

Andrew Crouthamel

BIRMINGHAM - MUMBAI

Mastering Wireshark 2
Copyright 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Prachi Bisht
Content Development Editor: Trusha Shriyan
Technical Editor: Sayali Thanekar
Copy Editor: Laxmi Subramanian
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Jisha Chirayil
Production Coordinator: Shraddha Falebhai

First published: May 2018

Production reference: 1290518

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-652-1

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributor

About the author
Andrew Crouthamel is an experienced senior network engineer and IT trainer who resides
in Doylestown, PA, and currently works with organizations including NASA, ESA, JAXA,
Boeing, and the US Air Force. His passion for teaching is reflected in his work, which is
filled with excitement and real-world anecdotes.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents
Preface 1

Chapter 1: Installing Wireshark 2 5
Installation and setup 5

Installing Wireshark on Windows 6
Installing Wireshark on macOS 11
Installing Wireshark on Linux 14

Summary 21

Chapter 2: Getting Started with Wireshark 22
What's new in Wireshark 2? 23
Capturing traffic 30

How to capture traffic 30
Saving and exporting packets 36
Annotating and printing packets 43
Remote capture setup 53

Prerequisites 53
Remote capture usage 58
Summary 60

Chapter 3: Filtering Traffic 61
Berkeley Packet Filter (BPF) syntax 61
Capturing filters 63
Displaying filters 67
Following streams 74
Advanced filtering 77
Summary 82

Chapter 4: Customizing Wireshark 83
Preferences 83

Appearance 84
Layout 85
Columns 86
Fonts and colors 87

Capture 88
Filter buttons 89
Name resolution 90
Protocols 91
Statistics 93
Advanced 94

Table of Contents

[ii]

Profiles 94
Colorizing traffic 98

Examples of colorizing traffic 107
Example 1 107
Example 2 111

Summary 114

Chapter 5: Statistics 115
TCP/IP overview 115
Time values and summaries 121
Trace file statistics 128

Resolved addresses 128
Protocol hierarchy 130
Conversations 133
Endpoints 136
Packet lengths 138
I/O graph 139
Load distribution 141
DNS statistics 143
Flow graph 144

Expert system usage 147
Summary 153

Chapter 6: Introductory Analysis 154
DNS analysis 154

An example for DNS request failure 161
ARP analysis 163

An example for ARP request failure 168
IPv4 and IPv6 analysis 169
ICMP analysis 174

Using traceroute 178
Summary 181

Chapter 7: Network Protocol Analysis 182
UDP analysis 182
TCP analysis I 187
TCP analysis II 197
Graph I/O rates and TCP trends 203

Throughput 204
I/O graph 209

Summary 216

Chapter 8: Application Protocol Analysis I 217
DHCP analysis 217
HTTP analysis I 222

Table of Contents

[iii]

HTTP analysis II 227
FTP analysis 230
Summary 235

Chapter 9: Application Protocol Analysis II 236
Email analysis 236

POP and SMTP 237
802.11 analysis 244
VoIP analysis 254
VoIP playback 266
Summary 271

Chapter 10: Command-Line Tools 272
Running Wireshark from a command line 272
Running tshark 277
Running tcpdump 280
Running dumpcap 285
Summary 287

Chapter 11: A Troubleshooting Scenario 288
Wireshark plugins 288

Lua programming 292
Determining where to capture 296
Capturing scenario traffic 296
Diagnosing scenario traffic 300
Summary 304

Other Books You May Enjoy 305

Index 308

Preface
Wireshark, a combination of Kali and Metasploit, deals with the second to the seventh
layers of network protocols. The book will introduce you to various protocol analysis
methods and teach you how to analyze them. You will discover and work with some
advanced features, which will enhance the capabilities of your application. By the end of
this book, you will be able to secure your network using Wireshark 2.

Who this book is for
If you are a security professional or a network enthusiast who is interested in
understanding the internal working of networks and have some prior knowledge of using
Wireshark, then this book is for you.

What this book covers
, Installing Wireshark 2, teaches you how to install Wireshark on Windows,

macOS, and Linux.

, Getting Started with Wireshark, tells you about what's new in Wireshark 2. It will
also teach you how to capture traffic and how to save, export, annotate, and print packages.

, Filtering Traffic, teaches you about BPF syntax and how to create one. It further
explains how to use BPF to apply it as a capture filter and reduce the packets, how to create
and use display filters, and how to follow streams both TCP and UDP.

, Customizing Wireshark, explains how to apply preferences in Wireshark and
customize them. You will learn how to create profiles for different analysis requirements.

, Statistics, provides an overview of TCP/IP and time values and summaries. You
will also take a look at the expert system usage feature of Wireshark.

, Introductory Analysis, explains the basics of DNS and some DNS query
examples. You will also learn about ARP resolution and how to resolve an IP address to a
physical MAC address on an Ethernet bus. You will also acquire knowledge about IPv4 and
IPv6 headers, the flags within them, and the fragmentation.

Preface

[2]

, Network Protocol Analysis, teaches you about UDP analysis: the connectionless
protocol, TCP analysis: the connection-oriented protocol, and finally, graphing I/O rates
and TCP trends: visualization of the data analyzed.

, Application Protocol Analysis I, talks about HTTP, both in an unencrypted fashion
and an encrypted fashion, and how to decrypt that. You will also look into FTP in all of its
many flavors, including active mode, passive mode, and the encrypted flavors of FTPS and
SFTP.

, Application Protocol Analysis II, teaches you email analysis using POP and SMTP.
We will also look at VoIP analysis using SIP and RTP.

, Command-Line Tools, teaches you how to run Wireshark from the command
line, tshark, tcpdump, and running dumpcap.

, A Troubleshooting Scenario, covers troubleshooting a specific issue within
Wireshark.

To get the most out of this book
You will need to have Wireshark installed in a Windows/Linux/macOS system.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:

.

Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "So, is the next generation of the file extension."

Any command-line input or output is written as follows:

nslookup wireshark.org 8.8.8.8

Preface

[3]

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"We can see the target in the Address Resolution Protocol (request) option."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

.

Preface

[4]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .

11
Installing Wireshark 2

In this chapter, we'll cover the following topics:

Installation and setup
Installing Wireshark on Windows
Installing Wireshark on macOS
Installing Wireshark on Linux

Installation and setup
In this section, we'll take a look at installing Wireshark on Windows and installing
Wireshark on macOS and Linux.

Installing Wireshark 2 Chapter 1

[6]

Installing Wireshark on Windows
You will need to perform the following steps:

Go to the web page:1.

When you get there, scroll down on the home page and click on Download.2.
The latest version of Wireshark will be visible. Select the installer for the version3.
of Windows that you are currently running.

Most people on a modern computer, on a modern version of Windows,
will be running 64-bit.
If you happen to be running an older version of Windows on 32-bit or
older hardware, make sure you select the 32-bit version. If you're not sure
which one to use, do the following:
Open your Control Panel, go to System and Security, and click on the
System link. In the System section, you'll see that it says System type: 64-
bit Operating System. If you have a 32-bit, it'll show that here as well.

Back on the download Wireshark page, download the version that you need, and4.
run that file; now, click on Next to begin the setup.

Installing Wireshark 2 Chapter 1

[7]

Read the License Agreement, click on I Agree, and select the features of5.
Wireshark that you wish to include. Most people include all of the defaults.
You'll see here that we have the main Wireshark application; we have the classic
interface version of Wireshark; and we have TShark, which is a command-line
version of running Wireshark; as well as some plugins, the User's Guide, and
some additional tools:

Installing Wireshark 2 Chapter 1

[8]

We'll go ahead and accept the defaults, and then click on Next. And, in this6.
window, we can go ahead and customize what shortcuts show up and whether
file extensions are associated to Wireshark. We're going to turn off the Wireshark
Legacy Quick Launch Icon and Wireshark Legacy Start Menu Item:

Go ahead and click on Next, and select a location for Wireshark to install. We'll7.
select the defaults here as well.

Installing Wireshark 2 Chapter 1

[9]

And on the next page here, it says: Install WinPcap? If you don't have WinPcap8.
installed, leave that checked and it will install it as part of the install process:

WinPcap is the driver that allows Wireshark to interface with your
network card. WinPcap is required for it to be able to view all the packets.

Click on Next.9.

You can also install USBPcap, which allows you to view the traffic on a
USB connection. Most people won't need this, so we'll leave that
unchecked.

Installing Wireshark 2 Chapter 1

[10]

Go ahead and click on Install and Wireshark will now install.10.
Partway through the install, the WinPcap installer will then run, and we'll go11.
ahead and click on Next.
Read the License Agreement and click on I Agree. You can then decide whether12.
or not you want the WinPcap driver to run at boot time. Most people allow it to
do so. We'll leave that as default, and click on Install.
That will finish very quickly; then click on Finish.13.
The Wireshark install will then continue. When the text window says completed,14.
go ahead and click Next; and then you can select whether or not you want to run
Wireshark at that moment, and click on Finish.

Once the Wireshark GUI loads up, you are done:

Installing Wireshark 2 Chapter 1

[11]

In the next section, we'll go over how to install Wireshark on macOS and Linux.

Installing Wireshark on macOS
To install Wireshark on macOS, perform the following steps:

Start by going to the web page.1.
When you're on the web page, scroll down on the main page, and click on2.
Download. The latest version of Wireshark will be displayed.
Go down to macOS 10.6 and later Intel 64-bit .dmg, and click on it to download:3.

At this point, we can choose to save the file to our Downloads folder and then4.
open it, or simply open it directly off the web page with the DiskImageMounter
(default).
Go ahead and click on OK. It downloads the file and opens it up.5.

Installing Wireshark 2 Chapter 1

[12]

We can then double-click on the file, and click on Continue:6.

Read the License Agreement and click on Continue again, and then on Agree to7.
indicate that you agree to the license agreement.

If you wish to change the install location, you can do so now.

Click on Install.8.
Enter your administrator credentials and click on Install Software.9.
Once the installation is successful, click on Close.10.

Installing Wireshark 2 Chapter 1

[13]

If you go to your applications list in the lower right, and scroll down, you should11.
see Wireshark at the bottom of the list. You can select Wireshark, and you can see
that it's now loaded:

Once Wireshark is up and running, that's it you're done.

Installing Wireshark 2 Chapter 1

[14]

Installing Wireshark on Linux
Installing Wireshark on Linux will differ, based on the distribution that you're using. Here,
I'm using one of the most common distributions available: Ubuntu. In order to install
Wireshark, perform the following steps:

We'll go to the Ubuntu software application; go ahead and click on that and we'll1.
search for :

Synaptic is a package manager similar to the Ubuntu software application,
but it gives you more control.

Simply click on Install; enter your administrator password (your root password)2.
and the software will be installed:

Installing Wireshark 2 Chapter 1

[15]

Go ahead and click on Synaptic Package Manager to open that up. Enter in our3.
credentials again, and now we have our Synaptic application loaded:

Installing Wireshark 2 Chapter 1

[16]

This is again very similar to the Ubuntu software application, but it's less pretty.4.
Click on the Search button, and we will search for Wireshark. Enter 5.
and click on Search, and you'll see everything that has Wireshark in its name or
description now shows up in the package list:

Installing Wireshark 2 Chapter 1

[17]

We'll scroll down and select the main wireshark package, just the one that says6.
Wireshark, as shown in the following screenshot:

Installing Wireshark 2 Chapter 1

[18]

So we'll select that; click on that, and select Mark for Installation. It will then ask7.
you if it's okay to install other packages that are required. We can say sure, that's
fine; Mark them for installation as well. So now all of our dependencies will be
installed, as well:

Installing Wireshark 2 Chapter 1

[19]

We can then go up and click on Apply, and it'll tell us that we'll be installing the8.
following packages. Click on Apply again, and Synaptic will go ahead and
download and install all the programs that we've selected:

At this point, you'll receive a window popup asking you if non-superusers
should be able to capture packets. I would recommend selecting Yes. That
will allow you to separate your root user from your standard users, but
still allow you, as a standard user, to capture packets.

Installing Wireshark 2 Chapter 1

[20]

Once everything is complete, you'll receive a Changes applied window. It'll say:9.
Successfully applied all changes. You can now close the window.
Simply click on Close, and you'll see everything here marked in green is now10.
installed, including Wireshark:

So, at this point, we can close this program as well as the Ubuntu software. Next,11.
click on the Search button in the upper left corner of the interface, and we'll type
in . It automatically shows that Wireshark is here. We can simply
click on that and it will load Wireshark.
At this point, once Wireshark loads, you're done.12.

Installing Wireshark 2 Chapter 1

[21]

Summary
In this chapter, you've learned how to install Wireshark on both macOS and
Linux specifically, Ubuntu.

In , Getting Started with Wireshark, we are going to take a look at what's new in
Wireshark 2, capturing traffic, saving and exporting packets, annotating and printing
packets, remote capture setup, and remote capture usage.

22
Getting Started with Wireshark

In this chapter, we'll cover the following topics:

What's new in Wireshark 2
Capturing traffic
Saving and exporting packets
Annotating and printing packets
Remote capture setup
Remote capture usage

Getting Started with Wireshark Chapter 2

[23]

What's new in Wireshark 2?
There's a new version of Wireshark out a new major version that has many interesting
features. Here, you can see the new Qt GUI:

It looks very similar to the Legacy GTK GUI, with few minor tweaks. The main menu bar
here has had some icons changed and removed; the general interface is a little bit cleaner.
All the general functionality, though, is all the same. Capture options are on the upper left-
hand side and they are denoted by a gear icon. When you click on the gear icon, you have
multiple tabs for Input options, Output options, and general Options:

Getting Started with Wireshark Chapter 2

[24]

When you click on Edit | Preferences..., you can see the preferences window, as shown in
the following screenshot. Options such as Show up to makes it easy to navigate and view
what you need to see:

Getting Started with Wireshark Chapter 2

[25]

As shown in the following screenshot, on the left-hand side, you can see the related packets
diagram show up, based on what you select. So if you select different packets, this will
change in size and shape; and what might appear for you is then what you select. This
makes it easy to pick out packets that are related to each other without having to follow
TCP or UDP streams:

Getting Started with Wireshark Chapter 2

[26]

Under the Statistics menu that is present in the menu bar, many of these statistics options
now have a similar-looking window, as shown in the following screenshot. If you look at
how the buttons, filters, and general interface is set up, they're all now standardized and
look very, very similar to each other, which I'm sure makes coding much easier for those
who work on the Wireshark code:

Getting Started with Wireshark Chapter 2

[27]

Click on Statistics | I/O Graph; now you can see the Wireshark IO graph. In the bottom
left-hand, you can click on the plus icon and add multiple items to the chart on your IO
graph, and you can do this an unlimited number of times:

Getting Started with Wireshark Chapter 2

[28]

Additionally, any changes you make in here are saved to your profile. With this graph, you
can also click on Save As... and select different file formats to choose from:

Getting Started with Wireshark Chapter 2

[29]

Click on Analyze | Follow | UDP Stream; you can see the follow stream dialog box has
been updated so that it now allows you to select whether it's the entire conversation or just
one side at a time. It also allows you to search for text within:

In the preceding screenshot you can see the context-aware hints in action. Within this
stream, if you look at the bottom, you have some information such as client packets, server
packets, and so on, that changes based on what you're hovering over. The main capture
window will change to that actual packet.

This is very handy for jumping through the data and being able to see it in relation to the
entire capture.

Let's now see how we'll capture traffic and get the first packets in that main window.

Getting Started with Wireshark Chapter 2

[30]

Capturing traffic
One of the first things I'm sure you want to do in Wireshark is to begin capturing some
traffic so that you can get used to the utility and possibly diagnose some issues on your
own network. In this section, we'll talk about exactly that: where to capture that traffic and
how to capture it.

Wireshark needs to receive packets in one way or another, so that you may begin analyzing
the data and performing your network diagnostics. There are several ways of doing so in
Wireshark. One way is to begin capturing on a local device with Wireshark installed
through the GUI. You also have the option of doing so through a command-line. You can
capture remotely from a Wireshark install on a management computer, for example. It can
retrieve the packets being received and sent from a device somewhere else on your
network, using a special driver install. You can also capture the traffic inline on the wire,
which means you place a device called a test action port (TAP) somewhere along the data
path that you need to diagnose, and it will then send that data back to your diagnostic
utilities, one of which could possibly be Wireshark. And lastly, we'll go over how to store
packets locally on a internetwork device (specifically, a Cisco router or switch) for export
into Wireshark as a file.

How to capture traffic
In order to capture traffic inline for Wireshark, you need to place some sort of device on the
wire where it can see the traffic being sent and received, and then replicate that traffic to
additional ports for your diagnostic machines, which might be possibly running Wireshark,
for example. One of the early devices that we can use for older networks that we're running
half duplex is the hub. This is the predecessor to the switch, and it has a very basic
functionality where it sees the electrical signals being sent across the wire, and it replicates
those electrical signals out all the other ports that it has, without any care as to what's on
these actual ports. It's just a splitter, basically. That's great for a slower, older, half-duplex
network; but for a modern, switched, full-duplex network, you'll need something a little bit
fancier. One of the devices that you could use is a TAP.

Getting Started with Wireshark Chapter 2

[31]

There are four different TAPs available:

Non-aggregating TAPs
Aggregating TAPs
Regenerating TAPs
Link aggregation TAPs

Each one of these TAPs have different functions. I mentioned switched port analysis
(SPAN) ports or port mirroring. In a modern-switched network, this is a very common way
of receiving traffic. If you have a managed switch, such as a Cisco switch or whoever's it
might be, you can go into the switch and tell it to replicate the traffic that it sees on one port
to a different port. This port could then be connected to your Wireshark machine to capture
traffic. It's very useful for modern networks because there's no other hardware required.
You can just go into the switch and tell it to replicate the data out to your monitoring
system. In order to capture traffic on wireless, you need to be aware that there are multiple
modes that you could use. There are two modes that we will be discussing:

Monitor mode: This mode receives all packets on a specified channel. So, in the
US we have 11 channels on 2.4 GHz, for example. You could tell your network
card or wireless card to receive all traffic on channel number 3, and then it would
capture all of that traffic for any SSID and any network that is on channel 3.
Promiscuous mode: This mode is more common to find in your wireless drivers,
and it allows you to receive all packets on a connected SSID, on a connected
network. If you're connected to your work network or your home network-
whatever it is you're trying to diagnose-it'll capture anything that's traversing
that network name and that SSID. But it will ignore any others on the same
channel, and it will certainly ignore anything else on any other channel, as well.

In the following screenshot, we can see that Wireshark is running. You can see that I have a
list of interfaces here, including a local area connection and some virtual adapters. I do not
have any wireless adapters on this computer, or else they would show up here as well. And
any other additional network interface controller (NIC) cards that you might have-wired
cards, it doesn't matter-they'd all show up here in a list:

Getting Started with Wireshark Chapter 2

[32]

You will also see that there's a chart that's continuing to be drawn by Wireshark, and it's
showing us the amount of data that it sees on each connection. This is actually pretty
useful, especially if you have a diagnostic computer that has many different interfaces the
different SPAN ports, or whatever it might be. Maybe you turned on SPAN to a specific
port that's receiving a lot of data, and you don't know which one it's connected to on the
monitoring system. You could take a look here. Whichever port is receiving the most data
or the expected amount of data might be the one that you want to try and capture on. So I
find that useful on, for example, crowded systems.

Getting Started with Wireshark Chapter 2

[33]

In order to capture traffic, all you have to do in the latest version of Wireshark is double-
click on that and it will begin capturing your traffic, and you can see that traffic begins to
scroll by. In this computer, I'm not actually doing anything which is very interesting,
considering how much traffic is being sent and received, but there are services that are
running in the background and there's possibly minimized web browsers, and things like
that. But you'll see there's quite a bit of communications just on a standard, idling
computer:

Getting Started with Wireshark Chapter 2

[34]

In order to stop this capture, you just go up to the top and click on the stop icon:

You'll notice that the packets were scrolling by and being updated in real time. Well, this is
useful for some situations it might not be useful for all. So, if you have a system that's
receiving a lot of data, for example, possibly gigabits per second or if you're trying to run
this on a computer that's very old and slow, that might not be an ideal situation, especially
if you're using the GUI.

Getting Started with Wireshark Chapter 2

[35]

So you can turn that off so that it doesn't use the graphics card and processor power to try
and update this screen for you in real time. In order to do that, perform the following steps:

Click on the gear icon, as shown in the following screenshot:1.

Go to Options, and you can see that there are some check boxes here that we can2.
turn off. So, you can see the Update list of packets in real-time. If I uncheck that,
it will prevent the list from populating as it continues to receive packets, and I
can turn off Automatically scroll during live capture. You will notice that the
scroll bar on the right went down to the very bottom. If I turn off Automatically
scroll during live capture, it would remain up at the top. So these two things are
very helpful to disable if you are running on an older computer, like I mentioned:

You can also select multiple interfaces. If you go back up to that Options3.
selection and you look at the Input tab, you can select multiple interfaces with
the Shift key; or, with the Ctrl key, you can select them individually and then
click on Start, and it will be then capturing on all the interfaces that you selected.
Depending on your situation, that may be a useful feature.

Getting Started with Wireshark Chapter 2

[36]

In this section, we went over some different ways of capturing packets; how to get them
into your Wireshark capturing system. Up next, we will save those packets and export
them in various ways.

Saving and exporting packets
In this section, we'll take a look at the following subtopics:

How to save packet captures
How to save selected sections of packets, individual packets, and ranges of
packets
How to export packets into other formats
How to export raw packet data from the capture that you selected

Now that we have Wireshark up and running, let's capture some traffic. We'll select the
Local Area Connection, and we could either double-click as I mentioned or we'll start the
capture up at the top. And we will have some packets coming in. So now, if I want to save
this capture (the entire capture all the packets that I just captured) I'll go to File | Save
As...; and from here, I can simply choose a filename. So, we'll call it . And you'll
see in the Save as type, I chose the file as :

Getting Started with Wireshark Chapter 2

[37]

So, is the next generation of the file extension. It was released with Wireshark
1.8, so it is relatively new and includes some additional features, which we'll get into in
future sections. But you should know that the file extension is the new standard,
so if you see a file with no at the end, that's an older capture file, and you can
certainly save it as going forward since that's now the default. Just be aware,
though, that if you take a file and save it as an original file, you'll lose some of
that functionality that comes with the format. So, my recommendation is to stick with
the format. Almost all plugins and additional software that utilizes files now
support the format, so you might as well just use that going forward. You'll also notice
long, different capture extensions here. You have listed and with the you also
have , , and so on. In order to get that, you have to select the Compress with
gzip option. So when you select Compress with gzip what that will do is, just like putting
files into a ZIP file, it will take your capture file and try to compress it to make it smaller. So
if it's a large capture, remember a packet capture includes all the data that's traversed your
network from your network card that you're capturing on. So, if you're transferring a lot of
data at the time that you're doing a capture, all of that will be saved in your capture. It's
going to be a 1:1 ratio of the data that's been transferred, so it could be very large. Gzipping
that might make sense to you, because then it would be a much smaller file on your hard
drive. Additionally, if you're trying to transfer the file across to your network, then that
could potentially save time with trying to transfer the file since it would be smaller to
transfer. Most of the time it's not used, though, especially if you filter out what you only
need to see in a capture and you end up saving only what you require, then they're usually
very small.

Now, we will Save that capture. And speaking of filtering out just what you want to see
and making a capture smaller, let's do exactly that.

Getting Started with Wireshark Chapter 2

[38]

So here we have some HTTP traffic, and we'll right-click on that and then click on Follow
| TCP Stream. That way, we have some sort of stream here that's filtering out all of the
other data that's in our packet capture. So we've got seven packets selected. If I want to save
just these packets into a new file, I'll go to File | Export Specified Packets.... We'll call this

 and you'll see here that we have a radio button to select between Displayed
and Captured:

Getting Started with Wireshark Chapter 2

[39]

So Captured is the entire packet capture. This adds almost packets. Displayed is only
going to save what's currently filtered and what's displayed in my packet list view. So if I
have Displayed selected in all packets, that's going to export all seven of these packets into
a new file. Additionally, I could select Selected packet. So you'll see here that I have packet
number currently selected; it's a slightly different color here. If I choose Selected packet,
this will only save that one single packet into a new file:

Getting Started with Wireshark Chapter 2

[40]

I could also select a Range. Now, the range wouldn't show anything right now because we
have our own little filter going, but what I can do is clear out this filter. And we'll go back
to Export Specified Packets... and save the packets range. We could say packets through

. So there are packets that will be saved into the file:

Getting Started with Wireshark Chapter 2

[41]

Additionally, you can export your packet dissections by going to File | Export Packet
Dissections and then choose a format you'd like:

So we'll choose As Plain Text..., and we'll call it . We'll do just the
Selected packet, and so here we have our text file, which you can see has
the packet number, when the packet came in, source and destination IP addresses, what the
protocol was, any information about the protocols within it, and then the basic information
that you can see in the packet details section; this is all now saved in the text file as shown
here:

Getting Started with Wireshark Chapter 2

[42]

If your packet capture happens to have captured any secured traffic such as any HTTPS,
SSL, or SSH traffic, you can use File | Export SSL Session Keys..., and then save these SSL
keys for future use in some other application, if you wish.

You might have noticed one additional export that's grayed out: Export Packet Bytes...:

In order to get that to become selectable, you need to select the application data within your
packet. So here, we've selected our HTTP packet data. If we go back to File, you'll see that
Export Packet Bytes... is now selectable. If I select that, I can now export my data from my
packet in a raw binary format. It is potentially useful if you're doing something with a hex
editor or combining these pieces together for some other application.

In this section, you learned how to save and export packets: the entire packet capture,
subsets of that packet capture such as filtered views, individual packets, as well as
exporting raw data into different formats such as text files.

Getting Started with Wireshark Chapter 2

[43]

Annotating and printing packets
In this section, we'll take a look at the following subtopics:

How to use the new annotation feature, also known as comments
How to find packets that have annotations, and there are multiple ways of doing
so
How to print packets

Now, let's get some packets to work with. I'm going to start a quick capture.

To create comments for a packet capture, the entire capture itself, you can do so in the
bottom left-hand corner of Wireshark. You see there are two icons down there: one's a circle
icon called the expert information we'll get into in a future section, and there's a pencil with
a packet capture icon. If you do a mouseover on a pencil icon, it'll say Open the Capture
File Properties dialog:

Click on that and it will open up a pop-up window that gives you a bunch of different
information for the capture itself. And there's a bottom section here that says File
Comment, and here you can enter whatever sort of description you want for the entire
packet capture. So maybe this is,

. Click on the Save Comments button, and this will save the
comments for you:

Getting Started with Wireshark Chapter 2

[44]

You'll also see that the File Comment appeared at the bottom of that top pane when I
clicked on Save Comments, as well.

