SECOND EDITION

Pro

Puppet

Spencer Krum, William Van Hevelingen, Ben Kero
James Turnbull, and Jeffrey McCune

Apress:

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

Contents at a Glance

About the AUthOrs........ccmimmimmme e —————————————— Xvii
About the Technical ReVIEWErScccssvssmssssmsmsssssmsssnsnssnsnsnsansas Xix
AcknOowIedgmEeNnts.......cccciiiisssssnmmnnmmmmmmsssssssssssnnnmesssssssssnnnnnnsessssssssssnnnnnnsessssssssnnnnnnnnnessssssns XXi
1 o Xxiii
Chapter 1: Getting Started with Puppet.........cccccininmmmmnnnsmnnmnmssssnmmssssnsssssssssssmmnan. 1
Chapter 2: Building Hosts with Puppet..........ccccinnnmmmmmnnnnemmnmmsssnmmmsssssmmsssssssssssssns 33
Chapter 3: Developing and Deploying Puppetccciinnemmmmmnsemnmmmssssmmmmsssssmmssssssneans 73
Chapter 4: Scaling Puppet.........cccccinmmmmnmmmnnssmmsssmmssssmsssmsssssessses s ssssssssssesssnssssnns 97
Chapter 5: Externalizing Puppet Configurationccccusemmmnnssemnnnnnssssnmmssssssmmsssssnns 141
Chapter 6: Exporting and Storing Configuration..........ccccccimnnssemmmmmnsssssmmmsssssmmssssssnnans 155
Chapter 7: Puppet CONSOIEScccurerrsssmmmsssnmsssssssssssssssssnsssssnsssssnsssssnsessansessnnsesssnnessnnnenss 169
Chapter 8: Tools and Integrationcccccusseemmmnnssennnnnnsesnnmsesns———————————— 191
Chapter 9: Reporting with Puppet.........cccccinmmmmnnnemmmmmssssmmmmsssmmmsssssmmssssssssssssnas 217
Chapter 10: Extending Facter and Puppet..........cccccnimmmnmmmmnenmmsssmmssssmmsssssssssssssssasnns 227
Chapter 11: MCOIIECTIVE .ucuueeerrnissemnmmssssansmmssssnnnssssssnnnsessssssnsssssssnnssssssnnnsssssnnnnsssssnnnnsnssnn 249
Chapter 12: Hiera: Separating Data from Code.........c.ccsseeemmmsssnmmmmmssssnsnmssssssssssssssnsnnsssss 263
L1 . 295

CHAPTER 1

Getting Started with Puppet

Puppet is an open source framework and toolset for managing the configuration of computer systems. This book
looks at how you can use Puppet to manage your configuration. As the book progresses, we’ll introduce Puppet’s
features and show you how to integrate Puppet into your provisioning and management lifecycle. To do this, we’ll take
you through configuring a real-world scenario that we'll introduce in Chapter 2. In Chapter 3, we’ll show you how to
implement a successful Puppet workflow using version control and Puppet environments. In Chapter 4, we’'ll show
you how to build high availability and horizontal scalability into your Puppet infrastructure. The rest of the book will
focus on extending what you can do with Puppet and its ecosystem of tools, and on gaining unprecedented visibility
into your infrastructure.

In this chapter, you'll find the following:

e A quick overview of Puppet, what it is, how it works, and which release to use.

e How to install Puppet and its inventory tool, Facter, on RedHat, Debian, Ubuntu, Solaris,
Microsoft Windows, Mac OS X, and via RubyGems.

e How to configure Puppet and create your first configuration items.
¢ The Puppet domain-specific language that you use to create Puppet configuration.

e The concept of “modules,” Puppet’s way of collecting and managing bundles of
configuration data.

e How to apply one of these modules to a host using the Puppet agent.

What Is Puppet?

Puppet is Ruby-based configuration management software, licensed as Apache 2.0, and it can run in either
client-server or stand-alone mode. Puppet was principally developed by Luke Kanies and is now developed by his
company, Puppet Labs. Kanies has been involved with Unix and systems administration since 1997 and developed
Puppet from that experience. Unsatisfied with existing configuration management tools, Kanies began working
with tool development in 2001, and in 2005 he founded Puppet Labs, an open source development house focused
on automation tools. Shortly after this, Puppet Labs released its flagship product, Puppet Enterprise. Puppet has
two versions available: the open source version and the Enterprise version. The Enterprise version comes with an
automated installer, a web management interface, and support contract. This book will focus on the open source
version of Puppet, but since the software at the core of both tools is the same, the information will be valuable to
consumers of either product.

Puppet can be used to manage configuration on Unix (including OS X), Linux, and Microsoft Windows platforms.
Puppet can manage a host throughout its life cycle: from initial build and installation, to upgrades, maintenance, and
finally to end-of-life, when you move services elsewhere. Puppet is designed to interact continuously with your hosts,
unlike provisioning tools that build your hosts and leave them unmanaged.

CHAPTER 1 © GETTING STARTED WITH PUPPET
Puppet has a simple operating model that is easy to understand and implement (Figure 1-1). The model is made
up of three components:
¢ Deployment Layer

e Configuration Language and Resource Abstraction Layer

e Transactional Layer

Configuration Language & Resource Abstraction
Transactional Layer

Figure 1-1. The Puppet model

Deployment

Puppet is usually deployed in a simple client-server model (Figure 1-2). The server is called a Puppet master, the
Puppet client software is called an agent, and the host itself is defined as a node.

Puppet Client Puppet Server

(Agent) (Master)
F

Client checks in over HTTPS

Catalgg

Compilation
Server sends catalog of resources

Resourge
Application

Client sends report to Server
Figure 1-2. High-level overview of a Puppet configuration run

The Puppet master runs as a daemon on a host and contains the configuration required for the specific
environment. The Puppet agents connect to the Puppet master through an encrypted and authenticated connection
using standard SSL, and retrieve or “pull” any configuration to be applied.

Importantly, if the Puppet agent has no configuration available or already has the required configuration, Puppet
will do nothing. Puppet will only make changes to your environment if they are required. This property is called
idempotency and is a key feature of Puppet. The whole process is called a configuration run.

CHAPTER 1~ GETTING STARTED WITH PUPPET

Each agent can run Puppet as a daemon, via a mechanism such as cron, or the connection can be manually
triggered. The usual practice is to run Puppet as a daemon and have it periodically check with the master to confirm
that its configuration is up-to-date or to retrieve any new configuration (Figure 1-3). However, many people find
that being able to trigger Puppet via a mechanism such as cron, or manually, better suits their needs. By default, the
Puppet agent will check the master for new or changed configuration once every 30 minutes. You can configure this
period to suit your needs.

Puppet Master

S

Puppet Nodes

Figure 1-3. The Puppet client-server model

Other deployment models also exist. For example, Puppet can run in a stand-alone mode, where no Puppet
master is required. Configuration is installed locally on the host and the puppet binary is run to execute and apply
that configuration. We discuss this method in Chapter 4.

The Configuration Language and Resource Abstraction Layer

Puppet uses a declarative language, the Puppet language, to define your configuration items, which Puppet calls
resources. Being declarative creates an important distinction between Puppet and many other configuration tools.
A declarative language makes statements about the state of your configuration—for example, it declares that a
package should be installed or a service should be started.

Most configuration tools, such as a shell or Perl script, are imperative or procedural. They describe how things
should be done rather than the desired end state—for example, most custom scripts used to manage configuration
would be considered imperative.

Puppet users just declare what the state of their hosts should be: what packages should be installed, what services
should be running, and so on. With Puppet, the system administrator doesn’t care how this state is achieved—that’s
Puppet’s problem. Instead, we abstract our host’s configuration into resources.

CHAPTER 1 * GETTING STARTED WITH PUPPET

The Configuration Language

What does this declarative language mean in real terms? Let’s look at a simple example. Suppose we have an
environment with Red Hat Enterprise Linux, Ubuntu, and Solaris hosts and we want to install the vim application on
all our hosts. To do this manually, we'd need to write a script that does the following:

e Connects to the required hosts (including handling passwords or keys).
e Checks to see if vimis installed.

e Ifnot, uses the appropriate command for each platform to install vim, for example on RedHat
the yum command and on Ubuntu the apt-get command.

e Potentially reports the results of this action to ensure completion and success.

Note This would become even more complicated if you wanted to upgrade vinm (if it was already installed) or apply a
particular version of vim.

Puppet approaches this process quite differently. In Puppet, you define a configuration resource for the vim
package. Each resource is made up of a type (what sort of resource is being managed: packages, services, or cron jobs),
a title (the name of the resource), and a series of attributes (values that specify the state of the resource—for example,
whether a service is started or stopped).

You can see an example of a resource in Listing 1-1.

Listing 1-1. A Puppetresource

package { 'vim':
ensure => present,

}

The resource in Listing 1-1 specifies that a package called vim should be installed. It is constructed as follows:

type { title:
attribute => value,

}

In Listing 1-1, the resource type is the package type. Puppet comes with a number of resource types by default,
including types to manage files, services, packages, and cron jobs, among others.

Note You can see a full list of the types Puppet can currently manage (and their attributes) at
http://docs.puppetlabs.com/references/stable/type.html. You can also extend Puppet to support additional
resource types, as we’ll discuss in Chapter 10.

Next is the title of the resource, here the name of the package we want to install, vim. This corresponds exactly to
the argument to the package manager; for example, .apt-get install vim.

Last, we've specified a single attribute, ensure, with a value of present. Attributes tell Puppet about the required
state of our configuration resource. Each type has a series of attributes available to configure it. Here the ensure
attribute specifies the state of the package: installed, uninstalled, and so on. The present value tells Puppet we want
to install the package. To uninstall the package, we would change the value of this attribute to absent.

http://docs.puppetlabs.com/references/stable/type.html

CHAPTER 1~ GETTING STARTED WITH PUPPET

The Resource Abstraction Layer

With our resource created, Puppet takes care of the details of managing that resource when our agents connect.
Puppet handles the “how” by knowing how different platforms and operating systems manage certain types of
resources. Each type has a number of providers. A provider contains the “how” of managing packages using a
particular package management tool.

The package type, for example, has more than 20 providers covering a variety of tools, including yum, aptitude,
pkgadd, ports, and emerge.

When an agent connects, Puppet uses a tool called Facter (see following sidebar) to return information about
that agent, including what operating system it is running. Puppet then chooses the appropriate package provider for
that operating system and uses that provider to check if the vim package is installed. For example, on Red Hat it would
execute yum, on Ubuntu it would execute aptitude, and on Solaris it would use the pkg command. If the package
is not installed, Puppet will install it. If the package is already installed, Puppet does nothing. Again, this important
feature is called idempotency.

Puppet will then report its success or failure in applying the resource back to the Puppet master.

INTRODUCING FACTER AND FACTS

Facter is a system inventory tool, also developed principally by Puppet Labs, that we use throughout the book.

It is also open source under the Apache 2.0 license. It returns “facts” about each node, such as its hostname, IP
address, operating system and version, and other configuration items. These facts are gathered when the agent
runs. The facts are then sent to the Puppet master, and automatically created as variables available to Puppet at
top scope. You'll learn more about variable scoping in Chapter 2.

You can see the facts available on your clients by running the facter binary from the command line. Each fact is
returned as a key => value pair:

$ facter
operatingsystem => Ubuntu
ipaddress => 10.0.0.10

You can then use these values to configure each host individually. For example, knowing the IP address of a host
allows you to configure networking on that host.

These facts are made available as variables that can be used in your Puppet configuration. When combined with
the configuration you define in Puppet, they allow you to customize that configuration for each host. For example,
they allow you to write generic resources, like your network settings, and customize them with data from

your agents.

Facter also helps Puppet understand how to manage particular resources on an agent. For example, if Facter tells
Puppet that a host runs Ubuntu, then Puppet knows to use aptitude to install packages on that agent. Facter can
also be extended to add custom facts for specific information about your hosts. We’ll be installing Facter shortly
after we install Puppet, and we’ll discuss it in more detail in later chapters.

CHAPTER 1 * GETTING STARTED WITH PUPPET

The Transactional Layer

Puppet’s transactional layer is its engine. A Puppet transaction encompasses the process of configuring each host,
including these steps:

e Interpret and compile your configuration.

e Communicate the compiled configuration to the agent.

Apply the configuration on the agent.

Report the results of that application to the master.

The first step Puppet takes is to analyze your configuration and calculate how to apply it to your agent. To do this,
Puppet creates a graph showing all resources, with their relationships to each other and to each agent. This allows
Puppet to work out the order, based on relationships you create, in which to apply each resource to your host. This
model is one of Puppet’s most powerful features.

Puppet then takes the resources and compiles them into a catalog for each agent. The catalog is sent to the
host and applied by the Puppet agent. The results of this application are then sent back to the master in the form of
areport.

The transaction layer allows configurations to be created and applied repeatedly on the host. Again, Puppet calls
this capability idempotency, meaning that multiple applications of the same operation will yield the same results.
Puppet configuration can be safely run multiple times with the same outcome on your host, ensuring that your
configuration stays consistent.

Puppet is not fully transactional, though; your transactions aren’t logged (other than informative logging), and so
you can’t roll back transactions as you can with some databases. You can, however, model transactions in a “noop,” or
no-operation mode, that allows you to test the execution of your changes without applying them.

Selecting the Right Version of Puppet

The best version of Puppet to use is usually the latest release, which at the time of writing is the 3.2.x branch of
releases; newer ones are currently in development. The biggest advantage of the 3.2.x branch of releases is improved
performance and built-in Hiera integration. Hiera is Puppet’s external datastore and will be extensively covered in
later chapters.

The 3.1.x releases are stable, perform well, have numerous bug fixes not available in previous versions, and
contain a wide of variety of new features and functions unavailable in earlier releases.

Note This book assumes you are using either a 3.1.x or later release. Some of the material will work on 2.7.x
versions of Puppet, but not all of it has been tested. Specifically, information about Hiera (see Chapter 12) and functions
is unlikely to be backward-compatible to version 2.7 .x.

There are a variety of releases, some older than others, packaged for operating systems. The 2.7 x releases are
broadly packaged. The 3.1.x releases are packaged and distributed in newer versions of operating systems and
platforms. If you can’t find later Puppet releases packaged for your distribution, you have the option of rolling your
own packages, backporting, or installing from source (though we don’t recommend the latter—see the following).
Puppetlabs provides the latest rpms, deb packages, msis, and dmg files on their website and repositories.

CHAPTER 1~ GETTING STARTED WITH PUPPET

MIXING RELEASES OF PUPPET

The most common deployment model for Puppet is client-server. Many people ask if you can have different

releases of Puppet on the master and as agents. The answer is yes, with some caveats. The first caveat is that the
master needs to be a later release than the agents. For example, you can have a version 2.7.20 agent connected

to a version 3.1.1 master, but not a version 3.1.1 agent connected to a 2.7.20 master.

The second caveat is that the older the agent release, the less likely it will function correctly with a newer release

of the master. Later versions of masters may not be so forgiving of earlier agents, and some functions and
features may not behave correctly.

Finally, mixing 3.1.x and later release masters with 2.7.x and earlier agents will mean you won’t get the full
performance enhancements available in 3.1.x.

Installing Puppet

Puppet can be installed and used on a variety of different platforms, including the following:

Red Hat Enterprise Linux, CentOS, Fedora, and Oracle Enterprise Linux
e Debian and Ubuntu

¢ Openlndiana

e Solaris

e From source

e Microsoft Windows (clients only)

e MacOS X and MacOS X Server

e Other (that is, BSD, Mandrake, and Mandriva)

Most of these are discussed in sections that follow. On these platforms, Puppet manages a variety of configuration

items, including but not limited to these:
e Files
e Services
e Packages
e Users
e Groups
e Cronjobs
e SSH keys

e Nagios configuration

For Puppet, the agent and master server installations are very similar, although most operating systems and
distribution packaging systems divide the master and agent functions into separate packages. On some operating
systems and distributions, you'll also need to install Ruby and its libraries and potentially some additional packages.
Most good packaging systems will have most of the required packages, like Ruby, as prerequisites of the Puppet and
Facter packages. For other features (including some types of reporting that we’ll demonstrate later in this book), you

may also need to install additional packages.

CHAPTER 1 * GETTING STARTED WITH PUPPET

We'll also demonstrate how to install Puppet from source, but we don’t recommend this approach. It is usually
simpler to use your operating system’s package management system, especially if you are installing Puppet on a large
number of hosts.

Installing on Red Hat Enterprise Linux and Fedora

Add the Extra Packages for Enterprise Linux (EPEL) or Puppet Labs repositories to your host and then install
packages, as described in the following sections. Note that at the time of writing you must use the Puppet Labs
repository for Puppet 3 packages.

Installing EPEL Repositories

The EPEL repository is a volunteer-based community effort from the Fedora project to create a repository of high-quality
add-on packages for Red Hat Enterprise Linux (RHEL) and its compatible spinoffs such as CentOS, Oracle Enterprise
Linux, and Scientific Linux.

You can find more details on EPEL, including how to add it to your host, at http://fedoraproject.org/wiki/EPEL
and http://fedoraproject.org/wiki/EPEL/FAQ#howtouse.

You can add the EPEL repository by adding the epel-release RPM (. rpm package manager)as follows:

e Enterprise Linux 5:
rpm -Uvh http://dl.fedoraproject.org/pub/epel/5/1386/epel-release-5-4.noaxrch.xrpm
e Enterprise Linux 6:

rpm -Uvh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm

Installing Puppet Labs Repositories
You can install the Puppet Labs repository on Linux 5 and 6 in a similar fashion:

e Enterprise Linux 5:
rpm -ivh http://yum.puppetlabs.com/el/5/products/i386/puppetlabs-release-5-7.noarch.rpm
e Enterprise Linux 6:

rpm -ivh http://yum.puppetlabs.com/el/6/products/i386/puppetlabs-release-6-7.noarch.rpm

Installing the EPEL and Puppet Lab Packages

On the master, you need to install the puppet, puppet-server, and facter packages from the EPEL or Puppet Labs
repositories:

yum install puppet puppet-server facter

The puppet package contains the agent, the puppet-server package contains the master, and the facter package
contains the system inventory tool Facter. As mentioned earlier, Facter gathers information, or facts, about your hosts
that are used to help customize your Puppet configuration.

On the agent, you only need to install the prerequisites and the puppet and facter packages:

yum install puppet facter

http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL/FAQ#howtouse
http://dl.fedoraproject.org/pub/epel/5/i386/epel-release-5-4.noarch.rpm
http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
http://yum.puppetlabs.com/el/5/products/i386/puppetlabs-release-5-7.noarch.rpm
http://yum.puppetlabs.com/el/6/products/i386/puppetlabs-release-6-7.noarch.rpm

CHAPTER 1~ GETTING STARTED WITH PUPPET

Installing Via RubyGems

Like most Ruby-based applications, Puppet and Facter can also be installed via RubyGems. To do this, you'll need to
install Ruby and the appropriate RubyGems package for your operating system. On Red Hat, CentOS, Fedora,
SUSE/SLES, Debian and Ubuntu, this package is called rubygems. Once this package is installed, the gem command
should be available to use. You can then use gem to install Puppet and Facter, as shown here:

gem install puppet facter

Installing on Debian and Ubuntu

For Debian and Ubuntu, the puppet package contains the Puppet agent, and the puppetmaster package contains the
master. On the master, you need to install this:

apt-get install puppet puppetmaster
On the agent, you only need to install the puppet package:

apt-get install puppet

Note Installing the puppet, puppetmaster, and facter packages will also install some prerequisite packages, such
as Ruby itself, if they are not already installed.

For the latest version of Puppet you can use the following Puppetlabs repositories:

e Debian Wheezy:

wget http://apt.puppetlabs.com/puppetlabs-release-wheezy.deb
dpkg -i puppetlabs-release-wheezy.deb
apt-get update

¢ Ubuntu Precise:
wget http://apt.puppetlabs.com/puppetlabs-release-precise.deb
dpkg -i puppetlabs-release-precise.deb
apt-get update

Replace “precise” with other code names for different versions of Debian and Ubuntu.

Installing on OpenIndiana

Installing Puppet on OpenIndiana requires installing Ruby first. Then install Puppet and Facter via a RubyGem. Start
by using the pkg command to install Ruby:

pkg install ruby-18

RubyGems is installed by default when the ruby-18 package is installed. You can use the gem command to
install Puppet.

http://apt.puppetlabs.com/puppetlabs-release-wheezy.deb
http://apt.puppetlabs.com/puppetlabs-release-precise.deb

CHAPTER 1 * GETTING STARTED WITH PUPPET

gem install puppet facter
The puppet and facter binaries are now installed in this folder:

/var/ruby/1.8/gem_home/bin/

Installing on Solaris 10 and 11

On Solaris there are no native packages for Puppet, so you will need to install from OpenCSW packages, RubyGems
or Source. OpenCSW (http://www.opencsw.org/about) is a community-led software packaging project for Solaris.
They have prebuilt Puppet packages for both Solaris 10 and Solaris 11. At the time of writing there is both a puppet3
package and a puppet package. We will use the puppet3 package to get the stable 3.x version.

1. Tobegin we will install OpenCSW.

pkgadd -d http://get.opencsw.org/now

2. Nextinstall Puppet and dependencies:
pkgutil --install puppet3

After installation Puppet will be available in /opt/csw/bin.

Installing from Source

You can also install Puppet and Facter from source tarballs. We don’t recommend this approach, because it makes
upgrading, uninstalling, and generally managing Puppet across many hosts difficult. To do this you'll need to ensure
that some prerequisites are installed, for example Ruby and its libraries, using the appropriate packages for your host
or via source again.

1. First, download the Facter tarball from the Puppet Labs site:

$ cd /tmp
$ wget http://downloads.puppetlabs.com/facter/facter-1.6.18.tar.gz

2. Unpack the tarball and run the install.rb script to install Facter:

$ tar -zxf facter-1.6.18.tar.gz
$ cd facter-1.6.18
./install.rb

This will install Facter into the default path for Ruby libraries on your host, for example /usr/1ib/ruby/ on many
Linux distributions.

3. Next, download and install Puppet using the same process:

$ cd /tmp

$ wget http://downloads.puppetlabs.com/puppet/puppet-3.1.1.tar.gz
$ tar -zxf puppet-3.1.1.tar.gz

$ cd puppet-3.1.1

./install.rb

Like the Facter steps, this will install Puppet into the default path for Ruby libraries on your host.

10

http://www.opencsw.org/about
http://get.opencsw.org/now
http://downloads.puppetlabs.com/facter/facter-1.6.18.tar.gz
http://downloads.puppetlabs.com/puppet/puppet-3.1.1.tar.gz

CHAPTER 1~ GETTING STARTED WITH PUPPET

Note You can find the latest Puppet and Facter releases at http://puppetlabs.com/misc/download-options/.

Installing on Microsoft Windows

Puppet does not currently support running a Puppet master on Microsoft Windows. You will need a Unix/Linux
Puppet master for client-server, or you can run Puppet in masterless mode.

Installing on Microsoft Windows Graphically

To install on Microsoft Windows graphically, follow these steps:

1. Download the latest open source MSI from http://downloads.puppetlabs.com/windows/
(The MSI file bundles all of Puppet’s dependencies, including Ruby and Facter).

2. Run the MSI as an administrator and follow the installation wizard (Figure 1-4).

Application Tools Downloads

“ Home Share View Manage

€) * T | & » Administrator » Downloads

w Favorites El Puppe1 Setup
B Desktop
& Downloads Welcome to the Puppet Setup Wizard

. Recent places

4 Libraries

3 D t This will install Puppet 3.2.3 and configure the system to
J' Ocunen’s fetch configurations every half hour.
! Music

This version of Puppet will work with puppet masters running

=] Pictures Puppet 3.0 or higher.

B Videos
& Computer

Gii Metwork

2items 1item selected 184 MB

A TR - OB e

Figure 1-4. Beginning Puppet installation

11

http://puppetlabs.com/misc/download-options/
http://downloads.puppetlabs.com/windows/

CHAPTER 1

3.

GETTING STARTED WITH PUPPET

You will need to supply the name of your Puppet master to the installer (Figure 1-5). After
that, Puppet will begin running as a Windows service. When the installation is complete
you will see the screen in Figure 1-6.

“ Home

€) - TI & » Administrater + Downloads

Application Tocls

Share View Manage

Downloads

+ Favorites
B Desktop
& Downloads

. Recent places

4 Libraries
"_ Documents
J‘ Music
=/ Pictures
B Videos

& Computer

Gii Metwork

i)

Configuration

Instal Puppet to:

IC:\Pfogram Files (x85)\Puppet Labs\Puppet),

Hostname of the Puppet master:

[Fuwet

2items 1item selected 184 MB

-5 0B

841PM
212003

Figure 1-5. Configuring Puppet

12

CHAPTER 1~ GETTING STARTED WITH PUPPET

I W= Application Toals Downloads

“ Home Share View Manage

€) * T | & » Administrator » Downloads

w Favorites El Puppe1 Setup
B Desktop
& Downloads Completed the Puppet Setup Wizard

. Recent places

4 Libraries Click the Frish button to exit the Setup Wizard,
¢ Documents

J‘ Music

] Pictures Manage your first resources on this node, explore the
Puppet community and get support using the shortcuts in the

B videos Decumentation folder of your Start Menu.

& Computer

cii Metwork

2items 1item selected 184 MB

B | oS T

Figure 1-6. Puppet installation is complete

For additional information, such as automating installations, refer to the Windows installation documentation at
http://docs.puppetlabs.com/windows/installing.html.

Installing on Microsoft Windows Using PowerShell

Many Windows administrators, particularly in cloud operations, have begun using PowerShell for remote administration
and scriptable installation. To install open source Puppet, you must first download the Puppet MSI installer from
Puppetlabs.com. There are two ways to do this; older PowerShell versions should use the commands in Listing 1-2, while
version 3 and greater can use the command in Listing 1-3.

Listing 1-2. Downloading the Puppet MSI on Powershell versions 2 and earlier

$downloads = $pwd

$webclient = New-Object System.Net.WebClient

$url = http://puppetlabs.com/downloads/windows/puppet-3.2.3.msi
$file = "$downloads/puppet.msi”
$webclient.DownloadFile($url,$file)

13

http://docs.puppetlabs.com/windows/installing.html
http://puppetlabs.com/
http://System.Net.WebClient
http://puppetlabs.com/downloads/windows/puppet-3.2.3.msi

CHAPTER 1 * GETTING STARTED WITH PUPPET
PowerShell 3 and greater can use the Invoke-WebRequest commandlet to download the MSI, as shown in Listing 1-3.

Listing 1-3. Downloading the Puppet MSI on Powershell versions 3 and later

$url = "http://puppetlabs.com/downloads/windows/puppet-3.2.3.msi"
Invoke-WebRequest -Uri $url -OutFile puppet.msi

You will see a progress bar across the screen. After the MSI has been downloaded, install it using msiexec, as
shown next. Here we actually shell out to cmd. exe, since msiexec doesn’t currently work in PowerShell.

cmd /c "msiexec /qn /i puppet.msi /1*v install.log"

By using the /gn argument to msiexec, we have made the installation silent and noninteractive, meaning that no
questions were asked of us and no dialog popped up. This entire exercise can be completed via remote PowerShell
or script. The /1*v install.log argument has made the installation send its log to install.log in the current
directory. If installation is successful, you should see “Installation Successful” at the end of the install.log.

We can verify that Puppet has been installed correctly by running the puppet.bat script as shown here:

& 'C:\Program Files (x86)\Puppet Labs\Puppet\bin\puppet.bat' --version

The MSI installer, when run in silent mode, will choose puppet as the Puppet master and CA server. If you want to
override these variables, you can use the environment variables shown in Listing 1-4.

Listing 1-4. Configuring the puppet installation

cmd /c "msiexec /qn PUPPET_MASTER_SERVER=master.example.com
PUPPET_CA_SERVER=puppetcat.example.com /i puppet
.msi /1*v install.log"

Unfortunately, at the time of writing, you cannot set other configuration variables, so you would have to modify
puppet. conf manually with notepad or another editor:

notepad 'C:\ProgramData\PuppetLabs\puppet\etc\puppet.conf'

Installing on the Mac

In this section we will cover installing Puppet on Mac OS X via the GUI and from the CLI.

Installing Puppet Open Source on Apple Mac OS X via the Graphical Installer

Download the Facter and Puppet . dmg files from the Puppet Labs website, puppetlabs.com.
Then mount the . dmg files and verify that you have two Apple Package installers as shown in Figure 1-7.

14

http://puppetlabs.com/downloads/windows/puppet-3.2.3.msi
http://PUPPET_MASTER_SERVER=master.example.com
http://PUPPET_CA_SERVER=puppetcat.example.com
http://puppetlabs.com/

CHAPTER 1 * GETTING STARTED WITH PUPPET

F Yl Lit) [tacter-1./.2

facter-1.7.2.pkg

puppet-3.2.3.pkg

Figure 1-7. Mac OSX pkg files

Double-click the Facter cardboard box icon, which brings you to the welcome screen in Figure 1-8.

Welcome to the facter-1.7.2 Installer

& Introduction

@ Destination Sele You will be guided through the steps necessary to
install this software.

Go Back Continue |

Figure 1-8. The Facter Installer

Assume administrator rights, as shown in Figure 1-9, and click Install Software.

15

CHAPTER 1~ GETTING STARTED WITH PUPPET

®00 e linstall facter-1.7.2

Installer is trying to install new software. Type
your password to allow this.

@ Instal Name: | macadmin

Password: Icuuuu .ee

'““l""',""""l [Cancel] i inctalkoofware i

| Change Install Location... |

insa

Figure 1-9. Enter your administrator password

Once the installation is complete, you'll see the screen in Figure 1-10.

,.0.0.0 ‘s Install facter-1.7.2

The installation was completed successfully.

@ Introduction
© Destination Sel
O Installation Typ

The installation was successful.

urmpmrm\n

luuvnl]"'”\"' Yy . = The software was installed.

Figure 1-10. Facter installation is complete

Excellent! Facter is now installed. Now double-click the Puppet cardboard box to install it as well. The screen in

Figure 1-11 will appear.

16

CHAPTER 1~ GETTING STARTED WITH PUPPET

eno " _w Install puppet-3.2.3 _ : |

Installer is trying to install new software. Type
your password to allow this.

® Instal Name: 'macadmin

Password: l-a.-o- ey

| | Cancel

Change Install Location... |

| GoBack Install

Figure 1-11. Enter your adminstrator credentials

Again, assume administrator rights and click the Install Software button (Figure 1-11).

Puppet is now installed! You can verify the installation with puppet -version, as shown in Figure 1-12. In this
case, the Puppet installer did not prompt for a Puppet master server. If you want to use a server other than the DNS
name puppet, you must create /etc/puppet/puppet.conf with server=puppet-master.pro-puppet.com.

(- NaNs] 1. zsh

Last login: Sat Jul 27 23:21:32 on ttys@od

[Oh My Zsh] Would you like to check for updates?
Type Y to update oh-my-zsh: AC

darktesplar® which puppet

/usr/bin/puppet

darktesplar¥ puppet --version

3.2.5

darktesplark ||

Figure 1-12. Verifying installation with puppet -version

17

http://server=puppet-master.pro-puppet.com

CHAPTER 1 * GETTING STARTED WITH PUPPET

Installing Puppet Open Source on Apple Mac 0S X via the Command Line

Download the latest facter and puppet packages from http://downloads.puppetlabs.com/mac/.
Once you have downloaded the . dmg files, you can install them via the command line with the following
instructions:

$ curl -0 http://downloads.puppetlabs.com/mac/facter-1.7.2.dmg

$ hdiutil mount facter-1.7.2.dmg

$ installer -package /Volumes/facter-1.7.2/facter-1.7.2.pkg/ -target /Volumes/Macintosh\ HD
$ hdutil unmount /Volumes/facter-1.7.2

Next install Puppet:

$ curl -0 https://downloads.puppetlabs.com/mac/puppet-3.2.3.dmg

$ hdiutil mount puppet-3.2.3.dmg

$ installer -package /Volumes/puppet-3.2.3/puppet-3.2.3.pkg -target /Volumes/Macintosh\ HD
$ hdutil unmount /Volumes/puppet-3.2.3/

At this point you can run Puppet by cron or with puppet apply. To setup a launchd job to run it in daemon mode,
refer to the official docs:

http://docs.puppetlabs.com/guides/installation.html#mac-os-x

Installing on Other Platforms

We've just explained how to install Puppet on some popular platforms.
Puppet can also be installed on a wide variety of other platforms, including the following:

e SLES/OpenSuSEvia http://software.opensuse.org/

e Gentoo via Portage

¢ Mandrake and Mandriva via the Mandriva contrib repository
e FreeBSD via ports tree

e NetBSD via pkgsrc

e OpenBSD via ports tree

e ArchLinuxvia ArchLinux AUR

Note You can find a full list of additional operating systems and specific instructions at
https://puppetlabs.com/misc/download-options.

Puppet can also work on some networks such as BIG-IP F5 devices and some Juniper network devices. F5s are
an advanced configuration, configured by way of a proxy agent. Read https://puppetlabs.com/blog/managing-f5-
big-ip-network-devices-with-puppet/ to get started configuring an F5 with Puppet. Some modern Juniper devices
run Puppet natively. Puppet can be installed via a Juniper package called jpuppet. Downloads and more information
are available at https://puppetlabs.com/solutions/juniper-networks/.

18

http://downloads.puppetlabs.com/mac/
http://downloads.puppetlabs.com/mac/facter-1.7.2.dmg
https://downloads.puppetlabs.com/mac/puppet-3.2.3.dmg
http://docs.puppetlabs.com/guides/installation.html#mac-os-x
http://software.opensuse.org/
https://puppetlabs.com/misc/download-options
https://puppetlabs.com/blog/managing-f5-big-ip-network-devices-with-puppet/
https://puppetlabs.com/blog/managing-f5-big-ip-network-devices-with-puppet/
https://puppetlabs.com/solutions/juniper-networks/

CHAPTER 1~ GETTING STARTED WITH PUPPET

Puppet’s tarball also contains some packaging artifacts in the ext directory; for example, there are an RPM spec
file and OS X build scripts that can allow you to create your own packages for compatible operating systems. Now that
you've installed Puppet on your chosen platform, we can start configuring it.

Configuring Puppet

Let’s start by configuring a Puppet master that will act as our configuration server. We'll look at Puppet’s configuration
files, how to configure networking and firewall access, and how to start the Puppet master. Remember that we're
going to be looking at Puppet in its client-server mode. Here, the Puppet master contains our configuration data, and
Puppet agents connect via SSL and pull down the required configuration (refer back to Figure 1-2).

On most platforms, Puppet’s configuration will be located under the /etc/puppet directory. Puppet’s principal
configuration file is called puppet.conf and is stored at /etc/puppet/puppet. conf on Unix/Linux operating systems
and C:\ProgramData\PuppetLabs\puppet\etc\ on Windows. It is likely that this file has already been created when
you installed Puppet, but if it hasn’t, you can create a simple file using the following command:

$ cd /etc/puppet/
$ puppet master --genconfig > puppet.conf

Note We’'re assuming your operating system uses the /etc/ directory to store its configuration files, as most Unix/
Linux operating systems and distributions do. If you’re on a platform that doesn’t, such as Microsoft Windows, substitute
the location of your puppet. conf configuration file. But remember that the Puppet master cannot be run on Windows.

The puppet.conf configuration file is constructed much like an INI-style configuration file and divided into
sections. Each section configures a particular element of Puppet. For example, the [agent] section configures the
Puppet agent, and the [master] section configures the Puppet master binary. There is also a global configuration
section called [main]. All components of Puppet set options specified in the [main] section.

At this stage, we're only going to add one entry, server, to the puppet. conf file. The server option specifies the
name of the Puppet master. We'll add the server value to the [main] section (if the section doesn’t already exist in your
file, then create it).

[main]
server=puppet.example.com

Replace puppet.example.comwith the fully qualified domain name of your host.

Note We’ll look at other options in the puppet.conf file in later chapters.

We recommend you also create a DNS CNAME for your Puppet master host, for example puppet.pro-puppet.com,
and add it to either your /etc/hosts file or your DNS configuration:

/etc/hosts
127.0.0.1 localhost
192.168.0.1 puppet.pro-puppet.com puppet

Once we've configured appropriate DNS for Puppet, we need to add the site. pp file, which holds the basics of
the configuration items we want to manage.

19

http://server=puppet.example.com
http://puppet.example.com/
http://puppet.pro-puppet.com/
http://puppet.pro-puppet.com/

CHAPTER 1 * GETTING STARTED WITH PUPPET

The site.pp File

The site.pp file tells Puppet where and what configuration to load for our clients. We're going to store this file in a
directory called manifests under the /etc/puppet directory.

Note Manifestis Puppet’s term for files containing configuration information. Manifest files have a suffix of . pp.
The Puppet language is written into these files.

This directory and file is often already created when the Puppet packages are installed. If it hasn’t already been
created, create this directory and file now:

mkdir /etc/puppet/manifests
touch /etc/puppet/manifests/site.pp

We'll add some configuration to this file later in this chapter, but now we just need the file present.

Note You can also override the name and location of the manifests directory and site. pp file using the manifestdir
and manifest configuration options, respectively. These options are set in the puppet. conf configuration file in the
[master] section. See http://docs.puppetlabs.com/references/stable/configuration.html for a full list of
configuration options. We’ll talk about a variety of other options throughout this book.

Firewall Configuration

The Puppet master runs on TCP port 8140. This port needs to be open on your master’s firewall (and any intervening
firewalls and network devices), and your client must be able to route and connect to the master. To do this, you need
to have an appropriate firewall rule on your master, such as the following rule for the Netfilter firewall:

$ iptables -A INPUT -p tcp -m state --state NEW --dport 8140 -j ACCEPT

This line allows access from everywhere to TCP port 8140. If possible, you should limit this to networks that
require access to your Puppet master. For example:

$ iptables -A INPUT -p tcp -m state --state NEW -s 192.168.0.0/24 --dport 8140 -j ACCEPT

Here we've restricted access to port 8140 to the 192.168.0.0/24 subnet.

Note You can create similar rules for other operating systems’ firewalls, such as pf or the Windows Firewall. The
traffic between Puppet client and Puppet master is encrypted with SSL and authenticated by client x509 certificates.

20

http://docs.puppetlabs.com/references/stable/configuration.html

CHAPTER 1~ GETTING STARTED WITH PUPPET

Starting the Puppet Master

The Puppet master can be started via an init script or other init system, such as upstart or systemd on most Linux
distributions. On Red Hat or Debian, we would run the init script with the service command, like so:

service puppetmaster start

Other platforms should use their appropriate service management tools.

Note Output from the daemon can be seen in /var/log/messages on Red Hat-based hosts and /var/log/syslog
on Debian and Ubuntu hosts. Puppet will log via the daemon facility to Syslog by default on most operating systems. You
will find output from the daemons in the appropriate location and files for your operating system. On Microsoft Windows,
Puppet logs go to C:\ProgramData\PuppetLabs\puppet\var\log.

Starting the daemon will initiate your Puppet environment, create a local Certificate Authority (CA), along with
certificates and keys for the master, and open the appropriate network socket to await client connections. You can see
Puppet’s SSL information and certificates in the /var/1ib/puppet/ssl directory.

1s -1 /var/lib/puppet/ssl/

drwxrwx--- 5 puppet puppet 4096 Apr 11 04:05 ca

drwxr-xr-x 2 puppet root 4096 Apr 11 04:05 certificate requests
drwxr-xr-x 2 puppet root 4096 Apr 11 04:05 certs

-Iw-r--r-- 1 puppet puppet 918 Apr 11 04:05 crl.pem

drwxr-x--- 2 puppet root 4096 Apr 11 04:05 private

drwxr-x--- 2 puppet root 4096 Apr 11 04:05 private_keys
drwxr-xr-x 2 puppet root 4096 Apr 11 04:05 public_keys

The directory on the master contains your CA, certificate requests from your clients, a certificate for your master,
and certificates for all your clients.

Note You can override the location of the SSL files using the ss1dir option in puppet.conf on the master. There will
be much more on the Puppet internal CA in Chapter 4.

You can also run the Puppet master from the command line to help test and debug issues. We recommend doing
this when testing Puppet initially. To do this, we start the Puppet master daemon like so:

puppet master --verbose --no-daemonize
The --verbose option outputs verbose logging and the - -no-daemonize option keeps the daemon in the

foreground and redirects output to standard out. You can also add the - -debug option to produce more verbose debug
output from the daemon.

21

CHAPTER 1 * GETTING STARTED WITH PUPPET

A SINGLE BINARY

All the functionality of Puppet is available from a single binary, puppet, in the style of tools like Git. This means you
can start the Puppet master by running this command:

puppet master

The agent functionality is also available in the same way:

puppet agent

You can see a full list of the available functionality from the puppet binary by running help:
$ puppet help

And you can get help on any Puppet subcommand by adding the subcommand option:

$ puppet help subcommand

Connecting Our First Agent

Once you have the Puppet master configured and started, you can configure and initiate your first agent. On the
agent, as we mentioned earlier, you need to install the appropriate packages, usually puppet and facter, using your
operating system’s package management system. We're going to install a client on a host called node1.pro-puppet.
com and then connect to our puppet.pro-puppet.com master.

When connecting our first client, we want to run the Puppet agent from the command line rather than as a
service. This will allow us to see what is going on as we connect. The Puppet agent daemon is run using puppet agent,
and you can see a connection to the master initiated in Listing 1-5.

Listing 1-5. Puppet client connection to the Puppet master

nodel# puppet agent --test --server=puppet.pro-puppet.com

Info: Creating a new SSL key for nodei.pro-puppet.com

Info: Caching certificate for ca

Info: Creating a new SSL certificate request for nodei.pro-puppet.com

Info: Certificate Request fingerprint (SHA256): 6F:0D:41:14:BD:2D:FC:CE:1C:DC:11:1E:26:07:4C:08:D0:C
7:E8:62:A5:33:E3:4B:8B:(6:28:(5:C8:88:1C:C8

Exiting; no certificate found and waitforcert is disabled

In Listing 1-5, we executed the Puppet agent with three options. The first option, --server, specifies the name or
address of the Puppet master to connect to.

Tip You can also run a Puppet client on the Puppet master, but we’re going to start with the more traditional
client-server approach. And yes, that means you can use Puppet to manage itself!

22

http://node1.pro-puppet.com/
http://node1.pro-puppet.com/
http://puppet.pro-puppet.com/
http://puppet.pro-puppet.com/
http://node1.pro-puppet.com/
http://node1.pro-puppet.com/

CHAPTER 1~ GETTING STARTED WITH PUPPET

Tip If we don’t specify a server, Puppet will look for a host called “puppet.” It’s often a good idea to create a CNAME
for your Puppet master, such as puppet. pro-puppet. com. Additionally, Puppet has the ability to query SRV records to find
where the Puppet master and Puppet CA servers are. More on this in Chapter 4.

We can also specify this in the main section of the /etc/puppet/puppet.conf configuration file on the client:

/etc/puppet/puppet.conf
[main]
server=puppet.pro-puppet.com

Your client must be able to resolve the hostname of the master to connect to (this is why it is useful to have a Puppet
CNAME or to specify your Puppet master in the /etc/hosts file on your client) The - -test option runs the Puppet client
in the foreground, outputs to standard out, and exits after the run is complete. By default, the Puppet client runs as a
daemon, and the puppet agent command forks off the Puppet daemon into the background and exits immediately.

In Listing 1-5, you can see the output from our connection. The agent has created a certificate signing request
and a private key to secure our connection. Puppet uses SSL certificates to authenticate connections between the
master and the agent. The agent sends the certificate request to the master and waits for the master to sign and return
the certificate.

At this point, the agent has exited after sending in its Certificate Signing Request (CSR). The agent will need to
be rerun to check in and run Puppet after the CSR has been signed by the CA. You can configure puppet agent notto
exit, but instead stay alive and poll periodically for the CSR to be signed. This configuration is called waitforcert and
is generally only useful if you are also auto-signing certificates on the master. More on that later in this chapter.

Note You can change the time the Puppet agent will wait by using the --waitforcert option. You can specify a time
in seconds or 0 to not wait for a certificate, in which case the agent will exit.

Completing the Connection

To complete the connection and authenticate our agent, we now need to sign the certificate the agent has sent to the
master. We do this using puppet cert (or the puppetca binary) on the master:

puppet# puppet cert list
"nodel.pro-puppet.com” (SHA256) 6F:0D:41:14:BD:2D:FC:CE:1C:DC:11:1E:26:07:4C:08:D0:C7:E8:62:A5:33:E3
:4B:8B:(6:28:C5:(8:88:1C: (8

Tip You can find a full list of the binaries that come with Puppet at http: //docs. puppetlabs.com/guides/tools. html.

The list option displays all the certificates waiting to be signed. We can then sign our certificate using the sign option:

puppet# puppet cert sign nodel.pro-puppet.com

Notice: Signed certificate request for nodel.pro-puppet.com

Notice: Removing file Puppet::SSL::CertificateRequest nodel.pro-puppet.com at
'/var/lib/puppet/ssl/ca/requests/nodel.pro-puppet.com.pem’

23

http://puppet.pro-puppet.com/
http://server=puppet.pro-puppet.com
http://node1.pro-puppet.com/
http://docs.puppetlabs.com/guides/tools.html
http://node1.pro-puppet.com/
http://node1.pro-puppet.com/
http://node1.pro-puppet.com/
http:///var/lib/puppet/ssl/ca/requests/node1.pro-puppet.com.pem

CHAPTER 1 * GETTING STARTED WITH PUPPET

You can sign all waiting certificates with the puppet cert sign --all command.

Note Rather than signing each individual certificate, you can also enable autosign mode. In this mode, all incoming
connections from specified IP addresses or address ranges are automatically signed. This obviously has some
security implications and should only be used if you are comfortable with it. You can find more details at
http://docs.puppetlabs.com/guides/faq.html#why-shouldn-t-i-use-autosign-for-all-my-clients.

On the client, two minutes after signing the certificate, you should see the following entries (or you can stop and
restart the Puppet agent rather than waiting two minutes):

puppet agent --test

Info: Retrieving plugin

Info: Caching catalog for nodel.pro-puppet.com
Info: Applying configuration version '1365655737'
Notice: Finished catalog run in 0.13 seconds

The agent is now authenticated with the master, and you may have another message present:

puppet agent -t

Info: Retrieving plugin

Error: Could not retrieve catalog from remote server: Error 400 on SERVER: Could not find default
node or by name with 'nodel.example.com, nodel' on node nodel.pro-puppet.com

Warning: Not using cache on failed catalog

Error: Could not retrieve catalog; skipping run

The agent has connected and our signed certificate has authenticated the session with the master. The master,
however, doesn’t have any configuration available for our puppet node, node1.pro-puppet.com, and hence we have
received an error message. We now have to add some configuration for this agent on the master.

Caution It is important for the time to be accurate on your master and agent. SSL connections rely on the clock on
hosts being correct. If the clocks are incorrect, your connection may fail with an error indicating that your certificates are
not trusted. You should use something like NTP (Network Time Protocol) to ensure that your host’s clocks are accurate.
A quick way to sync several servers is to run ntpdate bigben.cac.washington.edu on each of them. This will perform
a one-time NTP sync.

Creating Our First Configuration ltem

Let’s get some more understanding of Puppet’s components, configuration language, and capabilities. You learned
earlier that Puppet describes the files containing configuration data as manifests. Puppet manifests are made up of a
number of major components:

¢ Resources: Individual configuration items
e Files: Physical files you can serve out to your agents

e Templates: Template files that you can use to populate files

24

http://docs.puppetlabs.com/guides/faq.html#why-shouldn-t-i-use-autosign-for-all-my-clients
http://node1.pro-puppet.com/
http://node1.example.com/
http://node1.pro-puppet.com/
http://node1.pro-puppet.com/

CHAPTER 1~ GETTING STARTED WITH PUPPET

e Nodes: Specifies the configuration of each agent
e Classes: Collections of resources
e Definitions: Composite collections of resources

These components are wrapped in a configuration language that includes variables, conditionals, arrays, and
other features. Later in this chapter we’ll introduce you to the basics of the Puppet language and its elements. In the
next chapter, we’ll extend your knowledge of the language by taking you through an implementation of a multi-agent
site managed with Puppet.

In addition to these components, Puppet also has the concept of a “module,” which is a portable collection of
manifests that contain resources, classes, definitions, files, and templates. We'll see our first module shortly.

Adding a Node Definition

Let’s add our first node definition to site. pp. In Puppet manifests, agents are defined using node statements.
You can see the node definition we're going to add in Listing 1-6.

Listing 1-6. Our node configuration

node 'nodel.pro-puppet.com’ {
package { 'vim':
ensure => present,

}

For a node definition we specify the node name, enclosed in single quotes, and then specify the configuration
that applies to it inside curly braces { }. The client name can be the hostname or the fully qualified domain name
of the client. At this stage, you can’t specify nodes with wildcards (for example, *. pro-puppet . com), but you can use
regular expressions, as shown here:

node /*www\d+\.pro-puppet\.com/ {

}

This example will match all nodes from the domain pro-puppet.com with the hostnames www1, waw12, www123,
and so on.

Next, we specify a resource stanza in our node definition. This is the same one from earlier when we were
introducing the Puppet DSL. It will make sure that the vim package is installed on the host node1.pro-puppet.com.

We can run Puppet on nodel and see what action it has performed:

root@nodel:~# puppet agent --test

Info: Retrieving plugin

Info: Caching catalog for nodeil.pro-puppet.com

Info: Applying configuration version '1375079547'

Notice: /Stage[main]//Node[node1]/Package[vim]/ensure: ensure changed 'purged' to 'present’
Notice: Finished catalog run in 4.86 seconds

We can see that Puppet has installed the vim package. It is not generally best practice to define resources at

node level; those belong in classes and modules. Let’s strip out our vim resource and include the sudo class instead
(Listing 1-7).

25

http://node1.pro-puppet.com/
http://*.pro-puppet.com
http:///^www\d+\.pro-puppet\.com/
http://pro-puppet.com/
http://node1.pro-puppet.com/
http://node1.pro-puppet.com/

CHAPTER 1 * GETTING STARTED WITH PUPPET

Listing 1-7. Our Node Configuration

node 'nodel.pro-puppet.com’ {
include sudo

}

Here we specify an include directive in our node definition; it specifies a collection of configurations, called a
class, that we want to apply to our host. There are two ways to include a class:

node /node1/ {
include ::sudo

}

node /node2/ {
class { "::sudo':
users => ['tom', 'jerry'],
}
}

The first syntax is bare and simple. The second syntax allows parameters to be passed into the class. This
feature, generally called parameterized classes, allows classes to be written generally and then utilized specifically,
increasing the reusability of Puppet code. Notice that the syntax for including a class is very similar to the syntax for
a normal Puppet resource. Modules are self-contained collections of Puppet code, manifests, Puppet classes, files,
templates, facts, and tests, all for a specific configuration task. Modules are usually highly reusable and shareable.
The double-colon syntax explicitly instructs Puppet to use top scope to look up the sudo module. You will learn
much more about this in Chapter 2.

Note Puppet also has an inheritance model in which you can have one node inherit values from another node. You
should avoid doing this. Refer to http://docs.puppetlabs.com/puppet/latest/reference/lang node_definitions.
html#inheritance for more information.

Creating Our First Module

The next step in our node configuration is to create a sudo module. Again, a module is a collection of manifests,
resources, files, templates, classes, and definitions. A single module would contain everything required to configure a
particular application. For example, it could contain all the resources (specified in manifest files), files, and associated
configuration to configure Apache or the sudo command on a host. We will create a sudo module and a sudo class.

Each module needs a specific directory structure and a file called init.pp. This structure allows Puppet to
automatically load modules. To perform this automatic loading, Puppet checks a series of directories called the
module path. This path is configured with the modulepath configuration option in the [master] section of the
puppet.conf file. By default, Puppet looks for modules in the /etc/puppet/modules and /usx/share/puppet/
modules directories, but you can add additional locations if required:

[master]
modulepath = /etc/puppet/modules:/var/lib/puppet/modules:/opt/modules

26

http://node1.pro-puppet.com/
http://docs.puppetlabs.com/puppet/latest/reference/lang_node_definitions.html#inheritance
http://docs.puppetlabs.com/puppet/latest/reference/lang_node_definitions.html#inheritance

CHAPTER 1~ GETTING STARTED WITH PUPPET

Module Structure

Let’s start by creating a module directory and file structure in Listing 1-8. We're going to create this structure under
the directory /etc/puppet/modules. We will name the module sudo. Modules (and classes) must be normal words
containing only letters, numbers, underscores, and dashes.

Listing 1-8. Module structure

mkdir -p /etc/puppet/modules/sudo/{files,templates,manifests}
touch /etc/puppet/modules/sudo/manifests/init.pp

The manifests directory will hold our init.pp file and any other configuration. The init.pp file is the core of
your module, and every module should have one. The files directory will hold any files we wish to serve as part of
our module. The templates directory will contain any templates that our module might use.

The init.pp file

Now let’s look inside our sudo module, starting with the init.pp file, which we can see in Listing 1-9.

Listing 1-9. The sudo module’s init.pp file

class sudo {

package { 'sudo':
ensure => present,

}

if $::osfamily == 'Debian’ {
package { 'sudo-ldap':
ensure => present,
require => Package['sudo'],
}
}

file { '/etc/sudoers':
owner => 'root’,
group => 'root',
mode => '0440',
source => "puppet://$::server/modules/sudo/etc/sudoers"”,
require => Package['sudo'],

Our sudo module’s init.pp file contains a single class, also called sudo. There are three resources in the class, two
packages and a file resource. The first package resource ensures that the sudo package is installed, ensure => present.
The second package resource uses Puppet’s if/else syntax to set a condition on the installation of the sudo-1dap package.

Note Puppet also has two other conditional statements, a case statement and a selector syntax.
You can see more details of Puppet’s conditional syntaxes at
http://docs.puppetlabs.com/guides/more language.html#conditionals.

27

http://docs.puppetlabs.com/guides/more_language.html#conditionals

CHAPTER 1 * GETTING STARTED WITH PUPPET

Caution The == comparison operator is case-insensitive. To perform a case-sensitive comparison for strings,
you must use the regular expression operator =~ and you must fully root the regular expression; for example,
$osfamily =~ /"Debian$/.

Puppet will check the value of the operatingsystem fact for each connecting client. If the value of the
$::0sfamily factis Debian, then Puppet should install the sudo-1dap package. Operating system family is just a name
Puppet uses for binary-compatible groups of distributions; for example, Debian, Ubuntu, and Mint all share the
osfamily Debian.

Note We discussed Facter and its values earlier in this chapter. Each fact is available as a variable, the fact name
prefixed with a $ sign, in your Puppet manifests. Facts are available at what is called top scope, which means we use the
$: :variable syntax. More on variable scoping in later chapters.

Last, in this resource we’ve also specified a new attribute, require.

The require attribute is a metaparameter. Metaparameters are resource attributes that are part of Puppet’s
framework rather than belonging to a specific type. They perform actions on resources and can be specified for any
type of resource.

The require metaparameter creates a dependency relationship between the Package["sudo-1dap"] resource
and the Package["sudo"] resource. In this case, adding the require metaparameter to the resource tells Puppet that
the Package["sudo"] is required by the Package["sudo-1dap"] resource. Hence, the Package["sudo"] resource must
and will be installed first.

Relationships are an important part of Puppet. They allow you to instantiate real-world relationships between
configuration components on your hosts. A good example of this is networking. A number of resources on your hosts,
such as a Web server or an MTA (Mail Transfer Agent), would rely on your network being configured and active before
they can be activated. Relationships allow you to specify that certain resources, for example those configuring your
network, are processed before those resources that configure your Web server or MTA.

The usefulness of relationships does not end there. Puppet can also build triggering relationships between
resources. For example, if a file resource changes, you can tell Puppet to restart a service resource. This means you can
change a service’s configuration file and have that change trigger a restart of that service to ensure it is running with
the updated configuration. We'll see a lot more of these relationships and other metaparameters in Chapter 3.

Note You can see a full list of the available metaparameters at
http://docs.puppetlabs.com/references/stable/metaparameter.html.

The last resource in the sudo class is a file resource, File["/etc/sudoers"], which manages the /etc/sudoers
file. Its first three attributes allow us to specify the owner, group, and permissions of the file. In this case, the file is
owned by the root user and group and has its mode set to 0440 (mode is usually set using octal notation). The next
attribute, source, allows Puppet to retrieve a file from the Puppet source and deliver it to the client. The value of this
attribute is the name of the Puppet source and the location and name of the file to retrieve:

puppet://$::server/modules/sudo/etc/sudoers

Let’s break down this value. The puppet:// part specifies that Puppet will use the Puppet file server protocol to
retrieve the file.

28

http://docs.puppetlabs.com/references/stable/metaparameter.html

CHAPTER 1~ GETTING STARTED WITH PUPPET

Note The Puppet file server is built into the Puppet master. Puppet clients can sync files from the Puppet master,
or use HTTP or rsync to download the files from other sources.

The $: :server variable contains the hostname of our Puppet server.

Tip One handy shortcut is to just remove the server name. Then Puppet will use whatever server the client is
currently connected to; for example, our source line would look like puppet:///modules/sudo/etc/sudoers.

The next portion of our source value tells Puppet where to look for the file. This is the equivalent of the path to
anetwork file share. The first portion of this share is modules, which tells us that the file is stored in a module. Next
we specify the name of the module the file is contained in, in this case sudo. Finally, we specify the path inside that
module to find the file.

All files in modules are stored under the files directory; this is considered the root of the module’s file share.
In our case, we would create the directory etc under the files directory and create sudoers in this directory.

Puppet# mkdir -p /etc/puppet/modules/sudo/files/etc
Puppet# cp /etc/sudoers /etc/puppet/modules/sudo/files/etc/sudoers

VERSION CONTROL

As your configuration becomes more complicated, you should consider adding it to a version-control system such
as Subversion or Git. A version-control system allows you to record and track changes to files, and is commonly
used by software developers. For configuration management, version control allows you to track changes to your
configuration. This is highly useful if you need to revert to a previously known state or make changes without
impacting your running configuration.

You can find information about how to use Subversion at http://svnbook.red-bean.com/ and some specific
ideas about how to use it with Puppet at http://projects.puppetlabs.com/projects/puppet/wiki/Puppet
Version Control. We’ll also show you how a version control system might work with Puppet in Chapter 3.

Applying Our First Configuration

We've created our first Puppet module! Let’s step through what will happen when we connect an agent that includes
this module.

1. Ttwill install the sudo package.
2. Ifit’s an Ubuntu host, then it will also install the sudo-1dap package.
3. Finally, it will download the sudoers file and install it into /etc/sudoers.

Now let’s see this in action and include our new module on the agent we've created, node1.example.com.
Remember that we created a node statement for our host earlier:

node 'nodel.pro-puppet.com' {
include sudo
}

29

http://svnbook.red-bean.com/
http://projects.puppetlabs.com/projects/puppet/wiki/Puppet_Version_Control
http://projects.puppetlabs.com/projects/puppet/wiki/Puppet_Version_Control
http://node1.example.com/
http://node1.pro-puppet.com/

CHAPTER 1 * GETTING STARTED WITH PUPPET

When the agent connects, it will now include the sudo module. To connect we run the Puppet agent again:

puppet# puppet agent --test

Note Puppet has a handy mode called noop. The noop mode runs Puppet but doesn’t make any changes on your
host. It allows you to see what Puppet would do, as a dry run. To run in noop mode, specify --noop on the command line.

Here, we've run the Puppet agent and connected to the master. We've run the agent in the foreground, in verbose
mode and with the --onetime option that tells the Puppet agent to run only once and then stop.
We can see a configuration run commence on our host:

Info: Retrieving plugin

Info: Caching catalog for nodei.pro-puppet.com

Info: Applying configuration version '1365735606'

Notice: /Stage[main]/Sudo/Package[sudo]/ensure: created

Notice: /Stage[main]/Sudo/File[/etc/sudoers]/ensure: defined content as '{md5}1boOee0a97a1bcf9961e4
76140e2c5c1’

Notice: Finished catalog run in 25.94 seconds

Tip In Puppet, the combined configuration to be applied to a host is called a catalog, and the process of applying it is
called a run. You can find a glossary of Puppet terminology at http://docs.puppetlabs.com/references/glossary.html.

Let’s look at what has happened during our run. First we see that the agent has cached the configuration for the
host. By default, will Puppet use this cache if it fails to connect to the master during a future run.

Next, we can see our resources being applied. First the sudo package is installed and then the /etc/sudoers
file is copied across. During the copy process Puppet will back up the old file if it makes a modification, a process
Puppet calls file bucketing. This means that if we've made a mistake and overwritten the file incorrectly, we can
always recover it.

Tip Puppet can back up files remotely to our master using the filebucket type. See http://docs.puppetlabs.
com/references/stable/type.html#tfilebucket for more information. We’ll show you how to do this in Chapter 3.

The last line of the catalog run tells us this process took 25.94 seconds to complete. If we look on the Puppet
master, we can see the results of the run logged there, too:

puppet# puppet master --no-daemonize --verbose --debug

Notice: Starting Puppet master version 3.1.1

[..]

Info: Caching node for nodel.example.com

Debug: importing '/etc/puppet/modules/sudo/manifests/init.pp' in environment production
Debug: Automatically imported sudo from sudo into production

Notice: Compiled catalog for nodel.pro-puppet.com in environment production in 0.23 seconds

30

http://node1.pro-puppet.com/
http://docs.puppetlabs.com/references/glossary.html
http://docs.puppetlabs.com/references/stable/type.html#filebucket
http://docs.puppetlabs.com/references/stable/type.html#filebucket
http://node1.example.com/
http://node1.pro-puppet.com/

CHAPTER 1~ GETTING STARTED WITH PUPPET

Debug: Finishing transaction 70065298446380
Debug: Received report to process from nodel.pro-puppet.com
Debug: Processing report from nodel.example.com with processor Puppet::Reports::Store

Here we can see that Puppet has loaded our sudo module and compiled the catalog for node1.pro-puppet.com.
This catalog is then sent down to the agent and applied on the target host. If the Puppet agent is running as a daemon,
it would then wait 30 minutes and then connect to the master again to check if the configuration has changed on
our host or if a new configuration is available from the master. We can adjust this run interval using the runinterval
option in the /etc/puppet/puppet.conf configuration file on the agent host:

[agent]
runinterval=3600

Summary

So that’s it—we’ve used Puppet to configure our first agent. You've also been introduced to the theoretical
underpinnings of Puppet and how to:

e Install Puppet
e Configure Puppet
e Use Puppet to manage simple configuration on a single host

In the next chapter, we'll extend our Puppet configuration to multiple agents, explore Puppet’s configuration
language further, and build more complex configurations.

Resources

e Introduction to Puppet: http://docs.puppetlabs.com/guides/introduction.html
o Installing Puppet: http://docs.puppetlabs.com/guides/installation.html

Configuring Puppet: http://docs.puppetlabs.com/guides/configuring.html

Configuration Reference: http://docs.puppetlabs.com/references/stable/configuration.html

31

http://node1.pro-puppet.com/
http://node1.example.com/
http://node1.pro-puppet.com/
http://docs.puppetlabs.com/guides/introduction.html
http://docs.puppetlabs.com/guides/installation.html
http://docs.puppetlabs.com/guides/configuring.html
http://docs.puppetlabs.com/references/stable/configuration.html

CHAPTER 2

Building Hosts with Puppet

In Chapter 1 we installed and configured Puppet, created our first module, and applied that module and its
configuration via the Puppet agent to a host. In this chapter, we're going to extend this process to build some more
complete modules and hosts with Puppet for a hypothetical company, Example.com Pty Ltd. Each host’s functionality
we build will introduce new Puppet concepts and ideas.

Example.com Pty Ltd has four hosts we're going to manage with Puppet: a web server, a database server, a mail
server, and our Puppet master server, located in a flat network. You can see that network in Figure 2-1.

Example.com Puppet

Web Mail DB

Figure 2-1. The Example. com Pty Ltd network

Like many organizations, however, Example.com is not a very homogenous environment, and each host uses a
different operating system, as follows:

e mail.example.com: Red Hat Enterprise Linux 6
e db.example.com: Solaris 11
e web.example.com: Ubuntu 10.04

e puppet.example.com: Ubuntu 12.04

33

http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://mail.example.com/
http://db.example.com/
http://web.example.com/
http://puppet.example.com/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

To solve this problem, we’ll begin by working through how we use Puppet in a multiple operating-system
environment. Be sure you've installed the base operating system on these hosts as described in Chapter 1, because
we'll perform some basic configuration on the hosts. We’ll start with configuring SSH for each host. Then we’ll install
and configure some role-specific applications for the hosts as follows:

e Postfix (mail.example.com)

e MySQL (db.example.com)

e Apache and a website (web.example.com)
e Puppet master (puppet.example.com)

As we configure each host, we'll introduce some of the different features and functions available in Puppet.
By the end of the chapter you will have a firm grasp of the basics. In subsequent chapters, we will build on this
knowledge and introduce some of Puppet’s more advanced features.

Getting Started

Before proceeding, we must have the proper setup. Let’s install the Puppet master and agent and then create node
definitions for each of our hosts.

Note As we mentioned in Chapter 1, the Puppet client software is called the agent. Puppet calls the definition of the
host itself a node. The Puppet server is called the master.

Installing Puppet

First, we need to install the Puppet master and agent. We're going to install the Puppet master on puppet.example.com
and the Puppet agent on all our hosts, including puppet.example.com. We're installing the agent on the Puppet master
because we're going to use Puppet to manage itselfl We then need to connect, create, and sign certificates for each host.
To do this, you should follow the installation instructions for the relevant operating system from Chapter 1 on each of
the four hosts. For example, for installation on the Red Hat Enterprise Linux host, use the instructions in the “Installing
on Red Hat Enterprise Linux and Fedora” section there. You can then move on to configuring the nodes.

Note If you use a provisioning tool like Kickstart or Preseed, you can also include Puppet installation and signing as
part of your build process.

Integrating and Bootstrapping Puppet with Kickstart

Configure the host normally for your environment. Add the lines shown in Listing 2-1 to the %post section of your
Kickstart file.

Listing 2-1. Kickstart configuration for bootstrapping Puppet

Add Puppetlabs apt-repo gpg key

gpg --keyserver pgp.mit.edu --recv-keys 4BD6EC30 8& gpg --export --armor 4BD6EC30 | apt-key add -
Add Puppetlabs apt repo

cat > /etc/apt/sources.list.d/puppetlabs.list <<-EOF

34

http://mail.example.com/
http://db.example.com/
http://web.example.com/
http://puppet.example.com/
http://puppet.example.com/
http://puppet.example.com/

puppetlabs

deb http://apt.puppetlabs.com precise main
deb-src http://apt.puppetlabs.com precise main
EOF

Install puppet

/usr/bin/apt-get -y install puppet

Make puppet startable

/bin/sed -i 's/START\=no/START\=yes/' '/etc/default/puppet’
Create a puppet.conf file

cat > /etc/puppet/puppet.conf <<-EOF
[main]

logdir=/var/log/puppet
vardir=/var/1ib/puppet
ssldir=/var/lib/puppet/ssl
rundir=/var/run/puppet
factpath=$vardir/lib/facter
pluginsync=true

runinterval=1380

configtimeout=600

splay=true

report=true

server = puppet.example.com

ca_server = puppetca.example.com

EOF

Configuring Nodes

CHAPTER 2

BUILDING HOSTS WITH PUPPET

After installing the Puppet master and associated agents, we need to create node definitions for each of our hosts in the
site.pp file. We created this file in the /etc/puppet/manifests/ directory in Chapter 1. As you can see in Listing 2-2,

we've created empty node definitions for each of the nodes in our network.

Listing 2-2. Node defintions in site.pp

node 'puppet.example.com'

Puppet code wll go here

node ‘'web.example.com’

{
Puppet code will go here

node 'db.example.com'

{
Puppet code will go here

node ‘'mail.example.com’

{
Puppet code will go here

35

http://apt.puppetlabs.com/
http://apt.puppetlabs.com/
http://puppet.example.com/
http://puppetca.example.com/
http://puppet.example.com/
http://web.example.com/
http://db.example.com/
http://mail.example.com/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

We haven’t included any configuration on our node definitions—Puppet will just recognize the node as it connects
and do nothing.

As you might imagine, if you've got a lot of nodes, the site.pp file could become quite large and complex. Puppet
has some simple ways of dealing with this issue, described next.

Working with Similar Hosts

The first method works best for large number of similar hosts, such as Web servers, where the configuration of the
host is largely identical. For example, if our environment had multiple hosts called web1, web2, web3, and so on, we
could specify them as shown in Listing 2-3.

Listing 2-3. Multiple nodes with the same definition

node
'web1.example.com',
'web2.example.com',
'web3.example.com’

{

Puppet code goes here

}

Note that these hosts are separated by a comma, and the last host does not have a trailing comma. We can also
specify these nodes in the form of a regular expression:

node /"web\d+\.example\.com$/

{
Puppet code goes here

}

This would match any host starting with webx, where x is a digit or digits, such as web1 or web20.

Using External Sources

Puppet also has the ability to use external sources for your node data. These sources can include LDAP directories,
databases, or other external repositories. This allows you to leverage existing sources of information about your
environment, such as asset management systems or identity stores. This functionality is called External Node
Classification, or ENC, and we'll discuss it in more detail in Chapter 5.

Default Node

You can also specify a special node called default. This is, as you'd imagine, a default node. If no other node
definition exists, then the contents of this node are applied to the host. This is especially useful if you are autosigning
certificates.

node default {
include defaultclass
}

36

http://web1.example.com/
http://web2.example.com/
http://web3.example.com/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

Node Inheritance

Puppet supports inheritance at the node level, but it is no longer considered best practice. Inheritance is generally
discouraged in Puppet code at this point. Nonetheless, as of Puppet 3.0, node inheritance as demonstrated in

Listing 2-4 is fully supported and doesn’t throw any kind of deprecation warning, and there are no plans yet to remove
the feature from the language. Flexible configuration is best achieved through parameterized classes and Hiera, a tool
we will explore briefly later in the chapter before returning to it in Chapter 12. Especially when you are starting out
with Puppet, don’t be afraid to be verbose.

Listing 2-4. Node inheritance

node basenode {
include sudo
include mailx

}

node
'web.example.com’
inherits basenode {
include apache

The base node has sudo and mailx classes, and the web.example.comnode includes those as well as the apache class.

Caution The Puppet Style Guide specifically recommends against inheritance whenever possible. Setting most nodes
to inherit from the base node is still a relatively common pattern. A better solution is to use parameterized classes and
one glue class to define high-level behaviors at node level. See the Openstack Puppet infrastructure for an example of
this pattern: https://github.com/openstack-infra/config/blob/master/manifests/site.pp.

Variable Scoping

The topic of node inheritance is a good place to talk about an important and sometimes tricky concept in Puppet:
variable scoping.

Caution Variable scoping in Puppet has changed significantly. In Puppet versions before 3.0, variable scoping was
dynamic. In modern Puppet, meaning versions above 3.0, scoping is not dynamic. This mostly affects class inheritance
Four scopes are available: top scope, node scope, parent scope, and local scope.

Let’s imagine we've decided to configure some variables in our nodes, as in this example:
node 'pro-puppet.example.com'

$location = 'dc1'

$location = 'dc2'

}
37

http://web.example.com/
http://web.example.com/
https://github.com/openstack-infra/config/blob/master/manifests/site.pp
http://pro-puppet.example.com/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

In most programming languages, the $location variable would start out with a value of 'dc1' and then, when it
was next assigned, it would change to a value of 'dc2"'. In Puppet, these same two statements cause an error:

err: Cannot reassign variable location at /etc/puppet/manifests/node.pp:4

Why does this happen? Puppet is a declarative language. Allowing variable reassignment would require us to rely
on order in the file to determine the value of the variable, and order does not matter in a declarative language. The
principal outcome of this is that you cannot redefine a variable inside the same scope it was defined in, like our node.

So what’s a scope? Each class, definition, or node introduces a new scope, and there is also a top scope for
everything defined outside of those structures. At any given time, four scopes are available to Puppet: top scope, node
scope, parent scope, and local scope. Top scope is anything declared in site.pp or imported manifests. Top scope
can be explicitly accessed by prepending : : to a variable. It is best practice to write fact variables as $: :osfamily so
as to use the fact at top scope, thus preventing the variable from being overwritten anywhere. Node scope is the scope
created by the enclosing brackets of a node definition. Node scope is unfortunately anonymous, so there is no way
to explicitly retrieve it. A variable set at node scope will still be available in local scope unless it is overridden at local
scope or parent scope. Local scope is the scope of a single class or defined type. In Puppet 3, parent scope is the scope
of a class that is explicitly inherited through use of the inherits keyword, as illustrated in Listing 2-5.

Listing 2-5. Class inheritance

class ssh::params {
case $::osfamily {
'‘Debian': { $sshd_package "ssh' }
'RedHat': { $sshd_package = 'openssh-server' }
default: {fail("Login class does not work on osfamily: ${::osfamily}")}

}
}

class ssh inherits ssh::params {
package { $::ssh::params::sshd package:
ensure => installed,
}
}

include ssh

In this example the ssh: :params class is included in the local scope of the ssh class. The variable
$::ssh::params::sshd_package is a way of writing the $sshd_package variable so that it can refer only to a single
declaration; this is in keeping with the Puppet Style Guide. We also follow the style guide in giving our case statement
a default that fails catalog compilation, ensuring that no unexpected behavior happens. A similar way to gain access to
the ssh: :params class is to use the include keyword, as shown in Listing 2-6.

Listing 2-6. The ssh class using include instead of inherits

class ssh::params {
case $::osfamily {
'‘Debian': { $sshd package = 'ssh' }
'RedHat': { $sshd_package = 'openssh-server' }
default: {fail("Login class does not work on osfamily: ${::osfamily}")}
}

38

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

class ssh {
include ssh::params
package { $::ssh::params::sshd package:
ensure => installed,
}

}

include ssh

Tip The Puppet Style Guide is available at http://docs.puppetlabs.com/guides/style guide.html. It describes
coding best practices and what good Puppet code should look like.

Using this method we avoid the inherits keyword, and we can include multiple classes. Where this method does
not work is in parameterized classes. These are classes that take parameters when they are called. Let’s modify our
example as shown in Listing 2-7 to use a parameterized class for the ssh class.

Listing 2-7. Parameterized classes

class ssh::params {
case $::osfamily {

'Debian': {
$sshd_package = "ssh"
$sshd_service = "ssh"
}
'RedHat': {
$sshd_package = "openssh-server"
$sshd_service = "sshd"
}
default: {fail("Login class does not work on osfamily: ${::osfamily}")}
}
}
class ssh (

manage_package = false,

manage_service = false,

package name = $::ssh::params::sshd_package
) inherits ssh::params {

if manage_package == true {
package { $package name:
ensure => installed,
}

}

if manage_service == true {
service { $::ssh::params::sshd_service:
ensure => running,

}

39

http://docs.puppetlabs.com/guides/style_guide.html

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

class { 'ssh':
manage_package => true,
manage_service => true,

}

Here we have increased the complexity of the code, but we have also increased its flexibility and power. Note that
parameterized classes are instantiated with the same syntax as any other resource. In this case we use ssh inherits
ssh: :params because that is the only way to set up scoping so that we can access variables from the ssh: :params class in
the default parameters of the ssh class. This is an acceptable and standard practice among Puppet module developers.

Listing 2-7 and following code samples are valid code in Puppet. However, in Puppet code, each class should
be in its own file, and those files should be named and placed in a directory structure as specified in the Puppet
Style Guide. These code samples are condensed together into one file so that the examples can be short and easy to
understand. All of the code used in this book can be found at http://www.apress.com/9781430260400.

The key idea to understand is that in previous versions of Puppet, variable scoping was dynamic and often
difficult to predict. In modern Puppet (3.x or greater), variable scoping is much more static and best practices require
all variables to be rooted at top scope, for example $: :ssh: :params: :sshd_package. With these two changes, it is
much less important for non-core developers to know how variable scoping works in detail. Use parameterized
classes, use top-scope rooted variables, and don’t use inheritance.

Note You can learn more about variable scoping, workarounds, and related issues at
http://docs.puppetlabs.com/puppet/3/reference/lang scope.html.

The Puppet Style Guide

Puppet now has a style guide. It can be accessed at http://docs.puppetlabs.com/guides/style guide.html.
It is worth reading the whole way through at least once because it will expose you to the correct way to style your
Puppet code and because the document isn’t very long. A few highlights:

e Use two spaces for indentation; no literal tab characters.
e Avoid inheritance whenever possible.
e Known as hashrockets or fat commas, the => should be aligned.
e Use explicit top-scope with variables, for example $: :osfamily.
Puppet also has a linter to enforce the style guide. It is called puppet-1int and can be installed from gems.
Use it as shown in Listing 2-8.
Listing 2-8. Puppet lint example

root@pro-puppet4:~# puppet-lint parent-scope.pp

ERROR: ssh::params not in autoload module layout on line 2

ERROR: ssh not in autoload module layout on line 10

WARNING: top-scope variable being used without an explicit namespace on line 12

Many people install pre- or post-receive hooks to automatically puppet-1int their code as they develop. Others,
for example the OpenStack infrastructure team, have integrated puppet-1int into their continuous integration and
code review system.

With Puppet installed and node definitions in place, we can now move on to creating our modules for the various
hosts. But first, let’s do a quick refresher on modules in general.

40

http://www.apress.com/9781430260400#_blank
http://docs.puppetlabs.com/puppet/3/reference/lang_scope.html
http://docs.puppetlabs.com/guides/style_guide.html

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

Making (More) Magic With Modules

In Chapter 1, we learned about modules: self-contained collections of resources, classes, files, and templates for
configuration files. We will use several modules to define the various facets of each host’s configuration. For example,
we will have a module for managing Apache on our Web server and another for managing Postfix on our mail server.

Recall that modules are structured collections of Puppet manifests. Puppet will search the module path, which
is by default /etc/puppet/modules/ and /var/1ib/puppet/modules, for modules and load them. These paths are
controlled by the modulepath configuration option, which is set in /etc/puppet/puppet.conf. This means we don’t
need to import any of these files into Puppet—it all happens automatically.

Note These paths will be different for Puppet Enterprise users. Puppet Enterprise uses a composite modulepath,
bringing in standard modules from /opt/puppet/share and local modules from /etc/puppetlabs/modules.

It's very important that modules are structured properly. For example, our sudo module contains the lines shown
in Listing 2-9.
Listing 2-9. Module file structure

sudo/

sudo/manifests
sudo/manifests/init.pp
sudo/files
sudo/templates

Inside our init.pp (Listing 2-10), we create a class with the name of our module.

Listing 2-10. init.pp

class sudo {
configuration...

}

Last, we can apply a module, like the sudo module we created in Chapter 1, to a node by using the include
function as shown in Listing 2-11.

Listing 2-11. Snippet of site.pp

node 'puppet.example.com'

include sudo

}

The include function adds the resources contained in a class or module, in this example adding all the resources
contained in the sudo module here to the node puppet.example.com.

Tip You don’t have to always create your own modules. The Puppet Forge at http://forge.puppetlabs.com
contains a large collection of existing modules that you can either use immediately or modify to suit your environment.
This can make getting started with Puppet extremely simple and fast.

41

http://puppet.example.com/
http://puppet.example.com/
http://forge.puppetlabs.com/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

The Puppet module tool is a part of Puppet. At the time of printing, the module tool is part of Puppet core, but
in the future it is expected to move out of Puppet core so that it can have tighter and faster development cycles. You
won't have to do anything special to get the Puppet module tool on your system. You can generate a blank puppet
module using the syntax puppet module generate name-name, where the first name is the name of you or your
organization, and the second is the name of the service you are managing, such as propuppet-amanda in the example
shown in Listing 2-12.

Listing 2-12. Generating a Puppet module template

root@pro-puppets:~# puppet module generate propuppet-amanda
Notice: Generating module at /root/propuppet-amanda
propuppet-amanda

propuppet-amanda/Modulefile

propuppet-amanda/README

propuppet-amanda/manifests
propuppet-amanda/manifests/init.pp
propuppet-amanda/spec
propuppet-amanda/spec/spec_helper.rb
propuppet-amanda/tests
propuppet-amanda/tests/init.pp

In Chapter 8 you will learn more about the Puppet module tool and other tools to speed Puppet module
development and testing.
Let’s now see how to manage the contents of our modules using version control tools as recommended in Chapter 1.

Version-Controlling Your Modules

Because modules present self-contained collections of configuration, we also want to appropriately manage the
contents of these modules, allowing us to perform change control. To manage your content, we recommend that you
use a version control system (VCS).

Version control is the method most developers use to track changes in their application source code. Version
control records the state of a series of files or objects and allows you to periodically capture that state in the form of a
revision. This allows you to track the history of changes in files and objects and potentially revert to an earlier revision
should you make a mistake. This makes management of our configuration much easier and saves us from issues like
undoing inappropriate changes or accidentally deleting configuration data.

In this case, we are going to show you an example of managing your Puppet manifests with a tool called Git,
which is a distributed version control system (DVCS). Distributed version control allows the tracking of changes
across multiple hosts, making it easier to allow multiple people to work on your modules. Git is used by many large
open source projects, such as the Linux kernel, and was originally developed by Linus Torvalds for that purpose.

It is a powerful tool, but learning the basic steps is easy. You may use whatever version control system suits your
environment. For example, many people use Subversion or CVS for the same purpose.

