhost [cat-pictures.
com] /File[/etc/nginx/sites-enabled/cat-pictures.com.conf] /ensure:
created

Notice: /Stagel[main] /Nginx/Exec[reload nginx]: Triggered 'refresh’
from 1 events

Notice: Finished catalog run in 6.81 seconds

Just as in the recipe for Apache virtual hosts, the nginx: : vhost definition creates a virtual
host file based on an ERB template, into which we insert the virtual host domain and the
document root:

server {

152

listen 80;
server_name <%= @vhost domain %>;

access_log /var/log/nginx/<%= @vhost domain %>-access_log;
root <%= @vhost root %>;

Chapter 6

There's no Nginx equivalent of Apache's a2ensite command to actually enable the site,
so we use Puppet to create a symlink to the virtual host file in /etc/nginx/sites-enabled:

file { "/etc/nginx/sites-enabled/${vhost domain}.conf":
ensure => link,
target => "/etc/nginx/sites-available/${vhost domain}.conf",
require => File["/etc/nginx/sites-available/${vhost domain}.conf"],
notify => Exec['reload nginx'],

}

Creating the sites-enabled symlink also triggers the reload nginx resource, so the web
server will pick up the new configuration.

There's more...

Unlike Apache, Nginx doesn't support dynamic modules (yet). This means if you want to add
support for some special feature which isn't included by default, you need to recompile Nginx
yourself. You could build Nginx with the options you need and create a package using FPM or
a similar tool:

http://www.ducea.com/2011/08/31/build-your-own-packages-easily-with-
fpm/

However, some Puppet administrators skip this step and simply pull down and build the
Nginx source on the target server. To do this, use an exec with a similar pattern to that in
the recipe on Building packages automatically from source in Chapter 4, Working With Files
and Packages. In an agile development environment, which often means one where the
management changes its mind about the product every few days, this kind of approach can
be quicker and cheaper than continuous repackaging.

Managing MySQL

MySQL is a very widely used database server, and it's fairly certain you'll need to install and
configure a MySQL server at some point. This recipe will show you how to do that, as well as
how to automatically create databases and users for apps.

How to do it...

Follow these steps to create the example:

1. Run the following commands:
ubuntu@cookbook: ~/puppet$ mkdir -p modules/mysql/manifests
ubuntu@cookbook: ~/puppet$ mkdir -p modules/mysql/files

Applications

2.

Create the file modules/mysqgl /manifests/server. pp with the following contents:

Manage MySQL server

class mysqgl::server ({
Spassword = 'sekrit'
Sversion = 'mysqgl-server'

package { S$version: ensure => installed }

service { 'mysqgl':
ensure => running,
enable => true,
require => Package[$version],

}

file { '/etc/mysgl/my.cnf':
source => 'puppet:///modules/mysqgl/my.cnf',
owner => 'mysqgl',
group => 'mysqgl',
notify => Service['mysqgl'l],
require => Package[$version],

}

exec { 'set-mysgl-password':
unless => "/usr/bin/mysgladmin -uroot -p${password}

status",
command => "/usr/bin/mysgladmin -uroot password
${password}",

require => Service['mysqgl'],
}
}

Create the file modules/mysqgl/files/my.cnf with the following contents:

[client]
port = 3306
socket = /var/run/mysqgld/mysqgld.sock

[mysqgld safe]

socket = /var/run/mysqgld/mysqgld.sock
nice =0

[mysqgld]

user = mysql

pid-file = /var/run/mysqld/mysqgld.pid
socket = /var/run/mysqgld/mysqgld.sock
port = 3306

basedir = /usr

datadir = /var/lib/mysql

tmpdir = /tmp

Chapter 6

lc-messages-dir = /usr/share/mysqgl
skip-external-locking

bind-address = 127.0.0.1
key buffer = 16M
max_allowed packet = 16M
thread stack = 192K
thread cache size =8
myisam-recover = BACKUP
query cache limit = 1M

query cache size = 16M

log error = /var/log/mysql/error.log
expire logs days = 10
max_binlog size = 100M
[mysgldump]

quick

quote-names

max_allowed packet = 16M
[mysqgl]

[isamchk]

key buffer = 16M

lincludedir /etc/mysgl/conf.d/

Modify your manifests/nodes.pp file as follows:

node 'cookbook'
include mysqgl: :server

}
Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]/Mysql::Server/Package [mysqgl-server]/ensure:
ensure changed 'purged' to 'present'

Notice: /Stagel[main]/Mysql::Server/File[/etc/mysql/my.cnfl]/owner:
owner changed 'root' to 'mysqgl'

Notice: /Stagel[main] /Mysql::Server/Filel[/etc/mysql/my.cnf]/group:
group changed 'root' to 'mysql'

Notice: /Stagel[main]/Mysql::Server/File[/etc/mysql/my.cnf] /mode:
mode

changed '0644' to '0664"'

Notice: /Stagel[main]/Mysql::Server/Service[mysql]: Triggered
'refresh' from 3 events

Notice: /Stage[main]/Mysql::Server/Exec[set-mysqgl-password]/
returns: executed successfully

Notice: Finished catalog run in 28.01 seconds

Applications

First of all we define the MySQL root user password, which we'll need for any future admin
operations such as creating databases:

Spassword = 'sekrit'

If you're concerned about putting secret data such as passwords in your Puppet manifests,
see the recipe on Using GnuPG to encrypt secrets in Chapter 4, Working with Files and
Packages for a better solution.

We also define a variable representing the name of the MySQL package to install:
$version = 'mysgl-server'

This is because we need to refer to this package in a few places, and we might need to change
the name in future, so it's a good practice to make it a variable that we can find and alter easily.

Next we install the package and start the service:

package { $version: ensure => installed }

service { 'mysqgl':
ensure => running,
enable => true,
require => Package[$version],

}
We deploy the main MySQL config file, my . cnf:

file { '/etc/mysgl/my.cnf':
source => 'puppet:///modules/mysqgl/my.cnf’',
owner => 'mysql',
group => 'mysql',
notify => Servicel['mysqgl']l,
require => Package[$version],

}

In fact, the file we're using is a copy of the default Ubuntu MySQL my . cnf. You'll almost
certainly want to modify this, however, and so we'd like to have Puppet to control the file.

Finally, we set the MySQL root user password:

exec { 'set-mysqgl-password':
unless => "/usr/bin/mysgladmin -uroot -p${password} status",
command => "/usr/bin/mysgladmin -uroot password ${password}",
require => Service['mysql'],

}

156

Chapter 6

This exec first of all tests whether the desired password is already set. If so, this command
will succeed, and we can skip the exec resource:

/usr/bin/mysgladmin -uroot -p${password} status
Assuming this fails, it means the root password hasn't been set, so we set it with this command:
/usr/bin/mysgladmin -uroot password ${password}

MySQL is now ready to use.

Many applications require a MySQL database to be present, usually together with a MySQL
user with appropriate permissions on the database. We can automate this setup process with
Puppet very easily, as we'll see in the following examples.

Creating MySQL databases

Here's a definition for mysgl : : db which will create a database and user, and issue appropriate
grants for the user. This is done with an exec resource in a way very similar to the part of
mysqgl : : server which sets the root password. You may want to modify the SQL grant
statements to suit your application.

1. Create the file modules/mysqgl /manifests/db.pp with the following contents:

Create a MySQL database/user
define mysql::db(Suser, Spassword)
include mysqgl::server

exec { "create-${name}-db":
unless => "/usr/bin/mysgl -u${user} -p${password} ${name}",
command => "/usr/bin/mysgl -uroot -p${mysgl::server::password}
-e \"create database ${name}; grant all on ${name}.* to
${user}@'localhost' identified by '${password}'; grant all on
${name}.* to ${user}@'%' identified by '${password}'; flush
privileges;\"",
require => Service['mysqgl'],
}

}

2. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
mysgl::db { 'myapp':
user => 'myapp_user',
password => 'xyzzy',
}
}

Applications

3. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node [cookbook] /Mysql: :Db [myappl /Exec[create-
myapp-dbl] /returns: executed successfully

Notice: Finished catalog run in 0.76 seconds

4. Check that the database has been created with the correct user and permissions by
running the following command:
ubuntu@cookbook: ~/puppet$ mysql -umyapp user -pxyzzy myapp
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 74
Server version: 5.5.31-0Oubuntu0.12.04.1 (Ubuntu)

Copyright (c¢) 2000, 2013, Oracle and/or its affiliates. All rights
reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.
mysql>

If you need several databases with the same user and permissions, you can pass in an array
tomysqgl: :db:

mysql::db { ['dbl','db2','db3']:
user => 'myapp user',
password => 'xyzzy',

}

Managing Ruby

Ruby is a popular language for web apps, and it's a common sysadmin challenge to manage
the different Ruby versions required for different applications. Managing Ruby with Puppet
adds a little extra fun as Puppet itself requires a certain version of Ruby.

The most common ways to manage Ruby on servers are:

» Use the distro package (for example stock Ruby 1.8.7 from Ubuntu Precise)

» Source install a custom version of Ruby

158

Chapter 6

» Package your own build of Ruby
» Use RVM to manage Ruby versions

» Use rbenv to manage Ruby versions

In many cases the distro package will be fine, which makes things easy. However, if you need
a different version of Ruby from the distro package, you have a choice to make about how to
manage it. If you install a custom Ruby from source, or package your own, you'll either have to
replace the system Ruby, or figure out how to have both versions co-exist without interfering
with one another.

RVM and rbenv are specifically designed to handle different versions of Ruby on a machine,
and also to manage different sets of Ruby gems. Although they do more or less the same job,
I've found rbenv slightly easier to use in real-life applications.

How to do it...

In this section, I'll show you an example Puppet recipe for managing Ruby using rbenv:

1. Run the following commands:
ubuntu@cookbook: ~/puppet$ mkdir -p modules/ruby/manifests
ubuntu@cookbook: ~/puppet$ mkdir -p modules/ruby/files

2. Create the file modules/ruby/manifests/build.pp with the following contents:

Install ruby-build
class ruby::build (
$rb deps = ['libruby',

'libreadline-dev',
'libpcre3-dev',
'libcurl4-openssl-dev',
'zliblg-dev',
'curl',
'git-core',
'libssl-dev',
'build-essential']

package { $rb_deps:
ensure => installed,

}

exec { 'clone-ruby-build':
cwd => '/root"',
command => '/usr/bin/git clone
git://github.com/sstephenson/ruby-build.git',
creates => '/root/ruby-build',
require => [Package['git-core'],Package[s$srb deps]],

}

Applications

exec { 'install-ruby-build':
cwd => '/root/ruby-build',
command => '/root/ruby-build/install.sh',
require => Exec['clone-ruby-build'],
creates => '/usr/local/bin/ruby-build"',
1
1

3. Create the file modules/ruby/manifests/rbenv. pp with the following contents:

Install rbenv
class ruby::rbenv {
include ruby::build

exec { 'install-rbenv':
cwd => '/home/ubuntu’,
user => 'ubuntu',
command => '/usr/bin/git clone git://github.com/sstephenson/
rbenv.git .rbenv',
creates => '/home/ubuntu/.rbenv/bin/rbenv',
require => [Package['git-core'],Exec['install-ruby-build'l],

}

file { '/home/ubuntu/.bashrc':
source => 'puppet:///modules/ruby/rbenv-bashrc',
1

}

4. Create the file modules/ruby/files/rbenv-bashrc with the following contents:

if [-x /home/ubuntu/.rbenv/bin/rbenv]; then
export PATH="$HOME/.rbenv/bin:S$SPATH"
eval "$(rbenv init -)"

fi

5. Create the file modules/ruby/manifests/version.pp with the following contents:

Manage Ruby via rbenv
define ruby::version() {
include ruby::rbenv

Sversion = S$Sname
exec { "install-ruby-${version}":

command => "/bin/su - ubuntu -c

' /home/ubuntu/.rbenv/bin/rbenv install ${version}'",
creates => "/home/ubuntu/.rbenv/versions/${version}",
require => [Exec['install-rbenv'],

File['/home/ubuntu/.rbenv/version'],
Package['curl'll],

160

Chapter 6

timeout => 0,

}

file { '/home/ubuntu/.rbenv/version':
content => $version,
require => Exec['install-rbenv'],

}
}

6. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
ruby::version { '2.0.0-pl95': }

}
7. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stage[main]/Ruby::Build/Package[libcurl4-openssl-dev]/
ensure: ensure changed 'purged' to 'present'

Notice: /Stagel[main]/Ruby::Build/Package[libreadline-dev]/ensure:
ensure changed 'purged' to 'present'

Notice: /Stage[main]/Ruby::Build/Package[libpcre3-dev]/ensure:
ensure changed 'purged' to 'present'

Notice: /Stage[main]/Ruby::Rbenv/File[/home/ubuntu/.bashrc]/
ensure:
defined content as '{md5}4£194691794978332a5e2£5ad9d99643"

Notice: /Stagel[main]/Ruby::Build/Exec[install-ruby-build]/returns:
executed successfully

Notice: /Stage[main]/Ruby::Rbenv/Exec[install-rbenv]/returns:
executed successfully

Notice: /Stage[main]//Node [cookbook] /Ruby::Version[2.0.0-p195]/
File[/home/ubuntu/.rbenv/version] /ensure: defined
content as '{md5}fc7e8eb66252a8ed142322b31570add2"

This is a slightly more complicated recipe than usual, as there are several interacting
components. Let's take it step-by-step and look at the details of what's happening.

ruby-build
First of all we need to install ruby-build, which is a tool that rbenv uses to build different
versions of Ruby. We do this in the ruby: :build class:

Install ruby-build
class ruby::build ({

Applications

There are some packages that ruby-build requires to do its work:

$rb deps = ['libruby',
'libreadline-dev',
'libpcre3-dev',
'libcurl4-openssl-dev',
'zliblg-dev',
'curl',
'git-core',
'libssl-dev',
'build-essential']

package { $rb_deps:
ensure => installed,

4 If you have any conflicts with these packages because you've also defined
them elsewhere in your manifest, make them virtual as shown in the
g Using virtual resources recipe in Chapter 5, Users and Virtual Resources.

Now we can use Git to clone the ruby-build repository onto our machine:

exec { 'clone-ruby-build':
cwd => '/root',
command => '/usr/bin/git clone
git://github.com/sstephenson/ruby-build.git"',
creates => '/root/ruby-build',
require => [Package['git-core'], Package[$srb deps]],

}

With the ruby-build repo in place, all we have to do is run the install. sh script to create
a ruby-build binaryin /usr/local/bin

exec { 'install-ruby-build':
cwd => '/root/ruby-build',
command => '/root/ruby-build/install.sh',
require => Exec['clone-ruby-build'],
creates => '/usr/local/bin/ruby-build"',

162

Chapter 6

rbenv
So far, so easy. Next we want to install rbenv itself, using the ruby: : rbenv class:

Install rbenv
class ruby::rbenv {

We know that rbenv will require ruby-build:
include ruby::build
To install rbenv, we can git clone it directly into the ubuntu user's . rbenv directory:

exec { 'install-rbenv':

cwd => '/home/ubuntu’',

user => 'ubuntu',

command => '/usr/bin/git clone git://github.com/sstephenson/rbenv.
git .rbenv',

creates => '/home/ubuntu/.rbenv/bin/rbenv',

require => [Package['git-core'],Exec['install-ruby-build']l],

}

This will provide some shim binaries for executables such as ruby and irb, which will make
sure that the ubuntu user gets whatever version of Ruby is configured in rbenv. To put these in
the user's PATH, we use a little .bashrc file:

file { '/home/ubuntu/.bashrc':
source => 'puppet:///modules/ruby/rbenv-bashrc',

}

This simply checks that rbenv exists and adds it to the PATH variable, then runs rbenv
init to set up the rbenv environment:

if [-x /home/ubuntu/.rbenv/bin/rbenv]; then
export PATH="S$SHOME/.rbenv/bin:$PATH"
eval "$(rbenv init -)"

fi

We now have rbenv fully installed and configured, with ruby-build ready to build a specific
version of Ruby. To do that, we've created the ruby: : version class:

Manage Ruby via rbenv
define ruby::version() {

We know we'll need rbenv for this:

include ruby::rbenv

Applications

The namevar parameter of this class will be the Ruby version we want (2.0.0-p195 in our
example), so we store this in $version:

Sversion = S$name
To install the required Ruby, we call rbenv install $version

exec { "install-ruby-${version}":
command => "/bin/su - ubuntu -c '/home/ubuntu/.rbenv/bin/rbenv
install ${version}'",
creates => "/home/ubuntu/.rbenv/versions/${version}",
require => [Exec['install-rbenv'],
File['/home/ubuntu/.rbenv/version'],
Package['curl']],
timeout => 0,

}

Note that we set a timeout of 0, which disables the default exec timeout of 300 seconds:
compiling Ruby can take a long time!

We also set this version as the default Ruby for ubuntu, using the . rbenv/version file,
which simply contains the name of the version we want (from the $version variable):

file { '/home/ubuntu/.rbenv/version':
content => S$version,
require => Exec['install-rbenv'],

}

Finally, we want to declare an instance of ruby: : version to get the specific Ruby version
required, in the manifests/nodes.pp file:

node 'cookbook'
ruby::version { '2.0.0-pl95': }

}

If you want to use rbenv to manage Ruby versions for a different user (www-data or deploy,
for example), simply change ubuntu to the username you want. For extra credit, make the
user a parameter so that you can manage rbenv with any user.

For more about rbenv, visit the website:

https://github.com/sstephenson/rbenv

Servers and
Cloud Infrastructure

Rest is not idleness, and to lie sometimes on the grass under trees on a summer's
day, listening to the murmur of the water, or watching the clouds float across the
sky, is by no means a waste of time.

—John Lubbock
In this chapter we will cover:

» Building high-availability services using Heartbeat

» Managing NFS servers and file shares

» Using HAProxy to load-balance multiple web servers
» Managing firewalls with iptables

» Managing EC2 instances

» Managing virtual machines with Vagrant

Introduction

As powerful as Puppet is for managing the configuration of a single server, it's even more useful
when controlling networks of many machines. In this chapter we'll explore ways of using Puppet
to help you create high-availability clusters, share files across your network, set up automated
firewalls, use load-balancing to get more out of the machines you have, and create new virtual
machines on the cloud and on the desktop.

Servers and Cloud Infrastructure

Building high-availability services using

Heartbeat

High-availability services are those that can survive the failure of an individual machine or
network connection. The primary technique for high availability is redundancy, otherwise
known as throwing hardware at the problem. Although the eventual failure of an individual
server is certain, the simultaneous failure of two servers is unlikely enough that this provides
a good level of redundancy for most applications.