Getting Started with Wireshark Chapter 2

[45]

You can also create comments for individual packets, and to do so you select the packet you
want to create a comment for, right-click on it, and go to the Packet Comment.... You'll see
there's a little pop-up window for you to enter your packet comments, so let's say,

 or whatever you might want to enter:

Click on OK. When you do so, you'll see that in the packet details area the Packet
comments section pops in, and is nice and bright green so you can see that. And if you
expand that, it'll actually show you the comment that you've entered:

Getting Started with Wireshark Chapter 2

[46]

Now, if I select a different packet, it doesn't show up. So if I go back to the packet that I
selected, then it'll display again. Now, you might be wondering: how do I find packets
within a capture that have comments? There are multiple ways of doing this. One of them
is to right-click on the Packet comments field in the details area here and we'll go to Apply
as Column. When you click on that, it'll create a column, which will show you whether or
not that packet has a comment on it:

Getting Started with Wireshark Chapter 2

[47]

Additionally, I can go to the expert info button that I was talking about in the bottom left-
hand side. When you click on that, it gives us a whole bunch of information about our
capture, which we'll ignore for now. But at the very bottom, there's the Comment section,
and it will say, packet number 7 has a comment, as shown in the following screenshot:

Now what's interesting is, if I move this to the side and we go select a different
packet and we'll go all the way to the bottom and choose packet number 60 and then if I
click on the comment in packet number 7, you'll see that the packet list automatically jumps
up to packet 7, selects it for me, and shows me the comment. Isn't that nice?

Getting Started with Wireshark Chapter 2

[48]

A third way to find packet comments is to right-click on Packet comments and then go to
Apply as Filter | Selected:

Getting Started with Wireshark Chapter 2

[49]

And when you do so, it'll filter your packet list by , and that's the field name
for whether or not a packet has a comment in it. And you'll see here that packet number is
now the only packet showing because that's the only one we've made a comment for:

Getting Started with Wireshark Chapter 2

[50]

So, if I were to clear this, and we add another comment on another packets , and
if I reapply my filter on Packet comments, we can see that we have two packets there. So,
that's another way of being able to find comments in them:

In order to print your capture or print an individual packet, you can go to File | Print... and
you'll see a number of options here which look similar to the save and export dialog. So
what we can do is print a Summary line for each packet, and if you uncheck this you will
see it actually changes the preview as you go, so you can kind of see how the file's going to
look. There's a summary line, which gives us information about each individual packet
that's in the list, and the summary line looks kind of like the packet list view. So there's
going to be one line, which is packet and some information about it then another
summary line for packet and some information about it, and so on. So that's actually a
handy one to have on.

Getting Started with Wireshark Chapter 2

[51]

Details: will show you the packet details list of the information about the different
protocols, so we can turn that on or off. If I turn that off, that basically just shows us the
packet list view. I'm going to leave that on. And then I could also include the Bytes, if I
really needed to. You're not going to want to do that for a lot of packets. Obviously, your
print would be very large, but you can see if I turn that on it'll show you the actual byte
information, as shown in the bottom bytes. So I'll keep that off for now. And you notice in
the bottom section here, just like we had with the export dialog, you can choose option
Selected packets only or All packets. You can also select Marked packets only:

How to mark packets
What you can do is right-click on a packet and mark it, or do Ctrl + M.
And you can mark a whole bunch of them, and they can be anywhere in
the capture, it doesn't matter where-they don't have to be contiguous; and
we'll mark up a bunch.

Getting Started with Wireshark Chapter 2

[52]

We'll go ahead and print this, and you can see the file that we printed here. I printed it as a
PDF file so that it would be easy to show you. You can see that the summary line for each
packet is displayed here. The summary line, which is basically the packet list line, includes
the packet number we had when the packet came in, the source and destination, the
protocol, and so on, along with the details that we wanted it to print. So that's the very
basic information about which protocols were involved in the packet that it captured:

So, in this section, you learned how to create annotations and comments for your packet
capture, as well as annotations or comments for individual packets, how to view them and
find them in different locations in the interface such as on a column or a filter, or within the
packet details view, expert information, and, additionally, how to print packets. Next up is
remote capture setup. We'll go over how to capture your data from a remote machine from
your Wireshark GUI, running on that remote machine.

Getting Started with Wireshark Chapter 2

[53]

Remote capture setup
In this section, we'll take a look at the prerequisites for using remote capture, specifically
with WinPcap, which is a Windows port of the library and the configuration of
remote packet capture on the remote device.

Prerequisites
The first prerequisite is to install the libraries. I'm using a Windows computer here as
our test machine, so I'll install the libraries, which are a Windows port of the

 libraries originally written for Linux. So what I'll do is go to
 and download the libraries. Once it finishes downloading, I'll go

ahead and just click on Next with the installer, and there's no need to customize anything
there.

The libraries that are installed also come with Wireshark when
you download Wireshark as a bundle. And so if you already have
Wireshark installed on a system, most likely you already have
installed as well.

The next step is to set up a local administrator account which is going to be a service
account for the service, the remote service that is running on this remote system.
That is used in the authentication of the system that's running the Wireshark GUI when we
add the remote interface. In order to do so, we'll perform the following steps:

Press the Windows key + R; it'll bring up the Run command.1.
Enter .2.
Go ahead and click on OK.3.
We will go to Advanced and click on Advanced again.4.
Go to Users and we'll make a New User...; we will call this .5.
We'll say it's a and give it a password:6.

Getting Started with Wireshark Chapter 2

[54]

I'll uncheck the first option there to force the user to create a new password since7.
this is a service account. We'll also prevent it from changing its password and
never let it expire. We certainly don't want the password changing on the service
account as we're trying to use it.

Getting Started with Wireshark Chapter 2

[55]

Now that we have our service account, we need to give it administrator8.
privileges. So we do that by right-clicking on pcap. Go to Properties | Member
Of | and we're going to click Add.... Type in , and go ahead
and click on Check Names, which tells it to verify that the group Administrators
is correctly typed in:

Click on OK, and we can go ahead and click on OK again.9.
Now the service account has administrator privileges. The last step for10.
setting up the remote service is to press the Windows key again and
then press R. We'll bring up our Run prompt and type in .
Go ahead and press Enter or click on OK, and we'll scroll down until we see11.
Remote Packet Capture Protocol v.0 (experimental). Although it says v.0 and
experimental, this has been a service that has been available for a long time now,
and I've never had any problems with it.
Go ahead and right-click on it. Go to Properties and click on the Log On tab.12.

Getting Started with Wireshark Chapter 2

[56]

We'll select the This account: radio option and Browse... to the user, or13.
whatever you named yours. Enter that and click on Check Names. It verifies that
it's the correct spelling and it found the account.
And then we'll enter in the password that we gave it. All right. Click on OK:14.

It'll say it's been granted service rights; that's good. And at this point, we can tell it to start
the service.

You can do so by clicking on the little play icon at the top; click on the Start shortcut there;
or right-click on the service until it starts.

It should say running at this point. What I like to do, just in case, is to go up at the top here
and click on refresh just refresh a few times; make sure that the service didn't crash at all.

Getting Started with Wireshark Chapter 2

[57]

At this point, everything is set up and ready to be used. The last thing to check is to ensure
that the Windows Firewall is either turned off, or port is enabled to pass through the
Windows Firewall. For the sake of simplicity, we'll turn it off, so push the Windows key,
bring up the Windows Start menu, and we'll search for the . So in Windows 10
here, you can just type and it'll start searching. I'll go to the Control Panel in Windows
Firewall, and you'll see here that it is currently enabled. So we'll click on Turn Windows
Firewall on or off, and I'll turn it off. Click on OK and we can close that:

And that's all there is to it to set up a remote system. So, in this section, we've gone
over all of the configuration and installation needs for a remote system. Next up, we'll go
over the remote capture usage, and how to set that up in a Wireshark GUI and start
capturing traffic from a remote device.

Getting Started with Wireshark Chapter 2

[58]

Remote capture usage
In this section, we'll take a look at how to use that remote packet capture software that we
set up with WinPcap on the remote system.

In order to use that remote WinPcap service running on the remote system and capture
packets from it, we need to add that into our local Wireshark interface so that we can
capture it. So in order to do this, we will perform the following steps:

We will go ahead and click on Capture options icon.1.
Click on Manage Interfaces... and you'll see here that there's the Remote2.
Interfaces tab; click on that.
Click on the plus icon in the bottom left-hand side here.3.
Enter in the Host IP address of that remote system.4.
Click on the Password authentication radio button, and enter in the credentials5.
for that service account that we created. I used here. You can then enter in
the username and password and click on OK. At this point, it should show us the
remote interfaces that it sees on the other device. So you see here that's my
device, and here's the interface that it detected:

Getting Started with Wireshark Chapter 2

[59]

If you do not see this at this point, or you get a popup saying that you
have some sort of connection error or it can't connect to the remote host,
or anything like that, make sure that the service is running. Remember,
when we set up the service on the remote system, it was on manual for the
service it was not automatic. So there's a good chance that the server's
stopped or the system has rebooted, or something like that. Go over there
and make sure that the service is enabled.

So we go ahead and click on OK. You'll see that it shows in our interface list here.6.
We can then go ahead and click on Start:

And that's all there is to it.

Getting Started with Wireshark Chapter 2

[60]

Summary
In this chapter, you've learned a number of skills in Wireshark, including what's new in
Wireshark 2, and there are some features from 1.8 that I mentioned, namely, how to capture
traffic on a local Wireshark installation; how to get the packets to your Wireshark
installation through different means, such as SPAN ports; saving and exporting these
packets in different ways; annotating or adding comments to the packet captures and
individual packets, and printing them, or selections of them; and lastly, setting up the
remote packet capture with WinPcap on a remote Windows system, and using that packet
capture from the remote system to a local Wireshark installation.

In , Filtering Traffic, we'll go over the various ways of filtering traffic, both with
the capture filters, as well as display filters, and also look at additional ways of filtering
things.

33
Filtering Traffic

In this chapter, we'll cover the following topics:

Berkeley Packet Filter (BPF) syntax
Capturing filters
Displaying filters
Following streams
Advanced filtering

Berkeley Packet Filter (BPF) syntax
In this section, we'll take a look at the BPF, its syntax, and some of its history.

So, let's talk about BPF's history. Many years ago, every operating system had its own
packet filtering API. There are a number of examples, such as Sun, DEC, SGI, and Xerox.
They all had their own operating systems, and each operating system had its own API for
capturing and filtering packets. So, when you needed to do network analysis, you had to
use their specific software, which is built into the operating system, and their specific
filtering capabilities within the API that they designed. That made it very difficult because
depending on the implementation of your network and what different operating systems
were involved, you had to know all these different APIs and all of these different filtering
rules in order to get anything done. So, in 1993, Steven McCanne and Van Jacobson
released a paper titled The BSD Packet Filter (BPF) and they outlined the rules and the ideas
behind BPF and explained how it could be a standardized method for filtering the captured
traffic. It just so happened that it caught on and became very popular, especially as

, WinPcap, and other libraries out there began to utilize BPF as its standardized
filtering system, and especially with the use of Wireshark nowadays which utilizes these
libraries.

Filtering Traffic Chapter 3

[62]

In order to write BPF, you need to create an expression, which contains one or more
primitives, including an ID, such as a name or number, an IP address, or an Ethernet
address plus a qualifier. A qualifier has the following three pieces to it:

Type
Direction
Protocol

For a type, it could be an individual host, a network, a port, or a port range. The direction
can be either the source or the destination, or the source and destination. And the protocol
is either Ethernet, FDDI, Wireless LAN, IP, IPv6 nowadays, ARP, RARP, DECNET, TCP, or
UDP. You need to define these different pieces that you want, and how you want to limit
your traffic and the values that go with them the ID, the name, or number to go along
with these qualifiers. So, I have some examples for you so that it can make some sense as to
how to create a BPF expression. The first one is . The IP is the
protocol, the host is the type, and the ID is the IP address. This will filter the traffic for that
IP address, whether it's the source or destination. This host keyword does both of these for
us.

Next up, I have and a fictitious MAC address. This has
the same idea as the IP host. We're defining Ethernet as our protocol, the source as the
direction, and the MAC address that we're looking for.

If you happen to be capturing traffic that has multiple VLANs, such as spanning a port
that's a trunk port on a switch, you can specify the VLAN(s), for example, .

The next example is , and this one has a special keyword being used for
broadcast to tell the BPF that we want to filter all of our traffic, if it's a broadcast of some
kind, on layer 2.

And my last example is . So, we'll filter that traffic looking for HTTP traffic
most likely looking for only port of any source destination.

Up next is capture filters, where we'll take this BPF syntax and apply it to interfaces within
Wireshark.

Filtering Traffic Chapter 3

[63]

Capturing filters
In this section, we'll take a look at how to filter traffic before it's captured with the BPF
syntax. So, we'll filter that traffic on the capture interface.

In Wireshark, there are two places to enter a capture filter.

The first one is right on the following main screen. Right in the middle, we have the capture
section, and it says, ...using this filter: Enter a capture filter. So, we can actually do that on
the main screen. Try to enter a capture filter, then it will start capturing with that applied
filter. You'll also see that there's a green bookmark icon, as shown in the following
screenshot. If you hover over that icon, it says Manage saved bookmarks. And if we click
on that, there's a number of saved bookmarks that are already built into Wireshark. So, if
there's a common function that you want to filter on, it may already be in the list:

Filtering Traffic Chapter 3

[64]

But you can also go up to the top and click on Manage Capture Filters. This gives you a list
of all of your predefined capture filters and any that you have saved yourself, so you don't
have to keep entering the same capture filter over and over again. You can create one and
save it. So, all you need to do is click on that plus icon, and then you can enter in whatever
it is you want to do. So we could do , and we've now created a
new capture filter. Then, of course I can rename it. If I double-click on that, it will allow me,
to rename and I can say :

Now, if I go back and look, it would be visible now.

Filtering Traffic Chapter 3

[65]

You can also save a capture filter by selecting an interface first and then entering what you
wish. You'll see that it turns green if it's a valid entry. Then, click on that bookmark icon
and then on Save this filter:

If you click on that, it'll then bring up the Manage Capture Filters window prepopulated so
that you can simply name it as you wish. Then, using this capture, I can simply double-click
on my interface and begin capturing that traffic. You will see that I'm filtering on Ethernet
broadcast, so it's only going to show the broadcast traffic on layer 2:

Filtering Traffic Chapter 3

[66]

The second way of entering a capture filter is through the gear icon:

Click on Capture options and you'll see at the bottom that there's the Capture filter for
selected interfaces option. You can enter the capture filter just like you did in the previous
window, as well as manage your bookmarks. So, we could enter in

. Now, select the interface, then it'll turn green, and I can start my capture:

Now, it'll show me any traffic to and from my gateway.

Our next section is Displaying filters, where we'll filter our traffic after the capture has
already been started or it's already been saved, rather than filter the traffic during the
capture itself. This is a very common method of doing things so that you capture all the
traffic on your network, and then simply view only the pieces you need.

Filtering Traffic Chapter 3

[67]

Displaying filters
In this section, we'll go through display filters. And, in regards to display filters, we'll talk
about how to sift through a large packet capture. So, a common method of capturing traffic
is to not use the capture filter and instead capture everything that the interface can see, and
then simply filter out exactly what you want to view because some of these other packets
may be useful in diagnosing some sort of problem. We'll also go over quick access filter
buttons. So, if there's a common thing that you need to filter on all the time in your
environment, you can create a quick access button and simply click on that, and you don't
have to type out the display filter every time. And there are a number of filter operators
that you can use to combine multiple filters to create a full expression as to what you want
to specifically filter on:

So you could combine the IP address filter with a port number filter, or something related
to TCP, or something related to two MAC addresses. You can combine them or exclude
them in different ways using these filter operators. You can use either the Word version of
the operator, which is what's before that , or you can use whatever's listed after the ,
which is like the mathematical equivalent of the Word option. There's also a parentheses, so
you can also combine filters and their operators together, kind of like a mathematical
equation. So, you can have certain comparisons, such as two OR statements, compared first,
and then have it with something else as an addition, such as an AND statement.

So, to work with display filters, let's get some traffic first. I'll start a capture on my primary
interface without any capture filters. So, we will have some packets coming in, which will
be whatever's idle on my system at the moment.

Filtering Traffic Chapter 3

[68]

You'll see up at the top of the screen that we have a Apply a display filter entry box. And it
also has that bookmarks icon, just like the capture filters did:

So, let's get some packets to work with. I'll start a capture on my primary interface, without
any capture filter entered. So we'll capture everything that's occurring on my system;
currently, whatever's in the background. So, after we have a good amount of traffic to work
with, you will notice that at the top we have a textbox that says Apply a display filter, and
that works just like the capture filter textbox does. We can type in whatever is the display
filter that we're looking for. We also have the bookmarks icon on the left, just like with the
capture filters. And if I click on that, it gives me my saved filters. I can have a whole bunch
of them listed, as shown in the following screenshot these are the common ones that come
prebuilt with Wireshark:

Filtering Traffic Chapter 3

[69]

Just like with the capture filter, if I enter one filter into the textbox, I can save it.
Alternatively, I can go in and manage my display filters, and I can add and remove them
manually, as well, just like with the capture filters.

Let's start off with filtering by something. So, let's do , which is
, so that'll be my gateway:

Then, I can either click on the arrow on the right-hand side to apply it or press Enter. And
when I do so, there's all the traffic to and from my gateway :

We can also filter by source or destination. We will use the keyword , so we will
input .

Host is a shortcut that could be included both at the source and
destination traffic for a specific IP address.

We could also filter by source, which is , but if we do it this way we'll only get the
traffic originating from ; we'll not get the return traffic. If we do the same thing with
destination, , we'll get the return traffic, but not the originating traffic.

Filtering Traffic Chapter 3

[70]

So, how do we get this traffic? We can chain it together using one of the operators, like I
mentioned. So, we'll tell Wireshark we want both these destinations in the source traffic.
We have up there already. So, what we'll do is combine it with an OR. And if you
remember, you can either type , or the two pipe symbols. And we'll type and
put in the IP address of my gateway.

And now that it's a valid display filter, it's turned green. I can just press Enter and there we
go:

Now we have both directions of traffic, just like if I'd typed in . So you can see how
using some of these shortcuts that you know of in the display filter options can make things
faster for you.

Another interesting thing we could do is, let's say we need to troubleshoot something with
a slow transfer with TCP. So we want to look at the window size, so we type
in . So, let me press Enter and there we go. So, we have
one packet. Remember, we didn't define any sort of IP address. Any of the packets that
Wireshark has captured that has a window size less than will be shown to me:

Filtering Traffic Chapter 3

[71]

If we expand our TCP details, you'll see there's the window size; it's certainly less than :

So, let's create an example using the parentheses I mentioned. So, what we'll do is filter
based on my gateway again. What I'll do is quick-access one of my last used display filters.
So, I'll type . Now, if you look there, it has the most recently used ones at the top. So, I'll
use the down arrow, select the one I want to use, and press Enter:

Filtering Traffic Chapter 3

[72]

We'll add some parentheses to that. Now, I'll add in . So I want to see any traffic to or
from my gateway, and it's a DNS entry. So I'll type , which is a shortcut for the
DNS protocol, and I press Enter:

Now, we can go even farther. So we can say . And now, I've trimmed it
down to any DNS packets to and from my gateway that are less than bytes in length:

So, you can see how this is really powerful, and how you can trim off exactly what you
want to see. Now, this is a very powerful feature, with a lot of filters in it. In fact, there are
tens of thousands of filters for two thousand protocols. So, if you go to

 for display filter reference, it will show you all of the different
fields that you can use. So what we'll do is we'll click on I and look for ip. There we go. Let
me click on that, and then that will tell us all of the subfields that we can filter on. So, is
the protocol. Now, we're curious about, maybe, the address or the checksum, destination,
source, types of flags, GeoIP information, and so on. So this is a great reference to search for
what you wish to filter by. Now, the last feature we'll talk about for display features is
creating the quick access buttons. So, if you look over on the right, we have a plus icon, and
it says Add a display filter button:

So, if we click on that, we can then create a Label and enter a filter to save. So, let's say I
want to make one for my . I'll make a Filter by saying .
Once you click on OK, you will see a button for Gateway now. So if I have a big capture
with hundreds and thousands of packets, I can simply click on my Gateway button and it
instantly applies that filter:

Filtering Traffic Chapter 3

[73]

Now, if you wish to remove some of these buttons, the easiest way to get there is to simply
click on the plus icon again, and then there's a button on the left which says Filter
Expression Preferences.... That will take you directly into Wireshark's Preferences section
for this, and then you can just edit or remove whatever buttons you need to change or you
don't want:

So, in this section, we went over the basics of the display filter and created quick access
filter buttons. Up next, we'll talk about filtering by TCP and UDP streams and show specific
conversations within our packet captures.

Filtering Traffic Chapter 3

[74]

Following streams
In the previous section, we went over how to use display filters to limit what you see in a
packet capture. In this section, we'll build on that and follow streams. What that means is,
in this section, we'll follow TCP and UDP streams to pick out conversations within our
packet capture so that we can view the specific communications between each TCP
communication or each UDP communication. So, what we have is a packet capture of
opening up the home page. And the
home page is not encrypted with SSL by default, so we can see all of the HTTP
communications within it without having to add in some sort of SSL key to decrypt it:

In the beginning, we can see the DNS query to Cisco and the response, and then the
beginnings of the TCP handshake. Then, we start to retrieve some files and some HTTP
traffic for retrieving HTML. Now, we could of course apply what we learned in the last
section, and go up to the top and create a display filter for the web server as the host and
the TCP protocol, with some other parameters to try and filter out what we want to see, but
we'll still have a whole lot of data. You can see this is a very large capture, just to load up
one web page.

Filtering Traffic Chapter 3

[75]

So, how can we pick out individual communications within this packet capture? Because
one thing you'll note is, in a web page, you have multiple files, graphics, CSS files,
JavaScript, or whatever it might be that it needs to retrieve. There are a number of different
files it has to pull in order to build the web page that you see. Each one of these is its own
communication and its own TCP stream. So, what we need to do to follow a TCP or UDP
stream is to select a packet within the capture that is within the stream that we wish to
view. So, for each of these individual files in this web page, each one's going to be its own
TCP stream. So we need to select a packet within that, and then follow the stream.

So, let's choose one of the graphics. Let's go up to our . As shown in the
following screenshot, we'll right-click on our HTTP packet and go to Follow | TCP Stream:

Filtering Traffic Chapter 3

[76]

By default, the data shows up in an ASCII format, and that's usually very helpful to you
because a lot of the traffic you're probably looking at is text-based. But you may wish to
change that when you're doing this follow stream. You can do that at the bottom, where it
says Show data as ASCII. You can change that drop-down box and select whatever data
format you wish. We'll leave it as ASCII, since we're looking at some HTTP traffic with a
GIF transmitted within it. And you can see here that we have red and blue lines. Red is the
client and blue is the server, and you can see that at the bottom, where it says 16 client
pkt(s), 228 server pkts(s):

Filtering Traffic Chapter 3

[77]

We can also change this drop-down box and select the communication that we wish to look
at. And as we scroll down in this data view, you will see the blue and red of the client and
the server sending their packets back and forth. And, as you may have noted in one of the
earlier sections, if you click on the data, it will jump to the packet in the packet view. An
additional feature of following TCP is that you can Print or Save as... your packets. So you
can actually export these and save them as whatever file format you deem.

You can also follow UDP streams.

UDP streams are more difficult to follow, though, so it may not always
work perfectly, but Wireshark does the best that it can. The difference
between TCP and UDP is that TCP is reliable and UDP is unreliable
communication.

Now, you can do the same thing as with following TCP traffic, that is, right-click on a
packet and go to Follow, and you can see that UDP Stream is available for us to click on.

Select UDP Stream and it'll do the exact same thing. It will show the data up in the top
pane. It may be useful or not, depending on what kind of data it is. It will allow us to
perform all the same features as following the TCP stream.

In this section, you learned how to follow TCP and UDP streams and to pick out specific
conversations within your packet capture and data flows. Next up, we have advanced
filtering, where we'll get into picking out more nuanced sections within a packet capture
and within your packets to enhance your ability to filter your traffic.

Advanced filtering
We'll go over how to filter traffic in data fields within packets, how to create columns on
specific fields in our data packets and to sort them, and filter with these more hidden
methods that you may not have noticed yet.

We'll go to our packet capture, opening up . And what we'll do is
expand the section that gives us the details of our packet. We'll scroll down and find a
packet that we wish to investigate a bit more.

What we can do is expand the sections, which will allow us to easily view the different
fields of data within the different layers of the packet. So, if you're familiar with the OSI
layers that we use in networking, then this'll look familiar to you. So, we have our layer 2
information with our frame and Ethernet, layer 3 with IPv4, layer 4 with TCP, and so on.

Filtering Traffic Chapter 3

[78]

So, let's click on TCP to expand this, and we'll go down to Window size value. Now, the
window size is an important field that we'll get into in more detail later on, but what we'll
do is view this as a column. So, let's right-click on Window size value and click on Apply
as Column.

What that will do is add a new column in our packet list, with the window size value for
each packet. Now, you'll see it right-aligned, and with that right up against the information
it's a bit hard to see. So, let's right-click on that header up there and go to Align Center and
click on it:

Click on that header and it will sort our packets, from smallest to largest
or largest to smallest. Now, this is very useful because, many times with
transfer issues, you'll have a window size problem. So, it might be
beneficial to you to sort this way and look for any window sizes that are,
very small, depending on the packet. Not every packet that's small in its
window size is a bad thing, but it's something useful that you could take a
look at. Now, you can do that for almost anything; we can go in and make
columns for almost anything.

Filtering Traffic Chapter 3

[79]

Additionally, we can remove the column. We'll right-click and go to Remove This
Column to remove it.

We can go into TCP (or any of these fields) and create filters based on what we see. So, it's
much easier than going into the display filter field and trying to find exactly what you want
to do because, as I mentioned before when I showed you the website, there are hundreds of
thousands of these different things that you can look for. So, instead of doing it that way,
you can do it visually with these packet details, and select what you want to filter on. So,
let's filter on Source Port. We will right-click on Source Port and go to Prepare a Filter
| Selected:

Filtering Traffic Chapter 3

[80]

What that will do is prepare a filter in the top section, with the source port information
selected. So click on that, and it has (that's the shorthand for
source port):

Now, if we apply this, it'll only show source ports that are exactly . What if we want
to change that? I can of course go back and change the source ports, as you saw before in
the operators and such. And then, we can go ahead and apply that. So now, I have all the
packets listed that have a source port less than or equal to .