First, we need to install Git. On most platforms we install the git package. For example, on Red Hat and Ubuntu:

$ sudo yum install git
or

$ sudo apt-get install git

42

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

Once Git is installed, let’s identify ourselves to Git so it can track who we are and associate some details with
actions we take:

$ git config --global user.name "Your Name"
$ git config --global user.email your@email.address.com

Now let’s version-control the path containing our modules, in our case /etc/puppet/modules. We change to that
directory and then execute the git binary to initialize our new Git repository:

$ cd /etc/puppet/modules
$ git init

This creates a directory called .git in the /etc/puppet/modules directory that will hold all the details and
tracking data for our Git repository.
We can now add files to this repository using the git binary with the add option:

$ git add *

This adds everything in our currently working directory to Git. You can also use git and the rm option to remove
items you don’t want to be in the repository:

$ git rm filename

This doesn’t mean, however, that our modules are already fully tracked by our Git repository. As in Subversion
and other version control systems, we need to “commit” the objects we’d like to track. The commit process captures
the state of the objects to be tracked and managed, and it creates a revision to mark that state. You can also create a file
called .gitignore in the directory. Every file or directory specified in this file will be ignored by Git and never added.

Before we commit, though, we can see what Git is about by using the git status command:

$ git status

This tells us that when we commit, Git will add the contents to the repository and create a revision based on
that state.
Now let’s commit our revision to the repository:

$ git commit -a -m "Initial commit"

The -m option specifies a commit message that allows us to document the revision we’re about to commit.
It's useful to be verbose here and explain what you have changed and why, so it’s easier to find out what'’s in each
revision and make it easier to find an appropriate point to return to if required. If you need more space for your
commit message, you can omit the -m option, and Git will open your default editor and allow you to type a more
comprehensive message.

The changes are now committed to the repository, and we can use the git log command to see our recent
commit:

$ git log
We can see some information here about our commit. First, Git uses SHA1 hashes to track revisions; Subversion,

for example, uses numeric numbers—1, 2, 3, and so on. Each commit has a unique hash assigned to it. We will also
see some details about who created the commit and our commit message telling us what the commit is all about.

43

http://your@email.address.com/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

Every time you add a new module or file you will need to add it to Git using the git add command and then
commit it to store it in the repository. We recommend you add and commit changes regularly to ensure that you have
sufficiently granular revisions to allow you to easily roll back to an earlier state.

Tip If you're interested in Git, we strongly recommend Scott Chacon’s excellent book Pro Git, also published by
Apress (2009). The book is available in both paper form and online at www.apress.comand at http://progit.org/book/.
Scott is also one of the lead developers of the Git hosting site, GitHub http://www.github.com, where you can find a
number of Puppet-related modules.

Returning to Puppet, our simple sudo module is a good introduction to Puppet, but it only showcased a small
number of Puppet’s capabilities. It's now time to expand our Puppet knowledge and develop some new, more
advanced modules, starting with one to manage SSH on our hosts. We'll then create a module to manage Postfix on
mail.example.com, one to manage MySQL on our Solaris host, db.example.com, another to manage Apache and web
sites, and finally one to manage Puppet with Puppet itself.

We'll also introduce you to some best practices for structuring, writing, and managing modules and configuration.

Creating a Module to Manage SSH

We first need to create an appropriate module structure. We're going to do this under the /etc/puppet/modules
directory on our Puppet master:

$ cd /etc/puppet/modules
$ puppet module generate propuppet-ssh
$ mv propuppet-ssh ssh

The mv command here is required because the module will be referred to as the ssh module containing the ssh
class, and needs to be named ssh for Puppet to correctly load it. If and when the module is pushed to the Puppet
Forge or GitHub, the full name propuppet-ssh should be preserved.

Next, we create some classes inside the module and some initial resources, as shown in Listing 2-13. A stub ssh
class will have already been created; you only need to modify it.

Listing 2-13. The ssh module

ssh/manifests/init.pp

class ssh {

class { '::ssh::package': } ->
class { '::ssh::config': } ->
class { '::ssh::service':} -»>
Class['ssh']

}

ssh/manifests/install.pp

class ssh::install {
package { "openssh":
ensure => present,
}
}

44

http://www.apress.com/
http://progit.org/book/
http://www.github.com/
http://mail.example.com/
http://db.example.com/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

ssh/manifests/config.pp

class ssh::config {
file { "/etc/ssh/sshd_config":
ensure => present,
owner => 'root',
group => 'root',
mode => 0600,
source => "puppet:///modules/ssh/sshd_config",
require => Class["ssh::package"],
notify => Class["ssh::service"],
}
}

ssh/manifests/service.pp

class ssh::service {
service { "sshd":
ensure => running,
hasstatus => true,
hasrestart => true,
enable => true,
require => Class["ssh::config"],

In Listing 2-13, we created a functional structure by dividing the components of the service we're managing into
functional domains: packages to be installed, files to be configured, and services to be executed or run.

We created a class called ssh (which we need to ensure that the module is valid) and used the include function
to add all the classes to the module.

We've created three classes: ssh, ssh::install, ssh: :config, and ssh::service. Modules can be made up
of multiple classes. We use the : : namespace syntax as a way to create structure and organization in our modules.
The ssh prefix tells Puppet that each class belongs in the ssh module, and the class name is suffixed.

Tip We also wantto create a sshd_config file in the ssh/files/ directory so that our File["/etc/ssh/sshd_config"]
resource can serve out that file. The easiest way to do this is to copy an existing functional sshd_config file and use that.
Later we’ll show you how to create template files that allow you to configure per-host configuration in your files. Without
this file Puppet will report an error for this resource.

When Puppet loads the ssh module, it will search the manifests directory for files suffixed with . pp, look
inside them for namespaced classes, and automatically import them. This means that ssh: : config and others are
automatically available.

Our ssh module directory structure looks like Listing 2-14 (most of this was printed out by the Puppet module
tool on generation).

45

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

Listing 2-14. SSH Module Directory Structure

root@pro-puppets:/etc/puppet/modules# find.

./ssh

./ssh/Modulefile
./ssh/README
./ssh/manifests
./ssh/manifests/init.pp
./ssh/manifests/service.pp
./ssh/manifests/config.pp
./ssh/manifests/package.pp

./ssh/spec
./ssh/spec/spec_helper.rb
./ssh/tests
./ssh/tests/init.pp
./ssh/files

./ssh/files/sshd_config

Neat and simple.

Tip You can nest classes by another layer, for example ssh: :config: : client, and our auto-importing magic will
still work by placing this class in the ssh/manifests/config/client.pp file.

The ssh::install Class

Now that we've created our structure, let’s look at the classes and resources we’ve created. Let’s start with the
ssh: :install class containing the Package["openssh"] resource, which installs the OpenSSH package

It looks simple enough, but we've already hit a stumbling block—we want to manage SSH on all of Example.com's
hosts, and across these platforms the OpenSSH package has different names:

e Red Hat: openssh-server
e Ubuntu: openssh-server
e Solaris: openssh

How are we going to ensure that Puppet installs the correctly named package for each platform? The answer lies
with Facter, Puppet’s system inventory tool. During each Puppet run, Facter queries data about the host and sends
it to the Puppet master. This data includes the operating system of the host, which is made available in our Puppet
manifests as a variable called $osfamily. We can now use this variable to select the appropriate package name for
each platform. Let’s rewrite our ssh::package class as shown in Listing 2-15.

Listing 2-15. Rewriting the ssh: :package class

class ssh::install {

$package name = $::osfamily ?
'RedHat' => "openssh-server",
'Debian' => "openssh-server",
'Solaris' => "openssh",

1
46

http://Example.com�s

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

package { 'ssh':
ensure => present,
name => $package_name,
}
}

In the preamble of the ssh: :params class, we are using a conditional syntax that Puppet calls a selector.
To construct a selector, we specify the variable containing the value we want to select on as the value of our attribute,
here $: :0sfamily, and follow this with a question mark (?). We then list on new lines a series of selections; for example,
if the value of $: :osfamily is Solaris, then the value of the name attribute will be set to openssh, and so on. Note that
we could have specified multiple values in the form of simple regular expressions, like /(Solaris |Ubuntu|Debian)/.
However, many Puppet users believe this decreases readability, and we did not use it in Listing 2-15.

You can see that we've changed the title of our package resource to ssh and specified a new attribute called name.
As we explained in Chapter 1, each resource is made up of a type, title, and a series of attributes. Each resource’s
attributes include a name variable, or namevar, and the value of this attribute is used to determine the name of the
resource. For example, the Package and Service resources use the name attribute as their namevar, while the File type
uses the path attribute as its namevar. Most of the time we wouldn’t specify the namevar, as it is synonymous with
the title. For example, in this resource:

file { "/etc/passwd":
}

we don’t need to specify the namevar because the value will be taken from the title, "/etc/passwd"”. But often we're
referring to resources in many places, and we might want a simple alias, so we can give the resource a title and specify
its namevar this way:

file { "passwd":
path => "/etc/passwd",

We can now refer to this resource as File["passwd"] as an aliased shorthand.

Note You should also read about the alias metaparameter, which provides a similar capability, at
http://docs.puppetlabs.com/references/latest/metaparameter.html#alias.

In our current example, the name of the package we’re managing varies on different hosts. Therefore, we want to
specify a generic name for the resource and a platform-selected value for the actual package to be installed.

Caution Selector matching is case-insensitive. You can also see some other examples of regular expressions in
selectors at http://docs.puppetlabs.com/puppet/latest/reference/lang_conditional.html#selectors.

47

http://docs.puppetlabs.com/references/latest/metaparameter.html#alias
http://docs.puppetlabs.com/references/latest/metaparameter.html#alias
http://docs.puppetlabs.com/puppet/latest/reference/lang_conditional.html#selectors

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

We can also specify a value called default:
default => "ssh",

This value is used if no other listed selection matches. If we don't specify a default value and no selection
matches, then the name attribute would be set to a nil value. The Puppet Style Guide has several requirements on
defaults for case statements and selectors:

1. All selectors and case statements must have a default.

2. Defaults should call the fail() function if a default behavior is at all questionable on most
platforms.

3. default: { }isacceptable if the author meant for a no-effect fall through.

Is the default value of ssh here valid? Installing ssh works on Ubuntu, but Ubuntu is covered by the $: :osfamily
Debian, so what other operating systems might run this code? On FreeBSD, there is no ssh port to install. Similarly for
OSX; thus, the default is not sane. We should replace it with:

default => fail("Module propuppet-ssh does not support osfamily: ${::osfamily}")

As can you imagine, this requirement to select the appropriate value for a particular platform happens a lot.
This means we could end up scattering a lot of very similar conditional statements across our Puppet code. That'’s pretty
messy; as a best practice we recommend that you move all your conditional checks to a separate class. This greatly
improves code readability.

We usually call that class module: :params, so in our current case it would be named ssh: : params. As before,
we're going to store that class in a separate file. Let’s create that file:

$ touch ssh/manifests/params.pp
We can see that class in Listing 2-16.

Listing 2-16. The ssh: :params class

class ssh::params {
case $::osfamily {
Solaris: {
$ssh_package_name = 'openssh’

Debian: {
$ssh_package _name = 'openssh-server'

RedHat: {
$ssh_package name = 'openssh-server'
default: {
fail("Module propuppet-ssh does not support osfamily: ${::osfamily}")
}
}
}

48

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

You can see that inside our ssh: :params class we've created another type of conditional, the case statement.
Much like a selector, the case statement operates on the value of a variable, here $: :0sfamily. Unlike a selector, case
statements allow us to specify a block of things to do if the value of the variable matches one of the cases. In our case
we're setting the value of a new variable we've created, called $ssh_package name. You could do other operations
here, such as include a class or a resource, or perform some other function.

Now we need to open up our ssh: :package class and modify it for use with the ssh: :params class, as shown in
Listing 2-17.

Listing 2-17. SSH Package class

class ssh::package {
include ssh::params
package { 'ssh':
ensure => present,
name => $::ssh::params::ssh_package name,
}
}

You can see that our namespacing is useful for other things, here using variables from other classes. We can
refer to a variable in another class by prefixing the variable name with the class it’s contained in, here ssh: :params.
In this case, rather than our messy conditional, the package name to be installed will use the value of the
$::ssh::params::ssh_package name parameter. Our resource is now much neater, simpler, and easier to read. You can
refer to the earlier discussion in this chapter on variable scoping for a refresher if you need it.

Tip So how do we refer to namespaced resources? Just like other resources; for example,
Package[$::ssh::params::ssh_package name].

Note You can read more about case statements and selectors at
http://docs.puppetlabs.com/puppet/latest/reference/lang_conditional.html.

And finally, we need to include our new class in the ssh class:

class ssh {

class { '::ssh::package': } ->
class { '::ssh::config': } -»>
class { '::ssh::service':} -»>
Class['ssh']

}

These class resources tell Puppet that when you include the ssh module, you're getting all of these classes.
They also build an internal relationship using the -> syntax.

49

http://docs.puppetlabs.com/puppet/latest/reference/lang_conditional.html

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

FUNCTIONS

The include directive we use to include our classes and modules is called a function. Functions are commands
that run on the Puppet master to perform actions. Puppet has a number of other functions, including the generate
function that calls external commands and returns the result, and the notice function that logs messages on the
master and is useful for testing a configuration. For example:

notice("This is a notice message including the value of the $ssh_package variable")

Functions run only on the Puppet master and cannot be run on the client, and thus can only work with the
resources available on the master.

You can see a full list of functions at http://docs.puppetlabs.com/references/stable/function.html, and
we will introduce a variety of other functions in subsequent chapters. You can also find documentation on how to
write your own functions at http://docs. puppetlabs.com/guides/custom functions.html, and we will talk
about developing functions in Chapter 10.

We're going to come back to the ssh: :params class and add more variables as we discover other elements of our
OpenSSH configuration that are unique to particular platforms.

The ssh::config Class

Now let’s move onto our next class, ssh: :config, which we can see in Listing 2-18.

Listing 2-18. The ssh::config class

class ssh::config {
file { "/etc/ssh/sshd_config":

ensure => present,
owner => 'root’,
group => 'root',
mode => 0440,
source => 'puppet:///modules/ssh/sshd_config',
require => Class['ssh::install'],
notify => Class['ssh::service'],

Note the source parameter to the file resource in Listing 2-18. This is Puppet’s syntax for saying “copy this file
over from the Puppet master” The path here says to look in the ssh class, and then in the files directory, for a file
called sshd_config. The syntax:
source => 'puppet:///modules/ldap/ldap.conf’,

says to look inside the 1dap module, in the files directory, for a file called 1dap.conf.

50

http://docs.puppetlabs.com/references/stable/function.html
http://docs.puppetlabs.com/guides/custom_functions.html

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

We know that the location of the sshd_config files will vary across different operating systems. Therefore, we're
going to have to add another conditional for the name and location of that file. Let’s go back to our ssh: : params class
from Example 2-16 and add a new variable:

class ssh::params {
case $::osfamily {
Solaris: {
$ssh_package _name = 'cswopenssh’
$ssh_service config = '/etc/opt/csw/ssh/sshd_config'
}
Debian: {
$ssh_package name = 'openssh-server'
$ssh_service_config = '/etc/ssh/sshd_config'
}
RedHat: {
$ssh_package name = 'openssh-server'
$ssh_service_config = '/etc/ssh/sshd_config'

}
default: {

fail("Module propuppet-ssh does not support osfamily: ${::osfamily}")
}

}
}

We add the $ssh_service config variable to each of the cases in our conditional and then update our file
resource in the ssh: :config class:

include ssh::params

file { ::$ssh::params::ssh_service_config:
ensure = > present,

Again, we have no need for a messy conditional in the resource; we can simply reference the
$::ssh::params::ssh_service configvariable.

We can also see that the file resource contains two metaparameters, require and notify. These metaparameters
both specify relationships between resources and classes. You'll notice here that both metaparameters reference
classes rather than individual resources. They tell Puppet that it should create a relationship between this file resource
and every resource in the referenced classes.

Tip Itis a best practice to establish relationships with an entire class, rather than with a resource contained within
another class, because this allows the internal structure of the class to change without refactoring the resource declarations
related to the class.

For example, the require metaparameter tells Puppet that all the resources in the specified class must be
processed prior to the current resource. In our example, the OpenSSH package must be installed before Puppet tries
to manage the service’s configuration file.

51

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

The notify metaparameter creates a notification relationship. If the current resource (the service’s configuration
file) is changed, then Puppet should notify all the resources contained in the ssh: : service class. In our current case,
a “notification” will cause the service resources in the ssh: :service class to restart, ensuring that if we change a
configuration file, the service will be restarted and running with the correct, updated configuration.

Tip Ashorthand method called chaining exists for specifying metaparameter relationships, such as require and notify.
You can read about chaining at http://docs.puppetlabs.com/guides/language_tutorial.html#chaining resources.

So why specify the whole ssh: : service class rather than just the Service['sshd'] resource? This is another best
practice that allows us to simplify maintaining our classes and the relationships between them. Imagine that instead
of a single package, we had twenty packages. If we didn’t require the class, then we’d need to specify each individual
package in our require statement, like this:

require => [Package['packagel'], Package['package2'], Package['package3']
1

Tip Adding square brackets [] around a list creates a Puppet array. You can specify arrays as the values of variables
and many attributes; for example, you can specify many items in a single resource:

package { ['package1l', 'package2', 'package3']: ensure => installed }

In addition to arrays, Puppet also supports a hash syntax, which you can see at
http://docs.puppetlabs.com/guides/language_tutorial.html#hashes.

We would need to do that for every resource that required our packages, making our require statements
cumbersome and potentially error-prone, and most importantly requiring that every resource that requires packages
be updated with any new package requirements.

Because we've required the whole class, it doesn’t matter how many packages we add to the ssh::install
class—Puppet knows to install packages before managing configuration files, and we don’t have to update a lot of
resources every time we make a change. This means our classes become the public API to our modules, enhancing
usability and making it possible to make minor updates without breaking compatibility.

Tip In our current example we could make use of arrays to extend the variables in the ssh: : params class.
For example, by changing $ssh_package _name to an array, we could specify multiple packages to be installed without
needing to create another Package resource in the ssh: : install class. Puppet is smart enough to know that if you
specify a variable with a value of an array, it should expand the array; so changing the value of the $ssh_package name
variable to [openssh, package2, package3] would result in the ssh::install class installing all three packages.
This greatly simplifies the maintenance of our ssh module, as we need to change values in only one place to manage
multiple configuration items.

52

http://docs.puppetlabs.com/guides/language_tutorial.html#chaining_resources
http://docs.puppetlabs.com/guides/language_tutorial.html#hashes

CHAPTER 2 © BUILDING HOSTS WITH PUPPET
The ssh::service Class
Let’s look at our last class, ssh: :service, and update it to reflect our new practice:

class ssh::service {
include ssh::params

service { $::ssh

::params::ssh_service_name:

ensure => running,

hasstatus => true,

hasresstart => true,

enable => true,

require => Class['ssh::config'],

We've added our new variable, $ssh_service_name, to the ssh: :params class, too:

class ssh::params {
case $::osfamily {
Solaris {
$ssh_package name = 'cswopenssh'
$ssh_service_config = '/etc/opt/csw/ssh/sshd_config'
$ssh_service_name = 'cswopensshd’

Let’s also look at our Service[$::ssh: :params: :ssh_service_name] resource (at the start of this section), as this
is the first service we’ve seen managed. You'll notice two important attributes, ensure and enable, which specify
the state and status of the resource, respectively. The state of the resource specifies whether the service is running
or stopped. The status of the resource specifies whether it is to be started at boot; for example, as controlled by the
chkconfig or enable-rc.d commands.

Puppet understands how to manage a variety of service frameworks, like SMF and init scripts, and can start, stop,
and restart services. It does this by attempting to identify the service framework a platform uses and executing the
appropriate commands. For example, on Red Hat it might execute:

$ service sshd restart

If Puppet can’t recognize your service framework, it will resort to simple parsing of the process table for processes
with the same name as the service it’s trying to manage. This obviously isn’t ideal, so it helps to tell Puppet a bit more
about your services to ensure that it manages them appropriately. The hasstatus and hasrestart attributes we
specified in the ssh: : service class offer one of the ways we tell Puppet useful things about our services. If we specify
hasstatus as true, then Puppet knows that our service framework supports status commands of some kind. For
example, on Red Hat it knows it can execute the following:

$ service sshd status

This enables it to determine accurately whether the service is started or stopped. The same principle applies to
the hasrestart attribute, which specifies that the service has a restart command.

53

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

Now if we include our new ssh module in our Puppet nodes, we can see Puppet managing a full service, as shown
in Listing 2-19.

Listing 2-19. Adding the ssh module

class base {
include sudo
include ssh

}

node 'puppet.example.com' {
include base

}

node 'web.example.com' {
include base

}

node 'db.example.com' {
include base

}

node 'mail.example.com' {
include base

}

Here we've created a class called base, in which we’re going to place the modules that will be base or generic to
all our nodes. Thus far, these are our sudo and ssh modules. We then include this class in each node statement.

Creating a Module to Manage Postfix

Let’s now create a module to manage Postfix on mail.example.com. We start with a structure similar to our SSH
module. In this case, we know which platform we’re going to install our mail server on, so we don’t need to include
any conditional logic. However, if we had multiple mail servers on different platforms, it would be easy to adjust our
module using the example we've just shown to accommodate disparate operating systems.

root@pro-puppets:/etc/puppet/modules# puppet module generate propuppet-postfix
Notice: Generating module at /etc/puppet/modules/propuppet-postfix
propuppet-postfix

propuppet-postfix/Modulefile

propuppet-postfix/README

propuppet-postfix/manifests

propuppet-postfix/manifests/init.pp

propuppet-postfix/spec

propuppet-postfix/spec/spec_helper.rb

propuppet-postfix/tests

propuppet-postfix/tests/init.pp
root@pro-puppets:/etc/puppet/modules# mv propuppet-postfix postfix

54

http://puppet.example.com/
http://web.example.com/
http://db.example.com/
http://mail.example.com/
http://mail.example.com/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

Then we will need to add a files directory and several files:

root@pro-puppet4:/etc/puppet/modules# cd postfix
root@pro-puppet4:/etc/puppet/modules# mkdir files
root@pro-puppets:/etc/puppet/modules# mkdir templates
root@pro-puppets:/etc/puppet/modules# touch files/master.cf
root@pro-puppets:/etc/puppet/modules# touch manifests/package.pp
root@pro-puppets:/etc/puppet/modules# touch manifests/config.pp
root@pro-puppet4:/etc/puppet/modules# touch manifests/service.pp
root@pro-puppets:/etc/puppet/modules# touch templates/main.cf.erb

The postfix::package Class

We also have some similar resources present in our Postfix module that we saw in our SSH module. For example, in the
postfix::package class we install two packages, postfix and mailx:

class postfix::package {
package { ["postfix", "mailx"]:
ensure => present,
}
}

Note We’ve used an array to specify both packages in a single resource statement. This is a useful shortcut that
allows you specify multiple items in a single resource.

The postfix::config Class

Next we have the postfix: :config class, which we will use to configure our Postfix server.

class postfix::config {
File {
owner => 'postfix',
group => 'postfix’,
mode => 0644,
}

file { '/etc/postfix/master.cf':
ensure => present,
source => 'puppet:///modules/postfix/master.cf’,
require => Class['postfix::install'],
notify => Class['postfix::service'],

}

file { '/etc/postfix/main.cf':
ensure => present,
content => template('postfix/main.cf.erb'),
require => Class['postfix::install'],
notify => Class['postfix::service'],
}
}

55

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

You may have noticed some new syntax: we specified the File resource type capitalized and without a title. This
syntax is called a resource default, and it allows us to specify defaults for a particular resource type. In this case, all
File resources within the postfix: :config class will be owned by the user postfix and the group postfix, and with
amode of 0644. Resource defaults only apply to the current scope.

A common use for global defaults is to define a global “filebucket” for backing up the files Puppet changes.

You can see the filebucket type and an example of how to use it globally at
http://docs.puppetlabs.com/references/stable/type.html#filebucket.

We have also introduced a new attribute in our File['/etc/postfix/main.cf’] resource—content. You've
already seen the source attribute, which allows Puppet to serve out files, and we have used it in one of our File
resources, File[‘/etc/postfix/master.ct’]. The content attribute allows us to specify the content of the file resources
as a string. But it also allows us to specify a template for our file. The template is specified using a function called
template.

As previously mentioned, functions are commands that run on the Puppet master and return values.

In this case, the template function allows us to specify an Embedded Ruby (ERB) template
(http://ruby-doc.org/stdlib/1ibdoc/erb/rdoc/), from which we can create the templated content for our
configuration file. We specify the template like this:

content => template('postfix/main.cf.erb'),
We've specified the name of the function, template, and placed inside brackets the name of the module that

contains the template and the name of the template file. Puppet knows when we specify the name of the module to
look inside the postfix/templates directory for the requisite file—here, main.cf.erb.

THE REQUIRE FUNCTION

In addition to the include function, Puppet also has a function called require. The require function works

just like include, except that it introduces some order to the inclusion of resources. With the include function,
resources are not included in any sequence. The only exception is individual resources, which have relationships
(using metaparameters, for example) that mandate some ordering. The require function tells Puppet that all
resources being required must be processed first. For example, if we specified the following:

class ssh {
require ssh::params

include ssh::install
include ssh::config
include ssh::service

}

then the contents of ssh: : params would be processed before any other includes or resources in the ssh
class. This is useful as a simple way to specify less granular ordering to your manifests than metaparameter
relationships, but it's not recommended as a regular approach. That’s because Puppet implements this feature
by creating relationships between all the resources in the required class and the current class. This can

lead to cyclical dependencies between resources. It's cleaner, more elegant, and simpler to debug if you use
metaparameters to specify the relationships between resources that need order.

56

http://docs.puppetlabs.com/references/stable/type.html#filebucket
http://ruby-doc.org/stdlib/libdoc/erb/rdoc/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET
In Listing 2-20 you can see what our template looks like.

Listing 2-20. The Postfixmain.cf template

soft_bounce = no

command_directory = /usxr/sbin
daemon_directory = /usr/libexec/postfix
mail owner = postfix

myhostname = <%= @hostname %>

mydomain = <%= @domain %>

myorigin = $mydomain

mydestination = $myhostname, localhost.$mydomain, localhost, $mydomain
unknown_local_recipient_reject _code = 550
relay domains = $mydestination
smtpd_reject unlisted recipient = yes
unverified recipient_reject code = 550
smtpd_banner = $myhostname ESMTP

setgid _group = postdrop

You can see a fairly typical Postfix main. cf configuration file with the addition of two ERB variables that use Facter
facts to correctly populate the file. Each variable is enclosed in <%= and %> brackets and will be replaced with the fact
values when Puppet runs. You can specify any variable in a template like this. Puppet variables in the current scope are
available as Ruby instance variables, @varname, and as Ruby local variables, varname. The variable $mydomain is a Postfix
variable, since it is not enclosed in <%= and %> ERB brackets, and it will not be interpreted by Ruby.

Older templates will probably use the local variable syntax, and newer templates should use the instance variable
syntax. Instance variable syntax is superior because the local variable syntax may collide with reserved keywords in
the Ruby language.

This is a very simple template, and ERB has many of the same capabilities as Ruby, so you can build templates
that take advantage of iteration, conditionals, and other features. You can learn more about how to use templates at
http://docs.puppetlabs.com/guides/templating.html

Tip You can easily check the syntax of your ERB templates for correctness using the following command:

erb -x -T '-' mytemplate.erb | ruby -c

Replace mytemplate.erb with the name of the template you want to check for syntax.

The postfix::service Class

Next we have the postfix: :service class, which manages our Postfix service:

class postfix::service {
service { 'postfix':
lensure => running,
hasstatus => true,
hasrestart => true,

57

http://docs.puppetlabs.com/guides/templating.html

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

enable => true,
require => Class['postfix::config'],
}
}

And finally, we have the core postfix class, where we include all the other classes from our postfix module:

class postfix {
include postfix::install
include postfix::config
include postfix::service

}

We can then apply our postfix module to the mail.example.com node:

node 'mail.example.com’ {
include base
include postfix

}

Now when the mail.example.com node connects, Puppet will apply the configuration in both the base and
postfix modules.

Managing MySQL with the mysql Module

Our next challenge is managing MySQL on our Solaris host, db.example.com. To do this we’re going to create a third
module, called mysql. We create our module structure as follows:

root@pro-puppet4:/etc/puppet/modules# puppet module generate propuppet-mysql
Notice: Generating module at /etc/puppet/modules/propuppet-mysql
propuppet-mysql

propuppet-mysql/Modulefile

propuppet-mysql/README

propuppet-mysql/manifests

propuppet-mysql/manifests/init.pp

propuppet-mysql/spec

propuppet-mysql/spec/spec_helper.rb

propuppet-mysql/tests

propuppet-mysql/tests/init.pp
root@pro-puppet4:/etc/puppet/modules# mv propuppet-mysql mysql

And add the files:

mysql/files/my.cnf
mysql/manifests/install.pp
mysql/manifests/config.pp
mysql/manifests/service.pp
mysql/templates/

58

http://mail.example.com/
http://mail.example.com/
http://mail.example.com/
http://db.example.com/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

The mysql::install Class

Our first class is our mysql class, contained in the init. pp file, where we load all the required classes for this module:

class mysql (
$group = 'mysql’,
$service _enabled = true,
$service_running = true,
$user = 'mysql’
A
class { 'mysql::install’:
user => $user,
group => $group,

class { 'mysqgl::config':
user => $user,
group => $group,

class { 'mysql::service':
ensure => $service_running,
enabled => $service enabled,

This is our first example of a parameterized class inside a module. This type of class takes arguments when it
is invoked, allowing much greater flexibility of the module and module reuse. Ideally, there will be no site-specific
configuration in your brick modules, and all configuration will be exposed as parameters to the base class of the
module. When just starting out, you don’t need to build this level of abstraction into your module; however, when
building modules to share with the world via the Puppet Module Forge or GitHub, try to make the most generic
modules you can.

Notice that parameterized classes look very similar to defined types. Also note that we use the = symbol instead
of the => symbol, and that the final parameter does have a trailing comma. The trailing comma on the last line fails
for Puppet 2.7, but you should include it because most new code should be written for Puppet 3. By convention,
required parameters (those without default values) go at the top and other parameters follow, both lists alphabetized
separately. It is also worth noting that this example is somewhat contrived; it would be much more valuable to expose
parameters that would make up values in a template that would create my . conf.

Let’s quickly walk through the other classes to create, starting with mysql: :install.

class mysql::install (
$user,
$group
N
$mysql_pkgs = ['mysql5’,
'mysql5sclient’,
'mysqlsrt’,
‘mysqlstest’,
"mysqlsdevel’]

package { $mysql pkgs:
ensure => present,
require => User[$user],

}

59

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

user { $user:

ensure => present,

comment => 'MySQL user',

gid => $group,

shell => '/bin/false’,

require => Group[$group],
}

group { $group:
ensure => present,
}
}

You can see that we've used two new resource types in our mysql: : install class, User and Group. We also
created amysql group and then a user, and we added that user, using the gid attribute, to the group we created.
We then added the appropriate require metaparameters to ensure that the user and group are created in the right order.

The mysql::config Class

Next, we add our mysql: : config class:

class mysql::config (
$user,
$group,
N
file { '/opt/csw/mysql5/my.cnf':
ensure => present,
source => 'puppet:///modules/mysql/my.cnf',
owner => $user,
group => $group,
require => Class['mysql::install'],

notify => Class['mysql::service'],
}
file { '/opt/csw/mysql5/var':

group => $user,

owner => $group,

recurse => true,
require => File['/opt/csw/mysql5/my.cnf'],
}
}

You can see that we've added a File resource to manage our /opt/csw/mysql5 directory. By specifying the
directory as the title of the resource and setting the recurse attribute to true, we are asking Puppet to recurse through
this directory and all directories underneath it and change the owner and group of all objects found inside them to
mysql.

60

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

The mysql::service Class

Then we add our mysql: :service class:

class mysql::service (

enabled,
ensure,
N
service { 'cswmysqls':
ensure => $ensure,
hasstatus => true,
hasrestart => true,
enabled => $enabled,
require => Class['mysql::config'],
}
}

It is worth noting that ensure => can take true and false values, and it interprets them as you would expect.
Finally, we can apply our mysql module to the db.example.comnode:

node 'db.example.com' {
include base
include mysql

}

Now, when the db.example.comnode connects, Puppet will apply the configuration in both the base and mysql
modules.

Since the mysql module has sane defaults for all parameters, we don’t need to specify any parameters to it.
However, if we wanted to modify its configuration or behavior, it would be as simple as modifying the node definition:

node 'db.example.com' {
include base
class { 'mysql':
user => 'staging-mysql',
service_running => false,
service enabled => false,

}

AUDITING

In addition to the normal mode of changing configuration (and the --noop mode of modeling the proposed
configuration), Puppet has an auditing mode. A normal Puppet resource controls the state you'd like a
configuration item to be in, for example:

file { '/etc/hosts':
owner => 'root',
group => 'root’,
mode => '0660',

}

61

http://db.example.com/
http://db.example.com/
http://db.example.com/
http://db.example.com/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

This file resource specifies that the /etc/hosts file should be owned by the root user and group and have
permissions set to 0660. Every time Puppet runs, it will check that this file's settings are correct and make
changes if they are not. In audit mode, however, Puppet merely checks the state of the resource and reports
differences back. It is configured using the audit metaparameter.

Using this new metaparameter we can specify our resource as follows:
file { '/etc/hosts':
audit => [owner, group, mode],

}

Now, instead of changing each value (though you can also add and mix attributes to change it, if you wish),
Puppet will generate auditing log messages, which are available in Puppet reports (see Chapter 9):

audit change: previously recorded value owner root has been changed to owner daemon

This allows you to track any changes that occur on resources under management on your hosts. You can specify
this audit metaparameter for any resource and all attributes, and track users, groups, files, services and the
myriad other resources Puppet can manage.

You can specify the special value all to have Puppet audit every attribute of a resource, rather than needing to
list all possible attributes, like so:

file { '/etc/hosts':
audit => all,
}

You can also combine the audited resources with managed resources, allowing you to manage some
configuration items and simply track others. It is important to remember, though, that unlike many file integrity
systems, this method does not protect your audit state by a checksum or the like, and the state is stored on the
client. Future releases plan to protect and centralize this state data.

Managing Apache and Websites

As you're starting to see a much more complete picture of our Puppet configuration, we come to managing Apache,
Apache virtual hosts, and their websites. We start with our module layout:

root@pro-puppets:/etc/puppet/modulest# puppet module generate propuppet-apache
Notice: Generating module at /etc/puppet/modules/propuppet-apache
propuppet-apache

propuppet-apache/Modulefile

propuppet-apache/README

propuppet-apache/manifests

propuppet-apache/manifests/init.pp

propuppet-apache/spec

propuppet-apache/spec/spec_helper.rb

propuppet-apache/tests

propuppet-apache/tests/init.pp
root@pro-puppets:/etc/puppet/modules# mv propuppet-apache apache

62

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

And add some additional files:

root@pro-puppets:/etc/puppet/modules# mkdir apache/files
root@pro-puppets:/etc/puppet/modules# mkdir apache/templates
root@pro-puppets:/etc/puppet/modules# touch apache/manifests/install.pp
root@pro-puppets:/etc/puppet/modules# touch apache/manifests/service.pp
root@pro-puppets:/etc/puppet/modules# touch apache/manifests/vhost.pp
root@pro-puppets:/etc/puppet/modules# touch apache/templates/vhost.conf.erb

Note We’re introducing a lot of modules in this chapter. Several of the services we’re Puppeting, especially Apache,
already have excellent modules in place on the Puppet Forge. We're showing you how to create your own modules using
services we hope you already have experience with so that you can learn the patterns and go on to Puppet the things that
haven’t already been Puppeted by the community. If you want to use Puppet to manage an Apache server, don’t use the
module we’re building here; use the puppetlabs-apache module from the Forge. However, there are important lessons
about the Puppet language in the following pages, so you should not neglect to read them.

The apache::install Class

First, we install Apache via the apache: :install class:

class apache::install {
package { ['apache2']:
ensure => present,
}
}

This class currently just installs Apache on an Ubuntu host; we could easily add an apache: :params class in the
style of our SSH module to support multiple platforms.

The apache::service Class

For this module we’re going to skip a configuration class, because we can just use the default Apache configuration.
Let’s move right to an apache: : service class to manage the Apache service itself:

class apache::service {
service { "apache2":
ensure => running,
hasstatus => true,
hasrestart => true,
enable => true,
require => Class['apache::install'],

This class allows us to manage Apache, but how are we going to configure individual websites? To do that, we're
going to use a new syntax, the definition.

63

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

The Apache Definition

Definitions are collections of resources like classes, but unlike classes they can be specified and are evaluated multiple
times on a host. They also accept parameters.

Tip Remember that classes are singletons. They can be included multiple times on a node, but they will only be
evaluated ONCE. A definition, because it takes parameters, can be declared multiple times, and each new declaration will
be evaluated.

We create a definition using the define syntax, as shown in Listing 2-21.

Listing 2-21. The first definition

define apache::vhost(
$docroot,
$port,
$priority,
$ssl=true,
$serveraliases = '',
$template="apache/vhost.conf.erb’,

N

include apache

file {"/etc/apache2/sites-enabled/${priority}-${name}":
content => template($template),
owner => 'root’,
group => 'root’',
mode => '0640",
require => Class['apache::install'],
notify => Class['apache::service'],

We gave this definition a title (apache: : vhost) and then specified a list of potential variables. Variables can be
specified as a list, and any default values can be specified; for example, $ssl=true. Defaults will be overridden if the
parameter is specified when the definition is used.

Inside the definition we can specify additional resources or classes; for example, here we've included the apache
class to ensure that all required Apache configuration will be performed prior to our definition being evaluated.

This is because it doesn’t make sense to create an Apache VirtualHost if we don’t have Apache installed and ready
to serve content.

In addition to the apache class, we’'ve added a basic file resource, which manages Apache site files contained in
the /etc/apache2/sites-enabled directory. The title of each file is constructed using the priority parameter, and
the title of our definition is specified using the $name variable.

Puppet allows only one resource of a given type and name on the system. If it finds two resources with the
same type and name in the catalog, it will fail to compile the catalog and the whole Puppet run will fail. Classes are
singletons, and so including the class multiple times won’t cause a duplicate definition error, but defined types are not
singletons and if called with the same parameters multiple times in Puppet code will cause a duplicate definition error.

64

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

Tip The $name variable contains the name, also known as the title, of a declared defined resource. This is the value of
the string before the colon when declaring the defined resource. The $title variable, which usually has the same value,
is also available.

Worse, and many new Puppet users are bitten by this, resources created inside a defined type can conflict
with other resources. This is why we are putting the $name variable in the file resource in Listing 2-21. In addition
to satisfying the implicit need to have different virtual hosts exist in different files on the filesystem, using the $name
variable in the names of resources within the defined type helps us avoid a duplicate definition error. This is especially
problematic when a defined type contains an exec resource. The second time the defined type is used on the system,
the Puppet catalog fails to compile with a duplicate definition error. Putting the $name variable as part of the name of
the exec resource will solve this problem.

This file resource’s content attribute is specified by a template, the specific template being the value of the
$template parameter. Let’s look at a fairly simple ERB template for an Apache VirtualHost in Listing 2-22.

Listing 2-22. VirtualHost template

NameVirtualHost *:<%= @port %>

<VirtualHost *:<%= @port %>>
ServerName <%= @name %>

<%if @serveraliases.is_a? Array -%>

<% @serveraliases.each do |name| -%><%= " ServerAlias #{@name}\n" %><% end
-%>

<% elsif @serveraliases != '' -%>

<%= " ServerAlias #{@serveraliases}" -%>

<% end -%>
DocumentRoot <%= @docroot %>
<Directory <%= @docroot %>>
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
allow from all
</Directory>
ErrorlLog /var/log/apache2/<%= @name %>_error.log
LogLevel warn
CustomLog /var/log/apache2/<%= @name %>_access.log combined
ServerSignature On
</VirtualHost>

Each parameter specified in the definition is used, including the $name variable to name the virtual host
we're creating.

You can also see some embedded Ruby in our ERB template:

<%if @serveraliases.is_a? Array -%>

<% @serveraliases.each do |name| -%><%= " ServerAlias #{@name}\n" %><% end
-%>

<% elsif @serveraliases != '' -%>

<%= " ServerAlias #{@serveraliases}" -%>

<% end -%>

65

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

Here we've added some logic to the serveraliases parameter. If that parameter is an array of values, then create
each value as a new server alias; if it’s a single value, create only one alias.
Let’s now see how we would use this definition and combine our definition and template:

apache: :vhost { 'www.example.com':

port => '80',
docroot => '/var/www/www.example.com',
ssl => false,
priority => '10',

serveraliases => 'home.example.com',

Here we have used our definition much the same way we would specify a resource by declaring the
apache: :vhost definition and passing it a name, www. example. com (which is also the value of the $name variable).
We've also specified values for the required parameters. Unless a default is already specified for a parameter, you need
to specify a value for every parameter of a definition. Otherwise, Puppet will return an error. We could also override
parameters, for example by specifying a different template:

template => 'apache/another_vhost_template.erb’,
So in our current example, the template would result in a VirtualHost definition that looks like Listing 2-23.

Listing 2-23. The VirtualHost configuration file

NameVirtualHost *:80
<VirtualHost *:80>
ServerName www.example.com
ServerAlias home.example.com
DocumentRoot /var/www/www.example.com
<Directory /var/www/www.example.com>
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
allow from all
</Directory>
ErrorlLog /var/log/apache2/www.example.com error.log
LoglLevel warn
CustomLog /var/log/apache2/www.example.com_access.log combined
ServerSignature On
</VirtualHost>

The final class in our module is the apache class in the init.pp file, which includes our Apache classes:

class apache {
include apache::install
include apache::service

}

You can see we've included our two classes but not the definition, apache: : vhost. This is because of some module
magic called autoloading. Puppet scans your module and loads any . pp file in the manifests directory that is named
after the class it contains; for example, the install.pp file contains the apache: :install class and so is autoloaded.

66

http://www.example.com/
http://www.example.com/
http://home.example.com/
http://www.example.com/
http://www.example.com/
http://home.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com_error.log/
http://www.example.com_access.log/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

The same thing happens with definitions: The vhost. pp file contains the definition apache: :vhost, and Puppet
autoloads it. However, as we declare definitions, for example calling apache: :vhost where we need it, we don’t need
to do an include apache::vhost because calling it implies inclusion.

Next, we include our classes into our www.example.com node and call the apache: :vhost definition to create the
www . example. com website:

node 'www.example.com' {
include base

apache::vhost { "www.example.com':

port => '80',

docroot => '/var/www/www.example.com',
ssl => false,

priority = '10',

serveraliases => 'home.example.com',

Note that we don’t need to include the apache class in the node definition, because the defined type takes care
of this. We could now add additional web servers easily and create additional Apache VirtualHosts by calling the
apache: :vhost definition again, for example:

apache::vhost { 'another.example.com':

port => '80',
docroot => '/var/www/another.example.com',
ssl => false,

priority => '10',

Managing Puppet with the Puppet Module

In our very last module we’re going to show you Puppet being self-referential, so you can manage Puppet with Puppet
itself. To do this we create another module, one called puppet, with a structure as follows:

root@pro-puppet4:/etc/puppet/modules# puppet module generate propuppet-puppet
Notice: Generating module at /etc/puppet/modules/propuppet-puppet
propuppet-puppet

propuppet-puppet/Modulefile

propuppet-puppet/README

propuppet-puppet/manifests

propuppet-puppet/manifests/init.pp

propuppet-puppet/spec

propuppet-puppet/spec/spec_helper.rb

propuppet-puppet/tests

propuppet-puppet/tests/init.pp
root@pro-puppet4:/etc/puppet/modules# mv propuppet-puppet puppet

67

http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://home.example.com/
http://another.example.com/
http:///var/www/another.example.com

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

And add the extra files we need:

root@pro-puppets:/etc/puppet/modules# mkdir puppet/files/
root@pro-puppets:/etc/puppet/modules# mkdir puppet/templates/
root@pro-puppet4:/etc/puppet/modules# touch puppet/manifests/install.pp
root@pro-puppets:/etc/puppet/modules# touch puppet/manifests/config.pp
root@pro-puppets:/etc/puppet/modules# touch puppet/manifests/params.pp
root@pro-puppets:/etc/puppet/modules# touch puppet/manifests/service.pp
root@pro-puppets:/etc/puppet/modules# touch puppet/templates/puppet.conf.erb

The puppet::install Class

This class does the work of installing the Puppet client software.

class puppet::install {
package { 'puppet' :
ensure => present,
}
}

All of the operating systems we're installing on call the Puppet package puppet, so we're not going to use a
variable here. We do, however, need a couple of variables for our Puppet module, so we add a puppet: :params class.

class puppet::params {
$puppetserver = "puppet.example.com”

For the moment, this class contains only a Puppet server variable that specifies the fully qualified domain name
(FQDN) of our Puppet master.
Now we create our puppet: :config class:

class puppet::config {
include puppet::params

file { '/etc/puppet/puppet.conf’:
ensure => present,
content => template('puppet/puppet.conf.erb'),
owner => 'puppet’,
group => 'puppet’,
require => Class['puppet::install'],
notify => Class['puppet::service'],

68

http://puppet.example.com/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

This class contains a single file resource that loads the puppet.conf.erb template. It also includes the
puppet: : params class to make available the variables defined in that class. Let’s take a look at the contents of our
template, too:

[main]
user = puppet
group = puppet
report = true
reports = log,store

[master]
certname = <%= @puppetserver %>

[agent]
pluginsync = false
report = true
server = <%= @puppetserver %>

This is a very simple template, which we can then expand upon, or you can easily modify to add options or
customize it for your own purposes. You'll notice that we’ve included configuration for both our master and the client.
We're going to manage one puppet. conf file rather than a separate one for master and client. This is mostly because
it's easy and because it doesn’t add much overhead to our template.

We can then add the puppet: :service class to manage the Puppet client daemon.

class puppet::service {
service { 'puppet':
ensure => running,
hasstatus => true,
hasrestart => true,
enable => true,
require => Class['puppet::install'],

We can then create an init.pp that includes the puppet class and the subclasses we’ve just created:

class puppet {
include puppet::install
include puppet::config
include puppet::service

}

Just stopping here would create a module that manages Puppet on all our clients. All we need to do, then, is to
include this module on all of our client nodes, and Puppet will be able to manage itself. But we're also going to extend
our module to manage the Puppet master as well. To do this, we’re going to deviate slightly from our current design
and put all the resources required to manage the Puppet master into a single class, called puppet: :master:

class puppet::master {

include puppet
include puppet::params

69

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

package { 'puppet-server':
ensure => installed,
}

service { 'puppetmasterd’:
ensure => running,
hasstatus => true,
hasrestart => true,
enable => true,
require => File['/etc/puppet/puppet.conf'],

You can see that our class puppet: :master includes the classes puppet and puppet: :params. This means that
all of the preceding Puppet configuration will be applied, in addition to the new package and service resources we've
defined in this class.

Let’s now return to the puppet: :params class so that we can discuss another huge concept in Puppet: Hiera.
The Puppet Labs project page describes this as “a simple pluggable Hierarchical Database.” It provides to Puppet a
separation and interface for code and data. Look again at the puppet: :parameters class:

class puppet::params {
$puppetserver = "puppet.example.com”

}

Here we have a variable that will be needed somewhere else in our Puppet manifests, $puppetserver, and the
data in that variable, the string "puppet.example.com". The purpose of this class is to bring these two entities together
and to provide a flat-file datastore for the key-value pair.

Hiera is a place to keep these kind of variables. It presents itself to Puppet as a function call. Hiera configuration
and extension will be covered in Chapter 12, but the YAML backend is a good way to introduce its use. This is an
example Hiera data file, written in YAML:

puppetserver = 'puppet.example.com'
This allows us to rewrite the puppet: : params class as:
class puppet::params {

$puppetserver = hiera('puppetserver')

}
In this example Puppet will use the hiera function to get the string value 'puppet.example.com' and place it
into the $puppetserver variable. In Puppet 3, but not Puppet 2.7, there is an automatic lookup of parameters in a

parameterized class. We can use this to rewrite the puppet: :params class further:

class puppet::params (
$puppetserver,
N

}

70

http://puppet.example.com/
http://puppet.example.com/
http://puppet.example.com/
http://puppet.example.com/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

When this is called with no arguments, Puppet 3 will attempt to look up the puppet: :params: : puppetserver key
in Hiera and populate it accordingly. It will not fail unless the Hiera lookup fails. Hiera has multiple backends and an
entire system of hierarchal lookups, which will be discussed in Chapter 12. The important thing to understand now
is that Hiera helps us separate configuration from data. It helps us create modules that are interchangeable library-like
blocks that can be used to implement any configuration by placing the details of that configuration, the data, into
Hiera and leaving the logic of the module in the Puppet manifests.

We can now add the puppet module to our nodes, leaving them looking like this:

class base {
include sudo
include ssh
include puppet

node 'puppet.example.com' {
include base
include puppet::master

}
node 'web.example.com' {
include base

include apache

apache::vhost { 'www.example.com':

port => '80',

docroot => '/var/www/www.example.com',
ssl => false,

priority => '10',

serveraliases => 'home.example.com',

}
}

node 'db.example.com' {
include base
include mysql

}

node 'mail.example.com' {
include base
include postfix

}

We've added the puppet module to the base class we created earlier. This will mean it’s added to all the nodes
that include base. We've also added the puppet: :master class, which adds the additional resources needed to
configure the Puppet master, to the puppet.example.comnode.

71

http://puppet.example.com/
http://web.example.com/
http://www.example.com/
http://www.example.com/
http://home.example.com/
http://db.example.com/
http://mail.example.com/
http://puppet.example.com/

CHAPTER 2 © BUILDING HOSTS WITH PUPPET

Summary

In this chapter, you've been introduced to many of Puppet’s basic features and language elements, including:

How to structure modules, including examples of modules to manage SSH, Postfix, MySQL,
Apache and Puppet itself

How to use language constructs like selectors, arrays and case statements

A greater understanding of files and templates

Definitions that allow you to manage configuration, such as Apache VirtualHosts
Variable scoping

Parameterized classes

A brief example using Hiera

You've also seen how a basic Puppet configuration in a simple environment might be constructed, including some
simple modules to manage your configuration. Also, Puppet Forge contains a large collection of existing modules that
you can either use immediately or modify to suit your environment.

In the next chapter, we’ll look at how to scale Puppet beyond the basic Webrick server, using tools like Passenger
and Unicorn and allowing you to manage larger numbers of hosts.

Resources

72

Puppet Documentation: http://docs.puppetlabs.com

Puppet Forge: http://forge.puppetlabs.com

http://docs.puppetlabs.com/
http://forge.puppetlabs.com/

CHAPTER 3

Developing and Deploying Puppet -

We've introduced you to installing Puppet and the basics of the Puppet language. In this chapter, we’ll show you how
to develop new Puppet code, test it, and deploy it. This will allow you to use Puppet to make changes and manage
your infrastructure in a logical and stable way.

To do this, we are going to introduce and develop a number of new Puppet concepts, including environments,
the puppet apply tool, and running the master in debug mode.

Environments allow you to define, maintain, and separate your infrastructure into appropriate divisions. In most
organizations, you already have some of these divisions: development, testing, staging, preproduction, and others. Just
like a set of production, testing, and development systems, which are separated from one another to effectively isolate
risky changes from production services, Puppet environments are designed to isolate changes to the configuration and
prevent them from impacting critical production infrastructure.

Puppet apply is the standalone version of the Puppet software. It directly reads manifest files and makes
changes. Developing and testing using puppet apply is an important part of speedy Puppet development.

Most organizations will have one or more centralized Puppet masters for all the nodes in their ecosystem, but
when developing Puppet it can be useful to run a Puppet master process locally on the development machine. We’ll
explore how to do this and how to get productivity gains from it. Chapter 4 will show how to set up a production-ready
Puppet master installation.

We'll then show how to use a local Puppet master and the Vagrant virtualization tool to do even more development
and testing of Puppet code. In this chapter we also build upon the concept of modules, which we introduced in
Chapters 1 and 2. We show you how to configure environments on your Puppet masters and how to control which agents
connect to which environment. Each agent can connect to a specific environment that will contain a specific configuration.

Finally, we exercise the workflow of making changes using our version control system (VCS), testing small
development changes in a safe and easy way, and then deploying the tested changes to the production environment
in Puppet. We will gradually increase the flexibility and complexity of our environment infrastructure, as well as its
integration with VCS.

Instead of beginning with configuration changes to our new test mail server, we are going to start out, as
developers do, on our local workstation. We're going to use puppet apply to do our initial module development.

The puppet apply Command and Modes of Operation

Puppet has several subcommands. You've already seen the agent and master subcommands in Chapter 1. The apply
subcommand combines the catalog-compilation logic of the master subcommand with the state-ensuring behavior of
the agent subcommand.

73

CHAPTER 3 ' DEVELOPING AND DEPLOYING PUPPET

Printf with Puppet

To begin we’'ll use the apply subcommand to do the Puppet equivalent of a printf or echo statement in Listing 3-1,
which shows two alternative approaches.

Listing 3-1. Printfwith puppet apply

root@pro-puppet:~# puppet apply -e 'notify {"Hello World": }'

Notice: Hello World

Notice: /Stage[main]//Notify[Hello World]/message: defined 'message’ as 'Hello World'
Notice: Finished catalog run in 0.05 seconds

root@pro-puppet:~# puppet apply -e 'notice ("Hello World")'
Notice: Scope(Class[main]): Hello World
Notice: Finished catalog run in 0.04 seconds

These two examples both produce output. The first does so by creating a notify resource, a dummy resource that
merely sends a message to the output log. The second creates output by calling the notice() function, which writes
output to the log. The differences are that the first example will show a resource being run in a report of the run,
and the notify function is much more forgiving about its inputs.

Testing Puppet Behavior with Notify

Most Puppet experts are very comfortable using puppet apply on the command line to test syntax. The Puppet language
is full of little gotchas, and testing is the best way to verify behavior and build experience. For example, take the simple
testin Listing 3-2.

Listing 3-2. Testing Puppet behavior with puppet apply

root@pro-puppet5:~# puppet apply -e 'if "Puppet" == "puppet" { notify { "true!?": } }'
Notice: truel!?

Notice: /Stage[main]//Notify[true!?]/message: defined 'message' as 'true!?'

Notice: Finished catalog run in 0.04 seconds

The == operator in Puppet is not case-sensitive. We used puppet apply to check the behavior of the operator.

Using Puppet Apply with Manifest Files

We can also use puppet apply to evaluate short Puppet manifests. In the following manifest we write two file resources.
We are testing the autorequires property of file resources. That is, we're checking whether file resources underneath a
managed directory will automatically require that directory. Listing 3-3 shows the code and Listing 3-4 the output.

Listing 3-3. Code to test autorequire behavior

[root@pro-puppet ~]# cat autorequires.pp

file { '/tmp/redshirt’':
ensure => directory,

}

file { '/tmp/redhsirt/logan’:
ensure => file,

}

74

CHAPTER 3 * DEVELOPING AND DEPLOYING PUPPET

Listing 3-4. Testing autorequires

[root@pro-puppet ~]# puppet apply autorequires.pp
Notice: /Stage[main]//File[/tmp/redshirt]/ensure: created
Notice: /Stage[main]//File[/tmp/redshirt/logan]/ensure: created
Notice: Finished catalog run in 0.06 seconds

Because this Puppet code works without a require => File['/tmp/redshirt’] onthe '/tmp/redshirt/logan’
file resource, we can be assured that the autorequire behavior is in fact functional. Note that explicitly requiring state
is always better than letting autorequires take care of things.

We can use the puppet apply command with modules as well. First let’s bring down puppetlabs-stdlib from
GitHub, and then we’ll use one of the functions it provides. Listing 3-5 shows the process of pulling down the module
from GitHub, and Listing 3-6 shows the contents of our test manifest using this tool.

Listing 3-5. Pulling down a module from GitHub

[root@pro-puppet testingl# git clone https://github.com/puppetlabs/puppetlabs-stdlib
Cloning into 'puppetlabs-stdlib'...

remote: Counting objects: 4313, done.

remote: Compressing objects: 100% (2485/2485), done.

remote: Total 4313 (delta 1676), reused 3883 (delta 1293)

Receiving objects: 100% (4313/4313), 746.01 KiB | 325 KiB/s, done.

Resolving deltas: 100% (1676/1676), done.

[root@pro-puppet testingl# 1s

puppetlabs-stdlib

[root@pro-puppet testing]# mv puppetlabs-stdlib/ stdlib

Listing 3-6. Testing a manifest using a function from the stdl1ib module

[root@pro-puppet testingl# 1s
puppet_example.pp stdlib
[root@pro-puppet testingl# cat puppet example.pp

$array1
$array2

['one', "two', 'three']
['four', 'five','six"']

$concatenated_array = concat($array1l, $array2)
notify { $concatenated_array: }

The Puppet code in Listing 3-6 uses the concat function from the puppetlabs-stdlib module. We need to load
that module by setting -modulepath on the puppet apply command line as shown in Listing 3-7.

Listing 3-7. puppet apply using a modulepath

[root@pro-puppet testingl# puppet apply --modulepath=/root/testing puppet example.pp
Notice: five

Notice: /Stage[main]//Notify[five]/message: defined 'message' as 'five'

Notice: six

Notice: /Stage[main]//Notify[six]/message: defined 'message’ as 'six’

Notice: one

75

https://github.com/puppetlabs/puppetlabs-stdlib

CHAPTER 3 ' DEVELOPING AND DEPLOYING PUPPET

Notice:
Notice:
Notice:
Notice:
Notice:
Notice:
Notice:
Notice:

/Stage[main]//Notify[one]/message: defined 'message' as 'one'

four

/Stage[main]//Notify[four]/message: defined 'message' as 'four'
three

/Stage[main]//Notify[three]/message: defined 'message' as 'three’
two

/Stage[main]//Notify[two]/message: defined 'message' as 'two'
Finished catalog run in 0.03 seconds

[root@pro-puppet testing]#

Note that Puppet’s evaluation order is random. We created six notify resources, but they appeared in a random
order. The only way to be sure of ordering is to use require, before, subscribe, and notify metaparameters. Also note
the behavior in Puppet that passing an array of items to a type like notify (or any other type, including user-defined
types) produces one resource of that type for every element in the array.

We can also use puppet apply and a modulepath option to develop modules. Assuming we are working on an ssh
module, we can set up a development environment as shown in Listing 3-8.

Listing 3-8. Creating a module testing environment

[root@pro-puppet development]# 1s
site.pp ssh
[root@pro-puppet development]# cat site.pp

node default {

class { 'ssh': }

}

[root@pro-puppet development]# cat ssh/manifests/init.pp
class ssh {

package { 'ssh':
ensure => present,

}

This example has a very bare ssh class and an example site.pp file. We can use the Puppet line in Listing 3-9 to
test the code.

Listing 3-9. Testing a Puppet module

[root@pro-puppet development]# puppet apply --modulepath=. --noop site.pp

Notice

Notice:
Notice:
Notice:

76

: /Stage[main]/Ssh/Package[ssh]/ensure: current value absent, should be present (noop)
Class[Ssh]: Would have triggered 'refresh’' from 1 events

Stage[main]: Would have triggered 'refresh' from 1 events

Finished catalog run in 0.30 seconds

CHAPTER 3 * DEVELOPING AND DEPLOYING PUPPET

So what’s going on here? We've made a very bare-bones site. pp file that simply includes the ssh class. Then we
ran Puppet against the site.pp file in noop, or simulation, mode. This mode didn’t make any changes to our system.
We can now go back into the ssh class and make additional changes, run Puppet in noop mode again, and repeat that
cycle until our development goals are satisfied. Listing 3-10 demonstrates the process.

Listing 3-10. Changes to the ssh class

[root@pro-puppet development]# cat ssh/manifests/init.pp
class ssh {

package { 'ssh':
ensure => present,

}

service { 'ssh':
ensure => running,
enabled => true,

}

Then we can run puppet apply again in noop mode as shown in Listing 3-11.

Listing 3-11. Running puppet apply in noop mode

[root@pro-puppet development]# puppet apply --modulepath=. --noop site.pp

Error: Invalid parameter enabled at /root/development/ssh/manifests/init.pp:10 on node
box1.pro-puppet.com

Error: Invalid parameter enabled at /root/development/ssh/manifests/init.pp:10 on node
box1.pro-puppet.com

The puppet apply run has errored out. The parameter enabled is incorrect; the correct value is enable. We can
make that change (Listing 3-12) and then run the code again (Listing 3-13).

Listing 3-12. Changes to the ssh class

service { 'ssh':
ensure => running,
enable => true,

}

Listing 3-13. Testing the ssh class

[root@pro-puppet development]# puppet apply --modulepath=. --noop site.pp

Notice: /Stage[main]/Ssh/Package[ssh]/ensure: current value absent, should be present (noop)
Notice: /Stage[main]/Ssh/Service[ssh]/ensure: current_value stopped, should be running (noop)
Notice: Class[Ssh]: Would have triggered 'refresh’' from 2 events

Notice: Stage[main]: Would have triggered 'refresh’' from 1 events

Notice: Finished catalog run in 0.31 seconds

77

http:///root/development/ssh/manifests/init.pp:10 on node box1.pro-puppet.com
http:///root/development/ssh/manifests/init.pp:10 on node box1.pro-puppet.com
http:///root/development/ssh/manifests/init.pp:10 on node box1.pro-puppet.com
http:///root/development/ssh/manifests/init.pp:10 on node box1.pro-puppet.com

CHAPTER 3 ' DEVELOPING AND DEPLOYING PUPPET

Since the code ran successfully in noop mode, we can be reasonably sure that it is good. Advanced testing using
rspec-puppet and rspec-systemwill be covered in Chapter 8. We could also have found the syntax error using puppet
parser validate, which can be integrated into prereceive or precommit hooks. This coding/testing development
cycle is a tight iterative loop that can be performed totally offline. This procedure, or one very similar to it, is behind
most Puppet manifest development.

Foreground Puppet Master

It is also possible to run a Puppet master process locally on the development machine. This is very useful for making
changes and testing behavior for your wider collection of Puppet code. Let’s look at a possible scenario in Listing 3-14.
This scenario has a Hiera component; Hiera will be fully covered in Chapter 12, and you may read that chapter now if
you wish. First verify that you have set an alias for the Puppet DNS name in /etc/hosts as follows:

127.0.0.1 puppet localhost

Listing 3-14. Layout of /etc/puppet

root@pro-puppet-dev:/etc/puppet# 1s

data environments hiera.yaml puppet.conf
root@pro-puppet-dev:/etc/puppet# 1s environments/

development production staging

root@pro-puppet-dev:/etc/puppet# ls environments/development/
manifests modules

root@pro-puppet-dev:/etc/puppet# 1ls environments/development/modules/
apache collectd concat nrpe postfix stdlib sudo
root@pro-puppet-dev:/etc/puppet# 1s environments/production/modules/
apache collectd concat nrpe postfix stdlib sudo
root@pro-puppet-dev:/etc/puppet# ls environments/staging/modules/
apache collectd concat nrpe postfix stdlib sudo
root@pro-puppet-dev:/etc/puppet# 1s environments/development/manifests/site.pp
environments/development/manifests/site.pp
root@pro-puppet-dev:/etc/puppet## 1ls data/

common.yaml env

root@pro-puppet-dev:/etc/puppet# 1s data/env/

development.yaml production.yaml staging.yaml

This is a pretty typical layout for /etc/puppet on a Puppet master. We’re using Puppet environments here, a
feature that will be fully explained later in this chapter. For now, just note that we have a full copy of the site.pp and
all modules in each environment subdirectory. These modules are often source-control checkouts, and they represent
different points on the timeline of development: development, where code is actively worked on; staging, where
code is put through quality control and performance testing; and production, where code is live and maintaining
production services. You are, of course, welcome to delineate these environments however you see fit.

Since we have the code set up on the developer’s workstation, we can run the master in debug mode (Listing 3-15),
and connect to it with an agent in a different window (Listing 3-15).

Listing 3-15. Output of foreground Puppet master

root@pro-puppet-dev:/etc/puppet# puppet master --no-daemonize --verbose
dnsdomainname: Name or service not known

Info: Creating a new SSL key for ca

Info: Creating a new SSL certificate request for ca

78

CHAPTER 3 * DEVELOPING AND DEPLOYING PUPPET

Info: Certificate Request fingerprint (SHA256):
98:B2:A7:07:0B:55:F7:04:B2:72:DE:7E:B6:83:95:E9:AE:(9:C2:09:6(C:64:7E:63:
3D:FA:25:EE:B2:87:3C:DE

Notice: Signed certificate request for ca

Notice: Rebuilding inventory file

Info: Creating a new certificate revocation list

Info: Creating a new SSL key for pro-puppet-dev

Info: Creating a new SSL certificate request for pro-puppet-dev

Info: Certificate Request fingerprint (SHA256):
DA:F9:16:08:8F:63:40:01:80:54:57:FD:54:15:46:21:D0:13:3C:70:83:54:BC:E4:
8A:55:D8:C1:42:BA:0F:98

Notice: pro-puppet-dev has a waiting certificate request

Notice: Signed certificate request for pro-puppet-dev

Notice: Removing file Puppet::SSL::CertificateRequest pro-puppet-dev.hsdi.or.comcast.net at
'/etc/puppet/ssl/ca/requests

/pro-puppet-dev'

Notice: Removing file Puppet::SSL::CertificateRequest pro-puppet-dev.hsdl.or.comcast.net at
'/etc/puppet/ssl/certificate

_requests/pro-puppet-dev’

Notice: Starting Puppet master version 3.1.1

This does not terminate; instead, it will print output as we connect to it, including any errors. Note that on the first run
the master sets up its own certificate chain. This is fine for development. For production deployments, refer to Chapter 4.
Next, in another window, run the puppet agent command (Listing 3-16).

Listing 3-16. puppet agent connecting to localhost

root@pro-puppet-dev:/etc/puppet# puppet agent --test --server=puppet

Info: Retrieving plugin

Info: Loading facts in /etc/puppet/environments/production/modules/stdlib/1ib/facter/puppet_vardir.rb
Info: Loading facts in /etc/puppet/environments/production/modules/stdlib/1ib/facter/root_home.rb
Info: Loading facts in /etc/puppet/environments/production/modules/stdlib/1ib/facter/facter_dot_d.rb
Info: Loading facts in /etc/puppet/environments/production/modules/stdlib/1lib/facter/pe version.rb
Info: Loading facts in /etc/puppet/environments/production/modules/concat/1lib/facter/concat_basedir.rb
Info: Loading facts in /var/lib/puppet/lib/facter/concat_basedir.rb

Info: Loading facts in /var/lib/puppet/lib/facter/puppet_vardir.rb

Info: Loading facts in /var/lib/puppet/lib/facter/root_home.rb

Info: Loading facts in /var/lib/puppet/lib/facter/facter dot_d.rb

Info: Loading facts in /var/lib/puppet/lib/facter/pe version.rb

Info: Caching catalog for pro-puppet-dev.hsdl.or.comcast.net

Info: Applying configuration version '1382354758'

Notice: Puppet is running

Notice: /Stage[main]//Node[default]/Notify[Puppet is running]/message: defined 'message’ as

'Puppet is running'

Notice: Finished catalog run in 0.05 seconds

The puppet agent run syncs facts and other pluginsync artifacts as usual, and then outputs a Puppet run
precisely as expected. The other windows, containing the Puppet master running in -no-daemonize mode, will have

some output relating to the successful Puppet run:

Notice: Compiled catalog for pro-puppet-dev in environment production in 0.01 seconds

79

https://pro-puppet-dev.hsd1.or.comcast.net
https://pro-puppet-dev.hsd1.or.comcast.net
https://pro-puppet-dev.hsd1.or.comcast.net

CHAPTER 3 ' DEVELOPING AND DEPLOYING PUPPET

Running the Puppet master like this is useful because it makes cloning the settings in place on your Puppet
master trivial. Cloning can be as simple as an rsync of /etc/puppet or as complicated as you would like. Some
organizations have separate version control repositories for every module, the manifests, and sometimes multiple
repositories for Hiera data, as well as tooling and orchestration around all of it.

The second reason to run a local Puppet master is to streamline development with virtual machines.

Developing Puppet with Vagrant

When you are developing Puppet code, it is good to test your code as you move forward. One of the best ways to do
this is to run your Puppet manifests against a fresh virtual machine regularly. There are two tools we’ll combine to
make this painless and effective.

We've already seen how to run a Puppet master locally on the development machine. When this is in place, you
can write and modify Puppet manifests on your own machine without any external dependencies. You can also use
your own customized development environment (such as vim, emacs, geppetto, or .gitconfig). When it’s time to push
the code to a centralized code repository, you can do this directly; you won’t have to push trust into an untrusted
virtual machine.

The second tool we're going to use is Vagrant (http://www.vagrantup.com/), a virtualization middleware that
makes starting, logging into, destroying, and repeating the process smooth. Vagrant is a collection of Ruby scripts that
wrap software hypervisors such as VirtualBox and VMware. Vagrant workflow starts with downloading or creating a
vagrant virtual machine template called a base box. Then a virtual machine is created from this template, booted, and
eventually destroyed.

The overall pattern with these two tools is as follows:

1. Setup the Puppet master on a local development machine.

Check out the organization’s Puppet code.

Download a Vagrant base box that is representative of your production server load.
Make changes to the Puppet code.

Boot the Vagrant machine.

Log into the Vagrant machine and perform a test Puppet run.

Evaluate the results.

Destroy the Vagrant machine.

© ® N o g »~ w N

Repeat steps 4-8 until satisfied.

We will assume that you have steps 1 and 2 completed, as they were demonstrated earlier in this chapter.
However, we will make one change by setting the Puppet master to autosigning mode:

root@pro-puppet-dev:/etc/puppet# echo '*' > autosign.conf

Then add the key/value pair autosign = true to either the [main] or [master] section of puppet.conf.

Vagrant Initial Setup

Use Vagrant to download a box prototype. There are standard builds for most common Linux utilities. Your site can
use tools like Packer and Veewee to build customized Vagrant boxes to represent your environment. For now we’ll just
use a default Ubuntu Precise box as shown in Listing 3-17.

80

http://www.vagrantup.com/

CHAPTER 3 * DEVELOPING AND DEPLOYING PUPPET

Listing 3-17. Adding a template in Vagrant

PS C:\Users\skrum> vagrant box add precise64
http://puppet-vagrant-boxes.puppetlabs.com/ubuntu-server-12042-x64-vbox4210.box
.box

Downloading or copying the box...

Extracting box...ate: 5495k/s, Estimated time remaining: --:--:--)

The box you're attempting to add already exists:

Name: precise64
Provider: virtualbox

Note that the Vagrant commands in this section are being run from Windows. Vagrant is platform-agnostic
and behaves exactly the same across Windows, Mac, and Linux. This is one of the reasons it is such a popular and
powerful aid to development.

Next we will use the vagrant init command to create a basic Vagrant file. This file can be modified to allow
multiple-VM setups and advanced configuration. The vagrant init command creates a very simple file to get us
underway (Listing 3-18).

Listing 3-18. Creating an instance in Vagrant

PS C:\Users\skrum\Documents> vagrant init precise64

A “Vagrantfile® has been placed in this directory. You are now
ready to “vagrant up’ your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
“vagrantup.com™ for more information on using Vagrant.

Booting the Vagrant Box

In Listing 3-19 we will start the virtual machine with vagrant up.

Listing 3-19. Starting the Vagrant machine

PS C:\Users\skrum\Documents> vagrant up

Bringing machine 'default' up with 'virtualbox' provider...
[default] Clearing any previously set forwarded ports...
[default] Fixed port collision for 22 => 2222. Now on port 2200.
[default] Creating shared folders metadata...

[default] Clearing any previously set network interfaces...
[default] Preparing network interfaces based on configuration...
[default] Forwarding ports...

[default] -- 22 => 2200 (adapter 1)

[default] Booting VM...

[default] Waiting for machine to boot. This may take a few minutes...
[default] Machine booted and ready!

[default] Mounting shared folders...

[default] -- /vagrant

Vagrant has booted the virtual machine and set up a port forward from a local port on the host to the SSH port on

the virtual machine. Vagrant also has a simple vagrant ssh command to connect to the machine—no passwords, no
fuss; it “just works.” This is demonstrated in Listing 3-20.

81

http://puppet-vagrant-boxes.puppetlabs.com/ubuntu-server-12042-x64-vbox4210.box
http://vagrantup.com/

CHAPTER 3 ' DEVELOPING AND DEPLOYING PUPPET

Listing 3-20. Logging into the machine
PS C:\Users\skrum\Documents> vagrant ssh
Welcome to Ubuntu 12.04.2 LTS (GNU/Linux 3.5.0-23-generic x86_64)

* Documentation: https://help.ubuntu.com/
Last login: Mon Oct 21 12:15:04 2013 from 10.0.2.2

vagrant@ubuntu-server-12042-x64-vbox4210:~%
We start out logged in as the vagrant user, an unprivileged user. Assume superuser permissions as follows:

vagrant@ubuntu-server-12042-x64-vbox4210:~$ sudo -i

Configuring Puppet on the Vagrant Box

Next we must inform the client where the Puppet master is. In our example setup, the Puppet master is running on the
host machine. It could also be running on a separate, more long-lived virtual machine. What we need to do is alias the
name puppet to the IP address of the Puppet master. We will do this by configuring the hosts file of the Vagrant box:

root@ubuntu-server-12042-x64-vbox4210:~# echo '192.168.134.131 puppet' >> /etc/hosts

Testing Puppet with Vagrant

Next we will perform a Puppet test run in Listing 3-21.

Listing 3-21. Perform a test Puppet run.

root@ubuntu-server-12042-x64-vbox4210:~# puppet agent --test

Info: Retrieving plugin

Info: Caching catalog for ubuntu-server-12042-x64-vbox4210.hsd1.or.comcast.net

Info: Applying configuration version '1382954099'

Notice: puppet is running

Notice: /Stage[main]//Node[vbox]/Notify[puppet is running]/message: defined 'message' as
"puppet is running'

Info: Creating state file /var/lib/puppet/state/state.yaml

Notice: Finished catalog run in 0.06 seconds

We see that the Puppet manifests ran, and we can look around the filesystem and process table to evaluate

our handiwork.

Destroying and Re-Creating the Vagrant Box

The next step in the iterative cycle is to log out of the Vagrant box, destroy it, and create a new one (see Listings 3-22
through 3-24).

82

https://help.ubuntu.com/
https://ubuntu-server-12042-x64-vbox4210.hsd1.or.comcast.net

CHAPTER 3

Listing 3-22. Logging out of the Vagrant box

root@vagrant-ubuntu-precise-64:~# exit
logout
vagrant@vagrant-ubuntu-precise-64:~$ exit
logout

Connection to 127.0.0.1 closed.

Listing 3-23. Destroying the Vagrant box

PS C:\Users\skrum\Documents> vagrant destroy

Are you sure you want to destroy the 'default' VM? [y/N] y
[default] Forcing shutdown of VM...

[default] Destroying VM and associated drives...

Listing 3-24. Creating the Vagrant box anew

PS C:\Users\skrum\Documents> vagrant up

Bringing machine 'default' up with 'virtualbox' provider...
[default] Clearing any previously set forwarded ports...
[default] Fixed port collision for 22 =»> 2222. Now on port 2200.
[default] Creating shared folders metadata...

[default] Clearing any previously set network interfaces...
[default] Preparing network interfaces based on configuration...
[default] Forwarding ports...

[default] -- 22 => 2200 (adapter 1)

[default] Booting VM...

[default] Waiting for machine to boot. This may take a few minutes...
[default] Machine booted and ready!

[default] Mounting shared folders...

[default] -- /vagrant

PS C:\Users\skrum\Documents> vagrant ssh
Welcome to Ubuntu 12.04.2 LTS (GNU/Linux 3.5.0-23-generic x86 64)

* Documentation: https://help.ubuntu.com/
Last login: Mon Oct 21 12:15:04 2013 from 10.0.2.2

vagrant@ubuntu-server-12042-x64-vbox4210:~$

DEVELOPING AND DEPLOYING PUPPET

Note You can use a Vagrant snapshotting plug-in like https://github.com/scalefactory/vagrant-multiprovider-snap

to decrease the time you spend spinning up and down Vagrant boxes.

Automated testing of modules, through the tools rspec-puppet and rspec-system, is demonstrated in Chapter 8.

83

https://help.ubuntu.com/
https://github.com/scalefactory/vagrant-multiprovider-snap

CHAPTER 3 ' DEVELOPING AND DEPLOYING PUPPET

Environments

In order to demonstrate environments, we create another host for the Example. com Pty Ltd organization we first introduced
in Chapter 1. This new host is called mailtest.example.comand has been introduced to allow Example. com to test changes
to their email server without impacting the production mail server. You can see the new node in Figure 3-1.

Example.com Puppet

Mail

Test Web Mail DB

Figure 3-1. The Example.Com Pty Ltd network

To get started, we've installed the RedHat Enterprise Linux operating system on mailtest.example.comin
order to match the operating system Puppet already manages on mail.example.com. Because we already have
configuration to manage the mail.example.com host, we don’t need to create any new manifests—we can reuse the
existing ones to configure our new mailtest.example.comhost.

Note This chapter starts to demonstrate the power of Puppet for reusing configuration: rather than starting a new
configuration from scratch, we can use existing Puppet manifests to create a new mail server.

Maintenance of Modules

In a typical production setup your modules will be placed in a version control system. How exactly you do this is up to
you, but there are two competing popular models. Both of them have merits.

e The first method is to have each module be its own repository.

e The second method is to have a single repository for the entire modules/ directory.

Tools for External Modules

If you're going to be reusing modules from external sources (and you probably should), there are several tools that you
should know about.

The first is called Puppet-Librarian. It will download a module from the Puppet Forge, calculate all the
dependencies, and then install those in your modules/ directory as well. This sometimes creates problems, which is
why r10k was created.

84

http://example.com/
http://mailtest.example.com/
http://example.com/
http://example.com/
http://mailtest.example.com/
http://mail.example.com/
http://mail.example.com/
http://mailtest.example.com/

CHAPTER 3 * DEVELOPING AND DEPLOYING PUPPET

R10k is like Puppet-Librarian but does not attempt to do such smart behavior. Instead, it leaves you to figure out
dependency installation. Many people prefer this tool because of its simplicity and predictable success. Much work
has also gone into making r10k a fast tool for deployment. R10k is covered in Chapter 8.

Configuring Puppet Environments

To configure Puppet environments, you need to add them to the Puppet master’s configuration. If you add each
environment to the Puppet master, then each Puppet agent can request a specific environment when requesting a
catalog from the master.

The first step in configuring your Puppet master and agents to use environments is to add a stanza in the
/etc/puppet.conf configuration file on the Puppet master for each environment you want to support. Let’s do this
now, by creating the three environments shown in Listing 3-25.

Listing 3-25. Puppet master environments in puppet.conf

[production]
modulepath = $confdir/modules
manifest = $confdir/manifests/site.pp

[development]
modulepath = $confdir/environments/development/modules
manifest = $confdir/environments/development/manifests/site.pp

[testing]
modulepath = $confdir/environments/testing/modules
manifest = $confdir/environments/testing/manifests/site.pp

As you can see, each environment section of the Puppet configuration file defines two settings, modulepath and
manifest. The modulepath setting defines the path to the modules that will apply to each environment, and manifest
specifies the site.pp file that applies to that environment. Recall from Chapter 1 that site.pp is the file that tells
Puppet which configuration to load for our clients. These settings allow each environment to have a distinct set of
modules and configuration.

Note When setting up environments, you should restart the Puppet master process in order to activate
configuration changes. As described in Chapter 1, the restart process depends on how Puppet is installed on the master.
Most systems include an init script to accomplish this task.

In Chapters 1 and 2, we introduced you to building modules to store your Puppet configuration. In order to fully
utilize environments, your Puppet manifests should be organized into modules. In this chapter, we use the modules
we've created to manage our production environment, the production environment defined in Listing 3-25.

Populating the New Environments

Once you've defined the multiple environments on the Puppet master server, you need to populate these new search
paths with the Puppet modules and manifests you've already created in production. In the “Version-Controlling Your
Modules” section of Chapter 2, our hypothetical company configured Puppet modules using the Git version control
system. We'll expand on the file organization and introduce a strategy to manage and migrate changes between
Puppet environments.

85

CHAPTER 3 ' DEVELOPING AND DEPLOYING PUPPET

Note If you have not yet installed Git and would like to do so now, please refer back to the Git installation information
in Chapter 2.

We will use Git to make sure each of our three new environments, main (or production), development, and
testing, will receive an identical copy of our production environment. The version control system will also allow us
to easily keep these three environments synchronized when necessary, while also allowing them to diverge when we
want to try out new changes. Three environments with identical modules and manifests will allow us to quickly make
changes in the development or testing environment without impacting the production environment. If we’re satisfied,
we can easily merge the changes into production.

Note Many organizations with multiple people committing changes to the Puppet configuration will benefit from a
code review process. Information about the code review process used by the Puppet development community is available
at https://github.com/puppetlabs/puppet/blob/master/CONTRIBUTING.md.

In Chapter 2, we initialized the /etc/puppet/modules directory as a Git repository. Once a Git repository exists,
it may be cloned one or more times. Once there are multiple clones, changes to any of the repositories may be fetched
and merged into any other repository.

Creating a Clone

Let’s create a clone of the /etc/puppet/modules Git repository for the development and testing environments now.
First, you need to create the directory structure necessary to contain the new module search path in Listing 3-26.

Listing 3-26. Creating the development and testing environments

$ cd /etc/puppet
$ mkdir -p environments/development
$ mkdir -p environments/testing

Next, clone the original module repository you created in Chapter 2 into your development environment
(Listing 3-27).

Listing 3-27. Copying the code in

$ cd /etc/puppet/environments/development

$ git clone ../../modules

Initialized empty Git repository in
/etc/puppet/environments/development/modules/.git/

This command makes a new copy of the Git repository, called a “clone,” and automatically sets up a reference
to the repository we cloned from. This reference, named “origin,” refers to the original repository this repository was
cloned from. The origin is actually the repository in the production Puppet environment, so you can add another
name to be clear when you fetch updates, as shown in Listing 3-28.