One of the simplest ways to build a redundant pair of servers is to have them share an

IP address using Heartbeat. Heartbeat is a daemon which runs on both machines and
exchanges regular messages—heartbeats—between the two. One server is the primary,
and normally has the resource: in this case, an IP address (known as a virtual IP, or VIP).
If the secondary server fails to detect a heartbeat from the primary, it can take over the
address, ensuring continuity of service.

In this recipe, we'll set up two machines in this configuration using Puppet, and I'll explain how
to use it to provide a high-availability service.

Getting ready...

You'll need two machines, of course, and an extra IP address to use as the VIP. You can
usually request this from your ISP, if necessary. In this example, I'll be using machines
named cookbook and cookbook?2, with cookbook being the primary. I'll assume you
have a way of putting your Puppet config on both machines, perhaps the Git-based setup
described in Chapter 1, Puppet Infrastructure.

How to do it...

Follow these steps to build the example:

1. Run the following commands:
ubuntu@cookbook: ~/puppet$ mkdir -p modules/heartbeat/manifests
ubuntu@cookbook: ~/puppet$ mkdir -p modules/heartbeat/templates

2. Create the file modules/heartbeat/manifests/init.pp with the
following contents:

Manage Heartbeat
class heartbeat {
package { 'heartbeat':

166

Chapter 7

ensure => installed,

service { 'heartbeat':
ensure => running,
enable => true,
require => Package['heartbeat'],

exec { 'reload-heartbeat':
command => '/usr/sbin/service heartbeat reload',

refreshonly => true,

file { '/etc/ha.d/authkeys':
content => "auth 1\nl shal TopSecret",
mode => '0600"',
require => Package['heartbeat'],
notify => Exec['reload-heartbeat'],

}
}

Create the file modules/heartbeat /manifests/vip.pp with the
following contents:

Manage a specific VIP with Heartbeat

class
heartbeat: :vip($Snodel, $node2, $ipl, $ip2, $vip, $Sinterface='eth0:1")

{

include heartbeat

file { '/etc/ha.d/haresources’:
content => "${nodel} IPaddr::${vip}/${interface}\n",
notify => Exec['reload-heartbeat'],
require => Package['heartbeat'],

file { '/etc/ha.d/ha.cf':
content => template ('heartbeat/vip.ha.cf.erb'),
notify => Exec['reload-heartbeat'],
require => Package['heartbeat'],

Servers and Cloud Infrastructure

4. Create the file modules/heartbeat/templates/vip.ha.cf.erb with the
following contents:

use_logd yes
udpport 694
autojoin none

ucast eth0 <%= @ipl %>
ucast eth0 <%= @ip2 %>
keepalive 1

deadtime 10

warntime 5
auto_failback off
node <%= @nodel %>
node <%= @node2 %>

5. Modify your manifests/nodes.pp file as follows. Replace the ip1 and ip2
addresses with the primary IP addresses of your two nodes, vip with the virtual
IP address you'll be using, and nodel and node2 with the hostnames of the two
nodes. (Heartbeat uses the fully-qualified domain name of a node to determine if
it's a member of the cluster, so the values for node1 and node2 should match
what's given by facter fgdn on each machine.)

node 'cookbook'
class { 'heartbeat::vip':
ipl => '10.96.247.132",
ip2 => '10.96.247.133",
nodel => 'cookbook',
node2 => 'cookbook2',
vip => '10.96.247.134/24",

}
}

node 'cookbook2'
class { 'heartbeat::vip':
ipl => '10.96.247.132",
ip2 => '10.96.247.133",
nodel => 'cookbook',
node2 => 'cookbook2',
vip => '10.96.247.134/24",

}
}

6. Run Puppet on each of the two servers:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main] /Heartbeat/Package[heartbeat] /ensure: ensure
changed 'purged' to 'present'

Notice: /Stagel[main] /Heartbeat/File[/etc/ha.d/authkeys]/ensure:
defined content as '{md5}3e37bdlccf7a47cc8ebbll7de7d76dbl"

168

Chapter 7

Notice: /Stagel[main]/Heartbeat::Vip/File[/etc/ha.d/haresources]/
ensure: defined content as '{md5}5771d43731bbcc3b9llee784ede9c858"

Notice: /Stagel[main]/Heartbeat::Vip/File[/etc/ha.d/ha.cf]/ensure:
defined content as '{md5}b5198da86c034c4925bb4as2effef60d!

Notice: /Stagel[main]/Heartbeat/Exec[reload-heartbeat]: Triggered
'refresh' from 3 events

Notice: Finished catalog run in 41.14 seconds

We need to install Heartbeat first of all, using class heartbeat:

Manage Heartbeat
class heartbeat {
package { 'heartbeat':
ensure => installed,

}
Next, we use class heartbeat : : vip to manage a specific virtual IP:

Manage a specific VIP with Heartbeat

class
heartbeat: :vip($nodel, $node2, $ipl, $ip2, $vip, $interface="'eth0:1"') {
include heartbeat

As you can see, the class includes an interface argument; by default, the VIP will be
configured on etho: 1, but if you need to use a different interface you can pass it in using
this parameter.

Each pair of servers that we configure with a virtual IP will use class heartbeat: : vip with
the same parameters. These will be used to build the haresources file:

file { '/etc/ha.d/haresources’:
content => "${nodel} IPaddr::${vip}/${interface}\n",
notify => Exec['reload-heartbeat'],
require => Package['heartbeat'],

}

This tells Heartbeat about the resource it should manage (that's a Heartbeat resource, such as
an IP address or a service, not a Puppet resource). The resulting haresources file might look
as follows:

cookbook IPaddr::10.96.247.134/24/eth0:1

Servers and Cloud Infrastructure

The file is interpreted by Heartbeat as follows:

» cookbook: This is the name of the primary node, which should be the default owner
of the resource

» IPaddr: This is the type of resource to manage, in this case an IP address
» 10.96.247.134/24:Thisis the value for the IP address

» etho:1: This is the virtual interface to configure with the managed IP address

We will also build the ha . c£ file that tells Heartbeat how to communicate between
cluster nodes:

file { '/etc/ha.d/ha.cf':
content => template ('heartbeat/vip.ha.cf.erb'),
notify => Exec['reload-heartbeat'],
require => Package['heartbeat'],

}
To do this, we use the template file:

autojoin none

ucast eth0 <%= @ipl %>
ucast eth0 <%= @ip2 %>
keepalive 1

deadtime 10

warntime 5

udpport 694
auto_failback off

node <%= @nodel %>
node <%= @node2 %>
use_logd yes

The interesting values here are the IP addresses of the two nodes (ip1 and ip2), and the
names of the two nodes (nodel and node?2).

Finally, we create an instance of heartbeat : : vip on both machines and pass it an identical
set of parameters as follows:

class { 'heartbeat::vip':
ipl => '10.96.247.132",
ip2 => '10.96.247.133",
nodel => 'cookbook',
node2 => 'cookbook2',
vip => '10.96.247.134/24",

170

Chapter 7

There's more...

With Heartbeat set up as described in the example, the virtual IP address will be configured on
cookbook by default. If something happens to interfere with this (for example, if you halt or
reboot cookbook, or stop the heartbeat service, or the machine loses network connectivity)
cookbook?2 will immediately take over the virtual IP.

The auto_failback setting in ha . cf governs what happens next. If auto_failback is
set to on, when cookbook becomes available once more, it will automatically take over the
IP address. Without auto_failback, the IP will stay where it is until you manually fail it over
again (by stopping heartbeart on cookbook?2, for example).

One common use for a Heartbeat-managed virtual IP is to provide a highly-available website
or service. To do this, set the DNS name for the service (for example, cat-pictures.com)

to point to the virtual IP. Requests for the service will be routed to whichever of the two servers
currently has the virtual IP. If this server should go down, requests will go to the other, with no
visible interruption in service to users.

You can also use Heartbeat to manage other resources, such as daemons (HAProxy for load
balancing, for example) or shared storage (for example, DRBD). You can find out more about
advanced uses of Heartbeat at the Linux-HA User's Guide website:

http://www.linux-ha.org/doc/users-guide/users-guide.html

Managing NFS servers and file shares

NFS (the Network File System) is a protocol for mounting a shared directory from a remote
server. For example, a pool of web servers might all mount the same NFS share to serve static
assets such as images and stylesheets. Although NFS is rather old technology, it's still widely
used, so you will very likely come across it.

How to do it...

Here's a recipe that will show you how to create an NFS server using Puppet and set up
shared directories:

1. Run the following command:
ubuntu@cookbook: ~/puppet$ mkdir -p modules/nfs/manifests

2. Create the file modules/nfs/manifests/init.pp with the following contents:

Manage NFS server
class nfs {
package { 'nfs-kernel-server': ensure => installed }

Servers and Cloud Infrastructure

172

service { 'nfs-kernel-server':

ensure => running,

enable => true,

hasrestart => true,

require => Package['nfs-kernel-server'],

file { '/etc/exports.d':
ensure => directory,

exec { 'update-etc-exports':

command => '/bin/cat /etc/exports.d/*
>/etc/exports’,
notify => Service['nfs-kernel-server'],

refreshonly => true,

}

Create the file modules/nfs/manifests/share.pp with the following contents:

Export a specific file share via NFS
define nfs::share(Spath, $allowed, Soptions="") {
include nfs

file { $path:
ensure => directory,

file { "/etc/exports.d/${name}":
content => "${path} ${allowed} (${options})\n",
notify => Exec['update-etc-exports'],

}
}

Modify your manifests/nodes.pp file as follows. Replace the value of allowed
with an IP address range suitable for your network.

node 'cookbook'
nfs::share { 'data’':
path => '/data’',
allowed => '10.96.247.132/31"',

Chapter 7

options => 'rw,sync,no_root_squash',

'data2"':

path => '/data2’',

allowed => '10.96.247.132/31"',
options => 'rw,sync,no_root_squash',

nfs: :share

VAR

}

Run Puppet:
ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main] /Nfs/Package[nfs-kernel-server]/ensure:
ensure changed 'purged' to 'present'

Notice: /Stagel[main] /Nfs/File[/etc/exports.d]/ensure: created

Notice:

/Stage [main] //Node [cookbook] /Nfs: :Share [data2] /File[/data2]/
ensure: created

Notice:

/Stage [main] //Node [cookbook] /Nfs: :Share[data] /File[/datal /ensure:
created

Notice:

/Stage [main] //Node [cookbook] /Nfs: :Share[data] /File[/etc/exports.d/

datal] /ensure: defined content as
'{md5}b5444caad4s9afe8c4676825982668804"

Notice:

/Stage [main] //Node [cookbook] /Nfs: :Share[data2] /File[/etc/
exports.d/data2] /ensure: defined content as
'{md5}87a48401732e1923£fb54b190aa649961"'

Notice: /Stagel[main] /Nfs/Exec[update-etc-exports]: Triggered
'refresh' from 2 events

Notice: /Stagel[main] /Nfs/Service[nfs-kernel-server]: Triggered
'refresh' from 1 events

Notice: Finished catalog run in 15.23 seconds
Test the export settings by mounting one of the shares from another server:

ubuntu@cookbook2: ~/puppet$ sudo mkdir /mnt/data
ubuntu@cookbook2: ~/puppet$ sudo mount cookbook:/data /mnt/data

Servers and Cloud Infrastructure

The nfs class installs and starts the nfs-kernel -server service, which listens for network
connections to the file share. The nfs: : share definition makes a specific directory available
via NFS, so that you can declare any number of these on a given server, as shown in the
following code snippet:

nfs::share { 'data’':
path => '/data’',
allowed => '10.96.247.132/31",
options => 'rw,sync,no_root_squash' ,

}

The name of the resource is whatever label you want to give it: data, in this case. The label
will be used when you mount the share from another machine.

The path specifies the directory to share. The allowed parameter can be a CIDR address
range (as it is here), a single IP address, a hostname, or a whitespace-separated list of
addresses and hostnames. Only the specified hosts will be allowed to mount the share.

The options parameter specifies the options to NFS (as they appear in the /etc/exports
file; see man exports for precise details).

When you declare an nfs: : share resource, this creates a file snippet in /etc/exports.d,
which then triggers Exec ['update-etc-exports'] to concatenate all the snippets into
/etc/exports and restart the NFS service to pick up the changes. You might remember this
snippet pattern from the Building config files using snippets recipe in Chapter 4, Working with
Files and Packages.

Using HAProxy to load-balance multiple web

servers

Once upon a time a load balancer was a big box that sat in a rack and cost eighty thousand
dollars. Although you can still buy those, for most organizations a software load balancer
solution using commodity Linux servers is a better value proposition.

HAProxy is the software load balancer of choice for most people: fast, powerful,
and highly configurable.

How to do it...

In this recipe, I'll show you how to build an HAProxy server to load-balance web requests
across two existing backend servers.

174

Chapter 7

Run the following commands:
ubuntu@cookbook: ~/puppet$ mkdir -p modules/haproxy/manifests
ubuntu@cookbook: ~/puppet$ mkdir -p modules/haproxy/files

Create the file modules/haproxy/manifests/init . pp with the following contents:

Manage HAProxy
class haproxy {
package { 'haproxy': ensure => installed }

file { '/etc/default/haproxy':
content => "ENABLED=1\n",
require => Package['haproxy'],

service { 'haproxy':
ensure => running,
enable => true,
require => Package['haproxy'],

file { '/etc/haproxy/haproxy.cfg':
source => 'puppet:///modules/haproxy/haproxy.cfg',
require => Package['haproxy'],
notify => Service['haproxy'l]l,
}
}

Create the file modules/haproxy/files/haproxy . cfg with the following contents.
In the myapp section, replace the IP address in each server line with the IP address

of your backend server, and the : 8000 port number with the port number where your
server is listening.

global

daemon

user haproxy

group haproxy

pidfile /var/run/haproxy.pid
defaults

log global

stats enable

mode http

Servers and Cloud Infrastructure

option httplog
option dontlognull
option dontlog-normal
retries 3

option redispatch
contimeout 4000
clitimeout 60000
srvtimeout 30000

listen stats :8080
mode http
stats uri /
stats auth haproxy:topsecret

listen myapp 0.0.0.0:80
balance leastconn
server myappl 10.0.2.30:8000 check maxconn 100
server myapp2 10.0.2.40:8000 check maxconn 100

4. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
include haproxy

}

5. Before you apply the manifest, make sure another process is not already listening on
port 80 (HAProxy will not be able to start if it can't acquire this port).

ubuntu@cookbook: ~/puppet$ sudo netstat -an |grep LISTEN |grep 80

6. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply
Notice: /Stagel[main] /Haproxy/Package [haproxyl/ensure: created

Notice:
/Stage [main] /Haproxy/File[/etc/default/haproxy] /ensure:
defined content as '{md5}ba6d6a5al5e8ddc7a9bbe3£91fb04a34’

Notice:
/Stage [main] /Haproxy/File[/etc/haproxy/haproxy.cfgl /ensure:
defined content as '{md5}84929£3207935b0c4338cfe5a7314ebe’

Notice: /Stagel[main] /Haproxy/Service[haproxyl/ensure: ensure
changed 'stopped' to 'running'

Notice: /Stagel[main] /Haproxy/Service[haproxyl: Triggered
'refresh' from 1 events

Notice: Finished catalog run in 5.14 seconds

176

Chapter 7

7. Check the HAProxy stats interface on port 8080 in your web browser to make sure
everything is OK (note that my backend servers are shown as down because those
VMs aren't running; when | start them, HAProxy will detect this automatically and
mark them up).

-

® © @ Statistics Report for HAProxy - Mozilla Firefox

File Edit istory Book Tools Help
X v @ %> [[©)]nttp://cookbook:8080/ v| (2] @
[@] Statistics Report for HAProxy L v
HAProxy version 1.3.22, released 2009/10/14
Statistics Report for pid 16240
> General process information
pid = 16240 (process #1, nbproc = 1) active UP backup UP Display option: External ressources:
:"ﬂ?ﬁfﬁiﬂiﬂﬁé- unlimited: uimitn = 4014 || 2°1Ve UP, going down - [backup UP, going down : Hide DOWN seners : M_?asn ;-)
. :4614; o =ZUUUI; N =0 active DOWN, going up backup DOWN, going up . —E;f\:[ﬁh non\\' . (L; t:ates 1'3|
cument conns = 1; cument pipes = 0/0 active or backup DOWN | [not checked v e =i manuat
Running tasks: 1/3 Mote: UP with load-balancing disabled is reported as "NOLB".

_ z 0
[Backend | o] o] [of o] [of of2000] o] ofssz[262] of o] | of of of of4ssur[o Jofo] [o [|

Frontend 0| 0 0| 02000 0 0 of 0 o 0 OPEN

myappl | O O - o] 0 0 0| 100 O LN] 0 0 0o 0 0/ 43sDOWN| 1 | Y| - | 0 1 43| -
myapp2 | O O - o] 0 0 0| 100 O LN] 0 0 0o 0 0/ 42sDOWN| 1 | Y| - | 0 1 425 -
Backend | O O 0| o 0| 02000 0 ojof o] 0 0 0 0| o 0|42sDOWN| O (0 | O 1 42s

The haproxy daemon listens for incoming requests and distributes them to the pool of
backend servers (myappl and myapp2 in our example). If one backend server becomes
overloaded, HAProxy will avoid sending it more traffic until it recovers. This helps prevent
the drastic slowdown as a single web server becomes overloaded and queues up more
and more requests that it can't serve. If a server fails altogether, HAProxy won't send it
any more requests until it becomes available again.

The stats interface will show you how your backend servers are performing, how many
sessions they are handling, whether HAProxy has marked them up or down, and so on.

Servers and Cloud Infrastructure

There's more...

If you want to add more backends to handle the increased demand, just add more server lines
to haproxy . cfg. If you find that the existing servers are getting swamped, try decreasing the
per-server maxconn setting a little. HAProxy has a vast range of configuration parameters which
you can explore; see the HAProxy website:

http://haproxy.lwt.eu/#docs
If you need SSL capabilities, you can put Nginx in front of HAProxy to handle this.

Although it's most often used as a web server, HAProxy can proxy a lot more than just HTTP. It
can handle any amount of TCP traffic, so you can use it to balance the load of MySQL servers,
SMTP, video servers, or anything you like.

Managing firewalls with iptables

As experienced system administrators know, security comes from defense in depth. It's not
enough to stick a single firewall in front of your network and hope for the best. Every machine
needs to be securely configured so that only the required network ports are accessible, and this
means that every machine needs to have its own firewall.