Let's find another one. Let's go to TCP again. We will scroll down, look into the Flags, and
do checksum. So, let's right-click on Acknowledgment, and we'll go up to the top to Apply
as Filter and click on Selected:

Filtering Traffic Chapter 3

[81]

The difference between Prepare as Filter and Apply as Filter is that the
former puts the filter into that top field the display filter field-but doesn't
apply it, while the latter does both. So, if you know exactly what you
want, you can just go straight to the Apply as Filter option.

So, we now have all of the TCP acknowledgment packets listed. Now, we can also expand
that, and let's go down and find another one let's find another Flag. So, there's an
Acknowledgment, and we'll add Push. So we want to see all the packets that are
acknowledgments, but are also Push. We'll right-click on Push and go to Apply as Filter |
...and Selected. You can see that it applied all of the syntax that's required to make this
work. So, it takes a lot of the heavy lifting out of creating filters. So now we're looking at all
of our packets that are acknowledgments with the push field set.

Let's look at another feature. What we will do is, we'll create a filter for my gateway again.
So, there's , and we apply it; now, that's all the traffic to and
from my gateway.

Let's sort it by number so that it makes sense. What if I don't want to see the DNS? What I
can do is go to DNS, right-click on it and go to Apply as Filter | ...and not Selected.

And what that will do is negate the selection. So I select that, and you can see in the syntax
it returns :

So any time you put the exclamation point in front of something, that tells Wireshark that
you do not want to see that.

So, I highly recommend you spend time going through these packet details, learning where
they are, what you want to look for, getting used to using Apply as Filter and Prepare a
Filter, and understanding how they work together. You can actually take a packet capture
that has hundreds and thousands of packets in it, and trim it down to just a few dozen that
you actually care about.

Filtering Traffic Chapter 3

[82]

Summary
In this chapter, we've learned about BPF syntax and its history and how to create BPF
syntax. We also saw how to use that BPF and then apply it as a capture filter and reduce the
packets that we end up capturing on our capturing interface. We then saw how to create
and use display filters to prune what we have in a packet capture to what we just need to
see. Furthermore, we saw how to follow streams, both TCP and UDP streams, so that we
can view specific conversations within a packet capture and export that data if required.
We also saw how to go into the different packet fields and lengths and all the different
pieces of data within the headers of the packets and be able to create filters based on them.

In , Customizing Wireshark, we'll start tweaking Wireshark and actually
customizing it and creating our own preferences and profiles so that we can make
Wireshark our own.

44
Customizing Wireshark

In this chapter, we'll cover the following topics:

Preferences
Profiles
Colorizing traffic

Preferences
To access Wireshark's preferences, go to Edit | Preferences...; this will open up the
Preferences window. On the left, you'll see that there are a number of categories that you
can choose from:

Customizing Wireshark Chapter 4

[84]

Appearance
The first category is Appearance, where you can change a number of settings, including the
default folder that you most commonly open files from and the filter entries and recent
files values. The filter entries changes the number of filters that appear in the drop-down
box at the display filter section. So, right now there's , which you'll see once we close this:

You can change this so that it shows more, and that's what that preference does.
Additionally, we have recent files, and that's based off of the File menu. If you change that
to a higher value, then your Open Recent will show an additional number of recent files.
Down near the bottom of this section, you'll see Main toolbar style, and it says Icons only
right now. And if you're new to Wireshark, you might have noticed that there is a toolbar
up at the top there with all the icons; they don't tell you what they are unless you move
your mouse over them. You can change that so it says Icons only, Text only, or Icons &
Text.

This can be pretty helpful for someone who's new to Wireshark. It'll tell
you what all these buttons do, without having to spend time to move your
mouse over each one.

Customizing Wireshark Chapter 4

[85]

Layout
One of the helpful sections in here is the Layout section, underneath Appearance:

In the Layout section, you can change what that default view looks like within Wireshark.
You might have noticed that, as I've done captures previously in this book so far, that the
Layout section breaks the default view up in Wireshark into three panes, and the three
panes are on top of each other. The top one being the list of packets, the middle one being
the details of a selected packet, and the bottom one being the bytes. If you don't like that
and you want to change how it looks, either the overall organization or removing one of
these panes, you can do that here; you can see a number of options across the top as to how
you might want things broken up. You could also change which information goes in which
pane, and whether or not you even want any to show up, as some people don't really care
about the packet bytes, but only about the list and the details. You can certainly go and turn
off the Packet Bytes if that's not something that you need.

Customizing Wireshark Chapter 4

[86]

Columns
Now, in , Filtering Traffic, we went through how to create columns in Wireshark,
and this is another way of doing so and editing these columns:

So, while you can right-click on a field within the packet details to create a column out of it,
you can also create your own custom ones in here, or reorder or remove the different ones
that are already there.

Customizing Wireshark Chapter 4

[87]

Fonts and colors
You can, of course, customize the fonts and colors within Wireshark, but these are separate
from the colorizing rules that we will get into later on in this section:

Customizing Wireshark Chapter 4

[88]

Capture
Under the Capture category, you can choose a Default interface:

Now, as you've noticed before, I have a number of interfaces on my system. You can select
your favorite interface, or your most commonly used interface on your capturing system, if
you use one so very often.

You can also turn on and off the format, but I would highly
recommend that you leave it enabled since that is now the new standard
format; but if you have a requirement to capture only in the old
format for some reason, for some legacy software or something like that,
you can certainly do so.

Customizing Wireshark Chapter 4

[89]

To improve performance in Wireshark, you may want to turn off these two options: Update
list of packets in real time and Automatic scrolling in live capture. You've noticed what
we've done so far in the captures. The moment you click on Capture, it starts scrolling
through in that packet list, showing you everything that's coming in at that moment. Now,
that is useful for small captures and quick ones, but if you have a system that's receiving a
lot of data (maybe it's a SPAN port on a heavily used trunk, or the system is old and it
potentially could drop packets because it doesn't have the processing power to do that) you
may want to turn this off to preserve your performance in Wireshark.

Filter buttons
Your next section in Preferences is Filter Buttons:

This is where all of these expression buttons will show up.

Customizing Wireshark Chapter 4

[90]

Name resolution
Our next category is Name Resolution, and Wireshark allows you to resolve many of the
different addresses that we see in Wireshark into different names, to make it easier for us as
humans to understand what we're looking at:

Customizing Wireshark Chapter 4

[91]

So, by default, it allows for resolution of MAC addresses to the first half of the MAC
address. If you know about MAC addresses and how they work, the first half of the MAC is
the manufacturer of the network card. So, Wireshark has a built-in list of these known
manufacturers and the OUIs, which is the first half of the MAC, and it will try to resolve
them for you. And that's why you'll potentially see and then the other half of a
MAC address or and the last half of a MAC address. That's because of this
checkbox.

You can also resolve the transport names, which are the TCP and UDP ports and IP
addresses. Now, if you choose the Resolve network (IP) addresses option, note that it does
not reference a static file within Wireshark, such as the MAC address and the transport
names. It will attempt to do a DNS resolution while you're capturing. This can be a very
negative thing with Wireshark, especially if you are doing a large capture with a lot of data
coming in. You could have potentially thousands and thousands of DNS resolution
requests going out from your capture system, clogging up the work. What I would
recommend is, when you have a capture, you can right-click on an IP address and resolve it
with that specific IP address rather than resolving everything. Now, the lower section,
where it says Enable OID resolution and Suppress SMI errors, is for SNMP resolution. In
SNMP, you have MIBs, which are basically word translations to OID locations, and you can
resolve these in Wireshark.

If you are capturing SNMP traffic, you can resolve these OID strings into the MIBs if you
enable the OID resolution.

Protocols
Our next category is Protocols, and when you expand the Protocols category, you have a
huge list of all the protocols supported by Wireshark, and all of their associated
configuration options that you can tweak.

Customizing Wireshark Chapter 4

[92]

Now, most of these you can leave alone at their defaults and everything will work just fine.
There are two that you're probably going to want to tweak at some point in your career,
and that'll be IP and TCP; or three if you count IPv6 now. IPv4, IPv6, and TCP are probably
the most common ones that you're going to adjust, if you adjust them at all. What we'll do
is, we'll go to IPv4, and you'll see there's a checkbox called Validate the IPv4 checksum if
possible that's actually disabled by default:

Now this used to be enabled by default, so depending on the version of Wireshark you're
running, if you are not using the latest version of 2.0, the Validate the IPv4 checksum if
possible would potentially be enabled. When that is done, it would sometimes show up
based on your system with a whole lot of bad checksum errors. The reason for this is that a
lot of newer systems, especially servers, have been starting to do checksum offloading
where the software does not do the checksum creation but the hardware does, right before
it gets sent onto the wire. But Wireshark didn't see that, so it always thought that the
checksum didn't match because it couldn't see the hardware creating the checksum as it got
put onto the wire. This is one thing to go into check as you most likely will want to
have Validate the IPv4 checksum if possible off nowadays due to most network cards
doing checksum offloading.

Customizing Wireshark Chapter 4

[93]

Statistics
Our next category is Statistics, and there's not much in here that you'll want to change:

I would leave most of this as it is, unless possibly you'd want to change the number of
channels in the RTP Player.

Customizing Wireshark Chapter 4

[94]

Advanced
Our last category is Advanced, where we have a listing of all of the preferences and settings
within Wireshark, in a nice big list for you:

So if there's something that you needed to change but couldn't, or maybe you had a
problem or something like that, and you found an answer online to change a value and you
don't know where that is within the interface, you could make such changes by going to
the Advanced category. And what's nice is there is a Search function. If you need to change
something, you can filter it and determine where a certain setting is.

Profiles
We'll now take a look at how to create profiles to package these preferences into usable
profiles that you can switch between, based on the situation that you are in.

Customizing Wireshark Chapter 4

[95]

When you're using Wireshark, any of the changes that you make to it, whether it's your
preferences that you might be changing, display filters that you might be creating or
capture filters, or any of that, they all go under what is known as the default profile. And
when you create new profiles, they will work as a copy of the default profile. Thus, it's
recommended that you make minimal changes to your default profile. You can maybe
make a few overreaching changes to your environment, but don't do anything specific, and
instead make a profile for different specific situations that you might need. You can do that
in the bottom right-hand corner of the Wireshark interface. As you can see, there's the
Profile: Default selected there, and if you click on that it'll allow you to select between the
different profiles that you have on your system:

By default, you have a Classic and a Bluetooth profile that's included in Wireshark. You
can see we're currently using the Default profile. If you wish to manage these profiles and
create them, you can right-click on Profile: Default. And you'll now see a new window that
pops up and allows you to manage your profiles or create one:

They take you to the same spot, though. So what we'll do is we'll just go into Manage
Profiles..., and you can see the listing of profiles that we currently have. To create a profile,
we just need to click on the plus sign:

Customizing Wireshark Chapter 4

[96]

Alternatively, if you were in that previous window, you could simply click on New... and it
brings you to the exact same window; but, instead, it automatically clicked on the plus
sign for you. What we can do is name our profile here. We'll call this , and
you'll see that it says Created from default settings on the right-hand corner:

We can see how it copies the default settings, whatever you had already configured, in
your system. Now, it's creating a new profile for us, and if we click on OK, it will create it;
you see something's changed in the interface, and in the bottom right it says Profile: New
Profile and we're now using that:

What you can do is right-click on Profile: New Profile and go to Edit..., and you'll see it has
the path to the profile:

Customizing Wireshark Chapter 4

[97]

Wireshark stores profiles as folders, so click on that link and it will open up the
 folder. Then, we'll go back to the folder and you'll see that under the

 folder, every new profile you create will show up as a new folder:

And if you go back even one step, that is in the folder, you'll see the default
files that have been created in your Wireshark installation, and there'll be different ones
depending on what you might have changed:

For example, there's , which is your capture filters, and we can show that.
Remember that these capture filters are under your Capture options, and if you click on
this bookmark, it's an easy way to get there. You can then manage your capture filters.
Remember, I made a custom one at one point previously. That's why it has that saved.
Additionally, we have preferences; we have the selections now that
Wireshark is in multiple languages; and we have the files and the , as
we were just using in the previous section. And another one would show up if I'd created
display filters; there would be a file too, which would have customized display
filters. Now what we can do is we can edit these files as well. These are text files. What you
can do is right-click on any file and edit it.

Customizing Wireshark Chapter 4

[98]

I would recommend using something such as Notepad++ that will show
the carriage returns correctly because if you open it with Notepad, it
might not show up correctly due to the type of carriage returns they use.

Now, if you wish to share your profiles with other people, you can go into the profiles
folder and simply copy the New Profile folder for whatever profile you wish to share.
Maybe you have an 802.11 wireless one, or a TCP analysis one, a corporate network one, or
a major errors one-whatever it is that you might have-and you have multiple IT
administrators or analysis individuals that are in your organization. You can share these
profiles among each other by simply copying and pasting these folders between your
different computers, and you could share it as a ZIP file or whatever suits you best.

Colorizing traffic
In this section, we'll take a look at how to create coloring rules, how to remove them, how
to make your own, how to colorize conversations, and filter traffic by the coloring rules that
are applied. Let's start.

I pulled up one of the previous captures that I've done loading up a web page. We'll use
this as an example for our coloring rules discussion. You can see here that it's already been
colorized by default from Wireshark:

Customizing Wireshark Chapter 4

[99]

As I mentioned before in the profiles in the Preferences section, there are default settings
within Wireshark, which include the coloring rules. Wireshark tries to make it a little bit
easier for you to view your traffic, even from just a standard install. But you can, of course,
customize that to show what you want to see.

The first thing you want to know, besides the fact that Wireshark will automatically
colorize your traffic and from a basic standpoint, is that you can enable and disable the
rules with one button. Up at the top of the window, you can click on the Draw packets
using your coloring rules button that looks like kind of a rainbow color of lines, and you
can click on this to enable or disable the coloring rules in bulk:

If I click on this and disable, now everything turns to white and there are no coloring rules
currently applied:

If you click on the Draw packets using your coloring rules button again, it will re-enable
the coloring rules.

Customizing Wireshark Chapter 4

[100]

In order to get to the coloring rules, we'll go to View | Coloring Rules...:

Customizing Wireshark Chapter 4

[101]

Clicking on the Coloring Rules... option will bring up the Coloring Rules window, and
you can see that the default selection of coloring rules are created by Wireshark at
installation:

You can see how the default rules have some real vibrant coloring rules right at the very
top. And these are some of the nasty ones that you want to keep an eye out for, and that's
why they have a black background. That way, they stick out in this default pastel coloring
system that they have for the other traffic. You can see most of the other normal stuff, such
as ARP, ICMP, SMB, HTTP, and UDP; all of them are nice pastel-type colors. And then all
of a sudden you have this black background show up with red text and you know that's
obviously something bad. You have the yellow show up; you have the bright red with the
TCP resets and the aborts; and you have Checksum Errors that are black with a red text.
They're supposed to stand out on purpose. Another thing to know about this is that you see
how the bad ones are up at the top: the rules are processed from top down, so it's based off
of a matching system. If something matches first, then that will be applied. If you have two
rules that are very similar and, maybe you have IC-two rules that look for ICMP but have
different colors for some reason-the one at the top will be applied first and the one after it
will be skipped as it has already been colorized.

Customizing Wireshark Chapter 4

[102]

Additionally, on the left-hand side of all these coloring rules are a bunch of checkboxes, and
these checkboxes enable and disable these individual coloring rules. That way, you don't
have to enable or disable all of them at once with that button I just showed you. Thus, you
can simply turn off the checkboxes you want or don't want.

For example, what we can do is, we can turn off HTTP, which is this nice light green color
you can see throughout all of our capture if you look at the scroll bar. All of our packets are
green. So I'll turn HTTP off; we'll then click on OK. When I do this, you can see that they all
turn into purple:

Now why do they turn into purple? Let's go back to View | Coloring Rules... and take a
look. And if we check, the TCPs are light purple. So here, all the communication, all the
packets, are TCP packets.

Remember I was talking about how things match first on this list towards the top? So,
obviously, the HTTP traffic, which is more specific since that's a higher-level protocol,
matched first and so was applied green. And then, when it matched for TCP it was ignored
because it was already colorized. You can see how you want to put more specific things
towards the top and then more generic things towards the bottom, and you can see how it's
kind of broken out that way already with all these very specific filters up at the top and
then the basic ones at the bottom, such as TCP and UDP.

Customizing Wireshark Chapter 4

[103]

You can also create your own, of course. In the bottom left, just like the other windows
we've seen already, you can click on the plus sign that will create a new coloring rule. And
you can see it puts it up towards the top for you, as well, which is very nice. Here, you can
enter any sort of display filter you want to create a color. We could say is my
gateway and we can choose a foreground and background color. You can see at the bottom
that we can choose a Foreground and Background color:

Customizing Wireshark Chapter 4

[104]

So, let's make it something completely ridiculous. The foreground will be bright pink and
the background will be a hideous yellow color. Let's rename it first. We'll say , and
click on OK. That definitely stands out, doesn't it? Check out the following screenshot:

Now you can see how all of the packets that reference my gateway are now colored in
bright yellow.

Until now, we were trying to figure out which coloring rule applies to a specific packet, and
we were doing so by going to View | Coloring Rules... and trying to just figure it out by
ourselves by going down the list. Now, you don't have to do it that way; there's an easier
way of doing it.

If you click on a packet that you want to investigate and find out why is this green, we can
look in the packet details and, under the Frame section we can go down towards the
bottom of the frame information, and it will show us the coloring rules that are applied. So,
the coloring rule name is HTTP, and the string that applies to our selected packet is http ||
tcp.port ==80 || http2:

Customizing Wireshark Chapter 4

[105]

Now, if you make a whole bunch of custom coloring rules for your specific company in
your certain situation that you have going on, you can absolutely import and export these
to share them with co-workers. Let's go back to View | Coloring Rules..., and you can see
in the bottom right of the window that we have Import... and Export... buttons, which will
export it or import it as a text file:

Customizing Wireshark Chapter 4

[106]

Additionally, we can colorize conversations. What we'll do is, we'll go and select a random
packet in this conversation, and we can right-click on it and go to Colorize Conversation.
And then we can break down on which conversation we want and which layer of the OSI
model:

And finally, one cool feature I want to show you is you can go ahead and actually filter on
the coloring rules. Let's select a packet, an HTTP packet, and we'll go into that frame
section in the packet details again. And I'll right-click on the coloring rule that is applied to
this packet and I can go to Apply as Filter | Selected:

Customizing Wireshark Chapter 4

[107]

Now, I'm filtering on that coloring rule, so it's not just on the fact that it's HTTP traffic, but
it's on the coloring rule applied.

So we can do that to another one as well. We'll go and right-click on the coloring rule that is
applied to the selected packet, and we'll select Apply as Filter | Selected. And now we've
just filtered out that conversation based on the coloring rule.

Examples of colorizing traffic
We will go through some examples as to how you can use coloring rules to your advantage
to pick out bad things in different packet captures.

Example 1
In this example, we will need to open up a web page that is to a nonexistent location on
MIT's website, so there should be a response code from HTTP in here stating , that it
couldn't find that file. What we'll do is create a coloring rule that will easily show that the
error message in the packet list will pop out to us:

Let's go to View | Coloring Rules... and we'll create a custom coloring rule for1.
HTTP response codes by clicking on the plus icon.

Customizing Wireshark Chapter 4

[108]

Type in in the Filter column:2.

All of the HTTP response codes that are above are server and client
errors, in the and range respectively.

Customizing Wireshark Chapter 4

[109]

Since we want to see all of the errors in a very vibrant color, we will make the3.
Background bright pink and the Foreground black. You'll see that's right up at
the top there in our list, so that'll be applied first. Let's click on OK:

Customizing Wireshark Chapter 4

[110]

We'll scroll down through our list looking for that bright pink packet. It pops in4.
real easy and is very visible to us. So, as you can see, it says HTTP/1.1 408
Request Time-out (text/html):

We can expand it in detail by clicking on Hypertext Transfer Protocol at the5.
bottom and take a look at that. We'll then see the status code of :

Customizing Wireshark Chapter 4

[111]

Example 2
Now, in the second example, we'll take a look at NS. Let's say, you have some sort of
problem in your network where certain DNS responses are coming back if they can't find
any sort of records in your DNS server for a resource, whether it's a web page or a local
server; whatever it is, it's not finding the DNS entries. We can apply a coloring rule that
will vibrantly show us whenever there's a DNS response that it cannot find a record.

Let's go ahead and create a new capture, and I'm going to look up some random web page
that doesn't exist, and we'll use DNS off of Google. We will get a message that it doesn't
exist:

So we're going to stop our capture, and we'll see nothing really pops out. There would be
some red stuff there from some TCP resets and some black ones, but nothing else. It's all
TCP traffic and DNS. Let's go ahead and create a coloring rule:

Make a new coloring rule by clicking on View | Coloring Rules...; we'll call it1.
.

Customizing Wireshark Chapter 4

[112]

In the filter information, we'll enter , which is for the response2.
code. If the response code equals , it means there's no record:

We will select the Foreground as black and Background as yellow.3.

Now, let's go ahead and scroll through our packet capture and see if we can find this
response code error. We can see our

 record, and then the random gibberish that we entered in. And then of course it's
also responding for IPv6. The , the quad A record, is for IPv6, as well:

Customizing Wireshark Chapter 4

[113]

If you take a look in our frame information at the bottom, there's our coloring rule:
. There's a string that it's using, and if we dig into the DNS information, you look

at the flags and it will say . That's the value of that we
just filtered on:

You can see how applying coloring rules can be very helpful to someone who's doing
network analysis and protocol analysis because it makes it very easy to pick out from a
large packet capture wherever there's a problem.

Customizing Wireshark Chapter 4

[114]

Summary
In this chapter, we've learned how to apply preferences in Wireshark and customize it to
your needs. We've also learned how to create profiles for different analysis requirements,
and switch between them. For example, the coloring rules that we just saw could be put
into a profile specifically for DNS or HTTP. And we've learned how to create these coloring
rules, how to import and export them, and how to apply them to real-world examples.

In , Statistics, we'll dive into statistics within Wireshark, which is a great feature
that very few people seem to use.

55
Statistics

In this chapter, we will cover the following topics:

TCP/IP overview
Time values and summaries
Trace file statistics
Expert system usage

TCP/IP overview
In this section, we'll take a look at the basics of TCP/IP, how packets are built, and the
resolution processes that are in place, such as DNS and ARP.

In networking, we have two models that we commonly use: OSI and TCP/IP. As shown in
the following diagram, on the left side we have the OSI model and on the right side we
have TCP/IP model, and I've tried to match them up so that you can see how the different
layers of each model line up with each other:

Statistics Chapter 5

[116]

When we use Wireshark, we're commonly concerned with layers 2 through 7 of the OSI
model. And most commonly when you use Wireshark, it's probably because
something that's often application-related is going on or the system is running an
application. Most commonly, you'll find yourself using Wireshark to diagnose problems
that are in the upper layers, especially layer 7. But you can certainly use it to troubleshoot
connectivity issues between devices on layer 3 or layer 2. While there are a number of
TCP/IP services and protocols that we use to help us communicate over a network, note
that we reference the layer where that protocol resides based on the OSI model, not the
actual TCP/IP model's layer.

What I'd like to do is run through the building of a packet, which will give you an idea as to
how the values are entered into a packet for the different fields. And since we're looking at
these fields in Wireshark, it's certainly a good thing to know. So what I've done is, in a
browser, I've opened up a connection to . What we'll do is follow
through that connection and show how it found the resource and then send the first data
packets to it.

The first thing that your system needs to figure out is what port number to use. When you
open up your web browser and go to , depending on how you enter
the address into the address bar of the browser, the application of the browser will know
whether or not you want to use port ; it would know by default for HTTP, or port
for SSL, or maybe some other custom port. So right away, your computer knows what port
number it needs to start communicating on. Since I went to without
any sort of SSL connection, it by default knew that it will have to use port . The next
thing it has to do is figure out where that service is. So I went to , but
my system didn't know where resides.

DNS deals with the resolution of a name to an address. So my system had a look at the
DNS cache on my local system, which is a rolling cache of addresses that it has already
resolved, and it looked for . It saw that didn't
exist in the cache, so it said that it needs to go send that out to my DNS server to hopefully
get a response as to where this resource is located. My DNS server happens to be on my
gateway, which is ; this is common for standard home networks. It may not be there; it
could have been a remote resource as well, such as a Google DNS server or open DNS, or
some other. If this is a remote DNS server that I'm trying to connect to, then my system will
take a look at my route table and figure out where it needs to go in order to access that DNS
server. So, if it's remote, outside of my network, it's going to take a look at my route table
and realize that it has to go out through my gateway in order to go talk to the DNS server.

Statistics Chapter 5

[117]

And when it does, it'll check my ARP cache to see if there's a layer 2 address for my
gateway so that it can send a frame to the gateway. If my system didn't have an ARP cache
entry for my gateway, then my system would have sent an ARP packet out, looking for the
physical address for . My system happened to have it in its ARP cache since I
commonly accessed that IP address, and so we don't see an ARP packet here. What we can
see here is that the first packet is a DNS packet, so my system saw that was my DNS
server, and it knew that it was a local resource. It checked my route table and realized that
it's on my physical interface there and we're already connected to the network, and also
that I already have an ARP cache entry for . So it didn't need any of that information,
and it automatically built the DNS packet. We can see in here in IPv4 that my destination is

:

Statistics Chapter 5

[118]

It built all that without having to produce any other packets to find this information. So my
system then sent out its DNS request asking for . Now, if we go down
and take a look at the UDP section, you can see that we're using port , which is for DNS:

Statistics Chapter 5

[119]

And if we expand DNS, we can look at the Queries and see that we're asking for
:

Statistics Chapter 5

[120]

We then have to wait for the DNS response. Then, we see the next packet for DNS. We
receive a standard query response for . If we look at DNS in the
packet details pane, we can take a look at the Answers in this packet. And you'll see
that has a entry for address , and then
there's an record entry at IP :

Statistics Chapter 5

[121]

The record entry is what we care about. So now my system has an IP address for
 so that I can build a TCP handshake to and to the web

server so that it can then begin flowing HTTP data back and forth. So if we look at the next
packet in line, we have our SYNs:

So, the highlighted packet in the preceding screenshot is the first packet in our three-way
handshake for TCP. If you're familiar with TCP at all, it goes , , and ;
that's your three-way handshake to open up a connection. So my first packet has a
destination address of . If we look at that response that came back in
DNS, the address that was provided for the record is . So now my
system knows what IP address to craft its TCP packet for. We now have a source of my
local system and a destination to the server for that it received, and
then it sends out its handshake request. It then gets a in response saying yes, I
see your connection requests; let's create a connection. Then my system responds, saying
yeah, that sounds great; I acknowledge. And then, finally, we begin our first HTTP packet.
My system sends an HTTP packet out to that same server and says , so it's
saying please send me your beginning and any other data for the HTTP
resource. And again, it knew that it needed to use port HTTP unencrypted because
when we entered that into the browser, the browser application let the stack know that it
was using port . And so that's the basics on how a TCP packet is built, and your
system requests a resource from some sort of server or other device out there.