86

https://github.com/puppetlabs/puppet/blob/master/CONTRIBUTING.md

CHAPTER 3 * DEVELOPING AND DEPLOYING PUPPET

Listing 3-28. Working with Git remotes

$ cd /etc/puppet/environments/development/modules
$ git remote add production /etc/puppet/modules

$ git remote -v

production /etc/puppet/modules (fetch)
production /etc/puppet/modules (push)

Asyou can see, we've added a remote reference to the production environment module repository in the
development environment’s module repository. This remote reference allows Git to fetch changes.

Similar to the development environment you just set up, you'll also clone the production environment modules
into a testing environment in Listing 3-29.

Listing 3-29. Cloning production to a testing environment

$ cd /etc/puppet/environments/testing

$ git clone ../../modules

Initialized empty Git repository in
/etc/puppet/environments/testing/modules/.git/

$ cd modules

$ git remote add production /etc/puppet/modules

$ git remote add development /etc/puppet/environments/development/modules

Notice that we’ve also added the development repository as a remote in the testing environment repository.
This will allow you to fetch changes you make in the development repository to the testing repository.

Tip For additional information on a branch-and-merge strategy using environments and Subversion rather than Git,
please see http://projects.puppetlabs.com/projects/1/wiki/Branch Testing.

Making Changes to the Development Environment

Now that you have your three environments populated with the same Puppet modules, you can make changes
without affecting the production environment. We're going to use a basic workflow of editing and committing changes
in the development branch first. This mirrors the common development life cycle of moving from development to
testing and finally to production.

We'll start by running a Puppet agent in the development environment to test the change we've made. Then,
if everything goes well in the development environment, you can merge this change into testing or production.

Tip In large Puppet setups where changes from multiple groups of people need to be managed, it is common to
run a selection of hosts against the testing environment. Periodically, the production environment repository will be
synchronized against the testing environment.

We're going to edit the postfix configuration file template we created in Chapter 2 to explore how Puppet
isolates the three environments we’ve created. We'll edit the file main.cf.erb in the development environment and
then run the Puppet agent in this environment to see the change. We’ll also run the Puppet agent in the production
environment, which we have not changed yet, and make sure our changes do not have any effect on it.

87

http://projects.puppetlabs.com/projects/1/wiki/Branch_Testing

CHAPTER 3 ' DEVELOPING AND DEPLOYING PUPPET

To start, edit the file init.pp in /etc/puppet/environments/development/modules/postfix/manifests/ using
your favorite text editor and add a new line at the very top of the file so that it looks like Listing 3-30.

Listing 3-30. Syntax error in Puppet code

This is a syntax error, since it is clearly not puppet code.

class postfix {
include postfix::install
include postfix::config
include postfix::service

}

The line at the top is an error because it is just plain English, not Puppet code.
Now that you've made a change to the development environment, Git will let you know that the status of the
repository has changed, as shown in Listing 3-31.

Listing 3-31. Using git to show status

$ git status

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working

directory)

#

modified: init.pp
#

no changes added to commit (use "git add" and/or "git commit -a")

Git has noticed that you've made a change to the main.cf.erb file and tells you this on the modified line. As you
learned in Chapter 2, we must add files changed in the working directory to the index, and then commit the index to
the repository. Before you do this, you should double-check to make sure the line you modified is what will be added
in the new commit (Listing 3-32).

Listing 3-32. Using git to show a diff

$ git diff

diff --git a/postfix/manifests/init.pp b/postfix/manifests/init.pp
index 3331237..2be61e0 100644

--- a/postfix/manifests/init.pp

+++ b/postfix/manifests/init.pp

@@ -1,3 +1,4 @@

+This is a syntax error, since it is clearly not puppet code.

class postfix {
include postfix::install

include postfix::config

Notice the line beginning with the single plus sign. This indicates that you've added one line and this addition
will be recorded when we commit the change, as we will with the git commit command in Listing 3-33.

88

CHAPTER 3 * DEVELOPING AND DEPLOYING PUPPET

Listing 3-33. Commiting changes (checking in)

$ git commit -a -m 'Updated postfix class’
[master 0fbo463] Updated postfix class
1 files changed, 1 insertions(+), 1 deletions(-)

You've now successfully changed the development environment. But before testing the change on our
mailtest.example.com system, let’s review the environment configuration changes you've made to the
Puppet master.

e puppet.conf on the master now contains a development and testing section.
e The Puppet master process has been restarted to activate the change to puppet. conf.
e Youupdated modulepath and manifest in the development and testing section.
You cloned the modules VCS repository to /etc/puppet/environments/{testing,development}/modules.

e Youupdated the postfix module and committed the change to the development repository.

Testing the New Environments with the Puppet Agent

Now that you have multiple environments configured on the Puppet master system and have made a change to the
development environment, you're able to test this change using the Puppet agent. In order to tell Puppet to use an
environment other than production, use the environment configuration parameter or command line option:

puppet agent --noop --test --environment=testing

Tip Up through Puppet 3.0, the Puppet configuration on a node configures the environment that the node uses.
The Puppet master does not directly control which environment a machine connects to. This may change in the future
once issue #2834 is resolved; please watch http://projects.puppetlabs.com/issues/2834 for up-to-date information.
If you would like to manage the environment from the Puppet master, we recommend having Puppet manage the node’s
puppet . conf file and specify the environment parameter in the managed configuration file. After the bug is resolved,
it will be possible to set environments using an external node classifier (more on those later) or a Puppet master.

Running the Puppet agent on mailtest.example.comin the testing environment should produce the same
results as running the agent in the production environment.

Tip We recommend developing a habit of testing changes to Puppet using the --noop command-line option. As
mentioned in Chapter 1, the --noop option tells Puppet to check the current state of the system against the configuration
catalog, but does it not manage the resources on the node. This provides a safe way to determine if Puppet is going to
make a change. It’s also a unique feature of Puppet, unavailable in other tools.

89

http://mailtest.example.com/
http://projects.puppetlabs.com/issues/2834
http://mailtest.example.com/

CHAPTER 3 ' DEVELOPING AND DEPLOYING PUPPET

You can switch between the production and testing environments by simply removing the environment
command-line option. The default environment is production (defined in the main stanza in the puppet.conf file);
therefore, you need only leave the environment unspecified to switch back to the production environment:

puppet agent --noop --test

Notice that no resources are changing when switching between the two environments. This is because the
testing environment is a clone of the production environment, and you have not made any changes to either of
these two environments. In the last section, however, you made a change to the postfix module in the development
environment, and we expect the Puppet agent to update the main.cf configuration file for postfix with this change.

Let’s check the development environment in Listing 3-34.

Listing 3-34. Testing changes in the development environment

puppet agent --noop --test --environment=development

err: Could not retrieve catalog from remote server: Error 400 on SERVER:

Error: Syntax error at 'is' at /etc/puppet/environments/development/modules/postfix/manifests/init.pp:1 on
node mailtest.example.com/config.pp:17

warning: Not using cache on failed catalog
err: Could not retrieve catalog; skipping run

Unlike the testing and production environments we ran the Puppet agent in, this run in the development
environment resulted in an error. Such a bad error, in fact, that we didn’t even receive a valid configuration catalog
from the Puppet master. What happened?

Notice that the error message returned by the Puppet master provides the exact line number in the manifest
where the error occurred. The Puppet parser is choking on the nonsense we wrote into the beginning of the postfix
init.pp class. If we run the Puppet agent against the production environment, we can see in Listing 3-35 that
everything is still OK.

Listing 3-35. Verifying that the production environment is stable

puppet agent --test --noop
notice: Finished catalog run in 0.68 seconds

Let’s go back and fix the problem with the postfix class by removing the nonsense at the top. As you can see in
Listing 3-36, we've fixed the problem in the first line of the file.

Listing 3-36. Git diff of the fix

diff --git a/postfix/manifests/init.pp b/postfix/manifests/init.pp
index 3331237..241b4bb 100644

--- a/postfix/manifests/init.pp

+++ b/postfix/manifests/init.pp

0@ -1,3 +1,4 @@

+#The main postfix class

class postfix {
include postfix::install
include postfix::config
include postfix::service

90

http://mailtest.example.com/config.pp:17

CHAPTER 3 * DEVELOPING AND DEPLOYING PUPPET

This git output shows that we changed the top line to be a documentation comment.
Now, when we run Puppet agent in the development environment, we're no longer getting the error:

puppet agent --test --noop --environment=development

This verification step allowed us to make changes and test them in an isolated environment without impacting
Puppet nodes that have their agent running against the production environment. Now that you're confident our
change will not break production, you can commit the changes as shown in Listing 3-37.

Listing 3-37. Commiting changes to git

$ git add
/etc/puppet/environments/development/modules/postfix/manifests/init.pp
$ git commit -m 'Addeddocs comment to postfix class..'

Created commit d69bc30: Added docs comment to postfix class.

1 files changed, 2 insertions(+), 1 deletions(-)

In the next section, we examine the workflow of merging changes like this into the testing and production
environments. This workflow helps teams of developers and system administrators work together while making
changes to the system, without impacting production systems, through the use of Puppet environments.

Environment Branching and Merging

As you saw in the previous section, configuring multiple environments in Puppet requires three things:
¢ Modifying the Puppet configuration file on the Puppet master
e Populating the directories specified in the modulepath
e Maintaining a set of version control working copies in each of those directories

One of the key benefits of version control systems is the ability to manage and organize the contributions from a
group of people. In this section, we’ll explore how a group of people may use Puppet environments, version control,
and the concept of a branch to effectively coordinate and manage their changes to the configuration system. Branches
are lines of independent development in a repository that share a common history. A branch could be a copy of our
development environment with changes made to it; it shares a common history with the development environment
but has a history of its own, too. Branches allow multiple people to maintain copies of an environment, work on them
independently, and potentially combine changes between branches or back into the main line of development.

Expanding on our hypothetical company, imagine we have a small team of people working together: a system
administrator, a developer, and an operator. In this exercise, we’ll explore how this team effectively makes changes
that do not impact one another, can be merged into the main development and testing branch, and ultimately make
their way to the production infrastructure.

Setting Up a Central Repository

Before the small group is able to work together in harmony, you'll need to make a few slight changes to the version
control system. Git is unique compared to other version control systems, such as Subversion, in that each repository
stands apart and is complete without the need to perform a checkout from a central repository. When working with a
team, however, it is convenient to have a central place to store and track changes over time.

In this section, you'll clone a copy of the /etc/puppet/modules repository into /var/lib/puppet/git/modules.git
and use this location as the “central” repository. It is central by convention only; there is technically nothing different
about the repository that makes it any different from the other Git repositories we’'ve been working with in this chapter.

91

CHAPTER 3 ' DEVELOPING AND DEPLOYING PUPPET

Once you have a repository designated as the central location, everyone will clone this repository and submit their
changes back to it for review and testing. Let’s go through this process now. Using a bare Git repository on the Puppet
master is less than ideal for production use. It is recommended that you use a Git server such as Gitolite. However, a bare
Git repository provides all the essential ingredients for our demonstration of the iterative development process using
Puppet.

Creating a Bare Repository for the Modules

First, you need to create a “bare” repository containing your Puppet modules (Listing 3-38). A bare repository in Git
is a repository with a history of commits, but no working copy. We want to create a bare repository to help make sure
files aren’t accidentally directly modified in the central location. Modifications should only happen through commits
pushed to this location. We're going to perform these steps as the Puppet user, who is usually running as puppet, in
order to help ensure that file permissions and ownership remain consistent when different users are modifying the
repository.

Listing 3-38. Creating a central repository for Git

$ cd /var/1lib/puppet

$ mkdir git

$ chown puppet:puppet git

$ sudo -H -u puppet -s

$ cd /var/lib/puppet/git

$ git clone --bare /etc/puppet/modules modules.git

Initialized empty Git repository in /var/lib/puppet/git/modules.git/

Note We recommend storing the central version control repository in the home directory of the Puppet user to start.
This may vary from system to system, and it may not be /var/1lib/puppet on your platform.

Making Individual Changes

Once you have a central repository, it’s time for everyone in the group to check out their own personal copies to work
on. We recommend they do this in their home directories. Changes will be made there and submitted to the central
repository for review.

In small environments with few administrators, especially test environments where people are still getting used
to Puppet and Git, the workflow just outlined can be performed. The workflow is essentially this:

1. Clone the Puppet repository from the central repository.

2. Make changes and then push a testing branch to the central repository.

Cd

Change directory to the development environment and check out the branch from the
central repository.

Run puppet --test --environment=development on a test machine.
Repeat steps 2-4 until good code is produced.

Merge branch into master with local clone, push to central repository.

N o a &

Change directory to the production environment and checks out the master branch.

92

CHAPTER 3 * DEVELOPING AND DEPLOYING PUPPET

Tip To help prevent typographical errors from being accepted into the repository, it is a good idea to execute
puppet parser validate asa precommit hook in your version control system. Most version control systems support
hook scripts to accept or deny a commit. If you use Subversion or Git, example precommit hooks are available online at
http://projects.puppetlabs.com/projects/1/wiki/Puppet Version Control. The puppet-lint command can also
be run at this time.

Dynamic Puppet Environments with Git Branches

Puppet environments are a powerful tool for rapidly testing changes to Puppet code. There is a way to dynamically
create them via post-receive hook in your version control system. A post-receive hook is a simple program or shell
script that runs on the Git server after a successful push has been performed. A new workflow is created from this:

1. Clone the puppet repository from a central repository.

2. Make changes, and then push a testing branch named featurel.

3. The Git server fires off a post-receive hook that takes the following action:
a. Create anew folder /etc/puppet/environments/featurel.

b. Perform a Git clone of the central repository in the folder featurel.
c. Checkout the branch feature1.

Go to a test machine and issue puppet --test --environment=featurel.
Repeat steps 2-4 until good code is produced.

Merge the branch feature1 into the master, and push it to the Git server.

N o o &

The Git server fires off the same post-receive hook, which now detects it is updating an
environment and performs only an update.

This workflow looks very similar to the previous one, but with the creation of environments being done by a
script. The key optimization is that all Git branches that aren’t master/production are testing branches. There is no
time spent moving a code base into a testing environment; it’s automatically put into one whenever you push. The
Git hook is clever enough to know when to create a new environment, when to update one, and when to delete one
once it’s no longer needed. This means that the full power of the branch, develop, test, and merge model of modern
coding can be brought to bear on your Puppet code repository. The manual testing environment workflow is tedious
and error-prone, whereas dynamic Git environments are all created automatically and by experimentally vetted
procedural code.

The first step in configuring this is to further modify the Puppet master’s puppet . conf file to look like Listing 3-39.
You can safely remove the [production] stanza now.

Listing 3-39. Setting up dynamic environments in puppet.conf

[main]
modulepath=/etc/puppet/environments/$environment/modules/
manifest=/etc/puppet/environments/$environment/manifests/site.pp

93

http://projects.puppetlabs.com/projects/1/wiki/Puppet_Version_Control

CHAPTER 3 ' DEVELOPING AND DEPLOYING PUPPET

Here we have used the $environment variable, which expands out to the name of the environment. Because we
have a clone of our Puppet repository in a directory under environments, this will work perfectly. The environment
production is the default environment and will be the environment that minimally configured nodes will check-in
under. This means that you should run the master branch of your Git repository under the name production. To
accomplish this, navigate to the top of the bare repo on your Git server and make the changes specified in Listing 3-40.

Listing 3-40. Setting default branch to production on the central repository

root@pro-puppet:puppet.git# 1s
HEAD config hooks info objects packed-refs refs

root@pro-puppets:~# cat HEAD
ref: refs/heads/master

root@pro-puppet4:~# echo "ref: refs/heads/production” > HEAD

root@pro-puppet4:~# cat HEAD
ref: refs/heads/production

This change will make fresh clones and pulls use the production branch by default.

If you are using Hiera and the YAML back-end, whose configuration and use will be covered in Chapter 12, you
will have to make a choice. In some cases you may want one Hiera directory for all environments; in others you may
want to have per-environment Hiera directories. In the latter case, it is common to have a data directory within your
Puppet manifest Git repository. There are a number of approaches to implementing that strategy. The most direct
is to put your Hiera YAML files under Git in a directory called data. Other popular (but more complex) methods
include using a second Git repository only for Hiera files and using either git subtree or git submodule to attach it
to the Puppet manifest Git repository. In this example we will assume that you are using Hiera files that are directly
available in the Puppet manifests Git repository. The hiera.yaml configuration looks very similar to the puppet.conf
configuration and is shown in Listing 3-41.

Listing 3-41. Hiera configuration for dynamic environments

:backends:
- yaml
- file
:hierarchy:
- environments/%{::environment}/data/fqdn/%{::fqdn}
- environments/%{::environment}/data/osfamily/%{: :0osfamily}/common

- environments/%q{::environment}/data/common

tyaml:
:datadir: /etc/puppet/

:file:
:datadir: /etc/puppet/

Hiera configuration will be covered in more detail in Chapter 12.

94

CHAPTER 3 * DEVELOPING AND DEPLOYING PUPPET

The Git Hook

We will need to create a post-receive hook. The Computer Action Team (CAT) at Portland State University is where the
original implementation of Git dynamic environments was developed. They have a two-component hook on GitHub
for anyone to use. A small shell script serves as the post-receive hook and uses SSH to log into the Puppet master to
run the second component of the hook. We will need to set up ssh-key auth in two directions. The Git user on the Git
server will need to be able to ssh to the Puppet master as the Puppet user, and the Puppet user on the Puppet master
will need read access to all branches of the Puppet manifests Git repository. Having accomplished this, let’s install the
two component hook in Listing 3-42.

Listing 3-42. Installing a Puppet hook

root@pro-puppet:
root@pro-puppet:
root@pro-puppet:

puppet-sync

root@pro-puppet:
root@pro-puppet:

README.textile

root@pro-puppet:
root@pro-puppet:

HEAD

root@pro-puppet:
root@pro-puppet:

~# cd /tmp/
/tmp# git clone https://github.com/pdxcat/puppet-sync.git
/tmp# 1s

/tmp# cd puppet-sync/

/tmp/puppet-sync# 1s

extra post-receive puppet-sync

/tmp/puppet-sync# cd ~git/repositories/puppet.git

~git/repositories/puppet.git# ls

config hooks info objects packed-refs refs
~git/repositories/puppet.git# cp /tmp/puppet-sync/post-receive hooks/post-receive
~git/repositories/puppet.git# scp puppet-sync puppet@puppemaster:/usr/local/bin/

puppet-sync

With all the files in place, bounce the Puppet master to reread puppet. conf and make an attempt to push a
testing branch in Listing 3-43.

Listing 3-43. Testing the Puppet hook

dev@machine:~/puppet$ 1s

data extras manifests modules
dev@machine:~/puppet$ git co -b testing_environment
Switched to a new branch 'testing environment'
dev@machine:~/puppet$ git push origin testing environment
Total 0 (delta 0), reused 0 (delta 0)

remote: Trying puppet@puppetmaster

remote: .
remote: | Host
remote: | Branch
remote: | Deploy To
remote: | Repository
remote: °

: promaster.example.com

: testing_environment

: /etc/puppet/environments/testing_environment
: git@gitserver.example.com:puppet.git

PuppetSync ---

If everything went well, you can run Puppet against this new environment, as shown in Listing 3-44.

Listing 3-44. Testing the dynamic environment using a Puppet client

root@pro-puppet-client# puppet agent --test --environment=testing environment
Info: Retrieving plugin
Info: Loading facts in ...

95

https://github.com/pdxcat/puppet-sync.git
http://promaster.example.com/
http://git@gitserver.example.com:puppet.git

CHAPTER 3 ' DEVELOPING AND DEPLOYING PUPPET

Info: Caching catalog for pro-puppet-client.example.com
Info: Applying configuration version '1367388457'
Notice: Finished catalog run in 19.36 seconds

One common error is that displayed when you test against an environment that doesn’t exist, as shown in Listing 3-45.

Listing 3-45. The error Puppet gives when a client connects to an environment that doesn'’t exist

root@pro-puppet-client# puppet agent --test --environment=testing environ

Info: Retrieving plugin

Error: /File[/var/lib/puppet/1ib]: Could not evaluate: Could not retrieve information from
environment testing environ source(s) puppet://puppetmaster.example.com/plugins

Notice: /File[/var/lib/puppet/lib/puppet]: Dependency File[/var/lib/puppet/lib] has failures: true
Warning: /File[/var/lib/puppet/lib/puppet]: Skipping because of failed dependencies

Notice: /File[/var/lib/puppet/1ib/puppet/provider]: Dependency File[/var/lib/puppet/lib] has
failures: true

Warning: /File[/var/lib/puppet/1ib/puppet/provider]: Skipping because of failed dependencies
Notice: /File[/var/lib/puppet/1ib/puppet/provider/database_user]: Dependency
File[/var/lib/puppet/lib] has failures: true

Warning: /File[/var/lib/puppet/lib/puppet/provider/database user]: Skipping because of failed dependencies
Notice: /File[/var/1lib/puppet/1ib/puppet/provider/database user/mysql.rb]: Dependency
File[/var/1lib/puppet/lib] has failures: true

You should learn to recognize this error, because it is both common and nonobvious.

Once the Git dynamic environment methodology is in place, you and your team can branch and merge as well.
Getting tested code into production is as easy as merging a test branch into production and pushing up to the Git
server. PuppetSync is even smart enough to handle forced pushes and rebases!

Summary

You've seen how Puppet environments enable a team of contributors to work effectively and efficiently. Puppet
environments, combined with a modern version control system, enable teams to make changes simultaneously and
in parallel without obstructing each other’s work. The process a single team member may follow in order to make
changes is summarized here:

1. Develop changes in a local topic branch.
Rebase against the master branch to remove any unnecessary commits.
Publish the topic branch to the central repository, creating a dynamic environment.

Try the changes using puppet agent --test --environment.

LA

Merge to production and push; the code is now live!

Resources

e Debian stable, testing, unstable releases and distributions:
http://www.debian.org/doc/FAQ/ch-ftparchives.en.html

e Puppet Labs environments curated documentation:
http://docs.puppetlabs.com/guides/environment.html

96

http://pro-puppet-client.example.com/
http://puppet//puppetmaster.example.com/plugins
http://www.debian.org/doc/FAQ/ch-ftparchives.en.html
http://docs.puppetlabs.com/guides/environment.html

CHAPTER 4

Scaling Puppet

You've seen that the Puppet agent and master require very little work to get up and running on a handful of nodes
using the default configuration. It is, however, a significantly more involved undertaking to scale Puppet to handle
hundreds of nodes. Yet many installations are successfully using Puppet to manage hundreds, thousands, and tens of
thousands of nodes. In this chapter, we cover a number of proven strategies that are employed to scale Puppet.

e You'll see how to enable a single Puppet master system to handle hundreds of nodes using the
Apache web server.

e We also demonstrate how to configure more than one Puppet master system to handle
thousands of nodes using a load balancer.

e Throughout, we make a number of recommendations to help you avoid the common pitfalls
related to performance and scalability.

e We will demonstrate a masterless Puppet configuration, in which each node has a full
checkout of the puppet code and runs puppet apply locally, usually via cron. This approach
enables infinite scalability and redundancy; the nodes no longer share any single bottleneck.

e Finally, you'll learn how to measure the performance of the Puppet master infrastructure in
order to determine when it’s time to add more capacity. We also provide two small scripts to
avoid the “thundering-herd effect” and to measure catalog compilation time.

First, though, we to need review some of the challenges you'll be facing along the way.

Identifying the Challenges

Earlier in the book, you learned a bit about Puppet’s client-server configuration and the use of SSL to secure connections
between the agent and the master. Puppet uses SSL, specifically the HTTPS protocol, to communicate. As a result, when
we're scaling Puppet we are in fact scaling a web service, and many of the problems (and the solutions) overlap with
those of traditional web scaling. Consequently, the two challenges we’re going to need to address when scaling Puppet
are these:

e Scaling the transport
e Scaling SSL

The first challenge requires that we increase the performance and potential number of possible master and
agent connections. The second requires that we implement good management of the SSL certificates that secure
the connection between the master and the agent. Both challenges require changes to Puppet’s out-of-the-box
configuration.

97

CHAPTER 4 © SCALING PUPPET

In Chapter 1 we started the Puppet Master using the puppet master command. The default Puppet Master
configuration makes use of the Webrick Ruby-based HTTP server. Puppet ships Webrick to eliminate the need to set up a
web server like Apache to handle HTTPS requests immediately. While the Webrick server provides quick and easy testing,
it does not provide a scalable solution and should not be used except to evaluate, test, and develop Puppet installations.
In production situations, a more robust web server such as Apache or Nginx is necessary to handle the number of client
requests. Therefore, the first order of business when scaling Puppet is to replace the default Webrick HTTP server. In the
following section, we first replace Webrick with the Apache web server on a single Puppet master system and then show
how this strategy can be extended to multiple Puppet master systems working behind a load balancer.

The second change to Puppet’s out-of-the-box configuration is the management of the SSL certificates that
Puppet uses to secure the connection between agent and master. The Puppet master stores a copy of every certificate
issued, along with a revocation list. This information needs to be kept in sync across the Puppet worker nodes. So,
together with the transport mechanism between the agent and master, we’'ll explore the two main options of handling
SSL certificates in a scalable Puppet deployment:

e Using a single Certificate Authority (CA) Puppet master

e Distributing the same CA across multiple Puppet masters

Running the Puppet Master with Apache and Passenger

The first scaling example we're going to demonstrate is the combination of the Apache web server with a module
called Phusion Passenger, which is also known as mod_rails, mod_passenger, or just Passenger. Passenger is an
Apache module that allows the embedding of Ruby applications, much as mod_php or mod_perl allow the embedding
of PHP and Perl applications. The Passenger module is not a standard module that ships with Apache web server and,
as a result, must be installed separately. Passenger is available as a RubyGem package, or it may be downloaded and
installed from http://www.modrails.com/. In some distributions, Passenger may be available from packages. We will
discuss installing Passenger in depth.

For networks of one to two thousand Puppet-managed nodes, a single Puppet master system running inside
Apache with Passenger is often sufficient. Later in this chapter, we will examine how to run multiple Puppet master
systems to provide high availability or support for an even larger number of Puppet-managed nodes. These more
complex configurations will all build on the basic Apache and Passenger configuration we introduce to you here.

We will also build upon the Puppet master configuration we created in Chapter 2 and the environment structure we
introduced in Chapter 3.

First, you need to install Apache and Passenger, and then configure Apache to handle the SSL authentication
and verification of the Puppet agent, and finally connect Apache to the Puppet master and ensure that everything is
working as expected.

As we scale Puppet up, it is important to draw the distinction between the idea of a front-end HTTP request
handler and a back-end Puppet master worker process. The front-end request handler is responsible for accepting the
TCP connection from the Puppet agent, selecting an appropriate back-end worker, routing the request to the worker,
accepting the response, and finally serving it back to the Puppet agent. This distinction between a front-end request
handler and a back-end worker process is a common concept when scaling web services.

Installing Apache and Passenger

To get started, you need to install Apache and Passenger. Both are relatively simple and easy to set up.

Installing Apache and Passenger on Debian/Ubuntu LTS

Installing a Puppet master on Debian/Ubuntu is trivial because Puppet Labs supplies a package from its
apt.puppetlabs.comrepository to do all the work.

98

http://www.modrails.com/
http://apt.puppetlabs.com/

CHAPTER 4 © SCALING PUPPET

First, set up the apt.puppetlabs.comrepository as described in Chapter 1. Second, install the puppetlabs-
passenger package:

root@pro-puppet-master:~# apt-get install puppetmaster-passenger

This will install all the dependencies and set up your Puppet master for use. You can copy your modules and
manifests from earlier chapters into /etc/puppet. The package has created a certificate authority for you by detecting
the machine’s fully qualified domain name (FQDN) and has started the service. Somewhat confusingly, the Puppet

master is controlled through the service apache2, so for instance restarting the Puppet master looks like this:

root@pro-puppet-master:~# service apache2 restart

Note When you revoke a certificate on the Puppet master, it won’t take effect until Apache is restarted. This is
because Apache only reads the CRL (Certificate Revocation List) file on startup. When debugging certificate and SSL
errors anywhere in the Puppet toolchain, it is a good idea to restart Apache frequently, because it does a lot of
certificate caching.

If appropriate, disable the Webrick server:

root@pro-puppet-master-ubuntu:~# update-rc.d -f puppetmaster remove

Installing Apache and Passenger on Enterprise Linux

Precompiled Passenger packages may not be available for your platform, however, making configuration a little more
complex. This section covers the installation of Apache and Passenger on the Enterprise Linux family of systems such
as CentOS, RedHat Enterprise Linux, and Oracle Enterprise Linux.

Begin by installing the Puppet Labs yum repository, as explained in Chapter 1. Then install the puppet-server
package. Also run puppet-master once to generate all necessary certificates. Finally disable the Puppet Webrick
server. Listing 4-1 summarizes the setup sequence.

Listing 4-1. Initial Puppet master setup on Enterprise Linux

[root@pro-puppet-master-centos ~]# yum install puppet-server
[root@pro-puppet-master-centos ~]# puppet master
[root@pro-puppet-master-centos ~]# pgrep -1f puppet

725 /usx/bin/ruby /usr/bin/puppet master
[root@pro-puppet-master-centos ~]# 1ls /etc/init.d/puppet*

puppet puppetmaster puppetqueue
[root@pro-puppet-master-centos ~]# /etc/init.d/puppet stop
Stopping puppet agent: [FAILED]
[root@pro-puppet-master-centos ~]# /etc/init.d/puppetmaster stop
Stopping puppetmaster: [oK]
[root@pro-puppet-master-centos ~]# /etc/init.d/puppetqueue stop
Stopping puppet queue: [FAILED]

[root@pro-puppet-master-centos ~]# chkconfig puppetmaster off

99

http://apt.puppetlabs.com/

CHAPTER 4 © SCALING PUPPET

Note The failed messages in the output simply mean those services were off to begin with. Turning them off here
is just for clarity to the reader. Puppet Queue is legacy and should always be off.

In Listing 4-1, we've used the yum command to ensure that Apache and the Apache SSL libraries are installed.
We've also ensured that the Apache service is not currently running. The next step is to obtain Passenger, which is
implemented as an Apache-loadable module, similar to mod_ss1 or mod_perl. Listing 4-2 shows the steps.

Listing 4-2. Installing Apache on Enterprise Linux

[root@pro-puppet-master-centos ~]# puppet resource package httpd ensure=present
Notice: /Package[httpd]/ensure: created
package { 'httpd':

ensure => '2.2.15-28.el6.centos’,

}

[root@pro-puppet-master-centos ~]# puppet resource package mod_ssl ensure=present
Notice: /Package[mod ssl]/ensure: created
package { 'mod ssl':

ensure => '2.2.15-28.el6.centos’,

}

[root@pro-puppet-master-centos ~]# puppet resource service httpd ensure=stopped
service { 'httpd':
ensure => 'stopped’,

}

In order to install Passenger on our Enterprise Linux system, we need to install it from RubyGems. This is not the
only way to install Passenger, but it is the recommended way at this time. First install RubyRems from packages,
as shown in Listing 4-3.

Listing 4-3. Install the rubygems, rack, and passenger packages

[root@pro-puppet-master-centos ~]# puppet resource package rubygems ensure=present
package { 'rubygems':
ensure => '1.3.7-1.el6’,

}

[root@pro-puppet-master-centos ~]# puppet resource package rack ensure=present provider=gem
Notice: /Package[rack]/ensure: created
package { 'rack':

ensure => ['1.5.2"'],

}

[root@pro-puppet-master-centos ~]# puppet resource package passenger ensure=present provider=gem
Notice: /Package[passenger]/ensure: created
package { 'passenger':

ensure => ['4.0.5'],

}

100

CHAPTER 4 © SCALING PUPPET

Note In Listing 4-3 we’ve added another parameter to the puppet resource commands: we’re using the gem
provider to install a package from RubyGems. This selection of which provider to use is one of the very powerful features
of Puppet and one of the features that distinguishes it from other tools. Provider selection is automatic on most systems;
that is, Puppet will default to using the yum provider on RedHat systems, but if you want to install a gem from RubyGems,
you must manually specify which provider you want to use. There are package providers for all the major dynamic
languages’ package archives: pip for Python and CPAN for Perl, for example. There are a couple of modules on the Puppet
Forge that bring support for an NPM provider into Puppet. Provider selection comes into play for other types as well;
for example, the user type can be managed either by useradd, which is the default, or by hitting LDAP. There are some
caveats to using the gem provider, namely that the provider is nonfunctional until the rubygems package is installed from
system packages (or a functional gem binary is placed in the path by some other method, such as RVM or source).

Installing from Gems requires that we compile and install the actual Apache module. The RubyGem includes a
script to make this very easy:

[root@pro-puppet-master-centos ~]# passenger-install-apache2-module

The output of the passenger-install-apache2-module script is quite long and has been omitted. The script
is mostly friendly and is happy to suggest additional packages to install in order to enable correct compilation. For
additional information and troubleshooting tips related to installing Passenger using RubyGems, please see:
http://www.modrails.com/documentation/Users%20guide%20Apache.html

Often installing Passenger dependencies essentially boils down to the following:

[root@pro-puppet-master-centos ~]# yum install curl-devel ruby-devel httpd-devel
apr-devel apr-util-devel

Tip Up-to-date information about Passenger versions known to work with Puppet (and updated installation
documentation) is available online at http://docs.puppetlabs.com/guides/passenger.html.

Configuring Apache and Passenger

Again, if you haven’t already done so, make sure you've started the Puppet master at least once to create the SSL
certificates you're going to configure Apache to use. Apache will then verify that the Puppet agent certificate is signed
with the generated Puppet CA and present a certificate that the Puppet agent uses to verify the authenticity of the
server. Once you have your SSL certificates in place, configure Apache by enabling the Passenger module and creating
an Apache virtual host for the Puppet master service. The virtual host configures Apache to listen on TCP port 8140
and to encrypt all traffic using SSL and the certificates generated for use with the Puppet master. The virtual host

also configures Passenger to use the system’s Ruby interpreter, and it provides the path to the Rack configuration file
named config.ru (Listing 4-4).

101

http://www.modrails.com/documentation/Users%20guide%20Apache.html
http://docs.puppetlabs.com/guides/passenger.html

CHAPTER 4 © SCALING PUPPET

Listing 4-4. The Apache Passenger and Puppet master vhost example configuration file

[root@pro-puppet-master-centos ~]# cat /etc/httpd/conf.d/passenger.conf

LoadModule passenger module /usr/lib/ruby/gems/1.8/gems/passenger-4.0.10/buildout/apache2/mod passenger.so
PassengerRoot /usr/lib/ruby/gems/1.8/gems/passenger-4.0.10

PassengerRuby /usr/bin/ruby

And the passenger performance tuning settings:
PassengerHighPerformance On

Set this to about 1.5 times the number of CPU cores in your master:
PassengerMaxPoolSize 6

Recycle master processes after they service 1000 requests
PassengerMaxRequests 1000

Stop processes if they sit idle for 10 minutes
PassengerPoolIdleTime 600

Listen 8140
<VirtualHost *:8140>
SSLEngine On

Only allow high security cryptography. Alter if needed for compatibility.
SSLProtocol A1l -SSLv2

SSLCipherSuite HIGH: 'ADH:RC4+RSA: -MEDIUM: -LOW: -EXP

SSLCertificateFile /var/lib/puppet/ssl/certs/pro-puppet-master-centos.pem
SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/pro-puppet-master-centos.pem
SSLCertificateChainFile /var/lib/puppet/ssl/ca/ca_crt.pem

SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem

SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem

SSLVerifyClient optional
SSLVerifyDepth 1
SSLOptions +StdEnvVars +ExportCertData

These request headers are used to pass the client certificate
authentication information on to the puppet master process
RequestHeader set X-SSL-Subject %{SSL_CLIENT_ S DN}e
RequestHeader set X-Client-DN %{SSL_CLIENT S DN}e

RequestHeader set X-Client-Verify %{SSL_CLIENT VERIFY}e

PassengerEnabled On
DocumentRoot /usr/share/puppet/rack/puppetmasterd/public/
<Directory /usr/share/puppet/rack/puppetmasterd/>
Options None
AllowOverride None
Order Allow,Deny
Allow from All
</Directory>
</VirtualHost>

Tip For more information about tuning Passenger, please see http://www.modrails.com/documentation/
Users%20guide%20Apache.html

102

http://www.modrails.com/documentation/Users%20guide%20Apache.html
http://www.modrails.com/documentation/Users%20guide%20Apache.html

CHAPTER 4 © SCALING PUPPET

This configuration file may appear a little overwhelming, but we're going to go over it and make sure it is correctly
configured for your environment.

This file configures two things: mod_passenger and the Puppet virtual host. The configuration here is
dependent on using Passenger 4.0.10. You may need to change the LoadModule line to the actual location of
mod_passenger.so, and you may need to change the PassengerRoot line as well. Listing 4-5 shows one trick for
finding where mod_passenger.so is located, though it will consume some time is to run.

Listing 4-5. Findingmod_passenger.so

[root@pro-puppet-master-centos-II ~]# find /usr -name 'mod_passenger.so'
/usr/1ib/ruby/gems/1.8/gems/passenger-4.0.10/buildout/apache2/mod_passenger.so

If that doesn’t work, try the version in Listing 4-6.

Listing 4-6. Findingmod_passenger.so with a larger scope

[root@pro-puppet-master-centos-II ~]# find / -name 'mod_passenger.so’
/usr/lib/ruby/gems/1.8/gems/passenger-4.0.10/buildout/apache2/mod_passenger.so

Set the PassengerMaxPoolSize to 1.5 times the number of CPU cores on your Puppet master. You can find the
number of cores in your computer by running this command:

[root@pro-puppet-master-centos-II ~]# facter processorcount
4

In particular, the RequestHeader statements are the source of much confusion among Puppet newcomers and
veterans alike. When using this configuration file example, make sure to replace pro-puppet-master-centos with the
FQDN of your own Puppet master system. The FQDN is easily found with the command shown in Listing 4-7.

Listing 4-7. Find the fully qualified domain name

[root@pro-puppet-master-centos-II ~]# facter fqdn.
Pro-puppet-master-centos-II

You can also find what the certs are named simply by looking in the /var/1ib/puppet/ssl/certs and /var/
lib/puppet/ssl/private directories. These certs are created by Puppet the first time it runs in master mode.

The line before the VirtualHost stanza, Listen 8140, makes sure Apache is binding and listening on TCP port
8140, the standard port for a Puppet master server.

Next, the virtual host stanza begins with <VirtualHost *:8140>. Please refer to the Apache version 2.2
configuration reference (http://httpd.apache.org/docs/2.2/) for more information about configuring Apache
virtual hosts.

SSL is enabled for the Puppet master-specific virtual host, turning SSLEngine on and setting the SSLCipherSuite
parameters. In addition to enabling SSL encryption of the traffic, certificates are provided to prove the identity of the
Puppet master service. Next, revocation is enabled using the SSLCARevocationFile parameter. The puppet cert
command will automatically keep the ca_crl.pem file updated as we issue and revoke new Puppet agent certificates.

Finally, Apache is configured to verify the authenticity of the Puppet agent certificate. The results of this
verification are stored in the environment as a standard environment variable. The Puppet master process running
inside Passenger will check the environment variables set by the SSLOptions and StdEnvVars configuration in order
to authorize the Puppet agent. In the section immediately following the SSL configuration, the results of verifying
the Puppet agent’s certificate are stored as client request headers as well as in standard environment variables.

Later in this chapter, you'll see how client request headers may be consulted by downstream workers to provide
authentication using standard environment variables.

103

http://httpd.apache.org/docs/2.2/

CHAPTER 4 © SCALING PUPPET

The last section of the Puppet master virtual host is the Rack configuration. Rack provides a common API for
web servers to exchange requests and responses with a Ruby HTTP service like Puppet. Rack is commonly used as
middleware between a Ruby application like Puppet and a web server like Apache or Nginx. This stanza looks for a
special file called config.ruin /usr/share/puppet/rack/puppetmaster (see Listing 4-8).

To install the Rack configuration file, we must first build out the directory structure needed by the Rack
application interface:

[root@pro-puppet-master-centos-II ~]# mkdir -p /usr/share/puppet/rack/puppetmasterd/{public,tmp}
Then create the Rack configuration file config.ru shown in Listing 4-8.

Listing 4-8. Puppet master Rack configuration file

[root@pro-puppet-master-centos-II ~]# cat /usr/share/puppet/rack/puppetmasterd/config.ru
a config.ru, for use with every rack-compatible webserver.
SSL needs to be handled outside this, though.

if puppet is not in your RUBYLIB:
$LOAD_PATH.unshift('/opt/puppet/1lib")

$0 = "master"

if you want debugging:
ARGV << "--debug"

ARGV << "--rack"

Rack applications typically don't start as root. Set --confdir and --vardir
to prevent reading configuration from ~puppet/.puppet/puppet.conf and writing
to ~puppet/.puppet

ARGV << "--confdir" << "/etc/puppet"

ARGV << "--vardir" << "/var/lib/puppet"”

NOTE: it's unfortunate that we have to use the "CommandLine" class
here to launch the app, but it contains some initialization logic
(such as triggering the parsing of the config file) that is very
important. We should do something less nasty here when we've
gotten our API and settings initialization logic cleaned up.

Also note that the "$0 = master" line up near the top here is
the magic that allows the CommandLine class to know that it's
supposed to be running master.

H oH H H HF H R H R R

--cprice 2012-05-22

require 'puppet/util/command_line'

we're usually running inside a Rack::Builder.new {} block,
therefore we need to call run *here*.

run Puppet::Util::CommandLine.new.execute

104

CHAPTER 4 © SCALING PUPPET

Finally, chown the config.ru file to the puppet user:

[root@pro-puppet-master-centos-II ~]# chown puppet /usr/share/puppet/rack/puppetmasterd/config.ru

Tip If you installed Puppet from packages, check your share directory structure for a config.ru example provided
by the package maintainer, often located at /usr/share/puppet/ext/rack/files/config.ru. For up-to-date Rack
configuration files, check the ext directory in the most recently released version of Puppet. This may be found online at
https://github.com/puppetlabs/puppet/tree/master/ext/rack/files.

The config.ru Rack configuration file should be owned by the puppet user and group. Passenger will inspect the owner
of this file and switch from the root system account to this less privileged Puppet service account when Apache is started.

APACHE SERVER NAME

In some cases when you are setting up a Puppet master without an FQDN, in Vagrant for testing purposes, for
example, it is sometimes necessary to modify the ServerName attribute of /etc/httpd/conf/httpd.conf to be
the same as your cert name. If this is the case you will see errors such as this:

Starting httpd: httpd: Could not reliably determine the server's fully qualified domain name,
using 127.0.0.1 for ServerName

The cert name is the name of the Issuer CA. All x509 certificates have an Issuer. The Common Name (CN) of your
CA certificate (as well as lots of other information about your certificate) can be found by running the following
openssl command:

[root@puppet-master-centos ~]# openssl x509 -in /var/lib/puppet/ssl/certs/puppet-master-1.
pdx.edu.pem -noout -text

Issuer: CN=Puppet CA: puppet-master-1.example.com

The cert name is the string following CA:

Testing the Puppet Master in Apache

We've covered the steps required to install and configure Apache and Passenger. You're now ready to test your changes
by starting the Apache service. Before doing so, make sure to double-check the ownership of the config.ru file. If there
is a certificate problem, make sure the existing SSL certificates are configured in the Puppet master Apache virtual

host configuration file, as shown in Listing 4-3 earlier in the chapter. You also want to make sure the Puppet master

is not already running. To start Apache and the new Puppet master service, you can again use the puppet resource
command, as shown in Listing 4-9.

105

https://github.com/puppetlabs/puppet/tree/master/ext/rack/files
http://puppet-master-1.example.com/

CHAPTER 4 © SCALING PUPPET

Listing 4-9. Starting Apache

puppet resource service httpd ensure=running enable=true hasstatus=true
service { 'httpd':

ensure => 'running’',

enable => 'true'

Running the Puppet agent against the Apache Puppet master virtual host (Listing 4-10) will allow you to test
the system:

Listing 4-10. Running Puppet

root@pro-puppet4:~# puppet agent --test

Info: Retrieving plugin

Info: Caching catalog for pro-puppet4

Info: Applying configuration version '1373245539'

Notice: /Stage[main]//Node[pro-puppet]/Package[emacs]/ensure: ensure changed 'purged' to 'latest’
Notice: Finished catalog run in 79.57 seconds

The Puppet agent does not provide any indication that the Puppet master service has switched from Webrick
to Apache. The best way to tell if everything is working is to use to Apache access logs (see Listing 4-11). The Puppet
master virtual host will use the combined access logs to record incoming requests from the Puppet agent.

Listing 4-11. Puppet requests in the Apache access logs

[root@pro-puppet-master-centos-II ~]# tail -f /var/log/httpd/access log

10.0.3.124 - - [07/Jul/2013:21:58:16 -0400] "GET /production/node/pro-puppets?

HTTP/1.1" 200 3689 "-" "Ruby"

10.0.3.124 - - [07/Jul/2013:21:58:18 -0400] "GET /production/file metadatas/plugins?
links=manage8recurse=true88ignore=---+%0A++-+%22.5vn%22%0A++-+CVS%OA++-+%22.git%228checksum_type=md5

HTTP/1.1" 200 283 "-" "Ruby"

10.0.3.124 - - [07/Jul/2013:21:58:19 -0400] "POST /production/catalog/pro-puppet4 HTTP/1.1" 200
1239 II_II “Ruby"

10.0.3.124 - - [07/Jul/2013:21:58:20 -0400] "PUT /production/report/pro-puppets

HTTP/1.1" 200 14 "-" "Ruby"

In the access_log file we can see that the Puppet agent issues an HTTP GET request using the URI
/production/node/pro-puppets. We can also see that the Puppet agent sends the list of facts about itself in the request
URI. The Puppet master compiles the modules and manifests into a configuration catalog and provides this catalog in
the HTTP. The 200 status code indicates that this operation was successful. Following the catalog run, the Puppet agent
submits a report using the PUT request to the URI /production/catalog/pro-puppet4. You'll find more information
about reports and reporting features in Puppet in Chapter 10.

In addition to the Apache access_log, the Puppet master process itself continues to log information about itself
to the system log. This information is available in /var/log/messages on Enterprise Linux based systems and in
/var/log/daemon on Ubuntu/Debian systems.

And that’s it! You've added an Apache and Passenger front-end to your Puppet master that will allow you to scale
to a much larger number of hosts.

106

CHAPTER 4 © SCALING PUPPET

Load-Balancing Multiple Puppet Masters

You've replaced the Webrick HTTP server with the Apache web server. Sometimes, though, you need more capacity
than a single machine can provide. In this case, you can scale the Puppet master horizontally rather than vertically.
Horizontal scaling uses the resources of multiple Puppet masters in a cluster to get more capacity than any one system
can provide. This configuration can accommodate environments with tens of thousands of managed nodes.

There are many options and strategies available to provide a front-end request handler. We're going to use HTTP
load balancing to direct client requests to available back-end services. Each Puppet master worker is configured
independently, using different Apache virtual host configurations bound to different ports on the loopback
interface 127.0.0.1. This allows multiple Puppet master workers to be configured and tested on the same operating
system instance and easily redistributed to multiple hosts; all you have to do is change the listening IP address and
port numbers in the load balancer and worker configuration files.

LOAD BALANCING

For an introduction to the general problem of load balancing and scalable web architectures, we recommend the
Wikipedia article titled “Load balancing (computing)” at http://en.wikipedia.org/wiki/Load balancing
(computing). In particular, the idea of horizontal and vertical scaling is an important one to consider. The Puppet
master scales well both horizontally and vertically, either by adding more systems working in parallel or by
increasing the amount of memory and processor resources.

HTTP Load Balancing

The problem of scaling HTTP-based web services to tens of thousands of clients has been around for quite some time.
There are many technical solutions provided by commercial products like Citrix NetScaler, Cisco I0S, and F5 BIG-IP.
Many open-source software projects also exist, including Apache itself, HAProxy, Nginx, and Pound.

We're going to build upon the single Puppet master configuration we just created and then split the work across two
Puppet master systems. We'll use the Apache Web server to handle the incoming Puppet agent requests and route them to
an available back-end Puppet master. If we require additional capacity, we can add additional Puppet master processes.
This configuration has the added benefit of high availability. If a particular Puppet master system has trouble or needs to
be taken out of service, the front-end load balancer will stop routing Puppet agent requests to that master process.

We're going to configure two Puppet master Apache virtual hosts, much like the virtual host we created in the previous
section. However, there is one important difference: we will disable SSL for the Apache virtual hosts. Instead, we’ll configure
anew front-end Apache virtual host to authorize incoming Puppet agent requests and handle the SSL encryption and
decryption of the traffic. This front-end load balancer will terminate the SSL connection, authenticate (or not) the Puppet
agent request, and then present this authentication information to the back-end Puppet master workers for authorization.

You'll see how Apache is able to pass the authentication information along through the use of client request
headers, and how the back-end virtual hosts are able to set environment variables for the Puppet master based on the
values of these client request headers.

Caution It is important to keep in mind that the load-balancing configuration discussed in this section authorizes and
terminates SSL connections at the load balancer. All traffic between the front-end load balancer and the back-end Puppet
master system is unencrypted. Requests directly to the worker virtual hosts may easily be forged and should only be
allowed from the load balancer. If this is an unacceptable configuration for your environment, consider using a TCP load
balancer in order to preserve the SSL encryption and pass it through to the back-end Puppet master virtual hosts. Use of
a TCP load balancer will be introduced at the end of the chapter.

107

http://en.wikipedia.org/wiki/Load_balancing_(computing
http://en.wikipedia.org/wiki/Load_balancing_(computing

CHAPTER 4 © SCALING PUPPET

Puppet Master Worker Configuration

When the Puppet master is running behind a load balancer, multiple Puppet master processes will be running on
different hosts behind the load balancer. The load balancer will listen on the Puppet port of 8140. Incoming requests
will be dispatched to available back-end worker processes, as illustrated in Figure 4-1. The example configuration
presented in this chapter configures the Puppet CA and workers all on the same host using unique TCP ports bound
to the loopback interface.

Puppet Master
Worker (x2)

Load Balancer

f

Puppet CA

Figure 4-1. Puppet master workers

To get started with our load-balancing configuration, you’ll copy the existing Puppet master virtual host we
configured in the previous section into two additional virtual host configurations. Each of these two virtual hosts will
have SSL disabled. You'll then create a third virtual host, listening on the standard Puppet master port of 8140 with
SSL enabled. This virtual host will forward a request to any available back-end virtual host. This won’t actually provide
any performance gains, but it will enable us to separate the concerns of building a functional HTTP proxy for Puppet
and building a multi-node Puppet configuration.

Note Running two Puppet master virtual hosts on the same server is not a recommended configuration. This is
meant to simulate running two servers both running Puppet behind a load balancer. Later on in this chapter we’ll build
that configuration; this is simply a stop-over to build the system in small steps.

First, move aside the existing Puppet master config, /etc/httpd/conf.d/passenger. conf, if you followed the
earlier example, so that it does not interfere with our new setup:

[root@pupept-master-1 ~]#mv /etc/httpd/conf.d/passenger.conf
/etc/httpd/conf.d/passenger moved_aside

Then, with a clean starting point, we will create the following four files in /etc/httpd/conf.d needed to geta
load-balancing Apache setup working:

e passenger.conf, which contains the Passenger configuration.

e puppetmaster_ proxy.conf, which will terminate the SSL, rewrite some headers, and
proxy/load balance to workers.

108

CHAPTER 4 © SCALING PUPPET

e puppetmaster worker 1.conf, which will contain a virtual host and points to a Rack directory
from which to serve Puppet requests.

e puppetmaster worker 2.conf, which will also contain a virtual host but points to a different
Rack configuration directory; this worker also serves Puppet requests.

First, create the file /etc/httpd/conf.d/passenger.conf, where Passenger configuration will be stored. As shown
in Listing 4-12, this is a direct copy of what was in the top of our old configuration file.

Listing 4-12. Contents of the new passenger.conf

[root@pupept-master-1 ~]#cat /etc/httpd/conf.d/passenger.conf
LoadModule passenger module /usr/lib/ruby/gems/1.8/gems/passenger-4.0.10/buildout/apache2/mod_
passenger.so
PassengerRoot /usr/lib/ruby/gems/1.8/gems/passenger-4.0.10
PassengerRuby /usr/bin/ruby

And the passenger performance tuning settings:
PassengerHighPerformance On

Set this to about 1.5 times the number of CPU cores in your master:
PassengerMaxPoolSize 2

Recycle master processes after they service 1000 requests
PassengerMaxRequests 1000

Stop processes if they sit idle for 10 minutes
PassengerPoolIdleTime 600

Second, create the file /etc/httpd/conf.d/puppetmaster_proxy.conf where SSL will be terminated and load
balancing will be configured. As shown in Listing 4-13, this file again has some of the same configuration as the earlier
config, especially relating to the SSL Certificate file paths. Look over it carefully to make sure you have tweaked it for
your environment.

Listing 4-13. The puppetmaster_proxy.conf file

[root@pupept-master-1 ~]#cat /etc/httpd/conf.d/puppetmaster proxy.conf
Available back-end worker virtual hosts
NOTE the use of cleartext unencrypted HTTP.
<Proxy balancer://puppetmaster>
BalancerMember http://127.0.0.1:18140
BalancerMember http://127.0.0.1:18141
</Proxy>

Listen 8140
<VirtualHost *:8140>
SSLEngine on
SSLCipherSuite SSLv2:-LOW:-EXPORT:RC4+RSA
SSLProtocol -ALL +SSLv3 +TLSv1
SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM: -LOW:-SSLv2:-EXP
SSLProtocol A1l -SSLv2
SSLCipherSuite HIGH: IADH:RC4+RSA: -MEDIUM: - LOW: -EXP
Puppet master should generate initial CA certificate.
ensure certs are located in /var/lib/puppet/ssl
SSLCertificateFile /var/lib/puppet/ssl/certs/puppet-master-1.pem
SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/puppet-master-1.pem

109

http://127.0.0.1:18140/
http://127.0.0.1:18141/

CHAPTER 4 © SCALING PUPPET

SSLCertificateChainFile /var/lib/puppet/ssl/ca/ca_crt.pem

SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem

SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem

optional to allow CSR request, required if certificates distributed to client during provisioning.
SSLVerifyClient optional

SSLVerifyDepth 1

SSLOptions +StdEnvVars

The following client headers record authentication information for downstream workers.
RequestHeader set X-SSL-Subject %{SSL_CLIENT S DN}e

RequestHeader set X-Client-DN %{SSL_CLIENT_ S DN}e

RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

<Location />
SetHandler balancer-manager
Order allow,deny
Allow from all

</Location>

ProxyPass / balancer://puppetmaster/
ProxyPassReverse / balancer://puppetmaster/
ProxyPreserveHost On

</VirtualHost>

Third, create the file /etc/httpd/conf.d/puppetmaster worker 1.conf shown in Listing 4-14, where we will
create a worker process.

Listing 4-14. The puppetmaster_worker_ 1.conf file

[root@pupept-master-1 ~]#cat /etc/httpd/conf.d/puppetmaster worker 1.conf
Listen 18140
<VirtualHost 127.0.0.1:18140>
SSLEngine off

Obtain Authentication Information from Client Request Headers
SetEnvIf X-Client-Verify "(.*)" SSL_CLIENT VERIFY=$1
SetEnvIf X-SSL-Client-DN "(.*)" SSL_CLIENT S DN=$1

PassengerEnabled On
DocumentRoot /usr/share/puppet/rack/puppetmasterd 18140/public
<Directory /usr/share/puppet/rack/puppetmasterd_18140>
Options None
AllowOverride None
Order allow,deny
allow from all
</Directory>
</VirtualHost>

Notice that the DocumentRoot has changed. Each Rack application needs a separate Rack directory structure to

run in. Since we are putting two Puppet master applications on the same host, to demonstrate load balancing,
we need to create directories for each (Listing 4-15).

110

CHAPTER 4 © SCALING PUPPET

Listing 4-15. Create directories for two Rack environments

[root@pupept-master-1 ~]# mkdir -p /usr/share/puppet/rack/puppetmasterd 18140/{public,tmp}
[root@pupept-master-1 ~]# cp /usr/share/puppet/rack/puppetmasterd/config.ru
/usr/share/puppet/rack/puppetmasterd 18140/config.ru

[root@pupept-master-1 ~]# chown puppet /usr/share/puppet/rack/puppetmasterd 18140/config.ru

Here we depend on having a config.ru left over from when we initially set up Puppet to run under Passenger.
If you did not do that step, create the file as shown in Listing 4-8, earlier in this chapter.

Again it is critical that the config.ru file be owned by the puppet user, as this parameter decides which user the
Puppet master process runs under.

Caution The back-end worker process is listening on the local interface of 127.0.0.1. This prevents network systems
from reaching the unencrypted, plain-text back-end worker virtual host. In a production deployment, the back-end virtual
host is often on a different machine than the front-end load balancer. Care must be taken to ensure that the unencrypted
traffic is secure and protected. In general, the back-end virtual host should not accept connections from any machine
other than the front-end load balancer.

Fourth, repeat the steps for step 3, being sure to modify the number 18140 with 18141 everywhere. The file you
will create is /etc/httpd/conf.d/puppetmaster_worker 2.conf, and you will need to modify four lines inside it,
the Listen, Virtualhost, DocumentRoot, and Directory directives.

Front End Load Balancer Configuration Details

After we configure the first back-end Puppet master worker, we need to configure the front-end virtual host. This
front-end virtual host is going to perform the following tasks:

1. Terminate the SSL connection.

2. Authenticate the client request.

3. Set the authentication information in client request headers.

4. Pass the request along to one of the available back-end worker processes.

The configuration file for the front-end load balancer (Listing 4-14) is very similar to the original Apache
Passenger configuration file, with the addition of a reverse proxy stanza and the removal of the Passenger and Rack
configuration stanzas.

There are three main differences between the front-end load balancer configuration file in Listing 4-14 and
the stand-alone Apache Puppet master configuration in Listing 4-4. At the top of the load-balancer virtual host
configuration, a pool of back-end virtual hosts is defined in the Proxy stanza. Notice that two virtual hosts are listed,
port 18140 and port 18141, even though we have only configured the one listening on port 18140 so far.

Part of the responsibility of the front-end load balancer is to determine if each back-end worker is online and
available to handle requests. Since no worker virtual host is available on port 18141 yet, the front-end virtual host will
automatically take http://127.0.0.1:18141 out of rotation until it becomes available. The Puppet agent nodes will
not see an error message unless all back-end worker virtual hosts are marked as offline.

In addition to defining the list of back-end worker virtual hosts, the Proxy stanza gives the name
balancer://puppetmaster to the collection. When additional back-end virtual hosts are added to the system, they
should be listed using the BalancerMember keyword in the Proxy stanza. Once listed, they’ll automatically be added to
the rotation of back-end workers used by the front-end virtual host listening on port 8140.

111

http://127.0.0.1:18141/

CHAPTER 4 © SCALING PUPPET

The second important section of the front-end virtual host configuration file is the three RequestHeader lines. These
three configuration statements configure the front-end load balancer to set three client request headers containing
authentication information. When a back-end Puppet master virtual host receives a client request from the load balancer,
itwill inspect these client request headers and set environment variables based on their contents. The Puppet master
process will look to these environment variables while authorizing the Puppet agent request.

For the Puppet agent running on mail.pro-puppet.com, the client request headers used for authentication look
as shown in Listing 4-16.

Listing 4-16. Puppet agent authentication and authorization request headers

X-SSL-Subject: /CN=mail.pro-puppet..com
X-Client-DN: /CN=mail.pro-puppet.com
X-Client-Verify: SUCCESS

The X-SSL-Subject and X-Client-DN headers contain the same information, the common name from the verified
SSL certificate presented by the Puppet agent. This information is provided in two headers to support back-end HTTP
servers other than Apache. The X-Client-Verify header indicates to the back- end worker whether or not the load
balancer was able to verify the authenticity of the client SSL certificate. This value will be SUCCESS in Apache if the client
certificate is signed by a trusted CA, is not listed in the Certificate Revocation List, and has not expired.

The information set in the client request headers directly matches the SetEnvIf configuration lines configured in
the back-end Puppet master virtual host. We can see these lines in /etc/httpd/conf.d/puppetmaster worker_1.conf
as we configured them in Listing 4-17.

Listing 4-17. Setting the Apache environment variables

Obtain Authentication Information from Client Request Headers
SetEnvIf X-Client-Verify "(.*)" SSL_CLIENT VERIFY=$1
SetEnvIf X-SSL-Client-DN "(.*)" SSL_CLIENT S DN=$1

The authentication information in a load-balanced Puppet master configuration is passed from the load balancer
to the back-end workers using client request headers. This design allows heterogeneous front-end and back-end
HTTP systems to work together as long as the back-end HTTP server is able to read the Puppet agent certificate
common name and determine whether the certificate is currently valid. Once read from the headers, the back-end
HTTP server sets this information in two environment variables for Puppet to reference.

The third important section in the front-end load balancer configuration in Listing 4-14 tells Apache to route
all requests to the pool of Puppet master virtual hosts. This section is composed of the three lines ProxyPass,
ProxyPassReverse, and ProxyPreserveHost. These three statements tell Apache the virtual host listening on port
8140 should forward all Puppet agent requests to the pool of Puppet master workers named
balancer://puppetmaster.

Tip You can find detailed information about mod_proxy and additional configuration options online at
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html.

Testing the Load Balancer Configuration

We're now almost ready to test the new Puppet master configuration using the Puppet agent. Before doing so, you
need to make sure each virtual host is logging information in a clearly defined location. This will allow you to trace the
Puppet agent request as it passes through the front-end load balancer to the back-end worker virtual host.

112

http://mail.pro-puppet.com/
http:///CN=mail.pro-puppet..com
http:///CN=mail.pro-puppet.com
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html

CHAPTER 4 © SCALING PUPPET

To make it easier, let’s separate out the logging events for each virtual host by adding ExrrorLog and CustomLog
configuration options to each configuration file, as shown in Listing 4-18.

Listing 4-18. Configuring front-end logging

ErrorlLog /var/log/httpd/balancer_error.log
CustomLog /var/log/httpd/balancer_access.log combined
CustomLog /var/log/httpd/balancer_ssl requests.log "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"

Only three lines need to be inserted into the VirtualHost stanza to enable logging on the front end. Every request
coming into the Puppet master infrastructure will pass through the front-end virtual host and will be logged to the
balancer access.log file.

Worker virtual hosts do not handle SSL encrypted traffic and require only two configuration lines to be inserted
into the VirtualHost stanza. Every request routed to a specific worker will be logged into that worker’s access log file.
In Listing 4-19, we've included the TCP port number of the worker to uniquely identify the log file and the associated
worker.

Listing 4-19. Configuring worker logging

ErrorLog /var/log/httpd/puppetmaster worker error 1.log
CustomLog /var/log/httpd/puppetmaster worker access 1.log combined

Errorlog /var/log/httpd/puppetmaster worker error 2.log
CustomLog /var/log/httpd/puppetmaster worker access 2.log combined

Once the front-end load balancer and back-end worker virtual hosts have been configured to log to their own
log files, you need to restart Apache and makes sure the log files were created properly, as shown in Listing 4-20.

Listing 4-20. Restart Apache and check the /var/log/httpd directory

[root@pupept-master-1 /etc/httpd/conf.d]# service httpd restart
Stopping httpd: [oK]
Starting httpd: [oK]
[root@pupept-master-1 /var/log/httpd]# 1s -1 {balancer,puppetmaster}*.log
-Iw-r--r-- 1 root root 0 July 14 15:36 balancer_access.log

-Iw-r--r-- 1 root root 0 July 14 15:36 balancer_error.log

-Iw-r--r-- 1 root root 0 July 14 15:36 balancer_ssl requests.log
-IwW-r--r-- 1 root root 0 July 14 15:36 puppetmaster worker access 1.log
-Iw-r--r-- 1 root root 0 July 14 15:36 puppetmaster worker_ access 2.log
-IW-T--r-- 1 root root 0 July 14 15:36 puppetmaster worker error_1.log
-Iw-r--r-- 1 root root 0 July 14 15:36 puppetmaster_worker error_ 2.log

With the appropriate log files in place, you can now test the load balancer with a single back-end worker using
puppet agent, turning off one worker beforehand. Listing 4-21 shows the test.

Listing 4-21. Disable a worker and test Puppet

[root@pupept-master-1 /etc/httpd/conf.d]# mv puppetmaster worker 1.conf puppetmaster worker 1.disabled
root@localhost: ~ > puppet agent --test

Info: Retrieving plugin

Info: Caching catalog for puppet-client-1

113

CHAPTER 4 © SCALING PUPPET

Info: Applying configuration version '1373830011'

Notice: puppet is runnning

Notice: /Stage[main]//Node[default]/Notify[puppet is runnning]/message: defined 'message’ as
'puppet is runnning'

Notice: Finished catalog run in 0.06 seconds

Here we’ve run the puppet agent command and obtained a catalog from the Puppet master. The Apache
load-balancing virtual host listened on puppet.example.com port 8140 and received the Puppet agent request,
forwarded it along to the backend Puppet master virtual host listening on port 18140, and then provided the response
back to the Puppet agent.

We can check the Apache logs to verify that this is what actually happened, as shown in Listings 4-22 and 4-23.

Listing 4-22. Load balancer request log

[root@pupept-master-1 /etc/httpd/conf.d]# less /var/log/httpd/balancer access.log
192.168.1.12 - - [14/Jul/2013:19:26:47 +0000] "GET /production/node/puppet-client-1?
HTTP/1.1" 200 3851 "-" "-"

192.168.1.12 - - [14/Jul/2013:19:26:49 +0000] "GET /production/file metadatas/
plugins?links=manage8checksum_type=md58recurse=true88ignore=---+%0A++-+%22.5vn%22%0A++-
+CVS%OA++-+%22.git%22 HTTP/1.1" 200 283 "-" "-"

192.168.1.12 - - [14/Jul/2013:19:26:51 +0000] "POST /production/catalog/puppet-client-1
HTTP/1.1" 200 978 "-" "-"

192.168.1.12 - - [14/Jul/2013:19:26:51 +0000] "PUT /production/report/puppet-client-1
HTTP/1.1" 200 14 "-" "-"

Listing 4-23. First Puppet master worker request log

[root@pupept-master-1 /etc/httpd/conf.d]# tail -f /var/log/httpd/balancer error.log

[Sun Jul 14 19:26:47 2013] [error] (111)Connection refused: proxy: HTTP: attempt to connect to
127.0.0.1:18140 (127.0.0.1) failed

[Sun Jul 14 19:26:47 2013] [error] ap_proxy connect backend disabling worker for (127.0.0.1)

[root@pupept-master-1 /etc/httpd/conf.d]# less /var/log/httpd/puppetmaster worker access_1.log
127.0.0.1 - - [14/Jul/2013:19:26:47 +0000] "GET /production/node/puppet-client-1?

HTTP/1.1" 200 3851 "-" "-"

127.0.0.1 - - [14/3Jul/2013:19:26:51 +0000] "POST /production/catalog/puppet-client-1
HTTP/1.1" 200 978 "-" "-"

In Listing 4-22, you can see the incoming Puppet agent catalog request at 7:26 PM. The front-end load balancer
receives the request and, according to the balancer_error.log shown in Listing 4-23, disables the worker virtual host
on Port 18140. This leaves one additional worker in the balancer://puppetmaster pool, which receives the request,
as indicated in the puppetmaster worker access_1.log shown in the second part of the listing. Finally, the Puppet
agent uploads the catalog run report a few seconds later.

What happens, however, if all the back-end workers are disabled? Well, let’s see. To do this, disable the Puppet
master virtual host by renaming the configuration file, as shown in Listing 4-24.

Listing 4-24. Disable worker_2 and restart Puppet

[root@pupept-master-1 /etc/httpd/conf.d]# mv puppetmaster worker 2.conf puppetmaster worker 2.disabled
[root@pupept-master-1 /etc/httpd/conf.d]# service httpd restart

Stopping httpd: [oK]

Starting httpd: [oK]

114

http://puppet.example.com/

CHAPTER 4 © SCALING PUPPET
And then run puppet agent again (Listing 4-25).

Listing 4-25. Test the puppet agent command

root@localhost: ~ > puppet agent --test

Warning: Unable to fetch my node definition, but the agent run will continue:
Warning: Error 503 on SERVER: <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>

<title>503 Service Temporarily Unavailable</title>

</head><body>

We've discovered that the Puppet agent receives error 503 when no back-end Puppet master worker virtual
hosts are available. The front-end load balancer runs through its list of back-end workers defined in the
Proxy balancer://puppetmaster section of the puppetmaster proxy.conf file. Finding no available back-end
workers, the front-end returns HTTP error code 503, “Service Temporarily Unavailable,” to the client. This HTTP error
code is also available in the front-end load balancer’s error log file (Listing 4-26).

Listing 4-26. Apache front end load balancer error log

root@pupept-master-1 /etc/httpd/conf.d]# tail -f /var/log/httpd/balancer error.log

[Sun Jul 14 19:39:02 2013] [error] (111)Connection refused: proxy: HTTP: attempt to connect to
127.0.0.1:18141 (127.0.0.1) failed

[Sun Jul 14 19:39:02 2013] [error] ap proxy connect backend disabling worker for (127.0.0.1)
[Sun Jul 14 19:39:03 2013] [error] (111)Connection refused: proxy: HTTP: attempt to connect to
127.0.0.1:18141 (127.0.0.1) failed

[Sun Jul 14 19:39:03 2013] [error] ap_proxy connect backend disabling worker for (127.0.0.1)
[Sun Jul 14 19:39:03 2013] [error] (111)Connection refused: proxy: HTTP: attempt to connect to
127.0.0.1:18140 (127.0.0.1) failed

[Sun Jul 14 19:39:03 2013] [error] ap _proxy connect backend disabling worker for (127.0.0.1)

Now that you've seen one and no back-end masters working, let’s bring back both workers back online
(Listing 4-27).

Listing 4-27. Enable both workers

[root@pupept-master-1 /etc/httpd/conf.d]# mv puppetmaster worker 1.disabled puppetmaster worker 1.conf
[root@pupept-master-1 /etc/httpd/conf.d]# mv puppetmaster worker 2.disabled puppetmaster worker 2.conf

[root@pupept-master-1 /etc/httpd/conf.d]# service httpd restart
Stopping httpd: [oK]
Starting httpd: [OK]

Both back-end Puppet master virtual hosts are now online and responding to requests. You can check the status
of the Ruby processes Passenger has started using the passenger-status command. It shows that the Puppet master
process IDs started by Passenger when Puppet agent requests are routed to the back-end worker virtual hosts
(see Listing 4-28).

115

CHAPTER 4 © SCALING PUPPET

Listing 4-28. The passenger-status command

[root@puppet-master-1 ~]# passenger-status
Version : 4.0.10

Date : Mon Jul 15 17:47:42 +0000 2013
Instance: 3153

——————————— General information -----------
Max pool size : 2

Processes 12

Requests in top-level queue : 0

——————————— Application groups -----------
/usr/share/puppet/rack/puppetmasterd 18141#default:
App root: /usr/share/puppet/rack/puppetmasterd 18141
Requests in queue: 0
* PID: 3249 Sessions: 0 Processed: 9 Uptime: 12h 26m 55s
CPU: 0% Memory : 57M Last used: 3m 53s

/usr/share/puppet/rack/puppetmasterd 18140#default:
App root: /usr/share/puppet/rack/puppetmasterd 18140
Requests in queue: 0
* PID: 3221 Sessions: 0 Processed: 10 Uptime: 12h 26m 57s
CPU: 0% Memory : 57M Last used: 3m 52s

You can see the two Passenger processes servicing the front-end. With that, we’ve configured a simple and very
scalable Puppet master implementation. To scale it further, all you now need to do is follow a subset of these steps to
add additional back-end workers to the configuration and into the pool.

We also chose to configure the front-end and back-end virtual hosts all on the same system, as we can see
through the use of 127.0.0.1 in each of the back-end configuration files and the Proxy section of the front-end
virtual host. The choice to run all of the worker processes on the same host has greatly simplified the signing of SSL
certificates when connecting new Puppet agent nodes. As mentioned previously in this chapter, the serial number and
certificate revocation lists must be kept in sync across Puppet master systems that issue new client certificates. In the
next section, you'll see how to manage back-end worker processes on separate systems.

To complete the example, let’s start a Puppet master worker on a completely different host. This host and the
load balancer host, puppet-master-2 and puppet-master-1, respectively, will have unencrypted communication
so you should architect your network accordingly. If that is impossible, building a secure point-to-point tunnel with
IPsec or stunnel is a good option. Configure puppet-master-2 much as you did at the beginning of this chapter; as
a single-host Puppet master running under Rack/Passenger/Apache. The script build-puppetmaster-centos.sh,
available where other supplementary materials are, will streamline this procedure. On puppet-master-2 change the
configuration of /etc/httpd/conf.d/puppetmaster.conf to that shown in Listing 4-29.

Listing 4-29 The puppetmaster. conf file for Puppet master 2

[root@puppet-master-2 /etc/httpd/conf.d]# cat /etc/httpd/conf.d/puppetmaster.conf

LoadModule passenger module /usr/lib/ruby/gems/1.8/gems/passenger-4.0.10/buildout/apache2/mod_passenger.so
PassengerRoot /usr/lib/ruby/gems/1.8/gems/passenger-4.0.10

PassengerRuby /usr/bin/ruby

And the passenger performance tuning settings:
PassengerHighPerformance On

Set this to about 1.5 times the number of CPU cores in your master:
PassengerMaxPoolSize 6

116

CHAPTER 4 © SCALING PUPPET

Recycle master processes after they service 1000 requests
PassengerMaxRequests 1000

Stop processes if they sit idle for 10 minutes
PassengerPoolIdleTime 600

Listen 8140
<VirtualHost *:8140>

SSLEngine off

Obtain Authentication Information from Client Request Headers
SetEnvIf X-Client-Verify "(.*)" SSL_CLIENT VERIFY=$1
SetEnvIf X-SSL-Client-DN "(.*)" SSL_CLIENT S DN=$1

PassengerEnabled On
DocumentRoot /usr/share/puppet/rack/puppetmasterd/public/
<Directory /usr/share/puppet/rack/puppetmasterd/>
Options None
AllowOverride None
Order Allow,Deny
Allow from All
</Directory>

Errorlog /var/log/httpd/puppetmaster worker error.log
CustomLog /var/log/httpd/puppetmaster worker access.log combined

</VirtualHost>

Asyou can see, this host is configured to run only one Passenger, and it is configured to run on port 8140, the
standard Puppet port.

Next we need to add the external worker to the load balancer’s configuration. Modify
/etc/httpd/conf.d/puppetmaster_proxy.conf to have another member of the Puppet proxy group, as shown
in Listing 4-30.

Listing 4-30. Snippet of /etc/httpd/conf.d/puppetmaster_proxy.conf

Available back-end worker virtual hosts

NOTE the use of cleartext unencrypted HTTP

<Proxy balancer://puppetmaster>
BalancerMember http://127.0.0.1:18140
BalancerMember http://127.0.0.1:18141
BalancerMember http://192.168.1.11:8140

</Proxy>

Here puppet-master-2 has the IP address 192.168.1.11, and it has been added alongside the other
balance members.
Finally, we can restart the Apache daemons on both servers and attempt to connect with a client (Listing 4-31).

117

http://127.0.0.1:18140/
http://127.0.0.1:18141/
http://192.168.1.11:8140/

CHAPTER 4 © SCALING PUPPET

Listing 4-31. Restart httpd

[root@puppet-master-2 ~]# service httpd restart

Stopping httpd: [oK]
Starting httpd: [oK]
[root@puppet-master-1 ~]# service httpd restart

Stopping httpd: [oK]
Starting httpd: [OK]

root@puppet-client-1: ~ > puppet agent --test

Info: Retrieving plugin

Info: Caching catalog for puppet-client-1

Info: Applying configuration version '1373865649'

Notice: puppet is runnning

Notice: /Stage[main]//Node[default]/Notify[puppet is runnning]/message: defined 'message' as
'puppet is runnning'

Notice: Finished catalog run in 0.05 seconds

And we can view the log on the load balancer to confirm that the external worker is participating in the cluster
(Listing 4-32).

Listing 4-32. Puppet logs

[root@puppet-master-1 ~]# tail -f /var/log/httpd/balancer

balancer access.log balancer_error.log balancer_ssl requests.log
[root@puppet-master-1 ~]# tail -f /var/log/httpd/balancer access.log

192.168.1.12 - - [15/Jul/2013:04:49:54 +0000]

"POST /production/catalog/puppet-client-1.hsd1.or.comcast.net HTTP/1.1" 200 978 "-" "-"
192.168.1.12 - - [15/Jul/2013:04:49:54 +0000]

"PUT /production/report/puppet-client-1.hsd1.or.comcast.net HTTP/1.1" 200 14 "-" "-"

192.168.1.12 - - [15/Jul/2013:05:18:46 +0000]
"GET /production/node/puppet-client-1.hsd1.or.comcast.net? HTTP/1.1" 200 3851 "-" "-"
192.168.1.12 - - [15/Jul/2013:05:18:47 +0000]

"GET /production/file_metadatas/plugins?links=manage&checksum_type=md5&recurse=trued&ignore=---
+X0A++-+%22 . svn%22%0A++-+CVSEOA++-+%22.git%22 HTTP/1.1" 200 283 "-" "-"

Caution Each Puppet master has its own /etc/puppet/modules and /etc/puppet/manifests. It is critical that
these directories contain the same files on both hosts. The dynamic environments workflow and scripts described in
Chapter 3 can be adapted to do this automatically. Other solutions include using an NFS mount on both hosts or running
an rsync triggered by inotify running on one Puppet master.

Scaling Further

So far in this chapter, you've configured the Puppet master service in a stand-alone Apache virtual host. Scaling the
Puppet master system horizontally, you configured a number of Apache virtual hosts working together behind a
reverse proxy load balancer. Then you added an external Puppet master behind the proxy to increase your capacity
even further. Because the second Puppet master was only handling requests behind the first Puppet master, it provided

118

http://puppet-client-1.hsd1.or.comcast.net
http://puppet-client-1.hsd1.or.comcast.net
http://puppet-client-1.hsd1.or.comcast.net?

CHAPTER 4 © SCALING PUPPET

additional performance, but not additional availability. To get to the point where we have highly available Puppet
workers, we need to build out some more infrastructure. We will need to balance the Puppet master workers so that
they are equal and redundant. This means putting them behind the same proxy and externalizing the Puppet CA
service to another host. Eventually we will build redundancy into the Puppet CA service.

Puppet Certificate Authority Service Externalization

With a single Puppet master acting as an endpoint for all Puppet requests, both CA traffic and regular traffic, the
configuration of the CA service is straightforward. To remove that single point of failure, complexity must increase.
We will push the Puppet CA service onto a new host, actually a pair of hosts providing high availability.

We're going to show you how to use a hot (active) standby CA model to keep your certificate data synchronized.
This architecture allows you to keep all Puppet CA data in one place, thereby minimizing the effort needed to
maintain the Puppet master infrastructure (see Figure 4-2).

PuppetMaster
Worker(x2)
Puppet Client Load Balancer
S
PuppetCA
) Puppet CA
(Secondary)

Figure 4-2. Puppet agent HTTPS load balancing

To do this, you will configure a second system to periodically synchronize the Puppet CA files. If the active Puppet
CA system falls offline, the front-end load balancer will automatically redirect certificate requests to the hot standby.
With the CA kept in sync, the hot standby will be ready to serve certificate-signing requests for new hosts.

The hot standby model requires the front-end Apache load balancer to redirect all certificate requests from all
Puppet agent nodes to a specific set of Puppet master workers. We'll demonstrate how to do this and see how to test
the new configuration. Finally, we’ll show how to take the primary Puppet CA offline for maintenance and back online
again, including handling whether Puppet agents have submitted certificate requests to the hot standby.

Puppet CA Worker Configuration

The first step in building our HA Puppet Certificate Authority system is to build out two more hosts with the
Puppet/Rack/Passenger/Apache stack. We will call these two new hosts puppet-ca-1 and puppet-ca-2. You can again
follow the instructions from earlier in this chapter or run the script included with the supplemental materials. After
that, we can configure them to be CA servers for our existing Puppet infrastructure. First purge the existing SSL files to
ensure a clean starting point, as shown in Listing 4-33.

119

CHAPTER 4 © SCALING PUPPET

Listing 4-33. Purging the Puppet SSL files

[root@puppet-ca-1 ~]# rm -fr /var/lib/puppet/ssl
[root@puppet-ca-2 ~]# rm -fr /var/1lib/puppet/ssl

We do this to ensure that nothing leaks from initial setup into the new configuration we are setting up.

Create Endpoint Certificates for CA Hosts

Use the puppet agent command to generate a certificate (Listing 4-34) and have it signed by the current CA server.
This is the cert that the Puppet CA server will use as its SSL endpoint.

Listing 4-34. Creating and signing a certificate for puppet-ca-2

[root@puppet-ca-2 ~]# rm -fr /var/1lib/puppet/ssl/

[root@puppet-ca-2 ~]# puppet agent --test

Info: Creating a new SSL key for puppet-ca-2.pro-puppet.com

Info: Caching certificate for ca

Info: Creating a new SSL certificate request for puppet-ca-2.pro-puppet.com
Info: Certificate Request fingerprint (SHA256):
23:89:D3:02:D5:09:C4:DD:AF:CC:18:E3:EF:39:8E:2C:BC:
FB:48:47:63:84:2A:3B:C7:8D:2D:EE:41:A1:A8:D8

Exiting; no certificate found and waitforcert is disabled

[root@puppet-ca-2 ~]#

[root@puppet-master-1 ~]# puppet cert list

"puppet-ca-2.pro-puppet.com” (SHA256)
23:89:D3:02:D5:09:C4:DD:AF:CC:18:E3:EF:39:8E:2C:BC:FB:48:47:63:84:2A:3B:C7:8D:2D:EE:41:A1:A8:D8
[root@puppet-master-1 ~]# puppet cert sign puppet-ca-2.pro-puppet.com
Notice: Signed certificate request for puppet-ca-2.pro-puppet.com
Notice: Removing file Puppet::SSL::CertificateRequest puppet-ca-2.pro-puppet.com at
'/var/lib/puppet/ssl/ca/requests/puppet-ca-2.pro-puppet.com.pem’

[root@puppet-ca-2 ~]# service httpd restart
Stopping httpd: [FAILED]
Starting httpd: [OK]

Do the same for puppet-ca-1.