Linux comes with its own industrial-strength, kernel-based packet filtering firewall,
iptables. However, it's not particularly user-friendly, as a typical iptables rule looks
something as follows:

iptables -A INPUT -d 10.0.2.15/32 -p tcp -m tcp --dport 80 -3
ACCEPT

It would be nice to be able to express firewall rules in a more symbolic and readable way.
Puppet can help, because we can use it to abstract away some of the implementation detail
of iptables, and create roles based on the services the machine provides:

firewall::role { 'webserver': }
firewall::role { 'dbserver': }

Getting ready...

You will need the append _if no such line utility function we created in the Making quick
edits to config files recipe in Chapter 4, Working with Files and Packages.

How to do it...

Here's what you need to do to manage iptables with Puppet:

178

Chapter 7

Run the following commands:
ubuntu@cookbook: ~/puppet$ mkdir -p modules/firewall/manifests

ubuntu@cookbook: ~/puppet$ mkdir -p modules/firewall/files

Create the file modules/firewall/manifests/init.pp with the
following contents:

Manage iptables firewall
class firewall ({
file { ['/etc/firewall',
'/etc/firewall/hosts"',
'/etc/firewall/roles'] :
ensure => directory,

file { '/etc/firewall/names':
source => 'puppet:///modules/firewall/names’,
notify => Exec|['run-iptables'],

file { '/etc/firewall/roles/common' :
source => 'puppet:///modules/firewall/common.role',
notify => Exec['run-iptables'],

file { '/etc/firewall/iptables.sh':
source => 'puppet:///modules/firewall/iptables.sh',
mode => '0755"',
notify => Exec['run-iptables'],

file { "/etc/firewall/hosts/${::hostname}":
content => "export MAIN IP=${::ipaddress}\nexport PRIVATE
IP=5{::ipaddress_ethl}\n",
require => File['/etc/firewall/hosts'],
notify => Exec['run-iptables'],

exec { 'run-iptables':
cwd => '/etc/firewall’',
command => "/usr/bin/test -f hosts/${::hostname} &&
/etc/firewall/iptables.sh && /sbin/iptables-save
>/etc/iptables.rules",

Servers and Cloud Infrastructure

180

refreshonly => true,

append if no_such line { 'restore iptables rules':
file => '/etc/network/interfaces',
line => 'pre-up iptables-restore <
/etc/iptables.rules’',

}
}

Create the file modules/firewall/files/iptables.sh with the
following contents:

“dirname $0° /names
export EXT INTERFACE=ethO

Flush and remove all chains
iptables -P INPUT ACCEPT
iptables -P OUTPUT ACCEPT
iptables -F

iptables -X

HOST_RULES="dirname $0° /hosts/ hostname -s~
[-f ${HOST_RULES}] && . ${HOST_RULES}

“dirname $0°/roles/common

Drop all non-matching packets

iptables -A INPUT -j LOG --log-prefix "INPUT: "
iptables -A INPUT -j DROP

iptables -A OUTPUT -j LOG --log-prefix "OUTPUT: "
iptables -A OUTPUT -j DROP

Create the file modules/firewall/files/names with the following contents:

Well-known ports
export DNS=53
export FTP=21
export MYSQL=3306
export NRPE=5666
export NTP=123
export SMTP=25
export SSH=22
export WEB=80
export WEB_SSL=443

Chapter 7

Create the file modules/firewall/files/common.role with the
following contents:

Allow all traffic on loopback interface
iptables -I INPUT 1 -i lo -j ACCEPT
iptables -I OUTPUT 1 -o lo -j ACCEPT

Allow established and related connections

iptables -I INPUT 2 -m state --state ESTABLISHED,RELATED -j
ACCEPT

iptables -I OUTPUT 2 -m state --state ESTABLISHED,RELATED -j
ACCEPT

Allow SSH and ping

iptables -A INPUT -p tcp -m tcp --dport ${SSH} -j ACCEPT
iptables -A INPUT -p ICMP --icmp-type echo-request -j
ACCEPT

Allow common outbound ports
iptables -A OUTPUT -p tcp --dport ${SMTP} -j ACCEPT
iptables -A OUTPUT -p udp --dport ${NTP} -j ACCEPT
iptables -A OUTPUT -p tcp --dport ${ } -j ACCEPT
iptables -A OUTPUT -p udp --dport ${DNS} -j ACCEPT
iptables -A OUTPUT -p tcp --dport ${ } -j ACCEPT
iptables -A OUTPUT -p tcp --dport ${WEB SSL} -j ACCEPT
${

iptables -A OUTPUT -p tcp --dport MYSQL} -j ACCEPT

Drop some commonly probed ports

iptables -A INPUT -p tcp --dport 23 -j DROP # telnet
iptables -A INPUT -p tcp --dport 135 -j DROP # epmap
iptables -A INPUT -p tcp --dport 139 -j DROP # netbios
iptables -A INPUT -p tcp --dport 445 -j DROP # Microsoft DS
iptables -A INPUT -p udp --dport 1433 -3j DROP SQL server
iptables -A INPUT -p tcp --dport 1433 -3j DROP SQL server
iptables -A INPUT -p udp --dport 1434 -j DROP SQL server
iptables -A INPUT -p tcp --dport 1434 -j DROP SQL server
iptables -A INPUT -p tcp --dport 2967 -3j DROP SSC-agent

H HF H H HF

Create the file modules/firewall/files/webserver.role with the
following contents:

Access to web ports

iptables -A INPUT -p tcp --dport ${WEB} -j ACCEPT
iptables -A INPUT -p tcp --dport ${WEB SSL} -j ACCEPT

Send mail from web applications
iptables -A OUTPUT -p tcp --dport ${SMTP} -j ACCEPT

Servers and Cloud Infrastructure

7. Create the file modules/firewall/manifests/role.pp with the
following contents:

Manage a specific firewall role
define firewall::role() {
include firewall

file { "/etc/firewall/roles/${name}":
source => "puppet:///modules/firewall/${name}.role",
require => File['/etc/firewall/roles'],
notify => Exec['run-iptables'],

}

append if no such line { "${name} role":
file => "/etc/firewall/hosts/${::hostname}",
line => ". “dirname \$0>/roles/${name}",
require => File["/etc/firewall/hosts/${::hostname}"],
notify => Exec['run-iptables'],

}
}

8. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
firewall::role { 'webserver': }

}

9. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagelmain] /Firewall/File[/etc/firewall]/ensure:
created

Notice: /Stagel[main] /Firewall/File[/etc/firewall/names]/ensure:
defined content as '{md5}e792924596121cle658765eed29c168b"
Notice: /Stagel[main] /Firewall/File[/etc/firewall/roles]/ensure:
created

Notice: /Stagel[main] /Firewall/File[/etc/firewall/roles/common]/
ensure:

defined content as '{md5}f8dc9e480c60£fd0dd69532ad8562843b"
Notice:

/Stage [main] /Firewall/File[/etc/firewall/iptables.sh] /ensure:
defined content as '{md5}522fc7466a9b74479df698813595eaa7"
Notice:

/Stage [main] //Node [cookbook] /Firewall: :Role [webserver] /File[/etc/
firewall/roles/webserver] /ensure: defined content as

1 {md5}77d0e860£d8ebbe434b584e9££025d42"

Notice:

/Stage[main] /Firewall/File[/etc/firewall/hosts] /ensure:

created

182

10.

Chapter 7

Notice:

/Stage[main] /Firewall/File[/etc/firewall/hosts/cookbook] /ensure:
defined content as '{md5}1dbf44£613al19f1£f86c3e7bd63ceflbc’
Notice:

/Stage[main] //Node [cookbook] /Firewall: :Role [webserver] /Append if
no such line[webserver role] /Exec[/bin/echo '. “dirname
$0~/roles/webserver' >>

'/etc/firewall/hosts/cookbook'] /returns: executed successfully
Notice: /Stagel[main]/Firewall/Exec|[run-iptables]: Triggered
'refresh' from 6 events

Notice: /Stage[main]/Firewall/Append if no such line[restore
iptables rules] /Exec[/bin/echo 'pre-up iptables-restore <
/etc/iptables.rules' >> '/etc/network/interfaces']/returns:
executed successfully

Notice: Finished catalog run in 0.70 seconds
Run the following command to see the resulting firewall ruleset:

ubuntu@cookbook: ~/puppet$ sudo iptables -nL
Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

state RELATED, ESTABLISHED

ACCEPT tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:80

ACCEPT tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:443

ACCEPT tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:22

ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0

icmptype 8

DROP tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:23

DROP tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:135

DROP tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:139

DROP tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:445

DROP udp -- 0.0.0.0/0 0.0.0.0/0 udp
dpt:1433

DROP tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:1433

Servers and Cloud Infrastructure

DROP udp -- 0.0.0.0/0 0.0.0.0/0 udp
dpt:1434

DROP tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:1434

DROP tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:2967

LOG all -- 0.0.0.0/0 0.0.0.0/0 LOG
flags 0 level 4 prefix "INPUT: "

DROP all -- 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

state RELATED, ESTABLISHED

ACCEPT tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:25

ACCEPT tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:25

ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp
dpt:53

ACCEPT tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:80

ACCEPT tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:443

ACCEPT tecp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:3306

LOG all -- 0.0.0.0/0 0.0.0.0/0 LOG
flags 0 level 4 prefix "OUTPUT: "

DROP all -- 0.0.0.0/0 0.0.0.0/0

First, in the firewall class, we set up a basic directory structure for the firewall-related files
and scripts to live in:

Manage iptables firewall
class firewall {
file { ['/etc/firewall',

Chapter 7

'/etc/firewall/hosts’,

'/etc/firewall/roles'] :
ensure => directory,

}

We deploy a file called names that will set up a bunch of shell variables mapping user-friendly
names to port numbers:

file { '/etc/firewall/names’:
source => 'puppet:///modules/firewall/names’,
notify => Exec['run-iptables'],

}
The names file consists of definitions like the following::

export WEB=80

We can then refer to these names in a readable way in firewall rules instead of using port
numbers directly.

Next, we deploy a file called roles/common that contains rules common to all machines:

file { '/etc/firewall/roles/common' :
source => 'puppet:///modules/firewall/common.role',
notify => Exec['run-iptables'],

}

Some of the rules in common (you'll probably want to modify these to suit your environment)
look like the following::

Allow SSH and ping
iptables -A INPUT -p tcp -m tcp --dport ${SSH} -j ACCEPT
iptables -A INPUT -p ICMP --icmp-type echo-request -j ACCEPT

Notice that we used the shell variable $SSH (defined in names as port 22).

Next up, the shell script, which actually loads and applies the firewall rules, as follows:

file { '/etc/firewall/iptables.sh':
source => 'puppet:///modules/firewall/iptables.sh',
mode => '0755"',
notify => Exec['run-iptables'],

}

The iptables. sh script clears all existing firewall rules, loads the common and host-specific
role files, and tells iptables to log and drop all packets not matched by any of its rules.

Servers and Cloud Infrastructure

Next, the host-specific file, which sets the machine's public and private IP addresses (in case you
need to refer to them), and any other variables you want:

file { "/etc/firewall/hosts/${::hostname}":
content => "export MAIN IP=${::ipaddress}\nexport
PRIVATE IP=${::ipaddress _ethl}\n",
require => File['/etc/firewall/hosts'],
replace => false,
notify => Exec['run-iptables'],

}

To actually make something happen, we need an exec resource to run the iptables. sh script
when one of its dependent files changes:

exec { 'run-iptables':
cwd => '/etc/firewall’',
command => "/usr/bin/test -f hosts/${::hostname} &&
/etc/firewall/iptables.sh && /sbin/iptables-save
>/etc/iptables.rules",
refreshonly => true,

}

If the iptables. sh script succeeds (in other words, if there were no errors detected in the
firewall rules) then the iptables-save command will save the ruleset to the file /etc/
iptables.rules so that it can be reloaded when the machine boots.

The final bit of code adds a line to the /etc/network/interfaces file which performs this
automatic ruleset reload on boot:

append_if no such_line { 'restore iptables rules':
file => '/etc/network/interfaces',
line => 'pre-up iptables-restore < /etc/iptables.rules',

}

At this point, we've set up a firewall that Puppet will install on each machine and configure to
load the common role. However, we'd also like to be able to add specific roles, for machines
which are webservers, for example. We do this with the firewall: : role definition. In our
example, we used:

firewall::role { 'webserver': }
So let's see how that works. The firewall: : role code is as follows:

Manage a specific firewall role
define firewall::role() {
include firewall

file { "/etc/firewall/roles/${name}":
source => "puppet:///modules/firewall/${name}.role",
require => File['/etc/firewall/roles'],
notify => Exec['run-iptables'],

186

Chapter 7
}

append if no _such line { "${name} role":
file => "/etc/firewall/hosts/${::hostname}",
line => ", “dirname \$0>/roles/${name}",
require => File["/etc/firewall/hosts/${::hostname}"],
notify => Exec['run-iptables'],
1
1

Puppet will look for a file called ${name} .role in the modules/firewall/files directory
(in our example, this will be webserver.role). This file will be copied into /etc/firewall/
roles, and the append if no such line resource adds a line to the host-specific firewall
script which loads the role file.

There's more...

If you have certain specific machines which will be referenced in your rules (for example,
your monitoring server) you can add it to the names file as follows:

MONITOR=10.0.2.15

Then in a suitable place (such as common . role) you can allow access from this machine to,
for example, the NRPE port:

iptables -A INPUT -p tcp -m tcp -s ${MONITOR} --dport ${NRPE} -j
ACCEPT

You can also do this anywhere you need to reference a specific address, network, or IP range
in a role file.

Dynamically generating the firewall ruleset such as this can be very useful for cloud
infrastructures, where the list of servers is constantly changing as new ones are created
and destroyed. All you need to do to have any resource trigger a firewall rebuild, is to add:

notify => Exec['run-iptables'],

So you might have a master server list that you maintain in version control or update
automatically from a cloud API such as Rackspace or Amazon EC2. This list might be a

file resource in Puppet which can trigger a firewall rebuild, so every time you check in a
change to the master list, every machine that runs Puppet will update its firewall accordingly.

Of course, such a high degree of automation means that you need to be quite careful about
what you check in, or you might take your whole infrastructure offline by mistake!

A good way to test changes is to use a Git branch for your Puppet manifests which is only
applied on one or two servers. Once you have verified that the changes are good, then you
can merge them into the master branch and roll them out.

Servers and Cloud Infrastructure

Managing EC2 instances

It doesn't make sense for many of us to own and host our own servers, in the same way as it
doesn't make sense for us to generate our own electricity. Just like electricity, computing is
now a utility. Utility computing (often called cloud computing, for no known reason) allows you
to buy as much compute power as you need, for as long as you need it. This makes it easy and
cost-efficient to scale your service in response to fluctuating demand.

Being able to create new cloud server instances, use them for a few minutes or hours,

and then delete them also makes it a lot easier to test and experiment with new software or
configurations. If you had to build the servers by hand every time, this process would be too
lengthy to make it worthwhile, but with automated configuration management, it's a snap.

There are plenty of cloud service providers around, with Amazon's EC2 being one of the
best-known and oldest-established. In this recipe I'll show you how to manage cloud
instances using EC2, but the general principles and most of the code will be adaptable to
any cloud provider.

Getting ready...

You'll need an Amazon Web Services (AWS) account if you don't already have one. Of course if
you're using an EC2 instance to try out the recipes in this book, you'll already have everything
you need, but otherwise you can sign up for an AWS account here:

http://aws.amazon.com/

You'll need the AWS access key ID and secret access key corresponding to your account. You can
find these on the Security Credentials page of the AWS portal.

You'll also need your SSH keypair for accessing EC2 instances. To find this, log in to the AWS
Management Console: https://console.aws.amazon.com/ec2/home.

Navigate to the Amazon EC2 tab, and click Key Pairs under the Network & Security heading
in the navigation section.

Click Create key pair and then download the keypair file when prompted. Save this
somewhere safe, and set the file permissions to mode 0600:

ubuntu@cookbook:~$ chmod 600 bitfield.pem

How to do it...

Follow these steps to start creating the AWS example:

1. Run the following commands:

188

Chapter 7

ubuntu@cookbook: ~/puppet$ mkdir -p modules/fog/manifests
ubuntu@cookbook: ~/puppet$ mkdir -p modules/fog/files

Create the file modules/fog/manifests/init . pp with the following contents:

Manage Fog and EC2 boot scripts
class fog {
package { ['libxml2-dev', 'libxsltl-dev']: ensure =>
installed }

package { 'fog':

ensure => installed,
provider => gem,
require => [Package['libxml2-dev'], Package['libxsltl-dev']],

}

file { '/usr/local/bin/boot-ec2':
source => 'puppet:///modules/fog/boot-ec2.rb',
mode => '0755"',

}

file { '/usr/local/bin/bootstrap-ec2':
source => 'puppet:///modules/fog/bootstrap-ec2.sh',
mode => '0755"',
}
}

Create the file modules/fog/files/boot -ec2 . rb with the following contents
(change the :private key path argument to point to your own AWS private key file):
#!/usr/bin/ruby

require 'rubygems'

require 'fog'

HOSTNAME = 'devbox'
@server = '' # NB this is two single quotes, not a double
quote

def command(cmdline)
puts "Running command: #{cmdline}"
res = @server.ssh("sudo #{cmdline}") [0]
puts res.stdout
puts res.stderr
end

def create()
puts "Bootstrapping instance..."
connection = Fog::Compute.new({ :provider => 'AWS',
:region => 'us-east-1"',

Servers and Cloud Infrastructure

:aws_access_key id
=> 'AKIAI5SGMC3JWRQAPO3A',
:aws_secret_access_key
=> 'iygf2+KV/inG3X0lEyrh+otazeVXrQJYKx8E7SE' })
@server = connection.servers.bootstrap(:private key path
=> '~/bitfield.pem’',
:image id =»>
'ami-137bcf7a’',
:username =>
'ubuntu')
@server.wait for { print "."; ready? }
@server.wait for { !public ip address.nil? }
@server.reload
puts "Instance name: #{@server.dns name}"
puts "Public IP: #{@server.ip address}"
puts "Setting hostname..."
@server.ssh("sudo hostname #{HOSTNAME}")
end

def copy bootstrap files()
puts "Copying bootstrap files...™"

@server.scp("puppet.tar.gz", "/tmp")
@server.scp("/usr/local/bin/bootstrap-ec2", "/tmp")
end

def bootstrap ()

puts "Bootstrapping..."

command ("sudo sh /tmp/bootstrap-ec2")
end

create ()
copy_bootstrap files()
bootstrap ()

4. Create the file modules/fog/files/bootstrap-ec2.sh with the
following contents:

#!/bin/bash

wget http://apt.puppetlabs.com/puppetlabs-release-precise.deb
dpkg -1 puppetlabs-release-precise.deb

apt-get update

apt-get -y install puppet git

cd /etc

tar xzf /tmp/puppet.tar.gz

puppet apply --modulepath=/etc/puppet/modules
/etc/puppet/manifests/site.pp

5. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
include fog

190

Chapter 7

}

node 'devbox'
file { '/etc/motd':
content => "Puppet power!\n",
}

}

Run Puppet:
ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main] /Fog/Package[libxsltl-dev]/ensure: ensure
changed 'purged' to 'present'

Notice: /Stagel[main]/Fog/File[/usr/local/bin/bootstrap-ec2]/
ensure: defined content as '{md5}3780e9£5bd2252281729dc1706b01£f14"

Notice: /Stagel[main]/Fog/Packagel[fog]/ensure: created

Notice: /Stagel[main]/Fog/File[/usr/local/bin/boot-ec2]/ensure:
defined content as '{md5}0cdba84340blaedefffd0ed329784450"

Notice: Finished catalog run in 37.17 seconds

Create a Puppet tarball in your working directory for distribution to the EC2 instance.
The simplest way to do this is to tar up your existing Puppet repo or checkout:
ubuntu@cookbook:~$ cd

ubuntu@cookbook:~$ tar czf puppet.tar.gz --exclude .git puppet

Run the boot -ec2 script:

ubuntu@cookbook:~$ boot-ec2

Bootstrapping instance...