Time values and summaries
In this section, we'll take a look at how to change the time settings for packets and
troubleshooting with the time column.

Statistics Chapter 5

[122]

We have the PBS packet capture again, where I opened the browser and went to
. If you notice in the packet capture, the second column says Time:

The Time column is a number with a decimal and it just keeps counting up as you scroll
down through the packet capture. By default, in Wireshark, this is the time since the
capture started. Having the time since it was captured can be useful so you know when
certain packets arrive in relation to the entire data flow that you captured, but it's not all
that useful for trying to diagnose a problem where there might be a delay in a certain
service returning traffic that you're trying to capture back to your system.

In order to figure out the delay between captured packets, you'd have to look at the Time
column and figure it out based on milliseconds, microseconds, and nanoseconds, and that's
not that great for humans because we're not all that great at math to that level. So what we
can do instead is go to View | Time Display Format, and we have a large selection of time
display formats we can choose from. And the most useful one that I would recommend is
using Seconds Since Previous Displayed Packet:

Statistics Chapter 5

[123]

This way, if you apply a filter on your traffic, such as following a TCP stream, it will show
you the delta difference between each packet based on the applied filter. If you use Seconds
Since Previous Captured Packet, then if you have packets that are filtered out from the
view that you're looking at, it'll not coincide exactly with what you're looking at; it makes it
a little bit harder to understand. So what I would recommend is choosing Seconds Since
Previous Displayed Packet.

Now if we look, the Time column has changed and we have seconds between each
packet, and then there's some sort of fraction of a second for each packet for the delay
between each captured packet:

What we'll do is we'll scroll up to the top and you can sort the Time column. And if you
sort it by highest to lowest, you can see what packets are the most delayed. Now, if you
select that packet and then re-sort by the No. column, you'll be taken directly to that packet,
wherever it is within the numbered packets that you've captured. You can look on either
side of the packet to figure out what might be going on.

Statistics Chapter 5

[124]

You can also add additional columns. So, what we can do is go to packet details and
expand the frame information. And you'll see there are a number of time fields. What we
can do is also add a column for one of these time fields. So, what we'll do first is we'll
switch our display back to since the beginning of the capture by going to View | Time
Display Format format | Seconds Since Begining of Capture, and we'll add a column for
the delta between each displayed frame. We'll do that by selecting Time delta from
previous captured frame from the frame information. We'll right-click and select Apply as
Column:

Then, we drag the Time delta from previous displayed frame column over to the other
time so that it makes it a little bit easier.

Statistics Chapter 5

[125]

So, you have time since the capture began, and then time delta between each displayed
frame. You can also go to View | Time Display Format and change the fraction of seconds
based on what you want to see. So, maybe you don't need to see the nanoseconds, and you
only care about the milliseconds. You can change that manually by selecting
the Milliseconds option:

You will now be able to see how it pruned our Time column.

Statistics Chapter 5

[126]

You can also add columns by going to Edit | Preferences... and then to the Appearance |
Columns area, and you can manually add whatever column you want by clicking on the
plus sign:

Lastly, if you go to Statistics | Capture File Properties, you'll see a list of information based
on the packet capture. And if you scroll down, you'll notice that there's a whole bunch of
statistics on the capture itself, including the number of packets, the time span, how big this
packet capture is in number of seconds, average packets per second, average byte size, total
number of bytes that have been captured, average bytes per second, and average bits per
second:

Statistics Chapter 5

[127]

This summary can be useful when comparing a capture done during a benchmark, when
everything is running normally, and compared to a packet capture performed when there
are performance issues. You can see if there are any of these values in the summary
statistics that have changed drastically.

Statistics Chapter 5

[128]

Trace file statistics
In this section, we'll take a look at how to display useful statistics in Wireshark and some
issues you could troubleshoot utilizing that statistical information.

Resolved addresses
In order to access the statistics in Wireshark, click on Statistics and go to Resolved
Addresses:

Statistics Chapter 5

[129]

The Resolved Addresses window will give you a list at the top of all of the IP addresses
and DNS names that were resolved in your packet capture. This way, you can get an idea of
all the different resources that were accessed in your packet capture:

Statistics Chapter 5

[130]

Protocol hierarchy
Next we'll look at protocol hierarchy. You need to click on Statistics and go to Protocol
Hierarchy:

It will give you a breakdown based on the percentages of the packets of the most popular
protocols that it saw:

Statistics Chapter 5

[131]

As you can see at the beginning, everything that came in was a Frame. Everything that
came in that Frame was an Ethernet frame. And then within that, we have a breakdown of
what's within Ethernet. So we have some Internet Protocol Version 6; we have a whole
bunch of Internet Protocol Version 4, and a little bit of Address Resolution Protocol:

Statistics Chapter 5

[132]

If we expand Internet Protocol Version 4, we see that the biggest amount of packets that
we received were SSDP packets:

Statistics Chapter 5

[133]

Now, this is useful because you can see all the different types of data that have arrived. For
example, if you're not expecting to see Connectionless Lightweight Directory Acess
Protocol or NetBIOS UDP frames that's useful to see, especially if it were a higher
percentage in the number of packets than it saw in the capture. Or let's say, maybe, you
shouldn't be seeing any SMB traffic but you do see a lot of SMB traffic; that could be some
sort of a breach.

Conversations
You need to click on Statistics and go to Conversations:

Statistics Chapter 5

[134]

In Conversations, we have a list of all of the different Ethernet, IPv4, IPv6, TCP, and UDP
conversations that have occurred within this packet capture:

Statistics Chapter 5

[135]

Additionally, on all of these tabs, there's a Duration column, and that's very useful to see
which are the largest and longest talkers in your conversations which have been captured.
You can sort by duration by clicking on the Duration column, and see which ones are
sending the most amount of data:

Statistics Chapter 5

[136]

Endpoints
We'll now go to endpoints. Click on Statistics and go to Endpoints:

Endpoints is similar to conversations, but it's simply a listing of all of the endpoints; not
just the connections between the endpoints as to which IP is talking to which IP, or which
MAC is talking to which MAC; it's just a listing of all of the devices on each of the layers
and the information about them. We're not concerned about the conversation, just the
endpoints: all the endpoints added together.

Statistics Chapter 5

[137]

As you can see under TCP, for example, we have versus the for IPv4, and that's
because my host computer here opened up a whole bunch of ports when I opened that
browser and tried to go to PBS:

Statistics Chapter 5

[138]

Packet lengths
Next, we'll go to packet lengths. Click on Statistics and go to Packet Lengths:

Packet lengths is useful to determine if you have small packet lengths, especially if you're
having a window size issue and a lot of your data is smaller than it should be. What you
want to look for is whether most of your data is in the range for packet length
because the maximum MTU is :

Statistics Chapter 5

[139]

So, if you see the majority of your data (and we can see we have) is in the range
, that means most of your data is being sent and received properly. If you have

less of a percentage here and you have a large percentage of packets that are in a smaller
packet length, then you might have a problem.

Note that you will see a large percentage in the very small packet length
there because you'll have a lot of the AKS and control packets.

I/O graph
Let's look at the I/O graph now. Click on Statistics and go to I/O Graph:

Statistics Chapter 5

[140]

I/O graphs is a great graphical representation of the amount of data that's flowing through
the packet capture, from the beginning to the end. I clicked on Start on the capture. Then, I
went to my browser and opened it and typed in , and then
pressed Enter. Then we saw the spike of traffic as it went and got that data from the content
servers for PBS. And then that communication ended and I stopped the capture:

Statistics Chapter 5

[141]

If you have a consistent file transfer that's occurring, for example, and it's at a low I/O due
to some problem, you can see that in the I/O graph, and we'll get into the details of
customizing this later on in a future chapter.

Load distribution
A useful statistic for HTTP is if you go down to the HTTP section by navigating to Statistics
| HTTP | Load Distribution:

Statistics Chapter 5

[142]

This will give you a view of all of the servers that have served up HTTP traffic in the packet
capture:

You will be able to see how many servers were served up, so if you're trying to diagnose a
problem with a content distribution network, you could see that under the Topic /
Item column; or if you're trying to find out which server is being loaded the most, because
it has the most connections to it, you can see that under the Count column. You can add a
filter in Display filter as well, if required.

Statistics Chapter 5

[143]

DNS statistics
If you need to do a lot of analysis of DNS traffic, you can go to Statistics and then to DNS:

It'll give you a nice listing of all of the different codes that are returned in DNS:

Statistics Chapter 5

[144]

If you're having problems with your responses or you're getting a lot of errors when you're
not expecting to receive any, you can view that easily instead of filtering by DNS traffic and
going packet by packet through all of them.

Flow graph
One of the coolest Statistics is flow graph.

What we'll do is filter our traffic by this TCP flow. So we'll right-click on a TCP packet and
go to Follow | TCP Stream:

Now, we will create a filter for that. We've snipped out just a little bit of our traffic, and
what we'll do next is go to Statistics and click on Flow Graph:

Statistics Chapter 5

[145]

By default, it shows all of the packets in our packet capture:

Statistics Chapter 5

[146]

As we scroll through, you'll see all of the flows, all of the TCP handshakes-that is, the
, , and -and all of the requests and responses. Everything is in here, in a

nice graphical format that you can use to diagnose your traffic. This is very useful for SIP
traffic, for example.

What we can do is make the change in the bottom left where it says Show, and
select Displayed packets here:

Statistics Chapter 5

[147]

This change will be made for the filter that we have behind the screen. You can see the
communication going from my computer to the server as I request for data such as a :

It's a very useful way of graphically representing the data flows that occur within your
packet capture.

Expert system usage
In this section, we'll take a look at the expert system in Wireshark, which is a great feature
that not many people know about, and it allows you to easily find problems in a packet
capture.

Statistics Chapter 5

[148]

You can follow along with the capture that I'll use by downloading the same one off of the
Wireshark website. There's a great section of their wiki called SampleCaptures that allows
you to download captures that have been submitted by the community:

What we'll do is search for errors, and the first one that comes up is
. If you download that and extract it, you can open

up the file and follow along:

Statistics Chapter 5

[149]

Here, we have our file from the wiki, and there are two ways to get to the expert
system. The first way is from the Analyze menu. We click on Analyze, and go to Expert
Information:

The second method is in the bottom left. As you can see in the following screenshot, it is a
yellow colored icon:

Statistics Chapter 5

[150]

This icon color will change based on the errors that are available in the packet capture. If
this is yellow, the highest problem in this packet capture is a warning. If this is red, the
highest problem in this packet capture is an error. If it's blue, it's chat information or
informational. If you click on that, it will bring up the expert information. As you can see,
there is a listing of all of the problems that Wireshark has automatically found in the packet
capture:

Statistics Chapter 5

[151]

The chat ones are usually just generic informational data that you don't need to see, so we
can minimize them. On your packet capture, if you have warnings or errors, these are
things you want to take care of. The errors are the most critical. These are problems in the
actual TCP communications or there's a problem in the packet in some way. There's a
malformed issue or a CRC failure. Warnings are usually application problems, weird
responses, and spooky stuff like that. Wireshark notices that and will alert you to it with
this expert information window. Not only does it show you the type of errors and warnings
it finds, but it tells you what packet number it's available on, and you can click on it. If we
click on packet number , it will jump in the packet list down to , select it, and
then show us what it's talking about. If we scroll down and look, we can see that it's under
the Transmission Control Protocol:

Statistics Chapter 5

[152]

For another example we can take a look at on the SampleCaptures, if you search for ,
the first one that we'll get is this :

You can download the highlighted file as shown in the preceding screenshot and open it
with Wireshark. If we go into expert information, you can see that there is a warning on
packet . There's a , so we can click on that. It takes us to
packet , and highlights exactly what the problem is:

Statistics Chapter 5

[153]

Summary
In this chapter, we've gone over the basics of TCP/IP and how a packet is built. We've seen
how to use the time information in a packet capture to our advantage, and how to add time
columns and change the time settings. Furthermore, we've seen how to view different
statistics in Wireshark on our packet capture to help get an idea of what the capture
contains and how to use the expert system, which is a nice hidden feature in Wireshark to
show us exactly what the problems are in the packet capture that Wireshark knows about.

In , Introductory Analysis, we'll see an introduction to analysis of different
protocols.

66
Introductory Analysis

The following are the topics that we'll cover in this chapter:

DNS analysis
ARP analysis
IPv4 and v6 analysis
ICMP analysis

We will see how each one of these is useful. Let's get started!!

DNS analysis
Let's take a look at how DNS works at a basic level and how to do common tasks with DNS
such as look in a Wireshark capture.

We will start by flushing the DNS cache on the computer, which will clear out any of the
cached entries on the device so that if we try to resolve any of them, it will have to go get a
new resolution from the servers out there on the internet. For this, we will enter the
following command:

Since we've cleared that out, let's do a standard resolution.

Introductory Analysis Chapter 6

[155]

Before we do a resolution, what DNS does is resolve domain names and different records of
these domain names to IP addresses. That's its primary purpose.

DNS is used for all sorts of things, some of which are listed here:

Browsing the internet in any fashion, such as with the web
If you're trying to resolve FTP servers or game servers
If you're trying to run an active directory on a domain into a local network
If you're trying to run VMware

All sorts of different services out there use DNS; there's a common mantra in IT that even
when you think it's not DNS, it's usually DNS whenever there's a problem. Let's take a look
at what a normal DNS resolution looks like.

For that we will type the following command in Command Prompt:

nslookup wireshark.org 8.8.8.8

We'll force that query to go out to Google directly. If I press Enter, we get the following
output:

So, in this result, you see that we have the server that responded to our query, ,
and we can also see the DNS name for that server address. You can also see the answers
that it has for that device for that server, and you can see that we have both IPv6 and IPv4
addresses.

Introductory Analysis Chapter 6

[156]

The IPv6 addresses, as you can see, have a very different format from IPv4.

If you're unfamiliar with IPv6, take a look at the other books that are
available from Packt Publishing regarding IPv6.

So what we want to do is take a look at this from a packet level. For this, we'll flush the
DNS cache again:

ipconfig /flushdns

Next, we'll start a capture on the local interface, as shown in the following screenshot:

Introductory Analysis Chapter 6

[157]

While the capture's running, let's go ahead and enter the same command we used earlier:

nslookup wireshark.org 8.8.8.8

Next, we will stop the capture. If you scroll down, you can see that there's a whole bunch of
DNS as well as some other protocols. So what we'll do is, we'll use a filter and simply type
in in the display filter. That will get rid of any other junk that we don't want to see:

You can see the first request. So we have some other DNS requests that occurred by the
system. We'll take a look at the first query highlighted in the preceding screenshot.

Introductory Analysis Chapter 6

[158]

You can see in the query that it's asking for , and so it's actually asking for the
domain name of the domain server. You can also see that it has a of .

If we look at the next query that happened, , you'll see that it has a
 of :

If we look at the packets in response to the query, they will have a matching transaction ID.

So a good example as to why this is useful is if you see a number of responses, or queries
even, that are going around on your network and showing up in your packet capture with
the same transaction ID over and over again, you may have a loop in your network; that
could point to a problem with spanning tree, for example.

It's also just useful in general for us to be able to determine which packets are matched up
from query to response. As you can see, Wireshark is automatically showing us the related
packets between the two, as we've already mentioned in the previous sections.

Introductory Analysis Chapter 6

[159]

We also have a line that tells us within the DNS section of the packet details that it's a
response in packet :

And if we double-click on Request In, it'll take us to the respective packet. Then, of course,
you can go back and forth between the two. So, the transaction ID is very useful.

Let's go down to our second query for the actual , and open up the Flags.
We can see that there's a flag turned on:

Introductory Analysis Chapter 6

[160]

We have a bit enabled, where it says Recursion desired: Do query recursively. This
means that the query is requesting the server to ask other servers in case it does not have
the answer to our query. A DNS server could have additional pointers configured in it, or
additional forwarders set up on it, to go look for the answer to a DNS query. So, this query
flag is saying "yes, go ahead and do that for us".

Let's go down to packet , where the system requests the record from
Google. We can see the response on packet . Then, we dig into the Flags, which gives
the highlighted response in the following screenshot:

Bit is enabled, so the highlighted part is a response message. It has
 and as enabled.

Now, we'll scroll down and see that we have Answer RRs: 2, so we have two responses to
this:

Introductory Analysis Chapter 6

[161]

We'll see the Queries and when we go down to Answers, we'll see that we have two
records for :

Thus, it looks like is using some sort of load-balancing system because we
have an record of and . If you go to

, it will take you to either of these two addresses. You'll also see that there's
a Time to live value, where you have a TTL of , which is the number of seconds that
this record is to be kept on my system before it requests a new record. The TTL value is
very short here, and most likely this is something to do with the fact that they are using a
load balancer. If there's any sort of change in the address, it wants us to get an update as
quickly as possible. It doesn't want us to keep a cached version of bad IP addresses for a
very long period of time. For example, many defaults are 8 hours or 24 hours; so, converted
to seconds, you might see 86,400 seconds or so.

An example for DNS request failure
Let's take a look at a DNS request that will fail.

Introductory Analysis Chapter 6

[162]

For this, we'll create some sort of random domain and put in
gibberish, , as shown in the following screenshot:

Next, you need to start a new capture. Go ahead and press Enter:

Now, you need to stop the capture.

We can see we have the requests, like before:

We have the domain name, and we have the actual request. Just like with
, you can see that we've received an record as well as a quad record.

This is because the system is requesting both IPv4 and IPv6. You saw that in the command-
line output when we did .

So we have an record, which is the IPv4, and a quad record, which is IPv6. But you can
see that we have some sort of gibberish domain name, which obviously responded back in
that command line, saying that it couldn't find a result. So we sent out a query, asking for

, and we received a response from the DNS servers at Google, saying
. If we go to the Flags and take a look, we have

, , .

Introductory Analysis Chapter 6

[163]

And if you remember from the filtering section, we can right-click on any flag and apply a
filter by selecting Apply as Filter based on the options available, as shown in the following
screenshot:

So we just filtered our display filter based on as the error code in DNS. This
is a great filter you could apply if you're doing a packet capture where there's some sort of
connectivity problem. You can look for failed DNS queries.

ARP analysis
In this section, we'll take a look at how ARP works, resolve addresses from IP to MAC, and
also see what ARP issues look like in Wireshark. So what ARP does is resolve the IP
addresses, which are layer 3 addresses, to MAC addresses, which are layer 2
addresses these are addresses that are used on our local Ethernet bus. We need this
information in order to construct a frame which encapsulates a packet, so we can send it on
to the wire. When a user or an application requests data from a specific IP address on layer
3, our system has to figure out what that MAC address is, if it doesn't already have it in its
cache. We can check what MAC addresses our system already knows about in its ARP
cache. Just like DNS had a cache of locally known information, ARP is also locally cached.

Introductory Analysis Chapter 6

[164]

So what we can do is type the following in a Windows machine:

arp -a

If you press Enter, you'll get a list of all the known IP addresses in layer 3 matched up with
the physical addresses, which are the MAC addresses on layer 2:

In the preceding screenshot, what you see in the third column is, as it says, .

All of these addresses are the ones that my system knows about because they are coded
into the operating system at this moment. So, these addresses are multicast addresses that
the system knows about by default. It also knows some VMware interface, IP and MAC
addresses, and a number of things that already exist.

Introductory Analysis Chapter 6

[165]

If we scroll up, we can see that there are some dynamically learned addresses:

Next, you can see some statically known information some multicast for the interface
.

You can see the primary interface, where we have the static information that's known for
that interface, and we have dynamically learned addresses. The addresses under

 are all MAC addresses that have been discovered for specific IPs and are cached
for a specific period of time. Then, if I need to access that device again on layer 2, it will do
an ARP request again.

Now, what we'll do is take a packet capture of a normal, good ARP request.

Introductory Analysis Chapter 6

[166]

We'll start the capture and ping a known good address on IPv4:

As we can see, we received a number of replies. The system has sent four pings
using Internet Control Message Protocol (ICMP) to this device, and received a response to
all four of them. Before it was able to do this, it had to figure out what the local physical
address is of that device, what the MAC address was, before it could even do the first
response, or first request.

Next, we'll stop our capture and do a filter for :

Introductory Analysis Chapter 6

[167]

That way, we only see our ARP traffic and we'll skip some of the information. There are
some other devices on the network that are also trying to do ARP requests, but if we check
the preceding screenshot, we have the interface, which is the motherboard of the
computer we are using.

In the Info column, you can see .
That's the IP address of the system we are using right now. We get a response saying,

 MAC address:

The preceding screenshot shows a Netgear NAS device that we have on our network.

If we go into the ARP information in the packet details pane, we can see the same
information as shown in the preceding screenshot, but in summary form:

It's an Ethernet response. The sender MAC in the frame is from Netgear. It's being sent
from Netgear's IPv4 address to the initial requester and then to our system with the IP

.

However, there is one thing to be careful with. I we look at where we did the ARP request,
you can see that it was sent from our system with the MAC address
and IP address , but it was sent to because it didn't
know who it was going to, but it did know the IP. In the initial request, the ARP request,
the sender is the device that is requesting. Then, in the response, the sender is the device
that's responding. Note these kinds of flip-flops. You'll also notice that in the ARP request,
it is a broadcast, and we can see that from where it says Destination: Broadcast on Ethernet
II, as shown in the following screenshot:

Introductory Analysis Chapter 6

[168]

It's going to a broadcast address. So when our system is trying to find on the local Ethernet
bus, the MAC address of the device that has the IP shown on layer 3, it doesn't know who
to talk to for that so it sends out a broadcast to everyone. Then, the device that happens to
know that information receives it (because everybody has a copy) and responds. Similarly,
with DNS, if you see a bunch of repeats here, especially response frames, that are looping
over and over again they just keep showing up in your capture constantly that could
again point to a loop in your network. You shouldn't be seeing these over and over and
over again.

An example for ARP request failure
Let's take a look at an example where an ARP request fails.

What we'll do is start a new capture, and this time we will ping an address that does not
exist on my network:

We will see show up. We will do that a couple of
times. Since we are trying a ping, it's going to do that four times on a Windows system. If
you're on Linux or macOS, it'll probably do that nonstop, depending on what you use.

Go ahead and stop that capture; we have plenty of information here:

Introductory Analysis Chapter 6

[169]

We can see the request highlighted in the preceding screenshot:

We can see the target down in the Address Resolution Protocol (request) option. And we
just keep requesting it over and over and over again. We're trying desperately to find who
has that MAC address for IP , but it doesn't exist. It just keeps trying and
trying, and it keeps timing out and failing; and that will show up in our results, as you saw
in the command line, as unreachable.

IPv4 and IPv6 analysis
We'll now take a look at the differences between IPv4 and IPv6 and learn about issues and
features such as the fragmentation of these packets, broadcast storms, and flags within the
IPv4 and the IPv6 header.

What we have is some data from a packet capture going to a website which was encrypted,
so that's why we see a lot of TLS in the protocol information:

Introductory Analysis Chapter 6

[170]

And we see that we have in the Info column, which is all of the
encrypted data transmitting back and forth to the web server. Go to IPv4 in the packet
details, expand that, and we can take a look at the information in the IPv4 header:

We can see that, right after Internet Protocol Version 4, it's saying that it's ;
otherwise, it will show . It also has the , which is the number of
bytes in the header. Sometimes, the can fluctuate, so it defines how big
that header is so that the application knows where the differentiating point is between the
header and the actual data in the packet. We also have some DSCP information for quality
of service purposes and the total length of the packet. If you're familiar with MTU, such as
setting the MTU of the interface of a router or a computer, that's where this comes into play.

 is the total size of that packet. If the total size of a packet is too large, it will
fragment.

Also, we can see that it says inside the Flags. If we expand our Flags,
we can see that we have fragmentation settings in the Flags. So we have
that are coming, or . The tells the IP stack where to
pick up with the additional data that's coming so that it can combine it into one large
packet:

Introductory Analysis Chapter 6

[171]

We also have a TTL, which usually is some sort of default number, such as or , or
something like . As it hops between the different routers throughout the internet or
your local network-wherever it happens to be destined to go-it will decrement 1 as it goes
through each device. If it reaches 1 when it's received on a router-if it's a TTL of 1-then that
router will discard that packet. If a host machine receives a packet with a TTL of 1, it will
process it because it doesn't have to actually route it somewhere. The TTL prevents packets
from looping around forever throughout a network. If it loops through 60 devices, it will
then be discarded; so, it won't get stuck there forever.

We also have a protocol definition: is it a TCP packet, a UDP packet, or some other type of
protocol. And we have some checksum information to ensure that the header has not been
manipulated in any way. Notice that it's not a checksum of the entire block of data, such as
the FCS at the end of a frame which encapsulates this, but it's the header checksum to make
sure that the header itself is not manipulated. Then, of course, we have the source and
destination addresses that we're coming from and going to, respectively:

Let's take a look at a packet that's been fragmented:

Introductory Analysis Chapter 6

[172]

We can actually see that we have an IPv4 packet and it says in
Wireshark here; it knows that it's a fragmented packet. We see in the packet details that it
has a length of bytes, and in the flags it has the 1 bit turned on for more fragments. So
it says there is a fragment coming up. There's an additional packet; that next packet is part
of this, so we can combine them. We can see that is a packet and that it was
generated with a TTL of . Since the source was our local machine and it's going out to
the internet, we know that this is the generated TTL because it's being recorded and
captured on the device that is sending it. So, our system is actually defaulting the detail to

.

The next packet is a continuation of the preceding packet:

We can see that is , so it knows that it needs to be combined with
that previously captured packet. You can see that, if you go down in the packet details,
Wireshark actually combines them in this little information section in the details. If we
expand [2 IPv4 Fragments (1358 bytes): #2818(1280), #2819(78)], it says that there are two
packets involved:

Introductory Analysis Chapter 6

[173]

We can select the first and second packets. Click on them and you can see the following
information:

So Wireshark is smart enough to know this. It takes a look at the header information and
provides you with the details, as shown in the preceding screenshot, so that you don't have
to do the math yourself. It even says how many fragmented packets there are within this
one transmission and also provides additional information, such as the total length of the
reassembled data. An application can define whether or not it's fragmented. So when an
application wants to communicate, it will tell the stack whether to set the
bit or not. Depending on the application and its requirements, it may say that it does not
want its data to be fragmented. Maybe it's an encrypted packet and, if you fragment it, it
will mess up the encryption. Since it doesn't want to have that information fragmented, it
will turn the bit on which says so that the IP stacks on both sides know
that they need not fragment the data. If you notice, the initial packet that was sent-that's
going to be fragmented-has an identification of . If we look at the second packet in this
series, we see that its identification is also .