Sync CA Data to CA Hosts
Copy the SSL directory from puppet-master-1 to puppet-ca-1 and puppet-ca-2, as shown in Listing 4-35.

Listing 4-35. Copying the SSL directory

[root@puppet-master-1 ~]# rsync -PHaze ssh /var/lib/puppet/ssl/ca puppet-ca-1:/var/lib/puppet/ssl/
sending incremental file list
ca/
ca/ca_crl.pem
1023 100% 0.00kB/s 0:00:00 (xfer#1, to-check=14/16)
ca/ca_crt.pem
1903 100% 1.81MB/s 0:00:00 (xfer#2, to-check=13/16)
ca/ca_key.pem

120

http://puppet-ca-2.pro-puppet.com/
http://puppet-ca-2.pro-puppet.com/
http://puppet-ca-2.pro-puppet.com/
http://puppet-ca-2.pro-puppet.com/
http://puppet-ca-2.pro-puppet.com/
http://puppet-ca-2.pro-puppet.com/
http:///var/lib/puppet/ssl/ca/requests/puppet-ca-2.pro-puppet.com.pem

CHAPTER 4 © SCALING PUPPET

3243 100% 1.03MB/s 0:00:00 (xfer#3, to-check=12/16)
ca/ca_pub.pem
775 100% 151.37kB/s 0:00:00 (xfer#4, to-check=11/16)
ca/inventory.txt
768 100% 125.00kB/s 0:00:00 (xfer#s, to-check=10/16)
ca/serial
4 100% 0.49kB/s 0:00:00 (xfer#6, to-check=9/16)
ca/private/
ca/private/ca.pass
20 100% 1.95kB/s 0:00:00 (xfer#7, to-check=5/16)
ca/requests/
ca/signed/
ca/signed/puppet-client-1.pro-puppet.com.pem
1931 100% 125.72kB/s 0:00:00 (xfer#10, to-check=2/16)
ca/signed/puppet-master-1.pro-puppet.com.pem
2061 100% 125.79kB/s 0:00:00 (xfer#11, to-check=1/16)

sent 14064 bytes received 256 bytes 3182.22 bytes/sec
total size is 17734 speedup is 1.24
[root@puppet-master-2 ~]# rsync -PHaze ssh /var/lib/puppet/ssl/ca puppet-ca-1:/var/lib/puppet/ssl/

[root@puppet-ca-1 ~]# 1s /var/lib/puppet/ssl/ca/

total 44

drwxrwx--- 5 puppet 4096 Jul 15 04:49 .
drwxr-xr-x 3 root 4096 Jul 17 05:38 ..
-TW-IW-I-- 1 puppet 1023 Jul 14 18:35 ca_crl.pem
-IwW-IW---- 1 puppet 1903 Jul 13 06:25 ca_crt.pem
-IwW-Iw---- 1 puppet 3243 Jul 13 06:25 ca_key.pem

-IW-T----- 1 puppet 775 Jul 13 06:25 ca_pub.pem
-IW-T--r-- 1 puppet 768 Jul 15 04:49 inventory.txt
drwxrwx--- 2 puppet 4096 Jul 13 06:25 private
drwxr-xr-x 2 puppet 4096 Jul 15 04:49 requests
-IwW-r--r-- 1 puppet 4 Jul 15 04:49 serial
drwxrwx--- 2 puppet 4096 Jul 15 04:49 signed
[root@puppet-ca-2 ~]# 1s /var/lib/puppet/ssl/ca/

Again, it is critical to understand the meaning of the trailing slashes when using the rsync command. What we’ve
done here is put the /var/1ib/puppet/ssl/ca folder from puppet-master-1 into the /var/lib/puppet/ssl folder of
puppet-ca-1and puppet-ca-2, and then used the 1s utility to verify that we've done so correctly.

Configure Apache on CA Hosts

We next need to modify the /etc/httpd/conf.d/puppetmaster.conf file to point to the correct SSLCertificateFile
and SSLCertificateKeyFile; again, these files were generated when we ran puppet master and are located in
/var/1ib/puppet/ssl/. We also need to set the SSLProxyEngine variable and comment out or remove the lines that
set the certificate verification headers before passing the request on to Rack, as shown in Listing 4-36.

121

http://ca/signed/puppet-client-1.pro-puppet.com.pem
http://ca/signed/puppet-master-1.pro-puppet.com.pem

CHAPTER 4 © SCALING PUPPET

Listing 4-36. The /etc/httpd/conf.d/puppetmaster.conf file for puppet-ca-2

LoadModule passenger_module /usr/lib/ruby/gems/1.8/gems/passenger-4.0.8/buildout/apache2/mod_passenger.so
PassengerRoot /usr/lib/ruby/gems/1.8/gems/passenger-4.0.8
PassengerRuby /usr/bin/ruby

And the passenger performance tuning settings:
PassengerHighPerformance On

Set this to about 1.5 times the number of CPU cores in your master:
PassengerMaxPoolSize 6

Recycle master processes after they service 1000 requests
PassengerMaxRequests 1000

Stop processes if they sit idle for 10 minutes
PassengerPoolIdleTime 600

Listen 8140
<VirtualHost *:8140>
SSLEngine On

Only allow high security cryptography. Alter if needed for compatibility.

SSLProtocol All -SSLv2

SSLCipherSuite HIGH: IADH:RC4+RSA: -MEDIUM: - LOW: -EXP

SSLCertificateFile /var/lib/puppet/ssl/certs/puppet-ca-1.pro-puppet.com.pem
SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/puppet-ca-1.pro-puppet.com.pem
SSLCertificateChainFile /var/lib/puppet/ssl/ca/ca_crt.pem

SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem

SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem

SSLVerifyClient optional
SSLVerifyDepth 1
SSLOptions +StdEnvVars +ExportCertData

These request headers are used to pass the client certificate
authentication information on to the puppet master process
#RequestHeader set X-SSL-Subject %{SSL_CLIENT S DN}e
#RequestHeader set X-Client-DN %{SSL_CLIENT S DN}e
#RequestHeader set X-Client-Verify %{SSL_CLIENT VERIFY}e

PassengerEnabled On
DocumentRoot /usx/share/puppet/rack/puppetmasterd/public/
<Directory /usr/share/puppet/rack/puppetmasterd/>
Options None
AllowOverride None
Order Allow,Deny
Allow from All
</Directory>
</VirtualHost>

Again, your Passenger version will undoubtedly be different from the one in this example configuration. The
Puppet certificate service is very lightweight compared to the Puppet master service, so tweaking Passenger isn’t
necessary, but you might as well set pool size according to the power of the machine hosting the service. The Puppet
CA service can easily run on a modern machine with a single thread.

122

http:///var/lib/puppet/ssl/certs/puppet-ca-1.pro-puppet.com.pem
http:///var/lib/puppet/ssl/private_keys/puppet-ca-1.pro-puppet.com.pem

CHAPTER 4 © SCALING PUPPET

Tip Both hosts have the same files in the /var/1ib/puppet/ssl/ca directory, but each has its own unique cert
and key as well.

We should now restart the Apache service to make sure the changes are valid, but at this point the HTTPS reverse
proxy running on puppet-master-1 has not yet been configured to route any requests to either of these two Puppet
CA workers.

Configure Load Balancer to use external CA in HA Configuration

We now need to configure the front-end load balancer to redirect all certificate related requests to the new CA Servers.
We configure puppet-ca-1 to be the default CA and puppet-ca-2 to be the hot-standby CA. Put the configuration
shown in Listing 4-37 into /etc/httpd/conf.d/puppetmaster_proxy.conf

Listing 4-37. Standby Puppet CA Load Balancer configuration snippet from
/etc/httpd/conf.d/puppetmaster_proxy.conf

<Proxy balancer://puppetmasterca>

Puppet CA Active Worker

BalancerMember https://puppet-ca-1:8140

Puppet CA Hot Standby

BalancerMember https://puppet-ca-2:8140 status=+H
</Proxy>

Asyou can see in Listing 4-37, a new Proxy section configures the load balancer to first connect to
https://puppet-ca-1:8140, and then connect to https://puppet-ca-2:8140 when a request is sent to the balancer
named puppetmasterca. The option status=+H tells the front end that the second member is a hot standby.

With the back-end Puppet CA workers configured, the load balancer must now be configured to route certificate
requests, and only certificate requests, to the two member workers. This configuration listing goes in the main Apache
front-end virtual host block, as shown in Listing 4-38.

Listing 4-38. Load Balancer certificate request routing configuration

Ordering of ProxyPass directives is important
Direct all Puppet agent CA requests to a specific set of workers.
ProxyPassMatch ~(/.*?)/(certificate.*?)/(.*)$ balancer://puppetmasterca
ProxyPassReverse ~(/.*?)/(certificate.*?)/(.*)$ balancer://puppetmasterca
Direct all other Puppet agent requests to the default set of workers.
ProxyPass / balancer://puppetmaster/
ProxyPassReverse / balancer://puppetmaster/
ProxyPreserveHost On

Here, we configured the load balancer to handle requests matching a pattern indicating they are certificate-related.
We configured the load balancer to direct these requests to the group of workers named balancer://puppetmasterca,
which were defined in Listing 4-38. Using this group of workers guarantees that the load balancer will send the request
to the worker on puppet-ca-1ifitis online, and puppet-ca-2 if puppet-ca-1is down, and return HTTP status 503,
“Temporarily Unavailable,” if neither is available.

123

https://puppet-ca-1:8140/
https://puppet-ca-2:8140/
https://puppet-ca-1:8140/
https://puppet-ca-2:8140/

CHAPTER 4 © SCALING PUPPET

The ProxyPassMatch directive configures a regular expression to match against the request URI of the Puppet
agent. In this case, we have configured the URI-containing certificate in the second path element as a match. This
ensures that certificate requests are directed appropriately, regardless of the environment or the Puppet agent name.

After configuring the two back-end Puppet CA worker virtual hosts on puppet-ca-1 and puppet-ca-2, you need
to restart Apache on puppet-master-1, as shown in Listing 4-39.

Listing 4-39. Restarting Apache

service httpd restart
Stopping httpd: [OK]
Starting httpd: [oK]

Test the HA CA Configuration

Let’s test the new configuration, with a new system named puppet-client-2.pro-puppet.com, as shownin
Listing 4-40.

Listing 4-40. Running puppet agent to generate a new client cert

root@puppet-client-2: ~ > puppet agent --test

Info: Creating a new SSL key for puppet-client-2.pro-puppet.com

Info: Caching certificate for ca

Info: Creating a new SSL certificate request for puppet-client-2.pro-puppet.com

Info: Certificate Request fingerprint (SHA256):
16:61:3D:A6:06:24:59:F4:15:06:B2:57:52:59:6A:33:85:23:C4:24:D8:B3:E3:E5:C0:90:96:5A:20:FA:(C5:5D
Exiting; no certificate found and waitforcert is disabled

Once the new Puppet agent creates a certificate-signing request and submits it to the load balancer, we can check
the Apache logs to make sure that CA requests are being routed properly to the worker listening on port 18142.

In Listing 4-41, you can see a number of HTTP 404 status results on the second and third line of the logs. Apache
is returning status 404 “Not Found” because the Puppet node puppet-client-2.pro-puppet.comis a new node and
no signed certificates or certificate requests exist for this system. Until we sign the new certificate request using the
puppet cert --signcommand, the Puppet CA worker will continue to return 404 “Not Found” status codes to the
Puppet agent on puppet-client-2.pro-puppet.com.

Listing 4-41. HTTP 404 status results due to certificate errors

[root@puppet-ca-1 ~]# tail -f /var/log/httpd/access log

192.168.8.10 - - [07/Aug/2013:11:04:18 +0000]
"GET /production/certificate/puppet-client-2.pro-puppet.com? HTTP/1.1" 200 1944 "-" "-"
192.168.8.10 - - [07/Aug/2013:11:04:18 +0000]

"GET /production/certificate_revocation list/ca? HTTP/1.1" 200 1259 "-" "-"
192.168.8.10 - - [07/Aug/2013:11:54:41 +0000]
"GET /production/certificate/ca? HTTP/1.1" 200 1903 "-" "-"

192.168.8.10 - - [07/Aug/2013:11:54:41 +0000]
"GET /production/certificate/puppet-client-2.pro-puppet.com? HTTP/1.1" 200 1944 "-" "-"
192.168.8.10 - - [07/Aug/2013:11:55:07 +0000]

"GET /production/certificate/ca? HTTP/1.1" 200 1903 "-" "-"

192.168.8.10 - - [07/Aug/2013:11:55:08 +0000]

"GET /production/certificate/puppet-client-2.pro-puppet.com? HTTP/1.1" 404 57 "-" "-"
192.168.8.10 - - [07/Aug/2013:11:55:08 +0000]

"GET /production/certificate_request/puppet-client-2.pro-puppet.com? HTTP/1.1" 404 65

124

http://puppet-client-2.pro-puppet.com/
http://puppet-client-2.pro-puppet.com/
http://puppet-client-2.pro-puppet.com/
http://puppet-client-2.pro-puppet.com/
http://puppet-client-2.pro-puppet.com/
http:///production/certificate/puppet-client-2.pro-puppet.com?
http:///production/certificate/puppet-client-2.pro-puppet.com?
http:///production/certificate/puppet-client-2.pro-puppet.com?
http:///production/certificate_request/puppet-client-2.pro-puppet.com?

CHAPTER 4 © SCALING PUPPET

192.168.8.10 - - [07/Aug/2013:11:55:08 +0000]
"PUT /production/certificate_request/puppet-client-2.pro-puppet.com HTTP/1.1" 200 4 "-"

192.168.8.10 - - [07/Aug/2013:11:55:08 +0000]
"GET /production/certificate/puppet-client-2.pro-puppet.com? HTTP/1.1" 404 57 "-" "-"
192.168.8.10 - - [07/Aug/2013:11:55:08 +0000]

"GET /production/certificate/puppet-client-2.pro-puppet.com? HTTP/1.1" 404 57

To make sure the Puppet agent is routed to the correct worker system, you need to sign the new certificate request
(Listing 4-42).

Listing 4-42. Sign the client’s certificate request.

[root@puppet-ca-1 ~]# puppet cert list

"puppet-client-2.pro-puppet.com” (SHA256)
16:61:3D:A6:06:24:59:F4:15:06:B2:57:52:59:6A:33:85:23:C4:24:D8:B3:E3:E5:€0:90:96:5A:20:FA:C5:5D
[root@puppet-ca-1 ~]# puppet cert sign puppet-client-2.pro-puppet.com
Notice: Signed certificate request for puppet-client-2.pro-puppet.com
Notice: Removing file Puppet::SSL::CertificateRequest puppet-client-2.pro-puppet.com at
"/var/lib/puppet/ssl/ca/requests/puppet-client-2.pro-puppet.com.pem'

Once the certificate has been signed, you can run the Puppet agent on the new node again to make sure the agent
is able to download its catalog from the master. Since the client is using its cert for client-cert authentication, this
proves that the certificate chain from the certificate authority through the Puppet master to the clients is functioning.
Listing 4-43).

Listing 4-43. Sign the client’s certificate request

root@puppet-client-2: ~ > puppet agent --test

Info: Retrieving plugin

Info: Caching catalog for puppet-client-2.pro-puppet.com

Info: Applying configuration version '1375876603'

Notice: puppet is runnning

Notice: /Stage[main]//Node[default]/Notify[puppet is runnning]/message: defined 'message’ as
'puppet is runnning'

Notice: Finished catalog run in 0.04 seconds

You can also check the logs again (Listing 4-44) to make sure HTTP Status 200 is present, now that the Puppet
agent has the signed certificate:

Listing 4-44. Tailing Apache Access logs

[root@puppet-ca-1 ~]# tail -2 /var/log/httpd/access log

192.168.8.10 - - [07/Aug/2013:11:59:58 +0000]

"GET /production/certificate/puppet-client-2.pro-puppet.com? HTTP/1.1" 200 1944 "-" "-"
192.168.8.10 - - [07/Aug/2013:11:59:58 +0000]

"GET /production/certificate_revocation list/ca? HTTP/1.1" 200 1397 "-" "-"

You can see two log entries, matching the Puppet agent downloading its signed certificate and the certificate

revocation list maintained by the Puppet CA worker. Both entries contain HTTP Status 200 “OK” codes, indicating that
the Puppet agent successfully transferred the certificate and revocation list from the Puppet CA.

125

http:///production/certificate_request/puppet-client-2.pro-puppet.com
http:///production/certificate/puppet-client-2.pro-puppet.com?
http:///production/certificate/puppet-client-2.pro-puppet.com?
http://puppet-client-2.pro-puppet.com/
http://puppet-client-2.pro-puppet.com/
http://puppet-client-2.pro-puppet.com/
http://puppet-client-2.pro-puppet.com/
http:///var/lib/puppet/ssl/ca/requests/puppet-client-2.pro-puppet.com.pem
http://puppet-client-2.pro-puppet.com/
http:///production/certificate/puppet-client-2.pro-puppet.com?

CHAPTER 4 © SCALING PUPPET

You can also see that the access log for the active Puppet CA worker does not contain any catalog requests. Check
the access logs of the two load-balanced Puppet master workers to make sure catalog requests are being routed
correctly to only those two systems (Listing 4-45).

Listing 4-45. Tailing Apache Puppet Master Worker logs

[root@puppet-master-1 ~]# tail -f /var/log/httpd/puppetmaster worker access 1.log

127.0.0.1 - - [07/Aug/2013:12:01:51 +0000] "GET /production/node/puppet-client-2.pro-puppet.com?
HTTP/1.1" 200 2917 "-" "-"
127.0.0.1 - - [07/Aug/2013:12:01:51 +0000] "GET /production/file_metadatas/plugins?checksum_type=md

5&1links=manage8recurse=truedignore=- - -+%0A++-+%22.5vn%22%0A++-+CVS%OA++-+%22.git%22& HTTP/1.1" 200
283 "o v

127.0.0.1 - - [07/Aug/2013:12:01:51 +0000] "POST /production/catalog/puppet-client-2.pro-puppet.com
HTTP/1.1" 200 973 "-" "-"
127.0.0.1 - - [07/Aug/2013:12:01:52 +0000] "PUT /production/report/puppet-client-2.pro-puppet.com

HTTP/1.1" 200 14 "-" "-"

Note that the catalog requests are still being directed by the front-end load balancer to the workers running
locally on puppet-master-1 and remotely on puppet-master-2, while certificate requests are being directed to the
active Puppet CA server on puppet-ca-1.

With this, you've configured the front-end HTTPS load balancer to direct all certificate-related requests to a single
Puppet CA worker. This redirection ensures that the certificate revocation list and serial.txt files are maintained

properly.

Synchronizing the Hot Standby Puppet CA Directory

Now that the certificate requests are being handled properly, the next step is to configure the hot standby Puppet CA
worker. If the primary Puppet CA worker fails, another worker should quickly take over responsibility for responding
to certificate requests. We will take advantage of the load balancer’s ability to redirect requests in order to quickly fail
over to the backup Puppet CA worker.

You've already configured the load balancer to use the secondary worker as a hot standby, automatically
activated in the event the primary worker goes offline. You next need to configure a periodic task to synchronize the
CA directory automatically across the primary and secondary workers. Finally, you will test the new configuration and
work through the exercise of testing the failover and failback to the primary Puppet CA worker.

Copy the certificate authority directory on puppet-ca-1 to the hot standby (puppet-ca-2) using rsync. This command
could also be configured as a cron task or inotify hook, to keep the hot standby directory contents up to date:

First, remove the ss1/ca directory on the secondary CA server, puppet-ca-2:

[root@puppet-ca-2 ~]# rm -fr /var/lib/puppet/ssl/ca/
Then copy over the ca files from puppet-ca-1, as shown in Listing 4-46.

Listing 4-46. Running rsync over ca files

[root@puppet-ca-1 ~]# rsync -delete -PHaze ssh
/var/lib/puppet/ssl/ca puppet-ca-2:/var/lib/puppet/ssl/
sending incremental file list
ca/
ca/ca_crl.pem

1442 100% 0.00kB/s 0:00:00 (xfer#1, to-check=23/25)
ca/ca_crt.pem

1903 100% 1.81MB/s 0:00:00 (xfer#2, to-check=22/25)

126

http:///production/node/puppet-client-2.pro-puppet.com?
http:///production/catalog/puppet-client-2.pro-puppet.com
http:///production/report/puppet-client-2.pro-puppet.com

CHAPTER 4 © SCALING PUPPET

ca/ca_key.pem
3243 100% 3.09MB/s 0:00:00 (xfer#3, to-check=21/25)
ca/ca_pub.pem
775 100% 252.28kB/s 0:00:00 (xfer#4, to-check=20/25)
ca/inventory.txt
1970 100% 480.96kB/s 0:00:00 (xfer#5, to-check=19/25)
ca/serial
4 100% 0.78kB/s 0:00:00 (xfer#6, to-check=18/25)
ca/private/
ca/private/ca.pass
20 100% 3.91kB/s 0:00:00 (xfer#7, to-check=14/25)
ca/requests/
ca/signed/
ca/signed/puppet-ca-1.pro-puppet.com.pem
1935 100% 269.95kB/s 0:00:00 (xfer#10, to-check=11/25)
ca/signed/puppet-ca-2.pro-puppet.com.pem
1935 100% 209.96kB/s 0:00:00 (xfer#12, to-check=9/25)

This rsync command synchronizes the primary CA directory into the standby CA directory, deleting any files
existing in the destination and not in the source.

Now let’s create a one-minute cron job to synchronize the files from puppet-ca-1 to puppet-ca-2. This requires
host-based trust or passwordless SSH key-based trust to work. Use whatever synchronization system your security
model allows.

[root@puppet-ca-1 ~]# crontab -1
*¥ %k x % ysync -delete -PHaze ssh /var/lib/puppet/ssl/ca puppet-ca-2:/var/lib/puppet/ssl/ >/dev/null

This uses the rsync utility to synchronize the contents of the two directories. The -delete flag
makes sure that files that exist on the target but not on the source are removed.

Puppet CA Hot Standby

Once the certificate data has been synchronized, you can test failover between the Puppet CA servers. We're going to
stop Apache on the primary CA server. We expect the load balancer configuration to automatically redirect certificate
requests to the hot standby (Listing 4-47).

Listing 4-47. Stopping Apache

[root@puppet-ca-1 ~]# service httpd stop
Stopping httpd: [OK]

Once the primary Puppet CA worker is inaccessible, you can test that certificate requests are automatically
redirected to the secondary worker using the curl command, shown in Listing 4-48.

Listing 4-48. Using curl at the Puppet master to test redirection

[root@puppet-master-1 ~]# curl --silent -o /dev/null -D /dev/stdout -q -k -H "Accept: s
https://localhost:8140/production/certificate/ca

HTTP/1.1 200 OK

Date: Wed, 14 Aug 2013 08:57:14 GMT

127

http://ca/signed/puppet-ca-1.pro-puppet.com.pem
http://ca/signed/puppet-ca-2.pro-puppet.com.pem
https://localhost:8140/production/certificate/ca

CHAPTER 4 © SCALING PUPPET

Server: Apache/2.2.15 (Cent0S)
X-Powered-By: Phusion Passenger 4.0.10
Content-Length: 1903

Status: 200 OK

Content-Type: text/plain; charset=UTF-8
Connection: close

You can see the results of this curl in the logs (Listings 4-49 and 4-50).

Listing 4-49. Reading the Apache Balancer log

[root@puppet-master-1 ~]# tail -f /var/log/httpd/balancer error.log

[Wed Aug 14 08:57:14 2013] [error] (111)Connection refused: proxy: HTTPS: attempt to connect to
192.168.8.13:8140 (puppet-ca-1) failed

[Wed Aug 14 08:57:14 2013] [error] ap _proxy connect backend disabling worker for (puppet-ca-1)

Listing 4-50. Reading the Apache Puppet Master Worker Access log

$ tail -n1 /var/log/httpd/puppetmaster worker access 18143.log

127.0.0.1 - - [04/Dec/2010:15:42:36 -0800] "GET /production/certificate/ca
HTTP/1.1" 200 839 "-" "curl/7.15.5 (x86_64-redhat-linux-gnu) libcurl/7.15.5
OpenSSL/0.9.8b z1ib/1.2.3 libidn/0.6.5"

[root@puppet-ca-2 ~]# tail -f /var/log/httpd/access log

192.168.8.10 - - [14/Aug/2013:08:57:14 +0000] "GET /production/certificate/ca HTTP/1.1" 200 1903
"-" "curl/7.19.7 (x86_64-redhat-linux-gnu) libcurl/7.19.7 NSS/3.14.0.0 z1ib/1.2.3 libidn/1.18
libssh2/1.4.2"

The first command we've executed is a standard curl HTTP request. Rather than display the contents of the
request body, we display the HTTP Response headers on standard output. The HTTP header output provides an
indication of the status of the response, with anything other than status 200 indicating an error.

After requesting the Puppet CA certificate, you can look at the error log file of the front-end load balancer to see
how the request was handled. As expected, the load balancer could not forward the request to the primary Puppet CA
worker. The load balancer properly failed over to the hot standby Puppet CA worker and forwarded the request to it.

Looking at the access logs in /var/log/httpd/access.log of puppet-ca-2, we can see the incoming request and
resulting HTTP 200 “OK” status code for the response.

Now we want to make sure we can still provision new Puppet managed nodes while the hot standby certificate
authority is currently active. Going to a new host, we get a test run as shown in Listing 4-51.

Listing 4-51. Test a new agent

[root@puppet-client-3 ~]# puppet agent --test
Info: Creating a new SSL key for puppet-client-3.pro-puppet.com
Info: Caching certificate for ca
Info: Creating a new SSL certificate request for puppet-client-3.pro-puppet.com
Info: Certificate Request fingerprint (SHA256): EA:F7:C1:6A:(C8:91:3F:85:8D:1E:33:AA:AD:D7:9E:DC:CF:C
3:70:1E:D5:01:94:2B:38:E7:11:19:FB:D6:27:EA
Exiting; no certificate found and waitforcert is disabled

The first time a Puppet agent is run, a new certificate request is generated and submitted to the Puppet master
(Listing 4-52).

128

http://puppet-client-3.pro-puppet.com/
http://puppet-client-3.pro-puppet.com/

CHAPTER 4 © SCALING PUPPET

Listing 4-52. Listing the pending certificate queue

[root@puppet-ca-2 ~]# puppet cert list
"puppet-client-3.pro-puppet.com” (SHA256)
EA:F7:C1:6A:C8:91:3F:85:8D:1E:33:AA:AD:D7:9E:DC:CF:C3:70:1E:D5:01:94:2B:38:E7:11:19:FB:D6:27:EA

Because the primary Puppet CA worker is offline, we expect to see the pending certificate request in the standby
directory (Listing 4-53).

Listing 4-53. Signing a CSR on the standby Puppet CA

[root@puppet-ca-2 ~]# puppet cert sign puppet-client-3.pro-puppet.com

Notice: Signed certificate request for puppet-client-3.pro-puppet.com

Notice: Removing file Puppet::SSL::CertificateRequest puppet-client-3.pro-puppet.com at
"/var/lib/puppet/ssl/ca/requests/puppet-client-3.pro-puppet.com.pem'

Finally, you can run the agent on puppet-client-3 to verify that everything is working as expected (Listing 4-54).

Listing 4-54. Testing Puppet functionality

[root@puppet-client-3 ~]# puppet agent --test

Info: Caching certificate for puppet-client-3.pro-puppet.com

Info: Caching certificate revocation list for ca

Info: Retrieving plugin

Info: Caching catalog for puppet-client-3.pro-puppet.com

Info: Applying configuration version '1376471067'

Notice: puppet is runnning

Notice: /Stage[main]//Node[default]/Notify[puppet is runnning]/message: defined 'message’ as
"puppet is runnning'

Notice: Finished catalog run in 0.08 seconds

Primary Puppet CA Fail Back

The failover to the secondary CA is now working properly, and new certificates can be signed. Let’s test the process of
reactivating the primary Puppet CA worker. The load balancer will automatically start using the primary worker when
it comes online again, so the process becomes a matter of synchronizing the secondary certificate authority back to
the primary CA directory. You need to synchronize changes before reactivating the Apache server to allow traffic back
to the primary certificate authority.

Similar to the rsync command that synchronized the primary CA directory into the standby location, the rsync
command shown in Listing 4-55 reverses the direction and synchronizes the standby CA directory into the primary
location before re-enabling the primary CA using the host firewall.

Listing 4-55. How to rsync standby CA back to the primary CA

[root@puppet-ca-2 ~]# rsync -delete -PHaze ssh /var/lib/puppet/ssl/ca puppet-ca-1:/var/1lib/puppet/ssl/
sending incremental file list
ca/
ca/inventory.txt
2058 100% 1.30MB/s 0:00:00 (xfer#1, to-check=21/27)
ca/serial
4 100% 3.91kB/s 0:00:00 (xfer#2, to-check=20/27)

129

http://puppet-client-3.pro-puppet.com/
http://puppet-client-3.pro-puppet.com/
http://puppet-client-3.pro-puppet.com/
http://puppet-client-3.pro-puppet.com/
http:///var/lib/puppet/ssl/ca/requests/puppet-client-3.pro-puppet.com.pem
http://puppet-client-3.pro-puppet.com/
http://puppet-client-3.pro-puppet.com/

CHAPTER 4 © SCALING PUPPET

ca/requests/
ca/signed/
ca/signed/puppet-client-3.pro-puppet.com.pem
1944 100% 1.85MB/s 0:00:00 (xfer#3, to-check=6/27)

sent 2553 bytes received 106 bytes 759.71 bytes/sec
total size is 40852 speedup is 15.36

[root@puppet-ca-1 ~]# service httpd start
Starting httpd: [oK]

You performed twosimple tasks to re-activate the primary Puppet CA worker. First, you synchronized the CA
directory from the standby in Listing 4-55. Notice that three files have changed since the hot standby worker has become
active. These three files changed when you signed the certificate request for puppet-client-3.pro-puppet.com.
Immediately after synchronizing the CA directory, you started Apache on the primary Puppet CA worker.

Caution When failing back to the primary Puppet CA worker, there will be a short delay while certificate requests are
still directed to the hot standby. This delay is determined by how frequently the load balancer polls failed worker nodes
to find out if they’re back online. In situations where a large number of certificate requests are being handled while the
Puppet CA is being switched online, it is recommended to make the CA directory on the standby CA read-only to the
puppet user and group to prevent changes from occurring after synchronization.

Load Balancing Alternatives

Up until now, we’ve relied on an HTTP load balancer using Apache to scale Puppet. However, the following alternative
technologies and implementations can be used to achieve the same results:

e DNSround robin

e DNSSRVrecords

e TCPload balancing
e [P anycast

e Masterless Puppet

Let’s review them now.

Load Balancing with DNS Round Robin

We could also use DNS round robin to easily redirect and consolidate all certificate requests to a single Puppet CA
worker.

DNS round robin is commonly used to cluster a group of worker processes providing the same service. In this
configuration, redirection to different workers is performed at the name resolution stage instead of using a reverse
HTTP proxy. As a result, the Puppet master infrastructure is no longer able to make decisions about the redirection
based on the client request. Furthermore, if a specific Puppet master worker is offline, the DNS system is not checking
the state of the worker and as a result, a portion of the Puppet agent systems will receive timeout errors when they are
directed to connect to the failed worker system. We recommend deploying HTTP load balancing whenever possible to
scale Puppet because of these shortcomings in DNS round robin.

130

http://ca/signed/puppet-client-3.pro-puppet.com.pem
http://puppet-client-3.pro-puppet.com/

CHAPTER 4 © SCALING PUPPET

As in our HTTP load balancing, all certificate-related requests should be consolidated onto one worker system
to mitigate problems with certificate serial numbers and revocation lists diverging among the Puppet CA systems.
To this end, the Puppet agent supports the configuration of a Puppet CA server other than the Puppet master server
the configuration catalog is obtained from. When configuring Puppet using round robin DNS, it is recommended to
maintain a single Puppet CA worker in addition to the number of Puppet master workers required. The Puppet agent
configuration should set the --ca_server configuration option to bypass the round robin DNS configuration and
contact the appropriate Puppet CA worker directly.

Load Balancing with DNS SRV records

Puppet currently supports, as an experimental feature, using DNS SRV records to allow clients to discover their
Puppet masters and Puppet CA servers. This can be used to load-balance Puppet agents across an unlimited number
of master workers, and it allows for neat separation of the CA service from the Puppet master services. There are
currently some drawbacks; for instance, SRV records can only be used at the exclusion of hard-coded server names.
There is no way to fall back on a server name written down in puppet. conf, and there is no way to set a timeout to
bail early if the lookup is probably going to fail. If you are interested in deploying this solution, look at the current
documentation on docs. puppetlabs.com.

Load Balancing with a TCP Load Balancer

The core of the example in this chapter is performed by using the Apache proxying load balancer. This means a server
creates an SSL and HTTP endpoint, and then opens a new connection to another server or set of servers. There is
another kind of load balancing, TCP load balancing, that occurs at a lower level of the TCP/IP stack.

In this model a load balancer running HA proxy will terminate all TCP sessions from the Puppet clients, and then
open new TCP sessions to a set of Puppet master workers. SSL is terminated on the Puppet master workers, and the
entire conversation is encrypted and impenetrable to the HA proxy. SSL Certificate signing is handled by creating a
separate CA server and populating client configs to set the caserver configuration option.

The puppetmaster. conf of each worker in this configuration looks very much like that of the puppet-master-1
from earlier. Listing 4-56 is a puppetmaster configuration file from an Ubuntu 12.04 host running Passenger 3.x.

Listing 4-56. Puppet master worker vhost for use with HA-proxy and Passenger 3 on Ubuntu 12.04

you probably want to tune these settings
PassengerHighPerformance on
PassengerMaxPoolSize 12
PassengerPoolIdleTime 1500

PassengerMaxRequests 1000
PassengerStatThrottleRate 120
RackAutoDetect Off

RailsAutoDetect Off

Listen 8140

<VirtualHost *:8140>
SSLEngine on
SSLProtocol -ALL +SSLv3 +TLSv1
SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM: -LOW:-SSLv2:-EXP

SSLCertificateFile /var/1lib/puppet/ssl/certs/puppet-master-4.pro-puppet.com.pem
SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/puppet-master-4.pro-puppet.com.pem
SSLCertificateChainFile /var/lib/puppet/ssl/certs/ca.pem

131

http://docs.puppetlabs.com/
http:///var/lib/puppet/ssl/certs/puppet-master-4.pro-puppet.com.pem
http:///var/lib/puppet/ssl/private_keys/puppet-master-4.pro-puppet.com.pem

CHAPTER 4 © SCALING PUPPET

SSLCACertificateFile /var/lib/puppet/ssl/certs/ca.pem

If Apache complains about invalid signatures on the CRL, you can try disabling
CRL checking by commenting the next line, but this is not recommended.
SSLCARevocationFile /var/1ib/puppet/ssl/ca/ca_crl.pem

SSLVerifyClient optional

SSLVerifyDepth 1

The “ExportCertData” option is needed for agent certificate expiration warnings
SSLOptions +StdEnvVars +ExportCertData

This header needs to be set if using a loadbalancer or proxy
RequestHeader unset X-Forwarded-For

RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
RequestHeader set X-Client-DN %{SSL_CLIENT S DN}e
RequestHeader set X-Client-Verify %{SSL_CLIENT VERIFY}e

DocumentRoot /usr/share/puppet/rack/puppetmasterd/public/
RackBaseURI /
<Directory /usr/share/puppet/rack/puppetmasterd/>
Options None
AllowOverride None
Order allow,deny
allow from all
</Directory>
</VirtualHost>

Then include the HA proxy configuration that allows load balancing across many of these workers (Listing 4-57).

Listing 4-57. HA Proxy configuration

global
chroot /var/lib/haproxy
daemon
group haproxy
log 10.0.2.1 localo
maxconn 4000
pidfile /var/run/haproxy.pid
stats socket /var/lib/haproxy/stats
user haproxy

defaults
log global
maxconn 8000
option redispatch
retries 3
stats enable
timeout http-request 10s
timeout queue 1m
timeout connect 10s
timeout client 1m
timeout server im
timeout check 10s

132

CHAPTER 4 © SCALING PUPPET

listen puppet
bind 10.0.2.10:8140
mode tcp
balance source
option ssl-hello-chk
timeout client 1000000
timeout server 1000000
server puppet-master-4.pro-puppet.com puppet-master-4.pro-puppet.com:8140 check
server puppet-master-5.pro-puppet.com puppet-master-5.pro-puppet.com:8140 check

In this example, two puppet master workers, puppet-master-4 and puppet-master-5, are both running Apache
and Passenger. They have had their certs signed with a DNS-alternate name of puppet . pro-puppet.com. This means
they can listen both as themselves and on the puppet.pro-puppet.comIP address. That IP address is assigned in DNS
t0 10.0.2.10 and is held by the HA proxy. Because the traffic is being tunneled at a lower level, the certificate verification
is transparent to the proxy. This means both Puppet masters need to be able to identify as puppet.pro-puppet.com.
The way to accomplish that is to sign their certificates with additional DNS names, called dns_alt_names.

First create a certificate (through puppet agent --test)usingthe --dns_alt_names flag, as shown in Listing 4-58.

Listing 4-58. Creating a certificate request with a dns_alt_name on puppet-master-5

root@puppet-master-5:~# puppet agent --test --dns_alt_names=puppet,puppet.pro-puppet.com,
puppet-master-5,puppet-master-5.pro-puppet.com

Info: Creating a new SSL key for puppet-master-5.testcorpn.lan

Info: Caching certificate for ca

Info: Creating a new SSL certificate request for puppet-master-5.testcorp.lan

Info: Certificate Request fingerprint (SHA256):
FF:65:C9:FO:FF:4A:3B:2D:BA:6D:01:21:8E:6E:86:30:92:8F:BC:7B:B9:93:C5:0E:(3:20:66:06:D8:F6:AA:A7
Exiting; no certificate found and waitforcert is disabled

Second, list the certificates pending in the queue on the CA server (Listing 4-59).

Listing 4-59. Listing pending certificate requests on the Puppet CA server

[root@puppet-ca-1 ~]# puppet cert list

"puppet-master-5.testcorp.lan" (SHA256)
FF:65:C9:FO:FF:4A:3B:2D:BA:6D:01:21:8E:6E:86:30:92:8F:BC:7B:B9:93:C5:0E:(3:20:66:06:D8:F6:AA:A7
(alt names: "DNS:puppet", "DNS:puppet-master-5", "DNS:puppet-master-5.testcorp.lan”,
"DNS:puppet-master-5.pro-puppet.com”, "DNS:puppet.pro-puppet.com")

Finally, sign the certificate using the --allow-dns-alt-names flag (Listing 4-60).

Listing 4-60. Signing certificate requests with dns_alt_names

[root@puppet-ca-1 ~]# puppet cert sign puppet-master-5.testcorp.lan --allow-dns-alt-names
Notice: Signed certificate request for puppet-master-5.testcorp.lan

Notice: Removing file Puppet::SSL::CertificateRequest puppet-master-5.testcorp.lan at
'/var/lib/puppet/ssl/ca/requests/puppet-master-5.testcorp.lan.pem’

133

http://server puppet-master-4.pro-puppet.com
http://puppet-master-4.pro-puppet.com/
http://server puppet-master-5.pro-puppet.com
http://puppet-master-5.pro-puppet.com:8140/
http://puppet.pro-puppet.com/
http://puppet.pro-puppet.com/
http://puppet.pro-puppet.com/
http://--test --dns_alt_names=puppet,puppet.pro-puppet.com,puppet-master-5,puppet-master-5.pro-puppet.com
http://--test --dns_alt_names=puppet,puppet.pro-puppet.com,puppet-master-5,puppet-master-5.pro-puppet.com
http://DNS:puppet-master-5.pro-puppet.com
http://DNS:puppet.pro-puppet.com

CHAPTER 4 © SCALING PUPPET

Anycast

In some cases, where you have multiple datacenters or sites, anycast is an option for scaling and segmenting your
Puppet infrastructure. Anycasting a service is typically done with services that require the utmost uptime such as DNS.
Anycasting means running a Puppet master, or load-balancing virtual IP, on a host that is also running a dynamic
routing protocol such as BGP or OSPE Quagga is a common daemon on Unix/Linux to speak these protocols. The
Linux machine uses a BGP or OSPF or other routing protocol link to directly inject a route to the virtual IP Puppet is
running on into the routing table of the core router for the datacenter. This can be done at multiple datacenters. All IP
traffic to the Puppet IP will follow the shortest cost path, which will mean connecting to the local Puppet master. If that
device experiences a failure, the BGP/OSPF session will end and the upstream router will use the second-shortest-cost
path, which means finding another anycasted Puppet master. This is an advanced configuration and should only be
done in close coordination with your networking team.

Masterless Puppet

A simple approach to massive scaling with Puppet infrastructure is to run the Puppet standalone client on each
machine. Puppet can be run from cron on an hourly basis and local code used to configure the node. The challenge
then becomes pushing code to each and every server. This can be accomplished via an NFS mount, or by running a
git pull (or your version control system’s equivalent) just before running puppet agent (Listing 4-61).

Listing 4-61. Creating an environments directory and cloning a production checkout of Puppet code

[root ~]# mkdir -p /etc/puppet/environments/

[root environments]# git clone git@git.pro-puppet.com:puppet production
Cloning into 'production'...

done.

[root@pdxudevol environments]# 1s

production

Listing 4-62 shows what we’ve created.

Listing 4-62. Inspecting the Puppet code we checked out

[root@box1 /etc/puppet/environments]# find . | grep -v '.git'

./production

./production/data
./production/data/dev.yaml
./production/data/defaults.yaml
./production/data/box1.yaml
./production/data/global.yaml
./production/data/production.yaml
./production/manifests
./production/manifests/site.pp
./production/modules
./production/modules/mysql
./production/modules/mysql/manifests
./production/modules/mysql/manifests/init.pp
./production/modules/mysql/Modulefile
./production/modules/mysql/README
./production/modules/workstation
./production/modules/workstation/manifests

134

http://git@git.pro-puppet.com:puppet

CHAPTER 4 © SCALING PUPPET

./production/modules/workstation/manifests/init.pp
./production/modules/workstation/Modulefile
./production/modules/workstation/README
./production/modules/ldap
./production/modules/ldap/manifests
./production/modules/ldap/manifests/init.pp
./production/modules/ldap/Modulefile
./production/modules/ldap/README
./production/modules/sudo
./production/modules/sudo/manifests
./production/modules/sudo/manifests/init.pp
./production/modules/sudo/Modulefile
./production/modules/sudo/README

We have to grep -v the Git directories because they pollute the structure shown here. What you can see is that a
set of manifests, a set of modules, and a set of Hiera data have all been copied into the production directory. Hiera will
be covered in depth in Chapter 12; all you need to know right now is that there are Hiera data files that need to go in
the data directory.

This is a good start, but we still need a corresponding puppet. conf file, as shown in Listing 4-63.

Listing 4-63. Puppet.conf for box1.pro-puppet.com for masterless Puppet

[main]
The Puppet log directory.
The default value is '$vardir/log'.
logdir = /var/log/puppet

Where Puppet PID files are kept.
The default value is '$vardir/run'.
rundir = /var/run/puppet

Where SSL certificates are kept.

The default value is '$confdir/ssl’.

ssldir = $vardir/ssl

certname = box1.pro-puppet.com

modulepath = /etc/puppet/environments/$environment/modules
manifests = /etc/puppet/environments/$environment/site.pp

Note that we are still setting certname here, and it should be set uniquely for every unique host. With that
configuration file in place, we can make an initial run of puppet apply (Listing 4-64).
Listing 4-64. Running puppet apply manually

[root@box1 /e/p/environments]# puppet apply production/manifests/site.pp

Notice: /Stage[main]//Node[default]/Notify[puppet is runnning]/message: defined 'message’ as
'puppet is runnning'

Notice: Finished catalog run in 0.09 seconds

But what does the site.pp look like? It looks exactly the same as it does for mastered Puppet (Listing 4-65).

135

http://box1.pro-puppet.com/
http://box1.pro-puppet.com/

CHAPTER 4 © SCALING PUPPET

Listing 4-65. The site.pp file for use in masterless Puppet

[root@box1 /etc/puppet]# cat environments/production/manifests/site.pp
node 'box1.pro-puppet.com’ {

class { 'mysql':
databases => ['prod','staging','dev']

}

class { 'sudo': }

}
node 'box2.pro-puppet.com’ {

class { 'ldap':
allow_connections => 'localonly’,

}

class { 'sudo': }

}
node 'box3.pro-puppet.com' {

class { 'workstation':
roles => ['webdev', 'dba']

}

class { 'sudo': }

}

Puppet still looks up the node definition by certname.
Going further, if we want to use Hiera we need to create a hiera.yaml for each client (Listing 4-66).

Listing 4-66. The /etc/puppet/hiera.yaml needed for each client
[root@box1 /etc/puppet]# cat hiera.yaml

:backends:
- yaml

thierarchy:
- %{environment}/data/defaults
- %{environment}/data/%{clientcert}
- %{environment}/data/%{environment}
- %{environment}/data/global

tyaml:

:datadir:
- /etc/puppet/environments/

136

http://box1.pro-puppet.com/
http://box2.pro-puppet.com/
http://box3.pro-puppet.com/

CHAPTER 4 © SCALING PUPPET

The environment settings here allow us to have environmentally aware data, as we showed in Chapter 3. Again,
Hiera will be fully discussed in Chapter 12. You can skip there immediately after reading this chapter.

Going further still, you might want to connect masterless Puppet to PuppetDB or a Dashboard. That
configuration is possible, but it is outside of the scope of this book. The last thing we need is a cron job to fire off the
Puppet run:

0 * * * * (cd /etc/puppet/environments/production && git pull 8& puppet apply
/etc/puppet/environments/production/manifests/site.pp) >/dev/null

In this example, an individual Puppet client acts as its own bottleneck in compiling Puppet catalogs and applying
configuration. The only requirement is a Git clone from a Git server, and scaling read-only Git access is relatively
simple.

Measuring Performance

Catalog retrieval time is the primary measure of how one or more Puppet masters are performing. Catalog
compilation is a very I/0-, CPU-, and memory- intensive process. All of the imported manifests must be located and
read from the file system, and CPU and memory are used to parse and compile the catalog. In order to measure this
process, you can use a simple curl script to periodically obtain a compiled catalog. If the command takes longer than
is normal for the environment, there is a strong indication that additional capacity should be added to the Puppet
master infrastructure.

Using the unencrypted Puppet master back-end workers configured when setting up the Apache load balancer,
you can write a small script to measure the catalog compilation time of the node test.example.com.

To do this, you need to know the four components of a catalog request:

e The URI containing the environment, catalog, and node to obtain a catalog from
e The SSL authentication headers

e Alist of facts and their values

e Aheader telling the Puppet master what encoding formats the client accepts

All of this information is available in the Apache access logs (see Listing 4-67). The list of facts is easily obtained
by running the Puppet agent normally, and then inspecting the HTTP access logs and copying the URL into a script.

Listing 4-67. Curl URL based on Apache access logs

[root@puppet-master-1 ~]# tail -f /var/log/httpd/balancer access.log
192.168.8.12 - - [14/Aug/2013:10:14:50 +0000] "GET /production/node/puppet-client-4.pro-puppet.com?
HTTP/1.1" 200 3842 "-" "-"

The path following the GET verb contains /production/node/puppet-client-4.pro-puppet.com. This indicates
a catalog request for the host puppet-client-4.pro-puppet.comfrom the production environment. The query portion
of the URL contains two pieces of information: the format of the facts listing, and the listing of facts itself. These pieces
of information are encoded in the facts_format and facts_query parameters of the URL. Since Puppet 3, these
parameters have been optional, as they are by default sent via a header, but you can still append them to the end of the
request to perform testing. To construct the full URL, prefix the URL from Listing 4-67 with http://127.0.0.1:8141,
the address of the Apache worker virtual host. Listing 4-68 shows the command the operator uses to measure catalog
compilation time.

137

http://test.example.com/
http:///production/node/puppet-client-4.pro-puppet.com?
http:///production/node/puppet-client-4.pro-puppet.com
http://puppet-client-4.pro-puppet.com/
http://127.0.0.1:8141/

CHAPTER 4 © SCALING PUPPET

Listing 4-68. A curl catalog request command

[root@puppet-master-1 ~]# time curl -v -H "Accept: pson, yaml" \

-H "X-Client-DN: /CN=puppet-client-test.pro-puppet.com” \

-H "X-Client-Verify: SUCCESS" \
"http://127.0.0.1:18140/production/node/puppet-client-test.pro-puppet.com’

* About to connect() to 127.0.0.1 port 18140 (#0)
* Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 18140 (#0)
> GET /production/node/puppet-client-test.pro-puppet.com HTTP/1.1
> User-Agent: curl/7.19.7 (x86_64-redhat-linux-gnu) libcurl/7.19.7 NSS/3.14.0.0 z1ib/1.2.3
libidn/1.18 1libssh2/1.4.2
> Host: 127.0.0.1:18140

> Accept: pson, yaml

> X-Client-DN: /CN=puppet-client-test.pro-puppet.com
> X-Client-Verify: SUCCESS
>
<
<
<
<
<
<
<
<
<

HTTP/1.1 200 OK

Date: Thu, 15 Aug 2013 04:59:46 GMT
Server: Apache/2.2.15 (CentOS)
X-Powered-By: Phusion Passenger 4.0.8
Content-Length: 103

Status: 200 OK

Connection: close

Content-Type: text/pson

* Closing connection #0
{"document_type":"Node","data":{"environment": "production”,"name":"
real 0mo.320s

user 0mo0.002s

sys 0m0.005s

puppet-client-test.pro-puppet.com"}}

Placing this command in a script and executing it on the Puppet master worker nodes allows us to know when
catalog compilation time grows beyond normal thresholds.

Splay Time

Related to catalog compilation time, Puppet agent processes sometimes present a “thundering herd” problem when
all systems have their clocks synchronized and are configured to run from the cron daemon at a specific time. The
catalog compilation process is quite processor-intensive, and if the Puppet master receives too many requests in a
short time, the systems may start to thrash and degrade in performance.

We recommend that when running a Puppet agent out of cron, you introduce a small random splay time to
ensure that all of the Puppet agent nodes do not request their configuration catalog at exactly the same moment. The
Example.com operator follows this recommendation and uses the Puppet agent wrapper script shown in Listing 4-69
when executing the Puppet agent out of cron.

138

http:///CN=puppet-client-test.pro-puppet.com
http://127.0.0.1:18140/production/node/puppet-client-test.pro-puppet.com
http:///production/node/puppet-client-test.pro-puppet.com
http:///CN=puppet-client-test.pro-puppet.com
http://puppet-client-test.pro-puppet.com/
http://example.com/

CHAPTER 4 © SCALING PUPPET

Listing 4-69. Bash script to splay Puppet agents

#! /bin/bash

set -e

set -u

sleep $((RANDOM % 300))

exec puppet agent --no-daemonize --onetime

The sleep command in this shell script causes a delay of between zero and five minutes. With hundreds of
Puppet agent-managed nodes, this random delay will ensure that incoming requests to the Puppet Master workers
are spread out over a short time. The splay option in puppet. conf also works to avoid the thundering herd problem
when running the puppet agent daemon.

Summary

In this chapter, you've configured the Puppet master infrastructure in a number of ways. Specifically, you configured
the Apache web server as a reverse HTTPS proxy to handle the SSL verification and authentication of incoming
Puppet agent-managed nodes. Once authenticated, the Apache system behaves as a HTTP load balancer, distributing
requests automatically to some number of back-end Puppet master worker virtual hosts.

In addition, we showed you how to handle incoming certificate requests in a special manner, forwarding all
certificate requests to a single Puppet CA worker process with a hot standby ready and waiting for redundancy. The
consolidation of certificate requests to a single Puppet CA worker mitigates the overhead and problems associated
with keeping the Puppet CA certificate revocation list, serial numbers, and index synchronized across workers.

In addition to HTTP load balancing, several alternative technologies and implementations were introduced.

Finally, you learned how to measure the catalog compilation time of the Puppet master workers and use splay
time to avoid overwhelming the Puppet masters.

Going Further

It is possible to configure your Puppet infrastructure using an external CA such as your site’s root CA instead of a
self-contained and self-signed root. For information on this, consult the following resources. In Chapter 8 you will
learn how to use PuppetDB to scale the storeconfigs service.

Resources

e Using Passenger: http://docs.puppetlabs.com/guides/passenger.html
e Using multiple masters: http://docs.puppetlabs.com/guides/scaling multiple masters.html

e Using an external CA: http://docs.puppetlabs.com/puppet/3/reference/config_ssl _
external_ca.html

e Apache Configuration Reference: http://httpd.apache.org/docs/2.2/

e Apache Mod Proxy Balancer: http://httpd.apache.org/docs/2.2/mod/mod_proxy
balancer.html

e DNS Round Robin: http://en.wikipedia.org/wiki/Round_robin_DNS

e Masterless Puppet with Jordan Sissel (formerly of Loggly, now of Dreamhost):
http://semicomplete.com/presentations/puppet-at-loggly/puppet-at-loggly.pdf.html

139

http://docs.puppetlabs.com/guides/passenger.html
http://docs.puppetlabs.com/guides/scaling_multiple_masters.html
http://docs.puppetlabs.com/puppet/3/reference/config_ssl_external_ca.html
http://docs.puppetlabs.com/puppet/3/reference/config_ssl_external_ca.html
http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://en.wikipedia.org/wiki/Round_robin_DNS
http://semicomplete.com/presentations/puppet-at-loggly/puppet-at-loggly.pdf.html

CHAPTER 4 © SCALING PUPPET
e Masterless Puppet with Capistrano: https://www.braintreepayments.com/braintrust/
decentralize-your-devops-with-masterless-puppet-and-supply-drop

e Puppet Splay: http://docs.puppetlabs.com/references/latest/configuration.
html#splay

e HA Proxy Load Balancer: http://haproxy.iwt.eu/
e Anycast: http://en.wikipedia.org/wiki/Anycast
e DNSSRVRecords: http://en.wikipedia.org/wiki/SRV_record

e Puppet DNS SRV Records: http://docs.puppetlabs.com/guides/scaling multiple_
masters.html#option-4-dns-srv-records

e Puppet REST API: http://docs.puppetlabs.com/guides/rest_api.html

e Rsync: http://en.wikipedia.org/wiki/Rsync

e Certificate Authority: http://en.wikipedia.org/wiki/Certificate_authority

e X.509 Certificates: http://en.wikipedia.org/wiki/X.509

e Basics of a Puppet Run: http://docs.puppetlabs.com/learning/agent_master_basic.html

140

https://www.braintreepayments.com/braintrust/decentralize-your-devops-with-masterless-puppet-and-supply-drop
https://www.braintreepayments.com/braintrust/decentralize-your-devops-with-masterless-puppet-and-supply-drop
http://docs.puppetlabs.com/references/latest/configuration.html#splay
http://docs.puppetlabs.com/references/latest/configuration.html#splay
http://haproxy.1wt.eu/
http://en.wikipedia.org/wiki/Anycast
http://en.wikipedia.org/wiki/SRV_record
http://docs.puppetlabs.com/guides/scaling_multiple_masters.html#option-4-dns-srv-records
http://docs.puppetlabs.com/guides/scaling_multiple_masters.html#option-4-dns-srv-records
http://docs.puppetlabs.com/guides/rest_api.html
http://en.wikipedia.org/wiki/Rsync
http://en.wikipedia.org/wiki/Certificate_authority
http://en.wikipedia.org/wiki/X.509
http://docs.puppetlabs.com/learning/agent_master_basic.html

CHAPTER 5

Externalizing Puppet Configuration -

In Chapter 2 we talked about the ways you can define your hosts or nodes to Puppet. We talked about specifying
them in a variety of forms as node statements in your Puppet manifest files. We also mentioned that Puppet has
the capability to store node information in external sources. This avoids the need to specify large numbers of nodes
manually in your manifest files, a solution that is time-consuming and not scalable.

Puppet has two ways to store node information externally:

e External Node Classification
e LDAP server classification

The first capability, called External Node Classification (ENC), is a script-based integration system that Puppet
queries for node data. The script returns classes, inheritance, variables and environment configuration that Puppet
can then use to define a node and configure your hosts.

Tip External node classifiers are also one of the means by which tools like the Puppet Enterprise and Foreman can
be integrated into Puppet and provide node information, as you will see in Chapter 7.

The second capability allows you to query Lightweight Directory Access Protocol (LDAP) directories for node
information. This integration is used less often than ENCs, but it is especially useful because you can specify an
existing LDAP directory, such as your asset management database or an LDAP DNS backend, for your node data.

Using external node classification, either via an ENC or via LDAP, is the recommended way to scale your Puppet
implementation for large volumes of hosts. Some sites have begun using hiera, as discussed in chapter 12.Most
of the sites using Puppet that have thousands of nodes, for example Google and Zynga, make use of external node
classification systems to deal with the large number of nodes. Rather than managing files containing hundreds,
thousands, or even tens of thousands of node statements, you can use this syntax:

node mail.example.com { ... }
node web.example.com { ... }
node db.example.com { ... }

This capability allows you to specify a single source of node information and make quick and easy changes to that
information without needing to edit files.

In this chapter, we discuss both approaches to storing node information in external sources. First we look at
creating an external node classifier, and we provide some simple examples of these for you to model your own on;
then we demonstrate the use of the LDAP node classifier.

141

http://mail.example.com/
http://web.example.com/
http://db.example.com/

CHAPTER 5 © EXTERNALIZING PUPPET CONFIGURATION

External Node Classification

Writing an ENC is very simple. An ENC is merely a script that takes a node name, for example mail.example.com,
and then returns the node’s configuration in the form of YAML data. YAML, or Yet Ain’t Markup Language
(http://www.yaml.org/), is a serialization language used in a variety of programming languages. YAML is human-friendly,
meaning that it’s structured and is designed to be easy to read. It is often used as a configuration file format; for
example, the database configuration file used in Ruby on Rails applications, database.yml, is a YAML file.

Some simple YAML examples will give you an idea of how it works. YAML is expressed in a hash, where structure
is important. Let’s start by specifying a list of items:

- foo
- bar
- baz
- qux

The start of a YAML document is identified with three dashes, - - -. Every ENC needs to return these three dashes
as the start of its output. You've then got a list of items, each preceded by a dash.
You can also express the concept of assigning a value to an item, for example:

foo: bar

Here you've added our three dashes and then expressed that the value of item foo is bar. You can also express
grouped collections of items (a feature we're going to use extensively in our ENCs):

foo:

- bar
baz:

- qux

You've again started with three dashes and then specified the names of the lists you're creating: foo and baz.
Inside each list are the list items, each one again preceded with a dash, but this time indented one space to indicate its
membership in the list.

This indentation is very important. For the YAML to be valid, it must be structured correctly. This can sometimes
be a real challenge, but there are tools you can use to structure suitable YAML. For example, VIM syntax highlighting
will recognize YAML (if the file you're editing has a .yml or . yaml extension), or you can use the excellent Online
YAML Parser to confirm that the YAML you're generating is valid: http://yaml-online-parser.appspot.com/.

But before generating your first YAML node, you need to configure Puppet to use an external node classifier; in
addition, you need to do file-based node configuration.

Note You can see a more complete example of structured YAML at http://www.yaml.org/start.html.

142

http://mail.example.com/
http://www.yaml.org/
http://yaml-online-parser.appspot.com/
http://www.yaml.org/start.html

CHAPTER 5 © EXTERNALIZING PUPPET CONFIGURATION

Configuring Nodes Using an External Node Classifier

To use external nodes, you first need to tell Puppet to use a classifier to configure the nodes rather than use node
definitions. Do this by specifying the node_terminus option and the name and location of the classifier in the
[master] section of the puppet.conf configuration file on your Puppet master. You can see this in Listing 5-1, where
you've specified a classifier called puppet_node_classifier located in the /usr/bin directory.

Listing 5-1. The external nodes configuration option

[master]
node_terminus = exec
external_nodes = /usr/bin/puppet_node_classifier

The node_terminus configuration option is used to configure Puppet for node sources other than the default
flat file manifests. Available options are plain, exec, and 1dap. The exec option tells Puppet to use an external node
classifier script.

A classifier can be written in any language, including shell script, Ruby, Perl, Python, and a variety of other
languages. The only requirement is that the language can output the appropriate YAML data. For example, you could
also easily add a database backend to a classifier that queries a database for the relevant hostname and returns the
associated classes and any variables. If the ENC script returns a nonzero status, Puppet will ignore the results of the
execution and treat the node as not found.

Following are some example node classifiers written in different languages.

Note You can have nodes specified in both Puppet manifests and external node classifiers. For this to work correctly,
though, your ENC must return an empty YAML hash.

An External Node Classifier in a Shell Script

In Listing 5-2, you can see a very simple node classifier, the puppet_node_classifier script specified in Listing 5-1.
This classifier is written in shell script.

Listing 5-2. A simple node classifier

#!/bin/sh
cat <<"END"
classes:
- base
parameters:
puppetserver: puppet.example.com
environment: production
END
exit 0

The script in Listing 5-2 will return the same classes and variables each time it is called, irrespective of the
hostname passed to the script. For example, calling

$ /usxr/bin/puppet_node_classifier web.example.com

143

http://puppet.example.com/
http://web.example.com/

CHAPTER 5 © EXTERNALIZING PUPPET CONFIGURATION

returns this:

classes:
- base
parameters:
puppetserver: puppet.example.com

The classes block holds a list of the classes that belong to this node, and the parameters block contains
a list of the variables this node specifies. In this case, the node includes the base class and has a variable called
$puppetserver with a value of puppet.example.com.

Puppet will use this data to construct a node definition as if you'd defined a node statement. That node statement
would look like Listing 5-3.

Listing 5-3. Node definition from Listing 5-2’s classifier

node web.example.com {
$puppetserver = ‘puppet.example.com’
include base

This is the simplest ENC we can devise. More complex variations of this script can return different results
depending on the particular node name being passed to the classifier, in the same way different nodes would be
configured with different classes, definitions, and variables in your manifest files.

Tip Any parameters specified in your ENC will be available as top-scope variables.

Parameterized Classes in YAML

It is possible to pass parameters to classes in YAML. Using ENCs to populate parameters passed to classes means that
information in your external data store can produce logic in Puppet modules. This capability is very powerful, and the
syntax looks like this:

classes:
-base
ntp:
servers:
0.pool.ntp.org
1.pool.ntp.org
manageservice: "false"
parameters:
puppetserver: puppet.example.com

A Ruby External Node Classifier

Let’s look at another example of an ENC, this time specifying a list of hosts or returning an empty YAML hash if the
host is not found. This ENC is written in Ruby, and you can see it in Listing 5-4.

144

http://puppet.example.com/
http://puppet.example.com/
http://web.example.com/
http://puppet.example.com/
http://0.pool.ntp.org
http://1.pool.ntp.org
http://puppet.example.com/

CHAPTER 5

Listing 5-4. Ruby node classifier

#!/usr/bin/env ruby
require ‘yaml'

node = ARGV[O0]
default = { 'classes' => []}

Hostname must match: 'hostname.example.com'
unless node =~ /("M\S+)\.(\S+\.\S+)$/

print default.to yaml

exit 0
end

hostname = $1

base = { 'environment' => 'production’,
'parameters’ => {
'puppetserver' => 'puppet.example.com’
b
‘classes' => ['base'],

}

case hostname
when /"web?\w+$/
web = { 'classes' => 'apache' }
base['classes'] << web['classes']
puts YAML.dump(base)
when /*db?\w+$/
db = { "classes’' => 'mysql' }
base['classes'] << db['classes']
puts YAML.dump(base)
when /"mail?\w+$/
mail = { 'classes' => 'postfix' }
base['classes'] << mail['classes']
puts YAML.dump(base)
else
print default.to_yaml
end

exit 0

EXTERNALIZING PUPPET CONFIGURATION

The simple ENC here captures the incoming node name and rejects it by returning an empty hash (defined in the
default variable) if it is not an appropriately formed fully-qualified domain name (FQDN).

The code then sets up some basic defaults, including the puppetserver variable, the environment, and a base
class. The ENC then takes the host name portion of the FQDN and checks it against a list of host names, for example

matching it against web, web1, web123 and so on for database and mail hosts.

145

http://hostname.example.com/
http://puppet.example.com/

CHAPTER 5 © EXTERNALIZING PUPPET CONFIGURATION

For example, if you passed the ENC a node name of web.example. com, it would return the following YAML hash:

parameters:

puppetserver: puppet.example.com
classes:

- base

- apache
environment: production

That would result in this node definition:

node web.example.com {
$puppetserver = puppet.example.com
include base
include apache

}

This would specify that the node belonged to the production environment.

If the ENC doesn’t match any host names, it will return an empty YAML hash, which looks like this:
classes: []

A Perl External Node Classifier

In Listing 5-5, you can see another node classifier, this one written in Perl.

Listing 5-5. Perl-based node classifier

#!/usr/bin/perl -w
use strict;
use YAML qw(Dump);

my $hostname = shift || die "No hostname passed";

$hostname =~ /*(\w+)\. (\w+)\. (\w{3})$/
or die "Invalid hostname: $hostname";

my ($host, $domain, $net) = ($1, $2, $3);

my @classes = ('base', $domain);
my %parameters = (
puppetserver => "puppet.$domain.$net"”

)
my $environment = "production”;

print Dump({
classes => \@classes,
parameters => \%parameters,
environment => \$environment,

)
146

http://web.example.com/
http://puppet.example.com/
http://web.example.com/
http://puppet.example.com/

CHAPTER 5 © EXTERNALIZING PUPPET CONFIGURATION

In Listing 5-5, we've created a Perl node classifier that makes use of the Perl YAML module. The YAML module
can be installed via CPAN or your distribution’s package management system. For example, on Debian it is the
libyaml-perl package, and on Fedora it is the per1-YAML package.

The classifier slices our hostname into sections; it assumes the input will be a fully qualified domain name and
will fail if no hostname or an inappropriately structured hostname is passed. The classifier then uses those sections to
classify the nodes and set parameters. If you called this node classifier with the hostname web.example. com, it would
return this node classification:

classes:
- base
- example
parameters:
puppetserver: puppet.example.com

That would result in a node definition in Puppet structured like this:

node 'web.example.com' {
include base
include example

$puppetserver = "puppet.example.com"

Back-Ending a Node Classification

Finally, as mentioned, you could also back-end the node classification script with a database, as demonstrated in
Listing 5-6.

Listing 5-6. A database back-end node classifier

#!/usr/bin/perl -w
use strict;

use YAML qw(Dump);
use DBI;

my $hostname = shift || die "No hostname passed";

$hostname =~ /~(\w+)\. (\w+)\. (\w{3})$/
or die "Invalid hostname: $hostname";

my ($host, $domain, $net) = ($1, $2, $3);

MySQOL Configuration

my $data_source = "dbi:mysql:database=puppet;host=localhost";
my $username = "puppet";

my $password = "password”;

Connect to the server
my $dbh = DBI->connect($data_source, $username, $password)
or die $DBI::errstr;

147

http://web.example.com/
http://puppet.example.com/
http://web.example.com/
http://puppet.example.com/

CHAPTER 5 © EXTERNALIZING PUPPET CONFIGURATION

Build the query
my $sth = $dbh->prepare(qq{SELECT class FROM nodes WHERE node = '$hostname'})
or die "Can't prepare statement: $DBI::errstr”;

Execute the query
my $rc = $sth->execute
or die "Can't execute statement: $DBI::errstr";

Set parameters
my %parameters = (
puppet_server => "puppet.$domain.$net"

)5

Set classes

my @class;

while (my @row=$sth->fetchrow array)
{ push(@class,@row) }

Check for problems
die $sth->errstr if $sth->err;

Disconnect from database
$dbh->disconnect;

Print the YAML

print Dump({
classes => \@class,
parameters => \%parameters,

)

This node classifier would connect to a MySQL database called puppet running on the local host. Using the
hostname, the script receiving it would query the database and return a list of classes to assign to the node. The nodes
and classes would be stored in a table. The next lines form a SQL statement to create a very simple table to do this:

CREATE TABLE 'nodes' (
"node’ varchar(80) NOT NULL,
"class' varchar(80) NOT NULL) TYPE=MyISAM;

The classes, and whatever parameters you set (which you could also place in the database in another table), are
then returned and output as the required YAML data.

Tip You can also access fact values in your node classifier scripts. Before the classifier is called, the $vardir/yaml/
facts/ directory is populated with a YAML file named for the node containing fact values, for example /var/1ib/pup-
pet/yaml/facts/web.example.com.yaml. This file can be queried for fact values.

All of these external node classifiers are very simple and could easily be expanded to provide more sophisticated
functionality. It is important to remember that external nodes override node configuration in your manifest files. If
you enable an external node classifier, any duplicate node definitions in your manifest files will not be processed; they
will be ignored by Puppet.

148

http:///var/lib/puppet/yaml/facts/web.example.com.yaml
http:///var/lib/puppet/yaml/facts/web.example.com.yaml

CHAPTER 5 © EXTERNALIZING PUPPET CONFIGURATION

Storing Node Configuration in LDAP

In addition to external node classifiers, Puppet also allows the storage of node information in LDAP directories. Many
organizations already have a wide variety of information about their environments, such as DNS, user and group
data, stored in LDAP directories. This allows organizations to leverage these already-existing assets stored in LDAP
directories or to decouple their configuration from Puppet and centralize it. Additionally, it also allows LDAP-enabled
applications to have access to your configuration data.

Note The use of LDAP nodes overrides node definitions in your manifest files and your ENC. If you use LDAP node
definitions, you cannot define nodes in your manifest files or in an ENC.

Installing Ruby LDAP Libraries

The first step in using LDAP for your node configuration is to ensure that the Ruby LDAP libraries are installed. First,
check for the presence of the LDAP libraries:

ruby -rldap -e "puts :installed"

If this command does not return installed, the libraries are not installed. You can either install them via your
distribution’s package management system or download them from the Ruby/LDAP site. For Red hat and derivatives,
and for Ubuntu/Debian, this is the ruby-1dap package.

If there isn’t a package for your distribution, you can download the required libraries in the form of either an RPM
or a source package from the Ruby/LDAP site. The Ruby/LDAP site is located at http://ruby-1dap.sourceforge.net/.

Check out the current Ruby LDAP source code:

$ svn checkout http://ruby-activeldap.googlecode.com/svn/ldap/trunk/ ruby-ldap-ro
Then, change into the resulting directory and make and install the code:

$ cd ruby-ldap-ro
$ ruby extconf.rb
$ sudo make 88 make install

Setting Up the LDAP Server

Next, you need to set up your LDAP server. We're going to assume you've either already got one running or can set one
up yourself. For an LDAP server, you can use OpenLDAP, Red Hat Directory Server (or Fedora Directory Server), Sun’s
Directory Server, or one of a variety of other servers. We're going to use OpenLDAP for the purpose of demonstrating
how to use LDAP node definitions.

Tip For some quick-start instructions on setting up OpenLDAP, you can refer to
http://www.openldap.org/doc/admin23/quickstart.html.

149

http://ruby-ldap.sourceforge.net/
http://ruby-activeldap.googlecode.com/svn/ldap/trunk/
http://www.openldap.org/doc/admin23/quickstart.html

CHAPTER 5 © EXTERNALIZING PUPPET CONFIGURATION

Adding the Puppet Schema

Now we need to add the Puppet schema to our LDAP directory’s configuration.

Caution You may need to tweak or translate the default LDAP schema for some directory servers, but it is suitable
for OpenLDAP.

The Puppet schema document is available in the Puppet source package in the ext/ldap/puppet.schema file,
or you can take it from the project’s Git repository at https://github.com/puppetlabs/puppet/blob/master/ext/
ldap/puppet.schema.

We need to add it to our schema directory and slapd.conf configuration file. For example, on an Ubuntu or
Debian host, the schema directory is /etc/ldap/schema, and the slapd.conf configuration is located in the /etc/
ldap directory. On Red Hat, the configuration file is located in /etc/openldap, and the schemas are located in /etc/
openldap/schema. Copy the puppet.schema file into the appropriate directory, for example on Ubuntu:

$ cp puppet/ext/ldap/puppet.schema /etc/ldap/schema

Now you can add an include statement to your slapd.conf configuration file; there should be a number of
existing statements you can model:

include /etc/ldap/schema/puppet.schema

Or you can add a schema to a running OpenLDAP server, like so:
$ ldapadd -x -H ldap://ldap.example.com/ -D "cn=config" -W -f puppet.ldif

To update OpenLDAP with the new schema, you may also now need to restart your server.
/etc/init.d/slapd restart

Now that you've added the schema and configured the LDAP server, you need to tell Puppet to use an LDAP
server as the source of its node configuration.

Note Your LDAP server may be able to accept new schema without a restart. We recommend it here in case your
LDAP server can’t.

Configuring LDAP in Puppet

LDAP configuration is very simple. Let’s look at the required configuration options from the [master] section of the
puppet.conf configuration file in Listing 5-7.

Listing 5-7. LDAP configuration in Puppet

[master]

node_terminus = ldap

ldapserver = ldap.example.com
ldapbase = ou=Hosts,dc=example,dc=com

150

https://github.com/puppetlabs/puppet/blob/master/ext/ldap/puppet.schema
https://github.com/puppetlabs/puppet/blob/master/ext/ldap/puppet.schema
http://ldap.example.com/

CHAPTER 5 © EXTERNALIZING PUPPET CONFIGURATION

First, we set the node_terminus option to 1dap to tell Puppet to look to an LDAP server as our node source. Next,
we specify the hostname of our LDAP server, in this case 1dap.example.com, in the 1dapserver option. Finally, in the
ldapbase option, we specify the base search path. Puppet recommends that hosts be stored in an OU called Hosts
under our main directory structure, but you can configure this to suit your environment.

If required, you can specify a user and password using the 1dapuser and 1dappassword options and override
the default LDAP port of 389 with the 1dapport option. There is some limited support for TLS or SSL, but only if your
LDAP server does not require client-side certificates.

Tip You can see a full list of the potential LDAP options at
http://docs.puppetlabs.com/references/stable/configuration.html.

After configuring Puppet to use LDAP nodes, you should restart your Puppet master daemon to ensure that the
new configuration is updated.

Now you need to add your node configuration to the LDAP server. Let’s take a quick look at the Puppet LDAP
schema in Listing 5-8.

Listing 5-8. The LDAP schema

attributetype (1.3.6.1.4.1.34380.1.1.3.10 NAME 'puppetClass’
DESC 'Puppet Node Class'
EQUALITY caseIgnoreIA5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetype (1.3.6.1.4.1.34380.1.1.3.9 NAME 'parentNode’
DESC 'Puppet Parent Node'
EQUALITY caseIgnoreIA5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
SINGLE-VALUE)

attributetype (1.3.6.1.4.1.34380.1.1.3.11 NAME 'environment'
DESC 'Puppet Node Environment'
EQUALITY caseIgnoreIA5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetype (1.3.6.1.4.1.34380.1.1.3.12 NAME 'puppetVar'
DESC 'A variable setting for puppet'
EQUALITY caseIgnoreIA5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
objectclass (1.3.6.1.4.1.34380.1.1.1.2 NAME 'puppetClient' SUP top AUXILIARY
DESC 'Puppet Client objectclass'
MAY (puppetclass $ parentnode $ environment $ puppetvar))

The Puppet schema is made up of an object class, puppetClient, and four attributes: puppetclass, parentnode,
environment, and puppetvar. The object class puppetClient is assigned to each host that is a Puppet node. The
puppetclass attribute contains all the classes defined for that node. At this stage, you cannot add definitions, just
classes. The parentnode attribute allows you to specify node inheritance, environment specifies the environment of
the node, and puppetvar specifies any variables assigned to the node.

In addition, any attributes defined in your LDAP node entries are available as variables to Puppet. This
compatibility works in much the same way as Facter facts (see Chapter 1); for example, if the host entry has the ipHost

151

http://ldap.example.com/
http://docs.puppetlabs.com/references/stable/configuration.html
http://docs.puppetlabs.com/references/stable/configuration.html

CHAPTER 5 © EXTERNALIZING PUPPET CONFIGURATION

class, the ipHostNumber attribute of the class is available as the variable $ipHostNumber. You can also specify attributes
with multiple values; these are created as arrays.

You can also define default nodes in the same manner as doing so in your manifest node definitions: creating a
host in your directory called default. The classes assigned to this host will be applied to any node that does not match
anode in the directory. If no default node exists and no matching node definition is found, Puppet will return an error.

You can now add your hosts, or the relevant object class and attributes to existing definitions for your hosts, in the
LDAP directory. You can import your host definitions using LDIF files or manipulate your directory using your choice
of tools, such as phpLDAPadmin (http://phpldapadmin.sourceforge.net/wiki/index.php/Main_Page).

Listing 5-9 is an LDIF file containing examples of node definitions.

Listing 5-9. LDIF nodes

LDIF Export for: ou=Hosts,dc=example,dc=com
dn: ou=Hosts,dc=example,dc=com

objectClass: organizationalUnit

objectClass: top

ou: Hosts

dn: cn=default,ou=Hosts,dc=example,dc=com
cn: default

description: Default

objectClass: device

objectClass: top

objectClass: puppetClient

puppetclass: base

dn: cn=basenode,ou=Hosts,dc=example,dc=com
cn: basenode

description: Basenode

objectClass: device

objectClass: top

objectClass: puppetClient

puppetclass: base

dn: cn=web,ou=Hosts,dc=example,dc=com
cn: web

description: Webserver

objectClass: device

objectClass: top

objectClass: puppetClient

parentnode: basenode

puppetclass: apache

dn: cn=webl.example.com, ou=Hosts,dc=example,dc=com
cn: webl

description: webserving host

objectclass: device

objectclass: top

objectclass: puppetClient

objectclass: ipHost

parentnode: web

ipHostNumber: 192.168.1.100

152

http://phpldapadmin.sourceforge.net/wiki/index.php/Main_Page
http://cn=web1.example.com

CHAPTER 5 © EXTERNALIZING PUPPET CONFIGURATION

This listing includes a default node, a node called basenode, and a template node called web. Each node has
particular classes assigned to it, and the web node has the basenode defined as its parent node and thus inherits its
classes also. Last, we define a client node, called web1, which inherits the web node as a parent.

Summary

In this chapter we’ve explored how you can use both external node classification and the LDAP node terminus. Both
of these allow you to scale to larger numbers of nodes without needing to maintain large numbers of nodes in your
manifest files. In Chapter 7, we’ll also look at how you can use Puppet Dashboard or the Foreman dashboard as an
external node classifier.

Resources

The following links will take you to Puppet documentation related to external nodes:
e External nodes: http://docs.puppetlabs.com/guides/external nodes.html
e LDAPnodes: http://projects.puppetlabs.com/projects/puppet/wiki/Ldap_Nodes

e Puppet configuration reference:
http://docs.puppetlabs.com/references/stable/configuration.html

153

http://docs.puppetlabs.com/guides/external_nodes.html
http://projects.puppetlabs.com/projects/puppet/wiki/Ldap_Nodes
http://docs.puppetlabs.com/references/stable/configuration.html

CHAPTER 6

Exporting and Storing Configuration/

So far in the book, you've seen how Puppet models configuration on a single host. In many cases, however, you
have configuration on multiple hosts that have a relationship; for example, your monitoring system needs to know
about configuration on hosts being monitored. In this chapter we look at three Puppet features that help you model
resources on multiple hosts: virtual resources, exported resources, and stored configuration using PuppetDB.

e Virtual resources are a method of managing resources that may be required by multiple
configurations. For example, a user may be required on some hosts but not others. Virtual
resources allow you to define a resource and select where you instantiate that resource.

e Exported resources allow you to take resources defined on one host and use them on other
hosts; for example, you can tell a Puppet-managed load balancer about each of the workers
available to it. Puppet collects and stores each of these resources when configuration runs
occur, and then it provides these resources and their information to other hosts if they ask.

e Stored configuration provides a mechanism to store these resources. This feature allows
Puppet to write resources into a SQL database. This database will then be queried by Puppet,
and required resources will be collected and included in the configuration catalog.

In this chapter you will learn how to use virtual and exported resources, including how to use the exported
resource feature to collect specific resources from stored configuration. We cover a number of use cases, including
the automatic management of SSH host keys, automated load balancer reconfiguration, and automated monitoring
with Nagios.

We demonstrate how to configure Puppet with PuppetDB for stored configurations and how to prune old
configuration data from the SQL database in order to prevent other systems from collecting stale resources.

Virtual Resources

Virtual resources are closely related to the topic of exported resources. Because of the similarity, it’s important to
cover virtual resources first to provide a foundation for learning about exported resources.

Virtual resources are designed to address the situation where multiple classes require a single resource to be
managed. This single resource doesn’t clearly “belong” to any one class, and it is cumbersome to break each of these
resources out into a unique class. Virtual resources also help solve the problem of duplicate resource declaration
errors in Puppet.

To illustrate the problem, suppose you were the Example.com operator. You would like the ability to declare user
resources to manage the accounts for your colleagues, but each person should have their account managed on only
some systems. For example, all developer accounts need to be managed on all development and testing systems,
while being absent from the production systems. Conversely, the system administrator accounts need to be present
on every system. Finally, there are service accounts, for example, the apache and mysql users and groups required
by multiple Puppet classes, such as the apache, mysql, and webapp classes. The webapp class requires the mysql

155

http://example.com/

CHAPTER 6 © EXPORTING AND STORING CONFIGURATION

and apache service accounts, but it should not declare the resource itself, because the mysql class is likely to have a
conflicting resource declaration.