Instance name: ec2-107-20-59-174.compute-1.amazonaws.com
Setting hostname...

Copying bootstrap files...

Bootstrapping...

Running command: sudo sh /tmp/bootstrap.sh

sudo: unable to resolve host devbox

sudo: unable to resolve host devbox

notice: //Node|[devbox]/File[/etc/motd] /content: defined
content as 'unknown checksum'

Log in to the instance to check whether your manifest has been applied properly:

ubuntu@cookbook:~$ ssh -i bitfield.pem ubuntu@ec2-107-20-59-174.
compute-1.amazonaws.com

Puppet power!

ubuntu@devbox:~$

Servers and Cloud Infrastructure

Fog is a Ruby library for managing cloud resources, including EC2 and other providers such

as Rackspace. Although you can use Amazon's own ec2-tools scripts to start and manage
instances, using Fog makes it much easier to move your instances to another provider, and you
don't need to install Java or other dependencies for ec2-tools. Having built EC2 infrastructure
both ways, | can confidently say that | prefer using Fog, despite the fact that it has almost no
documentation (Amazon actually has too much).

In the boot -ec2 script, we've used Fog to create a new EC2 instance using our credentials,
and to transfer a copy of the Puppet manifest onto it. We then copy the bootstrap-ec2 script
which installs Puppet and applies the manifest.

In this example, the manifest is pretty simple:

file { '/etc/motd':
content => "Puppet power!\n",

}

but you can easily change it to be, for example, the same as for your production app server.
This would be a good way of quickly deploying a large pool of app servers behind a physical
load balancer; for example, to handle a sudden spike in demand. Alternatively, you can use
EC2 instances as test or staging servers—it's up to you.

There's more...

There's no limit to the number of instances you can deploy with EC2—except perhaps the limit
imposed by your credit card. So you could try modifying the script shown here to start a number
of instances, set by a command-line argument.

You might also want different types of instances—web servers and queue worker servers,
for example. You could modify the boot script to take an argument specifying the instance
type to start.

The script shown here has an important limitation, in that, it supplies the instance with a
snapshot of your Puppet manifest, in the form of a tarball. Obviously as you make changes
to your Puppet manifest, that won't be reflected on the instance. For the sake of simplicity,
the recipe example just uses Puppet to build the server initially, and it doesn't check out a
copy of your Git repo or regularly update the Puppet manifests.

This is often fine for EC2 instances that are short-lived and only spun up for specific purposes.
If you need servers that run for a longer time or you need to be able to push changes out

to them with Puppet, you'll need to modify the script to set up a Git checkout and regular
updates like your other servers, as described in Chapter 1, Puppet Infrastructure.

192

Chapter 7

You might also want to be able to use other cloud providers, such as Rackspace or Linode. To do
this, you will need to make small modifications to the script. Consult the Fog documentation for
more information on this at http://fog.io.

You can also use Puppet's Cloud Provisioner extension to manage your EC2

instances; for more on this see the Puppet Labs page at:
Y

http://docs.puppetlabs.com/guides/cloud pack getting
started.html

Managing virtual machines with Vagrant

While it's great to be able to deploy virtual machines in the cloud, running them on your own
desktop is sometimes even more convenient, especially for testing. If every developer can
have a clone of the production system in a VM on his/her own machine, he/she's less likely
to run into problems when deploying for real. Similarly, if every sysadmin can test his/her
configuration management changes on a private VM, it's a great way to catch issues before
they affect customers.

For some years tools such as VirtualBox and VMware have been available to do this.
However, desktop cloud has really taken off with the arrival of Vagrant, a tool for managing
and provisioning VM environments automatically. Vagrant drives VirtualBox or another
virtualization layer to automate the process of creating a VM, provisioning it with Chef or
Puppet, setting up networking, port forwarding, and packaging running VMs into images for
others to use.

You can use Vagrant to manage your development VMs on your own desktop, or on a shared
machine such as a continuous integration server. For example, you might use a Cl tool such

as Jenkins to boot a VM with Vagrant, deploy your app, and then run your tests against it as

though it were in production.

Getting ready...

In order to use Vagrant, you'll need to install VirtualBox (which actually runs the virtual
machine) and Vagrant (which controls VirtualBox). Currently you can't run VirtualBox VMs on
an EC2 instance (which is itself a virtual machine), so for this example I'm using my laptop.

1. Download and install VirtualBox for your platform here:
https://www.virtualbox.org/wiki/Downloads

2. Download and install Vagrant for your platform here (use the latest available version).
You'll need at least version 1.2 to use the configuration shown here (beware of
installing Vagrant from Rubygems, as the latest gem version at the time of writing is
1.0.7, which won't work): http://downloads.vagrantup.com/

Servers and Cloud Infrastructure

How to do it...

Follow these steps to create your Vagrant VM:

1. Create a directory for the VM on your machine:

$ mkdir devbox

2. Inthis directory, check out or copy your Puppet repo into puppet:
$ cd devbox
git clone gite@egithub.com:bitfield/puppet.git puppet
Cloning into 'puppet'...
remote: Counting objects: 41, done.
remote: Compressing objects: 100% (31/31), done.
remote: Total 41 (delta 2), reused 37 (delta 1)
Receiving objects: 100% (41/41), 6.15 KiB, done.
Resolving deltas: 100% (2/2), done.

3. Inthe devbox directory, create the file vagrantfile with the following contents:

Vagrant .configure ("2") do |config]
config.vm.box = "devbox"
config.vm.box_url = "http://cloud-images.ubuntu.com/precise/

current/precise-server-cloudimg-vagrant-amdé4-diskl.box"
config.vm.hostname = "devbox"

config.vm.provision :puppet, :module path =>
"puppet/modules" do |puppet |
puppet .manifests path = "puppet/manifests"
puppet.manifest file = "site.pp"
end
end

4. Modify your manifests/nodes.pp file as follows:
node 'cookbook' {}
node 'devbox'

file { '/etc/motd':
content => "Puppet power!\n",
}

}

5. Inthe devbox directory, run the following command (it may take a while the first
time, as Vagrant has to download the base Ubuntu image before booting it):

$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

[default] Box 'devbox' was not found. Fetching box from

Chapter 7

specified URL for
the provider 'virtualbox'. Note that if the URL does not have

a box for this provider, you should interrupt Vagrant now and
add

the box yourself. Otherwise Vagrant will attempt to download
the

full box prior to discovering this error.

Downloading or copying the box...

Extracting box...

Successfully added box 'devbox' with provider 'virtualbox'!
[default] Importing base box 'devbox'...

[default] Matching MAC address for NAT networking...
[default] Setting the name of the VM...

[default] Clearing any previously set forwarded ports...
[default] Creating shared folders metadata...

[default] Clearing any previously set network interfaces...

[default] Preparing network interfaces based on
configuration...

[default] Forwarding ports...

[default] -- 22 => 2222 (adapter 1)

[default] Booting VM...

[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!

[default] The guest additions on this VM do not match the
installed version of

VirtualBox! In most cases this is fine, but in rare cases it
can

cause things such as shared folders to not work properly. If
you see

shared folder errors, please update the guest additions within
the

virtual machine and reload your VM.

Guest Additions Version: 4.1.12

VirtualBox Version: 4.2

[default] Setting hostname...

[default] Configuring and enabling network interfaces...

[default] Mounting shared folders...

[default] -- /vagrant
[default] -- /tmp/vagrant-puppet/manifests
[default] -- /tmp/vagrant-puppet/modules-0

[default] Running provisioner: puppet...

Servers and Cloud Infrastructure

Running Puppet with site.pp...

stdin: is not a tty

warning: Could not retrieve fact fqgdn

warning: Host is missing hostname and/or domain: devbox

notice: /Stagel[main]//Node[devbox]/File[/etc/motd] /ensure:
defined content as '{md5}0bdeca690dbb409d48391£3772d389b7"

notice: Finished catalog run in 0.05 seconds

Log into the devbox VM to test your configuration:
$ vagrant ssh

Puppet power!

vagrant@devbox:~$

When Vagrant boots the VM for the first time, it's configured to look in a subdirectory of the
project directory named puppet for the Puppet manifest to provision the machine. This can
be a symbolic link to your Puppet working copy, or a standalone Puppet manifest just for the
devbox—whatever you like, so long as Vagrant can find it.

From that point, Puppet runs just as it would on a 'real' machine, and will apply the manifest
you've provided, in this case, setting the /etc/motd file to display an encouraging message
on login.

Once the VM has been provisioned and Puppet has completed its run, it's ready for use. Just run
vagrant sshtologintoit, vagrant halt to stop it, and vagrant up to start it again.

There's more...

In this example we just configured devbox with a simple manifest that adds a message to the
/etc/motd file. To make this more useful, have devbox pick up the same manifest as the
real server you'll be deploying to. For example:

node 'production', 'devbox' {
include myapp: :production
}

Thus, any changes you make to the production server config will be reflected in the machine
you run your tests on, so that you can pick up problems before deploying. Similarly, if you need
to make a config change to support a new feature, you can test it on the VM first to see if
anything doesn't work.

196

Chapter 7

If you want to suspend or shut down your VM while you're not using it, run:

$ vagrant suspend

or

$ vagrant halt

To wipe the VM completely, so that you can test re-provisioning it, for example, run:
$ vagrant destroy

The Vagrant maintainers have done a great job at making it very straightforward to use, but you
can read more about Vagrant if you need to at the documentation site:

http://docs.vagrantup.com/v2/getting-started/

External Tools and the
Puppet Ecosystem

By all means leave the road when you wish. That is precisely the use of a road:
to reach individually chosen points of departure.

—Robert Bringhurst, 'The Elements of Typographic Style'
In this chapter we will cover:

» Creating custom facts

» Adding external facts

» Setting facts as environment variables

» Importing configuration data with Hiera

» Storing secret data with hiera-gpg

» Generating manifests with puppet resource
» Generating manifests with other tools

» Testing your Puppet manifests with rspec-puppet
» Using public modules

» Using an external node classifier

» Creating your own resource types

» Creating your own providers

» Creating custom functions

External Tools and the Puppet Ecosystem

Introduction

Puppet is a useful tool by itself, but you can get much greater benefits from using Puppet in
combination with other tools and frameworks. We'll look at some ways of getting data into
Puppet, including custom Facter facts, external facts, and Hiera databases, and tools to
generate Puppet manifests automatically from existing configuration.

You'll also learn how to extend Puppet by creating your own custom functions, resource types,
and providers; how to use an external node classifier script to integrate Puppet with other
parts of your infrastructure; how to use public modules from Puppet Forge; and how to test
your code with rspec-puppet.

Creating custom facts

While Facter's built-in facts are useful, it's actually quite easy to add your own facts. For example,
if you have machines in different data centers or hosting providers, you could add a custom
fact for this so that Puppet can determine if any local settings need to be applied (for example,
local DNS servers or network routes).

How to do it...

Here's an example of a simple custom fact:

1. Run the following command:
ubuntu@cookbook: ~/puppet$ mkdir -p modules/facts/lib/facter

2. Create the file modules/facts/lib/facter/hello. rb with the following contents:

Facter.add(:hello) do
setcode do
"Hello, world"
end
end
3. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
notify { $::hello: }

}
4. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: Hello, world

200

Chapter 8

Notice: /Stagel[main]//Node [cookbook] /Notify[Hello, world] /message:
defined 'message' as 'Hello, world'

Notice: Finished catalog run in 0.24 seconds

The built-in facts in Facter are defined in the same way as the custom fact that we just
created. This architecture makes it very easy to add or modify facts, and provides a standard
way for you to read information about the host into your Puppet manifests.

Facts can contain any Ruby code, and the last value evaluated inside the setcode do
end block will be the value returned by the fact. For example, you could make a more useful
fact that returns the number of users currently logged in:

Facter.add(:users) do
setcode do
$x{/usr/bin/who |wc -1}.chomp
end
end

To reference the fact in your manifests, just use its name like a built-in fact:

notify { "${::users} users logged in": }

Notice: 2 users logged in

You can add custom facts to any Puppet module. You might like to create a dedicated facts
module to contain them, as in the example, or just add facts to whichever existing module
seems appropriate.

There's more...

You can extend the use of facts to build a completely nodeless Puppet configuration; in other
words, Puppet can decide what resources to apply to a machine, based solely on the results
of facts. Jordan Sissel has written about this approach at:

http://www.semicomplete.com/blog/geekery/puppet-nodeless-
configuration.html

You can find out more about custom facts, including how to make sure that 0S-specific facts
work only on the relevant systems, and how to weight facts so that they're evaluated in a
specific order, at the Puppet Labs website:

http://docs.puppetlabs.com/guides/custom facts.html

201

External Tools and the Puppet Ecosystem

» The Importing dynamic information recipe in Chapter 3, Writing Better Manifests

» The Importing configuration data with Hiera recipe in this chapter

Adding external facts

The Creating custom facts recipe describes how to add extra facts to Puppet for use in
manifests, but these won't show up in the command-line version of Facter. If you want to
make your facts available to both Facter and Puppet, you can create external facts instead.

External facts live in the /etc/facter/facts.d directory, and have a simple key=value
format, like this:

message="Hello, world"

Getting ready...

Here's what you need to do to prepare your system for adding external facts:
1. You'll need at least Facter 1.7 to use external facts, so run this command to check
your Facter version:
ubuntu@cookbook:~$ facter -v

1.7.1

2. [If your version is pre-1.7, you can install a more recent Facter version from the Puppet
Labs APT repo. If you haven't already configured your system to use this repo, follow
the instructions in the Installing Puppet recipe in Chapter 1, Puppet Infrastructure.
Then, run the following commands:

ubuntu@cookbook:~$ sudo apt-get update

ubuntu@cookbook:~$ sudo apt-get install facter
3. You'll also need to create the external facts directory, using the following command:

ubuntu@cookbook:~$ sudo mkdir -p /etc/facter/facts.d

How to do it...

In this example we'll create a simple external fact that returns a message, as in the Creating
custom facts recipe.

1. Create thefile /etc/facter/facts.d/myfacts.txt with the following contents:

theanswer=42

202

Chapter 8

2.

Run the following command:

ubuntu@cookbook:~$ facter theanswer

42

Well, that was easy! You can add more facts to the same file, or other files, of course:

theanswer=42

world population='7 billion'

breakfast=johnnycakes

But what if you need to compute a fact in some way; for example, the number of logged-in
users? You can create executable facts to do this.

1.

Create the file /etc/facter/facts.d/users. sh with the following contents:
#!/bin/sh

echo users="who |wc -1~

Make this file executable with the following command:

ubuntu@cookbook:~$ sudo chmod a+x /etc/facter/facts.d/users.sh
Now check the fact value with the following command:

ubuntu@cookbook:~$ facter users

1

Facter will look in /etc/facter/facts.d and parse any non-executable files
there, as lists of key=value pairs, as in the myfacts.txt example. If it finds a
key matching the one you requested, it will print the associated value:

ubuntu@cookbook:~$ facter theanswer

42

In the case of executable files, Facter will assume that their output is a list of
key=value pairs. It will execute all the files in the facts.d directory and search
their output for the requested key.

In the users example, Facter will execute the users. sh script, which results in the
following output:

users=1

It will then search this output for users and return the matching value:
ubuntu@cookbook:~$ facter users

1

203

External Tools and the Puppet Ecosystem

5. If there are multiple matches for the key you specified, Facter will return the one parsed
first, which is generally the one from the file whose name is alphanumerically first.

There's more...

You're not limited to using the key=value format for text facts; you can also use YAML or
JSON format, and Facter will detect the format based on the file extension. For example,
here are some facts in YAML format:

robin: Erithacus rubecula
bluetit: Cyanistes caerulus
blackbird: Turdus merula

And here are the same facts in JSON format:

{

"robin": "Erithacus rubecula",
"bluetit": "Cyanistes caerulus",
"blackbird": "Turdus merula"

}

Be careful with the file extension; for YAML files the extension must be .yaml (.yml won't
work, for example). JSON files should have a . json extension.

For executable facts, however, the output has to be in key=value format. Facter can't
auto-detect the format of executable facts (yet).

Debugging external facts

If you're having trouble getting Facter to recognize your external facts, run Facter in debug
mode to see what's happening:

ubuntu@cookbook: ~/puppet$ facter -d robin
Fact file /etc/facter/facts.d/myfacts.json was parsed but returned an
empty data set

The X was parsed but returned an empty data set error means Facter didn't find
any key=value pairs in the file or (in the case of an executable fact) in its output.

Chapter 8

Note that if you have external facts present, Facter parses or runs all the
factsinthe /etc/facter/facts.d directory every time you query Facter.
4 If some of these scripts take a long time to run, that can significantly slow
% down anything that uses Facter (run Facter with the —t iming switch to
troubleshoot this). Unless a particular fact needs to be recomputed every
time it's queried, consider replacing it with a cron job that computes it
every so often and writes the result to a text file in the Facter directory.