Remember when we were talking about the ID field? It changes based on each conversation
or each packet that's sent. If the identification is the same, that's an indicator that the packet
is fragmented. This is how Wireshark is actually combining them and realizing they're part
of a series, because the ID is the same but the data within it is different. It's not a duplicate,
but just a continuation of a fragmented piece of data. Now, in an IPv6 packet, you'll see that
the header is somewhat similar to IPv4:

Introductory Analysis Chapter 6

[174]

 It's actually a little bit simplified. It has ; it tells you what kind of data is
within it: is it TCP or UDP; it has a TTL (they call it); and it also has a source
and destination address. Remember that the addresses look different in IPv6 as it uses
hexadecimal.

ICMP analysis
In this section, we'll take a look at how ICMP is useful to network engineers and what some
of the different types of ICMP are and what they mean.

The first thing we will do is create some ICMP packets. For that we will create a ping
request, which is a type of ICMP.

So, let's go ahead and start the capture, and we'll go ahead and ping Google again:

Introductory Analysis Chapter 6

[175]

Each one of the replies is a series of ICMP requests and responses.

Stop the capture and we'll apply an display filter:

As shown in the preceding screenshot, these are all of my ICMP packets that have been sent
and received, and we can see that we have multiple requests and replies. This coincides
with the four replies that we saw in the command line.

If we dive into the header, by going down to the very bottom in the packet details that is,
to Internet Control Message Protocol, we can see that we have and :

 and are the two important parts within ICMP. We see we have
. Then, in the next packet we have .

The and give us information about what's going on in the network. Now, this is
a very simple example of requesting a poll of a device and a response from a device to see if
it's alive. It's basically like ringing the doorbell of a device to see if it's there.

There are other types and codes within ICMP that are useful to our devices on our network
and are also useful to us as engineers. A very simple example is an echo request and you
can reply to see if something is accessible and if it's being allowed by the device, such as
firewalls; they may be blocking the request, but it's a very useful thing. We also have other
types and code we can look at.

Introductory Analysis Chapter 6

[176]

If you go to the ICMP page on Wikipedia (
), we can scroll down and take a look at all of these types and

code. You can see that there are a number of different types, and there's code within each
type.

You can see that there's type 8 - Echo Request, used to ping; and type 0 - Echo Reply. But
we have these additional types that are here as well, such as type 3 - Destination
Unreachable:

Introductory Analysis Chapter 6

[177]

A router may send an ICMP packet back to a device, letting it know that it's unable to
access a certain network or host for it. You can see all the different types that it has to
describe to the requesting device why it can't reach the specific resource that it's trying to
get to.

The other common types are router advertisement and router solicitation. These allow hosts
to request and receive a router to access a specific network. Additionally, we have type 11 -
Time Exceeded. Remember when we were talking about the TTL and how it starts at a
certain number, such as or or something like that, and it will then decrement as it
goes through the different routers throughout a network and across the internet? When a
router receives a packet with a TTL of , it will discard it and at the same time generate an
ICMP packet and send it back to the original source device, letting it know that the TTL
was exceeded and that it needed to discard it. It will do so with type and code .

We can see an example of this in the following screenshot:

The black packets are highlighted by default in Wireshark. All of them have their TTL
exceeded. So there are TTLs that, when they were out on the internet, ran out. They got
stuck in a loop or something like that and the router that discarded it sent back a message
to me letting me know that my packets have been discarded they did not make it to their
destination.

Introductory Analysis Chapter 6

[178]

Now, these packets are a little bit different in that they're fragments. We saw that the other
one was a code and the packet shown in preceding screenshot is a code , but it's the
same idea. It's sent back a type to us to let us know that the TTL was exceeded for that
packet. This is actually how traceroute works. It uses ICMP packets with different TTLs in
order to figure out what routers are in the path from a source to a destination.

Using traceroute
We'll start a new capture and then traceroute. In Windows, it's . We will traceroute
to a different device out there on the internet.

We will traceroute out to our trusty Google DNS server; why not? We will then press Enter,
and we see the path start to show up here:

Introductory Analysis Chapter 6

[179]

You can see that it has received a number of responses as it went through each different
router. Every once in a while you'll notice that it gets some timed-out responses. Depending
on the router or firewalls that it goes through, they may not send back information to us.
This is why sometimes you'll get gaps in your path, but you can see that it picks up again as
it finds another router that responds to us at least. Hence, we're still going through the
internet, bouncing through routers, and eventually getting to our destination. If you've
noticed, each one of these hops was done three times. So, it gives us an average of the
response time for that specific router over an average of three attempts it goes from router
to router.

If we take a look at Wireshark, we should see three requests for each router. What it does in
my system is, when it creates a traceroute, it starts out by sending a packet to my
destination with a TTL of , not or , or anything like that:

So it'll go to our router that will get it and say, "I can't do anything with this; I need to
discard it". The TTLs will go to . Then our router will send an ICMP back to me, letting us
know that my TTL has been exceeded. What we can see is that's exactly what happens. We
sent out a ping request, an echo request with a TTL of . Our router responded to say "oh,
sorry; I couldn't do it". Then, I do it again for that second attempt. We get a response that
says "no, I can't do it". This is done a third time, as well. Then, it goes and creates an echo
request with a TTL of :

Introductory Analysis Chapter 6

[180]

It gets through our router because my router sees that it's a ; it decrements it to and
forwards it; that's completely valid. Then it goes to the next router up the chain, on Verizon,
we saw. That router sees it; it sees that it's a TTL of ; it has to discard it and send back a
response saying "no, sorry; I couldn't do it; your TTL has exceeded". I do it again and it
responds. Now, we create a TTL of :

Introductory Analysis Chapter 6

[181]

It keeps doing that for TTL and so on. That's how traceroute is able to map out the routers
from point A to point B because it uses the ICMP TTL exceeded errors in order to figure
out that device. This is because it knows that the ICMP packet is generated by the router as
an error code back to us. Luckily, we can use that IP information to map out the hops that I
go through in order to get to that destination. Very clever.

Summary
In this chapter, you learned how DNS functions and saw some DNS analysis. We saw how
ARP works and went on to resolve the MAC addresses. We covered IPv4 and IPv6 headers,
and saw how to take a look at some of the details within the headers, including ICMP. We
also saw why ICMP is useful to us as network engineers. We covered some information on
how traceroute works, and the headers in it, as well.

In , Network Protocol Analysis, we'll start diving more into analysis and taking a
look at some additional protocols and applications.

77
Network Protocol Analysis

In this chapter, we'll take a look at the following topics:

UDP analysis
TCP analysis
Graphing I/O rates and TCP trends

UDP analysis
We'll take a look at how UDP works, what it is, and what's in the UDP header. The UDP
protocol is a connectionless protocol and it's very lightweight a very small header.

Network Protocol Analysis Chapter 7

[183]

If you'd like to learn more about the UDP protocol, take a look at
:

This is the original specification. It's been updated since August 28, 1980, if you look
through all of the RFCs, but the original specification is . If you'd like to learn about all
the details of UDP, which are relatively short, you can do so through the file shown in the
preceding screenshot.

Network Protocol Analysis Chapter 7

[184]

Let's take a look at UDP in Wireshark:

We have a capture of just a few seconds of data and a whole mixture of applications and
protocols. What we can do is simply filter based on . If you press Enter, now it only
shows UDP packets:

Network Protocol Analysis Chapter 7

[185]

And you can see that we have some additional protocols listed, which include applications
that use UDP for their transfer, such as . What we can do in the packet details is take a
look at the UDP section:

In the UDP header, there are very few fields. UDP always has 8 bytes in its header, and
there are only four fields. We have a Source Port; a Destination Port; the Length, which is
the total length of the packet, including header and data; and a Checksum, which validates
the header information. But it does not encompass all of the data like you would expect,
with the FCS in a frame, at the end of a frame. You can see that we have an
checksum. By default, this option is not enabled in Wireshark.

Now, go to Edit | Preferences... | Protocols | UDP and turn the Validate the UDP
checksum if possible option on:

Network Protocol Analysis Chapter 7

[186]

You can see that now the checksum says :

So, if there were any problems in the header and it was manipulated in transfer, we'll be
able to see that here and it'll be marked. Then, if you expand Checksum, it'll tell you what
is the checksum information that it was calculating.

There are usually very few problems that you'll have with a UDP transfer. Either they work
or they don't. They do not guarantee any connectivity, and the applications will perform
any sort of retransmission if necessary, built into the application. It's not handled within the
stack like it is with TCP. Because it has a very small header and very few fields, there are
very few options to be turned on and off. There's not much here; it's meant to be very
simple and lightweight, which is great for voiceover IP or streaming video; anything like
this, which is very time-sensitive. It sends the data on its way and hopes that it gets there.
Great if it does; if it doesn't, then: oh well, you miss a packet or two.

One thing you can do if you're not sure whether a packet is UDP or not when looking
through the packet list up top is create a column based on UDP. So we right-click on User
Datagram Protocol, Src Port: 40097, Dst Port: 1900 and select Apply as Column:

Network Protocol Analysis Chapter 7

[187]

Now, we have a new column that says User Datagram Protocol; it is a UDP packet. If we
remove our filter, we can see that we now have a tick mark and blank listed
throughout our capture:

That's a nice way of easily seeing what is a UDP packet and what isn't, depending on
whether or not you have different coloring rules or something like that that's in a large
packet capture.

One of the few problems you may see with UDP are destination unreachable responses
(these are ICMP packets, if you remember) following UDP connection attempts. If you have
a UDP connection attempt and you continuously receive an ICMP destination unreachable
in the next packet and also later on, that's an indication that you might have some sort of
connectivity issue that you need to investigate. That's really the only sort of response you'll
get because UDP does not send responses. The device itself may send a response telling
you that a network is unavailable or something like that and hence the destination is
unreachable. But, otherwise, UDP itself will not tell you anything. This is why there are
very few things that you will see in a packet capture regarding UDP issues because there's
nothing built into UDP to tell you that there are issues.

TCP analysis I
In this section, we'll take a look at how TCP works, what's in the TCP header, and some of
the flags and options.

If you'd like to learn more about TCP, you can look at the RFC that's available from the
IETF at :

Network Protocol Analysis Chapter 7

[188]

You're looking for RFC: 793 for TCP, which is the original specification for TCP.

Network Protocol Analysis Chapter 7

[189]

In the preceding screenshot, you can see different sections within IETF, which provide a
little bit of interactivity. You can click on the different RFCs that have updated the TCP
specifications; if you scroll down, it also provides you a nice little table of contents. The
RFC shows a little diagram of what the TCP header looks like:

Network Protocol Analysis Chapter 7

[190]

We have Source Port; Destination Port; Sequence Number; Acknowledgment Number;
Data Offset; some Reserved bits; Window size; header Checksum; an Urgent Pointer;
and Options, which is an expandable section. We have some Padding and then the actual
data.

Go into Wireshark and let's go to a TCP packet. We can see we have some TLS traffic that
happens to be running over TCP. We can right-click on Transmission Control Protocol and
select Apply as column:

In the preceding screenshot, you can see the tick mark, which means it is indeed using TCP.
If we expand Transmission Control Protocol, you'll see the fields that we were just looking
at in the RFC.

Network Protocol Analysis Chapter 7

[191]

We have Source Port and Destination Port, and you can see that the system in my
computer was accessing this web resource on port and accessing other fields, which
you've noticed in other packets that you've looked at, most likely. Anything with a square
bracket is created by Wireshark; they're not actually fields within the header, so we can skip
them. We have Sequence number and Acknowledgment number. These are relative
numbers, if you noticed. We mentioned this a little while back that they started with in
this example. The actual raw number is not 1. Wireshark shows it as , and as a relative
number to make it easier for you to look at. Otherwise, it's a very long number that is
harder for humans to look at and diagnose.

Next, we have Header Length. It tells us how big the header is because the header can
change its size in TCP, unlike UDP, so we have to tell it how long it is. We have some
Flags, as shown in the following screenshot:

In the preceding screenshot, you can see we have some congestion information; the Urgent
bit; Acknowledgment and Push; and Reset, Syn, and Fin. A lot of this stuff will look
familiar, such as SYN, Acknowledgment, and FIN with creating a connection and
finalizing a connection. We also have Window size value, which tells us how large of a
chunk of data we can transmit before having to do an acknowledgment:

We have a Checksum, which again is , and an Urgent pointer.

Network Protocol Analysis Chapter 7

[192]

If we want, we can go to Edit | Preferences... | Protocols | TCP and enable the Validate
the TCP checksum if possible if you would like:

We can see that we now have a checksum.

Let's go ahead and create a new capture, and we'll take a look at a handshake creation and
teardown of a connection.

Let's start a new capture, and we will generate some traffic. Furthermore, open up a new
web page and re-download all the information for that RFC that I showed you from the
IETF website. We'll scroll down and look for the beginning of our connection:

Network Protocol Analysis Chapter 7

[193]

It looks like the website that's being transmitted. It was over HTTPS, so seeing the TLS
traffic is what we can expect. We'll right-click on the TLS traffic and go to Follow | TCP
Stream:

Next we'll just go back to our main packet list:

You can see that the filter for is listed in the filter option. Now this is
our connection to the website for IETF. As mentioned earlier, TCP is connection-oriented. It
guarantees delivery of packets. So if you miss a packet, the acknowledgment system builds
in and retransmits it. So what happens is that we send a piece of data from the server to the
requesting device. We send an acknowledgment that we received it. We also send another
packet followed by an acknowledgment indicating that we've received it.

Sometimes, depending on the options and the functionality of the TCP stack in your
network card in your drivers, you may allow for some enhanced features that have come
out over the years, such as selective acknowledgments and some enhancements to allow
you to be more efficient with the way of using this acknowledgement system so that you
don't have as much overhead. The creation of a TCP handshake we can see is a , which
says "let's synchronize":

Network Protocol Analysis Chapter 7

[194]

Let's create our connection. We have a in the Flags that is . That's my system
requesting the IETF website create a TCP connection. They respond with a and an

; then we, in turn, send back an acknowledgment, as well. So we
have ; ; and the three-way handshake with TCP. After that occurs, we
then begin communication to retrieve HTTP traffic, which happens to be laid underneath
TLS, in this case. We can see the creation of the TLS connection and some data being
transmitted, such as key exchanges and things like that:

Then, at the end of the communication, while sending and receiving whatever data we
wanted such as the website being retrieved, our system will then finalize that and with an
implicit method say: "let's terminate this; there's no more data to be sent or received". We'll
end this TCP connection with a finalized statement.

And so what we do is, in the Flags, we have and . Sometimes at the end of
the list, you'll also see a Reset. So the final method using is implicit, saying this
connection should be terminated; there's nothing else to be transmitted. But it's not
explicitly told to remove the connection, so the system on either end may end up leaving
this connection live it's up to them.

Network Protocol Analysis Chapter 7

[195]

If you see a Reset at the end of a connection after the FINs, then that's an explicit way of
one of the devices saying: "yes, terminate this packet". This is an explicit way of saying: "kill
the connection; reset it; nullify it".

If you see a Reset before the FINs, then that may be an indicator of a problem in the
connection, where the server or the requesting device solves a problem and resets the
connection to try again.

We also have options, which are an extension in the header to allow us to expand upon the
abilities of TCP. What we can do is filter on because, if you notice looking through
the header, we don't see anything that says . If we want to find anything that has

, we need to filter on that.

In the display filter, type :

Now we're showing all the traffic that has enabled in the header. If we scroll
down in the packet details area, we have some information about the Options. We can skip
the No-Operation stuff. We want to look at things that are more interesting to us, such as
TCP Option - SACK permitted and TCP Option - Window scale:

Network Protocol Analysis Chapter 7

[196]

For example, the following screenshot shows a packet that has TCP SACK:

Selective Acknowledgment (SACK) allows you to acknowledge traffic while still
requesting for missing traffic, without having the entire block of packets resent to you. So if
you're having, let's say, five packets at a time being sent to you before you send an
acknowledgment and one of these is missed, without Selective Acknowledgment all five
will need to be retransmitted to you. So, the further apart the acknowledgments are
between the number of packets that are sent to you, the more efficient it is because you're
not wasting all this bandwidth with overhead acknowledgment packets. But if you run into
a problem, then more data has to be retransmitted. Selective Acknowledgment is a way of
getting the best of both worlds so that you can have large blocks of packets being sent to
you without having to acknowledge them every single time but, if you miss one, you can
then request just that one to be resent to you; you can still acknowledge all the other
packets. If you see TCP Selective Acknowledgments, it means that both the devices have
allowed for Selective Acknowledgments and they've agreed upon that. Both sides will have
to allow for that feature set to be enabled in order to utilize it.

We also have window scale. Window scale, as shown in the earlier screenshot, allows us to
go beyond the initial window size. The initial window size was at a maximum of 65535
bytes, which isn't a lot anymore, so we want more than that. We can do that using window
scale. Window scale allows us to multiply the window size by a factor. So you could say
65535 times whatever the window scale is, for example. Then, you could get a very, very
large window size in order to most efficiently use your bandwidth.

Network Protocol Analysis Chapter 7

[197]

TCP analysis II
In this section, we will take a look at filtering on many different TCP header fields, and
what kind of issues we could see based on some of the fields that we look at.

So, what we can see in the following screenshot is a packet capture of the websites that
were opened:

You can see we still have the TCP column enabled, so we can go down and find a TCP
packet, and we'll see the field information again:

Network Protocol Analysis Chapter 7

[198]

As with many of the other protocols that we've looked at, we can right-click on any of the
fields and apply them as a filter. What we may want to do is expand the Flags, and look for
anything that has the urgent bit set:

The urgent bit is not often used. The only one that we can think of is using Telnet, and what
it does is it prioritizes the packets, basically. So what we can do is right-click on Urgent bit,
and we'll go to Apply a Filter | Selected:

Network Protocol Analysis Chapter 7

[199]

And we'll see that the filter's created, but it's based on . So we'll change it to :

Now, we will see whether there are any packets that have the urgent bits set. We see that
there are none, which is good. Another thing we can do is delete the filter back to

, and if we press Enter on that, it now filters based on every single packet that
has flags enabled:

As you can see, we have a lot of packets that have flags enabled. So in this packet that
capture may not be very useful. Depending on the type of traffic that you are seeing, that
may be helpful to see what has flags and what doesn't. Here, it has too many packets that
have flags to make that a useful filter. What we could do though is customize that and look
for anything that has a reset. Usually, a reset is either at the end of a good connection, as
explained, or it's indicative of a failure. What we'll do is we'll change our display filter so
that it is :

Network Protocol Analysis Chapter 7

[200]

You can see we have quite a few packets that have resets. We can take a look at one of
these, and look at the traffic surrounding the reset to see whether that's indicative of a
problem. So, let's choose one packet and right-click on it and go to Follow | TCP Stream:

Close this, and we see it looks like some sort of a certificate transfer:

Network Protocol Analysis Chapter 7

[201]

We have a three-way handshake; we have a client and server hello it looks like it was a
TLS negotiation. Then there are some packets of application data. Furthermore, the system
sent a , so we finalized the connection. That was an implicit termination, which
was then followed up with an explicit termination, the reset. So this is actually fine. The
system said: "I'm done with this connection, and then we'll reset and totally terminate this
connection". So that's actually fine, but you can see how that's useful to be able to pull out
everything that is a reset.

What we could also do is take a look at window size, and for that we will enter
 and press Enter:

We see that we have quite a number of packets that have a window size of less than .
Usually, a small window size is an indication of a problem. On a reset packet, it's not
necessarily a problem because we're terminating a connection anyway, but if you see
window sizes that are of a small value on standard data transfer packets, that's a problem.
That's some sort of buffer problem in your linear devices in the network stack on, on one of
the two. Additionally, Wireshark has some analysis filters that we can use, and we'll show
one that is window size related. For that we will enter . If we
press Enter on that, you'll see the following screenshot:

This is actually all of the packets that have a window size of , which is a problem. So these
are potential issues. These are acknowledgments from the system to a variety of different
servers out there, with the system declaring that it has no buffer space available. It's
received buffer's full and it sends a zero window response back to the servers out there,
saying: "please slow down". So this is a potential issue on the system.

Network Protocol Analysis Chapter 7

[202]

Another interesting one that we could do is take a look at the header length. As you know,
the TCP header can fluctuate in size, let's right-click on Header Length and go to Prepare a
Filter | Selected:

We didn't use Apply as Filter here; that way, it doesn't apply it right away.

In the filter tab, we will enter , and here we go:

You can see that the first header length that pops up has . So, here's a good
example of finding packets that have Options in them.

Network Protocol Analysis Chapter 7

[203]

If we scroll down, we can see that the Header Length is larger than the standard because
it has Options built into it somewhere. Here, you can see this packet has Selective
Acknowledgments and window scaling. You could also do a similar thing by filtering on
Options, so right-click on Options and go to Prepare a Filter | Selected:

We prepare a filter and enter . So here's every packet with options that are
enabled within them:

Graph I/O rates and TCP trends
In this section, we'll take a look at using graphs to help visualize packets and trends,
especially in TCP communications. Here we have a packet capture of a file transfer that has
gone horribly wrong:

Network Protocol Analysis Chapter 7

[204]

As you can see, we have all sorts of black bars coming up, which is a big telltale sign in
Wireshark that there's something amiss. You can also see there's a striping pattern that
comes about. That's a big telltale sign that there are a bunch of retransmissions. So, what
we'll do is use this as our basis for graphing and being able to pick out some issues.

Throughput
One of the first things we'll do is go up to Statistics | TCP Stream Graphs | Throughput:

Network Protocol Analysis Chapter 7

[205]

When we click on Throughput, we will see that a graph comes up:

Network Protocol Analysis Chapter 7

[206]

Whether it's graphing I/O rates going into the section, going for TCP stream graphs, or
anywhere like that, all the graphs are unidirectional. Depending on what packet we have
selected, it will show us the throughput for that or the I/O rate, or whatever it might be that
we are graphing it'll be for that one unidirectional transfer. As you can see we'll go from

 to the public address as we're trying to pull HTTP. If you don't see what
you're looking for in the graph, click on the Switch Direction button:

This'll provide us with the opposite direction. We can see here that we're getting the
throughput from public address with port , the server, and that it's going to our
private address that was the web browser. We can see that we have the throughput
graphed. We have the Segment Length and we have the throughput itself in bits per
second. What you can do, in the latest version of Wireshark, is you can drag the graph
around in order to be able to view it more effectively or you can use your scroll wheel to
zoom in. Alternatively, you can use the plus or minus signs on the right-hand side of your
keyboard or in the keypad area. I like to use the scroll wheel just because it's handy and
almost every mouse has it.

Network Protocol Analysis Chapter 7

[207]

Also note that you can change the Stream that you're following. If there were multiple
streams that we wanted to look at, we could change the stream number that we're in. Here,
we'll leave it as :

Another nice feature with the graphs in Wireshark here is we can click on any point in the
graph and it will take us to that packet. Let's click between the little gap seen in our
throughput, and we can see that Wireshark takes us to that section of packets.

If you noticed, when we went to Statistics | TCP Stream Graphs, there were several
options to choose from:

Network Protocol Analysis Chapter 7

[208]

You don't have to close this window and go back to the Statistics window and open it
again; you can switch between them easily by simply selecting whatever type you want.

Let's go to Time / Sequence (Stevens):

You see here that we have a nice diagonal line in our time sequence. What that's showing
us is the sequence number continually incrementing from packet to packet. Sometimes, you
can view issues in your packet capture with sequence numbers by seeing a drop in
sequence numbers or maybe a flat line, where it does not increment upwards in the y axis
and it just continues on the x axis. If you see anything other than a diagonal line, that's
indicative of issues in your packet capture. So what we see here looks relatively good. We
can close it.

Network Protocol Analysis Chapter 7

[209]

I/O graph
Now, let's go to Statistics | I/O Graph:

Network Protocol Analysis Chapter 7

[210]

The I/O graph is a very powerful feature in Wireshark, and here it's showing us all the
packets per second, and all of this is customizable. You can change the Interval and you can
also change whether it's a linear or logarithmic scale:

Depending on the needs of the packet capture that you're looking at, maybe there are very
drastic differences between some different streams that you're wanting to graph, or maybe
some differences between the filters that we want to apply because you can layer filters in
this section. You may want to use logarithmic for that; it all depends on what you need the
packet capture to look like. By default, when you open it up, Wireshark will show you the
number of packets per second, and then every tick is one second. What we have are a
number of additional layers that we can customize. You can see that we have a Name
column, where you can name the layer. We have a Display filter, which includes Color,
where you can change the color and the Style type, whether it's a line graph or a bar graph.
You can change what the y axis represents. You can turn on Smoothing; you can do a
number of different adjustments here to your I/O graph to make it as customized as you
need.

Network Protocol Analysis Chapter 7

[211]

One powerful thing to look for in a packet capture that you know has a problematic
transfer are TCP analysis flags. We'll do that for the second layer. For that we'll create a
display filter for TCP analysis flags, and layer that on to our I/O graph. So, what we'll do is
double-click on the second Display filter, which allows us to enter a display filter. It will
work just as if you were adjusting the display filter in the main packet list area. We will add

:

When we apply this, it will create a second layer on the graph with a red line graph of any
packet that has an analysis done to the flags. Wireshark looked into the flags and saw that
something occurred and it provided some sort of insight into it. Just like we saw with the
expert information in the lower left, this display filter uses the same functionality as the
expert information.

Network Protocol Analysis Chapter 7

[212]

What we don't want to include, though, are window updates because
window updates are good. As long as it's not a zero window situation
where the window size is and our buffers are full, we don't want to
include all the packets that have window updates.

Next, we will negate window updates from this. We will add . If
we use an exclamation mark, that will negate whatever we are about to include. It will be

.

When you're done, simply click away and it will apply the filter.

Now you can see that we have the check marks on the left that will enable or disable the
following layers:

Network Protocol Analysis Chapter 7

[213]

So, if we disable the first packet option, that gets rid of our packets per second. If we enable
the second one, that will show us all of our TCP analysis flag issues. You will see that there
are a number of problems.