Virtual resources enable you, in managing a site like Example.com, to define a large set of user resources in once
place and selectively add a smaller subset of those users to the configuration catalog. You don’t need to worry about
duplicate resource declarations, because the resources are only declared once and then instantiated, or “realized,”
one or more times.

Declaring a virtual resource is easy; just add the @ character to the beginning of the resource declaration to make
the resource virtual. You can then use one of two methods to realize your virtual resources:

e The “spaceship” syntax <| |>'

e Therealize function

Declaring and Realizing a Virtual Resource

Let’s see how you might declare and realize the Example. com user and service accounts in Listing 6-1.

Listing 6-1. Virtual user resources <modulepath>/accounts/virtual.pp

class accounts::virtual {
@user { 'mysql':

ensure => present,
uid = '27',
gid = '27',
home => '/var/lib/mysql’,
shell => '/bin/bash’,
}
@user { 'apache':
ensure => present,
uid => '48',
gid => 'apache’,
home => "/var/www',
shell => '/sbin/nologin’,
}

Resources declared virtually will not be managed until they're-realized. Simply declaring the accounts: :virtual
class makes these virtual resources available, but that is not enough to manage the mysql and apache user accounts.
Listing 6-2 shoes how you make sure the mysql user account is present on the system.

Listing 6-2. Realizing a virtual resource using the spaceship operator

class webapp {
include accounts::virtual
package { 'webapp': ensure => present }
User <| title == "mysql'|>

}

'So named because the syntax looks like a spaceship.

156

http://example.com/
http://example.com/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

The last line of this webapp class uses the spaceship operator to find the user resource with the title of mysql. This
syntax specifies a very specific resource to realize; Puppet will not throw an error, however, if there is no virtual user
resource with the title mysql. The spaceship operator is analogous to a search function, where returning no results is
perfectly valid. In situations where a specific resource is required, the realize() function may be used to generate an
error if the virtual resource is not found.

Applying the realize Function

The realize() function provides another method of making a virtual resource real. A specific resource identified by
its type and title must be passed as an argument to the realize() function. This requirement of a specific resource
makes realize()much less flexible than the collection syntax and spaceship operator. The realize() function is
more appropriate to use when an error should be thrown if the virtual resource has not been declared in the catalog.
For example, you may want catalog compilation to fail if there is no mysql user resource, as illustrated in Listing 6-3.

Listing 6-3. The realize() function

class webapp {
realize(User['mysql]")
package { 'webapp':
ensure => present,
}
}

The configuration catalog resulting from the webapp class defined in Listing 6-3 is the same as the configuration
catalog generated from the webapp class shown in Listing 6-2. You've seen how to realize a specific resource, the mysql
user, but how to handle the situation where you need to make a number of virtual resources real? Puppet provides a
convenient way to solve this problem without forcing you to specify each and every resource by name.

Making Virtual Resources Real

When using the spaceship operator, you can use any parameter to collect resources. This feature allows a large
number of relationships to be managed in a concise and clear style. For example, if there are multiple user accounts
with a primary group of apache, you can realize all of them using a single statement:

User <| gid == 'apache' |[>

So far you've seen how to realize collections of virtual resources using the spaceship operator and specific
resources using the realize() function. A key aspect of the Puppet model is specifying relationships between
resources, and we haven'’t yet discussed how to establish a relationship to a realized virtual resource. Resource
collections may also have a block associated with them to add additional parameters. When realizing virtual resources,
you can specify the relationship metaparameters to ensure that the resource is managed in the correct order. Listing 6-4
shows how to ensure that the mysql user account in Example. com is always managed before the webapp package.

Listing 6-4. Specifying parameters in a collection

class webapp {
User <| title == mysql |> { before => Package['webapp'] }
package { 'webapp':
ensure => present,
}
}

157

http://example.com/

CHAPTER 6 © EXPORTING AND STORING CONFIGURATION

Asyou can see, appending a block containing parameters after the collection will add the parameter to all of the
realized resources. This also works for collections that contain many resources, as in this example:

User <| gid == 'apache' |> { before => Package['apache'] }

In addition to a block associated with a collection, Puppet also supports a relationship-chaining syntax. This
syntax allows relationships to be declared without using the metaparameters before, require, subscribe, and notify
as we'll see in the next section.

Relationship-Chaining Syntax

The relationship-chaining syntax allows you to replace the before, require, subscribe, and notify parameters with
arrow operators. These new operators allow relationships to be declared outside the blocks where the resources are
declared.

For example, two resources may be declared without any relation to each other, and their relationship established
at a later time (Listing 6-5).

Listing 6-5. Example of arrow relationship syntax

define apache::account($ensure=present) {
user { 'apache’:
ensure => $ensure,
gid => 48,
}
group { "apache":
ensure => $ensure,
gid => 48,
}
if ($ensure == present) {
Group["apache'] -> User['apache’]
} else {
User['apache'] -> Group['apache']
}
}

In this code example, Puppet will manage the group before the user if the apache account is present. However,
if the apache account is absent, then the user is managed before the group to prevent the operating system from
complaining that a group cannot be removed when a user exists with the same gid number.

The syntax arrows are ->, and ~> . The tilde arrows add notifications to the relationship, just as the subscribe
and notify parameters do.

Group['apache'] -> User['apache’]
The apache group is before the apache user.

File['httpd.conf'] ~> Service['httpd']

The httpd. conf file notifies the httpd service.

Note You may also see use of the <- and <~ syntax arrows. They are discouraged by the Puppet Style Guide, however.

158

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

Additional information about the relationship-chaining syntax is available online at
http://docs.puppetlabs.com/guides/language tutorial.html.

In the next section, we extend the concept of virtual resources and make resources available across nodes and
configuration catalogs. Resources available for collection across nodes are called exported resources, although it’s
important to think of them in terms of the virtual resource feature they aredesigned to resemble.

Getting Started with Exported and Stored Configurations

Now that you're ready to look at exported resources and stored configuration using the groundwork we’ve introduced
with virtual resources, let’s start with a database server.

The easiest way to install PuppetDB is through the puppetlabs puppetdb module on the Puppet Forge. Make sure
the puppetlabs repositories are enabled for your distribution as described in Chapter 1.

You can install the puppetlabs/puppetdb module via the puppet module tool or you can download it from
https://forge.puppetlabs.com/puppetlabs/puppetdb. Your installation dialog should look like Listing 6-6.

Listing 6-6. Bringing down the puppetdb module from the forge

$ puppet module install puppetlabs/puppetdb
Notice: Preparing to install into /etc/puppet/modules ...
Notice: Created target directory /etc/puppet/modules
Notice: Downloading from https://forge.puppetlabs.com ..
Notice: Installing -- do not interrupt ...
/etc/puppet/modules
puppetlabs-puppetdb (v1.6.0)
cprice404-inifile (v0.10.4)
puppetlabs-firewall (v0.4.2)
puppetlabs-postgresql (v2.5.0)
puppetlabs-apt (vi.2.0)
ripienaar-concat (v0.2.0)
puppetlabs-stdlib (v4.1.0)

Next add the following to your node definition for your puppetmaster:

node 'puppetmaster' {
include puppetdb
include puppetdb::master::config

}
If you don’t have your Puppet master currently configured to be a node, you can use puppet apply instead:

$ puppet apply -e 'include puppetdb'
$ puppet apply -e 'incldue puppetdb::master::config'

The puppetdb class will install the puppetdb package, configure the service, and install PostgreSQL as its database
backend. The puppetdb: :master: : config class will configure your puppetmaster to use puppetdb and will enable
stored configurations.

You should now be able to see puppet agents connecting to puppetdb in the logs (Listing 6-7).

159

http://docs.puppetlabs.com/guides/language_tutorial.html
https://forge.puppetlabs.com/puppetlabs/puppetdb
https://forge.puppetlabs.com/

CHAPTER 6 © EXPORTING AND STORING CONFIGURATION

Listing 6-7. The PuppetDB log

$ tail -f /var/log/puppetdb/puppetdb.log

2013-05-19 01:

(threshold: 7

2013-05-19 01:

(threshold: 7

2013-05-19 01:

6b9d8aea6357]

2013-05-19 01:

55b28662408]
2013-05-19 01
5b72989ddoae]

2013-05-19 01:

:38:12,306 INFO

29:22,483 INFO
days)
29:22,486 INFO
days)
35:12,577 INFO [command-proc-56] [puppetdb.command] [dce6599f-d10d-4a01-87dc-
[replace facts] pro-master.lan

35:17,896 INFO [command-proc-58] [puppetdb.command] [6bbc81f0-793c-469a-b408-
[replace catalog] pro-master.lan

[command-proc-55] [puppetdb.command] [a3873da2-ffe4-4306-b3de-
[replace facts] pro-client.lan

38:15,590 INFO [command-proc-57] [puppetdb.command] [34785404-8508-450b-9374-

[pool-2-thread-1] [cli.services] Starting sweep of stale reports

[pool-2-thread-1] [cli.services] Finished sweep of stale reports

d48ce3f650ea] [replace catalog] pro-client.lan

You can also choose to run PuppetDB or PostgreSQL on a separate machine:
http://docs.puppetlabs.com/puppetdb/latest/install via_module.html

If you would like to install PuppetDB from packages, refer to the official documentation.
http://docs.puppetlabs.com/puppetdb/latest/install from_packages.html

In addition to allowing exported resources to work, Puppetdb will collect the facts and catalogs for all of your
nodes and offers an API to query this metadata. The official documentation has more information about how to query
the APIL

http://docs.puppetlabs.com/puppetdb/latest/api/index.html

Using Exported Resources

With stored configurations enabled in the Puppet master, youcan now export resources from a node’s catalog. These
exported resources may then be collected on another node, allowing nodes to exchange configuration information
dynamically and automatically. In this section we’ll examine a number of common use cases for exported resources.

The first example will export the public SSH host identification key from each Puppet-managed node and store
the resources centrally in PuppetDB. Every node may then collect all of the public host keys from all other nodes. This
configuration increases security and eliminates the “unknown host” warning commonly encountered when logging in
via SSH for the first time.

The second example uses exported resources to reconfigure a load balancer dynamically when additional Puppet
master worker processes come online.

Finally, you'll see how to dynamically and automatically reconfigure the Nagios monitoring system to check the
availability to new Puppet-managed systems.

Automated SSH Public Host Key Management

When new systems are brought online in a large network, the known_hosts files of all other systems become stale and
out of date, causing “unknown host” warnings when users log in using SSH. Puppet provides a simple and elegant
solution to this problem using stored configurations and exported resources. When new systems are brought online,
Puppet updates the known_hosts file on all other systems by adding the public host key of the new system. This

160

http://docs.puppetlabs.com/puppetdb/latest/install_via_module.html
http://docs.puppetlabs.com/puppetdb/latest/install_from_packages.html
http://docs.puppetlabs.com/puppetdb/latest/api/index.html

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

automated management of the known_hosts file also improves security, by reducing the likelihood of a
“man-in-the-middle” attack remaining unnoticed.

You've learned in this chapter that any resource may be declared virtually using the @ symbol before the resource
declaration. A similar syntax, @@, is used when resources should be declared virtually and exported to all other nodes
using stored configurations. The use of @@ allows any node’s catalog to collect the resource. Listing 6-8 shows how this
looks for SSH public keys.

Listing 6-8. Exporting sshkey resources

class ssh::hostkeys {

@@sshkey { "${::fqdn} dsa":
host_aliases => [$::fqdn, $::hostname, $::ipaddress],
type => dsa,
key => $::sshdsakey,

}

@@sshkey { "${::fqdn} rsa":
host_aliases => [$::fqdn, $::hostname, $::ipaddress],
type => rsa,
key => $::sshrsakey,

}

This Puppet code snippet looks a little strange compared to what we’ve worked with so far.

The class ssh: :hostkeys should be included in the catalog of all nodes in the network for their SSH public host
keys to be exported and collectible. All of the resources and parameters are set to variables coming from Facter fact
values. In Listing 6-8, two sshkey resources have been declared as virtual resources and exported to the central stored
configuration database, as indicated by the @@ symbols. The titles of each resource contain the suffixes _dsaor_1sa,
preventing these two resources from conflicting with each other. To make sure each resource has a unique title for the
entire network, the title also contains the fully qualified domain name of the node exporting the public host keys.

The host_aliases parameter provides additional names and addresses the node may be reached by. This
information is important to prevent the “unknown host” warnings when connecting to the node from another system.
In this example, we're providing the fully qualified domain name, short hostname, and IP address of the system. Each
of these values comes from Facter and is automatically provided.

They type and key parameters provide the public key information itself. The values of $: : sshdsakey and
$: :sshrsakey also come from Facter and are automatically available on each host.

Exporting these two sshkey resources is not sufficient to configure the known_hosts file on each node. You must
also collect all exported sshkey resources for Puppet to fully manage and keep updated the known_hosts file shown in
Listing 6-9.

Listing 6-9. Collecting exported sshkey resources

class ssh::knownhosts {
Sshkey <<| |>> { ensure => present }

}

The ssh: :knownhosts class should be included in the catalog for all nodes where Puppet should manage the SSH
known_hosts file. Notice that we've used double angle braces to collect resources from PuppetDB. The syntax is similar
to that for collecting virtual resources; however, virtual resources use only a single pair of angle braces. We're also
specifying that the ensure parameter should take on the value “present” when collecting the exported sshkey resources.

161

CHAPTER 6 © EXPORTING AND STORING CONFIGURATION

With the two classes configured and added to the node classification for every host in the network, you can verify
that host keys are collected on every node in the network.

First, run the Puppet agent on the mail.example.com host. Since this is the first host to run the Puppet agent, you
expect only two SSH keys to be collected: the keys exported by the mail host itself, as you can see in Listing 6-10.

Listing 6-10. The first Puppet agent onmail.example.com

puppet agent --test

info: Caching catalog for mail.example.com

info: Applying configuration version '1293584061'

notice: /Stage[main]//Node[default]/Sshkey[mail.example.com dsa]/ensure: created
notice: /Stage[main]//Node[default]/Sshkey[mail.example.com rsa]/ensure: created
notice: Finished catalog run in 0.02 seconds

Notice the two sshkey resources being collected from the stored configuration database, the SSH dsa and rsa
public key exported from the mail.example.comhost.

In Listing 6-11, you run Puppet on the web server, expecting the public keys for both the web host and the mail
host to be collected.

Listing 6-11. The second Puppet agent run on web.example.com

puppet agent --test

info: Caching catalog for web.example.com

info: Applying configuration version '1293584061'

notice: /Stage[main]//Node[default]/Sshkey[mail.example.com rsa]/ensure: created
notice: /Stage[main]//Node[default]/Sshkey[mail.example.com dsa]/ensure: created
notice: /Stage[main]//Node[default]/Sshkey[web.example.com rsa]/ensure: created
notice: /Stage[main]//Node[default]/Sshkey[web.example.com dsa]/ensure: created
notice: Finished catalog run in 0.43 seconds

Here, the Puppet agent on web.example. com collects a total of four SSH host key resources. The rsa and dsa keys
from the mail host and the web host are pulled down from PuppetDB and created on the web host.

Finally, running the Puppet agent once more on the mail.example.com host should result in the two public keys
exported by the web host being collected and managed. Listing 6-12 shows how to verify this.

Listing 6-12. The third Puppet agent run on mail.example.com

puppet agent --test

info: Caching catalog for mail.example.com

info: Applying configuration version '1293584061'

notice: /Stage[main]//Node[default]/Sshkey[web.example.com rsa]/ensure: created

notice: /Stage[main]//Node[default]/Sshkey[web.example.com dsa]/ensure: created

info: FileBucket adding /etc/ssh/ssh_known_hosts as {md5}815e87b6880446e4eb20a8d0e7298658
notice: /Stage[main]//Node[default]/Notify[hello]/message: defined 'message’' as 'Hello World!'
notice: Finished catalog run in 0.04 seconds

As expected, the two SSH public key resources exported by the web host are correctly being collected on the mail
host. By exporting and collecting two sshkey resources, you can rely on all Example.com hosts automatically knowing
the identity of all other hosts, even as new hosts are added to the network. So long as Puppet runs frequently, every
system will have a known_hosts file containing the public key of every other system in the network.

In the next example, you'll see how this feature also allows the automatic addition of worker nodes to a load
balancer pool.

162

http://mail.example.com/
http://mail.example.com/
http://mail.example.com/
http://mail.example.com_dsa
http://mail.example.com_rsa
http://mail.example.com/
http://web.example.com/
http://web.example.com/
http://mail.example.com_rsa/
http://mail.example.com_dsa/
http://web.example.com_rsa/
http://web.example.com_dsa/
http://web.example.com/
http://mail.example.com/
http://mail.example.com/
http://mail.example.com/
http://web.example.com_rsa/
http://web.example.com_dsa/
http://example.com/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

Exporting Load Balancer Worker Resources

In the previous example, you exported SSH public key resources and stored them in the configuration database so
that every host in the network is able to collect the public identification keys of every other host in the network. Along
the same lines, but on a much smaller scale, you can also export resources to a single node on the network, such as a
load balancer.

In this example, HTTP worker nodes will export configuration resources that only the load balancer will collect.
This combination eliminates the need to manually reconfigure the load balancer every time a new worker node is
added to the network.

Each load balancer worker will export a defined resource type representing the load balancer configuration.
Let’s see how you configure the Example. com system now. The load balancer software being used in this example is
Apache. As Example. com operator, you model the configuration of an HTTP worker using a file fragment placed into
the directory /etc/httpd/conf.d.members/. Let’s first take a look at the defined resource type, shown in Listing 6-13.

Listing 6-13. Load balancer worker-defined resource type

define balancermember($url) {
file { "/etc/httpd/conf.d.members/worker ${name}.conf":
ensure => file,
owner => 'root’',
group => 'root’',
mode => '0644',
content => "BalancerMember $url \n",

This configuration file fragment contains a single line, the URL to a member of the load balancer pool. Puppet
recommends using a defined resource type because all resources declared within the type will be exported when the
defined type itself is exported.

The load balancer configuration is similar to the Apache configuration presented in the Chapter 4 discussion of
scaling Puppet. Without using exported resources, you might define your load balancer configuration statically, as
shown in Listing 6-14.

Listing 6-14. Load balancer front-end configuration

<Proxy balancer://puppetmaster>
BalancerMember http://puppetmasteri.example.com:18140
BalancerMember http://puppetmaster2.example.com:18140
BalancerMember http://puppetmaster3.example.com:18140
</Proxy>

In this example, three Puppet master workers have been statically defined. To add additional capacity, you would
have to add a fourth line to this Apache configuration block. Exported resources allow you to save this manual step
and automatically add the configuration once a new worker node comes online and is configured by Puppet. To
accomplish this, you replace all of the BalancerMember statements with an Include statement to read in all of the file
fragments. In the Puppet manifest, these configuration statements are modeled using the balancermember defined
type, shown in Listing 6-15.

Listing 6-15. Including exported file fragments in the load balancer configuration

<Proxy balancer://puppetmaster>
Include /etc/httpd/conf.d.members/*.conf
</Proxy>

163

http://example.com/
http://example.com/
http://puppetmaster1.example.com:18140/
http://puppetmaster2.example.com:18140/
http://puppetmaster3.example.com:18140/

CHAPTER 6 © EXPORTING AND STORING CONFIGURATION

You no longer need to add each line manually once you configure Apache to include all files in the
conf.d.members directory. Instead, you configure Puppet to manage the individual file fragments using exported
resources.

The Puppet configuration to export each load balancer member is very similar to what we saw with the SSH host
key example. The Puppet configuration is very simple. Each worker node needs to export a single balancermember
resource for itself:

class worker {
@@balancermember { $::fqdn:
url => "http://${::fqdn}:18140",
}
}

Notice that you use the fully qualified domain name as the title of the resource. In doing so, you are guaranteed
that there will be no duplicate resource declarations, because each worker node should have a unique value for its
fqdn fact. Declaring the defined resource in this manner exports two resources into the stored configuration database,
the balancermember resource and the contained file resource shown in Listing 6-14. Neither of these resources will be
collected on the worker nodes themselves.

The last step in automating the configuration is to collect all of the exported resources on the load balancer node
itself, as you can see in Listing 6-16.

Listing 6-16. Collecting exported load balancer workers

class loadbalancer members {
Balancermember <<| |>> { notify => Service['apache'] }

}

This code uses the double angle brace syntax to collect all balancermember resources from the stored
configuration database. In addition, it uses a parameter block to notify the Apache service of any changes Puppet
makes to the balancermember resources. Just as with virtual resources, a parameter block may be specified to add
further parameters to collected resources. In this example, you've seen a simplified version of the file fragment pattern
using Apache’s Include configuration statement. Web server worker nodes can easily model their configuration
in Puppet using a defined resource type. Using that technique, you have exported load balancer resources to
automatically reconfigure the front-end load balancer as new members come online.

In the next section, you'll see how exported resources are ideal for automatically reconfiguring a central Nagios
monitoring system as new hosts are added to the network.

Automating Nagios Service Checks

So far, you've seen how exported resources enable Puppet to automatically reconfigure the Example. com systems
as new machines are brought online. You've seen how to automate the management of SSH known hosts keys to
improve security, and how to automatically reconfigure Apache as additional capacity is added into a load
balancer pool.

In this final example of exported resources, you'll again be the Example. com operator, configuring Puppet to
automatically monitor new systems as they're brought online. The problem of monitoring service availability is
something all sites share. Puppet helps solve this problem quickly and easily, and reduces the amount of time and
effort required to manage the monitoring system.

This example specifically focuses on Nagios. Puppet has native types and providers for Nagios built into the
software. The concepts in this section, however, apply to any software requiring a central system to be reconfigured
when new hosts come online and need to be monitored.

164

http://http://$%7b::fqdn%7d:18140
http://example.com/
http://example.com/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

In Nagios, the system performing the service checks is called the monitor system. The Nagios service running
on the monitor system looks to the configuration files in /etc/nagios to sort out which target systems need to be
monitored. For Example.com, we want Puppet to automatically reconfigure the monitor system when a new target
system comes online.

To accomplish this goal, you first configure two classes in Puppet. The first class, named nagios: :monitor,
manages the Nagios service and collects the service check resources exported by the nagios: :target class. Let’s take
alook at these two classes now (see Listing 6-17).

Listing 6-17. Collecting Nagios resources

Manage the Nagios monitoring service
class nagios::monitor {

Manage the packages
package { ['nagios', 'nagios-plugins']:
ensure => installed,

}

Manage the Nagios monitoring service
service { 'nagios':

ensure => running,

hasstatus => true,

enable => true,

subscribe => [Package['nagios'], Package['nagios-plugins']],

}

collect resources and populate /etc/nagios/nagios_*.cfg
Nagios_host <«||>> { notify => Service['nagios'] }
Nagios service <<||>> { notify => Service['nagios'] }

Asyou can see, this code has configured Puppet to manage the Nagios packages and service. The class
nagios: :monitor should be included in the catalog for the monitor node. In addition to the packages and the service,
the code collects two additional resource types from the stored configuration database, all nagios_host and
nagios_service resources. When collecting these host and service resources, you add the notify metaparameter
to ensure that the Nagios monitoring service automatically reloads its configuration if any new nodes have exported
their information to the stored configuration database.

Note Additional information about the nagios host and nagios_service Puppet types is available online. There are
a number of additional resource types related to Nagios management in addition to these two basic service checks.
If you need to make Nagios aware of the interdependencies between hosts to reduce the number of notifications generated
during a service outage, or manage custom Nagios service checks and commands, please see the comprehensive and
up-to-date Puppet type reference at http://docs.puppetlabs.com/references/stable/type.html.

Let’s see how to implement the nagios: :monitor class in the Example.com Puppet configuration. With the
nagios: :monitor class added to the monitor node’s classification in site.pp, run the Puppet agent on node
monitori, as shown in Listing 6-18.

165

http://example.com/
http://docs.puppetlabs.com/references/stable/type.html
http://example.com/

CHAPTER 6 © EXPORTING AND STORING CONFIGURATION

Listing 6-18. The first Puppet agent run to configure Nagios

puppet agent --test

info: Caching catalog for monitori

info: Applying configuration version '1294374100'

notice: /Stage[main]/Nagios::Monitor/Package[nagios]/ensure: created

info: /Stage[main]/Nagios::Monitor/Package[nagios]: Scheduling refresh of Service[nagios]

notice: /Stage[main]/Nagios::Monitor/Package[nagios-plugins]/ensure: created

info: /Stage[main]/Nagios::Monitor/Package[nagios-plugins]: Scheduling refresh of Service[nagios]
notice: /Stage[main]/Nagios::Monitor/Service[nagios]/ensure: ensure changed 'stopped' to 'running'
notice: /Stage[main]/Nagios::Monitor/Service[nagios]: Triggered 'refresh' from 2 events

notice: Finished catalog run in 14.96 seconds

Notice that the first Puppet agent configuration run on monitor1 does not mention anything about
managing Nagios_host or Nagios_service resources. This is because no nodes have yet been classified with the
nagios::target class, and as a result there are no exported host or service resources in the stored configuration
database.

The Example . com operator configures Puppet to export Nagios service and host resources using the class
nagios::target. As you can see in Listing 6-16, the class contains only exported resources. The resources will not be
managed on any nodes until they are collected as in Listing 6-19.

Listing 6-19. Exporting Nagios host and service resources

This class exports nagios host and service check resources
class nagios::export::target {

@@nagios host { $::fqdn:
ensure => present,
alias => $::hostname,
address => $::ipaddress,

use => 'generic-host’,

}

@@nagios_service { "check_ping ${::hostname}":
check_command => 'check_ping!100.0,20%!500.0,60%",
use => 'generic-service',
host_name => $::fqdn,

notification_period => '24x7',
service description => "${::hostname} check_ping"

In Listing 6-19, you have configured two exported resources, one of which provides the monitor node with
information about the target host itself. This resource defines a Nagios host in /etc/nagios/*.cfg on the nodes
collecting these resources. The title of the nagios_host resource is set to the value of the $: : fqdn fact. Using the
fully qualified domain name as the resource title ensures that there will be no duplicate resources in the stored
configuration database. In addition, you have added an alias for the target host using the short hostname in the
$hostname fact. Finally, the address of the target node is set to the $ipaddress variable coming from Facter.

Once a resource describing the target host is exported, the code also exports a basic service check for the host.
As you can see, this service check is performing a basic ICMP ping command to the target node. The host_name
parameter of the resource is also provided from Facter via the $fqdn fact. The check_command parameter looks a bit

166

http://example.com/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

confusing, and rightly so, as it is directly using the Nagios configuration file syntax. Reading the check_ping line left
to right, we interpret it to mean that Nagios will issue a warning when the ping takes longer than 100 milliseconds
or experiences 20% packet loss. Nagios will also issue a critical alert if the ping command takes longer than 500
milliseconds to complete or experiences more than 60% packet loss. The notification period is also set to 24 hours a
day, 7 days a week, the notification period provided by the default Nagios configuration. Finally, you have configured
a descriptive label for the service using the short name of the host set by Facter.

Let’s see how the monitor1 node is configured automatically when a target node is classified with this
nagios: :target class. First, run the Puppet agent on a new system named target1 (Listing 6-20).

Listing 6-20. Puppet agent on targeti exporting Nagios checks

puppet agent --test

info: Caching catalog for targeti1

info: Applying configuration version '1294374100'
notice: Finished catalog run in 0.02 seconds

It appears the Puppet agent run on target1 didn’t actually manage any resources. This is true; the resources
exported in the nagios: :target class are actually being exported to the stored configuration database rather than
being managed on the node. They are not being collected on the node target1, which is why the output of Listing 6-20
does not mention them.

We expect the Puppet agent on the node monitor1 to collect the resources exported by node targeti.

Let’s see the results in Listing 6-21.

Listing 6-21. Puppet agent collecting resources in monitor1

puppet agent --test

info: Caching catalog for monitori

info: Applying configuration version '1294374100'

notice: /Stage[main]/Nagios::Monitor/Nagios service[check ping puppet]/ensure: created
info: /Stage[main]/Nagios::Monitor/Nagios service[check ping puppet]: Scheduling refresh of
Service[nagios]

notice: /Stage[main]/Nagios::Monitor/Nagios host[targetl.example.com]/ensure: created

info: /Stage[main]/Nagios::Monitor/Nagios_host[targeti.example.com]: Scheduling refresh of
Service[nagios]

notice: /Stage[main]/Nagios::Monitor/Service[nagios]: Triggered 'refresh' from 2 events
notice: monitor

notice: /Stage[main]//Node[monitord]/Notify[monitor]/message: defined 'message' as 'monitor'
notice: Finished catalog run in 0.87 seconds

As we expect, running the Puppet agent on monitor1 after target1 has checked in causes the resources to be
collected from the stored configuration database. Looking back to the nagios: :monitor class in Listing 6-18, you can
also see the notify parameter, added to ensure that the Nagios service automatically reloads the new configuration
information after all of the resources are collected.

When bringing new systems online at Example.com, you would only need to ensure they have the
nagios::target class included in their catalog, and Puppet will automatically take care of reconfiguring the central
Nagios monitoring system. In addition, if you would like more than one system to monitor all of these nodes, you only
need to include the nagios: :monitor class in the catalog of additional monitors and they’ll automatically collect all of
the host and service resources from the stored configuration database.

In the next section, we’ll cover methods to scale stored configuration to support a large number of nodes and
reduce the amount of time each Puppet agent requires to submit a copy of its configuration to the Puppet master.

167

http://target1.example.com/
http://target1.example.com/
http://example.com/

CHAPTER 6 © EXPORTING AND STORING CONFIGURATION

Expiring Stale Resources

A potential pitfall of using stored configurations is the situation where nodes retired from service still have
configuration resources stored in PuppetDB. Unless you periodically prune the configuration database, these stale
resources will linger indefinitely, tainting the configurations of remaining nodes. The puppet node command can be
used to deactivate nodes from PuppetDB (Listing 6-22).

Listing 6-22. Removing retired nodes from PuppetDB

$ puppet node deactivate mail.example.com
Submitted 'deactivate node' for mail.example.com with UUID aa3d34df-b84b-4fd1-a449-711ac06c9f3c

After you've run this on the puppet master, any resources exported by this node will no longer be collected on
your Puppet clients.

Note Deactivated node resources will not be removed from the systems that collected them. You will need to clean
up those configurations manually; or some resources can be purged using the resource metatype.

PuppetDB will automatically deactivate nodes if you enable the node-tt1 setting. The syntax and config file are
described here:

http://docs.puppetlabs.com/puppetdb/latest/configure.html#node-ttl

Summary

Exported resources and stored configuration are two very powerful features in Puppet. Using the central stored
configuration database, each Puppet master system is capable of exporting and collecting resources as new hosts are
brought online.

In this chapter, you've learned about the basics of virtual resources and how to export resources from one catalog
and collect them in another. You saw three examples of how we might use exported resources:

e SSH public host keys that are easily stored centrally and distributed
e Addingload balancer members to an Apache configuration

e Exported resources to allow Nagios to automatically add new systems

Resources

e Virtual Resources http://docs.puppetlabs.com/guides/virtual resources.html
e Exported Resources http://docs.puppetlabs.com/guides/exported resources.html

e PuppetDB http://docs.puppetlabs.com/puppetdb/latest

168

http://mail.example.com/
http://mail.example.com/
http://docs.puppetlabs.com/puppetdb/latest/configure.html#node-ttl
http://docs.puppetlabs.com/guides/virtual_resources.html
http://docs.puppetlabs.com/guides/exported_resources.html
http://docs.puppetlabs.com/puppetdb/latest

CHAPTER 7

Puppet Consoles

Puppet has three console products: the Foreman, Puppet Enterprise Console, and Puppetboard. The Foreman is a
provisioning tool with Puppet integration that can act as an external node carrier (ENC) and has reporting features,
Puppet Enterprise Console (PE Console) is Puppet Labs’ commercial product, and Puppetboard is a reporting
dashboard for PuppetDB.

Note Puppet Dashboard, which was covered in the first edition of this book, is now a community project. It is
unclear how much longer it will be maintained; therefore, we felt it was better not to recommend it to our readers for new
installations.

The Foreman

The Foreman, or simply Foreman (http://theforeman.org/) is an integrated data center lifecycle management tool
that provides provisioning, configuration management, and reporting. Foreman has a focus on provisioning and
managing data center capabilities, such as integration with bootstrapping tools, PXE boot servers, DHCP servers,
and provisioning tools.

To get started with Foreman, you will learn how to do the following:

e Install Foreman.

e Configure Foreman.

e Integrate Foreman with Puppet.
e Connectyour first client.

e Use Foreman as an ENC.

e Displayreports in Foreman.

e Search for facts in Foreman.

Installing Foreman

Foreman can be installed using either its own installer or via system packages. We will use the installer, as it’s the
easiest way to get started using Foreman. The Foreman installer currently supports RedHat packages (RPM) and
Debian packages (DEB). Choose the instructions in Listings 7-1 or 7-2 for your operating system.

169

http://theforeman.org/

CHAPTER 7 © PUPPET CONSOLES

Note Make sure you have the Puppetlabs repositories enabled as described in Chapter 1 before proceeding.

Listing 7-1. The Foreman rpm installer

$ yum -y install http://yum.theforeman.org/releases/1.2/el6/x86_64/foreman-release.xrpm
$ yum -y install foreman-installer

Listing 7-2. The Foreman deb installer

$ echo "deb http://deb.theforeman.org/ precise stable" > /etc/apt/sources.list.d/foreman.list
$ wget -q http://deb.theforeman.org/foreman.asc -0- | apt-key add -
$ apt-get update 8& apt-get install foreman-installer

Running the Foreman Installer

The Foreman installer is a packaged collection of Puppet modules that can set up a complete Foreman installation
with a running Puppet master. To start, run the command in Listing 7-3.

Note The Foreman installer currently does not support MCollective or PuppetDB installation. You will need to do that
manually if you wish to enable those features.

Listing 7-3. Starting the Foreman installer

$ ruby /usr/share/foreman-installer/generate_ answers.rb
Welcome to the Foreman Installer!

This installer will help you set up Foreman and the associated extra
configuration necessary to get you up and running. There is an interactive shell
which will ask you questions, but if you just want to get up and running as fast
as possible, answer 'yes' to the all-in-one install at the beginning

Ready to start? (y/n)
y

We are going to modify the default configuration because we want to focus on the Puppet integration. Choose
menu item 2, Configure Foreman_proxy Settings, and disable TFTP in the Foreman proxy settings as shown in
Listing 7-4.

Listing 7-4. Disabling TFTP in the Foreman installer

Do you want to use the default all-in-one setup?

This will configure Foreman, Foreman-Proxy, Puppet (including a puppetmaster),
several puppet environments, TFTP (for provisioning) and sudo (for puppet
certificate management) (y/n)

n

170

http://yum.theforeman.org/releases/1.2/el6/x86_64/foreman-release.rpm
http://deb.theforeman.org/
http://deb.theforeman.org/foreman.asc

Main Config Menu

1. Configure Foreman settings

2. Configure Foreman_proxy settings
3. Configure Puppet settings

4. Configure Puppetmaster settings
5. Display current config

6. Save and Exit

7. Exit without Saving

Choose an option from the menu... 2

Current config is:
Foreman_proxy is enabled with defaults

Foreman_proxy Config Menu
1. Enable foreman_proxy with all defaults
2. Disable foreman_proxy completely

3. Should Foreman proxy manage Puppet (needed for puppet classes)? (default:

true)

4. Should Foreman_proxy manage DNS? (default: false)

5. Should Foreman_proxy be installed from the stable,rc, or nightly repo?
(default: stable)

6. Should Foreman proxy manage DHCP? (default: false)

7. Should Foreman proxy manage TFTP? (default: true)

8. Should Foreman proxy manage PuppetCA (needed for certificates)? (default:

true)

9. Add other key/value pair to the config
10. Go up to main menu

Choose an option from the menu... 7

y/n?

n

Current config is:
Foreman_proxy is enabled with overrides:

tftp: false

CHAPTER 7 © PUPPET CONSOLES

Note If you would like to use dynamic environments, as described in Chapter 3, go to the Puppet master menu and

enable the feature there.

Once you're satisfied with the configuration, type “y” to have the Foreman installer run, as shown in Listing 7-5,

and Foreman will be installed.

Listing 7-5. Foreman installer save and exit

Do you want to run Puppet now with these settings? (y/n)
Y

171

CHAPTER 7 = PUPPET CONSOLES

Note To install Foreman from packages or source, refer to the documentation provided at the following site:
http://theforeman.org/manuals/latest/index.html#3.InstallingForeman.

The installer will generate an answer file (Listing 7-6), which you can use for future upgrades or installs.

Listing 7-6. A Foreman answer file

cat /usr/share/foreman-installer/foreman_installer/answers.yaml

foreman_proxy:
tftp: false
puppet: true
foreman: true
puppetmaster: true

If your installer output has any errors, try running it a second time:
$ echo include foreman_installer | puppet apply --modulepath /usr/share/foreman-installer -v

After the Foreman installer runs, Foreman will be accessible at https://fqdn/ with a default
username/password of admin and changeme. Figure 7-1 shows the opening screen.

. FOREMAN B 2o ser

Dashboard Hosts Reports Facts Audits Statistics Trends More -

Welcome

Before you can use Foreman for the first time there are a few tasks that must be performed. You must decide how you wish to use the software, and update the primary settings file
configlsettings.yaml and the settings 1o indicate your selections.

You may operate Foreman in basic mode, in which it acts as a reporting and external node classifier or you may also twrn on unattended mode operaton in which Foreman creates and
manages the configuration files necessary 1o completely configure a new host. When operating in unattended mode Foreman will require more information, 5o expect more questions,
but it will be able to automate host installations for redhat, debian, suse and solaris operating systems (and their clones), see here for more details

Create a Smart Proxy

I you're planning to do anything more than just handle reports, you'll be in need of a smart proxy - either on this machine or elsewhere on your network. You can find details of how to
set up the proxy at Smart-Proxy Installation,

[EEEEE] Once installed you should head over to Smart Proxies to point Foreman at it

User Authentication

Foreman, by default, operates in anonymous mode where all operations are performed without reference to the user who is performing the task. If you wish to track the actions of a
particular user then it is possible to use an additional authentication stage and provide a user account. At present, authentication is performed against the internal Database or a LDAP
service provided by one or more LDAP servers.

Additionally, you may restrict user permissions based on many criteria, make sure you check the roles settings tab.

« For internal Users, simply create a new user al the Users page
« If you chose to use LDAP authentication then you must provide connection details for your authentication provider on LDAF page
= For Roles and permissions, see the Roles page

Figure 7-1. The Foreman welcome page

172

http://theforeman.org/manuals/latest/index.html#3.InstallingForeman
https://fqdn/

CHAPTER 7 © PUPPET CONSOLES

Configuring Foreman

To complete the installation, choose More » Configuration » Smart Proxies and add a new proxy with the URL
https://fqdn:8443/, where fqdn is the fully qualified domain name of the Foreman server as shown in Figure 7-2.

Name URL Features
Foreman Puppet Master hitps:/ipro-puppet-foreman.lan:8443 Puppet and Puppet CA Cenificates =
Displaying 1 entry

Figure 7-2. Adding a Puppet master smart proxy

MULTIPLE PUPPET MASTER ENVIRONMENT

In an environment with multiple Puppet masters, you will need to add the Foreman repository on each master as
just described and then install the foreman-proxy package:

$ puppet resource package foreman-proxy ensure=present

Then modify /etc/foreman-proxy/settings.yml and add your foreman server under trusted_hosts.

Your Foreman server must use the same CA server as your Puppet masters; so when you install it, either make
it the Puppet CA server or make sure to disable its CA functionality. Finally, add each master as a proxy in the
Foreman configuration menu as described earlier.

Our next step is to disable provisioning. Set unattended to false in /etc/foreman/settings.yaml as shown in
Listing 7-7 and then restart Apache on your Foreman host.

Listing 7-7. Disable the unattended setting

root@pro-puppet-foreman:/etc/puppet# cat /etc/foreman/settings.yaml | grep unattended
:unattended: false

After you've restarted Apache, the provisioning tabs on the Add Host page should disappear. Our next step is to
import our Puppet modules.

Importing Data from Puppet

To import our Puppet modules, select More » Configuration » Environments in the navigation menu and click
Import From Puppetmaster, where Puppetmaster is the name of your Puppet master; in Figure 7-3 it is pro-master.

173

https://fqdn:8443/

CHAPTER 7 © PUPPET CONSOLES

Puppet classes

Import from pro-master | New Puppet class |

Class name Envi and d i Host group Hosts Keys

No entries found

Figure 7-3. Importing Puppet environments from your Puppet master

Then follow the instructions to import your environments. If you're just starting off, click the New Environment
button and create a production environment.

After the import is complete, all of your Puppet classes should be available for use, as shown in Figure 7-4. Each
time you add a new class or module you will need to come back to this page to import it.

Puppet classes
Q Search -~ Import from pro-master

Class name Envi its and d ion Host group Hosts Keys

accounts;virtua development production 0 0 Delete
apache development production 0 5 Delete
apache:.dev development production 0 0 Delete
apache::mod::auth_basic development production 0 0 Delete
apache::mod::auth_kerb development production 0 0 Delete
apache:mod::cache development production 0 0 Delete
apache::mod::cgi development production 0 0 Delete
apache::mod: dav development production 0 0 Delete
apache::mod::dav_fs development production 0 0 Delete
apache::mod::default development production 0 0 Delete
apache::mod::dev development production 0 0 Delete

Figure 7-4. Imported Puppet classes

Connecting Your First Client

After your environments are imported, you can begin connecting clients to the Puppet master running on the
Foreman server. First configure your Puppet client to use the Foreman server as its Puppet master, using the general
configuration instructions in Chapter 1. Then request a certificate as shown in Listing 7-8.

Listing 7-8. First Puppet run

root@pro-puppet-foreman-client1:~# puppet agent -t

info: Creating a new SSL key for pro-puppet-foreman-clienti.lan

info: Caching certificate for ca

info: Creating a new SSL certificate request for pro-puppet-foreman-clienti.lan

174

CHAPTER 7 © PUPPET CONSOLES

info: Certificate Request fingerprint (md5): 5SE:C6:A7:2C:27:5D:57:2A:AE:25:5E:18:C8:40:B8:A4
Exiting; no certificate found and waitforcert is disabled

After the Puppet client has requested a certificate, you can sign it in Foreman. Go to More » Configuration »

Smart Proxies » Certificates. The Certificates button will take you to a menu like Figure 7-5, where you can sign, view,
and revoke certificates.

PuppetCA on pro-puppet-foreman-master

Filter N Autosign Entries
Certificate Name State Valid from Expires Fingerprint
pro-puppet-foreman-clientd.lan pending A NIA SHAZ256 Sign | -
pro-puppet-foreman-clients pending N/A NA SHA256 Sign | -
pro-puppet-foreman-master.lan valid 1 day ago in almost 5 years SHAZ56

Displaying all 3 entries

Figure 7-5. The Foreman PuppetCA

After your agent connects the second time, as shown in Listing 7-9, you should see it appear under the Hosts tab
(Figure 7-6).

Listing 7-9. Second Puppet run

root@pro-puppet-foreman-client1:~# puppet agent -t

info: Caching certificate for pro-puppet-foreman-clienti.lan
info: Caching certificate revocation list for ca

info: Caching catalog for pro-puppet-foreman-clienti.lan
info: Applying configuration version '1379704950'

info: Creating state file /var/lib/puppet/state/state.yaml
notice: Finished catalog run in 0.02 seconds

Q Search ~
Name Operating system Environment Model Host group Last report
B pro-puppet-foreman-client.lan () Ubuntu 13.04 production 1 minute ago Edit =
Displaying 1 entry - 0 selected

Figure 7-6. The Foreman host page

If you click the hostname, it will drill down to a detail view of the host’s information (Figure 7-7). From this page
you can access reports about the host, along with facts, auditing, and metrics about recent Puppet runs.

175

CHAPTER 7 = PUPPET CONSOLES

@ pro-puppet-foreman-clientl.lan

Reports from the last v days - 3 repons found Edit | Build
Properties Metrics -
4 Runtime
last 7 days
Details
80
. M Config Refrieval
Audits | Facts Reports = YAML = W Runtime

Properti
perties o
Domain lan
20
IP Address 10.0.3.200
o
MAC Address 00:16:3e:d9:15:8b

Puppet Environment production P
Host Architecture xB6_64
Operating System Ubuntu 13.04
last 7 days
Host group
4
Owner Admin User B Applied
3 M Failed

I Falled restans

Figure 7-7. Foreman drilldown for a client

Using Foreman as an ENC

Now that you have an agent connected to Foreman, we want to apply some configuration to that node. The Foreman
behaves as an ENC (ENCs were first introduced in Chapter 5). We can use the web interface on the Foreman to apply
classes and configuration to our nodes. This can be used in tandem with version controlled site.pp files to manage
your infrastructure. Foreman has this functionality out of the box.

Adding Classes to Nodes

To add a class to a node, click the Edit button on the host page and choose the Puppet classes tab. All the classes that
you added when you imported your Puppet code are now available via a filter box and drop-down menus (Figure 7-8).

176

CHAPTER 7 © PUPPET CONSOLES

Edit pro-puppet-foreman-clientl.lan

Host Puppet Classes Parameters Additional Information

Included Classes Available Classes

jenkins o
o apt o stdlib

jenkins::config
jenkins::firewall
jenkins::package
jenkins::plugins
jenkins::repo
jenkins::repo::debian
jenkins::repo::el
jenkins::service
jenkins::slave

Co00C0Q0O0O0OCOO

Figure 7-8. Adding a class to the Foreman client

Note To exclude specific classes, such as internal module classes, refer to the official docs, at
http://theforeman.org/manuals/1.2/index.html#4.2.2Classes.

You can see that we included the jenkins class on our client. The jenkins class handles the installation and
configuration of the Jenkins service. After we hit submit, the client will install Jenkins on its next Puppet run. Once it
completes we can access Jenkins at http://pro-puppet-foreman-client1.1lan:8080/.

Parameterized Classes

If you are using parameterized classes and want to change the defaults, you can do that in the Parameters tab
(Figure 7-9). Check the Override box for the parameter you want to change and give it a new default value. Once you
save the change, a flag will appear next to the list of parameters to indicate that it has been changed from the default.
Foreman supports a variety of parameter types and supports the major Puppet attribute types like arrays and hashes.

177

http://theforeman.org/manuals/1.2/index.html#4.2.2Classes
http://pro-puppet-foreman-client1.lan:8080/

CHAPTER 7 © PUPPET CONSOLES

Filter Parameters

@ v
Puppet Environments
fadnlookup PP
production
Interva
Parameter
™ purge
purge
™ purge config
Description
™ recurse
#~
threads
Overnde
timeout v e

Parameter type

boolean o

Default value

true

Optional Input Validator

Figure 7-9. Changing defaults on parameterized classes
Now that you know how to apply configuration to nodes from Foreman, let’s take a look at its reporting features.

Displaying Reports in Foreman

Foreman has the capability to import and display your Puppet reports. If you used the Foreman installer or are using
Foreman as an ENC, reporting is already set up for you. You can access reports from the Reports tab. Clients that have
eventful reports will be displayed by default, as shown in Figure 7-10.

Reports

eventful = true Q Search =~
Host Last report Applied Restarted Failed Restart Skipped Pending

Failures
pro-puppet-foreman-client1.lan 3 minutes ago B B (3] (0] (6] (0] Delete
pro-puppet-foreman-clientl.lan about 23 hours ago B n m m m m Delete
pro-puppet-foreman-clients about 23 hours ago 0] (0] B B (0] D Delete
pro-puppet-foreman-clientd.lan about 23 hours ago B 1] (0] (0] (0] (0] Delete

Displaying all 4 entries
Figure 7-10. Foreman eventful reports

From the Reports tab you can drill down into the different reports to see the logs from the node. Figure 7-11
shows a node with errors and warning.

178

pro-puppet-foreman-clientl.lan

Show log messages:

Level

Resource

Warnings and errc v

ollective/Anchorimcollective::end]

ive::Serverf/Anchor()

server::end]

ive::Server::Service/Service[mcollective]

ollective::server]

::Server::Config/Datacat{mcoll

z:server|/File]

IStage[main]/Mcollective::

Puppet

Server:Config/Datacatimcollective::server)/Datacat_collector[mecollective::server]

I [main}/Mcollectiv

a

“H8 "0

ollective::

IStage[main]/Mcollective::

Report Metrics

:Common/Anchor[mecollective::common::end]

Common::ConfigiFile[fusrocalishare/mcollective]

Common:Config/Datacat_collectorfmcollective::site_libdir]

Report Status

Figure 7-11. Foreman report for an eventful node

Searching for Facts in Foreman

Foreman collects facts for each node, and they can be queried via the Fact page. In Figure 7-12 you can see that we can
query for all of the nodes by entering osfamily = Debian. You can write much more complicated queries using the
operators available, and you can also save them with a bookmark via the drop-down button in the Search box.

Fact Values

facts.osfamily = Debian

Host

pro-puppet-foreman-clientd.lan

pro-puppet-foreman-client3.lan

pro-puppet-foreman-clientl_lan

Displaying all 3 entries

Q Search ~

Name
& osfamily
& osfamily

&5 osfamily

Figure 7-12. Searching for facts

CHAPTER 7 © PUPPET CONSOLES

Other reports for this host

Back m Host details

Reported at Thu Sep 26 20:30:24 +0000 2013
message
Skipping because of failed dependencies
Skipping because of failed dependencies
Skipping because of failed dependencies
Skipping because of failed dependencies
Could not evaluate: can't convert Symbol into Integer

Could not prefetch package provider ‘apt’: invalid byte
sequence in US-ASCII

Skipping because of failed dependencies
Skipping because of failed dependencies

Could not evaluate: can't convert Symbol into Integer

anchor 0.0021

Value Reported at
Debian NA
Debian NIA
Debian MNA

Note Foreman also has a REST API that you can interact with. It uses JSON and provides access to most of its
capabilities via a Web Services interface. You can see full details on the APl and how to interact with it at
http://theforeman.org/api.html.

179

http://theforeman.org/api.html

CHAPTER 7 © PUPPET CONSOLES

Foreman is a large project and is being actively developed. Unfortunately, we don’t have enough space in this
chapter to cover all the features available, but the official documentation is a great place to learn about the new
features. In the next section we will cover Puppet Enterprise Console, which like Foreman, has ENC support and
advancing reporting tools.

Note Foreman also has integration with MCollective, which was not covered in this chapter. If you install it
manually, you can enable support to start Puppet runs from the Foreman dashboard. You can find information at
http://theforeman.org/manuals/1.2/index.html#4.3.2SmartProxySettings.

Puppet Enterprise Console

Puppet Enterprise Console (http://puppetlabs.com/puppet/puppet-enterprise) is developed by Puppet Labs

as part of their enterprise product line and support. Like Foreman, PE Console is a dashboard for your Puppet
infrastructure. It has similar reporting, inventory, and ENC functionality to access all of the data Puppet collects. One
of the key differences from Foreman is that PE Console focuses on Puppet and its related products; for example,
itincludes Live Management, which is built upon MCollective (introduced in Chapter 11). In this section we will
cover all of these features and how to connect your first PE agent to the PE console.

Installing Puppet Enterprise

Begin by downloading Puppet Enterprise for your platform from http://info.puppetlabs.com/download-pe.html.
Puppet Enterprise is free for up to 10 nodes; if you have a larger deployment you can contact the Puppet Labs sales
team for a license.

For this section will be running the installation on Ubuntu 12.04 LTS, but the instructions should be the same for
all of the operating systems that PE Puppet supports. After downloading, extract the tar file and execute the installer as
shown in Listing 7-11.

Listing 7-11. Installing Puppet Enterprise

$ wget --no-check-certificate https://pm.puppetlabs.com/puppet-enterprise/3.0.1/puppet-
enterprise-3.0.1-ubuntu-12.04-amd64.tar.gz

$ tar -xvf puppet-enterprise-3.0.1-ubuntu-12.04-amd64.tar.gz

$ cd puppet-enterprise-3.0.1-ubuntu-12.04-amd64

$./puppet-enterprise-installer

The installer will guide you through setting up a Puppet master, PuppetDB, and PE Console. We went with the
defaults. After following the instructions in the installer, you should be able to access the console at the link it provides
(Figure 7-13).

Note Puppet Labs has a Deployment Strategy Guide, available at http://docs.puppetlabs.com/guides/deploy-
ment_guide/index.html

180

http://theforeman.org/manuals/1.2/index.html#4.3.2SmartProxySettings
http://puppetlabs.com/puppet/puppet-enterprise
http://info.puppetlabs.com/download-pe.html
https://pm.puppetlabs.com/puppet-enterprise/3.0.1/puppet-enterprise-3.0.1-ubuntu-12.04-amd64.tar.gz
https://pm.puppetlabs.com/puppet-enterprise/3.0.1/puppet-enterprise-3.0.1-ubuntu-12.04-amd64.tar.gz
http://docs.puppetlabs.com/guides/deployment_guide/index.html
http://docs.puppetlabs.com/guides/deployment_guide/index.html

CHAPTER 7 © PUPPET CONSOLES

A puppet enterprise console

Background Tasks Daily run status

& Al systems go

Nodes L]

0 Unresponsive

0 Failed

0 Pending

0 Changed

1 Unchanged

All

1Al Exportnoces as CSV

Add node Radiator View Total 110 0 o o 110
¥ pro-puppet-pe-master 2013-09-20 2334 UTC 110 0 o o 110

Figure 7-13. PE Console

Next run the installer on each Puppet node, but this time enable only the Puppet Agent role. Then connect your
PE Puppet client to your PE master by running puppet agent --test.

Connecting PE Agents to PE Console

In the PE Console the node request link should have the number of PE clients that want to connect to the PE master.
You can sign their certificates by clicking the Accept button, as shown in Figure 7-14.

A\ puppet enterprise console

Pending node requests: 2
Name Fingerprint Action

pro-puppet-pe-clientl B6IEATA:44:5398:09:29.
pro-puppet-pe-client2 9E:70:0E:77:38:CD:36:BE .. m

rejected requests to clear

Figure 7-14. Accepting node requests in PE

Once our nodes have checked in, we can begin applying configuration to them.

181

CHAPTER 7 © PUPPET CONSOLES

Adding Classes to Nodes

Next we will add the mysq] class to our node using the Puppet Console. This will bring the mysql class onto the node
and that will cause mysql to be installed and configured. First click the Add Class button and choose the name of

a class in one of your modules. Then click the Add Group button and add your class to that group. If you're using
parameterized classes, you can add default parameters via the Group page, as seen in Figure 7-15.

Edit node class membership

Assigned To Node:
dhcp87 pe.backline puppetiabs.net

Parameters

listen_address | | 0.0.0.0
manage_datab| | true
database_useri| | pe-puppetdb
database_name¢| | pe-puppetdb
database_port | | 5432
database_host | | localhost
ssl_listen_port | | 8081

ssl_listen_addr| | dhcp87.pe.backline.puppetlabs.net

© 000000 0 0

Figure 7-15. Editing parameterized classes

Note Currently default parameters work only with string-based values. Hashes and arrays are not supported.
As a workaround, you can put those data types in Hiera and then include the class in PE Console.

Inventory Service

Under the Inventory tab (Figure 7-16), PE Console provides the ability to query facts in your infrastructure. This can
be useful if you want to query the list of all hosts that are running a certain OS family. Here we are searching for all the
Debian machines that have registered with PE Console.

182

CHAPTER 7 © PUPPET CONSOLES

Search nodes

pstamy — [is v|pean [
Foafame (I8 w|Feavave

Daily run status

Nodes
Export nodes as C5V

est report

Total

0 0 63 21
' pro-puppet-pe-chentl 2013-09-21 00:45 UTC B4 0 0 63 21
¥ pro-puppet-pe-client? 2013-00-21 00:46 UTC 84 0 0 0 84
L4 pro-puppet-pe-master 2013-09-21 00:46 UTC 186 (1] (1] (1] 186

Per page: 20 100 all

Figure 7-16. PE Console Inventory service

Note The Inventory service is case-sensitive. So you must use the case of the value as returned by Facter.

Live Management

Live Management gives you direct access to your nodes, allowing you to query them, run commands on them, and
even kick off Puppet runs. Under the hood, it uses MCollective, which is in the subject of Chapter 11.
From the Live Management tab, choose Control Puppet » Run Once. On the right you can select the group

of nodes you want to change and on the left you can input parameters for the Puppet run. Once your click Run,
a notification will be sent to all of the nodes selected to run Puppet (Figure 7-17).

183

CHAPTER 7 © PUPPET CONSOLES

Live Management

Live Management Browse Resources Control Puppet Advanced Tasks

Node filter e D TP PN —

Server Address and port of the Puppet Master in server.port format
Filter = Resetfilter

3 of 3 nodes selected (100.09%)
* Select none

pro-puppet-pe-clientl
pro-puppet-pe-client2
o D

Tags Restrict the Puppet run to a comma list of tags

pro-puppet-pe-master

Splay Sleep for a period before initiating the run
Splaylimit Maximum amount of time to sleep before run
Environment Which Puppet environment to run

B3 coe

* denotes a required field

» status
Get the current status of the Puppet agent

Figure 7-17. PE Console Live Management

Under the Advanced Tasks tab you can choose from a variety of actions, such as installing packages, starting and
stopping services, and even updating machines.

Puppetboard

Puppetboard was created to provide an alternative to Puppet Dashboard. Its aim is to replace the reporting
functionality of Puppet Dashboard and give you access to the data PuppetDB stores on your behalf.
Puppetboard differs from Puppet Dashboard on a few key points:

e It'swritten in Python, not Ruby, with the help of the Flask microframework and the requests
HTTP library.

e Itdoesn’t store any data itself; everything is queried live from PuppetDB.
e It cannot function without PuppetDB.
e Itdoes not provide External Node Classifier facilities.

PuppetDB manages to store, very efficiently, an enormous amount of information about your infrastructure.
Every node that runs is known to PuppetDB, along with its facts. If the capability is enabled, it can also give you
access to events that occurred on a node and a complete report. Prior to PuppetDB 1.5, reports and event storage
were considered experimental. This is no longer the case, and we can advise you to turn these features on as they will
greatly increase the utility of PuppetDB and Puppetboard.

184

CHAPTER 7 © PUPPET CONSOLES

Installation

Because Puppetboard is a very young project, the installation procedure and documentation aren’t the most
user-friendly. Unfortunately, you will have to run Puppetboard from source for now.

You can choose to either clone the repository from GitHub or download the 0.0.1 release tarball. You
will additionally need either Apache with mod_wsgi or another httpd, like Nginx, that proxies your requests to
Puppetboard running in uwsgi (or any other application server that supports WSGI, like Passenger). You can even use
something like Python FastCGI and proxy to that instead.

Because Puppetboard is still evolving and we expect things to change, including the installation instructions,
we decided not to include those here. Instead, please look at the Readme that ships with Puppetboard, which contains
instructions about getting started. If you can’t make it work, feel free to contact the author or file an issue on GitHub;
he’ll gladly help you out.

Reviewing the Dashboard Tabs

Puppetboard is meant to be self-explanatory. When you access Puppetboard, you will be presented with the
dashboard shown in Figure 7-18, displaying some statistics about PuppetDB and your environment in the Overview
tab. Also shown are nodes who changed, failed, and haven’t reported in recently.

PUPPETBOARD NODES XEPORTS METRICS QUERY
with status failed with status changed unreportedin the last 2 hours

222 17631 79.418919

Population Resources managed Avg resources/node

Nodes status detail (9)

mm jenkins-1 Latest Report
m m pdxudev03.corpgoZuticom Latest Report
m sinudy59.devtst go2uticom Latest Report
changed sinudy62.devtst go2uticom [P —
changed sinuqy40.qc go2uti.com Latest Report

go2uticom Latest Report

Figure 7-18. The Puppetboard Overview tab

185

CHAPTER 7 = PUPPET CONSOLES

Nodes

Next up is the Nodes tab, which should give you a list of all the (active) nodes known to PuppetDB and a search box
that will filter the table for you (Figure 7-19). Depending on how many nodes you have, this page might take a few
seconds to load. If you run into timeout errors, you should increase the PUPPETDB_TIMEOUT value in your settings

(see the Readme).

PUPPET

Puppet DB currently onlyreturns active nodes.

[

Status ¥ Hostname

Catalog compiled at =
Thursday, November 21 2013 12:10 PM
Thursday. November 21 2013 12:10 PM
Thursday, November 21 2013 11:54AM
Thursday, November 21 2013 12:09 PM
Thursday, November 21 2013 11:51 AM
Thursday, November 21 2013 11:59 AM
Thursday, November 21 2013 11:49 AM

Thursday, November 21 2013 11:59 AM

Last report s
Thursday, November 21 2013 12:10 PM
Thursday, November 21 2013 12:10 PM
Thursday, November 21 2013 11:55 AM
Thursday, November 21 2013 12:09 PM
Thursday, November 21 2013 11:51 AM
Thursday, November 21 2013 11:59 AM
Thursday, November 21 2013 11:49 AM

Thursday, November 21 2013 11:59 AM

Figure 7-19. The Nodes tab

From the Nodes tab, you can access an individual node’s basic information, along with all the facts that are known
about this host. If you have reporting enabled, as shown in Figure 7-20 it will give you access to the last ten reports.

Details

Hostname

Facts uploaded at
Thursday, Novernber 21 2013 11.54AM

Catalog compiled at
Thursday, November 21 2013 11:54 AM

Report uploaded at

sinudyé2.devtst.go2uti.com Thursday, November 21 2013 11:54 AM

Facts Reports

Only showing the last ten reports.

Fact Value Start time Runtime Full report

nstalled 6. Thursday, November 21 2013 11:54 AM 0:00:25 6d5196.

6 64 Thursday, November 212013 11:24 AM 0:00:13
lled .93 Thursday, November 21 2013 10:54 AM 0:00:16 191a1

Thursday, November 21 2013 10:24 AM 0:01:14
Wednesday, November 20 2013 8:42 PM 0:00:09
B If vl Wednesday, November 20 2013 8:12 PM 0:00:07

Wednesday, November 20 2013 7:42 PM 0:00:51 Fc795a
1 Wednesday, November 20 2013 7:12 PM 0:00:14

Figure 7-20. A node overview

186

CHAPTER 7 © PUPPET CONSOLES

Facts

The Facts tab serves a similar purpose, listing all facts that are currently known to PuppetDB. Clicking on a fact will
take you to a page showing for which nodes this fact is known and what their values are.

Reports

The Reports tab (Figure 7-21) allows you to view the reports of Puppet runs. All runs that are on file for the current
host are listed. You can drill down into a report by clicking its unique ID (Figure 7-22).

€ | @ localhost : * @ B~ coogl Q & e
PUPPETBOA
Only showing the last ten reports.
Start time Run time Full report Configuration version Agent version Hostname
Sunday, August 11 2013 11:04 PM 0:00:05 43c03a0 1 D4{5d?8f5208d3a87 6aald 13756287041 323 telescope.cat.pdx.edu
Sunday, August 11 2013 11:02 PM 0:00:05 1376287041 323 telescope.cat.pdx.edu
Sunday, August 11 2013 10:59 PM 0:00:05 1374287041 323 telescope.cat pdv.edu
Sunday, August 11 2013 10:56 PM 0:00:06 1376286966 323 telescopecat.pde.edu

Figure 7-21. The Reports tab

PUPPETBOARD

Summary

Hostname Configuration version Start time End time

telescope.cat pdx.edu 1382511098 Tuesday, October 22 2013 11:55 PM Tuesday, October 22 2013 11:55 PM

Events

Resource Status Changed From Changed To
Package[linux-headers-generic] failure absent latest
Schedule[never] skipped Mone MNone
Schedule[daily] skipped None MNone
File[/tmp/delete] success file absent
File[/tmp/testing] success absent present
Notify[Hello World] success absent Hello World
Schedule[meonthly] skipped MNone Mone

Copyright © 2013 Daniele Sluijters. Live from PuppetDB

Figure 7-22. A single report. Resources that have been changed show before and after states

187

CHAPTER 7 © PUPPET CONSOLES

Query

The Query tab (Figure 7-23) is to be used with caution. It allows you to execute freeform, user-submitted queries
against any of the API endpoints of PuppetDB. Your query must adhere to the API syntax and will be passed, as is,

to PuppetDB. This will return either a result or an error page, depending on whether PuppetDB understood the query.
It's a very powerful feature, giving you full access to all the data in PuppetDB and allows you to test out queries against
PuppetDB that you wish to use in other scripts.

PUPPETBOARD Overview Nobpes Facts REFORTS

Query

API endpoint Modes Resources Facts @ Fact Names Reports Events

Yes I'm sure

Result

Figure 7-23. The Query tab is a place to test puppetdb queries, as the syntax is somewhat obtuse

The Future of Puppetboard

Puppetboard is still undergoing a lot of changes (along with its underlying library, pypuppetdb) as we try to keep up
with PuppetDB releases and the new features.

At the time of writing, PuppetDB 1.5 has just been released, introducing a new version of the PuppetDB API.
This new API version introduces pagination to most endpoints and many other features, making it significantly
easier to build a good user interface. It also includes major improvements to the reports and events endpoints, which
Puppetboard will greatly benefit from.

As such, Puppetboard and pypuppetdb are going to change quite a bit in the coming months to take advantage of
all those great new capabilities and will continue to do so as PuppetDB’s capabilities are expanded along the way.

188

CHAPTER 7 © PUPPET CONSOLES

Summary

In this chapter, we’ve explored how you can use the Foreman, the Puppet Console, and Puppetboard as web-based
front-ends to your Puppet environment. We examined how to install, configure, use, and manage each tool, and we
looked at their respective capabilities. Each offers powerful additional visualization and management capabilities that
you'll find useful in managing your environment, and that enable you to provide graphing to your team.

Resources

The following links will take you to documentation related to the Puppet consoles that we have covered and related
topics:

e Foreman: http://theforeman.org/projects/foreman

e The Foreman mailing list: http://groups.google.com/group/foreman-users
e The Foreman IRC channel: #theforeman on Freenode

e The Foreman Forums: http://theforeman.org/projects/foreman/boards

e External nodes: http://docs.puppetlabs.com/guides/external nodes.html

e Puppet configuration reference: http://docs.puppetlabs.com/references/stable/
configuration.html

e Puppet Enterprise overview: http://puppetlabs.com/puppet/puppet-enterprise
¢ Installing Puppet Enterprise: http://docs.puppetlabs.com/pe/latest/install_basic.html
e Puppetboard: https://github.com/nedap/puppetboard

189

http://theforeman.org/projects/foreman
http://groups.google.com/group/foreman-users
http://theforeman.org/projects/foreman/boards
http://docs.puppetlabs.com/guides/external_nodes.html
http://docs.puppetlabs.com/references/stable/configuration.html
http://docs.puppetlabs.com/references/stable/configuration.html
http://puppetlabs.com/puppet/puppet-enterprise
http://docs.puppetlabs.com/pe/latest/install_basic.html
https://github.com/nedap/puppetboard

CHAPTER 8

Tools and Integration

The Puppet community has written many tools for Puppet. In this chapter, we will cover a variety of these tools to
help you write better modules and increase productivity. We will cover the Puppet Forge, which is a central place
for members of the Puppet community to publish and download reusable modules. Next we will cover module
deployment tools like librarian puppet and r10k which help manage Puppet module dependences. Afterwards, we
will explore testing tools such as rspec-puppet, rspec-system and integrating the tests with TravisCI, a continuous
integration tool. Finally, we will learn how to use Geppetto, an IDE for Puppet module development.

Puppet Forge and the Module Tool

The Puppet Forge, located at http://forge.puppetlabs.com/ (Figure 8-1), provides an online repository of Puppet
modules. This service provides the means to publish and locate modules for commonly managed services like iptables,
Apache, and NTP. In addition, there are modules targeted for specific use cases, such as Hadoop and OpenStack.

Puppet Labs : Open Source Projects Support
‘,"'.‘-& [JLIFIPEt fOTgE 1,547 modules 1,467,011 downloads
Welcome to the Puppet Forge. Fuppet Forge is a repository of modules written by our community for ¢ t Log In
and Pug prise IT automation software.
Sign up
Featured Module: puppetlabs/ntp il
Accurate timekeeping Is critical to a happy and healthy datacenter. The puppetlabs/ntp module installs,
(.C"\flgl.!ES. and manages the network time protocol service. With a ssmple class declaration, NTP is quickly and Fi“d Modules
refiably managed everywhere you want it to be.
P P.com R o

Popular Tags

ubuntu (263 m

Check out the module’s README to get started.
debian (2201
rhel (161
Recent Releases Frequent Contributors Centos (1:
ii: LF centos (1
3 2t exampled2 (54
3. 3. A maonitaring
a4 o redhat
5 5. M networking (74 r
6. ¢ 6. K security (63 r e
7.6 7.¢
8. 8. 5
9 9.1

Figure 8-1. Puppet Forge
191

http://forge.puppetlabs.com/

CHAPTER 8 ' TOOLS AND INTEGRATION

If you find yourself needing quick deployment of a complex infrastructure like Hadoop, the Puppet Forge will
save you much time and effort. Modules on the Forge provide a reference configuration that may be easily modified
if necessary. Puppet modules may be manually downloaded from the Forge using a standard web browser, but the
process is made much easier through the use of the Puppet Module tool.

Puppet’s module command provides an interface to the Forge API. This command-line interface allows you
to create skeleton Puppet modules for your own work, search the Forge for existing modules, and install them into
your configuration. In this section, we cover the processes of downloading an existing module and publishing a
new module to the Forge. The Puppet Module tool is bundled with Puppet and can be accessed via the module
subcommand (Listing 8-1).

Listing 8-1. Puppet Module help
$ puppet help module

ACTIONS:
build Build a module release package.
changes Show modified files of an installed module.
generate Generate boilerplate for a new module.
install Install a module from the Puppet Forge or a release archive.
list List installed modules
search Search the Puppet Forge for a module.
uninstall Uninstall a puppet module.
upgrade Upgrade a puppet module.

Searching and Installing a Module from the Forge

The first step to downloading and installing a Puppet module is to search for the name of a module providing the
configuration you're looking for. For example, a service managed in many application stacks is MySQL. Before
setting out to write your own Puppet module to manage MySQL, you can search on the Puppet Forge (Figure 8-2),
or you can use the puppet module search command in Listing 8-2 to see if one has been published to the

Forge already.

192

CHAPTER 8 © TOOLS AND INTEGRATION

Search - mysql

mysq| Find

24 modules matching ‘mysqf' Relevancy | Latest release | Most Downloads

@ puppetlabs/mysql 41424 downloads
Mysgl module

Version 0.9.0 released Jul 15, 2013 | 11964 downloads of this version

a example42/mysql 1139 downloads
4. Puppet module for mysqgl

Version 2.1.0 released Aug 28, 2013 | 51 downloads of this version

0 DavidSchmitt/mysql 826 downloads

Version 1.1.0 released Jun 2, 2010 | 720 downloads of this version

m ghoneycutt/mysql 767 downloads

Version 1.0.2 released Sep 16, 2010 | 593 downloads of this version

E rgevaert/mysql 737 downloads
Manage your percona, mariadb or oracle MySQL

Version 0.0.2 released Jul 26, 2011 | 625 downloads of this version

Figure 8-2. Searching for MySQL modules using the Forge

Listing 8-2. Searching for MySQL modules using puppet-module
$ puppet module search mysqgl

NAME DESCRIPTION AUTHOR KEYWORDS

puppetlabs-mysql Mysql module @puppetlabs database mysql
DavidSchmitt-mysql @DavidSchmitt resources database mysql
bjoernalbers-mysql osx Manage MySQOL @bjoernalbers osx apple mac db database mysql
brucem-ezpublish eZ Publish Module @brucem apache mysql php cms ezpublish

There are many modules to manage MySQL on the Forge, and currently there is no rating system; so finding good
modules is a bit of a challenge. Recommendations on the mailing lists and IRC channels are a good place to start, but
you should select modules by examining each one for quality and whether it solves your needs. A good indicator of a
module’s quality is the number of downloads it has and the number of contributors on the module’s GitHub page.
You can search for a module by the number of downloads using the Forge web page, and filter-based search is
planned for a future release of the Forge.

193

CHAPTER 8 ' TOOLS AND INTEGRATION

We're going to install the module authored by Puppetlabs because it supports a variety of operating systems and
is actively maintained by the Puppet module team and the Puppet community. To automatically download and install
the module, use the install action in Listing 8-3 or download a tar file from the Forge via the web page. The module
will be installed into /etc/puppet/modules if you are the root user; otherwise, it will be installed into your home
directory under . puppet/modules.

Listing 8-3. Installing a module using puppet module

$ puppet module install puppetlabs/mysql
Notice: Preparing to install into /etc/puppet/modules ...
Notice: Downloading from https://forge.puppetlabs.com ...
Notice: Installing -- do not interrupt ...
/etc/puppet/modules
e puppetlabs-mysql (v0.9.0)

eee puppetlabs-stdlib (v4.1.0)

$ tree -L 1 mysql/
mysql/

—— CHANGELOG
—— files

—— Gemfile

—— Gemfile.lock
—— 1ib

—— LICENSE

—— manifests
—— metadata.json
—— Modulefile
—— Rakefile

—— README.md
—— spec

—— templates
—— tests

eee TODO

Asyou can see, the Puppet Module tool downloaded and unpacked the MySQL module, as well as handling any
dependencies on other modules (in this case puppetlabs/stdlib). Once installed, the module contents indicate that
the documentation is in the README .md file.

Examples are also located in the tests/ directory. These examples provide a quick way to get started using the
newmysql: :server class and mysql: :db provider provided by the module.

Now that you have a module installed from the Forge, you can begin using it immediately. If you've installed it on
your puppet master, you can begin using MySQL classes in your manifests; if you've installed it locally, you can create
a MySQL server as shown in Listing 8-4.

Listing 8-4. Using the MySQL module

$ puppet apply -e 'class { 'mysql::server': config hash => { 'root_password' => 'changeme' } }'
notice: /Stage[main]/Mysql::Server/Package[mysql-server]/ensure: ensure changed 'purged’ to 'present’
notice: /Stage[main]/Mysql/Package[mysql client]/ensure: ensure changed 'purged' to 'present'
notice: /Stage[main]/Mysql::Config/File[/etc/mysql/my.cnf]/content: content changed '{md5}77f15d6c87
f9c136c4efcda072017f71" to '{md5}471b6c669c3b45a4d490c3dd60c0788e’

notice: /Stage[main]/Mysql::Config/Exec[set_mysql rootpw]/returns: executed successfully

194

https://forge.puppetlabs.com/

CHAPTER 8 © TOOLS AND INTEGRATION

notice: /Stage[main]/Mysql::Config/File[/root/.my.cnf]/ensure: defined content as '{md5}103cbbe23ade
bafbh38d7e074b3951e0d’

notice: /Stage[main]/Mysql::Config/Exec[mysqld-restart]: Triggered 'refresh' from 2 events

notice: Finished catalog run in 24.23 seconds

Generating a Module

Now that you know how to use modules from the Forge, let’s create our own module. We are going to use the Puppet
Module tool to generate the default structure for us:

$ puppet module generate propuppet-demoapp
Generating module at /root/propuppet-demoapp
propuppet-demoapp
propuppet-demoapp/Modulefile
propuppet-demoapp/tests
propuppet-demoapp/tests/init.pp
propuppet-demoapp/manifests
propuppet-demoapp/manifests/init.pp
propuppet-demoapp/spec
propuppet-demoapp/spec/spec_helper.rb
propuppet-demoapp/README

You can also use your own skeletons to add organization-specific boilerplate. In Listing 8-5 you can see we have
cloned a skeleton by Puppet community member Gareth Rushgrove.

Listing 8-5. A Puppet module skeleton

$ git clone https://github.com/garethr/puppet-module-skeleton
$ cd puppet-module-skeleton
$ find skeleton -type f | git checkout-index --stdin --force --prefix="$HOME/.puppet/var/puppet-module/" --

Now when we generate a module, we will get a lot more boilerplate and files to assist in our Puppet development,
as shown in Listing 8-6. You will learn more about some of these files later in the chapter.

Listing 8-6. A Puppet module generated with a skeleton

$ puppet module generate propuppet/demoapp
Notice: Generating module at /home/vagrant/propuppet-demoapp
propuppet-demoapp
propuppet-demoapp/templates
propuppet-demoapp/templates/.gitkeep
propuppet-demoapp/CONTRIBUTORS
propuppet-demoapp/Modulefile
propuppet-demoapp/.nodeset.yml
propuppet-demoapp/Rakefile
propuppet-demoapp/LICENSE
propuppet-demoapp/tests
propuppet-demoapp/tests/init.pp
propuppet-demoapp/files
propuppet-demoapp/files/.gitkeep
propuppet-demoapp/Gemfile

195

https://github.com/garethr/puppet-module-skeleton

CHAPTER 8 ' TOOLS AND INTEGRATION

propuppet-demoapp/manifests
propuppet-demoapp/manifests/install.pp
propuppet-demoapp/manifests/params.pp
propuppet-demoapp/manifests/config.pp
propuppet-demoapp/manifests/service.pp
propuppet-demoapp/manifests/init.pp
propuppet-demoapp/CHANGELOG
propuppet-demoapp/spec
propuppet-demoapp/spec/spec_helper system.rb
propuppet-demoapp/spec/spec_helper.rb
propuppet-demoapp/spec/system
propuppet-demoapp/spec/system/basic_spec.rb
propuppet-demoapp/spec/classes
propuppet-demoapp/spec/classes/example_spec.rb
propuppet-demoapp/.travis.yml
propuppet-demoapp/.fixtures.yml
propuppet-demoapp/README . markdown
propuppet-demoapp/lib
propuppet-demoapp/lib/puppet
propuppet-demoapp/lib/puppet/provider
propuppet-demoapp/lib/puppet/provider/.gitkeep
propuppet-demoapp/lib/puppet/type
propuppet-demoapp/lib/puppet/type/.gitkeep
propuppet-demoapp/.gitignore

You can see in Listing 8-6 that the generate action creates quite a bit of boilerplate for us to fill in and use as a guide.
The puppet-module tool prefixes each module with the author of the class, so the module is actually named demoapp.

At this point you will want to modify the boilerplate to install and configure the application you want managed.
Afterward, we can build the module with the command shown in Listing 8-7.

Listing 8-7: Building a Puppet module

$ puppet module build
Notice: Building /home/vagrant/propuppet-demoapp for release
Module built: /home/vagrant/propuppet-demoapp/pkg/propuppet-demoapp-0.0.1.tar.gz

Now that our module is built, let’s move it to /etc/puppet/modules/demoapp:
$ sudo mv pkg/propuppet-demoapp-0.0.1 /etc/puppet/modules/demoapp
And finally, we apply our new module:

$ sudo puppet apply -e 'include demoapp’

Note puppet apply will fail if you did not modify the params. pp file in the demoapp module and replace the package
and service names with valid names for your platform.

At this point you will want to verify that your module is working correctly and add it to a version control system if
you have not already done so. If this is a public module, you can now upload the pkg file in pkg/propuppet-demoapp-
0.0.1.tar.gz to the Forge via the web interface.

196

CHAPTER 8 © TOOLS AND INTEGRATION

Managing Module Dependencies

In the next few sections we will explore some ways to manage all of the public modules you are using from the
Puppet Forge.

Puppet Librarian

Puppet librarian (http://1ibrarian-puppet.com/) is a tool written by Puppet community member Tim Sharpe (rodjek)
to manage puppet module dependencies. It can pull dependencies off the Puppet Forge or directly from GitHub.
To get started you can install it via RubyGems:

$ gem install librarian-puppet

Puppet librarian will insist on managing /etc/puppet/modules, so if you currently have the folder in your version
control, you will need to remove the contents. To get started, run librarian-puppet init as shown in Listing 8-8.

Listing 8-8. Running librarian-puppet init

$ librarian-puppet init
create Puppetfile

Let’s examine the newly created Puppetfile. The first line tells 1ibrarian-puppet to use the Puppet Forge.
forge "http://forge.puppetlabs.com”

The next line instructs 1ibrarian-puppet to install the latest version of puppetlabs/stdlib from the
Puppet Forge.

mod ‘puppetlabs/stdlib’
You can specify the version by adding the version number after the module name:

mod 'puppetlabs/stdlib', '4.1.0'
To grab it from Git instead, we would use this syntax:

mod 'puppetlabs/stdlib', :git => 'git://github.com/puppetlabs/puppetlabs-stdlib’
Let’s add the Apache module to our Puppetfile:

$ cat Puppetfile
forge "http://forge.puppetlabs.com”

mod 'puppetlabs/apache’

Then run librarian-puppet install and watch as the module and its dependencies are installed into our
module folder (Listing 8-9).

197

http://librarian-puppet.com/
http://forge.puppetlabs.com/
git://github.com/puppetlabs/puppetlabs-stdlib
http://forge.puppetlabs.com/

CHAPTER 8 ' TOOLS AND INTEGRATION

Listing 8-9. Running librarian puppet install

$ librarian-puppet install
$ 1s modules/
apache concat stdlib

We can display the module names and versions by running 1ibrarian-puppet show (Listing 8-10).

Listing 8-10. Running librarian-puppet show

$ librarian-puppet show

puppetlabs/apache (0.8.1)
puppetlabs/stdlib (4.1.0)
ripienaar/concat (0.2.0)

Asyou can, see librarian-puppet has eliminated the need to add modules from the Forge to version control as
long as you keep Puppetfile and Puppetfile.lock in version control. This will help you keep track of the versions of a
module you are using and let you easily experiment with newer versions in development. Next we will look at similar
tool called r10k.