Using external facts in Puppet

Any external facts you create will be available to both Facter and Puppet. To reference external
facts in your Puppet manifests, just use the fact name in the same way you would for a built-in
or custom fact:

notify { "There are $::users people logged in right now.": }

Make sure you don't create facts with the same name as an existing or built-in fact, or strange
and probably unwelcome things may happen.

» The Importing dynamic information recipe in Chapter 3, Writing Better Manifests
» The Importing configuration data with Hiera recipe in this chapter

» The Creating custom facts recipe in this chapter

Setting facts as environment variables

Another handy way to get information into Puppet and Facter is to pass it in using environment
variables. Any environment variable whose name starts with FACTER _ will be interpreted as a
fact. For example, try the following command:

ubuntu@cookbook: ~/puppet$ FACTER moonphase=full facter moonphase
full

It works just as well with Puppet, so let's run through an example.

205

External Tools and the Puppet Ecosystem

How to do it...

Follow these steps to see how to set facts using environment variables:

1. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
notify { "The moon is $::moonphase": }
}

2. Run the following command:
ubuntu@cookbook: ~/puppet$ FACTER moonphase="waxing crescent"
puppet apply manifests/site.pp
Notice: The moon is waxing crescent

Notice: /Stagel[main]//Node [cookbook] /Notify[The moon is waxing
crescent] /message: defined 'message' as 'The moon is waxing
crescent'

Notice: Finished catalog run in 0.06 seconds

Importing configuration data with Hiera

A key principle of good programming is to separate data and code. Many Puppet manifests are
full of site-specific data that makes it hard to share and re-use the manifests. Grouping all such
data into structured text files and moving it outside the Puppet manifests makes it easier to
maintain, as well as easier to re-use and share code with other people.

Ideally, we'd not only be able to look up configuration parameters from a data file, but also
choose a different data file depending on things like the environment, the operating system,
and other facts about the machine. We'd also like to be able to organize the data hierarchically
so that we can override certain values with other, higher-priority values.

Puppet has a mechanism named Hiera (as in 'hierarchy') to do just this. The hiera function lets
you look up configuration data from within your manifest, and Hiera takes care of returning the
correct value for the current environment.

Getting ready...

In this example we'll see how to set up a minimal Hiera data file, and read some information
out of it. First, we need to configure Puppet to retrieve data from Hiera. Follow these steps:
1. Create the file hiera.yaml in your Puppet directory with the following contents:

:hierarchy:
- common
:backends:

206

Chapter 8

- yaml
:yaml:
:datadir: '/home/ubuntu/puppet/data’

Create the data directory in your Puppet directory:
ubuntu@cookbook: ~/puppet$ mkdir data

Modify your modules/puppet/files/papply . sh script as follows (if you don't have
this yet, follow the Writing a papply script recipe in Chapter 1, Puppet Infrastructure).
The sudo puppet apply command is all on one line.

#!/bin/sh

sudo puppet apply /home/ubuntu/puppet/manifests/site.pp

--modulepath=/home/ubuntu/puppet/modules/ --hiera config=/home/
ubuntu/puppet/hiera.yaml $*

Make sure that your node includes the puppet module, as follows:

node 'cookbook'
include puppet

}
Run Puppet to update the papply script:

ubuntu@cookbook: ~/puppet$ papply

Notice: /Stage[main] /Puppet/File[/usr/local/bin/papplyl/content:
content changed '{md5}171896840d39664c00909eb8cf47a53c' to '{md5}6
d104081905bcb5el6llac9b6ae6d3b9!

Notice: Finished catalog run in 0.26 seconds

How to do it...

We've now enabled Hiera, so we're ready to use it. Follow these steps to see how to read Hiera
data into your Puppet manifest.

1.

Create the file data/common . yaml with the following contents:

magic_word : 'xyzzy'

Add the following to your manifest:

$message = hiera('magic_word')
notify { $message: }

Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: xyzzy

207

External Tools and the Puppet Ecosystem

1. When you look up a bit of data using the hiera function, Hiera has to do several
things. First, it has to find its data directory, which is set in hiera.yaml here as
/home /ubuntu/puppet/data.

2. Then it needs to know which data file to read. This is determined by the hierarchy
setting, which in our example simply contains common. So Hiera will read common .
yaml and look for the parameter magic_word. When it finds it, it will read the value
(xyzzy) and return it to the manifest.

3. Finally, this value is stored in the Smessage variable and printed out for our enjoyment.

There's more...

Hiera is a very powerful mechanism for importing configuration data and we don't have space
to explore all its possibilities here. But let's look at a simple improvement to our Hiera setup:
adding node-specific settings.

Setting node-specific data with Hiera

In order to have Hiera read different data files depending on the name of the node, we need to
make a couple of changes to the configuration in the previous example, as follows:

1. Modify your hiera.yaml file as follows:

:hierarchy:
- %{hostname}
- common
:backends:
- yaml
:yaml:
:datadir: '/home/ubuntu/puppet/data’

2. Create the file data/cookbook.yaml (if your machine is named cookbook;
otherwise, name it after your hostname) with the following contents:

greeting : "Hello, I'm the cookbook node!"

3. Modify your data/common . yaml file as follows:

greeting : "Hello, I'm some other node!"

4. Modify your manifests/nodes.pp file as follows:

node 'cookbook', 'cookbook2' {
Smessage = hiera('greeting')
notify { $message: }

}

208

Chapter 8

5. Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice: Hello, I'm the cookbook node!

What's happening here? Recall that Hiera uses the hierarchy setting to determine which
data files to search, and in which order. In our example, the first value of hierarchy is:

%{hostname}

This tells Hiera to look for a . yaml file matching the machine's hostname. If it can't find one,
it will go on to the next value in the list:

common

So for all calls to the hiera function, Hiera will first look for data/cookbook . yaml
(or whatever the hostname is), and then data/common.yaml. This allows us to set
certain bits of data which are specific to a named node, in this case, cookbook:

greeting : "Hello, I'm the cookbook node!"

If Hiera can't find a data file matching the machine's hostname, it will look in common . yaml
and use the value of the greet ing parameter from that file. We can test this by temporarily
setting the machine's hostname to something different as follows:

ubuntu@cookbook: ~/puppet$ sudo hostname cookbook2
ubuntu@cookbook: ~/puppet$ papply

sudo: unable to resolve host cookbook2
dnsdomainname: Name or service not known
dnsdomainname: Name or service not known
dnsdomainname: Name or service not known

Notice: Hello, I'm some other node!

Notice: /Stagel[main]//Node[cookbook2] /Notify[Hello, I'm some other
node!] /message: defined 'message' as 'Hello, I'm some other node!'

Notice: Finished catalog run in 0.08 seconds

ubuntu@cookbook: ~/puppet$ sudo hostname cookbook

The values you specify for hierarchy can include Facter facts (as in the hostname example)
or even Puppet variables. For example, if you had a variable $: : vagrant which is true on a
Vagrant virtual machine and false otherwise, you could specify:

:hierarchy:
- vagrant_%{::vagrant}

Depending on the value of $: : vagrant, Hiera will either look for the data in
vagrant_ true.yaml or vagrant false.yaml.

209

External Tools and the Puppet Ecosystem

This is a great way to modify the node's configuration depending on some external factor
without having to use lot of conditional statements and selectors in your Puppet code.
Plus, you can store and version the Hiera data separately from your Puppet manifests

(and for production use, this is a good idea; it means you can use different data depending
on the Puppet environment setting).

Looking up data with Hiera

There are several ways to look up config data using Hiera: the hiera function, as we saw
in the example, simply returns the first match found in the hierarchy for the specified key.
However, you can also use hiera array and hiera hash to return multiple values.
With these functions, Hiera will return all the matches found, including those at different
levels of the hierarchy.

» The Importing dynamic information recipe in Chapter 3, Writing Better Manifests
» The Storing secret data with hiera-gpg recipe in this chapter

» The Creating custom facts recipe in this chapter

» The Adding external facts recipe in this chapter

» The Managing virtual machines with Vagrant recipe in Chapter 7, Servers and
Cloud Infrastructure

» To find out more about Hiera and explore some of its more advanced features,
read the documentation on the Puppet Labs site:

http://docs.puppetlabs.com/hiera/1/index.html

Storing secret data with hiera-gpg

In Chapter 4, Working with Files and Packages, we looked at a way to store encrypted data
in our Puppet manifest which can be decrypted only with the appropriate key (see the Using
GnuPG to encrypt secrets recipe in Chapter 4, Working with Files and Packages).

If you're using Hiera to store your configuration data, there's a gem available called hiera-gpg
which adds an encryption backend to Hiera to achieve the same result.

Getting ready...

To set up hiera-gpg, follow these steps:

1. Run this command to install hiera-gpg:

ubuntu@cookbook:~$ sudo gem install hiera-gpg --no-ri --no-rdoc

Chapter 8

Fetching: json pure-1.8.0.gem (100%)

Fetching: hiera-1.2.1.gem (100%)

Fetching: gpgme-2.0.2.gem (100%)

Building native extensions. This could take a while...
Fetching: hiera-gpg-1.1.0.gem (100%)

Successfully installed json pure-1.8.0

Successfully installed hiera-1.2.1

Successfully installed gpgme-2.0.2

Successfully installed hiera-gpg-1.1.0

4 gems installed

2. Modify your hiera.yaml file as follows:

:hierarchy:
- secret
- common
:backends:
- yaml
- 9p9
:yaml:
:datadir: '/home/ubuntu/puppet/data’
:9pg:

:datadir: '/home/ubuntu/puppet/data’

How to do it...

In this example we'll create a piece of encrypted data and retrieve it using hiera-gpg.

1. Create the file data/secret .yaml with the following contents:
top_secret: 'xyzzy'

2. Ifyou don't already have a GnuPG encryption key, follow the steps in the Using GnuPG
to encrypt secrets recipe in Chapter 4, Working with Files and Packages to create one.

3. Encryptthe secret .yaml file to this key using the following command
(replace the johnebitfieldconsulting.com with the e-mail address you
specified when creating the key). This will create the file secret . gpg:

ubuntu@cookbook: ~/puppet$ cd data
ubuntu@cookbook: ~/puppet/data$ gpg -e -o secret.gpg -r johne
bitfieldconsulting.com secret.yaml
4. Remove the plaintext secret . yaml file:
ubuntu@cookbook: ~/puppet/data$ rm secret.yaml

External Tools and the Puppet Ecosystem

5. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
Smessage = hiera('top_secret')
notify { S$message: }

}
6. Now run Puppet:

ubuntu@cookbook: ~/puppet$ papply
Notice: xyzzy

Notice: /Stagel[main]//Node [cookbook] /Notify[xyzzy]/message:
defined 'message' as 'xyzzy'

Notice: Finished catalog run in 0.29 seconds

When you install hiera-gpg, it adds to Hiera, the ability to decrypt . gpg files. So you can
put any secret data into a . yaml file that you then encrypt to the appropriate key with GnuPG.
Only machines that have the right secret key will be able to access this data.

For example, you might encrypt the MySQL root password using hiera-gpg and install the
corresponding key only on your database servers. Although other machines may also have a
copy of the secret . gpg file, it's not readable to them unless they have the decryption key.

You might also like to know about hiera-eyaml, another secret-data backend for Hiera
that supports encryption of individual values within a Hiera data file. This could be handy if
you need to mix encrypted and unencrypted facts within a single file. Find out more about
hiera-eyaml here:

https://github.com/TomPoulton/hiera-eyaml

See also

» The Importing configuration data with Hiera recipe in this chapter

» The Using GnuPG to encrypt secrets recipe in Chapter 4, Working with Files
and Packages

Chapter 8

Generating manifests with puppet resource

If you have a server which is already configured as it needs to be, or nearly so, you can
capture that configuration as a Puppet manifest. The puppet resource command generates
Puppet manifests from the existing configuration of a system. For example, you can have
puppet resource generate a manifest that creates all the users found on the system.
This is very useful for taking a snapshot of a working system and getting its configuration
quickly into Puppet.

How to do it...

Here are some examples of using puppet resource to get data from a running system:

1. To generate the manifest for a particular user, run the following command:
ubuntu@cookbook: ~/puppet$ puppet resource user ubuntu
user { 'ubuntu':

ensure => 'present',
comment => 'Ubuntu’',
gid => '1000"',

groups => ['adm', 'dialout', 'cdrom', 'floppy', 'audio', 'dip’',
'video', 'plugdev', 'metdev', 'admin'],

home => '/home/ubuntu’,
shell => '/bin/bash’',
uid => '1000"',

}

2. Fora particular service, run the following command:
ubuntu@cookbook: ~/puppet$ puppet resource service ntp
service { 'ntp':

ensure => 'running',
enable => 'true',

}
3. For a package, run the following command:

ubuntu@cookbook: ~/puppet$ puppet resource package libxml2-dev
package { 'libxml2-dev':
ensure => '2.7.8.dfsg-5.1lubuntu4.4',

External Tools and the Puppet Ecosystem

There's more...

You can use puppet resource to examine each of the resource types available in Puppet.
In the preceding examples, we generated a manifest for a specific instance of the resource
type, but you can also use puppet resource to dump all instances of the resource:

ubuntu@cookbook: ~/puppet$ puppet resource user
user { 'bin':
ensure => 'present',

comment => 'bin',

gid => 121,

home => '/bin',
shell => '/bin/sh',
uid => '2',

}

user { 'daemon':
ensure => 'present',

comment => 'daemon',

gid => 111,

home => '/usr/sbin’',
shell => '/bin/sh',
uid => '1"',

This will generate a lot of output!

Generating manifests with other tools

If you want to quickly capture the complete configuration of a running system as a Puppet
manifest, there are a couple of tools available to help. In this example we'll look at Blueprint
and Pysa, both designed to examine a machine and dump its state as Puppet code.

Getting ready...

Here's what you need to do to prepare your system for using Blueprint.
Run the following commands to install Blueprint:

ubuntu@cookbook: ~/puppet$ sudo apt-get install python-pip
ubuntu@cookbook: ~/puppet$ sudo pip install blueprint

Chapter 8

How to do it...

These steps will show you how to run Blueprint:

1.

Run the following commands:

ubuntu@cookbook: ~/puppet$ cd puppet/modules/

ubuntu@cookbook: ~/puppet/modules$ sudo blueprint create -P bp test

[blueprint] searching for APT packages to exclude

No
No
No
No

zZ Z
o o

H*+ H O H O H H H O H O H H H H

TF

-8

packages
packages
packages
packages
packages
packages
[blueprint]
[blueprint]
[blueprint]
[blueprint]
[blueprint]
[blueprint]
[blueprint]
[blueprint]
[blueprint]
[blueprint]
[blueprint]

found
found
found

found

found matching
found matching
matching
matching
matching

matching

installation-report.
linux-generic-pae.
language-pack-en.
language-pack-gnome-en.
linux-server.

ubuntu-desktop.

caching excluded APT packages

searching for Yum packages to exclude

parsing blueprintignore(5) rules

searching
searching
searching
searching
searching
searching

searching

for
for
for
for
for
for

for

npm packages

Ruby gems

PEAR/PECL packages

Yum packages

Python packages

software built from source

configuration files

/etc/ssl/certs/EBG Elektronik Sertifika Hizmet Sa\
xc4\x9flay\xc4\xblc\xc4\xbls\xc4\xbl.pem not UTF-8 - skipping it
[blueprint] /etc/ssl/certs/NetLock Arany =Class Gold=_ F\xc5\

x91tan\xc3\xbas\xc3\xadtv\xc3\xalny.pem not UTF-8 - skipping it
[blueprint] /etc/ssl/certs/T\xc3\x9cB\xc4\xb0TAK UEKAE K\xc3\

xb6k Sertifika Hizmet Sa\xc4\x9flay\xc4\xblc\xc4\xbls\xc4\xbl - S\
xc3\xber\xc3\xbcm 3.pem not U

- skipping it

[blueprint] /etc/ssl/certs/AC Ra\xc3\xadz Certic\xc3\
xalmara S.A..pem not UTF-8 - skipping it

[blueprint] /etc/ssl/certs/Certinomis - Autorit\xc3\xa9 Racine.
pem not UTF-8 - skipping it

[blueprint] searching for service dependencies

bp test/manifests/init.pp

External Tools and the Puppet Ecosystem

2. Readthefilebp test/manifests/init.pp to see the generated code:

#
Automatically generated by blueprint (7). Edit at your own risk.
#
class bp test {
Exec {
path =>
'/usr/local/sbin: /usr/local/bin: /usr/sbin: /usr/bin:/sbin:/
bin',
}
Class['sources'] -> Class['files'] -> Class/['packages']
class files {
file {
'/etc':
ensure => directory;
'/etec/X11':
ensure => directory;
'/etc/X11l/Xwrapper.config':
content =>
template ('bp_test/etc/X1l/Xwrapper.config!'),

ensure => file,
group => root,
mode => 0644,
owner => root;
' /etc/apache2':

ensure => directory;

It's worth saying that tools like Blueprint are probably a bit less helpful than you might think.
I've heard people say things like, "Great! | don't need to know Puppet at all: | just have to set
up my system manually, then Blueprint it."

While this is true as far as it goes, there are some problems with that approach. The first is that
Blueprint is completely indiscriminate about what it captures, which is to say, everything: as you
can see in the example, it adds things such as the /etc/x11 directory to the manifest. In fact,
this is completely unmodified from a standard Ubuntu install, so putting it in Puppet is pointless.

The result is a very large amount of Puppet code (nearly 1500 lines for my system), most of
which is entirely irrelevant to your application or service. Blueprint also makes no attempt to
separate its generated code into modules, so you get one huge source file, which is awkward
to maintain.

Chapter 8

As you can see, the generated code itself is not compatible with the Puppet style guide,

so it won't match the rest of your manifest. It's more verbose than it needs to be, because there
are no refactoring steps to group together similar resources in arrays or definitions. It's not
object-oriented in any way and you end up with just a few unhelpfully-named classes such as
packages and files.

All package versions are hard-coded to whatever happens to be currently installed; this means
the manifest will stop working as soon as any package is updated in the Ubuntu repository,
because the version it specifies will no longer be available.

Need | go on? | think you get the point. Blueprint and other automatic manifest-generating tools
can be a helpful aid to a busy sysadmin, if used sparingly. You should also regard the resulting
code as a starting point rather than something to plug straight into your production systems.

Frankly, in my Puppet consulting work, | don't use tools like this. | find it easier and quicker to
write good code from scratch (and help my clients to do the same) rather than try to wrestle
crummy auto-generated code into shape. | recommend you do the same. But if your boss
suggests you stop wasting time using your brain and use Blueprint instead, simply direct her
to this book.