What we can do is, make this easier to view and really make it stand out, especially if
there's a lot of data going on. If we have a lot of additional layers, sometimes you may want
to make certain layers stand out. What we can do is change the Style of it to a Bar:

Once we change it to a Bar, you'll see that it's a bit thicker and stands out more.

Network Protocol Analysis Chapter 7

[214]

And if you zoom in, you'll actually be able to see the pink there, and it really sticks out like
a sore thumb. Then, we can click anywhere along this line and it will take us to the
problem:

Now, we can see all of our TCP analysis issues. So what we can do is, click on that packet
and validate this, as well. If we click on one of these black packets, expand TCP, and then
look at the analysis section, it tells us that there's a duplicate. This is a duplicate to a
previous acknowledgment, which is obviously a problem that's indicative of an issue:

Network Protocol Analysis Chapter 7

[215]

Also, note that these different layers are on top of each other, so the top layer is the one
that's closest to the foreground and then the one towards the bottom is towards the
background. If you have a lot of data on a foreground layer, it may overlap and overwrite
visually what's going on in a background layer, so be aware of that. For example, consider
changing the style of this to a Bar chart :

You'll see that it makes the second layer that we created with the analysis flags useless
because it is now dominating the entire view. So be careful with the way you change and
use your different layers.

Network Protocol Analysis Chapter 7

[216]

Summary
In this chapter, you learned about the UDP protocol and its connectionless abilities the
very small header that it has, all the different fields in the TCP header, and the options that
are available in it.

We also looked at TCP, the connection-oriented protocol, and the guaranteed transmission
of certain data. We looked at the header and learned about the fact that it has different flags
and different options to expand upon its capabilities. We also learned about the graphing
functionality in Wireshark, and the fact that you can add multiple layers and change the
way the lines and bar charts work, in order to get the most useful graph out of it.

In , Application Protocol Analysis I, we will take a look at HTTP and FTP, and some
of the common applications that you'll run across on a day-to-day basis.

88
Application Protocol Analysis I

In this chapter, we will cover the following topics:

DHCP analysis
HTTP analysis I
HTTP analysis II
FTP analysis

DHCP analysis
In this section, we'll take a look at how DHCP works, some of the fields that are within the
DHCP protocol, watch a client retrieve an IP address, and also take a look at what happens
with DHCP when a client requests an address and receives responses.

Let's start a packet capture. What we'll do now is release the address on my computer and
then renew it.

Type on a Windows computer on Command Prompt to release our
address, then if we type , it will get us a new address.

Now, if we type , we should be able to see that our address is assigned.
We'll stop our capture now. We'll want to only pick out the DHCP traffic. So you would
assume you could go up to the display filter and type , just like we've done for the
other protocols, and then press Enter and it works. But we can see that there's a red bar up
there, which indicates that is not valid:

Application Protocol Analysis I Chapter 8

[218]

This is because the display filter is actually . DHCP is based off of . was
the predecessor protocol to DHCP, so in Wireshark they use the predecessor's protocol
filter. Hence, you want to use . If we use , we'll see that we have our DHCP
release and discover:

The 264th packet is . My system already had an IP address, and it wanted to get
rid of it. It sent a packet to the DHCP server, which is , and it said: "Please get rid of my
address." If we look into our DHCP details in the packet details section, you can see that it
says Bootstrap Protocol (that's where comes from) and we scroll down to the bottom
and you see options, and if you look at option it says we have a :

So that's where it's requesting to get rid of its address. The system then at that point has no
address, and the local client erases the IP address from its information on the network
interface card.

After this, I initiated the DHCP renew command, which told it to go get an address. Now I
did this because my system had already been up and had already retrieved a DHCP
address on . Commonly, a system will retrieve IP information and other
configuration options from a DHCP server on boot of the operating system. But since my
system had already had an address, I had to get rid of it, and then forcibly tell it to get a
new one with that command. When a system requests an address, it initiates with a

 request. And you can see that the discover (which is down at the packet details
at option) it sent it out to a broadcast to . That's because
the client doesn't have an IP address, and you can see that it has as its source.

Application Protocol Analysis I Chapter 8

[219]

It doesn't know where it needs to go to talk to the DHCP server. So it sends it out to a
broadcast address, hoping that someone will respond to its request for a DHCP server. We
can see that the packet is asking for a DHCP server. It says: "I'm trying to
discover a server." If you have multiple servers on a subnet, you may get a different server
offering itself from time to time. This can cause problems sometimes, depending on your
network design. If you have a simple network, such as a home network, and you have two
DHCP servers, most likely one of them is by accident. You might face that problem when
people bring home wireless routers or something like that into a workplace and they don't
turn off the DHCP server; it can cause problems like this.

Looking for packets sometimes is useful in packet captures because you may not
necessarily want to see them; this may be a bad thing. If you happen to see from a
server address that doesn't make any sense according to your network design, then that's a
red flag. You can of course right-click on the DHCP: Offer (2) and go to Prepare a Filter |
Selected:

This way, you can filter all of your packet captures based off of just the . If we had a
whole bunch of from a bunch of different servers, that could be a problem.

Application Protocol Analysis I Chapter 8

[220]

If we go back to our standard filter, you'll see after the where the server is
now responding to our broadcast it says. I then send out a request for my client. You can
see down in the packet details in the options that I'm actually requesting a specific address:

Application Protocol Analysis I Chapter 8

[221]

This you would not normally see on a new system that just booted up, but because my
system, the client, already knew that it had a previous address, it kept that information
saved even though it was not configured in the network card. It requested that specific
address to renew it and put it back into its configuration. You can see that now it also
knows the server. So it sends it out to the server, but doesn't come from a layer 3 IPv4
address because it doesn't have one yet; it's requesting for it. Hence, it still sends it out to
the broadcast.

You might see additional options in the preceding screenshot. These option numbers reflect
a whole bunch of different things that you can configure in DHCP; it's not just for IP
addresses. You'll see this commonly used with voiceover IP phones because you can pass
different options, such as option , and actually tell it what VLAN it needs to belong to
and force it to the other VLAN. You can also tell it where the TFTP server is to retrieve
firmware information and all sorts of different things that you can send to a device to
automatically configure it. That's why they call it the dynamic host configuration protocol:
it's not just for IP. If you want to learn more about it, you can of course take a look at the
RFC.

The RFC for DHCP (remember, this is the upgraded version of) is , and you
will see that it's quite a lengthy document ():

Application Protocol Analysis I Chapter 8

[222]

There's quite some information as shown in the preceding screenshot, and it goes through a
lot of the functionality of DHCP. Now, it will not include every single option and every
single thing that you can configure because some of them are vendor specific; and of
course, DHCP has been extended since 1997, with additional add-on features.

We also see packets that say , and these are requests from my client:

Now that it has its Layer 3 IPv4 address, it's now requesting additional parameters from the
server, and you can see them listed down in the packet details. The following screenshot
shows the additional parameters:

So, that's the basics of DHCP. It's a very simple protocol; it's a little bit more complex than
DNS but still relatively simple and very useful. There is a IPv6 version of DHCP, as well as
many other ways of addressing IPv6 hosts. Up next, we'll take a look at HTTP in HTTP
analysis I.

HTTP analysis I
In this section, we'll take a look at how HTTP works (what are some of the codes within
HTTP and what's inside a packet), source and destination information and some of the
options there, and how servers and clients interact and show a connection between a server
and a client.

Application Protocol Analysis I Chapter 8

[223]

What we'll do is start another packet capture and open up a website. In this example, I
opened up a web page to , which happens to be an unencrypted
website. It uses plain HTTP by default so, that way, the communication is not hidden
behind TLS encryption. This way, we can take a look at what actually happens within the
HTTP headers.

If we scroll down, we can see we have the DNS resolution, our answer, and
the beginning of the three-way handshake for the TCP connection:

We will also see some DNS resolutions, as well, and that's
because if we take a look at it is actually hosted off of some

 servers, which is a content distribution network that's distributed
around the world, so it's very quick to respond. Hence, it has to resolve
some of these additional servers as we go along.

We can see that we have an initial TCP request to the actual server, and then my system
asks for because I was opening up the news section on

/:

If we scroll down, we'll see that there's an HTTP protocol and some TCP reassembled
segment stuff. This is a lot of TCP and I can't see anything for HTTP. Why is that? It's
because we have the reassembly enabled in the options. This is something you'll probably
want to turn off if you're doing HTTP analysis.

Application Protocol Analysis I Chapter 8

[224]

Go to Edit | Preferences... | Protocols | TCP and turn off Allow subdissector to
reassemble TCP streams:

If you turn that off, you can see that we now get some insight into HTTP, and it actually
shows up in the Info column what are the commands back and forth for the HTTP traffic.
You can see that they will now show up properly as HTTP in the Protocol column, and it
will say that it's a continuation of HTTP as it transmits all of the website information from
the server to my client. You can see that the Window size is actually used, as well. We have
a nice, big window size and then we have a list of packets that we then acknowledge:

Application Protocol Analysis I Chapter 8

[225]

If we take a look at the HTTP here, my system did a request. HTTP has two
primary commands that we use: and . A request retrieves information while
a request sends information. So, you know how, in some forms on certain websites or
if you make changes to web settings in a profile, you're sending data to the server, telling it
to change something on the server: you do that with . With we are asking for
information. So, in this example, I am getting , and I'm requesting it over
version . There is a new version of HTTP, which has recently come in use, and it's
based off of Google's SPDY protocol which they had previously created.

If you want to learn more about the SPDY protocol and what it was, you
can take a look at that on Wikipedia or on

they have a page on this as well. It was really an experimental protocol
to speed up traffic, and it has since been deprecated in favor of HTTP 2.0,
which has now become the standard. So, the ideas within SPDY have been
merged into the HTTP 2.0 standard.

What it did was it basically optimized the HTTP header information and the
communications so that it could achieve up to a 50% speed increase on loading a website:
that's very powerful and impressive.

So, when you see these requests, you'll most likely be seeing for some really old
clients if you're using, like, a really old program on a very old system, maybe even asking
for . But you may now see requests. Probably about a third of the major websites
out there now use HTTP , and these will of course only increase over time. So, we are
asking for , and then it's insinuated there that we are asking for the

 page from inside that. Thus, we're asking for a folder structure. By default,
HTTP will look for or a couple of other different files indexed at HTML or
some other file format. It's the responsibility of the server to serve up that core page that'll
first show up.

Application Protocol Analysis I Chapter 8

[226]

From the server, we can see that we have a TCP acknowledgment to that request, and
then the server responds back with: "ok, that sounds good. I will send that to you because
I've been able to find that page." Thus, if you request a page that's incorrect, you'll get an
error message.

In HTTP, we have different types of commands with different numbers. If you'd like to
learn about HTTP in more depth, take a look at the RFC on the IETF website. You're
looking for number , and that's for . Remember I said there's a new one, ,
coming out, so of course that's going to have a higher number. When you look through the
standard, you'll see a bunch of different codes. You will see a bunch of the code blocks that
are available, and the details of each code within it but, if you look to the left, you will see a
status code number. Anything that is or are . So a means "I found the
file, no problem." says "ok, I created it." is an accept. These are all good things. If
you get a , this might be a redirect or to move a file somewhere else. A or a is
an error. So, a is a server error. All 400 numbers are server errors saying: "I can't find
the file. You're not allowed to get there"; or "It's forbidden"; or "Your method is not
allowed"; or "The server is rejecting your request". A error is a client error, so there's a
problem on your client side. It is very common to see a error when you try to request a
web page that does not exist. You'll see it all over the internet and now everyone's used to
it, but a error is: "I cannot find the file." The server says: "I don't know what you're
requesting It's, not where you say it is" and it sends back a error.

If we look in the packet details into the HTTP header information you see that we have a
server, Apache; this may also say something such as or some other server that's
running Apache is still the most common one. It'll tell you what it's running. If it's
running PHP of different versions or Python or something like that, it'll tell you what the
content type is. Is it an HTML page? Is it some other kind of content type? Is it an XML
page? Sometimes you can have encoding as well. Some pages and some servers allow for
compression. So, they'll compress with , which is like creating a ZIP file of the server
page that it's sending back so that it is smaller, and so uses less packets and is quicker to
send to the client. It takes a little bit of processing power on the server or the clients' sides to
do that, but it's usually beneficial. It'll also tell us how long the content length is.

Now that we've gone through all these different protocols, they almost always tell you how
long the content is so that you can validate whether you've received everything. We also
have an expiry and a cache control. This tells the system how long to save a page. When
your client receives the page, it will cache it for a period of time based on this so that it can
refer to its local cache if it goes back there again.

Application Protocol Analysis I Chapter 8

[227]

So, if you're constantly going back to the same web page all the time, it will load it off of
your local cache rather than constantly pull the server for it and use up unnecessary
bandwidth and resources on the server. If you don't wish to use the cache, that's when you
refresh a page. You can usually press Ctrl + F5 and it will force the cache in your browser to
delete that page and request a new one. If we expand the packet details, we will see Line-
based text data; it will actually show us the web page itself, as it's sent to us:

In the next section, we'll dive into HTTP a little bit more, talk about some more problems,
and take a look at how you can decrypt TLS-encrypted HTTP data HTTPS in Wireshark.

HTTP analysis II
We'll investigate some issues with HTTP by looking at the error messages again and how to
decrypt HTTPS (which is TLS now) traffic. This also works for SSL.

We'll download an example capture from the SampleCaptures section on the Wireshark
wiki (). Once you go to the
SampleCaptures page, go down to Specific Protocols and Protocol Families | HyperText
Transport Protocol (HTTP):

Application Protocol Analysis I Chapter 8

[228]

If you click on that, we'll have a list of some basic HTTP captures that we can look at. At the
bottom it has a link to SSL with decryption keys, and we'll download the top link

 file. All you'll need to do is extract that so that you can get to the files
within.

By default, Windows can only extract files, so you'll need to
download something like 7-Zip or WinRAR in order to open it.

When you open the cap file, you'll see that it's an older file. This is actually from
somewhere around 2007, probably, so it's not a file. But it still opens up just fine in
Wireshark. If we look at this, we see that we have a ; ; with TCP, so
there's our three-way handshake; and then we have an SSL , an
acknowledgment from the server, then the acknowledgment. We start
exchanging some key information for creating the SSL encryption; we share the cipher
information; then we begin by actually encrypting the data after that. Here, we can see that
we have an encrypted handshake and encrypted data. So we have this data that's
encrypted, but we can't get to it. We have all this that you can see,
and it is unreadable to us. If we expand any of this in SSL, it's just gibberish. So how do we
see the HTTP within it? We need to decrypt it, and with Wireshark you can decrypt SSL or
TLS traffic. However, you will need the private key from the server, so if you do not have
access to the web server, you cannot do this. This is great if you're on a corporate network
where someone's accessing a corporate resource that happens to be encrypted and you
want to decrypt it. Well then, you have access to the server so you can retrieve the private
key. If you want to do this over the internet, you have to get the private key from whoever's
hosting it.

In order to set this up, we'll go to Edit | Preferences... | Protocols | SSL. You'll notice that
TLS is not listed in the Protocols option. TLS falls under the SSL because TLS came about
after SSL and was built off of SSL; it all falls under the SSL protocol section. So, we'll go to
configure our RSA keys, the private keys, within the SSL protocol list even if it is TLS that
you're using. So what we'll do is click on Edit... and then the plus sign to add a new
decryption key. What we'll do is add the IP address of our server. In this example, it was
sanitized to , which is the localhost; it's just a loopback address. We'll define it
as port because we know this is HTTPS traffic that's using standard port , and we
know that it's traffic that's behind it. Then, we'll double-click on the Key File section
and select our key. You can see in that extracted file we have the file, a and the

 file. We'll select the file and then click on OK:

Application Protocol Analysis I Chapter 8

[229]

Now you'll see that the data has decrypted itself, so we no longer have all of these TLS
protocol listings. It doesn't say ; it actually shows us HTTP traffic now.
We have now decrypted this. We still have the SSL protocol stuff up because that's actually
SSL traffic. It's doing the handshake and exchanging the cipher information so it can
encrypt; that's ok. The stuff at the bottom is what we cared about. So now we can actually
do our display filter for , and we can filter out just the HTTP communication. We can
see that we have few problems in this packet capture. So, we have a request; it received
a response from the server, saying: "I found that file." They then tried to get two more
images over HTTP; they were downloading some images: it looks like the Debian logo and
something else. Then, there was a response from the server, stating that the resource was
not found. Here's that message:

Application Protocol Analysis I Chapter 8

[230]

If we go in the packet details, we can see in the HTTP option. You'll also see that it says
"expert information". Go down to the bottom left, click on the circle icon, and it will provide
you with all of the errors that are in this packet capture:

It pulls out HTTP errors along with anything that's of use.

FTP analysis
In this section, we'll take a look at how FTP works, the differences between the active mode
and the passive mode, and how to transfer files securely with FPTS and SFTP.

We'll start a capture once again and connect to an FTP server that does not use encryption.
So, this server is a Belarus-hosted server that has some Linux ISOs on it, and it allows
anonymous connections. I'll just log in with , and we'll use port and click
on Quickconnect:

Application Protocol Analysis I Chapter 8

[231]

We can see that we've logged in. It states that it does not use TLS, and it lists the root
directory:

Application Protocol Analysis I Chapter 8

[232]

What we'll do is stop that capture, and if we scroll down through the packets we'll see that
we have a bunch of other types of traffic here, but then we see some FTP listed. What we
can do is create a filter with simply in it, and that'll show us all the FTP traffic:

We can see the connection over unencrypted FTP. You can see all the commands, just like
with HTTP. If we dig into our FTP section in the packet details, we'll see that we have very
few commands that are transferred:

We connected with our three-way handshake in the packets prior to packet . So packets
, , and were the TCP handshake. Then, it states code as being service ready

for the new user. So the server says: "I see you've created a connection to me. Send me some
authentication". My software asked whether it is capable of using TLS, which is the
encryption that we use for HTTPS to allow for encryption. The server responded, saying:
"No, I can't do that. Please just log in with the username and password". Then my software,
the FileZilla client, said: "Well, what about SSL?" And then the server replied, and said:
"No, sorry. I don't do that". "Then my client finally sent it a user, saying: "Here's the user
command. I'm going to log in with anonymous". The server accepted that, and said: "Please
specify the password".

Application Protocol Analysis I Chapter 8

[233]

I provided the password with the command. The server evaluated that and it
determined that the credentials were good, and it said: , code . My
system then asked what kind of system type it is and what the server's running, and the
server responded that it's using a Unix-type server. It then asked for what feature set it has
available, and the server responded back with a list of features that it's capable of
supporting. Then it says: "That's the end of my list". My client turned on the option.
The server said: "No problem". Then my client requested print working directory (PWD)
and the server said: "You are in the root, the directory. That's the first directory that
you're in". My client changed to Binary mode, which is type I. The server responded,
saying: "No problem". I then requested passive mode that was another feature that it was
capable of providing. Passive mode allows FTP to communicate and transfer its data over a
random, dynamic port. So if you were looking at the port numbers here, I'm talking to the
server and my client, which is running locally; the client software's running on . It's
talking to the server on port . The data is just commands, which has to go over another
port. With FTP active, the data will transfer over port and all the commands over .
This is not a common thing to see nowadays because the active mode can easily be hacked.
It's not a very secure method because you know exactly what port the data's going to be
transferred over. So, if you're in the middle, you know exactly what port to look at in order
to capture all of the unencrypted data. Passive mode, on the other hand, allows for a
dynamic port to be used, so the data itself will be transferred over a different port. So, it's
an enhancement to the FTP protocol. Nowadays, most commonly, you'll see port used
for the server commands and then a dynamic port ranging in the thousands for the actual
data itself. FTP separates the commands from the data on different port numbers. Not
every protocol does that, as we've seen with HTTP, for example, which runs commonly on
port , and it sends commands and data on the same port, unlike FTP. FTP is a very old
protocol.

So we see a response from the server, saying: "We're entering passive mode". I then ask for
a list of the directory that I'm in. Remember I asked for what directory I'm under: print
working directory. I switched to Binary mode. I said: "Let's use passive. Now give me a list
of all the files". The server then says: "ok, I'm sending the directory listing. The directory
listing was sent, so this is from the server. And then, I asked to change the directory to a
subfolder called , and at that point I stopped the capture. What we're missing, though,
is the data. You notice I don't have any data. How do I find the data with a dynamic port
number using FTP passive mode? You do that by adding an additional filter to your
display filter.

Application Protocol Analysis I Chapter 8

[234]

You see that we have , which is for the commands. If you want the data as well, you'll
have to type . If you press Enter, now we'll get the FTP traffic, as well as
the FTP data traffic:

As you can see, my client requested the listing of that directory, the directory; now,
the server is sending all of that data over the special port. We can see that the server is
running on port , and it's going to my client running at . So that's the
difference between FTP active and FTP passive.

Now, there's also FTPS and SFTP. If you notice, all of the packets are unencrypted. We see
all the commands the login username and password. This is not good for going over the
public internet in a nonanonymous mode. If you're using a username and password, you
should be encrypting that you should be encrypting your data. You can do that using SSL
or TLS, just like I mentioned with HTTP as we've seen before, and many other protocols
that you can encrypt with TLS. So, FTPS is FTP encrypted with TLS or SSL. That's the more
standard method of doing that using the FTP protocol as it's already implemented, but then
encrypting on top of it.

Application Protocol Analysis I Chapter 8

[235]

There's also Secure Shell File Transfer Protocol (SFTP). SFTP runs over a different port; it
runs over port . So, you'll actually want to filter based on in that case because the
FTP traffic is traveling over SSH, the secure shell port; so, you could use as your filter.
Now obviously that's not here in this capture, but that works as the filter you will use, and
all the traffic will go over that. But it would all be encrypted just like with FTPS, which is
encrypted you will need the server private key in order to decrypt it, like you saw in the
previous section with HTTPS. Note that there are two protocols for transferring files in a
secure manner, and they are different. FTPS uses the standard FTP but encrypts it with TLS
or SSL. SFTP is its own animal; it has its own protocol and application. SFTP is completely
separate, and it runs file transfers over SSH.

In this section, we discussed DHCP: how that protocol functions and how to take a look at
some of the options that are in it.

Summary
We looked at HTTP, both in an unencrypted fashion and an encrypted fashion, and how to
decrypt it. We also talked about FTP in all of its many flavors: active mode, passive mode,
and the encrypted flavors of FTPS and SFTP.

In , Application Protocol Analysis II, we'll continue with some additional
application protocols that you will run into.

99
Application Protocol Analysis II

In this chapter, we'll cover the following topics:

Email analysis, including POP and SMTP
802.11 (or wireless and Wi-Fi) analysis
VoIP analysis for voice over IP telephony
VoIP play back of the captured traffic to be able to hear the issues that may be
occurring in it

Email analysis
In this section, we will take a look at what POP and SMTP are used for, as well as
investigating the communication in POP and SMTP and learning what some of the codes
are; whether they're successful, or error codes, or something like that.

Now, we have three main protocols that we use for email on the internet:

POP1.
SMTP2.
Internet Message Access Protocol (IMAP)3.

These three are used by clients such as mobile devices or software running on a computer;
some sort of standalone application such as Thunderbird or Outlook. There are other
protocols as well if you're dealing with Outlook for exchange, for example, but primarily, if
you're using a generic application and you're accessing your email server in a generic
fashion, you'll be using one of these three protocols.

We'll be focusing on POP and SMTP.

Application Protocol Analysis II Chapter 9

[237]

POP and SMTP
POP is used for retrieving emails from a mail server. SMTP is used for sending emails to a
mail server and sending emails between mail servers. If you'd like to learn more about POP
and SMTP, take a look at these RFCs:

RFC for POP, which you can see in the following screenshot (
):

Application Protocol Analysis II Chapter 9

[238]

RFC for SMTP, which you can see in the following screenshot (
):

In the preceding screenshot, you'll see there are a number of commands that are
transmitted between the client and the server in order to convey what they want to
accomplish in the connection. Just like we've seen with HTTP and FTP, and some other
protocols, there's an agreed-upon language that is used in order to execute certain things.
We'll take a look at that in a packet capture.

Now, it's very common in modern use to encrypt your data, especially email nowadays, so
POP is often encrypted with SSL or TLS. You also do the same thing with SMTP or IMAP:
you can now encrypt all these protocols with SSL or TLS. This is an unencrypted
communication so that we can take a look at all the commands that are passed back and
forth.

Application Protocol Analysis II Chapter 9

[239]

What we see in the packet capture is we have in the beginning a three-way handshake for
TCP; POP is transmitted over TCP. And then we have our POP communication as well as
some acknowledgments, and then the closure.

There is a filter for POP. You can right-click on your Protocol and apply it as a filter; or you
can simply enter , and that will filter your traffic:

However, if you notice, we have lost the handshake information at the beginning and the
end, and some of the acknowledgment packets that were there earlier in between the data
have now been removed because they weren't part of POP. They were TCP
acknowledgments and handshake. So it might be better if you determine the addresses that
are in use or the port that is in use, and end up filtering on that instead of as the
display filter. So what we have is our three-way handshake. We have our client and server.
The client is requesting a connection. The server says: ok, no problem. The client then says:
ok, I acknowledge a connection; and we have a three-way handshake. After that the server
then responds and says: ok, we are connected with POP3. The server is ready; you can see
that in the packet details.

If we expand our Post Office Protocol, we'll have some more information. It says that the
server's ready:

Application Protocol Analysis II Chapter 9

[240]

So that's a good message. The client then passes its user, and you see that since this is
unencrypted, the user is in plain text:

We passed the command to the server. The server responds and says: ok, the
username is good. Please send me a password. We then send a password. Again, this is
unencrypted, so it's in clear text. And you can see it's very easy to determine what's going
on. We have the commands, which are named , , and . The server responds
and says: ok, mailbox has been opened up. Thank you for your credentials. You have one
message that is unread. The client then asks the server for some status; the server responds
with the status message. We then get a unique ID listing, and then the client asks for a list.
Highlighted in the preceding screenshot is a list of whatever's in the mailbox. The mailbox
scan is completed, and it sends us the data, which is the number of messages and the
number of bytes. The client then says: all right, let's retrieve message number . The server
then says: ok, these are the octets that you requested.

And you can see that down in the packet details; we have not only the number of
but we have the actual email itself, which includes the header information; the sent and
received information; the ; the ; the ; the ; and then the actual data
inside the email itself:

Application Protocol Analysis II Chapter 9

[241]

As you can see, the data then continues, as shown in the following screenshot:

So, the first packet was basically the header information with the beginning of the data, and
then the data continues. We then acknowledge the packets. We keep retrieving data, then
the client says: delete the message. We have downloaded the email; now delete the
message. This is an option that is changeable.