R10K

R10k (https://github.com/adrienthebo/r10k) was written by Puppetlabs employee Adrien Thebo as a drop-in
replacement for librarian-puppet. Like librarian-puppet, it supports the same Puppetfile syntax. R10K was
designed to support dynamic environments with functionality similar to 1ibrarian-puppet. Adrien’s blog goes into
the details about why he built r10k (http://somethingsinistral.net/blog/rethinking-puppet-deployment/) and
is a good starting point for learning about it.

r10k can be installed via RubyGems:

$ gem install riok

Next you need to modify your Git repository to a slightly different layout. Like 1ibrarian-puppet, r10k wants to
manage the module directory, so you need to remove all modules from the module directory and add /modules to
your .gitignore. Next place your custom modules in a different directory, which we will call site. Finally, place a
Puppetfile in the root of your repository. The Puppetfile should include the list of public modules you are using from
the Puppet Forge, GitHub, or internal Git repositories. Your repository layout should look similar to Listing 8-11.

Listing 8-11. r10k layout

$ tree -L 1

|-- manifests
|-- modules
|-- Puppetfile
|-- README.md
T-- site

Next we need to configure r10k to use our repository, which we can do by updating the myrepo remote in
Listing 8-12.

198

https://github.com/adrienthebo/r10k
http://somethingsinistral.net/blog/rethinking-puppet-deployment/

CHAPTER 8 © TOOLS AND INTEGRATION

Listing 8-12. Configuring r10k

$ cat /etc/r1ok.yaml
The location to use for storing cached Git repos
:cachedir: '/var/cache/r10k’

A list of git repositories to create
1sources:
This will clone the git repository and instantiate an environment per
branch in /etc/puppet/environments
:myorg:
remote: 'git@github.com:my-org/puppet-repo’
basedir: '/etc/puppet/environments’

This directory will be purged of any directory that doesn't map to a
git branch
:purgedirs:

- '/etc/puppet/environments’

Assuming we've configured Puppet for dynamic environments as described in Chapter 3, we can now run the
r10k deploy command (Listing 8-13).

Listing 8-13. Running the r10k deploy command

$ r10k deploy environment

$ 1s -1 /etc/puppet/environments/

total 8

drwxr-xr-x 6 root root 4096 Aug 24 21:18 master

drwxr-xr-x 6 root root 4096 Aug 24 21:19 refactor for_riok

As you can see from listing 8-13, /etc/puppet/environments/ now contains each branch in your Git repository,
and the modules directory in each environment contains the modules specified in the Puppetfile for that branch.
Now that we have explored options for easier Puppet deployment, let’s examine tools that help us write better Puppet
modules. First up is puppet lint.

Puppet-lint

Puppet-lint (http://puppet-1lint.com/) is another tool written by Tim Sharpe, to help developers keep Puppet code
consistent with the Puppet style guide (http://docs.puppetlabs.com/guides/style guide.html).It can easily be
installed via RubyGems:

$ gem install puppet-lint
Once it is installed, all you have to do is run puppet-1int. In Listing 8-14 we have cloned the puppetlabs/

rsync module and have run puppet-1int. You can see it has quite a few style guide violations, which we can now
easily fix.

199

http://git@github.com:my-org/puppet-repo
http://puppet-lint.com/
http://docs.puppetlabs.com/guides/style_guide.html

CHAPTER 8 ' TOOLS AND INTEGRATION

Listing 8-14. Running puppet-lint

$ puppet-lint --with-filename manifests

manifests/server.pp - WARNING: line has more than 80 characters on line 55
manifests/server/module.pp - WARNING: line has more than 80 characters on line 15
manifests/server/module.pp - WARNING: line has more than 80 characters on line 16
manifests/server/module.pp - WARNING: line has more than 80 characters on line 18
manifests/server/module.pp - WARNING: line has more than 80 characters on line 19
manifests/server/module.pp - WARNING: line has more than 80 characters on line 20
manifests/server/module.pp - WARNING: line has more than 80 characters on line 21
manifests/get.pp - WARNING: line has more than 80 characters on line 11
manifests/get.pp - WARNING: line has more than 80 characters on line 69
manifests/get.pp - WARNING: line has more than 80 characters on line 72
manifests/get.pp - WARNING: line has more than 80 characters on line 74
manifests/get.pp - WARNING: indentation of => is not properly aligned on line 67

For a full of list of checks refer to http://puppet-lint.com/checks/. To disable certain checks, you can add them
to~/.puppet-lint.rc. The most common check to add to the .rc file is --no-80chars-check.

Note It’s a good idea to add a puppet-1lint check to your deployment process. If you’re using Git, you can add it as
a precommit hook, or, if you have your Puppet code in continuous integration, you can add a lint check.

Testing the Modules

Now that our code is following the Puppet Style guide, we want to make sure it is working as expected. As your
modules get more complex and support a large variety of configuration options, you will need testing to make sure
code changes don’t introduce regressions. The testing tools we'll explore in this section include rspec-puppet,
TravisCI, and rspec-system.

rspec-puppet
Rspec-puppet (http://rspec-puppet.com/), another tool by Tim Sharpe, was written to assist in testing Puppet
manifests. Rspec-puppet can be installed via RubyGems.

$ gem install rspec-puppet
As an example, we will be adding tests to the pdxcat/collectd module (Listing 8-15).

Listing 8-15. Cloning the collectd module

$ git clone git://github.com/pdxcat/puppet-module-collectd.git
$ cd puppet-module-collectd

The first thing we need to do is some setup. To bootstrap our development environment, we are going to copy a
Gemfile from a module that already has tests to manage (Listing 8-16).

200

http://puppet-lint.com/checks/
http://rspec-puppet.com/
git://github.com/pdxcat/puppet-module-collectd.git

CHAPTER 8 © TOOLS AND INTEGRATION

Listing 8-16. Adding a Gemfile

$ wget https://raw.github.com/puppetlabs/puppetlabs-mysql/master/Gemfile
$ gem install bundler
$ bundle install

Bundler will install all the test tools defined in the Gemfile (Listing 8-17).

Listing 8-17. The contents of the Gemfile

$ cat Gemfile
source 'https://rubygems.org’

group :development, :test do

gem 'rake’, :require => false
gem 'rspec-puppet’, :require => false
gem 'puppetlabs_spec_helper', :require => false
gem 'rspec-system', :require => false
gem 'rspec-system-puppet’, :require => false
gem 'rspec-system-serverspec', :require => false
gem 'serverspec', :require => false
gem 'puppet-lint’, :require => false
end

if puppetversion = ENV['PUPPET_GEM VERSION']

gem 'puppet', puppetversion, :require => false
else

gem 'puppet', :require => false
end

vim:ft=ruby
We will also want a Rakefile (Listing 8-18).

Listing 8-18. Adding a Rakefile

$ wget https://raw.github.com/puppetlabs/puppetlabs-mysql/master/Rakefile
$ cat Rakefile

require 'puppetlabs_spec_helper/rake tasks'

require 'rspec-system/rake task'

Once the Rakefile is in place, the puppetlabs_spec_helper gem will provide some tasks to assist in module
development, as shown in Listing 8-19.

Listing 8-19. Listing available rake tasks

$ rake -T

rake build # Build puppet module package

rake clean # Clean a built module package

rake coverage # Generate code coverage information

rake help # Display the list of available rake tasks
rake lint # Check puppet manifests with puppet-lint

rake spec # Run spec tests in a clean fixtures directory

201

https://raw.github.com/puppetlabs/puppetlabs-mysql/master/Gemfile
https://rubygems.org/
https://raw.github.com/puppetlabs/puppetlabs-mysql/master/Rakefile

CHAPTER 8 ' TOOLS AND INTEGRATION

rake spec:system # Run system tests

rake spec_clean # Clean up the fixtures directory

rake spec_prep # Create the fixtures directory

rake spec_standalone # Run spec tests on an existing fixtures directory
rake spec_system # Run RSpec code examples

Next we want to create a folder structure for rspec-puppet in the spec directory (Listing 8-20).

Listing 8-20. Creating the spec directory layout

$ mkdir spec

$ mkdir spec/classes

$ mdkir spec/defines

$ mkdir spec/unit

$ cd spec

$ wget https://raw.github.com/puppetlabs/puppetlabs-mysql/master/spec/spec.opts

$ wget https://raw.github.com/puppetlabs/puppetlabs-mysql/master/spec/spec_helper.rb

If you have dependencies on other modules, you will also want a fixtures file (Listing 8-21). You will need to
modify it for your module.
Listing 8-21. Addinga .fixtures.yml file

$cd ..
$ wget https://raw.github.com/puppetlabs/puppetlabs-mysql/master/.fixtures.yml

For the collectd module, we have modified fixtures.yml to look like Listing 8-22:

Listing 8-22. The .fixtures.yml file

$ cat .fixtures.yml
fixtures:
repositories:
'stdlib': 'git://github.com/puppetlabs/puppetlabs-stdlib’
symlinks:
"collectd': "#{source dir}"

Now we are ready to start writing tests. We are testing the collectd class first. We create a file called
spec/classes/collectd_init_spec.rb and add the code shown in Listing 8-23.

Listing 8-23. The spec/classes/collectd _init_spec.rb file

spec/classes/collectd_init_spec.rb
require 'spec_helper'

describe 'collectd' do

end

Note The filename must end in _spec.rb or the rake task will not run the test.

202

https://raw.github.com/puppetlabs/puppetlabs-mysql/master/spec/spec.opts
https://raw.github.com/puppetlabs/puppetlabs-mysql/master/spec/spec_helper.rb
https://raw.github.com/puppetlabs/puppetlabs-mysql/master/.fixtures.yml
git://github.com/puppetlabs/puppetlabs-stdlib

CHAPTER 8 © TOOLS AND INTEGRATION

The first line includes our spec_helper library, and the describe block establishes what we want to test; this
block is the outline of our initial test. At this point you should be able to run your test suite without any errors, as in
Listing 8-24. You should also see that any dependencies in your . fixtures.yml file should be pulled in before the
test suite runs.

Listing 8-24. Running spec tests

$ rake spec

Cloning into 'spec/fixtures/modules/stdlib’...

remote: Counting objects: 4097, done.

remote: Compressing objects: 100% (2316/2316), done.

remote: Total 4097 (delta 1600), reused 3730 (delta 1279)

Receiving objects: 100% (4097/4097), 716.80 KiB | 530 KiB/s, done.

Resolving deltas: 100% (1600/1600), done.

HEAD is now at 2a78cbf Merge pull request #170 from ptomulik/fix_delete_values
/usr/bin/ruby1.9.1 -S rspec spec/classes/collectd init spec.rb --color
/usr/lib/ruby/1.9.1/rubygems/custom require.rb:55:in “require': iconv will be deprecated in the
future, use String#encode instead.

No examples found.

Finished in 0.00006 seconds
0 examples, 0 failures

Now let’s add tests. Inside the describe block we can test whether the collectd package is being installed with
the contain_package function. We will also need to specify osfamily as one of the OS families the module supports;
otherwise, it will throw an error. Listing 8-25 shows the code:

Listing 8-25. A simple spec test

let :facts do
{:osfamily => 'RedHat'}
end

it { should contain_package('collectd").with(
tensure => 'installed’

)}

We should also verify that it throws errors for unsupported OS families. By adding a context block, we can
change the facts and add a raise_error check (Listing 8-26).

Listing 8-26. A spec test for an unsupported operating system

context 'on non supported operating systems' do
let :facts do
{:osfamily => 'foo'}
end

it 'should fail' do
expect { subject }.to raise error(/foo is not supported/)
end
end

203

CHAPTER 8 ' TOOLS AND INTEGRATION
Now if we run our test suite, we should see two tests passing (Listing 8-27).

Listing 8-27. Running the spec tests a second time

$ rake spec

Finished in 1.15 seconds
2 examples, 0 failures

We've added a few more contain functions for files and the service, so our example now looks like
Listing 8-28.

Listing 8-28. The spec/classes/collectd _init_spec.rb file

require 'spec_helper'
describe 'collectd' do

let :facts do
{:osfamily => 'RedHat'}
end

it { should contain_package('collectd").with(
tensure => 'installed’

)}

it { should contain_service('collectd").with(
tensure => 'running’

)}

it { should contain file('collectd.conf') }

it { should contain file('collectd.d").with(
:ensure => 'directory’

)}

context 'on non supported operating systems' do
let :facts do
{:osfamily => 'foo'}
end
it 'should fail' do
expect { subject }.to raise error(/foo is not supported/)
end
end

end

204

CHAPTER 8 © TOOLS AND INTEGRATION

So far we've only tested for the existence of several named resources with some parameters specified. What
we're really interested in is testing the conditional logic that the collectd class uses. The collectd class changes its
behavior based on whether the user sets $purge_config equal to true. If it is set, Puppet will purge the distribution-
supplied config file and manage all plug-ins through Puppet resources. To test this, we need to add another test case.
Let’s add a context block and set the purge config parameter to true. Then we can use .with_content on the file
resource to see if the first line is # Generated by Puppet, which means that it is using our template. We will also use
should_not to make sure that the file_line resource isn’t being included. Listing 8-29 shows the code.

Listing 8-29. A spec test for conditional logic

context 'when purge config is enabled' do
let :params do
{ :purge_config => true }
end
it { should contain file('collectd.conf').with_content(
/™ Generated by Puppet$/
)}
it { should not contain _file line('include conf d') }
end

Let’s also modify the default test to ensure both that the content is nil when purge_config is false and that the
file_lineresource is included (Listing 8-30).

Listing 8-30. A spec testfor file line

it { should contain file('collectd.conf"').with(
:content => nil

)}
it { should contain file line('include_conf d') }

Now that we have some tests, we can start integrating them with TravisCI and GitHub.

TravisClI

TravisCI (https://travis-ci.org/) is a continuous-integration-as-a-service platform that provides free testing for
public repositories and can run rspec-puppet tests.
Create a .travis.yml file .with the code shown in Listing 8-31.

Listing 8-31. A .travis.yml file

.travis.yml
branches:

only:

- master

language: ruby
bundler args: --without development
script: "bundle exec rake spec SPEC_OPTS='--format documentation'"
rvm:

[RENEN
o O ™
R
o w

205

https://travis-ci.org/

CHAPTER 8 ' TOOLS AND INTEGRATION

env:
matrix:
- PUPPET_GEM_VERSION="~> 2.7.
- PUPPET_GEM_VERSION="~> 3.0.
- PUPPET_GEM_VERSION="~> 3.1.
- PUPPET_GEM_VERSION="~> 3.2.
matrix:
exclude:
- rvm: 1.9.3
env: PUPPET_GEM VERSION="~> 2.7.0"
- rvm: 2.0.0
env: PUPPET_GEM VERSION="~> 2.7.0"
- rvm: 2.0.0
env: PUPPET GEM VERSION="~> 3.0.0"
- rvm: 2.0.0
env: PUPPET_GEM VERSION="~> 3.1.0"
- rvm: 1.8.7
env: PUPPET_GEM VERSION="~> 3.2.0"
notifications:
email: false

0"
o"
o"
0

Go to your repository on GitHub and activate the Travis hook under Settings » Service Hooks » Travis. Follow
the instructions to activate the hook and run your first test.

Once the hook is activated, you will want to let the consumers of your module know that it is being tested and is
currently passing the builds. You can add the text in Listing 8-32 to your README .md to display the current status. It also
provides a handy link to the build page (Figure 8-3).

Collectd module for Puppet

Figure 8-3. README.md rendered on GitHub

Listing 8-32. TravisCI build image text for Markdown

[![Build Status](https://travis-ci.org/pdxcat/puppet-module-collectd.png?branch=master)]
(https://travis-ci.org/pdxcat/puppet-module-collectd)

After a few minutes your tests should finish. If they are all green, then your tests successfully ran against multiple
versions of Ruby and Puppet (Figure 8-4).

206

https://travis-ci.org/pdxcat/puppet-module-collectd.png?branch=master)%5D(https://travis-ci.org/pdxcat/puppet-module-collectd
https://travis-ci.org/pdxcat/puppet-module-collectd.png?branch=master)%5D(https://travis-ci.org/pdxcat/puppet-module-collectd

CHAPTER 8 © TOOLS AND INTEGRATION

pdxcat/puppet-module-collectd () B
Current Build History Pull Requests Branch Summary Hmd 4 1C
Build o220 Commit 05093fb (master)

State Passed Compare b5defg67bees5...05093Mbb53e6
Finished a day ago Author William Van Hevelingen
Duration 9 min Committer William Van Hevelingen
Message Merge pull request#18 from tripledesimaster

Added tcpconns plugin and example for it in README

Config

Build Matrix

Job Duration Finished Rvm Env
© 201 1 min 27 sec aday ago 18.7 PUPPET_GEM_VERSION="~> 2.7.0
© 202 1 min 25 sec aday ago 187 PUPPET_GEM_VERSION="~= 3.0.0°
© 203 1min 24 sec aday ago 187 PUPPET_GEM_VERSION="~> 3.1.0
©204 50 sec aday ago 193 PUPPET_GEM_VERSION="~> 3.0.0°
© 205 1 min 30 sec aday ago 193 PUPPET_GEM_VERSION="~> 3.1.0
© 206 1min 9 sec aday ago 193 PUPPET_GEM_VERSION="~= 3.2.0°
© 207 1min 6 sec adayago 2.0.0 PUPPET_GEM_VERSION="~>3.2.0

Figure 8-4. The TravisCI build page

So now you have some simple rspec-puppet tests, but this barely scratches the surface of testing Puppet modules.
You can check out other well-tested modules like (puppetlabs/mysql and puppetlabs/apache) for more advanced
examples. Next we are going to cover rspec-system.

rspec-system

Rspec-system (https://github.com/puppetlabs/rspec-system) is a framework for running tests on different

operating systems. It spins up test systems, applies Puppet code, and tests that the services are configured as

described by the Puppet code. Rspec-system uses Vagrant (http://www.vagrantup.com/) to provision the virtual

machines and currently supports VirtualBox and VSphere, but support for more providers is planned in the future.
To get started, you will need to download and install VirtualBox (https://www.virtualbox.org/) and Vagrant.
Then install rspec-system, as shown here:

$ gem install rspec-system

207

https://github.com/puppetlabs/rspec-system
http://www.vagrantup.com/
https://www.virtualbox.org/

CHAPTER 8 ' TOOLS AND INTEGRATION

As we did earlier with rspec-puppet, we will add rspec-system tests to the collectd module. First we want to
create a system directory in our spec folder, and since the collectd module is in Git we will want to add
.rspec_systemto the .gitignore file (Listing 8-33).

Listing 8-33. creating the rspec system directory layout

$ cd collectd
$ mkdir spec/system

Next we need to create spec/spec_helper_system.rb to be our hook that will run during the initial provisioning.
We're going to start with an existing one and modify it for our needs:

$ wget https://raw.github.com/puppetlabs/puppetlabs-apache/master/spec/spec_helper system.rb
After some minor tweaks our file now looks like Listing 8-34.

Listing 8-34. The spec/spec_helper system.rb file

spec/spec_helper_system.rb

require 'rspec-system/spec_helper'’
require 'rspec-system-puppet/helpers’
require 'rspec-system-serverspec/helpers’
include Serverspec::Helper::RSpecSystem
include Serverspec::Helper::Detect0S
include RSpecSystemPuppet::Helpers

RSpec.configure do |c|
Project root
proj root = File.expand path(File.join(File.dirname(_FILE), '.."))

Enable colour
c.tty = true

c.include RSpecSystemPuppet::Helpers

This is where we 'setup' the nodes before running our tests
c.before :suite do

Install puppet

puppet_install

Install modules and dependencies
puppet_module install(:source => proj root, :module name => 'collectd')
shell('puppet module install puppetlabs-stdlib")
end
end

This hook will install puppet and any dependencies our module might need. Now let’s create our first test.

In our test we are going to apply the collectd class and then verify that the package is installed and that the service is
running (Listing 8-35).

208

https://raw.github.com/puppetlabs/puppetlabs-apache/master/spec/spec_helper_system.rb

CHAPTER 8 © TOOLS AND INTEGRATION

Listing 8-35. The spec/system/basic_spec.rb file

spec/system/basic_spec.rb
require 'spec_helper system'

describe 'collectd class' do

package name = 'collectd'
service _name = 'collectd'

context 'default parameters' do
Using puppet_apply as a helper
it 'should work with no errors' do

pp = <<-EOS
class { 'collectd': }
EOS

Run it twice and test for idempotency
puppet_apply(pp) do |r|
r.exit_code.should not ==
r.refresh
r.exit_code.should be_zero
end
end

describe package(package name) do
it { should be installed }
end

describe service(service name) do
it { should be_enabled }
it { should be_running }
end
end
end

Next we create a .nodeset.yml file (Listing 8-36) and create some nodes we want to test. Further examples are
documented at https://github.com/puppetlabs/rspec-system#icreating-a-nodeset-file. We will create an
Ubuntu and Centos virtual machine to work with.

Listing 8-36. A .nodeset.yml file

.nodeset.yml

default_set: 'centos-64-x64'
sets:
"centos-64-x64":
nodes:
"main.foo.vm":
prefab: 'centos-64-x64'

209

https://github.com/puppetlabs/rspec-system#creating-a-nodeset-file

CHAPTER 8 ' TOOLS AND INTEGRATION

'ubuntu-server-12042-x64":
nodes:
"main.foo.vm":
prefab: 'ubuntu-server-12042-x64'

If you are using the puppetlabs_spec_helper gem, spec:systemis available in your Rakefile. Otherwise, add
require 'rspec-system/rake_task' to your Rakefile. Then run the rake task, as shown in Listing 8-37. The virtual
machine image will be downloaded and provisioned, and then the tests will run.

Listing 8-37. Running rspec-system

$ rake spec:system

Running test: 4 of 4
Description:
collectd class default parameters Service "collectd"

main.foo.vm$ service collectd status | grep 'running'
collectd (6941) is running.
Exit code: 0

For debugging you may want to preserve the virtual machines after the tests run. To do that, you can use the
RSPEC_DESTROY variable and then CD to the Vagrant folder to use vagrant ssh (Listing 8-38).

Listing 8-38. Accessing rspec system Vagrant machines

$ RSPEC_DESTROY=no rake spec:system
$ cd .rspec_system/vagrant_projects/ubuntu-server-12042-x64/
$ vagrant ssh

To specify a nodeset, you can use the RSPEC_SET variable:

$ RSPEC_SET=ubuntu-server-12042-x64 rake spec:system

Developing Puppet modules With Geppetto

Geppetto (http://puppetlabs.github.io/geppetto/)is an IDE for writing Puppet manifests and modules. It was
written and open sourced by DevOps startup Cloudsmith (acquired by Puppetlabs in 2013). It’s based on Eclipse and
can be run as a standalone application or installed as a plug-in in Eclipse. To install Geppetto, you can download

the version for your platform at (http://puppetlabs.github.io/geppetto/download.html). Then you just need to
extract it and double-click the Geppetto file to start it. To create a new project, go to File » New » Project, at which
point you can select whether to import a module from the Puppet Forge, create a new one, or import from version
control. In Figure 8-5 you can see that the module has been imported, and you can immediately start working on it.

210

http://puppetlabs.github.io/geppetto/
http://puppetlabs.github.io/geppetto/download.html

CHAPTER 8 © TOOLS AND INTEGRATION

& Resource - 2p

File Edit Mavigate Sezrch Project Run Window Help
Cl & Q- ifr o S
{5 Project Explorer 52 =0 (&, pupp apach s puppetizb at |y puppetlsbs-stdlib | 12 ap initpp &2
= i = ensure => installed,
— name => $apache::params::apache_name,
4 3= spache = notify => Class['Apache::Service’],
+ (= files }
> & lib
4 {3 manifests = va1idat_$_l_:ooll_:$de\‘x{|ult_vhost) o . ’
2 true/false is sufficient for both ensure and enable
> &2 cefailtmogs validate_bool($service_enable)
» 4= mod = if Smpm_module {
lal balancerpp validate_re($mpm_module, ‘(prefork|worker|itk)')
[3 balancermember.pp }
[default_mods.pp
B dev # declare the web server user and group
e il # Note: requiring the package means the package cught to create them and not puppet
ds init.pp = group { Sgroup:
[l lsten.pp = ensure => present,
[al mod.pp require => Package['"httpd']
[& namevittualhest.pp }
= = ,_-“m“ == = user { Suser:
2 Outine 32 BEITO] - Temsire o> present,
@ R & - Eid => Sgroup,
Pl) require => Package[‘httpd'],
&
L class { ‘apache::service’:
[service_enable => $service_enable,
® }
® fi
@
. & Tasks &3
: 0 tems.
. Description Resource Path Location Type
°
@ urce
@ concatifragment Apache por ~
«[; . "
d Writable Insert 174:4

Figure 8-5. Geppetto project import

Note The apache module in Listing 8-17 will have errors until you add the concat and stdlib modules to your
workspace and then right click on the Project » Properties » Project References and check the boxes next to concat
and stdlib. Once checked the stdlib and concat resources will be recognized.

For demonstration purposes, we've created some examples in Figures 8-6 and 8-7 that contain common errors.
Geppetto automatically marks the Puppet syntax errors and provides helpful error messages to help debug the problem.

duplicate attribute
user { ‘dawn’:

(X shell => '/bin/zsh',
home => '/home/dawn’,

(X shell => '/bin/bash’,
; € Duplicate attribute: 'shell’
} Press 'F2" for focus

Figure 8-6. Geppetto display for a duplicate attribute

211

CHAPTER 8 = TOOLS AND INTEGRATION

invalid attribute
user { ‘mike’:

a coment => 'stahmna’
¥

., The word 'coment’ is not correctly spelled

| 37 quick fixes available:

US| & 01.Change to 'comment’ 2
02. Change to 'key membership' £
03. Change to 'uid’

¥ 04. Change to 'password min age'

05. Change to 'home'

06. Change to 'membership'
07. Change to 'password’
o N8 Clasess do leseas’

@
@
@
>
w
@

-

Press ‘'F2° for focus

Figure 8-7. Geppetto display for an invalid attribute

If you hover over function names such as validate_bool from stdlib, Geppetto displays a tool tip (Figure 8-8)
describing the function and documentation the authors have added.

ﬂ validate_bool - validate_bool : Function
Validate that all passed values are either true or false. Abort catalog compilation if any value fails this check.
The following values will pass:

fiamtrue = true

validate_beoel (true)
validate_bool (true, true, false, $iamtrue)

Press 'F2" for focus

Figure 8-8. Geppetto tool tips

212

CHAPTER 8 © TOOLS AND INTEGRATION

After Geppetto has helped you write a module, you can use it to push your module directly to the Forge
(Figure 8-9). First increment the version number in your modulefile and then go to File » Export to begin

the process.

B export

Select ﬁ

Select an export destination:

type filter text

b (= General

b (= Install

b & Java

4 (= Puppet
(s, Export Modules to File System
e Export Modules to Forge

» (= Run/Debug

b = Team

® T Fieh

Figure 8-9. Using Geppetto to export a module to the Forge, step 1

Then select the module you want to export to the Forge and click Finish to upload it, as shown in Figure 8-10.

213

CHAPTER 8 = TOOLS AND INTEGRATION

B export GRSl X
Export Modules to Forge B
Build and Export Modules to the Puppetlabs Forge Service 1
[[]& .org_cloudsmith_geppetto_pptp_target [¥] [2) .project
> [[]& apache V] £, Medulefile
> :1'3' apt [¥] =] README.markcown
B& concat [¥] () Rakefile
4 |V|1= propuppet . metadata,json
[¥] &= manifests
V] = spec
V] & tests
> [& stdlib
| Filter Types... | [SelectAll | [Deselectall
Puppet Forge Credentials
Forge Login (derived from the owner of the selected modules)
propuppet
Passwod
..........I...I
Options
[] Store Passwords in Secure Storage
[Dry Run
@ < Back MNext > Finish] l Cancel

Figure 8-10. Geppetto export module to the Forge, step II

Summary

In this chapter, you've seen a number of tools, some that are related to Puppet, and some that are part of it.
First, the Puppet Module tool provides a command line interface to working with Puppet modules and the
Puppet Forge. Tools like librarian-puppet and r10k allow us to manage module dependencies from the Puppet
Forge or Git. You have learned how to test your modules with rspec-puppet and rspec-system and use TravisCI
to run your rspec-puppet tests automatically. Finally, we explored Geppetto as an IDE solution for developing

Puppet modules.

Puppet is a fast-moving project with a very active community. Tools designed to work with Puppet will
continue to be written. Looks for posts on the puppet-users and puppet-dev sites for the newest tools and

updates.

214

CHAPTER 8 © TOOLS AND INTEGRATION

Resources

The following resources are a great place to keep track of the tools and work being done by members of the Puppet

community.

Puppet projects on Github: https://github.com/search?q=puppet

Puppet Users Mailing List: mailto: puppet-users+subscribe@googlegroups.com
Puppet Developer Mailing List: mailto:puppet-dev+subscribe@googlegroups.com
Puppet Labs blog: http://blog.puppetlabs.com/

rspec-puppet tutorial: http://rspec-puppet.com/tutorial

Geppetto: http://puppetlabs.com/blog/geppetto-a-puppet-ide

Geppetto FAQ: http://puppetlabs.github.io/geppetto/faq.html

215

https://github.com/search?q=puppet
http://mailto:puppet-users+subscribe@googlegroups.com/
http://mailto:puppet-dev+subscribe@googlegroups.com/
http://blog.puppetlabs.com/
http://rspec-puppet.com/tutorial
http://puppetlabs.com/blog/geppetto-a-puppet-ide
http://puppetlabs.github.io/geppetto/faq.html

CHAPTER 9

Reporting with Puppet

One of the most important aspects of any configuration management system is reporting. Reporting is critical for
providing information on accuracy, performance, and compliance to policy and standards, and it can provide graphical
representations of the overall state of your configuration. Indeed, we've already seen some examples of how to display
Puppet reports (via a management console) in Chapter 7, when we looked at Puppet Dashboard and Foreman.

In this chapter, you'll learn what command-line and data-based reports are available, how to configure reporting
and reports, and how to work with them; then you'll see how to graph reporting data and build custom reports.

Getting Started

Puppet agents can be configured to return data at the end of each configuration run. Puppet calls this data a
transaction report. The transaction reports are sent to the master server, which contains a number of report processors
that can utilize this data and present it in a variety of forms. You can also develop your own report processors to
customize the reporting output.

The default transaction report comes in the form of a YAML file. As mentioned in earlier chapters, YAML is a
recursive acronym for “YAML Ain’t Markup Language.” YAML is a human-readable data serialization format that
draws heavily from concepts in XML and the Python and C programming languages.

The transaction reports contain all events and log messages generated by the transaction and some additional
metrics. The metrics fall into three general types: time, resource, and change metrics. Within each of these types there
are one or more values. They include the time taken for the transaction, the number of resources and changes in the
transaction, and the success or failure of those resources.

In Listing 9-1 you can see an example of a portion of a YAML Puppet transaction report.

Listing 9-1. A partial Puppet transaction report

--- lruby/object:Puppet::Transaction::Report
external times:
Iruby/sym config retrieval: 0.280263900756836
host: mail.example.com
logs:
- lruby/object:Puppet::Util::Log
level: !ruby/sym info
message: Caching catalog for mail.example.com
source: //mail.example.com/Puppet
tags:
- info
time: 2010-12-18 08:41:19.252599 -08:00
version: 8idool 2.6.4

217

http://mail.example.com/
http://mail.example.com/
http:////mail.example.com/Puppet

CHAPTER 9 © REPORTING WITH PUPPET

- lruby/object:Puppet::Util::Log
level: !ruby/sym info
message: Applying configuration version '1292690479'
source: //mail.example.com/Puppet
tags:
- info
time: 2010-12-18 08:41:19.330582 -08:00
version: *id001
- lruby/object:Puppet::Util::Log
level: !ruby/sym info
message: "FileBucket adding /etc/sudoers as {md5}49085c571a7ec7ff54270c7a53a79146"
source: //mail.example.com/Puppet
tags:
- info
time: 2010-12-18 08:41:19.429069 -08:00
version: *idoo1

resources: !ruby/object:Puppet::Util::Metric
label: Resources
name: resources
values:
- - lruby/sym out_of_sync
Out of sync
-1
Iruby/sym changed
Changed
-1
Iruby/sym total
- Total
-8
changes: !ruby/object:Puppet::Util::Metric
label: Changes
name: changes
values:
- - lruby/sym total
- Total
-2
events: lruby/object:Puppet::Util::Metric
label: Events
name: events
values:
- - success
- Success
-2
- - lruby/sym total
- Total
-2
time: 2010-12-18 08:41:15.515624 -08:00

218

http:////mail.example.com/Puppet
http:////mail.example.com/Puppet

CHAPTER 9 © REPORTING WITH PUPPET

Here you can see that the YAML file is divided into sections. The first section contains any log messages. The log
messages are any events generated during the Puppet run; for example, the messages that would typically go to
standard out or syslog. The second section contains events related to resources, and it tracks each resource managed
by Puppet and the changes made to that resource during the Puppet run. The remaining sections detail the value of
each metric that Puppet collects. Each metric has a label, a name, and values that make it easy to parse the data, if
you wish to use it for reporting or manipulation. Metrics include the number of changes Puppet made, the number of
resources managed, and the number and type of events during the run.

The YAML format of the reporting output is very well supported by Ruby, and it can be easily consumed in Ruby
and other languages to make use of Puppet reporting data.

Configuring Reporting

On the agent nodes, report should be set to true in /etc/puppet/puppet.cont:

[agent]
report = true

Tip By default, the agent will send the reports back to the Puppet master configuring it. You can set up a separate
Puppet master for reports only, if you like. Direct all reports to this server by using the report_server option on the
agent (see http://docs.puppetlabs.com/references/latest/configuration.htmlftreportserver).

By default, the reports generated by the agent will be sent to the master and stored as YAML-formatted files
in the report directory. These files are the output of the default report processor, store. Reports are written into
subdirectories under the report directory and a directory created for each agent that is reporting. A report file name
consists of the datestamp when the report was generated, suffixed with .yaml, for example: 201010130604 . yaml.

The report directory is $vardir/reports (usually /var/1ib/puppet/reports on most distributions), but you can
override this by configuring the reportdir option on the Puppet master puppet . conf configuration file, as shown here:

[master]
reportdir = /mnt/nfs/puppet/reports

Here, we've set the new report directory to /mnt/nfs/puppet/reports. You can specify whichever directory suits
your environment.

Report Processors

There are a number of report processors available. Report processors are stored on the Puppet master. We've already
seen one in Chapter 7, when we used the http report processor to send reports from the master to the Puppet
Dashboard.

The default report, store, simply stores the report file on the disk. There are also the log processor, which sends
logs to the local log destination, to syslog for example, and the tagmail report processor, which sends email messages
based on particular tags in transaction reports. Next we’'ll discuss the rrdgraph report processor, which converts
transaction reports into RRD-based graphs. Finally, the puppetdb report processor is the newest addition and at the
time of writing offers experimental API endpoints to access reports.

219

http://docs.puppetlabs.com/references/latest/configuration.html#reportserver

CHAPTER 9 © REPORTING WITH PUPPET

To select which report processors will run, use the reports configuration option in the puppet.conf
configuration file:

[master]
reports = store,log,tagmail,rrdgraph

Each report processor you want to enable should be listed in the reports option, with multiple processors
separated by commas. By default, only store is enabled. You can also enable report processors on the command line,
as shown here:

$ sudo puppet master --reports log,tagmail

Now let’s look at each individual report processor, starting with the log processor.

log

The log report processor sends the log entries from transaction reports to syslog. It is the simplest of the report
processors. The syslog destination facility is controlled by the syslogfacility configuration option, which defaults to
the daemon facility.

[master]
syslogfacility = user

In this example, we’ve directed all syslog output to the user facility.

Note The log report processor logs entries only if the Puppet master is running in daemon mode. If you keep it
running in the foreground, no syslog messages will be generated.

tagmail

The tagmail report sends log messages via email based on the tags that are present in each log message. Tags allow
you to set context for your resources; for example, you can tag all resources that belong to a particular operating
system, location, or any other characteristic. Tags can also be specified in your puppet . conf configuration file to tell
your agents to apply only configurations tagged with the specified tags.

The tagmail report uses the same tags to generate email reports. The tags assigned to your resources are added
to the log results, and then Puppet generates email based on matching particular tags with particular email addresses.
This matching occurs in a configuration file called tagmail.conf. By default, the tagmail. conf file is located in the
$confdir directory, usually /etc/puppet. This is controlled by the tagmap configuration option in the puppet. conf file:

[master]
tagmap = $confdir/tagmail.conf

The tagmail.conf file contains a list of tags and email addresses separated by colons. You can specify multiple
tags and email addresses by separating them with commas. Listing 9-2 shows an example of this file.

220

CHAPTER 9 © REPORTING WITH PUPPET

Listing 9-2. A sample tagmail.conf file

all: configuration@example.com
mail, www: operations@example.com
db, !'mail: dba@example.com,apps@example.com

The first tag in Listing 9-2, all, is a special tag that tells Puppet to send all reports to the specified email address.

Tip There is also a special tag called err. Specifying this tag will make the report return all error messages
generated during a configuration run.

The second set of tags specifies that Puppet should send all reports with the tags mail and www to the email
address operations@example.com. The last tags tell Puppet to send reports for all log entries with the db tag but not
the mail tag to both the dba@example.com and apps@example.com email addresses. You can see that the mail tag has
been negated using the ! symbol.

rrdgraph

One of the most useful built-in report processors is the rrdgraph type, which takes advantage of Tobias Oetiker’s
RRD (round-robin database) graphing libraries. The rrdgraph report processor generates RRD files, graphs, and
some HTML files to display those graphs. It is a very quick and easy way of implementing graphs of your Puppet
configuration activities.

In order to make use of this report processor we'll first need to install RRDTools and the Ruby bindings for RRD.
We can install RRDTools via package on most platforms and distributions. The Ruby bindings, unfortunately, are less
well supported on a lot of platforms. They can be installed from source; alternatively, some distributions do have
packages available. Dag Wieer’s repository at http://dag.wieers.com/rpm/packages/rrdtool/ also offers suitable
rrdtool-ruby RPMs that should work on most RPM-based distributions, including Red Hat, CentOS, and Mandriva
versions. There is also a development package for Gentoo called ruby-rrd that provides the required bindings; you
should be able to install it via emerge.

You can see a list of the required packages for Debian/Ubuntu, Fedora, and Red Hat platforms in Table 9-1.

Table 9-1. Package names for rrdtools

0s Required Packages

Debian/Ubuntu rrdtool librrd2 librrd2-dev
Fedora rrdtool rrdtool-ruby

Red Hat rrdtool rrdtool-ruby

Note Your package manager may prompt you to install additional packages when installing RRDTool.

You can also install the RRD Ruby bindings via one of two gems, RubyRRDtool or 1ibrrd:

$ sudo gem install RubyRRDtool
$ sudo gem install librrd

221

http://configuration@example.com/
http://www:%20operations@example.com
http://dba@example.com/
http://apps@example.com/
http://operations@example.com/
http://mailto/
http://mailto/
http://dag.wieers.com/rpm/packages/rrdtool/
https://publish.apress.com/gems/RubyRRDtool

CHAPTER 9 © REPORTING WITH PUPPET

Both gems should work to produce the appropriate RRD graphs.
To customize RRD support, you can also change some configuration options in the puppet . conf configuration file:

[master]
rrddir = $vardir/rrd
rrdinternval = $runinterval

The rrddir directory specifies the default location for the generated RRD files. It defaults to $vardir/rrd, which
is usually /var/1ib/puppet/rrd. The rrdinterval specifies how often RRD should expect to receive data. This
defaults to $runinterval, to match how often agents report back to the master.

Under the $vardir/rrd directory, Puppet will create a directory for each agent that reports to the master. Graphs
(and the associated HTML files to display them) will be generated in that directory. A graph will be generated for each
metric that Puppet collects. You can then serve from this directory using your webserver and display the graphs.

http

The http report processor sends Puppet reports to an HTTP URL and port. The Puppet reports are sent as a YAML
dump in the form of an HTTP Post. You can control the destination with the reporturl configuration option in the
puppet. conf configuration file on the master:

[master]
reporturl = http://localhost:3000/reports

Here the report destination is set to its default, which assumes that you are sending reports to Puppet Dashboard.

puppetdb

As of version 1.5, PuppetDB has support for sending reports to itself. You can send reports to PuppetDB by appending
puppetdb to the reports option in the Puppet master’s puppet. conf file.

reports = store,puppetdb
You can access the reports via puppetdb’s APIL:

http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/events.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/reports.html

Custom Reporting

You are not limited to the provided report processors; Puppet also allows you to create your own report processors.
There are two methods for doing this. The first is to use the existing store reports, which are YAML files, and write an
external report processor to make use of this information, for example graphing it or storing it in an external database.
These external report processors can easily be written in Ruby to take advantage of Ruby’s ability to deserialize the
YAML files and make use of the resulting objects. You can use any tool that supports the importation of third-party
YAML data.

The second method involves writing your own report processor and adding it to Puppet. Although it has plug-ins
for facts, functions, types, and providers, Puppet doesn’t have an automatic way to distribute custom reports.

222

http://localhost:3000/reports
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/events.html
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/reports.html

CHAPTER 9 © REPORTING WITH PUPPET

Note We show how to distribute other forms of custom code, like facts, in Chapter 10.

Instead, the report processors are stored in the 1ib/puppet/reports directory. For example, on an Ubuntu
Puppet master we’d add our custom report processor to the /usr/1ib/ruby/vendor_ruby/puppet/reports
directory with the existing report processors. We would then specify the new report in the reports
configuration option.

The existing report processors make excellent templates for new processors. In Listing 9-3 you can see the Ruby
code for the HTTP report processor.

Listing 9-3. The HTTP report processor

require 'puppet’
require 'puppet/network/http_pool'require 'uri'

Puppet: :Reports.register report(:http) do

desc <<-DESC

Send report information via HTTP to the “reporturl’. Each host sends

its report as a YAML dump and this sends this YAML to a client via HTTP POST.
The YAML is the “report™ parameter of the request.”

DESC

def process
url = URI.parse(Puppet|:reporturl])
req = Net::HTTP::Post.new(url.path)
req.body = self.to yaml
req.content_type = "application/x-yaml"
Net::HTTP.new(url.host, url.port).start {|http|
http.request(req)

end
end

As you can see from this example, it is very easy to create your own report processor.

Tip Other ideas for Puppet report processors include RSS feeds for new reports, IRC, XMPP or instant messaging,
and SMS notifications of new reports. You could also parse particular events in reports or collate metrics for use in other
kinds of performance-management systems.

First, you need to require Puppet itself: require 'puppet'. Then you simply specify the Puppet: :Reports.
register report method and the name of the new report processor you are creating. You can see a simple example
of a report processor in Listing 9-4.

223

CHAPTER 9 © REPORTING WITH PUPPET

Listing 9-4. A custom summary report

require 'puppet’
require 'puppet/network/http_pool'
require 'uri'

Puppet: :Reports.register report(:http) do

desc <<-DESC
Send reports via HTTP or HTTPS. This report processor submits reports as
POST requests to the address in the “reporturl® setting. The body of each POST
request is the YAML dump of a Puppet::Transaction::Report object, and the
Content-Type is set as “application/x-yaml'.

DESC

def process
url = URI.parse(Puppet|:reporturl])
body = self.to yaml
headers = { "Content-Type" => "application/x-yaml" }
use_ssl = url.scheme == "https'
conn = Puppet: :Network: :HttpPool.http instance(url.host, url.port, use ssl)
response = conn.post(url.path, body, headers)
unless response.kind of?(Net::HTTPSuccess)
Puppet.err "Unable to submit report to #{Puppet[:reporturl].to s} [#{response.code}]
#{response.msg}"
end
end
end

In this report processor, we've defined a method called process to hold our report’s core logic. We've extracted
some information from our report: the host, using the self.host method, and a summary of the changes, using
the summary method. You also have access to the report’s logs and metrics using the self.logs and self.metrics
methods.

We also wrote our summary report out to a directory named after the Puppet agent host located under the reports
directory, which we specified using the value of the reportdir configuration option.

We can then add our report name to Puppet in the puppet. conf configuration file:

reports=store,log, summary

After we restart the Puppet master and perform a Puppet run, the new report will be generated. In our case, the
final report is contained in a file called summary.txt and looks something like this:

Changes:
Total: 1

Events:
Success: 1
Total: 1

Resources:

Changed: 1
Out of sync: 1
Total: 8

224

CHAPTER 9 © REPORTING WITH PUPPET

Time:
Config retrieval: 0.19
File: 0.05
Filebucket: 0.00
Schedule: 0.00

Tip You can see other examples of how to use and extract reporting data from thecode of the existing reports, at
https://github.com/puppetlabs/puppet/tree/master/1ib/puppet/reports

Other Puppet Reporters

James Turnbull, one of the original authors of this book, has written the following report processors and many more,
which are available on his GitHub page.

e IRC: https://github.com/jamturo1/puppet-irc

e PagerDuty: https://github.com/jamturo1/puppet-pagerduty
e HipChat: https://github.com/jamturo1/puppet-hipchat

e Campfire: https://github.com/jamturo1/puppet-campfire

Summary

This chapter has demonstrated the basics of Puppet reporting, including how to configure reporting and some details
on each report type and its configuration.

We've also shown you how to create custom reports of your own, making use of the report data in its YAML form
or via processing with a custom report processor.

Resources

e Report Reference: http://docs.puppetlabs.com/references/latest/report.html
e Reports and Reporting: http://docs.puppetlabs.com/guides/reporting.html
e Existingreports: https://github.com/puppetlabs/puppet/tree/master/1lib/puppet/reports

e PuppetDB Reporting API :
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/reports.html

225

https://github.com/puppetlabs/puppet/tree/master/lib/puppet/reports
https://github.com/jamtur01/puppet-irc
https://github.com/jamtur01/puppet-pagerduty
https://github.com/jamtur01/puppet-hipchat
https://github.com/jamtur01/puppet-campfire
http://docs.puppetlabs.com/references/latest/report.html
http://docs.puppetlabs.com/guides/reporting.html
https://github.com/puppetlabs/puppet/tree/master/lib/puppet/reports
http://docs.puppetlabs.com/puppetdb/latest/api/query/v3/reports.html

CHAPTER 10

Extending Facter and Puppet

Among the most powerful features of Puppet are its flexibility and extensibility. In addition to the existing facts,
resource types, providers, and functions, you can quickly and easily add custom code specific to your environment or
to meet a particular need.

In the first part of this chapter we’re going to examine how to add your own custom facts. Adding custom facts
is highly useful for gathering and making use of information specific to your environment. Indeed, we’ve used Facter
extensively in this book to provide information about our hosts, applications, and services, and you've seen the array
of facts available across many platforms. You may have noted, though, that Facter isn’t comprehensive; many facts
about your hosts and environments are not available as Facter facts.

In the second part of the chapter, we're going to examine how to add your own custom types, providers, and
functions to Puppet and how to have Puppet distribute these items, and we’ll discuss how to make use of them.
Customizations are among Puppet’s most powerful features and are at the heart of its flexibility and extensibility. The
ability to add your own enhancements in addition to the existing resources types, providers and functions means that
you can quickly and easily add custom code specific to your environment or to meet a particular need.

Writing and Distributing Custom Facts

Creating your own custom facts for Puppetis a simple process. Indeed, it requires only a basic understanding
of Ruby. Luckily,, Ruby is incredibly easy to pick up and there are many resources available to help (refer to the
“Resources” section at the end of the chapter for some helpful links).

In the following sections, you'll see how to successfully extend Facter. We'll first configure Puppet so we can write
custom facts, and then test our new facts to confirm that they are working properly.

Note If the idea of learning any Ruby is at all daunting, a fast alternative way to add a fact without writing any Ruby
code is via Facter’s support for environmental variables. Any environmental variables set by the user Facter is running as
(usually the root user) that are prefixed with FACTER_ will be added to Facter as facts. So, if you were to set an envi-
ronmental variable of FACTER_datacenter with a value of Chicago, it would become a fact called datacenter with the
value of Chicago.

Configuring Puppet for Custom Facts

The best way to distribute custom facts is to include them in modules, using a Puppet concept called plug-ins in
modules. This concept allows you to place your custom code in an existing or new Puppet module and then use that
module in your Puppet environment. Custom facts, custom types, providers, and functions are then distributed to any
host that includes a particular module.

227

CHAPTER 10 © EXTENDING FACTER AND PUPPET

Modules that distribute facts are no different from other modules, and there are two popular approaches to
the task. Some people distribute facts related to a particular function in the module that they use to configure that
function. For example, a fact with some Bind data in it might be distributed with the module you use to configure
Bind. This clusters together facts specific to a function and allows a greater portability. Other sites include all custom
facts (and other items) in a single, central module, such as a module called facts or plugins. This centralizes facts in
one location for ease of management and maintenance.

Each approach has pros and cons, and you should select one that suits your organization and its workflow. We
prefer the former approach because it limits custom facts and other items to only those clients that require them,
rather than all hosts. For some environments, this may be a neater approach, and we’ll use it in this section when
demonstrating managing custom facts.

So where in our modules do facts go? Let’s create a simple module called bind as an example:

bind/

bind/manifests
bind/manifests/init.pp
bind/files
bind/templates
bind/lib/facter

Here we've created our standard module directory structure, but we've added another directory, 1ib. The 1ib
directory contains any plug-ins or additional facts, types, or functions we want to add to Puppet. We're going to focus
on adding facts; these are stored in the 1ib/facter directory.

In addition to adding the 1ib/facter directory to modules that will distribute facts, you need to enable plug-ins
in modules in your Puppet configuration. To do this, enable the pluginsync option in the [main] section of the Puppet
master’s puppet . conf configuration file, as you can see on the next line:

[main]
pluginsync = true

When set to true, the pluginsync setting turns on the plug-ins in modules capability. Now, when clients connect
to the master, each client will check its modules for facts and other custom items. Puppet will take these facts and
other custom items and sync them to the relevant clients, so they can then be used on these clients.

Writing Custom Facts

Now that you've configured Puppet to deliver custom facts, you should create some new facts! Each fact is a snippet
of Ruby code wrapped in a Facter method to add the result of our Ruby code as a fact. Let’s look at a simple example in
Listing 10-1.

Listing 10-1. Our first custom fact

Facter.add("home") do
setcode do
ENV['HOME ']
end
end

In this example, our custom fact returns the value of the HOME environment value as a fact called home, which in
turn would be available in our manifests as the variable $: :home.

The Facter.add method allows us to specify the name of our new fact. We then use the setcode block to specify
the contents of our new fact, in our case using Ruby’s built-in ENV variable to access an environmental variable. Facter
will set the value of our new fact using the result of the code executed inside this block.

228

CHAPTER 10 * EXTENDING FACTER AND PUPPET
In Listing 10-2, you can see a custom fact that reads a file to return the value of the fact.

Listing 10-2. Another custom fact

Facter.add("tzname") do
confine :osfamily => :debian
setcode do
File.readlines("/etc/timezone").to a.last
end
end

Here, we're returning the time zone of a Debian host. We’ve also done two interesting things. First, we've
specified a confine statement. This statement restricts the execution of the fact if a particular criterion is not met. This
restriction is commonly implemented by taking advantage of the values of other facts. In this case, we've specified that
the value of the osfamily fact should be Debian for the fact to be executed. Notice that unlike in the Puppet language,
where we refer to osfamily with $ osfamily in manifests and @osfamily in templates, in custom facts we need to use
a Ruby symbol, which we do by prepending a colon to the front of the value. We can also use the values of other facts,
for example:

confine :kernel => :linux

As illustrated here, the confine statement is commonly used to limit the use of a particular fact to nodes with
Linux-based kernels.

Second, we've used the readlines File method to read in the contents of the /etc/timezone file. The contents are
returned as the fact timezone, which in turn would be available as the variable $: : tzname.

tzname => Australia/Melbourne

We've established how to confine the execution of a fact, but we can also use other fact values to influence our
fact determination, for example:

Facter.add("tzname") do
setcode do
if Facter.value(:osfamily) =='Debian'
File.readlines("/etc/timezone").to a.last
else
tz = Time.new.zone
end
end
end

Here, if osfamily is Debian, it will return a time zone value by returning the value from the /etc/timezone file.
Otherwise, the fact will use Ruby’s in-built time handling to return a time zone.

You could also use a case statement to select different fact values, for example as used in the
operatingsystemrelease fact shown in Listing 10-3.

Listing 10-3. Using a case statement to select fact values

Facter.add(:operatingsystemrelease) do
confine :operatingsystem => %w{Cent0S Fedora oel ovs RedHat MeeGo}
setcode do
case Facter.value(:operatingsystem)

229

CHAPTER 10 © EXTENDING FACTER AND PUPPET

when "Cent0S", "RedHat"

releasefile = "/etc/redhat-release”
when "Fedora"

releasefile = "/etc/fedora-release"
when "MeeGo"

releasefile = "/etc/meego-release”
when "OEL", "oel"

releasefile = "/etc/enterprise-release”
when "OVS", "ovs"

releasefile = "/etc/ovs-release"
end
File::open(releasefile, "r") do |f|

line = f.readline.chomp

if line =~ /\(Rawhide\)$/

"Rawhide"
elsif line =~ /release (\d[\d.]*)/
$1

end

end
end
end

You can use other fact values for any purpose you like, not just for determining how to retrieve a fact. Some facts
return another fact value if they cannot find a way to determine the correct value. For example, the operatingsystem
fact returns the current kernel, Facter.value(:kernel), as the value of operatingsystemif Facter cannot determine
the operating system it is being run on.

You can create more complex facts and even return more than one fact in your Ruby snippets, as demonstrated in
Listing 10-4.

Listing 10-4. A more complex fact

netname = nil
netaddr = nil
test = {}
File.open("/etc/networks").each do |line|
netname = $1 and netaddr = $2 if line «~
=~ /M (O\wk 2\w+) \s+([0-9]+\. [0-9]+\. [0-9]+\.[0-9]+)/
if netname != nil && netaddr != nil
test["network " + netname] = netaddr
netname = nil
netaddr = nil
end
end
test.each{|name, fact|
Facter.add(name) do
setcode do
fact
end
end

230

CHAPTER 10 © EXTENDING FACTER AND PUPPET

This fact creates a series of facts, each fact taken from information collected from the /etc/networks file. This
file associates network names with networks. Our snippet parses this file and adds a series of facts, one per network in
the file. So, if our file looked like this:

default 0.0.0.0
loopback 127.0.0.0
link-local 169.254.0.0

then three facts would be returned:

network default => 0.0.0.0
network_loopback => 127.0.0.0
network_link-local => 169.254.0.0

You can take a similar approach to commands, or files, or a variety of other sources.

Testing the Facts

There is a simple process for testing your facts: Import them into Facter and use it to test them before using them
in Puppet. To do this, you need to set up a testing environment. Create a directory structure to hold our test facts—
we'll call ours 1ib/ruby/facter. Situate this structure beneath the root user’s home directory. Then create an
environmental variable, $RUBYLIB, that references this directory and will allow Facter to find our test facts:

mkdir -p ~/1lib/ruby/facter
export RUBYLIB="/1ib/ruby

Next copy your fact snippets into this new directory:
cp /var/puppet/facts/home.rb $RUBYLIB/facter

After this, you can call Facter with the name of the fact you've just created. If the required output appears, your
fact is working correctly. On the following lines, we’ve tested our home fact and discovered it has returned the correct
value:

facter home
/root

If your fact is not working correctly, an error message you can debug will be generated. You can build automated
testing using the Rspec framework. Refer to the spec folder in Facter (https://github.com/puppetlabs/facter/
tree/master/spec) for examples.

External Facts

Starting with Facter 1.7.3 you can now write external facts, which come in two flavors, executable or structured.
Executable facts allow you to run scripts or executables to create new facts. You will need to put them in the
following directory.

/etc/facter/facts.d/ # Puppet Open Source
/etc/puppetlabs/facter/facts.d/ # Puppet Enterprise

231

https://github.com/puppetlabs/facter/tree/master/spec
https://github.com/puppetlabs/facter/tree/master/spec

CHAPTER 10 © EXTENDING FACTER AND PUPPET

The scripts must be executable and output to stdout in key=value format. The following is a simple bash script
that uses echo, but you can also create more complex scripts, as long as they return key/value pairs.

$ cat /etc/facter/facts.d/test.sh
#!/bin/bash

echo "food=pizza"

echo "drink=tea"

echo "starship=true"

$ facter food drink starship
drink => tea

food => pizza

starship => true

Structured facts are facts straight from YAML, JSON, or txt files. Adding files that end in .yaml, . json or . txt to
the facts.d directory will add them as Puppet facts.

$ cat /etc/facter/facts.d/test.yaml
icecream: chocolate

pie: cherry

cake: carrot

$ facter icecream pie cake
cake => carrot

icecream => chocolate

pie => cherry

Facts just scratch the surface of Puppet’s extensibility. As you'll see in the next section, adding to types, providers,
and functions adds even more capability.

Developing Custom Types, Providers and Functions

When developing custom types, providers, and functions, it is important to remember that Puppet and Facter are
open source tools developed by both Puppet Labs and a wide community of contributors. Sharing custom facts and
resource types helps everyone in the community, and it means you can also get input from the community on your
work. Extending Puppet or Facter is also an excellent way to give back to that community. You can share your custom
code by uploading it as a module to the Puppet Forge (http://forge.puppetlabs.com).

Finally, don’t underestimate the usefulness of code that people before you have already developed, and that you
can use and adapt for your environment. Explore existing Puppet modules, plug-ins, facts, and other code via Google
and on resources like GitHub. Like all systems administrators, we know that imitation is the ultimate form of flattery.

The following sections demonstrate how to configure Puppet to distribute your own custom code. You'll also see
how to write a variety of custom types and providers, and finally how to write your own Puppet functions.

Configuring Puppet for Types, Providers and Functions

The best way to distribute custom types, providers, and functions is to include them in modules, using plug-ins in
modules, the same concept introduced earlier this chapter to distribute custom facts. Just as with custom facts, you
place your custom code into a Puppet module and use that module in your configuration. Puppet will take care of
distributing your code to your Puppet masters and agents.

232

http://forge.puppetlabs.com/

CHAPTER 10 © EXTENDING FACTER AND PUPPET

And just as you can with custom facts, you can take either of two approaches to managing custom code: placing
it in function-specific modules or centralizing it into a single module. We're going to demonstrate adding custom code
in a single, function-specific module.

So, where in our modules does custom code go? Let’s create a simple module called apache as an example:

apache/

apache/manifests
apache/manifests/init.pp
apache/files

apache/templates

apache/lib/facter
apache/1lib/puppet/type
apache/1lib/puppet/provider
apache/lib/puppet/parser/functions

Here we've created our standard module directory structure, but we've added another directory, 1ib. We saw the
1ib directory earlier in the chapter when we placed custom facts into its Facter subdirectory. The 1ib directory also
contains other plug-ins, like types, providers, and functions, which we want to add to Puppet. The 1ib/puppet/type
and lib/puppet/provider directories hold custom types and providers, respectively. The last directory, 1ib/puppet/
parser/functions, holds custom functions.

As we did when we configured Puppet for custom facts, you need to enable the plug-ins in modules feature in
your Puppet configuration. To do this, enable the pluginsync option in the [main] section of the Puppet master’s
puppet. conf configuration file, as follows:

[main]
pluginsync = true

The pluginsync setting, when set to true, turns on the plug-ins in modules capability. Now, when agents
connect to the master, each agent will check its modules for custom code. Puppet will take this custom code and
sync it to the relevant agents. It can then be used on these agents. The only exception to this is with custom functions.
Functions run on the Puppet master rather than the Puppet agents, so they won’t be synced down to an agent. They
will only be synced if the Puppet agent is run on the Puppet master; that is, if you are managing Puppet with Puppet.

Writing a Puppet Type and Provider

Puppet types are used to manage individual configuration items. Puppet has a package type, a service type, a user
type, and all the other types available. Each type has one or more providers. Each provider handles the management
of that configuration on a different platform or tool: for example, the package type has aptitude, yum, RPM, and DMG
providers (among 22 others).

We're going to show you a simple example of how to create an additional type and provider, one that manages
version control systems (VCS), which we're going to call repo. In this case we're going to create the type and two
providers, one for Git and one for Subversion. Our type is going to allow you to create, manage, and delete VCS
repositories.

A Puppet type contains the characteristics of the configuration item we’re describing; for example, the VCS
management type has these characteristics:

e The name of the repository being managed

e The source of the repository

233

CHAPTER 10 = EXTENDING FACTER AND PUPPET
Correspondingly, the Puppet providers specify the actions required to manage the state of the configuration item.
Obviously, each provider has a set of similar actions that tell it how to
e Create the resource
e Delete the resource
e Check for the resource’s existence or state

e Make changes to the resource’s content

Creating Our Type

Let’s start by creating our type. First we create a module called custom to store it in:

custom/
custom/manifests/init.pp
custom/1ib/puppet/type
custom/1lib/puppet/provider

Inside the 1ib/puppet/type directory, we create a file called repo. rb to store our type definition:
custom/1ib/puppet/type/repo.rb
You can see that file in Listing 10-5.

Listing 10-5. The repo type

Puppet: :Type.newtype(:repo) do
@doc = "Manage repos"
ensurable

newparam(:source) do
desc "The repo source"

validate do |value|
if value =~ /"git/

resource[:provider] = :git
else
resource[:provider] = :svn
end
end
isnamevar

end

newparam(:path) do
desc "Destination path"

validate do |value|
path = Pathname.new(value)

234

CHAPTER 10 © EXTENDING FACTER AND PUPPET

unless path.absolute?
raise ArgumentError, "Path must be absolute: #{path}"
end
end
end
end

In this example, we start our type with the Puppet: : Type.newtype block and specify the name of the type to
be created, repo. You can also see a @doc string, which is where we specify the documentation for the new type. We
recommend you provide clear documentation, including examples of how to use the type; for a good example see the
documentation provided for the cron type at https://github.com/puppetlabs/puppet/blob/master/1ib/puppet/
type/cron.xb.

The next statement, ensurable, is a useful shortcut that tells Puppet to create an ensure property for this type.
The ensure property determines the state of the configuration item, for example:

service { 'sshd':
ensure => present,

The ensurable statement tells Puppet to expect three methods: create, destroy and exists? in our provider
(you'll see the code for this in Listing 10-6). These methods are, respectively:

e A command to create the resource
e A command to delete the resource
e A command to check for the existence of the resource

All we then need to do is specify these methods and their contents, and Puppet creates the supporting
infrastructure around them. Types have two kinds of values—properties and parameters. Properties “do things.” They
tell us how the provider works. We've only defined one property, ensure, by using the ensurable statement. Puppet
expects that properties will generally have corresponding methods in the provider; we’ll see those later in this chapter.
Parameters are variables and contain information relevant to configuring the resource the type manages, rather than
“doing things.”

Next, we've defined a parameter, called source:

newparam(:source) do
desc "The repo source"

validate do |value|
if value =~ /"git/

resource[:provider] = :git
else
resource[:provider] = :svn
end
end
isnamevar
end

The source parameter will tell the repo type where to go to retrieve, clone, or check out our source repository.
In the source parameter we're also using a hook called validate. It's normally used to check the parameter value
for appropriateness; here, we're using it to take a guess at what provider to use.

235

https://github.com/puppetlabs/puppet/blob/master/lib/puppet/type/cron.rb
https://github.com/puppetlabs/puppet/blob/master/lib/puppet/type/cron.rb

CHAPTER 10 © EXTENDING FACTER AND PUPPET

Note In addition to the validate hook, Puppet also has the munge hook, which you can use to adjust the value of the
parameter rather than validating it before passing it to the provider.

Our validate code specifies that if the source parameter starts with git, Puppet should use the Git provider; if
not, it should default to the Subversion provider. This is fairly crude as a default, and you can override it by defining
the provider attribute in your resource, as follows:

repo { 'puppet':
ensure => present,
source => 'git://github.com/puppetlabs/puppet.git’,
path => '/home/puppet’,
provider => git,

We've also used another piece of Puppet auto-magic, the isnamevar method, to make this parameter the “name”
variable for this type so that its value is used as the name of the resource.
Finally, we've defined another parameter, path:

newparam(:path) do
desc "Destination path"

validate do |value|
unless value =~ /*\/[a-z0-9]+/
raise ArgumentError, "%s is not a valid file path" % value
end
end
end

This is a parameter value that specifies where the repo type should put the cloned/checked-out repository. In this
parameter we've again used the validate hook to create a block that checks the value for appropriateness. In this case
we're just checking, very crudely, to make sure it looks like the destination path is a valid, fully-qualified file path. We
could also use this validation for the source parameter to confirm that a valid source URL/location is being provided.

Creating the Subversion Provider

Next, we need to create a Subversion provider for our type. We create the provider and put it in this location:
custom/1ib/puppet/provider/repo/svn.rb

You can see the Subversion provider in Listing 10-6.

Listing 10-6. The Subversion provider

require 'fileutils’

Puppet: :Type.type(:repo).provide(:svn) do
desc "Provides Subversion support for the repo type"

commands :svncmd => "svn"
commands :svnadmin => "svnadmin"

236

git://github.com/puppetlabs/puppet.git

CHAPTER 10 © EXTENDING FACTER AND PUPPET

def create
svncmd “"checkout”, resource[:name], resource[:path]
end

def destroy
FileUtils.rm rf resource[:path]
end

def exists?
File.directory? resource[:path]
end
end

In the provider code, we first required the fileutils library, from which we’re going to use some methods. Next,
we defined the provider block itself:

Puppet: :Type.type(:repo).provide(:svn) do

We specified that the provider is called svn and is a provider for the type called repo.

Then we used the desc method, which allows us to add some documentation to our provider.

Next, we defined the commands that this provider will use, the svn and svnadmin binaries, to manipulate our
resource’s configuration:
commands :svncmd => "svn"
commands :svnadmin => "svnadmin"

Puppet uses these commands to determine whether the provider is appropriate to use on an agent. If Puppet
can’t find these commands in the local path, it will disable the provider. Any resources that use this provider will fail,
and Puppet will report an error.

Next, we defined the three methods, create, destroy and exists?, that the ensurable statement expects to find
in the provider.

The create method ensures that our resource is created. It uses the svn command to check out a repository
specified by resource[:name]. This references the value of the name parameter of the type. In our case, the source
parameter in our type is also the name variable of the type, so we could also specify resource[: source]. We also
specified the destination for the checkout using the resource[: path] hash.

The delete method ensures the deletion of the resource. In this case, it deletes the directory and files specified by
the resource[:path] parameter.

Finally, the exists? method checks to see if the resource exists. Its operation is pretty simple and closely linked
with the value of the ensure attribute in the resource:

e Ifexists? isfalse and ensure is set to present, then the create method will be called.
e Ifexists? istrue and ensure is set to absent, then the destroy method will be called.

In the case of our method, exists? works by checking to see if there is already a directory at the location specified
in the resource| :path] parameter.
We can also add another provider, this one for Git, here:

custom/1lib/puppet/provider/repo/git.rb

237

CHAPTER 10 © EXTENDING FACTER AND PUPPET
We can see this provider in Listing 10-7.

Listing 10-7. The Git provider

require 'fileutils'
Puppet: :Type.type(:repo).provide(:git) do

desc "Provides Git support for the repo provider"
commands :gitcmd => "git"

def create
gitemd "clone", resource[:name], resource[:path]
end

def destroy
FileUtils.rm rf resource[:path]
end

def exists?
File.directory? resource[:path]
end

end

You can see that this provider is nearly identical to the Subversion provider in Listing 10-3. We used the git
command and its clone function rather than the Subversion equivalents, but you can see that the destroy and
exists? methods are identical.

Using Your New Type

Once you've got your type and providers in place, you can run Puppet and distribute them to the agents where you
wish to use the repo type and create resources that use this type, as in this example:

repo { 'wordpress':
ensure => present,
source => 'http://core.svn.wordpress.org/trunk/"',
path => "/var/www/wp',
provider => svn,

}

Note You can find a far more sophisticated version of the repo type, with additional providers, at
https://github.com/puppetlabs/puppetlabs-vcsrepo.

Writing a Parsed File Type and Provider

You've just seena very simple type and provider that use commands to create, delete, and check for the status of a
resource. In addition to these kinds of types and providers, Puppet also comes with a helper that allows you to parse
and edit simple configuration files. This helper is called ParsedFile.

238

http://core.svn.wordpress.org/trunk/
https://github.com/puppetlabs/puppet-vcsrepo

CHAPTER 10 © EXTENDING FACTER AND PUPPET

Unfortunately, you can only manage simple files with ParsedFile, generally files with single lines of configuration
like the /etc/hosts file or the example we're going to examine. This is a type that manages the /etc/shells file
rather than multi-line configuration files.

To use a ParsedFile type and provider, we need to include its capabilities. Let’s start with our /etc/shells
management type, which we’re going to call shells. This file will be located in

custom/1ib/puppet/type/shells.rb

The Shells Type

Let’s start with our type in Listing 10-8.

Listing 10-8. The shells type

Puppet: :Type.newtype(:shells) do
@doc = "Manage the contents of /etc/shells
shells { "/bin/newshell":
ensure => present,
}Il

ensurable

newparam(:shell) do
desc "The shell to manage"
isnamevar

end

newproperty(:target) do
desc "Location of the shells file"
defaultto {
if @resource.class.defaultprovider.ancestors.include? (Puppet::Provider::ParsedFile)
@resource.class.defaultprovider.default target
else
nil
end
}
end
end

In our type, we've created a block, Puppet: : Type.newtype(: shells), that creates a new type, which we’ve called
shells. Inside the block we’ve got a @doc string. As we've already seen, this should contain the documentation for the
type; in this case, we've included an example of the shells resource in action.

We've also used the ensurable statement to create the basic create, delete, and ensure-exists structure we saw in
our previous type.

We then defined a new parameter, called shell, that will contain the name of the shell we want to manage:

newparam(:shell) do
desc "The shell to manage"
isnamevar

end

239

CHAPTER 10 © EXTENDING FACTER AND PUPPET

We also used another piece of Puppet auto-magic that we saw earlier, isnamevar, to make this parameter the
name variable for this type.

Finally, in our type we specified an optional parameter, target, that allows us to override the default location of
the shells file, usually /etc/shells.

The target parameter is optional and would only be specified if the shells file wasn’t located in the /etc/
directory. It uses the defaultto structure to specify that the default value for the parameter is the value of the
default_target variable, which we will set in the provider.

The Shells Provider

Let’s look at the shells provider now, in Listing 10-9.

Listing 10-9. The shells provider

require 'puppet/provider/parsedfile’
shells = "/etc/shells"”

Puppet::Type.type(:shells).provide(:parsed, :parent => Puppet::Provider::ParsedFile,
:default_target => shells, :filetype => :flat) do

desc "The shells provider that uses the ParsedFile class"

text_line :comment, :match => /"#/;
text_line :blank, :match => /"\s*$/;

record line :parsed, :fields => %w{name}
end

Unlike other providers, ParsedFile providers are stored in a file called parsed.rb, located in the provider’s
directory, here:

custom/1ib/puppet/provider/shells/parsed.rb

The file needs to be named parsed. rb to allow Puppet to load the appropriate ParsedFile support (unlike other
providers, which need to be named for the provider itself).

In our provider, we first need to include the ParsedFile provider code at the top of our provider, using a Ruby
require statement:

require 'puppet/provider/parsedfile’

We then set a variable called shells to the location of the /etc/shells file. We're going to use this variable
shortly.

Then we tell Puppet that this is a provider called shells. The :parent value we specify tells Puppet that this
provider should inherit the ParsedFile provider and make its functions available. We then specify the :default_
target variable to the shells variable we just created. This tells the provider that unless it is overridden by the target
attribute in a resource, the file to act upon is /etc/shells.

We then use a desc method that allows us to add some documentation to our provider.

The next lines in the provider are the core of a ParsedFile provider. They tell the Puppet how to manipulate the
target file to add or remove the required shell. The first two lines, both called text_line, tell Puppet how to match

240

CHAPTER 10 © EXTENDING FACTER AND PUPPET

comments and blank lines, respectively, in the configuration file. You should specify these for any file that might have
blank lines or comments:

text_line :comment, :match => /"#/;
text_line :blank, :match => /"\s*$/;

We specify these to tell Puppet to ignore these lines as unimportant. The text_line lines are constructed by
specifying the type of line to match, a comment or a blank, followed by a regular expression that specifies the content
to be matched.

The next line performs the parsing of the relevant line of configuration in the /etc/shells file:

record line :parsed, :fields => %w{name}

The record_line parses each line and divides it into fields. In our case, we only have one field, name. The name in
this case is the shell we want to manage. So if we specify this:

shells { '/bin/anothershell:
ensure => present,
}

Puppet would then use the provider to add the /bin/anothershell by parsing each line of the /etc/shells file
and checking whether the /bin/anothershell shell is present. If it is, then Puppet will do nothing. If not, Puppet will
add anothershell to the file.

If we changed the ensure attribute to absent, Puppet would go through the file and remove the anothershell
shell if it is present.

This is quite a simple example of a ParsedFile provider. Some others that ship with Puppet, for example the cron
type, demonstrate the sophisticated things you can do with the ParsedFile provider helper.

A More Complex Type and Provider

This section demonstrates a slightly more complex type and provider, used to manage HTTP authentication password
files. It’s a similarly ensurable type and provider, but it includes more sophisticated components.

The httpauth Type

Let’s start by looking at the httpauth type, shown in Listing 10-10.

Listing 10-10. The httpauth type

Puppet: :Type.newtype(:httpauth) do
@doc = "Manage HTTP Basic or Digest password files." +

" httpauth { 'user': "+

" ensure => present, "+

" file => '/path/to/password/file’, "+
" password => 'password’, "

" mechanism => basic, "t

" } "

ensurable do
newvalue(:present) do

241

CHAPTER 10 © EXTENDING FACTER AND PUPPET

provider.create
end

newvalue(:absent) do
provider.destroy
end

defaultto :present
end

newparam(:name) do
desc "The name of the user to be managed."

isnamevar
end

newparam(:file) do
desc "The HTTP password file to be managed. If it doesn't exist it is created."”
end

newparam(:password) do
desc "The password in plaintext."

end

newparam(:realm) do
desc "The realm - defaults to nil and mainly used for Digest authentication."

defaultto "nil"
end

newparam(:mechanism) do
desc "The authentication mechanism to use - either basic or digest. Default to basic.”

newvalues(:basic, :digest)

defaultto :basic
end

Ensure a password is always specified
validate do
raise Puppet::Error, "You must specify a password for the user.
include?(:password)
end

unless @parameters.

end
In the httpauth type we're managing a number of attributes, principally the user, password, and password

file. We also provide some associated information, like the realm (an HTTP Digest Authentication value) and the
mechanism we’re going to use, Basic or Digest Authentication.

242

CHAPTER 10 © EXTENDING FACTER AND PUPPET

First, notice that we’ve added some code to our ensurable method. In this case, we're telling Puppet some
specifics about the operation of our ensure attribute. We’re specifying for each state, present and absent, exactly
which method in the provider should be called; in this case they are create and destroy, respectively. We're also
specifying the default behavior of the ensure attribute. This means that if when using this method we omit the ensure
attribute, the httpauth resource will assume present as the value. The resource will then check for the presence of the
user we want to manage, and if that user doesn’t exist, the resource will create it.

Listing 10-10 also demonstrates some other useful methods. The first is the defaultto method, which specifies
a default value for a parameter or property. If the resource does not specify this attribute, Puppet will use this default
value to populate it. The other method is newvalues, which allows you to specify the values that the parameter or
property will accept. In Listing 10-10, you can see the mechanism parameter that the newvalues method specifies takes
the values basic or digest.

Finally, you can see that we used the validate method to return an error if the httpauth resource is specified
without the password attribute.

The httpauth Provider

Now let’s look at the provider for the httpauth type, shown in Listing 10-11.

Listing 10-11. The httpauth provider

begin

require 'webrick’
rescue

Puppet.warning "You need WEBrick installed to manage HTTP Authentication files."
end

Puppet: :Type.type(:httpauth).provide(:httpauth) do
desc "Manage HTTP Basic and Digest authentication files"

def create
Create a user in the file we opened in the mech method
@htauth.set_passwd(resource[:realm], resource[:name], resource[:password])
@htauth.flush

end

def destroy
Delete a user in the file we opened in the mech method
@htauth.delete passwd(resource[:realm], resource[:name])
@htauth.flush

end

def exists?
Check if the file exists at all
if File.exists?(resource[:file])
If it does exist open the file
mech(resource[:file])

Check if the user exists in the file
cp = @htauth.get passwd(resource[:realm], resource[:name], false)

Check if the current password matches the proposed password
return check passwd(resource[:realm], resource[:name], resource[:password], cp)

243

CHAPTER 10 © EXTENDING FACTER AND PUPPET

else
If the file doesn't exist then create it
File.new(resource[:file], "w")
mech(resource[:file])
return false
end
end

Open the password file
def mech(file)
if resource[:mechanism] == :digest
@htauth = WEBrick::HTTPAuth: :Htdigest.new(file)
elsif resource[:mechanism] == :basic
@htauth = WEBrick: :HTTPAuth: :Htpasswd.new(file)
end
end

Check password matches
def check passwd(realm, user, password, cp)

if resource[:mechanism] == :digest
WEBrick: :HTTPAuth: :DigestAuth.make passwd(realm, user, password) == cp
elsif resource[:mechanism] == :basic

Can't ask webbrick as it uses a random seed
password.crypt(cp[0,2]) == cp
end
end
end

This provider is more complex than we’ve seen before. We still have the methods that handle Puppet’s ensurable
capabilities, create, destroy, and exists?, but we've also got methods that manipulate our password files.

Our provider first checks for the existence of the Webrick library, which it needs to manipulate HTTP password
files. The provider will fail to run if this library is not present. Fortunately, Webrick is commonly present in most Ruby
distributions.

Tip As an alternative to requiring the Webrick library, we could use Puppet’s feature capability. You can see some ex-
amples of this in https://github.com/puppetlabs/puppet/blob/master/1ib/puppet/feature/base.rb. This capabil-
ity allows you to enable or disable features based on whether certain capabilities are present or not. The obvious limitation
is that this approach requires adding a new feature to Puppet’s core, rather than simply adding a new type or provider.

Our provider then has the three ensurable methods. The create and destroy methods are relatively simple. They
use methods from the Webrick library to either set or delete a password specified in the HTTP password file managed
by the resource. That file is referred to here using the resource[: file] value, which is controlled by setting the file
attribute in the httpauth resource, as in this example:

httpauth { 'bob':
file => '/etc/apache2/htpasswd.basic’,
password => 'password’,
mechanism => basic,

}
244

https://github.com/puppetlabs/puppet/blob/master/lib/puppet/feature/base.rb

CHAPTER 10 © EXTENDING FACTER AND PUPPET

Finally, you'll also see in the create and destroy methods that we call the flush method. It flushes the buffer
and writes out our changes.

The exists? method is more complex and calls several helper methods to check whether the user and password
already exist, and if they do, whether the current and proposed passwords match.

Testing Types and Providers

Like facts, your types and providers can be tested. The best way to do this is add them to a module in your
development or testing environment and enable pluginsync to test them there before using them in your production
environment. As an example, let’s add our HTTPAuth type to a module called httpauth, first adding the required
directories:

$ mkdir -p /etc/puppet/modules/httpauth/{manifests,files,templates,lib}
$ mkdir -p /etc/puppet/modules/httpauth/lib/{type,provider}
$ mkdir -p /etc/puppet/modules/httpauth/1ib/provider/httpauth

Then we copy in the type and provider to the requisite directories:

cp type/httpauth.rb /etc/puppet/modules/lib/type/httpauth.rb
cp provider/httpauth.rb /etc/puppet/modules/lib/provider/httpauth/httpauth.rb

When Puppet is run (and pluginsync enabled), it will find your types and providers in these directories, deploy
them, and make them available to be used in your Puppet manifests. For automated testing, refer to the Rspec
examples in core Puppet (https://github.com/puppetlabs/puppet/tree/master/spec).

Writing Custom Functions

The last type of custom Puppet code we're going to look at is the function. You've seen a number of functions in this
book already; for example, include, notice, and template are all functions we’ve used. Many more functions can be
found in the Puppetlabs stdlib module, http://forge.puppetlabs.com/puppetlabs/stdlib, which is the first place
you should look before writing your own functions and is a good starting place to learn how to write functions. Using
functions such as validate_bool, validate_hash, and validate_array from stdlib is an easy way to make your
module more user-friendly.

There are two types of functions: statements and rvalues. Statements, such as the fail function, which stops the
Puppet run with a parser error, perform some action, and with rvalues you pass in a value, and the function processes
it to return a value. The split function, which parses a string and returns array elements, is an example of an rvalue
function.

Note Remember that functions are executed on the Puppet master. They have access only to resources and data that
are contained on the master.

As an example, we're going to write a simple function and distribute it to our agents. As we did with plug-ins, we
can use pluginsync to distribute functions to agents; they are stored in

custom/1ib/puppet/parser/functions

The file containing the function must be named after the function it contains; for example, the template function
should be contained in the template.rb file.

245

https://github.com/puppetlabs/puppet/tree/master/spec
http://forge.puppetlabs.com/puppetlabs/stdlib

CHAPTER 10 © EXTENDING FACTER AND PUPPET
Let’s take a look at a simple function in Listing 10-12.

Listing 10-12. The SHA512 function

Puppet::Parser::Functions: :newfunction(:sha512, :type => :rvalue, :doc => "Returns a SHA1 hash value
from a provided string.") do |args|

require 'sha1’
Digest::SHA512.hexdigest(args[0])
end

Puppet contains an existing function called sha1 that generates a SHA1 hash value from a provided string. In
Listing 10-12, we've updated that function to support SHA512 instead. Let’s break that function down. To create the
function, we call the Puppet: :Parser: :Functions: :newfunction method and pass it some values. First, we name the
function, in our case sha512. We then specify the type of function it is, here rvalue, for a function that returns a value.
If we don’t specify the type at all then Puppet assumes the function is a statement. Lastly, we specify a : doc string to
document the function.