Playing with Pysa

Pysa is a new tool inspired by Blueprint, and is in some ways smarter. However, it suffers from
most of the generic problems with automatic manifest generation tools that I've described.
Currently it's in alpha status, meaning that its functionality is not yet complete, and the
manifests it produces don't always work. However, it's under active development, and looks
to be a promising tool in the future.

You can find out more about Pysa at the website:

http://www.madeiracloud.com/blog/introducing-pysa-reverse-your-
servers-configurations

Conclusion

There's definitely a place for automatic manifest generation tools. The most useful, | think,

is probably puppet resource because you can use it in a targeted way to quickly generate
manifests for only those resources you're interested in. The resulting code is of good quality
and you can add it straight into your manifests without too much tweaking.

There's no short-cut to good configuration management, though, and those who hope to
save time and effort by cutting and pasting someone else's code wholesale (as with public
modules) are likely to find that it saves neither.

External Tools and the Puppet Ecosystem

Testing your manifests with rspec-puppet

It would be great if we could verify that our Puppet manifests satisfy certain expectations
without even having to run Puppet. rspec-puppet is a nifty tool for doing this. Based on
RSpec, a testing framework for Ruby programs, rspec-puppet lets you write test cases for
your Puppet manifests that are especially useful for catching regressions (bugs introduced when
fixing another bug) and refactoring problems (bugs introduced when reorganizing your code).

Getting ready...

Here's what you'll need to do to install rspec-puppet.
Run the following commands:

ubuntu@cookbook: ~/puppet$ sudo gem install rspec-puppet
ubuntu@cookbook: ~/puppet$ sudo gem install puppetlabs spec helper

How to do it...

Let's write some tests for our admin: :ntp class.

1. Run the following commands:
ubuntu@cookbook: ~/puppet$ cd modules/admin/
ubuntu@cookbook: ~/puppet/modules/admin$ rspec-puppet-init
+ spec/
+ spec/classes/
+ spec/defines/
+ spec/functions/
+ spec/hosts/
+ spec/fixtures/
+ spec/fixtures/manifests/
+ spec/fixtures/modules/
+ spec/fixtures/modules/admin/
+ spec/fixtures/manifests/site.pp
+ spec/fixtures/modules/admin/manifests
+ spec/fixtures/modules/admin/files
+ spec/spec_helper.rb

+ Rakefile

Chapter 8

2. Create the file spec/classes/ntp_spec.rb with the following contents:
require 'spec_ helper'
describe 'admin::ntp' do
it { should contain package('ntp') }
it { should contain service('ntp').with(

'ensure' => 'running'
)}
it { should contain file('/etc/ntp.conf') }
end

3. Run the following commands:

ubuntu@cookbook: ~/puppet/modules/admin$ rake spec
/usr/bin/rubyl.8 -S rspec spec/classes/ntp spec.rb

Finished in 0.46446 seconds

3 examples, 0 failures

The rspec-puppet-init command creates a framework of directories for you to put
your specs (test programs) in. At the moment, we're just interested in the spec/classes
directory. This is where you'll put your class specs, one per class, named after the class it
tests, for example, ntp spec.rb.

The spec code itself begins with the following statement, which sets up the RSpec
environment to run the specs:

require 'spec_ helper'

Then there follows a describe block:
describe 'admin::ntp' do
ena

describe identifies the class we're going to test (admin: :ntp) and wraps the list of
assertions about the class inside a do .. end block.

Assertions are our stated expectations of the admin: :ntp class. For example, the first
assertion is the following:

it { should contain package('ntp') }

External Tools and the Puppet Ecosystem

The contain_package assertion means what it says: the class should contain a package
resource named ntp.

Next, we test for the existence of the ntp service:

it { should contain service('ntp').with(
'ensure' => 'running'

)}

The preceding code actually contains two assertions. First, that the class contains an
ntp service:

contain service('ntp')
Second, that the service has an ensure attribute with the value running:

with (
'ensure' => 'running'

)

You can specify any attributes and values you want using the with method, as a
comma-separated list. For example, the following code asserts several attributes
of a file resource:

it { should contain file('/tmp/hello.txt').with(
'content' => "Hello, world\n",

'owner' => 'ubuntu',
'group'’ => 'ubuntu',
'mode’ => '0644"'

)}

In our admin: :ntp example, we need to only test that the file ntp . conf is present,
using the following code:

it { should contain file('/etc/ntp.conf') }

When you run the rake spec command, rspec-puppet will compile the relevant Puppet
classes, run all the specs it finds, and display the results:

ubuntu@cookbook: ~/puppet/modules/admin$ rake spec
/usr/bin/rubyl.8 -S rspec spec/classes/ntp spec.rb

Finished in 0.46446 seconds

3 examples, 0 failures
If one of the specs failed, you'd see an error message like the following;:

/usr/bin/rubyl.8 -S rspec spec/classes/ntp spec.rb

220

Chapter 8

Failures:

1) admin::ntp
Failure/Error: it { should contain file('/etc/ntp.conf') }
expected that the catalogue would contain File[/etc/ntp.conf]

./spec/classes/ntp spec.rb:8

Finished in 0.47529 seconds

3 examples, 1 failure

There's more...

You can find more information about rspec-puppet, including complete documentation for
the assertions available, and a tutorial, at:

http://rspec-puppet.com/

See also

The Checking your manifests with puppet-lint recipe in Chapter 2, Puppet Language and Style

Using public modules

When you write a Puppet module to manage some software or service, you don't have to start
from scratch. Community-contributed modules are available at the Puppet Forge site for
many popular applications. Sometimes, a community module will be exactly what you need
and you can download and start using it straight away. In most cases, you will need to make
some modifications to suit your particular needs and environment.

In general, | would not recommend treating Puppet Forge as a source of "drop-in" modules,
that you can deploy without reading or understanding the code. Rather, | would use it as a
source of inspiration, help, and examples. A module taken from Puppet Forge should be a
jumping-off point for you to develop and improve your own modules.

It's fine to start by using other people's modules, but if you don't learn the skills to extend
them and write your own, you'll always be reliant on third-party code that may or may not
be maintained in the future.

Be aware that a given module may not work on your Linux distribution. Check the README file
that comes with the module to see if your operating system is supported.

221

External Tools and the Puppet Ecosystem

How to do it...

In this example we'll use the puppet module command to find and install the
useful stdlib module, which contains many utility functions to help you develop
Puppet code.

1.

222

Run the following command:
ubuntu@cookbook: ~/puppet$ puppet module search stdlib
Notice: Searching https://forge.puppetlabs.com ...

NAME DESCRIPTION
AUTHOR KEYWORDS
cek-£fstdlib Fused additional "stdlib"

functions, types, facts and everything else. @cek
standard-library fstdlib fused

juniper-netdev stdlib junos Junos Provider code for
Networking Device (netdev stdlib) Library @juniper
juniper netdevops junos networking

netdevops-netdev stdlib Type definitions for
Networking Device (netdev) Library @netdevops
networking netdevops

aristanetworks-netdev stdlib eos Provider definition for

implementing Networking Device (netdev) Lib...
@aristanetworks networking eos netdev arista

offline-stdlib Puppet Module Standard
Library @offline
puppetlabs-activemgq ActiveMQ Puppet Module
@puppetlabs java activemqg amgp stomp stdlib
puppetlabs-java Manage the official Java
runtime @puppetlabs
java stdlib runtime jdk jre

puppetlabs-stdlib Puppet Module Standard
Library @puppetlabs

There are several matching results, but the one we're looking for is
puppetlabs-stdlib, so run the following commands to download
this module and add it to your repo:

ubuntu@cookbook: ~/puppet$ puppet module install -i /home/ubuntu/
puppet/modules puppetlabs-stdlib

Notice: Preparing to install into /home/ubuntu/puppet/modules

Notice: Downloading from https://forge.puppetlabs.com ...
Notice: Installing -- do not interrupt ...
/home/ubuntu/puppet/modules

L— puppetlabs-stdlib (v4.1.0)

Chapter 8

3. The module is now ready to use in your manifests: most good modules come with a
README file to show you how to do this.

You can search for modules that match the package or software you're interested in with the
puppet module search command. To install a specific module, use puppet module
install with the -i option to tell it where your module directory is, as in the example.

You can browse the site to see what's available at

http://forge.puppetlabs.com/

There's more...

Not all publically available modules are on Puppet Forge. Some other great places to look are
on GitHub:

» https://github.com/camptocamp
» https://github.com/example4?

Though not a collection of modules as such, the Puppet Cookbook website has many useful
and illuminating code examples, patterns, and tips, maintained by the admirable Dean Wilson:

http://www.puppetcookbook.com/

Using an external node classifier

When Puppet runs on a node, it needs to know which classes should be applied to that node.
For example, if it is a web server node, it might need to include an apache class. The normal
way to map nodes to classes is in the Puppet manifest itself, for example in a nodes . pp file:

node 'webl' {
include apache

}

Alternatively, you can use an external node classifier to do this job. An external node classifier
(ENC for short) is any executable program which can accept a node name and return a list of
classes which should be applied to that node.

An ENC could be a simple shell script, for example, or a wrapper around a more complicated
program or API that can decide how to map nodes to classes. In this example we'll build the
most trivial of ENCs, a shell script which simply prints out a list of classes to include.

223

External Tools and the Puppet Ecosystem

Getting ready...

An ENC has certain restrictions compared to a node declaration: for example, you can't
declare individual resources, but can only include classes that already exist in your manifest.
So for this example, we'll create a little helloenc class that the ENC will include.

1.

Run the following command:
ubuntu@cookbook: ~/puppet$ mkdir -p modules/admin/manifests

Create the file modules/admin/manifests/helloenc.pp with the following
contents:

class admin::helloenc ({
notify { "Hello, I was included by your ENC!": }

}

How to do it...

Here's how to build a simple external node classifier:

1.

224

Create the file /usr/local/bin/enc with the following contents:

#!/bin/bash
cat <<"END"

classes:
admin: :helloenc:

END

Run the following command:
ubuntu@cookbook: ~/puppet$ sudo chmod a+x /usr/local/bin/enc

Modify your /etc/puppet/puppet . conf file as follows:

[main]

node_ terminus = exec

external nodes = /usr/local/bin/enc
Run Puppet:

ubuntu@cookbook: ~/puppet$ papply
Notice: Hello, I was included by your ENC!

Notice: /Stagel[main]/Admin::Helloenc/Notify[Hello, I was included
by your ENC!]/message: defined 'message' as 'Hello, I was included
by your ENC!'

Notice: Finished catalog run in 0.29 seconds

Chapter 8

When an external node classifier is set in puppet . conf, Puppet will call the specified
program with the node's hostname as the command-line argument. In our example script,
this argument is ignored, and it just outputs a fixed list of classes (actually, just one class).

Obviously this script is not terribly useful; a more sophisticated script might check a database to
find the class list, or look up the node in a hash or an external text file. Hopefully, this example is
enough to get you started writing your own external node classifier.

An ENC can supply a whole list of classes to be included on the node, in the following
(YAML) format:

classes:
CLASS1:
CLASS2:
CLASS3:

For classes that take parameters, you can use this format:

classes:
mysql:
package: percona-server-server-5.5
socket: /var/run/mysqgld/mysqgld.sock
port: 3306

You can also produce top-scope variables using an ENC, with this format:

parameters:
message: 'hello!

Variables that you set in this way will be available in your manifest using the normal syntax for
a top-scope variable, for example $: :message.

See the Puppet Labs ENC page for more information on writing and using ENCs:

http://docs.puppetlabs.com/guides/external nodes.html

225

External Tools and the Puppet Ecosystem

Creating your own resource types

As you know, Puppet has a bunch of useful built-in resource types: packages, files, users,
and so on. Usually, you can do everything you need to do by using either combinations of
these built-in resources, or a custom def ine that you can use more or less in the same way
as a resource (see Chapter 3, Writing Better Manifests for information on definitions).

However, if you need to create your own resource type, Puppet makes it quite easy. The native
types are written in Ruby, and you will need a basic familiarity with Ruby in order to create
your own.

Let's refresh our memory on the distinction between types and providers. A type describes
a resource and the parameters it can have (for example, the package type). A provider tells
Puppet how to implement a resource type for a particular platform or situation (for example,
the apt/dpkg providers implement the package type for Debian-like systems).

A single type (package) can have many providers (apt, yum, £ink, and so on). If you don't
specify a provider when declaring a resource, Puppet will choose the most appropriate one
given the environment.

How to do it...

In this section we'll see how to create a custom type that we can use to manage Git
repositories, and in the next section, we'll write a provider to implement this type.
1. Run the following command:
ubuntu@cookbook: ~/puppet$ mkdir -p
modules/custom/lib/puppet/type

2. Create the file modules/custom/1ib/puppet/type/gitrepo.rb with the
following contents:

Puppet: : Type.newtype (:gitrepo) do
ensurable

newparam(:source) do
isnamevar
end

newparam (:path)
end

226

Chapter 8

Custom types can live in any module, in a 1ib/puppet/type subdirectory and in a file
named for the type (in our example, that's modules/custom/1ib/puppet/type/
gitrepo.rb).

The first line of gitrepo. rb tells Puppet to register a new type named gitrepo:
Puppet: : Type.newtype (:gitrepo) do

The ensurable line automatically gives the type a property ensure, like Puppet's
built-in resources:

ensurable

We'll now give the type some parameters. For the moment, all we need is a source parameter
for the Git source URL, and a path parameter to tell Puppet where the repo should be created
in the filesystem.

newparam (: source) do
isnamevar

end

The isnamevar declaration tells Puppet that the source parameter is the type's namevar.
So when you declare an instance of this resource, whatever name you give it will be the value
of source, for example:

gitrepo { 'git://github.com/puppetlabs/puppet.git’:
path => '/home/ubuntu/dev/puppet’,

}
Finally, we tell Puppet that the type accepts the path parameter:

newparam (:path)

There's more...

Once you're familiar with creating your own resources, you can use them to replace
complicated exec statements and make your manifests more readable. However, it's a
good idea to make your resources robust and reusable by adding some documentation
and validating your parameters.

227

External Tools and the Puppet Ecosystem

Documentation

Our example is deliberately simple, but when you move on to developing real custom types for
your production environment, you should add documentation strings to describe what the type
and its parameters do. For example:

Puppet: : Type.newtype (:gitrepo) do
@doc = "Manages Git repos"

ensurable

newparam (:source) do
desc "Git source URL for the repo"
isnamevar

end

newparam (:path) do
desc "Path where the repo should be created"
end
end

Validation

You can use parameter validation to generate useful error messages when someone tries to
pass bad values to the resource. For example, you could validate that the directory where the
repo is to be created actually exists:

newparam (:path) do
validate do |value]
basepath = File.dirname (value)
unless File.directory? (basepath)
raise ArgumentError , "The path %s doesn't exist" % basepath
end
end
end

You can also specify the list of allowed values that the parameter can take:

newparam (:breakfast) do
newvalues (:bacon, :eggs, :sausages)
end

Creating your own providers

In the previous section, we created a new custom type called gitrepo and told Puppet that
it takes two parameters, source and path. However, so far we haven't told Puppet how to
actually check out the repo—in other words, how to create a specific instance of this type.
That's where the provider comes in.

228

Chapter 8

We saw that a type will often have several possible providers. In our example, there is only
one sensible way to instantiate a Git repo, so we'll only supply one provider: git. If you were
to generalize this type—to just repo, say—it's not hard to imagine creating several different
providers depending on the type of repo, for example, git, svn, cvs, and so on.

How to do it...

We'll add the git provider, and create an instance of a gitrepo resource to check that it

all works. You'll need Git installed for this to work, but if you're using the Git-based manifest
management setup described in Chapter 1, Puppet Infrastructure, we can safely assume that
Git is available.

1.

Run the following command:

ubuntu@cookbook: ~/puppet$ mkdir -p
modules/custom/lib/puppet/provider/gitrepo

Create the file modules/custom/1lib/puppet/provider/gitrepo/git.rb
with the following contents:

require 'fileutils'

Puppet: :Type.type (:gitrepo) .provide (:git) do
commands :git => "git"

def create
git "clone", resourcel[:source], resourcel[:path]
end

def exists?
File.directory? resource[:path]
end
end

Modify your manifests/nodes.pp file as follows:

node 'cookbook'
gitrepo { 'https://github.com/puppetlabs/puppet.git’:
ensure => present,
path => '/tmp/puppet’,
}
}

Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Notice:
/Stage [main] //Node [cookbook] /Gitrepo [https://github.com/
puppetlabs/puppet.git] /ensure: created

Notice: Finished catalog run in 10.76 seconds

229

External Tools and the Puppet Ecosystem

Custom providers can live in any module, in a 1ib/puppet/provider/TYPE NAME
subdirectory, in a file named after the provider (in our example, that's modules/custom/
lib/puppet/provider/gitrepo/git.rb).

The first line of git . rb tells Puppet to register a new provider for the gitrepo type:
Puppet: : Type.type (:gitrepo) .provide (:git) do

When you declare an instance of the gitrepo type in your manifest, Puppet will first of all
check whether the instance already exists, by calling the exists? method on the provider.
So we need to supply this method, complete with code to check whether an instance of the
gitrepo already exists:

def exists?
File.directory? resource[:path]
end

This is not the most sophisticated implementation: it simply returns true if a directory
exists matching the path parameter of the instance. A better implementation of exists?
might check, for example, whether there is a . git subdirectory and that it contains valid
Git metadata. But this will do for now.

If exists? returns true, then Puppet will take no further action, because the specified
resource exists (as far as Puppet knows). If it returns false, Puppet assumes the resource
doesn't yet exist, and will try to create it by calling the provider's create method.

Accordingly, we supply some code for the create method that calls the git clone
command to create the repo:

def create
git "clone", resourcel[:source], resourcel[:path]
end

The method has access to the instance's parameters, which we need to know where
to check out the repo from, and which directory to create it in. We get this by looking at
resource [:source] and resource [:pathl].

There's more...

You can see that custom types and providers in Puppet are very powerful. In fact, they can
do anything—at least, anything that Ruby can do. If you are managing some parts of your
infrastructure with complicated define statements and exec resources, you may want
to consider replacing these with a custom type. In fact, it's worth looking around to see if
someone else has already done this before implementing your own.