You can tell your client to leave a message on the server, but traditionally it is done so that
you download it locally and you would delete it off the server.

Nowadays, with our web-based email, or if you're using Gmail or Yahoo! or something like
that, we now most often leave everything on the server and have it archived there. But this
is a very old protocol, and so it was based on local storage.

The server responds saying that it deleted the message, and then we quit the connection
and close out.

It says: ok, sayonara. Then finally, we close out the TCP connection with the and
series.

Now, let's take a look at SMTP. SMTP is used to transfer email between a client and a server
in order to send it to a routed recipient:

Application Protocol Analysis II Chapter 9

[242]

What we see here is a series of and of a user creating a TCP connection for SMTP,
and then we see the SMTP response from the server. And of course, we have listed in
the Protocol column. We could filter on that by simply typing :

Just like with , we'll lose some of the information there from TCP, so it might be better
to do your filter based on and .

Well, what we see in the previous screenshot, after the three-way handshake from the
server, the address, is that it responds with a :

A response code is a service ready, which means everything is good. This will look
familiar to POP and HTTP.

Many of these protocols, especially the ones that are older, use these different numbered
response codes. Just like with the HTTP, series response codes are good. So we see a

, everything's good to go. We also see that we have . This is for the enhanced
version of SMTP. Just like with POP and FTP, SMTP is a very old protocol, and it's been
extended and enhanced over the years. There's a newer version of SMTP, which is
transmitted using new commands, with an in the front:

Application Protocol Analysis II Chapter 9

[243]

The client then sends an , which is the enhanced version of for the traditional
original protocol, for it to create a connection. The server responds to the request and
creates a connection. We then acknowledge that, and then the server responds with a listing
of what it can do. There are some features that it has, and we see that it has PIPELINING:

PIPELINING is an option in the server that says that it can accept multiple commands
without having to wait for each one, so our client can then send a number of things at once
and it doesn't have to wait. Our client then says that it'll create an email message; and if you
notice, it says :

Actually, remember when we looked at the POP message, and there was a and a
and a , and the actual body field? Exactly what you saw in the POP request, you
see here in the SMTP. So, we have the prepended command of , but you see and
the email address, just like you would when you open it up in your client software after
you pulled the message. We are literally writing an email with commands. The email itself
is not like a data package that is just bundled up into a little file and sent to the server. This
is old enough that we are actually crafting the email command by command and line by
line in SMTP. So we are saying: We're creating an email and it's from the following person.
The server says: ok, looks good. says that so we are sending it to the following
person. The server says: ok. We then say: here's some data (the data being the body of our
message):

Application Protocol Analysis II Chapter 9

[244]

The server responds and says: ok, and let me know when you're done with the email
message by putting the following commands at the end of your message. Then, the client
provides a number of packets here of the actual email data that it wants to have in the
body. See some additional packets related to that? We have some acknowledgments from
the server for some of these data packets, then a response from the server saying that the
message was accepted and it's going to send it to a recipient.

We acknowledge that and tell it: ok, I'm done; and we quit the SMTP connection:

Then we finish out the TCP connection with some FINs and ACKs; we have some explicit
resets in the end as well, and that is the termination of our connection.

802.11 analysis
In this section, we'll take a look at wireless connection issues and how they look in
Wireshark.

The standard has been around for quite some time. You can find more info
at :

Application Protocol Analysis II Chapter 9

[245]

It originally started in 1997. You can see in the preceding screenshot that this was the year it
was ratified. It actually began in 1991. Since then it has had many changes to it, including

, which some people may remember. We have , , and so on. As
we go up in time, you can see how many different flavors of there are out there.
Now, not all of them have been used for normal home networks or office networks; some of
these are specialty versions for long distance or low power such as WiMAX. You can see
that all the ones that I've been going through have been superseded by a newer version,
and these newer versions are at the top:

These are the ratified standards. You can see that even though and and and
are still supported by hardware out there, still supported by operating systems, the actual
standard is, for example, for this version we're talking about, . So actually
encompasses the standard, the , the , the , the , and so on. And you can see there are
additional versions of that are here, such as the one that'll be used for what's called
the area. So these are sections of bandwidth that are available for
potential use and reprioritization by the FCC. We have some additional ones, which are
proposed standards, such as and . Then, there are all these other ones out there that
give us additional methods of connecting over longer distances and greater speeds, and
things like that. All of this is available on the IEEE website, and you can learn much more
about it at .

Packt has a number of wireless-related books and video courses that you
can take a look at and continue your education in wireless networking.

Application Protocol Analysis II Chapter 9

[246]

The following is an example of a packet capture done by a device that could capture the
 frames and provide them to Wireshark:

This is commonly done with a wireless card that is capable of not only enabling
promiscuous mode but monitor mode in order to view all of the data that we want for all of
the different channels that we use. Additionally, there's spectrum analyzers out there such
as Wi-Spy and others that are dongles that you can attach to a laptop or something like that;
you can go around and investigate the spectrum analysis side of things.

So we're looking at packet captures, but remember there's more to it than just the packet
captures. Wireless brings in a whole slew of additional issues such as signal strength and
interference with other devices. But looking at the actual data, it shows as essentially
Ethernet. I looks like Ethernet to us when we capture it, and that's done on purpose; the

 standard is that it's supposed to look like Ethernet, but over a wireless connection
instead of a wired connection. That's to make our life easier and make it more cross-
compatible.

And what we see here in the capture is we have the Protocol listed as , so
Wireshark knows that it's an capture. This is an frame, and it's a

:

Application Protocol Analysis II Chapter 9

[247]

We see there's and there are some flags. We have a
. We have the and ; it looks very similar to what you'd

expect on layer 2 on a wired network. You have a from and a to MAC address, and you've
got some additional information: some additional flags, and so on. Now, of course, there
are some other options in here for it to work on wireless, such as our : what device
we are connected to, what access point we are connected to; and what kind of frame this is,
because there are different kinds of frames in :

We, of course, have our Frame check sequence, just like we had with the standard Ethernet.

Now, what is a beacon frame? A beacon frame is transmitted normally every 100
milliseconds by an access point in order for it to declare to all of the listening devices that it
is providing the following network; that it is beaconing; and that it can support the
following network name. You will see a lot of beacon frames in a wireless capture. They
occur constantly. If you do not see them constantly, then that is a potential issue. Now, if
you want to filter, or if you have a packet capture that includes other erroneous packets in
it and other frames, or if you want to filter only your wireless traffic, you can do the
filter:

Application Protocol Analysis II Chapter 9

[248]

If you use , that will include all of the protocol frames. Something else that
you might also want to do (leave filter on) is not show beacon frames. Let's say that
you know for a fact after looking through things that beacon frames are consistent and
everything is good with them; then we don't need to worry about them.

What we'll do is right-click on the Beacon frame in the packet details and go to Apply as
Filter | Not Selected:

Application Protocol Analysis II Chapter 9

[249]

This way, we are selecting all of the wireless LAN frames, but not anything that is a beacon.
And that really trims down our capture:

Now, we see only the probe requests, the responses, and some data.

Speaking of beacons, here's an example of a capture with a whole lot of beacons.
Everything is just constantly beacons, beacons, and beacons everywhere:

A common problem that can occur in wireless is a drop in beacons due to some sort of
problem on an access point. It could be the signal-strength issue or the firmware on the
device, a bad antenna, and so on. It could be anything. But a drop in beacons will cause
clients to drop their connection to the wireless network because they think the wireless
network has disappeared. So the capture shown in the preceding screenshot includes a
problem with beacons, but we don't really see anything pop up that's obvious. Nothing's
bright red, popping up to us; there are no changes really; it's just all consistent. So how do
we see the problem?

Application Protocol Analysis II Chapter 9

[250]

Remember back to the section on statistics. Now, go to Statistics | I/O Graph on our
beacons:

Application Protocol Analysis II Chapter 9

[251]

We can see that we absolutely have a drop that shows us we've got a problem with our
access point:

Application Protocol Analysis II Chapter 9

[252]

Make sure you certainly use your graphing capabilities when doing wireless
troubleshooting because there are a lot of variables that are not controllable by us due to the
nature of it transmitting over radio waves. We need to do a lot more visualization in order
to see what's going on, especially when you have thousands and thousands of frames like
this and there's a problem in there, but you don't know where, and exactly to what extent.
Using graphing can be a very big help for you.

Additionally, we have a capture that shows a signal issue:

So, we'll do a . We have , , and so on. Now just scroll
down through the capture and see if you find anything that's odd or an obvious problem.

As we scroll through, we can see all : request and reply repeatedly. Do you
see any problem? Well there is a very obvious problem.

Application Protocol Analysis II Chapter 9

[253]

As we scroll through, look at the fact that we have so many requests and very few replies.
That is a very blatant problem. If we go into the expert information, we can see in the
warnings that it says No response seen to ICMP requests:

Application Protocol Analysis II Chapter 9

[254]

Of course, you know that as we click through each request, it'll show us each packet along
the way. We have all these requests that did not receive a reply, but you don't see any other
problems in the capture.

Now remember, ICMP does not offer any sort of stateful connection like TCP does, for
example, so we don't get any responses that indicate that there are really any problems. We
just make an attempt, it fails, and we just keep attempting over and over again. So being
able to take a look at what's in the capture, even just scrolling through it and taking a look
at what the pattern looks like, can be useful because we don't really have much else to go
on.

Now of course, you could also graph this out and have two graphs, one that requests and
one that replies, and you can see how they may not match up in the I/O graph. This is
indicative of a signal issue, so what we're looking at here is we have some data packets that
are making it and some that aren't. However, in the capture, it'll not tell us the signal
strength anywhere. We have to determine what the problem is based on the information we
have, and from looking at this it looks like a signal problem because we have packet loss.
Now, on the testing device, you'll most likely see that in your command window it'll say
that so many packets have been lost during the following ping attempts. In the drivers, you
may see that the wireless signal is low. There are other ways you can look at this, but if
you're looking at just a pure packet capture of ICMP, this is an example of what the
problem would look like, such as a low signal issue.

Wireless is a vast topic that is very in-depth, and I highly recommend you spend time going
through a full wireless course or a series of books to learn it if you are going to end up
supporting that and that's something you're interested in doing.

A short video or book on how to look at it in Wireshark and what certain things might look
like in a Wireshark capture is useful, but there's much more going on with wireless because
we're using radio waves and signal strengths and such. Thus, it's highly recommended to
go out and learn more about wireless in order to understand how things really work
behind the scenes.

VoIP analysis
In this section, we'll take a look at how SIP works when a connection is created between
two phones, and how RTP works to transmit the live data between the two.

Application Protocol Analysis II Chapter 9

[255]

The example capture that we'll use for this chapter and the next one is available on the
Wireshark SampleCaptures page (). If you
scroll down and look for the SIP and RTP section, we'll be using the MagicJack+ short test
call:

Download MagicJack+ short test call and open it in Wireshark.

Once you have that open, we'll take a look at our capture and notice that we have a variety
of packets; it has not been yet been cleaned up:

We can see that there's some ARP, some UDP traffic, ICMP, some SIP, and some RTP; we
also have some SMB in the end. So there's a mixture of stuff; this is like a real capture. In
order to pick out just the SIP traffic, which is one of the many protocols but the most
common protocol to use for VoIP, we simply enter for our display filter and apply it:

Application Protocol Analysis II Chapter 9

[256]

There are a number of other protocols in use as well, such as Skinny, which is a very
popular one for Cisco networks, but the standard one is SIP. What SIP does is create the
connection between two devices. If you look at the left-hand side of the following
screenshot, you can see the Time column. We have seconds. So, what we have here is
one series of connection attempts. It's all very quick, very much in the same time frame.
Then, we have another packet: seconds, and then we have another couple in the 170s.
It's important to note because we're missing some data.

As mentioned earlier, the capture also consists of some RTP traffic. What happens is, SIP
creates the connection between the two devices. However, the actual data, that is, the video
traffic or the voice traffic (whatever it is), is transmitted over the real-time protocol, RTP,
directly between the two devices. So if we're filtering on SIP, we'll not be able to see it.
What we need to do is add to this and that'll flush out some of this missing time frame
we have here.

For that, we'll type , and you can see that we now have our connection
creation with SIP:

Application Protocol Analysis II Chapter 9

[257]

As you can see, we have RTP, which is the transfer of the voice traffic, and then we have
some SIP goodbye commands at the bottom. And just like with the other protocols we've
spoken about, they use status codes in SIP, just like with many others. So, we have the 400
series, which is a problem; we have 100 series, which is a success; and there are some other
commands as well.

If you would like to learn more about SIP, take a look at RFC 3261, which
gives you a great breakdown as to how SIP functions (

).

What we see in the preceding capture are a number of connections and then some actual
data traffic sent. And this is actually a very good capture because it shows us a problem as
well as a solution.

So, earlier, we discussed about status codes. Here, we have a :

What we have is a local device, which looks like some sort of phone, that is trying to create
an SIP connection out to magicJack. It's providing an command, saying: Please
invite the following device into the connection. And this is being sent to
address; it's being sent to the magicJack SIP server. The SIP server is handling the
connection between one phone and the other, and then once that connection is established
it is hands off with the communication. It does not act as a proxy and pass through all the
data traffic, it only creates the connection. So we can see that here we have .
Our device is sending a request to it, saying: Invite the following phone number. Try to call
it. The server responds back and says: All right. I'm going to try it out, but you're not
authorized.

We then have a second request:

The phone calls out to the server again and says: Please invite the following number. Trying
to call it. The server responds back, saying: ok. I'm trying it. I'm going to ring that phone.
We then have a success, and it provides us with a .

Application Protocol Analysis II Chapter 9

[258]

If we expand SIP, we can see that we have Session Progress:

So, we have a success here.

Then, we have additional data about who the call is from and to, as well as what's in the
body:

Then, you can see in the body section:

Application Protocol Analysis II Chapter 9

[259]

Here we have Media Description, name and address (m): audio; what port is using RTP.
So here we are defining in SIP that we'll use RTP to transfer audio traffic between the two
devices defined in the message header From and To.

Once that connection is established, we see that our local phone, this address, is now
connected to a different public address; look at that last octet:

We also see that we're using , which is the encoding scheme. There are a number of
different encoding schemes out there: some of them are better quality, but with a higher
bandwidth; some have less bandwidth with the lesser quality. It's up to you as to which one
you want to use, but is a very common one.

In the RTP information, we can see that we have a Payload type: ITU-T G.711 PCMU (0):

ITU is yet another standard body, just like IEEE and IETF. They define certain protocols
and encoding schemes such as . Then, we have a whole bunch of data packets
between the two devices direct, all with RTP. Then, down at the bottom we have a
connection request to terminate the connection, so there's a goodbye:

Application Protocol Analysis II Chapter 9

[260]

Then, we have a status , saying that we terminate the connection. What we can do is take
a look at these in the Telephony statistics area.

Anything you want to know about your VoIP traffic can be found under this section in
Wireshark:

Two of the greatest spots to go look are VoIP Calls or SIP Flows; it really depends which
one you want to go into. But if we go into VoIP Calls, we see that here's the one phone call:

Application Protocol Analysis II Chapter 9

[261]

If we had a bunch of phone calls happening at the same time in one packet capture, they
would all show up here in a nice chart and they would have what times they started and
stopped, who initiated the connection, who's it from and to, what protocol were they using,
and so on. What we can do is select that and go to Flow Sequence, and we can see a great
diagram of what ports are on local side on the local phone, what ports are on the remote
side on the SIP server, and what ports were used here on the actual device:

You can see that there are three devices in use. All the SIP traffic (look at the right side in
the : you see what protocol's in use) goes to the middleman. Once the connection
is established, then we have RTP traffic. The audio traffic in real time goes to and from
between these two devices on RTP direct. Then, when we want to terminate the connection,
we send a goodbye and then an ok to acknowledge that, and we've terminated the SIP
connection. But again, remember it occurred to the control server, the SIP server. This is a
really great way of being able to diagnose what's going on in a phone call, and if you have a
problem with the SIP connectivity, with some sort of VoIP provider, taking a look at this
and telling them what commands are sent and which ones are received is very helpful for
the troubleshooting person to diagnose what's going on. They can compare what we see to
what they saw and it's very helpful, especially the commands ; ; ;
and .

Application Protocol Analysis II Chapter 9

[262]

In comparison, we can take a look at the Statistics | Flow Graph:

Application Protocol Analysis II Chapter 9

[263]

We've looked at this earlier:

You can see that the flow graph is a bit more complicated to look at. You can still get some
of the same information from it, but it's more difficult to view since it's per packet. It's
always better to use the other flow graph. Even though we can address this to displayed
packets by selecting the option Displayed packets from Show, it's still for every single
packet. So if you're just talking about the basic connectivity or the basic flow, the other flow
graph is better. If you need extreme detail, you can take a look at that in here.

You can also take a look at the Telephony | SIP Statistics:

Application Protocol Analysis II Chapter 9

[264]

The SIP Statistics will give you a count of how many different occurrences have happened
of different requests:

Application Protocol Analysis II Chapter 9

[265]

Remember how there are different codes that are in use, just like HTTP and FTP, and all the
other ones we've looked at? Same thing here, and it will give us a count of how many times
certain things have occurred. So, this was the SIP Responses, and then we have SIP
Requests; and you see that there are two acknowledgments, a goodbye and an
unauthorized, and if you have a long packet capture with a bunch of problems, you can
take a look at this, and, of course, you can sort that based on your counts and see which
ones are the most common. If you see a bunch of 400 or 500 errors, that might be a problem
that you need to investigate.

And just like with SIP Flows, we can take a look at RTP, which is the audio traffic, the
actual voice traffic, and look at the RTP Streams in addition to the SIP Streams:

So remember we had that one connection from the phone to the magicJack phone? We see
that in the bidirectional setup. So, we have the connection from the phone out to the
magicJack, and then from magicJack back to the phone. And these are both RTP; the
payload is , like we talked about before. It also gives us some good information about
the jitter. The jitter is a very useful statistic to look at. The lower the jitter, the better things
are for voice traffic. Any sort of packet loss that you have (which is also a column shown
earlier); any sort of jitter that you have; or any latency: these are all major problems for
voice traffic, be it any sort of real-time traffic: video traffic, voice traffic, and so on.

Application Protocol Analysis II Chapter 9

[266]

Jitter is the difference in latency between different packets, and you have massive swings
from one packet to another. You can have a lot of audio quality problems as packets are
arriving at different times and get jumbled up in the software. You might have some packet
loss as well in that sort of situation, so then you're losing certain words, and that's when
you start getting really weird crackling problems; you get dropped words; you might have
one side that's completely silent and the other side can hear. You can have all sorts of
strange problems when you have a lot of jitter or packet loss. In this section, we looked at
some VoIP traffic using SIP and RTP and how to filter on those, as well as how to look at
some statistics and some flow graphs on them.

VoIP playback
In this section, we'll reconstruct and play back VoIP calls and listen to quality issues.

What we'll do is use the same magicJack call that was used in the previous section.

One of the really great features of Wireshark, in addition to all of its many filters and
statistics and graphs that it can create, is that it has the ability to play back voice traffic.
Some people might find this kind of creepy if you're an end user, that you can listen to
someone's phone call, but it is data. Just like we can read all of these commands back and
forth, we can read the username and password if it's unencrypted; if the SIP traffic is also
unencrypted then we can listen to the phone call, too, just because it's standard data; it just
happens to be voice traffic. We can do that in Wireshark very easily.

In order to do that, we opened up our call. We simply go to Telephony | VoIP Calls, and
select the call:

Application Protocol Analysis II Chapter 9

[267]

After selecting the call, click on Play Streams. And when you click on that, you'll see a
histogram of exactly what's going on in the voice call:

This alone may be able to tell you something about what's going on, once you get used to
what certain things look like. If it's a phone that's ringing, or actual words and discussions,
you might be able to pick that out just by looking at the histogram shown in the preceding
screenshot. And then, of course, you can select one side or the other to bring it to your
attention, so you can see what might be occurring on one of these channels or the other,
whether it's the source to destination or the destination to the source from one phone to
another. What we can do is, leave everything as default, and go ahead and click on the play
button.

You can hear the phone ringing, after which it says .

Application Protocol Analysis II Chapter 9

[268]

You'll see that it played back the audio of the phone call. It played back both directions of
that phone call, so we got to hear both the sender side and the receiver side. So, what we
had first in the top was one side of the conversation, and then below it is the other side of
the conversation. So, that's very useful, to be able to actually hear both sides of the call at
the same time. That way, if one user is complaining about something and the other one
isn't, you can actually listen to that as if you had both telephones up to both of your ears at
the same time.

What you can also do is adjust the jitter in the player, and listen to what that might sound
like and what kind of problems might occur.

Now, you will notice that the preceding graph was real-time, and as the audio plays, you
will see the playback line go across. This is a relatively clean capture. If there are any
problems in the capture, they will show up on this graph, and you'll see them begin to
occur as you change things such as the Jitter Buffer. So what we'll do is we'll drop that
down to something very low, let's say :

Application Protocol Analysis II Chapter 9

[269]

You can already see that we have some silence that was created, as well as some additional
errors. If we zoom in, we have some jitter drops that have also been created, and we've
actually manufactured some problems in our connection:

Application Protocol Analysis II Chapter 9

[270]

And, if you zoom out far enough, you'll see there's that initial ringtone that occurred, which
was off screen before:

Now that we've inserted all of these problems in our packet capture, let's go ahead and play
it.

You can hear the phone ringing and it says .

This time you should be able to hear that difference. In the beginning of the phone call, we
had a bit of a crackly sound. As the phone was ringing we also had some kind of dropped
packets there; you could hear it kind of was crackly and didn't sound that great. And the
voice in the beginning there also had some words that were kind of clipped and missing.
Additionally, one side is completely silent. If you remember looking at the histogram, there
was a duplicate of each word in the test 1, 2, 3. One side is now completely silent; it's
dropping all of that and is now completely missed because there are too many problems in
the jitter. So this is a great tool to use to be able to recreate different problems and be able to
listen to what they actually sound like in real life.

Application Protocol Analysis II Chapter 9

[271]

Summary
So in this chapter, you've learned about some email analysis using POP and SMTP. We also
looked at , which is wireless, what certain things look like in a packet capture, and
the fact that you'll need to do additional troubleshooting outside of what you can do in
Wireshark in order to properly diagnose wireless. We also looked at VoIP analysis using
SIP and RTP, creating that connection and then transmitting that audio data directly from
one device to another. Then, we also played that back using the built-in tools in Wireshark,
and manipulated some of the settings in that for jitter, in order to recreate problems and be
able to listen to what that sounds like.

Next is , Command-Line Tools, where we'll use some command-line tools to
extend Wireshark, and talk about some of the enhancements that you can add to it.

110
Command-Line Tools

In this chapter, we'll take a look at the following topics:

Running Wireshark from a command line
Running tshark
Running tcpdump
Running dumpcap

Running Wireshark from a command line
In this section, we'll take a look at how to run Wireshark from a command line and explore
some of the command-line options and how you might use them. The first thing I want to
do is open up a Command Prompt, and then we'll browse where Wireshark is. Unless you
have Wireshark in your system variable, you won't be able to simply type and
have that function.

Command-Line Tools Chapter 10

[273]

So what we'll have to do is go to its location. In my system, it's back in program files and in
the directory. And if we type , we'll see , as well as some of
the other tools that we'll talk about later, such as tshark:

What we'll do is run ; then, if you press Enter, it will open up Wireshark,
just like if you were to click on the icon. If you type , it will provide the
output of all the variables and arguments that Wireshark has available to it:

Command-Line Tools Chapter 10

[274]

If we scroll up, we'll see the version of Wireshark we're running and a dump of all the
variables and arguments that we can use:

Command-Line Tools Chapter 10

[275]

You'll see that they're broken up into the following different categories:

One of the first things you'll most likely want to do is set up Wireshark to run a capture
with your default interface, your standard local area connection wired interface. You
should see that you would do it with and then the interface. It says the
interface name or . Now, how do you determine what the interface name is or what
is - what the index of what that interface is? This, you do with , which prints the list of
interfaces and exits. Now, we will run .

Note that the capitalization does matter.

We see that in the following screenshot, we have index numbers. That's idx: , , , ,
and . After the unique ID of that interface, we have the name, such as

, , and other stuff that's on my system:

Command-Line Tools Chapter 10

[276]

We can then execute and then either the name or the idx number. We
will use the index number because it's nice and short and it prevents any additional typos.
We'll type . Simply press Enter, and you'll see that it doesn't really
do much. This is because we've opened up Wireshark, and by default, Wireshark opens up
to the main home screen. The main home screen doesn't actually have to do anything yet at
this point and so, it doesn't. You're not starting a capture; you're not doing anything. You
just open it up. Now, you can see that it does have the first interface kind of selected, but
it's not that useful. So, let's close this, and we'll tell Wireshark to start capturing the second
it opens up, using the interface that we've defined. We can do that with , which says

. It just opens up the Wireshark
interface. We'll use . Type , and it will immediately start
capturing on that interface.

Another useful feature is to run Wireshark and have it automatically create files after a
certain filesize or a certain duration of time, or after a certain number of bytes, or anything
like that. Most commonly, people run Wireshark in a ring buffer, where you create a file
and then it automatically switches to a new file every hour, every 30 minutes, or every 10
MB; whatever it might be that you have decided is the best way to approach this issue and
to approach this system that you're capturing, based on the volume of data that you're
expecting. What we can do is execute Wireshark using the flag to allow us to automatically
create files. This is very useful if you want this to run overnight and not crash your system
by having a 20 GB capture file in the morning: that'll not be very useful and it'd be very
difficult to work with, if it is even possible at all, but it depends on your system. We'll run
Wireshark with the primary interface that we've already selected, , so it initiates
the packet capture right away. Then, we'll define the fact that we're using a ring buffer. So,
we'll use for ring buffer and the kind of ring buffer that we want. Do we want filesize?
Do we want duration? What might it be? You'll see that ring buffer has a number of options
such as duration, filesize, and the number of files that you want to replace them; hence the
term ring, where they replace themselves in the circle. What we'll do is select for ring
buffer, and we'll use .

If you do , generally the filesize is based on KB. We're saying that
approximately 10 MB makes a new file, so every 10 MB we'll make a new capture file. We
then have to define the output file. So, we're asking for a ring buffer, but we need to tell it
where to put it. We'll say for write to (we'll write to an output file), and it'll be located in

:

Wireshark.exe -i 1 -k -b filesize 10000 -w C:\Users\sayalit\capture.pcapng

Command-Line Tools Chapter 10

[277]

If we run the preceding command, that will have Wireshark run and begin capturing all the
packets. Once it hits 10 MB, it will then refresh the screen and start capturing again, and
you'll see it just kind of flicker once every time it hits 10 MB and keeps coming up with a
new screen as it captures a new cap file. If you go into the directory that was specified in
the argument, you'll see all the files that were created every time it hits 10 MB. This was
just an example of a few arguments and flags you can use when running Wireshark from
the command line. As you saw, there are many options, and you can create very elaborate
custom ones if you wish. Up next, we'll look at tshark, which is a command-line-only
application that comes with Wireshark when it's installed.