The newfunction block takes the incoming argument and processes it, first adding support for working with SHA
hashes by requiring the sha1 library, and then passing the argument to the hexdigest method. Because this is an
rvalue function, it will return the created hash as the result of the function.

Note The last value returned by the newfunction block will be returned to Puppet as the rvalue.

We mentioned earlier that functions run on the Puppet master. This means you have access only to the resources
and data available on the master; but that includes some quite useful information, particularly fact data. You can look
up and use the value of facts in your functions using the lookupvar function, like so:

lookupvar('fqdn")

Replace fqdn with the name of the fact whose value you wish to look up.

You can see how easy it is to create very powerful functions in only a few lines of code. We recommend looking
at the existing functions (most of which are very succinct) as a way to get started on your first functions. Some of the
common functions include tools to manipulate paths, regular expressions, and substitutions, and functions to retrieve
data from external sources. There are numerous examples (many on GitHub or searchable via Google) of functions
that you can copy or adapt for your environment.

After you've created your function, you should test that it works correctly. There are a couple of ways you can do
this. First, you can perform some basic testing of the function by executing the function file with Ruby, as shown here:

$ ruby -rpuppet sha512.rb
This command loads the Puppet library (Puppet must be installed on the host) and then runs the file containing

the function we created in Listing 10-12. The result allows us to determine whether the file parses without error.
It does not tell us if the function performed correctly.

246

CHAPTER 10 © EXTENDING FACTER AND PUPPET

Tip You can raise an error in your function using raise Puppet::ParseError, "raise this error".Replace
"raise this error" with the error text you'd like to raise.

We can also use the Ruby IRB (Interactive Ruby Shell) to confirm that our function is properly defined:

$ irb

irb> require 'puppet’

=> true

irb> require '/tmp/sha5i2.rb’

=> true

irb> Puppet::Parser::Functions.function(:sha512)
=> "function_sha512"

Here we've launched irb and then required Puppet and our new function. We then confirm that Puppet can see
the new function and that it parses as a correct function.

The best way to test a function is to use it in a manifest, and the easiest way to do that is to add your functions to
Puppet’s 1ibdir and run a stand-alone manifest. Assuming Puppet is installed, first find your 1ibdir:

$ sudo puppet -configprint | grep 'libdir'
/var/lib/puppet/lib

Then create a directory to hold our functions:
$ sudo mkdir -p /var/lib/puppet/1ib/puppet/parser/functions
Copy in our function:
$ sudo cp sha512.rb /var/lib/puppet/lib/puppet/parser/functions
Create a manifest to execute our new function:
$ cat /tmp/sha.pp
$hash = sha512("test")
notify { $hash: }
And finally run the function:
$ puppet /tmp/sha.pp
notice: ee26b0dd4af7e749aa1a8ee3c10ae99231618980772e47318819a5d4940e0db27ac185F8a0e1d5184188bc887
1d67b143732c304cc5fa9ad8e6157150028a8ff
notice: /Stage[main]//Notify[ee26b0dd4af7e749aa1a8ee3c10ae99231618980772e473f8819a5d4940e0db27
ac185f8a0e1d518488bc887fd67b143732c304cc5fa9ad8e6F57f50028a81f]/message: defined 'message' as

'ee26bodd4af7e749aa1a8ee3c10ae99231618980772e47318819a5d4940e0db27ac185F8a0e1d5f84188bc8871d67
b143732c304cc5fa9ad8e6f57f50028a8ff"

247

CHAPTER 10 © EXTENDING FACTER AND PUPPET

You can see that our notify resource returned a 512-bit hash generated by our sha512 function.

Note You can call a function from another function by prefixing the function to be called with function_; for
example, function notice.

Summary

In this chapter, you learned how to extend Puppet and Facter with your own custom types, providers, functions and
facts. We demonstrated how to:

e Configure Puppet to distribute your custom facts in your modules

e Write your own custom facts

e Testyour new custom facts

e Use external facts

e Use two ensure-style types and providers

e Use aParsedFile type and provider to edit simple configuration files
e Write Puppet functions

e Test Puppet functions

Many examples of extensions and additions to Puppet are also available to add to your Puppet installation or
use as examples of how to develop particular extensions. A good place to start looking for these is on GitHub
(http://www.github.com).

Resources

e Adding custom facts: http://docs.puppetlabs.com/guides/custom_facts.html

e TryRuby online tutorial: http://tryruby.org/

e Learn to Program online tutorial: http://pine.fm/LearnToProgram/

e Programming Ruby: http://ruby-doc.org/docs/ProgrammingRuby/

e Beginning Ruby: http://beginningruby.org/

e Creating custom types: http://docs.puppetlabs.com/guides/custom_types.html

e A complete example of resource type creation:
http://docs.puppetlabs.com/guides/complete_resource example.html

e Documentation on detailed provider development:
http://docs.puppetlabs.com/guides/provider development.html

e Puppet Types and Providers by Dan Bode and Nan Liu:
http://www.amazon.com/Puppet-Types-Providers-Dan-Bode/dp/1449339328

e Writing your own functions: http://docs.puppetlabs.com/guides/custom_functions.html

e Writing tests for Puppet: http://projects.puppetlabs.com/projects/puppet/wiki/
Development_Writing Tests

248

http://www.github.com/
http://docs.puppetlabs.com/guides/custom_facts.html
http://tryruby.org/
http://pine.fm/LearnToProgram/
http://ruby-doc.org/docs/ProgrammingRuby/
http://beginningruby.org/
http://docs.puppetlabs.com/guides/custom_types.html
http://docs.puppetlabs.com/guides/complete_resource_example.html
http://www.amazon.com/Puppet-Types-Providers-Dan-Bode/dp/1449339328
http://docs.puppetlabs.com/guides/custom_functions.html
http://projects.puppetlabs.com/projects/puppet/wiki/Development_Writing_Tests
http://projects.puppetlabs.com/projects/puppet/wiki/Development_Writing_Tests

CHAPTER 11

MCollective

Marionette Collective (MCollective) is an orchestration framework closely related to Puppet. Puppet excels at
managing the state of your systems; however, the default 30-minute run interval of the Puppet agent makes it
unsuitable for real-time command and control. MCollective addresses the need to execute commands in real time
on a large number of systems in a novel and unique manner. MCollective takes advantage of message-passing
technologies to handle communication between the nodes collectively. With MCollective, nodes are easily divided
into collections based on information about the node itself rather than hostnames. The use of metadata means you
don’t need to maintain long lists of hostnames or IP addresses. All systems in the collection can report information
about themselves in real time on demand. Armed with this information, the overall population of machines can be
divided into collectives. Procedures are carried out remotely against a collective rather than against a single machine.

In this chapter, you'll learn how to install MCollective. Once it’s installed, you’ll also learn how integrate
MCollective with Facter to provide a large amount of metadata that’s useful to divide the population into collectives
and then command them. In addition, you'll learn how Puppet works well with MCollective to orchestrate and
reconfigure your nodes on demand and in a controlled manner. Plug-ins for MCollective provide these integrations
with Puppet, specifically the Puppet Agent plug-in. But first, let’s look a little more closely at this framework.

More Background on MCollective . . .

MCollective was created to provide an API for the orchestration tasks that systems engineers and developers frequently
need to perform. Command and control tools are numerous and effectively provide the same functionality as the Unix shell.
Though powerful, the shell interface is not an ideal application-programming interface. In addition, commands dispatched
to systems in this manner are difficult to manage using the same tools and processes that you manage code with. With
arobust APJ, orchestration actions may be implemented as small agent plug-ins and treated like other pieces of code in
a software development lifecycle. MCollective agents are testable, version-controlled, and consistently repeatable.

There are a number of problems and use cases that MCollective is particularly well-suited to address. Through
the use of real-time messaging and metadata addressing, a number of tasks previously carried out with SSH or other
deployment tools are more efficiently solved with MCollective. In particular, Mcollective addresses questions and
actions like the following extremely well:

e How many systems have 32GB of memory?

e What systems are online right now?

e Deployversion 1.2.3 of my application to all systems.

e Deploy version 1.2.4 of my application to the quality assurance systems.

¢ Deployversion 1.2.5rc2 of my application to the development systems.

e Run Puppet on all systems, ensuring that at most 10 runs are happening at once.

e Restart the Apache service on all systems in North America.

249

CHAPTER 11 © MCOLLECTIVE

In addition to the actions MCollective already handles, writing custom agents in Ruby to carry out your own
actions on all of your systems is quite straightforward. The MCollective RPC framework alleviates much of the effort
you would otherwise have to spend writing code to connect to your machines, issue commands to them, and handle
logging and exceptions. If you need to take action on all your systems, MCollective agents distributed through Puppet
are an excellent way to tackle the problem quickly.

MCollective makes use of publish/subscribe messaging techniques. These publications and subscriptions are
often implemented using asynchronous messaging software such as Apache ActiveMQ and Pivotal’s RabbitMQ. The
broad category of messaging software is often referred to as messaging middleware. MCollective is developed and
tested with the ActiveMQ middleware; however, the requirements of Java and XML configuration files have driven
increased attention to and interest in the RabbitMQ middleware service.

MCollective sends and receives messages using STOMP (Simple Text-Oriented Messaging Protocol). Any
messaging middleware implementing a robust STOMP listener should work with MCollective. However, ActiveMQ
and RabbitMQ are the two most widely deployed and tested middleware services used with MCollective. It is
important to keep in mind that only one messaging service on one system is required to get started with MCollective.
A single RabbitMQ server will easily support hundreds of connected MCollective server processes. Advanced
configurations with multiple security zones and tens of thousands of nodes may consider deploying multiple,
federated messaging services to scale with demand. In a multiple-datacenter configuration, ActiveMQ is an excellent
choice. ActiveMQ and MCollective have been deployed together across multiple data centers and geographic
continents in redundant and reliable configurations.

MCOLLECTIVE MESSAGING ARCHITECTURE

MCollective employs asynchronous messaging middleware services to broadcast messages and collect
responses from nodes. An overview of this messaging architecture is available online here:

http://docs.puppetlabs.com/mcollective/reference/basic/messageflow.html

If you have multiple security zones or data centers, you may be interested in running multiple middleware servers to
federate and distribute messaging requests. Information on this configuration with ActiveMQ is available online here:

http://docs.puppetlabs.com/mcollective/reference/integration/activemq_clusters.html
In addition, general information about publish/subscribe middleware is available online here:
http://en.wikipedia.org/wiki/Publish/subscribe

Now, let’s get started with the installation of MCollective.

Installing and Configuring MCollective

We will be using the puppetlabs/mcollective module to install and configure all of the necessary components
for our MCollective installation. It can be downloaded from the Puppet Forge at http://forge.puppetlabs.com/
puppetlabs/mcollective or installed via the puppet module tool as shown in Listing 11-1.

Listing 11-1. Installing mcollective via the puppet module

root@mco-master:~# puppet module install puppetlabs/mcollective
Notice: Preparing to install into /etc/puppet/modules ...
Notice: Downloading from https://forge.puppetlabs.com ...
Notice: Installing -- do not interrupt ...

/etc/puppet/modules

250

http://docs.puppetlabs.com/mcollective/reference/basic/messageflow.html
http://docs.puppetlabs.com/mcollective/reference/integration/activemq_clusters.html
http://en.wikipedia.org/wiki/Publish/subscribe
http://forge.puppetlabs.com/puppetlabs/mcollective
http://forge.puppetlabs.com/puppetlabs/mcollective
https://forge.puppetlabs.com/

CHAPTER 11 © MCOLLECTIVE

— puppetlabs-mcollective (v1.0.0)
garethr-erlang (v0.2.0)
—Ii puppetlabs-apt (vi1.3.0)
stahnma-epel (v0.0.5)
puppetlabs-activemq (v0.2.0)
— puppetlabs-java (v1.0.1)
— puppetlabs-java ks (v1.2.0)
— puppetlabs-rabbitmq (v3.0.0)

— puppetlabs-stdlib (v4.1.0)
— richardc-datacat (v0.4.2)

At the time of writing, the mcollective module supports both Debian and Enterprise Linux-based OS families.
The module provides support for three different roles. The broker role is the node that will run the middleware; this
can be ActiveMQ, RabbitMQ, or Redis. The second role is that of the MCollective servers, which are the nodes in our
infrastructure. These nodes will run the mcollective daemon. The last node is the MCollective client node; this is
where your admin users will administer MCollective. We will be running ActiveMQ as our middleware, which is the
default for the module. In Listing 11-2 you can see how we are using the mcollective module to configure our node
named mco-master to be the broker. The mco-master node we are using has already been configured to be a Puppet
master, but you can run the middleware on a separate node if you want.

Listing 11-2. Configuring the middleware node

node 'mco-master.lan’ {
class { '::mcollective':

middleware => true,
middleware hosts => ['mco-master.lan'],
middleware ssl => true,

securityprovider => 'ssl’',

ssl _client_certs => 'puppet:///modules/site_mcollective/client certs’,

ssl _ca_cert => 'puppet:///modules/site_mcollective/certs/ca.pem’,

ssl server public => 'puppet:///modules/site mcollective/certs/mco-master.lan.pem’',

ssl server private => 'puppet:///modules/site mcollective/private_keys/mco-master.lan.pem’,

If you would like to use RabbitMQ instead, you can set the connector parameter as shown in Listing 11-3.

Listing 11-3. Configuring the middleware node with RabbitMQ

class { '::mcollective':

middleware => true,

connector => 'rabbitmq',
middleware_hosts => ['mco-master.lan'],
middleware_ssl => true,

securityprovider => 'ssl',

ssl client _certs => 'puppet:///modules/site mcollective/client certs',

ssl ca_cert => 'puppet:///modules/site mcollective/certs/ca.pem’,

ssl_server public => 'puppet:///modules/site mcollective/certs/mco-master.lan.pem’,
ssl_server private => 'puppet:///modules/site_mcollective/private _keys/mco-master.lan.pem’,

251

CHAPTER 11 © MCOLLECTIVE

Generating and Storing Certificates

We will be using SSL for our MCollective installation, so we will need to provide some certificates for the mcollective
module. We will need to generate a cert for our admin user as well. We can do this on the Puppet CA server using the
puppet cert command. Our admin’s username is mike, so we create a cert named mike:

$ puppet cert generate mike

The public and private keys will be placed in /var/1ib/puppet/ssl/certs and /var/lib/puppet/private_keys,
respectively.

Let’s create a module called site_mcollective to store our certs. In your environment you would probably put
these files in your own site module or in Hiera (Listing 11-4).

Listing 11-4. Create a site_mcollective module.

$ mkdir -p /etc/puppet/modules/site mcollective/files/certs
$ mkdir -p /etc/puppet/modules/site mcollective/files/client_certs
$ mkdir -p /etc/puppet/modules/site mcollective/files/private_keys

Next copy the certs from your Puppet master’s ss1 directory into your module. You will need the public/private
keys of your admin user, the public/private keys of your broker, and the public CA cert (Listing 11-5).

Listing 11-5. Copy the SSL certs into your module.

cp /var/lib/puppet/ssl/certs/mike.pem /etc/puppet/modules/site_mcollective/files/certs

cp /var/lib/puppet/ssl/private_keys/mike.pem /etc/puppet/modules/site mcollective/files/private_keys
cp /var/lib/puppet/ssl/private_keys/mco-master.lan.pem /etc/puppet/modules/site_mcollective/files/
private keys

cp /var/lib/puppet/ssl/certs/mco-master.lan.pem /etc/puppet/modules/site mcollective/files/certs

cp /var/lib/puppet/ssl/certs/ca.pem /etc/puppet/modules/site_mcollective/files/certs

Your site_mcollective module should then look like Listing 11-6 and match up with the SSL parameters in our
node definition.

Listing 11-6. Layout of the site_mcollective module

root@mco-master:~# tree /etc/puppet/modules/site mcollective/files
/etc/puppet/modules/site mcollective/files
— certs

— mike.pem

— ca.pem

—— mco-master.lan.pem

— client certs

— mike.pem

— private_keys

—— mike.pem

— mco-master.lan.pem

252

CHAPTER 11 © MCOLLECTIVE

Verifying Permissions

Next we will ensure that the permissions are correct after copying them into our site_mcollective module:
$ chown -R puppet:puppet /etc/puppet/modules/site mcollective

At this point we can run puppet on our mco-master node, and our mcollective middleware will be installed
and configured.

Our next step is to connect our clients and MCollective servers to our middleware. Apply the Puppet code in
Listing 11-7 on all the nodes where you wish to run MCollective.

Listing 11-7. MCollective servers’ configuration

node /mco-client[0-9].1an/ {
class { '::mcollective':

middleware hosts => ['mco-master.lan'],
middleware_ssl => true,
securityprovider => 'ssl’,
ssl _client_certs => 'puppet:///modules/site_mcollective/client certs’,
ssl ca_cert => 'puppet:///modules/site_mcollective/certs/ca.pem',
ssl server public => 'puppet:///modules/site mcollective/certs/mco-master.lan.pem’,
ssl_server private => 'puppet:///modules/site mcollective/private_keys/mco-master.lan.pem’,

These nodes will run the mcollective daemon and can be queried from one or more MCollective client nodes.
Our clients are configured similarly to the servers, except that the client parameter is set to true. We will use the
mcollective: :user define to provision our admin users as well. The mcollective: :user define does not provision
the system user. In Listing 11-8 we will create a system user named mike before creating the mcollective: :user
for mike.

Listing 11-8. MCollective client configuration

node 'mco-commander.lan' {
class { '::mcollective':

client => true,
middleware hosts => ['mco-master.lan'],
middleware ssl => true,

securityprovider => 'ssl’,

ssl client _certs => 'puppet:///modules/site mcollective/client certs',

ssl ca_cert => 'puppet:///modules/site mcollective/certs/ca.pem',

ssl_server public => 'puppet:///modules/site mcollective/certs/mco-master.lan.pem’,
ssl_server private => 'puppet:///modules/site mcollective/private_keys/mco-master.lan.pem’,

}

user { 'mike’:

ensure => present,

managehome => true,

shell => '/bin/bash’,
-

253

CHAPTER 11 © MCOLLECTIVE

mcollective::user { 'mike':
certificate => 'puppet:///modules/site mcollective/client certs/mike.pem’,
private key => 'puppet:///modules/site mcollective/private_keys/mike.pem',
}
}

After you run Puppet, the client and server nodes should now be configured with MCollective and ready for use.

Testing

To test the installation, log in as our user mike on the MCollective client node and run themco ping command.
You should see results similar to Listing 11-9.

Listing 11-9. Verifying installation

mike@mco-commander:~$ mco ping

mco-client1 time=122.27 ms
mco-master time=125.95 ms
mco-client2 time=137.08 ms
mco-commander time=139.84 ms

---- ping statistics ----
4 replies max: 139.84 min: 122.27 avg: 131.29

Themco ping command informs us that the MCollective server is running and responding to messages on all
of our servers. This command verifies that the configuration settings in the middleware and the MCollective servers
and client configuration files are working. Another verification step is to run the mco inventory command on a node
(Listing 11-10). It will return server statistics, the plug-ins installed, and the facts a node has.

Listing 11-10. Runningmco inventory

mike@mco-commander:~$ mco inventory mco-client1
Inventory for mco-clienti:

Server Statistics:
Version: 2.2.4
Start Time: Fri Sep 27 17:52:50 +0000 2013
Config File: /etc/mcollective/server.cfg
Collectives: mcollective
Main Collective: mcollective
Process ID: 1019
Total Messages:
Messages Passed Filters:
Messages Filtered:
Expired Messages:
Replies Sent:
Total Processor Time: 0.44 seconds
System Time: 0.02 seconds

0 O O WV v

254

CHAPTER 11 © MCOLLECTIVE

Agents:
discovery rpcutil

Data Plugins:
agent fstat

With the MCollective server and client processes configured, we can now begin installing plug-ins.

Installing MCollective Plug-ins

MCollective is extensible in a number of ways. The most common way to extend MCollective is to reuse already
written agent plug-ins. These small Ruby libraries enable MCollective to execute custom commands on the
entire collective.

An agent plug-in usually contains a Ruby library that must be distributed to all of the nodes running the
MCollective agent. In addition, a data definition file provides a description of the input parameters the plug-in
accepts. This DDL file should be installed on the MCollective client systems. Finally, a script to execute MCollective
using the specified agent plug-in should also be installed on all MCollective client systems.

In this section, you'll learn about a number of MCollective agent plug-ins. Additional plug-ins are also available
athttps://github.com/puppetlabs/mcollective-plugins. These plug-ins provide a good example of how to write
your own agent plug-ins for MCollective to execute additional commands specific to the tasks you need to manage.

Puppet Agent MCollective Plug-ins

MCollective does not contain an agent for Puppet out of the box. An agent plug-in is provided, however, at
https://github.com/puppetlabs/mcollective-puppet-agent. This plug-in allows you to execute Puppet agent
runs on-demand. You will not need to wait for the run interval of the Puppet agent, or kick off jobs using other tools.

The mcollective module includes a define resource to install plug-ins. The puppet plug-in has packages for
both DEB and RPM, so we will want to set the package parameter to true. Include the Puppet code in Listing 11-11 on
all of your MCollective nodes.

Listing 11-11. Installing a plug-in

mcollective::plugin { 'puppet':
package => true,

The mcollective: :plugin resource will install the agent package on the MCollective server nodes and will install
both the agent and client packages on the MCollective client nodes. Once Puppet has finished installing the puppet
plug-in, we can access the help pages with the help command followed by the plug-in name (Listing 11-12).

Listing 11-12. Runningmco help

mike@mco-commander:~$ mco help puppet

Schedule runs, enable, disable and interrogate the Puppet Agent
Usage: mco puppet [OPTIONS] [FILTERS] <ACTION> [CONCURRENCY |MESSAGE]
Usage: mco puppet <count|enable|status|summary>

Usage: mco puppet disable [message]

Usage: mco puppet runonce [PUPPET OPTIONS]

Usage: mco puppet resource type name propertyl=value property2=value
Usage: mco puppet runall [--rerun SECONDS] [PUPPET OPTIONS]

255

https://github.com/puppetlabs/mcollective-plugins
https://github.com/puppetlabs/mcollective-puppet-agent

CHAPTER 11 © MCOLLECTIVE

The ACTION can be one of the following:

count - return a total count of running, enabled, and disabled nodes

enable - enable the Puppet Agent if it was previously disabled

disable - disable the Puppet Agent preventing catalog from being applied

resource - manage individual resources using the Puppet Type (RAL) system

runall - invoke a puppet run on matching nodes, making sure to only run
CONCURRENCY nodes at a time

runonce - invoke a Puppet run on matching nodes

status - shows a short summary about each Puppet Agent status

summary - shows resource and run time summaries

The puppet plug-in has many useful options to help us manage Puppet in our environment. To run puppet on all
of our nodes, we can use themco puppet runonce command (Listing 11-13).

Listing 11-13. Runningmco puppet runonce

mike@mco-commander:~$ mco puppet runonce

mco-master Request Aborted
Puppet is currently applying a catalog, cannot run now
Summary: Puppet is currently applying a catalog, cannot run now

Mcollective will warn you when it cannot apply a task, as shown in Listing 11-13. In this case the Puppet agent
was already applying a catalog on the mco-master node. After sending Puppet jobs, you can check on their status with
themco puppet status command (Listing 11-14).

Listing 11-14. Runningmco puppet status

mike@mco-commander:~$ mco puppet status

mco-master: Currently applying a catalog; last completed run 37 seconds ago

mco-client1: Currently idling; last completed run 2 minutes 51 seconds ago

mco-client2: Currently applying a catalog; last completed run 2 minutes 57 seconds ago
mco-commander: Currently stopped; last completed run 03 seconds ago

Summary of Applying:

true = 2
false = 2

Summary of Daemon Running:

running = 3
stopped = 1

Summary of Enabled:

enabled = 4

256

CHAPTER 11 © MCOLLECTIVE

Summary of Idling:

false
true = 1

n
w

Summary of Status:

applying a catalog = 2
idling = 1
stopped = 1

We can see that one of them has finished, one is idling, and two are applying catalogs. We can even ask MCollective
for a summary of the Puppet agents and how long it took to apply resources (Listing 11-15).
Listing 11-15. Runningmco puppet summary

mike@mco-commander:~$ mco puppet summary
Summary statistics for 4 nodes:

Total resources: N - = min: 72.0 max: 99.0
Out Of Sync resources: N min: 1.0 max: 2.0
Failed resources: _— _ __ __ __ __ __ __ __ __ __ __ __ __ __ _ _____ min: 0.0 max: 0.0
Changed resources: min: 1.0 max: 2.0
Config Retrieval time (seconds): I min: 2.6 max: 4.0
Total run-time (seconds): B m min: 13.2 max: 17.4
Time since last run (seconds): B m m min: 268.0 max: 273.0

Next we will explore the Facter plug-in for gathering real-time information from our infrastructure.

The Facter Plug-in for MCollective

MCollective allows systems to be addressed by metadata about the each system in addition to the system host name.
This provides much more flexibility because any relevant information about each node can be used to group systems
into collectives. MCollective integrates with the Facter library to collect this metadata on each server and on demand.
By default, the metadata MCollective uses is statically defined in the file /etc/mcollective/facts.yaml. In most
situations, a library like Facter should be used to generate metadata for each system dynamically.

This metadata can be accessed via the facts command, which is shipped with the mcollective package
(Listing 11-16).

Listing 11-16. Runningmco facts

mike@mco-commander:~$ mco facts lsbdistcodename
Report for fact: 1lsbdistcodename

lucid found 1 times
precise found 4 times

You can search for hosts by their metadata with the find command (Listing 11-17). For example, if we

wanted to locate the Precise boxes, we could pass in 1sbdistcodename=precise as a key/value pair to the
mco find command.

257

CHAPTER 11 © MCOLLECTIVE

Listing 11-17. Runningmco find

mike@mco-commander:~$ mco find -F lsbdistcodename=precise
mco-client2

mco-master

mco-client1

mco-commander

Themco find command can give you real-time insight into the current state of your infrastructure.

The NRPE Plug-in for MCollective

The Nagios Remote Plugin Executor (NRPE) plug-in is great a way to aggregate your Nagios checks after a deployment
or infrastructure change. You may want a quick check of whether your nodes are back to normal after one of these
events; NRPE lets you quickly check all of the nodes you are interested in. To get started, the plug-in is available via
packages, and the source code is at https://github.com/puppetlabs/mcollective-nrpe-agent; but first we need to
install the NRPE daemon on all of our nodes.

We are going to use the pdxcat/nrpe module to do this for us. First download it from the Forge as shown in
Listing 11-18.

Listing 11-18 Installing the nrpe module

root@mco-master:~# puppet module install pdxcat/nrpe
Notice: Preparing to install into /etc/puppet/modules ...
Notice: Downloading from https://forge.puppetlabs.com ...
Notice: Installing -- do not interrupt ...
/etc/puppet/modules

pdxcat-nrpe (v0.0.3)

Then add the code in Listing 11-19 to your Puppet manifests and replace 10.0.3.69 with the name or IP address
of your MCollective client. The mcollective: : plugin definition will take care of the mcollective agent, and the nrpe
class will install and configure the nrpe daemon. Next add some nrpe: : command resources for the checks you are
interested in.

Listing 11-19 Configuring NRPE

mcollective::plugin { 'nrpe’:
package => true,

class { 'nrpe':
allowed hosts => ['127.0.0.1', '10.0.3.69'],
purge => true,
recurse => true,

}

258

https://github.com/puppetlabs/mcollective-nrpe-agent
https://forge.puppetlabs.com/

CHAPTER 11 © MCOLLECTIVE

nrpe::command {
"check_users':
command => 'check users -w 5 -c 10';

"check _load':

command => 'check load -w 55,55,55 -c 100,90,80";
"check_root':

command => 'check disk -w 10% -c 3% -p /';
"check var':

command => 'check disk -w 10% -c 3% -p /var';

Once you have run Puppet on your nodes, the nrpe plug-in will be ready to use. In Listing 11-20 you can see how
to check the load on all of your nodes.
Listing 11-20. Runningmco nrpe check_load

mike@mco-commander:~$ mco nrpe check load

Summary of Exit Code:

oK :
CRITICAL :
WARNING :
UNKNOWN :

o O O &

Finished processing 4 / 4 hosts in 147.02 ms

Furthermore, we can filter our Nagios checks on a subset of machines. In Listing 11-21 we are only checking
nodes that have the webserver Puppet class included. This is an immensely powerful feature that we will explore in
more depth in the next section as we explore the package and service plug-ins.

Listing 11-21. Runningmco nrpe check_load filtered

mike@mco-commander:~$ mco nrpe check load -C webserver

Summary of Exit Code:

oK :
UNKNOWN :
CRITICAL :
WARNING :

O oOoOoN

Finished processing 2 / 2 hosts in 153.82 ms

259

CHAPTER 11 © MCOLLECTIVE

Addressing Hosts with Metadata

In the previous sections, you learned how you can use MCollective with Facter to obtain metadata about each system,
and you saw a glimpse of MCollective’s filtering features while using the NRPE plug-in. This dynamic information
provides a unique way to execute commands on a large number of systems. Specific systems matching exact
criteria may also be selected to execute MCollective commands on. You no longer need to maintain cumbersome
spreadsheets with all of the hostnames for your systems. If a command needs to be executed, MCollective provides
a simple and straightforward way to do so rather than connecting to each machine in succession over SSH. When
Facter is used with Puppet and MCollective, hosts may be addressed by any Facter value or any class the host has
been assigned from Puppet. These classes are read from /var/1ib/puppet/state/classes.txt. (This file may be in a
different location on your system and can be found using the command puppet agent --configprint classfile.)
We will demonstrate this functionality with the package and service plug-ins. First let’s refactor our plug-in code
from earlier, as shown in Listing 11-22. Then run Puppet on your nodes to install the new plug-ins.

Listing 11-22. Installing the service and package plug-ins

$plugins = ['service', 'package', 'puppet', 'nrpe']

mcollective: :plugin { $plugins:
package => true,
}

We have two new nodes, named mco-web1 and mco-web2. For demonstration purposes, suppose we want to
install Apache on both nodes but not the other clients. You can use a regular expression for the hostname to execute
on a subset of systems. By using this regular expression, you can easily exclude systems and obtain information only
from the systems you are interested in.

Host filters work nearly everywhere in MCollective. The pervasiveness of filters is a key distinction between
MCollective and other command and control tools. Notice in Listing 11-23 how themco package command is able to
execute agent plug-ins using host filtering.

This regular expression matching, in real time, allows you to write scripts that will take into account additional
systems. Perhaps mco-web3 and mco-web4 will come online in the future, in addition to the current servers. With the
ability to filter by hostname, any Facter value, or included Puppet classes, and to combine multiple filters, you can
carry out actions that take into account the number of systems automatically. Scripts no longer need to be updated as
hosts are added and removed from the network.

Listing 11-23. Runningmco package install

mike@mco-commander:~$ mco package install apache2 -W /web/

Summary of Ensure:
2.2.22-1ubuntul.4 = 2
Finished processing 2 / 2 hosts in 48173.38 ms

The filter syntax remains the same across plug-ins. As an example, in Listing 11-24 you can restart the Apache
service with similar command syntax.

260

CHAPTER 11 © MCOLLECTIVE

Listing 11-24. Runningmco service restart

mike@mco-commander:~$ mco service restart apache2 -W /web/

Summary of Service Status:
running = 2
Finished processing 2 / 2 hosts in 3204.57 ms

You can chain filters together, as demonstrated in Listing 11-25, where we restart Apache only on the nodes that
contain web in their names and that are running Precise.

Listing 11-25. Runningmco service restart with chained filters

mike@mco-commander:~$ mco service restart apache2 -W /web/ -F lsbdistcodename=precise

Summary of Service Status:
running = 2

Finished processing 2 / 2 hosts in 2905.33 ms

Additional Plug-ins

The MCollective plug-ins mentioned in this chapter contain a number of useful agent plug-ins for MCollective.
However, you may find the need to write your own agents and actions to carry out deployment or administrative tasks
on your systems. Please visit the latest MCollective documentation at http://docs.puppetlabs.com/ to learn more
about writing agents for MCollective.

We also recommend you fork the mcollective-plugins on GitHub and use some of the small agent plug-ins
as a reference to writing your own. The filemgr.rb plug-in is a great starting point to get started with MCollective.
If you do write a new agent, please don’t hesitate to submit a pull request to share your work with the rest of the
MCollective community.

Summary

In this chapter, you learned how MCollective provides real-time, metadata-driven command and control of Puppet-
managed systems. MCollective takes an innovative and unique approach to the problem of orchestrating a large
number of systems. Instead of using hostnames to uniquely identify and access systems, MCollective integrates with
Facter, allowing you to filter out machines you do not want to carry out actions on.

In addition to the unique approach of addressing machines through metadata, MCollective uses the STOMP
messaging protocol to communicate. The MCollective client (accessed through the mco command) and the
MCollective server take advantage of the proven scalability and performance of asynchronous messaging services.

MCollective gives you the ability to obtain information from your systems in real time, without the tedium of
scripting SSH connections to each and every hostname on the network. Systems may be added and removed from
the network quickly without the need to update scripts or other programs communicating with these systems. In
addition, MCollective works extremely well with Facter and Puppet, enabling control of the Puppet agent and filtering
of hosts through Facter with ease.

261

http://docs.puppetlabs.com/

CHAPTER 11

MCOLLECTIVE

Resources

262

The blog of R.I. Pienaar, the author of MCollective: http://devco.net/.

MCollective documentation is located on the Puppet Labs curated documentation site:
http://docs.puppetlabs.com/.

An architectural overview of how messages travel from client to server processes in
MCollective: http://docs.puppetlabs.com/mcollective/reference/basic/messageflow.html.

Information about setting up multiple ActiveM(Q middleware services for use with MCollective
(may be useful for deployments among multiple data centers or geographic locations):
http://docs.puppetlabs.com/mcollective/reference/integration/activemq_clusters.html.

Overview of the publish-and-subscribe methodology used by MCollective:
http://en.wikipedia.org/wiki/Publish/subscribe.

The MCollective puppet module is available for installation using the puppet-module tool
from the Puppet Forge: http://forge.puppetlabs.com/.

MCollective packages and source may be downloaded from the Puppet Labs website:
http://puppetlabs.com/downloads/.

Many agent plug-ins for MCollective are located in the mcollective-plugins Git repository
on GitHub: https://github.com/puppetlabs/mcollective-plugins.

http://devco.net/
http://docs.puppetlabs.com/
http://docs.puppetlabs.com/mcollective/reference/basic/messageflow.html
http://docs.puppetlabs.com/mcollective/reference/integration/activemq_clusters.html
http://en.wikipedia.org/wiki/Publish/subscribe
http://forge.puppetlabs.com/
http://puppetlabs.com/downloads/
https://github.com/puppetlabs/mcollective-plugins

CHAPTER 12

Hiera: Separating Data from Code)

With Puppet 3.0, Puppet has a tool called Hiera (short for Hierarchal data store), built into its core. Hiera was
developed in 2011 to allow Puppeteers to separate configuration from code. Puppet is very good at describing state,
but using Puppet code as a place to store configuration data eventually becomes inconvenient. Hiera solves this
problem by performing external lookups for data, and then exposing that data to the Puppet compiler. Two good
candidates for data that can be hoisted out of Puppet code and into Hiera are, generally, “arbitrary site-specific
strings” and “lists of things.”

In this chapter, we’re going to install Hiera, introduce its configuration, get comfortable on the command line,
and make some lookups. Then we’re going to look at a number of Hiera backends, including the mysql and gpg
backends, Puppet data bindings, advanced Puppet function usage, and a few Puppet examples using Hiera.

But before we get to installing Hiera and its advanced features, let’s quickly review what using Hiera looks like
and what the advantages are for you, the administrator.

The Power of Hiera . ..

The example in Listing 12-1 will create a MySQL database.

Listing 12-1. Amysql::db example

mysql::db { "myapp':
user => 'appuser’,
password => ‘hunter2',
grant => ['all'],
}

Here the site-specific string is the database password: hunter2. In previous chapters we’ve taught you to abstract
these variables into a class or defined type and take them as parameters, changing the mysql: : db stanza to look like
Listing 12-2.

Listing 12-2. Amysql: :db example with abstracted parameters

mysql::db { $database:
user => $db_user,
password => $db_password,
grant => ['all'],

}

But all this does is move the $db_password variable into a superior class or node definition. It is still right next to
your Puppet code, even though the string for $db_password is definitely configuration data.

263

CHAPTER 12 HIERA: SEPARATING DATA FROM CODE

Hiera gives a place for that configuration data to live. It can be pulled out using the hiera() function call.
Thus our mysql: :db stanza changes to look like Listing 12-3.

Listing 12-3 Amysql: :db example with Hiera

mysql::db { $database:
user => $db_user,
password => hiera('database password'),
grant => ['all'],

}

In this way, Hiera becomes the source of record for things like passwords, and Puppet becomes the driver that
ensures the state specified by Hiera.

You'll see how to configure Hiera and its backing data stores in the next section, but right now let’s turn our
attention to the second category of data: lists of things.

Lists

Eventually, many sites end up with Puppet manifests that look like Listing 12-4.

Listing 12-4. Installing a list of packages

$pkgs_list = [
‘yelp’,
"notify-osd-icons’,
‘libpeas-1.0-0",
'linux-image-3.5.0-26-generic’,
"python-cairo’,
"python-pygame’,
"ubuntu-sso-client-qt’,
"evolution-data-server',
'libghc-xmonad-dev',
'‘librasqal3’,
'libgnome2-bin’,
'‘gettext’,
‘gpgsm’,
'kde-telepathy-auth-handler’,
'libv41-0:i386",
'1ibqt5v8-5:amd64 ",
'libsepoli:amdé64’,
'gstreamer0.10-alsa:amd64’,
'libwmfo.2-7-gtk",
"ipsec-tools’,

]

package { $pkgs_list:
ensure => latest,

}

While most daemons will require an entire class to install and configure, most of the files installed through
the package manager require only a simple package resource, and they end up in lists like the one just shown.
The existence of this list is a good thing; it means that the site has committed to using Puppet for configuration

264

CHAPTER 12 * HIERA: SEPARATING DATA FROM CODE

management. But that list of packages, the list itself, is data. It doesn’t belong in Puppet code; it belongs in an external
data store, and Hiera is how we’re going to get it out. We’re going to shorten the code from Listing 12-4 to what you see
in Listing 12-5.

Listing 12-5. Installing a list of packages with Hiera

$pkgs_list = hiera('packages')

package { $pkgs list:
ensure => latest,

}

A further problem with the “list of things” and the “site-specific strings” being in your Puppet manifests is that
this data is often different based on which node is asking. A development server will have a testpassword2 password
on the database, but a production server will have a much more complex password. An Ubuntu Precise server
will have one list of packages, and an Ubuntu Trusty server will have a similar list but a few package names will be
different. Hiera is designed to search through a hierarchy of data sources, starting at the most specific and moving to
the most general, returning the most specific piece of data it can. Hiera has access to, and can split on, any variable
available to Puppet, and it can merge data from multiple hierarchies.

Installing Hiera on Earlier Versions of Puppet

If you are running Puppet 3.0, then you don’t need to do anything to install Hiera; it is already available to you. All
you need to do is create a hiera.yaml file in the correct place. We’ll discuss hiera.yaml in the section on configuring
Hiera. If you are running Puppet 2.7.x, there are some steps to follow to install Hiera.

For each Puppet master, install the Hiera package from either your system’s package manager or Gems. Hiera
does not need to be installed on clients. Hiera can be installed from system packages (Listing 12-6) or with RubyGems
(Listing 12-7).

Listing 12-6. Installing Hiera with packages

$ puppet resource package hiera ensure=present
$ puppet resource package hiera-puppet ensure=present

Listing 12-7. Installing Hiera via RubyGems

$ gem install hiera
$ gem install hiera-puppet

Note that the hiera-puppet package places a new Puppet function into your Puppet master’s Puppet auto-loading
path. This is because of the way Hiera was an external tool to Puppet in the 2.7 era. With Puppet 3, hiera-puppet is
now fully integrated into core. Hiera is a separate open source project, but Puppet has fully developed hooks into it.

A consequence of this situation is that the hiera-puppet shim is no longer maintained. Only the most critical of bugs
will be fixed in it. If you are on Puppet 2.7, you should consider moving to 3.0 if only for the Hiera benefits.

Note If you are on a Puppet Enterprise version earlier than 3.x, you will not be able to use Hiera. Beginning with
version 3.x, Hiera is already installed and all you need to do is configure it.

265

CHAPTER 12 HIERA: SEPARATING DATA FROM CODE

Initial Hiera Configuration

As mentioned, Hiera is configured through hiera.yaml. There are two hiera.yanl files on your system:

e The system Hiera configuration file (generally found in /etc//hiera.yaml). This file is used
when a user is requesting a Hiera lookup through the hiera command-line utility.

e The Puppet Hiera configuration file (generally found in /etc/puppet/hiera.yaml). The file
/etc/puppet/hiera.yaml is used when Puppet is performing a Hiera lookup, usually in the
context of a Puppet master catalog compilation. The location of this file can be configured in
puppet.conf using the hiera_config directive. It defaults to $confdir/hiera.yaml.

The command-line utility is a great way to debug how your hierarchy and data directory are behaving. Its use will
be covered in a later section. Since there are two hiera.yaml files, and they should have the same content, we're going
to symlink /etc/hiera.yaml to /etc/puppet/hiera.yaml

First move the /etc/hiera.yaml file into /etc/puppet and then create a symlink, as seen in Listing 12-8.

Listing 12-8. Symlinking Hiera configuration files

$ mv /etc/hiera.yaml /etc/puppet/hiera.yaml
$ 1n -s /etc/puppet/hiera.yaml /etc/hiera.yaml

Note The instructions for symlinking will be different if you are using PE.

Next is the content of the hiera.yaml file (Listing 12-9).

Listing 12-9. Default hiera.yaml file

:backends:

- yaml
thierarchy:

- defaults
%{clientcert}
- %{environment}
- global

tyaml:

datadir is empty here, so hiera uses its defaults:

- /var/lib/hiera on *nix

- %CommonAppData%\PuppetLabs\hiera\var on Windows

When specifying a datadir, make sure the directory exists.
:datadir:

Note This chapter makes extensive use of YAML. Before continuing, it would be beneficial to familiarize yourself with
YAML at http://yaml.org/.

Notice that the file starts with three dashes (---). This is standard for a YAML file and must be present.

266

http://yaml.org/

CHAPTER 12 * HIERA: SEPARATING DATA FROM CODE

The first stanza is a YAML list of enabled backends. Hiera, rather than being itself a data store, has a pluggable
backend system. By far the most common and generic backend is the YAML backend, which stores data in YAML text
files. Later in this chapter we’ll discuss enabling other backends.

The second stanza is the hierarchy configuration. This is read from top to bottom. When a lookup is performed,
it will attempt to make the lookup on the first element. Then, if it fails to find anything, it will try again on the second,
and continue until every element in the hierarchy has been hit or it has a successful lookup. Generally, if Hiera doesn’t
find anything at any level of the hierarchy it will return an error and the Puppet run will fail.

The third stanza is the configuration for the YAML backend. As you can see from the comment, it will use the
directory /var/lib/hiera if no default is specified. Our first task will be to add a data directory to this configuration.

Configuring a Hiera Data Directory

First create the directory for data:
mkdir /etc/puppet/data
Then change the YAML configuration option to look like Listing 12-10.

Listing 12-10. YAML backend configuration

tyaml:
:datadir: /etc/puppet/data

Each backend that we load will have its own configuration stanza. We will now create our first datafile using the
YAML backend and datadir.

The Hiera Command-Line Utility

Now that we have some base configuration, we can run through our first complete example with Hiera.

Populating a Hiera Datafile

Create the global.yaml file with the contents shown in Listing 12-11.

Listing 12-11. YAML data file

root@puppet-master-hiera-ubuntu:/etc/puppet# cat data/global.yaml

puppetmaster: 'puppetmaster.pro-puppet.com’

This sets the key puppetmaster to the value puppetmaster.pro-puppet.com.

Performing a Hiera Lookup

Once this code is in place, we can pull this data out using a Hiera lookup on the command line (Listing 12-12).

Listing 12-12. Using the hiera command for lookups

root@puppet-master-hiera-ubuntu:/etc/puppet# hiera puppetmaster
puppetmaster.pro-puppet.com

267

https://puppetmaster.pro-puppet.com
https://puppetmaster.pro-puppet.com
https://puppetmaster.pro-puppet.com

CHAPTER 12 HIERA: SEPARATING DATA FROM CODE
We can run it with the debug flag to see more of what’s going on in Listing 12-13.

Listing 12-13. Using the hiera command with debugging enabled

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera -d puppetmaster

DEBUG: Mon Sep 09 02:58:38 +0000 2013: Hiera YAML backend starting

DEBUG: Mon Sep 09 02:58:38 +0000 2013: Looking up puppetmaster in YAML backend
DEBUG: Mon Sep 09 02:58:38 +0000 2013: Looking for data source defaults

DEBUG: Mon Sep 09 02:58:38 +0000 2013: Looking for data source global

DEBUG: Mon Sep 09 02:58:38 +0000 2013: Found puppetmaster in global
puppetmaster.pro-puppet.com

Using Puppet to Perform a Hiera Lookup

We can also see the catalog run from Puppet in Listing 12-14.

Listing 12-14. Hiera lookup in Puppet

root@puppet-master-hiera-ubuntu:/etc/puppett# puppet apply -e '$foo = hiera("puppetmaster")
notify { $foo: }'

Notice: puppetmaster.pro-puppet.com

Notice: /Stage[main]//Notify[puppetmaster.pro-puppet.com]/message: defined 'message' as
'puppetmaster.pro-puppet.com’

Notice: Finished catalog run in 0.03 seconds

Note that the puppet apply command was introduced in Chapter 3.

Exploring the Hierarchy

Now let’s create a new Hiera key, and put it in two places (Listings 12-15 and 12-16).

Listing 12-15. The /etc/puppet/data/global.yaml file
root@puppet-master-hiera-ubuntu:/etc/puppet/data#t cat global.yaml

puppetmaster: 'puppetmaster.pro-puppet.com'
ntp_servers: clock4.pro-puppet.com

Listing 12-16. The /etc/puppet/data/defaults.yaml file
root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat defaults.yaml

ntp_servers:
- clocki.pro-puppet.com
- clock2.pro-puppet.com
- clock3.pro-puppet.com

We've created two data files that define the same key. Because defaults is ahead of global in the hierarchy,
we see the behavior shown in Listing 12-17.

268

https://puppetmaster.pro-puppet.com
https://puppetmaster.pro-puppet.com
https://puppetmaster.pro-puppet.com
https://puppetmaster.pro-puppet.com
https://puppetmaster.pro-puppet.com
https://clock4.pro-puppet.com
https://clock1.pro-puppet.com
https://clock2.pro-puppet.com
https://clock3.pro-puppet.com

CHAPTER 12 * HIERA: SEPARATING DATA FROM CODE

Listing 12-17. Hieralookup of ntp_servers

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera -d ntp_servers

DEBUG: Mon Sep 09 02:58:16 +0000 2013: Hiera YAML backend starting

DEBUG: Mon Sep 09 02:58:16 +0000 2013: Looking up ntp_servers in YAML backend
DEBUG: Mon Sep 09 02:58:16 +0000 2013: Looking for data source defaults
DEBUG: Mon Sep 09 02:58:16 +0000 2013: Found ntp_servers in defaults
["clock1.pro-puppet.com”, "clock2.pro-puppet.com”, "clock3.pro-puppet.com"]

The array of NTP servers from the defaults.yaml file was returned. This makes sense because Hiera’s default
behavior is to return the result of the first successful lookup. However, because both the default and global hierarchies
are static, this is not very interesting. Let’s use a dynamic hierarchy instead.

Building Dynamic Hierarchy

Recall our hierarchy:

thierarchy:
- defaults
- %{clientcert}
- %{environment}
global

The syntax for the environment variable means that the Puppet variable $environment will be used as a part of
the hierarchy. Environments and the environment variable were first introduced in Chapter 3. Create two files for
environments (Listings 12-18 and 12-19).

Listing 12-18. The /etc/puppet/data/prod.yaml file
root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat prod.yaml

syslog server: 'loghost.pro-puppet.com’

Listing 12-19. The /etc/puppet/data/dev.yaml file
root@puppet-master-hiera-ubuntu:/etc/puppet/data#f cat dev.yaml

syslog server: 'badlogs.pro-puppet.com’

What we see here is that the syslog_server variable is defined twice, once for the production environment and
once for the development environment.

Hiera Lookups Using Variables

We can use simple command-line syntax with Hiera to explore the behavior of this configuration, as shown in
Listings 12-20 and 12-21.

Listing 12-20. Hieralookup of syslog_server

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera -d syslog server environment=prod
DEBUG: Mon Sep 09 03:37:42 +0000 2013: Hiera YAML backend starting

269

https://clock1.pro-puppet.com
https://clock2.pro-puppet.com
https://clock3.pro-puppet.com
https://loghost.pro-puppet.com
https://badlogs.pro-puppet.com

CHAPTER 12 HIERA: SEPARATING DATA FROM CODE

DEBUG: Mon Sep 09 03:37:42 +0000 2013: Looking up syslog server in YAML backend
DEBUG: Mon Sep 09 03:37:42 +0000 2013: Looking for data source defaults

DEBUG: Mon Sep 09 03:37:42 +0000 2013: Looking for data source prod

DEBUG: Mon Sep 09 03:37:42 +0000 2013: Found syslog server in prod
loghost.pro-puppet.com

Listing 12-21. Hieralookup of syslog_server in a development environment

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera -d syslog server environment=dev
DEBUG: Mon Sep 09 03:37:46 +0000 2013: Hiera YAML backend starting

DEBUG: Mon Sep 09 03:37:46 +0000 2013: Looking up syslog server in YAML backend

DEBUG: Mon Sep 09 03:37:46 +0000 2013: Looking for data source defaults

DEBUG: Mon Sep 09 03:37:46 +0000 2013: Looking for data source dev

DEBUG: Mon Sep 09 03:37:46 +0000 2013: Found syslog_server in dev

badlogs.pro-puppet.com

Hiera Lookups Using Puppet with Variables

As demonstrated in Listings 12-22 and 12-23, we can also use the Puppet client to perform lookups. In both listings
we use Puppet apply to assign a variable with a value from hiera then print it out using the notify resource. The
difference is the behavior of Hiera as it responds to Puppet running in different environments, as specified by the
‘--environment’ command line argument.

Listing 12-22. Hieralookup of syslog server with puppet apply

root@puppet-master-hiera-ubuntu:/etc/puppet/data#t puppet apply --environment=prod -e '$syslog =
hiera("syslog server") notify { $syslog: }'

Notice: loghost.pro-puppet.com

Notice: /Stage[main]//Notify[loghost.pro-puppet.com]/message: defined 'message’ as ‘loghost.pro-
puppet.com’

Notice: Finished catalog run in 0.04 seconds

Listing 12-23. Hieralookup of syslog server with puppet apply in a development environment

root@puppet-master-hiera-ubuntu:/etc/puppet/data# puppet apply --environment=dev -e '$syslog =
hiera("syslog server") notify { $syslog: }'

Notice: badlogs.pro-puppet.com

Notice: /Stage[main]//Notify[badlogs.pro-puppet.com]/message: defined 'message' as 'badlogs.pro-
puppet.com’

Notice: Finished catalog run in 0.04 seconds

Puppet agents that connect from the prod environment and run $syslog = hiera('syslog server') will get the
real syslog server running on loghost.pro-puppet.com. And Puppet agents that connect from the dev environment
will end up with a $syslog that points to the non-prod log server running on badlogs.pro-puppet.com.

This, combined with some Puppet code like Listing 12-24, means that exactly the same code can run on both
production and development servers, but have different results. This keeps the production logs clean and full of
content and ensures that the Puppet code running in development is a good mock for the Puppet code running in
production.

270

https://loghost.pro-puppet.com<2009>
https://badlogs.pro-puppet.com<2009>
https://loghost.pro-puppet.com
https://loghost.pro-puppet.com
https://loghost.pro-puppet.com
https://loghost.pro-puppet.com
https://badlogs.pro-puppet.com
https://badlogs.pro-puppet.com
https://badlogs.pro-puppet.com
https://badlogs.pro-puppet.com
https://loghost.pro-puppet.com
https://badlogs.pro-puppet.com

CHAPTER 12 * HIERA: SEPARATING DATA FROM CODE

Listing 12-24. Hieralookup of syslog server in Puppet manifest

class { 'syslog-ng':
loghost => hiera('syslog server'),
}

Hierarchy Organization

We can split the hierarchy on any fact or variable available at catalog compilation time. It is very common to split on
the $osfamily fact because of the massive differences between RedHat derivatives and Debian derivatives. You can see
avery complex hierarchy in Listing.

:hierarchy:
- environments/%{environment}/data/fqdn/%{fqdn}
- environments/%{environment}/data/osfamily/%{osfamily}/%{1sbdistcodename}
- environments/%{environment}/data/osfamily/%{osfamily}/%{1sbmajdistrelease}
- environments/%{environment}/data/osfamily/%{osfamily}/%{architecture}
- environments/%{environment}/data/osfamily/%{osfamily}/common
- environments/%{environment}/data/modules/%{cname}
- environments/%{environment}/data/modules/%{caller module name}
- environments/%{environment}/data/modules/%{module_name}
- environments/%{environment}/data/common

We've now seen how to create data files and get data out of them, and covered how the hierarchical backbone of
Hiera can be useful. Let’s now look at putting more structured data into Hiera.

Complex Data Structures

So far we've seen Hiera return strings and arrays of strings without giving much thought to type. But Hiera can return
arbitrarily structured data as well. Arrays, hashes, and composite data structures can also be returned. These data
structures can also be merged. This means we can configure Hiera to return an array for a key with elements of the
array coming from different levels of the hierarchy. This is a very powerful feature and we will devote considerable
time to it.

Returning Structured Data

Listing 12-25 provides an example of both an array and a hash type in the YAML format. Listing 12-26 shows lookups
against both of these keys.

Listing 12-25. The /etc/puppet/data/defaults.yaml file
root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat defaults.yaml

ntp_servers:
- clock1
- clock2
- clock3
testuser:

271

CHAPTER 12 HIERA: SEPARATING DATA FROM CODE

gid: 1001
uid: 1001
gecos: Puppet Test User
shell: /bin/bash
Listing 12-26. Hieralookup of ntp_servers

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera ntp_servers
["clock1", "clock2", "clock3"]root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera testuser
"uid"=>1001, "gecos"=>"Puppet Test User", "gid"=>1001, "shell"=>"/bin/bash"}

Array Merging

Hiera can also perform merges of arrays from multiple hierarchies. You must configure the :merge_behavior:
of Hiera globally in hiera.conf as shown in Listing 12-27.

Listing 12-27. The /etc/puppet/hiera.yaml file

root@puppet-master-hiera-ubuntu:/etc/puppet/datatt cat ../hiera.yaml | grep merge
:merge_behavior: native

Make sure that global.yaml has the contents shown in Listing 12-28 and defaults.yaml has the contents from
Listing 12-25. We can then show the merging behavior in Listing 12-29.

Listing 12-28. The /etc/puppet/data/global.yaml file
root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat global.yaml

ntp_servers: clock4

Listing 12-29. Hieralookup of ntp_servers with Hiera merging

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera -a ntp_servers
["clock1", "clock2", "clock3", "clock4"]

The array has been merged from all levels of the hierarchy. Note that we are using the -a flag here to force an
array lookup.
We can also use this for dynamic hierarchies. Listings 12-30 through 12-32 show how the data files must be

configured. Listings 12-33 and 12-34 show the behavior of Hiera in different environments.

Listing 12-30. The /etc/puppet/data/prod.yaml file
root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat prod.yaml

syslog server: 'loghost.pro-puppet.com’

272

https://loghost.pro-puppet.com

CHAPTER 12 * HIERA: SEPARATING DATA FROM CODE

Listing 12-31. The /etc/puppet/data/dev.yanml file
root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat dev.yaml

syslog_server: 'badlogs.pro-puppet.com’
users:

- 'devi'

- 'dev2'

Listing 12-32. The /etc/puppet/data/global.yaml file
root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat global.yaml

ntp_servers: clock4
users:

- "admini1'

- "admin2'

Listing 12-33. Hiera lookup of users in a production environment

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera -a users environment=prod
["admin1", "admin2"]

Listing 12-34. Hiera lookup of users in a development environment

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera -a users environment=dev
["dev1", "dev2", "admini", "admin2"]

Asyou can see, we can to offload the question of “who is allowed on the machine” to the Hiera data service
instead of implementing it in Puppet logic. The same trivial Puppet code can be used to handle both cases, as shown
in Listing 12-35.

Listing 12-35. Hiera localusers Puppet class

class localusers {
$users = hiera('users)

localusers::user { $users: }

Hash Merges

Hiera can merge hashes by setting the merge behavior in your hiera.yaml (Listing 12-36) and installing the
RubyGem deep_merge (Listing 12-37).

Listing 12-36. The /etc/puppet/hiera.yaml file

root@puppet-master-hiera-ubuntu:/etc/puppet/datatt cat ../hiera.yaml | grep merge
:merge_behavior: deep

273

https://badlogs.pro-puppet.com

CHAPTER 12 HIERA: SEPARATING DATA FROM CODE

Listing 12-37. Installing the deep_merge Gem

$ gem install deep merge

Fetching: deep merge-1.0.0.gem (100%)

Successfully installed deep merge-1.0.0

1 gem installed

Installing ri documentation for deep merge-1.0.0...
Installing RDoc documentation for deep merge-1.0.0...

Also make some further changes to your Hiera data (Listings 12-38 through 12-41).

Listing 12-38. The /etc/puppet/data/defaults.yaml file

root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat defaults.yaml
ntp_servers:

- clock1

- clock2

- clock3
backup_class:

backup_server: 'backup.pro-puppet.com’

Listing 12-39. The /etc/puppet/data/dev.yanml file
root@puppet-master-hiera-ubuntu:/etc/puppet/data#f cat dev.yaml

syslog server: 'badlogs.pro-puppet.com’
users:

- 'devl’

- 'dev2’
backup_class:

backup_dirs:

Listing 12-40. The /etc/puppet/data/global.yaml file

root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat global.yaml
ntp_servers: clock4
users:

- "admin1’

- "admin2'
backup class:

backup_dirs:

- 'etc!

Listing 12-41. The /etc/puppet/data/prod.yaml file

root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat prod.yaml

syslog_server: 'loghost.pro-puppet.com’
backup_class:

274

https://backup.pro-puppet.com
https://badlogs.pro-puppet.com
https://loghost.pro-puppet.com

CHAPTER 12 * HIERA: SEPARATING DATA FROM CODE

backup_dirs:
- '/var/'
- "/app/'
- '/opt/app/’

And we can see the results of these lookups in Listings 12-42 through 12-44.

Listing 12-42. Hieralookup of backup_class in some environment that is neither production nor development

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera -h backup_class environment=dev
{"backup_dirs"=>["/etc"], "backup_server"=>"backup.pro-puppet.com"}

Listing 12-43. Hiera lookup of backup_class in a production environment

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera -h backup_class environment=prod
{"backup_server"=>"backup.pro-puppet.com”, "backup dirs"=>["/"], "backup_dir"=>["/var/", "/app/", "/
opt/app/",

/etc/"]}

Listing 12-44. Hiera lookup of backup_class in a development environment

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera -h backup_class environtment=development
{"backup_dirs"=>["/etc"], "backup server"=>"backup.pro-puppet.com"}

Here we see that some keys to the hash, for example, backup_server, are set globally for all lookups. But
backup_dirs array is set based on which environment is checking in. If a client checks in from an unaccounted-for
environment, the default is to back up only /etc on that server. Notice that we are using the -h flag to force a hash
lookup. If a client checks in from the production environment, additional directories are backed up.

Hiera lets us separate our configuration from our Puppet code, which has the effect of simplifying the Puppet
code and focusing the data.

Additional Backends

Hiera has a pluggable backend system, which enables multiple backends to be loaded at the same time, but we'll only
review a few of the most common ones in the following sections:

e filebackend

e JSON backend

e MySQL backend
e gpgbackend

These will affect how your lookups behave, but we'll explain that when we get there. Where putting strings into
Hiera can help you get away from having site-specific strings in your Puppet modules, the file backend enables you
to pull site-specific files out of the files directory in your modules.

Take, for example, an openvpn module. This module would have the things we expect from modules at this
point—a templated configuration file, a package-file-service pattern, and so on. It would also include file resources
for the private key and certificate. These files are usually stored on the filesystem as . pem files and are needed for
establishing the crypto component of the VPN. An example of the manifests/init. pp file for this class is shown in
Listing 12-45.

275

https://backup.pro-puppet.com
https://backup.pro-puppet.com
https://backup.pro-puppet.com

CHAPTER 12 HIERA: SEPARATING DATA FROM CODE

Listing 12-45. The modules/openvpn/manifests/init.pp file

class openvpn(

$local net = '10.0.5.0/24',
$full_tunnel = false,

N

Package

package { 'openvpn-server':
ensure => present,

}

File

file { '/etc/openvpn/openvpn.conf':
ensure => file,
content => template('openvpn/openvpn.conf.erb'),
require => Package['openvpn-server'],

}

file { '/etc/openvpn/openvpn.crt':

ensure => present,

source => 'puppet:///puppet/openvpn/openvpn.crt’,
}

file { '/etc/openvpn/openvpn.key':

ensure => present,

source => 'puppet:///puppet/openvpn/openvpn.key',
}

Service
service { 'openvpn':
ensure => running,
enabled => true,
require => File['/etc/openvpn/openvpn.conf'],

}

Overall this class is good. It follows the package, file, service model. However, the private data files, the cert and
key file to secure the VPN, are sitting in the files directory of the module. This means the module can never be
shared outside the organization. Furthermore, the Puppet code now cannot be shared universally throughout the
organization, since the private data must be kept secret. What we need to do is get the private data file into Hiera.
We're going to use the file backend to do this.

276

CHAPTER 12

The File Backend

First install the Gem as shown in Listing 12-46.

Listing 12-46. Installing the hiera-file Gem

root@puppet-master-hiera-ubuntu:~# gem install hiera-file
Fetching: json pure-1.8.0.gem (100%)

Fetching: hiera-1.2.1.gem (100%)

Fetching: hiera-file-1.1.0.gem (100%)

Successfully installed json_pure-1.8.0

Successfully installed hiera-1.2.1

Successfully installed hiera-file-1.1.0

3 gems installed

Second, create a global.d directory to hold the files as shown in Listing 12-47.

Listing 12-47. Creating the directory layout for the file backend

root@puppet-master-hiera-ubuntu:/etc/puppet/data# mkdir global.d
root@puppet-master-hiera-ubuntu:/etc/puppet/datatt 1s
defaults.yaml dev.yaml global.d global.yaml prod.yaml
root@puppet-master-hiera-ubuntu:/etc/puppet/data# cd global.d/
root@puppet-master-hiera-ubuntu:/etc/puppet/data/global.d#

Now copy in the private data, as shown in Listings 12-48 and 12-49.

Listing 12-48. The openvpn private key

root@puppet-master-hiera-ubuntu:/etc/puppet/data/global.d# cat openvpn.key

————— BEGIN RSA PRIVATE KEY-----
MIIBOgIBAAIBAK1PvMB2d3hpusQiliE+CITS909Bya3Mo4fFADINgocp8mkbTve6
XFM40QK63QScNOISwyx1namw9RozHyVQZXcCAWEAAQIBAIOx+7QkUVRmWOOWzAbm
pIKI7GGf1C1FP16EDE9+/P4HWbYyFhA18f4pCE8D/RVQpgHUIROECWH LGPb8yev
1YECIQDX+ENiRazDPRKdAimoOCyPUON4zNebx/0KcCvOmavdHwIhAM1vV+PNF6mY
82GRYf705+s4AWakK72fMfe3V8qISyxSpAiBIORE3BZmHIAi60YIrfMe+NGeLYnhP
Rou2haBzfRLBAQIgSzIndH4dHDpdVCh402ubgNEmShevHEQRCA7Xiq1NoskCIFBy
2d1c+mPqYP8Lo0PxIUbeRbX3JxeDq9IIyMN+2AMp

————— END RSA PRIVATE KEY-----

Listing 12-49. The openvpn certificate

root@puppet-master-hiera-ubuntu:/etc/puppet/data/global.d# cat openvpn.crt

————— BEGIN CERTIFICATE-----

MIICODCCAnoCCQCtVdpdbMLF6DANBgkqghkiG9wOBAQUFADCB7ELMAKGAZUEBhMC
V2UxHDAaBgNVBAgME2FyZSBxdW10ZSBpbXByZXNzZWOXETAPBgNVBACMCHRoYXQg
elW91MRowGAYDVQQKDBFhcmUgemVhZGluZyBoaGlzL jEiMCAGALIUECwwZU2Vyal91l
€2x5LCB0aGFOocyBhbWF6aW5nLjE9MDsGALUEAwwOWW91IHNob3VsZCB1bWFpbCB1
cyBhbmQgdGVsbCB1cyB0aGFOIH1vdSBmb3VuzZCB0oaGlzLjEvVMCOGCSqGSIb3DQE]
ARYga3J1bS5zcGVuY2VyK3Byb3B1cHB1dEBnbWFpbC5jb20wHhcNMTMWOTEYMDA1
NjM5WhcNMjMwN EyMDAINM5WjCB7ELMAKGALUEBhMCV2UXHDAaBENVBAGME2Fy
ZSBxdW10ZSBpbXByZXNzZWOXE TAPBgNVBACMCHRoYXQgeW91MRowGAYDVQQKDBFh

HIERA: SEPARATING DATA FROM CODE

277

CHAPTER 12 HIERA: SEPARATING DATA FROM CODE

cmUgemVhZGluZyBoaGlzL jEiMCAGALIUECwwZU2Vyal91c2x5LCBOaGFOcyBhbWF6
alW5nLjE9MDsGA1UEAwwOWW91IHNob3VsZCB1bWFpbCB1cyBhbmQgdGVsbCB1icyBo
aGFoIH1vdSBmb3VuzZCB0aGlzLjEVMCOGCSqGSIb3DOEIARYga3J1bS5zcGVuY2Vy
K3Byb3B1cHBLdEBnbWFpbC5jb20wXDANBgkqhkiGOwOBAQEFAANLADBIAKEATU+8
wHZ3eGm6xCIUIT4IhNL2j0HIrcyjh8UAOU2ghynyaRt097pcUzjRAT01BIW04hLD
LGWdgbD1GjMfIVB1dwIDAQABMAOGCSqGSIb3DQEBBQUAAOEAYBUX18+372+0dv+P
pLq8T3c61TMNHUZ6MZzZ/6kUzZ5F+QmZ/L8g3kVR2XXZtH9y/0BGtnUKRUB8OZN1VY
A9xbQw==

————— END CERTIFICATE-----

Finally, let’s modify our hiera.yaml to look like Listing 12-50.

Listing 12-50. Adding the file backend to hiera.yaml

root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat ../hiera.yaml
:backends:

- yaml

- file

:hierarchy:

- defaults
%{clientcert}
- %{environment}
- global

:yaml:
:datadir: /etc/puppet/data

:file:
:datadir: /etc/puppet/data

:merge_behavior: deep
We should also perform a couple of lookups, as shown in Listing 12-51.

Listing 12-51. Using the file backend

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera openvpn.key
————— BEGIN RSA PRIVATE KEY-----
MIIBOgIBAAJBAK1PvMB2d3hpusQiliE+CITS909Bya3Mo4fFADINgocp8mkbTve6

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera openvpn.crt

----- BEGIN CERTIFICATE-----
MIICODCCAnoCCQOCtVdpdbMLF6DANBgkqhkiGOwOBAQUFADCB7jELMAKGA1UEBhMC

To bring things full circle, we can now revisit the file resources in our Puppet class and change them to the
snippets presented in Listing 12-52.

278

CHAPTER 12 * HIERA: SEPARATING DATA FROM CODE

Listing 12-52. The modules/openvpn/manifests/init.pp file

file { '/etc/openvpn/openvpn.crt':
ensure => present,
content => template('openvpn.crt'),

}

file { '/etc/openvpn/openvpn.key':
ensure => present,
content => template('openvpn.key)',

}

Note that the parameter has changed from source to content. We have successfully moved the private data
files out of Puppet. Also, since Hiera is being leveraged, we can have different cert/key pairs for the production
environment and the management/backend environments. Also note that the datadir used for hiera-file can be
any directory; the only thing you can’t do is specify more than one datadir.

When multiple backends and multiple hierarchies are configured, Hiera looks up keys by iterating over every
level of the hierarchy for the first backend, and then every level of the hierarchy for the second backend, and so on.

The JSON Backend

Next we will install and use the JSON backend. Generally the JSON and YAML backends are essentially equivalent,
and most sites should pick one and stick to it.
First create a new directory for just JSON data to keep it separate from YAML data, as shown in Listing 12-53.

Listing 12-53. Create the directory layout for the JSON backend

root@puppet-master-hiera-ubuntu:/etc/puppet# mkdir json_data
root@puppet-master-hiera-ubuntu:/etc/puppet# cd json_data/
root@puppet-master-hiera-ubuntu:/etc/puppet/json_data# 1s
root@puppet-master-hiera-ubuntu:/etc/puppet/json_datat

Now install the hiera-json Gem as directed in Listing 12-54.

Listing 12-54. Installing the JSON backend

root@puppet-master-hiera-ubuntu:/etc/puppet/json_data# gem install hiera-json
Fetching: json-1.8.0.gem (100%)

Building native extensions. This could take a while...

Fetching: hiera-json-0.4.0.gem (100%)

Successfully installed json-1.8.0

Successfully installed hiera-json-0.4.0

2 gems installed

Next modify hiera.yaml as shown in Listing 12-55.

Listing 12-55. Add the JSON backend to hiera.yaml.

:backends:
- yaml

279

CHAPTER 12 HIERA: SEPARATING DATA FROM CODE

- file
- json

:json:
:datadir: /etc/puppet/json_data

Next create a test JSON file as shown in Listing 12-56. The scoping, hierarchy, and merging behavior here are
exactly the same as in the YAML examples earlier.

Listing 12-56. The /etc/puppet/json_data/global. jsonfile
root@puppet-master-hiera-ubuntu:/etc/puppet/json_data# cat global.json

"group_restrict": "yes",
"groups": [

"admin",

"dev",

"t

]

)
penvpn_server": "vpn.pro-puppet.com”,
"max_conns": 45

You can also use string interpolation with variables available to Hiera. Listing 12-57 shows what this looks like.

Listing 12-57. The /etc/puppet/json_data/defaults.json file
root@puppet-master-hiera-ubuntu:/etc/puppet/json_data# cat defaults.json
{

"banner": "Welcome to %{hostname}"

}

root@puppet-master-hiera-ubuntu:/etc/puppet/json_data# hiera banner hostname=puppet-master-
hiera-ubuntu
Welcome to puppet-master-hiera-ubuntu

The same behavior also works for the YAML backend. It is recommended that you maintain your data directories
in a version control system such as Git.

The MySQL Backend

Previously we have set up and used Hiera backends that live on the local file system. Now we will use MySQL as an
example of an external Hiera backend.

First let’s install the mysql-hiera Gem as shown in Listing 12-58. Note that you may have to install other packages
on your system for the Gem to install successfully.

Listing 12-58. Installing the MySQL backend

root@puppet-master-hiera-ubuntu:/etc/puppet# gem install hiera-mysql
Building native extensions. This could take a while...
Fetching: hiera-mysql-0.2.0.gem (100%)

280

https://vpn.pro-puppet.com

CHAPTER 12 * HIERA: SEPARATING DATA FROM CODE

Successfully installed mysql-2.9.1
Successfully installed hiera-mysql-0.2.0
2 gems installed

Configuring MySQL is beyond the scope of this book, but we will show an example with a MySQL server running
on localhost with a database named hiera, a user puppet, a password puppet, a table puppet, and the data shown in
Listing 12-59. We will also show the relevant portion of hiera.yaml (Listing 12-60)and an example of use(Listing 12-61.)

Listing 12-59. The MySQL puppet table

mysql> select * from puppet;

Hmmmmm e Hmmmmmmm e +
| hiera_key | hiera value |
 ECEEEECEE R Hmmmmm e +
database password	hunter2
1dap_password	hunters
root password	hunters
Hmmmmm e Hmmmmmmm e +

3 rows in set (0.00 sec)

Listing 12-60. Adding the MySQL backend

root@puppet-master-hiera-ubuntu:/etc/puppet# cat hiera.yaml
:backends:

- yaml

- file

- Jjson

- mysql

:mysql:
thost: localhost
:user: puppet
:pass: puppet
:database: hiera

rquery: SELECT hiera_value FROM puppet WHERE hiera_key='%{key}'

:logger: console

Listing 12-61. Using the MySQL backend

root@puppet-master-hiera-ubuntu:~# hiera database_password
hunter2

root@puppet-master-hiera-ubuntu:~# hiera ldap_password
hunter3

281

CHAPTER 12 HIERA: SEPARATING DATA FROM CODE

The MySQL backend can be configured to run multiple queries in sequence as well as other options. For full
documentation, see https://github.com/crayfishx/hiera-mysql/blob/master/README.md.

So far we've discussed two ways to use plain text files with Hiera, the YAML and JSON backends. We've discussed
the file backend as a way to move blobs of data regardless of content. And we’ve discussed using the MySQL
backend to hit an external data source for configuration data. Next we are going to tackle the problem of securing data
on disk using the hiera-gpg backend. This backend allows the data to exist on disk in an encrypted form and to be
gpg-decrypted on the fly by the Hiera backend before it is fed to the Puppet master.

The gpg Backend

Let’s install the Gem as shown in Listing 12-62.

Listing 12-62. Installing the GPG backend

root@puppet-master-hiera-ubuntu:~# gem install hiera-gpg
Fetching: gpgme-2.0.2.gem (100%)

Building native extensions. This could take a while...
Fetching: hiera-gpg-1.1.0.gem (100%)

Successfully installed gpgme-2.0.2

Successfully installed hiera-gpg-1.1.0

2 gems installed

Then let’s create a gpg key as shown in Listing 12-63. Make sure you run the following in the root user’s home
directory.

Listing 12-63. Generating a gpg key

root@puppet-master-hiera-ubuntu:~# gpg --gen-key

gpg (GnuPG) 1.4.11; Copyright (C) 2010 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

gpg: directory "/root/.gnupg' created
gpg: new configuration file "/root/.gnupg/gpg.conf' created
gpg: WARNING: options in "/root/.gnupg/gpg.conf' are not yet active during this run
gpg: keyring "/root/.gnupg/secring.gpg' created
gpg: keyring " /root/.gnupg/pubring.gpg' created
Please select what kind of key you want:
(1) RSA and RSA (default)
(2) DSA and Elgamal
(3) DSA (sign only)
(4) RSA (sign only)
Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 4096
Requested keysize is 4096 bits
Please specify how long the key should be valid.
0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years

282

https://github.com/crayfishx/hiera-mysql/blob/master/README.md

CHAPTER 12 * HIERA: SEPARATING DATA FROM CODE

Key is valid for? (0) 3y
Key expires at Mon 12 Sep 2016 04:15:13 AM UTC
Is this correct? (y/N) y

You need a user ID to identify your key; the software constructs the user ID
from the Real Name, Comment and Email Address in this form:
"Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Puppet Master <puppet@pro-puppet.com>
Invalid character in name
Real name: Puppet Master
Email address: puppet@pro-puppet.com
Comment: Hiera-gpg
You selected this USER-ID:
"Puppet Master (Hiera-gpg) <puppet@pro-puppet.com>”

Change (N)ame, (C)omment, (E)mail or (O0)kay/(Q)uit? o
You need a Passphrase to protect your secret key.

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

Not enough random bytes available. Please do some other work to give
the 0S a chance to collect more entropy! (Need 278 more bytes)

cotHHH
Not enough random bytes available. Please do some other work to give
the 0S a chance to collect more entropy! (Need 198 more bytes)

gpg: /root/.gnupg/trustdb.gpg: trustdb created
gpg: key C5FBDE79 marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0qg, On, Om, Of, 1u
gpg: next trustdb check due at 2016-09-12
pub 4096R/C5FBDE79 2013-09-13 [expires: 2016-09-12]
Key fingerprint = 2C1A F200 9434 B823 31AC 2176 4601 6C41 C5FB DE79
uid Puppet Master (Hiera-gpg) <puppet@pro-puppet.com>
sub 4096R/51B40164 2013-09-13 [expires: 2016-09-12]

With the key in place we can use Listing 12-64 to fill out the hiera.yaml file.

Listing 12-64. Adding the gpg backend to hiera.yaml

:backends:
- yaml
- file

283

https://puppet@pro-puppet.com
https://puppet@pro-puppet.com
https://puppet@pro-puppet.com
https://puppet@pro-puppet.com

CHAPTER 12 HIERA: SEPARATING DATA FROM CODE

- json
- mysql
- 8pg

‘gpg:
:datadir: /etc/puppet/gpg_data

Next create a directory for the data as shown in Listing 12-65.

Listing 12-65. Creating the data directory for the GPG backend

root@puppet-master-hiera-ubuntu:/etc/puppet# mkdir gpg data
root@puppet-master-hiera-ubuntu:/etc/puppet# cd gpg_data/
root@puppet-master-hiera-ubuntu:/etc/puppet/gpg datat 1s

And create a default.yaml with some data (note that we will be deleting this later) as in Listing 12-66.

Listing 12-66. The /etc/puppet/gpg_data/defaults.yaml file
root@puppet-master-hiera-ubuntu:/etc/puppet/gpg data# cat defaults.yaml

very secure_password: POnies!
Now we encrypt the file. First get the eight-character short-keyid using the commands from Listing 12-67.

Listing 12-67. Displaying the GPG short-keyid

root@puppet-master-hiera-ubuntu:/etc/puppet/gpg data# gpg --list-keys
/root/.gnupg/pubring.gpg

pub 1024R/3309614B 2013-09-13 [expires: 2016-09-12]

uid Puppet Master (Hiera-gpg) <puppet@pro-puppet.com>
sub 1024R/1C969AEE 2013-09-13 [expires: 2016-09-12]

Then encrypt the file for the key ID (Listing 12-68).

Listing 12-68. Encrypting the YAML file

root@puppet-master-hiera-ubuntu:/etc/puppet/gpg _data# gpg --encrypt -o defaults.gpg -r 3309614B
defaults.yaml

root@puppet-master-hiera-ubuntu:/etc/puppet/gpg data# 1s

defaults.yaml defaults.gpg

root@puppet-master-hiera-ubuntu:/etc/puppet/gpg data# mv defaults.yaml ..
root@puppet-master-hiera-ubuntu:/etc/puppet/gpg data# hiera -d very secure password

In production you will want to remove defaults.yaml fully, perhaps even going to the extent of using the shred
utility. The gpg command-line utility can also read data from STDIN, and so you might not have to write it to disk
unencrypted ever. We only move it aside in Listing 12-68 because we think you might need a shot at debugging it.

Now let’s perform a lookup in Listing 12-69.

284

https://puppet@pro-puppet.com

CHAPTER 12 * HIERA: SEPARATING DATA FROM CODE

Listing 12-69. Using the gpg backend

root@puppet-master-hiera-ubuntu:/etc/puppet/gpg data# hiera -d very secure password
DEBUG: Fri Sep 27 00:48:37 +0000 2013: Hiera YAML backend starting

DEBUG: Fri Sep 27 00:48:37 +0000 2013: [gpg backend]: Loaded gpg backend

DEBUG: Fri Sep 27 00:48:37 +0000 2013: [gpg backend]: Lookup called, key very secure password
resolution type is priority

DEBUG: Fri Sep 27 00:48:37 +0000 2013: [gpg backend]: GNUPGHOME is /root/.gnupg

DEBUG: Fri Sep 27 00:48:37 +0000 2013: [gpg_backend]: loaded cipher: /etc/puppet/gpg_data/defaults.
grg

DEBUG: Fri Sep 27 00:48:38 +0000 2013: [gpg_backend]: result is a String ctx
#<GPGME: : Ctx:0x7fb29caaedco> txt ---

very secure password: POnies!

DEBUG: Fri Sep 27 00:48:38 +0000 2013: [gpg_backend]: GPG decrypt returned valid data

DEBUG: Fri Sep 27 00:48:38 +0000 2013: [gpg backend]: Data contains valid YAML

DEBUG: Fri Sep 27 00:48:38 +0000 2013: [gpg backend]: Key very secure password found in YAML
document, Passing answer to hiera

DEBUG: Fri Sep 27 00:48:38 +0000 2013: [gpg backend]: Assigning answer variable

Ponies!

With this method, secrets can be committed to Git repositories and shared without leaking information. It is also
possible to encrypt the file to multiple keys, by adding more key IDs to the -1 flag. It is good practice to have different
keys on each puppet Master, and to encrypt the file to each Puppet master as well as to the personal/work keys of the
sysadmins who are allowed to know the secrets.

Now let’s take a longer look at the Hiera function calls.

Hiera Functions in Depth

Hiera is used in Puppet as a function. Functions were covered in Chapter 2. The hiera() function has some deeper
functionality we will explore now. From within Puppet, we can use the hiera() function call to make a Hiera lookup
as shown in Listing 12-70.

Listing 12-70. A Hiera function call

class foo {
$msg = hiera('msg')
notify { $msg: }

}

The hiera() function actually takes three arguments. The first argument is the key to look up. The second
argument is optional, a default value to use in case the lookup fails. Listing 12-71 shows what this looks like.

Listing 12-71. A Hiera function call with a default value

class foo {
$msg = hiera('msg', "lookup on key failed")
notify { $msg: }

}

285

CHAPTER 12 © HIERA: SEPARATING DATA FROM CODE
Listing 12-72 makes it more concrete.