230

Chapter 8

Our example was very simple, and there is much more to learn about writing your own types.
If you're going to distribute your code for others to use, or even if you aren't, it's a good idea to
include tests with it. Puppet Labs has a useful page on the interface between custom types
and providers:

http://docs.puppetlabs.com/guides/custom_types.html
on implementing providers:
http://docs.puppetlabs.com/guides/provider development.html

and a complete worked example of developing a custom type and provider, a little more
advanced than that presented in this book:

http://docs.puppetlabs.com/guides/complete resource example.html
Dean Wilson also has a very instructive example of a custom type to manage APT sources:

https://github.com/deanwilson/puppet-aptsourced

Creating your own functions

If you've read the recipe Using GnuPG to encrypt secrets in Chapter 4, Working with Files
and Packages, then you've already seen an example of a custom function (in that example,
we created a secret function, which shelled out to GnuPG). Let's look at custom functions
in a little more detail now and build an example.

How to do it...

If you've read the recipe Efficiently distributing cron jobs in Chapter 5, Users and Virtual
Resources, you might remember that we used the inline template function to seta
random time for cron jobs to run, based on the hostname of the node. In this example we'll
take that idea and turn it into a custom function called random minute.

1. Run the following command:
ubuntu@cookbook: ~/puppet$ mkdir -p
modules/custom/lib/puppet/parser/functions

2. Create the file modules/custom/lib/puppet/parser/functions/random
minute.rb with the following contents:

module Puppet::Parser::Functions

newfunction (:random minute, :type => :rvalue) do |args]|
lookupvar ('hostname') .sum % 60
end
end

231

External Tools and the Puppet Ecosystem

3. Modify your manifests/nodes.pp file as follows:

node 'cookbook'
cron { 'randomised cron job':
command => '/bin/echo Hello, world >>/tmp/hello.txt',
hour => '*!,
minute => random minute(),

}
}

4. Run Puppet:
ubuntu@cookbook: ~/puppet$ papply

Notice: /Stagel[main]//Node [cookbook] /Cron[randomised cron jobl/
ensure: created

Notice: Finished catalog run in 0.42 seconds
5. Check the crontab with the following command:

ubuntu@cookbook: ~/puppet$ sudo crontab -1

HEADER: This file was autogenerated at Fri Jun 28 12:04:11 +0000
2013 by puppet.

HEADER: While it can still be managed manually, it is definitely
not recommended.

HEADER: Note particularly that the comments starting with
'Puppet Name' should

HEADER: not be deleted, as doing so could cause duplicate cron
jobs.

Puppet Name: randomised cron job
15 * * * * /bin/echo Hello, world >>/tmp/hello.txt

Custom functions can live in any module, in the 1ib/puppet/parser/functions
subdirectory, in a file named after the function (in our example, random_minute.rb).

The function code goes inside a module ... end block like this:
module Puppet::Parser::Functions
end

We then call newfunction to declare our new function, passing in the name
(:random minute), and the type of function (: rvalue):

newfunction (:random minute, :type => :rvalue) do |args]|

The : rvalue bit simply means that this function returns a value.

232

Chapter 8

Finally, the function code itself is here:

)

lookupvar ('hostname') .sum % 60

The lookupvar function lets you access facts and variables by name: in this case, hostname
to get the name of the node we're running on. We use the Ruby sum method to get the numeric
sum of the characters in this string, and then perform integer division modulo 60 to make sure
the resultis in the range 0. . 59.

You can, of course, do a lot more with custom functions. In fact, anything you can do in Ruby,
you can do in a custom function. You also have access to all the facts and variables that are in
scope at the point in the Puppet manifest where the function is called, by calling 1ookupvar
as shown in the example.

To find out more about what you can do with custom functions, see the Puppet Labs website:

http://docs.puppetlabs.com/guides/custom functions.html

233

Monitoring, Reporting,
and Troubleshooting

Show me a completely smooth operation and I'll show you someone who's covering
mistakes. Real boats rock.

—Frank Herbert, 'Chapterhouse: Dune'

In this chapter, we will cover:

>

v

Doing a dry run

Logging command output

Logging debug messages

Generating reports

Producing automatic HTML documentation
Drawing dependency graphs
Understanding Puppet errors

Inspecting configuration settings

Introduction

We've all had the experience of sitting in an exciting presentation about some new
technology, and rushing home to play with it. Of course, once you start experimenting with
it, you immediately run into problems. What's going wrong? Why doesn't it work? How can |
see what's happening under the hood? This chapter will help you answer some of these
questions, and give you the tools to solve common Puppet problems. We'll also see how to
generate useful reports on your Puppet infrastructure, and how Puppet can help you
monitor and troubleshoot your network as a whole.

Monitoring, Reporting, and Troubleshooting

Doing a dry run

Sometimes your Puppet manifest doesn't do exactly what you expected, or perhaps someone
else has checked in changes you didn't know about. Either way, it's good to know exactly what
Puppet is going to do before it does it.

If it would update a config file and restart a production service, for example, this could result
in unplanned downtime. Also, sometimes manual configuration changes are made on a server
which Puppet would overwrite.

To avoid these problems, you can use Puppet's dry run mode (also called noop mode,
for no operation).

How to do it...

Follow this step in order to do a dry run with Puppet. Run Puppet (or the papply script we
wrote in Chapter 1, Puppet Infrastructure) with the - -noop switch. The output will depend
on whether Puppet has any changes to make to the machine. If there are resources to be
applied, you'll see output similar to this (not the same, of course; the actual output will
depend on your manifest):

ubuntu@cookbook: ~/puppet$ papply --noop

Notice: /Stage[main]/Admin::Ntp/File[/etc/ntpd.conf]/ensure: current
value absent, should be file (noop)

Notice: /Stage[main]/Admin::Ntp/Servicel[ntp]l: Would have triggered
'refresh' from 1 events

Notice: Class[Admin::Ntp]: Would have triggered 'refresh' from 2 events
Notice: Stagelmain]: Would have triggered 'refresh' from 1 events

Notice: Finished catalog run in 0.55 seconds

In the noop mode, Puppet does everything it would normally, with the exception of actually
making any changes to the machine (the exec resources, for example, won't run). It tells you
what it would have done, and you can compare this with what you expected to happen. If there
are any differences, double-check the manifest or the current state of the machine.

Note that Puppet warns us that it would have written the file /etc/ntpd. conf, and restarted
the ntp service. This may or may not be what we want, but it's useful to know in advance.

| make it a rule, when applying any non-trivial changes on production servers, to run Puppet
in noop mode first, and verify what's going to happen.

236

Chapter 9

There's more...

You can also use dry run mode as a simple auditing tool. It will tell you if any changes have
been made to the machine since Puppet last applied its manifest. Some organizations require
all config changes to be made with Puppet, which is one way of implementing a change control
process. Unauthorized changes can be detected using Puppet in dry run mode and you can
then decide whether to merge the changes back into the Puppet manifest, or undo them.

You can also use the - -debug switch to Puppet (or papply) to see the details of every
resource Puppet considers in the manifest. This can be helpful when trying to figure out if
Puppet is loading a particular class, for example, or to see in what order things are happening.

See also

» The Auditing resources recipe in Chapter 5, Users and Virtual Resources

» The Automatic syntax checking with Git hooks recipe in Chapter 1, Puppet
Infrastructure

» The Generating reports recipe in this chapter

» The Testing your Puppet manifests with rspec-puppet recipe in Chapter 8, External
Tools and the Puppet Ecosystem

Logging command output

When you use the exec resources to run commands on the node, Puppet will give you an
error message like the following if a command returns a non-zero exit status:

Notice: /Stagel[main]//Node[cookbook] /Exec[this-will-fail]/returns:
/bin/cat: /tmp/missing: No such file or directory

Error: /bin/cat /tmp/missing returned 1 instead of one of [0]

As you can see, Puppet not only reports that the command failed, but shows its output:

/bin/cat: /tmp/missing: No such file or directory

This is useful for figuring out why the command didn't work, but sometimes the command
actually succeeds (in that it returns a zero exit status) but still doesn't do what we wanted.
In that case, how can you see the command output? You can use the logoutput attribute.

237

Monitoring, Reporting, and Troubleshooting

How to do it...

Follow these steps in order to log command output:

1.

Define an exec resource with the 1logoutput parameter as shown in the following
code snippet:

exec { 'misbehaving-command':
command => '/bin/cat /etc/hostname’,

logoutput => true,

}

Run Puppet:
ubuntu@cookbook: ~/puppet$ papply

Notice: /Stage[main]//Node [cookbook]/Exec [misbehaving-command]/
returns: cookbook

Notice: /Stage[main]//Node [cookbook] /Exec [misbehaving-command]/
returns: executed successfully

Notice: Finished catalog run in 0.14 seconds
As you can see, even though the command succeeds, Puppet prints the output:

cookbook

The logoutput attribute has three possible settings:

>

>

>

false: never print command output
on_failure: only print output if the command fails (the default setting)

true: always print output, whether the command succeeds or fails

You can set the default value of 1ogoutput to always display command output for all exec
resources by defining the following in your site. pp file:

Exec {

}

238

logoutput => true,

Chapter 9

What's this Exec syntax? It looks like an exec resource, but it's not.

When you use Exec with a capital E, you're telling Puppet to apply this to
s all exec resources anywhere in the manifest. It's a handy way of setting

global defaults for a particular resource type.
If you never want to see command output, whether it succeeds or fails, use:

logoutput => false,

Logging debug messages

It can be very helpful when debugging problems if you can print out information at a certain
point in the manifest. This is a good way to tell, for example, if a variable isn't defined or has
an unexpected value. Sometimes it's useful just to know that a particular piece of code has
been run. Puppet's notify resource lets you print out such messages.

How to do it...

Define a notify resource in your manifest at the point you want to investigate:

notify { 'Got this far!': }

When this resource is applied Puppet will print out the message:

notice: Got this far!

If you're the kind of brave soul who likes experimenting, and | hope you are, you'll probably
find yourself using debug messages a lot to figure out why your code doesn't work. So knowing
how to get the most out of Puppet's debugging features can be a great help.

239

Monitoring, Reporting, and Troubleshooting

Printing out variable values
You can refer to variables in the message:

notify { "operatingsystem is ${::operatingsystem}": }
And Puppet will interpolate the values in the printout:
notice: operatingsystem is Ubuntu

The double colon (: :) before the fact name tells Puppet that this is a variable in top scope
(accessible to all classes) and not local to the class. For more about how Puppet handles
variable scope, see the Puppet Labs article:

http://docs.puppetlabs.com/guides/scope and puppet.html

Checking when a resource is applied

If you want to find out when a particular resource has been applied, you can have your notify
resource require it. That way, when you see the notify, you can be sure that the dependent
resource has already been applied:

notify { 'Resource X has been applied':
require => Exec['X'],

}

Generating reports

If you're managing a lot of machines, Puppet's reporting facility can give you some valuable
information on what's actually happening out there.

How to do it...

To enable reports, just add this to a client's puppet . conf:

report = true

With reporting enabled, Puppet will generate a report file, containing data such as

» The date and time of the run
» Total time for the run
» Log messages output during the run

» List of all resources in the client's manifest

240

Chapter 9

» Whether Puppet changed any resources, and how many
» Whether the run succeeded or failed

By default, these reports are stored on the node in /var/lib/puppet/reports in a directory
named after the hostname, but you can specify a different destination using the reportdir
option. You can create your own scripts to process these reports (which are in the standard
YAML format).

If you just want one report, or you don't want to enable reporting all the time, you can add the
- -report switch to the command line when you run Puppet manually:

ubuntu@cookbook: ~/puppet$ papply --report

Notice: Finished catalog run in 0.17 seconds
You won't see any output, but a report file will be generated in the report directory.

You can also see some overall statistics about a Puppet run by supplying the
- -summarize switch:

ubuntu@cookbook: ~/puppet$ papply --summarize

Notice: Finished catalog run in 0.19 seconds

Changes:
Events:
Resources:
Total: 11
Skipped: 6
Time:

Filebucket: 0.00
Cron: 0.00
File: 0.01
Config retrieval: 0.17
Total: 0.18
Last run: 1364230708
Version:
Config: 1364230706
Puppet: 3.2.2

If you want to collate Puppet reports centrally, one way to do this is to have Puppet write its
reports to the node's syslog, and use a distribution mechanism such as rsyslog to send
these logs to a central machine.

241

Monitoring, Reporting, and Troubleshooting

See also

» The Auditing resources recipe in Chapter 5, Users and Virtual Resources

» The Doing a dry run recipe in this chapter

Producing automatic HTML documentation

Like most engineers, | never read the manual, unless and until the product actually catches
fire. However, as your manifests get bigger and more complex, it can be helpful to create
HTML documentation for your nodes and classes using Puppet's automatic documentation
tool, puppet doc.

How to do it...

Follow these steps to generate HTML documentation for your manifest:

1. Run the following command:

ubuntu@cookbook: ~/puppet$ puppet doc --all --outputdir=/home/
ubuntu/puppet/doc --mode rdoc --manifestdir=/home/ubuntu/puppet

2. This will generate a set of HTML files in /home /ubuntu/puppet/doc. Open the
top-level index.html file with your web browser, and you'll see something like the
following screenshot:

O O O [rooc Documentation x W :
/

€& = C & [file:///Users/john/git/cookbook/doc/index.html «* <> &y [I] & () A 3 =
All Modules
_site__ Module gijte

In: /home/ubuntu/puppet/manifests/nodes.pp
/home/ubuntu/puppet/manifests/site.pp

/home/ubuntu/puppet/modules/puppet/manifests/init.pp

All C Nodes

__site__ Node __site_ ::cookbook
__site___::puppet

Classes and Modules
Class _ site ::puppet

[Validate]

242

Chapter 9

puppet doc creates a structured HTML documentation tree similar to that produced by
RDoc, the popular Ruby documentation generator. This makes it easier to understand how
different parts of the manifest relate to one another, as you can click on an included class
name and see its definition, for example.

puppet doc will generate basic documentation of your manifests as they stand, but you can
include more useful information by adding comments to your manifest files, using the standard
RDoc syntax. Here's an example of some documentation comments added to a class:

== Class: puppet

Everything required to run Puppet automatically on a client.
=== Parameters

No parameters.

=== Variables

No variables used.

=== Examples

include puppet

John Arundel <john@bitfieldconsulting.com>

=== Copyright

H o H HF H HF OH H OH H H H H HHFHHFHEHHEHHEHE

Copyright 2013 Bitfield Consulting Ltd.
class puppet {

243

Monitoring, Reporting, and Troubleshooting

Your comments are added to the documentation for each class in the resulting HTML files,
as shown in the following screenshot:

660 [] RDoc Documentation X e

&«

C i [file:///Users/john/git/cookbook/doc/index.html «* 'z | &y [I] & O A& 4%
All Modules p— .
_site__ site__ ::puppet

b H /home/ubuntu/puppet/modules/puppet/manifests/init.pp

Class: puppet

All Classes Everything required to run Puppet automatically on a client.

__site__
~site__::puppet Parameters
No parameters.
Variables

No variables used.

Examples

include puppet

Authors

John Arundel <john@bitfieldconsulting.com>
Copyright

Copyright 2013 Bitfield Consulting Ltd.

The Checking your manifests with puppet-lint recipe in Chapter 2, Puppet Language and Style

Drawing dependency graphs

Dependencies can get complicated quickly, and it's easy to end up with a circular dependency
(where A depends on B, which depends on A) that will cause Puppet to complain and stop
working. Fortunately, Puppet's - -graph option makes it easy to generate a diagram of

your resources and the dependencies between them, which can be a big help in fixing

such problems.

Getting ready...

Install the graphviz package for viewing the diagram files:

ubuntu@cookbook: ~/puppet$ sudo apt-get install graphviz

Chapter 9

How to do it...

Follow these steps to generate a dependency graph for your manifest:

1.

Create the directories for a new admin module:

ubuntu@cookbook: ~/puppet$ mkdir modules/admin
ubuntu@cookbook: ~/puppet$ mkdir modules/admin/manifests
ubuntu@cookbook: ~/puppet$ mkdir modules/admin/files

Create the file modules/admin/manifests/ntp.pp with the following
code containing a deliberate circular dependency (can you spot it?):
Manage NTP
class admin::ntp {
package { 'ntp':
ensure => installed,
require => File['/etc/ntp.conf'],

service { 'ntp':
ensure => running,
require => Package['ntp'],

file { '/etc/ntp.conf':
source => 'puppet:///modules/admin/ntp.conf',
notify => Service['ntp'],
require => Package['ntp'],

}

Copy your existing ntp . conf file into Puppet:
ubuntu@cookbook: ~/puppet$ cp /etc/ntp.conf modules/admin/files

Include this class on a node using a snippet like the following:

node cookbook {
include admin: :ntp

245

Monitoring, Reporting, and Troubleshooting

5.

246

Run Puppet:

ubuntu@cookbook: ~/puppet$ papply

Error: Could not apply complete catalog: Found 1 dependency cycle:
(File[/etc/ntp.conf] => Packagel[ntp] => File[/etc/ntp.confl])

Try the '--graph' option and opening the resulting '.dot' file in
OmniGraffle or GraphViz

Notice: Finished catalog run in 0.18 seconds

Run Puppet with the - -graph option as suggested:

ubuntu@cookbook: ~/puppet$ papply --graph

Error: Could not apply complete catalog: Found 1 dependency cycle:
(File[/etc/ntp.conf] => Packagel[ntp] => File[/etc/ntp.confl])

Cycle graph written to /var/lib/puppet/state/graphs/cycles.dot.
Notice: Finished catalog run in 0.14 seconds

Check the graph files have been created:

ubuntu@cookbook: ~/puppet$ sudo ls -1 /var/lib/puppet/state/graphs
total 20

-rw-r--r-- 1 root root 121 Mar 26 13:34 cycles.dot

-rw-r--r-- 1 root root 4785 Mar 26 13:34 expanded relationships.
dot

-rw-r--r-- 1 root root 2258 Mar 26 13:34 relationships.dot

-rw-r--r-- 1 root root 2927 Mar 26 13:34 resources.dot

Create a graphic using the dot command as follows:

ubuntu@cookbook: ~/puppet$ dot -Tpng -o relationships.png /var/lib/
puppet/state/graphs/relationships.dot

The graphic will look something like the following:

File[/etc/ntp.conf]

Package[ntp]

Chapter 9

When you run papply --graph (or enable the graph option in puppet . conf) Puppet will
generate three graphs in DOT format (a graphics language):

» resources.dot: showing the hierarchical structure of your classes and resources,
but without dependencies

» relationships.dot: showing the dependencies between resources as arrows,
as shown in the preceding screenshot

» expanded relationships.dot:a more detailed version of the relationships graph

The dot tool (part of the graphviz package) will convert these to an image format such as
PNG for viewing.