Running tshark
In this section, we'll take a look at how to run the terminal version of Wireshark, so that it
only has a command-line interface instead of opening up the GUI.

In order to run tshark, you have to open up the command window, and once it's up, we
have to browse to where Wireshark is installed because as I've explained, unless you have it
in your system path, it'll not be available. So we'll browse again to where Wireshark lives,
and we'll do a directory listing. We'll see that we have . This is installed by
default with Wireshark. In order to run tshark, all you have to do is, of course, run

. If you do so, it automatically begins capturing on your default interface:

Command-Line Tools Chapter 10

[278]

You'll notice that it shows the packets that it's capturing directly to the command-line
interface, directly to . It does so because it does not have a graphical interface;
there's nothing for it to display except for the screen that it's currently using, which is the
command interface. You'll see that the output provides a similar display as you would see
in Wireshark in the GUI. We have the packet number, the time since the packet capture
started, the time difference between the last two packets, the source IP and the source port,
the destination IP, the destination port, and so on. If you take a look at ,
just like , it'll look very similar. If we scroll up, we have the same
arguments that we can use:

We have to display the list of interfaces again and for the interface that we want to
use. We don't have to define so that it automatically starts capturing because tshark
doesn't have a GUI for us to do anything in, so it automatically starts capturing anyway.
We can set the ring buffer as before; we can define output files; we can do all sorts of things.

Command-Line Tools Chapter 10

[279]

For an example, we can type just to display all of our interfaces again. To
confirm that we want to use interface number , we'll type , which
ensures the use of the first interface. Then, we can define an output file as well, so we'll
write this out to , and now it begins capturing:

You'll see that it's showing us how many packets it's captured as it runs. In order to stop the
capture, simply press Ctrl + C, and it will stop whatever it's doing. Just like with the
Wireshark example, we can enhance this line that we've already created and we can define
a ring buffer, for example, and say the duration is every seconds. Then, it will do
exactly that; every seconds, it'll create a new file:

Tshark is very useful for things that you want to script. If you want to write a batch script
or a bash script that will do a capture, and you want to ensure that it uses all the
functionality that Wireshark is capable of, and it saves to the format, and you want
to make sure that it does everything just like you would in Wireshark itself, using tshark is
a great idea, as well as on systems that have low resources. If you're running this on a
Command Prompt, need to do a packet capture on some old system like a Windows 2000
system, or something like that that's barely scraping by, you can run , and it will
eliminate a lot of the overheads that you have with running Wireshark, especially if the
interface is automatically updating and scrolling with the packets. This gets rid of all of
that, and it just gets the data that we need. In our next section, we'll take a look at ,
which is available on almost every Unix or Linux system out there.

Command-Line Tools Chapter 10

[280]

Running tcpdump
In this section, we'll take a look at how to run on a Linux system to capture traffic.

If you have a Linux- or a Unix-based system (BSD; whatever it might be) that does not have
Wireshark installed and you do not have the option of installing Wireshark, or if you have a
system where you don't really want to spend the time to install Wireshark and you just
want to do a quick capture, you can do so on almost all of them with . This is a
very common utility that's installed on almost every single NIC-based system out there.

What we have is a newer version of Ubuntu, and I've opened up the Terminal window, and
all you have to do is run . It's within the system variable path, so you don't have to
go browse for it like we had to for the others on Windows, and I'll run it with . We
can see that has displayed its help contents and it shows us what arguments are
available for it to receive:

If you want to learn more about within the Terminal window, if
you're not familiar with Linux, you can do , and it will
provide you the manual on how to use . It is a nice, long
document describing all the different arguments, what they do, and how
to use it, with some examples and such. To get out of there, you just need
to press Q.

Command-Line Tools Chapter 10

[281]

Now, you'll notice in the line that the syntax for and arguments and the
flags that it has available are different from tshark and Wireshark, so we can't run the exact
same commands. They're similar, but they're not exactly the same. For example, there's no

 for us to take a look at our interfaces. If you want to know the interfaces on your Linux
system, usually you can run something like or , depending on what
you're looking for, and it will output the interfaces that you have available, the IP addresses
associated with them, and a bunch of other statistics:

Now, this is a virtual machine that's running right now, which is why it shows as the
interface name. Quite often, this is or something like that. is our loopback on the
system. Just like every other system you've seen in Windows and such, there's usually a
loopback. This is a loopback on this system. If we look back to our information, we can run

, and we can also define an interface with the so that's where that interface
comes in. We're going to do . Now, by default, without the

 command will try to run on the default interface that you have, the interface in this
example, and we can take a look at that in the following screenshot. When I try to do that,
you'll see that I have an error. It says that

:

Command-Line Tools Chapter 10

[282]

Depending on your system, you'll probably have to run and in order to do this, enter
the password for your user which will elevate the privileges for your user so that you can
run this command. You can see that it says is now running. It would show us
right now any packets that are coming into and out of the system if they were, but because
this is the virtualized system, is not functioning correctly on it right now:

Command-Line Tools Chapter 10

[283]

Press Ctrl + C to cancel it, and you see that there are 0 packets. What we'll do instead is
define the loopback interface for the example, using for loopback, as we
saw up here under the command. If I do that now, it's listening; but, we don't
have any traffic yet that is going to the loopback:

Now, we'll open up a new Terminal, and I'll generate some traffic. I'll simply my
. as an alias name to , which is my loopback address. As

I ping loopback, you'll now see that popping up in the window:

You see that, similar to tshark and Wireshark, we have the time that the packet occurred,
from and to address, what kind of protocol is it, what's in the packet, and the details in
there. We'll cancel that. Ctrl + C closes both of those.

Command-Line Tools Chapter 10

[284]

Now if I were to do a listing, this is like in Windows: ; I don't have any files here
besides the test one that I did earlier:

By running that, it outputs to the to the Terminal, but it doesn't actually save the
file. In order to do so, we would have to define the file, just like in tshark. We'll remove my
previous test files by typing the command ; you'll be able to see that it's now
gone. We'll run again, and this time, we'll define an output file for it to save to. As
with tshark, luckily, we use for write. So, we're writing to a file . After typing
the command and starting to generate some traffic,
instead of outputting to the , it's outputting to the file, and I can stop my traffic. I
can also stop my capture, and it says it's saved packets:

Command-Line Tools Chapter 10

[285]

If I take a look at my listing, I do have , and if I look at the size, I'll see that it
does indeed have some bytes in there. There's also an option with , and I wanted to point
this out because I've been showing examples of ring buffers. This is a way of doing a ring
buffer where it will automatically overwrite so many files. However, it will save many files
you define and then, when you get to the maximum number, it will start overwriting the
last oldest files. In the next section, we'll take a look at , which is another option
for or .

Running dumpcap
In this section, we'll take a look at how to run , which is another alternative to

 and .

Once again, we'll have to go to . In this example, it is installed with Wireshark on
the system, and if we do a directory listing, you'll see that is indeed listed. Tshark
is actually based on , and so we can type or . If we take a
look at the output, it looks very similar to tshark and Wireshark:

Command-Line Tools Chapter 10

[286]

Depending on the system that you're using though, it may only have available for
one reason or another, or tshark may be using too much memory if it's a really small,
embedded IoT system, or something like that. You could potentially use to have
an even lighter utility in order to capture traffic-or maybe you just like using this better. If
we look at the arguments that are available, they are just like in tshark. We have , ,
and for output. They're all very much the same. We can illustrate that by running

, and we'll do to display our interfaces again. We can type , and
we'll output to a file again. We'll type . If we start doing
that, it'll begin capturing packets:

We can also expand this and define a buffer to use as well, just like the other examples, and
we can do and say a duration of seconds. This way, every minute, it will create a new
file. We can also illustrate this by reducing the number of seconds. Let's change that to .
Every seconds, it'll create a new file for us. The filename is changing every seconds. This
is an example of using that buffer. Note that in all of these utilities, you can define filters
that can restrict the capture, so you can apply capture filters to these. I would not
recommend doing that unless you really have to. It's much better, if possible, to capture
everything and then filter only what you need with the display filters in Wireshark. By
applying capture filters, you can potentially miss some of the packets that might be useful.
Maybe you're only capturing TCP traffic, but then a whole big blast of ARP or ICMP traffic
ends up causing a problem. You would miss that because you're not capturing that traffic.
If possible, you should just capture what you can with the defaults, use just a basic interface
selection and maybe a ring buffer, and take the files and parse them out. Also, observe
them in Wireshark. Just apply display filters and carry out the necessary actions such as
graphing it.

Command-Line Tools Chapter 10

[287]

Summary
In this chapter, we went over several command-line options for Wireshark. We discussed
running Wireshark from the command line and some of the arguments that are available
with it. We also discussed running , which is the command-line version of
Wireshark, running , which is a generic dumping utility that's available on many
Linux and Unix systems, as well as running , which is another alternative for
tshark and Wireshark.

In , A Troubleshooting Scenario, we'll dive into an issue with the user trying to
connect to an FTP server.

111
A Troubleshooting Scenario

In this chapter, we'll take a look at troubleshooting a specific issue within Wireshark. We
will do so by performing the following steps:

Expand Wireshark with some additional plugins and dissectors
Determine where to begin our packet capture about the troubleshooting issues
that we'll look at
Capture the actual traffic
Diagnose the traffic

Wireshark plugins
In this section, we'll take a look at Wireshark plugins that are available and see how to
develop them.

Now, plugins in Wireshark are dissectors, and dissectors are different ways for Wireshark
to analyze and take apart different protocols. If, for some reason, Wireshark is unable to
interpret the data you are capturing, you can look for additional dissectors that are out
there, or write your own, in order to accomplish what you wish to accomplish.

A Troubleshooting Scenario Chapter 11

[289]

The Wireshark wiki has a page here on dissectors (
):

A Troubleshooting Scenario Chapter 11

[290]

It explains how, from a programmatic standpoint, you would handle designing and
creating a dissector. You can see on the page that it goes through many of the details in
order to do so. It has some great information on how you would handle a dissector, and
what it would do and how you'd go about creating it, but it doesn't actually tell you the
individual API data. You can go to the Wireshark developer's guide in order to do so
():

A Troubleshooting Scenario Chapter 11

[291]

In the Wireshark developer's guide, scroll down to the correct section. You'll see under
Wireshark Development we have Packet dissection. Let's click on it and see what we get:

A Troubleshooting Scenario Chapter 11

[292]

You can see it gives you an entire write-up on how dissection works within Wireshark and
how you can expand upon it with Lua in order to create your own dissectors. Additionally,
if you go back and go down to Section 11, you can see that there is the entire Wireshark
Lua API Reference Manual:

If you happen to know Lua and you're programming your dissector, you know how to
reference the appropriate APIs.

Lua programming
Lua is a programming language that was developed specifically for expanding applications
and to be used in embedded systems. So, many applications support Lua as their plugin
programming language of choice. Wireshark is no exception to this.

A Troubleshooting Scenario Chapter 11

[293]

To learn more about Lua, you can go to . You can
also go through the various books on Lua programming published by
Packt.

You can also go on the Lua website and refer to their documentation section, where you'll
find a link that covers Programming in Lua:

A Troubleshooting Scenario Chapter 11

[294]

You can see a free book that's available for you to learn programming in Lua. Additionally,
you can take a look at the Lua reference manual at :

It gives you even more detail as to how Lua works, how the programming language is
created, and all the details of how it actually functions, if you need more information than
just a standard programming how-to manual.

Once you have downloaded a Lua plugin or you have created your own, you can run it in
Wireshark as follows:

A Troubleshooting Scenario Chapter 11

[295]

You can then go to where Wireshark is from the command-line and if we run
 and you look at the help, you will get the following:

You'll see that there is a . This is your , also known
as dissectors and plugins.

Now, let's run a Lua script by doing the following:

Wireshark.exe -X lua_script:plugins\script.lua

So here we are saying: Run an extension in Wireshark. It'll be a Lua script, and it has the
filename . Now, it will look wherever you happen to be running the
executable, which in this example is under , so you'll want to
put your script into the root directory there or in a plugins folder. You could do

 or whatever the name is of your dissector is. Once you do that and
push Enter, it will run Wireshark and try to load that file.

We will now get into our troubleshooting scenario. We'll determine where to capture our
traffic in order to best analyze the data and resolve the issue as quickly as possible.

A Troubleshooting Scenario Chapter 11

[296]

Determining where to capture
In this section, we'll take a look at determining where best to start a packet capture for the
troubleshooting scenario. Now, in this troubleshooting scenario, we have a user that is
reporting that they're unable to access the FTP server. They start with their client, and it just
says that the connection does not work.

Now, what we need to do is determine where we need to begin packet captures in order to
figure out what's going on:

There might be an issue on the client side; there might be an issue on the server side; or
there might be an issue somewhere in between on the internet, possibly. Maybe it's a
routing issue, or something like that that's out of our control. So besides taking a look at log
files on the client or the server, we'll take a look at the packet captures themselves.
Additionally, there might be a problem somewhere between the client and the internet, or
between the internet and the server. These intermediary devices could be firewalls or
routers, or something else that might be blocking or causing issues with the connection.
With this scenario, since the client is reporting a problem but is not being very specific,
we'll start out with a packet capture on the client side. Then, if we determine that we might
need some additional packet captures, we will capture on the server side.

Normally, when you are capturing, you'll start from the most easily accessible location or
closest to the issue at hand, and then work your way along the data path. If a client is
reporting a problem, then you will most likely be trying to do a packet capture on the client
side, and then, if you do not see any sort of obvious issue as to what's going on, then you
work your way up. You go to the next intermediary device, such as numbers 1 and 2 on this
diagram, and then you go from there; and you might have to get involved with the ISP.
Then, you continue your way along that data path from source to destination, performing
packet captures to help determine what the issue is.

Capturing scenario traffic
In this section, we'll take a look at capturing some traffic for our troubleshooting scenario,
and checking for some obvious issues before we look into the packet capture a bit more in-
depth.

A Troubleshooting Scenario Chapter 11

[297]

In the following screenshot, we have captured the traffic from the client connecting to the
server:

We will now put a filter in here for port because we know that the client is connecting
over standard unencrypted FTP. For that we use :

So, we got rid of everything else. We can see that there are three packets, and it looks like
we have a and two retransmissions. So the client, which is , is trying to connect to
the server running on , and it's not even beginning the TCP handshake. So the server
is not doing something correctly in order to negotiate port . It's not that the server is
rejecting the user credentials or there's some sort of other obvious issue. It's definitely not
listening on or something like that. Let's start a capture on the server side, and when the
client connects, we'll see what it does as well:

A Troubleshooting Scenario Chapter 11

[298]

We have the server running, so let's go ahead and try our login attempt. You can see the
packets updating and the client's trying to connect, and you can see that it has failed. So
we'll stop that and also our capture, and then we'll do what we did earlier.

Let's enter and see what happens:

So on the server side, it looks identical. What we're seeing is the source coming into the
server as the client, hitting the server's destination IP . It's reaching the server at
least, so we know that the IP is working correctly. We'll get a , then a retransmission
from the client, and then we'll get another retransmission. Obviously, something on the
server's not running correctly. Since that's pretty obvious, let's take a look and see whether
our FTP server's even running correctly. Let's take a look at our services in here:

A Troubleshooting Scenario Chapter 11

[299]

You can see that we have the FileZilla FTP server that's supposed to be running, but it's not
started. Let's go ahead and start this service:

Now our server's running and we know that everything looks good; we'll refresh just to
make sure; then, let's go ahead and start another capture on the server.

From the client, we will begin a connection, and we can see this:

So we have a , a retransmission again, and another retransmission. The server is
running and the service is operational. What we can also do is check our ports that are
listening on the server with :

netstat -an

Now, let's take a look at port :

A Troubleshooting Scenario Chapter 11

[300]

We can see here that we do have port listening on the server, so the service is running
correctly. It looks like we'll need to investigate the server a little bit further, and take a look
at the packet capture once we eventually get this connectivity issue resolved in the next
section.

Now we'll actually perform these packet captures. We'll dive into the diagnostics of our
connection issue with FTP here a little bit further.

Diagnosing scenario traffic
In this section, we'll take a look at diving into the captured packets and taking a look at
how that FTP server is causing some sort of problem with our connectivity. In our last
section, we saw some of the basic settings to make sure that the service was running for the
FTP server. We took a capture from the client and saw that there was a TCP SYN with some
retransmits, so port was not answering. Then, when that service was up and running,
we took a look at the server side again and saw that there was still a TCP SYN with some
retransmits. There's still something on the server that's not working correctly, and we know
it's on the server side (at least, seemingly) because there's a TCP SYN that is arriving at the
server. If it's arriving at the server, it's getting through the firewalls at both ends of the
connection; it's getting through the routing on the internet, so we know we're getting
partway there, but there's something on the server that's not quite right.

Let's try a connection from the client: just make sure nothing has changed:

A Troubleshooting Scenario Chapter 11

[301]

We see our TCP SYN come in, and we have two retransmits from the client. At that point,
the client gives up and states that it cannot connect. Since this server is running on
Windows, we should take a look at whatever on Windows might be blocking port from
responding. So we know the service is running, and we looked at last time
and we saw that port was listening, so that's all good; but something else in the system
is blocking it.

If we take a look at the Windows Firewall settings, we see that our firewall is on:

It is most likely that the firewall is blocking it, because the FTP server did not put an
exception into the firewall rule. We can create an inbound rule for port , or we can just go
ahead and disable it for the sake of testing.

A Troubleshooting Scenario Chapter 11

[302]

For now, we'll just turn this Off:

We will do that on all of the profiles.

Now, let's go ahead and do another connection attempt. We will start the connection from
the client:

Now, we can see that we have some FTP traffic. So finally, our client is able to connect
partially. On the client side, it's currently telling me that it wants a password. We can see
that we have and for the TCP handshake. Then the server responds,
and says it's running the FileZilla server. My client then requests that it logs in with the

, and then the server responds, saying that a password is required. My client then
acknowledges that request.

So now, let's go ahead and try to log in with the credentials that the client received:

A Troubleshooting Scenario Chapter 11

[303]

You can see at the bottom that we've actually got and password. Let's log in with
the credentials that the client was provided with. You will get a access denied error, so the
client still can't connect correctly. After fixing two different things, the client still cannot
connect. Let's go ahead and look in our packet capture here, and see if we can find out why:

So we have our ; ; and the server responded. We tried to log in with
. The server says: log in with a password. We acknowledged that. Then the client

provides a password . Then the server states that the login is incorrect. What we'll
need to do is reset the password in the server:

A Troubleshooting Scenario Chapter 11

[304]

You can see on to the server running FileZilla. Go ahead into the Users section, and we will
change the password on this to , which is what the client is expecting it to be. Let's
go ahead and try that connection again:

If we take a look here, we can see that we need and password. The
password is sent. The server states that it has now logged on so that was a successful
login with the correct credentials. Then, go ahead and continue with the additional
commands that we referenced in the prior sections. What we'll do then is disconnect:

We can see that from the client we initiated a finalization, a ; ; from the server;
and acknowledge. We've got the four-way handshake to terminate the connection.

Summary
In this chapter, we were able to successfully diagnose multiple issues with this server.
Initially, the service was not running. Then, the service was being blocked by the Windows
Firewall. Then, there were incorrect credentials provided to the client. Furthermore, using
Wireshark we were able to diagnose and provide some information as to where we needed
to look, whether it was on the client side or the server side, or in between, and it was a great
help, allowing us to resolve this issue quickly. In this chapter, we talked about Wireshark
plugins, using Lua and creating dissectors. We then evaluated a troubleshooting scenario,
determining where to create our captures, capturing the traffic, and doing some basic
diagnostics, and then diving into it a little bit more and actually reading the FTP packets,
once they started to send and receive to the client. We have now reached the end of the
book. I hope you have enjoyed reading it.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Network Analysis using Wireshark 2 Cookbook - Second Edition
Nagendra Kumar Nainar, Yogesh Ramdoss, Yoram Orzach

ISBN: 978-1-78646-167-4

Configure Wireshark 2 for effective network analysis and troubleshooting
Set up various display and capture filters
Understand networking layers, including IPv4 and IPv6 analysis
Explore performance issues in TCP/IP
Get to know about Wi-Fi testing and how to resolve problems related to wireless
LANs
Get information about network phenomena, events, and errors
Locate faults in detecting security failures and breaches in networks

Other Books You May Enjoy

[306]

Cybersecurity Attack and Defense Strategies
Yuri Diogenes, Erdal Ozkaya

ISBN: 978-1-78847-529-7

Learn the importance of having a solid foundation for your security posture
Understand the attack strategy using cyber security kill chain
Learn how to enhance your defense strategy by improving your security policies,
hardening your network, implementing active sensors, and leveraging threat
intelligence
Learn how to perform an incident investigation
Get an in-depth understanding of the recovery process
Understand continuous security monitoring and how to implement a
vulnerability management strategy
Learn how to perform log analysis to identify suspicious activities

Other Books You May Enjoy

[307]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

8
802.11 analysis , , , , , ,

802.11 standard
 reference

A
advanced filtering , , ,
Appearance
 Columns
 Fonts and Colors
 Layouts section
ARP analysis , , ,
ARP request failure
 example ,

B
Berkeley Packet Filter (BPF) syntax ,

C
colorizing traffic
 about , , , , ,
 example , , ,
command line
 Wireshark, running from , , , ,

,

D
default profile
DHCP analysis , , , ,
DNS analysis , , ,
DNS request failure
 example ,
dumpcap
 running ,

E
email analysis
expert system
 usage , , , ,

F
file statistics
 Conversations ,
 DNS statistics
 Endpoints
 flow graph ,
 I/O Graph
 load distribution ,
 Packet Lengths
 Protocol Hierarchy ,
 Resolved Addresses
 tracing
filters
 capturing , ,
 displaying , , , ,
FTP analysis , , ,

G
Graph I/O rate

H
HTTP analysis , , , , , ,

I
I/O graph , , ,
ICMP analysis , ,
Internet Control Message Protocol (ICMP)
IPv4 analysis , ,
IPv6 analysis , ,

[309]

L
Linux
 Wireshark, installing on , , ,
Lua programming
 about ,
 reference

M
macOS
 Wireshark, installing on ,

N
network interface controller (NIC)

P
packet capture
 best start, determining
packets
 annotating , , ,
 exporting , ,
 printing , , ,
 saving
 time values , ,
POP
 used, for retrieving emails
Preferences window
 about
 Advanced category
 Appearance category
 Capture category ,
 Filter Buttons category
 Name Resolution category ,
 Protocols category
 Statistics category
print working directory (PWD)
profiles
 about
 creating ,
protocol, for email analysis
 POP , , ,
 SMTP , ,

Q
Qt GUI

R
remote capture setup
 about
 prerequisites ,
remote capture
 usage
RFC 1939 for POP
 reference
RFC 2821 for SMTP
 reference

S
SampleCaptures
 reference ,
scenario traffic
 capturing , , , ,
 diagnosing , , ,
Secure Shell File Transfer Protocol (SFTP)
Selective Acknowledgment (SACK)
SMTP
 used, for sending emails
SPDY protocol
 reference
streams
 following
switched port analysis (SPAN)

T
TAPs
TCP analysis , , , , , , ,

, , ,
TCP trends
TCP/IP
 overview , , , ,
tcpdump
 running , , , ,
test action port (TAP)
throughput , ,
traceroute
 using , ,

traffic
 capturing , , ,
tshark
 running , ,

U
UDP analysis , , , ,
UDP protocol
 reference

V
VoIP analysis , , , , , , ,

VoIP playback , ,

W
Windows

 Wireshark, installing on , ,
WinPcap
 reference
Wireshark 2
 features , , , ,
Wireshark plugins
 developing , ,
Wireshark wiki
 reference
Wireshark
 installing, on Linux , , ,
 installing, on macOS ,
 installing, on Windows , ,
 reference
 reference, for developer's guide
 running, from command line , , ,

, ,

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributor
	Table of Contents
	Preface
	Chapter 1: Installing Wireshark 2
	Installation and setup
	Installing Wireshark on Windows
	Installing Wireshark on macOS
	Installing Wireshark on Linux

	Summary

	Chapter 2: Getting Started with Wireshark
	What's new in Wireshark 2?
	Capturing traffic
	How to capture traffic

	Saving and exporting packets
	Annotating and printing packets
	Remote capture setup
	Prerequisites

	Remote capture usage
	Summary

	Chapter 3: Filtering Traffic
	Berkeley Packet Filter (BPF) syntax
	Capturing filters
	Displaying filters
	Following streams
	Advanced filtering
	Summary

	Chapter 4: Customizing Wireshark
	Preferences
	Appearance
	Layout
	Columns
	Fonts and colors

	Capture
	Filter buttons
	Name resolution
	Protocols
	Statistics
	Advanced

	Profiles
	Colorizing traffic
	Examples of colorizing traffic
	Example 1
	Example 2

	Summary

	Chapter 5: Statistics
	TCP/IP overview
	Time values and summaries
	Trace file statistics
	Resolved addresses
	Protocol hierarchy
	Conversations
	Endpoints
	Packet lengths
	I/O graph
	Load distribution
	DNS statistics
	Flow graph

	Expert system usage
	Summary

	Chapter 6: Introductory Analysis
	DNS analysis
	An example for DNS request failure

	ARP analysis
	An example for ARP request failure

	IPv4 and IPv6 analysis
	ICMP analysis
	Using traceroute

	Summary

	Chapter 7: Network Protocol Analysis
	UDP analysis
	TCP analysis I
	TCP analysis II
	Graph I/O rates and TCP trends
	Throughput
	I/O graph

	Summary

	Chapter 8: Application Protocol Analysis I
	DHCP analysis
	HTTP analysis I
	HTTP analysis II
	FTP analysis
	Summary

	Chapter 9: Application Protocol Analysis II
	Email analysis
	POP and SMTP

	802.11 analysis
	VoIP analysis
	VoIP playback
	Summary

	Chapter 10: Command-Line Tools
	Running Wireshark from a command line
	Running tshark
	Running tcpdump
	Running dumpcap
	Summary

	Chapter 11: A Troubleshooting Scenario
	Wireshark plugins
	Lua programming

	Determining where to capture
	Capturing scenario traffic
	Diagnosing scenario traffic
	Summary

	Other Books You May Enjoy
	Index