Listing 12-72 Hiera function with default value example

class ssh {
$root login = hiera('root login', 'without-password')

file { '/etc/ssh/sshd_config':
ensure => file,
content => template('ssh/sshd_config.erb'),
}
}

The ssh class here looks in Hiera for the rules on what to do with root logins (as implemented by the template
later on); if it doesn’t find a rule for this node, it defaults to 'without-password’. It can be good to provide sane
defaults to Hiera lookups; by default, a failed Hiera lookup without a default value will abort the Puppet run. The abort
happens during catalog compilation, which is before any resources are applied.

The third argument to the hiera() function is also optional; it is a hierarchy override. This means you can insert
a hierarchy at the top of the list of hierarchies for exactly one lookup. It is not generally recommended to use this, as it
reduces readability and expected behavior.

Other Hiera Functions

In addition to the hiera() function, there are a couple of other Hiera functions to look at. The hiera_array()
function call returns an array type and is capable of using whatever merge behavior has been set in hiera.yaml; note
that the default hiera() function call cannot perform merges, although it can return arrays and hashes. Similarly,
the hiera_hash() function call returns a hash type and is capable of using whatever merge behavior has been set

in hiera.yaml. All three functions take the same arguments as described earlier. There is also a hiera_include()
function, which can be used to include classes; we'll talk about it in a more complete example in the “Hiera as an
ENC” section. Note that hiera_array() and hiera_hash() will create datatypes from single results found at
multiple levels.

root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat defaults.yaml

foo: 'bar'

root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat global.yaml

foo: 'baz'

root@puppet-master-hiera-ubuntu:/etc/puppet/data# puppet apply -e '$foo = hiera_array("foo")
notify { $foo: }'

Notice: Compiled catalog for puppet-master-hiera-ubuntu.green.gah in environment production in
0.21 seconds

Notice: baz

Notice: /Stage[main]//Notify[baz]/message: defined 'message’' as 'baz’

Notice: bar

Notice: /Stage[main]//Notify[bar]/message: defined 'message' as 'bar'

Notice: Finished catalog run in 0.05 seconds

286

CHAPTER 12 * HIERA: SEPARATING DATA FROM CODE

Module Data Bindings

One of the most important uses for Hiera inside Puppet doesn’t involve the hiera() function at all. It’s a technique
called data bindings, and it sounds a bit scarier than it is. The concept of data bindings just means implicit key lookup
in Puppet. Let’s look at a parameterized class in Listing 12-73.

Listing 12-73. An example of module data bindings

class ssh(
$root_login = 'without-password’,

) 4

file { '/etc/ssh/sshd_config':
ensure => file,
content => template('ssh/sshd_config.erb'),

}

We have also seen this class presented as in Listing 12-74.

Listing 12-74. Another example of module data bindings

class ssh {
$root _login = hiera('root login', 'without-password')

file { '/etc/ssh/sshd_config':
ensure => file,
content => template('ssh/sshd_config.erb'),

}

Both of these classes are good for different reasons, but we can combine their functionality using data bindings.
Binding data means that parameterized classes perform Hiera lookups on their parameters. This is especially useful
because it removes the need for classes to accept parameters only to pass those parameters into other classes.

Listing 12-75 provides a very simple example.

Listing 12-75 A third example of module data bindings

root@puppet-master-hiera-ubuntu:/etc/puppet# cat modules/science/manifests/init.pp
class science(
$paraml = 'default in module',
$param2 = 'default in module’,
$param3 = 'default in module',
N
notify { "parami: ${parami}":
notify { "param2: ${param2}":
notify { "param3: ${param3}":

e o

root@puppet-master-hiera-ubuntu:/etc/puppet# cat manifests/site.pp

287

CHAPTER 12 HIERA: SEPARATING DATA FROM CODE

class { 'science':
param3 => 'passed in',

}
root@puppet-master-hiera-ubuntu:/etc/puppet# cat data/defaults.yaml
science::param2: 'looked up in hiera'

So what does all this mean? Well first we have a class that takes three parameters, all with defaults in the module.
Second, we have a class instantiation stanza that specifically overrides the default of one parameter. Third, we have
a Hiera data entry science: :param2: 'looked up in Hiera'.This special Hiera syntax is part of module data
bindings. The science: : part namespaces the data and tells Puppet that we’re defining a variable for the science
class. The param2 part is the name of the variable passed as a parameter to the class.

So what will happen? The order of precedence is, from highest to lowest:

1. Explicitly passed parameters
2. Hiera data bindings
3. Module defaults

Listing 12-76 shows the output.

Listing 12-76. Applying the module data bindings example from Listing 12-73

root@puppet-master-hiera-ubuntu:/etc/puppet# puppet apply manifests/site.pp

Notice: Compiled catalog for puppet-master-hiera-ubuntu.green.gah in environment production in
0.14 seconds

Notice: param2: looked up in hiera

Notice: /Stage[main]/Science/Notify[param2: looked up in hiera]/message: defined 'message' as
'param2: looked up in hiera’

Notice: param3: passed in

Notice: /Stage[main]/Science/Notify[param3: passed in]/message: defined 'message' as 'param3: passed in'
Notice: parami: default in module

Notice: /Stage[main]/Science/Notify[parami: default in module]/message: defined 'message’ as
'paraml: default in module’

Notice: Finished catalog run in 0.04 seconds

Hiera Examples

Next let’s consider a larger example of using Hiera data to control configuration. In Listing 12-77 we see a node
definition from the openstack-infra Puppet manifests.
Listing 12-77. Node definition from the Openstack manifests

node 'review.openstack.org' {
class { 'openstack project::review':

github_oauth_token => hiera('gerrit github token'),
github_project_username => hiera('github_project_username'),
github_project_password => hiera('github_project password'),
mysql password => hiera('gerrit _mysql password'),
mysql_root_password => hiera('gerrit_mysql root password'),

288

https://review.openstack.org

CHAPTER 12 * HIERA: SEPARATING DATA FROM CODE

email_private key => hiera('gerrit_email private key'),
gerritbot_password => hiera('gerrit_gerritbot password'),

ssl cert file_contents => hiera('gerrit_ssl cert file contents'),
ssl_key file contents => hiera('gerrit ssl key file contents'),
ssl_chain_file_contents => hiera('gerrit_ssl_chain_file_contents'),
ssh_dsa_key contents => hiera('gerrit_ssh dsa_key contents'),
ssh_dsa_pubkey contents => hiera('gerrit ssh dsa pubkey contents'),
ssh_rsa_key contents => hiera('gerrit_ssh rsa_key contents'),
ssh_rsa_pubkey contents => hiera('gerrit_ssh_rsa_pubkey contents'),
1p_sync_key => hiera('gerrit lp sync_key'),
1p_sync_pubkey => hiera('gerrit lp sync_pubkey'),
1p_sync_consumer_key => hiera('gerrit lp consumer key'),
1p_sync_token => hiera('gerrit_lp_access_token'),

1p sync_secret => hiera('gerrit lp access secret'),
contactstore_appsec => hiera('gerrit contactstore appsec'),
contactstore_pubkey => hiera('gerrit_contactstore_pubkey'),
sysadmins => hiera('sysadmins'),

swift_username => hiera('swift_store_user'),

swift password => hiera('swift_store key'),

The Openstack infrastructure team can make these Puppet manifests available to the public because there is no

longer any secret data in the node definitions or Puppet manifests/modules. All of that data is passed in by hiera()
calls in the node definition. Openstack-infra does not share their Hiera data with the larger public.

Note also the Puppet coding pattern here, where a single class openstack: :review is included with many
parameters. This role class will fire off whatever “get things done” classes (sometimes called profiles or bricks) are
needed to create MySQL databases and set up Apache. The logic defining which parameters to pass to those brick
modules is performed in the openstack: :review class.

The sysadmins key is being looked up and is implied to be of an array type. Openstack passes this variable
around a few times and then uses it to set the root@ email alias in Exim configs on every node.

The create-resources() Function

What if the sysadmins key returned a hash? Let’s look at what that might look like in Listing 12-78.

Listing 12-78. Sysadmin hash in global.yaml
root@puppet-master-hiera-ubuntu:/etc/puppet# cat data/global.yaml

sysadmins:

"spencer’:
uid: 1861
gid: 300
groups: root

'william':
uid: 11254
gid: 300
groups: root

Now let’s confirm behavior with the Hiera command-line tool in Listing 12-79.

289

CHAPTER 12 HIERA: SEPARATING DATA FROM CODE

Listing 12-79. Hiera lookup of sysadmin hash

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera sysadmins
{"spencer"=>{"uid"=>1861, "groups"=>"root", "gid"=>300}, "william"=>{"uid"=>11254,
"groups"=>"root", "gid"=>300}}

Now we can use a function called create_resources() to generate Puppet resources from this hash, as shown in
Listing 12-80.

Listing 12-80. create_resources example

$sysadmins = hiera('sysadmins')
create_resources(user, $sysadmins)
Listing 12-81 shows the output.

Listing 12-81. Applying the create_resources example from Listing 12-80

root@puppet-master-hiera-ubuntu:/etc/puppet# puppet apply create_resources.pp

Notice: Compiled catalog for puppet-master-hiera-ubuntu.green.gah in environment production in
0.11 seconds

Notice: /User[spencer]/ensure: created

Notice: /User[william]/ensure: created

Notice: Finished catalog run in 0.32 seconds

Hiera as an ENC

Hiera can be used as an external node classifier through the use of the hiera_include function. Let’s see what this
looks like. Remember that our hierarchy looks like Listing 12-82.

Listing 12-82. Default hierarchy in hiera.yaml

thierarchy:
defaults
%{clientcert}
- %{environment}
global

We haven't used %{clientcert} yet. This variable is the common name field on the Puppet agent’s client
certificate. It is also the string used in node definitions. We can use %{clientcert} here to put per-node configuration
into Hiera. Listing 12-83 shows what that looks like.

Listing 12-83. Hiera example files for ENC

root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat global.yaml
classes:

- sudo

- ssh

- updates

290

CHAPTER 12 * HIERA: SEPARATING DATA FROM CODE

root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat serveroi.yaml
classes:
- ldap

root@puppet-master-hiera-ubuntu:/etc/puppet/data# cat servero2.yaml
classes:
- postgres

Let’s use the command-line utility to investigate the behavior of these data. Note that we’re using the -a flag to
Hiera to force an array lookup and array merge behavior as seen in Listing 12-84.

Listing 12-84. Using Hiera as an ENC

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera -a classes clientcert=server00
["sudo", "ssh", "updates"]

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera -a classes clientcert=serveroi
["1dap", "SUdOH, "SSh", uupdatesu]

root@puppet-master-hiera-ubuntu:/etc/puppet/data# hiera -a classes clientcert=server02
["postgres”, "sudo", "ssh", "updates"]

What we can see here is that some classes are put on all machines; and if a machine matches another Hiera
lookup, it gets the union of the classes.
Finally, let’s demonstrate use in manifests. Listing 12-85 contains the site.pp for the entire infrastructure.

Listing 12-85. site.pp when using Hiera as an ENC

node default {
hiera include('classes')

}

And we can see the behavior in a Puppet run in Listing 12-86.

Listing 12-86. Applying the site.pp from Listing 12-85

root@puppet-master-hiera-ubuntu:/etc/puppet# puppet apply manifests/site.pp

Notice: Compiled catalog for puppet-master-hiera-ubuntu.green.gah in environment production in
0.17 seconds

Notice: using sudo class

Notice: /Stage[main]/Sudo/Notify[using sudo class]/message: defined 'message' as 'using sudo class'
Notice: using updates class

Notice: /Stage[main]/Updates/Notify[using updates class]/message: defined 'message' as 'using
updates class'

Notice: using ssh class

Notice: /Stage[main]/Ssh/Notify[using ssh class]/message: defined 'message' as 'using ssh class'

How do we parameterize classes using this method? We fall back to using module data bindings,
as shown in Listing 12-87.

291

CHAPTER 12 HIERA: SEPARATING DATA FROM CODE

Listing 12-87. Parameterized classes with Hiera ENC

root@puppet-master-hiera-ubuntu:/etc/puppet# cat data/serveroi.yaml
classes:

- ldap

- mysql
mysql::password: 'changeme'

This will set the password parameter of the mysql class to changeme for only the server01 node.

Hiera-2

To close, let’s briefly look at the future of Hiera. At the time of writing, Puppet 3.3.0 has just been released. This
release contains an experimental release of Hiera-2. Hiera-2 brings Hiera data inside modules. Thus, public modules
can be shared with their configuration embedded in Hiera, avoiding the much-maligned params. pp pattern. You
can start using this experimental feature now by following the instructions at https://github.com/pro-puppet/
puppet-module-startrek.

Summary

In this chapter we introduced the Hiera tool. We introduced the idea of separating data from code. You learned how to
install Hiera and how to backport Hiera into your Puppet 2.7 infrastructure. You learned how to configure the hiera.
yaml file; then you got comfortable writing data files and using the Hiera command-line utility. You learned about the
hierarchical behavior of Hiera and its power. You learned about data structures beyond simple strings in Hiera and
about merging schema to build them.

Then we discussed a slew of Hiera backends to store our Hiera data: YAML and JSON to store it easily, file to store
raw files, MySQL to interact with an existing CMDB, and gpg to encrypt the configuration on disk. What we didn'’t
cover was writing your own Hiera backend, which is out of this book’s scope. This process is relatively straightforward
for adept Ruby programmers. Right now the best resource for this is the source code of existing backends. Most of
these are less than 200 lines of code.

Next we discussed the other optional arguments to the hiera() function, default and override. The default
option is much more useful than the override argument. Then we talked about the other related Hiera functions.

After that, we discussed module data bindings, one of the most important concepts in Hiera. And finally we
showed a few examples of Hiera use in Puppet manifests.

Resources

e Hiera Homepage: http://projects.puppetlabs.com/projects/hiera

e Hierabugtracker: http://projects.puppetlabs.com/projects/hiera/issues
e Hierasource code: https://github.com/puppetlabs/hiera

e Puppet Labs Hiera docs: http://docs.puppetlabs.com/hiera/1/index.html

e JSON backend: https://github.com/puppetlabs/hiera-json

292

https://github.com/pro-puppet/puppet-module-startrek
https://github.com/pro-puppet/puppet-module-startrek
http://projects.puppetlabs.com/projects/hiera
http://projects.puppetlabs.com/projects/hiera/issues
https://github.com/puppetlabs/hiera
http://docs.puppetlabs.com/hiera/1/index.html
https://github.com/puppetlabs/hiera-json

CHAPTER 12 * HIERA: SEPARATING DATA FROM CODE

gpg backend: https://github.com/crayfishx/hiera-gpg
file backend: https://github.com/adrienthebo/hiera-file
MySQL backend: https://github.com/crayfishx/hiera-mysql

Data bindings: http://docs.puppetlabs.com/puppet/3/reference/release notes.
html#automatic-data-bindings-for-class-parameters

More on data bindings: http://docs.puppetlabs.com/hiera/1/puppet.html#fautomatic-
parameter-lookup

Hiera-2: https://github.com/pro-puppet/puppet-module-startrek

Data in modules: https://github.com/hlindberg/misc-puppet-docs/blob/master/data-
in-modules.md

293

https://github.com/crayfishx/hiera-gpg
https://github.com/adrienthebo/hiera-file
https://github.com/crayfishx/hiera-mysql
http://docs.puppetlabs.com/puppet/3/reference/release_notes.html#automatic-data-bindings-for-class-parameters
http://docs.puppetlabs.com/puppet/3/reference/release_notes.html#automatic-data-bindings-for-class-parameters
http://docs.puppetlabs.com/hiera/1/puppet.html#automatic-parameter-lookup
http://docs.puppetlabs.com/hiera/1/puppet.html#automatic-parameter-lookup
https://github.com/pro-puppet/puppet-module-startrek
https://github.com/hlindberg/misc-puppet-docs/blob/master/data-in-modules.md
https://github.com/hlindberg/misc-puppet-docs/blob/master/data-in-modules.md

Index

A B

ActiveMQ, 250
Autosign mode, 24

C

Custom facts
external facts, 231
executeable facts, 231
structured facts, 232
Puppet configuration, 227
facts/plugins, 228
lib directory, 228
modules, 227-228
pluginsync.setting, 228
puppet.conf, 228
testing facts, 231
home fact, 231
lib/ruby/facter, 231
writing facts, 228
case statements, 229
complex fact, 230
confine statement, 229
Facter.add method, 228
Facter method, 228
operatingsystem fact, 230
osfamily fact, 229
Custom functions, 245
fail function, 245
hexdigest method, 246
lookupvar function, 246
newfunction method, 246
Puppet configuration, 232
lib directory, 233
pluginsync.setting, 233
split function, 245
pluginsync, 245

template function, 245

write functions
validate_array, 245
validate_bool, 245
validate_hash, 245

Custom providers

httpauth provider, 243
ensurable method, 244
exists? method, 245
flush method, 245
Webrick library, 244

Puppet configuration, 232
lib directory, 233
pluginsync.setting, 233

repo type, 238

shells provider, 240
cron type, 241
default_target variable, 240
desc method, 240
ensure attribute, 241

subversion provider

creation, 236

create method, 237
delete method, 237
ensurable statement, 237
exists? method, 237
fileutils, 237
Git tool, 238

testing
HTTPAuth type, 245
pluginsync, 245

Custom types

httpauth type, 241-242
defaultto method, 243
ensurable method, 243
newvalues, 243
validate method, 243

isnamevar method, 240

295

INDEX

Custom types (cont.)

Puppet configuration, 232
lib directory, 233
pluginsync.setting, 233

repo type, 238

shells type, 239
default_target variable, 240
ensurable statement, 239
target parameter, 240

testing
HTTPAuth type, 245
pluginsync, 245

type creation, 234
ensurable statement, 235
isnamevar method, 236
lib/puppet/type directory, 234
munge hook, 236
path parameter, 236
repo type, 234
source parameter, 235
validate hook, 235-236

D

Debian packages (DEB), 169
Development and deployment, 73. See also
Environments
command and modes operation
manifest files, 74
printf, 74
testing Puppet behavior, 74
foreground Puppet master
layout, 78
output, 78
puppet agent command, 79
manifest files
GitHub, 75
modulepath, 75
module testing environment, 76
noop mode, 77
Puppet module, 76
ssh class, 77
stdlib module, 75
testing autorequires, 75
overview, 73
Vagrant (see Vagrant)

E

Environments
branching and merging
bare repository, 92
benefits, 91
central repository, 91
individual changes, 92
requires, 91

296

clone creation, 86

configure Puppet environments, 85

development environment, 87

example.com pty network, 84

external modules, 84

Git branches (dynamic environment) (see Git
branches (dynamic environment))

module maintenance, 84

population, 85

testing, 89

Exported resources

load balancer worker, 163
apache configuration, 163-164
BalanceMember statements, 163
balancermember resource, 164
conf.d.members directory, 164
front-end configuration, 163
HTTP worker nodes, 163
Include statements, 163-164

nagios_service resources, 164-165
check_command parameter, 166
nagios_host resources, 165-166
nagios::monitor class, 165, 167
nagios::target class, 165-167
ping command, 167

SSH public host keys, 160
host_aliases parameter, 161
known_hosts file, 160-162
puppet agent, 162
ssh::hostkeys class, 161
sshkey resources, 161-162
ssh::knownhosts class, 161

External node carrier (ENC), 169
External node classification (ENC), 141

back-end node classifier, 147
MYSQL database, 148
SQL statement, 148
YAML data, 148
configuring nodes, 143
external_nodes, 143
node_terminus, 143
puppet.conf, 143
puppet_node_classifier, 143
foreman, 141
Google, 141
override node configuration, 148
Perl-based node classifier, 146
libyaml-perl package, 147
perl-YAML package, 147
ruby node classifier, 144-145
production environment, 146
puppetserver variable, 145
YAML hash, 144, 146
shell script, 143
node statement, 144
puppet_node_classifier, 143

$puppetserver, 144
simple node classifier, 143
YAML
database.yml, 142
indentation and syntax, 142
parameterized class, 144
three dashes (-), 142
YAML document, 142
YAML hash, 143
Zynga, 141

F

Facter package, 5, 8
Foreman

configuration, 173

connecting clients, 174
drilldown, 176
host page, 175
PuppetCA, 175

import data, 173
Puppet classes, 174
Puppet master, 174

installation, 169-170
debian packages (DEB), 170
disable TFTP, 170
file generated, 172
PuppetDB installation, 170
redHat packages (RPM), 170
running Puppet master, 170
save and exit, 171
welcome page, 172

reports, 178
eventful node, 179
eventful reports, 178

search facts, 179

using ENC, 176
adding classes, 176
parameterized classes, 177

G

Git branches (dynamic environment)
central repository, 94
Git hook, 95
Hiera configuration, 94
puppet.conf file, 93
workflow, 93

H

Hiera, 263
backends, 275
file backend, 277
gpg backend, 282

INDEX

JSON backend, 279
manifests/init.pp file, 276
MySQL backend, 280
openvpn module, 275
command-line utility, 267
complex hierarchy, 271
dynamic hierarchy, 269
exploring hierarchy, 268
hiera lookup, 267
hiera lookup in puppet, 268
syslog_server, 269
syslog_server with puppet, 270
YAML data file, 267
configuration, 266
data directory, 267
hiera.yaml files, 266
create-resources() function, 289
data structures, 271
array merging, 272
hash merging, 273
return data, 271
external node classifier (ENC), 290
functions, 285
hiera_array() function, 286
hiera() function, 285
hiera_hash() function, 286
hiera_include() function, 286
ssh class, 286
Hiera-2, 292
installation, 265
list packages, 264
module data bindings, 287
mysql::db, 263
abstract parameters, 263
db_password, 263
hiera() function, 264
Openstack manifests, 288

Hierarchal data store. See Hiera
Hosts, 33. See also Modules

installation, 34

integration and bootstrapping (Kickstart file), 34
network, 33

node configuration (see Node configuration)
operating system, 33

role-specific applications, 34

,LJ,K

Idempotency, 2
Inheritance, 37
Installation

agent and master server, 7

Apple Mac 0OS X, 14
command line, 18
facter installation, 15-16

297

INDEX

Installation (cont.)

Mac OSX pkg files, 15
Verifyication, 17

BIG-IP F5 devices, 18

debian, 9

Microsoft Windows, 11
MSTI file, graphics, 11
using PowerShell, 13

Openlndiana, 9

other platforms, 18

puppetmaster package, 9

Red Hat Enterprise Linux (RHEL), 8
EPEL repositories, 8
facter package, 8
puppet labs repository, 8
puppet package, 8
RubyGems, 9

solaris 10 and 10-11

source tarballs, 10

ubuntu, 9

L

LDAP server classification
installing ruby libraries, 149
ruby-ldap package, 149
source package, 149
openLDAP server, 149
puppet.conf configuration, 150
basenode, 153
dapport option, 151
environment attribute, 151
ipHostNumber attribute, 152
Idapbase option, 151
ldappassword option, 151
LDAP schema, 151
ldapserver option, 151
Idapuser option, 151
LDIF nodes, 152
node_terminus option, 151
parentnode attribute, 151
puppetclass attribute, 151
puppetClient, 151
puppetvar attribute, 151
puppet schema document, 150
include statement, 150
openLDAP server, 150
slapd.conf configuration, 150
storing node configuration, 149

Lightweight directory access protocol (LDAP), 141

Load-balancing multiple Puppet masters
configuration
Apache setup working, 108
directories creation, 110
passenger.conf, 109

298

puppetmaster_proxy.conf file, 109
puppetmaster_worker_1.conffile, 110
worker processes, 108

front-end virtual host, 111

HTTP-based web services, 107

overview, 107

testing

Apache front end load balancer error, 115

disable back-end workers, 114-115
enable both workers, 115
front-end logging, 113
passenger-status command, 115
Puppet logs, 118
puppetmaster.conf file, 116
Puppet proxy group, 117
request log, 114

restart Apache and check, 113
restart httpd, 117

worker and test Puppet, 113
worker logging, 113

Mail Transfer Agent (MTA), 28
Manifests, 20
Marionette Collective (MCollective), 249

addressing hosts, metadata
running mco package install, 260
running mco service restart, 260-261
service and package plug-ins, 260
agent plug-in, 255
installation, 255
NRPE, 258
running mco facts, 257
running mco find, 257
running mco help, 255
running mco puppet runonce, 256
running mco puppet status, 256
running mco puppet summary, 257
command and control tools, 249
on GitHub, 261
installation and configuration
broker role, 251
certificates, 252
client node, 251
mcollective daemon, 251
meco-master node, 251
permissions, 253
testing, 254
via puppet module, 250
with RabbitMQ, 251
messaging architecture, 250
publish/subscribe messaging
techniques, 250
STOMBP, 250

Microsoft Windows, 11
MST file, graphics, 11
using PowerShell, 13
Model
client-server model, 2
configuration/declarative language, 3-4
resource abstraction layer, 5
transactional layer, 6
Modules, 41
Apache and websites
Apache definitions, 63-64
autoloading, 66
ERB template, 65
layouts, 62
VirtualHost configuration file, 66
VirtualHost template, 65
website, 67
file structure, 41
functions, 50
init.pp, 41
manage SSH
chaining exists, 52
directory structure, 45-46
ssh, 46, 50, 53
stub ssh class, 44-45
mysql module
auditing mode, 61
module structure, 58
mysql, 59-61
postfix
files directory, 54
postfix, 55, 57
require function, 56
puppet
puppet, 68
structure, 67
sudo module, 41
template, 42
version control system (see Version control
system (VCS))

N,O

Nagios Remote Plugin Executor (NRPE) plug-in, 258
Network Time Protocol (NTP), 24
Node configuration
default node, 36
external sources, 36
inheritance, 37
node defintions, 35
Puppet style guide, 40
similar hosts, 36
variable scoping
class inheritance, 38
concepts, 37

INDEX

declarative language, 38
parameterized classes, 39-40
scope, 38

ssh class, 38

PQ

Package type, 5
Processors

http report processor, 222

log report processor, 219-220
daemon facility, 220
syslogfacility option, 220

puppetdb report processor, 219, 222

reports configuration, 220

rrdgraph report processor, 219, 221
rrddir directory, 222
rrdtools package, 221
RubyRRDtool, 221

store report, 220

tagmail report processor, 219-220
puppet.conf configuration, 220
tagmail.conf file, 220-221
tagmap configuration, 220

Puppet, 1, 141

3.1.xversion, 6
caveat, 7
components, 24
definition, 1
external node classification (ENC), 141-142
firewall configuration, 20
first agent connection, 22
nodel.pro-puppet.com, 22
puppetca binary/puppet cert, 23
server option, 22
sign option, 23
test option, 23
waitforcert, 23
INI-style configuration, 19
installation (see Installation)
LDAP server classification, 141, 149
main section, 19
model, 2
client-server model, 2
configuration/declarative language, 3-4
resource abstraction layer, 5
transactional layer, 6
node definition, 25
puppet master, 21
site.pp file, 20
store node information, 141
sudo module, 26
catalog, 30
file bucketing, 30
files directory, 29

299

INDEX

Puppet (cont.)
init.pp file, 27
metaparameter, 28
module path, 26
MTA, 28
noop mode, 30
$::osfamily fact, 28
structure, 27
sudo class, 28
Puppet and facter, 227, 232
custom facts (see Custom facts)
custom types, development
(see Custom types)
FACTER_datacenter, 227
functions, development (see Custom functions)
providers, development (see Custom providers)
Puppetboard, 169, 184
dashboard (see Puppet DB)
future advancements, 188
installation, 185
Puppet configuration, 155
expiring stale resources, 168
PuppetDB, 168
puppet node command, 168
exported and stored configuration, 159
puppetdb class, 159
puppetdb log, 160
puppetmaster, 159
exported resources, 155, 160
stored configuration, 155
virtual resources, 155
Puppet consoles, 169
foreman, 169
connecting clients, 174
import data, 173
installion, 169
reports, 178
search facts, 179
using ENC, 176
Puppetboard, 184
dashboard (see Puppet DB)
future advancements, 188
installation, 185
Puppet enterprise console, 180
add classes, 182
connect PE agents, 181
installation, 180
inventory service, 182
live management, 183
Puppet DB
facts, 187
nodes, 186
query, 188
reports, 187

300

Puppet forge, 191
generating modules, 195
cloned skeleton, 195
demoapp module, 196
generate action, 196
params.pp file, 196
puppet apply, 196
puppet module tool, 195-196
puppet librarian, 197
apache module, 197
librarian-puppet init, 197
librarian-puppet install, 197
Puppetfile.lock, 198
puppetlabs/stdlib, 197
puppet-lint, 199
puppetlabs/rsync module, 199
puppet-lint.rc., 200
Puppet modules command, 192
puppet modules, Geppetto, 210
duplicate attribute, 211
export modulel, 213
export module I, 214
import project, 211
invalid attribute, 212
standalone application, 210
tool tips, 212
validate_bool, 212
r10K, 198
configuration, 199
deploy command, 199
GitHub, 198
gitignore, 198
Git repository, 199
librarian-puppet, 198
modules directory, 199
RubyGems, 198

support dynamic environment, 198

search and install modules, 192
mysql::db provider, 194
MySQL module, 193-194
mysql::server class, 194
puppet module, 194
README.md file, 194
search command, 192

testing modules, 200

Puppet master, 2, 21

R

RabbitMQ, 250

Red Hat Enterprise Linux (RHEL)
EPEL repositories, 8
facter package, 8
puppet labs repository, 8

puppet package, 8
RubyGems, 9
RedHat packages (RPM), 169
Reporting puppet, 217, 225
configuration, 219
puppet.conf configuration, 219
puppet master, 219
report directory, 219
reportdir option, 219
store reports, 219
custom reporting, 222, 224
HTTP report processor, 223
Puppet::Reports.register_report
method, 223
reportdir configuration, 224
reports configuration, 223
require puppet, 223
self.host method, 224
self.logs method, 224
self. metrics method, 224
YAML files, 222
GitHub page, 225
transcation report, 217
events, 217, 219
log messages, 217
metrics, 217, 219
Ruby, 219
YAML file, 217, 219
Reporting processors, 219

S

Scale Puppet

anycast, 134

Apache and Passenger
configuration file, 101
Debian/Ubuntu LTS, 98-99
enterprise Linux, 99-101
installation, 98
server name, 105

CA worker configuration
configure Apache, 121
endpoint certificates, 120
HA configuration, 123
sync CA data-CA hosts, 120
testing, 124

certificate requests
CA worker configuration, 119
hot standby, 127
hot standby CA worker, 126
HTTPS load balancing, 119
primary CA directory, 129

DNS round robin, 130

DNS SRV records, 131

INDEX

identification, 97-98

load-balancing multiple Puppet
masters (see Load-balancing multiple
Puppet masters)

masterless Puppet, 134

measuring performance, 137

splay time, 138

strategies, 97

TCP load balancer, 131

testing (Apache), 105

Splay time, 138
STOMP (Simple Text-Oriented

Messaging Protocol), 250

Sudo module, 26

catalog, 30

file bucketing, 30
files directory, 29
init.pp file, 27
metaparameter, 28
module path, 26
MTA, 28

noop mode, 30
$::osfamily fact, 28
structure, 27

sudo class, 28

T U

Testing modules

rspec-puppet, 200
collectd class, 205
contain_package function, 203
file_line resource, 205
fixtures.yml file, 202
Gemfile, 200
pdxcat/collectd module, 200
puppetlabs_spec_helper gem, 201
purge_config parameter, 205
raise_error check, 203
Rakefile, 201
spec_helper library, 203
with_content file, 205
rspec-system, 207
collectd module, 208
gitignore file, 208
nodeset.yml file, 209
puppetlabs_spec_helper gem, 210
RSPEC_DESTROY
variable, 210
TravisCI, 205
Markdown build image, 206
README.md, 206
rspec-puppet tests, 205
travis.yml file, 205

301

IN

DEX

Vv

Vagrant

booting box, 81

configuring Puppet, 82
destroying and re-creating, 82
initial setup, 80

overall pattern, 80

testing Puppet, 82

Version control system (VCS), 73, 233

gitignore, 43

Git package, 42

Red Hat and Ubuntu, 42
sudo module, 44

Vim package, 4
Virtual resources

302

declaration errors, 155

declare and realize, 156
accounts::virtual class, 156
realize() function, 157

realizing spaceship operator, 156

webapp class, 157
duplicate resource, 155
mysql class, 156

parameters collection
specified, 157
realize() function, 156-157
realizing spaceship operator, 157
realize() function, 157
webapp package, 157
relationship-chaining syntax, 158
apache account, 158
arrow relationship syntax, 158
parameters, 158
syntax arrows, 158
tilde arrows, 158
resource declaration, 156
spaceship syntax, 156
webapp class, 155

W, X

Waitforcert, 23

Y,Z

Yet ain’t markup language (YAML), 142

Pro Puppet

Spencer Krum

William Van Hevelingen
Ben Kero

James Turnbull

Jeffery McCune
Apress

Pro Puppet, Second Edition
Copyright © 2013 by Spencer Krum, William Van Hevelingen, Ben Kero, James Turnbull, and Jeffery McCune

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6040-0
ISBN-13 (electronic): 978-1-4302-6041-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Michelle Lowman

Technical Reviewers: Lee Lowder and Daniele Sluijters

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jonathan Gennick,
Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Tom Welsh, Steve Weiss, James T. DeWolf

Coordinating Editor: Christine Ricketts

Copy Editor: James Compton

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the authors in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

Dedicated to my Mother and Father, who have stood strong with me through so much. I am grateful.

—Spencer Krum

This book is dedicated to those of you just beginning your journey to somewhere great.

—Ben Kero

Dedicated to my family, friends and all the CATS5.

—William Van Hevelingen

Contents

About the AUtROrS........ccccerissmissnrs s —————————— xvii
About the Technical REVIEWET'Scuserssssssmsssmssmssssssssssmsssssssssssssssssssssssssssssssnsssssssnsssssnnss Xix
ACKNOWIEdgMENTSccuuiiiiemmmmissnnnnmsssssnnnmsssssssnmssssssnnmsssssnnnnsssssnnnssssssnnnsssssnnnnsssssnnnnnssssnnnnss XXi
1 o U xxiii
Chapter 1: Getting Started with Puppet..........ccccininmmmnnnnmnnmmnsesnmmmssssnsssssnssssssmmnan. 1
LT L EE 1T] 0 SRS 1
DEPIOYMENL........ceer e e e e e e e e R e R e R R e R e Re R e R e e Re R e Re R e e R e e Re e Rernnn 2

The Configuration Language and Resource ADStraction LaYercccoereoenerneencsennesese e sesesssnseens 3

The TranSACHONAI LAYETccccceierirerecrrescr et se e st e b et e a e bR e Re e e aenn e e n et ns 6
Selecting the Right Version of PUPPEL..........c.covirennienssmnesnse s sns s s ssessssesnes 6
INSTAllING PUPPET ... a e s e ne 7
Installing on Red Hat Enterprise Linux and FEUAOIA............ccvvvrrininennnn s ses s seesee s sssssssssssssnssnseas 8
Installing on Debian and UDUNTU........coeoirinicccrrr e se s sa e sa s s e e a e sa e n e sn e n e sn e nn e s 9
LTS3 e T T T 0] 11T - 9
Installing on Solaris 10 @NA 11ccoeerrerrererere e e rae s e e s e s s e s s e e s ae e sae e saesesaesaesesaesesaenananananns 10
INSTAIING FIOM SOUICE ...cuvreereeereeerrerere s e res e rae e raesesaesessesassesas e sae e saesesaesasae s saesaesesae e sae e saesassesanserassenassanaeanaens 10
Installing on MiCroSOft WINAOWS........cceeiririninerirne e e sse e ssessessssassaesae e e ssesssssessssassaesassssssssasssssasssessnnsens 11
INSTAIlING ON the IMAC ... e a e e e e e e e e e e se e e e e e e e e e se e e enens 14
Installing on Other PIatforMS.........cccverrierrierr s sereeseseresesesseressessesessesassessssessesessssesssasassassessssesassessesasssasaens 18
Configuring PUPPEL......eoeeeeeeee e sr e sn e sa e s n e sa e n e sn e n e r e sn e nn e sn e n e snennnnnnnnan 19

B (Lo TETLC= 0 oD S 20
Firewall CoNfiQUIAtioNccocciuiiicrc s s e e e p et e ae e ne e nennnanns 20
Starting the PUPPEL MASTE ... e e e e e e p e n e 21

vii

CONTENTS

Connecting OUr FIFSEAQENTcoeveiere s see s e sas s e e saesassa s sassaesassassaesaesaesnennnns 22
Completing the CONNECTIONccceeeereerirererrererseree s rse s resera s s s e sse e saesasae s s e sae e sae e sae e saesassesansesassenseanannenaens 23
Creating Our First Configuration em..........ccoeoecece e snene e 24
Adding @ Node Definition..........ccvceiereienierre et s e e s e e b e p e e s peae s p e p e e 25
Creating Our FirSt MOUIEcccoeeiicenercnse s s 26
MOAUIE STFUCTUTE ... 27
THE INIE.PP FIlB...eeeeeeeerereeeer i e s e s e R e e b e Re e e s e Rn e e e nnnnnnnes 27
Applying Our First CONfigUIALION..........ccceeirireecrerse s esas s e nsannsnnnns 29
E3 1111 1P 7SS 31
RESOUICES. .. .cueiesct et e e e e 31
Chapter 2: Building Hosts with Puppet........c.ccccininnmmmmnnnnemmmmmssssmmmssssssmmssssssssssssns 33
GELlING STAME ... ——————————————— 34
INSTAIING PUPPET.....ceeeeeeee e st se R e A e R et Re e Re e nne e nanas 34
Integrating and Bootstrapping Puppet with KiCkStart............ccoovvrinnicnnnncrsersscse e sesse e 34
Configuring NOGES........ccoceeeiirirerirestse s r s n s asnsnesn s nnnnnnas 35
Working With SIMilAar HOSEScccociiriecirreccis et na e 36
USING EXTEINAL SOUICES.ucerererreeeresseeesessssesesessssesssesesssssessassnsssssssessssssssesssssssassnes 36
0L 210 Lo T 36
NOGE INNEIILANCEceeeiiiriiri e 37
Variabhle SCOPING......coceerereeieriririeesiseseese st e s e e e s s e e e s e se e e s s Re et s e se e e s nRn e e s nsnnnnnnes 37
TNE PUPPEL STYIE GUILE ...t se s a s s s et s se s e s nne s e s snnnnnnnes 40
Making (More) Magic With MOAUIES..........cocvverrerrerrerserser e se s e sassassnssnssnns 4
Version-Controlling YOUr MOGUIES.........cceeeeriererrereerererersesessesasessssessssesssssssessssessssesssssssssassessssessenssssssssssassessssenes 42
Creating @ Module 10 ManAQE SSH.........ccccevrerrrirerire s s res s s rsesessesasse s s e ssesesaesessesassssassesassesassessssanasanaens 44
Creating @ Module 10 Manage POSHIX........ccccvrererererirerererereressersssessesessesessesssessssessssessessssesassessssessssessssassssssaens 54
Managing MySQL with the mySQl MOTUIEcoecceeerererire st rere s se e s saesesae e ssesasaesassesas e sassesassasasnanaens 58
Managing APache and WEDSILES.........ccccrrrererierrrerereresereseseressersssessssessesessessssessesessssesssssssssassessssessssessesssassanaens 62
Managing Puppet with the PUPPEt MOTUIE...........ccerererererere st rese e s rse e sae e sse e saesa s e sas e sassesaenasasanaens 67
81111 1= T SRS 72
RESOUICES.....cceieieierere s e e e e e e e e e e e e e e s e e e e e e e e e e e e e e nnnnnnnnns 72

viii

CONTENTS

Chapter 3: Developing and Deploying Puppetc.ccusmnmmimmimmmmsmssmssmmsmsmssssssssssnnns 73
The puppet apply Command and Modes of Operationcccocrervrrrrnsrssssses s 73
Printf With PUDPET ...t nnp s 74
Testing Puppet Behavior With NOTIfY........c.cecceeriescrnnecsirs s 74
Using Puppet Apply with ManifeSt FileS ..o s 74
Foreground PUPpet MAster...........co et 78
Developing Puppet with Vagrant ... s s s s snsnnnns 80
Vagrant INItial SEIUP ...c.vecoeeeee e r e 80
B00ting the Vagrant BOX ... sssse s sss s s e s s s e sesse s s sessessssessssessssssnssesnssnsssssnnens 81
Configuring Puppet on the Vagrant BOX...........coceceerienienniesssesssesse s ssssessssessssesssssssssssssssssesssssssssessssssssssssens 82
Testing Puppet With Vagrant.............o e n e s s s 82
Destroying and Re-Creating the Vagrant BoXcccovnicnnicnnsnecne s sesse s sessesessssnssssssnens 82
ENVIFONMENTS ...ttt 84
Maintenance Of MOTUIES ... 84
ToOIS fOr EXIErNAl MOUUIESc.cceieceiccceeee e 84
Configuring PUPPEet ENVIFONMENTS ..o 85
Populating the NEW ENVIFONMENTScccovuieeirernecirseesesesss s s sssss s s sesssssssssssssssssssssssssnes 85
L0 2 L 10 T OO 86
Making Changes to the Development ENVIironmentc.ccocvvrvrvervnsensessessessesses e sessessenns 87
Testing the New Environments with the Puppet Agent ... 89
Environment Branching and Merging........c.ccccveversrsenssssnsss s s ses s ssssssssssssssssesssssssssssssssssnns 91
Setting Up @ Central REPOSITONY........cccoururerererereesisirrseseses e sss s sa s sssssssssesssssssssnsnns 91
Creating a Bare Repository for the MOUUIES...........ccccerireiererirsccr e 92
Making INdividual CRANGES.........coceererreerererireesesesessesesses s se s e e e sss e s ssssse e sss s sesssssssssssssssssssssssenes 92
Dynamic Puppet Environments with Git Branches...........ccccvvrvrvrvrrnsnsssessesses e senenns 93
LI L= 185 0] 95
R 1T PR STRSRRN 96
RESOUICES. ... covirieereserrestseses s e s s s e s s ae e s e s e Re e e Re e s ae e e s Re e a e e e e s annn s e 96

ix

CONTENTS

Chapter 4: Scaling Puppet.........cccccinimmnimmmmmssmmsssmmssmmsssssssessssessssesssssssssssssssnssssnns 97
Identifying the ChalleNges........cccceeeeerere e sn s sn s sr e sn e sn e sn e sn e nnennenn 97
Running the Puppet Master with Apache and PasSengercccevvrerrrerrensensensessessessessessensenns 98
Installing APache and PASSENQEL.........cccevererrererrereereresererereressersssessesessesassessssessesessesesssssssessssessssessssessssassssssaens 98
Configuring Apache and PASSENQEcceererererererrereesersesersesessersssessesessesessssassessssessesssssssssessssersssesssssssssasaens 101
Testing the Puppet Master in APache.........ccocvcvcrcrrr s 105
Load-Balancing Multiple Puppet MASterscccoeeerererencne s sss s sns s snenes 107
HTTP LOAA BAIANCING......c.ceeererreeeerereseesesessesesesessseseses s e sesss s s e s s s e sssss s e s s s s s snssssssssssssssssssessasssssassnes 107
Puppet Master Worker Configuration............cccecereencrennencsisnesesesessss s sssesessssssesessssnss 108
Front End Load Balancer Configuration DetailS...........coveeererneicneninncsirse s sessssenes 111
Testing the Load Balancer CONfiguration..........c.ovcceereencssssesesesssseses s sssssssessssssssssssssssnnsnns 112
RS Tz 1T [0 T3 SR 118
Puppet Certificate Authority Service EXternalization.............cccccevverervereerresereresseresserseseresesesessessssessesessesesaens 119
Load Balancing AIREINALIVES..........cccceeererrerrerressessessessesssssessnnes 130
Load Balancing with DNS Round RODIN ...t sn e ne e snnnens 130
Load Balancing with DNS SRV FECOIUS......cccuerriinereririrese st sss s sas e s ss s se s sssessssssssessssssnses 131
Load Balancing with @ TCP Load BAIANCETccveeererirrieririnecsirss s ses s sssss e sessssssssessssssssesssssssns 131
ANYCAST ...t A R R e R RS R e Re RS ReeRe e RS R e Re R e Re R e e R e e Re e eRenrnnn 134
L1 Ty G [Tl 1T 0] 0] SRS 134
Measuring PerfOrMANCE..........cccvverrerrerrinsirsissir s se s e s e s sn s sn s n s n s n e n e sn e sn e nr e n s 137
03] 012N 11O 138
SUMMEAIY ...ttt e e a e s e e Re e e A e e Re b e e Re e e Re e e e e Rene e e ene e naen 139
GOING FUMNEE ... s nn s 139
RESOUICES. ..ucuririsct st 139
Chapter 5: Externalizing Puppet Configurationccucssemmmmmmmnmmmssssssssssssmmmmsssssssssssnns 141
External Node ClasSifiCation..........ccevieerierieeriinissssesssssiesssessssssessse e sssssssssssssesssssssssssssssssssesanes 142
Configuring Nodes Using an External Node ClIaSSifier.......ccccovererrererrereererererseressersssersesessesessesssessssessesessesanaens 143
An External Node Classifier in @ SREll SCHPL.........cccoerrerre s sae e sa s s e e sae e naen 143
Parameterized Classes i YAML.........cocouimnnmnnssssssss s s s saens 144

A Ruby EXternal NOGE CIASSITIErcccecevererererererereererseseresersesesesassessesessssessssessessssessssesssssssesessessssessenssssesaes 144

CONTENTS

A Perl External Node CIaSSIfier ... s 146
Back-Ending a Node ClassSifiCation...........ceeeeeererueercririnesesiresecsese e 147
Storing Node Configuration in LDAP..........ccovcereerirernsrnesesse e sessssessessssessessssssssssssssssssssssssnens 149
Installing RUDY LDAP LiDIAIIES.....cccouerireererrrssesesssssssessssssssessssssssssessnes 149
SEtting UpP the LDAP SEIVENccvueeeererrresessrsssesessssssssesessssssssesssnssssans 149
Adding the PUPPET SCHEMAcccoeirieeerirircsesisssse s se s asss e s s s ssas e e nnnnnsnnnnnes 150
Configuring LDAP iN PUPPEL......vveeeeetecesirerts s sss e e s se s s sssssssssssssssassnssssssssssnsssnns 150
E3 111 1P 7S 153
RESOUICES. .. .ueecuee i E s eSS e s 153
Chapter 6: Exporting and Storing Configuration..........ccuccmmnnsemnnnnsssssssmsssssssmsssssssnns 155
VirtUal RESOUICESccucirericirisieiresse s s 155
Declaring and Realizing @ Virtual RESOUICE..........c.ccceererceerere e 156
Applying the realize FUNCHON ...ttt 157
Making Virtual RESOUICES REAL.........c.oueeeeeieecrere et 157
Relationship-Chaining SYNTAX..........oieoeerireierie e 158
Getting Started with Exported and Stored Configurations...........ccceoveerenrrennsesesssesnsesesenenns 159
USiNg EXPOrted RESOUICEScoeererrerrersersessessessessessessessnnes 160
Automated SSH Public Host Key Management............cccoeerererierenieressersserssessssesessssessssessessssssessessssessssessssenaes 160
Exporting Load Balancer WOrker RESOUICES........couvuirererereesiessessessessesssssessesssnses 163
Automating Nagios SEIVICE CRECKS.......ccciurrererererereerersesersesessesesessssessesesssssssssesssssssessesessessssessssessssessensssssnaes 164
EXpiring Stale RESOUICESccccevceririiririr st sn e nn e n s 168
SUMMEAIY ...t e s s e s e s e s Re e e e e e e e aen s e e ae e s ae s e e sannnn e nrnnrnnnns 168
RESOUICES. ..ucuriviscr st 168
Chapter 7: Puppet CONSOIESuiccerrrmissnnnmmssssssnmssssssnnssssssssnssssssssnsssssssnssssssnnnnsssssnnnnsssss 169
THE FOTBMAN ...ttt e 169
10 L Yo 0] =T - T SRS 169
Importing Data from PUPPET ..o et sa e s p e r e e e p e r e e e 173
ConNECting YOUT FirSt CHENTccveeveeertrerte s seseresereesessesessesessesassessesessesessssassesassessssssassassessssesassesssnsssenanaens 174
Using FOreman as @n ENCccocvevriereriererers s ressesessessesessesessesassessssesssssssssassesassesssssssssssssssssesassesssssssesansens 176

xi

CONTENTS

Displaying Reports in FOr@MAN.............cccoruriieecrerrescrere et e s senn e 178
Searching for FActs in FOrEMAN ..ot 179
Puppet ENterprise CONSOIEccvververrerierrirrirserser sttt se e st se e e s sn s sn s sa s sn s sn s s sa e se s s 180
INStalling PUPPET ENTEIPIISE ...coveveeceerrecereresrssesesessse e sss e s s ss s s s ss e e s ssss s s sssasssssssssssnsssssssnes 180
Connecting PE AQeNnts t0 PE CONSOIE........couuerererrnesessrsssesesessssessssssssssssessaes 181
Adding ClasSeS 10 NOUESc.ceuverererrrreeriressesesessssesesessssssessssssssesessnnns 182
INVENTOTY SEIVICE.....cueeeeiteeeererrsee st e s e s s e e e s e e e A e e e A e Re e e R e Re e e e naasn e nenpnnnns 182
LiVe MANAGEMENTcceeeeeeerreesererrsseesesssss e s s e e e s e e e sssse e s s e e e s s se e e e s s e se e e e s sse e e e s nse e e e nsasn e nensnsnnes 183
0T 001310072 o SRS 184
INSTANALION ... —————————————————————————————— 185
Reviewing the Dashboard Tahs..........coeviiiirnerr e r e r e sr s sr s sn e e sn s 185
The Future of PUPPETDOArd ... e r s e sr e n e e e 188
BT 111 1= SRRSO 189
RESOUICES.....ccueierererereee e e se e s s e s s s e e e e e s e s e s e s e s e s e nennennsnnes 189
Chapter 8: Tools and Integrationcccuineeemmmmnmmmmmsssssssmmmr s ———————— 191
Puppet Forge and the Module TOO............ccecereerirceccr e ne s 191
Searching and Installing a Module from the FOrgeccouvvrriernnrccnscresssess s 192
GeNnerating @ MOGUIEcoeeeeeceee e ae e r e a e a e r e sn e s resn e sr e renrenne s 195
Managing Module DEPendeNnCIESc.cvverrerrerrerrersirsesserser s ss e sas s sas s sasssssasssssseses 197
PUPPET LIDFAIAN ...t se s ss s s a s e s s s s e s e se e e e nne s e e nsnnnns 197
2 1T 198
L0 0] 13 1 PSSR 199
Testing the MOAUIES ..o s s n e s n e n e s 200
L] T e 010 0 SRS 200
21 N 205
L] LT o] (11| SRS 207
Developing Puppet modules With Geppetto ... 210
SUMMEAIY ...ttt a s e e s s e ne s ae e e R e e e ae e n e e ae e naenan e nannnn e nnnnnnnnes 214
RESOUICES. ...cutiuisis s 215

xii

CONTENTS

Chapter 9: Reporting with Puppet.........cccccccnismmimmmnsmmmmssmmsssmmsssmssssssssssssssssssassns 217
GEttiNg STANEcoeeceeeeeeee e ———————————— 217
Configuring REPOITINGceeeverererrre e sae e sa e s sa s sa e sassae s s sa s sa e sa e sa s sassn s sn e sn s nn e sn s 219
REPOIt PrOCESSOISecveeecsersersersessessessessessessessesssssesssssesssssessasssssssssssesssssssssssssssssssssnssssesssnsansanes 219
0] o SRS 220
62T] 11T SRR 220
L1 (0 [0 o] | SRS 221
1111 222
0107 o]0 T<] (0 o TSRS 222
CUSTOM REPOILING......coeeeeeeeeeerrecie e sse e sr e s e sr e sa e n e sa e a e s aesn e snesa e n e nnenn e s e nnennennnnnnnns 222
Other PUPPET REPOITEIS.cueiveereerieererieeresseesesssesessseseessesssssessesasssesasssssssessssssssssssanesassnnesanes 225
SUMMAIY ...ttt e e e Re e A e e e Re e e e R e e e Re e et s Rene e e ene e naens 225
RESOUICES.ceiecereriesisseses s se s e sas s e n et s ae e s s R e e e s s ae e e n e e s an e n e 225
Chapter 10: Extending Facter and Puppet.........cccccciirmmnsmmmnssmmsssssmsssssssssssssssssssssassns 227
Writing and Distributing Custom Facts........c.cccvervrcrsrsrcer st 227
Configuring Puppet for CUSTOM FACES..........ouiocrreeeee e 227
WIiting CUSTOM FACES ...t 228
TESHNG ThE FACES ...t ae s 231
(5T 1 L T TP 231
Developing Custom Types, Providers and FUNCHIONS..........ccccoeevrnerrrcnesss e 232
Configuring Puppet for Types, Providers and FUNCLIONScccoverervereereresere e res e seresersesesesassesaesessenenaens 232
Writing @ PUPPet TYPE @Nd PrOVIETcccoeeeerererereereree e rereeres e resserse e ssesessesesaesas e sassesssssassesasssssesssnesasenaes 233
Writing a Parsed File TYpe @and ProVIErcccceerererererererererereres e sersesessesessesassessssesssssssesessessssessssesssenaes 238
A More CompleX TYPE @Nd PrOVIEYccceeerererererereerereesersesersesesesassessesessssessesessessssessssessessssssssessssessesesssssaes 241
Testing TYPES AN PrOVIAEIScceveeereerereerereerereresereesersesessesessesassessssessesessssssssssssessssessesesssssssssssessssessenessssnaes 245
Writing CUSTOM FUNCHIONSovreeecerterere et s se e se e e s e sa s ae e saesesaesesaesas e sae e sae e saesesae e s e sansesasnenans 245
SUMMEAIY ...ttt e e e e Re e R e Re e e Re e e ae e e e e Rene e e enernaen 248
RESOUICES.cueiuceserieeseses st n s s se s e e s s R ne s s Re e s na e e sRe e n e 248

xiii

CONTENTS

Chapter 11: MCOIECTIVEccuvesssmmsssssasssasssassssssssssssssnsssnsssmsssnssssssnsssnsssnsnsnsnsnssnsssnsnsannns 249
More Background 0n MCOIIECLIVEcceeuerrerreererrerie e sn e sn e n s sn s e e sn e sn e n s 249
Installing and Configuring MCOIECTIVE........cceverererrrrre s 250
Generating and Storing CErtifiCatesccverrerrierriere s s s s e se s e s e rae e ae e ae e s e sa s e sae e sae e saenanaens 252
VErifYiNg PEIMISSIONSceveeereerereerersereesereeserserersesesseraesessesessesessesassesassessesesassessssassesassesseessenssaesessessssessensssssanaes 253
5 (4 254
Installing MCOIIECHiVE PIUQG-INS.......ccoeeereeereccce e sae s saesn e sn e sn s sn e e nn s nne s 255
Puppet Agent MCOIIECHVE PIUG=INS........ccoceuruiiereririrescrerisesese s senssnnns 255
The Facter Plug-in for MCOIIECHVEcccouvueeeerireescreriee st nnn s 257
The NRPE Plug-in fOr MCOIECTIVE..........cceurreererereeeserissee s sesessssse e ssss e s s se s ss s e ssssssssssssssssssssssssasnnes 258
Addressing Hosts with Metadatacccceeveveneiercscsr e 260
AddItioNal PIUG=iNScoeeeeeerercrersessesessessessessessessessessessessessessessessesssssssssssssssssssssssessssssssassanses 261
1111 1P SRS 261
RESOUICES. ..ucurisiscr st 262
Chapter 12: Hiera: Separating Data from Code..........cocusmsmsmsmsssssmsmsssssssssssssssssnsssssnsass 263
The POWET Of HIBra.......cccvu v s 263
T 264
Installing Hiera on Earlier Versions of PUPPELcccoeeeeeccrc e sne s s e 265
Initial Hiera Configuration............cocoeeerenenencce e sss e ssesaesne e snesnssn s sn e sn e sn e nne s 266
Configuring @ Hiera Data DIFECIONYccocvurreierrirrescririre st nenp s 267
The Hiera Command-Line ULility.........ccccvvrrrrrnrinsinrirsersen st ses e e s sas s s snseas 267
Populating @ Hiera DAtafilecceoeeerrererrererire s s sereesersesersesessesessesae s sesesassassesassessesesassessesassesassesasssasnanaens 267
Performing @ HiEra LOOKUPccceeerererereerereerereseresesersssersesessesessesasessssessesesassassessssessensssssssensssesssesssssssssanaens 267
Using Puppet to Perform @ Hiera LOOKUP........ccvoeeurererrereererserersesesersssersesessesessssassessssessenssssssssessssessssesssnsssssasaens 268
{0 (0L TR (5 1T U] 1 268
Building DYN@mIiC HIBFAICRYccceeerereeereereresereresereesersesessesessesassessesessesesassassesassessenssssssssessssessssesssnsssenanaens 269
Hiera LOOKUPS USING VAHADIEScovvereecereereresere s eree e seseesesaesessessesessesesassassessssessesssssssssessssessssesssnssassanaens 269
Hiera Lookups Using Puppet With Variablesccourererrerrerereresseree e seresessesessessesessesessessssessssesssssssssasaens 270
Hierarchy Organizationccoceevcereriereesereseresereres e raesersesessesessesassessesessesesaesassesassessenssassessessssessssesasssssenanaens 271

xiv

CONTENTS

Complex DAata SIFUCTUIESccceeveevieereree s rree s e s s e se s ssess e s s saesn e sae s sn e s e s saesasesnesanennesanesanen 271
Returning Structured Data..........cceeeeeiereerere et r s reesesae e s rae s s e sae e s e sas e s s e e sae e saese s e sas e sae e saeananes 271
AITAY MBIGING ...cveuereeereerersererererersssersesersesessesassessssessesessesssssssssssassessssesssnsssssssssssssessssessesessesssessssessssersensrsssaraes 272
L b T T T T OSSOSO 273

Additional BaCKENS.........couermienmrmmeisssssss s s s 275
I TEN =T = T 277
LT S0 27 T (T o N 279
The MYSQL BACKEN?........cccceirrieererinreeseris e se s s s s st sasssssse st ssss e st sssssesessssesesessssesesessssssesssssssssnssssssssnsnns 280
THE gPG BACKENG.........couieeeeirerts e e s s e e a et b e e e e Re e e Re e r e e e R e e e Rennnnis 282

Hiera FUNCHiONS iN DePtN.......coeeeeceeeeee e n e e e 285
Other Hiera FUNCHIONS........c.co st 286

Module Data BiNAINGScccocerereririrereressesse e ssessessesssssssssssssssssssasssssssssssssssssssssssssssssssssssssnes 287

g 1= s B e 11 0] T 288
The create-resources() FUNCHON ..o sr e s e s n e re s nnas 289
Hiera @s an ENC........cocovnnniniiiiiiiiiisisisi s 290

3 =] T 292

R 111 1P 2SR 292

RESOUICES.....ciuiuirisesir s e 292

L | L

XV

About the Authors

Spencer Krum is a Linux and application administrator with UTi Worldwide Inc.,
a shipping and logistics firm. He lives and works in Portland. He has been using
Linux and Puppet for years. His interests are in DevOps and teaching the next
generation of hackers. He, like William, is a product of the Computer Action Team
at Portland State University. He has spoken, often with either William or Ben,

at Puppet Conf, Open Source Bridge, numerous BarCamps and user groups, and at
Cascadia IT Conf. Spencer participates in the Portland DevOps user group and the
Portland Puppet Users group. He enjoys hacking, tennis, StarCraft, and Hawaiian
food. You can find his GitHub at https://github.com/nibalizer.

William Van Hevelingen started with Linux and configuration management

as part of the Computer Action Team’s Braindump program at Portland State
University in 2009. He worked on the Wintel, Nix, and Networking teams as
avolunteer and later as a student worker helping to manage hundreds of
workstations, servers, and networking infrastructure. William now works full
time for the Computer Action Team (TheCAT), which provides IT for the Maseeh
College of Engineering and Computer Science at Portland State University, as the
Unix Team lead. He helps teach the Unix server portion of the Braindump, covering
topics like web servers, databases, storage, virtualization, and Puppet. William
speaks regularly at conferences including OpenSource Bridge, BeaverBarcamp,
CascadialT, and LinuxFestNW.

xvii

https://github.com/nibalizer

ABOUT THE AUTHORS

Benjamin Kero is a systems administrator with Mozilla’s Web Operations

team, where he deals with the nuances of administrating Mozilla’s large server
infrastructure and web stacks. Previously, Ben worked as a community systems
administrator for the Oregon State University Open Source Lab, where he helped
to maintain the infrastructure for dozens of high-profile open source projects,
including Drupal and kernel.org.

Based in Portland, Oregon, he speaks at conferences worldwide on all things
DevOps and scaling large-scale systems. He also participates in many local user
groups, such as the PDXPUG (Puppet User Group), Portland State University’s
Braindump program, and the OSU Linux User’s Group.

James Turnbull is the author of seven technical books about open source software and a long-time member of the
open source community. James has authored books about Docker, LogStash, and Puppet. He works for Venmo as VP
of Engineering. He was previously at Puppet Labs running Operations and Professional Services.

James speaks regularly at conferences including OSCON, Linux.conf.au, FOSDEM, OpenSourceBridge, DevOpsDays,
and a number of others. He is a past president of Linux Australia and a former committee member of Linux Victoria,
was Treasurer for Linux.conf.au 2008, and serves on the program committee of Linux.conf.au and OSCON.

Jeff McCune is a long-time Puppet community member and open source software advocate. He started off with
computers and Unix at a young age thanks to his parents’ company, Summit Computer Services. Before graduating
with his BS CSE degree, Jeff managed Mac OS X and Linux systems at the Mathematics Department at Ohio State
University, where he got started with configuration management and Puppet.

Jeff works for Puppet Labs, hacking on code and working with customers to improve their Puppet deployments.
Jeff also speaks regularly at conferences, including Apple’s World Wide Developer Conference, Macworld, Open
Source Bridge, Velocity, and others. He travels the world teaching and consulting on Puppet.

Jeff grew up in Ohio and currently lives in Portland, Oregon. His interests include hacking on microcontrollers,
anime, photography, music, hiking, and long walks on the beach.

xviii

http://kernel.org

About the Technical Reviewers

Lee Lowder is currently a Support Engineer at Puppet Labs, where he
troubleshoots and resolves issues for Puppet Enterprise customers. Prior to that,
he was very active in the Puppet community and used Puppet extensively at his
previous job. While his educational background is in accounting, specifically
operational auditing, his professional career has consisted of technical support,
retail sales management, and systems administration. The core goal of operational
auditing is to improve effectiveness and efficiency, and this is the philosophy that
drives him. He currently resides in Springfield, MO. “Automate All the Things!”

Daniele Sluijters was born in The Netherlands but raised for most of his childhood
in Brussels, Belgium. His fascination with computers started at a very young age,
not even being able to correctly pronounce the word back then. This fascination
grew and grew and led him to start managing small numbers of machines for
different organizations as a hobby. He eventually turned this hobby into his work
and field of study.

He is an operator by trade, strongly influenced by the DevOps movement and,
for the last few years, also doing more and more on the development side of things.
Within the Puppet community he is probably best known for bugging people about,
and speaking on the subject of, testing, testing, and testing modules at Puppet
Camps and as the author of Puppetboard.

Xix

Acknowledgments

I'would like to thank so many people for making this book happen. I would like to thank Mom and Dad for keeping
me in the game this long; I've used up about every extra life available at this point. I'd like to thank Mamgu and Dad
for getting me into computers at an early age. I'd like to thank Grandma and Grampa for making my college happen.
I'd like to thank Mrs. Alderman, Ashley, Beverley, and Ryan for giving me the goal to be a writer. I want to thank
Corbin for his early influence and constant aid, both in tech and in life.

I want to thank Janaka for making TheCAT. I want to thank Marut, Finch, CATastrophe, Johnj, Hunner, Jesusaurus
and everyone else at TheCAT who taught me ALL THE THINGS. I want to thank Donkey for 4 am Plaid Pantry runs
and for teaching me how to IP. I want to thank Greg Haynes for teaching me from the day I met him until today,
and for introducing me to the tech world. I want to thank Epitrope for opening the door to this book for me.

I want to thank Gary Kilmocwiz, Mike Kinney, Scot Lambert, Charles Hill, Lance Coombs and the rest of the UTi
DevOps crew for putting up with me while I did this and for being the best coworkers a guy could possibly want.

I want to thank my coauthors for being awesome enough to write this book with me. I want to thank the tech
reviewers for being so helpful; couldn’t have done it without you.

I'want to especially thank Krinkle (Colleen Murphy) for helping to edit out all of my bad English and giving
me a second read no matter what else she had to do that day. I want to especially thank Nightfly (Sage Imel) for his
help around some of the trickier sections of Puppet. Without the contributions of these two, this book would be
considerably worse. Both of them gave considerable donations of time and energy, and I really appreciate that.

I want to thank everyone at Puppet Labs who has done such an amazing job supporting us: Dawn, Lee, Reid,
Adrien, Hunter, Ben Ford, Eric0, Thomas Halgren, Brenan, Haus, Stahnma, Nigel, Nick F, Nick L, Henrik Lindberg,
Jeff McCune, Kara Sowles, Kent Bye, Charlotte, Aliza, and of course Luke Kaines. Without Puppet Labs there probably
wouldn’t be a Puppet, and without these individuals and their effort this book would not be what it is.

I also want to thank everyone at Apress for making this possible: Steve, Christine, Michelle, and James, you guys
held our hands the whole way and we really appreciate it. Also thanks to Kevin; you've been so understanding,
we promise to make up for it.

—Spencer Krum

Much love to the brilliant engineers at Puppet Labs who make a strong project to build an ecosystem around, and the
Puppet community members who surprise us with all these splendid tools to write about. Without you none of this
would be possible. I would like to express great praise to my esteemed co-authors, without which I would have never
had the opportunity or vitality to finish it through to completion. Finally, I would like to thank Apress for their top-
notch support making the publishing of this book possible.

—Ben Kero
I would like to thank my mother, who has always been there for me, and my father, for introducing me to the tech
world. I would like to thank John Harris teaching me how to be a sysadmin, Scott Andrew for being my mentor, Janaka

Jayawardena and Reid Vandewiele for teaching me Unix, and Spencer for pushing me farther than I thought possible.
And finally, thanks to all the CATs before me and all the new CATs who keep me inspired to never stop learning.

—William Van Hevelingen

xxi

Foreword

It's my pleasure to introduce the new, updated version of Pro Puppet. This book has proved popular since it was
published in May 2011, and it’s always in demand at conferences and technology events that Puppet Labs attends we
routinely run out of copies.

Things have changed a bit since the first edition of Pro Puppet. At that time, Puppet 2.7 had just been released,
and shortly after, we launched the very first version of Puppet Enterprise, our commercial product. As I write this
introduction, we're shipping Puppet Enterprise 3.1, and we're actively planning updates through 4.0.

Back in May 2011, there were about 170 modules in the Puppet Forge; today there are nearly 1,700, many
contributed by our large and fast-growing community. Speaking of community, more than 30 Puppet User Groups
around the world meet regularly to talk about all things Puppet; when the first edition of this book came out, PUGs
didn’t exist.

As a company, Puppet Labs has grown from 33 people at the time Pro Puppet was published to about 200 today.
We're able to offer a lot more resources and services to Puppet users, including our help site, ask. puppetlabs.com,
where anyone can ask or answer a question.

One of the most remarkable changes to me has been in who uses Puppet. A few years ago, Puppet users were
smart, innovative sysadmins responsible for a wide range of IT functions in smaller organizations. Today, many
Puppet users are smart, innovative sysadmins, developers and IT managers working in large enterprises. It's no longer
unusual to see environments with 50,000-plus nodes managed by Puppet. Today, Puppet users work in a wide range
of industries, including banking and finance, research science, technology, retail, e-commerce, government, telecom
and Internet services, and more. Wherever a business is looking for IT to provide a competitive advantage, you're
probably going to find Puppet.

I originally developed Puppet as a tool for system administrators, to allow them to focus on their goals rather than
on an infinite variety of technology. Computers should do the menial repetitive work, and people should get to do
the difficult (and fun) work involved in building and maintaining large-scale infrastructure. I wanted people to never
have to solve the same problem twice, so code reuse was critical. I knew that what really matters to customers are the
services they count on, not the nodes and technology that provide them.

I created a simple declarative language dedicated to server configuration for Puppet, so it would be quick and
easy for any reasonably competent sysadmin to tell any node—whether physical server, VM, switch, or router—what
its job was and how it should look, without having to know the exact steps to make that happen.

I'was looking at a world of increasingly heterogeneous data centers, and wanted to push it further, to where
said data centers would be treated as running software. We started by managing servers and workstations, but
now we're managing switches, routers, firewalls, storage arrays, and more. The API-driven world of the cloud is
shortening feedback cycles and putting time pressure on the entire technology pipeline. The best sysadmins and their
management teams are riding this edge, getting better technology to their users faster, and building tight feedback
cycles that turn IT into a competitive advantage.

Puppet Labs is one of the organizations driving that shift, and changes in Puppet technology over the past couple
of years are our efforts to further enable it. Authors Spencer Krum, William Van Hevelingen, Ben Kero, James Turnbull,
and Jeffrey McCune have done a great job of updating Pro Puppet for anyone who wants to take advantage of the full
capabilities Puppet offers.

xxiii

http://ask.puppetlabs.com

FOREWORD

This new edition covers the following:

XXiv

Hiera: An entirely new chapter is devoted to Hiera, a key/value lookup tool that lets you
set node-specific data without repeating yourself. Hiera makes Puppet better by keeping
site-specific data out of your manifests, and makes it easier to configure your own nodes by
using a configurable data hierarchy. You'll find it easier to use Puppet modules with Hiera,
and to publish your own modules for collaboration. This new edition contains a complete
introduction to the tool, as well as its advanced merging behaviors.

Geppetto: Geppetto is an Eclipse-based IDE designed for writing Puppet code. The book
has been updated to cover the latest version of Geppetto, including its integration with
services such as the Puppet Forge.

MCollective: In today’s highly dynamic, self-service environments, it's more necessary than
ever to discover the resources you are dealing with rather than statically declaring them

all. MCollective provides granular control across your entire infrastructure, whether you're
doing basic service maintenance or managing complex application rollouts. You can also
progressively deploy changes, so you can move quickly with a high degree of confidence.
This new edition of Pro Puppet has been updated for MCollective 2.

Puppet 3: Puppet 3 was released in 2012 with many changes, including vastly reduced
agent run time, faster catalog compilation times, and seamless integration with Hiera. This
new edition has been fully updated to Puppet 3, and all examples have been tested against
its new parser.

PuppetDB: With the addition of a centralized storage service named PuppetDB, you can
manage twice as many nodes as before. This PostgreSQL-backed datastore for Puppet has
a feature-rich AP, and it has already spawned the development of derivative open source
projects like Puppetboard. This new edition of Pro Puppet introduces you to PuppetDB and
takes you step by step through installation, configuration, and use.

Puppet Enterprise Console and Puppetboard: The Puppet Enterprise Console is a
graphical user interface that functions as the primary interface for managing and operating
your Puppet infrastructure, with tools for reporting; error discovery and analysis; resource
discovery and comparison; and much more. Puppetboard is a new web interface for
PuppetDB that supplants the reporting functionality of Puppet Dashboard for open source
Puppet. Both are new since the first edition of Pro Puppet, and this volume has been
updated accordingly. Foreman, a project of RedHat in a similar space, is also discussed.

Additional Tools: There is a large set of additional tools that make Puppet useful
across a wide range of operating systems, platforms, and technologies. The authors have
updated this section of the book to include tools such as puppet-1lint, puppet-rspec,
travis-ci integration, r10k and puppet-librarian. The section leads with an updated,
step-by-step guide to the Puppet Module tool, which allows you to search the Puppet
Forge from the command line; list, upgrade, and install modules; and resolve and install
module dependencies.

Scaling: Puppet and its related software are fantastically scalable. This book covers a
complete example of how organizations traditionally scale Puppet, along with alternative
options like running Puppet in a masterless mode. While this is rarely done with Puppet
Enterprise, because of its enhanced scalability out of the box, it is particularly useful in
some situations and environments.

FOREWORD

If this is your first introduction to Puppet, welcome. We’re delighted to have you on board, and I hope you'll take
full advantage of our free resources, including these:
Ask.puppetlabs.com
Puppet Users Google Group (https://groups.google.com/forum/#! forum/puppet-users)
Docs.puppetlabs.com

Training at puppetlabs.com/learn

Our IRC channel (http://webchat.freenode.net/?channels=puppet). Authors of this
book lurk in #puppet as nibalizer, blkperl, and bkero, should you wish to reach out to them.

For those of you who already use Puppet, I'm confident this updated version of Pro Puppet will help you expand
your mastery. All the resources above are available to you too, and I hope you'll try out the ones you haven’t used yet.
May all your problems be tractable, yet enjoyably challenging.

Yours,

—Luke Kanies, Founder and CEO, Puppet Labs

XXV

http://Ask.puppetlabs.com
https://groups.google.com/forum/#!forum/puppet-users
http://Docs.puppetlabs.com
http://puppetlabs.com/learn
http://webchat.freenode.net/?channels=puppet

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Foreword
	Chapter 1: Getting Started with Puppet
	What Is Puppet?
	Deployment
	The Configuration Language and Resource Abstraction Layer
	The Configuration Language
	The Resource Abstraction Layer

	The Transactional Layer

	Selecting the Right Version of Puppet
	Installing Puppet
	Installing on Red Hat Enterprise Linux and Fedora
	Installing EPEL Repositories
	Installing Puppet Labs Repositories
	Installing the EPEL and Puppet Lab Packages
	Installing Via RubyGems

	Installing on Debian and Ubuntu
	Installing on OpenIndiana
	Installing on Solaris 10 and 11
	Installing from Source
	Installing on Microsoft Windows
	Installing on Microsoft Windows Graphically
	Installing on Microsoft Windows Using PowerShell

	Installing on the Mac
	Installing Puppet Open Source on Apple Mac OS X via the Graphical Installer
	Installing Puppet Open Source on Apple Mac OS X via the Command Line

	Installing on Other Platforms

	Configuring Puppet
	The site.pp File
	Firewall Configuration
	Starting the Puppet Master

	Connecting Our First Agent
	Completing the Connection

	Creating Our First Configuration Item
	Adding a Node Definition

	Creating Our First Module
	Module Structure
	The init.pp file
	Applying Our First Configuration

	Summary
	Resources

	Chapter 2: Building Hosts with Puppet
	Getting Started
	Installing Puppet
	Integrating and Bootstrapping Puppet with Kickstart

	Configuring Nodes
	Working with Similar Hosts
	Using External Sources
	Default Node
	Node Inheritance
	Variable Scoping
	The Puppet Style Guide

	Making (More) Magic With Modules
	Version-Controlling Your Modules
	Creating a Module to Manage SSH
	The ssh::install Class
	The ssh::config Class
	The ssh::service Class

	Creating a Module to Manage Postfix
	The postfix::package Class
	The postfix::config Class
	The postfix::service Class

	Managing MySQL with the mysql Module
	The mysql::install Class
	The mysql::config Class
	The mysql::service Class

	Managing Apache and Websites
	The apache::install Class
	The apache::service Class
	The Apache Definition

	Managing Puppet with the Puppet Module
	The puppet::install Class

	Summary
	Resources

	Chapter 3: Developing and Deploying Puppet
	The puppet apply Command and Modes of Operation
	Printf with Puppet
	Testing Puppet Behavior with Notify
	Using Puppet Apply with Manifest Files

	Foreground Puppet Master
	Developing Puppet with Vagrant
	Vagrant Initial Setup
	Booting the Vagrant Box
	Configuring Puppet on the Vagrant Box
	Testing Puppet with Vagrant
	Destroying and Re-Creating the Vagrant Box

	Environments
	Maintenance of Modules
	Tools for External Modules
	Configuring Puppet Environments
	Populating the New Environments
	Creating a Clone

	Making Changes to the Development Environment
	Testing the New Environments with the Puppet Agent
	Environment Branching and Merging
	Setting Up a Central Repository
	Creating a Bare Repository for the Modules
	Making Individual Changes

	Dynamic Puppet Environments with Git Branches
	The Git Hook

	Summary
	Resources

	Chapter 4: Scaling Puppet
	Identifying the Challenges
	Running the Puppet Master with Apache and Passenger
	Installing Apache and Passenger
	Installing Apache and Passenger on Debian/Ubuntu LTS
	Installing Apache and Passenger on Enterprise Linux

	Configuring Apache and Passenger

	Testing the Puppet Master in Apache
	Load-Balancing Multiple Puppet Masters
	HTTP Load Balancing
	Puppet Master Worker Configuration
	Front End Load Balancer Configuration Details
	Testing the Load Balancer Configuration

	Scaling Further
	Puppet Certificate Authority Service Externalization
	Puppet CA Worker Configuration
	Create Endpoint Certificates for CA Hosts
	Sync CA Data to CA Hosts
	Configure Apache on CA Hosts
	Configure Load Balancer to use external CA in HA Configuration
	Test the HA CA Configuration

	Synchronizing the Hot Standby Puppet CA Directory
	Puppet CA Hot Standby
	Primary Puppet CA Fail Back

	Load Balancing Alternatives
	Load Balancing with DNS Round Robin
	Load Balancing with DNS SRV records
	Load Balancing with a TCP Load Balancer
	Anycast
	Masterless Puppet

	Measuring Performance
	Splay Time
	Summary
	Going Further
	Resources

	Chapter 5: Externalizing Puppet Configuration
	External Node Classification
	Configuring Nodes Using an External Node Classifier
	An External Node Classifier in a Shell Script
	Parameterized Classes in YAML
	A Ruby External Node Classifier
	A Perl External Node Classifier
	Back-Ending a Node Classification

	Storing Node Configuration in LDAP
	Installing Ruby LDAP Libraries
	Setting Up the LDAP Server
	Adding the Puppet Schema
	Configuring LDAP in Puppet

	Summary
	Resources

	Chapter 6: Exporting and Storing Configuration
	Virtual Resources
	Declaring and Realizing a Virtual Resource
	Applying the realize Function
	Making Virtual Resources Real
	Relationship-Chaining Syntax

	Getting Started with Exported and Stored Configurations
	Using Exported Resources
	Automated SSH Public Host Key Management
	Exporting Load Balancer Worker Resources
	Automating Nagios Service Checks

	Expiring Stale Resources
	Summary
	Resources

	Chapter 7: Puppet Consoles
	The Foreman
	Installing Foreman
	Running the Foreman Installer
	Configuring Foreman

	Importing Data from Puppet
	Connecting Your First Client
	Using Foreman as an ENC
	Adding Classes to Nodes
	Parameterized Classes

	Displaying Reports in Foreman
	Searching for Facts in Foreman

	Puppet Enterprise Console
	Installing Puppet Enterprise
	Connecting PE Agents to PE Console
	Adding Classes to Nodes
	Inventory Service
	Live Management

	Puppetboard
	Installation
	Reviewing the Dashboard Tabs
	Nodes
	Facts
	Reports
	Query

	The Future of Puppetboard

	Summary
	Resources

	Chapter 8: Tools and Integration
	Puppet Forge and the Module Tool
	Searching and Installing a Module from the Forge
	Generating a Module
	Managing Module Dependencies
	Puppet Librarian
	R10K
	Puppet-lint

	Testing the Modules
	rspec-puppet
	TravisCI
	rspec-system

	Developing Puppet modules With Geppetto
	Summary
	Resources

	Chapter 9: Reporting with Puppet
	Getting Started
	Configuring Reporting
	Report Processors
	log
	tagmail
	rrdgraph
	http
	puppetdb

	Custom Reporting
	Other Puppet Reporters
	Summary
	Resources

	Chapter 10: Extending Facter and Puppet
	Writing and Distributing Custom Facts
	Configuring Puppet for Custom Facts
	Writing Custom Facts
	Testing the Facts
	External Facts

	Developing Custom Types, Providers and Functions
	Configuring Puppet for Types, Providers and Functions
	Writing a Puppet Type and Provider
	Creating Our Type
	Creating the Subversion Provider
	Using Your New Type

	Writing a Parsed File Type and Provider
	The Shells Type
	The Shells Provider

	A More Complex Type and Provider
	The httpauth Type
	The httpauth Provider

	Testing Types and Providers
	Writing Custom Functions

	Summary
	Resources

	Chapter 11: MCollective
	More Background on MCollective . . .
	Installing and Configuring MCollective
	Generating and Storing Certificates
	Verifying Permissions

	Testing
	Installing MCollective Plug-ins
	Puppet Agent MCollective Plug-ins
	The Facter Plug-in for MCollective
	The NRPE Plug-in for MCollective

	Addressing Hosts with Metadata
	Additional Plug-ins
	Summary
	Resources

	Chapter 12: Hiera: Separating Data from Code
	The Power of Hiera . . .
	Lists

	Installing Hiera on Earlier Versions of Puppet
	Initial Hiera Configuration
	Configuring a Hiera Data Directory

	The Hiera Command-Line Utility
	Populating a Hiera Datafile
	Performing a Hiera Lookup
	Using Puppet to Perform a Hiera Lookup
	Exploring the Hierarchy
	Building Dynamic Hierarchy
	Hiera Lookups Using Variables
	Hiera Lookups Using Puppet with Variables
	Hierarchy Organization

	Complex Data Structures
	Returning Structured Data
	Array Merging
	Hash Merges

	Additional Backends
	The File Backend
	The JSON Backend
	The MySQL Backend
	The gpg Backend

	Hiera Functions in Depth
	Other Hiera Functions

	Module Data Bindings
	Hiera Examples
	The create-resources() Function
	Hiera as an ENC

	Hiera-2
	Summary
	Resources

	Index