In the relationships graph, each resource in your manifest is shown as a balloon, with
arrowed lines connecting them to indicate the dependencies. You can see that in our
example, the dependencies between File[' /etc/ntp.conf'] and Package['ntp']
form a circle.

To fix the circular dependency problem, all you need to do is remove one of the dependency
lines and to break the circle. The following code fixes the problem:

Manage NTP
class admin::ntp {
package { 'ntp':
ensure => installed,

service { 'ntp':
ensure => running,
require => Package['ntp'],

}

file { '/etc/ntp.conf':
source => 'puppet:///modules/admin/ntp.conf’',
notify => Service['ntp'],
require => Package['ntp'],
}
}

247

Monitoring, Reporting, and Troubleshooting

There's more...

Resource and relationship graphs can be useful even when you don't have a bug to find.
If you have a very complex network of classes and resources, for example, studying the
resources graph can help you see where to simplify things. Similarly, when dependencies
become too complicated to understand from reading the manifest, the graphs can be a
useful form of documentation.

See also

The Using run stages recipe in Chapter 3, Writing Better Manifests

Understanding Puppet errors

Puppet's error messages can sometimes be a little confusing. Here are some of the most
common errors you might encounter, and what to do about them.

How to do it...

Often the first step is simply to search the web for the error message text and see what
explanations you can find for the error, along with any helpful advice about fixing it. Here are
some of the most common puzzling errors, with possible explanations:

Could not retrieve file metadata for XXX: getaddrinfo: Name or service
not known

Where XXX is a £ile resource, you may have accidentally typed puppet://modules. .. in
a file source instead of puppet :///modules. .. (note the triple slash).

Could not evaluate: Could not retrieve information from environment
production source(s) XXX

The source file may not be present or may not be in the right location in the Puppet repo.
Error: Could not set 'file' on ensure: No such file or directory XXX

The file path may specify a parent directory (or directories) that doesn't exist. You can use
separate file resources in Puppet to create these.

Could not parse for environment production: Syntax error at end of file
at line 1

248

Chapter 9

You may have mistyped some command line options (particularly, using a single hyphen
instead of a double hyphen).

change from absent to file failed: Could not set 'file on ensure: No such
file or directory

This is often caused by Puppet trying to write a file to a directory that doesn't exist. Check that
the directory either exists already or is defined in Puppet, and that the file resource requires
the directory (so that the directory is always created first).

undefined method 'closed?' for nil:NilClass

This unhelpful error message is roughly translated as "something went wrong". It tends to be
a catch-all error caused by many different problems, but you may be able to determine what
is wrong from the name of the resource, the class, or the module. One trick is to add the

- -debug switch, to get more useful information:

ubuntu@cookbook: ~/puppet$ papply --debug

If you check your Git history to see what was touched in the most recent change, this may be
another way to identify what's upsetting Puppet.

Could not parse for environment --- "--- production": Syntax error at end
of file at line 1

This can be caused by mistyping command line options; for example, if you type puppet
-verbose instead of puppet --verbose. That kind of error can be hard to see.

Duplicate definition: X is already defined in [file] at line Y; cannot
redefine at [file] line Y

This one has caused me a bit of puzzlement in the past. Puppet's complaining about a
duplicate definition, and normally if you have two resources with the same name, Puppet will
helpfully tell you where they are both defined. But in this case, it's indicating the same file and
line number for both. How can one resource be a duplicate of itself?

The answer is if it's a definition (a resource created with the define keyword). If you create
two instances of a definition, you'll also have two instances of all the resources contained
within the definition, and they need to have distinct names. For example:

define check process() {
exec { 'is-process-running?':
command => "/bin/ps ax |/bin/grep ${name} >/tmp/pslist.${name}.

txt",
}
}
check process { 'exim': }
check process { 'nagios': }

249

Monitoring, Reporting, and Troubleshooting

ubuntu@cookbook: ~/puppet$ papply

Error: Duplicate declaration: Exec[is-process-running?] is already
declared in file /home/ubuntu/puppet/modules/admin/manifests/broken.pp at
line 5; cannot redeclare on node cookbook.compute-1l.internal

Error: Duplicate declaration: Exec[is-process-running?] is already
declared in file /home/ubuntu/puppet/modules/admin/manifests/broken.pp at
line 5; cannot redeclare on node cookbook.compute-l.internal

Because the exec resource is named is-process-running?, if you try to create more
than one instance of the definition, Puppet will refuse because the result would be two exec
resources with the same name. The solution is to include the name of the instance (or some
other unique value) in the title of each resource:

exec { "is-process-${name}-running?":
command => "/bin/ps ax |/bin/grep ${name} >/tmp/pslist.${name}.txt",

}

Every resource must have a unique name, and a good way to ensure this with a definition is to
interpolate the ${name} variable in its title. Note that we switched from using single to double
quotes in the resource title:

"is-process-${name}-running?"

The double quotes are required when you want Puppet to interpolate the value of a variable
into a string.

See also

» The Generating reports recipe in this chapter
» The Doing a dry run recipe in this chapter
» The Logging debug messages recipe in this chapter

250

Chapter 9

Inspecting configuration settings

You probably know that Puppet's configuration settings are stored in puppet . conf, but there
are lots of parameters, and those that aren't listed in puppet . conf will take a default value.
How can you see the value of any configuration parameter, regardless of whether or not it's

explicitly set in puppet . conf? The answer is to use the puppet config print command.

How to do it...

Run the following command. This will produce a lot of output (it may be helpful to pipe it
through less if you'd like to browse the available configuration settings):
ubuntu@cookbook: ~/puppet$ puppet config print |less

agent catalog run lockfile = /home/ubuntu/.puppet/var/state/agent
catalog run.lock

agent disabled lockfile = /home/ubuntu/.puppet/var/state/agent disabled.
lock

allow_duplicate certs = false

allow _variables with dashes = false

puppet config print will output every configuration parameter and its current value
(and there are lots of them).

To see the value for a specific parameter, add it as an argument to the puppet config
print command:

ubuntu@cookbook: ~/puppet$ puppet config print noop

false

The Generating reports recipe in this chapter

251

Index

A B
a2ensite command 148 Blueprint
Amazon EC2 tab 188 installing 214
Amazon Web Services (AWS) 188 running 215, 216
Apache servers
about 144 C
managing 144, 145
Apache virtual hosts case statements
creating 145-147 about 50, 52
custom domains 149 default value, specifying 52
docroots 149 examples 50
working 148, 149 working 51
APT package framework 106 Cent0S 8
arguments changes parameter 90
passing, to shell commands 84, 85 check_syntax.sh script 32
array iteration circular dependency
using, in templates 96, 97 about 245
arrays fixing 248
about 45 class inheritance
creating 45 extra values, adding using +> operator 78
creating, with split function 46 using 75, 76
hashes, using 46 cloud computing 188
using 45 command output
working 45 logging 237, 238
arrays, of resources working 238
using 58 community Puppet style
audit metaparameter 140 about 34
Augeas tool indentation 34
about 87 parameters 35
automatically editing config files with 89, 90 quoting 34
auto_failback setting 171 symlinks 36
automatic syntax checking using 34
Git hooks, used 29 variables 35
AWS Management Console conditional statements
URL 188 comparisons 48

elsif branches 48

example 47 relationships.dot 247

expressions, combining 48 resources.dot 247
working 47 dry run mode
writing 47 using 236, 237
config files dynamic information
building with snippets 91- 93 importing 83
editing automatically with Augeas 89-91
adding lines to 88, 89 E
configuration data
importing, with Hiera 206-208 EC2 instances
configuration settings AWS example, creating 188-193
inspecting 251 managing 188
contain_package assertion 220 ENC. See external node classifier
cron environment variables
Puppet, running from 18, 19 facts, setting as 205
cron jobs ERB (embedded Ruby) syntax 94
distributing 126-128 ERB templates
cross-platform manifests using 94, 95
writing 79 exec resource 186
custom facts dependencies 61
creating 200, 201 quoting command line for 84
replacing with custom types 230
D running only when notified 93
scheduling 129
Dean Wilson executable facts
example, URL 231 creating 203
debug messages external facts 202-205
logging 239 external node classifier 223
resource, checking 240
variable values, printing 240 F
decentralized Puppet architecture
creating 14, 16 Facter
definitions about 81
creating 59 using 82
using 59 working 82
working 60 facts
dependencies setting, as environment variables 205
using 61- 64 facts.d directory 203
dependency graphs file
drawing 245-247 shares, managing 171-174
directory trees firewall class 184
distributing 135, 136 firewalls
DocumentRoot parameter 150 managing, with iptables 178-187
dotfiles 121 functions
DOT format, graphs creating 231, 232

expanded_relationships.dot 247

254

G

generate function 83
Git
used, for managing manifests 11-13
Git hooks
used, for automatic syntax checking 29-31
gitrepo 228
GnuPG
used, for encrypting secrets 98-101
grep command 89

H

HAProxy
using, to load-balance multiple web servers
174-177
haproxy daemon 177
Heartbeat
installing 169
used, for building high-availability services
166-171
Hiera
configuration data, importing with 206, 208
looking up with 210
node-specific data, setting 208, 209
hiera-gpg
secret data, storing with 210, 212
setting up 210, 211
high-availability services
building, Heartbeat used 166-171
host resources
using 132
HTML documentation
generating 242, 243

inherited attributes

removing 77
inline_template function 126
inline templates

using 44

working 44
in operator

about 53

using 53

installation
Puppet 8
ipaddresses array 97
iptables
firewalls, managing with 178-187
isnamevar declaration 227

L

lenses 90

Linux distributions 8

Load balancing 174-177
logoutput attribute 237, 238
lookupvar function 233

managehome parameter 120
manifests
about 58
checking, with puppet-lint 36-38
creating 10, 11
generating, with other tools 214- 217
generating, with puppet resource 213
making, portable 79, 80
managing, Git used 11, 13
testing, with rspec-puppet 218-220
master server list 187
metaparameter 70
module
about 38
custom facts 41
custom functions 41
custom types 41
module layout, autogenerating 41
organizing 41
providers 41
template, using 40, 41
third party modules 41
using 38, 39
working 40
multiple file sources
using 133, 134
multiple items
iterating over 45

2595

MySQL
about 153
managing 153-155
working 156, 157
MySQL databases
creating 157, 158

-noop switch 139
Network File System (NFS)
servers, managing 171-174
nfs class 174
Nginx 150
Nginx virtual hosts
creating 150-152
working 152, 153
node inheritance
using 71,72
nodeless configuration, Puppet 201
node-specific data
setting, with Hiera 208, 209
noop metaparameter 140
using 141
noop mode 236

0

old files
cleaning up 137, 138
options parameter 174

P

packages
building, from source 106, 107
installing, from third-party repository 103-105
package versions
comparing 108, 109
papply script
about 207
writing 16-18
parameters
passing, to classes 73, 74
providers
about 226
creating 228-230

256

implementing 231
public modules
using 221, 223
pull-updates script 23
Puppet
configuration settings, inspecting 251
errors 248-250
installing 8-10
running, from cron 18-22
puppet apply command 14
puppet config print command 251, 252
Puppet Labs official style guide
reference link 34
Puppet Labs
URL 201, 233
puppet-lint
installing 37
URL 37
used, for checking manifests 37
Puppet manifests . See manifests
puppet module command 222
puppet module search command 223
puppet resource 214
manifests, generating with 213
puppet resource command 213
Pysa
about 217
URL 217

Rake
about 22
used, for bootstrapping Puppet 26-28
used, for deploying changes 22, 23
rbenv
about 163
installing 163
RDoc 243
realize function 113
recurse parameter 135
Red Hat 8
refreshonly parameter 93
regsubst function 54
regular expression
about 49

pattern, capturing 50
syntax 50
using, in conditional statement 49
using, with selectors and case statements 52
regular expression substitutions
using 54, 55
working 55
reports
generating 240, 241
resources
auditing 139, 140
disabling 78
disabling, temporarily 140, 141
scheduling 129, 131
overriding 75
resource types
creating 226, 227
documentation 228
validation 228
reusable manifest
writing 79
root parameter 150
rspec-puppet
manifests, testing with 218-220
rspec-puppet-init command 219
Ruby
about 158
managing 158, 160
working 161
ruby-build
about 161
installing 161, 162
Ruby regular expression syntax
reference link 50
run stages
creating 68, 69
using 68-70

S

schedule metaparameter
used, for limiting resources within specified
period 129-131
secret data
storing, with hiera-gpg 210-212
secret function 102

selector
about 51
default value, specifying 52
examples 50
using 50
working 51
shellquote function 84
source parameter 133
spec code 219
standard naming conventions
using 42,43
stats interface 177
stdlib module 222
sum method 233

T

--timing switch 205
tags
about 65
using 65-67
third-party repository
packages, installing from 103-106
tmpfile definition 60
type 226

U

Ubuntu 8
unless parameter 88
user customization files
managing 121-125
users
managing, virtual resources used 115-117
users SSH access
managing 118-121
user::virtual class
creating 116
Utility computing 188

\'}

Vagrant
documentation site, URL 197
downloading 193
installing 193

251

used, for managing virtual machines 193

VM, creating 194, 196
versioncmp function 108
vhost_domain parameter 149
vhost_root parameter 149
virtual IP (VIP) 166
virtual machines

managing, with Vagrant 193
virtual resources

about 112

used, for managing users 115-117

using 112-115

Y
YAML format 241

258

open source

community experience distilled

PUBLISHING

Thank you for buying
Puppet 3 Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home

to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should

be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

1.

Puppet 3 Beginner's Guide
ISBN: 978-1-78216-124-0 Paperback: 204 pages
Start from scratch with the Puppet configuration

management system, and learn how to fully utilize
Puppet through simple, practical examples

Shows you step-by-step how to install Puppet and
start managing your systems with simple examples

Every aspect of Puppet is explained in detail so
that you really understand what you're doing

Gets you up and running immediately, from
installation to using Puppet for practical tasks in
a matter of minutes

Written in a clear, friendly, jargon-free style which
doesn't assume any previous knowledge and
explains things in practical terms

Puppet 2.7 Cookbook
ISBN: 978-1-84951-538-2 Paperback: 300 pages

Build reliable, scalable, secure, high-performance
systems to fully utilize the power of cloud computing

Shows you how to use 100 powerful
advanced features of Puppet, with detailed
step-by-step instructions

Covers all the popular tools and frameworks
used with Puppet: Dashboard, Foreman,
MCollective, and more

Written in a simple, practical style by a
professional systems administrator and
Puppet expert, every recipe has detailed
step-by-step instructions showing you the
exact commands and configuration settings
you need

Please check www.PacktPub.com for information on our titles

community experience distilled

[open source

PUBLISHING

Instant Puppet 3 Starter

ISBN: 978-1-78216-174-5 Paperback: 50 pages

Gain complete consistency from your systems with
minimal effort using Istant Puppet 3 Starter

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2. Learn how deterministic results can vastly reduce
your workload

Short | Fast | Focused

Puppet 3 Starter

3. Deploy Puppet Server as a Ruby-on-Rails
application to handle thousands of clients

4. Design your own module for complex configurations

Jo Rhett

OpenStack Cloud
Computing Cookbook

ISBN: 978-1-84951-732-4 Paperback: 318 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with complete
coverage of Nova, Swift, Keystone, Glance and Horizon

el —’ oz 1. Learn how to install and configure all the core
OpenStack Cloud components of OpenStack to run an environment

B that can be managed and operated just like AWS
Computing Cookbook or Rackspace

2. Master the complete private cloud stack
from scaling out compute resources to
managing swift services for highly redundant,
highly available storage

3. Practical, real world examples of each service
are built upon in each chapter allowing you to
progress with the confidence that they will work
in your own environments

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Puppet Infrastructure
	Introduction
	Installing Puppet
	Creating a manifest
	Managing your manifests with Git
	Creating a decentralized Puppet architecture
	Writing a papply script
	Running Puppet from cron
	Deploying changes with Rake
	Bootstrapping Puppet with Rake
	Automatic syntax checking with Git hooks

	Chapter 2: Puppet Language
and Style
	Introduction
	Using community Puppet style
	Checking your manifests with puppet-lint
	Using modules
	Using standard naming conventions
	Using inline templates
	Iterating over multiple items
	Writing powerful conditional statements
	Using regular expressions in if statements
	Using selectors and case statements
	Using the in operator
	Using regular expression substitutions

	Chapter 3: Writing Better Manifests
	Introduction
	Using arrays of resources
	Using definitions
	Using dependencies
	Using tags
	Using run stages
	Using node inheritance
	Passing parameters to classes
	Using class inheritance and overriding
	Writing reusable, cross-platform manifests
	Getting information about the environment
	Importing dynamic information
	Passing arguments to shell commands

	Chapter 4: Working with Files
and Packages
	Introduction
	Making quick edits to config files
	Using Augeas to automatically edit
config files
	Building config files using snippets
	Using ERB templates
	Using array iteration in templates
	Using GnuPG to encrypt secrets
	Installing packages from a third-party repository
	Building packages automatically from source
	Comparing package versions

	Chapter 5: Users and
Virtual Resources
	Introduction
	Using virtual resources
	Managing users with virtual resources
	Managing users' SSH access
	Managing users' customization files
	Efficiently distributing cron jobs
	Using schedules to limit when resources can be applied
	Using host resources
	Using multiple file sources
	Distributing directory trees
	Cleaning up old files
	Auditing resources
	Temporarily disabling resources

	Chapter 6: Applications
	Introduction
	Managing Apache servers
	Creating Apache virtual hosts
	Creating Nginx virtual hosts
	Managing MySQL
	Managing Ruby

	Chapter 7: Servers and
Cloud Infrastructure
	Introduction
	Building high-availability services using Heartbeat
	Managing NFS servers and file shares
	Using HAProxy to load-balance multiple web servers
	Managing firewalls with iptables
	Managing EC2 instances
	Managing virtual machines with Vagrant

	Chapter 8: External Tools and the Puppet Ecosystem
	Introduction
	Creating custom facts
	Adding external facts
	Setting facts as environment variables
	Importing configuration data with Hiera
	Storing secret data with hiera-gpg
	Generating manifests with puppet resource
	Generating manifests with other tools
	Testing your manifests with rspec-puppet
	Using public modules
	Using an external node classifier
	Creating your own resource types
	Creating your own providers
	Creating your own functions

	Chapter 9: Monitoring, Reporting, and Troubleshooting
	Introduction
	Doing a dry run
	Logging command output
	Logging debug messages
	Generating reports
	Producing automatic HTML documentation
	Drawing dependency graphs
	Understanding Puppet errors
	Inspecting configuration settings

	Index

